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Abstract

This thesis contributes to the theoretical foundation of modeling high-dimensional random phe-

nomena, with an emphasis on (exchangeable) multivariate extreme events.

First, it provides a one-to-one correspondence of sequences of exchangeable random variables

whose multivariate marginal distributions are minimum-infinitely divisible and the class of non-

negative and non-decreasing càdlàg infinitely divisible stochastic processes. We thereby unify

several preceding research articles concerned with one-to-one correspondences of sequences of

exchangeable random variables and non-negative and non-decreasing càdlàg processes under

one common theoretical umbrella. Additionally, we provide an extension of de Finetti’s seminal

Theorem from finite (probability) measures to so-called exponent measures. The theoretical

results are then used to describe construction schemes of sequences of exchangeable random

variables whose multivariate marginal distributions are minimum-infinitely divisible.

Second, an exact simulation algorithm for continuous maximum-infinitely divisible stochastic

processes is developed. The simulation algorithm is based on the exponent measure of the con-

tinuous maximum-infinitely divisible stochastic process and relies on the ability to simulate the

exponent measure on certain sets of finite measure, while it avoids the derivation of the reg-

ular conditional probability distributions of the exponent measure. Moreover, the simulation

algorithm is general enough to cope with non-continuous marginal distributions. Special empha-

sis is put on the simulation of sequences of exchangeable random variables whose multivariate

marginal distributions are maximum-infinitely divisible.

Third, the thesis provides a general statistical model comparison framework with a focus on

non-smooth criterion functions. The proposed model comparison test accounts for the influence

of parameter estimation and asymptotically follows a normal distribution. Two estimators for

the asymptotic variance of the test statistic are derived. A particular emphasis is put on the

asymptotic normality of a suitably normalized Clarke test for non-nested model comparison,

whose originally claimed asymptotic distribution in (Kevin A. Clarke. “Nonparametric model

discrimination in international relations”. In: Journal of Conflict Resolution 47.1 (2003), pp. 72–

93. doi: 10.1177/0022002702239512, Kevin A. Clarke. “A simple distribution-free test for

nonnested model selection”. In: Political Analysis 15.3 (2007), pp. 347–363. doi: doi:10.1093/

pan/mpm004) is thereby shown to be incorrect. Potential applications of such model comparison

tests are sketched and a simulation study empirically illustrates the theoretical results.

https://doi.org/10.1177/0022002702239512
https://doi.org/doi:10.1093/pan/mpm004
https://doi.org/doi:10.1093/pan/mpm004


Zusammenfassung

Diese Arbeit leistet einen Beitrag zu den theoretischen Grundlagen der Modellierung hochdi-

mensionaler Zufallsphänomene, wobei der Schwerpunkt auf (austauschbaren) multivariaten Ex-

tremereignissen liegt.

Zuerst wird eine Eins-zu-Eins-Beziehung von Sequenzen austauschbarer Zufallsvariablen, deren

multivariate Randverteilungen minimum-unendlich teilbar sind, und der Klasse der nicht-

negativen und nicht-fallenden unendlich teilbaren stochastischen Prozesse mit càdlàg Pfaden

hergeleitet. Dadurch betten wir mehrere vorausgehende Forschungsartikel, die sich mit Eins-zu-

Eins-Beziehungen von Sequenzen austauschbarer Zufallsvariablen und nicht-negativer und nicht-

fallender càdlàg stochastischer Prozesse befassen, in einen gemeinsamen theoretischen Rahmen

ein. Zusätzlich erweitern wir de Finetti’s Theorem von (Wahrscheinlichkeits-)Maßen auf soge-

nannte Exponentenmaße. Die theoretischen Ergebnisse werden dann verwendet, um Konstruk-

tionsschemata von Sequenzen austauschbarer Zufallsvariablen zu beschreiben, deren multivariate

Randverteilungen minimum-unendlich teilbar sind.

Des Weiteren wird ein exakter Simulationsalgorithmus für stetige maximum-unendlich teilbare

stochastische Prozesse entwickelt. Der Simulationsalgorithmus basiert auf dem Exponentenmaß

des stetigen maximum-unendlich teilbaren stochastischen Prozesses und basiert auf der An-

nahme, dass das Exponentenmaß auf bestimmten Mengen mit endlicher Masse simuliert wer-

den kann, wobei vermieden wird, die regulären bedingten Wahrscheinlichkeitsverteilungen des

Exponentenmaßes bestimmen zu müssen. Außerdem kann der Simulationsalgorithmus auch auf

nicht-stetige Randverteilungen angewendet werden. Besonderes Augenmerk wird auf die Simula-

tion von Sequenzen austauschbarer Zufallsvariablen gelegt, deren multivariate Randverteilungen

maximum-unendlich teilbar sind.

Zuletzt wird ein allgemeiner Rahmen für statistische Modellvergleiche mit Schwerpunkt auf

nicht-differenzierbaren Kriteriumsfunktionen entwickelt. Der vorgeschlagene Modellvergleich-

stest berücksichtigt den Einfluss von Parameterschätzungen und folgt asymptotisch einer

Normalverteilung. Es werden zwei Schätzer für die asymptotische Varianz der Teststatistik

hergeleitet. Ein besonderer Schwerpunkt liegt auf der asymptotischen Normalität eines geeignet

normalisierten Clarke-Tests für nicht-verschachtelte Modellvergleiche, dessen ursprünglich pos-

tulierte asymptotische Verteilung in (Kevin A. Clarke. “Nonparametric model discrimination

in international relations”. In: Journal of Conflict Resolution 47.1 (2003), pp. 72–93. doi: 10.

1177/0022002702239512, Kevin A. Clarke. “A simple distribution-free test for nonnested model

selection”. In: Political Analysis 15.3 (2007), pp. 347–363. doi: doi:10.1093/pan/mpm004) ko-

rrigiert wird. Mögliche Anwendungen solcher Modellvergleichstests werden skizziert und eine

Simulationsstudie illustriert die theoretischen Resultate.

https://doi.org/10.1177/0022002702239512
https://doi.org/10.1177/0022002702239512
https://doi.org/doi:10.1093/pan/mpm004


Acknowledgements

First and foremost, I want to thank my supervisor Matthias Scherer for his continuous support

during the last years. He generously supported all of my ideas and plans and gave me the freedom

to explore every topic that seemed of interest to me. Moreover, I want to explicitly thank him

for convincing me that mathematics is not only about theoretical results, but also about its

communication and accessibility to others.

I want to thank Jan-Frederik Mai for the excellent collaboration in our joint research project.

He was always there to answer questions and discuss ideas, even beyond the scope of the project.

My gratitude also goes to Aleksey Min for always being available to help with any matter, be

it scientific or not. Moreover, I want to thank Aleksey Min for the many interesting discussions

on our joint research projects. Further gratitude goes to Jean-David Fermanian for the very

productive collaboration with Aleksey Min and me in two research projects over the course of

the last years. I am especially grateful to him for inviting me to CREST and providing me with

kind hospitality during my stay.

Special thanks goes to WWK Versicherungen for their generous financial support of my PhD

project. Moreover, I want to thank all of my colleagues at WWK for kindly taking me in as

a member of the team from the first day and for enabling me to simultaneously pursue my

academic interests while regularly working in a company.

Many thanks also go to all of my colleagues from M13 who I had great fun with in the last

years. Especially, the countless coffee breaks with non-scientific discussions greatly contributed to

keeping up my motivation. A special shout-out goes to the handball team of TSV Milbertshofen

which largely tolerated my behavior when my brain was in sleep-mode and was responsible for

many fun weekends.

Last but not least, I want to thank my family for the continuous support, not only during my

PhD, but ever since I went to Munich. Even without having a clue of what I am doing, they

encouraged me to pursue my interests and do what I enjoy. Without their support nothing of

this would have been possible!



List of contributed publications

The following publications are included in this thesis as core publications:

• Florian Brück, Jan-Frederik Mai, and Matthias Scherer. “Exchangeable min-id sequences:

Characterization, exponent measures and non-decreasing id-processes”. In: Extremes

(2022). doi: https://doi.org/10.1007/s10687-022-00450-w

• Florian Brück. “Exact simulation of continuous max-id processes with applications to

exchangeable max-id sequences”. In: Journal of Multivariate Analysis 193 (2023). doi:

https://doi.org/10.1016/j.jmva.2022.105117.

The following additional publication is included in this thesis:

• Florian Brück, Jean-David Fermanian, and Aleksey Min. “A corrected Clarke test for

model selection and beyond”. In: Journal of Econometrics (2022). doi: https://doi.

org/10.1016/j.jeconom.2021.12.013.

https://doi.org/https://doi.org/10.1007/s10687-022-00450-w
https://doi.org/https://doi.org/10.1016/j.jmva.2022.105117
https://doi.org/https://doi.org/10.1016/j.jeconom.2021.12.013
https://doi.org/https://doi.org/10.1016/j.jeconom.2021.12.013


Contents

1 Introduction 1

2 Exchangeable sequences of random variables 2

2.1 Associating classes of exchangeable sequences to classes of non-negative and non-
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1 Introduction

Probabilistic modeling of complex multivariate phenomena is ubiquitous in applied sciences.

In many fields, data for statistical investigations is available and the corresponding univariate

phenomena are well understood and may be conveniently modeled. The embedding of these

univariate phenomena into a multivariate model is often challenging, since it additionally requires

to determine the usually unknown dependence structure between these phenomena. The easiest

multivariate model that a researcher could think of is the assumption of independence between

the observed univariate phenomena. However, this assumption essentially implies that there are

no interactions between the phenomena, which can clearly be considered as an unreasonable

assumption in many real world problems.

The simplest model assumption which can incorporate true interactions between observed phe-

nomena is the assumption of (infinite)1 exchangeability. In essence, exchangeability means that

there is a single common factor, which determines the behavior of each observed phenomenon,

but the individual realizations due to this predetermined behavior occur independently from

each other. Therefore, one could argue that exchangeability is the slightest form of dependence

between univariate phenomena. However, it should be noted that dependence relations in which

perfect knowledge about one phenomenon determines the exact behavior of all other phenom-

ena are also included in the concept of exchangeability. Thus, the extension of independence to

exchangeability incorporates quite some modeling flexibility, while the inherent factor structure

retains interpretability of the joint behavior of the univariate phenomena. When the assump-

tion of exchangeability cannot be considered as adequate to model a multivariate phenomenon,

the modeling complexity increases significantly. Usually, there is no general recipe to deal with

these situations and researchers use approaches tailored to the specific modeling problem to

reasonably represent the multivariate phenomenon.

In most modeling problems, several candidate models are explored. This poses the challenge of

choosing the most appropriate model out of a collection of candidate models. In such situations,

it is convenient to rely on statistical model comparison techniques that allow to decide if one

model significantly outperforms another model. Such comparisons are usually based on statistical

hypothesis tests, which are able to decide whether or not one model significantly outperforms

another model in terms of a certain criterion function, which should reflect the relative goodness

of fit of the compared models with respect to the modeling target.

In this thesis, we contribute to the theoretical foundation of the aforementioned aspects of mod-

eling multivariate phenomena. Specifically, we contribute to the realm of modeling multivariate

1There are different concepts of exchangeability in the literature. First, the concept of finite exchangeability

includes exchangeable random vectors for which there might not exists a higher dimensional exchangeable random

vector in which it might be embedded as a subvector. On the other hand, the concept of infinite exchangeability

assumes that an exchangeable random vector can be embedded into a sequence of exchangeable random variables.

In this thesis we focus on infinite exchangeability, which is why we refer to infinite exchangeability when solely

writing exchangeable, knowing that this simplification leads to a slight imprecision in our statements.
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extreme events, meaning that we are focusing on modeling problems where dependencies of joint

occurrences of “large” or “small” events are the modeling target. First, the core article [10] of this

thesis derives the exchangeable dependence structures of those events, while, in a second step,

the core article [8] of this thesis provides a tool to simulate and investigate non-exchangeable

dependencies of those events. Finally, the additional article [9] of this thesis provides a general

statistical model comparison framework, which allows to compare the goodness of fit of two

competing models according to a possibly non-smooth criterion function.

2 Exchangeable sequences of random variables

The first rigorous mathematical formulation of the concept of (infinite) exchangeability has

been developed by de Finetti in his seminal work [26]. Since then, there have been many gener-

alizations of de Finetti’s original formulation of exchangeability, e.g. [30] extended the concept

of exchangeability to spaces of abstract objects, and many specific examples have been investi-

gated in detail. Mathematically, exchangeability is a property of the law of a sequence of random

objects. A sequence of random objects is called exchangeable (or exchangeable sequence) if its

law is invariant under arbitrary deterministic permutations of finitely many of its components.

We present de Finetti’s Theorem in a form which is most appropriate for our purposes.

Theorem 1 (De Finetti’s Theorem [26, 30]). Let X := (Xi)i∈N ∈ [−∞,∞]N denote a sequence

of extended real-valued random variables. Then, X is an exchangeable sequence if and only if

there exists some random distribution function F := (Ft)t∈R such that, conditionally on F , X

is an i.i.d. sequence. Moreover, the law of F is in one-to-one correspondence to the law of X

and X has the stochastic representation

X ∼
(
inf
{
t ∈ R | − log

(
1− F (t)

)
≥ Ei

})
i∈N , (1)

where (Ei)i∈N denotes a sequence of i.i.d. exponential random variables with mean 1.

De Finetti’s Theorem tells us that every exchangeable sequence of extended real-valued random

variables can be represented as the first passage time of a non-negative and non-decreasing

càdlàg process

H := (Ht)t∈R :=
(
− log

(
1− F (t)

))
t∈R

over i.i.d. exponential barriers. This correspondence nicely illustrates that dependence properties

of X may be associated to path properties of H. For example, one can easily deduce that X

has ties, i.e. there exists some distinct i, j ∈ N such that Xi = Xj , if and only if H has jumps.

For many modeling purposes it is unrealistic to model a multivariate phenomenon directly

via the representation (1). For instance, the marginal distribution function of Xi, given by

G(t) := P (Xi ≤ t) = E [F (t)], is identical for all margins of an exchangeable sequence, which is

a constraint that is often violated in practice. Nevertheless, if one ignores the issue of identical

2



marginal distributions for a moment, the representation (1) is useful to study the dependence

structure of X, and it may be desirable to transfer this dependence structure to a model of the

interactions of univariate phenomena.

It turns out that the just described way of thinking is indeed also mathematically justifiable, due

to the celebrated result of Sklar in [63]. In essence, [63] tells us that the dependence structure

of X may be isolated from its marginal distribution by analyzing the object

Cd(u1, . . . , ud) = P
(
G(X1) ≤ u1, . . . , G(Xd) ≤ ud

)
; (u1, . . . , ud) ∈ [0, 1]d, (2)

which is called the copula of the d-dimensional margins of X. Cd is called exchangeable, because

it satisfies Cd(u1, . . . , ud) = Cd(uπ(1), . . . , uπ(d)) for all permutations π of {1, . . . , d} as it repre-

sents the dependence structure of the exchangeable random vector (X1, . . . , Xd). A copula Cd

can then be used to construct a random vector (Z1, . . . , Zd) equipped with arbitrary marginal

distributions G1, . . . , Gd by defining its distribution function via

P
(
Z1 ≤ z1, . . . , Zd ≤ zd

)
:= Cd

(
G1(z1), . . . , Gd(zd)

)
.

The corresponding random vector (Z1, . . . , Zd) shares the dependence structure (copula) with

(X1, . . . , Xd), but follows arbitrary marginal distributions G1, . . . , Gd.

For practical applications, it is often reasonable and convenient to derive the dependence struc-

ture of a random vector from (1) in terms of the copula Cd and to separately model its marginal

distributions G1, . . . , Gd. When there is no contradicting evidence, an exchangeable dependence

structure could naturally be considered, since it provides a simple, yet flexible, way to model the

dependence of a random vector. However, there are also some pitfalls that are accompanied by

an exchangeable dependence structure that should be kept in mind, e.g. induced hierarchies of

marginal phenomena, as pointed out in [45]. Since the transition from the exchangeable sequence

X to its copulas (Cd)d∈N is rather simple in most of the considered examples, we will solely focus

on studying exchangeable sequences X in the remainder of this thesis.

2.1 Associating classes of exchangeable sequences to classes of non-negative

and non-decreasing càdlàg processes

De Finetti’s Theorem shows that the variety of laws of exchangeable sequences is as large as the

variety of laws of non-negative and non-decreasing càdlàg processes. Since the implications of

this correspondence are hard to grasp in their full mathematically generality, a natural question

that arises from this correspondence is whether certain classes or properties of exchangeable

sequences may be connected to certain classes or properties of non-negative and non-decreasing

càdlàg processes. This question has been intensively investigated in the literature. Here, we

briefly recall some of the correspondences that have been established previously.

3



Exchangeable sequences associated to non-negative and non-decreasing functions

with random parameter

We start with the simplest families of exchangeable sequences, apart from i.i.d. sequences, which

arise in classical Bayesian statistics. Consider i.i.d. observations X := (X1, X2, . . .) of a real-

valued random variable X and assume that their unknown marginal distribution function stems

from a finite-dimensional parametric family of distribution functions (Fθ(·))θ∈Θ. To conduct

inference about the law of X one must gather information about the unknown parameter θ.

Classical Bayesian statistics attempts to accomplish this task by assuming that θ is a realization

of a random variable with so-called prior distribution Q. Therefore, X becomes an exchangeable

sequence of random variables associated to the non-negative and non-decreasing càdlàg process(
H

(θ)
t

)
t∈R

= (− log (1− Fθ(t)))t∈R. Inference about θ is then based on the conditional distribu-

tion of θ given the first n observations (X1, . . . , Xn) from the exchangeable sequence X, called

the posterior distribution of θ.

Several characterizations of exchangeable sequences of random variables associated to certain

non-negative and non-decreasing càdlàg processes of the form
(
H

(θ)
t

)
t∈R

have been obtained in

the literature. Here, we focus on some well-known examples for the special case of real-valued

θ. For example, consider an i.i.d. sequence (Y1, Y2, . . .) of real-valued random variables with

marginal distribution function F (·) and consider an independent non-negative random variable

θ. Then

X := (θY1, θY2, . . .)

defines an exchangeable sequence of random variables with associated non-negative and non-

decreasing càdlàg process
(
H

(θ)
t

)
t∈R

:= (− log (1− F (t/θ)))t∈R. Schönberg’s Theorem [61] im-

plies that when (Y1, Y2, . . .) denotes a sequence of i.i.d. standard normal distributed random

variables, the law of X is spherical, since its d-dimensional marginal distributions are invari-

ant under orthogonal transformations. Moreover, Kimberling’s Theorem [36] implies that when

(Y1, Y2, . . .) denotes a sequence of i.i.d. unit exponential distributed random variables, the law

of X is 1-norm symmetric, since its d-dimensional marginal survival functions only depend on

the 1-norm of its argument. In this case, the copula associated to −X belongs to the family of

Archimedean copulas [48], a family of dependence structures which is well investigated in the

literature due to its simple one-factor dependence structure and convenient analytical form. As

a third example, consider (Y1, Y2, . . .) i.i.d. uniformly distributed on [0, 1] and assume that θ has

a (sufficiently regular) density. Then, according to [29], the d-dimensional marginal distributions

of X have a density which solely depends on the ∞-norm of its argument. Finally, by providing

a suitable density for Y1, a unifying characterization of non-negative exchangeable sequences

(θY1, θY2, . . .) with p-norm symmetric densities is provided in [55].
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Exchangeable sequences associated to Lévy subordinators

The starting point of a series of research papers was the article [44], which associated the class of

non-negative and non-decreasing càdlàg processes with independent and stationary increments

that start at 0 in time 0, also known as Lévy subordinators, to the class of exchangeable sequences

whose d-dimensional margins can be represented as

(X1, . . . , Xd) ∼
(
min{EI | I ⊂ {1, . . . , d}, i ∈ I}

)
1≤i≤d

, (3)

where (EI)I⊂{1,...,d} denote independent exponential random variables whose mean only depends

on the cardinality |I|. Random vectors with the stochastic representation (3) were introduced

in [47] and their laws are known as so-called exchangeable Marshall–Olkin distributions. The

Marshall–Olkin distribution may be viewed as a multivariate extension of the exponential dis-

tribution, since it has marginal exponential distributions and satisfies a specific multivariate

lack-of-memory property. At the same time, Lévy subordinators are closely connected to the

theory of infinitely divisible distributions, i.e. to the law of random variables H with the prop-

erty that for every n ∈ N there exist independent and identically distributed random variables(
H(i,1/n)

)
1≤i≤n

such that H ∼∑n
i=1H

(i,1/n). It is well-known that every non-negative infinitely

divisible distribution may be obtained as the distribution of a Lévy subordinator at unit time

and, vice versa, that every marginal distribution of a Lévy subordinator follows a non-negative

infinitely divisible distribution. Moreover, due to the Lévy–Khintchine Theorem [40, 35], a non-

negative infinitely divisible distribution is in one-to-one correspondence with a measure υ on

(0,∞] satisfying a certain integrability condition and a scalar b ≥ 0, which are called Lévy

measure and drift of the infinitely divisible distribution. Thus, exchangeable sequences whose

multivariate marginal distributions are of Marshall–Olkin kind are not only in one-to-one cor-

respondence with Lévy subordinators, but also in one-to-one correspondence with tuples (υ, b)

of Lévy measure and drift of non-negative infinitely divisible distributions.

Exchangeable sequences associated to non-negative and non-decreasing strong-idt

processes

Extending the correspondence established in [44], [43] proved that when H in (1) is chosen to

be strongly infinitely divisible with respect to time (strong-idt), i.e for i.i.d. copies
(
H(i)

)
i∈N of

H and every n ∈ N the process H satisfies (Ht)t≥0 ∼
(∑n

i=1H
(i)
t/n

)
t≥0

, one obtains that the

d-dimensional marginal distributions of the associated exchangeable sequence follow so-called

exchangeable min-stable multivariate exponential distributions. Min-stable multivariate expo-

nential distributions naturally arise as the limit laws of scaled minima of i.i.d. random vectors.

They are defined as those laws that arise when there exist possibly dependent exponential ran-

dom variables (Xi)1≤i≤d, such that there are some i.i.d. random vectors
(
(Zi,1, . . . , Zi,d)

)
i∈N and

sequences (an,j)1≤j≤d and (bn,j)1≤j≤d ≥ 0 which satisfy(
min
1≤i≤n

(Zi,1 − an,1)/bn,1, . . . , min
1≤i≤n

(Zi,d − an,d)/bn,d

)
law−→ (X1, . . . , Xd). (4)

5



It turns out that that the construction in (4) is already general enough to obtain all copulas

associated to the limiting laws of scaled minima of i.i.d. random vectors. Since the possible limits

of minima of univariate i.i.d. random variables are well-studied and rather easily described, the

(survival) copulas associated to the limiting laws of scaled minima of i.i.d. random vectors are

usually the central object of study in multivariate extreme value theory. These copulas are

therefore called extreme value copulas and can be analytically characterized by the property

that

Cd(u
t
1, . . . , u

t
d) = Cd(u1, . . . , ud)

t for all t > 0.

[43] proved that the correspondence of non-negative and non-decreasing strong-idt processes

to exchangeable sequences whose d-dimensional marginal distributions follow an exchangeable

min-stable multivariate exponential distribution is in fact general enough to incorporate all

exchangeable sequences with exponential margins whose multivariate marginal distributions are

associated to an exchangeable extreme value copula.

Exchangeable sequences associated to additive subordinators

Another extension of the correspondence established in [44] was obtained by [41, 64], who proved

that when H in (1) belongs to the class of stochastically continuous non-negative and non-

decreasing càdlàg processes with independent increments that start at 0 in time 0, called additive

subordinators, the associated class of exchangeable sequences has d-dimensional margins with

stochastic representation

(X1, . . . , Xd) ∼
(
min{ẼI | I ⊂ {1, . . . , d}, i ∈ I}

)
1≤i≤d

, (5)

where
(
ẼI

)
I⊂{1,...,d}

denote independent non-negative random variables with continuous dis-

tribution function, which satisfy ẼI1 ∼ ẼI2 if |I1| = |I2|. Random vectors with representation

(5) are called exchangeable exogenous shock models and may be seen as a natural extension of

the Marshall–Olkin distribution due to their similarity with the stochastic representation (3),

replacing the exponential law by arbitrary non-negative continuous distributions. Exchangeable

exogenous shock models naturally arise in non-parametric Bayesian statistics, when one puts a

prior distribution on the unknown distribution function of an extended real-valued random vari-

able by setting (Ft)t≥0 := (1− exp(−Ht))t≥0 for some additive subordinator H. Thus, under the

prior distribution, the i.i.d. sequence associated to (Ft)t≥0 becomes an exchangeable sequence

with multivariate margins of the form (5). The appealing feature of this specific prior choice is

that the posterior distribution of H is again a càdlàg process with independent increments, i.e.

the prior distribution of F (resp. H) is (almost) conjugate, see [24, 18, 25].

Another theoretical application of the correspondence of exchangeable exogenous shock models

and additive subordinators has been provided by [42], where the authors investigated the subclass

of exchangeable exogenous shock models which correspond to self-similar additive subordinators,

i.e. additive subordinators for which there exists some index of self-similarity γ > 0 such that
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(Hat)t∈R ∼ (aγHt)t∈R for all a > 0. The law of H1 is known to be self-decomposable, meaning

that for every c ∈ (0, 1) there exists some random variable Z(c), independent of H1, such that

H1 ∼ cH1+Z(c). On the other hand, for every self-decomposable distribution π and every index

of self-similarity γ, there exists a (unique in law) self-similar additive subordinator H with

index of self-similarity γ such that H1 ∼ π. Thus, there is a one-to-one correspondence of non-

negative self-decomposable distributions to self-similar additive subordinators. The authors of

[42] characterized the exchangeable sequences associated with self-similar additive subordinators

(Ht)t∈R via (1) in terms of analytical properties of the self-decomposable law of H1. Moreover, it

can be shown that the index of self-similarity of a self-similar additive process only influences the

marginal distributions of the associated exchangeable sequence, but not its copulas. Thus, [42]

provides a one-to-one correspondence of non-negative self-decomposable laws and the copulas of

certain exchangeable sequences whose multivariate margins have stochastic representation (5).

