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ABSTRACT1
Incidents disrupt the public transportation (PT) operation daily causing parts of the PT system2
to be temporarily out of services. The dispatchers in the operations control center (OCC) take3
multiple dispositive measures to resolve the incident and to mitigate its negative effects on the4
PT services. Usually, such measures are supply-centric readjustments of PT lines. Recent studies5
have shown that passenger-centric extensions can further mitigate the negative effects of incidents.6
This paper presents a passenger-centric incident management method, in which the passengers7
directly affected by an incident are given a redirection path advice to systematically reduce their8
total delay. This advice is consistent for all passengers associated with the same origin-destination-9
relation. It is assumed that dispatchers in OCCs often have quite a good intuition on the duration of10
incidents and have access to demand estimations. Based on these assumptions this study compares11
a heuristic and an optimization-based approach. First, the procedure simulates scenarios with and12
without an incident to set the lower and higher benchmark for the overall delay, respectively. In the13
latter case solely supply-centric measures (line-splitting, rerouting PT lines) are taken into account.14
Then SUMO simulations evaluate the benefits of the additional path advice from the heuristic15
and optimization-based passenger-centric procedures. The results show that both approaches can16
significantly lower overall passenger delay with optimization providing the best results.17

18
Keywords: Public Transport, Incident Management, Disruption, Passenger-centric, Optimization19



Bachmann et al. 3

INTRODUCTION1
In public transportation (PT) operations incidents occur every day. Incidents are understood here2
as events which disrupt the scheduled PT service. Depending on the kind of incident and its lo-3
cation in the network, it can have light or severe consequences for the travel time of PT users.4
Light consequences are, for example, caused by a passenger fall, door failures or a bus break5
down, whereas traffic accidents, deployment of emergency forces, track switch failures or train6
break downs can lead to more severe consequences in terms of cancellations and long delays.7
Depending on the incident, the dispatchers in operations control centers (OCCs) have certain dis-8
positive measures at hand to resolve the incident and lead the service back to planned operations.9
Besides informing the emergency forces and organizing towing services, typical measures for mit-10
igating the negative effects of incidents are holding, stop(s)-skipping, line-splitting, short-turning,11
rerouting, rescheduling, bus bridging and dispatching extra or standby PT vehicles (1–4). Since12
these measures only adjust the PT supply to limit negative effects caused by the incident, they13
are referred to as supply-centric. The method which is introduced here, however, focuses on the14
passengers’ perception of incidents and investigates, how passengers can be involved actively in15
mitigation strategies by informing them about the present situation. Such approaches are therefore16
referred to as passenger-centric. The goal is to smartly redirect passengers during incidents to re-17
duce the overall delay of affected passengers during incidents. This is achieved by introducing a18
novel heuristic and optimization-based approach and comparing their performances against each19
other in SUMO. The remainder of this paper is organized as follows: Section two gives a short but20
comprehensive literature review, in section three the actual problem is stated. Next, a novel solu-21
tion to solve the problem is introduced in the methodology. Section four describes the conducted22
case studies. Results are discussed in the fifth section. Finally, section six concludes the findings23
and give a short outlook to future work.24

LITERATURE REVIEW25
The literature has a large variety of investigations concerning incident and disturbance management26
of PT. In most works the focus lies on the operator’s perspective as dispositive measures are de-27
veloped and evaluated. These measures describe procedures in which the PT supply is rearranged28
and adjusted towards the occurred incident (1–5).29

However, as already pointed out by Gkiotsalitis and Cats (4), the development of infor-30
mation and data collection technology enables the collection of a vast amount of demand-side31
information and allows to dynamically inform PT users about the real-time PT service through a32
variety of information channels. There are several sources for demand data, such as automatic pas-33
senger counts, automatic fare collection, ticket sales or sample census (6). In recent years several34
investigations have also been conducted on passenger-centric methods, which will be presented in35
the following. Their common goal is to reduce the delay for passengers affected by an incident by36
providing them with adequate passenger information (PI). The term "adequate PI" is understood37
here as PI which enables the passengers to adjust their travel plans according to the PT services38
altered by an incident. This means that passengers, who are affected by an incident, are at least39
informed about the incident, its location and its estimated duration (i.e. the time needed to dis-40
solve the incident), the changes of the PT service or that they are even provided with advice for a41
concrete alternative path.42

Zhu and Goverde (7), for instance, develop a reassignment model for train travelers in43
case of a major disruption in parts of the Dutch railway network. The model assigns each af-44
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fected passenger individually onto an alternative path with the assumption that passengers leave1
the PT system if their delay exceeds a certain threshold. The same authors extended this method by2
forming indivisible passenger groups according to their origin and destination instead of reassign-3
ing individuals. Furthermore, the passenger reassignment model is coupled with a rolling stock4
rescheduling model to build a passenger-oriented train rescheduling system. Hence, the available5
alternative paths of affected passengers are considered during the train rescheduling process (8).6
Müller-Hannemann et al. (9) use the RAPTOR (Round bAsed Public Transit Optimized Router)7
(10) to find alternative trains for indivisible passenger groups affected by canceled and severely8
delayed long distance trains in the German railway system. Leng and Corman (11) investigate the9
role of PI availability during disruptions in the PT network of Zurich, Switzerland. Three differ-10
ent schemes of PI have been tested, which differ in their timing, namely: no information, timely11
information at the start of the incident and advanced information for cases in which the incident12
is known beforehand, such as construction sites. Furthermore, in (12) and (13) these information13
schemes are combined with supply-centric measures such as rescheduling rolling stock, increas-14
ing vehicle capacity and line frequencies. The passengers are informed about the incident and the15
changes to the PT service it causes. The same PI, namely estimated arrival times of PT vehicles, is16
forwarded to the affected passengers in the case study by Cats and Jenelius (14) in the PT network17
of Stockholm, Sweden. In all but one of their test cases, the PI decreases the incident-induced18
delays; however, in this one case the PI causes an increase in the overall delay. Too many of the19
affected and adequately informed passengers transfer onto the same alternative PT services, ex-20
ceeding the remaining capacity of such services. Thereby, a secondary incident is induced through21
overcrowding causing additional delays. Especially in situations, in which the disrupted PT line22
has a significantly higher capacity than the alternative options, this effect can easily occur. The au-23
thors conclude that by customizing the content of the PI according to the available capacity, such24
negative effects could be avoided.25

