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Abstract

In exploring the solar system, not only the planets and moons are of interest, but also
asteroids and comets. These bodies usually have a pretty irregular shape making the
determination of their gravity field difficult. However, this knowledge is critical to the
successful operation of spacecraft in close proximity to these bodies.
One of the available modeling techniques to solve the problem is the polyhedral gravity

model. It is capable of analytically determining the full gravity tensor, including potential,
acceleration, and the second derivatives for an arbitrary point P around a homogenous-
density polyhedron. Consequently, the only required inputs are the polyhedral mesh and
the constant density.

This work implements the analytical solution for the polyhedral gravity model via the line
integral approach in an open-source project with extensive accompanying documentation
on readthedocs. It relies on an efficient and parallelized backbone in C++ 17, vectorizing
expensive computations. For example, the resulting performant implementation evaluated
the full gravity tensor for thousands of points for the asteroid Eros with a mesh consisting
of 24235 nodes and 14744 faces in less than a second on a typical system. Further, the
implementation’s interface is exposed via a simple Python module deployed and published
on conda.
Finally, the implementation has undergone multiple tests in order to be successfully

verified. Its results were compared to a cube-shaped body with closed-analytical solutions
and publicly available implementations in MATLAB and FORTRAN.
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Zusammenfassung

Typischerweise sind bei der Erforschung unseres Sonnensystems nicht nur Planeten
und Monde von Interesse, sondern auch kleinere Körper wie Asteroiden und Kometen.
Diese zeichnen sich meistens durch eine recht irreguläre Form aus, was die Bestimmung
ihres Gravitationsfeldes nicht unbedingt einfach macht. Jedoch ist das Wissen um das
Gravitationsfeld von kritischer Bedeutung für den Erfolg von Operationen in naher Distanz
zu diesen Körpern.
Eines der verfügbaren Modelle ist das Polyhedrale Gravitationsmodel. Mit ihm ist es

möglich, den vollständigen Schwerkrafttensor, bestehend aus Potential, Beschleunigung und
zweiten Ableitungen, für einen beliebigen Punkt P rund um einen Polyeder homogener Dichte
analytisch zu bestimmen. Als Eingaben werden dafür lediglich das Mesh des Polyeders sowie
dessen konstante Dichte benötigt.

Diese Arbeit implementiert die analytische Lösung des Polyhedralen Gravitationsmodels
mittels des Linienintegralen Ansatzes in einem Open-Source Projekt mit einer umfangreichen
begleitenden Dokumentation auf readthedocs. Das Rückgrat dieser Implementierung besteht
hierbei aus einer effizienten, parallelisierten und vektorisierten Implementierung in C++17.
Als Beispiel für die Performanz zu nennen sei, dass die Berechnung von tausenden von
Punkten für das Mesh von Eros, bestehend aus 24235 Knoten und 14744 Flächen, innerhalb
von weniger als einer Sekunde finalisiert wurde auf einem typischen System. Zudem wurde
das begleitende Python Interface der Implementierung als Teil dieser Arbeit auch auf conda
veröffentlicht.

Abschließend sei zu erwähnen, dass die Implementierung mehreren Tests unterzogen worden
ist. So sind ihre Ergebnisse mit existierenden Implementierungen in FORTRAN und MATLAB

sowie der geschlossenen analytischen Lösung für einen würfelförmigen Körper erfolgreich
verglichen worden.
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Introduction and Background
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1. Introduction

Is it a bird? Is it a plane? No, it is a (space) potato. One can only assume what C.G. Witt
thought on 13.08.1898 when he discovered Eros1 depicted in Figure 1.1. However, one can
see that Eros’ shape is definitely not trivially described but has some commonalities with a
potato.

Figure 1.1.: Asteroid (433) Eros - “The space potato”, Source: https://www.esa.int/ESA_
Multimedia/Images/2005/09/33_km_lange_fliegende_Steinkartoffel_

der_Asteroid_Eros, lasted accessed: 12.09.2022

In the last decades, asteroids and comets have become a topic of increased interest, as
more and more of them are discovered with the improved observation gear of today [1].
As of now, more than 1.2 million asteroids and more than three thousand comets have
been discovered in our solar system.2 They are worthwhile destinations for missions - like
Rosetta in 2014 with its lander Philae [2] or the upcoming Hera mission involving deep-space
cubesats for the first time [3] - to push the boundaries of what is technically possible and
learn about the history of our solar system. Also, the prospect of asteroid mining is a
rewarding goal to get rare and expensive materials that only rarely appear on Earth [4].
However, it is critical that vessels approaching asteroids or comets in close proximity

correctly estimate the gravitational forces to complete their missions successfully. Tasks like
that are non-trivial since most of these small bodies are not regularly shaped similarly and
thus can neither be approximated as point sources nor spherical ones.

Hence, gravity models are needed. Historically, three approaches have been developed to
represent a gravity field.
The Spherical harmonics approach uses the coefficients of the gravity field’s Fourier

series expansion in spherical (or similar) coordinates. However, the technique has several

1https://en.wikipedia.org/wiki/433_Eros, last accessed: 12.09.2022
2https://ssd.jpl.nasa.gov, last accessed: 12.09.2022
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weaknesses: The spherical harmonics are only guaranteed to converge above the minimum
Brillouin sphere but may be divergent inside. The minimum Brillouin sphere is the sphere
centered around the origin of the body and still enveloping all of the body’s mass. Thus,
the model’s use is problematic, especially in the surface area. [5]

Further, outside of the minimum Brillouin sphere, the model’s convergence becomes slower
if the examined body is of increasingly irregular shape [6].

Mascon models are the second approach. Here, the body is represented as a combination
of multiple point masses, so-called mascons (short for “mass concentrations” [7]) filling
up its volume. The mascon elements do not need to be of uniform size. Instead, various
approaches exist, combining mascons of different weights [8]. Its simplicity and ability to
model irregular shapes and density distributions like they appear for small bodies make the
model appealing. Regardless, high accuracy of the gravity field can only be achieved with
an extensive number of mascons. Even then, the field’s accuracy near the body’s surface
remains challenging due to the discretized mass distribution. [8]

The polyhedral gravity model is the third of the triumvirate and particularly useful for the
application on irregularly shaped bodies. It requires only two assumptions: homogeneous
density and the knowledge of the polyhedron’s mesh. The polyhedral gravity model even has
closed analytical formula, which can be evaluated for an arbitrary point in space.

