
Fakultät für Mathematik
Technische Universität München

Lotteries, Prophets, and Pandora’s Box:
A New Take on Classic Problems in Mechanism Design

and Online Selection

Alexandros Tsigonias-Dimitriadis
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Abstract

Online markets have transformed many economic and social activities and have brought
forward new computational challenges. In particular, dealing with large-scale user data
has become an essential feature of modern algorithm design. This new reality creates
the need to revisit classic theoretical results and reshape and extend standard models
to better reflect real-world applications. In this thesis, we design simple and robust
mechanisms and algorithms for fundamental problems in auction design, pricing, and
online decision-making. We rethink central assumptions in three well-studied theoretical
models and frameworks: Bayesian revenue-optimal auctions, the secretary problem, and
the Pandora’s box problem.

Specifically, we first study a multi-dimensional revenue maximization problem. Unlike
traditional Bayesian auction design, the seller knows only some moments of a buyer’s
prior distribution on the item valuations. Our goal is to design mechanisms that achieve
good revenue against an ideal optimal auction that has full knowledge of the distribution
in advance. We characterize the optimal selling mechanism for this limited information
model, which is randomized but very simple. Next, we explore two new models in online
decision-making. We start with a data-driven version of the secretary problem. In
particular, we develop a simple combinatorial model that increases the overall solution
quality by leveraging past data. We obtain the best possible algorithms, both in the
case of adversarial and random order inputs and for any amount of past data available.
Finally, we study online variations of the Pandora’s box problem, where the decision-
maker cannot control the order of exploration. We show that in some cases, simple
threshold policies that origin from prophet inequalities perform surprisingly well.
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Zusammenfassung

Online-Märkte haben viele wirtschaftliche und soziale Aktivitäten verändert und neue
rechnerische Herausforderungen mit sich gebracht. Insbesondere der Umgang mit großen
Mengen an Nutzerdaten ist zu einem wesentlichen Merkmal moderner Algorithmen
geworden. Diese neue Realität macht es notwendig, klassische theoretische Ergebnisse zu
überdenken und Standardmodelle umzugestalten und zu erweitern, um realen Anwen-
dungen besser gerecht zu werden. In dieser Arbeit entwerfen wir einfache und robuste
Mechanismen und Algorithmen für grundlegende Probleme bei der Gestaltung von Auk-
tionen, der Preisbildung und der Online-Entscheidungsfindung. Wir überdenken zen-
trale Annahmen in drei gut untersuchten theoretischen Modellen und Rahmenwerken:
Bayes’sche ertragsoptimale Auktionen, das Sekretärproblem und das Problem der Büchse
der Pandora.

Konkret untersuchen wir zunächst ein mehrdimensionales Erlösmaximierungsproblem.
Im Gegensatz zum traditionellen Bayes’schen Auktionsdesign kennt der Verkäufer nur
einige Momente der Vorabverteilung der Artikelbewertungen eines Käufers. Unser Ziel
ist es, Mechanismen zu entwickeln, die im Vergleich zu einer idealen, optimalen Auktion
mit vollständiger Kenntnis der Verteilung im Voraus kennt. Wir charakterisieren den
optimalen Verkaufsmechanismus für dieses Modell mit begrenzten Informationen, das
zwar randomisiert, aber sehr einfach ist.

Als nächstes untersuchen wir zwei neue Modelle für die Online-Entscheidungsfindung.
Wir beginnen mit einer datengesteuerten Version des Sekretärproblems. Insbesondere
entwickeln wir ein einfaches kombinatorisches Modell, das die Gesamtqualität der Lösung
durch die Nutzung vergangener Daten erhöht. Wir erhalten die bestmöglichen Algo-
rithmen, sowohl im Fall von gegnerischen und zufälligen Eingaben als auch für jede
verfügbare Menge an Vergangenheitsdaten. Schließlich untersuchen wir Online-Varianten
des Problems der Büchse der Pandora, bei denen der Entscheidungsträger die Reihen-
folge der Exploration nicht kontrollieren kann. Wir zeigen, dass in einigen Fällen einfache
Schwellenwertstrategien, die aus Propheten-Ungleichungen stammen, überraschend gut
funktionieren.
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1 Introduction

Over the last decades, breakthrough technologies have allowed online marketplaces and
crowdsourcing platforms to grow and evolve at an unprecedented rate. As more and
more economic and social activities take place on online platforms, the tasks that these
platforms face become increasingly complex, and new informational and computational
challenges arise. The question of how to design algorithms and mechanisms to tackle
them lies at the heart of machine learning, algorithmic game theory, and optimization.

Take as an example the ride-hailing company Uber and its surge pricing algorithm.
In order to design the dynamic pricing model, Uber has to take into account several
factors. First, it should accurately predict supply and demand, both short-term and
long-term, by efficiently analyzing large-scale data from customers and drivers (machine
learning). Moreover, it should model customers’ behavior and understand under which
conditions they are willing to book trips and choose their services over competitors.
At the same time, if drivers expect prices to rise in a specific area in the near future,
they might wait to get one of these profitable rides. Thus, Uber should also account
for the potential strategic behavior of the drivers (algorithmic game theory). Finally,
Uber should frequently update prices in real-time by considering a vast amount of pa-
rameters, including the ones mentioned above (optimization). Apart from ride-sharing,
companies face similar challenges in online retail, airline pricing, freelancing platforms,
advertisement auctions (a.k.a. ad-auctions), and more.

From the previous example, several questions arise of both theoretical and practical
importance. As designers of an online platform, can we model such a complex, uncer-
tain environment and uncover some of its structural properties? How can we utilize
historical data efficiently to inform operational decisions, and how much can we rely on
their accuracy? How does limited information or lack of data affect the quality of the
algorithms’ outcomes? In which ways does the stochastic nature of the input and the
deployed mechanisms change our design choices and algorithms? This dissertation takes
a step towards answering some of these questions.

Broadly speaking, we study problems related to two ubiquitous challenges in online
markets: pricing of goods and sequential decision-making under uncertainty. Due to the
interdisciplinary nature of these challenges, our work lies at the intersection of theoretical
computer science, economics, and operations research. We revisit three fundamental
models in mechanism design and online decision-making; we rethink their assumptions
or use them as building blocks. Our goal is to identify natural conditions common
in real-world problems and incorporate them into those models. By rethinking classic
theory and its results, we hope to provide new design insights and better guide practice.

We should always keep two principles in mind when designing algorithms and mecha-
nisms for the problems in this thesis: First, they should be simple; simplicity will make

1



1 Introduction

their implementation easier and also help us overcome some of the computational hur-
dles. Second, they should be robust; if they can provide good guarantees in a wide
range of environments, then we can possibly deal with informational challenges (e.g.,
the potential scarcity of data).

1.1 Contributions of this thesis

In the first part of the thesis (Chapter 3), we design algorithms in the presence of strategic
agents. These are algorithms that need to work well when their input comes from selfish
agents who want to maximize their happiness. We call such algorithms mechanisms
and the field of research algorithmic mechanism design. Our contribution is in auction
design, which focuses on mechanisms related to selling goods and services to interested
buyers. We take the perspective of a seller who wants to maximize her revenue by selling
goods in an environment for which she has little prior information. In the second part
of the thesis (Chapter 4 and Chapter 5), we design optimization algorithms for online
decision-making. The input now is not strategic, but it is not available to the algorithm
from the start. Instead, it arrives over time; the main challenge is that we need to make
decisions in a sequential manner based on the current input and without good knowledge
of the future.

Our work builds upon three fundamental theoretical problems and frameworks: My-
erson’s optimal auction (and more generally, Bayesian auction design), the secretary
problem, and the Pandora’s box problem. More concretely, we take a robust approach
to various parameters of these problems and their extensions in different ways. The
common goal is to move towards more realistic assumptions and design solutions that
can fit different scenarios.

In Chapter 3, we consider a revenue maximization problem where the seller has limited
information on how much the buyers value the goods for sale. We design mechanisms
that rely on minimal statistical information of the probability distribution of a buyer’s
valuation. Modeling the auction environment in such a way allows the seller to be robust
to misspecification of the buyers’ valuations. In Chapter 4 we develop a data-driven
version of the secretary problem. This models very simple decision processes in which
we want to leverage historical data. Following the principles of the secretary problem,
we assume no underlying distribution for the samples nor impose any other structural
property. This enables us to design algorithms that take this data as input and are
robust even when an adversary chooses them. Finally, in Chapter 5 we explore how
varying the order of exploration changes our algorithms and performance guarantees in
the Pandora’s box problem. In search theory, it is usually assumed that all the options
are available from the start and that we can explore them in the order we want. Our
main goal is to understand how we should adopt her policies when the input, or part
of it, is presented in an online fashion. Identifying simple and provably good policies
when we cannot (fully) control the order of exploration makes the problem robust to
exogenously defined orderings.
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1.1 Contributions of this thesis

Following, we present the topics of this thesis in more detail and state the main results
we obtain in each chapter.

Beyond Bayesian auction design: Revenue maximization with statistical information
Designing revenue-maximizing auctions, known as optimal auction design, is a funda-
mental and well-studied problem in mechanism design. Auctions are used to buy and
sell goods and services and therefore have broad applicability. Characteristic exam-
ples include spectrum auctions, the ad auctions run by companies such as Google and
Facebook, the auctions for emission allowances, and more.

The standard Bayesian approach assumes that each bidder has a valuation function,
which represents the amount of money they are willing to spend on each subset of items.
The seller does not know the valuation functions of the bidders but has full knowledge of
a prior distribution F over them. The goal of the seller is to design a revenue-maximizing
auction using this prior knowledge. The single-item case was fully resolved 40 years ago
in a seminal paper by Roger Myerson [126]. This result was one of the main contributions
that led to him winning the 2007 Nobel prize in Economics.

However, the seller having full knowledge of a prior joint distribution of the bidders’
valuations is arguably a strong assumption. We study the problem of multi-dimensional
revenue maximization when selling m items to a buyer that has additive valuations for
them, drawn from a (possibly correlated) prior distribution. Unlike traditional Bayesian
auction design, we assume that the seller has a very restricted knowledge of this prior:
she only knows the mean µj and an upper bound σj on the standard deviation of each
item’s marginal distribution.

Modeling the limited knowledge of the prior in such a way serves two main purposes:
First, by using statistical information, we try to capture different types of scenarios.
One such scenario is when we do not have access to individual past data because of
privacy restrictions, and we cannot learn the prior from them. Moreover, representing
a high-dimensional distribution can be computationally very challenging. In such cases,
we can assume that we have access to some approximate values of moment conditions of
the aggregate data (such as the mean and the standard deviation). We also believe that
moment conditions are quite natural, as we often use them to describe a distribution.
Second, as mentioned above, it is very likely that the seller will have inaccurate prior
beliefs of the bidders’ valuations. The true underlying distribution might not be very dif-
ferent, but nevertheless, we do not want to design a mechanism that overfits to a possibly
misspecified prior. Instead, we would prefer to optimize over a set of distributions and
ensure that our mechanisms are robust enough. Using moment conditions helps us define
a natural uncertainty set ; we then design mechanisms that optimize simultaneously over
all distributions in the set.

Our main question is the following: Can we design mechanisms that achieve good
revenue against an ideal optimal auction that has full knowledge of the distribution in
advance? Informally, our main contribution is a tight quantification of the interplay
between the dispersity of the priors and the aforementioned robust approximation ratio.
Furthermore, this can be achieved by very simple selling mechanisms. More precisely,
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1 Introduction

we show that selling the items via separate price lotteries achieves an O(log r) approx-
imation ratio where r = maxj(σj/µj) is the maximum coefficient of variation across
the items. If forced to restrict ourselves to deterministic mechanisms, this guarantee
degrades to O(r2). Assuming independence of the item valuations, these ratios can be
further improved by pricing the full bundle. For the case of identical means and vari-
ances, in particular, we get a guarantee of O(log(r/m)) which converges to optimality
as the number of items grows large. We demonstrate the optimality of the above mecha-
nisms by providing matching lower bounds. Our contributions improve and extend prior
work from both the economics and computer science literature.

Let us return for a moment to online markets and their complex environments. It is
often the case that, as designers, the settings for which we need to find good solutions
are not static. In this sense, the previous auction design model is static since we im-
plicitly assume that the bidders and the goods are all present simultaneously. However,
the nature of those markets has a good deal of stochasticity; it is likely that in the
previous auction, the bidders and the goods arrive over time. In this case, we need to
make decisions when only a subset of them are present on the platform and without
being sure who and when will arrive in the near future. Therefore, it is also crucial
to understand how we can make effective decisions in a sequential way. Our following
two contributions study simple algorithms for models of sequential-decision making in
uncertain environments.

A data-driven secretary problem The secretary problem is probably the most well-
studied optimal stopping problem with many applications in economics and manage-
ment. In the secretary problem, a decision-maker faces an unknown sequence of values,
revealed one after the other, and has to make irrevocable take-it-or-leave-it decisions.
Her goal is to select the maximum value in the sequence.

In the modern world, online platforms and marketplaces rely on gathering and ana-
lyzing vast amounts of data to optimize their decisions. As a result, any optimization
algorithm and mechanism designed for a task in these ecosystems leverages the available
historical data. From a theoretical point of view, this motivates us to better understand
how algorithms for online decision-making can account for the presence of past data.
Due to its simplicity and generality, the secretary problem can serve as the founda-
tion to start exploring this research direction. While in the classic secretary problem,
the values of upcoming elements are entirely unknown, in many realistic situations, the
decision-maker still has access to some information, for example, in the form of past
data.

The previous description might hint at machine learning methods that use predictors
to learn the distribution from available samples. However, for problems that can be
modeled as data-driven versions of the secretary problem, these learning procedures can
be very complicated. Thus, providing rigorous theoretical guarantees for such procedures
is also a challenging task. Furthermore, as mentioned before, one of our goals in this
thesis is to work on models that entail some notion of robustness. More specifically,
in the current setting, we want to make minimal assumptions on the input data of
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1.1 Contributions of this thesis

our algorithms. Our main questions can be formulated as follows: Is there a simple
combinatorial model that incorporates historical data? Can we design simple algorithms
that achieve improved performance guarantees by utilizing this additional information?

To answer these questions, we take a sampling approach to the secretary problem and
assume that before starting the sequence, each element is independently sampled with
the same fixed probability p. This leads to what we call the random order and adversarial
order secretary problems with p-sampling. In the former, the sequence is presented in
random order, while in the latter, the order is adversarial. Our main result is to obtain
the best possible algorithms for both problems and all values of p. As p grows to 1,
the obtained guarantees converge to the optimal guarantees in the full information case,
that is, when the values are i.i.d. random variables from a known distribution. Notably,
we establish that the best possible algorithm in the adversarial order setting is a simple
fixed threshold algorithm. In the random order setting, we characterize the best possible
algorithm by a sequence of thresholds, dictating at which point in time we should start
accepting a value. Surprisingly, this sequence is independent of p.

From a practical perspective, our approach and threshold algorithms seem to have
connections with behavioral phenomena arising in Goldstein et al. [82]. The authors
conduct field experiments where people repeatedly play a secretary problem with a fixed
number of boxes (with hidden values). They want to understand how people adapt
their strategies as they repeat the game and learn more values. After some rounds,
people have acquired enough samples to be able to design a near-optimal strategy (the
optimal thresholds, in this case, are given in Gilbert and Mosteller [80]). Our model
and algorithms could help explain how people play along the way and if they use the
information they gain after each round in a near-optimal way.

Online decision-making with search costs In the Pandora’s box problem, a founda-
tional mathematical model in search theory, a decision-maker faces n boxes with known,
independent distributions of their hidden rewards. To learn the reward of a box, she
has to pay an inspection cost, and she can choose the order of inspection. The objective
is to maximize the collected reward from an inspected box minus the costs paid. The
decision-maker has to design a possibly adaptive policy that dictates the order of inspec-
tion and when to stop. From the seminal work of Weitzman [150] we know the optimal
policy for this problem, which turns out to be surprisingly simple to describe and easy
to compute.

Now consider a slightly different simple scenario: We are selling a single item and want
to give it to the buyer who values it the most. As is often the case, the interested buyers
are not present simultaneously but arrive over time. We assume that the buyer nor we
know her exact value for the item, but we may know some prior distribution over it. For
both of us to learn the exact value, we have to invest some costs. Our goal is to try and
find the buyer with the highest value while avoiding paying very high costs. A similar
situation might arise when we want to hire a skilled worker on a crowdsourcing/hiring
platform. The workers appear over time and apply for the job. Their curriculum vitae
gives us some prior belief over their skills, but we have to go through the costly process of
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interviewing them to learn more precisely how suitable they are for the job. We can also
decide to reject them right away, without interviewing. Let us also assume for simplicity
that the period is short enough so that if we offer the job to an interviewed person, they
will accept.

More generally, we think of scenarios where we want to allocate resources to agents
who arrive according to some non-stationary process in the platform. We might have
some knowledge of their types due to past data, but to completely determine their value
for the resources, we have to suffer some search costs. Note that the agents likely do
not know their exact value, and they need to inspect the resources first to find out.
We blend ideas from the Pandora’s box problem and the prophet inequality to design a
simple model which captures the scenarios mentioned above.

Some of the questions that arise compared to the classic Pandora’s box problem are
the following: When we cannot (at least partially) control the search order, how should
we design our strategies? Can we come up with simple optimization procedures when
agents’ requests arrive in an online fashion? Can we quantify the impact of various order
constraints on our performance guarantees? We take a first step towards answering some
of these questions. We start from the most robust way of modeling the arrival order;
an adversary orders the requests, and they are presented to us one by one. Then we
move on to study the random arrival order, which is also assumed in many well-known
problems in online decision-making, such as in the secretary problem. Our broader goal
is to examine different types of stochastic arrivals, ranging from close to free order to
close to adversarial and combinations thereof.

More specifically, in this thesis, we study a variation of the Pandora’s box problem,
where the decision-maker cannot freely choose the inspection order. Instead, the boxes
are presented one by one either in an order fixed by an adversary or in random order. We
explore different modeling assumptions for the constrained-order Pandora’s box problem.
For example, the decision-maker might be able to skip a box without inspecting it.
For this variant, we show that we can adapt threshold-based policies used in prophet
inequalities and apply them in this model. Although designed for making immediate
and irrevocable decisions on whether to collect the reward of an inspected box, they still
provide good performance guarantees. In particular, they are near-optimal when using
Weitzman’s optimal policy (in the free order) as our benchmark. For the models we
consider, we compare the performance of simple policies either to the optimal adaptive
one in the same order or to Weitzman’s in the free order.

1.2 Bibliographic notes

Chapter 3 is based on joint work with Yiannis Giannakopoulos and Diogo Poças. A
preliminary version of this work appeared in the proceedings of the 16th Conference on
Web and Internet Economics (WINE’20) (Giannakopoulos et al. [78]). Parts of Chapter 4
are based on joint work with José Correa, Andrés Cristi, Laurent Feuilloley and Tim
Oosterwijk. A preliminary version of this work appeared in the proceedings of the
2021 ACM-SIAM Symposium on Discrete Algorithms (SODA’21) (Correa et al. [55]).
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2 Preliminaries

In this chapter, we formalize the notions mentioned in the introduction. We also provide
most of the definitions and notation needed throughout this thesis. Some models/prob-
lems might require some more specialized notation that will be stated in the correspond-
ing chapters. In Section 2.2 we provide the definitions and most of the necessary notation
for Chapter 3. In Section 2.3 we do the same mainly for Chapter 4 and Chapter 5.

2.1 General notation

We first introduce some notation that we will use throughout the thesis. We denote
[n] = {1, 2, . . . , n} for any positive integer n. We denote by R≥0 the set of nonnegative
reals. For two sets X and Y we use the standard notation X × Y for the Cartesian
product. For an n-dimensional vector ~x, we denote by ~x−i a (n− 1)-dimensional vector
with the i-th coordinate of ~x removed. Moreover, we denote by (x′, ~x−i) an n-dimensional
vector where we replaced the value of the i-th coordinate of ~x with x′.

2.2 Concepts in mechanism design

As mentioned in the introduction, mechanism design is a broad field with many different
types of problems and applications. Since parts of this thesis deal with problems in
auction design and pricing, we introduce the key concepts through the lens of auction
theory. A setting in auction design is of the following form in its outmost generality:
There is an auctioneer offering m items for sale and n bidders interested in purchasing
a subset of the items. At the end of the process (which might involve e.g. eliciting bids,
several rounds of interaction between the auctioneer and the bidders, and more) the
auctioneer chooses an outcome w among a set of feasible outcomes W . In an auction
environment, a feasible outcome corresponds to an allocation of the items to the bidders,
subject to potential constraints on the form of the allocation.

Types and valuations Each bidder i has a type θi which is an element of her type space
Θi. We can think of a type θi as the private information that bidder i maintains for
her preferences. We will denote the type of bidder i by θi and #»vi interchangeably, since,
in some contexts, the latter serves better the presentation purposes. To exemplify the
notion of type, consider an auction where a house is being sold. In this case, a bidder’s
type is how much she values the house, and the type space is Θi ⊂ R≥0. Note that there
can be more than one bidder with the same type space. Each bidder also has a set of
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available actions Ai. We denote by A = A1 × A2 × · · · × An the set of action profiles.
An allocation rule is a function x that maps an action profile a to an allocation w ∈W .

For each bidder i we also define her valuation function Vi : Θi × W → R≥0. The
valuation function depends on the realized type and the allocation, and it can be thought
as the maximum amount of money a bidder is willing to spend to buy the items she
receives under an allocation w. In the literature, depending on the auction setting at
hand, different assumptions about the form of the bidders’ valuation functions are made.
For example, coming back to the property auction, bidder i’s valuation function is just
her valuation θi for the house if she wins it, and 0 otherwise. However, in multi-bidder,
multi-item combinatorial auctions, the form of the valuation functions might be very
complex. Because of that, we are often interested in some restricted classes of valuation
functions that capture important practical scenarios and can also be handled from a
theoretical perspective.

In Chapter 3 we study additive valuation functions: For this particular class, the
type space for each bidder i is Θi ⊆ Rm≥0, and her type is an m-dimensional vector
#»vi = (vi1, vi2, · · · , vim) ∈ Θi where vij is bidder’s i valuation for item j. The valuation vij
again expresses how much bidder i is willing to pay for item j. Note that an allocation w
induces disjoint subsets of items (B1, B2, ..., Bn), one for each bidder, such that

⋃n
i=1Bi =

[m]. An additive valuation function is then simply the sum of the valuations of the subset
of items Bi ⊆ [m] that the bidder receives, i.e., Vi(

#»vi, w) =
∑

j∈Bi vij .

Moreover, the auctioneer charges bidder i an amount of money for the allocated subset
of items according to a payment rule πi : A → R≥0. The bidder has a utility ui which
intuitively expresses the amount of happiness she gets from the items allocated to her
and what she paid for them. We assume that the utilities are quasilinear, that is, for
each bidder i, her utility can be written as ui = Vi (θi, x(a)) − πi(a), where a ∈ A.
Finally, we assume that the bidders are rational, which means that they always pick an
action that maximizes their utility.

Bayesian auction design Recall that the type θi is private infomation of the respective
bidder; otherwise the auctioneer would know exactly how each bidder encodes her pref-
erences and as a result could always optimize the desired objective. On the other hand,
it is very difficult for the auctioneer to design a good pair of allocation and payment
rules in the dark, having no information on the participating bidders. To go beyond the
two extremes, a standard assumption in auction design is to assume that there is a prior
distribution F over the space of type profiles Θ = Θ1 ×Θ2 × · · · ×Θn. When this F is
fully known to the auctioneer and all the n bidders, then we are in the Bayesian setting.

Environments We define the two main general types of auction environments: single-
dimensional and multi-dimensional.

In a single-dimensional environment each bidder’s type θi is just a scalar. A single-item
environment is single-dimensional as well: There are n interested bidders, and a bidder’s
type is her valuation vi for the only item being sold. A single-parameter environment is
also single-dimensional. There are types of auctions in which there are multiple items
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for sale, but each bidder’s type θi can still be expressed by a single parameter. Take
as an example simple multi-unit auctions: There are k identical items for sale and each
bidder wants to buy only one unit or, in a slightly more general scenario, wants to buy
up to ` units and her type is just her valuation for one unit multiplied with the total
number of units she gets (up to `). In any case, the type is indeed a scalar, and thus we
are in a single-dimensional environment.

In a multi-dimensional environment each bidder’s type is made up of several param-
eters. For example, as we mentioned earlier, when the valuation functions are additive,
the types are made up by m different parameters (the various vij , one for each item j).
The same holds for a unit-demand bidder i, whose valuation function is Vi = maxj∈Bi vij
for a subset of items Bi ⊆ [m] and her type θi is again an m-dimensional vector ~vi.

Direct revelation mechanisms In the general case of n bidders and m items, a selling
mechanism M is defined by an allocation rule x, and a payment rule πi for each bidder
i. A mechanism might be implemented in several rounds, include different types of
interaction between the auctioneer and the bidders, and, in general, according to the
definition we gave it can be very complicated.

Now consider the following family of mechanisms: The bidders report a type bi to the
auctioneer, who collects all the reported types and then directly chooses an allocation
and charges payments. These are called direct revelation mechanisms. More formally,
when Ai = Θi for all bidders, we have a direct revelation mechanism.

Next we provide the formal definition of a direct revelation mechanism for the special
case of a single additive bidder and m items, which is the setting that we study in the
next chapter. A (possibly randomized) selling mechanism for a single additive bidder
and m items is defined by a pair (x, π) where x : Rm≥0 → [0, 1]m is the allocation rule and
π : Rm≥0 → R≥0 is the payment rule. If the buyer submits as bid a valuation vector of ~v,
then they receive each item i with probability xi(~v), and are charged (a total of) π(~v).
When the mechanism A is deterministic, the allocation rule satisfies x(~v) ∈ {0, 1}m, for
all ~v. When the mechanism is randomized the allocation rule satisfies x(~v) ∈ [0, 1]m, for
all ~v.

Truthfulness We can think of auctions as games of incomplete information, and the
bidders as strategic agents. Given that, some type of equilibrium, which is the solution
concept in these games, can also equivalently be defined in the context of an auction.
Informally, in a direct revelation mechanism the reported types (b1, b2, . . . , bn) form an
equilibrium if no bidder i can increase her utility by unilaterally reporting a different
type b′i, often given some information for the other bidders’ types (such as the joint prior
F over the type space). For more on games with incomplete information the reader can
refer to one of the standard textbooks on Game Theory or Algorithmic game theory (e.g.
[128, 131]). For a properly defined notion of equilibrium, we can study properties and the
quality of our mechanism at the equilibrium state. The two most common equilibrium
notions are the dominant-strategy equilibrium (DSE) and the Bayes-Nash equilibrium
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(BNE). Since we deal mostly with a single bidder in this thesis, we need not define the
concepts formally here.

At this point, note that each bidder reports a type bi to the auctioneer which might
not necessarily be her true private type θi. In some scenarios though, it might be the
case that the bidders maximize their (expected) ulitity by reporting their true types. It
is easy to see why such a property would be desirable for both parties: The bidders would
not have to spend a possibly large computational effort to determine which is the best
type to report, and the auctioneer would also know in advance that the mechanism they
designed induces a specific, well-defined behavior for the bidders. We call a mechanism
truthful when in an equilibrium state bidders truthfully report their privately-known
types. Formally, a direct revelation mechanism is truthful or dominant strategy incentive
compatible (DSIC) if it holds that

Vi

(
θi, x

(
θi,

#»

b −i

))
−πi

((
θi,

#»

b −i

))
≥ Vi

(
θi, x

(
θ′i,

#»

b −i

))
−πi

((
θ′i,

#»

b −i

))
∀i, θ′i,

#»

b −i.

Note that there exist also other, weaker notions of truthfulness; the one we defined here
and use in this thesis is the strongest and is usually called dominant strategy truthfulness.

Since we restrict our study in this thesis mainly to a single additive bidder and multi-
item, direct revelation, truthful mechanisms, we state here the conditions which charac-
terize them:

x(~v) · ~v − π(~v) ≥ x(~w) · ~v − π(~w) for all ~v, ~w, (2.1)

x(~v) · ~v − π(~v) ≥ 0 for all ~v, (2.2)

where ~v is the true valuation vector of the bidder and ~w ∈ Rm≥0. The first condition
states that the bidder can not be “better off” by misreporting their true valuation; this
is the truthfulness condition for the single bidder case. The second condition, known
as individual rationality (IR), ensures that the bidder cannot harm herself by truthfully
participating in the mechanism. Recall that ~v Note that when stating the two constraints
here, we implicitly assumed that the bidder is risk neutral, that is, if she receives an
item j with probability xj and pays πj for it, then her utility from the item is xjvj −πj .

Revelation principle The revelation principle is a very important result from the sem-
inal work of Myerson [126]. It is the reason why in many scenarios we can restrict
our attention to direct revelation, truthful mechanisms without loss in our objective.
It states that any mechanism M with some outcome in equilibrium can be converted
into a direct revelation, truthful mechanism with the same outcome in the truth-telling
equilibrium.

Note that the revelation principle fails to hold in some environments. For example,
when the agents learn their values over time, or when the auctioneer does not know the
joint prior distribution F , the revelation principle does not hold [91, Section 2.10].
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2.2.1 Welfare maximization and the VCG auction

The social welfare is a common and natural objective when studying the performance of
auctions under various criteria. The social welfare expresses the collective good of the
participating bidders (or the society more generally, hence the name) and, in a Bayesian
setting, given a direct revelation and truthful mechanism M with an allocation x, and
a joint prior F over the type space Θ, we formally define it as

WEL(M;F ) = E
~θ∼F

[
n∑
i=1

Vi

(
θi, x

(
~θ
))]

.

The VCG mechanism [50, 85, 149] is a celebrated truthful mechanism that chooses the

allocation that maximizes the social welfare, i.e., x∗
(
~θ
)

= arg maxw∈W
∑n

i=1 Vi(θi, w).

In order to establish the truthfulness property, VCG charges each bidder i the “harm”
that she causes to the other bidders by participating in the mechanism. In the economics
literature, this is called the externality imposed on other bidders by her participation.
Formally, the payment rule amounts to

πi

(
~θ
)

= max
w∈W

∑
j∈[n]\i

Vj (θj , w)−
∑
j∈[n]\i

Vj

(
θj , x

∗
(
~θ
))

.

Recall that the payment rule takes the vector of types ~θ as an argument, because
VCG is indeed a direct revelation, truthful mechanism. In a single-item environment,
the corresponding welfare-maximizing, truthful mechanism is called the Vickrey auction
[149]. It is simply a second-price auction, meaning that the bidder with the highest
reported valuation gets the item and pays the second highest reported valuation.

2.2.2 Revenue maximization and Myerson’s optimal auction

We state the necessary definitions and results from the celebrated paper of Myerson
[126], which characterized the revenue-optimal mechanism for selling a single item in
the Bayesian setting. We start with some technical conditions on the distributions that
appear often in the optimal auction design literature.

For what follows, we consider a continuous distribution F supported over an interval
DF of nonnegative reals. Let f denote the density function of F . Moreover, we use
F (·) for the cumulative function (cdf) of distribution F and F (p−) = Pr [X < p] =
limx→p− F (x), where X ∼ F .

Regularity We will say that F is regular if its virtual valuation function, defined by

φ(x) ≡ x− 1− F (x)

f(x)

is monotonically nondecreasing in DF .

13



2 Preliminaries

Monotone Hazard Date (MHR) condition The hazard rate of F is defined by

h(x) =
f(x)

1− F (x)
.

The distibution has monotone hazard rate if h(x) is monotonically nondecreasing in DF .

Intuitively, MHR distributions have exponentially decreasing tails. It is easy to check
that every MHR distribution is also regular. Although they are a subset of the regu-
lar distributions, they are still general enough to give rise to a wide family of natural
distributions, such as the uniform, exponential, (truncated) normal and gamma.

λ-regularity Finally, we consider the notion of λ-regularity, which has already been
studied in the context of revenue maximization, e.g. by Schweizer and Szech [139] and
Cole and Rao [51]. To be precise, Cole and Rao [51] use the notion of α-strong regularity,
originally introduced by Cole and Roughgarden [52]; this corresponds exactly to the
notion of λ-regularity used in [139], for α = 1− λ.

Consider a real parameter λ ∈ [0, 1]. We will say that F is λ-regular if its λ-generalized
virtual valuation function

φλ(x) ≡ λ · x− 1− F (x)

f(x)

is monotonically nondecreasing in DF .

It is not difficult to see that, for any 0 ≤ λ ≤ λ′ ≤ 1, any λ-regular distribution is
also λ′-regular. For the special case of λ = 1, the above definition recovers exactly the
notion of regularity. On the other extreme of the range, for λ = 0 we get the definition
of MHR distributions.

Myerson’s revenue-optimal mechanism Myerson showed that the revenue-maximizing
mechanism for a single item and n bidders whose values for the item follow indepen-
dent, regular distibutions has a very simple form. A crucial step for proving this was a
powerful lemma, which informally states that maximizing the expected revenue reduces
to maximizing the expected social welfare on the virtual values (termed the expected
virtual welfare). Thus, the optimal auction gives the item to the bidder with the highest
non-negative virtual value by running a Vickrey auction on the virtual values.

From the previous result we can make the following observation: If the bidders are
moreover identical, then the revenue is maximized by running a second price auction
with a reserce price p = φ−1(0). This means that the item is allocated to the highest
bidder if she beats the reserve price, in which case she pays the maximum of the second
highest bid and the reserve price. If there is no bid above the reserve price then the item
is not allocated.

Note that the independence assumption is crucial; if the distributions are correlated
the aforementioned results collapse. On the other hand, the regularity assumption is
not necessary; through an operation on the virtual values called ironing (which appears
already in Myerson’s work), the results continue to hold for non-regular distributions.
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Finally, from the above we can also infer that for the single-item, single-bidder setting
the optimal revenue can always be achieved by a deterministic mechanism which offers
a take-it-or-leave-it price p. For the optimal such price p, the revenue becomes

OPTm(F ) = sup
p≥0

p · (1− F (p−)) . (2.3)

In Chapter 3, we shall call OPTm(·) the Myerson operator and for now we simply
observe that this is a functional mapping distributions to real nonnegative numbers.

Robust Auction Design Achieving provably good guarantees across a wide range of
environments is a very desirable for our mechanisms. In Chapter 3, our goal is to
maximize the revenue of a seller, but a different objective (e.g., the social welfare) can
be considered instead. In principle, we want to know in which type of situations our
mechanism will be used, so that we design it in a way that it takes into account all
such situations. This procedure entails a notion of robustness; the mechanism should
simultaneously achieve good revenue in all the environments, and thus its design should
not depend on the details of a specific environment.

In auction design there are different criteria for which one might want to be robust;
we are mentioning here some of the most natural ones that have already appeared in the
literature. Recall that Myerson’s optimal mechanism crucially relies on the assumption
that the bidders draw their valuation for the item independently. In many practical
applications though, there might be some type of correlation among bidders or items,
and the auctioneer wants the mechanism to work well when such correlations are present.
This criterion of robustness is often called correlation robustness (e.g., Bei et al. [18]).
Other mechanisms crucially rely on assuming a specific model for the bidders’ beliefs. If
this model is (sometimes slightly) misspecified by the auctioneer, the mechanism might
fail. In this case, the auctioneer might want to be robust across a number of such models,
and this is often called informational robustness (e.g., Brooks and Du [26]).

Finally, another natural type of robustness is with respect to the prior distribution
F over the bidders’ type space Θ. Always assuming that the auctioneer fully knows F
might be quite strong, which means that we want to go beyond the Bayesian setting
and try to be robust against a family of distributions. These families of distributions are
often called ambiguity sets (e.g., Koçyiğit et al. [107]) in the economics literature and
the goal is for the mechanism to achieve good revenue against any distribution F in the
defined ambiguity set. This is the type of distributional robustness that we focus on in
Chapter 3. In our setting with a single additive bidder and m items, the auctioneer has
some moment information on the marginal distribution Fj of each item j. In particular
she knows the mean µj and an upper bound on the standard deviation σj . Then the
induced ambiguity set F can be stated as follows:

F =
{
F ∈ ∆

(
Rm≥0

)
: µj(F ) = µj and σj(F ) ≤ σj , ∀j ∈ [m]

}
,

where by ∆
(
Rm≥0

)
we denote the space of all distributions over the nonnegative m-

dimensional vectors ~v, µj(F ) = E~v∼F [vj ] is the mean of the marginal distribution Fj of

item j and σj(F ) = E~v∼F
[
(vj − E~v∼F [vj ])

2
]

is the corresponding standard deviation.
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There are two main approaches that we can take for characterizing a good robust
mechanism and proving its revenue guarantees: Either try to solve an optimization
problem exactly (e.g., [34, 35, 107, 146]) or try to approximate a stronger benchmark
(our work). In the first case, we have a maximin optimization problem for the revenue;
we have to find the mechanism M∗ which maximizes the revenue against the worst-case
distribution F ∈ F , which is chosen by an adversary (often also called Nature). A
different approach is to view the problem through the lens of approximation and choose
a meaningful benchmark. We then design a mechanism which provably approximates the
chosen benchmark for any distribution F ∈ F . One such strong and natural benchmark
is the optimal revenue with full knowledge of the distribution F , i.e., when we are in
the Bayesian setting. We can then say that a mechanismM with uncertainty about the
true prior is c-robust with respect to the ambiguity set F , if REV(M, F ) ≥ c ·OPT(F )
for all F ∈ F and for some c ∈ (0, 1). Both ways of approaching the problem have their
merits and might lead to different quantitative and qualitative insights, depending on
the application domain.

2.3 Sequential decision-making under uncertainty

In this section, we state some of the notions that we mainly need in Chapter 4 and
Chapter 5 (and to a lesser extent in Chapter 3). We start with some basic definitions and
continue with three fundamental problems in online decision-making. Note that these
and related problems have been studied from different angles; sequential decision-making
under uncertainty is a truly interdisciplinary research topic. Online algorithms, Markov
decision processes, and optimal stopping theory are examples of research areas that
fall under this umbrella. It spans theoretical computer science, economics, operations
research, mathematics, control engineering, and more.

First, we define the metric which is often used in computer science to measure the
quality of the solution of an online algorithm. In online learning, such as in multi-armed
bandit problems, a different metric called the regret of an algorithm is often used. For
more details on the notion of regret, see e.g. [37, 143].

Competitive ratio In online algorithms, we deal with settings where the input arrives
piece by piece, and the algorithm tries to optimize an objective by making decisions on
the fly without knowledge of the future input. This is in contrast to offline algorithms,
where the whole input is given to the algorithm beforehand. The most common metric
for the performance of an online algorithm is the competitive ratio, which we state for
the case of maximization problems. Suppose we want to solve a maximization problem
P on a family of instances I. We fix an online algorithm ALG and the offline optimum
OPT.

The online algorithm ALG has a (strictly) competitive ratio c < 1, if it holds that

ALG(I) ≥ c ·OPT(I), ∀I ∈ I .

For completeness, we also define the analogous metric in approximation algorithms.
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Approximation ratio The approximation ratio is to approximation algorithms what
the competitive ratio is to online algorithms. In approximation algorithms both the
algorithm and the optimal solution are given the whole input in advance. We want to
solve again a maximization problem and we fix an algorithm ALG that we benchmark
against the optimum solution OPT.

The approximation algorithm ALG has an approximation ratio α < 1, if it holds that

ALG(I) ≥ α ·OPT(I), ∀I ∈ I .

Fundamental problems in sequential decision-making

In this section, we consider three important problems in sequential decision-making: the
secretary problem, the prophet inequality, and the Pandora’s box problem. All three of
them were defined several decades ago (and in the case of the secretary problem probably
even longer, see Ferguson [73]) and numerous variants of them have been studied. Since
the last decade, there has been a surge of interest in the computer science community
in this type of problems. The main reason is their connections to various applications
and problems in areas of computer science, particularly in algorithmic game theory and
mechanism design. In the following, we define them and informally describe the most
important algorithms and results for them. For complete proofs of the statements in
this section the reader can refer to excellent surveys and articles [54, 73, 86, 115].