Van der Hurk et al. (15) show such customized PI by giving the affected passengers specific26
path advice according to the available capacities in the network. The path advice model is coupled27
with a rolling stock model which determines an ideal solution from the passengers’ perspective.28
The authors also account for passengers who do not follow the path advice by introducing a com-29
pliance rate. Besides testing scenarios with deterministic compliance rates, a compliance model30
based on a logarithmic function, which considers the difference in travel time between the fastest31
alternative path and the suggested alternative path of the path advice, is examined. The method is32
applied to parts of the Dutch railway system. In (16), particular alternative paths are suggested to33
affected passenger groups according to their origin and destination as well. The authors mathemat-34
ically formulate their passenger-centric approach as a flow distribution problem and test it in the35
metro network of Chicago, USA. In addition to taking the capacity of the PT system into account,36
the model considers uncertain demand due to passengers leaving the PT system when incidents oc-37
cur. For a more comprehensive overview of investigations in the field of passenger-centric incident38
management (PCIM) in PT systems, we refer to (17).39

All these investigations suggest that providing adequate PI has mainly positive effects on40
the delay of affected passengers. However, the developed methods are tested in rail-bound PT41
services with mostly severe service disruptions. This study extends the macroscopic concept in-42
troduced in (18) to handle incidents in a PT bus system from a microscopic viewpoint, which is43
necessary for real-world implementation. A heuristic and an optimization procedure to solve the44
resulting problem are introduced and evaluated via simulation. Whereas the macroscopic approach45
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by Bachmann et al. (18) works with passenger- and supply-flows and presents merely a numerical1
example, the approaches introduced here take each single vehicle and passenger into account and2
are implemented in a simulation study.3

PROBLEM STATEMENT4
The goal of the methodology introduced here is to minimize the overall delay of passengers in-5
duced by an incident in a PT bus network by providing them with path advice. It is therefore6
assumed that an incident occurs in a PT network which affects some of the PT users. As pointed7
out in (1, 19), all information about incidents, such as its location and the disrupted PT lines, are8
gathered at OCCs. Moreover, the authors found out that dispatchers have a good intuition about the9
estimated duration of an incident, thereby it is assumed that an estimation of the incident duration10
is given. From the list of dispositive measures to counteract the incident, two measures are tested:11
line-splitting (scenario LS), in which an affected PT line is split and it operates in loops on both12
ends of the incident, and line rerouting (scenario LR), in which affected PT lines are rerouted via13
alternative routes.14

If U represent all of the passengers, then in the following we differentiate between three15
different kind of PT users or passengers:16

• The affected PT users (Ua ⊂U) are the passengers whose original trip plan is disrupted17
by the incident, as one of the PT lines they planned to take is one of the disrupted lines.18

• indirectly affected PT users (Uina ⊂U), are the ones whose planned trip is not disrupted,19
however, they use PT lines which observe additional demand due to the affected passen-20
gers transferring onto some of these lines.21

• The unaffected PT users are the ones who travel at a different time or at a completely22
different location in the PT network and thereby do neither use one of the disrupted lines23
nor a line on which affected passengers are transferring onto, hence, they are not affected24
by the incident in any way (Uuna ⊂U).25

It is assumed that nobody leaves the PT system when an incident occurs, and therefore, the26
demand stays the same compared to a situation in which there is no incident. An estimation of27
the passenger demand is assumed to be available in the form of an origin-destination (OD) matrix.28
Furthermore, different compliance rates are considered in this work expressing how many of the29
affected PT users follow a certain path advice. Passengers not following it are assumed to stick30
with their original travel plan and wait for the incident to be dissolved.31

As noted in (1), there are several PI channels available in a PT system, namely: speakers,32
dynamic displays at stops and in vehicles, the PT operators’ online presence on websites and33
on social media, as well as trip-planning smartphone applications from operators or third parties34
(e.g. Citymapper, Oeffi, GoogleMaps). These channels can be used to convey the path advice to35
the affected passengers. Besides, as explained in (9), it is not apparent which passengers know36
each other and travel together as one group. Consequently, it is reasonable to group all affected37
passengers who share the same origin of redirection and destination to the same OD-pair (od).38
The origin of redirection is understood here as the stop from which affected passengers need an39
alternative path. For affected passengers who have not started their trip at the beginning of the40
incident, this stop remains the same as the origin of the original trip. For affected passengers who41
are already in the PT system at the beginning of the incident, this is the next stop in their current42
trip.43