Further, a very recent fourth approach, geodesyNets, uses a fully connected neural network
to map cartesian coordinates within a body to a corresponding density, finally making it
possible to compute the gravitational field by integrating over the (neural) density field.
The model is trained with any gravity signal as ground truth. In the first iteration, this
was done using synthetic data generated by the mascon model, but the goal is to train the
model onboard with real measured data. [6]

This work covers the polyhedral gravity model, presented in detail in the following Chapters,
and implemented3 in C++17 with a strong parallelized backbone and a lightweight simple-
to-use interface in Python, finally deployed on conda4 to make it available to the scientific
community.

3https://github.com/esa/polyhedral-gravity-model last accessed: 12.09.2022
4https://anaconda.org/conda-forge/polyhedral-gravity-model last accessed: 12.09.2022
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2. Theoretical Background

2.1. Overview

Generally speaking, one can distinguish between numerical and analytical methods for
determining the full gravity tensor of a polyhedron. On the one hand, numerical approaches
cover techniques of numerical integration procedures like those presented by Talwani and
Ewing [9] or Tsoulis et al. [10]. On the other hand, there have been multiple approaches
to derive the analytical solution for the potential and attraction caused by a polyhedral
source. Here one can mention Barnett [11], Pohánka [12], as well as, Werner and Scheeres
[13, 14]. The list of available procedures to determine the analytical solution is long. For
the following, we stick to the line integral approach presented by Petrović in 1996 [15], later
refined in terms of handling singularities by Tsoulis and Petrović in 2001 [16]. Werner and
Scheeres, as well as, Tsoulis’ approaches, are later examined from an implementation-wise
point of view in Chapter 3.

Equations 2.1–2.3 describe the gravitational potential V, the attraction Vxi in the three
(cartesian) directions, and the elements of the second derivative tensor Vxixj for an arbitrary
point in space P around a polyhedral source with volume U , given a constant density ρ and
the gravitational constant G = 6.6743 · 10−11 m3kg−1s−2.

V = Gρ

∫∫∫
U

1

l
dU (2.1)

Vxi = Gρ

∫∫∫
U

∂

∂xi

(
1

l

)
dU with (i = 1, 2, 3) (2.2)

Vxixj = Gρ

∫∫∫
U

∂2

∂xi∂xj

(
1

l

)
dU with (i, j = 1, 2, 3) (2.3)

with l =
√

(x1 − x′1)
2 + (x2 − x′2)

2 + (x3 − x′3)
2 (2.4)

Further, Equation 2.4 is the distance function which refers to a coordinate system with
the origin x′1 = x′2 = x′3 = 0 and a basis of orthonormal unit vectors (−→e1 ,−→e2 ,−→e3) located at
P [17].

The Equations 2.1–2.4 mentioned above are then transformed by the repeated application
of the divergence theorem of Gauss, as described by Petrović [15]. Simply expressed, one
transforms the given volume integrals into surface integrals whose number equals the number
of faces of the polyhedron. Secondly, the surface integrals are transformed into line integrals,
each corresponding to a segment of the polyhedral faces. Further, specific terms expressing
the analytical solution of the limiting values of the line integrals are added if singularities
occur, later explained in detail in Subsection 2.2.6. As a result, the technique can be applied
everywhere in mathematical space [16].

4



2.2. Resulting Equations and Details

2.2. Resulting Equations and Details

This application of the line integral approach finally yields the expressions given in Equa-
tions 2.5–2.7, calculating the full gravity tensor for point P . Notably, P is located on the
origin. In order to calculate the gravity tensor for an arbitrary point P , one has to add an
offset to the coordinates of the polyhedral source, as explained in Section 4.3.

V =
Gρ

2
·

n∑
p=1

σphp ·

 m∑
q=1

σpqhpqLNpq + hp

m∑
q=1

σpqANpq + singAp

 (2.5)

Vxi = Gρ ·
n∑

p=1

cos(
−→
Np,

−→ei ) ·

 m∑
q=1

σpqhpqLNpq + hp

m∑
q=1

σpqANpq + singAp

 (2.6)

Vxixj = Gρ ·
n∑

p=1

cos(
−→
Np,

−→ei ) ·

 m∑
q=1

cos(−→npq,
−→ej )LNpq + σp cos(

−→
Np,

−→ej )
m∑
q=1

σpqANpq + singBpj


(2.7)

with i, j = 1, 2, 3

Generally, Equations 2.5–2.7 still contain the gravitational constant G and the density
ρ untouched. In contrast, the triple integral has been replaced by a double summation.
The outer summation runs over the faces of the polyhedron with running index p, whereas
the inner sums iterate with q over the segments of each face. So if we use a polyhedron
with a triangulated mesh, it always holds q ∈ (1, 3) and m = 3. Equations 2.8–2.9 portray
Equations 2.6–2.7 in a more compact notation, with the latter using the outer product ⊗.

−→
Vx = Gρ ·

n∑
p=1

−→
Np·

 m∑
q=1

σpqhpqLNpq + hp

m∑
q=1

σpqANpq + singAp

 (2.8)

Vxx = Gρ ·
n∑

p=1

−→
Np⊗

 m∑
q=1

−→npqLNpq + σp
−→
Np

m∑
q=1

σpqANpq + singBpj

 (2.9)

2.2.1. Computation Point P and its Projection Points P’ and P”

The different Equations 2.5–2.7 all rely on knowing computation point P and its projections
comprising P ′ and P ′′. P ′ is the orthogonal projection of P onto the plane Sp of the face
with index p. P ′′ is the orthogonal projection of P ′ onto each segment Gpq of the face with
index p and its segments enumerated with q. The position of P ′ and P ′′ are also of interest
for the applications of the singularity correction terms, as explained later in Subsection 2.2.6.
Figure 2.1 gives an example of the location of P , P ′, and P ′′ for an irregularly shaped
pentagon.

