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LARGE DEVIATION PRINCIPLES FOR LACUNARY SUMS
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Dedicated to the memory of Nicole Tomczak-Jaegermann

Abstract. Let (ak)k∈N be an increasing sequence of positive integers satis-
fying the Hadamard gap condition ak+1/ak > q > 1 for all k ∈ N, and let

Sn(ω) =
n∑

k=1

cos(2πakω), n ∈ N, ω ∈ [0, 1].

Then Sn is called a lacunary trigonometric sum, and can be viewed as a random
variable defined on the probability space Ω = [0, 1] endowed with Lebesgue
measure. Lacunary sums are known to exhibit several properties that are
typical for sums of independent random variables. For example, a central
limit theorem for (Sn)n∈N has been obtained by Salem and Zygmund, while a
law of the iterated logarithm is due to Erdős and Gál. In this paper we study
large deviation principles for lacunary sums. Specifically, under the large gap
condition ak+1/ak → ∞, we prove that the sequence (Sn/n)n∈N does indeed

satisfy a large deviation principle with speed n and the same rate function Ĩ
as for sums of independent random variables with the arcsine distribution. On

the other hand, we show that the large deviation principle may fail to hold
when we only assume the Hadamard gap condition. However, we show that in
the special case when ak = qk for some q ∈ {2, 3, . . .}, (Sn/n)n∈N satisfies a
large deviation principle (with speed n) and a rate function Iq that is different

from Ĩ, and describe an algorithm to compute an arbitrary number of terms
in the Taylor expansion of Iq . In addition, we also prove that Iq converges

pointwise to Ĩ as q → ∞. Furthermore, we construct a random perturbation
(ak)k∈N of the sequence (2k)k∈N for which ak+1/ak → 2 as k → ∞, but for
which at the same time (Sn/n)n∈N satisfies a large deviation principle with

the same rate function Ĩ as in the independent case, which is surprisingly
different from the rate function I2 one might näıvely expect. We relate this
fact to the number of solutions of certain Diophantine equations. Together,
these results show that large deviation principles for lacunary trigonometric
sums are very sensitive to the arithmetic properties of the sequence (ak)k∈N.
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508 C. AISTLEITNER, ET AL.

This is particularly noteworthy since no such arithmetic effects are visible in
the central limit theorem or in the law of the iterated logarithm for lacunary
trigonometric sums. Our proofs use a combination of tools from probability
theory, harmonic analysis, and dynamical systems.

1. Introduction

The study of lacunary series is a classical and still flourishing topic in harmonic
analysis that has attracted considerable attention. In the article [48] published in
1922, Rademacher studied the convergence behavior of series of the form

∞∑
k=1

bkrk(ω),

where ω ∈ [0, 1], b = (bk)k∈N ∈ RN, and rk denotes the kth Rademacher function,
that is, rk(ω) = sign

(
sin(2kπω)

)
. He proved that such a series converges for almost

every ω ∈ [0, 1] if
∑

k∈N
|bk|2 < ∞, or equivalently, b ∈ �2. The necessity of square

summability was obtained shortly after by Khintchine and Kolmogorov in 1925
[35], thereby establishing an interesting �2-dichotomy in the convergence behavior
of such series. Note that by the structure of the Rademacher functions one has

∞∑
k=1

bkrk(ω) =

∞∑
k=1

bkr1(2
k−1ω),

where on the right-hand side we have a series of dilates of a fixed function, with an
exponentially growing dilation factor. This leads naturally to the study of similar
questions for lacunary trigonometric series, that is, series of the form

∞∑
k=1

bk cos(2πakω) and

∞∑
k=1

bk sin(2πakω),

where ω ∈ [0, 1], b = (bk)k∈N ∈ RN, and (ak)k∈N is a sequence of positive integers
that is lacunary, in the sense that it satisfies the Hadamard gap condition

(1.1)
ak+1

ak
≥ q > 1, for every k ∈ N.

Interestingly, results similar to the Rademacher case were obtained for such series.
Kolmogorov showed in [37] that the square summability of b is sufficient for the
almost everywhere convergence of lacunary series and Zygmund proved in [60] that
the square summability condition was necessary, again establishing the same �2-
dichotomy as for Rademacher series.

An important property of the Rademacher functions is that they form a sys-
tem of independent random variables. More precisely, if (bk)k∈N is a sequence of
real numbers, then the weighted Rademacher functions bkrk, k ∈ N, form a se-
quence of independent and centered random variables with Var(bkrk) = b2k. One
readily checks that Lindeberg’s condition is satisfied whenever both b /∈ �2 and
max1≤k≤n |bk| = o(‖(bk)nk=1‖2). This means that under these two conditions we
have, for every t ∈ R, the central limit theorem (CLT)

lim
n→∞

λ

({
ω ∈ [0, 1] :

n∑
k=1

bkrk(ω) ≤ t‖(bk)nk=1‖2
})

=
1√
2π

∫ t

−∞
e−y2/2 dy,
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LARGE DEVIATION PRINCIPLES FOR LACUNARY SUMS 509

which in particular holds when bk = 1 for every k ∈ N. In 1939 Kac proved an
analogous central limit theorem in the lacunary case for integer sequences (ak)k∈N

with very large gaps, that is, those for which ak+1/ak → ∞, as k → ∞. The
case of Hadamard lacunary sequences (ak)k∈N was settled in 1947 when Salem and
Zygmund established in [52] that, for all t ∈ R,

lim
n→∞

λ

({
ω ∈ [0, 1] :

n∑
k=1

cos(2πakω) ≤ t
√
n/2

})
=

1√
2π

∫ t

−∞
e−y2/2 dy.(1.2)

These results suggest that lacunary trigonometric sums behave in many ways like
sums of independent random variables, and in fact, this has become a classical
heuristic that has been confirmed in many settings. Indeed, under the Hadamard
gap condition, the sequence of scaled partial sums of the functions cos(2πakx),
k ∈ N, not only satisfies the central limit theorem in (1.2), but, as Salem and
Zygmund [53] and Erdős and Gál [23] showed, also satisfies a law of the iterated
logarithm (LIL), that is, for almost every ω ∈ [0, 1],

lim sup
n→∞

∑n
k=1 cos(2πakω)√

n log log n
= 1.

A generalization to non-integral sequences (ak)k∈N was also later established in [57].
A natural question is to ask whether the CLT and LIL still hold under the

Hadamard gap condition when the function ω 	→ cos(2πω) is replaced by an arbi-
trary 1-periodic function f . A famous example of Erdős and Fortet (see, e.g., [32])
shows that this is not true in general. However, under the additional condition that
the function f : R → R is of bounded variation on [0, 1] and satisfies both

(1.3) f(ω + 1) = f(ω) and

∫ 1

0

f(ω) dω = 0,

Kac was able to show in [31] that a central limit theorem holds for scaled partial
sums of the functions ω 	→ f(2kω), k ∈ N, but in this case the variance of the
Gaussian limit law is

(1.4) σ2 =

∫ 1

0

f(ω)2 dω + 2

∞∑
k=1

∫ 1

0

f(ω)f(2kω) dω,

rather than
∫ 1

0
f(ω)2 dω, as one would have in the independent case, namely for

the sequence of partial sums
∑n

k=1 f(2
kUk), where {Uk}k∈N are independent and

identically distributed (i.i.d.) random variables distributed uniformly on (0, 1).
This shows that general lacunary function systems possess a more complicated
dependence structure than lacunary trigonometric function systems, and that in
the general case, the arithmetic structure of the lacunary integer sequence plays a
crucial role. Gapoškin found a remarkable relation between the existence of a CLT
and the number of solutions to a certain Diophantine equation [29]. It was only
more recently, in 2010, that Aistleitner and Berkes improved Gapoškin’s result and
provided the precise condition for the central limit theorem to hold in the general
lacunary framework [4, Theorem 1.1].

While we have seen that the probabilistic behavior of lacunary series is quite
well understood on the scales of both the CLT and LIL, this is not the case for
large deviations. Specifically, large deviation principles (LDPs) seem to have not
been studied at all in the lacunary setting. In contrast to the CLT, which captures
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universal behavior in the sense that the limits are insensitive to details of the
distribution beyond the first and second moments, probabilities of (large) deviations
on the scale of laws of large numbers are non-universal and describe the asymptotic
likelihood of rare events. More precisely, LDPs are sensitive to the distribution
of the underlying random variables and their non-universality is reflected in the
so-called rate function and/or the speed, which together define the asymptotic
exponential decay rate of large deviation probabilities. The most classical result
in this direction is Cramér’s theorem [15] (see also [16] and [17, Theorem 2.2.3]),
which guarantees that if X,X1, X2, . . . are i.i.d. random variables with cumulant (or
log-moment) generating function Λ(u) := logE[euX ] < ∞ for u in a neighborhood
of zero, then one has

lim
n→∞

1

n
logP (X1 + . . .+Xn ≥ nt) = −Λ∗(t),

for all t > E[X], where Λ∗ is the Legendre-Fenchel transform of Λ given by

Λ∗(t) = sup
θ∈R

[θx− Λ(θ)] .

LDPs in the spirit of Donsker and Varadhan, who initiated a systematic study
(see [17, 56] and the references cited therein), generalize the idea behind Cramér’s
theorem. Loosely speaking, a sequence (Xn)n∈N of random variables in R

d is said
to satisfy an LDP with speed sn ↑ ∞ and a rate function I : Rd → [0,∞] if for
sufficiently large n ∈ N and A ⊂ Rd sufficiently regular,

P(Xn ∈ A) ≈ e−sn infx∈A I(x).

More precisely, a sequence (Xn)n∈N of random variables in Rd is said to satisfy
an LDP with speed sn and rate function I : Rd → [0,∞] if I : Rd → [0,∞] is
lower-semicontinuous and for every Borel measurable set A ⊂ Rd,
(1.5)

− inf
x∈A◦

I(x) ≤ lim inf
n→∞

1

sn
logP(Xn ∈ A) ≤ lim sup

n→∞

1

sn
log P(Xn ∈ A) ≤ − inf

x∈Ā
I(x),

where A◦ and Ā, respectively, denote the interior and closure of the set A.
In this paper we study large deviations for lacunary sums, thereby complement-

ing existing limit theorems like the CLT and LIL mentioned above. More precisely,
if (ak)k∈N is a lacunary sequence, that is, a sequence of positive integers satisfying
the Hadamard gap condition (1.1), we study the tail behavior of the associated se-
quence of lacunary sums, namely partial sums of the sequenceXk(ω) := cos(2πakω),
ω ∈ [0, 1], k ∈ N, viewed as real-valued random variables on the space [0, 1] equipped
with the Borel σ-algebra B([0, 1]) and Lebesgue measure λ. Our results reveal an
interesting and surprising behavior, showing how sometimes – depending on arith-
metic properties of the lacunary sequence (ak)k∈N – the large deviations behavior
of the associated sequence of lacunary trigonometric sums resembles that of partial
sums of independent and identically distributed random variables, whereas in other
situations it does not. This is particularly interesting since no such influence of the
arithmetic structure of the lacunary sequence is visible under the Hadamard gap
condition when considering lacunary trigonometric sums, neither in the case of the
CLT nor in the case of the LIL.

We present precise statements of our main findings in the next section, with the
proofs presented in the following section.
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2. Main results

We now present the main results of this paper. Let U ∼ Unif(0, 1) be a random
variable with the uniform distribution on the interval [0, 1]. Given a sequence
(ak)k∈N of positive integers, define the random variables

(2.1) Xk := cos(2πakU), k ∈ N,

and their partial sums

(2.2) Sn :=
n∑

k=1

Xk =
n∑

k=1

cos(2πakU), n ∈ N.

These random variables are most conveniently defined on the probability space Ω =
[0, 1] endowed with the Borel σ-algebra B([0, 1]) and standard Lebesgue measure
λ, which we shall sometimes also denote by P. As a function on Ω, Xk is then
given by Xk(ω) = cos(2πakω), for ω ∈ [0, 1] and k ∈ N. Note that the random
variables X1, X2, . . . are identically distributed and (if all ak, k ∈ N, are distinct)
uncorrelated. To see that the correlations vanish when (ak)k∈N are distinct, recall
that cos(α) · cos(β) = 2−1[cos(α− β) + cos(α+ β)] and hence, whenever k �= �, we
have∫ 1

0

cos(2πakω) cos(2πa�ω) dω

=
1

2

∫ 1

0

cos(2π(ak − a�)ω) dω +
1

2

∫ 1

0

cos(2π(ak + a�)ω) dω = 0.

However, the elements of the sequence (Xk)k∈N are not independent and in fact,
the sequence is in general not even stationary.

2.1. Behavior as in the independent case. Our aim is to prove LDPs for the
sequence (Sn/n)n∈N. It is natural to try to compare the behavior of Sn/n to the
behavior of partial sums of independent random variables with the same distribution
as X1, the common distribution of Xk, k ∈ N. To this end, consider the random
variables

(2.3) X̃k := cos(2πUk), k ∈ N,

where (Uk)k∈N are i.i.d. random variables with the same distribution as U , and
define their partial sums

(2.4) S̃n :=
n∑

k=1

X̃k, n ∈ N.

By Cramér’s classical theorem (see, e.g., [17, Theorem 2.2.3]), (S̃n/n)n∈N satisfies

an LDP with speed n and rate function Ĩ : R → [0,+∞] given by the Legendre-
Fenchel transform of the logarithmic moment generating function, that is,

(2.5) Ĩ(x) = sup
θ∈R

[
θx− Λ̃(θ)

]
,

where

(2.6) Λ̃(θ) := logE[eθX̃1 ], θ ∈ R.

Licensed to Technical University Munchen. Prepared on Tue Jan 10 05:54:57 EST 2023 for download from IP 129.187.254.46.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



512 C. AISTLEITNER, ET AL.

The function Λ̃ can be computed explicitly. The common distribution of the random

variables X̃k, k ∈ N, is the arcsine law on (−1, 1) with Lebesgue density

f(x) =
1

π
√
1− x2

, |x| < 1.

The moment generating function of X̃1 is accordingly given by

E[eθX̃1 ] =

∫ 1

−1

eθx
1

π
√
1− x2

dx =

∞∑
m=0

θ2m

(2m)!

∫ 1

−1

x2m

π
√
1− x2

dx

=
∞∑

m=0

θ2m

(2m)!

Γ(m+ 1/2)

Γ(m+ 1)
√
π

=
∞∑

m=0

θ2m

(2m)!

(2m)!

22mm!m!

=
∞∑

m=0

θ2m

22m(m!)2
.(2.7)

Note that the right-hand side equals the modified Bessel function B0(θ) of the first
kind. When combined, the above calculations yield

(2.8) Λ̃(θ) = log

∞∑
m=0

θ2m

22m(m!)2
, θ ∈ R.

Since X̃1 is supported on the interval [−1, 1], the function Ĩ equals +∞ outside
[−1, 1]. Moreover, the asymptotics of the modified Bessel function B0 given in [1,
p. 377, 9.7.1] imply that

Λ̃(θ) = θ − 1

2
log(2πθ) +O

(
1

θ

)
, as θ → +∞,

which, after taking the Legendre-Fenchel transform, yields that Ĩ(±1) = +∞. On

the interval (−1, 1), the function Ĩ is finite.
Now, let us finally turn to the partial sums (Sn)n∈N defined in (2.2). Our first

result states that when (ak)k∈N satisfies the so-called “large gap condition”, the
associated sequence of lacunary sums (Sn/n)n∈N satisfies an LDP with the same

speed and the same rate function Ĩ as in the truly independent case, that is, as

(S̃n/n)n∈N.

Theorem A. Suppose that (ak)k∈N is a sequence of positive integers that satisfies
the “large gap condition”

ak+1

ak
→ ∞ as k → ∞.

Then (Sn/n)n∈N satisfies an LDP with speed n, and rate function Ĩ.

The proof of Theorem A is given in Section 3.2, after an instructive special case
has been treated in Section 3.1.