The OCC provides suitable path advice to the PT users which should satisfy several con-44
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ditions. For one, all travelers of one od should receive the same path advice for their redirection1
to prevent confusion (9, 15, 18, 20). This consistency in information avoids that affected passen-2
gers receive different path advice from different PI channels as well as that the members of the3
same group of travelers receive different path advice. Moreover, the path recommendations should4
consider sufficient remaining capacity to avoid secondary incidents through overcrowding by the5
redirected passengers.6

7
The following list summarizes the assumptions above:8
• Dispatchers can estimate the duration of the incident9
• Capacity and occupancy of PT services is given10
• Estimation of passenger demand is known as OD-matrix11
• Nobody leaves the PT system12
• Passengers not taking the path advice are sticking with their original plan and wait for13

the incident to be dissolved14

METHODOLOGY15
To solve the stated problem, the conceptual framework introduced in (18) is significantly extended16
from a macroscopic, numerical approach to a microscopic simulation study. In this section the17
PCIM methodology, its detailed processes and the evaluation strategy of this paper are explained.18
First, the overall procedure shown in Fig. 1 is shortly explained. Second, the representation of the19
PT network graph is elaborated, before the actual procedure is described. Two different approaches20
to redirect passengers during incidents are introduced, a heuristic and an optimization-based ap-21
proach. To implement and evaluate these strategies in a simulation study, the microscopic traffic22
simulation tool SUMO (Simulation of Urban MObility) (21, 22) is used. During the procedure23
illustrated in Fig. 1 several SUMO simulations are run (with and without incident in steps 1 and24
3, respectively), and their outputs are then processed by the Python scripts. Afterwards, the de-25
veloped algorithm (Python script) solves the redirection problem using the passengers’ trips and26
timetable information collected from the SUMO simulations. Finally, SUMO simulations are run27
again with the incident and the above the redirection strategy to evaluate the developed method28
with SUMO. The individual steps in Fig. 1 are explored further by the corresponding boxes in29
Fig. 3. The passengers associated to certain OD-pairs (ods) are given a clear path advice through30
the PT network. In order to compare different scenarios, the same passengers are used in terms31
of their identification number and od to be able to analyze their change in travel time among the32
different scenarios. When a PT system is disrupted by an incident, crowding at stops can be one33
of the consequences. SUMO considers that by allowing passengers to queue at stops, if a stop’s34
capacity is reached, passengers continue to queue on the sidewalk. As long as there are free spots35
in a PT vehicle and the passengers are able to reach it, they will board it (22).36

Network Graph37
One main input to the framework is the PT supply. In this study the PT supply is represented by a38
directed network graph G = (N,L) with nodes N and links L. The set of nodes is divided into two39
subsets: 1) a set of stop-nodes NP ⊂N representing the physical PT stops of the PT network and 2)40
a set of line-nodes NL ⊂ N which connect the stop-nodes with the individual PT lines. As shown41
in Fig. 2, for each PT line serving a particular physical PT stop, there is a line-node representing42
the corresponding PT line. Each line-node is connected to its corresponding stop-node via a link,43
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FIGURE 1: Framework of the overall procedure

which passengers use for getting on and off a PT line as well as for transferring to other lines.1
Therefore, each PT line (e.g. blue, orange or green line in Fig. 2) is connected to two line nodes at2
each stop area, one for each direction. PT links connect the respective line nodes at different stop3
areas (e.g. S2).4

Since a single area of the PT network can have multiple stop-nodes (e.g. S2_1, S2_2,5
S2_3 and S2_4 in Fig. 2), the stop-nodes in the same area are connected by walking links. These6
walking links can represent crossing the street to take a PT service in another direction. A bigger7
transportation hub can have more than two stop-nodes, for example stop area S2 in Fig. 2. If a8
stop-node is served by more than one line, and thereby possesses more than one line-node, these9
are connected in accordance with their timetable, representing the transfer from one line to another10
at the same stop. The travel time on the transfer links also take the waiting time for the next11
PT service into account. For each line serving two subsequent stops there is a link between the12
corresponding line nodes of the two stops in the respective direction of travel.13

As mentioned before, the capacity of PT services plays a vital role in PCIM methods. The14
line capacities can be derived from these links as well as the occupancy of the vehicles operated on15
the lines. The link capacity (cl) is derived by summing up the free spots on all PT vehicles passing16
l ∈ L.17

An incident is defined by its start t i
s and end time t i

e as well as the set of links it disrupts18
in the network (Li ⊂ L). As an incident causes many changes to the PT system, two network19
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S1_2
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S4S5
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FIGURE 2: Example for the used network graph structure

graphs are built: one for the base scenario, representing the planned PT service, and another one1
based on the disposition timetable, representing the PT service during the incident with the applied2
supply-centric measures (step 3 and 4 in Fig. 1).3

PCIM Method4
After the base scenario without an incident is run in SUMO (step 1 in Fig. 1) the travel data5
(origin, destination, travel time, etc.) of the demand can be extracted. This travel data represents6
the assignment on the undisrupted PT system. Step 2 in Fig. 1 collects and preprocesses this travel7
data. The green area of the PCIM procedure in Fig. 3 shows this process in more detail. Once all8
required information are provided, the redirection strategy can be executed as fifth step in Fig. 19
(either blue or red area in Fig. 3) before informing the PT users (yellow area in Fig. 3). In the10
following, the steps refer to Fig. 3.11