Exchangeable sequences associated to random walks with non-negative infinitely

divisible jumps

The geometric distribution2 is the only univariate discrete distribution on N with a lack-of-

memory property. Analogously to the univariate exponential distribution, there are several mul-

tivariate extensions of the univariate geometric distribution. The article [46] investigates, among

other things, exchangeable sequences associated to the so-called narrow-sense multivariate ge-

ometric distributions, which are a specific multivariate extension of the geometric distribution.

More precisely, in analogy to (3), the multivariate margins of narrow-sense multivariate geomet-

ric distributions have the stochastic representation

(X1, . . . , Xd) ∼
(
min{GI | I ⊂ {1, . . . , d}, i ∈ I}

)
1≤i≤d

, (6)

where (GI)I⊂{1,...,d} denote independent geometric random variables whose success probabilities

only depend on the cardinality |I|. [46] prove that an exchangeable sequence has multivari-

ate margins with stochastic representation (6) if and only if the associated non-negative and

non-decreasing càdlàg process is a random walk (Ht)t∈R :=
(∑⌊t⌋

i=1Ai

)
t∈R

with i.i.d. infinitely

divisible jumps (Ai)i∈N.

Exchangeable sequences associated to non-negative and non-decreasing infinitely

divisible processes as a unifying framework

The previous sections roughly summarized the series of research papers [46, 43, 41, 64], initiated

by [44], on the correspondences of certain classes of exchangeable sequences to certain classes of

non-negative and non-decreasing càdlàg processes. If one compares the classes of non-negative

and non-decreasing càdlàg processes appearing in [43, 41, 64], one observes that none of these

2We define the univariate geometric distributions as the distribution of the first success in a series of indepen-

dent Bernoulli trials.
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classes is a subclass of the other and that their intersection is the class of Lévy subordinators,

whose correspondence with exchangeable sequences was investigated in [44]. Furthermore, the

class of random walks with infinitely divisible jumps appearing in [46] has no intersection with

any of the classes of non-negative and non-decreasing càdlàg processes appearing in [44, 43,

41, 64]. Thus, since the article [44], the research on the correspondences of non-negative non-

decreasing càdlàg processes and exchangeable sequences has developed into several directions.

The main contribution of the core article [10] of this thesis is to show that there exists a natural

mathematical framework which embeds the articles [44, 46, 43, 41, 64], thereby unifying the

literature under one common umbrella.

The key observation is that all non-negative and non-decreasing càdlàg processes H appearing

in [44, 46, 43, 41, 64] satisfy the property that for every n ∈ N there exist i.i.d. càdlàg processes(
H(j,1/n)

)
1≤j≤n

such that for all (ti)1≤i≤d ∈ Rd

(Ht1 , . . . ,Htd) ∼

 n∑
j=1

H
(j,1/n)
t1

, . . . ,
n∑

j=1

H
(j,1/n)
td

 . (7)

Such processes are called infinitely divisible and they have been investigated, among others, in

[39, 49, 34, 5, 59]. The most recent work [59] elegantly unifies the literature by providing a modern

mathematical description of the analytical characterization of infinitely divisible processes in

terms of a so-called Lévy measure ν on the space of càdlàg functions, a deterministic càdlàg

function b called drift and a non-negative definite (covariance) function Σ on R × R. Since we

are only interested in non-negative infinitely divisible processes, one always has Σ = 0 and the

law of a non-negative and non-decreasing infinitely divisible càdlàg process can be analytically

described in terms of the family of its d-variate Laplace transforms given by

E

[
exp

(
−

d∑
i=1

aiHti

)]

= exp

−
d∑

i=1

aib(ti)−
∫

D∞
↗,≥0(R)

1− exp

(
−

d∑
i=1

aix(ti)

)
ν(dx)

 , (8)

where (ai)1≤i≤d ∈ [0,∞]d, b is a non-negative and non-decreasing, ν satisfies∫
D∞

↗,≥0(R)
|x(t)|ν(dx) < ∞ for every t ∈ R and D∞

↗,≥0(R) denotes the space of non-negative

and non-decreasing extended real-valued càdlàg functions. Conversely, for every Lévy measure ν

satisfying
∫
D∞

↗,≥0(R)
|x(t)|ν(dx) < ∞ for every t ∈ R and every non-negative and non-decreasing

drift b there exists a non-negative and non-decreasing infinitely divisible càdlàg process H which

has corresponding d-variate Laplace transforms of the form (8).

The class of exchangeable sequences associated to non-negative and non-decreasing infinitely

divisible càdlàg processes via (1) has multivariate survival functions Ḡd(t1, . . . , td) := P (X1 >

t1, . . . , Xd > td) of the form

Ḡd(t1, . . . , td) = E

[
exp

(
−

d∑
i=1

Hti

)]

8
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Figure 1: Embedding of previously established correspondences of non-negative and non-decreasing càdlàg pro-

cesses and exchangeable sequences into the framework of [10]. The Figure is adapted from [10, Figure 2].

= exp

−
d∑

i=1

b(ti)−
∫

D∞
↗,≥0(R)

1− exp

(
−

d∑
i=1

x(ti)

)
ν(dx)

 .

It is easy to see that, for every s > 0, the family of multivariate survival functions (Ḡs
d)d∈N

coincides with the multivariate survival functions of an exchangeable sequence associated to

a non-negative and non-decreasing infinitely divisible càdlàg process with drift sb(·) and Lévy

measure sν. Thus, by choosing s = 1/n for some n ∈ N, the exchangeable sequence associated

to the non-negative and non-decreasing infinitely divisible càdlàg processes with drift b(·) and

Lévy measure ν has the stochastic representation

X ∼ min
1≤i≤n

X(i,1/n) :=

(
min
1≤i≤n

X
(i,1/n)
1 , min

1≤i≤n
X

(i,1/n)
2 , . . .

)
, (9)

where X(i,1/n) denote i.i.d. copies of an exchangeable sequence associated to a non-negative

and non-decreasing infinitely divisible càdlàg processes with drift b(·)/n and Lévy measure ν/n.

Due to the stochastic representation (9), the d-dimensional margins of X are called minimum

infinitely divisible (min-id) and X is called an exchangeable min-id sequence. Similarly, the

d-dimensional marginal distributions of X are called exchangeable min-id distributions. Since

all exchangeable sequences investigated in [44, 46, 43, 41, 64] are associated to a non-negative

and non-decreasing infinitely divisible càdlàg process, they may be embedded into the unifying

probabilistic framework of exchangeable min-id sequences. Figure 1 visualizes the correspon-

dences of exchangeable sequences and non-negative and non-decreasing càdlàg processes that

were embedded into the framework of [10].

Min-id distributions naturally appear when investigating minima of independent random vectors.

First, the bivariate case was investigated in [4]. Later, under some reasonably mild assumptions,
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[32, 3] have shown that when there exist some independent, but not necessarily identically

distributed, random vectors
(
(Zi,1, . . . , Zi,d)

)
i∈N and sequences (an,j)1≤j≤d and (bn,j)1≤j≤d ≥ 0

such that (
min
1≤i≤n

(Zi,1 − an,1)/bn,1, . . . , min
1≤i≤n

(Zi,d − an,d)/bn,d

)
law−→ (X1, . . . , Xd),

then (X1, . . . , Xd) is min-id. On the other hand, it is easy to see that every min-id distribution

can be obtained as the distribution of the weak limit of scaled minima of independent random

vectors. Thus, min-id distributions essentially constitute the class of possible limit distributions

of scaled minima of independent random vectors. In particular, exchangeable min-id sequences

essentially constitute the class of exchangeable limits of scaled minima of independent sequences

of random variables.

Building on the results of [4], [67] showed that the survival function of a min-id sequence X, i.e.

of a sequence of random variables with stochastic representation (9) in terms of minima of i.i.d.

sequences of random variables, can be represented as

P (X1 > t1, X2 > t2, . . .) = exp
(
−µ
(
(×i∈N(ti,∞])∁

))
, (10)

where µ denotes a unique Radon measure on [−∞,∞]N \ ×i∈N{∞}. The measure µ is called

exponent measure of X and it is easy to see that when choosing µ as the intensity measure of

a Poisson random measure M :=
∑

i∈N δxi :=
∑

i∈N δ(xi,1,xi,2,...) on [−∞,∞]N \ ×i∈N{∞} one

obtains an alternative stochastic representation of X as

X ∼ min
xi∈M

xi =

(
min
xi∈M

xi,1, min
xi∈M

xi,2, . . .

)
, (11)

which is often convenient when analyzing statistical properties of X. The core article [10] of this

thesis provides detailed descriptions of the connections of the stochastic representations (1), (9),

and (11) when X is an exchangeable min-id sequence. Moreover, it uniquely connects the Lévy

measure and drift of the associated non-negative and non-decreasing infinitely divisible càdlàg

process to the exponent measure of X.

A particular result that should be emphasized is that [10] shows that the exponent measure of

an exchangeable min-id sequence can be decomposed into

µ(·) = µb(·) +
∫
D∞

↗,≥0(R)
⊗i∈NP1−exp(−x(·))(·)ν(dx). (12)

where µb denotes the exponent measure associated to an i.i.d. sequence with marginal distri-

bution function 1− exp(−b(·)) and ⊗i∈NP1−exp(−x(·)) denotes the law of an i.i.d. sequence with

marginal distribution function 1 − exp(−x(·)). Thus, µ may be decomposed into the exponent

measure of an i.i.d. sequence and a mixture of i.i.d. distributions, which may be seen as an exten-

sion of de Finetti’s Theorem from finite (probability) measures to (possibly non-finite) exponent

measures. Figure 2 graphically summarizes the connections of the analytical and probabilistic

characterizations of exchangeable min-id sequences provided by [10].
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Figure 2: Correspondences of min-id sequences (top, left), exponent measures (bottom, left), infinitely divisible

processes (top, right), and Lévy measures (bottom, right). The Figure is adapted from [10, Figure 1].

For practical applications it is often necessary to be able to simulate the d-dimensional mar-

gins of the exchangeable min-id sequence X. To simulate (X1, . . . , Xd), one may choose a

suitable stochastic representation from (1), (9), or (11), or one may try to directly simulate

its d-dimensional margins via standard simulation techniques, e.g. based on the density of

(X1, . . . , Xd) w.r.t. the Lebesgue measure. Usually, it is not possible to exploit (9) or any stan-

dard simulation technique based on the density of (X1, . . . , Xd), which might not even exist.

Moreover, the simulation of the Poisson random measure from (11) also seems challenging, since

there are possibly infinitely many atoms of the Poisson random measure that could determine

the realization of (X1, . . . , Xd). Therefore, at first sight, the stochastic representation (1) seems

to be best suited to simulate the d-dimensional margins of X, since it “simply” boils down to

simulating the first passage times of the associated non-negative and non-decreasing infinitely

divisible càdlàg process H over i.i.d. unit exponential barriers. Clearly, (1) provides an elegant

construction method for X, where properties of X may be directly inferred from the properties

of H or (b, ν). However, even when the Lévy measure and drift of H are known and H is from

one of the better known subclasses of infinitely divisible processes, e.g. from the class of Lévy,

additive, or strong-idt processes, it is usually quite challenging to even approximately sample

a path of H. Nevertheless, it would be desirable to be able to use (1) at least to construct X,

while having a tool to simulate X, provided at least (b, ν), at hand. Exploiting the represen-

tation (11), the second core article [8] of this thesis provides a solution to the just described

problem by providing an exact simulation algorithm for so-called continuous maximum-infinitely

divisible (max-id) processes and viewing −X as a continuous max-id process with index set N
and exponent measure determined by (b, ν).
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3 Continuous max-id processes

A continuous max-id process X̃ :=
(
X̃t

)
t∈T

is a continuous stochastic process with the property

that for every n ∈ N there exist i.i.d. stochastic processes
((

X̃
(i,1/n)
t

)
t∈T

)
1≤i≤n

such that

X̃ ∼
(
max
1≤i≤n

X̃
(i,1/n)
t

)
t∈T

.

[28] were the first to investigate continuous max-id processes, relying on results of [51]. They

proved that for every suitably normalized continuous max-id process X̃ with sufficiently regular

index set T there exists a Poisson random measure M :=
∑

i∈N δfi on the space of continuous

functions on T , denoted as C(T ), such that X̃ has the stochastic representation(
X̃t

)
t∈T

∼
(
max
fi∈M

fi(t)

)
t∈T

. (13)

On the other hand, if the intensity measure µ(·) = E [M(·)] of the Poisson random measure

M satisfies certain regularity conditions, they proved that every stochastic process defined via

the right hand side of (13) is continuous and max-id. Essentially, this means that a stochastic

process is a continuous max-id process if and only if it admits the stochastic representation (13).

Again, µ is called the exponent measure of X̃, since the d-dimensional marginal distribution

functions of X̃ may be expressed as

P
(
X̃t1 ≤ x1, . . . , X̃td ≤ xd

)
= exp

(
− µ

(
{f ∈ C(T ) | f(ti) > xi for some 1 ≤ i ≤ d}

))
.

In analogy to min-id distributions, continuous max-id processes arise as weak limits of maxima of

(triangular arrays of) independent stochastic processes, which was first proven in [3]. Therefore,

they may be seen as the natural extension of continuous max-stable processes, which arise as

the possible continuous limits of scaled maxima of i.i.d. stochastic processes and thus are the

central object of study in the extreme value theory of i.i.d. continuous stochastic processes.

Max-stable processes are well-investigated and highly popular in the modeling of extreme events

in space and time, see e.g. [58, 16] for a relatively recent overview about the topic. However,

one major flaw of max-stable processes is their limited dependence structure. For example,

assuming that all margins of X̃ follow the same distribution, the so-called extremal coefficient

θt1,...,td(z) = log
(
P (X̃t1 ≤ z, . . . , X̃td ≤ z)

)
/ log

(
P (X̃t1 ≤ z)

)
is independent of the “level” z,

which contradicts the features of many real-world datasets, see, e.g., the datasets used in [31,

11, 2]. On the other hand, due to their richer dependence structure, there exist continuous max-

id processes such that θt1,...,td(z) is level-dependent, which makes them a suitable candidate for

modeling extreme events in space and time when the assumption of max-stability is questionable.

3.1 Simulation of continuous max-id processes

The additional modeling flexibility of max-id processes in comparison to max-stable processes

has recently generated new theoretical and practical interest in the topic. For example, [33, 21,
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20, 34] have investigated theoretical properties of max-id processes, whereas [53, 6, 31, 70] are

concerned with applications of max-id processes in the modeling of spatial extremes. A practical

obstacle when modeling a random phenomenon by a max-id process is that their d-dimensional

marginal distributions are usually not expressible in a convenient analytical form. Therefore,

one must often resort to simulation techniques to capture the properties of a max-id process.

However, no general simulation scheme for max-id processes has been available in the literature.

Simulation schemes for the subfamily of max-stable processes are well-known in the literature

and, more recently, two exact simulation schemes for continuous max-stable processes have

been proposed by [19] and [52]. The algorithm of [52] is based on a certain representation of

(parts of) the exponent measure µ of a non-negative max-stable process, which ensures that µ

is essentially concentrated on uniformly bounded functions at predefined locations (or compact

sets) of interest (ti)1≤i≤d. More precisely, [52] provide a representation of the exponent measure

µ which ensures that there exists some k > 0 such that the Poisson random measure M with

intensity µ may be represented as
∑

j∈N δ(ζjfj), where ζ1 ≥ ζ2, . . . and fj(ti) ≤ k for all j ∈ N
and 1 ≤ i ≤ d. Then, (

X̃ti

)
1≤i≤d

∼
(

max
(ζjfj)∈M

ζjfj(ti)

)
1≤i≤d

and X̃ may be simulated exactly at locations (ti)1≤i≤d by iteratively simulating pairs (ζj , fj)

and stopping as soon as ζnk ≤ max1≤j≤n−1 fj(ti) for all 1 ≤ i ≤ d. The derivation of this specific

representation of µ relies on a change of measure technique, which cannot directly be extended

to continuous max-id processes. Moreover, the technique inherently requires to deviate from the

given description of µ and the measure change further depends on the locations (t1, . . . , td), which

are features that could further complicate the extension of the core ideas of [52] to continuous

max-id processes.

A different approach is pursued by [19], who provide a simulation algorithm for continuous

max-stable processes by only simulating those atoms of the Poisson random measure M which

assume the argmax in (13) at least at one of finitely many predefined locations (ti)1≤i≤d. Thus,

the goal of their algorithm is to simulate the set of so-called extremal functions at locations

(t1, . . . , td) defined as

N+
(t1,...,td)

:=
⋃

1≤i≤d

argmaxfj∈M fj(ti).

X̃ is then approximated as

X̃ ≈

 max
f∈N+

(t1,...,td)

f(t)


t∈T

,

while we have the equality X̃ti = maxf∈N+
(t1,...,td)

f(ti) for all 1 ≤ i ≤ d. The theoretical foun-

dation of the simulation algorithm of [19] is based on the results of [21], who provide the con-

ditional distribution of N−
(t1,...,tn)

:= {f ∈ C(T ) | f atom of M} \ N+
(t1,...,tn)

given N+
(t1,...,tn)

for
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every n ∈ N. This decomposition of M into N−
(t1,...,tn)

and N+
(t1,...,tn)

allows them to iteratively

simulate
(
N+

(t1,...,tn)

)
1≤n≤d

. Moreover, [19] rely on a standardized way of simulating the Pois-

son random measure M of a continuous max-stable process such that, for fixed t̄ ∈ T , one has

f1(t̄) ≥ f2(t̄) ≥ . . .. This way of simulating M is based on the regular conditional probability

distribution of µ, provided in [20]3, and a change of measure technique. However, the bottleneck

of their algorithm is the derivation of the regular conditional probability distribution of µ, which

is usually quite challenging.

Even though exact simulation schemes for continuous max-stable processes are available in the

literature, none of them had been extended to a general simulation scheme for continuous max-

id processes. The core article [8] of this thesis fills this gap in the literature and extends the

ideas of [19] to continuous max-id processes. Essentially, the algorithm simulates N+
(t1,...,td)

for a

predetermined number of locations (t1, . . . , td) and thus provides an exact simulation algorithm

for the d-dimensional margins and a pathwise approximation of a continuous max-id processes.

Additionally, it avoids the derivation of the regular conditional probability distribution of µ and

allows for non-continuous marginal distributions of X̃. It should be noted that, concurrently and

independently of [8], [69] also provided a simulation algorithm for continuous max-id processes

with compact index sets and continuous marginal distributions, which is also based on the ideas

of [19], but still requires the derivation of the regular conditional probability distribution of µ.

The main ingredient of the simulation algorithm proposed in [8] is the ability to simulate from

“finite slices” of the intensity measure µ of the Poisson random measure M of the form At,k :=

{f ∈ C(T ) | f(t) ≥ k} for every k > essinf X̃t and t ∈ T . To illustrate this requirement,

notice that (11) implies that every exchangeable min-id sequence X can be transformed into

a continuous max-id process −X with index set T = N. Assuming that X is associated to a

driftless infinitely divisible càdlàg process with Lévy measure ν, (12) implies that the exponent

measure µ of −X is a mixture of the law of i.i.d. sequences. Then, for each i ∈ N, µ restricted

to Ai,k may be represented as∫
D∞

↗,≥0(R)
⊗l∈NP1−exp(−x(·))

(
(−f(j))j∈N ∈ · | f(i) ≤ −k

)
(1− exp(−x(−k))ν(dx),

where (1− exp(−x(−k))ν(dx) defines a finite measure. Therefore, to simulate from µ restricted

to Ai,k one may, in a first step, simulate a function xk ∼ (1 − exp(−x(−k))ν(dx)/Kk, where

Kk := µ(Ai,k) denotes the normalizing constant such that (1 − exp(−x(−k))ν(dx)/Kk be-

comes a probability measure. Then, in a second step, and conditioned on xk, simulate an

i.i.d. sequence (f(j))j∈N according to the marginal distribution 1 − exp(−xk(·)). Finally, set
f(i) = Z, where Z ∼ 1{·≤−k} (1− exp(−xk(·))) / (1− exp(−xk(−k))), i.e. Z follows the distri-

bution 1 − exp(−xk(·)) conditioned on being less than or equal to −k. Then, (−f(j))j∈N has

distribution µ(· ∩Ai,k)/Kk and N ∼ Poi(Kk) independent draws from µ(· ∩Ai,k)/Kk provide a

sample of the atoms of a Poisson random measure with intensity µ (· ∩Ai,k).

3See [20, Appendix A2] for the formal definition of the regular conditional probability distribution of an

exponent measure.

14



Clearly, the main difficulty of this procedure is simulating from (1 − exp(−x(−k))ν(dx)/Kk.

However, the complexity of simulating from (1 − exp(−x(−k))ν(dx)/Kk is usually much lower

than the complexity of simulation from −X directly. For example, [8] investigates the particular

case of exchangeable exogenous shock models X, which correspond to self-similar additive sub-

ordinators via (1). The d-dimensional margins of most exchangeable exogenous shock models do

not possess a Lebesgue density, which is why standard simulation techniques usually cannot be

applied. The elaborations in [8] show that simulation from (1 − exp(−x(−k))ν(dx)/Kk for ex-

changeable exogenous shock models associated to self-similar additive subordinators essentially

boils down to simulating a two-dimensional random vector with known Lebesgue density, which

is usually much simpler than simulating −X directly.

4 Model selection with non-smooth criterion functions

For many practical applications, several candidate models for a modeled phenomenon are pro-

posed. Therefore, it has to be decided which model, out of a collection of competing models,

is best suited to describe the modeled phenomenon. Usually, the model selection procedure is

conducted via pairwise4 comparisons of the proposed models according to a certain criterion

function. The criterion function is commonly determined as an expectation of a measurable

function C w.r.t. to the distribution P of the underlying Data Generating Process X, e.g. see

[68, 17, 38, 62, 15, 14], and thus may be represented as

c(M1,M2) := E [C(M1(X),M2(X), X)] ,

where (Mi)i=1,2 represent two competing models for X. It is common to suitably normalize

C such that c(M1,M2) = 0 may be interpreted as M1 and M2 are equally well suited to the

modeling problem, c(M1,M2) > 0 may be interpreted as M1 is better suited to the modeling

problem than M2 and c(M1,M2) < 0 may be interpreted as M2 is better suited to the modeling

problem than M1. For example, c(M1,M2) and C may be chosen such that c(M1,M2) has the

form c(M1,M2) = d(M2, P ) − d(M1, P ), where (d(Mi, P ))i=1,2 denote distances between the

candidate probability distributions modeled by (Mi)i=1,2 and P . Since c(M1,M2) cannot be

observed, the researcher needs to rely on a sample X = (X1, X2, . . .) from X to decide which of

the models M1 or M2 is better suited to describe the modeled phenomenon. A common approach

is to conduct a hypothesis test of the form

H0 : c(M1,M2) = 0,

which is based on the asymptotic distribution of the empirical counterpart

cn(M1,M2) :=
1

n

n∑
i=1

C(M1(Xi),M2(Xi), Xi)

4This procedure may not yield a “best” model among all the competing models, but usually the information

about how each model compares to the other models is sufficient.
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of c(M1,M2).

A famous representative of the triplet (C,M1,M2) is given by
(
log
(
f1
f2

)
, f1, f2

)
, where f1

and f2 denote some proposal densities for the law of X and c(f1, f2) = E
[
log
(
f1(X)
f2(X)

)]
is

the expected logarithmic likelihood ratio. The popularity of this specific choice of c(f1, f2)

stems from the fact that c(f1, f2) = Kp(f2) − Kp(f1), where Kp(·) denotes the Kullback-

Leibler divergence [37] defined as Kp(h) := E
[
log
(

p(X)
h(X)

)]
and p denotes the true density

of X w.r.t. some common dominating measure. Another well-known triplet (C,M1,M2) is

given by
(∣∣f2(X(1))−X(2)

∣∣q − ∣∣f1(X(1))−X(2)
∣∣q, f1, f2), where X =

(
X(1), X(2)

)
, q ≥ 1 and

f1(X
(1)) and f2(X

(1)) denote prediction functions of X(2) given X(1). Then, c(M1,M2) =

E
[∣∣f2(X(1))−X(2)

∣∣q] − E
[∣∣f1(X(1))−X(2)

∣∣q] yields the difference in expected Lq-loss of the

predictive models f1 and f2.

In most applications, (Mi)i=1,2 are represented as parametric families of models, i.e. Mi =

{fi(·, θi) | θi ∈ Θi ⊂ Rdi} for some fixed functions fi, while there exists an unknown “optimal”5

parameter θ⋆i for each model Mi. Clearly, a researcher wants to compare M1 and M2 in terms of

their “optimal” models, but c(M1,M2) := c (f1(·, θ⋆1), f2(·, θ⋆2)) cannot be empirically estimated

by cn(f1(·, θ⋆1), f2(·, θ⋆2)) and one must resort to the asymptotic distribution of

ĉn := cn

(
f1(·, θ̂1,n), f2(·, θ̂2,n)

)
to test H0, where

(
θ̂i,n
)
i=1,2

denote consistent estimators of
(
θ⋆i
)
i=1,2

.