Remark 2.1. In this paper, we discuss only sequences that satisfy Hadamard’s
gap condition. If (ak)k∈N ⊂ N is a sublacunary sequence, that is, increasing and
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log(ak)/k → 0 as k → ∞, then for z ∈ (0, 1), we argue below that

(2.9) lim inf
n→∞

1

n
logP

({
ω ∈ [0, 1] :

1

n

n∑
k=1

cos(2πakω) ≥ z

})
= 0,

which says that in contrast to the lacunary case, these probabilities decay slower
than exponentially in n. To show (2.9), fix z ∈ (0, 1) and choose δ = δ(z) > 0
such that cos(2πω) ≥ z for |ω| ≤ δ. Then, cos(2πakω) ≥ z for all k ∈ {1, . . . , n} if

|ω| ≤ δ/an. But P
(
ω ≤ δ

an

)
= δ

an
and

lim inf
n→∞

1

n
logP

({
ω ∈ [0, 1] :

1

n

n∑
k=1

cos(2πakω) ≥ z

})

≥ lim inf
n→∞

1

n
log P

({
ω ∈ [0, 1] : cos(2πakω) ≥ z, ∀k ∈ {1, 2, . . . , n}

})
≥ lim

n→∞

1

n
logP

(
ω ≤ δ

an

)
= 0,

where the last equality uses the assumption that (ak)k∈N is sublacunary. Since the
opposite inequality follows trivially, this proves (2.9).

2.2. The case of geometric progressions ak = qk. Let us now consider the case
when there exists q ∈ {2, 3, . . .} such that ak = qk for k ∈ N. Contrary to the case
of a large gap condition (see Theorem A), we now obtain LDPs with the same speed

n, but with rate functions that are different from Ĩ, and depend on the particular
value of the growth factor q. Our main findings in this case are summarized in
Theorem B, whose proof is given in Section 3.3. Let us point out that the main
aspect of Theorem B is not the LDP itself, which follows from standard results (see,
e.g., [8,45,59]), but rather the properties of the rate function which are specified in
(i)–(iv).

Theorem B. Fix q ∈ {2, 3, . . .}. Let ak = qk for k ∈ N, and let Sn be the partial
sum defined in (2.2). Then the following limit exists:

(2.10) Λq(θ) := lim
n→∞

1

n
logE[eθSn ],

with the convergence holding uniformly for θ in compact subsets of an open set D
in the complex plane such that R ⊂ D. Moreover, (Sn/n)n∈N satisfies an LDP with
speed n and rate function Iq, which is the Legendre-Fenchel transform of Λq, that
is,

Iq(x) = sup
θ∈R

[θx− Λq(θ)] , x ∈ R.

Furthermore, each Iq satisfies Iq(x) > 0 for x �= 0 and Iq is equal to +∞ out-
side [−1, 1], and the family of rate functions Iq, q ∈ {2, 3, · · · }, has the following
properties:

(i) For every q ∈ {2, 3, . . .}, we have Iq(1) ≤ Ĩ(1) and Iq(x) < Ĩ(x) for x ∈
(0, 1), where Ĩ is defined in (2.5). In particular, the functions Iq and Ĩ are
different.

(ii) The limit limq→∞ Iq(x) = Ĩ(x) holds uniformly on compact subsets of the
interval (−1, 1).
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(iii) There is a smooth transition of Iq towards Ĩ as q → ∞, in the following
sense: for all m ∈ {1, . . . , q}, we have( d

dθ

)m

Λq(θ)
∣∣∣
θ=0

=
( d

dθ

)m

Λ̃(θ)
∣∣∣
θ=0

= κm(X̃1),

where Λ̃ is defined in (2.6), X̃1 in (2.3), κm(X̃1) is the mth cumulant of

X̃1. Further, ( d

dx

)m

Iq(x)
∣∣∣
x=0

=
( d

dx

)m

Ĩ(x)
∣∣∣
x=0

.

In other words, the coefficients of 1, θ, . . . , θq in the Taylor expansions of

Iq(θ) and Ĩ(θ) coincide at the origin.

(iv) Whereas in (iii) the first q derivatives of Λq and Λ̃ coincide, this is no
longer true for the derivative of order q + 1. In particular,( d

dθ

)q+1

Λq(θ)
∣∣∣
θ=0

=
( d

dθ

)q+1

Λ̃(θ)
∣∣∣
θ=0

+
q + 1

2q
>

( d

dθ

)q+1

Λ̃(θ)
∣∣∣
θ=0

.

Indeed, we will see in Proposition 2.4 that not only is Iq �= Ĩ but it is also true
that Iq1 �= Iq2 if q1 �= q2.

We comment on Theorem B. As mentioned above, the fact that (Sn/n)n∈N

satisfies an LDP will be deduced from general results on thermodynamic formalism
and expanding maps of the interval [0, 1] (see the proof of the theorem in Section
3.3). The key takeaways of the theorem are the properties of the rate functions

in (i)–(iv). Parts (ii) and (iii) state that the rate functions Iq converge towards Ĩ
as q → ∞, which is in accordance with the “limiting case” of Theorem A where
the ratio of ak+1/ak diverges to +∞, and where the rate function for the lacunary

sums coincides with the one for the truly independent case. The rate functions Ĩ
and Iq for small q are illustrated in Figure 1.

Note also that as a consequence of conclusion (i) of Theorem B, the probability of
large deviations of the lacunary sums Sn is (asymptotically) greater than the large
deviation probability for the corresponding partial sum of independent random

variables S̃n defined in (2.4). However, since the statement (i) only applies to
positive values of x, this conclusion is only valid for large positive deviations of
the lacunary sum. In the case of large negative deviations there seems to be an
interesting dichotomy. When q is odd, then the lacunary sums have a distribution
symmetric around 0, which is a consequence of the fact that the mapping ω 	→
ω + 1/2 (mod 1) transforms the function cos(2πqkω) into cos(2πqk(ω + 1/2)) =
− cos(2πqkω). Accordingly, the probabilities of large positive and large negative
deviations are equal, and we have Iq(−x) = Iq(x), so that in the odd case we have

Iq(x) ≤ Ĩ(x) for all x �= 0, with Iq(x) < Ĩ(x) for all sufficiently small |x| due to (iv).
In contrast, when q is even, there is no such symmetry. In fact, for even q, it follows

from (iii) and (iv) that Λq(θ) < Λ̃(θ) for θ < 0 sufficiently close to 0 (because the
coefficient of θq+1, an odd power, in the Taylor series of Λq(θ) is larger than that of

Λ̃(θ), while the smaller powers coincide). By taking the corresponding Legendre-

Fenchel transforms, it follows that Iq(x) > Ĩ(x) for x < 0 sufficiently close to 0. We
believe the above inequalities hold without restricting |x| to be sufficiently small,
as stated in Conjecture 2.2.
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Figure 1. The rate function Ĩ (solid line), corresponding to the
case of independent random variables, in comparison with the rate
functions I2 (dotted) and I3 (dashed), whose existence is estab-
lished in Theorem B. The plot is based on the Taylor approxima-
tion of the rate functions as given by Proposition 2.4. The rate
functions I4, I5, . . . are not plotted, as they would be indistin-

guishable from Ĩ on the plot. The plot supports the heuristics

that Iq should approach Ĩ as q → ∞, as indeed turns out to be the

case due to part (ii) of our Theorem B. Note also that Ĩ and I3 are
symmetric, while I2 is not (cf. the discussion before the statement
of Conjecture 2.2).

Conjecture 2.2. Let q ∈ {2, 3, . . .} and let ak = qk for k ∈ N. Let Iq be the rate
function in the LDP for (Sn/n)n∈N (which exists by Theorem B). Then, if q is
odd,

Iq(x) < Ĩ(x) for all x ∈ (−1, 1)\{0}.
On the other hand, if q is even, then

Iq(x) < Ĩ(x) for all 0 < x < 1 and Iq(x) > Ĩ(x) for all − 1 < x < 0.

As argued above, we have Ĩ(±1) = +∞. Since |Sn/n| ≤ 1, it is clear that
Iq(x) = +∞ for |x| > 1. Lemma 2.3 whose proof is given at the end of Section 3.3,
states that Iq(+1) is finite.

Lemma 2.3. For all q ∈ {2, 3, . . .} we have Iq(+1) ≤ log q.

As explained above, for odd q we have Iq(−1) = Iq(+1). For even q, it remains
unclear whether Iq(−1) is finite (and in fact, it is not even clear whether Iq(x) is
finite for all −1 < x < 0).

The functions Λq and Iq appearing in Theorem B are not really explicit. In
fact, the only known formula for Λq seems to be its representation as the logarithm
of the largest eigenvalue of a certain Perron-Frobenius operator (see the proof of
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Theorem B in Section 3.3). Proposition 2.4 identifies the first few terms in the
Taylor expansions of Iq for q ∈ {2, 3, 4}. Before stating it, let us look at the Taylor

series of the rate function Ĩ. From the expression for Ĩ in (2.5) and properties of

the Legendre-Fenchel transform, it follows that the derivative Ĩ ′ of Ĩ is the inverse

function of the derivative Λ̃′ of Λ̃, see [50, Corollary 23.5.1, p. 219]. Using this fact

together with the expression for Λ̃ in (2.8), which yields the series expansion
(2.11)

Λ̃(θ) =
θ2

4
− θ4

64
+

θ6

576
− 11θ8

49152
+

19θ10

614400
− 473θ12

106168320
+O

(
θ14

)
, as θ → 0,

one can easily compute the first few terms in the Taylor series of Ĩ near 0:

(2.12) Ĩ(z) = z2 +
z4

4
+

5z6

36
+

19z8

192
+

143z10

1800
+

1769z12

25920
+O(z14), as z → 0.

Proposition 2.4. In the case when ak = 2k for all k ∈ N, the Taylor expansion of
the rate function around 0 is given by

I2(z) = z2−z3+
3z4

2
− 13z5

6
+
29z6

9
− 23z7

5
+
1127z8

180
− 29083z9

3780
+
12077z10

1575
+O(z11).

In the case when ak = 3k for all k ∈ N, the rate function satisfies

I3(z) = z2 − z4

12
+

z6

6
− 39z8

320
+

18113z10

100800
+ O(z12),

whereas when ak = 4k for all k ∈ N, we have

I4(z) = z2 +
z4

4
− z5

12
+

5z6

36
+O(z7).

In particular, the functions I2, I3, I4, and Ĩ all differ from each other.

In fact, in the proof of Proposition 2.4, which is deferred to Appendix A, we
describe an algorithm to compute an arbitrary number of terms in the Taylor ex-
pansion of Iq for every q ∈ {2, 3, . . .}. The algorithm, as well as the proof of
properties (i)–(iv) in Theorem B, is based on an analysis of the number of rep-
resentations of 0 as a sum of m terms of the form ±q1,±q2, . . . ,±qn. Denoting
this number by Am(n), we prove in Proposition A.1 that for fixed m ∈ N, it is a
polynomial in n for all n ≥ m − 2. This fact allows us to compute the first few
moments of Sn and prove the above expansions.

Let us recall from (1.2) that (Sn/
√
n)n∈N satisfies a central limit theorem under

the Hadamard gap condition (1.1). Theorem C states that, perhaps surprisingly,
the LDP does not hold in the same generality. More precisely, by mixing up powers
of 2 and 3 we shall obtain an example of a Hadamard gap sequence (ak)k∈N for
which the corresponding scaled partial sums (Sn/n)n∈N fail to satisfy an LDP. This
is stated in the following result, which is proved in Section 3.4.

Theorem C. There exists a sequence of positive integers (ak)k∈N satisfying ak+1/ak
≥ q for some q > 1 and all k ∈ N, for which (Sn/n)n∈N does not satisfy an LDP
with speed n. More precisely, for this sequence (ak)k∈N there exists x̄0 ∈ (0, 1) such
that for all x0 ∈ (0, x̄0),

0 < lim inf
n→∞

− 1

n
logP(Sn > nx0) < lim sup

n→∞
− 1

n
logP(Sn > nx0) < ∞.
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Note that if (Sn/n)n∈N did satisfy an LDP with speed n and rate function I,
then the last display would imply that infx∈(x0,1) I(x) �= infx∈[x0,1) I(x) for all
x0 ∈ (0, x̄0). In particular, each such x0 must be a jump-discontinuity, because the
function

(0, x̄0) � x0 	→ M(x0) := inf
t∈(x0,1)

I(t)

is monotone increasing in the variable x0. But, as a montone function, M can only
have countably many jump discontinuities. This is a contradiction.

2.3. Randomized perturbation. Theorem A and Theorem B might together
give the impression that the existence of a limit of ak+1/ak as k → ∞ ensures
an LDP and its value determines the rate function. In particular, one might be
tempted to conjecture that the condition ak+1/ak → ∞ is necessary for the rate

function in the LDP to coincide with Ĩ, the corresponding rate function for the
independent case. However, this is not true. As Theorem D shows, it is possi-
ble to construct a randomly perturbed version (ak)k∈N of the sequence (2k)k∈N

with limk→∞ ak+1/ak = 2, for which the corresponding sequence (Sn/n)n∈N al-

most surely satisfies an LDP with speed n and rate function Ĩ. This shows that a
random perturbation may completely destroy the underlying dependence, at least
at the large deviation scale, and, as also further elaborated in Section 2.4, rather
than the asymptotic growth rate of the lacunary sequence (ak)k∈N, what seems to
determine the form of the rate function (when an LDP holds) is the fine arithmetic
structure of (ak)k∈N.

Theorem D. Suppose we are given a sequence Y = (Yk)k∈N of independent random
variables, with each Yk uniformly distributed on the discrete set

(2.13) Dk :=
{
h2	k

2/3
 : h ∈ Z, 0 ≤ h ≤ 2	k
2/3


}
, k ∈ N,

all supported on a common probability space (Y ,A,PY), and an independent random
variable U ∼ Unif(0, 1). Also, for each y ∈ D∞ := ⊗k∈NDk = {(yk)k∈N : yk ∈ Dk},
define ayk := 2k + yk for all k ∈ N, and let

Sy
n :=

n∑
k=1

cos(2πaykU), n ∈ N.

Then, for PY ◦Y −1-almost every y ∈ D∞, the sequence (Sy
n/n)n∈N satisfies an LDP

with speed n and rate function Ĩ.

In large deviation parlance, the LDP in Theorem D is often referred to as a
“quenched LDP” since the LDP is conditional on the realization of the sequence
y, and not averaged over the randomness of Y . Note however, that although the

sequence (Sy
n/n)n∈N depends on the choice of y = (yk)k∈N, the rate function Ĩ of

the LDP (which holds for PY ◦Y −1-almost every y) does not. The proof of Theorem
D is given in Section 3.5.

Remark 2.5. Note that for every realization y of Y in Theorem D, we have 2/(1 +

2−k1/3

) ≤ ayk+1/a
y
k ≤ 2(1+2−(k+1)1/3), which implies that, as k → ∞, ayk+1/a

y
k → 2.

Thus, Theorem D proves that there exist lacunary sequences with proper exponen-
tial growth (as opposed to super-exponential growth as in Theorem A) that satisfy

the LDP with rate function Ĩ.
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Also, by interleaving the sequence (2k)k∈N with the sequence (ayk)k∈N constructed
in Theorem D (in the same way as in the proof of Theorem C), and using the fact

that I2 does not coincide with Ĩ, it is possible to construct a sequence (bk)k∈N such
that as k → ∞, bk+1/bk → 2, but the corresponding lacunary sums do not satisfy
an LDP. This sharpens Theorem C. Somewhat surprisingly, even the randomized
construction in Theorem D seems to be quite sensitive. While Theorem D can
certainly be generalized in many directions, it appears to be more challenging to
prove an analogue when each random component Yk is sampled from {0, 1, 2, . . . , k},
or when it is sampled from {0, 2k, 2·2k, . . . , k·2k}. As elaborated in the next section,
this can be related to the number of solutions of certain Diophantine equations (see
also the proof of Theorem D in Section 3.5).