Data Collection and Preprocessing: First, the method needs to determine who is affected by12
the incident. As mentioned in the problem statement, it is assumed that some estimation of the13
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demand is available and that it does not change during the incident. In practice, historical data and1
real-time data can be used (6, 20, 23). Here, the SUMO simulation of the base scenario is used2
to manufacture "historical" travel data and to identify the affected passengers (Ua). The output3
of this base scenario is also used to calculate the delay of all passengers in the other scenarios.4
The procedure identifies the affected buses by checking which ones are passing one of the affected5
links l ∈ Li during the incident in step 1. It then determines which passengers would ride these6
affected buses under normal circumstances. These are denoted as Ua (step 2). In the 3rd step, the7
procedure identifies the origins of redirection o ∈ N of the affected passengers. From these origins8
of redirection the passengers require a suitable path to their respective destinations. A path p is9
defined as a set of subsequent and connecting nodes from o ∈ N to d ∈ N. To avoid confusing path10
advice on an individual level, the affected passengers are then associated with OD-pairs (od ∈ODa)11
according to their origin of redirection and respective destination in the 4th step. ODa being the12
set of all affected od.13

The orange parallelogram "Set of all available paths" represents a preprocessing step in14
which all simple (i.e. non-circular) paths between each two stops of the network are determined.15
This can be preprocessed so that the paths only need retrieval once an incident occurs. In step 5,16
the procedure associates each of the affected ods with a corresponding set of reasonable paths Pod .17
Here, a path is defined as reasonable if each PT line and PT stop is visited at most once, it does not18
contain one of the affected links (l ∈ Li) and it results in a shorter travel time than would sticking19
to the original path despite the incident. For the calculation of the travel time, its components20
(riding time, waiting time, transfer time, etc), are not considered individually. Additionally, there21
is no penalty considered for transfers. During special situations such as incidents, it is assumed22
that passengers are willing to transfer between lines as long as it reduces their overall delay. Once23
the expected end of the incident is approaching, it makes more sense to stick to the original path24
again. For this matter, a redirection duration is calculated for each alternative path (p ∈ Pod) of25
each od (step 6). The redirection duration T p

od expresses how long (measured from the start time of26
the incident) it is reasonable to redirect passengers of a certain od onto a particular p. Eq. 1 states27
that the redirection should occur as long as p is faster than waiting for the incident dissolution and28
sticking to the original planned path:29

T p
od = (t i

e− t i
s)+(ttod

0 − ttp)− tcon (1)3031

Thereby, t i
e corresponds to the expected ending time of the incident, t i

s to its start time, ttod
0 to the32

travel time on the original path of od and ttp to the travel time of p. Eq. 1 has been altered from33
the equation introduced in (18): A time constant tcon has been added to consider longer travel34
times because of a missed PT vehicles and interference with other passengers. The equation states35
that the longer the additional travel time on p is, the shorter is the remaining redirection duration.36
As a consequence, the shorter the remaining redirection duration is, the smaller is the number of37
passengers of an od which profit from the path advice.38

The passengers of an od are divided into two groups in step 7: a redirection group rgp
od39

and a waiting group wgp
od . The redirection group contains all affected passengers of an od, who40

arrive at the origin of their redirection before their corresponding redirection duration elapsed41
(T p

od). Contrarily, all affected passengers of an od arriving later are put into the waiting group. The42
waiting group represents all affected passengers of an od for whom it is time-wise more convenient43
to wait for the dissolution of the incident and stick with their original path (0od). As T p

od depends44
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on p’s travel time ttp, this division into groups is done for each p ∈ Pod of each od.1
In reality, not every affected passenger receiving a path advice will follow it, as some2

travelers will stick to their original path. To account for these passengers, a compliance rate is also3
considered in the model. If a compliance ηod of less than 100% is assumed, an additional share4
of (1−ηod) passengers are shifted from the redirection group to the waiting group for each path5
of an od. However, experienced PT users, such as commuters, who know the PT network well,6
might choose another alternative path than the one that the given path advice suggests, which is7
not considered in this methodology.8

Following the above process, the required inputs to apply redirection strategies for od onto9
specific p are available. This paper studies two approaches, hence, the procedure splits into a10
heuristic and an optimization-based approach at step 8.11

Heuristic Approach: The rule-based heuristic approach, highlighted in the blue area in Fig. 3,12
assigns the redirection groups of each od ∈ ODa (rgp

od) to alternative paths sequentially. The main13
assumption of the heuristic is that it is more beneficial for the overall delay to assign larger groups14
to their corresponding fastest possible alternative paths first. Therefore, the affected ods are sorted15
by the size of rgp

od in descending order (step H9 in the blue area). This sorting of od is done for16
the respective fastest p ∈ Pod of each od as it results in the largest respective rgp

od . As elaborated17
before, the smaller the travel time of an alternative path, the longer the redirection duration and the18
bigger the redirection group of an affected od. Accordingly, the set of alternative paths (Pod), is19
sorted by travel time with the fastest path on top.20