It is well known that the asymptotic distribution of a statistic with estimated parameters

may differ from the asymptotic distribution of the statistic with fixed parameters, see e.g. [65,

22] for early examples of this phenomenon. To illustrate this behavior, consider c (M1,M2) =

Kp(f2(·, θ⋆2))−Kp(f1(·, θ⋆1)) with its empirical counterpart

ĉn =
1

n

n∑
i=1

log

(
f1(Xi, θ̂1,n)

f2(Xi, θ̂2,n)

)
which is the test statistic of the famous Vuong test [68]. Vuong shows that, under H0, ĉn

converges either to a weighted sum of Chi-squared distributed random variables with rate n−1

or to a normal distribution with rate n−1/2, depending on whether or not f1(·, θ⋆1) = f2(·, θ⋆2).
In particular, the asymptotic distribution of nĉn is, among other things, dependent on the

dimension of (θ̂1,n, θ̂2,n).

In general, the derivation of the asymptotic distribution of ĉn is traditionally carried out un-

der the assumption that C and (fi)i=1,2 are sufficiently smooth functions of their arguments,

since then C(f1(·, θ1), f2(·, θ2), ·) can be approximated by a Taylor expansion of (θ1, θ2) 7→
C(f1(·, θ1), f2(·, θ2), ·) around (θ⋆1, θ

⋆
2) and one may resort to classical techniques from theoreti-

cal statistics to obtain the asymptotic distribution of ĉn. However, when C or (fi)i=1,2 are not

differentiable, the asymptotic distribution of ĉn is considerably more difficult to obtain.

5The term “optimal” simply refers to a target parameter which is estimated, but it does not need to be truly

optimal in any sense.
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For example, consider the triplet (1{f1>f2} − 1/2, f1, f2), where f1(·, θ1) and f1(·, θ2) denote the

logarithm of some parametric candidate densities for the law of X. Clearly, 1{f1>f2} − 1/2 is

not everywhere differentiable and has vanishing derivative whenever it exists. Assuming that

f1(·, θ⋆1) ̸= f2(·, θ⋆2), the corresponding statistic

1

n

n∑
i=1

1{f1(Xi,θ̂1,n)>f2(Xi,θ̂2,n)} −
1

2

is (equivalent to) the test statistic of the Clarke test, which was introduced in [15, 14]. Clarke’s

test was motivated by Vuong’s test, but he focused on the median of the logarithm of the like-

lihood ratio instead of its expectation. Besides the fact that, unlike an expectation, the median

always exists, considering the median of the logarithm of the likelihood ratio may be moti-

vated as follows. For linear regression models the log-likelihood of an observation (X(1), X(2)) is

equal to the L2-error of the prediction f̃i(X
(1), θ⋆i ) of X

(2). Therefore, Clarke’s null hypothesis

translates to

H0 : P
(∣∣f̃1(X(1), θ⋆1)−X(2)

∣∣2 > ∣∣f̃2(X(1), θ⋆2)−X(2)
∣∣2) = 1/2

⇔ P
(∣∣f̃1(X(1), θ⋆1)−X(2)

∣∣q > ∣∣f̃2(X(1), θ⋆2)−X(2)
∣∣q for all q > 0

)
= 1/2,

which may be interpreted as the absence of a structural difference in the error terms of the

competing models. In contrast to the more classical null hypothesis that the L2-loss of the

competing models is identical, the null hypothesis of the Clarke test rather means that none of

the models more frequently makes predictions that are closer to the truth.

The Clarke test is a drastic example when it comes to the influence of parameter estimation on

the asymptotic distribution of the test statistic ĉn. When there is no parameter estimation, it is

easy to see that, under H0,

ncn(f1(·, θ⋆1), f2(·, θ⋆2)) =
n∑

i=1

1{f1(Xi,θ⋆1)>f2(Xi,θ⋆2)}

is Binomial(n, 1/2) distributed for every n ∈ N. However, when parameter estimation is present,

nĉn =
n∑

i=1

1{f1(Xi,θ̂1,n)>f2(Xi,θ̂2,n)}

is not (even asymptotically) Binomial distributed under H0, due to the dependence induced by

θ̂i,n and contrary to the claims in Clarke’s articles [15, 14].

The article [9] of this thesis took the example of the Clarke test as a motivation to investigate

the asymptotic distribution of

√
nĉn =

1√
n

n∑
i=1

C
(
f1(Xi, θ̂1,n), f2(Xi, θ̂2,n), Xi

)
with particular emphasis on non-smooth functions C and (fi)i=1,2. Moreover, the required as-

sumptions on (C, f1, f2) are tailored to econometric applications, even though model comparison
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based on non-smooth criterion functions may also be interesting for competing Machine Learning

models, which are trained with convex non-differentiable loss functions.

Surprisingly, lots of research has been devoted to obtaining M - or Z-estimators of non-smooth

criterion functions, see e.g. [1, 12, 54], but there is not much literature about the asymptotic

distribution of non-smooth criterion functions with estimated parameters. An early attempt

to tackle such problems was introduced by [57], based on ideas of [65], who established the

asymptotic normality of
√
nĉn under the assumption that

δ 7→ E

[
sup

(θ1,θ2): ∥(θ1,θ2)−(θ⋆1 ,θ
⋆
2)∥<δ

|C(f1(X, θ1), f2(X, θ2), X)− C(f1(X, θ⋆1), f2(X, θ⋆2), X)|
]

is Lipschitz-continuous in a neighborhood of 0. The assumption is quite reasonable when C

is “almost” smooth, e.g. for continuous non-differentiable functions, but, due to the involved

supremum, it seems not very well suited when C has jumps or is an indicator function. Thus, to

derive the asymptotic distribution of ĉn when C is non-continuous with jumps, other techniques

need to be applied.

Empirical process theory investigates the asymptotic distribution of the stochastic process

(Gnh)h∈H :=
√
n
(
1
n

∑n
i=1 h(Xi)− E [h(X)]

)
h∈H, where H denotes a set of functions. One key

advantage of empirical process theory for our applications is that the convergence of (Gnh)h∈H
to a Gaussian process is essentially equivalent to the so-called asymptotic equicontinuity of

(Gnh)h∈H which is defined as

∀ϵ > 0 : lim
m→∞

lim
n→∞

P

 sup
h1,h2∈H: ∥h1−h2∥L2(P )<

1
m

|Gnh1 −Gnh2| > ϵ

 = 0.

Thus, heuristically speaking, when two functions h1, h2 ∈ H are “close” in L2(P ), then their

limits limn→∞Gnh1 and limn→∞Gnh2 are “close” with high probability. In our desired applica-

tion, this allows to define H := {C (f1(·, θ1), f2(·, θ2), ·) | (θ1, θ2) ∈ Θ1 ×Θ2} and, under certain

regularity conditions, to replace the weak limit of 1√
n

∑n
i=1 C(f1(Xi, θ̂1,n), f2(Xi, θ̂2,n), Xi) with

the weak limit of 1√
n

∑n
i=1 C (f1(Xi, θ

⋆
1), f2(Xi, θ

⋆
2), Xi) plus an additional bias.

Another advantage of empirical process theory is that the asymptotic Gaussianity of (Gnh)h∈H
is usually not based on any smoothness conditions on H, but is rather based on the complexity

of the class of functions H in certain L2 spaces. More precisely, the complexity of H is measured

in terms of its covering or bracketing number6 in certain L2-spaces, which essentially can be

interpreted as the size of H. For example, when X is real-valued and H = {1{t≥·} | t ∈ R},
then (Gnh)h∈H is a scaled and centered version of the usual empirical distribution function of

(X1, . . . , Xn) and it may be shown that H satisfies the complexity bounds that are required for

the asymptotic Gaussianity of (Gnh)h∈H, independently of the law of X. Furthermore, empirical

process theory immediately provides the asymptotic law of bootstrapped versions of (Gnh)h∈H,

essentially without strong additional assumptions. Thus, apart from providing results about

6See [66, Section 2.6 and 2.7] for more details on covering and bracketing numbers.
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the asymptotic behaviour of (Gnh)h∈H, it provides a way of determining the critical values for

testing null hypotheses which are based on the asymptotic law of (Gnh)h∈H.

The article [9] derives the asymptotic distribution of
√
nĉn in the framework of empirical process

theory, which is especially well-suited for triplets of parametric non-smooth functions (C, f1, f2).

In the particular case of the Clarke test it provides conditions which ensure the asymptotic

normality of the test statistic

√
n

(
1

n

n∑
i=1

1{f1(Xi,θ̂1,n)>f2(Xi,θ̂2,n)} −
1

2

)

= Gn

(
1{f1(·,θ̂1,n)>f2(·,θ̂2,n)}

)
+
√
n

(
EX

[
1{f1(X,θ̂1,n)>f2(X,θ̂2,n)}

]
− 1

2

)
under the null hypothesis of the Clarke test H0 : P (f1(X, θ⋆1) > f2(X, θ⋆2)) = 1

2 , assuming

that f1(·, θ⋆1) ̸= f2(·, θ⋆2). Therefore, it corrects the falsely claimed7 Binomial distribution of∑n
i=1 1{f1(Xi,θ̂1,n)>f2(Xi,θ̂2,n)} in [15, 14]. Furthermore, it provides the consistency of bootstrapped

versions of
√
nĉn, which allow to determine the critical values for a test of the null hypothesis

H0 : c(M1,M2) = 0.

5 Outlook

The aim of this section is to identify and roughly sketch potential further research topics and

remaining open questions, which are closely related to the contributions of the articles [9, 10, 8]

constituting the main content of this thesis.

First, the article [10] embeds the research articles [44, 46, 43, 41, 64] in a unifying framework

and provides some explicit examples of exchangeable min-id sequences and non-negative and

non-decreasing infinitely divisible processes outside the realm of the previously known corre-

spondences. For example, exchangeable min-id sequences with Archimedean copula [50] and

log-completely monotone generator as well as exchangeable min-id sequences with reciprocal

Archimedean copula [27] are embedded into the framework of [10]. Moreover, exchangeable min-

id sequences with finite exponent measure and exchangeable min-id sequences associated to

Lévy processes subordinated by an integrated non-negative infinitely divisible càdlàg process

are investigated. However, a thorough analysis of statistical and analytical properties of these

sequences and their respective copulas is missing. For example, [23] provide examples of non-

negative infinitely divisible processes, including their respective Lévy measures, which may serve

as a basic tool to build non-negative and non-decreasing infinitely divisible càdlàg processes and

their associated exchangeable min-id sequences. Another potentially promising family of ex-

changeable min-id sequences is the class of exchangeable min-id sequences associated to Poisson

cluster processes, since they are usually neither additive nor strong-idt processes and admit a

7[9] also proves that the asymptotic variance of
√
n
(
n−1 ∑n

i=1 1{f1(Xi,θ̂1,n)>f2(Xi,θ̂2,n)} − 1/2
)

may deviate

from 1/4, which shows that
∑n

i=1 1{f1(Xi,θ̂1,n)>f2(Xi,θ̂2,n)} is not even asymptotically Binomial distributed.
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closed-form representation of the survival function of the associated exchangeable min-id se-

quence. The goal of such investigations should be to derive convenient analytical and stochastic

representations of the considered sequences such that simulation of the d-dimensional margins of

these sequences is feasible, e.g. via the algorithm proposed in [8]. Potential applications of these

specific exchangeable min-id distributions may be found in the modeling of dependence struc-

tures of extreme events, where the assumption of min(or max)-stability may not be reasonable

for the data at hand.

Second, the correspondence of exchangeable min-id sequences and non-negative and non-

decreasing càdlàg processes has thus far only been used to construct sequences of exchange-

able random variables with certain statistical properties determined by a given non-negative

and non-decreasing infinitely divisible càdlàg process. However, one may also use this corre-

spondence to construct non-negative and non-decreasing infinitely divisible càdlàg processes

by specifying the law of an exchangeable min-id sequence. For practical applications it is usu-

ally necessary to not only specify the law of the non-negative and non-decreasing infinitely

divisible càdlàg process, but also to be able to simulate this process. By observing that the

empirical survival function
(
limn→∞ n−1

∑n
i=1 1{Xi>t}

)
t∈R of a realization of an exchangeable

min-id sequence may be transformed into a realization of the associated infinitely divisible

process
(
− log

(
limn→∞ n−1

∑n
i=1 1{Xi>t}

))
t∈R, one immediately obtains an (approximate) sim-

ulation scheme of the associated infinitely divisible process if one is able to simulate the (finite-

dimensional margins of the) associated exchangeable min-id sequence, e.g. via the simulation al-

gorithm proposed in [8]. Moreover, since the empirical distribution function is a well-investigated

object, this approximate simulation algorithm for infinitely divisible processes may also come

with guarantees on the approximation quality in finite sample sizes. In most of the academic

literature, simulation algorithms for infinitely divisible processes are based on certain series

representations of the process, but there are generally no guarantees on the approximation qual-

ity and on the feasibility of the simulation of the relevant terms of the series representation.

Thus, the simulation algorithm for non-negative and non-decreasing infinitely divisible stochas-

tic processes via exchangeable min-id sequences would provide a completely new approach for

the simulation of non-negative and non-decreasing infinitely divisible stochastic processes, which

might be advantageous in certain applications.

Third, one could extend the framework of exchangeable sequences of random variables whose

d-dimensional marginal distributions are min-id to exchangeable sequences of d′-dimensional

random vectors whose multivariate marginal distributions on Rd′×d are min-id for all d ∈ N,
when viewed as a random field. The logarithm of the corresponding random multivariate survival

function, whose existence is ensured by [30], is then presumably infinitely divisible, which is

consistent with every margin being associated to a non-negative and non-decreasing infinitely

divisible processes. The analytical properties of the random multivariate survival function may

be derived from the frameworks of [56, 59]. However, it is not obvious if the associated random

survival function should be viewed as a multivariate infinitely divisible process, as an infinitely
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divisible random measure or as an infinitely divisible process with multivariate index set. On

the one hand, such an extension would be valuable from a theoretical point of view, since it

nicely embeds the univariate theory into a multivariate context. On the other hand, such ideas

may have applications in non-parametric Bayesian inference about the unknown distribution of

a random vector, similar to additive priors on the unknown distribution function of a random

variable as proposed in [24, 18, 25]. Roughly speaking, the d′-dimensional random survival

function associated to the exchangeable sequence of random vectors would then act as a prior

on the space of d′-dimensional survival functions.

Fourth, the literature on max-id processes, which are not max-stable processes, is rather scarce.

With the simulation algorithm [8] at hand, one may construct new parametric families of con-

tinuous max-id processes which are suitable for simulation and satisfy desirable statistical and

analytical properties. Moreover, fitting such models to empirical data is rather complicated,

since the full likelihood (if it even exists) of the data is often not tractable. However, there

are modern statistical approaches whose model fitting procedures solely require the ability to

simulate the candidate models and do not require independent input data, such as Maximum-

Mean-Discrepancy based estimation [13]. Applying such approaches to max-id or max-stable

models comes with solid statistical consistency guarantees and may lower the computational

burden in comparison to likelihood-based methods, as stochastic gradient descent approaches

may be applied. Furthermore, if necessary, one may extend the simulation algorithm for con-

tinuous max-id processes presented in [8] to upper semi-continuous max-id processes. However,

this would come at the cost of carefully rechecking many proofs of preliminary results by [21,

20].

Fifth, the derivations of the asymptotic distribution of the model selection test proposed in [9] are

mainly based on the asymptotic normality of the empirical process. Such asymptotic normality

results are not limited to independent observations of the data, but, e.g., also available for α- or

β-mixing data. Therefore, the model selection test proposed in [9] may be extended to dependent

data. Furthermore, the null hypothesis of the Clarke test H0 : P (f1(X, θ⋆1) > f2(X, θ⋆2)) = 1/2 is

obviously not satisfied when f1(·, θ⋆1) = f2(·, θ⋆2), which is why [9] proposed to test the modified

Clarke null hypothesis H̃0 : P (f1(X, θ⋆1) > f2(X, θ⋆2)) = P (f1(X, θ⋆1) < f2(X, θ⋆2)) when it cannot

be excluded that f1(·, θ⋆1) = f2(·, θ⋆2). However, when f1(·, θ⋆1) = f2(·, θ⋆2), the map (θ1, θ2) 7→
P (f1(X, θ1) > f2(X, θ2)) may become highly irregular in a neighborhood of (θ⋆1, θ

⋆
2) and the

assumptions of the stated model selection test in [9] may fail to hold. Therefore, it would be

desirable to find a regularization mechanism, possibly similar to the ideas of [62, 60], which

ensures that a modified version of the test statistic proposed in [9] is asymptotically normal

even when f1(·, θ⋆1) = f2(·, θ⋆2).
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A Core Publications

A.1 Exchangeable min-id sequences: Characterization, exponent measures

and non-decreasing id-processes [10]

Summary

The main result of this paper is a one-to-one correspondence of exchangeable min-id sequences

and non-negative and non-decreasing infinitely divisible càdlàg processes. More precisely, we

show that every exchangeable min-id sequence may be constructed via

X :=
(
inf
{
t ∈ R

∣∣ H(t) ≥ Ei

})
i∈N

, (14)

where (Ht)t∈R denotes a non-negative and non-decreasing infinitely divisible càdlàg process

and (Ei)i∈N denotes a sequence of independent and identically distributed exponential random

variables with mean 1. Furthermore, we show that each particular choice of (the law of) the

non-negative and non-decreasing infinitely divisible càdlàg processes (Ht)t∈R in (14) yields a

unique (in distribution) exchangeable min-id sequence X. Thus, the law of an exchangeable

min-id sequence is in one-to-one correspondence to the law of a non-negative and non-decreasing

infinitely divisible càdlàg process.

Based on this correspondence, we deduce that the exponent measure of the exchangeable min-id

sequenceX is in one-to-one correspondence to the (unique) tuple (ν, b) of Lévy measure and drift

of the associated non-negative and non-decreasing infinitely divisible càdlàg process H. We infer

that the exponent measure of an exchangeable min-id sequence can be decomposed into the sum

of the exponent measure of an i.i.d. sequence with marginal survival function
(
exp(−b(t))

)
t∈R

and a mixture of the law of an i.i.d. sequence of the form∫
D∞

↗,≥0(R)
⊗i∈NP1−exp(−x(·))ν(dx), (15)

where ⊗i∈NP1−exp(−x(·)) denotes the law of an i.i.d. sequence with marginal distribution func-

tion
(
1 − exp(−x(t))

)
t∈R and D∞

↗,≥0(R) denotes the space of non-negative and non-decreasing

extended real-valued càdlàg functions. This result may be viewed as an extension of de Finetti’s

seminal Theorem [26] from finite (probability) measures to sigma-finite exponent measures.

Our results allow to unify several preceding research articles under one common umbrella. To be

specific, starting with the article [44], which proved that the exchangeable sequences constructed

in (14) when H is a non-negative and non-decreasing Lévy process have finite-dimensional

marginal distribution of the Marshall–Olkin kind, the literature has developed into two “sepa-

rate” directions. First, [43] proved that all exchangeable sequences with extreme value copulas

and exponential margins can be obtained ifH in (14) is a strong-idt process. Second, [41] and [64]

characterized the class of exchangeable sequences that are obtained via (14) when H is an addi-

tive process as so-called exogenous shock models. Since neither the class of strong-idt processes

28



nor the class of additive processes is a superclass of the other and their intersection is precisely

the class of Lévy processes, there was no common mathematical framework for the results of [43,

41, 64]. However, strong-idt processes and additive processes are specific subfamilies of the class

of infinitely divisible processes. Therefore, we have unified the work of [43, 41, 64] in a common

mathematical framework. Additionally, particular classes of exchangeable sequences which could

not be associated to any of the previously investigated classes of exchangeable sequences may

now be embedded into our framework. For example, when the stochastic process H in (14) is

a random walk with infinitely divisible jumps, the corresponding multivariate marginal distri-

butions of the associated exchangeable sequences were identified as members of the so-called

narrow sense multivariate geometric distributions by [46]. Further examples include exchange-

able sequences with reciprocal Archimedean copula [27] as well as exchangeable sequences with

Archimedean copula and log-completely monotone generator [50].

To provide a mathematically sound framework, we also contribute to the study of non-negative

and non-decreasing infinitely divisible càdlàg processes. We prove that the Lévy measures of such

processes resemble their path properties as they are shown to be concentrated on non-negative

and non-decreasing càdlàg functions as well. Moreover, we show that each infinitely divisible

càdlàg process may be represented as the sum of arbitrary many i.i.d. infinitely divisible càdlàg

processes, which was formulated as an open problem in [5]. Another side result is that we have

proven that a min-id random vector is exchangeable if and only if its associated finite-dimensional

exponent measure is exchangeable.

Individual contributions

Jan-Frederik Mai has conjectured that exchangeable min-id sequences are in one-to-one corre-

spondence to non-negative and non-decreasing infinitely divisible càdlàg processes and provided

an idea to prove this correspondence. The derivations and detailed formulations of the mathe-

matical results and proofs in the paper were worked out by myself. The families of exchangeable

sequences which were embedded into our framework were mostly identified by Jan-Frederik Mai

and Matthias Scherer.

I wrote the first version of the entire manuscript. All authors carefully edited the work in several

iterations, including the requested changes in the resubmission process. Jan-Frederik Mai and

Matthias Scherer particularly modified the introduction and the examples section that embeds

many existing families of exchangeable sequences into the new framework.

I am the main author of this article.
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1  Introduction

The present article bridges the gap between two well-established theories: exchange-
able sequences of minimum/maximum infinitely divisible (min-id/max-id) random 
variables on the one hand and non-negative and non-decreasing (nnnd) infinitely 
divisible stochastic processes on the other hand. So far, these topics are studied 
in (mostly) separate communities and we seek to address both. On the one hand, 
our results can be understood as a particular application of the theory of infinitely 
divisible (id) processes. General id-processes are studied in Barndorff-Nielsen et al. 
(2006), Kabluchko and Stoev (2016), Rosiński (2018), related literature concerned 
with specific subfamilies comprises Skorohod (1991), Bertoin (1999), Sato (1999), 
Mansuy (2005), Hakassou and Ouknine (2012, 2013), Kopp and Molchanov (2018), 
Mai and Scherer (2019). The article Rosiński (2018) unifies the literature by estab-
lishing a general analytical apparatus to deal with id-processes by means of a Lévy 
measure on the path space ℝℝ . We refine these results by restricting our attention to 
processes with nnnd càdlàg paths, but remain totally general aside from this assump-
tion. On the other hand, finite-dimensional probability distributions that are max- 
(or min-)id naturally arise as limit laws of suitably scaled maxima of independent 
random vectors, see Hüsler (1989), a textbook account being Resnick (2007). Such 
distributions and prominent subfamilies, like max- (or min-) stable laws, are well-
established in the applied probability and statistics literature, see e.g. Balkema and 
Resnick (1977), Marshall and Olkin (1990), Alzaid and Proschan (1994), Joe and 
Hu (1996), Mulinacci (2015), Genest et al. (2018), and have recently gained inter-
est in the modeling of spatial extremes, see e.g. Padoan (2013), Huser et al. (2018), 
Bopp et al. (2020), Huser et al. (2021). In analytical terms, such probability distri-
butions are canonically described by a so-called exponent measure and the work of 
Vatan (1985) generalizes this framework to infinite sequences of random variables.

In our article, we apply de Finetti’s Theorem, see de Finetti (1931),  (Aldous 
1985, Chapter 1.3) to derive a correspondence between nnnd càdlàg id-processes 
and exchangeable sequences of random variables, all of whose finite-dimensional 
distributions are min- (or max-)id. In fact, given an nnnd càdlàg id-process 
H = (Ht)t∈ℝ , we may define an infinite exchangeable sequence X = (X1,X2,…) of 
min-id random variables via the almost sure relation

The sequence X = (X1,X2,…) is a conditionally (on H) i.i.d. sequence with condi-
tional marginal survival function t ↦ exp(−Ht),

1 where H−∞ is defined as the almost 
sure limit limt→−∞ Ht . While we may plug in arbitrary nnnd càdlàg id-processes H on 
the right-hand side of Eq. (1), we prove that one actually obtains each exchangeable 
min-id sequence X on the left-hand side of Eq. (1) via this construction, i.e. we prove 
a one-to-one correspondence between exchangeable min-id sequences and nnnd càdlàg 
id-processes.

(1)ℙ
(⋂

i∈ℕ
{Xi > ti}

|||||
H

)
=
∏
i∈ℕ

exp
(
−Hti

)
, (t1, t2,…) ∈ [−∞,∞)ℕ.

1  This follows from (1) by choosing (t1, t2,…) such that all but one t
i
 are equal to −∞.
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The assumption of (infinite) exchangeability often appears in practical applications 
when the overall complexity of the model needs to be limited. For example, if a high-
dimensional multivariate phenomenon cannot be modeled by i.i.d. components, but fur-
ther information about the dependence structure of the margins is missing, it is often 
reasonable to assume exchangeability of the components, as it provides an appealing 
scheme for analytical computation and simulation. The assumption of exchangeability 
is convenient in such situations, since it preserves flexibility between independence and 
full dependence. Moreover, even when there are legitimate reasons to believe that the 
modeled margins are not exchangeable, it is often reasonable to divide the modeled com-
ponents into homogeneous subgroups, which are intrinsically exchangeable. Building a 
hierarchical model which has exchangeable subgroups allows to maintain a quite simple 
dependence structure inside these subgroups, while the non-exchangeable dependence 
structure between subgroups remains tractable.

A particular advantage of min- (or max-)id distributions in the modeling of extreme 
events is their flexible dependence structure. For example, the so-called extremal coef-
ficient, which measures the distance of the model to the model of independent compo-
nents at a fixed threshold, can actually be chosen to be threshold-dependent, a feature 
that is often discovered in real world data sets, see e.g. Huser et al. (2021). On the other 
hand, if one would resort to classical min-stable models, such features cannot be modeled, 
since the extremal coefficient of min-stable models with identical margins is known to be 
independent of the chosen threshold. Moreover, going from min-stability to min-infinite 
divisibility comes essentially without additional mathematical technicalities, while min-id 
models easily incorporate arbitrary marginal distributions in contrast to the restricted flex-
ibility of marginal distributions in min-stable models.