5



2. Theoretical Background

Figure 2.1.: Geometric properties of one polyhedral face in Equations 2.5–2.9 [15]

2.2.2. Vectors and Unit Normals

Further, one has to calculate the plane unit normals
−→
Np and the segment unit normals −→npq

respectively for each face p and every of its segments q. Equation 2.11 and Equation 2.12

show how this computation is performed by utilizing the vectors
−−→
Gpq describing the line

segments of the polyhedron.

−−→
Gpq = (xp(q+1) − xpq) · −→e1 + (yp(q+1) − ypq) · −→e2 + (zp(q+1) − zpq) · −→e3 (2.10)

−→
Np =

−−→
Gp1 ×

−−→
Gp2

|
−−→
Gp1 ×

−−→
Gp2|

(2.11)

−→npq =

−−→
Gpq ×

−→
Np

|
−−→
Gpq ×

−→
Np|

(2.12)

with xpq/ypq/zpq as the cartesian coordinates of the q-th vertex of face p

Here, it is essential to note that the points making up the faces of the polyhedral source

must be in counterclockwise order so that the plane unit normals
−→
Np point outwards the

polyhedron [18]. If the vertices are sorted in a clockwise manner, i.e., the normals are
inwards pointing, the sign of the result is going to be exchanged. If the vertices ordering is
mixed, the results are going to be incorrect.

The constraint of outward pointing normals can be checked with, e.g., the Möller–Trumbore
intersection algorithm [19]. One has to check for each calculated normal how often it intersects
the polyhedron. If a normal intersects the polyhedron even times, it is pointing outwards.
The algorithm accompanies this work’s implementation.

2.2.3. Distances and Directions Related to Every Face

Next, one can determine the direction of the plane unit normal σp as described in Equa-
tion 2.13. This property represents the relative position of P with respect to the pointing

6



2.2. Resulting Equations and Details

Figure 2.2.: Relative position of computation point P , P ′ and
−→
Np with the resulting σp and

hp

direction of
−→
Np [17]. If

−→
Np points to the half-space that includes P then σp is negative,

whereas the opposite holds if P is in the other half-space. Lastly, if σp = 0 then P lies on

the face described by
−→
Np as shown by Figure 2.2.

−→
Np · (−

−−→
Gp1) =


> 0, σp = −1

= 0, σp = 0

< 0, σp = 1

(2.13)

For the next steps, we need to calculate the Hessian formalism often written down in the
vector equation of a plane ax + by + cz = d for every face of the polyhedron. Using this
formalism enables the calculation of the distance between P and P ′ abbreviated with hp.
This computation is shown in Equation 2.14.

hp =

∣∣∣∣ d√
a2 + b2 + c2

∣∣∣∣ (2.14)

Consequently, it is possible to calculate the actual position of P ′ for every plane Sp

according to Equation 2.15 with the before calculated quantities.

P ′
pi =


|Npi · hp| if x < 0{
−Npi · hp if Npi > 0

Npi · hp

(2.15)

with (i, x) ∈
(
x,

d

a

)
,

(
y,

d

b

)
,

(
z,

d

c

)
2.2.4. Distances and Directions Related to Every Segment

With the coordinates of P ′ known for every face, one can determine the orientations σpq
of the segment normals −→npq by using Equation 2.16. The orientation σpq is negative if −→npq

7



2. Theoretical Background

Figure 2.3.: Relative position of computation point P ′ and −→npq with the resulting σpq and
hpq

points to the half-plane containing the point P ′ and it is positive if the opposite holds. In

case of σpq = 0, P ′ resides on the line segment represented by
−−→
Gpq. Figure 2.2 and Figure 2.3

illustrate this relation and respectively the three cases.

−→npq · (P ′
p − Vpq) =


> 0, σpq = −1

= 0, σpq = 0

< 0, σpq = 1

(2.16)

with Vpq as the first vertex of the segment vector
−−→
Gpq

In order to find the position of P ′′ for every segment, one needs to solve a system of 3
linear equations. These equations are depicted in Equations 2.17–2.19. Equation 2.17 depicts

the condition that the vector
−−−→
P ′′
pqP

′
p is orthogonal to segment vector

−−→
Gpq. Equation 2.18

relates to the fact that P ′
p, P

′′
pq,

−−→
Gpq are coplanar and Equation 2.19 states that P ′′

pq and
−−→
Gpq

are colinear. Figure 2.1 exemplifies these relations in a more illustrative way. [17]

−→
P ′
p ·

−−→
Gpq =

−→
P ′′
pq ·

−−→
Gpq (2.17)

−→
P ′
p ·

(−−→
Gpq ×

−−→
P ′
pV

)
=

−→
P ′′
pq ·

(−−→
Gpq ×

−−→
P ′
pV

)
(2.18)

Vpq ·
((−−→

Gpq ×
−−→
P ′
pV

)
×
−−→
Gpq

)
=

−→
P ′′
pq ·

((−−→
Gpq ×

−−→
P ′
pV

)
×
−−→
Gpq

)
(2.19)

with Vpq as the first vertex of the segment vector
−−→
Gpq

The distances hpq are then trivially computed knowing the quantities P ′′
pq and P ′

p with
the help of Equation 2.20.

hpq =
∣∣∣−−−−−→P ′′

pq − P ′
p

∣∣∣ (2.20)

As Figure 2.3 shows, if σpq = 0 then a evaluation is unnecessary since in this case hpq = 0.