In step H10, the first, hence the fastest, alternative path of the first od is checked for its21
remaining capacity. The remaining capacity takes into account the indirectly affected passenger22
(Uina), which already occupy parts of the PT system’s capacity. Uina do not receive path advice and23
are assumed to remain on their original path. If an alternative path can provide sufficient remaining24
capacity for rgp

od (step H11), the assignment is set (step H13a) and the paths’ capacities are updated25
accordingly. If the remaining capacity of a path p is too small, it is checked whether there are paths26
left in Pod (step H12); if that is the case, the next p is checked for its remaining capacity. Since27
Pod is sorted by the paths’ travel times, the further down a path is in the set, the longer is its travel28
time, the shorter is its corresponding redirection duration, the smaller is the redirection group and,29
therefore, the higher is the chance that rgp

od can be assigned to a p. If none of the p ∈ Pod offers30
sufficient remaining capacity, rgp

od is assigned to its original path (0od) (step H13b), which means31
all passengers associated with that od will have to wait for the dissolution of the incident. wgp

od is32
always assigned to the respective 0od . In this manner the heuristic approach iterates the whole set33
of affected ods, until, in step H14, all ods are checked and the redirection strategy is set (step 15).34
This is comparable to the greedy algorithm introduced in (9). However, the order of ods is random35
in their approach.36

Compared to the heuristic procedure presented in (18), the heuristic in this study goes far37
more into detail and is therefore more precise. One example is the determination of the size of38
the redirection groups. In (18) the passenger flow is simply multiplied by the redirection duration,39
whereas in this study, expected numbers of passenger are represented by individual agents associ-40
ated with a certain od who are checked whether they arrive in time at the origin of the redirection41
or not.42
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Optimization Approach: In this approach, the redirection of passengers during incidents is for-1
mulated as an optimization problem. The goal is to minimize the overall delay by matching the2
affected ods to the corresponding available paths (Pod) in the best possible way. For this, the opti-3
mization problem is formulated as follows: First, for each od and each available path (p ∈ Pod) the4
total travel time T T p

od is calculated (step O9 in the red area in Fig. 3):5

T T p
od = |rgp

od| · ttp +

|wgp
od| · tt

od
0 + ∑

j∈wgp
od

t i
j

 (2)6

7

where rgp
od is the redirection group, ttp is the travel time of the corresponding p, wgp

od is the waiting8
group, ttod

0 is the travel time of the respective original path 0od and t i
j is the remaining waiting time9

until the end of the incident for passenger j ∈ wgp
od . The first term represents the total travel of the10

redirected passengers while the second term represent the total travel time of the passengers that11
are waiting for the incident to end.12

Through this process the travel time of each od is known for each p ∈ Pod . In step O1013
the remaining capacity (before giving any path advice) of each link is determined by checking14
the remaining capacity of all PT vehicles crossing a particular link during the incident. As in the15
heuristic approach, the remaining capacity considers the indirectly affected PT users (Uina) which16
are already assigned to their corresponding paths and occupy parts of the PT system’s capacity.17

The output assigns each od of all affected OD-pairs (ODa ⊂OD) to a particular path using18
the decision variable xp

od ∈ {0,1}. Each od is assigned to exactly one path (Eq. 4). Similarly,19
Eq. 5 ensures that the redirection group of an od does not exceed the remaining capacity of a path20
(step O11). Considering the case where no alternative path fits an od, the original path 0od is also21
included in Pod . In such a case, all passengers of an od are assigned to their respective 0od and wait22
for the dissolution of the incident.23

min
xp

od
∑

od∈ODa

∑
p∈Pod

xp
od ·T T p

od (3)24
25

subject to26

∑
p∈Pod

xp
od = 1 ∀od ∈ ODa (4)27

∑
od∈ODa

∑
p∈Pod

xp
od · |rg

p
od| ·mpl ≤ cl ∀l ∈ L (5)28

29

Here, M ∈ {0,1}|Pod |×|L| is the path-link matrix, in which the element mpl is 1 for every link l ∈ L30
that is part of the specific path p.31

The optimization problem formulated in Eq. 3 (step O12) is solved by the Gurobi optimizer32
(24) (step O13). In step O14 an assignment of each od to a particular path can then be retrieved.33
The yellow area in Fig. 3 shows the last steps of the introduced method. At this point in the proce-34
dure the heuristic (blue area) or optimization (red area) have come to a solution for the redirection35
of passengers onto available paths and the strategy is set (step 15). If the proposed PCIM method36
is implemented in practice, the corresponding PI will then be disseminated through the available37
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and aforementioned channels (step 16).1

CASE STUDY2
This section describes the setup and the results of the conducted case studies.3

Setup4

FIGURE 4: Mandl-PT network

For the conducted case study the Mandl-network (25) is used. It was published with link5
travel times and an OD-matrix. However, it originally was published as a road network. Several6
studies addressed the PT network design problem using the Mandl-network, therefore, several7
Mandl-PT networks are publicly available. This work builds on a solution designed by Ul Abedin8
(26). Fig. 4 shows the PT network and all operating lines. For the sake of simplicity, the PT9
network has been modified in a way that the headway of all lines are uniformly set to five minutes10
and all PT lines are bus lines. Each bus is assumed to have a capacity of 100 passengers. The11
OD-matrix published in (25) shows demand for 24 hours. For this study, the demand is scaled up;12
twice the demand from (25) is taken and spread over a period of four hours as demand input. In13
this way the PT system is under a lot of pressure and the consequences of an incident are very14
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severe in terms of delays. Therefore, the effects of the redirection of passengers can be observed1
clearly in the results. The passengers are set to only use the PT system without leaving it, even if2
severe delays occur. The incident is assumed to occur between node 8 and node 10 and disrupts3
the yellow and the blue line. Two incident duration are tested, 30 and 60 minutes.4