2.4. Concluding remarks and further open questions.

2.4.1. Connection between LDPs and Diophantine equations. Our results (in partic-
ular, Theorems B, C, and D together) show that only knowing that limk→∞ ak+1/ak
= η for some η > 1 does in general not allow one to determine the rate function in
the LDP for the lacunary sum, or even conclude the existence of an LDP. The proofs
of these results, which are presented in Section 3, often involve approximating the
exponential function in E[eθSn ] via a Taylor polynomial in θ. In turn, keeping in
mind from (2.1) and (2.2) that Sn =

∑n
k=1Xk is a finite sum of trigonometric func-

tions, this entails estimates of integrals of products of trigonometric polynomials.
Due to the orthogonality of the trigonometric system, calculation of these integrals
leads to counting the number of solutions to certain Diophantine equations (with
the ak’s as variables). The reason why the rate function in the LDP (when it exists)
for some lacunary sequences differs from the one for the independent case may be
attributed to the existence of too many solutions to these Diophantine equations.
For example, when ak = 2k for all k, then the equation 2ak−a� = 0 holds for many
combinations of �, k, namely � = k + 1 for all k. The Diophantine equations that
appear in this context are always linear homogeneous Diophantine equations with
integer coefficients. Thus, there are many more solutions to such equations when
the sequence (ak)k∈N allows many quotients a�/ak that are integers. In contrast,
when the quotients a�/ak are bounded away from any integer (and any rational
with a small denominator), then these Diophantine equations would have fewer
solutions. Thus, while specific random perturbations such as the one chosen in
Theorem D may drastically diminish the number of solutions, any generalization
of Theorem D would require determining precisely how the Diophantine structure
is altered by an arbitrary random perturbation, which appears to be highly non-
trivial. This also suggests that there may still be some information that can be
gleaned from the existence of the limit limk→∞ ak+1/ak = η, but only when η is a
number that is not well approximated by rationals with small denominators, and
when the same is true for η2, η3, . . . , which correspond to the limits of ak+2/ak,
ak+3/ak, and so on. We formulate this as an open problem.

Problem 2.6. Let (ak)k∈N be a lacunary sequence and assume that ak+1/ak → η
for a transcendental number η > 1 (i.e., η is not the root of a non-zero polynomial
with integer coefficients). Is it true that (Sn/n)n∈N satisfies an LDP with speed n

and rate function Ĩ (i.e., with the same rate function as in the independent case,

that is, as for (S̃n)n∈N)?
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LARGE DEVIATION PRINCIPLES FOR LACUNARY SUMS 519

It may be that stronger assumptions on η, such as a condition on the irrationality
measure of η and its powers, are necessary to derive the desired conclusion. How-
ever, we think that such an additional assumption should not be required. On the
other hand, we believe that just assuming ak+1/ak → η for an algebraic irrational

η > 1 will not be sufficient to deduce an LDP with rate function Ĩ.
Since the Diophantine structure of the sequence (ak)k∈N plays such a key role in

establishing the LDP for lacunary trigonometric sums, it would be very interesting
to study this phenomenon in more detail. A natural candidate to analyze is the
sequence ak = 2k + 1, k ≥ 1, known from the Erdős-Fortet example mentioned in
Section 1. In the context of the CLT and LIL, this sequence and its generalizations
have received widespread attention. The different type of behavior resulting from
“pure” geometric progressions such as ak = 2k, k ≥ 1, on the one hand, and
“perturbed” sequences such as ak = 2k + 1, k ≥ 1, on the other hand, can be
explained analytically in terms of Fourier analysis. However, there is also a very
interesting dynamical perspective, where the pure geometric progressions allow a
natural interpretation as an ergodic sum, while the perturbed sequences have been
interpreted as modified ergodic sums; see for example, [14, 28, 54].

2.4.2. Normal number theory. From a number theoretic perspective, sequences of
the form (qkω)k∈N are associated with the notion of normal numbers (in base q),
as introduced by Borel in 1909. It is well known that almost all numbers are nor-
mal in any base. The degree of normality of a number can be quantified using
uniform distribution theory and discrepancy theory, which by Weyl’s criterion and
the Erdős-Turán inequality naturally leads to trigonometric sums such as the ones
studied in the present paper (see [20, 38] for general background on uniform dis-
tribution modulo one and discrepancy theory). LDPs for such sums can thus be
viewed as quantifying the relative fraction of “non-normal” or “abnormal” num-
bers in a certain base, that is, numbers whose digital structure very significantly
deviates from “normal” behavior. Such non-normal numbers have been intensively
studied in the number theory literature, see for example [5, 41, 42]. A particularly
challenging and interesting topic in normal number theory is questions concerning
simultaneous normality resp. non-normality in two or more different bases (see for
example [12, 47]). In terms of the large deviation problems studied in the present
paper, it would be interesting to quantify the proportion of numbers that are non-
normal in two or more different bases. For example, one could try to establish an
LDP to estimate the probability of the set where two lacunary sums arising from
the sequences (qk)k∈N and (rk)k∈N (for two different bases q, r ≥ 2) are both large.

In the context of normal numbers, the case of general sequences (ak)k∈N satisfy-
ing ak+1

ak
∈ Z≥2, k ≥ 1, corresponds to normality with respect to so-called Cantor

expansions. This is a topic that has been pioneered by Erdős and Rényi [22, 49],
and received strong attention in recent years; see for example [2, 3, 25] for recent
work, and cf. also our proof of a special case of Theorem A in Section 3.1.

2.4.3. More general lacunary sums. We finally recall from Section 1 that the theory
of lacunary trigonometric sums is structurally relatively simple in comparison with
the theory of general lacunary sums, where interesting new phenomena show up
even in the CLT setting. In light of this, it would be interesting to study the LDP
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for

Sn(ω) =

n∑
k=1

f(akω),

where f is a centered 1-periodic function (possibly satisfying some regularity as-
sumptions). Already when f is a 2-term trigonometric polynomial (as in the Erdős-
Fortet example alluded to above) there can be additional arithmetic effects in com-
parison to the simple case of pure trigonometric sums. It would certainly be inter-
esting to investigate LDPs in this general lacunary setup.1 A further challenging
step would be to go beyond lacunary sums for a single fixed function f and inves-
tigate LDPs for the discrepancy (which is defined as a supremum over indicator
functions), in the spirit of Philipp’s [46] resolution of the Erdős–Gál conjecture and
Fukuyama’s [27] very precise results for the LIL for geometric progressions ak = qk.

3. Proofs

In our proofs we will make use of the Gärtner-Ellis theorem, which we require
in the following form. For a reference, see, for example, [17, Theorem 2.3.6].

Theorem 3.1 (Gärtner-Ellis theorem). Let (Sn)n∈N be a sequence of real-valued
random variables. Suppose that the limit

Λ(θ) = lim
n→∞

1

n
logE

[
eθSn

]
exists for all θ ∈ R. Assume furthermore that the function θ 	→ Λ(θ) is differentiable
for all θ ∈ R. Then (Sn/n)n∈N satisfies an LDP with speed n and convex rate
function I, which can be expressed as the Legendre-Fenchel transform of Λ, that is,

I(x) = sup
θ∈R

[θx− Λ(θ)] ∈ R ∪ {+∞}, x ∈ R.

3.1. Proof of Theorem A in a simple special case. We first give a proof of
Theorem A in a special case, the justification being two-fold: we believe that the
proof helps the intuition of the reader, but we also point out that it goes through
if we replace cos(2π·) by any Lipschitz continuous function f that also satisfies
(1.3) (i.e., is 1-periodic and centered). We consider a sequence (ak)k∈N of positive
integers such that a1 = 1,

mk :=
ak+1

ak
∈ {2, 3, . . .}, k ∈ N, and lim

k→∞

ak+1

ak
= +∞.

The assumption a1 = 1 is without loss of generality, but the assumption that
mk, k ∈ N, are integers will be essential for the following argument. By the Gärtner-
Ellis theorem, it suffices to show that for all θ ∈ R,

lim
n→∞

1

n
logE

[
eθSn

]
= Λ̃(θ),

with Λ̃ as defined in (2.6). To this end, we shall approximate each Sn by a random
variable Tn that is easier to deal with, in the sense that it can be written as a sum
of independent random variables expressed, as defined below, in terms of certain

1Note added during revision stage: a first major step towards a theory of LDPs for general
lacunary sums was taken in a recent paper of Frühwirth, Juhos and Prochno; see [26]. They
obtained a perfect analogue of Theorem A of the present paper, and a version of our Theorem B
in which the rate function depends in a delicate way on an interplay of properties of the function
f and the growth factor q.
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conditional expectations. First, recall that the Cantor series expansion (ξk)k∈N of
ω ∈ [0, 1) associated with (mk)k∈N ⊂ {2, 3, . . .} is given as follows:

ω =
∞∑
k=1

ξk(ω)

m1m2 · · ·mk
=

∞∑
k=1

ξk(ω)

ak+1
,

with ξk(ω) ∈ {0, 1, . . . ,mk−1} for every k ∈ N. This expansion was first introduced
by Cantor in [10], and the investigation of its probabilistic properties appears to
have been initiated by Erdős, Rényi, and Turán [22, 49, 55]. Our construction
uses the following key property established by Rényi in [49] (see also (7) of [44]):
the image of Lebesgue measure on [0, 1), under the correspondence ω 	→ (ξk(ω))k∈N

makes (ξk)k∈N a sequence of independent integers with each ξk uniformly distributed
on {0, 1, . . . ,mk − 1}.2

Given this property, now consider the filtration F2 ⊂ F3 ⊂ . . ., where the σ-
algebras are defined by

Fk+1 := σ

(
Jk+1,i, i = 0, . . . , ak+1 − 1

)
, k ∈ N,

where for k ∈ N,

Jk+1,i :=

[
i

ak+1
,
i+ 1

ak+1

)
, i = 0, . . . , ak+1 − 1.

We now define certain conditional expectations:

Yk := E
[
Xk|Fk+1

]
=

ak+1−1∑
i=0

E

[
Xk

∣∣∣Jk+1,i

]�Jk+1,i
, k ∈ N.

In particular, we see that by construction, for every k ∈ N and i = 0, . . . , ak+1 − 1,

Yk =

ak+1−1∑
i=0

ck+1,i�Jk+1,i
,

where ck+1,i, the constant representing the value of Yk on Jk+1,i, is given by

ck+1,i := ak+1

∫
Jk+1,i

Xk(ω)λ(dω).

Since the function Xk is (1/ak)-periodic, for any k ∈ N, ck+1,i = ck+1,i′ whenever
|i−i′| is a multiple ofmk = ak+1/ak. Hence, for each k ∈ N, the random variable Yk

is only a function of ξk. Since the {ξk}k∈N are independent, the random variables
{Yk}k∈N0

are also independent.
We now show that the approximation of Xk by Yk is sufficiently good, more

precisely, for each k ∈ N and i = 0, . . . , ak+1 − 1, using the mean-value theorem

2This is simply a generalization of the possibly more familiar result going back to Borel [7],
wheremk = r for all k and the correspondence between elements of [0, 1] and their r-ary expansions
maps Lebesgue measure on [0, 1] to the Bernoulli product measure on the space of {0, 1, . . . , r−1}-
valued sequences, with uniform marginals (see also [39, Section 2.3] for a more detailed exposition).
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and the fact that Xk has Lipschitz constant 2πak, we have

max
ω∈Jk+1,i

|Xk(ω)− Yk(ω)| = max
ω∈Jk+1,i

∣∣∣∣Xk(ω)− ak+1

∫
Jk+1,i

Xk(y) dy

∣∣∣∣
= max

ω∈Jk+1,i

∣∣Xk(ω)−Xk(ω0)
∣∣

≤ max
ω∈Jk+1,i

2πak
∣∣ω − ω0

∣∣
≤ 2π

ak
ak+1

,

where ω0 = ω0,k,i ∈ Jk+1,i is obtained from the mean value theorem. Taking the
maximum over all i = 0, . . . , ak+1 − 1 yields

(3.1) ‖Xk − Yk‖∞ ≤ 2π
ak

ak+1
.

In particular, this means that if Sn :=
∑n

k=1Xk and Tn :=
∑n

k=1 Yk, then

‖Sn − Tn‖∞ ≤ 2π

n∑
k=1

ak
ak+1

= o(n), n → ∞,

because by assumption ak/ak+1 → 0 as k → ∞. For fixed θ ∈ R we obtain

E
[
eθSn

]
= E

[
eθTneθ(Sn−Tn)

]
≤ e|θ|‖Sn−Tn‖∞E

[
eθTn

]
.

We also have the analogous lower bound

E
[
eθSn

]
= E

[
eθTneθ(Sn−Tn)

]
≥ e−|θ|‖Sn−Tn‖∞E

[
eθTn

]
.

Altogether, taking into account that ‖Sn − Tn‖∞ = o(n), we obtain

(3.2) E
[
eθSn

]
= eo(n)E

[
eθTn

]
, n → ∞.

Since Tn = Y1 + . . .+ Yn is a sum of independent random variables, it follows that

(3.3)
1

n
logE

[
eθSn

]
= o(1) +

1

n
logE

[
eθTn

]
= o(1) +

1

n

n∑
k=1

logE
[
eθYk

]
.

Similarly, in view of (3.1) and the fact that (Xk)k∈N are identically distributed, we
have

logE
[
eθYk

]
= o(1) + logE

[
eθXk

]
= o(1) + logE

[
eθX1

]
, k → ∞.

Inserting this into (3.3) and recalling that the usual convergence implies convergence

of arithmetic means to the same limit, the fact that X1 and X̃1 are identically

distributed and the definition (2.6) of Λ̃, we arrive at

1

n
logE

[
eθSn

]
= o(1) + logE

[
eθX1

]
= o(1) + logE

[
eθX̃1

]
= o(1) + Λ̃(θ),

as desired. Since the function Λ̃ is differentiable by (2.8), the Gärtner-Ellis theorem
(reproduced as Theorem 3.1 herein) can be applied and the proof of Theorem A in
the case when ak+1/ak are positive integer numbers tending to infinity is complete.
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3.2. Proof of Theorem A in full generality. Fix θ ∈ R and a sufficiently small
ε ∈ (0, 1). As in the simple case, we wish to apply the Gärtner-Ellis theorem, but
this time the analysis is more delicate. In contrast to the proof for the simple case,
which relied on a reduction to the independent setting, our proof for the general
case uses harmonic analysis methods and is more in the spirit of the classical works
of Salem and Zygmund, Kac, and others mentioned in Section 1. Recall from (2.1)
and (2.2) that

(3.4) E
[
eθSn

]
=

∫ 1

0

eθ
∑n

k=1 cos(2πakω)dω =

∫ 1

0

n∏
k=1

eθ cos(2πakω)dω.

We start with an elementary lemma on the approximation of the exponential
function by a Taylor polynomial of length d. For d ∈ N, define

(3.5) pd(x) :=
d∑

m=0

xm

m!
, x ∈ R.

Lemma 3.2. There exists d : (0, 1) → N with d(ε) → ∞ as ε → 0 such that the
polynomial p := pd(ε) satisfies for every k ∈ N,

(3.6) 1− ε ≤ p(θ cos(2πakω))

eθ cos(2πakω)
≤ 1 + ε, ω ∈ [0, 1].

Proof. Fix d ∈ N and p = pd. Then, by the classical theory of Taylor approximation,
the remainder in the Lagrange form satisfies

|ex − p(x)| ≤ emax{0,x}

(d+ 1)!
|x|d+1,

and hence,

1− emax{0,x}|x|d+1

(d+ 1)! ex
≤ p(x)

ex
≤ 1 +

emax{0,x}|x|d+1

(d+ 1)! ex
.

Noting that in our situation we have |θ cos(2πakω)| ≤ |θ|, this implies that for every
k ∈ N,

(3.7) 1− e|θ||θ|d+1

(d+ 1)!
≤ p(θ cos(2πakω))

eθ cos(2πakω)
≤ 1 +

e|θ||θ|d+1

(d+ 1)!
.

Recall that θ is assumed to be fixed throughout the section. By picking d = d(ε) ∈ N

sufficiently large such that e|θ||θ|d+1

(d+1)! < ε, we have d(ε) → ∞ as ε → 0, and (3.6)

follows. �

As an immediate corollary we see that for every ε > 0, we have d = d(ε) ∈ N

such that for every n ∈ N, p = pd satisfies

(3.8) (1− ε)n ≤
∫ 1

0

∏n
k=1 p (θ cos(2πakω)) dω∫ 1

0

∏n
k=1 e

θ cos(2πakω)dω
≤ (1 + ε)n.