Secretary problem The secretary problem is one of the most well-known problems in
sequential decision-making. The first official solution to the problem that appears in a
journal is usually attributed to Lindley [113] and a bit later to Dynkin [67], but, as we
already mentioned, it has been formulated and appeared in different versions since much
earlier.

We describe the classical secretary problem in the following (artificial) scenario: Sup-
pose we want to hire an applicant for a job from a pool of n applicants. We know the
exact number n beforehand, but we have no information for the quality of the applicants,
so we need to interview them. The way we conduct the interviews is by creating a pile
of the applications in a uniform random order (i.e., each permutation π : [n] → [n] is
equally likely to occur) and inviting the applicants one by one. Upon interviewing an
applicant, we assign them a relative rank in the ranking of applicants interviewed so far.
Let us also assume that there are no ties between the applicants. Here comes the critical
part: As soon as we assign a rank to an applicant, we have to make an immediate and
irrevocable decision whether to hire this applicant or not. If we do, then we never get to
interview the remaining ones; if we do not, then we cannot hire this applicant at a later
point. One can consider different objectives, but in the classical setting our goal is to
maximize the probability of picking the best applicant.

The random order assumption is crucial for the secretary problem; it is not difficult to
show that for large n no non-trivial guarantee can be achieved when the order is chosen
by an adversary (see e.g. Gupta and Singla [86]). Now let us see how the following
simple algorithm would perform: Reject the first half of the applicants (regardless of
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their relative rank), and then pick the first applicant from the second half that ranks
above all previous applicants. This algorithm gives a 1

4 probability of picking the best
applicant. This is because the algorithm succeeds when the second best applicant is
in the first half of the sequence, and the best applicant in the second half. Both these
events happen with probability roughly 1

2 .

It turns out that we can do better: The optimal algorithm observes the first n
e (instead

of n2 ) and rejects them, and then picks the first applicant that is assigned the best relative
rank. The result can be stated as follows: The n

e -algorithm chooses the best applicant
with probability at least 1

e as n → ∞. Moreover, no algorithm can perform better
than 1

e .

Different ways of proving the guarantee of 1
e have been discovered. One of the proofs for

the result proceeds in the following two steps: We first show that the optimal algorithm
belongs to the family of algorithms that first reject a fraction of the sequence, and then
pick the first applicant that is the best seen so far. We can then calculate the probability
of choosing the best for this family of algorithms, and then show that as n → ∞ the
expression is maximized at 1

e for a cutoff value of n
e .

We deal with the secretary problem in Chapter 4.

The prophet inequality We will now describe the setting of the classic prophet in-
equality [109, 110] through a different scenario. Suppose now that we are a gambler and
want to play the following card game: There are n cards with hidden nonnegative values
facing down. Each card i has a distribution Fi (over nonnegative values) written on the
side facing up, so that we can see all the distributions. We are also told that each value
vi is drawn independently from Fi. Then an adversary orders the cards and the game
starts. We start flipping the cards one by one in this fixed order, and when the hidden
value of a card is revealed, we have again to make an immediate and irrevocable decision
whether to keep the card. Note that we are allowed to pick only one card. If we decide
to pick a card, we stop and we cannot flip any of the remaining cards; if we decide to
pass on a flipped card, we cannot recall it later. We will say that the chosen value is our
reward, and the main question is which strategy maximizes our expected reward.

One observation is that the optimal strategy can be calculated via a simple backwards
induction: Calculate the optimal expected reward conditioned on starting the game
at the last card, then do the same for the card with index n − 1 and then proceed
accordingly backwards until the first card of the sequence. In their classic result, Krengel
and Sucheston [110] showed that we can obtain expected reward that is at least half of
the reward of a prophet, who knows all the hidden values and always picks the maximum.
Remarkably, Samuel-Cahn [136] proved that in fact we can achieve the same guarantee
with a very simple policy; a single-threshold strategy suffices to achieve at least half of
the prophet’s reward. The single-threshold strategy simply fixes a value τ according to
some rule and then accepts the first value vi above the threshold. What is surprising is
that the guarantee of 1

2 is tight, and the threshold algorithm is optimal. The example
proving that 1

2 is the best we can hope for, consists of only two boxes.
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2.3 Sequential decision-making under uncertainty

Due to recently discovered analogies to pricing problems, the prophet inequality and
its variants have received a lot of attention, particularly from the fields of economics,
operations research and computer science.

The Pandora’s box problem Let us conclude with the Pandora’s box problem, which
was introduced by Weitzman [150]. The setting has a slightly different flavor from the
previous two “purely online” problems. The Pandora’s box problem is considered a
fundamental model in search theory, a field in economics where, informally, an agent is
searching among several alternatives for the one with the best quality.

As we did with the previous two, we can describe this problem using a slightly artificial,
real-life scenario: Suppose that we want to rent an apartment, and after a first screening
we have narrowed down the search to n of them. Now it is time to start inspecting
them and try to choose the best one. An important difference between the Pandora’s
box problem and the secretary problem or the prophet inequality is that we assume that
an inspected apartment will be always available at a later point in time if we decide to
rent it. For the sake of the example, let us also make a couple of extra assumptions that
simplify the problem. First, we assume that after inspecting an apartment, and in case
we decide to rent it, the owner will always give it to us. Second, we assume that the
rent is the same for all the apartments. This means that we do not have to calculate
and compare the price to quality ratio, but we just want to find the best apartment for
us.

The model is as follows: There are again different distributions F1, F2, . . . , Fn and
the true values of the apartments v1, v2, . . . , vn are independently drawn from their
respective distributions. We again fully know each distribution Fi of apartment i. In
order to learn the true realization vi, we now have to pay an inspection cost ci. The cost
captures various parameters; for example, the time we need to invest for the inspection,
or the cost of consulting a real-estate agent. We get to choose one apartment to rent
and our goal is to maximize the value of the apartment we choose minus the sum of the
inspection costs. There is an extra decision that we have to make in this problem: Apart
from choosing a stopping time, we also get to inspect the houses in the order we want.

One might naturally expect that the optimal algorithm is very difficult to characterize;
we might need to choose the order adaptively depending on the realized values so far,
and decide on the stopping time based on the history and the uninspected apartments.
Perhaps defying a bit the intuition, Weitzman [150] gave a surprisingly simple answer
to this problem. The policy he defined is an “index-based” policy that briefly works
as follows: For each apartment, we calculate a value σi (usually called the reservation
value), whose value depends on the inspection cost ci and the distribution Fi. Then
we inspect the apartments in decreasing order of reservation values, and we stop when
we find a realized value that is larger than the reservation values of all the remaining
apartments. In his seminal work, Weitzman showed that this simple policy is indeed
optimal.

We deal with the Pandora’s box problem in Chapter 5.
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3 Robust Revenue Maximization Under
Minimal Statistical Information

3.1 Introduction

Optimal auction design is one of the most well-studied and fundamental problems in
(algorithmic) mechanism design. In the traditional Myersonian [126] setting, an auc-
tioneer has a single item for sale and there are n interested bidders. Each bidder has a
(private) valuation for the item which, intuitively, represents the amount of money they
are willing to spend to buy it. The standard Bayesian approach is to assume that the
seller has only an incomplete knowledge of these valuations, in the form of a prior joint
distribution F . A selling mechanism receives bids from the buyers and then decides to
whom the item should be allocated (which, in general, can be a randomized rule) and
for what price. The goal is to design a truthful selling mechanism that maximizes the
auctioneer’s revenue, in expectation over F .

Myerson [126] provided a complete and very elegant solution for this problem when
bidder valuations are independent, that is, F is a product distribution. In particular,
when the distributions are identical and further satisfy a regularity assumption, the
optimal mechanism takes the very satisfying form of a second-price (Vickrey) auction
with a reserve price. Unfortunately, in general these characterizations collapse when we
move to multi-dimensional environments where there are m > 1 items for sale. Multi-
item optimal auction design is one of the most challenging and currently active research
areas of mechanism design. Given that the exact description of the revenue maximizing
auctions in such settings is a notoriously hard task, there is an impressive stream of
recent papers, predominantly from the algorithmic game theory community, that try to
provide good approximation guarantees to the optimal revenue.

The critical common underlying assumption throughout the aforementioned optimal
auction design settings is that the seller has full knowledge of the prior joint distribution
F of the bidders’ valuations. In many applications though, this might arguably be an
unrealistic assumption to make: usually an auctioneer can derive some distributional
properties about the bidder population, but to completely determine the actual distri-
bution would require enormous resources. Thus, inspired by the parametric auctions
of Azar and Micali [8] for the single-dimensional case, we would like to be able to design
robust auctions that (1) make only use of minimal statistical information about the
valuation distribution, namely its mean and variance; and (2) still provide good revenue
guarantees even in the worst case against an adversarial selection of the actual distribu-
tion F ; in particular, no further assumptions (e.g., independence of item valuations or
regularity) should in general be made about F . This is our main goal in this chapter.
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3.1.1 Related work

As mentioned in the introduction, there has been an impressive stream of recent work
on optimal [32, 60, 77, 88, 119] and approximately-optimal [13, 31, 39, 90, 111, 134,
152] multi-dimensional auction design, which tries to extend the traditional, single-
dimensional auction setting studied in the seminal paper of Myerson [126]. A prominent
characteristic that can often be seen in these papers is the “simplicity vs optimality”
approach: knowing the computational hardness [43, 44, 59] and structural complex-
ity [60, 89] of describing exact optimality, emphasis is placed on designing both simple
and practical mechanisms that can still provide good revenue guarantees. Of course,
this idea can be traced back to the work of Hartline and Roughgarden [92] and Bulow
and Klemperer [29] for the single-dimensional setting. For a more thorough overview
we refer to the recent review article of Roughgarden and Talgam-Cohen [133] and the
textbook of Hartline [91].

Related to this, and placed under the general theme of what has come to be known
as “Wilson’s doctrine” [151] (see also [120, Section 5.2]), there has also been significant
effort towards the direction of robust revenue maximization: designing auctions that
make as few assumptions as possible on the seller’s prior knowledge about the bidders’
valuations for the items. Examples include models where the auctioneer can perform
quantile queries [42] or knows some estimate of the actual prior [19, 30, 112]. Another
line of work studies robustness with respect to the correlation of valuations across bid-
ders or items [18, 35, 84]. Other approaches regarding the parameterization of partial
distributional knowledge were considered by Dütting et al. [66] and Bandi and Bertsimas
[14]. See also the recent survey by Carroll [36].

Most relevant to our work is the model of parametric auctions, introduced by Azar
and Micali [8]. More specifically, they study single-dimensional (digital goods and single-
item) auction settings with independent item valuations, under the assumption that the
seller has only access to the mean µi and the variance σ2

i of each buyer’s i prior distri-
bution. Using Chebyshev-like tail bounds, they show that for the special single-bidder,
single-item case, deterministically pricing at a multiple of the standard deviation below
the mean, i.e. offering a take-it-or-leave-it price of µ−k ·σ, guarantees an approximation
ratio of ρ̃(r), where ρ̃ is an increasing function taking values in [1,∞) and r = σ/µ. In
Appendix A.2, we actually quantify this bound and show that it grows quadratically.
Under an extra assumption of Monotone Hazard Rate (MHR), they show how the even
simpler selling mechanism that just prices at µ achieves an approximation ratio of e.

It is interesting to notice here that Azar and Micali [8] provide an exact solution, for
deterministic mechanisms, to the robust optimization problem of maximizing the ex-
pected revenue. Then, they use this maximin revenue-optimal mechanism and compare
it to the optimal social welfare (which is trivially also an upper bound on the optimal
revenue), to finally derive their upper bound guarantee on the approximation ratio of
revenue. As such, their results are not tailored to be tight for the ratio benchmark. As
a matter of fact, in [10] the authors also provide an explicit lower bound that can be
written as 1 + r2. This is an important motivating factor for our work, since one of our
main goals is to close these gaps and provide tight approximation ratio bounds.
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Azar et al. [9] use a clever reduction (see also the work of Chawla et al. [40]) to show
how these results can be paired with the work of Dhangwatnotai et al. [63] regarding
the VCG mechanism with reserves, in order to design parametric auctions for very
general single-dimensional settings. In particular, they show how in matroid-constrained
environments with the extra assumption of regularity on the prior distributions (or MHR
for more general downward-closed environments), using the aforementioned parametric
prices as lazy reserves guarantees a 2ρ̃(r)-approximation to the optimal (Myersonian)
revenue and a ρ̃(r)-approximation to the optimal social welfare. Here r = maxi σi/µi.

Another work which is close to ours is that of Carrasco et al. [34]. The authors
essentially extend the model of Azar and Micali [8] to randomized mechanisms, solving
the maximin robust optimization problem with respect to revenue. Again, in principle
their results cannot be immediately translated to tight bounds for the approximation
ratio; however, unlike the deterministic case for which in this work we have to design
a new mechanism in order to achieve ratio optimality, we will show that the maximin
optimal lottery of Carrasco et al. [34] is actually also optimal for the ratio benchmark.

Sample access vs knowledge of moments Another stream of research studies models
where the auctioneer has sample access to the distribution [52, 63, 74, 83, 94, 123, 147].
It is not hard to imagine scenarios where such access to individual past data might be
infeasible or impractical, e.g. due to data protections and privacy restrictions. Further-
more, there might also exist computational limitations in representing a distribution,
or storing and reasoning with a large number of samples. In such settings, it is more
natural to assume access to only some statistical aggregates of the underlying data, such
as the mean and the standard deviation.

From a theoretical perspective, the sample access model is incomparable with the
moment-based model that we consider here, as they rely on different distributional as-
sumptions. In particular, independence, regularity and/or upper bounds on the support
are standard assumptions in the aforementioned sample complexity papers. As a matter
of fact, these are necessary to derive non-trivial results (see e.g. the counterexample
of Cole and Roughgarden [52, Footnote 3]). Furthermore, if independence is dropped,
Dughmi et al. [65] demonstrate that an exponential number of samples is required in
order to achieve a constant-factor approximation to the optimal revenue. In our setting,
on the other hand, we require none of the above. However, we do assume (as a design
principle) exact knowledge of the mean and an upper bound on the standard deviation.
This information cannot be retrieved exactly via any finite amount of samples, although
intervals of confidence can be used to estimate it; we leave as future work the study
of the revenue maximization problem when having only approximate knowledge of the
distribution moments.

3.1.2 Results and techniques

The main focus of this chapter is a multi-dimensional auction setting where a single
bidder has additive valuations for m items, drawn from a joint probability distribution
F . We make no further assumptions on F ; in particular, we do not require F to be a

23



3 Robust Revenue Maximization Under Minimal Statistical Information

product distribution nor do we enforce any kind of regularity. The seller knows only the
mean µj and (an upper bound on) the standard deviation σj of each item’s j marginal
distribution. Based on this limited statistical information, they are asked to fix a truthful
(possibly randomized) mechanism to sell the items. Then, an adversary chooses the
actual distribution F (respecting, of course, the statistical (µj , σj)-information) and the
seller realizes the expected revenue of the auction, in the standard Bayesian way, in
expectation with respect to F . The main quantity of interest, which we call the robust
approximation ratio is the ratio of the optimal revenue (which has full knowledge of F
in advance) to this revenue.

Our worst-case, min-max approach is similar in spirit to the previous work of Azar
et al. [9], Azar and Micali [10] and Carrasco et al. [34]. However, the critical difference
that our main goal is to optimize the ratio against the optimal revenue and not just the
expected revenue of the selling mechanism on its own. It turns out that, similarly to
the aforementioned previous work, our bounds can be stated with respect to the ratio
rj = σj/µj of each item’s marginal distribution. This is an important statistical quantity
called the coefficient of variation (CV); it is essentially a “unit-independent” measure
of the dispersion of the distribution (see, e.g., [124] or [100, Sec. 2.21]).

In Section 3.2 we formally introduce our model and necessary notation. In the follow-
ing two sections we focus on the single-item case, since this will be the building block
for all our results. In particular, in Section 3.3 we show that the robust approximation
ratio of deterministic mechanisms is exactly ρD(r) ≈ 1 + 4r2 (see Definition 1), closing
a gap open from the work of Azar and Micali [10]. Similarly to previous work, in order
to achieve this we solve exactly the corresponding min-max problem (see Lemma 2);
however, the method and the solution itself have to be different, since we are dealing
with the ratio, which is a more “sensitive” quantity than the revenue on its own. By
“sensitive” we mean that its value changes in a less smooth and more unpredictable way
for small perturbations of the distribution and the mechanism.

Next, in Section 3.4 we deal with general randomized auctions and we show that a
lottery proposed by Carrasco et al. [34], which we term log-lottery, although designed for
a different objective achieves an approximation ratio of ρ(r) ≈ 1 + ln(1 + r2) (see Defi-
nition 1) in our setting, which is asymptotically optimal. We start with a quantitative
analysis of the log-lottery mechanism (Theorem 2). In particular, we show an upper
bound to the robust approximation ratio that grows logarithmically in r. This bound
already establishes a strong separation between the power of deterministic and random-
ized mechanisms. The question then becomes if a different randomized selling mecha-
nism can achieve a sublogarithmic or even constant upper bound. We answer this in
the negative by showing that the logarithmic upper bound is asymptotically tight. The
construction of the lower bound instance (Theorem 3) is arguably the most technically
challenging part of this chapter, and is based on a novel utilization of Yao’s minimax
principle that might be of independent interest for deriving robust approximation lower
bounds in other Bayesian mechanism design settings as well. Informally, the adversary
offers a distribution over two-point mass distributions, finely-tuned such that the re-
sulting mixture becomes a truncated “equal-revenue style” distribution (see Fig. 3.2c).
The main difference to other settings in the literature where Yao’s principle is applied
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is that the adversary has to randomize over probability distributions, which form an
infinite-dimensional space. We can imagine this as a space of “distributions over dis-
tributions”. This introduces new technical challenges since the adversary’s model of
randomization needs to be properly defined, and more importantly, Yao’s principle does
not hold anymore. Thus, our goal is twofold: we need to carefully describe how the
adversary constructs a space of distributions over distributions and then show that we
can extend Yao’s principle to such spaces.

It is important to restate that we work under the assumption that we know an upper
bound on the standard-deviation σ and not its exact value. Although this makes our
upper bounds more powerful, it is not a source of “artificial” additional power for the
adversary when designing our lower bounds. We formalize this in Lemma 6. Further-
more, this helps us to formally demonstrate (see Proposition 2) that our aforementioned,
Yao-based, lower bound construction lies at the “border of simplicity” of any non-trivial
lower bound.

In Section 3.5 we demonstrate how the O(log r)-approximate mechanism of the single-
item case can be utilized to provide optimal approximation ratios for the multi-dimensional
case of m items as well. More specifically, we show that selling each item j separately
using the log-lottery guarantees an approximation ratio of ρ(rmax) where rmax = maxj rj
is the maximum CV across the items. If the seller has extra information that item valu-
ations are independent (that is, F is a product distribution), then switching to a lottery
that offers all items in a single full bundle can give an improved approximation ratio of

ρ(r̄), where r̄ =
√∑

j σ
2
j /
∑

j µj is the CV of the average valuation. We complement

these upper bounds by tight lower bounds in Theorem 5; these constructions have at their
core the single-item lower bound, but they take care of delicately assigning valuations to
the remaining items so that they respect independence and the common prior statistical
information. We want to highlight that the lower bound of Theorem 5 is strong enough
to hold for any number of items and any choice of coefficients of variation r1, r2, . . . , rm.
An interesting corollary of our upper bounds (Corollary 1) is that for the special case of
independent valuations with the same mean and variance, the approximation ratio is at

most ρ
(

σ
µ
√
m

)
, converging to optimality as the number of items grows large.

In Section 3.6.1 we diverge from our main model to discuss some additional “pe-
ripheral” results that can be deduced as direct corollaries of previous work combined
with our upper bounds, in a “black-box” way. First, we study the single-dimensional,
multi-bidder setting of parametric auctions introduced by Azar and Micali [10]. More
specifically, we show how the positive results derived in Azar et al. [9, Theorem 4.3] can
be further improved: running VCG with lazy reserve prices drawn from the log-lottery
guarantees a 2ρ(r) approximation to the optimal Myersonian revenue (Corollary 2).

Secondly, in Section 3.6.2 we discuss how a relaxation of our model that only assumes
knowledge of the mean (that is, without any information about the variance σ2) can
still produce good robust approximation ratios under an extra regularity assumption.
More precisely, in Proposition 3 we give an upper bound on the approximation ratio of
the mechanism that just offers the mean µ as a take-it-or-leave-it price, under the extra
assumption that the item’s valuation distribution is λ-regular (see Fig. 3.3a); we remind
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the reader that this is a general notion of regularity that interpolates smoothly between
regularity à la Myerson (λ = 1) and the Monotone Hazard Rate (MHR) condition
(λ = 0). Distributions that are λ-regular have been considered in recent papers in
the area of mechanism design (e.g., [79, 139]). Our result extends the e-approximation
for MHR distributions of Azar and Micali [8, Theorem 3]. Finally, we provide a more
detailed characterization of the relationship between the knowledge of λ-regularity and
knowledge of σ, with respect to the resulting robust approximation ratio upper bound
(see Fig. 3.3b).

Size of the coefficient of variation It is worth discussing briefly the implications of
the size of the CV, our main quantity of interest, for our results. We can observe that
our upper bounds do not increase with the number of items m; as a matter of fact,
for the case of independently distributed items with the same mean and variance, the
upper bound even decreases with respect to m. Although the CV of a distribution could
be arbitrarily large in general, one could argue that, for many practical scenarios, it is
unlikely to encounter data with very large dispersion. From a theoretical perspective,
note that the CV is actually bounded for important special classes of distributions, like
MHR (which include, e.g., the truncated normal, uniform, exponential and gamma [15])
and, more generally, λ-regular for a fixed λ < 1/2 (see (3.17)). Furthermore, for gen-
eral distributions, if one assumes that the CV of the item marginals are bounded by
a universal constant, then our bounds yield a constant robust approximation ratio to
the optimal pricing, even for correlated distributions (and regardless of the number of
items).

3.2 Preliminaries

3.2.1 Model and notation

A real nonnegative random variable will be called (µ, σ)-distributed if its expectation
is µ and its standard deviation is at most σ. We let Fµ,σ denote the class of (µ, σ)
distributions. We shall also briefly (see Lemma 6) discuss the restriction to distributions
with standard deviation of exactly σ; this subclass will be denoted by F=

µ,σ.

As mentioned in the introduction, for the most part of this chapter we study auctions
with m items and a single additive bidder, whose valuations (v1, . . . , vm) for the items
are drawn from a joint distribution F over Rm≥0. We denote the marginal distribution
of vj by Fj , and assume that it has finite mean and variance. In general, we make
no further assumptions for F ; in particular, we do not assume independence of the
random variables v1, . . . , vm nor do we enforce any regularity or continuity assumption.
For vectors ~µ = (µ1, . . . , µm) ∈ Rm>0, ~σ = (σ1, . . . , σm) ∈ Rm≥0 we denote by F~µ,~σ the
class of all m-dimensional distributions whose j-th marginal is (µj , σj)-distributed, for
all j = 1, . . . ,m.

Let Am denote the space of all truthful selling mechanisms. Then, given an m-
dimensional distribution F , we denote by
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• REV(A;F ) = E~v∼F [π(~v)], the expected revenue of A (the expectation is taken
w.r.t. F );

• WEL(A;F ) = E~v∼F [x(~v) · ~v], the expected welfare of A;

• OPT(F ) = supA∈Am REV(A;F ), the optimum revenue;

• VAL(F ) = supA∈Am WEL(A;F ), the optimum welfare. By definition, in this is
also the welfare of a VCG auction; moreover, for a single additive bidder with
a joint distribution in F~µ,~σ, this is just the sum of the marginal expectations,
VAL(F ) =

∑m
j=1 µj .

Note that, due to (2.2), we immediately have the so-called welfare bounds for the above
quantities: for any mechanism and distribution,

REV(A;F ) ≤WEL(A;F ) and OPT(F ) ≤ VAL(F ).

Our goal in this chapter is to quantify the following benchmark

APX(~µ, ~σ) = inf
A∈Am

sup
F∈F~µ,~σ

OPT(F )

REV(A;F )
, (3.1)

which we call the robust approximation ratio. The semantics are the following: a seller
chooses the best (revenue-maximizing) selling mechanism A, given only knowledge of
the means ~µ and standard deviations ~σ and then an adversary (“nature”) responds
by choosing a worst-case “valid” distribution that respects the statistical information
~µ and ~σ. Sometimes we restrict our attention to deterministic mechanisms A; that is,
mechanisms whose allocation rule satisfies x(~v) ∈ {0, 1}m, for all ~v. Under this additional
constraint, the quantity in (3.1) will be denoted by DAPX(~µ, ~σ).

For the special case of a single item (m = 1), we know from the seminal work of My-
erson [126] that every deterministic mechanism A ∈ A1 is completely determined by a
single take-it-or-leave-it price p ≥ 0; thus, we will feel free to sometimes abuse notation
and write REV(p;F ) instead of REV(A;F ) if A is the deterministic auction that sells
at price p.

Most importantly for our work, every randomized auction for a single item can be seen
as a nonnegative random variable over prices (see Carrasco et al. [34, Footnote 10]). In
particular, since the allocation rule is monotone and takes values in [0, 1], it can be
interpreted as the cumulative distribution of a certain randomization over prices, which
assigns the item with the same probability as the original mechanism.1 In this way, for
a randomized single-item auction we can abuse notation and write p ∼ A to denote that
a price p is sampled according to A. In this way, REV(A;F ) = Ep∼A[REV(p;F )].

1There are only two subtle technical issues that need to be taken into account; x need not be right-
continuous, and limv→∞ x(v) need not equal 1; we can assume these without loss of generality. Oth-
erwise, one could take the right-continuous closure of x, and either assign the remainder probability
to high prices, or apply a suitable scaling, which would only increase expected revenue.
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3.2.2 Determinism vs randomization

We would like to give some basic intuition on how randomization helps to hedge uncer-
tainty. To this end, we present a simple example where a randomized strategy beats
every price.

Example 1. Assume that we are facing a very restricted adversary who can choose
between two distributions. Distribution A has just a point mass at 1. Distribution B is
a two-point mass distribution, which returns either 0 or 2 with probability 1/2 each.

If the seller is restricted to deterministic pricing rules, it is not hard to see that their
best strategy is to post a price equal to 1 (and for the adversary to choose distribution
B), for a worst-case expected revenue of 1

2 . If the seller posts anything above 1, then the
adversary will always respond with distribution A, resulting in zero revenue. Consider
now the following randomization over prices: The seller posts a price of 1 with probability
2/3, and a price of 2 with probability 1/3. If the adversary chooses Distribution A, then
the expected revenue will be 1 · 2

3 = 2
3 . Similarly if Distribution B is chosen, then the

expected revenue becomes 1 · 2
3 ·

1
2 + 2 · 1

3 ·
1
2 = 2

3 .

Regardless of the adversarial response, a randomization over two prices strictly out-
performs the best deterministic pricing. In subsequent sections we formalize this intu-
ition, by showing a significant separation between the power of deterministic and ran-
domized mechanisms. A separation between determinism and randomization in single-
dimensional settings, but under a sample access model, has been demonstrated by Fu
et al. [74].

3.2.3 Auxiliary functions and distributions

To state our bounds, it will be convenient to define the following auxiliary functions.

Definition 1 (Functions ρD, ρ). For any r ≥ 0, let ρD(r) = ρ, resp. ρ(r) = ρ, be the
unique positive solution of equation

(ρ− 1)3

(2ρ− 1)2
= r2, resp.

1

ρ2

(
2eρ−1 − 1

)
= r2 + 1.

Plots of these functions, for small values of r, can be seen in Fig. 3.1. Their asymptotic
behaviour is given in the following lemma, whose proof is deferred to Appendix A.1
(Lemmas 38 and 39).

Lemma 1. For the functions ρD, ρ defined in Definition 1, we have the bounds and
asymptotics,

1 + 4r2 ≤ ρD(r) ≤ 2 + 4r2 for all r ≥ 0; ρ(r) = 1 + (1 + o(1)) ln(1 + r2).

We now define a specific randomized selling mechanism, which essentially corresponds
to the lottery proposed by Carrasco et al. [34, Prop. 4]:
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3.3 Single item: Deterministic pricing

Figure 3.1: The robust approximation ratio for deterministic (left) and randomized (right, blue) selling
mechanisms for a single (µ, σ)-distributed item, for small values of the coefficient of variation
r = σ/µ. The former is tight and given in Theorem 1. The latter is the upper bound given
by Theorem 2; it is asymptotically matching the lower bound (red) of Theorem 3.

Definition 2 (Log-Lottery). Fix any µ > 0 and σ ≥ 0. A log-lottery is a randomized

mechanism that sells at a price P log
µ,σ, which is distributed over the nonnegative interval

support [π1, π2] according to the cdf

F log
µ,σ(x) =

π2 ln x
π1
− (x− π1)

π2 ln π2
π1
− (π2 − π1)

,

where parameters π1, π2 are the (unique) solutions of the systemπ1

(
1 + ln

π2

π1

)
= µ (3.2a)

π1(2π2 − π1) = µ2 + σ2. (3.2b)

We will sometimes slightly abuse notation and use P log
µ,σ to refer both to the log-lottery

mechanism and the corresponding random variable of the prices.

3.3 Single item: Deterministic pricing

In this section, we begin our study of robust revenue maximization by looking at the
simplest case: one item and deterministic pricing rules. Note that Azar and Micali [10]
already established a lower bound of 1+r2 for this setting, together with an upper bound
which can be shown to be 1+

(
27
4 + o(1)

)
r2 (they actually characterized the upper bound

via the solution of a cubic equation; we provide the exact asymptotics of that solution
in Appendix A.2). Our result (Theorem 1) is a refined analysis that captures the exact
robustness ratio (and in particular the “correct” constant in the quadratic term).

29



3 Robust Revenue Maximization Under Minimal Statistical Information

Our first observation (Lemma 2) will be that the worst-case adversarial response (for
a specific selling price) can be characterized in terms of a two-point mass distribution,
which allows the problem to be solved exactly. These types of distributions have ap-
peared already in the results of Azar and Micali [8] and Carrasco et al. [34], and we will
start by introducing some notation to reason about them.

A two-point mass distribution F takes some value x with probability α and some value
y with probability 1−α, where without loss x < y. When the distribution is constrained
to have mean µ and variance exactly equal to σ2, only one free parameter remains, i.e. F
can be characterized by the position x of its first point mass. The other two parameters
can be obtained as

y(x) = µ+
σ2

µ− x
and α(x) =

σ2

σ2 + (µ− x)2 ,

by solving the first and second moment conditions µ = αx + (1 − α)y and µ2 + σ2 =
αx2 + (1−α)y2. For the remainder, we let Fx, x ∈ [0, µ), denote this distribution. Note
that the limiting case x→ µ corresponds to α(x)→ 1 and y(x)→∞, meaning that Fx
weakly converges to µ.

By first solving the innermost optimization problem in (3.1), i.e. by characterizing the
worst-case adversarial response against a specific deterministic pricing, we can derive
the robustness ratio for deterministic mechanisms:

Lemma 2. For any choice of mean µ and variance σ2, and any deterministic pricing
scheme, the worst-case robust approximation ratio is achieved over a limiting two-point
mass distribution. Formally, for any µ, σ, and any price p,

1. if p ≥ µ, then the worst-case response corresponds to playing Fx with x→ µ−, and

sup
F∈Fµ,σ

OPT(F )

REV(p;F )
=∞;

2. if 0 < p < µ, then the worst-case response corresponds to playing Fx with x→ p−,
and

sup
F∈Fµ,σ

OPT(F )

REV(p;F )
= max

{
1 +

σ2

(µ− p)2
,
µ

p
+

σ2

p(µ− p)

}
.

Proof. If p ≥ µ, then the worst-case robust approximation ratio can become arbitrarily
large by taking x → µ−, that is, x arbitrarily close to µ, so that α(x) → 1. Indeed,
we have that REV(p;Fx) ≤ p(1 − α(x)) → 0, whereas OPT(Fx) ≥ x → µ, so that the
supremum of the ratio is unbounded.

Next, let us suppose that 0 < p < µ. First, we compute the limit of the approximation
ratio for distribution Fx, as x→ p−. Observe that OPT(Fx) = max{x, (1− α(x))y(x)};
and since x < p, we sell the item with probability 1 − α(x), to obtain REV(p;Fx) =
p(1− α(x)). Therefore,

lim
x→p−

OPT(Fx)

REV(p, Fx)
= lim

x→p−
max{x, (1− α(x))y(x)}

p(1− α(x))
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3.3 Single item: Deterministic pricing

= max

{
1

1− α(p)
,
y(p)

p

}
= max

{
1 +

σ2

(µ− p)2
,
µ

p
+

σ2

p(µ− p)

}
.

Thus, it only remains to show that for any random variable X drawn from a (µ, σ)
distribution F , we have that

OPT(F )

REV(p;F )
≤ max

{
1

1− α(p)
,
y(p)

p

}
.

We first derive a lower bound on the probability of selling the item at price p via a
one-sided version of Chebyshev’s inequality, also called Cantelli’s inequality2 (see, e.g.,
[24, p. 46]),

Pr[X ≥ p] = Pr[X − µ ≥ −(µ− p)] ≥ 1− σ2

σ2 + (µ− p)2
= 1− α(p). (3.3)

Let p∗ denote the optimal take-it-or-leave-it price for distribution F , so that OPT(F ) =
p∗ Pr[x ≥ p∗]. Again, we consider two cases: if p∗ ≤ p, then we have

OPT(F )

REV(p, F )
=
p∗ Pr[X ≥ p∗]
pPr[X ≥ p]

≤ 1

1− α(p)
≤ max

{
1

1− α(p)
,
y(p)

p

}
where in the first inequality we used (3.3) and the bounds p∗ ≤ p, Pr[X ≥ p∗] ≤ 1.

Next, consider the case p∗ > p. By looking at the conditional random variable (X|X ≥
p), we observe that

p∗ Pr[X ≥ p∗]
Pr[X ≥ p]

= p∗ Pr [X ≥ p∗|X ≥ p] = REV(p∗;F |X ≥ p) ≤ E [X|X ≥ p] ; (3.4)

the inequality holds because the social welfare is always an upper bound to the revenue.

In order to bound the conditional expectation, we use a result in Mallows and Richter
[118, Eq. (1.2)]. It states that if X is a real-valued random variable with mean µ and
variance σ2 and E is a non-zero probability event, then

E[X | E]− µ ≤ σ

√
1− Pr[E]

Pr[E]
.

In our case, we use E = (X ≥ p), together with the lower bound in (3.3), to get

E [X|X ≥ p] ≤ µ+ σ

√
1

Pr[X ≥ p]
− 1 ≤ µ+ σ

√
1

1− α(p)
− 1 = µ+

σ2

µ− p
= y(p).

2Although the original statement of Cantelli’s inequality is for a random variable with variance equal
to σ2, by monotonicity the same holds if σ2 is instead an upper bound on the variance.
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3 Robust Revenue Maximization Under Minimal Statistical Information

Finally, combining the above with (3.4) yields

OPT(F )

REV(p, F )
=
p∗ Pr[X ≥ p∗]
pPr[X ≥ p]

≤ E [X|X ≥ p]
p

≤ y(p)

p
≤ max

{
1

1− α(p)
,
y(p)

p

}
,

which concludes the proof.

Theorem 1. The deterministic robust approximation ratio of selling a single (µ, σ)-
distributed item is exactly equal to

DAPX(µ, σ) = ρD(r) ≈ 1 + 4 · r2,

where r = σ/µ and function ρD(·) is given in Definition 1. In particular, this is achieved

by offering a take-it-or-leave-it price of p = ρD(r)
2ρD(r)−1 · µ.

Proof. For fixed µ and σ, Lemma 2 gives the worst-case approximation ratio for any
choice of p. Thus, from the seller’s perspective, it is clear that one should offer a price
below the mean, and furthermore the outermost optimization problem reduces to finding

ρ = inf
0<p<µ

max

{
1 +

σ2

(µ− p)2
,
µ

p
+

σ2

p(µ− p)

}
. (3.5)

We begin by analysing when the first branch of the maximum is higher than the second
branch. Some algebraic manipulation yields

1 +
σ2

(µ− p)2
≥ µ

p
+

σ2

p(µ− p)
⇐⇒ (µ− p)3 ≤ σ2(2p− µ). (3.6)

When p ≤ µ/2, the right expression is nonpositive and hence the second branch of the

maximum is highest. Next, observe that (µ−p)3

2p−µ is decreasing over p ∈ (µ/2, µ), with a
positive pole at p = µ/2, and vanishing at p = µ. Hence, for any choice of µ, σ, there
is a unique point p∗ at which (3.6) holds with equality. It follows that for p ≥ p∗ the
maximum is achieved on the first branch and for p ≤ p∗ the maximum is achieved on
the second branch.

Next, observe that 1 + σ2

(µ−p)2 is increasing on p ∈ (p∗, µ). To see that the second

branch of the maximum in (3.5) is decreasing on p ∈ (0, p∗), we take its derivative

d

dp

(
µ

p
+

σ2

p(µ− p)

)
=
−µ(µ− p)2 + σ2(2p− µ)

p2(µ− p)2
.

When p ≤ p∗ we have (by definition of p∗) that σ2(2p−µ) ≤ (µ−p)3 and hence the above
quantity is at most −1/p, which is negative. We conclude that the minimum occurs when
both branches intersect, i.e. at p = p∗; using the fact that (µ − p∗)3 = σ2(2p∗ − µ), we
can further express the value of the minimum as

ρ = 1 +
σ2

(µ− p∗)2
= 1 +

µ− p∗

2p∗ − µ
=

p∗

2p∗ − µ
.
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We can now use this to express p∗ in terms of ρ,

p∗ =
ρ

2ρ− 1
· µ; µ− p∗ =

µ(ρ− 1)

2ρ− 1
; 2p∗ − µ =

µ

2ρ− 1
.

Putting these together, we get

σ2 =
(µ− p∗)3

2p∗ − µ
= µ2 (ρ− 1)3

(2ρ− 1)2
⇐⇒ (ρ− 1)3

(2ρ− 1)2
=

(
σ

µ

)2

≡ r2;

and the desired asymptotics follow from Definition 1 and Lemma 1.
For the current proof to be self contained, we repeat here the arguments that show

the bounds and asymptotics for ρ and can be found also in Lemma 38. One can directly

check that the expression (ρ−1)3

(2ρ−1)2 is increasing and goes from 0 at ρ = 1 to∞ at ρ→∞,

so that for any nonnegative r there is a unique solution ρ ∈ [1,∞) to the above equation.
Moreover, we can write

r2 =
(ρ− 1)3

(2ρ− 1)2
=

1

4
ρ− 1

4
−

(ρ− 3
4)(ρ− 1)

4(ρ− 1
2)2

⇐⇒ ρ = 1 + 4r2 +
(ρ− 3

4)(ρ− 1)

(ρ− 1
2)2

;

since the fraction appearing on the right-hand side takes values between 0 and 1 (for
ρ ∈ [1,∞)), this gives us the desired global bounds.

3.4 Single item: Lotteries

In this section, we continue to focus on a single-item setting, but now we study the
robust approximation ratio that can be achieved by a randomized mechanism, i.e., by
randomizing over posted prices. Carrasco et al. [34] have given the explicit solution to
the robust absolute revenue problem,

sup
A∈A1

inf
F∈Fµ,σ

REV(A;F ). (3.7)

We state below a proposition that can be directly derived from their work and which
would be very useful for our setting.

Proposition 1. For µ > 0, σ ≥ 0, the value of the maximin problem (3.7) is given by

sup
A∈A1

inf
F∈Fµ,σ

REV(A;F ) = π1,

where π1 is derived by the unique solution of the system (3.2a)-(3.2b). Moreover, this

value is achieved by the log-lottery P log
µ,σ described in Definition 2.