Regarding the analytical treatments of H and X , we characterize the Lévy measures of 
nnnd càdlàg id-processes H as precisely those which are concentrated on nnnd paths and 
characterize the exponent measures of exchangeable min-id sequences X as precisely those 
that are the sum of some simple “drift measure” and a (possibly infinite) mixture of prod-
uct probability measures. Figure 1 summarizes our findings in a nutshell.

For many subfamilies of id-processes, there exist well-established theories and 
applications on the stochastic process level. The relation between the nnnd instances 
of these subfamilies with the multivariate probability laws of X via de Finetti’s Theo-
rem has been explored in several previous articles, which are unified and extended 
by the present work. Firstly, if H is a non-decreasing Lévy process (aka Lévy sub-
ordinator), the finite-dimensional distributions of the corresponding sequence X are 
so-called Marshall-Olkin distributions, a result first found in Mai and Scherer (2011), 
re-discovered and further explored in Sun et al. (2017). Secondly and slightly more 
general, if H is an nnnd additive process (aka additive subordinator), the survival func-
tion defined by t ↦ exp(−Ht) is called a neutral-to-the-right prior in non-parametric 
Bayesian statistics. The resulting non-parametric Bayesian estimation techniques are 
explored, e.g., in Kalbfleisch (1978), Hjort (1990), Epifani et  al. (2003), Regazzini 
et al. (2003), James et al. (2009), James (2005), with the most prominent representa-
tive being the Dirichlet process developed by Ferguson (1973). The finite-dimensional 
distributions of the associated exchangeable sequence X are shown to correspond to 
exogenous shock models in Mai et al. (2016), Sloot (2020). A special case of particu-
lar interest is obtained in case H is a Sato subordinator, leading to a characterization  
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of self-decomposability on the half-line in terms of multivariate distribution functions 
in Mai et al. (2017). Thirdly, if H is non-decreasing and strongly infinitely divisible 
with respect to time (aka time stable/strong-idt), see e.g. Mansuy (2005), Hakassou 
and Ouknine (2013), Kopp and Molchanov (2018), the finite-dimensional distribu-
tions of X are shown to be min-stable in Mai and Scherer (2014), Mai (2020). Figure 2 
summarizes the correspondences.

Fig. 1   Correspondences of exchangeable min-id sequences (top, left), exponent measures (bottom, left), 
non-decreasing and non-negative càdlàg id-processes (top, right), and Lévy measures (bottom, right)

Fig. 2   Embedding of established correspondences of nnnd càdlàg processes and exchangeable sequences 
into the present framework
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It is worth noting that our framework is general enough to include non-continuous 
min-id distributions, which correspond to id-processes H that are not stochastically 
continuous. While this stands in glaring contrast to most of the aforementioned refer-
ences and might on first glimpse be accompanied by technical problems, our deriva-
tions show that a distinction between stochastically continuous and non-continuous 
processes is not a crucial technical obstacle, but rather a distinctive feature to study 
after a general theory is established.

1.1 � Structure of the manuscript

In Sect. 2, we recall the most important results about min-id distributions and char-
acterize their exchangeable subclass. Furthermore, we characterize nnnd infinitely 
divisible stochastic processes by their Lévy measure and drift. As a byproduct, we 
show that every càdlàg id-process can be represented as the sum of i.i.d. càdlàg 
processes, which solves an open problem posed by Barndorff-Nielsen et al. (2006). 
Section  3 provides the main contributions of this work. First, we show that each 
exchangeable min-id sequence uniquely corresponds to an nnnd infinitely divisible 
càdlàg process. Second, we show that the exponent measure of an exchangeable 
min-id sequence is given by the sum of a simple drift measure and a mixture of 
product probability measures. In Sect.  4 we present some important examples of 
exchangeable min-id sequences and embed them into our framework. A summary 
of the key findings is given in Sect. 5. All longer proofs are deferred to Appendix 1.

2 � Preliminaries

2.1 � Notation

The following notation is used throughout this paper. A topological space (S, �) is always 
equipped with its Borel �-algebra, denoted by B(S) . Upon existence, we frequently use 
the notation 0S to refer to the neutral element w.r.t. addition in S. The letters ℝ , ℝ , ℚ , ℕ , 
and ℕ0 denote the real numbers, (extended) real numbers including ±∞ , rational num-
bers, natural numbers, and natural numbers including 0, all equipped with their stand-
ard topologies. For A ⊂ ℝ , Aℕ denotes the space of A-valued sequences equipped with 
the product (subspace-)topology. Vectors and sequences are written in bold letters to 
distinguish them from scalars. The symbols >,≥,< , and ≤ are understood component-
wise, e.g. for x, y ∈ ℝ

d
 , x < y means that xi < yi for all 1 ≤ i ≤ d . Similarly, for every 

x, y ∈ ℝ
d
 , the operators max (resp. min){x, y} are applied componentwise. For every set 

A ⊂ ℝ
d
 we define max (resp. min , sup , inf ) A as the componentwise maximum (resp. 

minimum, supremum, infimum) of elements in A, where min � ∶= inf � ∶= ∞ and 
max � ∶= sup � ∶= −∞ . Moreover, for any a, b ∈ ℝ

d
 we define [a, b] ∶= ×d

i=1
[ai, bi] , 

where [ai, bi] denotes a closed interval. The obvious modifications apply to (a, b) , [a, b) , 
and [a, b) . The function �A(x) denotes the indicator function of a set A.

D(T) (resp. D∞(T) ) denotes the space of real-valued (resp. extended real-valued) càdlàg 
functions, i.e. right-continuous functions with left limits, which are indexed by a set T ⊂ ℝ . 
D∞(T) is always equipped with the (Borel) �-algebra generated by the finite dimensional 
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projections, i.e. B(D∞(T)) ∶= 𝜎
({

{x ∈ D∞(T) ∣ (x(t1),… , x(td)) ∈ A}, (ti)1≤i≤d ⊂ T , 
A ∈ B

(
ℝ

d)
, d ∈ ℕ

})
 . Note that this �-algebra is a Borel �-algebra, since it can be 

generated as the Borel �-algebra of a topology on D∞(T) . Similarly, D(T) is equipped 
with the subspace (Borel) �-algebra B(D(T)) ∶= B(D∞(T)) ∩ D(T) . The function 
0D∞(T) ∶= (0)t∈T denotes the function which vanishes everywhere. A càdlàg process 
indexed by T denotes a random element H ∈ D∞(T) . Sometimes H is also referred to as 
(Ht)t∈T to emphasize the stochastic process character. Ht refers to the extended real-valued 
random variable obtained by projecting H at “time” t.

We write X ∼ Y  to denote that two random elements X and Y are identical in 
distribution, even though X and Y do not need to be defined on the same proba-
bility space. If the probability space is not explicitly specified, we adopt the usual 
notation and denote the probability measure as ℙ . The distribution function F of a 
random vector Xd ∈ ℝ

d
 is defined as F(x) ∶= ℙ

(
Xd ≤ x

)
 . The survival function F 

of Xd is defined as F(x) ∶= ℙ
(
Xd ∈ ×d

i=1
{xi,∞]

)
 , where “ { ” is interpreted as “(” if 

xi > −∞ and “ { ” is interpreted as “[” if xi = −∞ . We frequently write Xd ∼ F (resp. 
Xd ∼ F ) to denote that the random vector Xd has distribution (resp. survival) func-
tion F (resp. F ). A random variable has exponential distribution with mean 1∕� ≥ 0 
if it has survival function F(x) = exp

(
−�x�[0,∞)(x)

)
 . The terms min- (resp. max-)

id random vector and min- (resp. max-)id distribution will be used synonymously, 
depending on whether we refer to a random vector or its associated distribution.

In slight abuse of the common terminology we say that a measure � is supported 
on a set A ⊂ B

(
ℝ

d
)
 if �

(
ℝ

d
⧵ A

)
= 0.

2.2 � Exchangeable min‑ and max‑id distributions

First, let us recall the definition of exchangeable and extendible random vectors and 
exchangeable sequences.

Definition 2.1  (Exchangeable and extendible random vector/sequence) 

1.	 A random vector Xd = (Xd,1,… ,Xd,d) ∈ ℝ
d
 is exchangeable if X

d
∼
(
X
d,�(1),

… ,X
d,�(d)

)
 for all permutations � on {1,… , d} . A random sequence X =

(
X
i

)
i∈ℕ

∈ ℝ
ℕ

 is exchangeable if all its finite dimensional marginal distributions are 
exchangeable.

2.	 An exchangeable random vector Xd = (Xd,1,… ,Xd,d) ∈ ℝ
d
 is extendible if there 

exists an exchangeable sequence X =
(
Xi

)
i∈ℕ

∈ ℝ
ℕ

 (possibly defined on a dif-
ferent probability space) satisfying Xd ∼ (X1,… ,Xd).

Extendible random vectors form a proper subclass of exchangeable random vec-
tors, since there exist many exchangeable random vectors which are not extendible. 
For example, consider a random vector X2 ∈ ℝ2 which follows a bivariate normal 
distribution with negative correlation.2 (Aldous 1985, p. 7) shows that exchangeable 

2  Another example being an Archimedean copula with a d-monotone generator that is not completely 
monotone.
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sequences of random variables necessarily have non-negative correlation. Therefore, 
X2 is exchangeable but not extendible to an exchangeable sequence. It is also worth 
noting that an extendible random vector X may be extendible to more than one 
exchangeable sequence. On the other side, de Finetti’s Theorem provides a unique 
stochastic representation of exchangeable sequences and thus also characterizes 
extendible random vectors.

Theorem 2.2  (De Finetti’s Theorem, De Finetti (1931))

A sequence X = (Xi)i∈ℕ ∈ ℝ
ℕ

 is exchangeable if and only if there exists an nnnd 
stochastic process H ∈ D∞(ℝ) such that

where (Ei)i∈ℕ is a sequence of i.i.d. unit exponential random variables independent 
of H. X has survival function

Moreover, the distribution of the process H is uniquely determined by the distri-
bution of X and vice versa.

De Finetti’s Theorem can be refined for exchangeable sequences with continuous 
marginal distribution.

Corollary 2.3  (Exchangeable sequences with continuous marginal distribution cor-
respond to stochastically continuous càdlàg processes)

The sequence X ∈ ℝ
ℕ

 from Eq. (2) has continuous marginal distributions if and 
only if H is stochastically continuous.

Proof  The proof can be found in Appendix 1. 	�  ◻

Next, we recall the most important results about min- and max-id distributions. 
We mainly follow (Resnick 2007, Chapter 5) and translate the results from max-id 
random vectors on ℝd to min-id random vectors on (−∞,∞]d . Many of these trans-
lations are straightforward, but some lurking technical subtleties need to be con-
sidered and are emphasized in the upcoming paragraphs. We start with the formal 
definition of min- (resp. max-)id random vectors/sequences. There are at least two 
equivalent definitions that will be used frequently throughout the paper. Therefore, 
they are presented jointly.

(2)(Xi)i∈ℕ ∼
(
inf{t ∈ ℝ ∣ Ht ≥ Ei}

)
i∈ℕ

,

ℙ
(
X1 > t1,X2 > t2,…

)
= 𝔼

[∏
i∈ℕ

e
−Hti

]
, t = (t1, t2,…) ∈ [−∞,∞)ℕ.
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Definition 2.4  (Min-id distribution / Max-id distribution) 

1.	 A random vector Xd ∈ ℝ
d
 is minimum-infinitely divisible (min-id) if for every  

n ∈ ℕ there exist i.i.d. random vectors (X(i,1∕n)

d
)1≤i≤n3 such that Xd ∼ min1≤i≤n X(i,1∕n)

d
 . 

Equivalently, the survival function F of a random vector Xd ∈ ℝ
d
 is min-id if F

t is 
a survival function for every t > 0.

2.	 A random vector Xd ∈ ℝ
d
 is maximum-infinitely divisible (max-id) if for every 

n ∈ ℕ there exist i.i.d. random vectors (X(i,1∕n)

d
)1≤i≤n such that Xd ∼ max1≤i≤n X(i,1∕n)

d
 . 

Equivalently, the distribution function F of a random vector Xd ∈ ℝ
d
 is max-id if 

Ft is a distribution function for every t > 0.

Similarly, a sequence X ∈ ℝ
ℕ

 is called min- (resp. max-)id if (Xi1
,… ,Xid

) is a 
min- (resp. max-)id random vector for every (i1,… , id) ∈ ℕd.

Every univariate random variable X ∈ ℝ is min- and max-id. However, already 
for d ≥ 2 it is certainly not trivial to decide whether a given random vector or sur-
vival (resp. distribution) function is min- (resp. max-)id. For example, a bivariate 
normal distribution with negative correlation is not min- (resp. max-)id, since min- 
(resp. max-)id random vectors necessarily exhibit non-negative correlation (Resnick 
2007, Proposition 5.29).

An important property of the class of min- and max-id distributions is their distri-
butional closure under monotone marginal transformations. This fact is summarized in 
the following lemma, which is a slight extension of (Resnick 2007, Proposition 5.2 iii).

Lemma 2.5  (Class of min- and max-id distributions is closed under monotone 
transformations)

Let Xd (resp. Yd) ∈ ℝ
d
 denote a min- (resp. max-)id random vector. The following 

statements are valid. 
1.	 Let (fi)1≤i≤d ∶ ℝ → ℝ be non-decreasing. Then f (Xd) ∶=

(
f1(X1),… , fd(Xd)

)
 
(
resp. 

f (Yd) ∶=
(
f1(Y1),… , fd(Yd)

))
 is min- (resp. max-)id.

2.	 Let (fi)1≤i≤d ∶ ℝ → ℝ be non-increasing. Then f (Xd) (resp. f (Yd)) is max- (resp. 
min-)id.

Lemma  2.5 shows that studying the entire class of min- and max-id distri-
butions is equivalent to studying min-id distributions supported on an arbi-
trary non-empty subset of A ⊂ ℝ

d
 , since for every min- or max-id random vec-

tor Xd there exist some strictly monotone functions 
(
fi
)
1≤i≤d such that f (Xd) ∈ A 

is min-id. A convenient choice for our analysis is the set A = (−∞,∞]d . This 
choice allows us to assume that a min-id distribution does not have mass on 
{x ∈ ℝ

d
∣ xi = −∞ for some 1 ≤ i ≤ d} . Such min-id distributions are uniquely 

determined by their survival function restricted to ℝd . Thus, we can avoid the 

3  The notation X(i,1∕n)

d
 shall emphasize that every X(i,1∕n)

d
 can be interpreted as a 1/n contribution to X , 

since the X(i,1∕n)

d
 are all equally likely to establish the minimum in min1≤i≤n X(i,1∕n)

d
∼ X

d
.
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technical subtleties involving survival functions on ℝ
d . The convenience of 

this seemingly artificial fact will become clear in Sect.  3.1, since the choice 
X ∈ (−∞,∞]ℕ allows us to restrict our attention to càdlàg processes vanishing 
at −∞ . Therefore, without loss of generality, we only consider min-id random 
vectors on (−∞,∞]d in the remainder of the paper, if not explicitly mentioned 
otherwise.

Similar to (Resnick 2007, Proposition 5.8), we can characterize min-id distribu-
tions on (−∞,∞]d by a so-called exponent measure. To define the exponent meas-
ure of a min-id distribution we need to introduce some notation. For � ∈ (−∞,∞]d 
define the set Ed

�
∶= [−∞,�] ⧵ {�} , which is equipped with the subspace topology 

inherited from ℝ
d . Furthermore, for x < � , define (x,∞]∁ ∶= Ed

�
⧵ (x,∞].

Definition 2.6  (Exponent measure of min-id distributions)

A Radon measure �d on Ed
�
 is called exponent measure if it satisfies

This definition of an exponent measure ensures that Xd ∼ exp
(
−�d

(
(⋅,∞]∁

))
 is 

min-id on (−∞,∞]d , since

The next proposition, which is similar to (Resnick 2007, Proposition 5.8), shows 
that every min-id random vector has a survival function of the form exp

(
−�d(⋅,∞]∁

)
.

Proposition 2.7  (Characterization of min-id distributions)

The following are equivalent: 
1.	 Xd ∈ (−∞,∞]d is min-id.
2.	 There exist � ∈ (−∞,∞]d and an exponent measure �d defined on Ed

�
 such that 

Moreover, the exponent measure �d associated with Xd is unique.
Proof  The proof is a translation of the proof of (Resnick 2007, Proposition 5.8) to 
the min-id case.	�  ◻

We have already mentioned that it is sufficient to restrict our study of min-id  
Xd ∈ ℝ

d
 to that of min-id Xd ∈ (−∞,∞]d . Since Ed

�
 is almost rectangular, we 

can restrict the study of min-id distributions on (−∞,∞]d to an even smaller and 

�d

(
d⋃
i=1

{
x ∈ Ed

�
∣ xi = −∞

})
= 0.

ℙ(Xi = −∞ for some 1 ≤ i ≤ d)

= 1 − exp

(
−�d

(
d⋃
i=1

{x ∈ Ed
� ∣ xi = −∞}

))
= 0.

Xd ∼ F(x) =

{
exp

(
− 𝜇d

(
(x,∞]∁

))
x < �,

0 else.
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more convenient class of min-id distributions, because Lemma 2.5 allows to trans-
form every min-id random vector Xd to a min-id random vector X̃d which satisfies 
� = ×d

i=1
{∞} . Thus, from now on, we always assume that a min-id random vector 

Xd satisfies the following condition, if not explicitly mentioned otherwise.

Condition (◊) A min-id random vector Xd ∈ ℝ
d
 satisfies Condition (◊) if the 

following two assumptions are satisfied
(◊1) Xd ∈ (−∞,∞]d and
(◊2) � = ∞.

The purpose of Condition (◊) is to simplify our exposition in the remainder of the 
paper. It ensures that we can always assume that a min-id random vector Xd satis-
fies ℙ(Xd > x) > 0 for all x ∈ ℝd and ℙ(Xi > −∞) = 1 for all 1 ≤ i ≤ d . These con-
straints allow to avoid splitting the proofs of our main theorems into several cases.

Up to this point we have mainly introduced and reformulated existing results. In 
the following, we characterize exchangeable and extendible min-id random vectors, 
which have not yet been discussed in the literature.

A natural question is whether the exchangeability (resp. extendibility) of the 
min-id random vector Xd is equivalent to the exchangeability (resp. extendibil-
ity) of its associated exponent measure �d . To this purpose, let us properly define 
exchangeability of an exponent measure. For any x ∈ ℝ

d
 and permutation � on 

{1,… , d} define �(x) = (x�(1),… , x�(d)) . Similarly, for any set A ⊂ ℝ
d
 , define 

�(A) ∶= {�(x) ∣ x ∈ A} . An exponent measure �d on Ed
∞

 is called exchangeable if 
�d(A) = �d(�(A)) for every A ∈ B

(
Ed
∞

)
 and every permutation � on {1,… , d}.

Proposition 2.8  (Exchangeable exponent measure)

The following are equivalent for every min-id random vector Xd ∈ (−∞,∞]d : 
1.	 Xd is exchangeable.
2.	 �d is exchangeable.

It may seem obvious that �d is exchangeable if Xd is exchangeable, since Proposi-
tion 2.7 implies exchangeability of �d on sets of the type (x,∞]∁ . However, �d may 
have infinite mass and exchangeability on sets of the type (x,∞]∁ is not a sufficient 
criterion for exchangeability of infinite measures in general.

Proof  The proof can be found in Appendix 1. 	�  ◻

Proposition  2.8 shows that exchangeability of Xd is in one-to-one correspond-
ence with exchangeability of �d . A similar statement holds for extendibility of Xd , 
but the precise formulation of this result is tedious. The problem arises from the 
definition of Ed

∞
 , since Ed

∞
 is not a product space and this may lead to projections 

to the point ∞ ∉ Ed�

∞
 , d′ < d . Vatan has investigated this problem in the context of 

exponent measures of max-id sequences in Vatan (1985). Unfortunately, his defini-
tion of an exponent measure slightly differs from the original definition in Resnick 
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(2007) and does not directly translate to Definition 2.6. Vatan puts infinite mass on 
the lower boundary −� of the support of the exponent measure of a max-id sequence 
−X to ensure that exponent measures are projective. Under this constraint he proved 
the existence of a unique projective exponent measure on [−�,∞] ∶= ×i∈ℕ[−�i,∞] 
associated with −X . Removing the point −� from the support of Vatan’s exponent 
measure allows us to translate his results to our setting and we obtain the exponent 
measure of a min-id sequence X . Note that this modified exponent measure is gener-
ally not projective, which is due to the removal of −� . We denote this global expo-
nent measure on Eℕ

�
∶= [−∞,�] ⧵ {�} by � . Similar to the study of min-id random 

vectors we can restrict the study of min-id sequences to min-id sequences whose 
d-dimensional margins satisfy Condition (◊) . Thus, from now on we will assume 
that the d-dimensional margins of a min-id sequence satisfy Condition (◊) , i.e. 
X ∈ (−∞,∞]ℕ and � = ∞.

Define �i1,…,id
 as the unique exponent measure of the d-dimensional margin 

(Xi1
,… ,Xid

) of the min-id sequence X . The results of Vatan (1985) are summarized 
in the following proposition and clarify the projective properties of extendible expo-
nent measures �d.

Proposition 2.9  (Vatan (1985), Exponent measure of a sequence)

The following are equivalent for every min-id random vector Xd ∈ (−∞,∞]d sat-
isfying Condition (◊) : 
1.	 Xd is extendible to a min-id sequence X.
2.	 There exists an exchangeable global exponent measure � on Eℕ

∞
 such that 

 for all distinct (i1,… , id) ∈ ℕd  and A ∈ B
(
Ed
∞

)
.

Proof  The proof follows from an application of Proposition 2.8 and a translation of 
the results of Vatan (1985) to the framework of Resnick (2007) and the min-id case.	
� ◻

Propositions 2.8 and 2.9 allow to characterize the upper tail dependence coefficients 
of an exchangeable min-id random vector via its exponent measure. To this purpose, for 
2 ≤ d′ ≤ d , define the d′-variate upper tail dependence coefficient of an exchangeable 
min-id random vector X

d
∈ (−∞,∞]d as 𝜌u

d�
∶= limt→∞ ℙ(X1 > t ∣ X2 > t,… ,Xd� > t).

Corollary 2.10  (Upper tail dependence of exchangeable min-id distribution)

The upper tail dependence coefficient of an exchangeable min-id random vector 
Xd ∈ (−∞,∞]d satisfying Condition (◊) is given by

�
(
{x ∈ Eℕ

∞
∣ (xi1 ,… , xid ) ∈ A}

)
= �i1,…,id

(A) = �d(A),

�u
d�
= exp

(
− lim

t→∞
�d�

(
[−∞, t] × (t,∞]d

�−1
))

.
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In particular �u
d�
≤ �u

d�+1
  for all 2 ≤ d′ < d.

Proof  The proof can be found in Appendix 1.	�  ◻

As a caveat we want to remark that in general limt→∞ �d�

(
[−∞, t] × (t,∞]d

�−1
)
 

may not be equal to �d�

(
[−∞,∞) × {∞}d

�−1
)
 , which is due to the (possibly) infinite 

mass of �d′.

2.3 � Extended chronometers

In this subsection we characterize the class of nnnd infinitely divisible càdlàg pro-
cesses. In particular, we show that the Lévy measure of such processes is concen-
trated on nnnd paths.

First, we recall the definition of infinitely divisible random vectors and infinitely 
divisible stochastic processes. For the sake of well-definedness of sums of (possibly) 
infinite quantities we only allow for random vectors and stochastic processes which 
cannot assume the values infinity and negative infinity with positive probability at 
the same time. Our specifications are formalized in the following definition.

Definition 2.11  (Infinitely divisible) 

1.	 A random vector H ∈ ℝ
d
 such that for all 1 ≤ i ≤ d we either have P(Hi = ∞) = 0 

or ℙ(Hi = −∞) = 0 is infinitely divisible (id) if for all n ∈ ℕ there exist i.i.d. 
random vectors (H(i,1∕n))1≤i≤n4 such that H ∼

∑n

i=1
H(i,1∕n).

2.	 A stochastic process (Ht)t∈ℝ ∈ ℝ
ℝ

 such that for all t ∈ ℝ we either have P(Ht = ∞) = 0 
or ℙ(Ht = −∞) = 0 is infinitely divisible (id) if for all n ∈ ℕ there exist i.i.d. stochas-
tic processes 

((
H

(i,1∕n)
t

)
t∈ℝ

)
1≤i≤n ∈

(
ℝ

ℝ
)n

 such that H ∼
∑n

i=1
H(i,1∕n).

An excellent textbook treatment of infinitely divisible distributions is Sato 
(1999). Infinitely divisible stochastic processes have been investigated, among 
others, by Lee (1967), Maruyama (1970), Barndorff-Nielsen et  al. (2006), 
Rosiński (2018). We mainly follow the pathwise approach of Rosiński (2018). 
However, in contrast to Rosiński (2018), we only consider càdlàg id-processes 
and allow jumps to ∞ . One can show that all relevant results of (Rosiński 2018, 
Sects. 1-3) remain valid under this slight change of the general framework.

In this paper we focus on nnnd càdlàg id-processes. For our purpose this is not 
a loss of generality, since de Finetti’s Theorem implies that H in the construction 
method of Eq. (2) can be chosen as an nnnd càdlàg process. These processes can 
be viewed as an extension of chronometers, which were introduced in Barndorff-
Nielsen et al. (2006).