Let k0 = k0(d) be a positive integer such that ak+1/ak > 2d for all k ≥ k0; such an
index must exist since we assumed that ak+1/ak → ∞ as k → ∞. For n > k0, we
split

n∏
k=1

p (θ cos(2πakω)) =

(
k0∏
k=1

p (θ cos(2πakω))

)(
n∏

k=k0+1

p (θ cos(2πakω))

)
,
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and, taking into account that p(θ cos(2πakω)) > 0 by (3.6), note that

(3.9)

m0

(
n∏

k=k0+1

p (θ cos(2πakω))

)
≤

n∏
k=1

p (θ cos(2πakω))

≤ M0

(
n∏

k=k0+1

p (θ cos(2πakω))

)
,

where

m0 := inf
ω∈[0,1]

(
k0∏
k=1

p (θ cos(2πakω))

)
and M0 := sup

ω∈[0,1]

(
k0∏
k=1

p (θ cos(2πakω))

)
.

We now state an important estimate on the integral of the common product that
is on both sides of the inequality (3.9).

Lemma 3.3. Fix d ∈ N and p = pd as in (3.5). Then for any θ, x ∈ R,

(3.10) pd(θ cosx) =

d∑
j=0

bj(θ) cos(jx),

where the coefficients bj(θ) = bj(θ; d), j = 0, 1, . . . , d, are real numbers with

(3.11) b0(θ) = b0(θ; d) =
∑

0≤m≤
d/2�

θ2m

22m(m!)2
,

and for j = 1, . . . , d, bj(θ) ≥ 0 when θ > 0. Furthermore, given k0 = k0(d) ∈ N as
above, for every θ ∈ R, and all n > k0,

(3.12)

∫ 1

0

n∏
k=k0+1

p (θ cos(2πakω)) dω = b0(θ)
n−k0 .

We first show how Theorem A follows from Lemma 3.3, and then provide the
proof of the lemma. Integrating each term in the inequalities in (3.9) with respect
to Lebesgue measure over the interval [0, 1], and applying (3.12), we obtain

m0b0(θ)
n−k0 ≤

∫ 1

0

n∏
k=1

p (θ cos(2πakω)) dω ≤ M0b0(θ)
n−k0 .

Combining these inequalities with (3.8) and (3.4), we arrive at

1

(1 + ε)n
m0 (b0(θ))

n−k0 ≤ E
[
eθSn

]
≤ 1

(1− ε)n
M0 (b0(θ))

n−k0 .

Taking the natural logarithm of each term, dividing by n and letting n → ∞, while
keeping all other variables fixed, we obtain

log b0(θ)− log(1 + ε) ≤ lim inf
n→∞

1

n
logE

[
eθSn

]
≤ lim sup

n→∞

1

n
logE

[
eθSn

]
≤ log b0(θ)− log(1− ε).

Recall that ε ∈ (0, 1) was fixed but arbitrary, that d = d(ε) depends on ε and
satisfies d(ε) → ∞ as ε → 0, and that b0(θ) = b0(θ; d(ε)) depends on this choice of
d. Note that b0(θ) is a finite partial sum of the series expansion for the moment
generating function of the arcsine distribution on the interval (−1, 1), which we
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derived in (2.7). Since the logarithm is a continuous function, (3.11) and (2.8)
yield

lim
ε→0

log b0(θ; d(ε)) = Λ̃(θ).

Thus, the last two displays together yield the limit

lim
n→∞

1

n
logE

[
eθSn

]
= Λ̃(θ),

as desired. Since the function Λ̃ is differentiable, the Gärtner-Ellis theorem can be
applied, and the proof of Theorem A is complete, given Lemma 3.3.

To complete the proof of Theorem A, it only remains to establish Lemma 3.3.

Proof of Lemma 3.3. For every fixed k ∈ N, the function ω 	→ p (θ cos(2πakω)) is a
polynomial of degree d in θ cos(2πakω). A standard trigonometric formula asserts
that for even m = 2n, (cosx)m can be expressed as a linear combination of 1,
cos(2x), cos(4x), . . . , cos(mx), more precisely, for every n ∈ N and x ∈ R,

(3.13) (cosx)2n =
1

22n

(
2n

n

)
+

1

22n−1

n−1∑
�=0

(
2n

�

)
cos(2(n− �)x).

For odd m, (cosx)m can be expressed as a linear combination of cosx, cos(3x), . . . ,
cos(mx), more precisely, for every n ∈ N and x ∈ R,

(3.14) (cosx)2n+1 =
1

4n

n∑
�=0

(
2n+ 1

�

)
cos((2n+ 1− 2�)x).

The precise statements of the last two formulas will not be important to us; we
will only use the fact that the coefficient of the constant term in the expansion of
(cosx)m is

(
m

m/2

)
2−m when m is even and zero otherwise. So for d ∈ N and θ ∈ R,

it is possible to write p (θ cosx) for x ∈ R, in the form

p (θ cosx) = b0(θ) + b1(θ) cosx+ b2(θ) cos(2x) + · · ·+ bd(θ) cos(dx),

where the coefficients bk(θ) = bk(θ; d), k = 1, . . . , d, depend on the coefficients of
the polynomial p (and thus on d) and on θ, but not on x, and the zeroth coefficient
b0(θ) takes the explicit form

b0(θ) =
∑

0≤m≤d,
m even

(
m

m/2

)
θm

2mm!

=
∑

0≤m≤
d/2�

(
2m

m

)
θ2m

22m(2m)!

=
∑

0≤m≤
d/2�

(2m)!

m!m!

θ2m

22m(2m)!

=
∑

0≤m≤
d/2�

θ2m

22m(m!)2
,(3.15)

which agrees with (3.11). This proves (3.10). Further, when θ > 0, since the
Taylor coefficients of the exponential function are all positive, and the coefficients
in the trigonometric identities (3.17) and (3.13) are all non-negative, it follows that
bj(θ) ≥ 0 for j = 1, . . . , d.
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It only remains to show that when integrating the product-form integrand on
the right-hand side of (3.12) only terms involving the zeroth coefficient remain. To
this end, note that by (3.10) we have for ω ∈ [0, 1],

n∏
k=k0+1

p (θ cos(2πakω))

=
n∏

k=k0+1

(
b0(θ)+b1(θ) cos(2πakω)+b2(θ) cos(2π2akω)+. . .+bd(θ) cos(2πdakω)

)
.

When multiplying out this product, we obtain a constant term b0(θ)
n−k0 as well as

a sum of many mixed terms of the form

b0(θ)
n−k0−� · bj1(θ) cos (2πj1ak1

ω) · . . . · bj�(θ) cos (2πj�ak�
ω) ,

for some � ∈ {1, . . . , n − k0}, (j1, . . . , j�) ∈ {1, . . . , d}�, and (k1, . . . , k�) ∈ {k0 +
1, . . . , n}� such that k1 > · · · > k�. Thus, to prove (3.12), it suffices to show that
for any such configuration, we have

(3.16)

∫ 1

0

cos(2πj1ak1
ω) · . . . · cos(2πj�ak�

ω)dω = 0.

We now show that this follows because ak+1/ak > 2d for k ≥ k0 (by the choice of
k0). Indeed, recall the standard trigonometric identity

(3.17) cosx cos y =
1

2

(
cos(x− y) + cos(x+ y)

)
,

which implies that the product cos(2πj1ak1
ω) · . . . · cos(2πj�ak�

ω) can be written as
a linear combination of cosine functions cos(2πmω) with frequencies of the form

m = j1ak1
± · · · ± j�ak�

.

As already mentioned above, we have k1 > k2 > . . . > k� > k0. Then, taking into
account that j1 ≥ 1, we have

j1ak1
± · · · ± j�ak�

≥ ak1
− dak2

− dak3
− · · · − dak�

.

The inequality ak+1/ak > 2d for all k ≥ k0 then implies

ak1
− dak2

− dak3
− · · · − dak�

≥ ak1

(
1− d

�∑
r=1

1

(d+ 1)r

)

= ak1

(
1− d

(
1− (d+ 1)−�

d

))
︸ ︷︷ ︸

>0

> 0.

Consequently, the product cos(2πj1ak1
ω) · . . . · cos(2πj�ak�

ω) can be written as a
linear combination of cosine functions cos(2πmω) that have all non-zero frequencies
m ∈ N. This clearly implies (3.16), and thus completes the proof. �

3.3. Proofs of Theorem B and Lemma 2.3. Let q ∈ {2, 3, . . .} be fixed, let
ak = qk for each k ∈ N, and let Sn be as defined in (2.2). We establish the LDP by
first recasting Sn/n as a Birkhoff average (or time average) of a stationary sequence
induced by the expanding piecewise continuous map T : [0, 1] → [0, 1] given by

(3.18) T ω := qω (mod 1) = qω − �qω�, ω ∈ [0, 1]
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(which is merely the fractional part of qω). Then, (2.2) and the identity ak = qk

show that the lacunary sums of interest can be expressed as

(3.19) Sn(ω) =
n−1∑
k=0

X1(T kω) = X1(ω) + . . .+Xn(ω), ω ∈ [0, 1].

We can then apply tools from the theory of LDPs for (uniform and non-uniform)
hyperbolic dynamics and mixing processes; see for example [8, 9, 13, 18, 19, 30, 34,
36, 40, 43, 58]. Since in some references (see, e.g., [11, p. 422] or [8, Thm. 10.8 on
p. 90]), an LDP is stated only for some small neighborhood of 0, and since parts
of the argument will be needed to prove property (iii) in the statement of Theorem
B, we provide a sketch of the full proof in Section 3.3.1. The proofs of properties
(i)–(iv), which are the main message of Theorem B, are presented in Section 3.3.3.
They rely on additional estimates that are first obtained in Section 3.3.2. Finally,
the proof of Lemma 2.3 is given in Section 3.3.4.

3.3.1. Proof of the LDP in Theorem B. By the Gärtner-Ellis Theorem, to prove
the LDP it suffices to show that the limit Λq(θ) := limn→∞

1
n logE[eθSn ] exists for

all θ ∈ R and is differentiable in θ. We now express eθSn in terms of a certain linear
operator. Let Lip[0, 1] denote the Banach space of Lipschitz functions f : [0, 1] → C,
endowed with the norm ‖f‖ := ‖f‖∞ +L(f), where L(f) is the Lipschitz constant
of f . Next, for θ ∈ R, consider the linear operator Φθ,q : Lip[0, 1] → Lip[0, 1]
defined, for g ∈ Lip[0, 1], by

(3.20) (Φθ,qg)(ω) :=
1

q

q−1∑
j=0

eθX1(ω+j
q )g

(
ω + j

q

)
, ω ∈ [0, 1],

where we recall from (2.1) that X1(ω) = cos(2πqω), ω ∈ [0, 1].
The proof of the LDP for (Sn/n)n∈N stated in Theorem B is a direct consequence

of Proposition 3.4.

Proposition 3.4. Fix q ∈ {2, 3, . . .} and θ ∈ R. Then

Λq(θ) := lim
n→∞

1

n
logE[eθSn ] = log λθ,q,

where λθ,q is the Perron-Frobenius eigenvalue of the operator Φθ,q defined in (3.20).
Moreover, there exists an open domain D of the complex plane that contains the
real line R such that the convergence above holds uniformly for θ in any compact
subset of D. In particular, θ 	→ Λq(θ) is differentiable.

In the language of thermodynamic formalism [59], log λθ is referred to as the
pressure or the free energy of a one-dimensional lattice system, and its differentia-
bility expresses the known fact that there are no phase transitions for such systems.
(For more background on the spectral gap property of Perron-Frobenius transfer
operators, the reader is referred to [6, 8, 51] and [59, Chapter 4].)

Proof of Proposition 3.4. Recall the definition of the map T : [0, 1] → [0, 1] given
in (3.18) and note that Lebesgue measure is an invariant measure for T , i.e., T
maps the measure space ([0, 1],B([0, 1]), λ) to itself and satisfies λ(T −1(A)) = λ(A)
for every A ∈ B[0, 1]. Indeed (for simplicity we only consider q = 2),

T (x) = 2x (mod 1) = 2x− �2x� =
{
2x : 0 ≤ x < 1

2 ,

2x− 1 : 1
2 ≤ x ≤ 1
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and so, for every positive and measurable function f : [0, 1] → R,∫
[0,1]

f(T (x))λ(dx) =

∫
[0,1/2)

f(2x)λ(dx) +

∫
[1/2,1]

f(2x− 1)λ(dx)

=
1

2

∫
[0,1]

f(y)λ(dy) +
1

2

∫
[0,1]

f(y)λ(dy) =

∫
[0,1]

f(y)λ(dy).

In ergodic theory parlance,
(
([0, 1],B([0, 1]), λ); T

)
is a measure-preserving dynami-

cal system and we refer the reader to [21] for further details. The Perron-Frobenius
operator Φq : Lip[0, 1] → Lip[0, 1] associated with T is defined by

(Φqg)(ω) =
1

q

q−1∑
j=0

g

(
ω + j

q

)
, ω ∈ [0, 1], g ∈ Lip[0, 1],

where recall Lip[0, 1] is the space of Lipschitz functions defined above. Note that
for any g ∈ Lip[0, 1]∫ 1

0

(Φqg)(ω)dλ(ω) =
1

q

q−1∑
j=0

∫ 1

0

g

(
ω + j

q

)
dλ(ω) =

∫ 1

0

g(ω)dλ(ω),

where the last equality uses the fact that T is λ-preserving and {(ω + j)/q, j =
0, 1, . . . , q − 1} is the preimage of ω under T . This shows that Φq preserves the
integral for any function g ∈ Lip[0, 1]. Next, for θ ∈ R, note that the operator
Φθ,q defined in (3.20) can be viewed as a perturbation of the operator Φq since for
g ∈ Lip[0, 1],

(3.21) (Φθ,qg)(ω) =
(
Φq[e

θX1g]
)
(ω) =

1

q

q−1∑
j=0

eθX1(ω+j
q )g

(
ω + j

q

)
, ω ∈ [0, 1],

where once again recall from (2.1) that X1(ω) = cos(2πqω), ω ∈ [0, 1]. It is imme-
diate from the definition that both Φq and Φθ,q are linear operators. Denoting by
Φn

q and Φn
θ,q the n-fold composition of Φq and Φθ,q, respectively, a straightforward

inductive argument (see, e.g., [8, Proposition 5.1 (P4)]) shows that

(3.22) Φn
θ,qg = Φn

q [e
θSng], for every n ∈ N.

Let 1 denote the constant function on [0, 1] that takes the value 1, and henceforth,
denote dλ(ω) just as dω. Then, the moment generating function of Sn can be
expressed as

E
[
eθSn

]
=

∫ 1

0

eθSn(ω)dω =

∫ 1

0

Φn
q [e

θSn ](ω)dω =

∫ 1

0

(
Φn

θ,q1
)
(ω)dω,(3.23)

where the second equality uses the fact that Φn
q preserves the integral and the last

equality uses (3.22) with g = 1.
We will now use the crucial fact that the operator Φθ,q has the spectral gap

property; see, e.g., [59, Theorems 4.1 and 4.23] and [6, Theorem 1.5], where all
essential arguments can be found. Namely, we use the well-known fact that for
every θ ∈ R, Φθ,q admits a decomposition

(3.24) Φθ,q = λθQθ +Rθ,

where

(3.25) λθ = λθ,q > 0
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is a simple eigenvalue of Φθ,q, Qθ = Qθ,q is a projection operator onto a line
spanned by an eigenfunction hθ = hθ,q > 0 associated with λθ, and Rθ = Rθ,q is
an operator whose spectral radius is strictly smaller than λθ. More precisely, there
is a probability measure μθ = μθ,q on [0, 1] such that for every f ∈ Lip[0, 1],

Qθf = hθ ·
∫ 1

0
f(ω)dμθ(ω)∫ 1

0
hθ(ω)dμθ(ω)

and RθQθ = QθRθ ≡ 0 .

Continuing to omit the dependence of the quantities λθ, Rθ, Qθ, hθ and μθ on q,
by raising the decomposition of Φθ,q to the n-th power, it follows that for any
f ∈ Lip[0, 1],

Φn
θ,qf = λn

θQ
n
θ f +Rn

θ f = λn
θ · hθ ·

∫ 1

0
f(ω)dμθ(ω)∫ 1

0
hθ(ω)dμθ(ω)

+Rn
θ f.