Proof. In this proof we refer to multiple points in the paper from Carrasco et al. [34].
The optimal mechanism for (3.7) is given by the allocation rule (see their Proposition 4)

x(v) =


0, for v ≤ π1,

λ1 ln v
π1

+ 2λ2(v − π1), for π1 ≤ v ≤ π2,

1, for π2 ≤ v,
(3.8)
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3 Robust Revenue Maximization Under Minimal Statistical Information

and the value of the maximin problem (3.7) is (see end of page 2743)

sup
A∈A1

inf
F∈Fµ,σ

REV(A;F ) = λ0 + λ1µ+ λ2(µ2 + σ2), (3.9)

where the values of λ0, λ1, λ2 are given by (see (B.4-B.6))

λ0 = − π1(2π2 − π1)

2
(
π2 ln π2

π1
− (π2 − π1)

) ;λ1 =
π2

π2 ln π2
π1
− (π2 − π1)

;λ2 = − 1

2
(
π2 ln π2

π1
− (π2 − π1)

) .
(3.10)

Note that, as we explained at the end of Section 3.2.1, the allocation rule x(v) from
(3.8) can be interpreted as the cdf of a randomization over prices which forms an equiv-
alent mechanism. Moreover, by replacing the values of λ0, λ1, λ2 as in (3.10) we get

x(v) =
π2 ln v

π1
− (v − π1)

π2 ln π2
π1
− (π2 − π1)

,

which is exactly the log-lottery of Definition 2.

Finally, by replacing the values of λ0, λ1, λ2 from (3.10), and the values of µ and σ
from (3.2a),(3.2b), into (3.9), the value of the maximin problem can be greatly simplified
to

λ0 + λ1µ+ λ2(µ2 + σ2)

= − π1(2π2 − π1)

2
(
π2 ln π2

π1
− (π2 − π1)

) +
π2π1

(
1 + ln π2

π1

)
π2 ln π2

π1
− (π2 − π1)

− π1(2π2 − π1)

2
(
π2 ln π2

π1
− (π2 − π1)

)
=
π1

(
π2 + π2 ln π2

π1
− 2π2 + π1

)
π2 ln π2

π1
− (π2 − π1)

= π1,

as we wanted to prove.

The above characterization can be directly used to derive a logarithmic upper bound
on the robust approximation ratio:

Theorem 2. The robust approximation ratio of selling a single (µ, σ)-distributed item
is at most

APX(µ, σ) ≤ ρ(r) ≈ 1 + ln(1 + r2),

where r = σ/µ and function ρ is given in Definition 1. In particular, this is achieved by
the log-lottery described in Definition 2.

3Carrasco et al. [34] define their solutions in terms of the moments k1 ≡ µ and k2 ≡ µ2 + σ2.
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Proof. By Proposition 1, if A is the log-lottery from Definition 2, then for any (µ, σ)
distribution F we have that REV(A;F ) ≥ π1. Thus, using the trivial upper bound
of OPT(F ) ≤ µ for the optimal revenue, we can derive an upper bound of µ

π1
on the

approximation ratio. For convenience, let us denote this by ρ ≡ µ/π1.

Manipulating (3.2a) we get

π1

(
1 + ln

π2

π1

)
= µ ⇐⇒ ln

π2

π1
=

µ

π1
− 1 ⇐⇒ π2

π1
= eρ−1

and so from (3.2b) we can derive

π1(2π2−π1) = µ2+σ2 ⇐⇒ π2
1

µ2

(
2
π2

π1
− 1

)
=
σ2

µ2
+1 ⇐⇒ 1

ρ2

(
2eρ−1 − 1

)
= r2+1,

which is exactly the equation in Definition 1. The asymptotic behaviour follows from Lemma 1.

By looking at the proof of the previous theorem, it is not difficult to see that our
upper bound is also an upper bound with respect to welfare (which for a single (µ, σ)
distribution is simply given by µ). If we were interested in comparing the revenue of our
auction to the maximum welfare, then it immediately follows from Proposition 1 that
the bound is exact and tight. However, our main goal in the current chapter is to provide
tight bounds with respect to the optimal revenue, and achieving this requires some extra
work. The rest of our section is devoted to proving and discussing the following lower
bound, which asymptotically matches that of Theorem 2.

Theorem 3. For a single (µ, σ)-distributed item, the robust approximation ratio is at
least

APX(µ, σ) ≥ 1 + ln(1 + r2),

where r = σ/µ.

Before we go into the actual construction of our lower bound instances, we need some
technical preliminaries and to recall Yao’s principle (see, e.g., [23, Sec. 8.3] or [125,
Sec. 2.2.2]). As we already mentioned (see Section 3.2.1), a randomized mechanism
A ∈ A1 can be interpreted as a randomization over prices p ∼ A. From (3.1), we are in-
terested in the value of a game in which the mechanism designer plays first, randomizing
over posted prices, and the adversary plays second, choosing a worst-case distribution.
Intuitively, Yao’s principle states that this is at least the value of another game in which
the adversary plays first, randomizing over their choices, and the mechanism designer
plays second, choosing a deterministic response, i.e., a single posted price.

However, to define this second game formally, we would have to first explain what
it means for the adversary to randomize over probability distributions, which form an
infinite-dimensional space. In order to avoid technical or measure-theoretical issues, we
focus on a specific model of randomization, which in the literature gives rise to the
concept of mixture or contagious distribution (see, e.g., Mood et al. [121, Ch. III.4]).
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3 Robust Revenue Maximization Under Minimal Statistical Information

Definition 3. Let F be a class of cumulative distribution functions over the nonnegative
reals, and consider any measure space over a ground set T . By an F-mixture with
parameter space T , we mean a pair (Θ,F ), where Θ is a probability measure in T , and
F is a measurable function of type F : R≥0 × T → R, whose sections are in F; i.e. for
any parameter θ ∈ T , the function

Fθ : R≥0 → R, Fθ(x) = F (x; θ),

is a cumulative distribution in F.
Given an F-mixture (Θ,F ), we denote its posterior distribution by Eθ∼Θ[Fθ]; this is

specified by the cdf

E
θ∼Θ

[Fθ](z) =

∫
F (z; θ)dΘ(θ) = E

θ∼Θ
[Fθ(z)].

When F = Fµ,σ is the class of (µ, σ) distributions, we shall let ∆µ,σ denote the class
of (µ, σ) mixtures, that is, the class of mixtures over Fµ,σ (with arbitrary, unspecified
parameter space). We can interpret (Θ,F ) as a convex combination of distributions,
so that the cdf of Eθ∼Θ[Fθ] is the convex combination of the corresponding cdfs; al-
ternatively, Eθ∼Θ[F ] can be seen as the cdf of a random variable that first samples a
distribution Fθ according to θ ∼ Θ, and then samples a value z according to Fθ.

Now that we have carefully described the adversarial model, we can formally state a
version of Yao’s principle (Lemma 4 below) that will help us prove lower bounds. Since
this applies on “non-standard” continuous spaces, for completeness we need to formally
derive it “from scratch”; this is what we do in the next lemma.

Lemma 3. Let (X,ΣX ,F) and (Y,ΣY ,G) be arbitrary probability spaces,4 i.e.

• ΣX and ΣY are σ-algebras over X and Y respectively;

• F and G are probability measures over (X,ΣX) and (Y,ΣY ) respectively.

Let also h : X × Y → R≥0, g : Y → R>0 be measurable functions. Then5

sup
y∈Y

g(y)

Ex∼F [h(x, y)]
≥ inf

x∈X

Ey∼G [g(y)]

Ey∼G [h(x, y)]
.

Proof. Let α be an arbitrary nonnegative real number, and suppose that

inf
x∈X

Ey∼G [g(y)]

Ey∼G [h(x, y)]
≥ α, (3.11)

4For formal definitions of the measure-theoretic notions used in this lemma see, e.g., Tao [148].
5Throughout this lemma, we handle ratios of the form g

h
where g > 0 and h ≥ 0. For convenience, if

h = 0 we interpret the ratio as being equal to ∞. This means that, for any nonnegative real number
α, we have the following relation, even when h = 0:

g

h
≥ α ⇐⇒ g ≥ α · h.
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that is, Ey∼G [g(y)] ≥ α supx∈X Ey∈G [h(x, y)]. This implies that, for every x ∈ X, we
have Ey∼G [g(y)] ≥ αEy∈G [h(x, y)]. Hence, by sampling x according to F , we also have

Ey∼G [g(y)] ≥ αEx∼F [Ey∼G [h(x, y)]] = αEy∼G [Ex∼F [h(x, y)]];

the equality holds due to Tonelli’s theorem (see, e.g., Tao [148, Theorem 1.7.15]), since h
is measurable and nonnegative, and F , G are finite measures. By the previous inequality
between expectations, we must conclude that it holds for some realization of G, that is,
there must exist y ∈ supp(G) such that g(y) ≥ αEx∼F [h(x, y)]. This implies that

g(y)

Ex∼F [h(x, y)]
≥ α, and hence sup

y∈Y

g(y)

Ex∼F [h(x, y)]
≥ α.

As α was any real number that satisfies (3.11), the desired inequality follows.

Now we are ready to apply this novel version of Yao’s principle for the robust approx-
imation ratio in our model.

Lemma 4. For any µ, σ, we have the following lower bound on the robust approximation
ratio,

inf
A∈A1

sup
F∈Fµ,σ

OPT(F )

REV(A;F )
≥ sup

(Θ,F )∈∆µ,σ

inf
p≥0

Eθ∼Θ[OPT(Fθ)]

Eθ∼Θ[REV(p;Fθ)]
.

Proof. Start by fixing an arbitrary truthful mechanism A ∈ A1 and an arbitrary (µ, σ)
mixture (Θ,F ) over parameter space T . Since A can be interpreted as a randomization
over prices, (R≥0,L, A) is a well-posed probability space.

Next, define the functions

h : R≥0 × T → R, g : T → R;

h(p, θ) = REV(p;Fθ); g(θ) = OPT(Fθ).

Clearly, h is nonnegative and g is positive since Fθ is (µ, σ)-distributed. We just need
to argue that both are measurable. Note that

h(p, θ) = REV(p;Fθ) = p(1− Fθ(p−)) = inf
y<p

p(1− F (y; θ)).

As F is measurable and taking extrema preserves measurability, so is h. In a similar
way, g is measurable as it can be expressed as the supremum

g(θ) = OPT(Fθ) = sup
p≥0

REV(p;Fθ).

Hence, we can directly apply Lemma 3 and conclude that

sup
F∈Fµ,σ

OPT(F )

Ep∼A[REV(p;F )]
≥ sup

θ∈T

OPT(Fθ)

Ep∼A[REV(p;Fθ)]
≥ inf

p≥0

Eθ∼Θ[OPT(Fθ)]

Eθ∼Θ[REV(p;Fθ)]
.

As A and (Θ,F ) were arbitrary, we can take the supremum on the right-hand side
over (µ, σ) mixtures, and the infimum on the left-hand side over truthful mechanisms;
the result follows.

37



3 Robust Revenue Maximization Under Minimal Statistical Information

Note that, by using (2.3), we can rewrite the denominator of the previous quantity as
follows:

sup
p≥0

E
θ∼Θ

[REV(p;Fθ)] = sup
p≥0

E
θ∼Θ

[p(1− Fθ(p−))]

= sup
p≥0

p

(
1− E

θ∼Θ
[Fθ(p−)]

)
= sup

p≥0
p

(
1− E

θ∼Θ
[Fθ](p−)

)
= sup

p≥0
REV

(
p; E
θ∼Θ

[Fθ]

)
= OPT

(
E
θ∼Θ

[Fθ]

)
.

The second equality comes from linearity of expectation and the third one follows from
the definition of a mixture distribution. Putting all these together, we arrive at the
following key technical result:

Lemma 5. For any µ, σ, the robust approximation ratio is lower bounded by

APX(µ, σ) ≥ sup
(Θ,F )∈∆µ,σ

Eθ∼Θ[OPT(Fθ)]

OPT(Eθ∼Θ[Fθ])
. (3.12)

From a practical perspective, the above result has a positive consequence. It al-
lows us to obtain lower bounds by constructing a single (µ, σ) mixture, (Θ,F ), and
calculating the expected optimal revenue before and after the realization of θ ∼ Θ.
Our goal is to make this ratio as high as possible and, ideally, match the competi-
tive ratio of the log-lottery pricing. From this, we can gain some insight into how to
construct a “good” mixture. By looking at the right-hand side of the inequality in
Lemma 4, we would intuitively expect that different posted prices p yield similar rev-
enues of Eθ∼Θ [REV(p;Fθ)] = REV (p;Eθ∼Θ[Fθ]). Thus, we would aim for a mixture
(Θ,F ) for which the posterior distribution is equal-revenue for at least some subset of
its support.

From a theoretical perspective, the quantity in (3.12) is interesting by itself. One can
check that the Myerson operator is convex, that is, the revenue achieved by a convex
combination of distributions can only be smaller than the convex combinations of the
corresponding revenues. Thus, by Jensen’s inequality, the ratio in (3.12) is always at least
1. On the other hand, for a linear functional L, we have that Eθ∼Θ[L(Fθ)] = L(Eθ∼Θ[Fθ]).
Thus, (3.12) somehow attempts to quantify the extent to which OPT is nonlinear, or in
other words, it can be understood as a measure of convexity of the Myerson operator. In
any case, we can use this result to construct lower bound instances and prove the main
result of this section:

Proof of Theorem 3. We shall construct a (µ, σ) mixture over two-point mass distribu-
tions. Each two-point mass distribution Fε is given by a unique choice of parameter
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3.4 Single item: Lotteries

(a) Two-point mass distribution
with one mass at 0 and an-
other at µ/ε.

(b) Mixing in parameter space;
each ε corresponds to a two-
point mass distribution as in
Fig. 3.2a. Note that this dis-
tribution has a mass at ε0.

(c) Posterior distribution from
the mixture obtained via
Figs. 3.2a and 3.2b.

Figure 3.2: The cdfs of the various distributions used in the lower bound construction of Theorem 3.

ε ∈ (0, 1]; Fε returns 0 with probability 1− ε and µ/ε with probability ε. Note that Fε
has mean µ and variance µ2(1/ε − 1). The upper bound of σ2 on the variance implies
that we can only take values of ε ≥ ε0 ≡ 1

1+r2 , where r is the coefficient of variation (our
quantity of interest).

Our next step is to describe the convex mixture of these distributions. Define a random
variable with support [ε0, 1] and distributed according to B as follows:

• B has a point mass at ε0 of size c;

• B is continuous over (ε0, 1], with density β(ε) = c/ε.

The value of c is given by c = 1
1+ln(1+r2)

and is chosen as a normalizing constant; indeed,

1 = E
ε∼B

[1] = c+ c ln
1

ε0
= c

(
1 + ln

(
1 + r2

))
.

Our (µ, σ) mixture distribution thus corresponds to sampling Fε where ε ∼ B. Next,
we describe the posterior distribution G = Eε∼B[Fε]. Its cumulative function can be
seen in Fig. 3.2c.

• Mass at 0: as each Fε has a point mass at 0, so does G. The value of this mass is
given by

E
ε∼B

[mass of Fε at 0] =

∫ 1

ε0

(1− ε)β(ε)dε+ (1− ε0)c = c ln
1

ε0
= 1− c;

• Mass at µ/ε0: as B has a point mass at ε0 and Fε0 has a point mass at µ/ε0, this
implies that G has a point mass at µ/ε0 of size cε0;
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3 Robust Revenue Maximization Under Minimal Statistical Information

• cdf in [µ, µ/ε0): for each z ∈ [µ, µ/ε0), Fε(z) is (1 − ε) for ε < µ/z and 1 for
ε ≥ µ/z; thus the cdf of G can be computed as

G(z) =

∫ µ/z

ε0

(1− ε)β(ε)dε+

∫ 1

µ/z
β(ε)dε+ (1− ε0)c = 1− cµ

z
.

We can interpretG(z) as a truncated equal-revenue distribution over the interval [µ, µ/ε0),
with additional point masses at 0 and µ/ε0. In particular, every posted price in [µ, µ/ε]
yields the same (optimal) revenue, and OPT(G) = cµ = µ

1+ln(1+r2)
. On the other hand,

note that for every ε > 0 we have OPT(Fε) = µ, so Eε∼B[OPT(Fε)] = µ. Plugging these
into (3.12) yields a lower bound of 1/c = 1 + ln(1 + r2) as desired.

From the previous proof, some further discussion and remarks are in order. Note
that our mixture uses distributions Fε, which for ε > ε0 have a variance strictly smaller
than σ2. Since we have defined our adversarial model to play (µ, σ) distributions, such
instances are allowed. However, one may wish to ensure that the adversary only picks
distributions in F=

µ,σ (i.e. with exact equality on the variance); this might be relevant,
for example, if the seller had extra information about the exact value of σ; or, from a
theoretical perspective, such a restriction of the adversary would only make our lower
bound more “clear” and powerful. We shall now argue that indeed our assumption
on having just a bound on the standard deviation, is not only a technical convenience
(and, arguably, more realistic), but also is without loss of generality for our bounds.
Intuitively, for any mechanism A and any (µ, σ) distribution F , one can “perturb” F into
a distribution in F=

µ,σ having nearly the same approximation ratio. Below we formalize
this intuition for single-item settings, although it is not hard to see how to generalize it
to higher dimensions.

Lemma 6. For single-item settings, the restriction of the robust approximation problem
from (µ, σ) distributions to distributions in F=

µ,σ does not change its value. Formally, for
any µ > 0, σ ≥ 0, and any mechanism A, we have

sup
F∈Fµ,σ

OPT(F )

REV(A;F )
= sup

F∈F=
µ,σ

OPT(F )

REV(A;F )
;

and hence

inf
A∈A1

sup
F∈Fµ,σ

OPT(F )

REV(A;F )
= inf

A∈A1

sup
F∈F=

µ,σ

OPT(F )

REV(A;F )
.

Proof. Let µ and σ be given, and let A be any mechanism and F0 any (µ, σ) distribution.
Suppose that the variance of F0 is σ̃2 < σ2. For each δ ∈ (0, 1], let us define the perturbed
distribution Fδ as the following convex combination of distributions:

• with probability 1− δ, sample a value according to F0;

• with probability δ, sample a value according to the rare event distribution that is
0 with probability 1− ε and µ/ε with probability ε;
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3.4 Single item: Lotteries

• the value of ε is chosen so that Fδ has variance exactly equal to σ2; in other words,
it is obtained by solving the system

(1− δ)(µ2 + σ̃2) + δµ2/ε = µ2 + σ2 =⇒ ε =
δµ2

δµ2 + σ2 − (1− δ)σ̃2
.

Note that, for each δ, Fδ has the desired mean of µ as it is the convex combination
of two distributions of mean µ. Moreover, as δ → 0, also ε → 0, so that Fδ weakly
converges to F0. Finally, we have the trivial bounds

REV(A;Fδ) ≤ (1− δ)REV(A;F0) + δµ; OPT(Fδ) ≥ (1− δ)OPT(F0),

which can be combined to yield

OPT(Fδ)

REV(A;Fδ)
≥ (1− δ)OPT(F0)

(1− δ)REV(A;F0) + δµ
.

By letting δ go to 0, we have

sup
F∈F=

µ,σ

OPT(F )

REV(A;F )
≥ lim

δ→0

(1− δ)OPT(F0)

(1− δ)REV(A;F0) + δµ
=

OPT(F0)

REV(A;F0)
.

Taking suprema over F0 on the right-hand side yields the first statement of our lemma;
and taking infima over A on both sides yields the last statement.

It should also be mentioned that, in principle, we could accommodate the proof of
Theorem 3 to handle distributions with exact equality with respect to σ, with minor
technical modifications. More precisely, one would define Fε,δ as a perturbation of Fε as
in the proof of Lemma 6. This would yield an approximation ratio that depends on δ,
which would then be taken in the limit δ → 0.

Another observation is that the “bad instances” that we used for Theorem 3 were
two-point mass distributions, with one of the points being 0. Note that these differ from
the instances we used in the deterministic lower bounds (Lemma 2, Theorem 1), which
were two-point mass distributions with exact variance of σ2. These latter instances were
actually shown in [34] to be worst-case distributions for their objective function, and
they were also used in Azar and Micali [10] to prove maximin optimality in their model.
Thus, it would be natural to wonder whether such instances could have been actually
enough to prove a matching lower bound in the randomized setting. Below we answer
this question in the negative; in other words, we prove a constant upper bound when
the adversary is forced to pick one of these distributions.

Proposition 2. For every choice of µ, σ, there is a randomized mechanism A that
achieves (at least) a 1

4 -fraction of the optimal revenue on any distribution F that is a
two-point mass with mean µ and variance σ2. In particular, A is the mechanism that
offers price 1

2µ with probability 1
2 and µ+ σ2

µ with probability 1
2 .
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3 Robust Revenue Maximization Under Minimal Statistical Information

Proof. Let us analyse the performance of A on a two-point mass distribution Fx, say with
a point mass at x of size α(x) and another at y(x) of size 1− α(x), with x < µ < y(x).
If 1

2µ ≤ x then the mechanism chooses with probability 1/2 a price that always sells,
guaranteeing revenue of µ

4 , which is also a 1/4-fraction of OPT(F ). Next, suppose that
x ≤ 1

2µ. This implies

1− α(x) =
(µ− x)2

σ2 + (µ− x)2
, y(x) = µ+

σ2

µ− x
≤ µ+ 2

σ2

µ
,

since y(x) is a nondecreasing function. Moreover, we have that

(1− α(x))y(x) =
σ2(µ− x) + (µ− x)2µ

σ2 + (µ− x)2
≥ µ

2

σ2 + 2(µ− x)2

σ2 + (µ− x)2
≥ µ

2
≥ x,

so that OPT(F ) is achieved by pricing at y(x). Our mechanism A chooses with probabil-

ity 1/2 a price of µ+ σ2

µ , which sells with probability 1−α(x). Thus the approximation
ratio is at least

1
2 (1− α(x))

(
µ+ σ2

µ

)
(1− α(x))y(x)

≥ 1

2

µ+ σ2

µ

µ+ 2σ
2

µ

=
1

4

σ2 + µ2

σ2 + 1
2µ

2
>

1

4
;

so that the mechanism achieves a 1/4-fraction of OPT(F ) in this case as well.

The proposition above implies that the lower bound from Theorem 3 would break
down, if the adversary is restricted to the family of two-point mass distributions with
exact variance of σ2.

3.5 Multiple items

In this section we finally consider the more general setting of a single additive buyer
with valuations for m items. As it turns out, the main tools developed in Section 3.4
can be leveraged very naturally to produce similar upper and lower bounds. We begin
by proving upper bounds for both correlated and independent item valuations.

Theorem 4. The robust approximation ratio of selling m (possibly correlated) (~µ, ~σ)-
distributed items is at most

APX(~µ, ~σ) ≤ ρ(rmax), where rmax = max
j=1,...,m

rj , rj =
σj
µj

and function ρ is given in Definition 1. This is achieved by selling each item j separately
using the log-lottery P log

µj ,σj from Definition 2.
Furthermore, if the items are independently distributed, the above bound improves to

APX(~µ, ~σ) ≤ ρ(r̄), where r̄ =
σ̄

µ̄
, µ̄ =

m∑
j=1

µj , σ̄ =

√√√√ m∑
j=1

σ2
j ,

achieved by selling the items in a single full-bundle using the log-lottery P log
µ̄,σ̄ from Def-

inition 2.
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3.5 Multiple items

Proof. Let Xj , j = 1, . . . ,m, be (µj , σj)-distributed random variables corresponding to
the marginals of the joint m-dimensional valuation distribution F . Their sum Y =∑m

i=1Xi has an expected value of E [Y ] =
∑m

j=1 µj = µ̄ = VAL(F ). Furthermore, if

X1, . . . , Xj are independent, its variance is Var [Y ] =
∑m

j=1 Var [Xj ] ≤
∑m

j=1 σ
2
j = σ̄2.

Denote the distribution of Y by FY . Also, recall that the optimal revenue of F cannot
exceed the expected welfare, thus we have the trivial upper bound of

OPT(F ) ≤ VAL(F ) =
m∑
j=1

µj ,

no matter if the distributions are independent or not.
For our general upper bound first, observe that selling item j using a lottery Aj , where

Aj = P log
µj ,σj is the log-lottery of Definition 2, guarantees (Theorem 2) a revenue of at

least
REV(Aj ;Fj) ≥

µj
ρ(rj)

. (3.13)

Thus, if A is the mechanism that sells independently each item j using Aj , we can get
the following approximation ratio upper bound for our total revenue

OPT (F )

REV(A;F )
=

OPT (F )∑m
j=1 REV(Aj ;Fj)

≤
∑m

j=1 µj∑m
j=1

µj
ρ(rj)

≤ ρ(rmax),

where the last inequality holds due to the monotonicity of ρ(·): ρ(rj) ≤ ρ(rmax) for all j.
For the case of independent valuations, observe that a feasible selling mechanism for

our items is to bundle them all together and treat them as a single item, i.e., price their
sum of valuations Y . Since Y is (µ̄, σ̄)-distributed, offering a log-lottery A = P log

µ̄,σ̄ for Y
results in an approximation ratio guarantee of

APX(~µ, ~σ) ≤ OPT (F )

REV(A;FY )
≤ E [Y ]

1
ρ(r̄) E[Y ]

= ρ(r̄),

for r̄ = σ̄/µ̄.
Finally, to verify that ρ(r̄) ≤ ρ(rmax), due to the monotonicity of ρ(·) it is enough to

see that

r̄ =
σ̄

µ̄
=

(∑m
j=1 σ

2
j

)1/2

µ̄
≤
∑m

j=1 σj

µ̄
=

∑m
j=1 µjrj∑m
j=1 µj

is a weighted average of r1, r2, . . . , rm, and thus at most rmax.

Corollary 1. The robust approximation ratio of selling m independently (µ, σ)-distributed
items is at most

APX(~µ, ~σ) ≤ ρ
(

r√
m

)
,

where r = σ/µ, achieved by selling the items in a single full-bundle using the mechanism
given in Theorem 2.
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3 Robust Revenue Maximization Under Minimal Statistical Information

Proof. In the proof of Theorem 4, if X1, . . . , Xm are independent random variables with
mean µ and standard deviation at most σ, then for their sum Y we have µ̄ = m · µ and
σ̄ ≤
√
mσ2 =

√
mσ.

Remark. For deterministic mechanisms, it is not difficult to see that the robust ap-
proximation ratio of selling m (possibly correlated) (~µ, ~σ)-distributed items is at most
DAPX(~µ, ~σ) ≤ ρ̃(rmax) (where ρ̃ is given in Appendix A.2); just replace ρ by ρ̃ in the
proof of Theorem 4. In particular, the validity of (3.13) is implied by (A.1).

We make a few observations at this point. Notice that when moving from a single
item to many items, our approximation guarantees do not degrade; in particular, the
robust approximation ratio is at most that of the “worst” item (i.e. the item with the
highest coefficient of variation). In fact, for m independently (µ, σ)-distributed items
the approximation ratio even converges to optimality (Corollary 1); this can be seen as
a reinterpretation of the known result that full-bundling is asymptotically optimal for
an additive bidder and many i.i.d. items (see Hart and Nisan [90, A.5.]), but in our
framework of minimal statistical information.

Although the mechanisms presented in Theorem 4 are extremely simple (lotteries over
separate pricing or bundle pricing), we can actually show asymptotically matching lower
bounds for any choice of the coefficients of variation:

Theorem 5. Fix any positive integer m and positive real numbers r1, . . . , rm, and let r =
maxj rj. Then, for any ε > 0, there exist ~µ = (µ1, . . . , µm) ∈ Rm>0, ~σ = (σ1, . . . , σm) ∈
Rm≥0 with rj = σj/µj, such that

APX(~µ, ~σ) ≥ 1− ε+ ln(1 + r2).

Furthermore, this lower bound is achieved by independent (µj , σj)-distributions.

Proof. Let m, r1, . . . , rm, ε be as in the statement of the theorem, and without loss
assume maxj rj = r1. Let δ > 0 be chosen such that δ ln(1 + r2)(1 + ln(1 + r2))2 < ε.
We shall choose the values for the mean and variance as

µ1 = 1, σ1 = r1,

µj =
δ

m− 1
, σj = rj

δ

m− 1
for j ≥ 2.

The idea is that we create a “bad” instance in which items 2, . . . ,m are rare event
distributions with very little welfare and so their contribution to the revenue will be
negligible. To that end, we must first introduce some notation. For every item j ≥ 2,
denote

pj =
1

1 + r2
j

, αj = (1 + r2
j )

δ

m− 1
,

and for every S ⊆ {2, . . . , n}, i.e. for every subset of the “low” items,

pS =
∏
j∈S

pj ·
∏

j 6∈S∪{1}

(1− pj).
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Also, define the event

ES =

∧
j∈S

(vj = αj)

 ∧
 ∧
j /∈S∪{1}

(vj = 0)

 .
Next, let A be any m-dimensional truthful mechanism, i.e.. a mechanism for selling m

items to a single bidder. For each S ⊆ {2, . . . , n}, let AS be the 1-dimensional mechanism
induced by event ES ; intuitively, this mechanism allocates according to A with the values
vj set as in ES , but discounting the payment by the welfare from items in S. Formally,
if A is defined by allocation and payment rules, A = (~x, π), then AS = (xS , πS) can be
defined as

xS(v1) = x1(v1, ~v−1), πS(v1) = π(v1, ~v−1)− ~v−1 · ~x−1(0, ~v−1),

where ~v−1 = (v2, . . . , vm) and, for j ≥ 2, we have vj = αj if j ∈ S; and vj = 0 if j 6∈ S.
One can directly check that AS defines a truthful mechanism.

Now define Ā =
∑

S pSAS to be the convex combination of mechanisms AS . This can
be interpreted as the one-dimensional mechanism that samples a subset S ⊆ {2, . . . , n}
with probability pS and then runs mechanism AS . Finally, we apply Theorem 3 that
ensures the existence of a “bad” single-item distribution for mechanism AS , i.e. a distri-
bution F1 with mean µ1 and standard deviation σ1 such that

REV(Ā;F1) ≤ OPT(F1)

1 + ln(1 + r2)
. (3.14)

Each of the remaining distributions, Fj for j = 2, . . . ,m, is a rare event distribution
that assigns a mass of pj on value αj , and a mass of 1 − pj on value 0. It is not hard
to see that Fj has the desired mean of µj and variance of σ2

j . To conclude the proof,
let F = F1 × · · · × Fm be the product distribution corresponding to item-independent
valuations; it only remains to show that

OPT(F )

REV(A;F )
≥ 1− ε+ ln(1 + r2

1).

We first recall a standard revenue-decomposition inequality (see the proof of Hart and
Nisan [90, Lemma 8]). For any S ⊆ {2, . . . , n}, we know that

REV(A;F1 × · · · × Fm|ES) ≤ REV(AS ;F1) + VAL(F2 × · · · × Fm|ES).

By the construction of our two-point mass distributions Fj , j ≥ 2, we know that ES
form a partition of all possible valuation profiles, each event occurring with probability
pS ; in this way, we can sum over the conditional expected revenues,

REV(A;F ) =
∑
S

pSREV(A;F1 × · · · × Fm|ES)

≤
∑
S

pS (REV(AS ;F1) + VAL(F2 × · · · × Fm|ES))
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= REV

(∑
S

pSAS ;F1

)
+
∑
S

pSVAL(F2 × · · · × Fm|ES)

≤ OPT(F1)

1 + ln(1 + r2)
+ VAL(F2 × · · · × Fm). (3.15)

Next, we consider two cases. If REV(A;F ) ≤ 1
(1+ln(1+r2))2 , then recall that by the

mechanism presented in Theorem 2 one can extract revenue of at least 1
1+ln(1+r2)

from

F1, hence
OPT(F )

REV(A;F )
≥ 1/(1 + ln(1 + r2))

1/(1 + ln(1 + r2))2
= 1 + ln(1 + r2).

Hence we can assume that REV(A;F ) ≥ 1
(1+ln(1+r2))2 . Note that by selling the items

separately, and in particular using a price of αj for items j = 2, . . . ,m we can lower
bound the optimal revenue by

OPT(F1, F2, . . . , Fm) ≥ OPT(F1) +

m∑
j=2

OPT(Fj) = OPT(F1) + VAL(F2 × · · · × Fm).

(3.16)
Using this bound, together with the derivation in (3.15) and the fact that VAL(F2 ×
· · · × Fm) = δ, yields

OPT(F )

REV(A;F )
≥ OPT(F1) + δ

REV(A;F )

≥ (1 + ln(1 + r2))(REV(A;F )− δ) + δ

REV(A;F )

= 1 + ln(1 + r2)− δ ln(1 + r2)

REV(A;F )

≥ 1 + ln(1 + r2)− δ ln(1 + r2)(1 + ln(1 + r2))2

≥ 1 + ln(1 + r2)− ε,

as we wanted to prove.

One observation at this point is that our result for multiple items is in line with the
main result of Carroll [35], but for the robust approximation ratio objective and in our
framework of minimal statistical information. Carroll also considers a multi-dimensional
setting with m items and a single additive buyer. In contrast to ours, the seller has full
knowledge of the marginal distributions (but again does not know the joint distribution)
and wants to optimize the maximin expected revenue. A crucial common point with our
model is that the seller knows nothing about the correlation between the items. Similar
to our main result, he proves that selling the items separately is maximin optimal. In
other words, with no information regarding correlations, the seller chooses to never
bundle items. A possible interpretation of this result is the following: We know that for
some correlation structures, bundling works fine, while for others, it can be very bad.
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Thus, the seller, who wants to be robust against an unknown, possibly correlated joint
distribution, might hesitate to sell as a single unit items with no information about their
correlation. At the same time, the seller can calculate the optimal revenue from selling
each item separately in Carroll’s model. Combining these two facts intuitively makes
selling separately a natural candidate for maximin optimality of the expected revenue.
Our result supports this interpretation for the ratio objective and partial distributional
knowledge of the marginals. Even when facing uncertainty for the revenue from a single
item, the seller still chooses not to bundle items when the correlation structure is entirely
unknown.

3.6 Further results

3.6.1 Parametric auctions with lazy reserves

In this section, we present (Corollary 2) an additional immediate consequence of our
results to the setting of Azar et al. [9]. Since this is not the main focus of our work,
we refer to the above papers, as well as Hartline [91, Ch. 4] for formal definitions.
The key components are that we consider a single-dimensional, matroid-constrained
environment with n bidders, meaning that the set of feasible allocations forms a matroid
over {1, . . . , n}. A class of mechanisms of particular interest are called Lazy-VCG with
reserve prices (P1, . . . , Pn), where P1, . . . , Pn are nonnegative random variables. This
auction works by first selecting a welfare-maximizing set W of candidate winners (i.e.,
running a VCG auction) and then offering to an agent i ∈ W a take-it-or-leave-it price
sampled according to Pi. An important result in this setting is the following black-box
reduction from many bidders to one bidder with good performance guarantees (see also
Chawla et al. [40, Thm. A.3]):

Theorem 6 (Azar et al. [9]). Assume a single-dimensional, matroid-constrained envi-
ronment with n bidders having valuations drawn independently from regular distributions
F1, F2, . . . , Fn. If P1, . . . , Pn are nonnegative random variables such that for all players i

Ep∼Pi [REV(p;Fi)] ≥ c1 ·OPT(Fi) and Ep∼Pi [WEL(p;Fi)] ≥ c2 ·VAL(Fi)

for constants c1, c2 ∈ [0, 1], then Lazy-VCG with random reserves (P1, . . . , Pn) guarantees
(in expectation) a 1

2c1-fraction of the optimal revenue and a c2-fraction of the optimal
welfare.

As an immediate consequence, since our log-lotteries from Section 3.4 satisfy the
conditions of Theorem 6 with a suitable choice of c1, c2, we get the following:

Corollary 2. Assume a single-dimensional, matroid-constrained environment with n
bidders having independent regular valuations with mean µi and standard deviation σi.
Then Lazy-VCG with a reserve for player i drawn from the log-lottery P log

µi,σi (see Defini-
tion 2) guarantees a 2ρ(r)-approximation to the optimal revenue and a ρ(r)-approximation
to the optimal welfare, where r = maxi

σi
µi

and function ρ(·) is defined in Definition 1.
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Proof. Take c1 = c2 = 1
ρ(r) ≤

1
ρ(σi/µi)

for all i. Note that the welfare bounds come “for

free” since for any mechanism A ∈ A1 we have WEL(A;Fi) ≥ REV(A;Fi) and the upper
bound in Theorem 2 was derived with respect to VAL(Fi) = µi.

3.6.2 Regularity vs dispersion

Note that regularity plays an important role in the previous Corollary 2, as it enables
the black-box reduction of Azar et al. [9] to achieve meaningful upper bounds on the
robust approximation ratio for a class of multi-bidder auctions. Given this observation,
an obvious question would be whether additional knowledge of regularity can help us
design better auctions, even for the single-item, single-bidder setting of Sections 3.3
and 3.4. In this section, we consider the notion of λ-regularity, prove some basic results
(Corollary 3) and discuss some interesting implications.

We will need the following auxiliary results for λ-regular distributions, which follow
from Propositions 2 and 4, and their corresponding proofs, of [139].

Proposition 3 (Schweizer and Szech [139]).

1. Let F be λ-regular for some λ ∈ [0, 1). Then F has a finite mean, say µ, and we
have the inequality

P (X > µ) ≥ (1− λ)
1
λ for λ 6= 0, P (X > µ) ≥ 1

e
for λ = 0.

2. Let F be λ-regular for some λ ∈ [0, 1/2). Then F has a finite variance, say σ2,
and we have the inequality

σ2 ≤ µ2

1− 2λ
.

Now we can state our main result in this section:

Corollary 3. Consider a single-item, single-bidder setting in which the seller has knowl-
edge of the mean µ and an upper bound on the regularity λ ∈ (0, 1] of distribution F .
Then we can achieve a robust approximation ratio of (1 − λ)−1/λ by offering the mean
as a selling price.

Proof. Using an upper bound of µ on the revenue of an optimal auction, and the lower
bound on the selling probability given by Proposition 3, the result immediately follows
as

OPT(F )

REV(µ;F )
≤ µ

µ(1− λ)1/λ
= (1− λ)−1/λ.

Note that Corollary 3 gives an upper bound that degrades from e at λ = 0 (MHR),
to ∞ at λ = 1 (regular); see Fig. 3.3 for a plot of this quantity. Next, we compare this
ratio against the logarithmic ratio from Theorem 2. In other words, consider a model in
which the bidder has information about three quantities of the distribution F : its mean
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(a) Approximation ratio for λ-regular distri-
butions.

(b) Knowledge of λ-regularity vs variance σ2.

Figure 3.3: (a) The robust approximation ratio upper bound when pricing at the mean µ of a λ-regular
distribution. (b) Description of our proposed single-item, single-bidder mechanism under
knowledge of (µ, σ, λ). Note that λ < 1/2 already implies an upper bound on the coefficient
of variation σ/µ (black curve). Moreover, if σ/µ is sufficiently small (in particular, smaller
than the function of λ given by the red curve), then offering a lottery over prices (blue area)
guarantees a better approximation ratio than simply pricing at the mean (yellow area).

µ, an upper bound of σ2 on its variance, and an upper bound of λ on its “regularity”.
Combining our results so far, we can postulate a selling strategy, summarized in Fig. 3.3.
The first observation is that some triples (µ, σ, λ) are infeasible in the following sense: if
the seller knows an upper bound on λ, and furthermore λ < 1/2, then this immediately
implies an upper bound on the coefficient of variation by Proposition 3; in particular,
the seller would know that

σ/µ ≤
√

1/(1− 2λ) (3.17)

Thus, we can assume without loss that triple (µ, σ, λ) obeys this inequality.
Next, we compare the robust approximation ratios of our two candidate strategies,

to determine when the log-lottery of Definition 2 outperforms the pricing-at-the-mean
from Corollary 3. This amounts to solving the inequality

ρ

(
σ

µ

)
≤ 1

(1− λ)1/λ
.