4  Again, the notation H(i,1∕n) shall emphasize that every H(i,1∕n) can be interpreted as a 1/n contribution 
to H.
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Definition 2.12  (Extended chronometer)

An nnnd infinitely divisible process (Ht)t∈ℝ ∈ D∞(ℝ) is called an extended 
chronometer.

In contrast to chronometers in Barndorff-Nielsen et  al. (2006), we do not 
require the stochastic continuity of extended chronometers. This generalization is 
necessary to account for non-continuous min-id distributions in Sect. 3.1. To sim-
plify our developments we focus on extended chronometers that are compatible 
with Condition (◊) . To this purpose we need to impose two additional constraints 
on extended chronometers, which are specified in the following condition.

 Condition (◊�) An extended chronometer (Ht)t∈ℝ satisfies Condition (◊�) if 
the following two conditions are satisfied

(◊�1) ℙ
(
limt→−∞ Ht = 0

)
= 1 and

(◊�2) ℙ(Ht = ∞) < 1 for all t ∈ ℝ.

Remark 1  (Equivalence of Conditions (◊) and (◊�) ) Consider an extended chronom-
eter (Ht)t∈ℝ and an i.i.d. unit exponential sequence (Ei)i∈ℕ . By virtue of Eq. (2) we 
construct an exchangeable sequence X ∶=

(
inf{t ∈ ℝ ∣ Ht ≥ Ei}

)
i∈ℕ

 . It is easy to 
see that X > −∞ almost surely if and only if Condition (◊�1) is satisfied. Moreo-
ver, assuming that X is min-id, one can check that Condition (◊�2) is equivalent to 
the constraint � = ∞ . Therefore, under the assumption that X is min-id, X satisfies 
Condition (◊) if and only if (Ht)t∈ℝ satisfies Condition (◊�).

Recall that the distribution of a non-negative stochastic process in D∞(ℝ) is 
uniquely determined by its Laplace transform. Translating (Rosiński 2018, Theo-
rems 2.8 and 3.4) to non-negative càdlàg id-processes shows that the Laplace 
transform of a non-negative càdlàg id-process can be uniquely characterized by 
a function b ∶ ℝ → ℝ and a measure � on D∞(ℝ) . To be precise, for all d ∈ ℕ , 
the Laplace transform of the d-dimensional margins of a non-negative id-process 
(Ht)t∈ℝ ∈ D∞(ℝ) satisfying Condition (◊�2) can be written as

where 𝜖 > 0 is arbitrary, b ∶ ℝ → ℝ is a unique function, and � is a unique measure 
on D∞(ℝ) satisfying 

(3)

L ∶ [0,∞)d ×ℝ
d → [0, 1]; (z, t) ↦ 𝔼

[
exp

(
−

d∑
i=1

ziHti

)]

= exp

(
−

d∑
i=1

zib(ti)

+ ∫D∞(ℝ)

(
exp

(
−

d∑
i=1

zix(ti)

)
− 1 −

d∑
i=1

zix(ti)�{|x(ti)|<𝜖}

)
𝜈(dx)

)
,
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1.	 �(0D∞(ℝ)) = 0 , and
2.	 ∫

D∞(ℝ)
min{x(t), 1}𝜈(dx) < ∞ for all t ∈ ℝ.

The function b is called drift of (Ht)t∈ℝ and the measure � is called Lévy meas-
ure of (Ht)t∈ℝ . More generally, every measure � on D∞(ℝ) satisfying Conditions 
1. and 2. is called a Lévy measure.

The literature usually treats id-processes as stochastic processes in ℝℝ . There-
fore, if H ∈ D∞(ℝ) is id, it is not clear whether the H(i,1∕n) appearing in Defini-
tion 2.11 can also be chosen as elements of D∞(ℝ) , as was already pointed out 
in (Barndorff-Nielsen et  al. 2006, Remark 4.5). If H is stochastically continuous, 
non-negative, and almost surely non-decreasing the answer is positive, as can be 
deduced from (Barndorff-Nielsen et al. 2006, Proposition 6.2).

In our framework it is important that all H(i,1∕n) can be chosen as càdlàg processes, 
since we need to interpret exp

(
−H(i,1∕n)

)
 as a random survival function in Sect. 3. 

The next lemma generalizes the results of (Barndorff-Nielsen et al. 2006, Proposition 
6.2) and shows that all càdlàg id-processes have a representation as a sum of càdlàg 
id-processes.

Lemma 2.13  (Càdlàg id-processes are distributed as i.i.d. sum of càdlàg id-processes)

Consider an id-process H ∈ D∞(ℝ) . Then, for every n ∈ ℕ , we can find i.i.d. id-
processes 

(
H(i,1∕n)

)
1≤i≤n ∈ (D∞(ℝ))n such that H ∼

∑n

i=1
H(i,1∕n).

Proof  The proof can be found in Appendix 1.	�  ◻

Lemma 2.13 verifies that Definition 2.11 could also be formulated solely for pro-
cesses which are id in the space D∞(ℝ) , since it excludes the possibility of the exist-
ence of a stochastic process H ∈ D∞(ℝ) which is id in ℝ

ℝ , but not id in D∞(ℝ).
To interpret exp

(
−H(i,1∕n)

)
 as a random distribution function, when H is an 

extended chronometer, it remains to ensure that each H(i,1∕n) is nnnd, i.e. an extended 
chronometer. The following corollary shows that extended chronometers are infi-
nitely divisible in the space of extended chronometers, i.e. that every extended chro-
nometer can be represented as the sum of arbitrarily many extended chronometers.

Corollary 2.14  (Extended chronometers are distributed as i.i.d. sum of extended 
chronometers)

Consider an extended chronometer H. Then, for every n ∈ ℕ , we can find i.i.d. 
extended chronometers 

(
H(i,1∕n)

)
1≤i≤n such that H ∼

∑n

i=1
H(i,1∕n).

Proof  The proof can be found in Appendix 1.	�  ◻

Our next goal is to connect the path properties of an extended chronometer with 
the support of its Lévy measure. To get an intuition about the correspondences of 
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path properties of an id-process and properties of its Lévy measure we recall the fol-
lowing example from Rosiński (2018).

Example 2.15  (Finite Lévy measure (Rosiński 2018, Example 2.26))
Consider a sequence of i.i.d. càdlàg processes (h(i))i∈ℕ with marginal distribution 

ℙh , a Poisson random variable N with mean � , and define a stochastic process 
(Ht)t∈ℝ ∶=

�∑N

i=1
h
(i)
t

�
t∈ℝ

 . (Rosiński 2018, Example 2.26) proves that H is infinitely 
divisible with drift 0 and Lévy measure �ℙh

(
⋅ ∩ {0D∞(ℝ)}

∁
)
 . Obviously, H is nnnd if 

and only if the Lévy measure �ℙh

(
⋅ ∩ {0D∞(ℝ)}

∁
)
 is supported on nnnd functions.

Unfortunately, the Lévy measure of an id-process is infinite in most cases of 
interest. Thus, the construction method in Example 2.15 is rather limited and we 
cannot immediately draw the same conclusions as in Example  2.15 for general 
extended chronometers.

In the following we show that the observations of Example 2.15 remain valid for 
extended chronometers, i.e. if a càdlàg id-process is nnnd then its Lévy measure is 
concentrated on nnnd càdlàg functions. More specifically, we show that the Lévy 
measure of an extended chronometer satisfying Condition (◊�) is supported on the 
nnnd functions in D∞(ℝ) satisfying limt→−∞ x(t) = 0 . A weaker version of this state-
ment was stated (without proof) in (Lee 1967, Sect. 4), who followed a technically 
different approach in comparison to the pathwise approach of Rosiński (2018). The 
author claimed that a proof of his statement works similar to other proofs given in Lee 
(1967). However, all of the referred proofs are not very detailed and are not compat-
ible with the pathwise approach of Rosiński (2018). An alternative approach to prove 
our claim would use an application of (Rosiński 2018, Theorem 3.4), which provides 
a tool to restrict the Lévy measure of an id-process to a smaller domain. Unfortu-
nately, the theorem cannot be applied in our setting, since our favored domain, nnnd 
càdlàg functions, does not form an algebraic group under addition. Therefore, we pro-
vide a formal proof of our claims in the following proposition.

Proposition 2.16  (Laplace transform of an extended chronometer satisfying Condi-
tion (◊�))

Let d ∈ ℕ and let (Ht)t∈ℝ denote an extended chronometer satisfying Condition 
(◊�) . Then, for z ∈ [0,∞)d, t ∈ ℝd , we have

where � is a Lévy measure on

L(t, z) = �

�
e
−
∑d

i=1 ziHti

�

= exp

�
−

d�
i=1

zib(ti) − ∫M0
∞

�
1 − e−

∑d

i=1 zix(ti)
�
�(dx)

�
,

M0
∞
∶= {x ∈ D∞(ℝ) ∣ x is non-decreasing, lim

t→−∞
x(t) = 0},
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and b ∈ M0
∞
∩ D(ℝ).

Proof  The proof can be found in Appendix 1.	�  ◻

Remark 2  (Id-process with Lévy measure on M0
∞

 has extended chronometer version) 
By a similar reasoning as in the proof of Proposition 2.16 it is also possible to prove 
that every driftless càdlàg id-process with Lévy measure concentrated on nnnd 
càdlàg functions has a version that is non-decreasing and non-negative. We omit a 
proof of this statement, since this fact will not be used in our paper.

Remark 3  (Condition (◊�1) corresponds to vanishing functions in Lévy measure) 
The proof of Proposition 2.16 shows that the Lévy measure of an id-process satisfy-
ing Condition (◊�1) is concentrated on càdlàg paths vanishing at −∞ . If we omit 
Condition (◊�1) this is no longer the case, which is the reason why we later need to 
omit this condition in Corollary 3.7.

Interestingly, we can infer ℙ(Ht = ∞) from the associated Lévy measure, as the 
next example shows.

Example 2.17  (Probability of a jump to ∞ ) Consider an extended chronometer (Ht)t∈ℝ 
satisfying Condition (◊�) with Lévy measure � and drift b. We want to investigate 
ℙ(Ht = ∞) for every t ∈ ℝ , which is equivalent to investigating ℙ(Xi ≤ t ∀ i ∈ ℕ) 
for every t ∈ ℝ , where X denotes the exchangeable sequence constructed via Eq. (2).

The (one-dimensional) Lévy–Khintchine representation of the infinitely 
divisible random variable Ht yields ℙ(Ht = ∞) = 1 − exp(−�t(∞)) , where �t 
denotes the (one-dimensional) Lévy measure of Ht . Proposition  2.16 shows that 
�t(∞) = �

(
{x ∈ M0

∞
∣ x(t) = ∞}

)
 . Therefore,

We emphasize that, in contrast to e.g. additive processes, H cannot be decomposed 
into H = H(1) + H(2) , where H(1) is always finite and independent of H(2) ∈ {0,∞}ℝ . 
Therefore, jumps to ∞ do not occur independently of the path behavior of the pro-
cess in general. Let us verify this claim by an application of Example 2.15. Decom-
pose � into � = �∞ + �f  , where 𝜈f ∶= 𝜈

(
⋅ ∩ {x ∈ M0

∞
∣ x(t) < ∞ for all t ∈ ℝ}

)
 is 

concentrated on finite paths and v∞ ∶= �
(
⋅ ∩{x ∈ M0

∞
∣ x(t) = ∞ for some t ∈ ℝ}

)
 

is concentrated on paths that jump to ∞ . Now, assuming that �∞ is a finite meas-
ure with total mass c, we define H(2) as the id-process with Lévy measure �∞ and 
H(1) as an independent id-process with Lévy measure �f  and drift b. Obviously, 
H ∼ H(1) + H(2) , where H(1) ∈ D(ℝ) has finite sample paths and

where (h(2,i))i∈ℕ denotes an i.i.d. sequence of càdlàg processes with distribution �∞∕c  
and N denotes an independent Poisson random variable with mean c. Since the paths  

ℙ(Ht = ∞) = 1 − exp
(
−�

(
{x ∈ M0

∞
∣ x(t) = ∞}

))
.

H(2) ∼

N∑
i=1

h(2,i),
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of h(2,1) can follow every increasing (càdlàg) path we observe that H(2)
t  may take 

all finite values. Thus, in general, H cannot be decomposed into a finite process 
H(1) and a “killing” process H(2) ∈ {0,∞}ℝ . The case of infinite �∞ follows from 
�t,∞ ∶= �

(
⋅ ∩{x ∈ M0

∞
∣ x(t) = ∞}

)
 , where �t,∞ is a finite measure for all t ∈ ℝ and 

�∞ = limt→∞ �t,∞.

3 � Main results: Linking exchangeable min‑id sequences to extended 
chronometers

After having collected all auxiliary results, we now formulate the main contributions 
of this paper.

3.1 � Extendible min‑id distributions satisfying (◊) are in one‑to‑one 
correspondence with extended chronometers satisfying (◊�)

We start with the characterization of extendible min-id distributions satisfying 
Condition (◊) . Recall that de Finetti’s Theorem implies that every exchangeable 
sequence X ∈ ℝ

ℕ

 is in one-to-one correspondence with an nnnd càdlàg process. We 
show that the class of stochastic processes corresponding to min-id sequences satis-
fying Condition (◊) is precisely the class of extended chronometers satisfying Con-
dition (◊�).

Theorem 3.1  (Extendible min-id distributions correspond to extended chronometers)

The following are equivalent: 
1.	 X is an exchangeable min-id sequence satisfying Condition (◊).
2.	 There exists an extended chronometer (Ht)t∈ℝ ∈ D∞(ℝ) satisfying Condition (◊�) 

such that X ∼
(
inf{t ∈ ℝ ∣ Ht ≥ Ei}

)
i∈ℕ

 , where (Ei)i∈ℕ are i.i.d. unit exponential 
and independent of H.

Moreover, the law of H is uniquely associated to the law of X.

Proof  The proof can be found in Appendix 1.	�  ◻

It is worth noting that Lemma  2.5 can be translated into a time-change of the 
extended chronometer.

Corollary 3.2  (Marginal transformation of exchangeable min-id sequence is time-
change of the chronometer)

Consider an exchangeable min-id sequence X ∈ (∞,∞]ℕ and a left-continuous  
non-decreasing transformation f. Let HX denote the extended chronometer 
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corresponding to X and Hf (X) denote the chronometer corresponding to f (X) . Then 
Hf (X) ∼ HX◦f↼ , where f↼(t) ∶= inf{s ∈ ℝ ∣ f (s) > t}.

Proof  The claim follows from the identity

	�  ◻

The following examples present two interesting applications of Corollary 3.2.

Example 3.3  (ℕ0-valued exchangeable min-id sequences) Consider the non-decreasing 
left-continuous transformation x ↦ ⌈x⌉ ∶= min{n ∈ ℕ0 ∣ x ≤ n} . Lemma  2.5 implies 
that each exchangeable min-id sequence X can be transformed into an ℕ0-valued exchange-
able min-id sequence ⌈X⌉ . Corollary 3.2 shows that the extended chronometer H⌈X⌉ asso-
ciated with ⌈X⌉ can be obtained via a time-change of the extended chronometer HX asso-
ciated with X . Thus, H⌈X⌉ ∼ HX◦⌊⋅⌋ , where ⌊x⌋ ∶= ⌈x⌉↼ = max{n ∈ ℕ0 ∣ x ≥ n} . 
Defining 

(
Ji
)
i∈ℕ

∶=
(
HX

i
− HX

i−1

)
i∈ℕ

 we observe that

can be represented as a pure jump process. If HX
0
= 0 and HX has stationary and 

independent increments H⌈X⌉ is known as a random walk and the sequence ⌈X⌉ fol-
lows a multivariate narrow-sense geometric distribution, see Mai et  al. (2013). In 
this case X has d-dimensional marginal distributions

where (EI)I⊂{1,…,d} is a collection of independent geometrically distributed random 
variables with parameters (1 − pI) such that pI only depends on |I| . Moreover, the 
associated extended chronometer H⌈X⌉ is a random walk with infinitely divisible 
i.i.d. jumps Ji ∼ HX

1
.

Example 3.4  (From min- to max-id) Consider an exchangeable min-id sequence X 
with associated chronometer HX and a continuous strictly decreasing transforma-
tion f with its corresponding inverse f −1 . Lemma 2.5 shows that Y(f ) ∶= f (X) is an 
exchangeable max-id sequence. According to de Finetti’s Theorem there exists a 
random distribution function F(f ) such that

for an i.i.d. sequence of Uniform(0, 1) distributed random variables (Ui)i∈ℕ . Noting 
that

ℙ
(
f (X1) > t1,… , f (Xd) > td

)
= ℙ

(
X1 > f↼(t1),… ,Xd > f↼(td)

)
.

H
⌈X⌉
t = HX

⌊t⌋ =

�
HX

0
+

⌊t⌋�
i=1

Ji

�
�{t≥0}

(X1,… ,Xd) ∼
(
inf{EI ∣ i ∈ I}

)
1≤i≤d,

Y(f ) ∼
(
inf{t ∈ ℝ ∣ F

(f )
t ≥ Ui}

)
i∈ℕ
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yields that 
(
F
(f )
t

)
t∈ℝ

∼
(
exp

(
− limz↘t H

X

f−1(z)

))
t∈ℝ

. Therefore,

where (Ei)i∈ℕ is an i.i.d. sequence of unit exponential random variables.

3.2 � The exponent measure of an exchangeable min‑id sequence satisfying (◊) 
is a mixture of product probability measures

We present an analogue of de Finetti’s Theorem for exponent measures of exchange-
able min-id sequences satisfying (◊).

First, we need to introduce some notation. For any distribution function G of a ran-
dom variable on (−∞,∞] , define ℙG as the probability measure associated with the 
distribution function G. Furthermore, ⊗d

i=1
ℙG denotes the probability measure on 

(−∞,∞]d associated with d ∈ ℕ ∪ {∞} i.i.d. copies of random variables with distribu-
tion ℙG . Define the space of distribution functions of random variables on (−∞,∞] as 
M

0

∞
∶=

{
G ∶ ℝ → [0, 1] ∣ G is distribution function of a random variable on (−∞,∞]

}
 . 

Let � denote a measure on M
0

∞
 and define a mixture of product probability measures by

Additionally, for any non-decreasing function b ∈ M0
∞

 , define �b,d as the expo-
nent measure of d ∈ ℕ ∪ {∞} i.i.d. copies of random variables on (−∞,∞] with 
survival function exp(−b(⋅)) whose existence is ensured by Proposition 2.9.

Theorem 3.5  (Exponent measure of exchangeable min-id sequence)

The following are equivalent: 
1.	 X is an exchangeable min-id sequence satisfying (◊).
2.	 There exists a unique function b ∈ M0

∞
 and a unique measure � on M

0

∞
 satisfying 

�
(
0D∞(ℝ)

)
= 0 and ∫

M
0

∞

G(t)𝛾(dG) < ∞ for all t ∈ ℝ such that the exponent meas-
ure of X is given by 

ℙ(Y
(f )

1
≤ t1,… , Y

(f )

d
≤ td) = ℙ

(
X1 ≥ f −1(t1),… ,Xd ≥ f −1(td)

)

= lim
z↘t

ℙ
(
X1 > f −1(z1),… ,Xd > f −1(zd)

)
= lim

z↘t
𝔼

[
exp

(
−

d∑
i=1

HX

f−1(zi)

)]

= 𝔼

[
exp

(
−

d∑
i=1

lim
zi↘ti

HX

f−1(zi)

)]

Y(f ) ∼

(
inf

{
t ∈ ℝ

|||| − log

(
1 − exp

(
− lim

z↘t
HX

f−1(zi)

))
≥ Ei

})

i∈ℕ

,

(4)𝜇𝛾 ,d(⋅) ∶= ∫M
0

∞

⊗d
i=1

ℙG(⋅) 𝛾(dG).

�(A) = �b,∞(A) + �� ,∞(A)
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 for every A ∈ B(Eℕ

∞
).

Moreover, the Lévy measure and drift of the extended chronometer associated 
with X are given by �(A) = �({G ∈ M

0

∞
∣ G = 1 − exp(−x(⋅)) for some x ∈ A}) for 

every A ∈ B(D∞(ℝ)) and b(t) = �b,1([−∞, t]).

Proof  The proof can be found in Appendix 1.	�  ◻

Recall that a min-id sequence has exponent measure supported on A
⟂ ∶={

x ∈ ℝ
ℕ

∣ x
i
= ∞ for all but one i ∈ ℕ

}
 if and only if it is an i.i.d. sequence. Theo-

rem 3.5 yields a decomposition of the global exponent measure � into �b + �� , where 
�b ∶= �b,∞ is supported on the set A⟂ and �� ∶= �� ,∞ . Therefore, X ∼ min{X(1),X(2)} , 
where X(1) is an i.i.d. sequence with exponent measure �b and X(2) is an exchange-
able min-id sequence with exponent measure �� . This raises the question whether 
the decomposition from Theorem 3.5 separates � into an independence part �b and a 
dependence part �� , which would be a desired feature for modeling purposes. Math-
ematically this translates to �b and �� being singular.

If �� does not have mass on A⟂ , then X(2) does not contain an independent 
sequence, i.e. X(2) cannot be further decomposed into the minimum of a non-trivial 
i.i.d. sequence and an exchangeable min-id sequence. On the level of the associated 
extended chronometer this would correspond to the fact that exponent measures �� 
associated to driftless extended chronometers do not put mass on A⟂ . Indeed, the 
next corollary shows that �� never puts mass on A⟂ , which implies that the decom-
position of � into �b and �� separates dependence from independence.

Corollary 3.6  (Decomposition of an exponent measure into dependence and inde- 
pendence)

Let X denote the exchangeable min-id sequence associated to the nnnd id-process 
H = b + H̃ , where b denotes the drift of H and H̃ denotes the driftless random com-
ponent of H. Let 𝜇H̃ denote the exponent measure associated to H̃ . Then 𝜇𝛾 = 𝜇H̃ and 
the exponent measure � of X is given by � = �b + �� , where �b and �� are singular.

Proof  Note that ℙ
G

�
(−∞,∞)

�∏
i∈ℕ ℙG

({∞}) = 0 for all G ∈ M
0

∞
 , since limt→∞ G(t) > 0 

for all 0D∞(ℝ) ≠ G ∈ M
0

∞
 . Thus,

Thus, �b and �� are singular.	�  ◻

Remark 4  (Non-separability of dependence and independence for finite dimensional 
margins) It is educational to observe that �b,d and �� ,d are singular for a fixed d ∈ ℕ 
if and only if � is concentrated on the set {G ∈ M

0

∞
∣ limt→∞ G(t) = 1} , since

𝜇𝛾

(
A⟂

)
= �M

0

∞

∑
i∈ℕ

(
⊗k∈ℕℙG

)(
{xi < ∞ and xj = ∞ for all j ≠ i}

)
𝛾(dG)

= �M
0

∞

∑
i∈ℕ

ℙG

(
(−∞,∞)

)(∏
j∈ℕ

ℙG({∞})

)
𝛾(dG) = 0
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Therefore, �b,d and �� ,d usually do not separate dependence from independence, 
meaning that X(2)

d
∼ min

{
X
(2,⟂)

d
,X

(2,̸⟂)

d

}
∼ exp

(
−�� ,d

(
(⋅,∞]∁

))
 , where X(2,⟂)

d
 has 

components which are d i.i.d. copies of a non-trivial random variable and X(2,̸⟂)

d
 

denotes a non-trivial min-id random vector. Intuitively, this may be interpreted as 
follows: the finite dimensional exponent measure �� ,d smears around independence 
and this effect can only be distinguished from independence in the limit.

Remark 5  (Dependence structure of exchangeable min-id sequences) (Mai and 
Scherer 2014,  Lemma 4.4) shows that exchangeable min-stable sequences admit 
positive �u

2
 if and only if the exchangeable min-stable sequence is given by the 

comonotonic sequence X = (X̄, X̄,…) , where X̄ ∈ ℝ is some univariate random var-
iable. Therefore, exchangeable min-stable sequences satisfy �u

2
∈ {0, 1} and �u

2
= 1 

implies X = (X̄, X̄,…) , which raises the question whether the same result holds for 
exchangeable min-id sequences.

The question can be answered by the following example: Define an exchangeable 
min-id sequence via the extended chronometer (Ht)t∈ℝ = − log

(
1 − Γt

)
 , where (Γt)t∈ℝ 

denotes a stochastically continuous Dirichlet process, see Ferguson (1973). The Dir-
ichlet process naturally appears in Bayesian statistics when the distribution function 
(Γt)t∈ℝ of an i.i.d. sequence is viewed as the random quantity of interest. The distribu-
tion of the Dirichlet process is then specified as the prior distribution on the space of 
distribution functions, which arises under the assumption that 

(∫
A1
dΓ,… , ∫

Ad
dΓ

)
 fol-

lows a Dirichlet distribution for every d ∈ ℕ and every measurable disjoint partition (
Ai

)
1≤i≤d of ℝ . The Dirichlet process is particularly convenient in Bayesian statistics, 

since its posterior distribution is again a (non-stochastically continuous) Dirichlet 
process.

The authors of Ferguson (1974), Doksum (1974) have shown that H is infinitely 
divisible, which implies that the associated exchangeable sequence X is min-id. 
Moreover, Mai et al. (2015) show that the upper and lower bivariate tail dependence 
coefficients �u

2
 and �l

2
 of X can take any value in (0, 1). Thus, exchangeable min-

id sequences can exhibit arbitrary positive bivariate upper and lower tail depend-
ence, which shows that the dependence structure of exchangeable min-id sequences 
is much richer than the dependence structure of exchangeable min-stable sequences.

To verify that �u
2
= 1 does not imply X = (X̄, X̄,…) when X is an exchangeable 

min-id sequence it is easy to see that every extended chronometer with finite Lévy 
measure concentrated on the set {x ∈ M0

∞
∣ x(t) < ∞, limt→∞ x(t) = ∞} yields an 

exchangeable min-id sequence X which satisfies �u
2
= 1 but not X = (X̄, X̄,…).