2.2.5. Transcendental Expressions

Not yet calculated are the transcendental expressions ANpq and LNpq serving as abbreviations
for the terms shown in Equation 2.21 and Equation 2.22. Both of them are a result of the

8



2.2. Resulting Equations and Details

line integral approach and the exact solutions for certain parts of the integration process.
[15]

LNpq = ln(s2pq + l2pq)− ln(s1pq + l1pq) = ln

(
s2pq + s1pq
l2pq + l1pq

)
(2.21)

ANpq = arctan

(
hps2pq
hpql2pq

)
− arctan

(
hps1pq
hpql1pq

)
(2.22)

with

lipq =
∣∣∣−−→PVi

∣∣∣
sipq =

∣∣∣−−−→P ′′
pqVi

∣∣∣
and Vi as segment vertex and i ∈ (1, 2)

Equations 2.21–2.22 contain the distances l1, l2 and s1, s2. The former pair reflects
the 3D distances between computation point P and each segment endpoint, whereas the
latter describes the 1D distances between the projection of computation point P on the
corresponding segment P ′′ and each segment endpoint. These properties also are visualized
in Figure 2.1. Depending on the relative position of P ′′ with respect to the two vertices, one
has to control the signs as depicted in Table 2.1 [20].

Option
∀i : |si| <

|Gpq|
|s2| < |s1| |s1| < |s2| ∀i : |si| = |li|

Further
Distin-
guishing
Case

- - -
P lies
inside

segment

P located
on

direction
of the
segment
from its
right

P located
on

direction
of the
segment
from
its left

Signs

s1 = −|s1|
s2 = |s2|
l1 = |l1|
l2 = |l2|

s1 = −|s1|
s2 = −|s2|
l1 = |l1|
l2 = |l2|

s1 = |s1|
s2 = |s2|
l1 = |l1|
l2 = |l2|

s1 = −|s1|
s2 = |s2|
l1 = −|l1|
l2 = |l2|

s1 = −|s1|
s2 = −|s2|
l1 = −|l1|
l2 = −|l2|

s1 = |s1|
s2 = |s2|
l1 = |l1|
l2 = |l2|

Table 2.1.: Coordinate Transformation for 3D distances l1, l2 and 1D distances s1, s2 [20]

2.2.6. Singularity Terms

Equation 2.23 and Equation 2.24 introduce the singularity terms and their calculation.
Their evaluation is only necessary in the edge cases (a), (b), (c) and fulfills the purpose of
overcoming the issues of appearing singularities due to the line integral approach. These

9



2. Theoretical Background

singularities appear when the orthogonal projection of the computation point P ′
p falls into

the polygonal surface Sp or the onto the vectors
−−→
Gpq describing the edges of face p. In such

a case, the calculation contains a division by zero. The singularity terms overcome “these
singularities and enable [...] the line integral formalism to be applied everywhere in space,
regardless of the relative position of points P and P ′” [17].

singAp
=


−2πhp if (a)

−π if (b)

−θhp if (c)

0 otherwise

(2.23)

singBpj
=


−2π cos(

−→
Np, ej)σp if (a)

−π cos(
−→
Np, ej)σp if (b)

−θ cos(
−→
Np, ej)σp if (c)

0 otherwise

(2.24)

with conditions


(a) P ′

p lies inside plane Sp

(b) P ′
p is located on Gpq, but not at any of it vertices

(c) P ′
p is located at one of Gpq’s vertices

otherwise P ′
p is located outside Sp

10



3. Related Work

Chapter 2 already introduces the theoretical approach undertaken by Tsoulis et al. computing
the full gravity tensor for an arbitrary point P around a polyhedral source. This chapter
now provides additional insights into actual implementations of the previously described
foundation.

3.1. Tsoulis’ Work

Tsoulis implemented his analytical solution twice: in 2012 in FORTRAN and in 2021 in MATLAB.
Both were the primary reference for the later presented implementation in C++ with the
accompanying interface in Python. Generally, both implementations of Tsoulis are similar
in their structure and control flow, relying only on procedures but no special data classes
and are documented in a comprehensible way.

3.1.1. FORTRAN

Tsoulis et al. were kind enough to make their FORTRAN implementation1 [17] available online
via the Society of Exploration Geophysicists. Aside from the difficulty in integrating FORTRAN

code with modern programming languages and utilities such as Python, there are some
improvements to the implementation of this work. E.g. the following details were changed to
improve the structure, robustness and maintainability of the code: The C++ implementation
sticks to a modular partly class-based approach dividing the functionality across multiple
files rather than being restricted to FORTRAN’s limitations. Further, this work reduces the
number of operations by reusing computed values and simplifying calculations. The C++
implementation’s I/O uses established mesh formats rather than sticking to legacy text files
and does not require recompiling when the input changes.
To summarize, C++ uses the same theoretical foundation as in Chapter 2 but utilizes a

more structured approach with an optimized iteration scheme, reducing code size and elimi-
nating unnecessary operations. The results of the FORTRAN implementation are numerically
comparable to this work’s results, with slight deviations as the C++ implementation follows
Tsoulis’ recent revision in MATLAB [20].

3.1.2. MATLAB

The MATLAB implementation2 [20] is accessible via GitHub with a slightly modified GPL3
license. It is a revision of the previously introduced FORTRAN implementation but no structural
overhaul. However, the implementation conforms exactly to the described methods presented
in Chapter 2 and produces numerically equivalent results as the C++ implementations.

1https://software.seg.org/2012/0001/index.html, last accessed: 12.09.2022
2https://github.com/Gavriilidou/GPolyhedron, last accessed: 12.09.2022
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3. Related Work

3.2. Werner and Scheeres’ Work

Other approaches include the analytical solution provided by Werner and Scheeres [14]. It
has been implemented, e.g., as part of the Small Bodies Geophysical Analysis Tool3 written
in C++. In contrast to the techniques used by Tsoulis et al., their model relies mainly on the
calculation of dyads for edges and faces. These combine the unit normals and connect two
faces/edges with each other. This approach is advantageous as the results are “expressed
intrinsically” [14] not related to any coordinate systems. However, the computational effort
is comparable to Tsoulis’ approach since it also contains expensive transcendental terms
involving the evaluation of arctans and logarithms and the iteration over every segment
in the end with one exception: The arctan only needs to be computed for every face, not
segment as in Tsoulis’ algorithm. Nonetheless, if we stick to triangles and assume the
availability of sufficient large vector registers, this extra effort amortizes, as presented in
Section 4.3.

3https://github.com/bbercovici/SBGAT, lasted accessed: 12.09.2022
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4. Architecture

This chapter presents the components of the implementation and summarizes their function-
ality.