Since ρ is strictly increasing, this is equivalent to

σ

µ
≤ ρ−1

(
1

(1− λ)1/λ

)
=

√
1

(1− λ)2/λ

(
2e(1−λ1/λ−1 − 1

)
− 1,

where for the last equality we simply rewrote the equation in Definition 1 in terms of
r. The conclusion is that the upper bound for the log-lottery is better than the upper
bound for pricing-at-the-mean iff σ/µ is below a certain cutoff point (which depends
on λ). Note that Fig. 3.3 does not show the actual approximation ratio, but rather it
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3 Robust Revenue Maximization Under Minimal Statistical Information

partitions the (λ, σ/µ)-space into regions where (the approximation guarantee of) each
mechanism is better.

Some additional observations about Fig. 3.3 are in order. First, in the limit λ → 1,
our best guarantee comes from offering the log-lottery mechanism (i.e. knowledge of
1-regularity does not improve the currently best known approximation guarantees for a
single-item and a single-bidder); secondly, there is a value of σ/µ, approximately equal
to 0.61, below which offering the log-lottery mechanism achieves a better guarantee than
that provided by pricing-at-the-mean, regardless of the regularity parameter λ ∈ [0, 1].
Intuitively, one could say that knowing that the standard deviation of F is at most
61% its mean gives better revenue guarantees than knowing that F is MHR, at least for
single-item, single-bidder settings.

3.7 Discussion and future directions

In this chapter, we studied the robust approximation ratio of revenue maximization
under minimal statistical information of the bidders’ prior distribution on the item valu-
ations. The fundamental quantities of interest turn out to be the coefficients of variation
(CV), rj = σj/µj , of the marginal distributions. For the single-item, single-bidder case,
we completely characterized this ratio for deterministic mechanisms (quadratic in r) and
gave asymptotically tight bounds for randomized mechanisms (logarithmic in r). This
yields natural upper bounds for the multi-item, single-additive-bidder setting. The tight
lower bound is particularly powerful as it works for any choice of the rj . Moreover,
the results hold for a possibly correlated prior distribution F over the items, with only
knowledge of the mean and an upper bound on the standard deviation of each marginal.
The optimal mechanism turns out to be very simple: sell the items separately using
the optimal randomized mechanism for the single-item case. It is also worth mention-
ing that although the upper bounds for the single item generalize straightforwardly to
multiple items via the welfare bounds (which are trivial upper bounds to the optimal
revenue), proving that these are the “correct” bounds requires careful technical work.
At the heart of our analysis lies a new version of Yao’s principle, which applies to the
“non-standard” continuous spaces that arise in the single-item setting and might be of
independent interest. As an interesting consequence, we have observed how our results
can be immediately applied to the single-dimensional, multi-bidder setting proposed
by Azar et al. [9], and also made a short digression into a setting in which additional
information on the regularity is assumed.

We believe that the general topic of “robust revenue with minimal statistical informa-
tion” gives rise to many interesting questions and variants; below we propose directions
for possible future work.

Approximation ratio vs absolute revenue As we already mentioned in this chapter,
besides the robust approximation ratio in (3.1), another quantity of independent interest
is that given in (3.7):

sup
A∈A1

inf
F∈F

REV(A;F ).
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3.7 Discussion and future directions

This can be seen as a “vanilla” notion of robust revenue maximization, and it was con-
sidered in Azar and Micali [10] (where they proved maximin optimality for deterministic
mechanisms); it was also of central interest in the work by Carrasco et al. [34] and in
other works in the economics and management science literature (e.g., [35, 107, 146]).

It is perhaps subjective to ask which, if any, of the two quantities is “better”, as both
have their merits. From a theoretical perspective, the absolute revenue in (3.7) is a sim-
pler quantity (e.g. it behaves linearly with respect to convex combinations of mechanisms
and distributions) and thus probably easier to extend to other settings; furthermore, it
might be more appealing to an economist. On the other hand, the approximation ratio
in (3.1) is “dimensionless” or “scale-free”, and arguably rather natural for a computer
scientist.

Consider the following thought experiment, that highlights this comparison from a
more practical perspective. You are the head of a selling platform and your marketing
team offers you two possible selling mechanisms:

• Mechanism A (in expectation) guarantees 10$ on each item for sale, but only 25%
of the optimal revenue.

• Mechanism B (in expectation) guarantees 50% of the optimal revenue, but only 5$
on each item for sale.

One possible answer could be that “it (almost) doesn’t matter”: for single-item ran-
domized mechanisms, we proved that the maximin optimal lottery of Carrasco et al. [34]
yields asymptotically the best possible guarantee for the robust approximation ratio.
However, it is not at all clear if, in general settings, the maximin optimal auction always
achieves a guarantee “similar to” (say, a constant away of) the robust ratio-optimal
auction. Providing an answer to the debate above is of course beyond the scope of this
thesis. Nevertheless, we briefly presented it here as a potentially stimulating topic for
future work and discussion, both from a theoretical and an empirical/behavioural point
of view.

Multiple bidders We would also like to point out a qualitative change between the
many-items and many-bidders settings, when moving to them from the basic single-
bidder, single-item scenario: for a single bidder and many items, the approximation
guarantee does not degrade; it is essentially bounded by the approximation guarantee of
the “worst” item (see Theorem 4). For a single item and many bidders, however, even
with the assumption of independent, regular distributions, we gain an extra factor of 2
(see Corollary 2), coming from the general black box reduction in Azar et al. [9]. It would
be interesting to see if this factor can be dropped (or alternatively, provide stronger lower
bounds). We believe that a promising way to attack this question would be to study
existing or novel bounds on the coefficient of variation of the maximum order statistic of
random variables, which may be of independent interest to statisticians. Of course, the
most ambitious extension would be to consider multi-dimensional, multi-bidder settings
(a generalization of both our work and that of Azar et al. [9], Azar and Micali [10]).
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3 Robust Revenue Maximization Under Minimal Statistical Information

Finally, below we propose alternative, or more general, models of limited statistical
information that might be interesting for future work:

Broader classes of value functions An interesting next case would be to study the
setting of, say, a single unit-demand bidder and many items, or perhaps more generally,
other valuation models such as constrained additivity or submodularity.

Higher-order moments Carrasco et al. [34] already looked at a single-item, single-
bidder case for the “vanilla” revenue maximization problem (3.7) under knowledge of
the first N moments of the valuation distribution; they characterized the solution in
terms of an N -dimensional optimization problem, and briefly described it for the case
of N = 3. The most intriguing question in this line of work would be to understand
the dependence of the approximation guarantee on the number of moments N and,
specifically, whether it converges to optimality and at what rate. In other words, what
would be the “moment complexity” of robust revenue maximization?
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4 The Secretary Problem with Independent
Sampling

4.1 Introduction

The secretary problem, in which we search for the best secretary of an online sequence
of candidates, is probably the most well-studied optimal stopping problem. These prob-
lems, motivated as decision-making under uncertainty, are characterized by a decision-
maker who needs to decide when to stop an input sequence of information and take
an action upon stopping. Optimal stopping problems, and in particular the secretary
problem, originally arose in connection to labor markets, which is also insinuated by
the name of the secretary problem. However, they have applications in many sub-
fields of economics and management, such as monetary theory, industrial organization,
e-commerce, and finance.

In finance, a well-known application of high-dimensional optimal stopping is in option
pricing, such as swing and American options [45, 46, 49]. Ideas from optimal stop-
ping, often closely related to prophet inequalities, have been employed to design posted
price mechanisms in various scenarios [21, 39, 47, 117]. Recently, Derakhshan et al.
[62] consider the problem of computing personalized reserve prices in online advertising
using a dataset of past bids. Moreover, Ma et al. [117] use techniques from optimal
stopping in assortment optimization. Babaioff et al. [12] and Kleinberg [104] show that
generalizations of the classic secretary problem serve as a framework for online auctions.
In industrial organization, extensions of the secretary problem have modeled situations
where a group decision within a firm has to be made [3], or firms are competing to hire
employers from a pool of candidates [58, 95]. Finally, because of its simplicity and broad
applicability, variations of the secretary problem have been studied experimentally. Such
papers usually describe the optimal policy for the scenario they are studying, and then
through field experiments, try to explain the cognitive strategies that the agents develop.
Some examples include the classical secretary problem [140], a cardinal i.i.d. setting [5],
choosing which apartment to rent [153], trying to buy a plane ticket online [16], and
learning when to stop by playing a repeated secretary problem [82].

Mathematically, in the secretary problem, we are faced with a randomly permuted
sequence of n elements with arbitrary values. The elements’ values are revealed one
at a time. Upon receiving an element, we need to make an irrevocable decision of
whether we keep the value and stop the sequence or drop the value forever and continue
observing the next. The goal is to maximize the probability of stopping with the largest
value. For this problem the best possible success guarantee has long been known to be
1/e. The optimal algorithm is remarkably simple: Look at the first n/e values without
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4 The Secretary Problem with Independent Sampling

taking any of them, and then stop with the first value larger than all values seen so far
[67, 73, 113]. As mentioned also in Chapter 2, in the last decades, the secretary problem,
its variants, and related basic optimal stopping problems such as the prophet inequality
and the Pandora’s box problem have been considered fundamental building blocks of
online selection problems [20, 64, 109, 110, 150].

An essential limitation of the secretary problem for modeling real-world situations
is the assumption that the values of the elements that have not yet been revealed are
completely unknown. This is a very pessimistic assumption, as in realistic situations
one would expect to have some available information, coming, for instance, from the
context or past data. As a consequence, the best possible 1/e success probability for
the secretary problem can be substantially improved in many settings. This gives rise
to the following natural question: what is a reasonable model to take into account
this additional available information? A first approach is to assume that the numbers
originate from a distribution that is known to the algorithm. This assumption is relevant
when the process at hand has been repeated many times, and past data can be aggregated
into a distribution. Along these lines, already in the sixties, Gilbert and Mosteller [80]
considered the so-called full information secretary problem in which we additionally
know that the elements’ values are i.i.d. random variables from a known distribution.
For this variant, they showed how to compute the optimal stopping rule by dynamic
programming and were able to conclude, numerically, that the best possible success
probability is γ ≈ 0.5801. In subsequent work, Samuels [138] finds an explicit expression
for this quantity. Esfandiari et al. [71] relaxed the i.i.d.-ness assumption, considering the
problem when the elements’ values are arbitrary independent random variables. They
show that one can guarantee a success probability of 0.517, which, quite surprisingly, was
very recently improved to γ by Nuti [129]. Interestingly, in this full information model
with independent but not necessarily identical values, Allaart and Islas [2] showed that if
the order is not random but adversarial, the optimal stopping rule guarantees a success
probability of 1/e.1

While assuming no knowledge about the values seems too pessimistic, assuming that
the full distribution is known might be too optimistic for most scenarios. Indeed, a typical
situation would be that we have access to past data, but not enough to safely reconstruct
a distribution. These informational issues in optimal stopping have given rise to a stream
of research aiming at understanding the tradeoffs between the amount of information
available and the success probabilities that can be derived. In this context, Azar et al.
[11] pioneered the study of data-driven versions of optimal stopping problems. Recently,
Rubinstein et al. [135] established a notable result in this direction for the classic prophet
inequality. They prove that a single sample from each distribution, rather than its full
knowledge, is enough to achieve the optimal guarantee. Also, for the prophet secretary
problem, the variant of the prophet inequality when the elements come in random order,
one sample has been proved to be quite effective [57].

However, this sampling approach still assumes that there is an underlying distribution
from which we can effectively sample. In many situations, particularly when unexpected

1Esfandiari et al. [71] also obtained this result.
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events may happen, this assumption may still feel a bit strong. Ideally, we would like
to combine the idea of having samples representing past data with having arbitrary
values chosen adversarially, to ensure maximum robustness while requiring no additional
assumption. Recently, Kaplan et al. [98] study such a model.2 In their model, there
are n arbitrary values, and they sample a fraction p of them at random. Then the non-
sampled values are presented to the decision-maker in either random order or adversarial
order. Kaplan et al. [98] design algorithms for maximizing the expectation, rather than
the probability of picking the maximum, that translate into algorithms for data-driven
versions of prophet inequalities.

In this chapter, we consider an alternative sampling model, inspired by that of Camp-
bell and Samuels [33] and Kaplan et al. [98]. The main difference is that in our model,
the sampling of each element is performed independently with the same fixed proba-
bility. Such data-driven versions are well-motivated from several perspectives. First,
in many applications, the decision-maker has access to historical data that give some
insight into the distribution of future values. In our model, this information is captured
in the form of samples that the decision-maker knows a priori. Second, the model is
robust in the sense that only minimal knowledge of the involved data is needed. And,
third, the general idea is closely related to machine learning methods that use predictors
to learn the distribution. The insight here is that for problems that can be modeled
as data-driven versions of the secretary problem, these learning procedures are overly
complicated: The simple combinatorial model presented in this chapter already makes
it possible to significantly increase the overall solution quality.

Of course, for large n our model is essentially equivalent to the model of Campbell and
Samuels [33] and Kaplan et al. [98]. However, our independent sampling has two crucial
advantages. On the one hand, independence makes many mathematical calculations a
lot simpler and thus allows to obtain simpler expressions. On the other hand, it allows
dealing with instances of unknown size, which is often the case in practical applications.
In particular, several of our results hold if we do not know n. A slight disadvantage of
the independent sampling model is that we may end up sampling all n elements. For
consistency in this case, we assume, by vacuity, that we win (i.e., pick the maximum).
However, this is not very restrictive since, as we will see, the difficult instances involve
large values of n for a fixed value of p.

Our main result is to obtain the best possible algorithms, i.e., those maximizing the
probability of selecting the largest element, for any prescribed sampling probability p and
whether the order in which the elements are presented is either random or adversarial.
These results uncover interesting connections between the quality of the solution and
the amount of past data available to a decision-maker.

4.1.1 The problem

We are given n elements with values α1, . . . , αn, which are unknown to us, and an order
σ : [n] → [n]. Each element is sampled independently with probability p. Let S be the

2Interestingly, the model was proposed much earlier by Campbell and Samuels [33] and recently redis-
covered.
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(random) set of sampled elements and V be the remaining elements, also referred to as
the online set or the set of online elements. The elements in V are then presented to
us in the order dictated by σ. Once an element is revealed we either pick it and stop
the sequence or drop it forever and continue. The goal is to maximize the probability of
picking the maximum valued element in V . In the adversarial order secretary problem
with p-sampling (AOSp) the order σ is chosen by an adversary that knows all values
α1, . . . , αn and the random sets S and V .3 In the random order secretary problem with
p-sampling (ROSp) the order σ is just a uniform random permutation.

Given n and an algorithm we define its success probability as the infimum over all
values α1, . . . , αn of the probability that the algorithm stops with the maximum αi ∈ V .
Moreover, the success guarantee of an algorithm is the infimum over all values of n of
its success probability.

All algorithms considered in this chapter are ordinal, i.e., algorithms whose decision
to stop at a given point depend only on the relative rankings of the values seen so far,
and not on the actual values that have been observed, plus, possibly, on some external
randomness. We observe that this is without loss of generality as for AOSp and ROSp
general algorithms cannot perform better than ordinal algorithms. Indeed, as noted by
Kaplan et al. [98, Theorem 2.3], a result of Moran et al. [122] implies the existence of
an infinite subset of the natural numbers where general algorithms behave like ordinal
algorithms (for single selection ordinal objective functions such as ours). Therefore, and
because the worst case performance of our algorithms is attained as n→∞, our bounds
apply to general algorithms.

4.1.2 Our results

For AOSp we consider the following very simple algorithm. Upon observing the sample

set S we take as threshold the value of its k-th largest element for k =
⌊

1
1−p

⌋
. Then we

stop with the first element in V whose value surpasses the threshold. If there are less
than k samples, the algorithm accepts the first online value (we define the k-th largest
element from a set of less than k elements as −∞). We show that this algorithm achieves

a success guarantee of
⌊

1
1−p

⌋
p

⌊
1

1−p

⌋
(1 − p), so for instance for p = 1/2 the guarantee

evaluates to 1/4. Although the proof of this fact is relatively easy, what is more surprising
is that this guarantee is best possible. To prove the latter we analyze a related optimal
stopping problem, which we call the last zero problem. Suppose an adversary picks a
number of identical blank cards n. Then independently with probability p each card is
marked and you are informed about the total number of marked cards, but you ignore
their position in the deck. Finally, one by one, you get to see the cards and whether
they are marked or not. When you stop the sequence, you win if the card was the last
blank card, otherwise you lose. By using a related conflict graph over possible sequences,
we show that for this problem no ordinal algorithm can guess the last blank card with

3Our results, and in particular the upper bounds on the success probability, remain true if the adversary
knows all values α1, . . . , αn but not the result of the sampling process, i.e., she does not know the
random sets S and V .
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probability better than
⌊

1
1−p

⌋
p

⌊
1

1−p

⌋
(1− p). Then, we relate this problem to a different

one, in which the objective is to guess the last number of an increasing sequence of
unknown length. Finally, we go back to the original AOSp by considering an adversary
that picks a growing sequence which at some point in time decreases to a low value, and
this time is difficult to guess.

It is worth noting that this simple best possible algorithm does not use knowledge of
n and, as opposed to most variants of the secretary problem, for AOSp knowledge of
n is irrelevant in worst case terms. Moreover, we discuss the case in which n is known
but p is unknown. Here it is quite natural that the algorithm works again by simply
estimating p using the size of the sample set. However, if neither n nor p are known,
then no nontrivial success guarantee can be obtained.

For ROSp we obtain a randomized algorithm with best possible success guarantee that
works as follows. First, we assign to each of the n elements a uniformly random arrival
time in the interval [0, 1], which implies that the elements arrive in uniform random
order. All elements whose arrival time is less than p are placed in the sample set S.
Then we find a sequence of time thresholds 0 < t1 < t2 < · · · < 1, dictating that if
an element’s arrival time is between ti and ti+1, we stop if its value is the maximum
among elements arriving after p and it is among the i largest values of all elements seen
so far. To obtain the success guarantee of this algorithm we first prove that for a fixed
sequence 0 < t1 < t2 < · · · < 1, the success guarantee of the algorithm decreases with n.
Then we write the optimization problem over the time thresholds, and interestingly, this
turns out to be a separable concave optimization problem with a very simple solution.
Moreover, the solution is universal in the sense that it does not depend on p. The
resulting guarantee is thus easily computed and grows from 1/e when p = 0 to γ ≈ 0.58
as p→ 1.4 We also prove that this is a best possible algorithm. To this end we first argue
that ordinal algorithms in our model are essentially equivalent to a ranking function that
determines what global ranking an element, which is a local maximum, should have in
order to accept it. Here, by global ranking we mean the ranking an element has among
all samples and values revealed so far, and local ranking refers only to the values revealed
and not to the samples. Finally, as n grows, this ranking function converges to a sequence
of time thresholds as we defined them.

Fig. 4.1 illustrates the success guarantee for our problems. For AOSp it can be observed
that the success guarantee can be bounded below by the function p1/(1−p) and bounded
above by p−1

log p · p
−1/ log p (see also Appendix B.2 for some details).

4.1.3 Further related literature

An interesting connection arises between our model and results when p is close to 1, and
the so-called full information case. First, recall that Gilbert and Mosteller [80] obtained
the optimal algorithm with worst case performance γ (see also Samuels [137, 138]), in

4We should note that after completion of this work we became aware of the work of [33] who obtain very
similar results. Indeed they consider the dependent sampling version described earlier and obtain
that the optimal success guarantee converges to γ as the fraction sampled grows to 1. Their methods
however are very different from ours and are significantly more complicated.
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Figure 4.1: The best possible success guarantee for ROSp and AOSp as a function of p.

the secretary problem where the elements’ values are taken as i.i.d. random variables
from a known distribution. It may thus seem natural that our guarantee matches this
quantity as p→ 1. However, this is far from obvious. Indeed, for the prophet inequality
with i.i.d. values from an unknown distribution (a model that arguably gives more in-
formation than ours) Correa et al. [53] proved that with O(n2) samples, one can achieve
the best possible performance guarantee of the case with known distribution, and only
very recently Rubinstein et al. [135] improved this to O(n) samples. This is in line with
our result here since for p close to, but strictly less than 1, the size of the sample set is
linear in the size of V .

A more intriguing connection to the full information case pops up in the adversarial
order case. In this context, Allaart and Islas [2], and independently Esfandiari et al.
[71], considered the adversarial order secretary problem in which an adversary chooses n
distributions F1, . . . , Fn. Then, independent values are drawn from these distributions
and sequentially uncovered. A decision-maker who knows F1, . . . , Fn needs to stop at
the maximum realization. They prove that the optimal stopping rule is a simple single
threshold algorithm and the best possible success guarantee equals 1/e. Although this
problem has a similar flavor as our AOSp, and the optimal guarantee is the same, we
are unaware of a precise connection.

On the other hand, our last zero problem, used as a tool for AOSp, is related to
an old optimal stopping problem first studied by Bruss [28]. We face a sequence of n
independent Bernoulli random variables where we know n and the distributions, and
we want to stop with the last zero. Bruss obtains the optimal stopping rule for this
problem, which also turns out to be a simple threshold rule. Our last zero problem is
simpler in that the Bernoulli random variables are homogeneous. However, rather than
knowing n, we only know the total number of ones. This subtle difference makes the
problem substantially different.
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Another very recent line of work studies robust or semi-random versions of the classical
secretary problem [25, 101]. The main idea is that the problem input should be a mix of
stochastic and adversarial parts. More specifically, in their (similar) models, some of the
elements arrive at adversarially chosen times, and the rest at times uniformly randomly
drawn from [0, 1]. Their objective functions (and in some cases also the benchmarks) are
quite different from ours. Kesselheim and Molinaro [101] consider the knapsack secretary
problem in this mixed model, while Bradac et al. [25] design algorithms for selecting k
items or maximizing the expectation under various matroid or knapsack constraints. It
would be interesting to incorporate their ideas in our setting and study a problem that
interpolates between ROSp and AOSp.

Finally, we mention that our results may help explain some behavioral issues raised by
Goldstein et al. [82]. They set up an experiment in which people play repeated secretary
problems. The values come from any of three possible distributions, unknown to the
players (the distribution is fixed for all games played by a person). They analyze a total
of 48,336 games played by 6,537 players. Among other issues, Goldstein et al. study
how close to optimal people play. However, they find difficulty in establishing what
optimal means in their context since for the first game played optimal means simply the
secretary algorithm while after playing many games, optimal should mean something
close to the dynamic program of Gilbert and Mosteller [80]. They thus consider several
candidate models for the players’ behavior and conclude that the closest to actual play
is a multi-threshold algorithm that is very much in the spirit of that of Gilbert and
Mosteller. Interestingly, they find that by the fifth game, players have essentially learned
the optimal thresholds [82, Figure 9]. However, they also find an apparent dichotomy
between the strategy players use in the first few games and that used later on. Indeed
they state that: “One possible explanation for the apparent change in strategy is that
players spent the first few games primarily collecting information about the distribution
and then switched to trying to actually win the game only in later games: that is, they
spent the first few games exploring and then switched to exploiting only later.” We
believe that our model and results for ROSp can provide a different explanation, simply
that players are playing close to optimal all along, using the information they gain while
also optimizing the success probability. For this, we note that the first game the players
face is just the normal secretary problem, or ROS0, the second closely corresponds to
ROS1

2 , the third to ROS2
3 , and so on. And the induced thresholds of the fifth game,

which would correspond to ROS4
5 are indeed very close to those of Gilbert and Mosteller

[80].

Organization of the chapter.

Section 4.2 presents the techniques and results for the adversarial order case, while Sec-
tion 4.3 does the same for the random order case. Then, Section 4.4 presents the results
that can be obtained if we assume different knowledge of the parameters. We briefly
discuss two straightforward applications and extensions of our results in Section 4.5. We
conclude in Section 4.6 with some additional insights and open questions.
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4.2 Adversarial order

In this section, we study the adversarial order secretary problem with p-sampling (AOSp).
We present the k-max algorithm and prove that it is optimal (in the worst-case sense)
for this setting.

Recall that we defined the k-max algorithm as follows: the k-th largest value of the
sampled elements is set as a threshold, and the algorithm accepts the first element in
the set V of online values whose value surpasses this threshold. If there are less than k
sampled elements, then the algorithm accepts the first online element5. From now on,

we take the k-max algorithm with k =
⌊

1
1−p

⌋
. This section is dedicated to proving the

following theorem.

Theorem 7. Let k =
⌊

1
1−p

⌋
. Then the k-max algorithm achieves a guarantee of kpk(1−

p) for AOSp. Furthermore, no algorithm can achieve a better success guarantee.

When p tends to 0, the guarantee naturally tends to zero: If there are very few sam-
ples, the problem becomes the secretary problem with adversarial order, where basically
nothing can be done. What is more surprising is that when p is close to 1, the suc-
cess guarantee approaches 1/e (see Fig. 4.1), which is the performance obtained for the
secretary problem when one knows the distribution of the values of the elements [2, 71].

The proof of the guarantee of the algorithm is easy and appears in Section 4.2.1. The
proof of its optimality is more advanced and requires new tools. We first introduce the
concepts that we are going to use and then give the proof in the remainder of this section.
A surprising fact of this proof is the following: when proving the negative result, it is
enough to focus on the special case where the values of the elements are increasing (thus
where the player aims to get the last element), with the twist that the player does not
know the total size n of the instance.

4.2.1 The success guarantee of the k-max algorithm

Being a simple threshold algorithm, the main question to answer is what value of k
is appropriate. Intuitively, the bigger the value of p, the higher the probability that
the largest valued elements are sampled. Therefore, we should lower the threshold as
p grows. As is the case for many threshold algorithms, there is a tradeoff between (1)
setting the threshold too low and risking acceptance of an element that does not have
the maximum online value, and (2) setting it too high and risking finishing the game
without selecting any element. The following lemma is the first part of Theorem 7 and

establishes the performance of the algorithm for the value k =
⌊

1
1−p

⌋
.6

Lemma 7. For a given p, the k-max algorithm chooses the element of the online set

with maximum value with probability
⌊

1
1−p

⌋
p

⌊
1

1−p

⌋
(1− p).

5Recall that we define the k-th largest element from a set of less than k elements as −∞.
6Observe that this lemma still holds in the setting where the order of the online elements is determined

by the adversary after sampling, since our algorithm is order oblivious.
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Proof. Note that the k-max algorithm wins in an instance if exactly one of the k largest
values of the adversarial input ends up in the online set and the (k + 1)-th largest ends
up in the sample set. For the purpose of analysis, assume the values are sequenced in
non-decreasing order. Thus, an instance in which the algorithm is successful is exactly a
sequence ending in k sampled elements plus one online element that is somewhere in the
last k entries of the sequence. The probability that this happens is kpk(1−p) because of

the independent sampling. The lemma follows by substituting the value k =
⌊

1
1−p

⌋
.

4.2.2 The negative result

We now focus on the proof for the negative result of Theorem 7, which consists of several
steps. We start by considering the special case where the algorithm does not know n. Let
us make precise what we mean by this. Consider an algorithm and two instances I1 and
I2 of different sizes n1 and n2 respectively, but with the same value of p. Suppose that
the algorithm happens to face the exact same set of samples and non-sampled elements
in both instances, and is currently facing an online element of the same value in both
instances. Thus, up to this point, A has access to exactly the same information (and
possible beliefs over the size of the instance). Therefore, the algorithm needs to make the
exact same (possibly randomized) decision in both situations, independent of n1 or n2.

For our main steps, we start by showing that we can focus on a simpler problem
that we call the last zero problem. For this problem, we prove the negative result with
some additional assumptions. We then remove the assumptions one by one, each time
generalizing the proof one step further, until we retrieve the proof of Theorem 7 for
the case where n is unknown. Finally, in the second phase, we show that allowing the
algorithm to know n basically does not help (in worst case terms).

We start by defining the last zero problem and showing how negative results in this
setting imply negative results in AOSp as well. Let the norm of a sequence of bits be
the number of 1s it contains. The total number of bits in such a sequence s is called its
length or size. The numbering of the entries of a sequence s is counted starting from 1.

Definition 4. The last zero problem with probability p is the following:

1. An adversary picks a size n.

2. A sequence of bits of length n is generated, where in each position independently
the bit equals 1 with probability p and 0 otherwise.

3. The player is given the norm of the sequence.

4. The player observes the bits one after the other, and for each of them decides
whether to stop the sequence there or to continue.

5. The player wins if she stops on the last 0 of the sequence.

Note that the fact that the player does not know the size n is crucial, as otherwise
the game is trivial. Thus, it does not make sense to analyze the algorithm for a given
size; we need to prove that no algorithm can perform well on all sizes.
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4 The Secretary Problem with Independent Sampling

The following proposition highlights the connection between the last zero problem
and AOSp. With the increasing case of AOSp we mean the special case of the problem
AOSp where the elements are presented to the algorithm in non-decreasing order of their
values.

Proposition 4. The last zero problem and the increasing case of AOSp are equivalent.
Therefore, any negative result for the last zero problem also holds for AOSp.

Proof of Proposition 4. We show that an algorithm for picking the element with maxi-
mum value in the increasing case of AOSp has the same success probability in the last
zero problem, and the other way round.

(⇒) Assume that we know that in AOSp the adversary is going to present the online
set in increasing order. Therefore we need to fix an ordinal algorithm with the goal
of picking the last element in the increasing sequence. Every time an element in V is
revealed, the algorithm knows how many online elements it saw in total and how many
sampled elements have larger or smaller values compared to the value of this online
element. Moreover, the value of p creates some possible beliefs over the size of the
instance. This knowledge guides the (possibly randomized) decision of the algorithm on
whether to stop with the element just observed.

In the last zero problem, each revealed 0 of the binary sequence corresponds to an
online element. Furthermore, since we are given the total number of 1s beforehand, we
know how many 1s are before and after each revealed 0 in the sequence. This information
corresponds to the relative ranking of an elements value in V among the values of sampled
elements. Finally, p equals the probability that a 1 was written on a card, independently
of the others.

An algorithm for AOSp takes as input the relative ranking of the values r1 > r2 >
· · · > rt in S and V seen so far at each time step t and outputs a stopping rule τ which
gives a certain success probability. In particular, since the algorithm is ordinal, it does
not even need to see the actual values of the sampled elements; all it needs to know is the
ranking of a revealed element among the sampled ones. If we apply the same algorithm
to the last zero problem (with the input now being the total number of 0s and 1s seen
so far and the total number of 1s), we get the same success probability of picking the
last 0.

(⇐) Consider an algorithm for maximizing the probability of picking the last zero in
the last zero problem. At each time step t, an algorithm ALG′τ takes as input the given
probability p, the total number k of 1s (also given) and how many 0s and 1s have been
seen so far. Consider a stopping rule τ ′ that decides whether to stop at each revealed 0,
and that attains a certain success probability.

In the increasing case of AOSp each element in S corresponds to a 1 and each online
element to a 0. The total number of 1s represents the cardinality of the set S. Each
time a 0 is observed (and we know its rank among the 1s), it translates to learning how
many samples have smaller and how many have larger value than the online element
just observed. Remember that since the sequence in AOSp is increasing, we win if we
stop with the last online element. We can now conclude that an algorithm for the last
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zero problem with a certain success probability can be used as an ordinal algorithm to
solve the increasing case of AOSp with the same success probability.

Since the increasing case is a specific instance for AOSp, a negative result for the last
zero problem implies a hardness result for AOSp.

For the remainder of this section, we consider the last zero problem. An instance
in the last zero problem can be described by a finite string of bits. We introduce the
shorthand notation 0` and 1` for the string of length ` consisting of only zeros and ones
respectively.

Next, we obtain an upper bound for the special case of deterministic algorithms for
p = 1/2. For this case of the last zero problem we introduce the no-zero rule, which
specifies that if there are no online elements (i.e., all n elements are sampled), the player
loses. This will be a useful rule for the sake of the proofs. As we will see, this decision
actually becomes irrelevant for the generalization of the proof. Therefore, it poses no
problem that this contradicts the assumption made for AOSp where we win in such an
instance, as stated in the introduction of the problem.

We will show that the following proposition holds under the no-zero rule and starting
from n = 1.

Proposition 5. For the last zero problem with p = 1/2, no deterministic algorithm can
achieve a better success guarantee than k-max (with the no-zero rule) for AOSp.

The goal of the discussion and the proof sketch presented here is to introduce the tools
we will use informally. The claim can be generalized to consider instances of size larger
than some chosen N0 (cf. Proposition 6).

For p = 1/2, the k-max algorithm achieves a guarantee of 1/4. Suppose that there
is an algorithm that achieves a guarantee strictly better than 1/4. As a start, consider
the decision of the algorithm when the adversary chooses n = 1. Then, there are two
instances (after sampling), which both occur with probability 1/2. The first possibility
is that the instance is 0. Then the player knows that there is no 1 in the instance, and
is first presented a 0. The second possibility is that the instance is 1. Then the player
knows there is a 1 in the instance, and is announced from the start that the game is
finished.

In the second case, the player loses because of the no-zero rule. Thus, to achieve at
least 1/4 for every n, the player needs to win in the first case (recall that we restrict
ourselves to deterministic algorithms for now). This means that when the player is
presented with not a single 1, and sees a first 0, she stops.

Here comes the key observation. Suppose that the adversary chose n = 2 and the
sampling resulted in the instance 00. Now again the player is presented with not a single
1, and again sees a first 0. From the above, we already deduced that she needs to stop
at this first 0. Indeed, from the point of view of the player, this is exactly the same
situation as in the case where the instance was 0, because the player does not know n.
In other words, these two situations are indistinguishable from the perspective of the
player, and she has to make the same decision. In the case of 00, this decision is wrong
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Figure 4.2: An illustration of the first four layers of the conflict graph. We use orange for the instances
in which an optimal algorithm stops with the last zero.

as the last 0 is the second 0, hence the player loses. We call such a situation a conflict
between the instances 0 and 00.

Note that conflict works in both directions. If the player had a strategy that would
make her win in 00, then after the first 0, she would wait, which would make her lose in
the instance 0.

Let us give yet another example of conflict, for the instances 01 and 001. On instance
001 the player receives a first 0, and knows that there is one 1. This is exactly the same
information as in the instance 01 when it starts. If she stops on this element then she
wins in 01 but loses in 001. On the other hand, if she waits and then stops on the next
0, she loses in 01 but wins in 001. Moreover, if she continues to wait she loses in both
instances.

More generally, for every pair of instances there is a fairly simple criterion in each of
the two directions to see if they are in conflict or not (cf. Lemma 10). In particular, it
is enough to decide the conflict between instances whose sizes differ only by 1. Indeed,
two instances s and s′ of sizes n and n+ q respectively are in conflict if and only if there
is a series of conflicts (s, s1), (s1, s2), ..., (sq−1, s

′), where si has size n+ i (cf. Lemma 9).
Then we can define the (infinite) conflict graph whose nodes are all possible instances
and the edges represent the conflict between nodes of adjacent sizes. The conflict graph
for size n = 1 to n = 4 is represented in Fig. 4.2. On this graph, we can represent an
algorithm as a choice of instances in which it wins. Such selected instances cannot be
in conflict. In other words, they cannot be linked by a monotone path, where monotone
means that the path goes from left to right without changing direction.

For n = 1, we denote by a cross the fact that the player will never win in the instance
which consists of one 1, because of the no-zero rule. We write 0 in orange to denote that
the player wins in this instance, as she decides to select the last (and only) 0.
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Let us now consider more systematically all the instances of size 2. They all have a
probability of occurring of 1/4. We already know that both 00 and 11 cannot be selected
(because of the conflict to the left and the no-zero rule, respectively). Thus, to achieve
strictly more than 1/4, the player needs to win in both 01 and 10. Consequently, these
instances need to be selected in the conflict graph.

Now, for n = 3, the player loses in 000, 001, 010 and 100 because of conflicts, and on
111 because of the no-zero rule. Therefore, she must win in 011, 101, and 110, since each
instance has probability 1/8. Finally, for size 4, we can use the same kind of argument
as before, to show that the player loses in all instances except 0111, 1011, 1101 and
1110. But these are only four cases out of sixteen and thus, the player cannot strictly
beat the 1/4 bound if the adversary chose n = 4. And this is a contradiction. Therefore,
Proposition 5 is true.

Of course, there are several limitations to this first proof of the claim:

1. The no-zero rule is arbitrary and it should be removed.

2. The fact that the proof is only considering small sizes is a weakness, in the sense
that it does not take into account algorithms which could possibly have a better
success guarantee than the k-max algorithm, if it would consider only instances of
size at least some N0.

3. The sampling probability is fixed to 1/2 instead of taking any value in (0, 1).

4. The bound only applies to deterministic algorithms.

We continue by addressing the two first problems. We design a proof that also works
by starting from an arbitrary N0 and not necessarily from 1. This also solves the first
problem, as it makes the probability of the case with no zeros negligible for large enough
N0 (for size n, this case is just one out of 2n). But first, we formally define and state
the properties of the conflict graph.

Preliminaries: Conflict graph

We now formalize the intuition that we built about the conflict graph. We first describe
its generic structure, independent of the sampling probability p, without weights on
the instances or any reference to success guarantees. Then we continue by describing
how to measure the performance of a deterministic algorithm in this framework using
probabilistic weights on the instances.

Conflict graph structure We first define what it means that two instances are in con-
flict. For an instance I we denote by I[a, b] the instance I restricted to the positions a
to b (both included). Consider two instances I1 and I2 of size n1 and n2 respectively
with n1 < n2, both containing at least one 0. Let r be the position of the last 0 in I1.
The instances I1 and I2 are in conflict if they have the same norm and I1[1, r] = I2[1, r].
The following lemma outlines why we care about this notion.

Lemma 8. No deterministic algorithm can win in two conflicting instances.
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Proof. Consider a deterministic algorithm that wins in I1, meaning, this algorithm stops
at position r. Note that at any position j ≤ r, the knowledge of the algorithm up to
that point consists of the norm of the instance and I[1, j]. Now run the same algorithm
on I2. Since the algorithm is deterministic and has the same information available at
every point in time, it must make the exact same decision at every j ≤ r. In particular,
it stops at position r. However, since I2 has the same norm as I1 but a larger size, there
must be a zero after position r in I2, and the algorithm loses in I2.

We now define the conflict graph, which is the formal object described by Fig. 4.2.

Definition 5. The conflict graph is an infinite graph in which the nodes correspond to
all finite strings of bits. There is an edge between nodes s1 and s2 if and only if the
corresponding instances of the last zero problem are in conflict and the size of s2 is one
bit larger than the size of s1.

As every node corresponds to a unique instance and vice versa, we will use these terms
interchangeably.

When we draw the conflict graph, we order the nodes by increasing size as in Fig. 4.2.
We define a monotone path as a (possibly infinite) path in the conflict graph where the
nodes correspond to consecutive increasing sizes. For example, in Fig. 4.2, (01, 001,
0010) is a monotone path.

Lemma 9. Two instances are in conflict if and only if they are linked by a monotone
path in the conflict graph.

Proof. Let I1 and I2, be two instances of size n1 and n2 respectively that are in conflict,
with n1 < n2. By definition, they have the same norm, and have the same substring up
to the last zero of I1. Consider the following instance I3: take I2, and remove the last
zero.

This instance (if it is not I1) satisfies the two conditions above, thus is in conflict with
I1. It is also in conflict with I2: they share the same prefix up to the last zero of I3

and have the same norm. By repeating this operation (removing the last zero) until
we get I1, we get a series of instances (including I1 and I2), that are in conflict with
one another, and can be ordered in increasing consecutive sizes. These instances form a
monotone path in the conflict graph. The other direction of the proof follows similarly.

This lemma and its proof have several consequences for the structure of the conflict
graph. The following lemma is immediate.

Lemma 10. Given an instance I of size n, the instances of size n + 1 in conflict with
I are the nodes that can be obtained by inserting a new zero anywhere after the last 0 of
I. In the other direction, I is in conflict with only one instance of size n − 1: the one
where the last zero has been removed.