𝜇𝛾 ,d

(
∪1≤i≤d{xi < ∞ and xj = ∞ for all j ≠ i}

)

=
∑
1≤i≤d �M

0

∞

ℙG

(
(−∞,∞)

)(
ℙG({∞})

)d−1
𝛾(dG)

= d �M
0

∞

(
lim
t→∞

G(t)
)(

1 − lim
t→∞

G(t)
)d−1

𝛾(dG).
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3.3 � Characterization of general exchangeable min‑id sequences

Even though we have mentioned that studying min-id distributions satisfying Condi-
tion (◊) is not a loss of generality, we feel the need to translate the results of The-
orems  3.1 and  3.5 to arbitrary exchangeable min-id sequences on [−∞,∞]ℕ . The 
appearance of the following corollary is slightly more technical than that of Theo-
rems 3.1 and 3.5, which is due to the subtleties in the definition of a survival func-
tion of random vectors in [−∞,∞]d and explains why we preferred to develop the 
preliminary results under Conditions (◊) and (◊�).

Corollary 3.7  (Characterization of general exchangeable min-id sequences)

Assume that ℙ(X = −∞) < 1 . Then, the following are equivalent: 
1.	 X ∈ ℝ

ℕ is an exchangeable min-id sequence.
2.	 There exists � = (�,�,…) ∈ (−∞,∞]ℕ such that 

 where inf � =∶ � , (Ei)i∈ℕ is a sequence of i.i.d. unit exponential random varia-
bles independent of a unique extended chronometer (Ht)t∈(−∞,�) ∈ D∞((−∞,�)) 
satisfying 

(a)	 ℙ(Ht = 0) = 1 for all t < sup
{
x ∈ ℝ | ℙ(X1 ≤ x) = 0

}
=∶ w,

(b)	 The Lévy measure � of H is supported on 

(c)	 H has real-valued drift b ∈ M� ∩ D((−∞,�)).

3.	 There exists � = (�,�,…) ∈ (−∞,∞]ℕ and an exchangeable Radon measure � 
on Eℕ

�
 such that 

 where {xi,∞] is interpreted as (xi,∞] if xi > −∞ and {−∞,∞] is interpreted as 
[−∞,∞] . Moreover, for all A ∈ B

(
Eℕ

�

)
 , we have 

where b is a unique nnnd càdlàg function and �  is a unique measure 

 satisfying 

(Xi)i∈ℕ ∼
(
inf{t ∈ (−∞,�) ∣ Ht ≥ Ei}

)
i∈ℕ

,

M� ∶= {x ∈ D
∞((−∞,�)) ∣ x is nnnd and x(t) = 0 for all t < w},

ℙ
(
(Xi1

,… ,Xid
) ∈ ×d

i=1
{xi,�]

)

=

{
exp

(
− 𝜇

({
y ∈ Eℕ

�
∣ (yi1 ,… , yid ) ∈

(
×d
i=1

{xi,∞]
)∁}))

x < �

0 otherwise
,

𝜇(A) = 𝜇b(A) + ∫M�

⊗i∈ℕℙG(A)𝛾(dG),

M� ∶=
{
G ∶ (−∞,�) → [0, 1] ∣ G distr. fct. of random variable on [w,�]

}
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The relation of � and � is given by

Proof  The proof of Proposition 2.16 shows that the Lévy measure of an nnnd càdlàg 
id-process is concentrated on nnnd càdlàg functions. The rest of the proof is a com-
bination of Theorems 3.1, 3.5, and Lemma 2.5.

A version of Corollary 3.7 for exchangeable max-id sequences can be easily 
deduced from Lemma 2.5 and Example 3.4.

4 � Established families unified under the present umbrella

In this section we present several important examples of exchangeable min-id 
sequences. Moreover, we investigate the dependence structure of exchangeable min-
id sequences and characterize extendible min-id random vectors with finite expo-
nent measure.

4.1 � Independence and comonotonicity

Corollary 3.7 shows that the random sequence X ∈ [−∞,∞]ℕ with i.i.d. components 
distributed according to the survival function exp(−b(⋅)) corresponds to the determinis-
tic process Ht = b(t) . The exponent measure of X is given by � = �b.

Consider the comonotonic case X = (X̄, X̄,…) , where the random variable X̄ ∈ ℝ 
satisfies ℙ

(
X̄ = −∞

)
< 1 . The corresponding driftless extended chronometer H is 

given by 
(
Ht

)
t∈(−∞,�)

=
(
∞�{X̄≤t}

)
t∈(−∞,�)

 . The Lévy measure � of H is supported on

Moreover, for t < �,

Therefore,

𝛾(0
D∞(ℝ)) = 0 and ∫

M�

G(t)𝛾(dG) < ∞ for all t ∈ (−∞,�).

�(A) = �
({

x ∈ M𝓁 ∣
(
1 − exp(−x(⋅))

)
∈ A

})
for every A ∈ B

(
M𝓁

)
.

{
x ∈ D∞((−∞,𝓁)) ∣ x(⋅) = ∞�{⋅≥a} for some a ∈ (−∞,𝓁)

}
.

𝜈
(
{∞�{⋅≥a} ∣ a ∈ (−∞, t]}

)
= − log

(
ℙ(X̄ > t)

)
.

𝜇
(
(t,∞]∁

)
= ∫M�

(
1 − exp

(
−
∑
i∈ℕ

x(ti)

))
𝜈(dx) = − log

(
ℙ
(
X̄ > max

i∈ℕ
ti
))

= − log
(
ℙ(X > t)

)
.
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4.2 � Exogenous shock models / additive processes

Mai et al. (2016), Sloot (2020) prove that extendible exogenous shock models consti-
tute a proper subclass of extendible min-id distributions. Fix d ∈ ℕ and define a family 
of independent random variables 

(
𝜏I
)
I⊂{1,…,d}

∈ [0,∞)2
d . Moreover, let the distribu-

tion of �I be continuous and solely dependent on |I| , i.e. the cardinality of the subset I of 
{1,… , d} . Then the d-dimensional random vector

is exchangeable and interpreted as an exogenous shock model. The random vari-
able �I models the arrival time of an exogenous shock destroying all components I 
and Xi equals the first time point at which component i is affected by some shock. 
Exchangeability boils down to our assumption that the shock arrival time distribu-
tions only depend on the number of components affected by the respective shocks. 
Thus, the model is parametrized by d distribution functions, since there are d dif-
ferent “shock sizes”. If we let d → ∞ in this construction, Kolmogorov’s extension 
theorem guarantees the existence of an exchangeable sequence X ∈ (0,∞)ℕ with the 
just described d-dimensional marginal distributions. Mai et al. (2016), Sloot (2020) 
prove that the associated extended chronometer is a stochastically continuous càdlàg 
process with independent increments. Such processes are known as (possibly killed) 
additive subordinators, see Sato (1999), Bertoin (1999) for a detailed treatment. The 
corresponding Lévy measure � of H is supported on the class of one-step functions 
{u�{s≤⋅} ∣ s ∈ (0,∞), u ∈ (0,∞]} , see Rosiński (2018). Assuming that the extended 
chronometer is driftless, this implies that the associated exponent measure � is an 
infinite mixture of (probability) distributions in the set

where �s denotes the Dirac measure at s.
An important subclass of exogenous shock models is the class of Marshall–Olkin 

distributions. It is obtained by restricting the distribution of �I in (5) to exponential dis-
tributions. Furthermore, Mai (2010) shows that the class of extended chronometers cor-
responding to extendible Marshall–Olkin distributions is precisely the class of killed 
Lévy subordinators. Killed Lévy subordinators (Ht)t∈ℝ can be characterized as the class 
of extended chronometers with stationary and independent increments, which satisfy 
H0 = 0 and have an independent exponential killing rate, see Bertoin (1999) for more 
details. Example 2.23 in Rosiński (2018) shows that the Lévy measure of a killed Lévy 
subordinator H is the image measure of the map

on M0
∞

 , where � denotes the Lebesgue measure and � denotes the Lévy measure of 
the infinitely divisible random variable H1 . The drift of H is given by b(t) = b(1)t , 
where b(1) ≥ 0 denotes the drift of H1.

(5)(Xi)1≤i≤d ∼
(

min
i∈I⊂{1,…,d}

𝜏I

)

1≤i≤d

{
⊗i∈ℕ

(
(1 − exp(−u))𝛿s + exp(−u)𝛿∞

)
∣ u ∈ (0,∞], s ∈ (0,∞)

}
,

(6)f ∶ ([0,∞) × (0,∞];B((0,∞) × (0,∞]);𝜆 ⊗ 𝜐) → M0
∞
, (s, u) ↦ u�{s≤⋅}
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In comparison to Mai et al. (2016), Sloot (2020), our framework allows for some addi-
tional flexibility, since we neither assume that H is indexed by [0,∞) , nor stochastically 
continuous, nor that limt→∞ Ht = ∞ . More precisely, we allow for non-continuously 
distributed failure times on [−∞,∞] instead of continuously distributed failure times 
on (0,∞) . An important observation in this regard is that the behavior of the stochastic 
model (5) under monotone, componentwise transformations of the Xi is not necessarily 
well-behaved in the framework of Mai et al. (2016), Sloot (2020). For instance, if H is a 
Lévy subordinator, a componentwise transformation of the Xi corresponds to a change 
from Ht to Hf (t) , which is no longer a Lévy subordinator unless f is linear with f (0) = 0 . 
In contrast, Corollary 3.2 constitutes that under the more general umbrella of id-processes 
such marginal transformations are well-behaved.

As a final note of caution we remark that non-decreasing càdlàg processes with inde-
pendent increments are not necessarily infinitely divisible. More precisely, our frame-
work includes all càdlàg processes with independent id increments, meaning that if (
lims↗t(Ht − Hs)

)
t∈ℝ

 is a collection of independent and id random variables then H is 
id. Thus, our framework does not incorporate all non-decreasing càdlàg processes with 
independent increments, but only extended chronometers with independent increments.

4.3 � A common framework for extreme‑value copulas and (reciprocal) 
Archimedean copulas

We consider a pair (�, �) of a Radon measure � on [0,∞) and a probability measure 
� on {G ∣ G is a distribution function of a random variable on [0,∞]} ⊂ M

0

∞
 with 

�
(
0D∞(ℝ)

)
= 0 . Define the measure ��,� on M

0

∞
 via

Moreover, assume that ��,� satisfies

Theorem 3.5 implies that

defines a valid global exponent measure on Eℕ

∞
 . The following proposition provides 

a series representation of the associated non-decreasing id-process.

Proposition 4.1  (X and H associated with ��,�)

A series representation of the id-process H, associated with the exponent measure 
��,� in (7), is given by

��,�(A) ∶= ∫
∞

0

�
(
{G ∶ G(s⋅) ∈ A}

)
�(ds).

�M
0

∞

G(t) 𝛾𝜅,𝜌(dG) = �M
0

∞
�

∞

0

G
(
t

s

)
𝜅(ds)𝜌(dG) < ∞ for all t ≥ 0.

(7)𝜇𝜅,𝜌 ∶= ∫ ⊗i∈ℕℙG 𝛾𝜅,𝜌(dG)
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where N ∶=
∑

k≥1 �(Sk ,Gk)
 denotes a Poisson random measure on [0,∞) ×M

0

∞
 with 

mean measure 𝜅 ⊗ 𝜌 . The survival function of the associated exchangeable min-id 
sequence X is given by

where Z = (Z1, Z2,…) denotes an exchangeable sequence of random variables with 
associated random distribution function G ∼ �.

Proof  The proof can be found in Appendix 1.	�  ◻

We find it educational to remark that the sequences (Sk)k∈ℕ and (Gk)k∈ℕ are inde-
pendent and that (Gk)k∈ℕ is i.i.d. drawn from � and Sk ∼ f↼(�1 +…+ �k) , where (�k) 
are i.i.d. unit exponential and f↼(x) ∶= inf{t ≥ 0 ∣ f (t) ≥ x} denotes the generalized 
inverse of the function f (t) ∶= �([0, t]).

Three prominent examples for the choice of the pair (�, �) can be found in the 
literature.

4.3.1 � Exchangeable min‑stable sequences

Choosing �(ds) = ds yields

By (Kopp and Molchanov 2018, Theorem 4.2), this defines the exponent measure 
of a driftless strong-idt process. This means that H satisfies H0 = 0 and

where 
(
H(i)

)
i∈ℕ

 are i.i.d. copies of H. The associated Lévy measure � is given by

Equation (8) simplifies to

(Ht)t≥0 =
(∑

k≥1
− log

(
1 − Gk

(
t

Sk

)))

t≥0
,

(8)ℙ(X > t) = exp

(
−𝔼

[
𝜅

([
0,max

i∈ℕ

ti

Zi

])])
,

��,�(A) = ∫
∞

0

�({G ∶ G(s⋅) ∈ A})ds.

(
Ht

)
t≥0 ∼

(
n∑
i=1

H
(i)
t

n

)

t≥0
for all n ∈ ℕ,

�(A) = ��,�
({

G ∣ G = 1 − exp (−x(⋅)) for some x ∈ A
})

.

(9)ℙ(X > t) = exp

(
−𝔼

[
max
i≥1

ti

Zi

])
,
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which is a well known representation of the stable tail dependence function of an 
exchangeable min-stable sequence, see de Haan (1984). A result of Mai (2020) 
states that the probability law of Y = (1∕Z1, 1∕Z2,…) becomes unique, if we  
additionally postulate that � is concentrated on distribution functions G satisfy-
ing ∫

(0,∞]
s−1 dG(s) = 1 . Survival functions of the form (9) are called min-stable  

multivariate exponential, since they imply X ∼ n mini=1,…,n{X
(i)} , where n ∈ ℕ is 

arbitrary and X(i) denote independent copies of X . The min-stability property plays 
a fundamental role in multivariate extreme-value theory, since these are the only 
possible limiting distributions of componentwise minima of i.i.d. random vectors, 
after appropriate componentwise normalization, see Resnick (2007). Under the nor-
malizing assumption �[1∕Z1] = 1 , Mai (2020) shows that the presented construc-
tion of the function �(t) = �[maxi≥1 ti∕Zi] in (9) is general enough to comprise all 
possible stable tail dependence functions associated with exchangeable min-stable 
sequences. In other words, by (Mai and Scherer 2014,  Theorem  5.3), all driftless 
nnnd strong-idt processes necessarily admit a series representation as in Proposi-
tion 4.1, where Sk ∼ �1 +…+ �k for an i.i.d. sequence of unit exponential random 
variables (�i)i∈ℕ and �(ds) = ds . However, it should be noted that not all finite-
dimensional exchangeable min-stable random vectors can be obtained by this con-
struction, since some exchangeable min-stable random vectors cannot be embedded 
into an exchangeable sequence (Mai and Scherer 2017, Example 3.2).

Regarding related examples from the literature let us mention �-idt processes, see 
Davydov et  al. (2008), Hakassou and Ouknine (2012), aggregate self-similar pro-
cesses, see Iglói and Barczy (2012), Barczy et  al. (2015), and translatively stable 
processes, see Hakassou and Ouknine (2013). All these processes are strong-idt pro-
cesses up to scaling and time change, which implies their infinite divisibility. As we 
have seen in Corollary 3.2 a deterministic time change of a non-decreasing strong-
idt process solely changes the one dimensional marginal distribution of X , whereas 
a scaling of the strong-idt process corresponds to a scaling of the drift and a linear 
change of variables of the Lévy measure of the strong-idt process. Therefore, the 
nnnd instances of these processes uniquely correspond to an exchangeable min-id 
sequence X and their Lévy measure can be obtained as the image measure of the 
Lévy measure of a strong-idt process.

4.3.2 � Reciprocal Archimedean copulas

Choose � such that �({0}) = 0 , �([0,∞)) = ∞ , and 𝜌 = 𝛿Ĝ , with Ĝ being the unit 
Fréchet distribution function Ĝ(t) = exp(−1∕t)�{t>0} . This implies that

The associated exchangeable min-id sequence X has survival function

𝛾𝜅,𝜌(A) = ∫
∞

0

�{Ĝ(s⋅)∈A}𝜅(ds) = 𝜅

({
s
|||| exp

(
−
1

s⋅

)
�{⋅>0} ∈ A

})
.

(10)ℙ(X > t) = exp

(
−∫

∞

0

1 −
∏
i∈ℕ

(
1 − exp

(
−
s

ti

))
𝜅(ds)

)
,
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which is exactly the representation of an exchangeable sequence with reciprocal 
Archimedean copula as introduced in Genest et  al. (2018). Concretely, with the 
notation �(t) = ∫ ∞

0
exp(−tx)�(dx) , we may rewrite

where for (u1, u2,…) ∈ [0, 1]ℕ the function

is the distribution function of an exchangeable sequence U and each component 
Ui ∼ exp(−�(1∕Xi)) is uniformly distributed on [0,1]. The associated finite-dimensional  
margins of C� are called reciprocal Archimedean copulas, where the nomenclature is  
justified by some striking analogies with the concept of Archimedean copulas. For 
example, the Galambos copula is obtained by choosing

for some parameter 𝜃 > 0 , which yields �(t) = t−1∕� . We refer the interested reader 
to Genest et al. (2018) for more details about reciprocal Archimedean copulas.

4.3.3 � Archimedean copulas with log‑completely monotone generator

Let �M denote the univariate Lévy measure of an infinitely divisible random vari-
able M ∈ (0,∞) . Define � by �(A) ∶= ∫ ∞

0
�A(1∕s)�M(ds) for all A ∈ B([0,∞)) and 

choose 𝜌 = 𝛿Ĝ , where Ĝ(t) = (1 − exp(−t))�{t>0} denotes the distribution function of 
the unit exponential distribution. This implies that

and the associated exchangeable min-id sequence has survival function

ℙ(X > t) = C𝜙

(
e−𝜙(1∕t1), e−𝜙(1∕t2),…

)
,

C𝜙(u1, u2,…) ∶=

∏
A ⊂ ℕ,

∣ A ∣< ∞ odd

exp
�
−𝜙

�∑
k∈A 𝜙

−1
�
− log(uk)

���

∏
A ⊂ ℕ,

∣ A ∣< ∞ even

exp
�
−𝜙

�∑
k∈A 𝜙

−1
�
− log(uk)

��� ,

�(ds) =
1

� Γ(1 + 1∕�)
s

1

�
−1

ds

��,�(A) = ∫
∞

0

�{1−exp(−⋅∕s)∈A}�M(ds)

ℙ(X > t) = exp

(
−𝔼

[
𝜅

([
0,max

i∈ℕ

t
i

Z
i

])])

= exp

(
− ∫

∞

0 ∫(0,∞)ℕ
1 − �{z

i
>st

i
∀ i∈ℕ}

⊗
i∈ℕ ℙ1−exp(−⋅)(d(z1, z2,…))𝜐

M
(ds)

)

= exp

(
−∫

∞

0

1 − exp

(
−s

∑
i∈ℕ

t
i

)
𝜐
M
(ds)

)
,
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which shows that X is associated to the nnnd id-process (Mt)t≥0 with unique path 
Lévy measure

Moreover, X has marginal survival function �(t) ∶= �
[
exp(−tM)

]
 and survival 

copula

which is an exchangeable Archimedean copula with completely monotone generator 
� according to Marshall and Olkin (1988), McNeil and Nešlehová (2009).

The definition of � in this context implies that � is even log-completely mono-
tone, which means that it has the special representation �(t) = exp(−g(t)) , where 
g ∶ [0,∞) → [0,∞); g(t) = ∫ ∞

0
1 − exp(st)�M(ds) is called the Laplace exponent of 

� and g is a Bernstein function, i.e. d
dt
g(t) is completely monotone. For example, the 

Gumbel copula, which is the only max-stable Archimedean copula, corresponds to 
M ∼ �-stable with �(t) = exp (−t�), � ∈ (0, 1] , and g(t) = t� . The Lévy–Khintchine 
Theorem tells us that all log-completely monotone functions 𝜓̃ which satisfy 
𝜓̃(0) = 1 are of the form − log (𝜓̃(t)) = bt + ∫ ∞

0
1 − exp(−st)𝜐M(ds) for some b > 0 

and a Lévy measure �M of a non-negative infinitely divisible random variable M. 
Therefore, to obtain an exchangeable min-id sequence with exchangeable Archime-
dean survival copula with log-completely monotone generator 𝜓̃ , we consider the 
exchangeable min-id sequence X(𝜓̃) ∈ (0,∞)ℕ corresponding to the extended chro-
nometer 

(
H

(𝜓̃)
t

)
t≥0 ∶= (bt +Mt)t≥0 . We obtain that X(𝜓̃) has survival function

which shows that X(𝜓̃) has marginal survival function 𝜓̃ and Archimedean survival 
copula C𝜓̃.

It is worth noting that the Archimedean copula C𝜓̃ itself is max-id, since decreas-
ing transformations of min-id sequences are max-id by Lemma 2.5. On the other 
hand, it is easy to see that the assumption of an Archimedean copula C𝜓̃ being max-
id implies that 𝜓̃ corresponds to the Laplace transform of a non-negative infinitely-
divisible random variable. Thus, an Archimedean copula on [0, 1]ℕ is max-id if and 
only if 𝜓̃ is log-completely monotone.5

�
(
{x ∈ D∞(ℝ) ∣ x(t) = a t 1{t≥0}, a ∈ A}

)
∶= �M(A).

C� (u) = �

(∑
i∈ℕ

�−1(ui)

)
, u ∈ [0, 1]ℕ,

ℙ

(
X
(𝜓̃)

1
> t1,X

(𝜓̃)

2
> t2,…

)
= 𝔼

[
exp

(
−(M + b)

∑
i∈ℕ

ti

)]

= C𝜓̃

(
𝜓̃(t1), 𝜓̃(t2),…

)
, t ∈ [0,∞)ℕ,

5  Note that max-id Archimedean copulas are not the only positive lower orthant dependent (PLOD) 
Archimedean copulas. The set of completely monotone generators, a superset of log-completely mono-
tone generators, corresponds to the class of extendible Archimedean copulas that are PLOD. Thus, a 
PLOD Archimedean copula is not necessarily max-id.
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4.4 � Subordination of Lévy processes by extended chronometers

Barndorff-Nielsen et  al. (2006) prove that a Lévy process subordinated by an 
extended chronometer remains infinitely divisible. Formally, let (Lt)t≥0 denote a 
Lévy process and let (Ht)t≥0 denote an extended chronometer. If L is a subordina-
tor (Yt)t≥0 ∶= (LHt

)t≥0 defines an extended chronometer by (Barndorff-Nielsen et al. 
2006, Theorem 7.1). It can be shown that Y has independent increments if H has 
independent increments and that Y is strong-idt if H is strong-idt.

Except for the quite simple example of (reciprocal) Archimedean copulas we 
have only seen examples of (killed) strong-idt and (killed) additive subordinators. 
An example of a càdlàg id-process which is (usually) neither strong-idt nor has inde-
pendent increments is given by the non-negative solution to the Ornstein–Uhlenbeck 
type stochastic differential equation

where 𝜆 > 0 and (Zt)t≥0 is a Lévy process satisfying

for all t ≥ 0 , where �Z denotes the Lévy measure of Z. In case (Zt)t≥0 is a Lévy subor-
dinator, V is the square of the stochastic volatility process of the Barndorff-
Nielsen–Shepard model, see Barndorff-Nielsen and Shepard (2001), Carr et  al. 
(2003). Moreover, the process Ht ∶= ∫ t

0
Vsds remains infinitely divisible (Barndorff-

Nielsen et al. 2006, Sect. 4). Ht is known as the integrated or cumulated volatility up 
to time t, which is important when analyzing the realized variance or the quadratic 
variation of an option pricing model, see Kömm (2016). For instance, Duan and Yeh 
(2010) model the CBOE Volatility Index at time t via const. + 1

t
�Q

[∫ t

0
Vsds

]
 , where 

�Q denotes the expectation w.r.t. some risk neutral probability measure Q. Interest-
ingly, we can generalize the ideas of Barndorff-Nielsen and Shepard (2001) and 
(Mansuy 2005, Example (2.2)) to id-processes to obtain that

defines an extended chronometer for every non-negative càdlàg id-process V and 
Radon measure � on [0,∞) , which is usually neither strong-idt nor has independent 
increments.

Proposition 4.2  (Extended chronometer via integration over non-negative id-process)

Let (Vs)s≥0 ∈ D([0,∞)) denote a non-negative càdlàg id-process with drift bV and 
Lévy measure �V . Moreover, let � denote a measure on [0,∞) such that 𝜅([0, t]) < ∞ 
for all t ≥ 0 . Then,

(11)dVt = −�Vtdt + dZ�t,

∫D∞
(
[0,∞)

)max{0, log(|x(t)|)}𝜈Z(dx) < ∞

(
H

(�)
t

)
t≥0 ∶=

(
�

t

0

Vs�(ds)

)

t≥0
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defines an extended chronometer with Lévy measure

for all A ∈ B(D∞([0,∞))) and drift b(�)(⋅) = ∫ ⋅
0
bV (s)�(ds).

Proof  The proof can be found in Appendix 1.	�  ◻

If we subordinate a Lévy subordinator L by H(�) we can obtain an explicit represen-
tation of the survival function of the associated exchangeable min-id sequence X(L,V ,�) . 
Let �(a) ∶= − log

(
�
[
exp

(
−aL1

)])
 denote the Laplace exponent of L. The min-id 

sequence X(L,V ,�) associated with 
(
L
H

(�)
t

)
t≥0 has the following survival function:

where x(�)t ∶= ∫ t

0
x(s)�(ds) . Thus, if �V and � are known, we obtain an explicit ana-

lytic representation of the survival function of X(L,V ,�) . In particular this is the case if 
we start with “simple” processes L and V. E.g. choosing V as a Cox–Ingersoll–Ross 
process, see Cox et al. (1985) yields an explicit representation of the surival func-
tion of X(L,V ,�) , since the Lévy measure of such processes can be obtained by an 
application of Proposition 4.2 to a scaled and time changed squared Bessel process, 
see (Rosiński 2018, Example 2.24) for more details on the Lévy measure of squared 
Bessel processes.