4.1. Overview of Components

The core C++ implementation consists of five components (gray colored in Figure 4.1), with an
additional sixth component defining the Python Interface (turquoise colored in Figure 4.1).
Figure 4.1 depicts these components and their interrelations. Further, six external libraries
are used to support these modules. These external libraries are all automatically set up via
the CMake build system.

Figure 4.1.: The whole implementation and its dependencies as UML Component Diagram.
The blue colored components are third party dependencies, whereas gray colored
components are the implementation’s core. The orange connection is only active
when the log level is set to debugging.

The first part of the implementation’s core is the Model component which provides the
necessary constructs for the representation of a polyhedron and the resulting full gravity
tensor. The second one is the Calculation component capable of computing the full gravity
tensor with its evaluate(...) method. Input is responsible for reading in mesh files and
configuration details like the constant density of the polyhedron or the desired computation
points. In contrast, Output is more of a boundary component only in charge of producing
CSV file output and interfacing to the logging library spdlog. The latter interface only exists
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4.1. Overview of Components

when the executable is compiled with the log level set to at least debugging (orange colored
in Figure 4.1). The Util component provides mathematical functions and utility for more
elegant code in total. The sixth component is the Python Interface which defines the
method overloads of evaluate(...) exposed to the Python environment.

The following section presents these components in more detail and lists essential design
choices during the implementation. Figure 4.2 shows the data flow, the I/O behavior, and
the connectivity between the modules in terms of data flow during the execution of the C++
executable, and it is helpful to be considered by the reader in the subsequent sections.

Figure 4.2.: The control flow of one execution run of the C++ implementation as UML Flow
Chart. The right and left sides show the involved components.
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4. Architecture

4.2. Model

The Model is the most significant component as it provides the data container Polyhedron
used for storing the polyhedral mesh and data classes like TranscendentalExpression,
HessianPlane or Distance which respectively group numerical values together and provide
named access to them for better code readability. GravityModelResult also belongs to this
group, but comes with one special functionality: Its method eliminateRoundingErrors()

sets its members to exactly zero in case the floating point magnitudes are smaller than the
implementation’s defined epsilon ϵ = 1−14. This step is executed after the calculation and
follows from the issue that even numerical neglectable rounding errors can accumulate over
thousands of iterations.

The Model is the central component in Figure 4.1 since every communication between
components relies on passing its data structures, but no further information. This makes
the whole implementation more maintainable and simpler to extend as Input and Output

and Calculation are not directly related neither logical nor functional.

4.3. Calculation

GravityModel

+ evaluate(polyhedron, density, computationPoint)

+ evaluate(polyhedron, density, computationPoints)

+ transformPolyhedron(polyhedron, offset)

- ...

MeshChecking

+ checkNormalsOutwardPointing(polyhedron)

+ checkTrianglesNotDegenerated(polyhedron)

- ...

thrust

xsimd

ModelUtil

Figure 4.3.: UML Diagram of the Input component. Third-party libraries are colored in
blue. Functions in the detail sub-namespace are not shown since they are not
part of the public interface.

The module Calculation consists of the stateless namespace GravityModel that contains
the actual procedures to evaluate the full gravity tensor at a given point in space and the
namespace MeshChecking containing methods for checking the mesh input, as Figure 4.3
illustrates.

Starting with GravityModel, the main evaluate(...) method is made up of several
sub-functions, each calculating one the properties presented in Chapter 2 on the plane-level.
The array of appearing functions can be seen in Algorithm 1. If every property for a
given plane p has been computed, the sum is calculated according to Equations 2.5–2.7
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4.3. Calculation

and aggregated in running variables. The here presented approach has the advantage that
intermediate values are only present in memory for one plane at a certain point in time, and
only the accumulating variables need to be stored persistently for the duration of the whole
algorithm—an invaluable benefit when working with bigger polyhedral meshes.

Two external libraries are used in the Calculation module: thrust1 and xsimd2. The
first one provides the implementation with algorithms similar to the C++ standard library
but with easy-to-activate parallelization capabilities. Further, thrust comes with a set of
useful tools like zip iterator or transform iterator. For example, the latter is used
to dynamically apply an offset on the polyhedron’s coordinates depending on the given
computation point P . This method keeps the actual implementation clean from a repeating
addition of the offset while at the same time not modifying anything persistently in memory.
The second one is used to vectorize expensive computations like the arctan. Chapter 5 is
going to present both tools with respect to their performance impacts.

Algorithm 1: The Polyhedral Gravity Calculation. Values with a subscript q
imply an inner loop running over the segments of each face p.

Input: Polyhedron polyhedron, Density ρ, Computation Point P
Output: Potential, Attraction and 2. Derivative Tensor at P

1 forall faces p ∈ polyhedron do

1. Calculate Segment Vectors
−−→
Gpq (2.10)

2. Compute Plane Unit Normal
−→
Np (2.11)

3. Compute Plane Normal Orientation σp (2.13)

4. Compute Hessian Normal Form

5. Compute Distance hp between P and P ′ (2.14)

6. Compute Position of P ′ (2.15)

7. Compute Segment Normals Orientations σpq (2.16)

8. Compute Position of P ′′ (2.17) (2.18) (2.19)

9. Compute Segment Normals −→npq (2.12)

10. Compute Segment Distances hpq between P and P ′′ (2.20)

11. Compute 3D distances l1, l2 between P and vertices and 1D distances s1, s2 between
P ′′ and vertices

12. Compute Transcendental Expressions LNpq (2.21) and ANpq (2.22)

13. Compute Singularites singAp
(2.23) and singBpj

(2.24)

Sum up according to Equations 2.5–2.7 onto running variables

As Subsection 2.2.2 mentions, the plane unit normals used for the calculation need to
point outwards of the polyhedron. Typically, the vertices of a polyhedral source file are

1https://github.com/NVIDIA/thrust, last accessed: 02.10.2022
2https://github.com/xtensor-stack/xsimd, last accessed: 02.10.2022
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4. Architecture

sorted either counterclockwise so that all normals are pointing outwards or clockwise so that
all normals are inwards pointing. In order to check for a counterclockwise sorting, one can
use the Möller–Trumbore intersection algorithm. The calculation component implements
this algorithm in a parallelized way to check if all plane normals of a polyhedron are pointing
outwards. It further provides a method to check the input mesh for degenerate triangles.
Here, one checks if every triangle’s surface is greater than zero. Since the Möller–Trumbore
algorithm has quadratic complexity and is not required if one already knows the properties
of the mesh file, it is only an option and no mandatory element of the routine, as Figure 4.2
shows.