Proof. By Lemma 10, an instance of size n+ 1 is in conflict with an instance of size n if
we add a 0 anywhere after the last 0 of the instance of size n. Therefore, every instance
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that ends in a 0 has degree one, since the new 0 can only be inserted in one place. This
is true for half of the nodes. Similarly, we see that every instance that ends in 01 has
degree two and this is a quarter of the nodes. In general, every instance that has suffix
01i has degree i+ 1.

A node with degree k has a suffix 01k−1. To create a child, we need to add a zero
anywhere after the last 0. If we insert this 0 at the very end, we create a node of degree
one. If we insert this 0 before the last 1, we create a node of degree two. In general, if
we insert the 0 after the i-th 1 from the end, we create a node of degree i.

This lemma implies that a node has only one edge on its left. We refer to this node
as its parent. We define the degree of a node in the conflict graph as the number of
neighbors it has on its right, which we refer to as its children. Furthermore, for a given
size n each node corresponds to a different instance of zeros and ones, so we have 2n

nodes in total. The degrees adhere to the following structure.

Lemma 11. Consider all 2n nodes corresponding to instances of size n. For every
i ∈ {1, . . . , n − 1}, there are 2n−i nodes of degree i. Concretely, half of these nodes
have degree one, a quarter of the nodes have degree two, and so on until one node has
degree n.

Moreover, a node with degree k has exactly one child of degree i for every i ∈ {1, . . . , k}.

Proof. By Lemma 10, an instance of size n+ 1 is in conflict with an instance of size n if
we add a 0 anywhere after the last 0 of the instance of size n. Therefore, every instance
that ends in a 0 has degree one, since the new 0 can only be inserted in one place. This
is true for half of the nodes. Similarly, we see that every instance that ends in 01 has
degree two and this is a quarter of the nodes. In general, every instance that has suffix
01i has degree i+ 1.

A node with degree k has a suffix 01k−1. To create a child, we need to add a zero
anywhere after the last 0. If we insert this 0 at the very end, we create a node of degree
one. If we insert this 0 before the last 1, we create a node of degree two. In general, if
we insert the 0 after the i-th 1 from the end, we create a node of degree i.

Algorithms and weights in the conflict graph We now turn to the connection between
algorithms and the conflict graph. We start by linking the structure of the conflict graph
to deterministic algorithms.

Lemma 12. A deterministic algorithm can win in at most one of the instances of any
monotone path in the conflict graph.

Proof. By Lemma 9, any two instances that are in a monotone path are in conflict,
and by Lemma 8 an algorithm can win in at most one instance of a pair of conflicting
instances.

One can think of an algorithm for the problem as a partition of the nodes of the conflict
graph into the nodes for which it wins and the nodes for which it loses. Lemma 12 gives
a constraint on the structure of such a partition. Note that not all partitions correspond
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to a finite algorithm, but this is not an issue as we look for impossibility results (we will
abuse terminology and use the word “algorithm” nevertheless).

More precisely, we will consider such a partition in the following structured way. We
start from some size N0, and ask the algorithm which nodes of this size it selects, that is,
in which instances it wins. This implies that the algorithm will not be able to select some
instances of larger size, namely the instances in conflict with any node of this selection.
We say that these nodes that cannot be selected later are removed. Then we will move
on to the next size, and ask the algorithm to select instances among those that have not
been removed yet. We continue this in an iterative fashion.

We now continue by adapting the conflict graph to reflect the quality of an algorithm.
For this, we extend the conflict graph to weighted nodes. We first define this properly
and show how to measure the quality of an algorithm in the conflict graph. For now, we
restrict ourselves to deterministic algorithms, which select a specific node either always
or never. Afterwards we show that the arguments extend to randomized algorithms as
well, that are allowed to select nodes with some probability.

We define the weight of a node as the probability that the corresponding instance
results from the sampling process where we sample each of the n elements independently
with probability p. In particular, if an instance has size n and norm m, then the weight
of the corresponding node in the conflict graph is pm(1 − p)n−m. Note that for a fixed
size n, the weights of the instances of size n sum to 1.

With this definition of the weights, the performance of a deterministic algorithm for
a fixed size n in terms of the weighted conflict graph is the sum of the weights of the
instances in which it wins. Then, the worst case performance of an algorithm is the
infimum of the performance of the algorithm over all sizes n. Note that the worst case
performance of an algorithm for the last zero problem implies a bound on the success
guarantee of any algorithm for AOSp, which is exactly the negative result we aim to
prove in this section.

Fix a size n and let Vn,i be the nodes of size n with degree i. Define wi as the total
weight of the nodes in Vn,i (as the notation suggests, we will see this is indeed independent
of n). Moreover, define wij as the sum of the weights of the nodes of size n + 1 and
degree j that are in conflict with any node in Vn,i. Note that wij is only positive for
j ≤ i because of Lemma 11. The following lemma can be seen as the weighted version
of this lemma.

Lemma 13. For any size n, wi = pi−1(1 − p) and wij = (1 − p)wi = pi−1(1 − p)2 for
all 1 ≤ j ≤ i ≤ n.

Proof. From the proof of Lemma 11, we see that the instances of degree one are exactly
these which have a 0 in the end. Summing over their individual weights will give us
w1 = 1 − p, which is the probability of having a 0 as the last bit of an instance. In
general, a node of degree i ends in a 0 followed by i−1 ones. Accordingly, the probability
of having an instance that ends with this suffix is wi = pi−1(1− p).

Now consider an instance I1 of size n with degree i. It starts with n− i unrestricted
bits and its suffix is 01i−1. Now consider an instance I2 of size n+ 1 with degree j that
is in conflict with I1. Because it is in conflict with I1, the first n − i unrestricted bits
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are the same as I1, as well as the 0 in entry n − i + 1. Then, we interrupt the suffix
of 1i−1 with an additional 0 such that I2 has a suffix of 1j−1 in order to have degree j.
Therefore, I2 has the following structure. It starts with n− i unrestricted bits, followed
by 01i−j01j−1.

Now consider the set of all instances that have the form of instance I1, with certain bits
in its unrestricted prefix of length n− i. Because of the suffix 01i−1, the weight of these
instances can be computed as pi−1(1−p). On the other hand, the weight of all instances
that have the form of the instance I2 can be computed as (1 − p)pi−j(1 − p)pj−1 =
pi−1(1− p)2.

This allow us to describe how the conflict graph can reflect a randomized algorithm.
The difference is that it labels each instance with a selection probability q, while a
deterministic algorithm labels each instance either with a one or a zero (we either always
select it, or we never do). Concretely, this means the following: Suppose the algorithm
is faced with the last 0 in this instance (it is not aware of this, of course). Then the
algorithm stops with probability q (and wins in this instance). It continues the sequence
with probability 1−q, meaning it loses in this instance (but it might still win in instances
of larger size that are in conflict with this instance).

The following lemma is the non-binary version of Lemma 8. For its statement, we
define the descendants of an instance I as one would expect: The set of nodes in the
conflict graph that are connected to I through a monotone path and that have a larger
size than I.

Lemma 14. For any algorithm, if for some instance I it picks a selection probability q,
then the probability of winning at any descendant is at most 1− q.

Proof. This follows from similar arguments as Lemma 8.

It is important to note that this removed fraction adds up: if an instance has selection
probability q, and one of its descendants has selection probability r, then for any descen-
dant of the second instance its removed fraction is q + r and its selection probability is
at most 1− q − r. In other words, when a randomized algorithm reaches this particular
descendant, it can assign at most a selection probability of 1− q − r to it.

Similarly, we define the performance of a randomized algorithm as its quality for
a given size n, i.e., the product of the weight of a node multiplied by its selection
probability, summed over all instances of size n. The worst case performance is then the
infimum over n of these performances. The worst case performance of an algorithm for
the last zero problem provides a bound on the success guarantee of any algorithm for
AOSp.

Finally, note that the success guarantee of the k-max algorithm, proved in Lemma 7,
can be also shown now using the alternative perspective of the conflict graph. The k-max
algorithm roughly selects low degree nodes in every size n of the conflict graph in order
to remove as little weight as possible from instances of larger size. A careful analysis
indeed gives the same success guarantee kpk(1− p). For details, see Appendix B.1.
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Warm up: Proof for the case of p = 1/2

As a warm up that introduces the main ideas behind the general proof, this section
proves the special case of Theorem 7 for deterministic algorithms for the case where n
is unknown but larger than some constant, and p = 1/2. Note that for p = 1/2, all
nodes of size n have the same weight, namely 1/2n. The total fraction of selected nodes
is therefore equal to the total weight of the selected nodes.

Proposition 6. For the last zero problem with p = 1/2, no deterministic algorithm
can have a better success guarantee than the k-max algorithm, even if we consider only
instances of size larger than N0, for any N0.

To prove Proposition 6 we will bound the worst case performance of any deterministic
algorithm by considering a special class of algorithms.

Canonical algorithms. More precisely, we consider a deterministic algorithm that starts
by selecting some nodes in the conflict graph for a certain size N0. Consequently, all
descendants of the selected nodes will be removed. The algorithm will then continue to
the nodes of size N0 + 1 and select a subset of the nodes of this size that have not been
removed. Then it will continue to the next size and iterate this procedure. We will show
that if the algorithm consistently selects at least a 1/4 + ε fraction of the nodes for each
size, this process cannot run forever, reaching a contradiction.

Before we proceed to the proof, we make a crucial observation. Note that Lemma 11
implies that two nodes of the same degree have children with the same degree distribu-
tion, and the same holds for their further descendants. By construction, it follows that
the subtrees to the right of any two nodes of the same degree are isomorphic. With
this important observation at hand, we can prove that it suffices to restrict our atten-
tion to algorithms of a canonical form, in order to reduce the large variety of possible
algorithms.

Lemma 15. Consider the last zero problem for p = 1/2. Let I1 and I2 be two instances
of the same size and the same degree that have not been removed, and consider an
algorithm that selects I1 but does not select I2. Then there exists another algorithm that
selects I2 instead of I1 and achieves the exact same success guarantee.

Proof. Consider the instances I1 and I2 and an algorithm A that selects I1 but not I2.
Since A selects I1, the nodes to its right are removed. On the other hand, as I2 is not
selected and is alive, it can be that A selects some node in its subtree. As observed
above, the subtrees rooted at I1 and I2 are isomorphic. Since any node has at most one
edge to the left, these trees are also disjoint.

Now consider the algorithmB that selects the same nodes as A except for the following.
It selects I2 instead of I1, deselects every node that A selected in the subtree of I2 and
instead selects the corresponding (according to the isomorphism) nodes in the subtree of
I1. By construction, for every given size n, the nodes that both algorithms select carry
the same weight, so the success guarantees are equal.
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We can reduce the algorithms of interest even further by introducing the following
important notion. We say that an algorithm follows a small degrees first strategy if for
any size considered, among the nodes that are not yet removed, it selects the nodes with
the smallest degrees.

Note that this strategy does not define a single algorithm: many nodes have the
same degree. Indeed, the k-max algorithm is closely related to these small degrees first
strategies – we will elaborate on this in the paragraph of Lemma 19.

Lemma 16 (Small degrees first strategy). Consider the last zero problem for p = 1/2.
For every algorithm, there exists an algorithm using the small degrees first strategy that
achieves the same performance for every n.

Proof of Lemma 16. Consider an algorithm that does not follow the small degrees first
strategy. Then there exists a size n where it selects an instance I1 of degree k1 and does
not select an instance I2 of degree k2 < k1.

Consider the part of the subtree rooted at I1 that consists of its k2 children of smallest
degree and their subtrees. By the structure given by Lemma 11, this subtree is isomor-
phic to the subtree of I2. Then the same swapping argument as in the proof of Lemma 15
between the subtree of I1 and the tree of I2 exhibits another algorithm with the same
success guarantee that does follow the small degrees first strategy.

From now on, we restrict ourselves to considering algorithms that follow the small
degrees first strategy.

The cover ratio. In order to reach a contradiction and prove Proposition 6, we define
the cover ratio ρ for an algorithm and a certain size n. It is defined as the sum of
the weights of the instances of size n that the algorithm either selects or removes. The
removal of an instance is due to selecting an instance of smaller size that is connected by
a monotone path to this instance. Denoting the set of selected and removed instances
of size n by S and R respectively, and the weight of an instance I by w(I), we can write
ρ =

∑
I:|I|=n,I∈S∪R w(I). Observe that this expression with a sum over only S instead

of S ∪R equals the performance of the algorithm for size n.
Note that in the special case that p = 1/2, all instances have equal weight and therefore

ρ = (r + s)/2n is just the fraction of the total number of instances of size n that are
either selected (s) or removed (r).

The proof sketch of Proposition 5 showed the intuition behind the proof. Here we
state the formal arguments. The idea behind the proof is to show that selecting strictly
more than 1/4 of the instances for many successive sizes implies that the cover ratio ρ
increases in such a way that at some point it is impossible to select that many instances.
This shows by contradiction that there is no deterministic algorithm that has a success
guarantee of 1/4 + ε.

Lemma 16 implies that we can restrict ourselves to a unique strategy for the algorithm
as follows. For a size n, select a 1/4+ε fraction of the non-removed instances in increasing
order of degrees (with an arbitrary order for the instances of same degree). Then the
algorithm repeats this for the non-removed instances in the next size n + 1, which we
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refer to as the next step. Without loss of generality, we can assume that we start at size
N0 with no removed nodes.

We now analyze the dynamics of the process, and in particular the dynamics of the
cover ratio ρ. First, observe that at size N0, no nodes have been removed so far. As
the algorithm selects a 1/4 + ε fraction of the nodes and half of all these nodes have a
degree of 1, the algorithm selects only nodes of degree 1. For a certain number of sizes,
starting from N0, the algorithm can select only degree 1 nodes. We call this the first
phase of the algorithm.

Claim 1. Consider the last zero problem for p = 1/2 and an algorithm as described
above. After t steps in the first phase of the algorithm, the cover ratio ρ is (1

4 + ε) ·∑t
i=1

1
2i−1 .

Proof of Claim 1. We prove the claim by induction. For the base case n = N0 we have
ρ = 1/4+ε, which corresponds to the formula of the claim. Now suppose that the lemma
holds for some size n+ t− 1, so ρ = (1

4 + ε) ·
∑t−1

i=1
1

2i−1 . We first determine the fraction
of removed nodes in the next size n+ t. Since each node of degree 1 removes one node
of the next size, the number of nodes removed for size n + t is the same. However, as
there are twice as many instances in total of size n+ t, the fraction is half this number,
namely (1

4 +ε) ·
∑t−1

i=1
1
2i

. The fraction of selected nodes is 1/4+ε, thus in total the cover
ratio becomes

ρ =

(
1

4
+ ε

)
·

(
t−1∑
i=1

1

2i
+ 1

)
=

(
1

4
+ ε

)
·

(
t∑
i=1

1

2i−1

)
.

Note that the term (1
4 +ε) ·

∑k
i=1

1
2i−1 goes asymptotically to 1+ε

2 as k grows, for some
ε > 0. In particular, this means that at some point it exceeds the value of 1/2, which
is the total fraction of nodes with degree 1. This implies, in turn, that the algorithm
is forced at some point to start selecting degree 2 nodes in addition to degree 1 nodes.
This is the start of a second phase, where the algorithm needs to select degree 2 nodes,
in order to keep selecting a 1/4 + ε fraction of the nodes for each size.

Claim 2. Consider the last zero problem for p = 1/2 and an algorithm as described
above. In the second phase of the algorithm, the cover ratio ρ grows by at least ε at
each step.

Proof of Claim 2. Let us consider a size n where ρ > 1/2, say ρ = 1/2+δ for some δ > 0.
Then for size n+ 1 the situation is the following: First, the 1/2-fraction of nodes of size
n remove 1/4 of the nodes of size n+ 1 (since all these nodes have degree 1). Then, by
Lemma 11, the δ fraction of degree 2 nodes remove one instance of degree 1 and one
instance of degree 2 in the next size. That is, in size n+ 1, a (1/4 + δ/2)-fraction of the
degree 1 nodes and a δ/2-fraction of the degree 2 nodes are removed in total.

The algorithm must now select a (1/4 + ε)-fraction of the nodes that have not been
removed. Following the small degrees first strategy, the algorithm chooses the remaining
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1/4 − δ/2 fraction of degree 1 nodes, and a δ/2 + ε fraction of the degree 2 nodes. In
total, for size n+ 1 we have ρ = 1/2 + δ + ε, and the claim follows.

These two claims imply Proposition 6. Intuitively, if the cover ratio grows by the same
additive factor in each step, at some point it will exceed the value 1, which completes
the proof by contradiction.

Proof of Proposition 6. In the second phase of the algorithm, ρ increases by ε in each
step. Therefore, at some point the cover ratio becomes too large to select only degree 1
and 2 nodes and the algorithm is forced to start selecting degree 3 nodes. Note that in
this third phase ρ also grows by at least ε at each step, since selecting a node of degree
3 is even worse than selecting a node of degree 2: It removes the same number of degree
1 and 2 nodes, but in addition it removes degree 3 nodes.

The same holds true for further phases of the algorithm in which it selects nodes of
even higher degree. Due to this increase of at least ε in each step, at some point ρ
becomes strictly larger than 3/4− ε. Therefore, the algorithm cannot select an 1/4 + ε
fraction of the nodes any more. Therefore, no algorithm can achieve a success guarantee
of 1/4 + ε for any ε > 0.

Generalization to any value of p

In this section, we generalize the previous results beyond the case of deterministic al-
gorithms for p = 1/2. This case is a bit more complicated, because when p 6= 1/2 the
instances of the same size do not have the same probability of occurring. For example,
for p = 3/4, it is better for an algorithm to succeed in the instance 1k0 than to succeed
in the instance 0k+1, as the first has probability (3/4)k(1/4) to occur and the second
probability (1/4)k+1. From a technical perspective, this means that in the conflict graph
the nodes now have weights.

Building on the intuition of the previous section, but using quite different techniques,
we show what is the best possible success guarantee that any algorithm can achieve. We
then link our k-max algorithm to the conflict graph, such that we finally reach the main
takeaway point of the section: The k-max algorithm, although very simple, is optimal
for all values of p. We first focus on the family of deterministic algorithms and prove
the optimality of k-max there. Then, we show how one can adapt the proof to include
also randomized algorithms.

Local operators and average performance The main reason the proof techniques of the
previous section need to be adapted is the fact that instances of a given size do not have
the same weight anymore, and therefore, the swapping argument used in Lemma 15 and
Lemma 16 is no longer true. Thus, we transform a strategy using moves that select and
deselect nodes from instances of different sizes; we will call such moves local operators.
These local operators might decrease the fraction of selected nodes in a specific size while
increasing it for another size. To resolve this, we introduce the notion of the average
performance of an algorithm in the window [n, n+ t], which is simply the average of its
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performance on sizes s ∈ [n, n+ t]. We will show that there exists a set of local operators
that can be used to improve the average performance.

Informally, the argument is then as follows. The k-max algorithm is very consistent in
the sense that it selects the same total weight for every size. This means that its average
performance is approximately equal to the infimum of its performance for every size (i.e.,
its success guarantee). Therefore, if a strategy would outperform the k-max algorithm,
it would also exceed the average performance in every window. In this section, we show
that the latter is a contradiction.

To prove that certain local operators improve the average performance in the next
lemma, we say an algorithm is valid if it selects at most one node along each monotone
path in the conflict graph.

Lemma 17. Consider a valid deterministic algorithm with a certain average perfor-
mance in a window [n, n + t]. Applying the following local operators yields a new valid
algorithm whose average performance in this window is at least as good as the former
algorithm.

1. If the algorithm selects a node of degree d > 1/(1−p) for some size s ∈ [n, n+t−1]:
Deselect it and select all its children.

2. If the algorithm has not selected nor removed a node of degree d ≤ 1/(1−p): Select
it and remove all its descendants (in particular, deselect its selected descendants).

Proof. The fact that the resulting algorithm is valid again is clear. We prove that these
local operators do not decrease the average performance.

Consider the first local operator and a node of degree d and weight w of size s ∈
[n, n + t − 1]. After applying the operator, the performance of the algorithm in size s
is decreased by w. By Lemma 13, the total weight of its children is dw(1− p), which is
larger than w for d > 1/(1− p).

Now consider the second local operator. Let A1 be the algorithm before applying
the second local operator and A2 the resulting strategy afterwards. We will construct a
reversed sequence of valid algorithms that starts at A2, iteratively selects and deselects
some nodes and ends in A1, where in every step the average performance does not
increase. This will prove the claim.

Consider a valid algorithm A in this reversed sequence (the “current” algorithm) from
which we will construct its predecessor algorithm A′. Let v be the node that A1 neither
selects nor removes and consider the subtree T rooted at v for the remainder of this
argument. Let S be the set of nodes in T that A1 does not select, but that the current
algorithm A does select. Among the nodes in S, let v′ be an arbitrary node of minimum
size. There are two cases to consider.

First, if A1 does not select any of the descendants of v′, deselect v′ in the newly
constructed algorithm A′. This clearly does not improve the average performance from
A to its predecessor A′.

Second, consider the other case where A1 selects at least one of the descendants of v′.
Denote the weight of v′ by w′. Then, to turn A into A′, deselect v′ and selects all its
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descendants. Note that this replaces a node of degree d′ ≤ d ≤ 1/(1− p) and weight w′

by a set of at most d′ nodes of weight w′(1 − p), having total weight d′w′(1 − p) ≤ w′.
So the average performance of A′ is at most the average performance of A.

By starting at algorithm A2 and iteratively applying these two cases, we create a
sequence of valid algorithms that converge to the initial algorithm A1. Since the average
performance does not increase in this direction, this means that from A1 to A2 the
average performance does not decrease and the proof is complete.

Fill-in strategy Using these local operators that improve the average performance, we
can define the following: The fill-in strategy for a window [n, n + t] scans the sizes in

increasing order, selects all the non-removed instances of degree up to
⌊

1
1−p

⌋
for each

size s ∈ [n, n+ t− 1], and all the non-removed instances for size n+ t.

Lemma 18. The fill-in strategy achieves optimal average performance for any win-
dow [n, n+ t].

Proof. Consider an optimal strategy that is not the fill-in strategy. There are three cases.

In the first case, a non-removed node of size s ∈ [n, n+ t− 1] of degree at most
⌊

1
1−p

⌋
is

not selected. But in this case, applying the second operator of Lemma 17 improves the
average performance, which is a contradiction. In the second case, a non-removed node

of size s ∈ [n, n + t − 1] of degree strictly larger than
⌊

1
1−p

⌋
is selected. Now we can

apply the first operator of Lemma 17 to improve the average performance, and we have
a contradiction. In the last case, a non-removed node of size n + t is not selected. But
selecting it will also improve the average performance, which is again a contradiction.

With the optimal fill-in strategy at hand, we now proceed to describe the k-max
algorithm in the conflict graph and finally show that the worst case performance of the
fill-in strategy does not exceed the success guarantee of the k-max algorithm to conclude
the proof of the negative results of Theorem 7.

The k-max algorithm in the conflict graph To link the fill-in strategy to the k-max
algorithm, we need to analyze the dynamics of the k-max algorithm in the conflict
graph. As a starting point, we will describe which instances the algorithm selects for

p ∈ [1/2, 2/3). Note that for such a value, k =
⌊

1
1−p

⌋
= 2, so the algorithm sets the

second largest sampled value as a threshold (i.e., stops with the first 0 after the second-
to-last 1 in the last zero problem). This implies that for any given size n, it obtains the
last zero (i.e., the online element with the maximum value) in the instances which end
in 110 or 101. Similarly, for p ∈ [2/3, 3/4), the algorithm successfully selects the last
zero in instances that end in 1110, 1101 or 1011.

We analyze its dynamics in the conflict graph in the following lemma.

Lemma 19. Consider the instances in the conflict graph of size n ≥ k+ 1 and consider
the k-max algorithm that starts at size k + 1 and iteratively considers instances of in-
creasing size. For every size, it selects the non-removed nodes that have norm at least k
as well as degree at most k.
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Proof. First of all, for this proof we will need the concept of the m-cut suffix of an
instance, which is the last m bits in case the instance has at least m bits and the entire
instance otherwise.

Consider the conflict graph for n ≥ k + 1 with selected and removed nodes by the
k-max algorithm and suppose by contradiction that the lemma is false. Then either a
node of norm less than k is selected, or a node of degree more than k is selected, or a
node that has norm at least k as well as degree at most k is not selected.

In the first case, there are less than k samples, thus the algorithm sets a threshold of
zero and accepts the first online value. So the algorithm only wins in this instance if
the first online value is the maximum online value, i.e., the instance contains only one 0.
But since there are less than k samples, this instance has size at most k. Contradiction.

In the second case, note that a node that has degree more than k has a suffix consisting
of one 0 followed by at least k 1s. In such an instance, however, the k-max algorithm
loses, so it does not select such a node. Contradiction.

In the third case, consider a node v of norm at least k and degree at most k that is
selected. Without loss of generality we assume that v is the node with these properties
of smallest size among all nodes with these properties. Let the degree of v be d ≤ k such
that its suffix is 01d−1. Consider the k-cut suffix of v and note that it contains at least
one 0. Now, as long as the k-cut suffix of v contains more than one 0, remove the last 0
of v. Consider the unique resulting instance v′ of this procedure whose k-suffix contains
exactly one 0. Note that the size of v′ is at least k+ 1 as its norm is at least k. Since v′

has norm at least k as well as degree at most k, and v was the smallest (in terms of size)
such node that was not selected, the k-max algorithm already selected v′. But then v,
being a descendant of v′, was removed and therefore could not be selected in the first
place, contradiction.

Now that the behavior of the k-max algorithm on the conflict graph is clear, it is
possible to analyze its success guarantee using the conflict graph. The possibility to
analyze the success guarantee of an algorithm through the conflict graph is one of its
key properties. Indeed, such an analysis yields the same success guarantee as the one
claimed in Lemma 7 (see also Appendix B.1).

Connecting the fill-in strategy to the k-max algorithm The previous lemma allows
us to compare the performance of the fill-in strategy to the performance of the k-max
algorithm. In fact, they select almost the same nodes in the conflict graph.

Lemma 20. Consider the fill-in strategy and the k-max algorithm for window [n, n+ t].

If n > 1, then for every size s 6= n, n+ t, the fill-in strategy and the k-max algorithm
select the same set of nodes. For sizes s = n and s = n+ t, the k-max algorithm selects
a strict subset of the set of nodes selected by the fill-in strategy.

If n = 1, they select the same set of nodes for size s = n = 1 as well.

Proof. Suppose that we start with size n > 1. This means that none of the instances
of size n have been removed. The fill-in strategy selects all nodes of degree up to

76



4.2 Adversarial order

k = b1/(1− p)c. The k-max algorithm selects only such nodes that have norm at least
k as well, which is a strict subset.

We will now prove that for sizes n < s < n+t, the set S1 of nodes selected by the fill-in
strategy is the same as the set S2 of nodes selected by the k-max algorithm. It is clear
that S2 ⊆ S1. We prove S1 ⊆ S2 by contradiction, so we assume there is a v ∈ S1 \ S2,
i.e., v has degree at most k and norm less than k. Without loss of generality, we assume
that v has the smallest size among nodes in the set S1 \ S2. We consider two cases: v
has a parent w of size s− 1 or v has no parent.

In the first case, note that the degree d of node w is at most k. Otherwise, it would
have suffix 01d for d ≥ k. But then its norm would be at least k and the norm of its
child v would also be at least k, contradiction. So assume that the degree of w is at
most k. Then w was selected by the fill-in strategy if it was not removed earlier. If w
was selected, v was removed so could not be selected by the fill-in strategy, so v 6∈ S1,
contradiction. If w was not selected, that is because it was removed earlier. But it can
only be removed earlier in case it is a descendant of a node that was selected by the
fill-in strategy before. But in that case, v was also removed, contradiction.

In the second case, note that nodes without a parent are exactly the nodes that have
at most one 0. In the single instance that contains no zeros, the k-max algorithm and the
fill-in strategy make the same decision by definition, so we restrict ourselves to instances
that contain exactly one 0. Since the norm of v is less than k, the k-max strategy
sets a threshold of 0 and wins, since the only 0 is the maximum 0. But then v ∈ S2,
contradiction.

We wrap up the first part of the proof by considering the size s = n + t. Here, the
fill-in strategy selects all non-removed nodes, while the k-max algorithm selects all non-
removed nodes that have degree at most k and norm at least k. The set of removed
nodes is the same and the set of non-removed nodes contains nodes of degree more than
k or norm less than k, so the fill-in strategy indeed selects more nodes.

Finally, if n = 1, both the fill-in strategy and the k-max algorithm select instance 0
and cannot win in instance 1, so in this case they select exactly the same nodes also in
the first size of the window.

Combining everything, we can now prove the negative result for deterministic algo-
rithms.

Theorem 8 (Negative result of Theorem 7 for deterministic algorithms). No determin-
istic algorithm can achieve a better success guarantee than the k-max algorithm.

Proof. First, note that Lemma 20 implies that the performance of the fill-in strategy
and the k-max algorithm for the sizes N0 and N0 + t differs by at most 1 for each size, so
the average performance of the fill-in strategy in [N0, N0 + t] is at most 2/(t+ 1) ≤ 2/t
more than the average performance of the k-max algorithm. As argued before, for some
interval, the average performance of the k-max algorithm is arbitrarily close to kpk(1−p),
since that is its worst case performance. Consider this interval.

To prove the theorem, suppose by contradiction that there exists an algorithm A that
achieves a performance of kpk(1 − p) + ε for some ε > 0 for every size n (larger than

77



4 The Secretary Problem with Independent Sampling

some size N0), where k = b1/(1 − p)c. Consider a window [n, n + t] (with n ≥ N0) for
some t > 0. Then the average performance of A in [n, n + t] is at least its worst case
performance, which is kpk(1 − p) + ε. However, the average performance of the fill-in
strategy in this window is (arbitrarily close to) kpk(1 − p) + 2/t and this is optimal by
Lemma 18. Therefore, for t > 2/ε, this is a contradiction since A cannot be better.

Finally, we adapt the above proof to randomized algorithms by generalizing Lemma 17
to the randomized setting. The rest of the proof follows immediately from the same
arguments as for deterministic algorithms, so extending this lemma suffices to extend
the negative results to randomized algorithms.

For a node v, let qs(v) and qr(v) be its selection probability and its removed fraction
(cf. Lemma 14), respectively. Recall that a node selected with probability qs(v) removes
a fraction qs(v) of its descendants. We call a randomized algorithm valid if the sum of
qs(v) over all vertices v of a monotone path in the conflict graph is at most 1.

Lemma 21. Consider a valid randomized algorithm with a certain average performance
in a window [n, n+t]. Applying the following local operators yields a new valid algorithm
whose average performance in this window is at least as good as the former algorithm.

1. If the algorithm selects a node v of degree d ≥ 1/(1−p) for some size s ∈ [n, n+t−1]
with probability qs(v) > 0, set qs(v) = 0 and increase the success probability of its
children by qs(v).

2. If for a node v of degree d ≤ 1/(1−p) the algorithm sets qs(v)+qr(v) < 1, increase
qs(v) by ε = 1 − qs(v) − qr(v). Then for every descendant v′, set qs(v

′) = 0 and
qr(v

′) = 1.

Proof. For both local operators, the claim that applying them does not decrease the
average performance follows from the arguments of Lemma 17, so in this proof we will
show that both local operators result in a valid algorithm. Let v be the node under
consideration and for any node w denote by q′s(w) and q′r(w) its selection probability
and its removed fraction, respectively, after applying one of the local operators.

Consider the first local operator and any monotone path P = (v, v1, v2, . . .). Note that
every monotone path contains exactly one child of v. Then∑
w∈P

q′s(w) = q′s(v) + q′s(v1) +
∑
i≥2

q′s(vi) = 0 + (qs(v1) + qs(v)) +
∑
i≥2

qs(vi) =
∑
w∈P

qs(w) .

So if the original algorithm was valid, so is the algorithm after applying this operator.

For the second operator, note that we change qs(v) to qs(v) + ε = qs(v) + 1− qs(v)−
qr(v) = 1 − qr(v). Therefore, after applying the operator, we have qs(v) + qr(v) = 1.
Since in general for any child w of v we have qr(w) = qs(v) + qr(v), we see that qs(w) ≤
1− qr(w) = 1− 1 = 0. The proof is complete.

With this lemma, the proof of the negative results of Theorem 7 is complete, except
for one last assumption we need to drop: The proof also holds for known values of n.
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Generalization for known n

We now prove that even exact knowledge of the size n that the adversary picks for the
instance does not help asymptotically. To do so, we first introduce a variant of the last
zero problem.

Definition 6. The colored last zero problem is the following:

1. An adversary picks two integers m and n, with m ≤ n.

2. A sequence of bits of length n is created where every entry independently has value
1 with probability p and 0 otherwise.

3. We color the entries 1 to m with red, while the entries m+ 1 to n are colored blue.

4. The player is given the size n, the number of red 1s and the number of blue 1s.

5. Then the player is presented with the bits one after the other, and for each of them
decides whether to stop or to continue.

6. The player wins if she stops on the last red 0 of the sequence.

Note that now the player has three numbers to start with: the number of red samples r,
the number of blue samples b, and the size n.

Proposition 7. The colored last zero problem is equivalent to a specific instance of
AOSp with known size n. Therefore, any negative result for the colored last zero problem
also holds for AOSp.

Proof. (Analogue of Proposition 4.) The player again only wins if she stops with the
element of the online set with the largest value, only that now she knows in advance
how many online elements she is going to observe. Imagine now that she is facing an
instance of the following form: The first m elements are assigned a series of positive
strictly increasing values, and the remaining n−m take arbitrary negative values. Thus,
in this instance the player is aiming for the last non-sampled element among the first
m. This is basically the same game as the colored last zero problem, where the red
values correspond to the positive values and the blue values correspond to the negative
ones.

With this analog of Proposition 4, we are going to prove the following theorem in the
remainder of this section.

Theorem 9. In the colored last zero problem, no algorithm can achieve performance
kpk(1− p) + ε on every size n ≥ N0 (for some N0 > 0).

Intuitively, the colored last zero problem should not be much different from the case
without colors: there is still an unknown point in the sequence where the player should
stop, and there is still a sequence of bits before this point (the red bits). The only
difference is that now n is known and we are also given the total number of 1s in the last
n−m bits (the blue bits). At first sight these blue 1s seem useless, because the player
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wants to stop before reaching them. On the other hand, the fact that we know how many
they are, gives an indication about the size of n −m and this could be already enough
to improve the performance. We show that this is not the case. To do so, we define
a slightly different conflict graph, and study its structure to show that up to negligible
terms the dynamics are the same as for the standard conflict graph.

Modified conflict graph For the colored last zero problem, m basically plays the role
that n was playing before. Therefore, the different layers of the conflict graph correspond
to the various sizes of m in this case, and there is a separate conflict graph for each value
of n. Note that the conflict graph has a finite number of layers as m varies between 1
and n.

A node of the graph is a couple (S, b), where S is a sequence of bits of length m, that
represents the sequence of red bits, and b is an integer that represents the number of
blue 1s. The exact positions of 0s and 1s in the blue bits are irrelevant for our proof,
only the total number of blue 1s matters.

Finally, just as before, the nodes have different weights, with the difference here that
the weights also depend on b. In particular, the weight of a node (S, b) is

pr+b(1− p)n−r−b
(
n−m
b

)
.

Indeed, the probability of having r+ b 1s in an instance of size n when sampling with
probability p is pr+b(1− p)n−r−b, where r is the number of red 1s. As we group together
all the instances with b blue 1s, we multiply by the total number of such instances.

Conflict structure Now let us consider the conflicts. One can see that two nodes (S, b)
and (S′, b′) are in conflict if and only if b = b′, and S is in conflict with S′ (in the sense
of the standard conflict graph). Note that for an instance and its descendants the values
b, r and n are the same. In other words, to move from size m to size m+ 1 we can add
a 0 in the appropriate position, just as in Lemma 10.

We now study the relation between the weights of an instance and its children. Let
I1 be a node with a sequence S of size m and let I2 be one of its children (note that I2

has size m+ 1 and is in conflict with I1). Let p1 and p2 be the weights associated with
these nodes. We derive from the formula above that:

p2

p1
=

(
n−m−1

b

)(
n−m
b

) =
n−m− b
n−m

Having defined the modified conflict graph, we are now ready to show the main result
of this section. The key insight is that with high probability, the modified conflict graph
has the same weight distribution as in Lemma 13, and therefore, the arguments of the
proof sketch in Section 4.2.2 show a contradiction.

Proof of Theorem 9. Consider again the ratio p2/p1. The expected value of b is of course
(n − m)p, but this will not be the case for all instances that we consider. For large
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values of n −m though, we can apply standard concentration arguments (see also ??)
and obtain that with high probability we have

(n−m)− (n−m)p− ε
n−m

≤ p2

p1
≤ (n−m)− (n−m)p+ ε

n−m
⇐⇒

1− p− ε′ ≤ p2

p1
≤ 1− p+ ε′,

where ε′ = ε
n−m . From here it is easy to observe that when ε takes a value very close

to 0, so does ε′. Furthermore, as n −m grows, ε′ vanishes. Thus the modified conflict
graph has the same weight distribution as in Lemma 13 with high probability.

Therefore, with high probability, the modified conflict graph is (almost) the same as
the weighted conflict graph from Section 4.2.2. Thus, we can follow again the argu-
ments in Section 4.2.2, since they all hold in this case too. We end up with the same
impossibility results, which hold here as well both for deterministic and for randomized
algorithms.

4.3 Random order

In this section, we study the second problem of this chapter: the random-order secretary
problem with p-sampling, ROSp. To analyze this case, it is useful to have the following
equivalent point of view: We assign a uniformly random arrival time τi to each of the
n elements in the interval [0, 1]. If τi < p we add i to S and otherwise we add it to
V . Then the elements in V are revealed in the order of the τi’s. Clearly, τi < p with
probability p, so each value is in S independently with probability p. It is also clear
that the resulting order is uniformly random. Therefore, any algorithm for the original
formulation can be applied to this one. Conversely, an algorithm for this formulation
can be transformed into a randomized algorithm for the original one, by sampling |S|
uniform arrival times in [0, p] and |V | uniform arrival times in [p, 1].

Consider the following family of algorithms: We fix a sequence t = (ti)i∈N such that
0 ≤ t1 < t2 < · · · < 1. Between times tk and tk+1 the algorithm ALGt sets as a threshold
the k-th largest sampled value. More precisely, suppose the value αi is revealed and
assume tk ≤ τi < tk+1. ALGt accepts αi if it is the largest among the values from V
seen so far, and is greater than the k-th largest value from S. For simplicity, if |S| < k
we define the k-th largest value of S as −∞. We prove that the best possible success
guarantee is attained in this family.

Theorem 10. There exists a universal sequence t, independent of p and n, such that
ALGt obtains the best possible success guarantee for ROSp. Furthermore, when p = 0
this guarantee is equal to 1/e, and when p tends to 1, the guarantee tends to γ ≈ 0.58,
the optimal success guarantee in the full-information secretary problem.7

7The optimal guarantee γ ≈ 0.58 was first obtained numerically by Gilbert and Mosteller [80]. An
explicit formula for γ was later found by Samuels [137, 138].
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4 The Secretary Problem with Independent Sampling

We prove this theorem in two main steps. First, we find the sequence t∗ that maximizes
the success guarantee of ALGt. Then, we find an expression for the optimal success
probability when p and n are given, and prove that for fixed p it converges to the success
guarantee of ALGt∗ when n tends to infinity.

In order to find the optimal sequence t∗ we start by studying the success probability of
algorithm ALGt, for any sequence t, sample rate p and instance size n. We prove that in
fact the worst case for this class of algorithms is when n is very large. The approach of
approximating the problem when n is large by a continuous time problem was pioneered
by Bruss [27] and has been used for different optimal stopping problems (see e.g. Chan
et al. [38] and Immorlica et al. [95]).

Lemma 22. For any sequence t and sampling probability p, the success probability of
ALGt in ROSp decreases with n.