Generally, this approach yields a flexible way to combine two “simple” extended 
chronometers to an extended chronometer which is usually neither strong-idt nor 
additive.

(H(�)
t )t≥0 ∶=

(
�

t

0

Vs�(ds)

)

t≥0

𝜈𝜅(A) ∶= 𝜈V

({
x ∈ D∞

(
[0,∞)

) |||| ∫
.

0

x(s)𝜅(ds) ∈ A, ∫
∞

0

x(s)𝜅(ds) > 0

})

ℙ
(
X1 > t1,… ,Xd > td

)
= 𝔼

[
exp

(
−

d∑
i=1

L
H

(𝜅)
ti

)]

= 𝔼

[
𝔼

[
exp

(
−

d∑
i=1

L
H

(𝜅)
ti

)||||H
]]

= 𝔼

[
− exp

(
d∑
i=1

H
(𝜅)
ti

(
𝜓(d − i + 1) − 𝜓(d − i)

))]

= exp

(
−

d∑
i=1

(
𝜓(d − i + 1) − 𝜓(d − i)

)
b
(𝜅)
ti

− ∫M�

1 − exp

(
−

d∑
i=1

(
𝜓(d − i + 1) − 𝜓(d − i)

)
x
(𝜅)
ti

)
𝜈V (dx)

)
,
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4.5 � Finite exponent measures

Let X ∈ (−∞,∞]ℕ denote a min-id sequence with 0 < ℙ(X = ∞) < 1 . The asso-
ciated global exponent measure � is a finite measure on Eℕ

∞
 with total mass 

c ∶= − log (ℙ(X = ∞)) . (Resnick 2007,  Example 5.6) shows that there exists a 
sequence of i.i.d. sequences (Z(i))i∈ℕ ∈ (−∞,∞]ℕ×ℕ with Z(1) ∼ Z ∼ 𝜇∕c =∶ ℙ̃ 
and an independent Poisson random variable N with mean c such that 
min1≤i≤N Z(i) ∼ X . This can be easily verified by

Obviously, X is exchangeable if and only if Z is exchangeable. Then, Theo-
rem 3.5 tells us that � can be decomposed into � = �b + �� . Note that the exist-
ence of some t ∈ ℝ such that

is equivalent to b ≠ 0D∞(ℝ) . Therefore, if � is finite, �b = 0 and the associated id-
process H is driftless. Thus, � is given by 𝜇 = 𝜇𝛾 = ∫

M
0

∞

⊗i∈ℕℙG𝛾(dG) . Further-
more, Theorem  3.5 implies the existence of a unique Lévy measure � such that 
�(A) = �({G ∈ M

0

∞
∣ G = 1 − exp(−x(⋅)) for some x ∈ A}) . An application of the 

monotone convergence theorem shows that

i.e. � is finite as well. Now, Example 2.15 implies that the associated (driftless) id-
process H is given by

where (hi)i∈ℕ are i.i.d. stochastic processes on M0
∞

 with distribution �∕c and N is an 
independent Poisson random variable with mean c. Therefore, if � is finite, X (resp. 
H) admits a simple construction method via Poisson maxima (resp. sums) of i.i.d. 
objects.

The correspondence of the exchangeable sequence Z with the finite expo-
nent measure � seems to imply that finite extendible exponent measures �d 
can be represented via extendible random vectors. However, as the following 

ℙ

(
min
1≤i≤N Z

(i) > x

)
= exp (−c)

∑
i∈ℕ

ciℙ̃(Z > x)i

i!
= exp

(
−c

(
1 − ℙ̃

(
(x,∞]

)))

= exp
(
−𝜇

(
(x,∞]∁

))
= ℙ(X > x).

�b,n

⎛⎜⎜⎜⎝

�
( t,… , t
⏟⏟⏟
n times

),∞
�∁
⎞
⎟⎟⎟⎠
= nb(t)

n→∞
�������������������→ ∞

c = �
(
Eℕ

∞

)
= lim

t→∞
�
(
(t,∞]∁

)
= lim

t→∞�M0
∞

1 −
∏
i∈ℕ

exp (−x(t))�(dx)

=
x≠0 �

(
M0

∞

)
,

H ∼

N∑
i=1

hi,
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paragraphs show, this is not always possible, since the global exponent measure 
� can have infinite mass even if �d is finite for every d ∈ ℕ . To see this, assume 
that Xd ∈ (−∞,∞]d is exchangeable and min-id with finite exponent measure 
�d . Moreover, assume that Xd is extendible to an exchangeable min-id sequence 
X , which w.l.o.g. satisfies Condition (◊) . This ensures the existence of a global 
exponent measure � such that �d satisfies the properties in Proposition 2.9.

(Resnick 2007, Example 5.6) and Proposition 2.8 imply that there exists a Pois-
son random variable Nd with mean cd = �d

(
Ed
∞

)
 and i.i.d. exchangeable random 

vectors (Z(i)

d
)i∈ℕ ∈ (−∞,∞]d with distribution �d∕cd such that Xd ∼ min1≤i≤Nd

Z
(i)

d
 . 

Therefore, �d can always be represented by a random vector Z(1)

d
∼ Zd ∼ �d∕cd 

and a constant cd.
In the elaborations above we have seen that a finite global � implies that Zd 

is extendible to a sequence Z . Since we know that �d is extendible to a global � , 
it would be tempting to assume that Zd is also extendible to a sequence Z , inde-
pendent of the total mass of � . However, as the following calculations show, � 
being finite is also a necessary condition for Zd being extendible.

We begin with an analysis of �d . Independently of the total mass of � it is 
always possible to decompose �d into �b,d + �� ,d by Theorem 3.5. Therefore, we 
can define the constant ad = �� ,d(E

d
∞
)∕cd = 1 − �b,d(E

d
∞
)∕cd ∈ [0, 1] . Now, �d can 

be generated as follows: 

1.	 Draw a Bernoulli random variable B with success probability ad.
2.	 If B = 1 , draw a random variable Y(d,1) with distribution �� ,d(⋅)∕(cdad).
3.	 If B = 0 , draw a random variable Y(d,2) with distribution �b,d(⋅)∕

(
cd(1 − ad)

)
 . Note 

that Y(d,2) is supported on {x ∈ (−∞,∞]d ∣ xi = ∞ for all but one i}.
4.	 �d(A) = cdℙ(BY

(d,1) + (1 − B)Y(d,2) ∈ A).

Taking a closer look at Y(d,2) reveals that Y(d,2) can never be embedded in a random 
vector on (−∞,∞]d

� , d′ > d , if we do not allow for mass on ×d
i=1

{∞} . Unfortu-
nately, even if we allow for mass on ×d

i=1
{∞} , an embedding of Y(d,2) in a sequence 

requires �d({∞}d) = ∞ and �(Eℕ

∞
) = ∞ , since �b,d(E

d
∞
) = d limt→∞ b(t)

d→∞
�������������������→ ∞ if 

and only if b ≠ 0D∞(ℝ) . Therefore, Y(d,2) can never be extended to a sequence and 
the random variable Zd = Y(d,1) + Y(d,2) can only be extendible if ad = 1 . Note that 
the necessity of ad = 1 is not based on the fact that Y(d,2) is not extendible, but 
rather on the fact that the presence of Y(d,2) implies that the only possible exten-
sion of the distribution of Y(d,2) is an infinite measure. Intuitively, this resembles 
the fact that X cannot have finite exponent measure � if it can be represented as 
the minimum of a non-trivial i.i.d. sequence (represented by Y(d,2) ) and an inde-
pendent exchangeable min-id sequence (represented by Y(d,1)).

It remains to investigate under which circumstances Y(d,1) is extendible. Observe 
that in case ad = 1 the extendibility of Y(d,1) to a sequence Y(1) implies that � is 
finite. Therefore, � being finite is not only a sufficient but also necessary criterion 
for the extendibility of Zd . Note that the distribution of the first d components of 
Y(1) may not be exactly �d∕cd due to the removal of ×d

i=1
{∞} and the possibility of 
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Y
(1)

1
= … = Y

(1)

d
= ∞ . However, the distribution of Zd can be obtained as the con-

ditional distribution of (Y (1)

1
,… , Y

(1)

d
) given (Y (1)

1
,… , Y

(1)

d
) ≠ ∞.

Our discussion is summarized in the following paragraph. Let (Ei)i∈ℕ denote a 
sequence of unit exponential random variables. The global extensions � of �d can 
be classified into two possible cases: 

1.	 Finite � : In this case Zd is extendible to an exchangeable sequence Z and the 
global exponent measure � is in one-to-one correspondence with the tuple 
(Z,ℙ(X = ∞)) . It is easy to see that the associated extended chronometer H is 
driftless with ℙ

(
H = 0D∞(ℝ)

)
> 0.

2.	 Infinite � : In this case Zd is not extendible. Nevertheless, we know that �d is 
extendible to a global � . Thus, ℙ(X = ∞) = exp

(
−�

(
Eℕ

∞

))
= 0 and the associ-

ated extended chronometer H satisfies 

 Additionally, the drift of H satisfies limt→∞ b(t) < ∞ , since limt→∞ b(t) = ∞ 
would require that ℙ(Xd = ∞) ≤ limt→∞ exp(−db(t)) = 0 . Moreover, we can 
deduce that 

 Therefore, H is almost surely non-zero and bounded with positive probability.

4.6 � Approximation of extended chronometer via extended chronometers 
with finite Lévy measure

Example 2.15 shows that a driftless extended chronometer H with finite Lévy measure 
� may be simulated via finitely many i.i.d. copies 

(
hi
)
i∈ℕ

 of a stochastic process 
h ∼ �(⋅)∕�(D∞(ℝ)) . H may then be represented as (Ht)t∈ℝ ∼

�∑Ñ

i=1
hi(t)

�
t∈ℝ

 , where 
Ñ denotes a Poisson random variable with mean �(D∞(ℝ)).

In case � is an infinite measure, Proposition 2.16 implies that there exists a Pois-
son random measure N ∶=

∑
i∈ℕ �hi on {x ∈ D∞(ℝ) ∣ x nnnd} with intensity measure 

� such that

defines an nnnd id-process with Lévy measure � by (Rosiński 2018,  Proposition 
2.10). Clearly, for every s ∈ ℝ and 𝜖 > 0 , the extended chronometer defined via

ℙ
(
H = 0D∞(ℝ)

)
= ℙ

({
Ei > lim

t→∞
Ht for all i ∈ ℕ

})
= ℙ(X = ∞) = 0.

0 < ℙ(Xd = ∞) = ℙ

({
Ei > lim

t→∞
Ht for all 1 ≤ i ≤ d

})

≤ ℙ

(
0 < lim

t→∞
Ht < ∞

)
.

(
Ht

)
t∈ℝ

∶=

(∑
i∈ℕ

hi(t)

)

t∈ℝ
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has finite Lévy measure 𝜈s,𝜖 ∶= 𝜈(⋅ ∩ {x(s) > 𝜖}) . This implies that the nnnd id- 
process

has Lévy measure 𝜈s,0 ∶= 𝜈(⋅ ∩ {x(s) > 0}) , which is generally an infinite measure 
that is not equal to � . However, it is important to observe that

Thus, if one is only interested in the path of the extended chronometer H up to 
time s, one may simulate H(s,�) for some small 𝜖 > 0 to obtain an approximation of (
Ht

)
t≤s.6

The just described approximation procedure of an extended chronometer is well-known 
when H is an additive process. In this case, a Poisson random measure with intensity �s,� 
may be represented as 

(
Ai�{⋅≥Ui}

)
1≤i≤Ñ , where Ñ denotes a Poisson random variable with 

mean �s,�(D∞(ℝ)) and 
(
(Ui,Ai)

)
1≤i≤Ñ denotes a finite Poisson random measure on 

[0, s] × (�,∞] . This implies that 
�
H

(s,𝜖)
t

�
t∈ℝ

=
�∑

1≤i≤Ñ Ai�{t≥Ui}

�
t∈ℝ

=
�∑

Ui≤t Ai

�
t∈ℝ

 , 
which is a well-known representation of a (inhomogeneous) compound Poisson process. 
However, note that nnnd id-processes with independent increments are the only nnnd id-
processes where H(s,�) can be represented as a (inhomogeneous) compound Poisson pro-
cesses. This is due to the fact that (inhomogeneous) compound Poisson processes have 
independent increments and the independent increments property is preserved under the 
weak convergence of the finite dimensional margins of H(s,�) when � → 0.

The exchangeable min-id sequences X(s,�) , X(s) , and X associated to H(s,�) , H(s) , and 
H obviously satisfy ℙ

(
X(s,𝜖) > t

) ≥ ℙ
(
X(s,0) > t

) ≥ ℙ(X > t) for all t ∈ [−∞,∞)ℕ . 
Moreover, ℙ

(
X(s,0) > t

)
= ℙ(X > t) for all t ∈ [−∞, s]ℕ , since 

(
H(s)

)
t≤s =

(
Ht

)
t≤s . 

Therefore, one may approximate the exchangeable min-id sequence X associated to 
the extended chronometer H via a simulation of X(s,�) associated to the extended chro-
nometer H(s,�) with finite Lévy measure.

�
H

(s,𝜖)
t

�
t∈ℝ

∶=

⎛
⎜⎜⎜⎜⎜⎝

�
i ∈ ℕ

hi(s) > 𝜖

hi(t)

⎞
⎟⎟⎟⎟⎟⎠
t∈ℝ

,

�
H

(s)
t

�
t∈ℝ

∶=
�
lim
𝜖→0

H
(s,𝜖)
t

�
t∈ℝ

=

⎛
⎜⎜⎜⎜⎜⎝

�
i ∈ ℕ

hi(s) > 0

hi(t)

⎞
⎟⎟⎟⎟⎟⎠
t∈ℝ

(
Ht

)
t≤s =

(
H

(s)
t

)
t≤s.

6  A similar reasoning also allows to approximate a general id-process by id-processes with finite Lévy 
measure.
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4.7 � Overview of established families under the present umbrella

Figure 3 provides a graphical overview of the established families of exchangeable 
min-id sequences introduced in this paper.

Section  4.2 establishes that the class of extendible exogenous shock models is 
contained in the class of exchangeable min-id sequences. Since extendible exogenous  
shock models are associated to the class of nnnd additive processes according to  
Mai et al. (2016) and Sloot (2020), we deduce that the class of extendible Marshall– 
Olkin distributions is contained in the class of extendible exogenous shock models 
as the class of extendible Marshall–Olkin distributions corresponds to the class of 
nnnd Lévy processes according to Mai (2010). Furthermore, the class of exchange-
able Sato-frailty sequences is included in the class of extendible exogenous shock 
models as it is associated to the class of (additive) Sato-subordinators as shown in 
Mai et al. (2017). Moreover, the class of exchangeable Sato-frailty sequences only 
intersects with the class of Marshall–Olkin distributions when the associated Sato-
subordinator is the �-stable subordinator, which is the only Sato-subordinator that is 
also a Lévy process according to (Sato 1999, Remark 16.2).

Section  4.3.1 shows that the class of exchangeable min-stable sequences with 
exponential margins is contained in the class of exchangeable min-id sequences 
and Mai and Scherer (2014) show that it corresponds to the class of nnnd strong-
idt processes. Since the class of nnnd Lévy processes is precisely the intersection 

Fig. 3   Overview of established exchangeable min-id sequences under the present umbrella
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of the classes of nnnd additive processes and nnnd strong-idt processes, the class 
of extendible Marshall–Olkin distributions is precisely the intersection of the class 
of extendible exogenous shock models and the class of exchangeable min-stable 
sequences with exponential margins. Furthermore, Genest et  al. (2018) show that 
the Galambos copula is the only copula which belongs both to the class of copulas 
of exchangeable min-stable sequences (also called extreme value copulas) and to 
the class of reciprocal Archimedean copulas. Similarly, Genest and Rivest (1989) 
show that the Gumbel copula is the only copula which belongs both to the class of 
extreme value copulas and to the class of Archimedean copulas.

The class of extendible exogenous shock models does not intersect with the class 
of Archimedean copulas with log-completely monotone generator except for inde-
pendence and comonotonicity, since the nnnd id-process associated to an Archi-
medean copula with log-completely monotone generator cannot have independent 
increments according to Sect. 4.3.3. A similar statement applies to reciprocal Archi-
medean copulas according to Sect. 4.3.2. Comparing the Lévy measures associated 
to reciprocal Archimedean copulas and Archimedean copulas with log-completely 
monotone generator, we obtain that their intersection can only consist of independ-
ence and comonotonicity as well.

5 � Conclusion

We have shown that every exchangeable min-id sequence is in one-to-one corre-
spondence with an nnnd infinitely divisible càdlàg process. Doing so, we have uni-
fied the work of Mai (2010), Mai and Scherer (2013, 2014), Mai et al. (2016, 2017), 
Sloot (2020) under one common umbrella. Furthermore, we have shown that the 
exponent measure of an exchangeable min-id sequence associated to a driftless nnnd 
id-process is a mixture of product probability measures. Therefore, de Finetti’s The-
orem is extended to exchangeable exponent measures. Several important examples 
of exchangeable min-id sequences have been presented and the existing literature 
has been embedded into our framework. A summary of these correspondences is 
given in Figs. 1, 2, and 3. As a byproduct we have shown that càdlàg id-processes 
can be represented as the sum of arbitrarily many i.i.d. càdlàg processes and that the 
Lévy measure of nnnd càdlàg id-processes is concentrated on nnnd càdlàg functions.

There are various well known subclasses of nnnd infinitely divisible stochastic pro-
cesses, such as nnnd additive processes  and strong-idt processes. However, it remains 
an interesting open problem to find nnnd infinitely divisible stochastic processes out-
side of these subclasses, which can be conveniently described analytically. Moreo-
ver, even if one would have an analytical characterization of such nnnd id-processes 
at hand, their simulation would probably only be feasible in an approximate fashion, 
similar to the approach discussed in Sect.  4.6. Nonetheless, even their approximate 
simulation would most likely still pose a quite challenging problem due to possible 
path dependencies of the involved stochastic processes. Thus, the simulation of the 
associated exchangeable min-id sequence remains challenging is such situations.

To circumvent this problem, Brück (2022) provides a simulation algorithm for the 
class of real-valued continuous max-id-processes, which ensures that a user-specified 
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number of locations of the max-id-process are simulated exactly. Since every min-id 
sequence X may be transformed into a continuous max-id-process 1∕X with index 
set ℕ , the results of Brück (2022) may be applied to simulate an exchangeable min-
id sequence X . The key ingredient of the proposed simulation algorithm in Brück 
(2022) is the exponent measure of X (or 1∕X ), which can be easily constructed 
according to (4) or deduced from the Lévy measure of the associated nnnd id-process 
by Theorem 3.5. Thus, the results of this paper allow to construct exchangeable min-
id sequences in terms of their associated exponent or Lévy measures, while Brück 
(2022) provides a method for the exact simulation of their d-dimensional margins.

Appendix 1

Proofs

Lemma 1.1  The following properties are valid: 

1.	 �(x) ∈ A ⇔ x ∈ �−1(A) and �−1(x) ∈ A ⇔ x ∈ �(A).
2.	 �(�−1(A)) = A.
3.	 �(A) = {�(x) ∣ x ∈ A} = {y ∣ �−1(y) ∈ A} = {y ∣ y ∈ �(A)}.
4.	 ℝ̄d ⧵ 𝜋(A) = 𝜋(ℝ̄d ⧵ A) and �(B) ⧵ �(A) = �(B ⧵ A).
5.	 �(∪i∈ℕAi) = ∪i∈ℕ�(Ai).
6.	 Let E

�
 be the support of an exchangeable exponent measure. Obviously, 

E
�
= �(E

�
) and �

(
(x,∞]∁

)
= (�(x),−∞]∁.

Proof  (Proof of Lemma 1.1)

1. + 2. Obvious.
3. Follows from 1.
4. ℝ̄d ⧵ 𝜋(A) = {x ∣ x ∉ 𝜋(A)} = {x ∣ 𝜋−1(x) ∉ A} = {x ∣ 𝜋−1(x) ∈ ℝ̄d ⧵ A} = 𝜋(ℝ̄d ⧵ A) . The sec-
ond assertion follows analogously.
5. �(∪i∈ℕAi) = {x ∣ �−1(x) ∈ Ai for some i ∈ ℕ} = {x ∣ x ∈ �(Ai) for some i ∈ ℕ} = ∪i∈ℕ�(Ai).
6. Since E

�
 is of the form [−∞,�] ⧵ � with � = (�,… ,�) we get �

(
(x,∞]∁

)
=

�
(
E
�
⧵ (x,∞]

)
= {�(y) ∣ y ∈ E

�
, y

i
≤ x

i
for some i} = {y ∣ y ∈ E

�
, y

i
≤ �(x

i
)

for some i} = (�(x),∞]∁. 	�  ◻

Proof of Corollary 2.3

Proof 

“⇐ ” Assume that H is stochastically continuous. From the property that H is non-
decreasing and càdlàg with lims↗t Hs = Ht in probability, we obtain that lims↗t Hs = Ht 
almost surely. This is due to the fact that there is at least one sequence (sn)n∈ℕ with sn ↗ t 
such that limn→∞ Hsn

= Ht almost surely, since lims↗t Hs = Ht in probability. This 
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immediately implies that every (s�
n
)n∈ℕ with s′

n
↗ t satisfies limn→∞ Hs�

n
= Ht almost 

surely due to the non-decreasingness of H. Therefore, the Laplace transforms of 
lims↗t Hs and Ht coincide, which implies that 

 
Thus, the distribution of X is continuous.
“⇒ ” Assume that X follows a continuous distribution. Seeking a contradic-
tion, we assume that H is not stochastically continuous, i.e. there exists t ∈ ℝ 
and 𝛿, 𝜖 > 0 such that lims↗t ℙ(Ht − Hs > 𝛿) > 𝜖 . Note that the limit exists, 
because H is increasing. Now, there exist 0 < q1 < q1 + 𝛿 < q2 and 𝜂 > 0 such 
that lims↗t ℙ(Hs < q1,Ht ≥ q2) > 𝜂 . This implies that 

 which is a contradiction. Therefore, H must be stochastically continuous.
	�  ◻

Proof of Proposition 2.8

Proof  Throughout the proof we frequently use properties of the permutation opera-
tor � derived in Lemma 1.1.

“⇐ ” The exchangeability of �d translates into the exchangeability of the sur-
vival function F of Xd , which in turn implies that Xd is exchangeable. We pro-
vide the precise reasoning behind this argument, since we need to carry out the 
same steps for finite exponent measures in “ ⇒ ”. For ease of notation we write 
ℙ(Xd ∈ A) =∶ ℙ(A) . Let 

 denote the collection of ℙ-exchangeable sets. We show that A is a Dynkin 
system containing a Π-stable generator of B((−∞,∞]d) , which implies that 
B((−∞,∞]d) ⊂ A . Obviously, the sets (−∞,∞]d and ∅ are both included in A . 
Now consider some arbitrary set A ∈ A . We get 

 
Therefore, (−∞,∞]d ⧵ A ∈ A . Next, consider (Ai)i∈ℕ ∈ A with Ai ∩ Aj = � for 
i ≠ j . Using that every measure is continuous from below we obtain 

ℙ(X1 ≥ t) = lim
s↗t

ℙ(X1 > s) = lim
s↗t

𝔼
[
exp(−Hs)

]
= 𝔼

[
exp(−Ht)

]
= ℙ(X1 > t).

ℙ
(
X1 = t

) ≥ ℙ

(
E1 ∈ (q1, q2), lim

s↗t
Hs < q1,Ht ≥ q2

)
> 𝜂ℙ

(
E1 ∈ (q1, q2)

)
> 0,

A ∶=
{
A ∈ B

(
(−∞,∞]d

)
∣ ℙ(�(A)) = ℙ(A) ∀ permutations � on {1,… , d}

}

(12)
ℙ
(
(−∞,∞]d ⧵ A

)
= 1 − ℙ(A) = 1 − ℙ(�(A)) = ℙ

(
(−∞,∞]d ⧵ �(A)

)

= ℙ
(
�((−∞,∞]d ⧵ A)

)
.
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 which establishes that A is a Dynkin system. From the exchangeability of �d we 
deduce that 

 
Therefore, A contains a Π-stable generator of B((−∞,∞]d) . This implies that 
ℙ(A) = ℙ(�(A)) for all A ∈ B((−∞,∞]d) and all permutations � on {1,… , d} , 
which proves that F is the survival function of an exchangeable random vector.
“⇒ ” If �d is a finite measure, the proof is simply a repetition of the arguments 
in “ ⇐ ” to show that 

 is a Dynkin system containing a Π-stable generator of B
(
Ed
∞

)
 , since 

 
Therefore, we may focus on the case �d(E

d
∞
) = ∞ . In this case the sets with 

infinite measure have non-empty intersection with an open neighborhood of 
∞ implying �d to be �-finite. Note that a similar reasoning as in (12) cannot 
be applied here, since �d

(
Ed
∞

)
= ∞ , which is why we have to resort to a dif-

ferent reasoning to prove that �d is exchangeable. Instead, our goal is to show 
that �d is the pointwise limit of a sequence of exchangeable finite measures. 
The following paragraphs are dedicated to the proof of this statement. Let 
(cn)n∈ℕ ∈ ℝ , cn < ∞ with cn ↗ ∞ . Define 

 
We claim that �(n) is exchangeable and that �d = limn→∞ �(n) . Note, that �(n) is an 
increasing sequence of measures with 𝜇(n)(Ed

∞
) = 𝜇d

(
{(cn,∞]d}∁

)
< ∞ . An applica-

tion of (Doob 2012, Chapter 10, Theorem 1a) yields that 𝜇̃ ∶= limn→∞ 𝜇(n) is a meas-
ure. The construction of �(n) and the continuity from below of any measure show that 

ℙ
(
∪i∈ℕAi

)
= lim

n→∞
ℙ
(
∪n
i=1

Ai

)
= lim

n→∞
ℙ
(
∪n
i=1

�(Ai)
)

= ℙ
(
∪i∈ℕ�(Ai)

)
= ℙ

(
�
(
∪i∈ℕAi

))
,

ℙ
(
(x,∞]

)
= F(x) = exp

(
−�

(
(x,∞]∁

))
= exp

(
−�

(
�
(
(x,∞]∁

)))

= exp
(
−�

(
(�(x),∞]∁

))
= F(�(x)) = ℙ

(
(�(x),∞]

)

= ℙ
(
�((x,∞])

)
.