Now, setting f = 1, taking the integral on both sides, and using (3.23), one obtains

E
[
eθSn

]
=

∫ 1

0

(
Φn

θ,q1
)
(ω)dω = λn

θ ·
∫ 1

0
hθ(ω)dω∫ 1

0
hθ(ω)dμθ(ω)

+

∫ 1

0

(Rn
θ1)(ω)dω.(3.26)

Recalling that the spectral radius of Rθ is strictly smaller than λθ, one obtains

(3.27) lim
n→∞

E
[
eθSn

]
λn
θ

=

∫ 1

0
hθ(ω)dω∫ 1

0
hθ(ω)dμθ(ω)

.

Note in passing that this shows that the sequence (Sn)n∈N satisfies some version
of mod-phi convergence [24], but what is more pertinent, it implies the weaker
statement

(3.28) lim
n→∞

1

n
logE

[
eθSn

]
= log λθ,

which proves the first assertion of the proposition.
We now turn to the proof of the remaining assertions, which we claim (and

justify below) can be deduced from the perturbation theory of linear operators
[33, Chapter 7, §3, p. 368], in particular the Kato-Rellich theorem, as stated
in [59, Theorem 4.24]. Indeed, since the family of operators Φθ,q depends on θ ∈ C

in an analytic way (see [8, Proposition 5.1 (P3)] and [33, Theorem 1.7, p.368]),
the decomposition (3.24) continues to hold in some neighborhood D of the real
axis (with λθ, hθ and μθ becoming complex-valued), with λθ �= 0 and λθ (as well
as hθ, μθ, Rθ) being analytic on D. Moreover, |λθ| stays strictly smaller than the
spectral radius of Rθ if D is sufficiently small, which, looking at (3.26), shows that
convergence in (3.28) is uniform on compact subsets of D. �

3.3.2. Moment estimates for the partial sums Sn and S̃n. Let n ∈ N and consider

Λq,n(θ) :=
1

n
logE

[
eθSn

]
=

1

n
log

∞∑
m=0

θm

m!
E
[
Sm
n

]
,(3.29)

and

Λ̃n(θ) :=
1

n
logE

[
eθS̃n

]
=

1

n
log

∞∑
m=0

θm

m!
E
[
S̃m
n

]
,(3.30)

where we recall that S̃n =
∑n

j=1 X̃j , and (X̃j)j∈N are i.i.d. having the same distri-

bution as X1, as defined in (2.4) and (2.3), respectively. The proof of properties
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(i)–(iv) in Theorem B, presented in the next section, involves a comparison of the
coefficients in the Taylor expansions of (3.29) and (3.30) considered as functions

of θ, which in turn relies on estimates on the moments of Sn and S̃n, obtained in
Lemmas 3.5–3.7. We start with Lemma 3.5 on estimates of the moments of Sn.

Lemma 3.5. Fix q ∈ {2, 3, . . .}, let ak = qk for all k ∈ N, and let Sn be as defined
in (2.2). Then, for every m,n ∈ N, we have

E[Sm
n ] =

Am(n)

2m
,

where Am(n) is the number of solutions to the equation
∑m

i=1 εiq
ki = 0 in the

unknowns k1, . . . , km ∈ {1, . . . , n} and ε1, . . . , εm ∈ {+1,−1}.

Proof. For every m ∈ N, we have

E
[
Sm
n

]
=

∫ 1

0

( n∑
k=1

cos(2πqkω)
)m

dω

=

∫ 1

0

n∑
k1,...,km=1

m∏
�=1

cos(2πqk�ω) dω

=
1

2m

∫ 1

0

n∑
k1,...,km=1

m∏
�=1

[
e(qk�ω) + e(−qk�ω)

]
dω,

where we write e(z) := e2πiz for z ∈ R and used that cos z = (eiz + e−iz)/2. By
rewriting the product in the last line of the last display in terms of an exponential

and using the elementary identity
∫ 1

0
e(kω)dω = 0 for all integer k �= 0, we see that

E
[
Sm
n

]
=

1

2m

n∑
k1,...,km=1

∑
ε1,...,εm∈{−1,1}

�{
ε1qk1+···+εmqkm=0

}.(3.31)

To complete the proof of the lemma, observe that the right-hand side equals
Am(n)/2m. �

Next, we give a combinatorial interpretation of Am(n) for m ≤ q. Let Bm(n)
be the number of simple random walk paths in Z

n of length m that return to the
origin, which is sometimes also referred to as the number of bridges of length m in
Zn.

Lemma 3.6. For all n,m ∈ N, we have Am(n) ≥ Bm(n) and, if m ≤ q, then
Am(n) = Bm(n).

Proof. We start with the proof of the second statement. Let m ≤ q. We first claim
(and justify below) that

(3.32)
m∑
�=1

ε�q
k� = 0, k� ∈ {1, . . . , n}, ε� ∈ {−1, 1}

if and only if for every k ∈ {1, . . . , n},

Hk =

m∑
�=1

�{k�=k} · ε� = 0.(3.33)
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In other words, (3.32) can hold only if every term +qk is canceled by a term −qk

at some other place. One direction of the claim is immediate. We note that

(3.34)
m∑
�=1

ε�q
k� =

n∑
k=1

( m∑
�=1

�{k�=k} · ε�
)
qk =

n∑
k=1

Hk q
k

and therefore if all Hk vanish, then
∑m

�=1 ε�q
k� = 0. For the opposite direction,

suppose
∑m

�=1 ε�q
k� = 0. Then, due to the identity in (3.34),

n∑
k=1

Hk q
k = 0.

We first show that this, along with the fact that m ≤ q, implies H1 = 0. First,
dividing everything by q ≥ 2, we obtain

n∑
k=1

Hk q
k−1 = 0,(3.35)

which clearly implies divisibility of H1 by q. Now, if m < q, then |H1| ≤ m < q
by definition. Hence, H1 = 0. If m = q, then either H1 = 0 or H1 = ±q and the
latter case only occurs if all ε1, . . . , εm are equal and k� = 1 for all � ∈ {1, . . . ,m}.
In this case, the condition

∑m
�=1 ε�q

k� = 0 is violated. Hence, for m ≤ q, we have
H1 = 0. Now dividing (3.35) by q and repeating the argument, it follows that
H2 = · · · = Hn = 0 as well. This completes the proof of the claim of equivalence
between the conditions (3.33) and (3.32).

Next, note that the conditions (3.33) on Hk may be interpreted as follows: for
given ε1, . . . , εm ∈ {−1, 1} and k1, . . . , km ∈ {1, . . . , n}, we consider the nearest
neighbor path of length m in Zn whose �th step is equal to ε��ek�

for �e1, . . . , �en the
standard vector basis in Rn. Clearly, condition (3.33) is satisfied if and only if the
path returns to its starting point. It follows that Am(n) = Bm(n), which proves
the second assertion of the lemma.

To prove the first assertion, note that if m ∈ N is arbitrary, then the solutions
of (3.32) can be divided into the trivial ones (i.e., those for which H1 = . . . = Hn =
0), and the non-trivial ones (such as q2 − q − . . .− q = 0 for m = q + 1, where the
term −q appears m times). Since the number of trivial solutions is Bm(n), and
(by definition) Am(n) is the total number of solutions, the claim Am(n) ≥ Bm(n)
follows. �

Taken together, Lemmas 3.5 and 3.6 show that, for each m ≤ q,

E
[
Sm
n

]
=

Bm(n)

2m
.

Let us turn to the computation of E[S̃m
n ], where we shall prove that the analogous

identity holds, this time for all m ∈ N.

Lemma 3.7. Recall that S̃n = X̃1 + . . .+ X̃n, where X̃1, X̃2, . . . are i.i.d. random
variables with the arcsine distribution on (−1, 1). Then, for all m,n ∈ N, we have

E
[
S̃m
n

]
=

Bm(n)

2m
.
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Proof. Recalling that (Uk)k∈N is a sequence of i.i.d. random variables with the same
uniform distribution as U , we can write

X̃k = cos(2πUk) =
e(Uk) + e(−Uk)

2
,

where we again write e(z) := e2πiz. For m ∈ N, we have

E
[
S̃m
n

]
=

1

2m
E

[(
n∑

k=1

[
e(Uk) + e(−Uk)

])m ]

=
1

2m

n∑
k1,...,km=1

∑
ε1,...,εm∈{−1,1}

E

[ m∏
�=1

e(ε�Uk�
)

]

=
1

2m

n∑
k1,...,km=1

∑
ε1,...,εm∈{−1,1}

E

[
e
( m∑

�=1

ε�Uk�

)]

=
1

2m

n∑
k1,...,km=1

∑
ε1,...,εm∈{−1,1}

E

[
e
( n∑

�=1

H�U�

)]
,

where for any fixed ki ∈ {1, . . . , n}, εi ∈ {−1, 1}, i = 1, . . . ,m, we set

H� :=

m∑
i=1

�{ki=�} · ε�, � = 1, . . . .n.

Then we have

E

[
e
( n∑

�=1

H�U�

)]
=

n∏
�=1

E

[
e
(
H�U�

)]
= �{H1=···=Hn=0}.

Since H1 = · · · = Hn = 0 if and only if the associated nearest neighbor path of
length m in Z

n, whose �th step is equal to εi�eki
, with �e1, . . . , �en the standard basis

in Zn, returns to its starting point, we have shown that

E
[
S̃m
n

]
=

1

2m

n∑
k1,...,km=1

∑
ε1,...,εm∈{−1,1}

�{H1=...=Hn=0} =
Bm(n)

2m
,

which completes the proof. �

3.3.3. Proof of properties (i)–(iv) of Theorem B. We now complete the proof of
Theorem B. First, note that the function Λq, as a uniform limit of analytic func-
tions, is itself analytic for all θ ∈ C, |θ| < ε0, for a sufficiently small ε0 > 0.

Proof of (i). First, let us observe that the proof that Iq ≤ Ĩ on the positive real
axis is simple. Indeed, Lemmas 3.5–3.7 imply that for all m,n ∈ N,

E[Sm
n ] ≥ E[S̃m

n ].

When combined with (3.29) and (3.30), it follows that for every n ∈ N and θ > 0,

Λq,n(θ) ≥ Λ̃n(θ).

Passing to the limit as n → ∞ on both sides, and noting that both limits exist and

are equal to Λq(θ) and Λ̃q(θ), respectively, due to the proof in Section 3.3.1 and the

independence of (X̃k)k∈N, we conclude that Λq(θ) ≥ Λ̃q(θ) for all θ > 0. Passing to

the Legendre-Fenchel transform we then obtain Iq(x) ≤ Ĩ(x) for all x > 0.
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The proof of the strict inequality Iq(x) < Ĩ(x) for x > 0 is more delicate. Assume
that q ≥ 2 and θ > 0 are fixed. We choose a large integer d > q; at the end of
the proof we will let d → ∞. As in the proof of Theorem A, we approximate the
exponential function by a Taylor polynomial p = pd of degree d, and by (3.7), we
have

E
[
eθSn

]
≥

(
1 +

eθθd+1

(d+ 1)!

)−n ∫ 1

0

n∏
k=1

p(θ cos(2πqkω))dω.

We recall from Lemma 3.3 that we can write p(θ cos(2πqkω)) in the form

(3.36) b0(θ) + b1(θ) cos(2πq
kω) + b2(θ) cos(2π2q

kω) + · · ·+ bd(θ) cos(2πdq
kω),

where b0 = b0(θ; d) is given by (3.15) and bj = bj(θ; d) ≥ 0 for j = 1, . . . , d. Since
d > q by assumption, the q-th term in the Taylor expansion for p(θ cos(2πqkx)) is
(θ cos(2πqkx))q/q!. From (3.13) and (3.14) we see that the expansion of (cos y)q

into a linear combination of cosine functions contains the term 2−q+1 cos(qy). We
emphasize again that all coefficients, in the Taylor expansion of ey as well as in
(3.13) and (3.14), are non-negative. Thus the coefficient bq(θ) in (3.36) is at least
as large as the contribution coming from (θ cos(2πqkx))q/q!, and so we have

(3.37) bq = bq(θ) ≥
θq

q!

1

2q−1
.

By a similar reasoning the coefficient b1(θ) in (3.36) is at least as large as the
contribution coming from the linear term in the Taylor expansion, which is simply
θ cos(2πqkx). Thus we have b1(θ) ≥ θ. Once again using the fact that all coefficients
are non-negative, in (3.36) as well as in (3.17), (3.13) and (3.14), we have∫ 1

0

n∏
k=1

p(θ cos(2πqkω)) dω ≥
∫ 1

0

n∏
k=1

(
b0 + b1 cos(2πq

kω) + bq cos(2πq
k+1ω)

)
dω.

Now the point is that there will always be interference between the term
bq cos(2πq

k+1x) coming from index k, and the term b1 cos(2πq
k+1x) coming from

index k + 1. Let us assume that n is even. Always combining two consecutive
factors together, we have∫ 1

0

n∏
k=1

(
b0 + b1 cos(2πq

kω) + bq cos(2πq
k+1ω)

)
dω

=

∫ 1

0

n/2∏
�=1

(
b0 + b1 cos(2πq

2�−1ω) + bq cos(2πq
2�ω)

) (
b0 + b1 cos(2πq

2�ω)

+bq cos(2πq
2�+1ω)

)
dω

≥
∫ 1

0

n/2∏
�=1

(
b20 + bq cos(2πq

2�ω)b1 cos(2πq
2�ω)

)
dω

≥
n/2∏
�=1

(
b20 +

b1bq
2

)

≥
n/2∏
�=1

(
b20 +

θq+1

q!2q

)
,
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where the last inequality uses (3.37) and b1(θ) > θ. Consequently, we have

Λq(θ) = lim
n→∞

1

n
logE[eθSn ] ≥ log

⎛⎜⎜⎜⎝
(
1 +

eθθd+1

(d+ 1)!

)−1

︸ ︷︷ ︸
→1 as d→∞

√
b20 +

θq+1

q!2q

⎞⎟⎟⎟⎠ .

Recall that b0 depends on d and θ, and that we have log b0 → Λ̃(θ) as d → ∞.
For every fixed θ > 0 since the logarithm is a strictly increasing function, the

term log
(√

b20 +
θq+1

q!2q

)
converges to a quantity that is strictly larger than Λ̃(θ) as

d → ∞. Consequently, we have

Λq(θ) > Λ̃(θ), for all θ > 0.

From the properties of the Bessel function B0(θ) it is easily seen that for x ∈ (0, 1)

the supremum in the definition of Ĩ(x) is actually a maximum, and is attained at
some (finite) value θx > 0. Consequently, we have

Iq(x) = sup
θ>0

[θx− Λq(θ)] = θxx− Λq(θx) < θxx− Λ̃(θx) = Ĩ(x).

Thus, we have Iq(x) < Ĩ(x) for all x ∈ (0, 1).

In conclusion, we note that we can make the difference between Λq and Λ̃ quan-
titative. Recall that θ > 0 by assumption. Since b0(θ) is a partial sum of B0(θ), we
have b0(θ) ≤ B0(θ). Furthermore, from the series expansion for B0(θ) it is easily

seen that B0(θ) ≤ eθ. Thus b20(θ) ≤ e2θ, and b20 +
θq+1

q!2q ≥ b20

(
1 + θq+1

q!2qe2θ

)
. Thus,

letting d → ∞, we deduce that

Λq(θ)− Λ̃(θ) ≥ 1

2
log

(
1 +

θq+1

q!2qe2θ

)
.