4.4. Input

Model

«interface» 
ConfigSource

+ getOutputFileName()

+ getDensity()

+ getPointsOfInterest()

YAMLConfigurationReader

«interface» 
DataSource

+ getPolyhedron()

TetgenAdapter

+ readNode(filename)

+ readFace(filename)

+ readOff(filename)

+ readPly(filename)

+ readStl(filename)

+ readMesh(filename)

yaml-cpp

TetGen

getDataSource()

Figure 4.4.: UML Class Diagram of the Input component. Third party libraries are colored
in blue.

The third component is the Input. It consists of two interfaces: ConfigSource and
DataSource, and two implementing classes: YAMLConfigurationReader relying on yaml-
cpp3 and TetgenAdapter depending on TetGen4, as shown by Figure 4.4. The first duo
collects the configuration data from a yaml file including density, computation point(s) and
the output csv filename. The latter two handle the data input and read a polyhedral mesh
from various file formats according to the use cases presented in Figure 4.5.

3https://github.com/jbeder/yaml-cpp, last accessed: 22.09.2022
4https://github.com/libigl/tetgen, last accessed: 22.09.2022

18

https://github.com/jbeder/yaml-cpp
https://github.com/libigl/tetgen


4.5. Output

User

Polyhedrale Gravity Model C++

Read .node/.face

Read .ply

Read .stl

Read .off

Read .mesh

Read Polyhedrale MeshCalculate Gravity Tensor

«e
xte

nd»

«extend»
«extend»

«extend»«extend»

Figure 4.5.: UML Use Case Diagram of the Input component.

4.5. Output

The Output fulfills two purposes. First, it can print the calculated full gravity tensors for
all computation points, which can be arbitrary many to a CSV file. The decision to include a
CSVWriter was made at the end of the project when it was undeniable that thousands of
points’ gravity written on stdout would not be very usable. The second purpose lies behind
the orange connection in Figure 4.1. The component initializes a static DEFAULT LOGGER

hiding the actual logger from spdlog5 in order to configure logging without the necessity
of a main function. The relation in Figure 4.1 is marked in orange since it is only active
if the executable is compiled with LOG LEVEL set to DEBUG level or lower. Otherwise, the
preprocessor removes logging statements.

4.6. Python Interface

Figure 4.2 showed the data flow within the C++ executable. In contrast, Figure 4.6 depicts
the whole situation using the polyhedral gravity library from within Python. Configuration
details are missing since the Python implementation can pass them as arguments to the
evaluate(...) method defined by the sixth component Python Interface. This compo-
nent depends on pybind11 6 providing the key functionality for creating the interface to the
Python Interpreter.

In general, the module does not expose internal data structures like Polyhedron or
GravityModelResult, but rather uses the base types of C++ standard library. This enables
automatic conversion between Python array-like structures (e.g. list or numpy arrays) and
the C++ types by pybind11. Further, it allows the utilization of all the syntactic sugar
like tuple unpacking shown in Chapter 6. Using the standard mechanisms of pybind11
implies that the data is copied7 from the Python types to the C++ types due to different
memory layouts. One could change this behavior, but we decided against it for three reasons.

5https://github.com/gabime/spdlog, last accessed: 20.09.2022
6https://github.com/pybind/pybind11, last accessed: 22.09.2022
7https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html, last accessed: 01.10.2022
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4. Architecture

First, the separation keeps a clean split between Python and C++, and the user can rely
on immutability. Second, there were some issues when using the opaque types and mixing
numpy and Python lists. Lastly, the Python interface comes with file input capabilities. So,
meshes of enormous size can be directly read from the source without any preprocessing in
Python.

Additionally, the Python Interface exposes the Mesh Checks of the Calculation com-
ponent and the capabilities of Input in a submodule called utility.

Figure 4.6.: The control flow of one execution run of the Python implementation as UML
Flow Chart illustrating the two-way interface with either mesh file(s) or array
input.
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5. Runtime Measurements and Optimizations

This chapter introduces the undertaken measures with the ultimate goal of improving overall
runtime.

5.1. Optimization and Parallelization

Figure 5.1.: Final time measurements of the implementation for different software and
hardware setups. The program was compiled on macOS with Apple Clang
14.0.0, on Linux (WSL2) with Clang 14.0.0, and on Windows with Clang
15.0.1. The mesh of Eros consists of 24235 vertices and 14744 faces (displayed
in Figure 7.3a). The average time measurements for a single point are given in
microseconds [µs].

The first prototype did not calculate values plane-wise but rather property-wise. This
decision led to an enormous memory footprint since everything needed to be stored until
the final summation happened. When writing this first prototype, the thought was that one
could reuse, e.g., the computed plane unit normals, which do not differ if one changes the
computation point P . However, the implications on memory footprint made the approach
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unfavorable for bigger mesh sizes.
As a result, this approach was discarded and replaced by the plane-wise ansatz, which also

enabled the utilization of the more efficient fused operation: thrust::transform reduce

requiring fewer memory reads and writes.
The library thrust comes with a variety of parallelization backends. These include the

serial C++ standard (CPP), OpenMP (OMP), Intel’s Threading Building Blocks, and Nvidia’s
CUDA (CUDA). The former three use the host’s CPU, whereas the latter requires a GPU.
Generally, the implementation of the polyhedral gravity model supports only the CPU
parallelization backends. CUDA is not supported as it would require turning away from the
current functional decomposition, a more CPU-related paradigm. Before compile time, the
aforementioned three backends can be conveniently chosen and exchanged via the CMake

variable POLYHEDRAL GRAVITY PARALLELIZATION. Figure 5.1 shows the comparison between
these backends for two different processor architectures. Overall, the speed gain due to
parallelization is significant for both processors.