The previously described methodology to redirect passengers during incidents is tested in5
combination with two typical dispositive measures, line-splitting (scenario LS) and line-rerouting6
(scenario LR). For LS, the yellow line is operating in loops between nodes 10 and 11 as well as7
between 8 and 9, whereas the blue line’s loops are between nodes 10 and 12 and between 1 and 8.8
For LR, the blue line is rerouted via nodes 15 and 7 with a stop at node 8 and continues the original9
route from there towards node 1. For the blue line, no stop is skipped due to rerouting. The yellow10
line is rerouted via node 7 to node 15. At node 15 it continues its original route to node 9. For11
the yellow line, node 8 is skipped during the rerouting. For the blue line the rerouting adds about12
three minutes to the travel time between node 8 and 10. The yellow line’s travel time is reduced by13
about one minute between nodes 10 and 15.14

For each of the two scenarios, four settings are tested, namely: "No Incident": This serves15
as lower benchmark (step 1 in Fig. 1), in which no incident occurs and no dispositive measures16
are taken and is used to calculate the delay of passengers occurring in the other settings; "No17
Redirection": This serves as higher benchmark case, in which an incident occurs and one of the18
aforementioned supply-centric measures (LS or LR) is taken (step 3 in Fig. 1) and two redirection19
cases: "Heuristic Redirection": in which in addition to the dispositive measure the passengers are20
redirected with the heuristic approach, and "Optimized Redirection": in which in addition to the21
dispositive measure the passengers are redirected with the optimization approach (step 5 in Fig. 1).22

In total, 24 different cases have been tested by building all combinations of the following:23
two different dispositive measures, LS and LR, two different incident duration, namely half an hour24
and one hour, as well as three different compliance rates, namely 100%, 57% and a logarithmic-25
function based compliance rate. All these cases have been conducted with both approaches. The26
constant compliance rate is based on a passenger survey, which showed that 57% of the passengers27
are willing to follow a path advice in case of an incident (27). The logarithmic function is adopted28
from (15), which takes the difference of travel time between the suggested path and the fastest29
alternative path into account. Each of the aforementioned 24 cases have been conducted with three30
different passenger data sets (generated with varying seed values).31

Results32
Fig. 5a shows the total delay of the affected passengers in the scenario LS with incident duration33
of half an hour. The delay of the affected passengers (Ua) is the smallest with 57% compliance34
rate and the optimization-based redirection. The percentage reduction of delay is 77% compared35
to the higher benchmark (no redirection): the total delay is decreased from 730 hours to 175 hours.36
The heuristic approach produces also a significant reduction of 75% from 730 hours to 189 hours.37
Among all scenarios, the case of the heuristic with the logarithmic compliance rate shows the38
smallest, but still very good improvement with a delay reduction of 74%. As a comparison, the39
optimization approach with the logarithmic compliance rate achieves a delay reduction of 75%.40
Looking at the total delay of all passengers (U) in the same scenario (Fig. 5b), the heuristic in41
case of a 100% compliance results in the worst performance with a delay reduction of 48% and42
the best result by the optimization in the same case with a delay reduction of 64%. In case of a43
compliance rate of 57%, the two approaches result in similar delay reduction of about 56%. In44



Bachmann et al. 15

(a) Affected passengers (Ua) (b) All passengers (U)

(c) Affected passengers (Ua) (d) All passengers (U)

FIGURE 5: Overall delay with an incident duration of 30 minutes in scenario LS

the case of the logarithmic compliance, the optimization performs better with a delay reduction1
of 56% compared to the heuristic with a reduction of 48%. Looking at the same scenario with an2
incident duration of one hour (Fig. 6c), the differences between the different cases of compliance3
rates decrease. The reduction of the delay for the affected passengers is in almost all cases 45%,4
only the optimization in the case of the logarithmic compliance rate preforms one percent point5
worse. For all passengers, the situation is obviously worse than in the case with half an hour6
incident. The best result is achieved by the optimization in case of 100% compliance with 14%7
reduction of delay. The other results lie between 9 and 10%.8

Besides the scenario LS in which the disrupted PT lines are split, a scenario LR in which9
they are rerouted is tested. Comparing Fig. 5 and Fig. 7 shows that delays can be reduced even10
without redirection. With redirection, the optimization (Fig. 7c) performs slightly better (83%)11
than the heuristic (82%) in the cases with 100% and 57% compliance from the perspective of the12
affected passengers. With a logarithmic determined compliance, the two approaches achieve both13
a reduction of 82%, however, the optimization achieves two hours less of delay for the affected14
passengers than the heuristic (Fig. 7a). Looking at all passengers in all cases a delay reduction15
of 96% can be achieved. For an incident duration of a full hour, the cases with 100% or 57% of16
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(a) Affected passengers (Ua) (b) All passengers (U)

(c) Affected passengers (Ua) (d) All passengers (U)

FIGURE 6: Overall delay with an incident duration of 60 minutes in scenario LS

compliance perform best with a reduction of 67% for the affected passengers, regardless which1
approach is taken (Fig. 8c). For the case with a compliance rate determined in a logarithmic man-2
ner, the heuristic (34%) slightly outperforms the optimization (33%). The results for all passengers3
showcase, in which both redirection approaches worsen the situation in matters of the overall delay4
of all passengers by 15%. In the cases of 100% and 57% compliance, the heuristic improves the5
situation by 43% whereas the optimization improves it by 46%.6