Proof of (ii). It follows from Proposition 3.4 that for θ ∈ R, Λq(θ) = log λθ,q, where
λθ,q > 0 is the largest eigenvalue of the Perron-Frobenius transfer operator defined
in (3.20). Fixing θ ∈ R and sending q → ∞, the Riemann sums converge on the
right-hand side of the definition in (3.20) converge to the corresponding Riemann
integrals; hence this sequence of operators converges in the norm topology to the
operator

(Φ̃θg)(ω) =

∫ 1

0

eθX1(z)g(z)dz = λ̃θ

∫ 1

0
eθX1(z)g(z)dz∫ 1

0
eθX1(z)dz

· 1,

where λ̃θ :=
∫ 1

0
eθX1(z)dz = eΛ̃(θ), where Λ̃ is defined as in (2.6). Thus, Φ̃θ/λ̃θ

is a projection onto the line spanned by the function 1. The Perron-Frobenius

eigenvalue of Φ̃θ,q is λ̃θ. Now, if θ ∈ R stays constant and q → ∞, we can view

Φθ,q as a perturbation of Φ̃θ. By perturbation theory (see, e.g., [33]), we have

the convergence of the Perron-Frobenius eigenvalues, that is, limq→∞ λθ,q = λ̃θ for

every θ ∈ R. Taking the logarithm, we get limq→∞ Λq(θ) = Λ̃(θ). Since the involved
functions are convex, the convergence is, in fact, uniform on compact intervals. By

taking the Legendre-Fenchel transform, it follows that limq→∞ Iq(x) = Ĩ(x) locally
uniformly on (−1, 1).
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Proof of (iii). Lemma 3.7 shows that for every n ∈ N, whenever m ∈ N satisfies
m ≤ q, one has

E[Sm
n ] = E[S̃m

n ] =
Bm(n)

2m
,

or, in other words, the moments of Sn and S̃n coincide for all m ≤ q. Since
cumulants of order less than or equal to q can be expressed in terms of moments of
order less than or equal to q, we infer that as long as m ≤ q,

κm(Sn) = κm(S̃n) := n · κm(X̃1),

where κm(Y ) denotes themth cumulant of a real-valued random variable Y . Hence,
for m ≤ q and every n ∈ N, we have(

d

dθ

)m

Λq,n(θ)

∣∣∣∣∣
θ=0

=
1

n
κm(Sn) = κm(X̃1) =

1

n
κm(S̃n) =

(
d

dθ

)m

Λ̃(θ)

∣∣∣∣∣
θ=0

.

Now because the uniform convergence of the analytic functions Λq,n → Λq (es-
tablished in Proposition 3.4) implies the convergence of the derivatives, we obtain
(iii).

Proof of (iv). In the case when m = q + 1, a slight modification of the argument
used to prove Lemma 3.6 shows that any solution to (3.32) either satisfies H1 =
. . . = Hn = 0, or is a permutation of one of the solutions qk + . . .+ qk − qk+1 = 0
or qk+1 − qk − . . . − qk = 0, where k ∈ {1, . . . , n − 1}. The total number of such
exceptional solutions is 2(q + 1)(n− 1), hence

Aq+1(n) = Bq+1(n) + 2(q + 1)(n− 1).

From Lemma 3.5 and Lemma 3.7 it follows that

E[Sq+1
n ] =

Aq+1(n)

2q+1
=

Bq+1(n) + 2(q + 1)(n− 1)

2q+1
= E[S̃q+1

n ] +
(q + 1)(n− 1)

2q
.

The cumulant κq+1(Sn) can be expressed as E[Sq+1
n ] plus some polynomial function

of the lower moments E[Sm
n ] with m ≤ q. A similar representation holds for the

cumulant κq+1(S̃n), and the moments of all orders m ≤ q of Sn coincide with those

of S̃n by part (ii) of Theorem B. It follows that

κq+1(Sn) = κq+1(S̃n) +
(q + 1)(n− 1)

2q
.

For the derivatives of order q + 1 of Λq,n and Λ̃ at θ = 0 we therefore obtain

Λ(q+1)
q,n (0) =

1

n
κq+1(Sn) =

1

n
κq+1(S̃n) +

(q + 1)(n− 1)

2qn

= Λ̃(q+1)(0) +
(q + 1)(n− 1)

2qn
.

Letting n → ∞ and using that the uniform convergence of analytic functions Λq,n →
Λq implies convergence of their derivatives, we arrive at

Λ(q+1)
q (0) = Λ̃(q+1)(0) +

q + 1

2q
.

This proves (iv).
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3.3.4. Proof of Lemma 2.3. We now present the proof of Lemma 2.3. The idea
is that in the lacunary sum Sn all cosine functions cos(2πqkU) are equal to 1 at
U = 0. Thus, Sn is close to n if the uniform random variable U ∼ Unif(0, 1) takes
a value that is sufficiently close to 0. To make this precise, fix ε ∈ (0, 1). We have
cosx ≥ 1− x2/2. It follows that

Xk = cos(2πqkU) ≥ 1− ε provided that U ≤
√
2ε

2π
q−k.

Hence, if U ≤
√
2ε

2π q−n, then we have Sn ≥ (1− ε)n. It follows that

Iq(1− ε) = − lim
n→∞

1

n
logP(Sn ≥ (1− ε)n) ≤ − lim

n→∞

1

n
logP

(
U ≤

√
2ε

2π
q−n

)
≤ − lim

n→∞

1

n
log

(√
2ε

2π
q−n

)
= log q.

Since this holds for every ε ∈ (0, 1), by the lower semicontinuity of Iq, it follows
that

Iq(+1) ≤ lim inf
ε→0

Iq(1− ε) ≤ log q.

This completes the proof.

3.4. Proof of Theorem C. We know from Theorem B and Proposition 2.4 that
there exists some sufficiently small x̄0 > 0 such that 0 < I2(x0) < I3(x0) for every
x0 ∈ R with 0 < x0 ≤ x̄0. By interleaving the powers of 2 and 3 appropriately, we
shall construct a Hadamard gap sequence (ak)k∈N such that for all x0 ∈ (0, x̄0), the
corresponding partial sums (Sn)n∈N satisfy

0 < lim inf
n→∞

− 1

n
logP(Sn ≥ nx0) < lim sup

n→∞
− 1

n
logP(Sn ≥ nx0) < ∞.

Since both I2 and I3 are continuous, there exist ε0 ∈ (0, x0) and δ0 > 0 such that

sup
|x−x0|≤ε0

I2(x) + δ0 < inf
|x−x0|≤ε0

I3(x) and inf
|x−x0|≤ε0

I2(x) > δ0.

Our construction proceeds inductively. Assume that for some n ∈ N we have
constructed increasing positive integers a1, . . . , an such that

− 1

n
log P(Sn ≥ nx0) > inf

|x−x0|≤ε0
I3(x)−

δ0
3

=: c+.

We want to extend the sequence a1, . . . , an to a longer sequence a1, . . . , aN , with
N ∈ N, N > n in such a way that

− 1

N
logP(SN ≥ Nx0) < sup

|x−x0|≤ε0

I2(x) +
δ0
3

=: c−.

Note that 0 < c− < c+. This is done as follows. We define an+1 := 2m, wherem ∈ N

is any number such that 2m > 2an (to guarantee the Hadamard gap condition) and
m > n + 1. Further, we define an+� := 2m+(�−1) so that with N = n + (N − n),
we have aN := 2N−n+m−1. We choose N ∈ N sufficiently large, in particular such
that 2m/N < ε0/5. Clearly,∣∣∣∣∣

n∑
k=1

cos(2πakx0)

∣∣∣∣∣ ≤ n and

∣∣∣∣∣
m−1∑
k=1

cos(2π2kx0)

∣∣∣∣∣ ≤ m.
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Therefore, by replacing the first n elements a1, . . . , an by m − 1 powers of 2,
more precisely, by 2, 22, . . . , 2m−1, respectively, and using the specific choice of
an+1, an+2, . . . together with the two estimates in the previous display (which guar-
antee that the replacement of n by m−1 cosine terms yields an error bounded above
by n+m), we obtain

− 1

N
logP(SN ≥ Nx0)

≤ − 1

N
logP

(N−n+m−1∑
k=1

cos(2π2kx0) ≥ Nx0 + (n+m)

)

≤ − 1

N
logP

( N∑
k=1

cos(2π2kx0) ≥ Nx0 + (n+m) + (m− n− 1)

)

≤ − 1

N
logP

( N∑
k=1

cos(2π2kx0) ≥ Nx0 + 2m

)

≤ − 1

N
logP

( N∑
k=1

cos(2π2kx0) ≥ N(x0 + ε0/5)

)
,

where we used that 2m/N < ε0/5. The latter expression converges, as N → ∞, to
I2(x0 + ε0/5). Hence, making N ∈ N larger, if necessary, we obtain

− 1

N
logP(SN ≥ Nx0) < I2(x0 + ε0/5) +

δ0
3

≤ sup
|x−x0|≤ε0

I2(x) +
δ0
3

= c−.

Now we can continue this argument back and forth, by adding strings of consecutive
powers of 2 in odd steps and strings of powers of 3 in even steps, we can construct
an infinite sequence (ak)k∈N for which − 1

n log P(Sn ≥ nx0) is infinitely often smaller
than c− and infinitely often larger than c+.

3.5. Proof of Theorem D. Recall that the i.i.d. sequence Y = (Yk)k∈N is defined
on a common probability space (Y ,A,PY) with each Yk uniformly distributed on
the discrete set

(3.38) Dk :=
{
h2	k

2/3
 : h ∈ Z, 0 ≤ h ≤ 2	k
2/3


}
, k ∈ N.

Since by definition aYk = 2k+Yk, (a
Y
k )k∈N is also a sequence of independent random

variables defined on (Y ,A,PY). We also assume (without loss of generality) that
the independent uniform random variable U is realized as the identity map on the
space ([0, 1],B(0, 1), λ) and, since U and Y are independent, that both Y and U are
defined on the product measure space (Y × [0, 1],A⊗B(0, 1),PY ⊗λ). Throughout
the argument, fix θ ∈ R. The proof proceeds in several steps.

Step 1 (Construct a suitable partition of the integers). For any large n, we split
the set of all positive integers into disjoint sets Δ1,Δ2, . . . and Δ′

1,Δ
′
2, . . . , which

are defined via the following recursive construction. First, set Δ1 := {1, . . . , n1/2},
where for notational simplicity, we assume that n1/2 is an integer. Let the set Δ′

1

contain the next n2/5 smallest positive integers not already contained in Δ1, where
(again for notational simplicity) we assume that n2/5 is also an integer. Then, for
each i ∈ N, we recursively define Δi+1 to contain the n1/2 smallest positive integers

not already contained in
⋃i

j=1(Δj ∪ Δ′
j), and the set Δ′

i+1 to contain the n2/5
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538 C. AISTLEITNER, ET AL.

smallest positive integers not already contained in Δi+1 ∪
⋃i

j=1(Δj ∪ Δ′
j). This

decomposition can be characterized by the following requirements:

• Δi < Δ′
i < Δi+1 for all i ∈ N, where the inequality is understood to hold

element-wise
•

⋃∞
i=1 (Δi ∪Δ′

i) = N.

• #Δi = n1/2 for all i ∈ N, and #Δ′
i = n2/5 for all i ∈ N.

The philosophy is that the primed index sets are sufficiently large to cause a strong
“independence” between the trigonometric functions in the non-primed sets, while
at the same time the total cardinality of the primed index sets is so small that
they are asymptotically negligible. The precise choice of n1/2 and n2/5 for the
cardinalities of the Δ and Δ′ blocks is somewhat arbitrary, the relevant facts are
that the one type of block is significantly larger than the other, and that both types
of blocks are not too small in comparison with n.

For i ∈ N, let δi,min and δi,max denote the smallest and largest integers in Δi,
respectively. Then our construction ensures that

(3.39) δi,max + n2/5 < δi+1,min, ∀i ∈ N, and max
1≤i≤Mn

δi,max + n2/5 ≤ n,

where

(3.40) Mn := min

{
M ∈ N : {1, . . . , n} ⊂

M+1⋃
i=1

(Δi ∪Δ′
i)

}
≤

√
n,

with the last inequality being a simple consequence of the fact that |Δi| =
√
n for

each i ∈ N.

Step 2 (Bound the moment generating function in terms of polynomial integrals).
Recall that D∞ = ⊗k∈NDk, where the definition of the discrete set Dk was re-
peated again in (3.38), and for y ∈ D∞, ayk = 2k + yk. Recall also that Sy

n(ω) =∑n
k=1 cos(2πa

y
kω), ω ∈ [0, 1].

Lemma 3.8. Fix n ∈ N sufficiently large such that n2/5 ≤ Mn. Then, for y ∈ D∞
and ω ∈ [0, 1],

(3.41) e−5θn9/10

∫ 1

0

Hy
n(ω)dω ≤

∫ 1

0

eθS
y
n(ω)dω ≤ e5θn

9/10

∫ 1

0

Hy
n(ω)dω,

where for ω ∈ [0, 1]

(3.42) Hy
n(ω) :=

⎛⎝ ∏
n2/5≤i≤Mn

∏
k∈Δi

eθ cos(2πay
kω)

⎞⎠ .

Consequently, for any ε > 0, there exists d = d(ε) ∈ N such that the Taylor
polynomial p = pd(ε) of length d(ε) defined in (3.5) satisfies
(3.43)

(1− ε)n
∫ 1

0

Hy
n(ω)dω ≤

∫ 1

0

Mn∏
i=n2/5

∏
k∈Δi

p(θ cos(2πaykω)) dω ≤ (1+ ε)n
∫ 1

0

Hy
n(ω)dω,

for every y ∈ D∞ and for all sufficiently large n ∈ N.
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LARGE DEVIATION PRINCIPLES FOR LACUNARY SUMS 539

Proof. Fix n ∈ N as in the statement of the lemma. Also, fix y ∈ D∞ and for
notational conciseness, omit all dependence on y. Then for any ω ∈ [0, 1], we can
split

eθSn(ω) =
n∏

k=1

eθ cos(2πakω)

=

⎛⎝ ∏
1≤i<n2/5

∏
k∈Δi∪Δ′

i

eθ cos(2πakω)

⎞⎠
︸ ︷︷ ︸

=:H(1)(ω)

×

⎛⎝ ∏
n2/5≤i≤Mn

∏
k∈Δi

eθ cos(2πakω)

⎞⎠
︸ ︷︷ ︸

=:H(2)(ω)

×

⎛⎝ ∏
n2/5≤i≤Mn

∏
k∈Δ′

i

eθ cos(2πakω)

⎞⎠
︸ ︷︷ ︸

=:H(3)(ω)

×

⎛⎜⎜⎜⎝ ∏
1≤k≤n,

k �∈
⋃Mn

i=1(Δi∪Δ′
i)

eθ cos(2πakω)

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

=:H(4)(ω)

.

We will show below that H(1), H(3), and H(4) are all sub-exponential in n (that is,
their logarithms are all sublinear in n), and thus these three factors will be negligible
in comparison with H(2), whose logarithm is linear in n. Indeed, first note that
by construction H(1) is a product of at most 2n2/5n1/2 factors, each of which is

trivially between e−θ and eθ, so in total we have e−2θn9/10 ≤ H(1)(ω) ≤ e2θn
9/10

for all ω ∈ [0, 1]. Next, the product H(3) contains all contributions coming from
the complete short “primed” blocks Δ′; the purpose of these blocks was just to
separate the longer blocks, and H(3) is also small in comparison with H(2). Since
the product H(3) has a total of at most Mnn

2/5 ≤ n9/10 many factors, we have

e−θn9/10 ≤ H(3)(ω) ≤ eθn
9/10

for all ω ∈ [0, 1]. Lastly, the product H(4) is split off
since it does not cover a full block; this is no problem, since H(4) only has a small
number of factors. More precisely, since by (3.40), n−Mn ≤ Mn+1 −Mn ≤ 2

√
n,

we have e−2θn1/2 ≤ H(4)(ω) ≤ e2θn
1/2

for all ω ∈ [0, 1]. Overall, this implies

e−5θn9/10 ≤ H(1)(ω)H(3)(ω)H(4)(ω) ≤ e5θn
9/10

for all ω ∈ [0, 1]. When combined
with the last display, and the observation that everything inside the integrals is
positive, this yields (3.41) with Hn := H(2), which agrees with the expression in
(3.42). The second estimate (3.43) is then a simple consequence of (3.41), (3.6) of
Lemma 3.2 and the relations |Δi| =

√
n for all i and Mn ≤

√
n. �

Step 3 (Evaluate the integral
∫ 1

0

∏Mn

i=n2/5

∏
k∈Δi

p(θ cos(2πaykω)) dω from (3.43)).