Intel’s Threading Building Blocks performs equally well compared to the OpenMP frame-
work on x86 64 architecture using both Clang as compiler. A comparison of the core
utilization by VTune yielded similar results. However, on aarch64 the TBB backend performs
much better. XCode Instruments’ inverted call tree shows that OMP waits and synchronizes
the threads more often than TBB. Moreover, TBB uses task stealing more frequently. As a
result, the core utilization is around five times lower for OMP. This finding fits well with the
observed 4.8x speedup TBB provides compared to OMP on aarch64.

5.2. Vectorization

After completion of the parallelization efforts, profiling enabled the potential for further im-
provements. The program was profiled with Intel VTune for x86 64 and XCode Instruments
for aarch64. In both cases, one operation had a noticeable performance impact: arctan.

In order to improve the performance, xsimd was incorporated into the project to explicitly
vectorize the arctan operations used during the calculation of the Transcendental Expressions,
as shown in Equation 2.22. Since the computation of ANpq requires two evaluations of arctan,
one can effectively pack both in one vector register and “half” the number of operations. A
simple change that reduced the average runtime by 8− 24% using Intel’s SSE or ARM’s
NEON instruction sets, as Figure 5.2 shows.

The explicit vectorization of other operations, e.g., euclidean norms and logarithms, was
also considered. However, there are two obstacles. First, the current implementation does
not contain any pairwise applications of these operations where one could unify two unpacked
operations into one. Second, the vectorization of less expensive operations like additions and
multiplications being part of, e.g., the euclidean norm, did not positively impact the speed.
Presumably, if one would rewrite the algorithm from a plane-wise implementation to property-
wise computation, one could explicitly vectorize much more. However, this contradicts
the finding at the opening of this Chapter 5, as the property-based implementation would
consume too much memory - an inevitable trade-off.
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5.2. Vectorization

Figure 5.2.: The same scenario as in Figure 5.1, but one time with no explicit vectorization
of the arctan with xsimd. The average time measurements for a single point are
given in microseconds [µs].
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6. Usage

This chapter briefly shows the actual utilization of the provided interfaces in C++ and Python

with the provided evaluate(...) method(s), which bring everything presented in Chapter 4
together.

Listing 1 shows the minimal example of running the gravity model from within C++. One
must define a Polyhedron, the density, and a vector of computation points/ a single point.

1 //Get the input values

2 std::unique_ptr<ConfigSource> config =

3 std::make_unique<YAMLConfigReader>("config_file.yaml");

4 Polyhedron poly = config->getDataSource()->getPolyhedron();

5 double density = config->getDensity();

6 std::vector<std::array<double, 3>> computationPoints =

7 config->getPointsOfInterest();

8 std::string outputFileName = config->getOutputFileName();

9

10 //Evaluate the full gravity tensor at every computation point

11 std::vector<GravityModelResult> result =

12 GravityModel::evaluate(polyhedron, density, computationPoints);

Listing 1: Minimal usage example with the usage of a configuration file of the C++ imple-
mentation

Listing 2 and Listing 3 present the application of the python interface. The evaluate(...)
methods is more flexible since it also accepts directly file input (available formats were
presented in Figure 4.5) in contrast to the version of the C++ implementation. Of course,
these methods support not only numpy arrays but also the basic Python list type. All
decisions were made with the goal of keeping the interface as simple as possible.

The installation of the interface is simple since the Python package is available via conda1.
Alternatively, one can clone the repository and install the package via pip from the source.
Both methods work for all three operating systems Windows, macOS, and Linux. While the
package on conda only supports the x86 64 architecture, aarch64 is also an option when
building from source.

Further reference to the usage is accessible on the official documentation on readthedocs2.
It contains extensive information about the available functions and supported input file
types (and how to convert to them).

1https://anaconda.org/conda-forge/polyhedral-gravity-model last accessed: 12.09.2022
2https://polyhedral-gravity-model-cpp.readthedocs.io/en/latest/ last accessed: 22.09.2022
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1 import numpy as np

2 import polyhedral_gravity as gravity_model

3 import polyhedral_gravity.utility as mesh_sanity

4

5 # Define input

6 cube_vertices = np.array([[-1, -1, -1], ...])

7 cube_faces = np.array([[1, 3, 2],...])

8 computation_point = [1, 0, 0]

9 density = 1.0

10

11 # Additional guard statement checking the mesh

12 # for degenerate traingles & normals outwards pointing

13 if mesh_sanity.check_mesh(cube_vertices, cube_faces):

14 # For one point (alternative: computation_points could also be a list of points)

15 potential, acceleration, tensor =

16 gravity_model.evaluate(cube_vertices, cube_faces, density, computation_point)

Listing 2: Usage example of the Python with a polyhedron defined during runtime and mesh
checking

1 import numpy as np

2 import polyhedral_gravity as gravity_model

3

4 # The list contains as many files as required to define the polyhedron

5 potential, acceleration, tensor =

6 gravity_model.evaluate(["file.node", "file.face"], density, computation_point)

7 potential, acceleration, tensor =

8 gravity_model.evaluate(["file.ply"], density, computation_point)

Listing 3: Usage example of the Python with file input
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7. Verification and Results

The implementation has been tested by using the framework GoogleTest1. Generally, one
can divide tests cases into two classes:

• Functionality tests

• Correctness tests

The first category checks the correct functioning of I/O components so that, e.g., the
same polyhedron saved in different mesh formats produces the same results. The second
category covers the tests verifying that the calculation outputs correct results. These were
the key focus of this work. They can be split into the test cases, comparing the results
to existing implementations (see Section 7.1) and comparing the results to the analytical
solution (see Section 7.2).

7.1. Comparison with existing Implementations

The first introduced test cases compare the produced gravity tensors to the expected output
generated by Tsoulis implementations in FORTRAN and MATLAB. Since numerical equality of
only single results would not be enough, additional test cases handling every single property
have been implemented. These tests check every single value, like plane unit normals, plane
unit normal orientations, etc., ever produced during the total computation for a small cube
example, as well as the extensive Eros mesh. These tests ensure that this work’s results are
consistent with those from the reference implementations. Further, they likewise show that
the calculation’s intermediate values are correct.