Fig. 9 shows box plots of the delay distribution of the affected passengers in the scenarios7
LS and LR with both tested incident duration (30, 60 minutes). The results show that with a longer8
incident duration also the spread of the distribution of delays increases. The scenario LS shows9
a bigger range of delays than the scenario LR. In scenario LR some of the affected passengers10
achieve less delay compared to the lower benchmark scenario with no incident. For LS this is only11
achieved in the redirection scenarios. The compliance rate seems to have a minor influence on the12
distribution of delays.13

The computation time for the redirection process, including steps 4 to 15 in Fig. 3, takes14
about 20 seconds. The whole computation was done on an Intel Xeon W-2133 CPU with 3.60 Gi-15
gahertz and 32.0 Gigabyte of RAM. The algorithm is implemented in Python. The fastest run takes16
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(a) Affected passengers (Ua) (b) All passengers (U)

(c) Affected passengers (Ua) (d) All passengers (U)

FIGURE 7: Overall delay with an incident duration of 30 minutes in scenario LR

18.97 seconds for the scenario LS with an incident duration of 30 minutes, a compliance rate of1
100% and the heuristic approach. The slowest computation time was observed for the scenario LR2
with an incident duration of 60 minutes, a compliance rate of 57% and the optimization approach3
(22.06 seconds). In general, the whole process works faster with a shorter incident duration. Simi-4
larly, the heuristic runs a bit faster than the optimization. However, the real performance difference5
between heuristic and optimization can only be measured when applied to bigger networks.6

DISCUSSION7
When comparing the case of "No Redirection" with the redirection cases, both the heuristic and op-8
timized redirection show a significant reduction in the overall delay of the affected passengers (Ua)9
as well as all passengers (U). The results also show that in the cases with an incident duration of10
one hour, the benefits are less than in the cases with half an hour incident duration. Moreover, in11
addition to Ua, the indirectly affected passengers (Uina) and "unaffected" passengers (Uuna), who12
represent the rest (U \Ua), also experience severe delays in the "No Redirection" case. This can13
be explained by the fact that the demand is set very high which causes queuing at bus stops. In14
SUMO, when bus stops reach their capacity, passengers start queuing on the sidewalk (22). Even15
though the U \Ua are not the focus of the PCIM method, they also benefit from it. However, it is ar-16
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(a) Affected passengers (Ua) (b) All passengers (U)

(c) Affected passengers (Ua) (d) All passengers (U)

FIGURE 8: Overall delay with an incident duration of 60 minutes in scenario LR

guable to which extent the queuing behavior as it is simulated in SUMO is representing real-world1
dynamics; if bus stops are overcrowded in reality, people would probably make sure that services2
are still board-able to a certain extent. This is worth further investigation. The same is true for the3
validation of the PCIM method with less demand; it can be expected that with less stress on the4
system the optimization objective (total delay of Ua) is more aligned with system optimum (total5
delay of U) as the passengers in Uina and Uuna are likely less affected than in the high-demand6
scenarios.7

This also is true for the compliance rates. The logarithmic compliance rate taken from (15)8
is not adapted to the PCIM method introduced here. Even though this compliance rate considers9
the difference in travel time between the suggested and the fastest alternative path, passengers not10
following the path advice do not take the fastest alternative path, but stick with their original travel11
plan and wait for the dissolution of the incident. In addition to sticking to the original travel plan12
and taking the path advice, passengers should realistically also be able to redirect themselves or13
leave the PT system. The logarithmic function for the compliance rate should then also consider14
all four decision possibilities.15

The results show that — compared to the heuristic approach — the optimization-based16
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(a) Scenario LS, 30 minutes incident (b) Scenario LS, 60 minutes incident

(c) Scenario LR, 30 minute incident (d) Scenario LR, 60 minute incident

FIGURE 9: Distribution of the delay of affected passengers

approach achieves positive results with respect to delay reductions for all passengers U in almost1
all cases. The results varied from a decrease of 96% (in the LR-scenario with incident duration of2
half an hour and a compliance rate with 100%) to an increase of 15% (LR-scenario with an incident3
duration of one hour and the logarithmic determined compliance) of the overall delay. Even though4
most results show a clear potential of the introduced method, it also shows that there is room for5
improvement. It is also possible that the heuristic approach sometimes produces a better solution6
than the optimization-based approach because of temporal dynamics: Handling one od at a time7
has the advantage that the remaining capacity of an alternative path can be examined in different8
time intervals whereas the optimization-based approach uses a single capacity value (Eq. 5) for9
the whole incident duration. It aggregates the temporal component and does not consider at which10
section in the network a rgp

od would arrive for each possible assignment option.11
While the computational times of the two approaches are comparable, the optimization-12

based approaches lead to better results. Overall the computational time is in the range of 20 sec-13
onds making it applicable for real world applications. Nevertheless, parts of the algorithms are14
NP-hard (finding all alternative paths and solving the optimization problem). In future, the per-15
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formance of the procedure should be evaluated for real world network sizes. Nonetheless, if the1
presented methodology is implemented in practice, alternative paths can be preprocessed and re-2
trieved from a database in accordance with the taken dispositive measure. In practice, the steps3
involving SUMO (Fig. 1) could be replaced by real data and better PT models. Since all the re-4
quired information for the presented method is available to OCCS, it is reasonable to integrate this5
method into the infrastructure of an OCC and connect it to its intermodal transport control system6
(ITCS) as suggested in (17).7