The key idea is to first show that we can take the product
∏Mn

i=n2/5 outside the
integral; see (3.45). In other words, we show that there are no correlations between
cosine functions with indices from different blocks Δi and Δj , for i, j, i �= j, in the
range, and thus, that it is possible to evaluate all integrals entirely within each block.
Indeed, this was the purpose of the construction of Δi and Δ′

i in Step 1. Then we
simplify each of the integrals in the product using the expansion for the polynomial
p obtained in Lemma 3.3. Indeed, recall from (3.10) and (3.11) of Lemma 3.3 that
for d ∈ N, there exist non-negative coefficients bj = bj(θ; d), j = 0, . . . , d, such that
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for all k ∈ N, the Taylor polynomial p = pd satisfies

(3.44) p (θ cos(2πaykω)) =

d∑
j=0

bj(θ) cos(2πja
y
kω),

where the zeroth coefficient b0 = b0(θ; d) is given explicitly by the finite series in
(3.11). To shorten notations we suppress the dependence of b0, b1, . . . on θ and d
in the formulas below.

Proposition 3.9. Fix d ∈ N and p = pd the Taylor polynomial of length d. Then,
for all sufficiently large n, and every y ∈ D∞,

(3.45)

∫ 1

0

Mn∏
i=n2/5

∏
k∈Δi

p(θ cos(2πaykω)) dω =

Mn∏
i=n2/5

∫ 1

0

∏
k∈Δi

p(θ cos(2πaykω))dω.

Furthermore, for i ∈ {n2/5, . . . ,Mn},

c
(i)
0 (y) :=

∫ 1

0

∏
k∈Δi

p(θ cos(2πaykω))dω

(3.46)

=b
√
n

0 +
∑∑∑

b
√
n−�

0 bj1 · . . . · bj�
∑ �!

2�−1
�{

j1a
y
k1

+s2j2a
y
k2

+···+s�j�a
y
k�

=0
},

(3.47)

where the four summations in the displayed formula above are taken over the ranges
(in the order of appearance)

(3.48)
∑

1≤�≤√
n

,
∑

(k1,...,k�)∈Δi,
k1>···>k�

,
∑

(j1,...,j�)∈{0,...,d}�,
(j1,...,j�) �=(0,...,0)

,
∑

(s2,...,s�)∈{−1,1}�−1

,

and the coefficients bj = bj(θ; d), j = 0, . . . d, are as in (3.44). Furthermore, for all
sufficiently large i, given � and km, jm, sm,m = 1, . . . , � as in (3.48), we have

(3.49) j1a
y
k1
+s2j2a

y
k2
+ · · ·+s�j�a

y
k�

= 0 ⇒ j1yk1
+s2j2yk2

+ · · ·+s�j�yk�
= 0.

Proof. Fix y = (yk)k∈N ∈ D∞. We will start by establishing (3.47) and (3.49).
Multiplying out the product

∏
k∈Δi

p(θ cos(2πaykω)) within a certain fixed block

Δi, using (3.44) and the cosine product trigonometric identity (3.17) we obtain

∏
k∈Δi

p(θ cos(2πaykω)) = b
√
n

0

(3.50)

+
∑∑∑

b
√
n−�

0 bj1 · . . . · bj�
∑ �!

2�−1
cos

(
2π(j1a

y
k1
+s2j2a

y
k2
+. . .+s�j�a

y
k�
)ω

)
,

where the four summations in the displayed formula above are taken over the ranges

(in the order of appearance) in (3.48), and the power
√
n in the constant term b

√
n

0

and the coefficient b
√
n−�

0 arises from the fact that |Δi| =
√
n. Note that (3.50)

shows that
∏

k∈Δi
p(θ cos(2πaykω)) can be written as the sum of the constant term

b
√
n

0 (which would be the contribution for the “independent” case; see (3.12) of
Lemma 3.3) plus a linear combination of cosine functions with frequencies

(3.51) j1a
y
k1

± · · · ± j�a
y
k�
,
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LARGE DEVIATION PRINCIPLES FOR LACUNARY SUMS 541

the latter following from the trigonometric identity (3.17). Assume that the ex-
pression in (3.51) is non-zero. Recall that ayk = 2k + yk, where yk takes values in

Dk := {h2k2/3

: 0 ≤ h ≤ 2k
2/3}; here and in the sequel we write 2k

2/3

for 2	k
2/3


for notational conciseness. Substituting ayk = 2k + yk into (3.51), we can rewrite
the frequency of the cosine function as

(3.52) j1(2
k1 +yk1

)±· · ·±j�(2
k� +yk�

) = j12
k1 ± · · · ± j�2

k�︸ ︷︷ ︸
fixed part

+ j1yk1
± · · · ± j�yk�︸ ︷︷ ︸

D∞-dependent part

,

which is different from zero only if at least one of the parts is non-zero. Note that
by (3.48), the absolute value of the fixed part in this expression, whenever it is
non-zero, has a value between

2δi,min and d
√
n2δi,max ,

where recall δi,min and δi,max, respectively, are the smallest and largest elements of
Δi. Indeed, the upper bound is trivial and since k1 > k2 > · · · > k�, we also obtain
the lower bound:

|j12k1 ± · · · ± j�2
k� | = |2k� | · |j12k1−k� ± · · · ± j�|︸ ︷︷ ︸

≥1, since non-zero

≥ 2δi,min .

Similarly, recalling the structure of Dk from (3.38), the D∞-dependent part, when-
ever it is non-zero, has absolute value between

2δ
2/3
i,min and d

√
n2δ

2/3
i,max .

Thus (if both are non-zero), the absolute value of the sum of the fixed and D∞-
dependent parts always lies between

1

2
2δi,min and 2d

√
n2δi,max .

Hence, the product
∏

k∈Δi
p(θ cos(2πaykω)) can be written as a constant term, plus

a linear combination of cosine functions, each of which has a frequency that is
contained in the range

(3.53) R̄i :=
[
2δ

2/3
i,min , d

√
n2δ

2/3
i,max

]
∪
[
1

2
2δi,min , 2d

√
n2δi,max

]
.

In other words, from (3.50) and the above discussion, it follows that

(3.54)
∏
k∈Δi

p(θ cos(2πaykω)) = c
(i)
0 (y) +

∑
m(i)∈Ri

c
(i)

m(i)(y) cos(2πm
(i)x)

for some appropriate set Ri ⊂ R̄i of positive integers, and appropriate coefficients

c
(i)
m (y). Note that c

(i)
0 may differ from b

√
n

0 since some frequencies of the form (3.51)
may vanish, and the coefficients of the corresponding cosines would then contribute
to the constant term. Using (3.50) and the fact that the integral over [0, 1] of any
cosine term in that expansion with a non-zero frequency vanishes, we obtain (3.47).

Note that the dependence of c
(i)
0 = c

(i)
0 (y) on y arises because the value of the

indicator

�{
j1a

y
k1

+s2j2a
y
k2

+···+s�j�a
y
k�

=0
}

depends on (yk1
, . . . , yk�

) via the values of ayk1
, . . . , ayk�

.
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We now turn to the proof of (3.49). Recall that we constructed our blocks Δi,Δ
′
i

and defined Mn such that δi+1,min ≥ δi,max+n2/5 and for i ≤ Mn, δi,max+n2/5 ≤ n,
see (3.39), which together with the mean-value theorem implies that

δ
2/3
i+1,min ≥

(
δi,max + n2/5

)2/3

≥ δ
2/3
i,max+

2

3

1

(δi,max + n2/5)1/3
n4/15 ≥ δ

2/3
i,max+

2

3
n1/15,

and hence, for 1 ≤ i ≤ Mn,

(3.55) 2δi+1,min ≥ 2n
2/5+δi,max and 2δ

2/3
i+1,min ≥ 2δ

2/3
i,max+

2
3n

1/15

.

Also, for sufficiently large n and n2/5 ≤ i ≤ Mn, note that δi,min ≥ (n2/5)(n1/2) =

n9/10 = n7/30+2/3 ≥ n7/30 + n2/3 ≥ n7/30 + δ
2/3
Mn,max, and so

(3.56)
1

2
2
δ
n2/5,min ≥ 2n

7/30−1

d
√
n

(
d
√
n2δ

2/3
Mn,max

)
.

The last inequality shows that for all sufficiently large n ∈ N, any “D∞-dependent
part” of a frequency that could originate from some product with indices in Δi

(with n2/5 ≤ i ≤ Mn) is of a much smaller order than the smallest non-zero “fixed”
part that we could encounter from such blocks, which proves (3.49). (This is why
we split off the product H(1) with the frequencies in Δi∪Δ′

i for 1 ≤ i < n2/5 earlier
in Lemma 3.8, since the frequencies there are so small that their fixed parts could
cause correlations with the D∞-dependent parts coming from blocks with higher
indices.)

To complete the proof of the proposition, it only remains to prove (3.45). To
show how our construction facilitates control of the value of the integral

(3.57)

∫ 1

0

Mn∏
i=n2/5

∏
k∈Δi

p(θ cos(2πaykω))dω,

note that (3.54) implies that we have for y ∈ D∞ and ω ∈ [0, 1],
(3.58)

Mn∏
i=n2/5

∏
k∈Δi

p(θ cos(2πaykω)) =

Mn∏
i=n2/5

⎛⎝c
(i)
0 (y) +

∑
m(i)∈Ri

c
(i)

m(i)(y) cos(2πm
(i)ω)

⎞⎠ ,

with c
(i)
0 as in (3.47) and c

(i)

m(i) other coefficients as described above (whose precise
values will not matter for what follows). When multiplying out the terms in the
product on the right-hand side of (3.58), for each i in the range n2/5 ≤ i ≤ Mn we

can either choose the factor c
(i)
0 (y) or a factor of the form c

(i)

m(i)(y) cos(2πm
(i)ω) for

some m(i) ∈ Ri. That is, we can write the right-hand side of (3.58) as

∑
U,V

(∏
i∈U

c
(i)
0 (y)

)⎛⎝∏
i∈V

∑
m(i)∈Ri

c
(i)

m(i)(y) cos(2πm
(i)ω)

⎞⎠ ,

where the sum is taken over all sets U ,V that form a disjoint partition of
{n2/5, . . . ,Mn}, i.e., U ∩ V = ∅ and U ∪ V = {n2/5, . . . ,Mn}. Assume that V is
non-empty. Then using the standard trigonometric identity (3.17) we can expand∏

i∈V

∑
m(i)∈Ri

c
(i)

m(i)(y) cos(2πm
(i)ω)
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into a linear combination of cosine-functions with frequencies of the form∑
i∈V

±m(i), m(i) ∈ Ri.

Since Ri is contained in the range set R̄i defined in (3.53), and since we have the
estimates (3.55) and (3.56) separating these respective ranges for different values of
i, it is not possible that the linear combination equals zero (provided that n is large
enough). Thus our construction ensures that all frequencies of cosine-functions in
this linear combination are non-zero, which implies that their integrals vanish over
[0, 1], so that we have∫ 1

0

∏
i∈V

∑
m(i)∈Si

c
(i)

m(i)(y) cos(2πm
(i)ω)dω = 0,

and consequently,∫ 1

0

(∏
i∈U

c
(i)
0 (y)

)⎛⎝∏
i∈V

∑
m(i)∈Ri

c
(i)

m(i)(y) cos(2πm
(i)ω)

⎞⎠ dω = 0,

whenever V is non-empty. Thus, the only term that actually contributes to the
value of (3.57) is when all indices i are contained in U and V = ∅. The contribution
of this case to the integral is∫ 1

0

I∏
i=n2/5

c
(i)
0 (y)dω =

I∏
i=n2/5

c
(i)
0 (y),

so that in total we have for every y ∈ D∞,∫ 1

0

I∏
i=n2/5

∏
k∈Δi

p(θ cos(2πaykω))dω =
I∏

i=n2/5

c
(i)
0 (y)

=

Mn∏
i=n2/5

∫ 1

0

∏
k∈Δi

p(θ cos(2πaykω))dω.

This is (3.45) and completes the proof of the proposition. �

Step 4 (Give an explicit formula for
∏Mn

i=n2/5

∫ 1

0

∏
k∈Δi

p(θ cos(2πaYk ω))dω which

holds with large PY -probability). We will prove the following result.

Lemma 3.10. Let Y = (Yk)k∈N be the sequence of independent random variables,
with each Yk uniformly distributed on the set Dk defined in (3.38). Then for every
d ∈ N, with p = pd, the Taylor polynomial of length d, and b0 = b0(θ; d) as in
(3.11), we have

(3.59) PY

(
Mn∏

i=n2/5

∫ 1

0

∏
k∈Δi

p
(
θ cos(2πaYk ω)

)
dω =

Mn∏
i=n2/5

b
√
n

0

)
≥ 1− n−3/2,

for all sufficiently large n ∈ N.

Proof. Fix d ∈ N and set p = pd to be the corresponding Taylor polynomial, and let
bj := bj(θ; d), j = 0, 1, . . . , d, be the associated coefficients as presented in equations

(3.10) and (3.11) of Lemma 3.3 (see also (3.44)). For any y ∈ D∞, let c
(i)
0 (y) be

defined as in (3.47). Combining (3.47) and (3.49) in Proposition 3.9 with the fact
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that i ≥ n2/5 in (3.47), we see that for all sufficiently large n ∈ N and for all i in
the range n2/5 ≤ i ≤ Mn we have∫ 1

0

∏
k∈Δi

p(θ cos(2πaykω))dω

=b
√
n

0 +
∑∑∑

b
√
n−�

0 bj1 · . . . · bj�
∑ �!

2�−1
�{j1yk1

+s2j2yk2
+···+s�j�yk�

=0},

(3.60)

with the summation ranges as specified in (3.48).
We now estimate the probability of the event {j1Yk1

+ s2j2Yk2
+ · · ·+ s�j�Yk�

=
0}. We recall that by assumption, Yk1

, . . . , Yk�
are independent discrete random

variables, and that s2, . . . , s� are just some plus/minus signs. In principle the
distribution of j1Yk1

+ s2j2Yk2
+ · · ·+ s�j�Yk�

could thus be calculated exactly by
some convolution argument. However, for our purpose it suffices to establish a
very crude bound. Observe from (3.48) that there is at least one value among
j1, . . . , j� that is non-zero. Let us assume, without loss of generality, that j� �= 0.
We split off the corresponding random variable Yk�

in the indicator in (3.60), which
is independent of Yk1

, . . . , Yk�−1
since k1 > · · · > k�, and use the fact that by

assumption Yk�
is uniformly distributed among the 2k

2/3
� +1 different values in the

set Dk�
defined in (3.38), to obtain

PY(j1Yk1
+ s2j2Yk2

+ · · ·+ s�j�Yk�
= 0)

=
∑
a∈Z

⎛⎜⎜⎜⎝PY
(
j1Yk1

+ s2j2Yk2
+ · · ·+ s�−1j�−1Yk�−1

= a
)
PY

(
s�j�Yk�

= −a
)︸ ︷︷ ︸

≤2−k
2/3
�

⎞⎟⎟⎟⎠
≤ 2−k

2/3
�

∑
a∈Z

PY
(
j1Yk1

+ s2j2Yk2
+ · · ·+ s�−1j�−1Yk�−1

= a
)

︸ ︷︷ ︸
=1

≤ 2−δ
2/3
i,min ,

where the last inequality holds because (k1, . . . , k�) ∈ Δi, and δi,min is by definition
the smallest element of Δi. In the quadruple sum in line (3.60) the total number of

summands is at most
√
n
√
n
√
n
(d + 1)

√
n2

√
n. Note that by construction δi,min ≥

n9/10 for all i ≥ n2/5, so that 2−δ
2/3
i,min ≤ 2(−n3/5) for all i ≥ n2/5. Thus, by

a union bound the PY -probability that there exists at least one configuration of
�, (k1, . . . , k�), (j1, . . . , j�), (s1, . . . , s�) such that j1Yk1

+s2j2Yk2
+ · · ·+s�j�Yk�

= 0
holds is bounded above by

√
n
√
n
√
n
(d+ 1)

√
n2

√
n2(−n3/5).