7.2. Comparison with Analytical Solution

The second class of test cases actually only contains one extensive test case, comparing the
potential and attraction vectors produced by the polyhedral model to the actual closed
analytical solution existing for a cube-shaped body [21]. As evaluating the integral by hand
for thousands of points would be cumbersome, the integrals were evaluated using sympy and
compared to the polyhedral model’s output.

Figure 7.1 shows these results produced by the polyhedral model. Generally, one can
see slight distortions at the corners of the cube in Figure 7.1c. This result is the expected
output as the corners provoke slightly bigger gravitational forces on the surroundings than
somewhere in the edge’s center, also illustrated by Figure 7.2a. Figure 7.1b depicts the
equipotential regions around the cube. If one would place hypothetically water (or any
fluid) on the cube’s edge, the forming lake would have a spherical shape according to these

1https://github.com/google/googletest, last accessed: 02.10.2022
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equipotential regions. Figure 7.2b exemplifies this circumstance and shows a second property
as well. The lake would be slightly pulled toward the cube’s corners due to the additional
located mass.

7.3. Other Results: Asteroid Eros and Hypothetical Torus

Figure 7.3 the in Chapter 1 introduced asteroid Eros. It shows its gravitational potential
next to its gravitational field of attraction for the XY, XZ, and YZ planes - respectively,
a cut-through with one coordinate set to zero. One can observe that, especially near the
surface, the shape of Eros matters more than when far away, where the equipotential lines
tend to get more circular. The more distant away, the less influence the surface geometry
has, and it becomes feasible to approximate the body with a point mass.

Figure 7.4 depicts a hypothetical Torus-shaped asteroid. This body has a hole in the mid,
and as Figure 7.4c shows, a spacecraft would be accelerated towards the ring. In contrast, a
spacecraft perfectly placed in the center would not be accelerated in any direction. Further,
one can immediately notice the symmetry between the XZ and the XY planes’ diagrams.
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7.3. Other Results: Asteroid Eros and Hypothetical Torus

(a) Mesh of the cube

(b) Potential around the cube (c) Attraction field for the cube

Figure 7.1.: The model’s results for a cube with edge length 2 centered around the origin
(0|0|0).
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(a) Expected attraction field of the cube

(b) Expected Lake Formation in equipotential regions on the surface

Figure 7.2.: The expected results calculated using the closed analytical formula [21]
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7.3. Other Results: Asteroid Eros and Hypothetical Torus

(a) To improve readability, this diagram only shows a lower reso-
lution triangulation of Eros with only 10% of the nodes and
vertices compared to the actually used one.

(b) Potential in the XY-Plane (c) Attraction field in the XY-Plane

31



7. Verification and Results

(d) Potential in the XZ-Plane (e) Attraction field in the XZ-Plane

(f) Potential in the YZ-Plane (g) Attraction field in the YZ-Plane

Figure 7.3.: The model’s unit-less results for a normed model of the Eros asteroid.
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7.3. Other Results: Asteroid Eros and Hypothetical Torus

(a) To improve readability, this diagram only shows a lower reso-
lution triangulation of the Torus with only 10% of the nodes
and vertices compared to the actually used one.

(b) Potential in the XY-Plane (c) Attraction field in the XY-Plane
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(d) Potential the XZ-Plane (e) Attraction field in the XZ-Plane

(f) Potential in the YZ-Plane equals the XY-Plane
due to symmetry

(g) Attraction field in the YZ-Plane equals the
XY-Plane due to symmetry

Figure 7.4.: The model’s unit-less results for a normed model of a Torus shaped asteroid.

34



8. Conclusion

Last, this chapter is going to summarize and give a brief outlook on potential future research.

8.1. Summary

In conclusion, the significant achievement of this work is the creation of a fast parallelized
implementation of the polyhedral gravity model. We have chosen to implement the line-
integral approach developed by Tsoulis et al., which provides the analytical solution of the
full gravity tensor for an arbitrary point in space around a given constant-density polyhedron.
The implementation can use a wide variety of mesh file input, which sets it apart from
established implementations. Also, the parallelization backend is not fixed but is choosable
depending on the user’s hardware. Further, the C++ implementation comes with a slim but
powerful Python interface deployed on conda, making installation a no-brainer. It is worth
emphasizing that the implementation compiles and runs on aarch64, as well as on x86 64,
in combination with the most common operating systems: Windows, Linux, and macOS.

It is extensively tested, as presented in Chapter 7. In addition to standard tests, the
algorithm has been verified by comparison with Tsoulis’ reference implementations and
the analytical solution where closed-form solutions exist. The development was executed
following software engineering best practices using continuous testing and adding extensive
documentation published on readthedocs. These properties make this implementation of the
polyhedral gravity model more accessible than previous expert programs and ready to be
used by the scientific community in future research projects.

8.2. Outlook

The model is successfully deployed on conda and ready to be used by anyone interested. So
what could be up next? Generally, as the introduction showed, there are millions of potential
small bodies where one could apply the model. So, applying the model to different shapes is
always an exciting option. Improving the performance of the implementation could also be
a valuable objective depending on the use case. The dependencies support CUDA. However,
the current structure would need a substantial revision in its functional decomposition and
utilized data structures. Such change would not necessarily improve code readability but
could strongly boost performance.

Another appealing option would be the direct integration of heterogeneous-density poly-
hedrons via the composition of multiple homogeneous-density polyhedrons. Currently, users
would need to do this composition on a higher level on their own. This feature could
provide even more flexibility in calculating the gravity tensor, making the utilization more
straightforward.
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8. Conclusion

Chapter 1 introduced geodesyNets as a new approach using a fully connected neural
network to map cartesian coordinates within a body to a corresponding neural density field.
In order to generate this field, training data is required, which can be either synthetic or real
measured gravity signal. Izzo and Gómez [6] used the Mascon models as initial ground truth.
The polyhedral gravity model could be an interesting alternative to use as ground truth.
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