Proof. Fix a sequence t and a sampling probability p. We use a coupling argument
between realizations of the arrival times in instances with n and n+ 1 values. We start
with an instance α1, . . . , αn+1, and assume the values are indexed in decreasing order.
Consider a realization of the arrival times τ1 = τ ′1, . . . , τn+1 = τ ′n+1 and couple it with
the corresponding realization τ1 = τ ′1, . . . , τn = τ ′n in the instance α1, . . . , αn. Assume
that in the instance with n values and for this particular realization of the arrival times,
ALGt fails. This means that V \ {αn+1} is non-empty and either ALGt never stops
or it accepts a value that is not the maximum of V \ {αn+1}. Note that regardless of
τ ′n+1, the rankings of the values in V \ {αn+1} are the same in both instances because
αn+1 is smaller than all other values. Thus, if τ ′n+1 < p, ALGt does not succeed either
when applied in the instance of n + 1 values. On the other hand, if τ ′n+1 > p, we have
to distinguish between two cases. If ALGt accepts αn+1, it fails, because V \ {αn+1} is
non-empty and then αn+1 cannot be the largest in V . If ALGt does not accept αn+1,
then the behavior of ALGt in the rest of the variables is the same as in the instance with
n values and then it fails.

Since the distribution of τ1, . . . , τn is the same in both instances, we conclude with
this argument that the probability that ALGt fails in the instance with n + 1 values is
at least as large as in the instance with n values.

To prove the lemma the idea is to inductively couple the realizations of the arrival
times in instances of sizes n and n+1. We show that if ALGt fails for a given realization
of the arrival times of the largest n values in the instance of size n, then ALGt also fails
for any possible realization of the arrival time of the smallest (the n+1-th largest) value,
in the instance of size n+1. This implies that the probability of failure increases with n.

By Lemma 22 the success guarantee of ALGt is simply the limit of its success prob-
ability when n grows to infinity. We calculate these probabilities and obtain an explicit
formula for the limit in the following lemma. Interestingly, the formula turns out to be
quite simple.
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Lemma 23. Fix a sequence t and a sampling probability p. The success guarantee of
ALGt in ROSp is given by

∞∑
i=1

pi−1

(
1−max{p, ti} −

∫ 1

max{p,ti}

i∑
j=1

t−max{p, ti}
tj

dt

)
. (4.1)

Proof of Lemma 23. We first calculate the success probability of ALGt for fixed p and
n and then take the limit when n tends to infinity.

We say a value αi is acceptable for ALGt (for a particular realization of the arrival
times) if p < τi, for some j ∈ N we have that tj ≤ τi < tj+1, and αi is larger than the
j-th largest value in S. Now, note that if maxV is not acceptable for ALGt, then ALGt
does not stop. This is because we restricted the sequence t to be increasing, so values
that arrive before maxV are not acceptable, and values arriving after maxV will not be
the best seen so far from V . We use this to decompose the success probability as follows.

Pr(ALGt succeeds) = Pr(maxV is acceptable)− Pr(ALGt stops before seeing maxV ) .
(4.2)

In this definition, if V is empty we also say maxV is acceptable. We first calculate the
probability that maxV is acceptable. Assume that the values are indexed in decreasing
order, i.e., that α1 > · · · > αn.

Pr(maxV is acceptable) = Pr(V = ∅) +
n∑
i=1

Pr(maxV = αi) · Pr(ti ≤ τi | maxV = αi)

= pn +
n∑
i=1

pi−1(1− p) · 1−max{p, ti}
1− p

= pn +
n∑
i=1

pi−1 (1−max {p, ti}) . (4.3)

By the same argument, ALGt stops before seeing maxV if and only if at least one
value arrives after p and before the arrival time of maxV , and the maximum such value
is acceptable.

Pr(ALGt stops before seeing maxV )

=

n∑
j=1

Pr(maxV = αj) · Pr(maximum before maxV is acceptable | maxV = αj)

=
n∑
j=1

Pr(maxV = αj)
n−1∑
i=j

Pr
(

max. in [p, τj) has rank i among elements

that arrive in [0, τj), and arrives in [ti, τj)
∣∣∣ maxV = αj

)
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=

n∑
j=1

pj−1(1− p)
n−1∑
i=j

1

1− p

∫ 1

p
Pr
(

max. in [p, t) has rank i among elements

that arrive in [0, t), and arrives in [ti, t)
∣∣∣ maxV = αj , τj = t

)
dt

=

n∑
j=1

pj−1(1− p)
n−1∑
i=j

1

1− p

∫ 1

max{p,ti}

(p
t

)i−j
· (t−max{p, ti})

t

· Pr(at least i values arrive before t | maxV = αj , τj = t) dt

=

n∑
j=1

pj−1
n−1∑
i=j

∫ 1

max{p,ti}

(p
t

)i−j
· (t−max{p, ti})

t

(
1−Bt,n−j(i− j + 1)

)
dt

=

n−1∑
i=1

pi−1

∫ 1

max{p,ti}

i∑
j=1

t−max{p, ti}
tj

(
1−Bt,n−j(i− j + 1)

)
dt , (4.4)

where Bp,n(x) =
∑x

i=0

(
n
i

)
pi(1− p)n−i is the CDF of a Binomial distribution of parame-

ters p and n. Note that for any fixed integers i and j, and time t ∈ (0, 1), Bt,n−j(i−j+1)
converges to 0 when n tends to infinty. Therefore, replacing Eq. (4.3) and Eq. (4.4) in
the identity (4.2), and taking the limit when n tends to infinity, we conclude the proof
of the lemma.

We then focus our attention on optimizing this success guarantee. Surprisingly, it
turns out the problem of maximizing Eq. (4.1) is separable and concave, so we can
simply impose the first-order conditions to obtain the optimum. Perhaps even more
surprising is that these first-order conditions are independent of p, and therefore, the
optimal sequence t∗ is also independent of p, as the following lemma shows.

Lemma 24. Fix a sampling probability p. The sequence t∗ defined as the unique solution
of the equations

ln

(
1

t∗i

)
+

i−1∑
j=1

(1/t∗i )
j − 1

j
= 1, for all i ∈ N , (4.5)

maximizes Eq. (4.1). In particular, t∗ does not depend on p.

Proof. First, we relax the monotonicity constraint on the sequence of ti’s. The result-
ing relaxed optimization problem is separable, i.e., optimizing over the entire sequence
is equivalent to optimizing over each variable independently. For each ti we get the
following equivalent problem.

max
ti∈[0,1]

pi−1

1−max{p, ti} −
∫ 1

max{p,ti}

i∑
j=1

t−max{p, ti}
tj

dt

 .
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Equivalently, we can remove the factor pi−1 and restrict ti to be in [p, 1], obtaining

max
ti∈[p,1]

1− ti −
∫ 1

ti

i∑
j=1

t− ti
tj

dt .

Denoting by Gi(ti) this objective function, we get that

d

dti
Gi(ti) = −1 +

∫ 1

ti

i∑
j=1

1

tj
dt , and

d2

dt2i
Gi(ti) = −

i∑
j=1

1

tji
.

Therefore, Gi(ti) is a concave function and then the optimum is max{p, t∗i }, where t∗i
is the solution of d

dti
Gi(ti) = 0. In the original objective function ti appears always

as max{p, ti} so there we can simply take t∗i as the solution. Now we prove that t∗i is
actually increasing in i, so it is also the optimal solution before doing the relaxation. In
fact, t∗i satisfies

∫ 1

t∗i

i∑
j=1

1

tj
= 1 .

Note that the left-hand side of this equation is decreasing in t∗i , and is increasing in i.
Thus, necesarily t∗i ≤ t∗i+1, for all i ≥ 1. We conclude that t∗i satisfies Eq. (4.5) by simply
integrating on the left-hand side of the last equation.

Now that we have the best algorithm in the family, we prove that its success guarantee
is actually the best possible. To do this, we first characterize the algorithm that achieves
the highest success probability for fixed sampling probability p and instance size n.

For a non-decreasing function ` : [n] → [n], we define the sequential-`-max algorithm
in the following way: The algorithm accepts the i-th observed value (considering the
values from S and the ones that have been revealed from V ) if it is the largest seen so
far from V and it is larger that the `(i)-th largest value from S. We prove that the
optimal algorithm is in this class.

Lemma 25. Fix a sampling probability p and an instance size n. There is a function `
such that the sequential-`-max algorithm obtains the best possible success probability for
instances of size n of ROSp.

Proof. We study the optimal ordinal policy obtained with backward induction, and prove
that it is in fact a sequential-`-max algorithm for certain `. Recall that we can assume
the optimal policy is ordinal, so this algorithm will be optimal not only among ordinal
algorithms.

Denote by Xi = απ(i) the i-th value, in the order of increasing arrival times. Denote
by R(X1, . . . , Xj) the relative ranks of values X1, . . . , Xj . In what comes, we use the
notation R(X1, . . . , Xj) = x to condition on a particular realization x of the relative
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4 The Secretary Problem with Independent Sampling

ranks. Let x be a realization of the ranks such that Xj is the maximum in V so far, i.e.,
Xj = maxV ∩ {X1, · · · , Xj}, and has rank r among X1, · · · , Xj . Then,

Pr
(
Xj = maxV

∣∣∣ R(X1, . . . , Xj) = x
)

= Pr
(
Xj+1, . . . , Xn have overall rank at most r + 1

∣∣∣ R(X1, . . . , Xj) = x
)

= Pr
(
Xj+1, . . . , Xn have overall rank at most r + 1

)
=

r−1∏
s=0

j − s
n− s

.

The optimal policy is to accept Xj if this probability is larger or equal than the prob-
ability of picking maxV after rejecting Xj if from j + 1 onwards we use the optimal
policy, conditional on R(X1, . . . , Xj) = x.

Let now x′ be a realization of R(X1, . . . , Xj+1) such that the relative rank of the best
of V up to step j + 1 is r. Suppose that conditional on R(X1, . . . , Xj+1) = x′, the
probability of winning if we use the optimal strategy from j + 2 onwards depends solely
of n, j + 1 and the relative rank r, for all possible ranks r. Denote this conditional
probability by W (n, j + 1, r). We want to inductively prove that this is in fact true for
all n, j and r. It is of course true in the last step, when j + 1 = n, so we do induction
on j. Let x′′ be a realization of R(X1, . . . , Xj) such that the relative rank of the best of
V up to step j is r. We have that

Pr
(

win after j
∣∣∣ R(X1, . . . , Xj) = x′′

)
= Pr

(
Xj+1 has relative rank ≥ r + 1

∣∣∣ R(X1, . . . , Xj) = x′′
)
·W (n, j + 1, r)

+
r∑

r′=1

Pr
(
Xj+1 has relative rank r′

∣∣∣ R(X1, . . . , Xj) = x′′
)

·max

{
W (n, j + 1, r′),

r′−1∏
s=0

j + 1− s
n− s

}
. (4.6)

But for all x,

Pr
(
Xj+1 has relative rank r′

∣∣∣ R(X1, . . . , Xj) = x
)

=
1

j + 1
.

This proves the inductive step. Therefore, W (n, j, r) is well defined for all n, j and r,
and the optimal policy accepts Xj that has relative rank r and is the maximum so far
in V if and only if

r−1∏
s=0

j − s
n− s

≥W (n, j, r) .
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From Eq. (4.6) it is easy to check that W (n, j, r) is decreasing in j for fixed n, r and
increasing in r for fixed n, j.8 Therefore the optimal policy is the sequential-`-max
algorithm, for ` defined as

`(j) = max

{
r :

r−1∏
s=0

j − s
n− s

≥W (n, j, r)

}
.

This concludes the proof of the lemma.

To conclude the optimality of ALGt∗ we show that the success probability of the
best sequential-`-max algorithm for each n converges to Eq. (4.1) for some sequence t,
when n grows to infinity. To this end we first calculate the success probability of a
sequential-`-max algorithm.

Lemma 26. Fix n, p and a non-decreasing function `. Consider an integer h such that
0 ≤ h < n, and define ˆ̀(i) = min {`(i), h+ 1} for all i ∈ [n]. The success probability of
the sequential-`-max algorithm, conditional on |S| = h, is given by

1

n− h

1−
ˆ̀(h+1)−1∏
j=0

h− j
n− j


+

n−1∑
i=h+1

 i∑
r=h+1

1

n− i

 1

i− h

ˆ̀(r)−1∏
j=0

h− j
i− j

− 1

n− h

ˆ̀(r)−1∏
j=0

h− j
n− j

− 1

n− h

ˆ̀(i+1)−1∏
j=0

h− j
n− j

 .

(4.7)

Proof. We calculate first the probability of some events. For i ∈ {h+ 1, . . . , n}, denote
by Ai the event that the i-th element is the largest of V and the algorithm never stops.
Notice that Ai is equivalent to the event that the overall largest ˆ̀(i) elements are in S,
and the i-th element is the largest of V (for this equivalence it is necessary that ` is
non-decreasing). Therefore, we have that

Pr(Ai) =
1

n− h

ˆ`(i)−1∏
j=0

h− j
n− j

.

Note that this is 0 if ˆ̀(i) = h+ 1. Now, for h+ 1 ≤ r ≤ i ≤ n, define Br,i the event that
the r-th element is the largest among positions {h+ 1, . . . , i} and the algorithm does
not stop before i+ 1. This is equivalent to the event that the r-th element is the largest
among positions {h+ 1, . . . , i} and the largest ˆ̀(r) elements among positions {1, . . . , i}
are in S. Thus,

Pr(Br,i) =
1

i− h

ˆ̀(r)−1∏
j=0

h− j
i− j

.

8At an intuitive level it is also easy to be convinced of this: as time passes it is harder to win, and if
only low values (with large rank) have appeared, it is easier to win in the future.
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Now, note that Br,i \Ar is the event that the r-th element is the largest among positions
{h+ 1, . . . , i}, but not of V , and the algorithm does not stop before i + 1. Note also
that Ar ⊆ Br,i. Therefore, the probability that the algorithm does not stop before i+ 1
and the maximum of V is among positions {i+ 1, . . . , n} is

i∑
r=h+1

Pr(Br,i)− Pr(Ar) =

i∑
r=h+1

1

i− h

ˆ̀(r)−1∏
j=0

h− j
i− j

− 1

n− h

ˆ̀(r)−1∏
j=0

h− j
n− j

.

Conditional on this event, the probability that the number in the i + 1-th position is
the largest of V is 1/(n− i), because the relative order within positions {i+ 1, . . . , n} is
independent of this event. Thus, we obtained the probability that the i+1-th element is
the largest of V and the algorithm does not stop before i+ 1. To obtain the probability
of winning in step i+ 1, we have to subtract the probability that the i+ 1-th element is
the largest of V , but the algorithm never stops, i.e., Pr(Ai+1). Therefore, the probability
of winning at step i+ 1 is

1

n− i

i∑
r=h+1

 1

i− h

ˆ̀(r)−1∏
j=0

h− j
i− j

− 1

n− h

ˆ̀(r)−1∏
j=0

h− j
n− j

− 1

n− h

ˆ̀(i+1)−1∏
j=0

h− j
n− j

.

The probability of winning at step h+1 is slightly different, because the algorithm never
stops before it. In that case the probability of winning is

1

n− h

1−
ˆ̀(h+1)−1∏
j=0

h− j
n− j

 .

Adding these expressions concludes the proof of the lemma.

We then show that there is a limit for the optimal ` in a continuous space, and use a
Riemann sum analysis to obtain Eq. (4.1) in the limit.

Lemma 27. Fix a sampling probability p. For each n ∈ N, choose `p,n so that the
sequential-`p,n-max algorithm achieves the best possible success probability for fixed p and
n. There exists a sequence t such that the success probability of the sequential-`p,n-max
algorithm converges to Eq. (4.1) when n grows to infinity.

Proof. First we show that the function ` that maximizes Eq. (4.7), in a certain sense
converges to a function ˜̀ : (0, 1)→ N. Then, we do a Riemann sum analysis to show that
the success probability of the sequential-`-max algorithm converges to an expression in
terms of ˜̀, and then we show that this can be equivalently expressed as Eq. (4.1) for
some sequence t.

Except for terms that vanish when n tends to infinity, Eq. (4.7) can be rewritten as

n∑
r=h+1

 n∑
i=r

1

n− i

 1

i− h

ˆ̀(r)−1∏
j=0

h− j
i− j

− 1

n− h

ˆ̀(r)−1∏
j=0

h− j
n− j

− 1

n− h

ˆ̀(r)−1∏
j=0

h− j
n− j

 .

(4.8)
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To find the optimal `(r) we simply maximize the following term as a function of s.

Fn(r, s) =
n∑
i=r

1

n− i

 1

i− h

s−1∏
j=0

h− j
i− j

− 1

n− h

s−1∏
j=0

h− j
n− j

− 1

n− h

s−1∏
j=0

h− j
n− j

.

Between s and s+ 1 the change is

Fn(r, s+ 1)− Fn(r, s)

=

n∑
i=r

1

n− i

 h−s
i−s − 1

i− h

s−1∏
j=0

h− j
i− j

−
h−s
n−s − 1

n− h

s−1∏
j=0

h− j
n− j

− h−s
n−s − 1

n− h

s−1∏
j=0

h− j
n− j

=
n∑
i=r

1

n− i

− 1

i− s

s−1∏
j=0

h− j
i− j

+
1

n− s

s−1∏
j=0

h− j
n− j

+
1

n− s

s−1∏
j=0

h− j
n− j

= β(n, s, h)

 n∑
i=r

1

n− i

1− n− s
i− s

s−1∏
j=0

n− j
i− j

+ 1

 ,

where β(n, s, h) is a positive term, so the sign of this difference is not affected by it.
The other term is decreasing in s, so Fn(r, s) is maximized when this differences changes
sign. In other words, it is maximized in

`∗n(i) = min

s ∈ [n] :
n∑
i=r

1

n− i

1−
s∏
j=0

n− j
i− j

+ 1 ≤ 0

 .

Now, doing a Riemann sum analysis, we have that ˜̀(τ) = limn→∞ `
∗
n(bτnc) satisfies

˜̀(τ) = min

{
s ∈ N :

∫ 1

τ

1

1− t

(
1− 1

ts+1

)
+ 1 ≤ 0

}
. (4.9)

Thus, interpreting Eq. (4.8) as a Riemann sum, and noting that |S|/n converges to p
almost surely, we have that the success guarantee of the optimal policy converges to∫ 1

p

∫ 1

τ

1

1− t

(
1

t− p

(p
t

)˜̀(τ)
− 1

1− p
p

˜̀(τ)

)
dt− 1

1− p
p

˜̀(τ) dτ .

From Eq. (4.9) it is clear that ˜̀ is non-decreasing, so we can define the sequence ti =

inf
{
τ ∈ [p, 1] : ˜̀(τ) ≥ i

}
and rewrite the limiting success guarantee in terms of it. Thus,

we obtain

∞∑
i=0

(∫ ti+1

ti

∫ 1

τ

1

1− t

(
1

t− p

(p
t

)i
− 1

1− p
pi
)
dt dτ −

tii+1 − tii
1− p

)
.
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If we rearrange the terms, turning the integral from ti to ti+1 into the difference between
the integral from ti to 1 and the integral from ti+1 to 1, we obtain∫ 1

p

∫ 1

τ

1

(t− p)(1− p)
dt dτ − p

1− p

+

∞∑
i=1

(∫ 1

ti

∫ 1

τ

1

1− t

((p
t

)i − (pt )i−1

t− p
− pi − pi−1

1− p

)
dt dτ +

ti
(
pi − pi−1

)
1− p

)

=
1

1− p
−
∞∑
i=1

pi−1

(∫ 1

ti

∫ 1

τ

1

1− t

(
t− p

ti(t− p)
− 1− p

1− p

)
dt dτ + ti

1− p
1− p

)

=
1

1− p
−
∞∑
i=1

pi−1

(∫ 1

ti

∫ 1

τ

1

ti(1− t)
(
1− ti

)
dt dτ + ti

)

=
1

1− p
−
∞∑
i=1

pi−1

∫ 1

ti

∫ 1

τ

i−1∑
j=0

tj

ti
dt dτ + ti


=
∞∑
i=1

pi−1

1− ti −
∫ 1

ti

∫ 1

τ

i∑
j=1

1

tj
dt dτ


=
∞∑
i=1

pi−1

1− ti −
∫ 1

ti

i∑
j=1

t− ti
tj

dt

 .

This concludes the proof, since we defined the ti’s in a way that they satisfy ti =
max {p, ti}.

Finally, we study the success guarantee of ALGt∗ in the border values of p, and show
that it actually becomes equal to the best possible among all algorithms. It is easy to see
that the success guarantee is 1/e when p = 0. Note that when p = 0, Eq. (4.1) simplifies
to t1 ln(1/t1), and that from Eq. (4.5) we obtain that t∗1 = 1/e. Replacing gives the
success guarantee of 1/e. The case when p tends to 1 is a bit more involved and requires
some tedious calculations. We evaluate Eq. (4.1) with the first order approximation
t∗i ≈ t′i := 1− c/i, where c is a constant. To fix c we impose that (t′i) satisfies Eq. (4.5)
in the limit when i→∞. More precisely, we take c such that

1 = lim
i→∞

ln

(
1

1− c/i

)
+

i−1∑
j=1

(1− c/i)−j − 1

j

=

∫ 1

0

ecx − 1

x
dx .

With this in hand, we do then a Riemann sum analysis to show the next lemma, which
states that when p tends to 1, this approximation converges to the explicit expression of
Samuels [137, 138] for γ.
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Lemma 28. Let t′i = 1− c/i, where c is the solution of
∫ 1

0
ecx−1
x dx = 1. When evaluated

in t′, Eq. (4.1) tends to

γ = e−c + (e−c − 1− c)
∫ ∞

1
x−1e−cx dx ≈ 0.5801 , (4.10)

when p tends to 1.

Proof. We analyze separately the sum when p = max{p, t′i} and when t′i = {p, t′i}. We
call the first part V1, which includes the terms up to i = b c

1−pc, and V2 the rest.

V1 = lim
p→1

⌊
c

1−p

⌋∑
i=1

pi−1

1− p−
∫ 1

p

i∑
j=1

t− p
tj

dt



= lim
p→1

⌊
c

1−p

⌋∑
i=1

pi−1

1− p−
∫ 1

p
dt+

∫ 1

p

dt

ti
−
∫ 1

p

i∑
j=1

1− p
tj

dt



= lim
p→1

⌊
c

1−p

⌋∑
i=1

pi−1

p−(i−1) − 1

i− 1
− (1− p) ln(1/p)− (1− p)

i∑
j=2

p−(j−1) − 1

j − 1



= lim
p→1

⌊
c

1−p

⌋∑
i=1

1− pi−1

i− 1
− lim
p→1

⌊
c

1−p

⌋∑
i=1

(pi−1 − pi)
i∑

j=2

e−(j−1) ln p − 1

j − 1

= lim
p→1

⌊
c

1−p

⌋∑
i=1

1− (p
1

1−p )(i−1)(1−p)

(i− 1)(1− p)
(1− p)− lim

p→1

⌊
c

1−p

⌋∑
i=1

(pi−1 − pi)
i∑

j=2

e−
(j−1)
i

i ln p − 1

(j − 1)/i
· 1

i

Interpreting these two sums as Riemann sums, we obtain

V1 =

∫ c

0

1− e−x

x
dx−

∫ 1

e−c

∫ 1

0

e−x ln y − 1

x
dx dy

=

∫ c

0

1− e−x

x
dx−

∫ 1

e−c

∫ 1

0

e−x ln y − 1

−x ln y
(− ln y) dx dy

=

∫ c

0

1− e−x

x
dx−

∫ 1

e−c

∫ − ln y

0

ex − 1

x
dx dy

=

∫ c

0

1− e−x

x
dx−

∫ c

0

∫ e−x

e−c

ex − 1

x
dy dx

=

∫ c

0

1− e−x − (e−x − e−c)(ex − 1)

x
dx

= e−c
∫ c

0

ex − 1

x
dx
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= e−c
∫ 1

0

ecx − 1

x
dx

= e−c ,

where the last step comes from the definition of c. On the other hand, we have that

V2 = lim
p→1

∞∑
i=
⌊

c
1−p

⌋
+1

pi−1

c
i
−
∫ 1

1− c
i

i∑
j=1

t− 1 + c/i

tj
dt



= lim
p→1

∞∑
i=
⌊

c
1−p

⌋
+1

pi−1

c
i
−
∫ 1

1−c/i
dt+

∫ 1

1−c/i

1

ti
dt−

∫ 1

1−c/i

i∑
j=1

c/i

tj
dt



= lim
p→1

∞∑
i=
⌊

c
1−p

⌋
+1

pi−1

(1− c/i)−(i−1) − 1

i− 1
+
c

i
ln(1− c/i)−

i∑
j=2

c
(1− c/i)−(j−1) − 1

i(j − 1)


= lim

p→1

∞∑
i=
⌊

c
1−p

⌋
+1

(pi−1 − pi) (1− c/i)−(i−1) − 1
1−p
− ln p(i− 1)(− ln p)

− lim
p→1

∞∑
i=
⌊

c
1−p

⌋
+1

pi−1 − pi
1−p
− ln p i(− ln p)

i∑
j=2

c
(

(1− c/i)−i
j−1
i − 1

)
j/i

· 1

i
,

where in the last equality we omitted a term that vanishes when p tends to 1. We again
interpret the sums as Riemann sums.

V2 =

∫ e−c

0

ec − 1

ln(1/x)
dx− c

∫ e−c

0

1

ln(1/x)

∫ 1

0

ecy − 1

y
dy dx

= (ec − 1− c)
∫ e−c

0

1

ln(1/x)
dx

= (e−c − 1− c)
∫ ∞

1
x−1e−cx dx .

In the second equality we used the definition of c and in the third one we performed a
change of variables. Summing V1 and V2 we get Eq. (4.10).

4.4 Robustness with respect to the knowledge of the
parameters

In this section, we briefly discuss the impact of the knowledge of the parameters on the
guarantees that can be obtained. There are two parameters for both AOSp and ROSp:
the number of elements n and the sampling probability p. The performance of an
algorithm can vary a lot depending on its presumed knowledge about these parameters.
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For AOSp we already discussed that knowledge of n is irrelevant in worst case terms.
To complete the picture, we turn our attention to the cases when p is unknown. First,
if p is unknown but n is known, we show that the ratio of the number of samples to
the total number of elements gives a good estimate of p, and that using k-max with
this estimate is basically optimal. More specifically, assume we are given a set S of h
samples, drawn independently from an initial set consisting of n values in total, using
some (unknown) value of p. The remaining n − h samples form the online set V . In
this setting we adapt the k-max algorithm as follows by simply setting the threshold

to the k-th largest sample, where k =
⌊

n
n−h

⌋
, and accepts the first value of the online

set that is above the threshold. This variation of the k-max algorithm boils down to
simply estimating p as p̂ = h/n and using p̂ to determine the desired value of k. By
standard concentration arguments, we can prove that the estimate p̂ is accurate with
high probability, and thus we obtain the following theorem.

Theorem 11. For AOSp with known n and unknown p, the variation of the k-max
algorithm for unknown p achieves the best possible success guarantee up to a factor 1− ε
with high probability.

Before formally proving the theorem, we need to find the expression for the success
probability.

Lemma 29. For a given sample set S with h values and an online set V with n − h
values, the k-max algorithm chooses the maximum value of the online set with probability

Pr[Win] =
n∑
h=0

⌊
n

n− h

⌋(
h

n

)b n
n−hc n− h

n

(
n

h

)
ph(1− p)n−h ,

where p is the probability of independently sampling a value from the initial set.

Proof. Assume that the values of the adversarial input A are sorted in decreasing order
α1 > α2 > . . . > αn. Let us call ph the probability that the k-max algorithm succeeds
in a particular instance with h samples and Sh the event where |S| = h. Then the total
probability that the k-max algorithm succeeds equals

Pr[Win] =

n∑
h=0

Pr[k-max algorithm wins | Sh] · Pr[Sh]

=

n∑
h=0

ph

(
n

h

)
ph(1− p)n−h ,

since each value of the initial set is sampled independently with probability p. It remains
to determine ph. Conditioned on the fact that we end up with h samples, all the different
labelings (as a sample or online value) of the initial n values are equally likely to happen.
There are

(
n
h

)
different labelings, and each αi is labeled as a sample in an h/n-fraction

of the possible labelings and as an online value in the rest.

93



4 The Secretary Problem with Independent Sampling

Observe, as in the proof of Lemma 7, that the algorithm succeeds only if exactly one

of the
⌊

n
n−h

⌋
largest values of the adversarial input ends up in the online set and the

(
⌊

n
n−h

⌋
+ 1)-th largest ends up in the sample set. To compute the number of such

labelings, first consider those such that α1, α2, . . . , αb n
n−hc+1 are all labeled as samples

except for exactly one. From those, we can exclude the labelings that mark αb n
n−hc+1

as an online value, since in this case the
⌊

n
n−h

⌋
-th largest sample is larger than all the

online values. Therefore, we obtain

ph =

(⌊
n

n− h

⌋
+ 1

)(
h

n

)b n
n−hc(n− h

n

)
−
(
h

n

)b n
n−hc(n− h

n

)
=

⌊
n

n− h

⌋(
h

n

)b n
n−hc(n− h

n

)
,

and the lemma follows.

We will also use the following well-known concentration bound in proving the main
theorem of this section.

Lemma 30 (Hoeffding’s inequality for i.i.d. Bernoulli random variables [93]). Let X1, X2,
. . . , Xn be i.i.d. Bernoulli random variables with parameter p and let X̄ = (

∑n
i=1Xi) /n.

Then for any ε > 0,
Pr
[∣∣X̄ − pn∣∣ ≥ ε] ≤ 2e−2nε2 .

Alternatively, by setting δ = 2e−2nε2 we get that∣∣X̄ − pn∣∣ ≤√ 1

2n
ln

2

δ
with probability at least 1− δ .

With these two lemmas at hand, we are ready to prove the theorem.

Proof of Theorem 11. Consider an instance of AOSp for a fixed unknown value of p
where the player is faced with h samples.

Let ε1 and ε2 be such that

ε1 ≤ 1−
(
h
n

) n
n−h

p
1

1−p
and ε2 ≤ 2e−2n .

Note that the first value is chosen such that⌊
n

n− h

⌋(
h

n

)b n
n−hc n− h

n
≥
(⌊

1

1− p

⌋)
p

⌊
1

1−p

⌋
(1− p) · (1− ε1) ,

while the second is chosen such that Hoeffding’s inequality yields Pr
[∣∣X̄ − pn∣∣ < 1

]
≥

1− 2e−2n ≥ 1− ε2. Therefore, with probability at least 1− ε2, we have

pn+ε∑
h=pn−ε

(
n

h

)
ph(1− p)n−h =

(
n

h

)
ph(1− p)n−h

∣∣∣∣
h=pn

≥ 1− ε2 .

94



4.4 Robustness with respect to the knowledge of the parameters

Therefore, we can bound the success guarantee given by Lemma 29 as follows.

Pr[Win] =
n∑
h=0

⌊
n

n− h

⌋(
h

n

)b n
n−hc n− h

n

(
n

h

)
ph(1− p)n−h

≥
⌊

1

1− p

⌋
p

⌊
1

1−p

⌋
(1− p) · (1− ε1) ·

pn+ε∑
h=pn−ε

(
n

h

)
ph(1− p)n−h

≥
⌊

1

1− p

⌋
p

⌊
1

1−p

⌋
(1− p) · (1− ε1) · (1− ε2) .

For any given ε > 0, one can take ε1 and ε2 that adhere to the bounds above and such
that (1 − ε1)(1 − ε2) ≤ (1 − ε). This yields a success guarantee that is at least 1 − ε
times the success guarantee of the k-max algorithm for known p.

Second, for AOSp where both p and n are unknown, we show that no non-trivial
guarantee can be obtained. The intuition behind this strong negative result results from
the situation in which the algorithm is given very few samples. In this case, it does
not know whether the instance is very short (in which case it should stop early), or the
sampling probability is very low (in which case it should wait longer).

Theorem 12. When both p and n are unknown, no algorithm can get positive success
guarantee for AOSp.

Proof. We prove that for any ε > 0, it is not possible to achieve a success guarantee of
ε.

Consider the following new game for any δ > 0. The adversary selects a size n and
generates an instance of this size with increasing values. Then, the adversary again
selects p appropriately, so that the probability that there is at least one sample is at
most δ and the probability that there are no samples is at least 1−δ. Then the sampling
process happens and the player faces the sequence. If at least one value is sampled, the
player automatically wins, otherwise, she wins if and only if she selects the last non-
sampled value.

Consider the case where there are no sampled values. Since the player does not learn
anything along the game, any deterministic algorithm waits t− 1 values before it selects
the t-th value. A randomized algorithm can be thought of as a distribution over the
stopping times t. Since the domain of t are all positive integers, it is not possible that
this distribution has weight at least λ for every size, for any constant λ > 0. Therefore,
on instances with stopping probability less than λ, the player only wins with probability
at most λ. Such an instance occurs trivially with probability at most 1.

Overall, in this new game, the player wins in at most δ + λ values. Taking e.g. δ and
λ slightly smaller than ε/2, the success guarantee of this game is less than ε.

The proof for AOSp with unknown p and n follows easily now. The adversary chooses
values of n and p as above. In case there are no sampled values, both games are the
same, since in both cases the player has the same information and the same available
strategies. In case there is at least one sampled value, the player wins in the new game
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with probability 1 and in AOSp with probability strictly less than 1. Therefore, the
success guarantee of AOSp is at most the success guarantee of the new game, which is
less than ε.

For ROSp, we have shown that the optimal algorithm ALGt∗ does not depend on p,
and knowledge of the uniform random arrivals suffices to obtain the optimal guarantee.
Therefore, ALGt∗ achieves the best possible success guarantee, even when n is unknown.
On the other hand, if p is unknown and n is known and large, then we can sample uniform
random arrival times for each value and obtain with ALGt∗ the best success guarantee.
Indeed, the sampled arrival times themselves will provide a sharp estimate of p.

On a more applied note, whenever it is reasonable to assume that the values come
in random order, it is usually also safe to assume that this random order comes from
random arrival times. In case the arrival times are random but not uniform, the time
thresholds t∗ can be transformed using the distribution function of the arrival times and
again it is possible to obtain the optimal success guarantee.

4.5 Extensions

We expect that the ideas developed in this chapter will prove useful in other contexts
related to online decision-making. For example, very recently Kaplan et al. [99] study
a sample-based version of the online edge-weighted bipartite matching with vertex ar-
rivals. For their analysis they use our independent sampling model. Our model can also
be incorporated in well-established problems with combinatorial constraints. In what
remains, the extensions are concerned with the well-studied matroid secretary problem.
Among the most promiment problems in the area are the knapsack secretary problem
(Babaioff et al. [12]) and the rank-k uniform matroid secretary problem. The latter
corresponds to the scenario in which an auctioneer wants to sell at most k items to a
random stream of bidders, and it was studied in Kleinberg [104] In order to motivate
further work we discuss more in detail two relatively straightforward extensions of our
model and results. Here, the decision-maker faces a sequence of the elements of a given
ground set and needs to select a subset, subject to the constraint that the selected set
has to be an independent set of an underlying matroid.

4.5.1 Graphical matroid secretary problem with independent sampling

First, consider the graphical matroid secretary problem, in which the underlying matroid
is graphical (i.e., the independent sets are forests of an undirected graph). For this
problem, Korula and Pál [108] gave a 1/(2e)-competitive algorithm for the case in which
the elements are presented to the decision-maker in random order. In a nutshell, Korula
and Pál fix an ordering of the vertices and with probability 1/2 they orient all edges from
the lower numbered vertex to the higher numbered vertex, and with probability 1/2 they
orient all edges in the other direction. Then they run for each vertex independently a
standard secretary algorithm to find the maximum-weight edge leaving this vertex. It is
not difficult to see that this gives a 1/(2e)-approximation.
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Now consider the random order graphical matroid secretary problem with independent
sampling, in which every edge is sampled independently a priori with a fixed probability
p and the goal is to select the maximum-weight independent set of the non-sampled
elements. Let α∗R(p) be the success guarantee of ROSp that we obtained before. The
analysis of Korula and Pál [108] immediately yields a success guarantee of α∗R(p)/2 for
this extension to graphical matroids.

4.5.2 Laminar matroid secretary problem with independent sampling

Second, consider the laminar matroid secretary problem, in which underlying matroid is
laminar9. For this class, a sequence of papers have obtained constant factor guarantees
[97, 116] until the currently best known factor of 5.16 [144]. All these papers rely on
the idea of first (binomially) sampling a fraction of the elements of the matroid to guide
the posterior decisions. However, the final goal is to compare to the optimal solution
that includes even the sampled elements. An interesting direction will be to study the
performance guarantees of these algorithms when the benchmark is the optimal solution
of the online set as in this chapter.

Moreover the technique of first using independent sampling is ubiquitous in secretary
problems with combinatorial constraints. Therefore we believe that understanding the
performance guarantees when compared to the optimum of the online set is interesting
not only from a theoretical perspective, but also from a practical viewpoint since these
samples can be interpreted as historical data.

4.6 Potential directions and open questions

Finally, we discuss some of the most promising future directions and provide some in-
sights wherever possible. We conclude with a number of other interesting open questions.

4.6.1 Maximizing the expectation

In our work, we didn’t consider the objective of maximizing the expected performance
of the best algorithm compared to the expected performance of a prophet as in Kaplan
et al. [98]. It is therefore natural to ask how this objective behaves in our model for all
different values of p. Let us create a starting point by briefly studying the problem for
the special case of p = 1/2 and adversarial order. Before analyzing a first algorithm,
let’s recall how Kaplan et al. proved tight bounds in their model. Remember that as
n→∞ their model and ours are essentially equivalent. When less than half of the total
elements are sampled, namely |S| < |V |, they use T = maxi∈S as their threshold. When
|S| ≥ |V | they sample |V | − 1 elements uniformly at random from |S| and again set the
one with the maximum value as their thresold. For completeness, we state the guarantee
they obtain.

9A laminar family is a collection A of subsets of a ground set E such that, for any two intersecting
sets, one is contained in the other. For a capacity function c on A, a laminar matroid is given by the
family of independent sets {I : |I ∩A| ≤ c(A), for all A ∈ A}.
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Theorem 13 (Kaplan et al. [98]). When |S| ≥ |V | the above algorithm achieves a
competitive ratio of 1/2.

Through nice techniques and carefully constructed instances they provide matching
upper bounds for both cases. We revisit their upper bound when |S| ≥ |V |, and give
a slightly simpler proof for that case which still conveys the intuition. We believe that
similar ideas could be useful in deriving hardness results in other online bayesian selection
problems.

Theorem 14 (Kaplan et al. [98]). No algorithm can achieve competitive ratio better
than 1/2.

Proof. The adversary constructs two instances, I1 and I2, and chooses them for the
game with probability 1 − ε and ε, respectively. Instance I1 consists of n elements in
total (for some large n); half of them have value ε and the rest have value 0. Instance I2

is the same as I1, except that one of the elements with value 0 is substituted uniformly
at random with an element α′ with value ` > 0. Then, a fraction q ≥ 1/2 for some given
q of the chosen instance is sampled. When fixing an algorithm, we can even assume that
the decision-maker knows exactly the two instances and with which probability she will
face each one of them. Still, we will show that even with such a restricted adversary, she
cannot hope for an asymptotic guarantee better than 1/2.

We assume that n is sufficiently large so that all the elements with value ε are sampled
with vanishing probability (i.e., Pr[no element with value ε in V ] = q

n
2 = δ, for small

δ > 0). A first observation is that given the samples the decision-maker cannot always
distinguish between the two instances. If α′ /∈ S she cannot tell if she is facing I1 or I2

until either α′ appears or she observes all the elements of the online sequence. Therefore,
the optimal algorithm will simply do the following: If α′ ∈ S she will always stop with
value ε. If α′ /∈ S the decision-maker faces two bad scenarios. Either she stops with
value ε, but she is in I2 and she should have continued till she encounters value ` > ε or
she skips all elements with value ε, but she is in I1 and she ends up with value 0. Thus,
when α′ /∈ S any algorithm will pick an element with value ε with some probability p,
and continue with 1 − p (and collect 0 or `). The crucial point is to optimally set this
probability p and get the best possible competitive ratio. Note that the decision-maker
can possibly also change p dynamically, if her beliefs change as the online instance is
revealed.