Looking at the two different dispositive measures which were simulated here in combina-8
tion with the redirection of passengers, it seems that the rerouting of PT lines works better with9
the redirection of passengers than the line-splitting, at least in most cases. One exception is the10
case of the logarithmic compliance, in which the situation even worsens. However, also in the no11
redirection scenario rerouting of PT lines shows less passenger delays than the line-splitting. This12
is understandable as with line-splitting the disruption of the PT system is worse than with rerout-13
ing. When lines are split, passengers using this service along the incident site have to transfer14
to another line. Nevertheless, for some passengers, line-splitting can also have a positive effect:15
the frequency of the buses is increased for the first run after the incident begins as the buses turn16
around at the incident site. Furthermore, the demand on the disrupted lines is less, as it does not17
serve the other side of the incident anymore, which might improve the situation for some of the18
Uina using that line on either side of the incident.19

When PT lines are rerouted, the travel time is just prolonged but the corresponding PT20
lines are still running and serve at least most of their stops. Rerouted PT lines sometimes even21
cause for better connections for some passengers if they connect stops which are normally not22
directly connected. In the presented case, there is a faster connection due to a skipped stop. This23
phenomenon can also be seen in the distribution of delays in Fig. 9 where in some cases there are24
also negative delays. In real-world bus operations rerouting is more likely than line-splitting as the25
dense road network of cities usually provide sufficient alternative routes. In the cases studied it also26
causes significantly less delay. However, Bachmann et al. (1) also describe a case in which a bus27
route is disrupted through a malfunction of a gate at a rail crossing. Line-splitting normally is used28
for rail bound services as they are limited to the rougher mashed railway network with significantly29
less alternative routes. Even though the discussion mentions several points for enhancing the30
introduced method, the results show the positive effects of the combination of supply-centric and31
passenger-centric incident management and give incentives for further investigation.32

CONCLUSION & OUTLOOK33
The paper introduces a PCIM method in which PT users, who are directly affected by an incident34
on their planned path, receive path advice to reduce the overall delay of passengers in a PT sys-35
tem. Two approaches, a heuristic and optimization-based, are presented and tested in a simulation36
case study conducted in SUMO. The method has been combined with two typical supply-centric37
incident management methods, line-splitting and rerouting of PT lines. The results show that the38
developed PCIM methods significantly reduce the overall delay of passengers during incidents.39
However, some limitations of the method could be observed: First, the optimization approach can40
be further enhanced, for example by introducing a time-based variable for remaining capacity of41
paths in its formulation. Using queuing theory at its basis might also be an interesting direction for42
further development. Second, even though the heuristic approach calculates the remaining capacity43
of a path rather precisely path section by path section (divided by used services), it seems to over44
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exploit it and causes additional delays to indirectly affected passengers. These secondary incidents1
already mentioned in (14) need to be avoided. The remaining capacity of a PT system plays a2
crucial role in redirection strategies just as the one presented here. The exact relation between a3
system’s capacity reserve and the demand is worth further investigation. Therefore, also variation4
of the demand should be tested in the future. Furthermore, the consideration of crowding in the5
redirection process as well as during passenger boarding would be an improvement in this matter.6
Third, Eq. 1 can be further improved. The role of the introduced time constant for the consideration7
of missed buses and the interaction between passengers in the simulation or the real world is not8
fully understood and worth further investigation. If it is set differently or even further developed9
into a dynamic variable, it might reduce the negative effects of the redirection onto the indirectly10
affected passengers. As the redirection duration influences the size of redirection group and there-11
fore the pressure on the alternative path, a further development the time constant and corresponding12
sensitivity analysis might further reduce the negative influence on indirectly affected passengers.13
Furthermore, even though Bachmann et al. (1) point out, that dispatchers in the OCCs have quite14
a good intuition about the duration of an incident, an incident can always develop differently than15
initially anticipated (1, 19). Therefore, the possibility to update the considered incident duration16
could be implemented. Fourth, as already mentioned in the methodology section, the presented17
algorithm does not consider affected passengers who redirect themselves and thereby ignore the18
advice for an alternative path. However, it is reasonable to assume, that especially travelers who19
know the PT network well, such as commuters for example find an alternative path on their own.20
Future work could thereby include a corresponding third group, next to the redirection and wait-21
ing group, of each OD-pair that will always travel the fastest alternative path independently of the22
suggestion. Fifth, the results show that the redirection of passengers seemed to work better with23
the dispositive measure of rerouting PT lines than splitting PT lines. It should also be tested with24
other supply-centric dispositive measures or even with a combination of such. In (18) also the25
reallocation of vacant capacities in the PT system is proposed and shows potential for further delay26
reduction. Moreover, this might be further enhanced with the deployment of on-demand mobility27
as alternative paths during incidents. Nevertheless, this study showed the high potential of PCIM28
methods to reduce delays caused by incidents. Sixth, the algorithm should be tested on real world29
problem sizes to evaluate if the computational time is still applicable. Overall, the results show30
that the here introduced novel PCIM method makes PT systems more reliable and by that more31
attractive.32
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