Observe that, since d is fixed, for sufficiently large n ∈ N, (d+ 1) ≤ √
n and

√
n
√
n
√
n
(d+ 1)

√
n2

√
n2(−n3/5) ≤ 22

√
n log2(n)−n3/5

for which we can give the crude upper bound n−2 holding for all large enough
n ∈ N. Thus,

PY

(
c
(i)
0 (Y ) �= b

√
n

0

)
≤ 1

n2
, i ∈ {n2/5, . . . ,Mn},
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for all sufficiently large n ∈ N. Now, by (3.40), |{n2/5, . . . ,Mn}| ≤ Mn ≤ √
n.

Thus, we have

PY

(
Mn⋃

i=n2/5

{
c
(i)
0 (Y ) �= b

√
n

0

})
≤ 1

n3/2
,

for all large enough n ∈ N, which implies the statement of the lemma. �

Step 5 (Complete the proof of the LDP stated in Theorem D). By the definition
of Mn in (3.40), we have the relation

Mn+1⋃
i=1

(Δi ∪Δ′
i) ⊃ {1, . . . , n}

andMn ≤
√
n. Together with the fact that Δi,Δ

′
i, i ∈ N, are all disjoint, |Δi| =

√
n,

and |Δ′
i| = n2/5, this implies

Mn∑
i=n2/5

√
n ≥ n−

Mn∑
i=n2/5

|Δ′
i| −

n2/5−1∑
i=1

(|Δi|+ |Δ′
i|)− (|ΔMn+1|+ |Δ′

Mn+1|)

≥ n− n2/5
√
n− 2

√
nn2/5 − 2

√
n

= n− 3n9/10 − 2
√
n,

while in the other direction trivially
∑Mn

i=n2/5

√
n ≤ n. Thus, for the factor∏Mn

i=n2/5 b
√
n

0 appearing in Lemma 3.10 we have the lower and upper bounds

(3.61) b
n−3n9/10−2

√
n

0 ≤
Mn∏

i=n2/5

b
√
n

0 ≤ bn0 .

Thus, for any fixed θ ∈ R, given any ε > 0, choosing d = d(ε) such that (3.43) of
Lemma 3.8 holds with p = pd(ε), then invoking (3.41) as well as (3.45) of Proposition
3.9, next applying Lemma 3.10 with d = d(ε), b0 := b0(θ; d(ε)), and finally using
(3.61) we obtain

(3.62) (1 + ε)−ne−5θn9/10

b
n−3n9/10−2

√
n

0 ≤
∫ 1

0

eθS
Y
n (ω)dω ≤ bn0 e

5θn9/10

(1− ε)−n

with PY -probability at least 1 − n−3/2, for all sufficiently large n ∈ N. Next, note
that we have log(1+ε) ≤ ε, and we can (and will) assume that ε > 0 is so small that
log(1− ε) ≥ −2ε. We also have the trivial bound 5θn9/10+(3n9/10+2

√
n) log b0 =

n9/10(5θ + 3 log b0) + (2
√
n) log b0 ≤ nε for all sufficiently large n ∈ N. Thus, from

(3.62) we can deduce that for sufficiently large n ∈ N, with PY -probability at least
1− n−3/2,

−2ε ≤ − log(1 + ε)− 1

n

(
5θn9/10 + (3n9/10 + 2

√
n) log b0

)
≤ 1

n
log

(∫ 1

0

eθS
Y
n (ω)dω

)
− log b0

≤ 1

n
[5θn9/10]− log(1− ε)

≤ 3ε.
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This implies that for all sufficiently large n ∈ N,

PY

(∣∣∣∣ 1n log

(∫ 1

0

eθS
Y
n (ω)dω

)
− log b0

∣∣∣∣ ≤ 3ε

)
≥ 1− n−3/2.

By the Borel-Cantelli lemma, with PY -probability equal to one only finitely many
exceptional events occur. This implies that PY -almost surely we have

(3.63) lim sup
n→∞

∣∣∣∣ 1n log

(∫ 1

0

eθS
Y
n (ω)dω

)
− log b0

∣∣∣∣ ≤ 3ε.

Recall from (3.15) that b0(θ; d(ε)) is a finite polynomial approximation to the mod-
ified Bessel function B0(θ), the moment generating function defined in (2.7), and
that b0(θ; d(ε))) can be made arbitrarily close to B0(θ) by choosing the degree
d = d(ε) sufficiently large. Thus, letting ε → 0 (and hence d(ε) → +∞) and using
(3.63) together with (2.8), we derive, for every fixed θ ∈ R,

lim
n→∞

1

n
log

(∫ 1

0

eθ
∑n

k=1 cos(2πakω)dω

)
= logB0(θ) = Λ̃(θ) PY -a.s.

Since Λ̃(θ) is a continuous (in fact, differentiable) function in θ, we can deduce that
PY -almost surely this result holds for all θ ∈ R: for PY -almost all realizations of
the random sequence Y , or equivalently, aY1 , a

Y
2 , . . . , we have

lim
n→∞

1

n
log

(∫ 1

0

eθS
Y
n (ω)dω

)
= lim

n→∞

1

n
log

(∫ 1

0

eθ
∑n

k=1 cos(2πaY
k ω)dω

)
= Λ̃(θ)

for all θ ∈ R.

Together with the Gärtner-Ellis theorem, Theorem 3.1, this proves the desired
result.

Appendix A. Proof of Proposition 2.4

Fix an integer q ∈ {2, 3, . . .}. For m ∈ N and n ∈ N recall that Am(n) denotes
the number of solutions to the equation

(A.1)

m∑
i=1

εiq
ki = 0

in the unknowns k1, . . . , km ∈ {1, . . . , n} and ε1, . . . , εm ∈ {+1,−1}.

Proposition A.1. Fix m ∈ N. Then, the function Am(n) restricted to the values
n ≥ m− 2 is a polynomial in n of degree at most [m/2].

Proof. Let Am,p1,p2
(n) be the number of representations of zero as a sum of signed

powers of 2 which begins with p1 terms of the form +q1 followed by p2 terms of the
form −q1 and does not contain any more ±q-terms. More precisely, for p1, p2 ∈ N0

such that p1+p2 ≤ m, we define Am,p1,p2
(n) to be the number of solutions to (A.1)

such that

k1 = . . . = kp1+p2
= 1,

ε1 = . . . = εp1
= +1,

εp1+1 = . . . = εp1+p2
= −1,

ki ∈ {2, . . . , n} for i ∈ {p1 + p2 + 1, . . . , n}.
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Since in any general solution to (A.1) the terms ±q can appear at arbitrary posi-
tions, we have

Am(n) =
∑

p1,p2≥0
p1+p2≤m

(
m

p1 + p2

)(
p1 + p2

p1

)
Am,p1,p2

(n).

To establish Proposition A.1 it suffices to prove the following two claims for all
� ∈ N:

(a) A�,0,0(n) is a polynomial in n of degree at most [�/2] in the range n ≥ �−2.
(b) For (p1, p2) �= (0, 0), A�,p1,p2

(n) is a polynomial in n of degree at most
[�/2]− 1 in the range n ≥ �− 3.

First of all, observe that these claims are true for � = 1 and � = 2 because

A1,0,0(n) = 0, A2,0,0(n) = 2n− 2, A2,1,1(n) = 2, A2,0,1(n) = A2,1,0(n) = 0.

For larger values of �, we shall prove these claims by induction. The inductive
argument is based on certain recurrence relations for the functions Am,p1,p2

(n) that
we now derive.

Case 1. Let first p1 = p2 = p ∈ N0. Then, in (A.1) we can cancel the +q-terms with
the −q-terms, which yields a representation of 0 as a sum of ±q2,±q3, . . . ,±qn, the
total number of terms being m − p1 − p2. Dividing all terms by q, we obtain a
representation of 0 as a sum of m− p1 − p2 terms of the form ±q,±q2, . . . ,±qn−1.
The number of such representations is Am−p1−p2

(n− 1). Hence, we arrive at
(A.2)

Am,p,p(n) = Am−2p(n− 1) =
∑

r1,r2≥0
r1+r2≤m−2p

(
m− 2p

r1 + r2

)(
r1 + r2

r1

)
Am−2p,r1,r2(n− 1).

Case 2. Let now p1 > p2. Then, in the representation (A.1) we can cancel p2 terms
of the form +q1 with the same number p2 of terms of the form −q1. The resulting
representation of 0 contains p1−p2 > 0 terms of the form +q1 and m−p1−p2 terms
of the form ±q2,±q3, . . . ,±qn. If p1−p2 is not divisible by q, then Am,p1,p2

(n) = 0
because the sum on the left-hand side of (A.1) is not divisible by q2. So, assume
that p1 − p2 = sq for some s ∈ N. Divide the remaining p1 − p2 terms of the form
+q1 into s groups of the form +q1+ . . .+q1, each consisting of q terms, and replace
each group by +q2. We obtain s terms of the form q2. However, we have also to
take care of the terms of the form ±q2 that can appear among the m−p1−p2 terms
of the form ±q2,±q3, . . . ,±qn. Let r1, respectively, r2, be the number of the terms
+q2, respectively, −q2, among these m−p1−p2 terms. Dividing all terms by q, we
obtain a representation of 0 starting with s = (p1 − p2)/q terms of the form +q1,
followed by a sum of m − p1 − p2 terms of the form ±q1,±q2, . . . ,±qn−1, among
which r1 terms are of the form +q1 and r2 terms are of the form −q1. Since the
positions of these terms can be arbitrary among the m − p1 − p2 terms, we arrive
at the identity
(A.3)

Am,p1,p2
(n) =

∑
r1,r2≥0

r1+r2≤m−p1−p2

(
m− p1 − p2

r1 + r2

)(
r1 + r2

r1

)
As+m−p1−p2,s+r1,r2(n− 1),

which holds if p1 − p2 = sq for s ∈ N.
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Case 3. Similar arguments show that in the case when p1 < p2 we have Am,p1,p2
(n)

= 0 if p2 − p1 is not divisible by q and
(A.4)

Am,p1,p2
(n) =

∑
r1,r2≥0

r1+r2≤m−p1−p2

(
m− p1 − p2

r1 + r2

)(
r1 + r2

r1

)
As+m−p1−p2,r1,s+r2(n− 1),

if p2 − p1 = sq for some s ∈ N.

We are now in position to prove claims (a) and (b) by induction. As already
mentioned above, the claims are true for � = 1, 2. Assume that the claims are true
for � = 1, . . . ,m− 1 with some m ∈ {3, 4, . . .}. We prove them for � = m.

Case A. Consider first the case when (p1, p2) �= (0, 0). Then, (A.2), (A.3), (A.4)
yield a representation of Am,p1,p2

(n) as a linear combination of the termsA�,r1,r2(n−
1) with � < m. Applying the induction assumption, we obtain that Am,p1,p2

(n) is
a polynomial in n of degree at most [m/2] − 1 in the range n ≥ m − 3. In the
individual cases, this can be seen as follows:

• Case 1: If p1 = p2 = p �= 0, then from (A.2) we have � = m−2p < m. By the
induction assumptions (a) and (b), the terms Am−2p,r1,r2(n− 1) appearing
in (A.2) are polynomials in (n−1) of degree at most [(m−2p)/2] ≤ [m/2]−1
in the range n− 1 ≥ m− 2p− 2, which lies in the range n ≥ m− 3.

• Case 2: If p1 > p2 and p1 − p2 = sq for s ∈ N, then � = s +m − p1 − p2,
which is strictly less than m since q ≥ 2. By the induction assumption (b),
the terms As+m−p1−p2,s+r1,r2(n − 1) (for which we have s + r1 > 0 since
s ∈ N) appearing in (A.3) are polynomials of (n − 1) of degree at most
[(s+m−p1−p2)/2]−1 ≤ [m/2]−1 in the range n−1 ≥ s+m−p1−p2−3.
This lies in the range n ≥ m−3 since p1+p2− s = p+p2− (p1−p2)/q > 0
and hence, being integral, is greater than or equal to 1.

• Case 3: If p2 > p1 and p2−p1 = sq for s ∈ N, then � = s+m−p1−p2 < m.
The remaining considerations are similar to Case 2.

In all three cases we obtain that (b) holds for � = m.

Case B. Consider now the case when p1 = p2 = 0. Then, (A.2) yields

Am,0,0(n) = Am(n− 1) =
∑

r1,r2≥0
r1+r2≤m

(
m− 2p

r1 + r2

)(
r1 + r2

r1

)
Am,r1,r2(n− 1).

Separating the term with (r1, r2) = (0, 0), we obtain

Am,0,0(n) = Am,0,0(n− 1) +
∑

r1,r2≥0
r1+r2≤m

(r1,r2) �=(0,0)

(
m− 2p

r1 + r2

)(
r1 + r2

r1

)
Am,r1,r2(n− 1).

To each term in the sum on the right-hand side we can apply the same considerations
as in Case A, due to the restriction (r1, r2) �= (0, 0). Thus, the sum on the right-
hand side is a polynomial in n of degree at most [m/2]−1 in the range n−1 ≥ m−3.
Denoting this polynomial by Pm(n), we have

Am,0,0(n) = Am,0,0(n− 1) + Pm(n)

for all n ≥ m− 2. Iterating this, we obtain

Am,0,0(n) = Pm(n) + Pm(n− 1) + . . .+ Pm(m− 2) +Am,0,0(m− 3),
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for all n ≥ m−2. The right-hand side is a polynomial in n of degree at most [m/2].
This proves that (a) holds with � = m, thus completing the induction.

�

Proposition A.1 allows us to find explicit formulae for Am(n) for every fixed m
and all n ≥ m− 2. This also yields the moments of the lacunary sums Sn because,
as shown in Lemma 3.5, these are given by

E[Sm
n ] =

Am(n)

2m
, m, n ∈ N.

To compute Am(n), we can proceed as follows. Let some m ∈ N be given. Using
computer algebra, calculate the values Am(n) for n = m − 2, . . . ,m − 2 + [m/2].
For example, one may just expand the Laurent polynomial

(
n∑

k=1

(
x+qk + x−qk

))m

and observe that Am(n) is the coefficient of x0 there. Then, compute the unique
interpolating polynomial of degree [m/2] taking the same values as Am(n) for n =
m− 2, . . . ,m− 2 + [m/2]. By Proposition A.1, this yields a formula for Am(n) for
all n ≥ m− 2. For example, for q = 2 we obtained the following formula

A1(n) = 0 for all n ∈ N,

A2(n) = 2n for all n ∈ N,

A3(n) = 6n− 6 for all n ∈ N,

A4(n) = 12n2 + 18n− 48 for all n ≥ 2,

A5(n) = 120n2 − 130n− 240 for all n ≥ 3,

A6(n) = 120n3 + 900n2 − 3310n+ 870 for all n ≥ 4,

A7(n) = 2520n3 + 840n2 − 40446n+ 48552 for all n ≥ 5,

and so on. By computing more values of Am(n) than necessary, it is also possible to
check the correctness of these formulas. Since the m-th cumulant κm(Sn) of Sn can
be expressed as a polynomial of the first m moments E[Sn], . . . ,E[S

m
n ], we obtain

that κm(Sn) is a polynomial in n of degree at most [m/2] for all n ≥ m − 2. In
fact, it is even a polynomial of degree 1. To see this, recall that the convergence of
analytic functions in (2.10) is uniform on some disk around 0. Differentiating (2.10)
m ∈ N times, we get

lim
n→∞

1

n
κm(Sn) = Λ(m)

q (0),
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which implies that κm(Sn) must be of degree 1. For example, in the case when
q = 2, we obtained

κ1(Sn)

1!
= 0 for all n ∈ N,

κ2(Sn)

2!
=

n

4
for all n ∈ N,

κ3(Sn)

3!
=

n− 1

8
for all n ∈ N,

κ4(Sn)

4!
=

3n− 8

64
for all n ≥ 2,

κ5(Sn)

5!
=

−n− 24

384
for all n ≥ 3,

κ6(Sn)

6!
=

−115n− 51

4608
for all n ≥ 4,

κ7(Sn)

7!
=

916− 393n

15360
for all n ≥ 5,

and so on. This yields the first few terms in the Taylor expansion of Λ2. Since I ′2
is the inverse function of Λ′

2, this easily yields the Taylor expansion of I2 stated in
Proposition 2.4.
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Eötvös Sect. Math. 2 (1959), 93–109. MR126414
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