Now that we defined the family of algorithms where the optimal lies, we can express
the expected performance of any algorithm as a function of p. In Table 4.1 we state the
expected performance of the optimal online algorithm OPTon and the optimal offline
algorithm OPToff for the three different scenarios that we will encounter. We can find
the optimal algorithm by simply maximizing the competitive ratio over p:

E[OPTon]

E[OPToff]
= max

p∈[0,1]

(1− ε)εp+ ε2q + εq (pε+ (1− p)`)
(1− ε)ε+ ε2q + εq`

= max
p∈[0,1]

ε2 + ε`+ p
(

(1−ε)ε
q − ε`+ ε2

)
ε2 + ε`+ (1−ε)ε

q

.
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Instances OPTon OPToff

I1 (1− ε) · ε · p (1− ε) · ε
I2, α

′ ∈ S ε · ε · q ε · ε · q
I2, α

′ /∈ S ε · q · (p · ε+ (1− p) · `) ε · q · `

Table 4.1: The expected performance of the optimal online and offline algorithm on the two instances.

The adversary can choose the value ` of element α′ so that
(

(1−ε)ε
q − ε`+ ε2

)
≤ 0. In

this case, the expression is maximized for p = 0 and the chosen ` must satisfy ` ≥ 1−ε
q +ε.

The competitive ratio now becomes

E[OPTon]

E[OPToff]
=

ε+ `

ε+ `+ 1−ε
q

≈
ε→0

1

1 + 1
q`

,

and for ε→ 0 the chosen ` must now satisfy ` ≥ 1
q . If the adversary chooses the sampled

fraction q of the total elements and the value ` of element α′ to satisfy the relation q = 1
`

(that is, with equality), then for the competitive ratio it always holds that E[OPTon]
E[OPToff] ≈

1
2 ,

and the proof is complete.

Now let us assume that for the case of p = 1/2 we use the same algorithm as we used
for the secretary objective, namely take T = maxi∈S ai as the threshold and accept the
first online element above the threshold. Following the approach of Rubinstein et al.
[135] we can analyze the performance of this algorithm.

Theorem 15. Assume that an adversary picks the order and the (non-negative) values
of n elements a1, a2, . . . , an, and each ai is sampled independently with p = 1/2. For the

algorithm ALG described above it holds that E[ALG]
E[maxi∈V ai]

≥ 1/2.

Proof. We begin by sorting the elements in decreasing order aσ(1) ≥ aσ(2) ≥ · · · ≥ aσ(n)

and studying the distribution of the expected maximum. For aσ(1) to be the maximum
valued online element, it has to end up in set V , which happens with p = 1/2. Following
the same reasoning, for aσ(k) to be the maximum in the online set, it must be that all aσ(`)

with ` < k were sampled and aσ(k) is the first non-sampled element. Since each of these

events happens independently with p = 1/2 we have that Pr[maxi∈V ai = aσ(k)] = 1/2k.
Then it’s easy to see that

E[max
i∈V

ai] =
n∑
i=1

aσ(i) · Pr[max
i∈V

ai = aσ(k)] =
n∑
i=1

aσ(i) ·
1

2i
.

Next we analyze the probability of our algorithm picking each of the n elements. The
algorithm picks aσ(1) only if aσ(1) ∈ V and aσ(1) ∈ S, which occurs with probability
1/4. Similarly, the algorithm picks element aσ(k) if T = aσ(k+1). This happens when
aσ(1), aσ(2), . . . aσ(k) ∈ V and aσ(k+1) ∈ S. Therefore, it holds that Pr[ALG = aσ(k)] =
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4 The Secretary Problem with Independent Sampling

Pr[T = aσ(k+1)] = 1
2k+1 . Finally, note that Pr[ALG = aσ(n)] = Pr[T = 0] = 1

2n . Putting
everything together we get

E[ALG] =

n∑
i=1

aσ(i) · Pr[ALG = aσ(k)]

=

n−1∑
i=1

aσ(i) ·
1

2i+1
+

1

2n

≥
n∑
i=1

aσ(i) ·
1

2i+1

=
1

2
E[max

i∈V
ai] .

Next we show through a simpe example that the previous lower bound is actually
tight.

Lemma 31. For p = 1/2, no algorithm can achieve a better competitive ratio than 1/2.

Proof. We use again the notation OPTon and OPToff to denote the optimal online and
optimal offline algorithm, respectively. The adversary creates an instance with two
elements I = {a1, a2} with values ε and 1, respectively. In the table below we can see
what any algorithm and the prophet achieve for each of the possible scenarios.

Probability Elements Algorithms

ε 1 OPTon OPToff

1/4 S V 1 1
1/4 V S 0 ε
1/4 S S 0 0
1/4 V V ε 1

Table 4.2: Performance of OPTon and OPToff on instance I for p = 1
2
.

Recall that a crucial point is that we do not know the total number of elements n in the
instance when we design our algorithm. Recall also that we announce our algorithm to
an adversary, who then in turn fixes the instance. In the case that we get no samples, as
in the last row of Table 4.2, from our perspective we know that p = 1/2 and an unknown
number of elements is in the online set. The best we can do is always pick the first element
since we do not know if there are more elements in the online sequence. Note that in
this specific instance I, in case we pick the first online element with some probability
q and then the next one with the remaining 1 − q (in case there is a second one), we
gain more in the last row, but we lose the gained fraction in the first row. Therefore the
best algorithm obtains E[OPTon] = 1+ε

4 and the prophet E[OPToff] = 2+ε
4 , resulting in

E[OPTon]
E[OPToff] →

1
2 as ε→ 0.
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On the other hand, if we know n beforehand we can do better, at least for small values
of n.

Example 2. Consider the above example with the extra information that n = 2. In
this case we want to do something different when we have no samples, and since we
know that the adversary is always going to pick the worst-case order, we choose each of
the elements with probability q = 1/2. This will make the adversary indifferent on the
ordering of the two elements. The above table now is as follows:

Probability Elements Algorithms

ε 1 OPTon OPToff

1/4 S V 1 1
1/4 V S ε ε
1/4 S S 0 0
1/4 V V 1/2 1

Table 4.3: Performance of OPTon and OPToff on instance I for known small values of n.

This results in an improved performance E[OPTon] = 3/2+ε
4 and the competitive ratio

now becomes approximately 3/4.

The observations above motivate further exploration of the expectation maximization
objective. How does the objective behave for all different values of p? How does the
performance compare to the results Kaplan et al. [98]? Apart from obtaining asymptotic
results (i.e., n → ∞) is there a chance that we can characterize the performance for
relatively small values of n and the algorithms that achieve best possible guarantees
in this case? Can the results extend to well-known Bayesian online selection problems
where the objective is to maximize the expected performance of an algorithm against a
prophet?

4.6.2 Potential connections to the full information case

In this section we want to further expand on one of the most intriguing open questions
of our work, which is the connection of AOSp and the problem studied by Allaart and
Islas [2] and Esfandiari et al. [71]. We already pointed at this direction in Section 4.1.3;
although our guarantees converge to the full information case and conceptually the two
problems are similar, we are not aware of a precise connection.

The algorithm that they use for solving the problem is a simple single-threshold rule:
Find the value T for which Pr

[
maxi∈[n] ai ≤ T

]
= 1

e and set it as a threshold. Accept
the first element whose value is above T . They show that the probability of picking
the maximum value is at least 1

e and then they give an instance with distributions
F1, F2, . . . , Fn, such that as n → ∞ no algorithm can do better than 1

e . Therefore, the
guarantee that they obtain for their full-information model match ours when p→ 1. We
are still far from understanding whether and how the two models are connected, but our
intuition is that it should be the case. In this section, we provide a different instance and
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a different proof technique for showing that 1
e is tight. We do this because the instance

we provide resembles the ones that we used to prove tight results in AOSp (there is an
increasing sequence of expected values), and because the new proof uncovers also the
specific algorithm that we would use for the instance to achieve this guarantee. This
might facilititate a bit finding the precise connections. Finally, we give an informal idea
of how we could simulate the full information case through AOSp.

We construct the following instance I: We have n distributions F1, F2, . . . , Fn which
have just two point masses. The random variable ai drawn from Fi takes value i with
probability 1

n and 0 otherwise. We will prove that no algorithm can be the maximum
element with probability better than 1

e and that an optimal algorithm always rejects the
first 1

e -fraction of the values and then picks the first non-zero value, if any.
Let qi = Pr[ALG stops at ai | ai > 0]. In the following lemmas we will also denote

by V ∗ the maximum value of the sequence, i.e., V ∗ = maxi∈[n] ai. We start with the
following lemma.

Lemma 32. For instance I the probability that any algorithm ALG picks the element
with maximum value is given by

q1

n

(
1− 1

n

)n−1

+

n∑
i=2

i−1∏
j=1

(
1− qj

n

) qi
n

(
1− 1

n

)n−i . (4.11)

Proof. Observe first that

Pr[ai = V ∗] = Pr [ai = i ∧ aj = 0, ∀j > i]

= Pr[ai = i] ·
n∏

j=i+1

Pr[aj = 0]

=
1

n

(
1− 1

n

)n−i
,

where the second equality is due to the independence of the random variables.
Now we will try to come up with an optimal algorithm for the instance. Any candi-

date algorithm, deterministic or randomized, adaptive or not, does the following: When-
ever it sees a positive value αi, it decides with probability qi whether to stop or not.
Since we know the order of arrival, if we find the optimal sequence of such probabilities
(q∗1, q

∗
2, . . . , q

∗
n) from the optimization problem, then what remains is to design an algo-

rithm which implements this sequence of probabilities. For an algorithm ALG we can
write down the maximization problem for our objective:

Pr [ALG picks V ∗] =

n∑
i=1

Pr[ALG stops at ai ∧ ai = V ∗]

=

n∑
i=1

Pr[ALG does not stop at time j, ∀j < i]
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· Pr[ALG stops at ai | ai > 0] · Pr[ai = V ∗]

=
q1

n

(
1− 1

n

)n−1

+

n∑
i=2

i−1∏
j=1

(
1− qj ·

1

n

)
qi ·

1

n

(
1− 1

n

)n−i .

Now we should optimize Eq. (4.11) over the sequence (q1, q2, . . . , qn). It turns out
that the optimization problem has a specific form with respect to the values of the
arguments qj . The following observation significantly reduces the space of potential
optimal solutions.

Lemma 33. Eq. (4.11) is maximized when qj ∈ {0, 1}, ∀j ∈ [n].

Proof. If we want to separate qk for some k ∈ [n] from the rest of the expression, we can
rearrange the terms in Eq. (4.11) and obtain

q1

n

(
1− 1

n

)n−1

+
qk
n

k−1∏
j=1

(
1− qj

n

)
+
(

1− qk
n

) n∑
i=2

qi
n

i−1∏
j=1
j 6=k

(
1− qj

n

)(
1− 1

n

)n−i
.

To simplify a bit the expression, let A = q1
n

(
1− 1

n

)n−1
, B =

∏k−1
j=1

(
1− qj

n

)
and

C =
∑n

i=2
qi
n

∏i−1
j=1
j 6=k

(
1− qj

n

) (
1− 1

n

)n−i
. We will prove now by contradiction that each qj

should take value 0 or 1 in order for the expression to be maximized. Let’s assume that
there is an optimal assignment (q1, q2, . . . , qn) ∈ [0, 1]n. Therefore we cannot increase
the objective by changing the value of any qj . Starting from the beginning find the first
qk ∈ (0, 1) and assume without loss of generality that k 6= 1. As written above, from the
perspective of qk, the optimization problem is

A+
qk
n
·B +

(
1− qk

n

)
· C .

Note that expressions A, B, C are all independent of qk. Moreover, apart from the
constant term A, the rest of the expression is a convex combination of the two points B
and C. Therefore , if B > C we set qk = 1 and the objective will increase. Likewise, if
B < C then we set qk = 0. If B = C the value of the objective will not be affected from
the choice of qk so we can again set either qk = 0 or qk = 1. We proceed in the same
way for all other ql ∈ (0, 1) after k. We conclude that by changing the values of qi’s to
0 or 1 the objective cannot decrease. Thus, Eq. (4.11) attains its maximum for some
(q∗1, q

∗
2, . . . , q

∗
n) ∈ {0, 1}n.

We managed to make a crucial step towards restricting the form of the optimal solu-
tion. The next observation tells us that we can focus in an even more restricted family
of solutions to find the optimal one.
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Lemma 34. Without loss of generality, the optimal solution can be of the following
form: For some i∗, qj = 0 if j < i∗ and qj = 1 otherwise.

Proof. We use an exchange argument and show that the objective increases if we swap
the values of qm = 1 and qk = 0 for some l < m. Assume without loss of generality that
we have fixed a solution ~q. Denote by m the smallest index for which qm = 1 and by k
the first index after m for which qk = 0. For this assignment fixed by some algorithm
ALG1, the probability of picking the optimal is

Pr[ALG1 picks V ∗] =
k−1∑
i=m

1

n

(
1− 1

n

)n−i i−1∏
j=1

(
1−

1{qj=1}

n

)

+
n∑
i=l

1{qi=1}

n

(
1− 1

n

)n−i i−1∏
j=1

(
1−

1{qj=1}

n

)

=
1

n

k−1∑
i=m

(
1− 1

n

)n−i(
1− 1

n

)i−m
+

1

n

n∑
i=l+1

(
1− 1

n

)n−i+k−m i−1∏
j=l

(
1−

1{qj=1}

n

)

=
1

n
(k −m)

(
1− 1

n

)n−m
+

1

n

n∑
i=l+1

(
1− 1

n

)n−i+k−m i−1∏
j=l

(
1−

1{qj=1}

n

)
.

Now consider the assignment which swaps the values of qm and qk. Moreover, assume
that there exists an algorithm ALG2 which does exactly that, i.e., induces the same
assignment as ~q with the difference that now qm = 0 and qk = 1. In this case, we have
that

Pr[ALG2 picks V ∗] =

k∑
i=m+1

1

n

(
1− 1

n

)n−i i−1∏
j=1

(
1−

1{qj=1}

n

)

+
n∑
i=l

1{qi=1}

n

(
1− 1

n

)n−i i−1∏
j=1

(
1−

1{qj=1}

n

)

=
1

n
(k −m)

(
1− 1

n

)n−m−1

+
1

n

n∑
i=l+1

(
1− 1

n

)n−i+k−m i−1∏
j=l

(
1−

1{qj=1}

n

)
.
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Subtracting the two probabilities we get

Pr[ALG2 picks V ∗]− Pr[ALG1 picks V ∗] =
1

n
(k −m)

(
1− 1

n

)n−m−1

− 1

n
(k −m)

(
1− 1

n

)n−m
> 0 ,

which means that the objective increases by swapping the values of qm and qk when
qm = 1, qk = 0, and m < k. By applying this process iteratively we conclude that the
optimal solution ~q∗ has qj = 0 for j < i∗ and qj = 1 for j ≥ i∗.

Now we are ready to prove the hardness result as n → ∞ for the instance I we
constructed and show an optimal algorithm for this case.

Theorem 16. No algorithm can pick the element with maximum value with probability
better than 1

e . Moreover, for the instance I defined earlier, an algorithm that achieves 1
e

just accepts the first element with non-zero value.

Proof. From Lemma 34 we want to find the value i∗ which maximizes Eq. (4.11). We
can rewrite the objective for i∗ ≥ 2 as follows:

Pr[ALG picks V ∗] =
1

n

(
1− 1

n

)n−i∗
+

1

n

n∑
i=i∗+1

(
1− 1

n

)n−i i−1∏
j=i∗

(
1− 1

n

)

=
1

n

(
1− 1

n

)n−i∗
+

1

n
(n− i∗)

(
1− 1

n

)n−i∗
=

1

n
(n− i∗ + 1)

(
1− 1

n

)n−i∗
. (4.12)

In the case of i∗ = 1 following similar calculations we end up with

Pr[ALG picks V ∗] =

(
1− 1

n

)n−1

,

and thus we can use Eq. (4.12) for all values of i∗. We claim that Eq. (4.12) is maxi-
mized for i∗ = 1 because it is a decreasing function for all values of n. Indeed, fix two
consecutive values k and k + 1 for i∗, and note that

Pr[ALG picks V ∗ | i∗ = k] > Pr[ALG picks V ∗ | i∗ = k + 1]⇔

1

n
(n− k + 1)

(
1− 1

n

)n−k
>

1

n
(n− k)

(
1− 1

n

)n−k−1

⇔

(n− k + 1)

(
1− 1

n

)
> n− k ⇔

n− k + 1

n
> 1⇔ k > 1 .
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Thus, the probability of picking the element with maximum value is decreasing as i∗

increases, except when i∗ = 1 and i∗ = 2 in which case the objective obtains the same
value for both values of i∗. This means that setting i∗ = 1 or i∗ = 2 maximizes the
probability. The algorithm which implements the solution that assigns qi = 1 for all
i, essentially accepts the first element with non-zero value that appears in the online
sequence of instance I .

Now that we have specified an algorithm which gives a 1/e guarantee, we will briefly
try to make a high-level connection between our AOSp model and the setting we are
studying here. We mention again that we are not aware of a precise connection between
the two, and we believe that it would be an interesting direction to explore. The sampling
process could be simulated in two different ways. In the first scenario, we know that
there are n unknown distributions. Then we sample (in expectation) r values from each
distribution, so that in total we have roughly n · r samples. The online set consists of
one realization from each distribution (i.e., n values in total) which are adversarially
presented. A second, similar way of conducting the sampling process is to sample n · r
values in expectation, each one drawn independently from one of the n distributions
at random. The question is whether we can use something along the lines of the k-
max algorithm to recover the approximate guarantee of 1/e as r grows large (which
corresponds to learning the distributions with smaller and smaller error). The instance
that we analyzed before could serve as an indication that something in the spirit of
k-max could work. Remember that an algorithm that achieves a guarantee of 1/e in this
case accepts the first element with non-zero value. A variant of k-max would probably
work in a similar way: Because of these two point-mass distributions, we expect a very
big fraction of the sampled elements to have value 0. As r grows (which would informally
correspond to p→ 1 in our AOSp model), a variant of the k-max algorithm will pick an
element with small value as the (unique) threshold. In this instance, it it very likely that
for large r the chosen sample will have value 0; this also implies that a k-max variant
would accept the first online element with positive value, and the asymptotic guarantee
could be close to 1/e.

4.6.3 Further directions

Finally, we mention a few promising open questions which would either help us gain
insight into the powers and limitations of our model, or extend it in ways that it could
capture a number of important applications.

Different assumptions on the arrival order In this work, we studied the secretary
problem with independent sampling first for adversarial and then for uniform random
arrival order of the online elements. These two different assumptions on the order of
arrival are very common in the analysis of online algorithms. The main critique of the
adversarial order assumption is that it might be too pessimistic; on the other hand, the
uniform random order assumption usually leads to significantly improved guarantees,
but it is sometimes perceived as quite strong and unrealistic. Moreover, it is often the
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case that algorithms designed under the random order assumption are not robust to
small perturbations of the arrival model. Therefore, a rich open direction would be to
understand how the guarantees of our model and the algorithms change under different
assumptions in the arrival order. Such ideas have already been explored in the literature;
Bradac et al. [25] study a robust version of the secretary problem by mixing adversarial
and random order, and Kesselheim et al. [102] design novel arrival models that are
considerably weaker than the uniform random order.

Possibility of recall The field of sequential decision-making under uncertainty (or on-
line algorithms in computer science) is traditionally based on the assumption that the
decisions are immediate and irrevocable, and the classical secretary problem also as-
sumes that. Often though in practical scenarios , such as in many hiring procedures,
the decision-maker might still have the chance to recall a candidate; the candidate then
might reject the offer if she has already accepted another position. It would be interest-
ing to incorporate in our model a (probably time-dependent) probability of recalling an
already rejected online element.

Moving beyond ordinal and single selection objectives Since we want to draw con-
nections to problems in pricing and mechanism design, it is natural to study objective
functions that are better suited to these problems. A first natural step would be to con-
sider the objective function of Kleinberg [104]: The decision-maker is allowed to choose
k elements, and the goal is to maximize the sum of their values. The benchmark is the
offline optimum where always the top k elements are selected. A relaxed version of the
secretary objective is also of interest: The decision-maker can now again choose only
one element, but the objective is to maximize the probability of picking any of the top
k elements, instead of just the top one.

Unify different models Since the secretary problem is one of the most fundamental
models in sequential decision-making under uncertainty, numerous variants of the classi-
cal setting have been extensively studied. The variants might make different assumptions
on the information the decision-maker possesses (e.g. whether the values of the online
elements are drawn from known or unknown distributions), the arrival order of the online
sequence, the game-theoretic considerations (e.g. the online elements might be strategic
agents who might misreport their value), and more. It is an interesting direction from a
theoretical point of view to try and uncover similarities between some of these variants.
It might be possible to design general-purpose models which manage to capture differ-
ent settings studied in the literature and recover their guarantees. In very recent work,
Dütting et al. [68] unify different informational assumptions under a single formulation,
including also our sampling model for the random arrival order.
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5 The Impact of Ordering on the Pandora’s
Box Problem

5.1 Introduction

In the previous chapter, we presented a sampling model for the secretary problem,
one of the most fundamental problems in online decision-making. We also mentioned
several recent results in prophet inequalities, a closely related problem which also involves
immediate and irrevocable decisions. Furthermore, recall that in the secretary problem,
the values of the online elements are fixed by an adversary, while in the prophet inequality
they are drawn from known distributions. A common point between these two problems
is that the information, i.e., the revealed values, is acquired without cost.

However, in many real-life scenarios learning the hidden information might require
monetary transfers or be computationally costly. For example, when looking to buy
a house, the interested buyer has to search for potential purchases. By looking at
real-estate advertisements, she shapes some prior belief about a house and makes an
initial screening. To inspect a house and learn exactly how much she values it, she
has to undertake a costly action. This might involve investing time and paying a price
to a real-estate agent. Moreover, the revealed information after each inspection will
play an important role in which house she is going to inspect next. This procedure
raises a tradeoff between exploration and exploitation: Given the time pressure and
other potential factors, should she keep inspecting after finding a decent choice? When
should she stop the search and obtain the best option so far among the inspected ones?
Of course, here we consider a simplified motivating scenario, where we assume that the
houses will still be available for sale for at least a short period of time following inspection
(see also Section 2.3 for more details on the aforementioned scenario). Similar tradeoffs
and costly evaluation processes arise when a company is looking to hire a skilled worker,
or when trying to identify profitable investment opportunities.

Costly information acquisition gives rise to a new class of stochastic optimization
problems; the introduced search costs crucially affect the structure of (optimal) solu-
tions of such optimization problems. Note that these processes also involve sequential
decision-making under uncertainty; the decision-maker tries to optimize an objective in
an environment with limited information, and each new piece of information obtained
influences how and whether the search will be continued. A characteristic example stem-
ming from the field of microeconomics is search theory. The field of search theory dates
back to the paper of Stigler [145], who introduced the idea of consumers’ search costs
as one of the explanations for the phenomenon of price dispersion. In recent decades,
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the idea of incorporating search costs in models of information acquisition spans the
literature of operations research, economics, and computer science.

Perhaps the most well-established mathematical model of search theory is Weitzman’s
Pandora’s box problem [150] (see also Section 2.3 for an informal description of the
problem). We will now define some aspects of the problem more formally. We remind
the reader that in the Pandora’s box problem there are n boxes; each box is associated
with a known distribution Fi and an inspection cost ci. The distributions need not be
identical, but they have to be independent. The decision-maker can now decide the
order in which the boxes are opened. Every time she opens a box bi, she pays the cost
and observes the reward vi ∼ Fi. Based on the observed rewards and the costs paid,
she decides whether to continue by opening another box or terminate the search. In the
classical Pandora’s box problem, the decision-maker collects the reward of at most one of
the opened boxes. Given in advance the costs and the distributions, the decision-maker
designs an adaptive policy in order to maximize her expected gain. Let S ⊆ [n] denote
the subset of opened boxes. Then, the expected gain can be written as

E

[
max
i∈S

vi −
∑
i∈S

ci

]
,

where the randomness is over the independent draws from the distributions. As men-
tioned in Section 2.3, although it seems that the optimal policy should be very complex
to describe, it turns out to be very simple: Order the boxes in decreasing order of a
quantity termed the reservation value σi, and start opening them in this order. When
the reward of an opened box is greater than the reservation values of the uninspected
boxes, we stop and collect the maximum reward. This achieves the maximum expected
gain among all adaptive policies. The reservation value σi can be found by simply solving
the following equation for each box:

Evi∼Fi
[
(vi − σi)+

]
= ci ,

where (vi − σi)+ = max{vi − σi, 0}. It intuitively expresses the maximum reward that
we need to have collected, so that we are indifferent between opening bi and leaving it
uninspected. Weitzman’s policy has both a non-adaptive and an adaptive component;
the order in which we open the boxes is fixed in advance, while the stopping time depends
on the random rewards that we observe. Note also that the Pandora’s box optimal policy
can be seen as a special case of the Gittins index theorem (see e.g. [81]).

In this chapter, our main goal is to study the impact of exogenous (borrowing the
term from the work of Kleinberg and Kleinberg [103]) ordering on the Pandora’s box
problem. We want to understand what type of policies we need to design when we do
not have full control over which box to inspect next. Inspired by the field of online
decision-making and recent research on online variants of the Pandora’s box problem,
some of our formulations have an online flavor; boxes are presented to us one by one,
that is, we do not know in advance the exact order of exploration. We explore the
impact of ordering by studying it under in two of the most common cases encountered
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in the literature; the adversarial and the random order case. We design approximately-
optimal policies for a variety of natural models (but always for the classical Pandora’s
box objective) that could be applied in different practical scenarios. Note that slightly
changing the assumptions of the model can significantly change the structure of a good
policy. An important parameter is what we are comparing our policies to; we argue
in the next section why the benchmarks we consider are strong and suitable for the
respective formulations.

5.1.1 Our contributions

Before describing the results in more detail, let us briefly explore the different models we
can consider and establish some terminology. We study the single-selection objective of
the Pandora’s box problem in two new classes of problems. The first is the adversarial
order Pandora’s box problem (AOPB for short), in which the order of exploration of the
boxes is fixed by an adversary. Likewise, the second class of problems is the random
order Pandora’s box problem (ROPB for short), in which the boxes arrive in a uniform
random order. The assumption on the arrival order significantly affects the the structure
of the optimization problem. Following, we mention other important parameters that
one can consider in order to come up with the desired formulation.

Commitment This parameter fixes whether we are allowed to take the maximum re-
ward of any opened box (without commitment) when we stop the search, or we have to
immediately and irrevocably decide whether to select a reward upon inspecting a box
(with commitment). The former corresponds to the Pandora’s box objective, while the
latter resembles a prophet inequality setting with search costs.

Skipping Since we do not choose the order of exploration as in the classic model, we
should specify whether we are allowed to ignore a box that is presented to us and let it go
forever (with skipping) or we have to open each box, in which case we can either stop or
pay the inspection cost of the next box in the sequence (without skipping). The former
setting is perhaps more natural, but in order to gain further insights on the impact of
ordering we will consider both.

Online arrivals The classic Pandora’s box problem already involves some sort of online
decision-making since we decide, possibly adaptively, when to stop the search. Moreover,
we can add an extra layer of online decision-making by assuming that the boxes arrive
online. The random order Pandora’s box is by definition an online problem, but the
adversarial (or fixed) order can be defined in two possible ways: Either the adversary
fixes the order and we get to observe the whole sequence at the start, or the boxes arrive
one by one and we cannot observe the whole sequence a priori. In the latter case, we
can think of two different types of adversaries: an oblivious adversary (who decides on
the order before we start playing) or an adaptive adversary (who can choose which box
to present to us next based on the realized rewards and our decisions so far).
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5 The Impact of Ordering on the Pandora’s Box Problem

Later in this chapter we will see that some of the variants of the Pandora’s box problem
studied in the recent literature can be defined by a specific choice of the aforementioned
parameters.

We start in Section 5.2 by studying ROPB without skipping and without commit-
ment.We show that the strongest tractable benchmark that we can consider is the op-
timal (probably not polynomial-time) adaptive policy. Thus, we strive to find simple
policies whose expected gain is a good approximation of that of the optimal adaptive
policy. We show that a very natural exponential-time policy, which uses as a subroutine
the optimal policy for the known fixed order case, can perform arbitrarily bad in a care-
fully constructed family of instances. We interpret this as an indication that a strong
hardness result, such as finding a suitable reduction, might apply. The type of policies
that need to be employed in order to achieve a meaningful approximation for this setting
remain elusive to us.

Next, in Section 5.3 we study AOPB and ROPB when there is the possibility of
skipping. In this setting, we argue that the most suitable benchmark is the performance
of the optimal policy in the free order case, i.e., Weitzman’s policy. Therefore, here
we truly compare the impact that a different order of exploration has on our objective.
We present a general reduction from the Pandora’s box with commitment under any
ordering to the prophet inequality under the same ordering with the Pandora’s box.
This reduction has already been employed for specific settings in Segev and Singla [141]
and Kleinberg and Kleinberg [103]. Our proof follows similar steps to Kleinberg and
Kleinberg [103, Section 4]. The reduction establishes lower bounds for the adversarial
and the random order in the Pandora’s box problem with commitment achieved by
simple threshold-based algorithms.

More obstacles start to arise when we try to develop policies for AOPB and ROPB
without commitment; they should still be simple, but at the same time take into account
the observed rewards, since now we can always collect them after we stop. Intuitively,
the commitment constraint is quite restrictive; a policy should be able to perform much
better when it has the power to collect the reward of any opened box. Surprisingly, we
show that for AOPB this is not the case: The fixed threshold policy designed for the
variant with commitment is still optimal when we assume that there is no commitment!
Next, we construct a hard instance inspired by Correa et al. [56, Section 5] to provide an
upper bound for the performance of any policy in ROPB without commitment. Closing
the small gap between the lower and upper bound in ROPB without commitment is an
interesting open question.

We conclude in Section 5.4 by making some final observations and stating the current
and future directions of the settings under study in this chapter.

5.1.2 Related work

Our work can be placed in the stream of literature that studies sequential search prob-
lems. As mentioned in Section 5.1.1, our models are also related to the literature on
online selection problems. More specifically, throughout the chapter we refer many times
to the classic prophet inequality, and some of its variants. One of the most interesting

112



5.1 Introduction

variants which has recently received a lot of attention is the prophet secretary, the vari-
ant of the prophet inequality in which the elements come in random order [1, 56, 69, 114].
The prophet inequality differs from our models (the ones without commitment) in two
fundamental ways: first, there is no inspection cost and second, the decision of whether to
collect the current reward must be immediate and irrevocable, i.e., there is no possibility
for recall.

The surprising simplicity of Weitzman’s optimal policy sparked further interest in the
problem and its extensions. In some cases, the core concepts of Weitzman’s optimal
algorithm carry over (e.g. in [22]), but this is not always the case. One of the most
natural and well motivated variants for which Weitzman’s policy is not optimal is studied
in Doval [64]. The difference to the Pandora’s box problem is that the decision-maker can
choose a box without necessarily inspecting it first (and subsequently stop the search).
Doval shows the intractability of this model in the general case, in contrast to the classic
Pandora’s box problem. She then explores different ways of imposing additional structure
on the model, so that the optimal policy can be fully or partially characterized. Due to
the lack of structure of the optimal policy in the general case, Beyhaghi and Kleinberg
[20] study simple, polynomial-time policies that achieve constant-factor approximations
to the expected gain of the optimal adaptive policy. In a slightly different context, Attias
et al. [7] also incorporate the idea of non-obligatory inspection in their model.

Other natural extensions include having a utility function that takes into account the
rewards of all opened boxes instead of just the maximum one [130], having rewards that
are a sum of a known and a hidden factor [48], considering a richer inspection model [6],
and assuming correlations among the distributions of the rewards [41]. In the computer
science literature, a recent line of work has generalized the Pandora’s box model to
various combinatorial optimization problems [76, 87, 142].

The importance of the Pandora’s box problem can be illustrated by the multitude of
applications in which it has been used as a building block. Derakhshan et al. [61] draw
inspiration from it to develop a two-stage consumer search model in online platforms.
Kleinberg et al. [106] develop a model based on the Pandora’s box problem to study
bidders’ information acquisition in simultaneous auctions. They also present a novel
interpretation and proof of the optimality of Weitzman’s policy that inspired further
work [20, 142]. Immorlica et al. [96] also use the Pandora’s box problem for modeling
costly information acquisition in matching markets. Their main case study is college
admissions, where students have to gather information for colleges they wish to attend
in order to learn their true preferences over them. Kleinberg and Kleinberg [103] and
Bechtel and Dughmi [17] apply the Pandora’s box problem to design delegation mech-
anisms, where a principal assigns the task of choosing from a set of alternatives to an
agent. In this context we would like to quantify the cost of delegation, i.e., how much a
principal loses by assigning a task to someone else.

Close to our work are the online variants of the Pandora’s box problem that have
appeared in the literature. In a well-studied online variant, we can still choose the order
of inspection but we have the commitment constraint [75, 141]. Esfandiari et al. [70]
present a general reduction that connects an online Pandora’s box problem, where the
rewards and the costs are jointly drawn from a distribution, and the prophet inequality.
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The reduction also extends to more general objective functions with different feasibility
constraints. The work of Boodaghians et al. [22] is also related to ours. They initiate the
study of the Pandora’s box problem when there are constraints in the exploration order
of the boxes. They derive the optimal policy when the boxes are in a line (i.e., known
fixed order), and when they form tree-like constraints. The optimal policy can also
be computed in polynomial time. Then, they show a hardness result when considering
slightly more general constraints in the order of exploration.

Finally, as mentioned in Section 5.1.1, one of the benchmarks we consider is the
optimal adaptive online policy. Although the approximability of the optimal online
policy by polynomial time algorithms is a natural question, it has not been extensively
studied in the literature of online selection problems. Nevertheless, there has been recent
work that tries to answer this question for well-known models [4, 127, 132].

5.2 Exogenous ordering without skipping

In this section, we discuss AOPB and ROPB when we have to pay the cost of an arriving
box, or stop the search before inspecting it. Our focus will be mostly on the setting with-
out commitment, since our primary goal is to understand the effect of changing the order
of exploration, while keeping the same objective function. First, we should establish what
our benchmark is. Ideally, we would like to find the optimal, computationally-efficient
policy and compare its performance to that of Weitzman’s policy in the free order case.
Unfortunately, when we cannot skip it is easy to see that we cannot guarantee any frac-
tion of the performance of Weitzman’s policy. The following simple example for ROPB
illustrates that.

Example 3. We consider n boxes that will be presented to us in random order. For
simplicity, we choose deterministic rewards and costs. In particular:

• Boxes b1, b2, · · · , bn−1 have reward v1 = v2 = · · · = vn−1 = 0 and cost c1 = c2 =
· · · = cn−1 = H, for some large positive number H.

• Box bn has reward vn = M for some large positive number M < H, and cost
cn = 0.

In other words, boxes b1, b2, · · · , bn−1 are dummy boxes with no reward and huge cost
and, thus, they will never be explored. Their reservation values are σ1 = σ2 = · · · =
σn−1 = 0, and the reservation value of box bn is σn = M . Weitzman’s policy opens bn
and stops, for a gain of WEITZ = M .

Any optimal algorithm for the random order will only enter the game if the good
box bn appears first, in which case it will open it and stop, for a gain of M . In any
other case, starting to inspect boxes will necessarily result in negative gain. Since the
order is random, for a permutation π : [n] → [n], we have that Pr[bπ(n) = b1] = 1/n.

The expected gain of any optimal algorithm then becomes E[ALG] = M
n + n−1

n · 0 =
1
nWEITZ. As n grows, the expected gain of any algorithm becomes a vanishing fraction
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of that of Weitzman’s policy. Therefore, we conlcude that there are instances in which
E[ALG]

E[WEITZ] → 0, and we cannot hope to get any guarantee against this benchmark.

Of course, the above example also shows that we cannot compete against any type of
offline benchmark that always knows the realized rewards (as the prophet benchmark
does in prophet inequalities). Thus, we aim to approximate the next strongest mean-
ingful benchmark, which is the optimal online policy, using polynomial-time algorithms.
This is our main goal in this section.

5.2.1 Random order

Before proceeding to the algorithms, let us mention that we can obtain the optimal
solution for ROPB using dynamic programming. Denote by R the set of boxes that
still remain unopened. Let OPT(R, i) be the maximum reward we can collect minus the
costs paid when the remaining set of items is R, and the next box is i ∈ R. With this
notation at hand, the dynamic program can be formulated as follows:

OPT(R, i) = max

(
max
j 6∈R

vj ,−ci + Ek∈R\{i},vk∼Dk [OPT(R \ {i}, k)]

)
. (5.1)

The solution of the dynamic program is E [OPT([n], i)]. The expectation is taken
over the independent draws of the rewards and the uniform random permutation of
the boxes. Note that the dynamic program decides whether to continue at each point
without knowing which box will appear next for inspection. It is easy to see that the
state space grows very quickly; indeed, in experiments we conducted with synthetic
data we observed that for instances larger than nine boxes, each extra box adds a huge
computational burden for solving the DP to optimality. Therefore, we need to find
polynomial time algorithms with provably good guarantees to be able to tackle large
instances. In Appendix C.1, we formally show that the DP we formulated returns the
optimal expected gain.

Moreover, note that the following upper bound to the DP and the optimal online
policy holds:

E [OPT([n], i)] ≤ 1

n!

∑
π∈Sn

OPTfixed(πi) . (5.2)

This follows since for known fixed order we can calculate the optimal expected gain (as
shown in [22], this reduces in their setting to the line graph). Therefore, the optimal that
has the extra power of knowing the sequence that follows would have run the algorithm
of Boodaghians et al. [22], and since each permutation is equally likely to appear, the
expected cost is averaging over all n! optimal solutions.

Finally, we can formulate a linear program to describe our problem. Let again Sn be
the set of all possible permutations with n boxes. Next, we define the two variables xπ(i)

and zπ(i): Let xπ(i) = 1 if for permutation π ∈ Sn the i-th box of this permutation is
opened, and zπ(i) = 1 if for permutation π the i-th box is chosen.
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maximize
1

n!

∑
π∈Sn

n∑
i=1

−xπ(i)cπ(i) + zπ(i)vπ(i)

subject to
n∑
i=1

zπ(i) = 1 ∀π ∈ Sn,

zπ(i) ≤ xπ(i) ∀π ∈ Sn, i ∈ [n],

xπ(i−1) ≥ xπ(i) ∀π ∈ Sn, i ∈ [n],

xπ(i), zπ(i) ∈ [0, 1] ∀π ∈ Sn, i ∈ [n].

The first constraint of the LP says that we can collect the reward from one box in
total for every permutation π. The second constraint indicates that we cannot collect
the reward of a box if we haven’t opened it first (unlike the non-obligatory inspection
model where there is no such constraint). The third constraint expresses the restriction
of not being allowed to skip boxes; we cannot have an unopened box with a smaller
index than an opened one. With the last constraint we relax the problem to capture
also randomized algorithms that probabilistically open a box and collect its reward.
However, the opposite direction, i.e., translating a non-integer solution of the LP into
a randomized strategy is not very clear. Assuming that we have solved the exponential
size LP and obtained the (optimal) values for the decision variables zπ(i), it is not
straightforward how to obtain a randomized algorithm from them (e.g., by interpreting
them as probabilities and aggregating them in a clever way). Note that the way the LP
is written, it is implied that the decision-maker must enter the game and open at least
one box, but we can easily adapt it to make this optional by offering an outside option.

In the following, we study algorithms that we intuitively expect to perform well against
the optimal online policy. However, we show that for carefully constructed instances they
can be arbitrarily bad, indicating that we have to come up with very different policies
so that we achieve good approximation for any instance.

5.2.2 Impossibility results for specific algorithms

For the moment, we do not restrict ourselves to only algorithms with polynomial runtime.
Instead, we want to consider algorithms that are likely to perform well for any instance,
ideally achieving expected gain very close to either the solution of the dynamic program
or the upper bound in Eq. (5.2). Following, we describe two candidate algorithms that we
term the majority algorithm and the averaging algorithm. We show that, although they
seem natural, and adaptively decide based on the current gain and the future “value” of
the instance, they fail to provide any guarantee for some instances. More concretely, we
construct a family of instances and show that for specific choice of the parameters within
this family the optimal online policy gets positive expected gain, while the expected gain
of our algorithms is negative.

We begin by stating the algorithms; we explain the majority one in Algorithm 1 in
detail, and the averaging algorithm is a simple adaptation in the decision phase. More
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Algorithm 1: The majority algorithm ALGmaj

Input : Set of boxes B with their distributions Fi and costs ci, random
permutation σ.

Output: The gain for the permutation σ.
while B is not empty do

Observe the next uninspected box bi in the sequence; Set B ← B \ {bi};
Initialize majority sum M = 0;
for all independent uniform random permutations π of boxes in B do

Fix the permutation π′ ← {bi} ∪ π;
Calculate the optimal gain OPTfixed of π′ using the algorithm in [22];
if OPTfixed > 0 then

M ←M + 1; /* Add one point from this permutation to the

sum since it gives positive gain */

end
else

M ←M − 1;
end

end
if M > 0 then

Open bi and update the gain with the realized reward vi and the cost ci;
continue;

end
else

break;
end

end

specifically, in the majority algorithm, for each permutation π we add one point if the
maximum gain from this fixed permutation π is positive and we remove one point if it is
not. In the averaging algorithm, we take the maximum gain of each fixed permutation
and we average over them (since each permutation is equally likely to appear). The
algorithm opens the next box if the average expected gain is positive, and stops and
returns the current gain otherwise. Remember that the boxes are presented to us in an
online fashion. In particular, at each point we can observe the next box of the sequence
(namely the distribution of its reward and its inspection cost), and decide whether to
open it, or stop without opening it and collect the maximum reward so far.

The hard instance Next, consider both algorithms in the following instance. For sim-
plicity, it consists of deterministic rewards only, which makes our analysis easier. Con-
sider three different sets of boxes with different cardinalities.

• There are two boxes of type A. For this type of boxes, there is no inspection cost
(i.e., cA = 0) and the reward is vA = t, where t is a big positive constant.
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• There is one box of type B. For this type of boxes, there is a huge inspection cost
cB →∞ and very low reward; let us assume here that vB = 0. Type B boxes just
serve for stopping the search as we will never open them.

• Finally, we have a large number mc of type C boxes. For inspecting these boxes
we have to pay inspection cost cC = 1 and we get value vC = 0.

It is clear that when the first box is of type A then both the optimal online policy
and the proposed algorithms would inspect the box and stop, resulting in a gain of t. It
is also clear that when the first box is the one of type B, then we never inspect and we
receive zero gain. Thus, the interesting case is when the first box of the sequence is of
type C. We analyze this case and show why the majority algorithm does not work. Once
we have proved this, the result for the averaging algorithm easily follows. We start with
an important observation for the instance we just defined when the random sequence
starts with a box of type C.

Lemma 35. Let X be the total number of boxes of type C before the first box of type
A or B. The majority algorithm will open all X boxes of type C if and only if Pr[X ≤
t− 1] ≥ 3/4.

Proof. Since the costs and values of type A and type C boxes are all integers, for a fixed
permutation we add a point to the majority sum if the optimal gain is at least 1. When
starting with a box of type C, we achieve positive optimal gain under the following two
conditions: (1) X is at most t − 1; and (2) the first box that is not of type C must be
of type A. In order to continue and start opening the type C boxes, this has to be the
case in at least half of the permutations that start with a type C box. Let E be the
event that a type A box is presented to us before the type B box. For opening the type
C boxes we need to satisfy Pr[(X ≤ t− 1) ∩ E] ≥ 1/2. Notice that

Pr[(X ≤ t− 1) ∩ E] = Pr[(X ≤ t− 1) | E] · Pr[E] =
2

3
Pr[X ≤ t− 1],

where the second equality holds because the two events are independent and Pr[E] = 2
3

because there are two type A and one type B boxes, which are presented in a uniform
random order. Since we want Pr[(X ≤ t − 1) ∩ E] ≥ 1/2 to continue with the type C
boxes, the condition Pr[X ≤ t− 1] ≥ 3/4 must be satisfied.

With this at hand, we can try to fix the two parameters cm and t so that the condition
from the previous lemma is satisfied, and the majority algorithm gets negative expected
gain.

Theorem 17. For mc = 1001 and t = 372 the majority algorithm gets negative expected
gain. On the other hand, the expected gain of the optimal online policy is positive.

Proof. Let us first write the probability that the boxes of type C in the beginning are at
most t− 1 as a function of the parameters. Observe that Pr[X = 1] = 3

mc+2 , because we
start the sequence with a type C box (which is a given) and the second box is of type A
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or B, which happens with probability 3
mc+2 . Similarly, we can calculate the probability

for other values of X. For example,

Pr[X = 2] =
mc − 1

mc + 2
· 3

mc + 1
, Pr[X = 4] =

(mc − 2) · (mc − 3) · 3
(mc + 2) · (mc + 1) ·mc

, · · ·

Thus, we can write it down for any value of t as follows:

Pr[X = t− 1] =
(mc + 2− (t− 1)) · (mc + 1− (t− 1)) · 3

(mc + 2) · (mc + 1) ·mc
.

Now we can calculate the desired probability by summing up the previous values:

Pr[X ≤ t− 1] =
t−1∑
k=1

Pr[X = k] =
3

(mc + 2) · (mc + 1) ·mc

mc+1∑
i=mc+2−(t−1)

(i− 1) · i .

The expected gain of the majority algorithm is simply

E[ALGmaj] =
2

mc + 3
· t+

mc

mc + 3
·
[

2

3
· t−

(
mc − 1

4
+ 1

)]
· 1Pr[X≤t−1]≥3/4 ,

since when the first box is of type C, the majority algorithm will open the type C boxes
only if the condition from Lemma 35 is satisfied. In this case, it will encounter in expec-
tation some boxes of type C, and then with probability 2/3 a box of type A. If we choose
t = 372 and mc = 1004 we get that Pr[X ≤ t−1] > 3/4 and E [ALGmaj] < 0. We denote
by OPT the optimal policy. Since E [OPT | first box is of type C and we open it] < 0,
the optimal online policy will proceed in opening boxes only when the first box is of
type A, collect its reward and stop. Thus, E [OPT] = 2

mc+3 · t > 0, and the proof is
complete.

Remark. Even if we assume that all the rewards and the reservation values of the boxes
are positive, we still cannot circument the arbitrarily bad performance of the majority
algorithm. We create a new instance in which the following things change compared
to the previous one: The type C boxes have now vC = 1 and cC = 1 − ε, and their
reservation value becomes σC = ε, for some small ε > 0. Moreover, we remove the type
B box since it has negative reservation value. Following the same reasoning as before,
we come up again with two expressions that need to be satisfied simultaneously so that
the expected gain of the majority algorithm is negative. We can show again that there
is a range of values for mc and t, for which the majority algorithm achieves negative
expected gain, while the expected gain of the optimal online policy is positive, thus
ensuring again an arbitrarily large gap.

Now we can extend the negative result above to the averaging algorithm as well by
comparing the decisions of the two algorithms on each permutation.

Proposition 8. For the expected gain of the averaging algorithm A on the same instance,
it holds that E[A] ≤ E[ALGmaj ].

119



5 The Impact of Ordering on the Pandora’s Box Problem

Proof. The interesting case again is the one in which the very first box is of type C. For
the other two cases, the two algorithms obviously make the same decision. We show that
if the majority algorithm decides to open the type C boxes (which for some choices of
cm and t will result in negative expected gain), so will the averaging algorithm. Recall
that for each fixed permutation we add one point to the majority sum when its gain
is positive, and we remove one otherwise. If the majority sum M is positive, we open
the type C boxes. Denote by Σavg the corresponding sum of the averaging algorithm.
Again, if Σavg > 0 we inspect the next box, otherwise we stop.

Let us assume that we want to decide whether to open the first type C box. Consider a
fixed permutation σ from the set of possible permutations. If its optimal gain is positive,
we add 1 to M and OPTfixed(σ) to Σavg. By construction of the instance OPTfixed(σ) ≥ 1
since any positive gain is at least 1. If the optimal gain is negative, ALGmaj subtracts
1 from M , and A subtracts OPTfixed(σ) from Σavg > 0, where OPTfixed(σ) = −1. The
optimal algorithm for the fixed permutation will minimize the negative gain, since we
want the optimal solution given that we open at least the first box of this permutation.
Therefore, for all σ whose optimal gain is negative we have that OPTfixed(σ) = −1.

From the above we can conclude that OPTfixed(σ) ≥M , which means that whenever
the majority algorithm decides to open the type C boxes until encountering an A or B,
the averaging algorithm will make the same decision, resulting in a negative expected
gain as well.

5.3 Exogenous ordering with skipping

In this section, we study both AOPB and ROPB with skipping. In this variant, we
can choose to not inspect a box that is presented to us and let it go forever. Thus, the
policies we design here have to make two decisions: (1) when to open a box; and (2)
when to stop. To start, we present a very useful reduction from the Pandora’s box with
skipping and commitment to the prophet inequality. The reduction holds for any order.

5.3.1 From Pandora’s box with commitment to prophet inequalities

We show an approximation-preserving reduction to prophet inequalities. More specif-
ically, we can transform algorithms that have provably good approximation to the
prophet’s reward in the adversarial, random, free, or any other order, to algorithms in
Pandora’s box with commitment (keeping the same assumption on the order) that have
also good approximation to the expected gain of Weitzman’s policy. The approximation
guarantees apply to Pandora’s box without commitment as well, since by dropping the
commitment constraint we can only do better. In any case, we can always use algo-
rithms that are designed for the setting with commitment when there is no commitment
constraint, although they will probably be suboptimal. We now state the main result
that we want to prove.
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Theorem 18. Given an α-approximation threshold-based algorithm for the prophet
inequality problem, we can construct an α-approximation algorithm for the Pandora’s
box problem with skipping and commitment using the same set of thresholds.

The first step is the following very important observation. This is one of the main steps
for an alternative proof of the optimality of Weitzman’s policy, discovered by Kleinberg
et al. [106]. This proof is also the building block of the reduction.

Lemma 36 (Lemma 2 in [106]). Let xi be the indicator random variable that takes value
1 if we collect the reward from box bi and zi be the indicator random variable that takes
value 1 if we open bi. Then it holds that

Evi∼Fi [xivi − zici] ≤ Evi∼Fi [xi min{vi, σi}]. (5.3)

It is satisfied with equality if and only if for each box bi with vi > σi, it holds that
xi = zi.

Next, we relate Lemma 36 to the performance of Weitzman’s optimal policy in the
Pandora’s box problem.

Lemma 37 (Merge of Corollary 1 and Theorem 1 in [106]). No algorithm can achieve
a better expected gain than E

[
maxi∈[n] min{vi, σi}

]
. Furthermore, the expected gain of

Weitzman’s policy is exactly this upper bound.

Proof. By summing over the boxes in Eq. (5.3) and the fact that we collect the reward
of only one box we get

∑
i∈[n]

E[xivi − zici] ≤
∑
i∈[n]

E[xi min{vi, σi}] ≤ E
[
max
i∈[n]

min{vi, σi}
]
, (5.4)

where the expectation is over the independent draws from the distributions and pos-
sibly over the randomness of the exploration order of the boxes. Recall that Weitzman’s
policy opens the boxes in decreasing order of their reservation values, and collects the
reward of the first box bi for which vi exceeds all the reservation values of the remaining
uninspected boxes. This procedure by definition always collects the reward of the box
bi with the largest min{vi, σi} and it also satisfies the property for which Eq. (5.3) holds
with equality. Therefore, Weitzman’s policy satisfies both inequalities of Eq. (5.4) with
equality.

Now we define a family of threshold-based policies for the Pandora’s box problem with
commitment. They can be applied regardless of the assumptions on the ordering of the
boxes.

Definition 7 (A family of threshold-based algorithms). Fix a sequence of thresholds
τ1, τ2, . . . , τn. The algorithm inspects a box bi if σi > τi. It collects the reward of the
first inspected box for which it also holds that vi > τi.
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From the proof of the main theorem of this section it will become clear that these are
the types of policies that arise when applying the algorithms from prophet inequalities
in our problem. Notice that such algorithms satisfy Eq. (5.3) with equality, since by
definition if vi > σi then xi and zi always agree in their values. In particular, there
are two scenarios: either a box bi with vi > σi is reached, inspected and selected (in
which case xi = zi = 1) or the algorithm stops before reaching that box (in which case
xi = zi = 0).

Now we can put everything together and prove Theorem 18.

Proof of Theorem 18. Consider a prophet inequality problem for an instance with dis-
tributions G1, G2, · · · , Gn, where min{vi, σi} ∼ Gi for all i. Run a threshold-based
algorithm with some α-approximation guarantee. This means that the expected value
of the first random variable which exceeds its threshold will be at least an α-fraction of
E
[
maxi∈[n] min{vi, σi}

]
which is the expected reward of the prophet. From Lemma 37

we know that this is also the expected gain of Weitzman’s optimal policy. Recall that
the threshold-based algorithms for the Pandora’s box problem from Definition 7 satisfy
Eq. (5.3) with equality. Moreover, by this definition we observe that these algorithms
will pick the first box bi for which min{vi, σi} > τi. Thus, we will always pick the same
box in both problems, if we run their threshold-based algorithms with the same set of
thresholds. Combining all the above, we conclude that when we have an α-approximation
threshold-based algorithm for a prophet inequality problem, we get∑

i∈[n]

Evi∼Fi [xivi − zici] =
∑
i∈[n]

Evi∼Fi [xi min{vi, σi}]

≥ α · E
[
max
i∈[n]

min{vi, σi}
]

= α · E[WEITZ] ,

where by E[WEITZ] we denote the expected gain of Weitzman’s optimal policy.

Finally, a couple of remarks are now in order. Note that the reduction holds for
any assumption on the order of the boxes. There just has to exist a threshold-based
algorithm whose expected reward guarantees an approximation to the expected reward
of a prophet for the order we assumed.

Furthermore, the reduction holds for randomized thresholds. It could still hold for
randomization over the selection of a box which exceeds its threshold as well; the only
condition that needs to be always satisfied is that if vi > σi then xi = zi, which is always
the case for the algorithms of Definition 7.

5.3.2 Adversarial order

In this section, we show that, perhaps surprisingly, for AOPB with skipping an approx-
imation of 1/2 to Weitzman’s optimal policy is the best possible guarantee, regardless
of whether we impose the commitment constraint. First, we state the lower bound that
comes directly from Theorem 18.
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5.3 Exogenous ordering with skipping

Corollary 4. A single-threshold algorithm for AOPB with or without commitment guar-
antees at least half of the expected gain of Weitzman’s policy.

The result follows from the well-known bound for the classic prophet inequality; setting
a single thresold guarantees at least half of the expected reward of the prophet (see
Samuel-Cahn [136] and Kleinberg and Weinberg [105] for more details on how such a
threshold can be calculated). The threshold-based algorithm is designed for a setting
with commitment, but the result carries through when there is no commitment as well.
Although one might expect that a different algorithm could break the barrier of 1/2
when we can collect the reward of any opened box, the following result shows that this
is not the case.

Theorem 19. For AOPB with or without commitment, no algorithm can guarantee
more than 1/2 of the expected gain of Weitzman’s optimal policy. Thus, the bound of
1/2 is tight.

Proof. Denote by FIX the gain of an optimal algorithm for the fixed order case. Consider
the following instance with 2 boxes.
Box 1: c1 = 1− 1/x and v1 = 1.

Box 2: c2 = 1 and v2 =

{
0, w.p. 1− 1/x

x+ ε, w.p. 1/x
.

We will set x and ε such that σ2 > σ1. Then the optimal opening order is b2, b1 and
Weitzman’s policy gets expected gain

E[WEITZ] = −1 +
1

x
(x+ ε) +

(
1− 1

x

)(
−1 +

1

x
+ 1

)
=
x+ xε− 1

x2
.

The adversarial order is b1b2 and any algorithm that observes this order has 3 possi-
bilities; open only b1 and stop, skip b1 and open b2, or open both. An optimal algorithm
gets the maximum over these expected gains:

E[FIX] = max

{
1

x
,
ε

x
,−1 +

1

x
− 1 +

1

x
(x+ ε) +

(
1− 1

x

)}
= max

{
ε

x
,

1

x
,
ε

x

}
.

By setting x → ∞ and ε → 1 we get ε = σ2 > σ1 = 1/x, so our condition for the
reservation values is satisfied. Moreover, taking the limit we have that

E[FIX]

E[WEITZ]
= lim

(x,ε)→(∞,1)

max
{
ε
x ,

1
x ,

ε
x

}
x+xε−1
x2

=
1

2
,

and the proof is complete.
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5 The Impact of Ordering on the Pandora’s Box Problem

5.3.3 Random order

In this section, we provide a lower bound for ROPB with commitment (which is also a
lower bound for ROPB without commitment) and an upper bound for ROPB without
commitment (which applies to ROPB with commitment as well). For completeness,
we formulate again a dynamic program that solves ROPB with skipping and without
commitment optimally. We use the same notation as we did in the random order without
skipping (see Section 5.2.1). This dynamic program, apart from dealing with all possible
permutations, has to also take into account all the combinations that arise from skipping
or not skipping each arriving box. We denote by R the set of unopened boxes, and by
v the maximum reward so far. Then the DP becomes

OPT(R, v, i) = max
(
−ci + Ej∈R\{i}OPT (R \ {i},max(v,Evi), j) ,Ej∈R\{i}OPT(R \ {i}, v, j)

)
and the optimal solution is E [OPT([n], 0, i)].

Our final goal is to design good polynomial-time algorithms for ROPB without com-
mitment. Again, from Theorem 18 we know that we can apply the state-of-the-art
threshold-based policies for the prophet secretary problem and directly obtain the same
approximation guarantee in ROPB without commitment when compared to the expected
gain of Weitzman’s policy. Correa et al. [56] present an algorithm that is a decreasing
collection of randomized thresholds and guarantees a 0.669-fraction of the prophet’s
expected reward. This is currently the best known bound for the prophet secretary
problem; they also show that no algorithm can obtain more than

√
3 − 1. This upper

bound just implies that when we restrict ourselves to policies with commitment, we
cannot hope for a better guarantee than

√
3 − 1 through the reduction to the prophet

secretary problem; we need different techinques to break this barrier.

Corollary 5. For ROPB with or without commitment, we can design an algorithm
that is a decreasing collection of thresholds τ1, τ2 . . . , τn and guarantees at least a 0.669-
fraction of the expected gain of Weitzman’s optimal policy.

We complement this result with a (non-tight) upper bound that applies to any algo-
rithm. The construction of the hard instance is inspired by Correa et al. [56, Section 5],
but requires quite different ideas and observations to adapt it to a setting with costs and
the possibility of collecting a previously observed reward. Before proceeding to the hard-
ness result, note that an almost immediate upper bound of 3

4 follows from Theorem 19.
Consider again the same instance with x→∞ and ε→ 1, so that the optimal opening
order is b2b1. Since the order is random, the two possible permutations b2b1 and b1b2
appear each with probability 1/2. The optimal algorithm for ROPB gets the optimal
gain in each of the permutations; this is WEITZ and FIX, respectively, as calculated in
Theorem 19. In other words, half the time it gets the same as Weitzman’s policy, and
half the time it gets half of it, leading to an upper bound of 3

4 overall. Next, we present
our slightly improved upper bound.

Theorem 20. For ROPB with or without commitment, no algorithm can obtain more
than a (

√
3− 1)-fraction of the expected gain of Weitzman’s optimal policy.
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5.3 Exogenous ordering with skipping

Proof. Let us focus here on the ROPB without commitment, which is more general than
the ROPB with commitment. Consider the following instance with n+ 1 boxes.

• The first n boxes with rewards v1, v2, . . . , vn ∼

{
n, w.p. 1

n2

0, w.p. 1− 1
n2

and zero costs,

i.e., c1 = c2 = · · · = cn = 0.

• The last box bn+1 has reward vn+1 = αn and cost cn+1 = cαn . When clear of
context, we will just denote them α and cα, respectively, knowing that both of
those values depend on n.

First, let us describe what Weitzman’s optimal policy will do. For that, we need to
make some assumption about α and cα, which will determine if bn+1 will be inspected
first or last, since all other boxes have the same reservation value. Choose α and cα such
that α − cα := ∆ ∈ O(1). It is then clear that bn+1 will be inspected last (if we reach
it), for an expected gain of

E[WEITZ] =

(
1−

(
1− 1

n2

)n)
· n+

(
1− 1

n2

)n
· (α− cα).

Next, let us consider algorithms for the random order case. Denote by RAND the gain
of an algorithm on a specific realization. We assume from now on that αn < n. With this
assumption, the only decision of an algorithm is whether to inspect the deterministic
(once n is fixed) box and continue inspecting the free boxes, or skip that box and
continue. Intuitively, if there are a lot of boxes remaining, it is more likely that at least
one of them will be realized, resulting in RAND = n. If few boxes are left uninspected
we prefer to open the deterministic box so that we obtain at least RAND ∈ O(1) if all
the remaining rewards turn out to be 0. Let κn denote the index starting at which we
start inspecting bn+1. In particular, this is the first index for which opening the box
obtains a larger expected future gain than skipping.

Assume that for a realized permutation we have n−κn boxes remaining (meaning the
first κn − 1 boxes had reward 0), and we have to decide whether to open box bn+1 at
position κn. The expected future gain by skipping it is

Rskip :=

(
1−

(
1− 1

n2

)n+1−κn
)
· n

and by opening it is

Ropen :=

(
1−

(
1− 1

n2

)n+1−κn
)
· (n− cα) +

(
1− 1

n2

)n+1−κn
(α− cα) .

Solving for the smallest such index κ∗n for which we would decide to inspect, we get

Ropen ≥ Rskip ⇔ κ∗n ≥
log
(
dn+1α
cα

)
log d

,

125



5 The Impact of Ordering on the Pandora’s Box Problem

where dn = 1− 1
n2 (we will again often just use d and omit the subscript). Thus, κ∗n will

be the first index that satisfies the condition, i.e., κ∗n =

⌈
log
(
dnα
cα

)
log d

⌉
.

Now we are ready to calculate the expected gain of an optimal algorithm. We have
that

E[RAND] = E [RAND | π(n+ 1) < κ∗n] Pr [π(n+ 1) < κ∗n] +
1

n+ 1

n+1∑
i=κ∗n

E [RAND | π(n+ 1) = i]

=
κ∗n − 1

n+ 1
(1− dn)n+

1

n+ 1

n+1∑
i=κ∗n

(n− cα)
(
1− dn−i+1

)
di−1 + n

(
1− di−1

)
+ (α− cα)dn

=
κ∗n − 1

n+ 1
(1− dn)n+

1

n+ 1

n+1∑
i=κ∗n

(1− dn)n+ dnα− di−1cα.

Remember that the assumptions that we made about αn and cαn are that (1) their
difference is some constant, and (2) αn < n. Then by choosing αn = n− ε for some very
small ε > 0 and cαn = n− ε−

√
3 + 1, we have that ∆ =

√
3− 1 and taking the desired

ratio as n grows and ε→ 0 we get

E[RAND]

E[WEITZ]
= lim

n→∞

κ∗n−1
n+1 (1− dn)n+ 1

n+1

∑n+1
i=κ∗n

(1− dn)n+ dnα− di−1cα

(1− dn) · n+ dn · (α− cα)
=
√

3−1 ≈ 0.732,

and the proof is complete.

5.4 Current and future directions

We conclude with questions that directly arise from the previous results and discuss
some more general future directions.

Hardness of AOPB and ROPB with skipping An equally well-motivated benchmark
with the expected gain of Weitzman’s optimal policy is the expected gain of the optimal
online policy for the same exploration order. In particular, is it easy to compute the
optimal online policy for AOPB or ROPB with skipping? If the problem turns out
to be hard, can we design simple policies with good approximation guarantees for this
benchmark? This direction is in line with the work that studies the approximability
of the online optimum for other online selection problems (see also Section 5.1.2 where
some of this related work is mentioned).
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5.4 Current and future directions

Different objective functions The current chapter tries to shed light on the impact
of ordering in fundamental search processes, focusing on the common single-selection
objective of the Pandora’s box problem. With this work as a starting point, we could
also consider more general objective functions. Examples include collecting the reward
of up to k items or having a constraint on the number of boxes that we are allowed
to open. From a mechanism design perspective, we can say that the decision-maker’s
valuation function is unit-demand (i.e., it selects at most one item, minus the costs paid
for the inspected items). It is worth studying more general classes of valuation functions,
such as submodular and XOS.

Showing separation between settings with and without commitment We saw that
for the AOPB with skipping the commitment constraint does not play any role; a simple
algorithm designed for the setting with commitment turns out to be the best possible
when there is no commitment as well. In the ROPB with skipping there is still a
gap in the lower and upper bound; this leaves open the question of whether we can
design an algorithm for the ROPB without commitment which beats the threshold-based
algorithm. Nevertheless, even if that is possible, the improvement in the guarantee will
be small, which implies that this algorithm still performs very well even when we drop
the commitment constraint. If we slightly modify other assumptions of the problem (e.g.
the objective function, the exploration order or the independence of the distributions)
does the commitment constraint crucially affect the structure of the optimal solutions?
Or is it maybe that in most cases dropping the commitment constraint does not give
much additional power to the policies we can design?

Non-obligatory inspection In Section 5.1.2 we mentioned another very interesting ex-
tension of the classic Pandora’s box problem; the one in which we can select a box
without necessarily inspecting it first (that is, only with the knowledge of the distribu-
tion of its reward). Note that the Pandora’s box problem with non-obligatory inspection
has not been fully solved even in the case that we are allowed to choose the order of ex-
ploration. We know that most likely it is difficult to compute the optimal policy, and we
are aware of algorithms that achieve a good constant-factor approximation [20]. We do
not have any general hardness result for this model, so we do not know if these factors are
tight as well. In any case, it is an intriguing direction to investigate the non-obligatory
inspection assumption in the adversarial and the random order case. The benchmarks
could be either the optimal online policy, or a novel upper bound to the optimal policy
in the free order case, which would be of independent interest.
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A Omitted Proofs from Chapter 3

A.1 Technical lemmas

Lemma 38. For r > 0, let ρ(r) denote the unique solution over [1,∞) of the equation

(ρ− 1)3

(2ρ− 1)2
= r2.

Then it holds that
1 + 4r2 ≤ ρ(r) ≤ 2 + 4r2

for large enough values of r.

Proof. One can directly check that the expression (ρ−1)3

(2ρ−1)2 is increasing and goes from

0 at ρ = 1 to ∞ at ρ → ∞, so that for any nonnegative r there is a unique solution
ρ ∈ [1,∞) to the above equation. Moreover, we can write

r2 =
(ρ− 1)3

(2ρ− 1)2
=

1

4
ρ− 1

4
−

(ρ− 3
4)(ρ− 1)

4(ρ− 1
2)2

⇐⇒ ρ = 1 + 4r2 +
(ρ− 3

4)(ρ− 1)

(ρ− 1
2)2

;

since the fraction appearing on the right-hand side takes values between 0 and 1 (for
ρ ∈ [1,∞)), this gives us the desired global bounds.

Lemma 39. For r > 0, let ρ(r) denote the (unique) positive solution of the equation

1

ρ2

(
2eρ−1 − 1

)
= r2 + 1.

Then, for any ε > 0, it holds that

ρ(r) ≤ 1 + (1 + ε) ln(1 + r2)

for large enough values of r.

Proof. Fix an ε > 0. For convenience, define the functions f, g : (0,∞) −→ R with

f(x) =
1

x2

(
2ex−1 − 1

)
and g(x) = 1 + (1 + ε) ln(1 + x2).

By considering their derivatives, it is straightforward to see that both f and g are
increasing functions. So, to prove our lemma, it is enough to show that

f(g(r)) ≥ r2 + 1
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for large enough values of r.

Indeed, taking r large enough we can guarantee that

g(r) = 1 + (1 + ε) ln(1 + r2) ≤ (1 + r2)ε/2,

since ln(1 + x) = o(xε/2). Thus we have

f(g(r)) =
2eg(r)−1 − 1

[g(r)]2
≥ 2e(1+ε) ln(1+r2) − 1[

(1 + r2)ε/2
]2 =

2(1 + r2)1+ε − 1

(1 + r2)ε
= 2(1 + r2)− 1

(1 + r2)ε

which is greater than 1 + r2 for large enough r, since 1
xε = o(x).

A.2 Asymptotics of the mechanism by Azar and Micali [8]

In this section we look at the upper bound proposed in Azar and Micali [8, Thm. 1].
They propose a deterministic mechanism with selling price p = µ − k(r)σ, where k(r)
is the unique positive solution of the cubic equation 1

r = 1
2(3k + k3). They derive an

approximation guarantee which in our setting can be expressed as

APX(µ, σ) ≤ µ

REV(p;F )
≤ 1

1− 3
2rk(r)

≡ ρ̃(r). (A.1)

We have the following global bounds and asymptotics:

Lemma 40. For any µ > 0 and σ ≥ 0, let r = σ/µ and let k denote the unique real
solution of 1

r = 1
2(3k + k3). Furthermore, let ρ̃ = 1

1− 3
2
rk

and p = µ− kσ. Then ρ̃ is the

unique solution over [1,∞) of the equation

27

4
r2 =

(ρ̃− 1)3

ρ̃2
,

and further satisfies

1 +
27

4
r2 ≤ ρ̃ ≤ 3 +

27

4
r2 and p =

ρ̃+ 2

3ρ̃
· µ.

Proof. We begin by rewriting k in terms of ρ̃,

ρ̃ =
1

1− 3
2rk

⇐⇒ k =
2

3r

ρ̃− 1

ρ̃
;

plugging this in the cubic equation for k, and doing some manipulation, gives

1

r
=

1

2

(
2

r

ρ̃− 1

ρ̃
+

8

27r3

(ρ̃− 1)3

ρ̃3

)
⇐⇒ 27

4
r2 =

(ρ̃− 1)3

ρ̃2
.
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One can directly check that the expression (ρ̃−1)3

ρ̃2 is increasing and goes from 0 at ρ̃ = 1

to ∞ at ρ̃ → ∞, so that for any nonnegative r there is a unique solution ρ̃ ∈ [1,∞) to
the above equation. Moreover, we can write

p = µ− kσ = µ− 2

3

σ

r

ρ̃− 1

ρ̃
=
ρ̃+ 2

3ρ̃
· µ

and

27

4
r2 =

(ρ̃− 1)3

ρ̃2
= ρ̃− 1− (2ρ̃− 1)(ρ̃− 1)

ρ̃2
⇐⇒ ρ̃ = 1 +

27

4
r2 +

(2ρ̃− 1)(ρ̃− 1)

ρ̃2
.

Since the fraction appearing on the right-hand side takes values between 0 and 2 (for
ρ̃ ∈ [1,∞)), this gives us the desired global bounds.
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B.1 Proof of Lemma 7 through the conflict graph

Following we state again Lemma 7 and we give an alternative proof for the success
guarantee of the k-max algorithm. This approach highlights the clear properties of the
conflict graph and gives a good understanding of the type of instances in which the
k-max algorithm picks the maximum.

Lemma 41. The success guarantee of the k-max algorithm equals (1 − p)kpk, where

k =
⌊

1
1−p

⌋
.

Proof. Recall again the scenario where p ∈ [1/2, 2/3). For a given size n, the instances
ending with 110 or 101 are picked by the algorithm, and these are instances with degree
one and degree two, respectively. One can check that the rest of the instances of degree
one and two (and size n) that are not selected by the algorithm belong to a monotone
path linked to a selected instance of smaller size. Therefore, they have already been
removed. Instances of larger degree have at least two 1s in the end, therefore for p ∈
[1/2, 2/3) the k-max algorithm will never obtain the maximum in those instances. Thus,
for each size n, it holds that all the instances of degree one and two are either removed
or selected. Similarly, for p ∈ [2/3, 3/4) all instances of degree one, two and three are
either selected or removed.

Let r and s be the total number of removed and selected instances respectively. We will
show that for the k-max algorithm s equals the claimed success guarantee by computing
the value of r+ s and subtracting the value of r. From the above we see that, using the

k-max algorithm, r + s counts all instances of degrees 1 up to k =
⌊

1
1−p

⌋
. Therefore,

r + s =
k∑
i=1

wi = (1− p)
k−1∑
i=0

pi .

Now we compute the value of r. From the above, we know that, for a certain size
n, all instances that have degrees 1 up to k are either selected or removed. In the first
case, we need to remove the descendants of these instances, while in the latter case these
descendants have already been removed. In total, of all instances of size n + 1, the
algorithm removes all children of nodes of size n that have degrees 1 up to k. Recalling
the degree structure from Lemma 11, we see that a selected instance of degree i has one
descendant of weight wij for all j = 1, . . . , i. Therefore, the total removed weight equals

r = w11 + (w21 + w22) + . . .+ (wk1 + . . .+ wkk)
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= (1− p)w1 + 2(1− p)w2 + . . .+ k(1− p)wk

= (1− p)
k∑
i=1

iwi = (1− p)2
k−1∑
i=0

(i+ 1)pi ,

and the instances that will be selected by the algorithm have total weight

s = (r + s)− r

= (1− p)

[
k−1∑
i=0

pi − (1− p)
k−1∑
i=0

(i+ 1)pi

]

= (1− p)
k−1∑
i=0

[1− (i+ 1)(1− p)] pi

= (1− p)
k−1∑
i=0

[
(i+ 1)pi+1 − ipi

]
= (1− p)kpk .

B.2 Intuition behind threshold for AOSp

Next, we briefly show the intuition behind the choice of k in the k-max algorithm for
AOSp. Assume that the samples are sorted in decreasing order s1 ≥ s2 ≥ · · · ≥ sr.
An algorithm ALG, given input (S, p), draws t ∼ D and sets a threshold τ = st. Here,
t ∈ [r] and D is a probability distribution over the indices of the samples. Thus, the
algorithm wins at least in the instances where exactly one of the t largest values of the
adversarial input ends up in the online set and the (t+1)th largest ends up in the sample
set. Since the coin flips are independent, we obtain

Pr[ALG stops at max
i
vi] = lpl(1− p), where l = Et∼D[t].

To find the maximizer of the function f(p, l) = lpl(1− p), consider its derivative:

∂f(p, l)

∂l
=
∂(lpl − lpl+1)

∂l
= 0⇔ l = − 1

ln p
.

Substituting this value for l into f(p, l) yields an upper bound f1(p) = p−1
log p · p

−1/ log p.
To turn it into a practical algorithm, we wish to have an integer value of l without
a logarithmic term. The latter can be fixed by taking an approximation. Taking the
Maclaurin series of ln(1+x), substituting p = x+1 and dropping the higher order terms
yields

ln p =
∞∑
n=1

(−1)n−1 (p− 1)n

n
≈ p− 1⇔ − 1

ln p
≈ 1

1− p
, p ∈ (0, 1) .
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Substituting this value for l into f(p, l) yields a lower bound f2(p) = p1/(1−p). To get
to an integer value, we simply take the floor function of this expression and obtain the
k-max algorithm as defined previously.

Let us be a bit more precise regarding the success guarantee after these modifications
and show that it interpolates between the two functions mentioned above. Because − 1

ln p

is a maximizer of f , we see that f
(
p,
⌊

1
1−p

⌋)
≤ f

(
p,− 1

ln p

)
. Second, f(p, l) is increasing

for l ≤ − 1
ln p and decreasing in the rest of the domain. Moreover, one can easily check

that f
(
p, 1

1−p − 1
)

= f
(
p, 1

1−p

)
and 1

1−p − 1 < − 1
ln p ≤

1
1−p for p ∈ (0, 1). Finally, since

it holds that 1
1−p − 1 <

⌊
1

1−p

⌋
≤ 1

1−p , we get f(p, 1
1−p) ≤ f(p,

⌊
1

1−p

⌋
). Combining all the

above, we can conclude that f
(
p,
⌊

1
1−p

⌋)
≈ f

(
p,− 1

ln p

)
.
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C.1 Correctness of the DP

We show that the dynamic program from Section 5.2.1 finds the optimal solution for
the random order Pandora’s box problem without skipping and without commitment.
In particular, we want to show that our recursion is correct. We denote by J`(bi) the
cost-to-go functions, where by ` we denote the number of the uninspected boxes, and bi
is the next box in the sequence that we want to decide whether to open it or not.

• The base case is when there is only one box bi remaining, and the cost-to-go is

J1(bi) = max

(
max
k∈P

vk,−ci + vi

)
,

where we denote by P the set of opened boxes so far. If we had only the sub-
problem with the last box to solve, the cost-to-go function would be J1(bi) =
max (0,−ci + vi), which is the optimal solution.

• Solving backwards: Assume that for `−1 uninspected remaining boxes the dynamic
program solves optimally the subproblem starting at box with index n− `+ 1. We
want to show that then the dynamic program returns the optimal expected gain
for the subproblem which starts with ` uninspected boxes. The optimal solution
in this case will be

J`(bi) = max (0,−ci + E [J`−1(bj)])

and the cost-to-go functions will be Js(bi) = max

(
max
k∈P

vk,−ci + E [Js−1(bj)]

)
, for

s ∈ (1, `).

Let τ be the optimal stopping time for the subproblem with ` − 1 boxes. When we
stop at time τ = i it means that we stop before inspecting the box with index i in the
sequence. By our hypothesis, this is the optimal stopping time. We consider two cases:

• τ = 1: In this case, the dynamic program stops and collects the reward minus the
cost before opening the first box, i.e., it stops without inspecting any boxes. This
means that the following condition holds

max
r∈P

vr −
τ∑
j=1

cj < 0 ,∀τ ≥ 1 , (C.1)
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and the optimal solution is 0. If we had one extra box now at the beginning of the
sequence, then J`(bi) = max (0,−ci + E [J`−1(bj)]) and

J`−1(bj) = max

(
max
k∈P

vk,−cj + E [J`−2(bκ)]

)
= max

k∈P
vk

by Eq. (C.1). Thus J`(bi) = max (0,−ci + vi), which is the optimal solution for the
subproblem with ` boxes, given that the subproblem for `− 1 is solved optimally.

• τ 6= 1: In this case we open the first box for the subproblem with `− 1 boxes, and
we stop optimally at a later box with index τ . The optimal solution of the DP
then becomes

J`−1(bi) = max

0,max
k∈P

vk −
τ−1∑
j=1

cj

 = max
k∈P

vk −
τ−1∑
j=1

cj .

For the subproblem with ` boxes, the cost-to-go functions for ` and `−1 uninspected
boxes respectively, become J`(bi) = max (0,−ci + E [J`−1(bj)]) and J`−1(bj) =

max

(
max
k∈P

vk,max
r∈Pf

vr −
τ−1∑
j=1

cj

)
, where the set P in this case contains just the

reward of the first box of the sequence, and by Pf we denote the set of opened
boxes up to the last box we open before stopping at time τ . Now we can observe
that J`−1(bj) returns either the optimal solution to the subproblem with ` − 1
boxes or the reward of the first box. In turn, J`(bi) returns the optimal solution,
which is the max of either inspecting nothing, or opening the first box (and then
maybe proceed optimally in the subproblem, or stop if the reward minus the cost
of the first box is bigger).

We conclude that the DP always makes the optimal decision on when to stop inspect-
ing. The optimal expected gain for an instance with n boxes is Jn(bi).
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