A ∶=
{
A ∈ B

(
Ed
∞

)
∣ �d(�(A)) = �d(A) ∀ permutations � on {1,… , d}

}

�
(
(x,∞]∁

)
= − log

(
ℙ
(
(x,∞]

))
= − log

(
ℙ
(
�((x,∞])

))

= �
(
(�(x),∞]∁

)
= �

(
�
(
(x,∞]∁

))
.

�(n)(⋅) ∶= �d

(
⋅ ∩

{
(cn,∞]d

}∁
)
.

𝜇̃(A) = lim
n→∞

𝜇d

(
A ∩

{
(cn,∞]d

}∁
)
= 𝜇d

(⋃
n∈ℕ

{
A ∩

{
(cn,∞]d

}∁
})

= 𝜇d(A)
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 for every A ∈ B(Ed
∞
) , since ∞ ∉ Ed

∞
 . Therefore 𝜇d = 𝜇̃ = limn→∞ 𝜇(n) is a point-

wise limit of measures. Next, we show that each �(n) is exchangeable. Consider 
the collection of �(n)-exchangeable sets 

 
Similar to “ ⇐ ”, we can show that A�(n) contains Ed

∞
 , ∅ and countable unions of 

pairwise disjoint sets from A�(n) . Moreover, for any A ∈ A�(n) , we have 

 since 𝜇(n)(A) < ∞ . Thus, A�(n) is a Dynkin system. Moreover, for every a ∈ ℝd 
with a ≤ cn , we have 

 by the exchangeability of Xd . One can invoke a similar argument for all a ∈ ℝd 
which do not satisfy a ≤ cn to obtain �(n)

(
(a,∞]∁

)
= �(n)

(
�
(
(a,∞]∁

))
 . An inclu-

sion-exclusion principle argument yields that A�(n) contains a Π-stable generator 
of B(Ed

∞
) . Therefore, �(n) is exchangeable. Combining the arguments above we 

have 

 for any A ∈ B(Ed
∞
) , which shows that �d is exchangeable.

	�  ◻

Proof of Corollary 2.10

Proof  We calculate

A�(n) ∶=
{
A ∈ B(Ed

∞
) ∣ �(n)(�(A)) = �(n)(A) ∀ permutations � on {1,… , d}

}
.

�(n)(Ed
∞
⧵ A) = �(n)(Ed

∞
) − �(n)(A) = �(n)(Ed

∞
) − �(n)(�(A))

= �(n)(Ed
∞
⧵ �(A)) = �(n)(�(Ed

∞
⧵ A)),

�(n)
(
(a,∞]∁

)
= �

(
(a,∞]∁

)
= �

(
(�(a),∞]∁

)

= �(n)
(
(�(a),∞]∁

)
= �(n)

(
�
(
(a,∞]∁

))

�d(A) = lim
n→∞

�(n)(A) = lim
n→∞

�(n)(�(A)) = �d(�(A)),

ℙ(X1 > t ∣ X2 > t,… ,Xd� > t) =
ℙ(X1 > t,X2 > t,… ,Xd� > t)

ℙ(X2 > t,… ,Xd� > t)

=
exp

(
−𝜇d�

(
(t,∞]∁

))

exp
(
−𝜇d�−1

(
(t,∞]∁

))

=
exp

(
− 𝜇d�

(
(t,∞]∁

))

exp
(
−𝜇d�

(
[−∞,∞] ×

(
(t,∞]d�−1

)∁))

= exp
(
−𝜇d�

(
[−∞, t] × (t,∞]d

�−1
))
.
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Now, �u
d′

 is obtained by letting t tend to ∞ . The relation �u
d�+1

≥ �u
d�

 is obvious by 
Proposition 2.9 and

Proof of Lemma 2.13

Proof  Fix m ∈ ℕ . We know that H ∼
∑m

i=1
H(i,1∕m) for some i.i.d. processes 

H(i,1∕m) ∈ ℝ
ℝ

 . W.l.o.g. assume that H is defined on a probability space (Ω,F,ℙ) and (
H(i,1∕m)

)
1≤i≤m is a random element in 

((
ℝ

ℝ
)m

, F̃, ℙ̃
)
 , where F̃  denotes the product 

�-algebra generated by the finite dimensional projections. The idea of the proof is as 
follows:

Prove that the càdlàg property of H transfers to H(i,1∕m) if we restrict the processes 
to rational time indices and define i.i.d. càdlàg processes H̃(i,1∕m) as rational time 
limits of H(i,1∕m).

W.l.o.g. we can choose the metric 𝜏(x, y) = | arctan (x) − arctan (y)| to define dis-
tances (and thus continuity) on ℝ . Denote the (measurable) set of ℚ-right-continuous 
paths of H(i,1∕m) as

We have

It remains to prove (⋆) . Therefore, assume that (⋆) does not hold. In this case 
there exists q̄ ∈ ℚ such that H(i,1∕m) is not right-continuous at q̄ with positive prob-
ability, i.e. there exists q̄ ∈ ℚ and 𝜖 > 0 such that

exp
(
−�d�

(
[−∞, t] × (t,∞]d

�−1
))

= exp
(
−�d

(
[−∞, t] × (t,∞]d

�−1 × (−∞,∞]d−d
�))

.

Arc,i ∶= {w ∣ wi is right-continuous as a function on ℚ}.

ℙ̃
�
Arc,i

�
= ℙ̃

⎛
⎜⎜⎜⎜⎜⎝

�
q∈ℚ

�
𝜖 > 0

𝜖 ∈ ℚ

�
𝛿 > 0

𝛿 ∈ ℚ

�
q1 ∈ (q, q + 𝛿)

q1 ∈ ℚ

�
𝜔
���� 𝜏

�
𝜔i(q1),𝜔i(q)

�
< 𝜖

�
⎞
⎟⎟⎟⎟⎟⎠

(⋆)
= 1.

ℙ̃

⎛
⎜⎜⎜⎜⎜⎝

�
𝛿 > 0

𝛿 ∈ ℚ

�
q1 ∈ (q̄, q̄ + 𝛿)

q1 ∈ ℚ

�
𝜔
���� 𝜏

�
𝜔i(q1),𝜔i(q̄)

�
> 𝜖

�
⎞
⎟⎟⎟⎟⎟⎠

> 0,



1 3

Exchangeable min‑id sequences: Characterization, exponent…

which is equivalent to

Every fixed sequence (qn)n∈ℕ such that for all N ∈ ℕ there exists some n ≥ N 
with 𝜏(𝜔i(qn), 𝜔i(q̄)) > 𝜖 satisfies one of the following 4 cases: 

1.	 |𝜔i(q̄)| < ∞ and there exists some 𝜖 > 0 such that 𝜔i(qn) − 𝜔i(q̄) > 𝜖 for infinitely 
many n or

2.	 |𝜔i(q̄)| < ∞ and there exists some 𝜖 > 0 such that 𝜔i(qn) − 𝜔i(q̄) < −𝜖 for infi-
nitely many n or

3.	 𝜔i(q̄) = ∞ and 𝜔i(qn) < C for infinitely many n and some constant C ∈ ℝ or
4.	 𝜔i(q̄) = −∞ and 𝜔i(qn) > C for infinitely many n and some constant C ∈ ℝ.

Thus, there exists an 𝜖 > 0 or C > 0 such that either 

1.	

2.	

ℙ̃

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
(qn)n∈ℕ ∈ ℚℕ

qn > q̄

limn→∞ qn = q̄

�
N∈ℕ

�
n≥N

�
𝜔
���� 𝜏

�
𝜔i(qn),𝜔i(q̄)

�
> 𝜖

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

> 0.

ℙ̃

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�

(qn)n∈ℕ ∈ ℚℕ

qn > q̄

limn→∞ qn = q̄

�
N∈ℕ

�
n≥N

�
𝜔
���� 𝜔i(qn) − 𝜔i(q̄) > 𝜖, �𝜔i(q̄)� < ∞

�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

> 0 or

ℙ̃

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�

(q
n
)
n∈ℕ ∈ ℚℕ

q
n
> q̄

lim
n→∞ q

n
= q̄

�
N∈ℕ

�
n≥N

�
𝜔
���� 𝜔i

(q
n
) − 𝜔

i
(q̄) < −𝜖, �𝜔

i
(q̄)� < ∞

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

> 0 or
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3.	

4.	
W.l.o.g. we assume that the first assertion holds, since the other cases are treated 
similarly. The assertion implies that there exists a (fixed) sequence (q̄n)n∈ℕ with 
limn→∞ q̄n = q̄ such that

Since the �i are i.i.d. we obtain that

which is a contradiction. Therefore, (⋆) is valid and Arc ∶= ∩m
i=1

Arc,i satisfies 
ℙ̃
(
Arc

)
= 1.

Next, define a finally one-sided Cauchy sequence as a Cauchy sequence (qn)n∈ℕ for 
which there exists some N ∈ ℕ such that qn > limn→∞ qn or qn < limn→∞ qn for all 
n ≥ N . Denote the set of existing left and right limits of wi for finally one-sided ℚ - 
Cauchy sequences as

ℙ̃

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
(qn)n∈ℕ ∈ ℚℕ

qn > q̄

limn→∞ qn = q̄

�
N∈ℕ

�
n≥N

�
𝜔
���� 𝜔i(qn) < C, 𝜔i(q̄) = ∞

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

> 0 or

ℙ̃

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
(qn)n∈ℕ ∈ ℚℕ

qn > q̄

limn→∞ qn = q̄

�
N∈ℕ

�
n≥N

�
𝜔
���� 𝜔i(qn) > C, 𝜔i(q̄) = −∞

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

> 0.

ℙ̃

(⋂
N∈ℕ

⋃
n≥N

{
𝜔
|||| 𝜔i(q̄n) − 𝜔i(q̄) > 𝜖, |𝜔i(q̄)| < ∞

})
> 0.

0 = ℙ

(⋂
N∈ℕ

⋃
n≥N

{
Hq̄n

− Hq̄ > m𝜖, |Hq̄| < ∞

})

≥ ℙ̃

(⋂
N∈ℕ

⋃
n≥N

{
𝜔
|||| 𝜔1(q̄n) − 𝜔1(q̄) > 𝜖, |𝜔1(q̄)| < ∞

})m

> 0,
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Note that we explicitly allow for rational Cauchy sequences with irrational limit. 
Similar to the proof of ℙ

(
Arc,i

)
= 1 we can show that ℙ

(
AfC,i

)
= 1 , which implies 

that AfC ∶= ∩m
i=1

AfC,i satisfies ℙ̃
(
AfC

)
= 1.

Finally, define

which is measurable as the pointwise limit of measurable functions, if we can show 
that the limit exists and is independent of the chosen sequence. Therefore, choose two 
sequences 

(
q(1)
n

)
n∈ℕ

,
(
q(2)
n

)
n∈ℕ

∈ (ℚ ∩ (t,∞))ℕ with limit t ∈ ℝ . q(1)
n
, q(2)

n
> t for all 

n ∈ ℕ implies that both sequences are finally one-sided Cauchy sequences. Therefore, 
both limits limn→∞ �i

(
q(1)
n

)
�{Arc}

(�)�{AfC}
(�) and limn→∞ �i

(
q(2)
n

)
�{Arc}

(�)�{AfC}(�) 
exist. Moreover the combined sequence

is a finally one-sided Cauchy sequence. Therefore, the limit

exists as well and

Thus, the limit in Eq. (13) exists and is independent of the chosen sequences, 
which implies that 

(
H̃(i,1∕m)

)
1≤i≤m define valid stochastic processes. Observe that

Thus, H̃(i,1∕m) and H(i,1∕m) almost surely coincide on ℚ , which follows from the 
fact that �i is only considered to be non-zero on ℚ-right-continuous paths. We claim 
that H̃(i,1∕m) ∈ D∞(ℝ).

Firstly, we prove that H̃(i,1∕m)(𝜔) is right-continuous for all � ∈ Ω and 1 ≤ i ≤ m . 
To this purpose choose some strictly decreasing sequence (tn)n∈ℕ ∈ ℝℕ with 
limn→∞ tn = t and let 𝜖 > 0 be arbitrary. Choose tn < qn = qn(𝜖,𝜔) ∈ ℚ such that 
𝜏
(
H̃

(i,1∕m)
tn

, H̃
(i,1∕m)
qn

)
< 𝜖 and |tn − qn| < 1∕n , which is possible since H̃(i,1∕m)

tn
 is 

AfC,i ∶=
{
𝜔 ||

(
𝜔i(qn)

)
n∈ℕ

is a Cauchy sequence (w.r.t. 𝜏)

for all finally one-sided Cauchy sequences
(
qn
)
n∈ℕ

∈ ℚ
ℕ
}

=
⋂

(qn) ∈ ℚℕ

finally one-

sided Cauchy

⋂

𝜖 > 0

𝜖 ∈ ℚ

⋃
N∈ℕ

⋂
m,n≥N

{
𝜔|| 𝜏

(
𝜔i(qn),𝜔i(qm)

)
< 𝜖

}
.

(13)

H̃
(i,1∕m)
t (𝜔) ∶= lim

q → t

q ∈ ℚ

q > t

𝜔i(q)�{Arc}
(𝜔)�{AfC}

(𝜔),

(
q̃n
)
n∈ℕ

∶=

({
q(1)
n

n even

q(2)
n

n odd

)

n∈ℕ

lim
n→∞

𝜔i(q̃n)�{Arc}
(𝜔)�{AfC}

(𝜔)

lim
n→∞

�i

(
q(1)
n

)
�{Arc}

(�)�{AfC}
(�) = lim

n→∞
�i

(
q(2)
n

)
�{Arc}

(�)�{AfC}
(�).

(14)ℙ̃

(
H̃(i,1∕m)

q
(𝜔) = wi(q) = H(i,1∕m)

q
(𝜔) for all q ∈ ℚ

)
= 1.
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defined as the limit of a rational time evaluations of H(i,1∕m) . Since (qn)n∈ℕ is a finally 
one-sided Cauchy sequence with limit t there exists some N(�, �) ∈ ℕ such that for 
all n ≥ N we have that 𝜏

(
H̃

(i,1∕m)
qn

, H̃
(i,1∕m)
t

)
< 𝜖 . Therefore, for n ≥ N , we obtain

which yields that limn→∞ H̃
(i,1∕m)
tn

= H̃
(i,1∕m)
t  . Thus, H̃(i,1∕m) is right-continuous.

Secondly, we show that H̃(i,1∕m)(𝜔) has left limits for all � ∈ Ω and 1 ≤ i ≤ m . To see 
this choose some arbitrary t ∈ ℝ , 𝜖 > 0 and a sequence (tn)n∈ℕ ∈ (−∞, t)ℕ with limit t. 
Define qn(�,�) as some rational number in [tn, t) such that 𝜏

(
H̃

(i,1∕m)
tn

, H̃
(i,1∕m)
qn

)
< 𝜖 , 

which is possible since H̃(i,1∕m) is right-continuous. If n, m are large enough such that tn 
and tm are close to t we have that qn and qm are also close to t. Therefore, (qn)n∈ℕ is a 
finally one-sided Cauchy sequence. Thus, we can find an N(�, �) ∈ ℕ such that for all 
m, n ≥ N we have 𝜏

(
H̃

(i,1∕m)
qn

, H̃
(i,1∕m)
qm

)
< 𝜖 , which implies

Since 𝜖 > 0 was arbitrary we have shown that H̃(i,1∕m) has left limits for every �.
Obviously, 

(
H̃(i,1∕m)

)
1≤i≤m are i.i.d. as almost sure pointwise limits of i.i.d. objects. 

It remains to prove that H(1,1∕m) ∼ H̃(1,1∕m) . The characteristic functional of H(1,1∕m) , 
denoted as CFH(1,1∕m) (z, t) and the characteristic functional of H̃(1,1∕m) , denoted as 
CFH̃(1,1∕m) (z, t) , coincide for z ∈ ℝd and t ∈ ℚd by Eq. (14). For arbitrary z ∈ ℝd and 
t ∈ ℝd let CFH(z, t) denote the characteristic functional of H. We use the fact that H 
is right-continuous to obtain

where the second to last equality uses that H̃(1,1∕m) and H(1,1∕m) almost surely coin-
cide on ℚ and the last equality uses the fact that H̃(1,1∕m) is right-continuous. This 
proves that H(1,1∕m) ∼ H̃(1,1∕m) . 	�  ◻

𝜏
(
H̃

(i,1∕m)
t , H̃

(i,1∕m)
tn

) ≤ 𝜏
(
H̃

(i,1∕m)
t , H̃(i,1∕m)

qn

)
+ 𝜏

(
H̃(i,1∕m)

qn
, H̃

(i,1∕m)
tn

)
< 2𝜖,

𝜏
(
H̃

(i,1∕m)
tn

, H̃
(i,1∕m)
tm

) ≤ 𝜏
(
H̃

(i,1∕m)
tn

, H̃(i,1∕m)
qn

)
+ 𝜏

(
H̃

(i,1∕m)
tm

, H̃(i,1∕m)
qm

)

+ 𝜏
(
H̃(i,1∕m)

qn
, H̃(i,1∕m)

qm

)

< 3𝜖.

CFH(1,1∕m) (z, t) = CFH(z, t)
1

m = lim
s ↘ t

s ∈ ℚd

s > t

CFH(z, s)
1

m = lim
s ↘ t

s ∈ ℚd

s > t

CFH(1,1∕m) (z, s)

= lim
s ↘ t

s ∈ ℚd

s > t

𝔼ℙ̃

[
exp

(
d∑
j=1

izjH
(1,1∕m)
sj

)]
= lim

s ↘ t

s ∈ ℚd

s > t

𝔼ℙ̃

[
exp

(
d∑
j=1

izjH̃
(1,1∕m)
sj

)]

= CFH̃(1,1∕m) (z, t),
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Proof of Corollary 2.14

Proof  We use the same notation as in the proof of Lemma 2.13. Denote the set of ℚ- 
non-negative paths as

Furthermore, denote the set of ℚ-non-decreasing paths of as

By similar arguments as in the proof of Lemma 2.13 we obtain that

since intersections of countably many sets with probability 1 have probability 1. 
Next, define

Obviously, Ĥ(i,1∕m) is non-negative and non-decreasing. Similar to the proof of 
Lemma 2.13 we can show that the Laplace transforms of Ĥ(i,1∕m) and H(i,1∕m) coin-
cide and the claim follows.	� ◻

Proof of Proposition 2.16

Proof  Let b̃ and 𝜈̃ denote the drift and Lévy measure of H given by (Rosiński 
2018, Theorem 2.8). Note that 𝜈̃ is a measure on ℝ

ℝ equipped with the �-algebra 
generated by the finite dimensional projections, since Rosiński (2018) views id-
processes as processes in ℝℝ . There are two things that need to be shown: 

1.	 𝜈̃ can be restricted to a measure on M0
∞

.
2.	 The integral over 𝜈̃ in Eq. (3) can be defined without the compensating term ∑d

i=1
zix(ti) �{|x(ti)|<𝜖} and b ∈ M0

∞
∩ D(ℝ).

We start with the first statement. Similar to the proof of (Rosiński 2018, Theo-
rem 3.4) we can show that there exists an exact representation � of 𝜈̃ defined on

A≥0 ∶=
{
� ∣ �i(q) ≥ 0 for all q ∈ ℚ and 1 ≤ i ≤ m

}
.

A↗ ∶= {� ∣ �i(⋅) is non-decreasing on ℚ for all 1 ≤ i ≤ m}.

ℙ̃(A↗) = ℙ̃

⎛
⎜⎜⎜⎜⎜⎝

�
1≤i≤m

�
q1, q2 ∈ ℚ

q1 ≤ q2

�
𝜔 ∣ 𝜔i(q1) ≤ 𝜔i(q2)

�
⎞
⎟⎟⎟⎟⎟⎠

= 1 and

ℙ̃
�
A≥0

�
= ℙ̃

⎛
⎜⎜⎜⎝

�
1≤i≤m

�
q ∈ ℚ

�
𝜔 ∣ 𝜔i(q) ≥ 0

�⎞⎟⎟⎟⎠
= 1,

(15)Ĥ
(i,1∕m)
t (𝜔) ∶= H̃

(i,1∕m)
t (𝜔)�{A↗}(𝜔)�{A≥0}(𝜔).
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since C0 is an algebraic group under addition and a standard Borel space as a meas-
urable subset of a standard Borel space. For additional information on exact repre-
sentations of Lévy measures, see (Rosiński 2018, Definition 2.20). For our purposes 
it suffices to view an exact representation of a Lévy measure as a restriction of a 
Lévy measure to a smaller domain. To prove the first statement it suffices to show 
that � vanishes on the set

since C1 is measurable (in D∞(ℝ) ). In particular, M0
∞
= C0 ∩ C∁

1
.

For I = (t1,… , td) ∈ ℝd (w.l.o.g. t1 ≤ … ≤ td ) and A ∈ B

(
ℝ

d
)
 define

𝜈̃I(A) is defined analogously. Observe that 𝜈I(A) = 𝜈̃I(A) for all A ∈ B

(
ℝ

d
)
 by con-

struction. We show that

(Barndorff-Nielsen et al. 2006, Proposition 6.1) tells us that the Lévy measure 𝜈̃(t1,…,td)
 

of (Ht1
,… ,Htd

) is concentrated on the cone Kd ∶= {x ∈ ℝ
d
∣ 0 ≤ x1 ≤ … ≤ xd} , 

which implies that �(t1,…,td)
 is also concentrated on Kd . Now, assume that 

𝜈(C1) = 𝜈
(
{x ∈ D∞(ℝ) ∣ x is non-decreasing}∁

)
> 0 . Observe that

Therefore, there exist t̄1 < t̄2 with 𝜈
(
{x ∈ D∞(ℝ) ∣ x(t̄1) > x(t̄2)}

)
> 0 . By the con-

struction of � we get

which is a contradiction. Therefore, �(C1) = �
(
{x ∈ D

∞(ℝ) ∣ x is non-decreasing}∁
)

= 0 and � is concentrated on non-decreasing functions which satisfy limt→−∞ x(t) = 0 . 
Thus, � is concentrated on M0

∞
= C0 ∩ C∁

1
 , i.e.

C0 ∶=

{
x ∈ D∞(ℝ) || lim

t→−∞
x(t) = 0

}
,

C1 ∶={x ∈ D∞(ℝ) ∣ x is non-decreasing}∁,

�I(A) ∶= �
(
{x ∈ D∞(ℝ) ∣ (x(t1),… , x(td)) ∈ A}

)
.

�(C1) = �
(
{x ∈ D∞(ℝ) ∣ x is non-decreasing}∁

)
= 0.

{x ∈ D∞(ℝ) ∣ x is non-decreasing}∁ =
⋃

t1, t2 ∈ ℚ

t1 < t2

{x ∈ D∞(ℝ) ∣ x(t1) > x(t2)}.

𝜈
(
{x ∈ D∞(ℝ) ∣ x(t̄1) > x(t̄2)}

)
= 𝜈(t̄1,t̄2)

(
∪s∈ℚ (s,∞] × [−∞, s]

)

= 𝜈̃(t̄1,t̄2)
(
∪s∈ℚ (s,∞] × [−∞, s]

)
= 0,

�(A) = �(A ∩M0
∞
), ∀A ∈ B(D∞(ℝ)).
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Let us turn to the proof of the second statement. For every d ∈ ℕ and t ∈ ℝd we 
obtain a non-negative drift vector (b(t1),… , b(td)) from the d-dimensional Lévy–
Khintchine triplet of the non-negative random vector (Ht1

,… ,Htd
) with trunca-

tion function 0. Condition (◊�2) and (Barndorff-Nielsen et  al. 2006,  Proposition 
6.1) imply the existence of a unique non-decreasing finite drift b ∶ ℝ → [0,∞) . 
Right-continuity and limt→−∞ b(t) = 0 follow from the right-continuity of H and 
limt→−∞ Ht = 0 . Thus, b ∈ M0

∞
∩ D(ℝ).

Combining the above yields

for every z ∈ [0,∞)d, t ∈ ℝd.

Remark 6  (Implications for strong-idt processes) An id-process H is called strong-
idt, if

for all n ∈ ℕ , where 
(
H(i)

)
i∈ℕ

 denote i.i.d. copies of H. Such processes are studied, 
among others, in Kopp and Molchanov (2018), Mai (2020). Kopp and Molchanov 
(2018) study the Lévy measure and series representations of real-valued strong-idt 
processes without focus on non-decreasing paths. Mai (2020) refines these results 
in the special case of non-decreasing H, which might possibly also take the value 
∞ . However, Mai (2020) does not formally prove the extension to extended real-
valued processes, despite he uses the results of Kopp and Molchanov (2018). 
Proposition 2.16 fills this gap by formally justifying that the claimed extension is 
correct. Furthermore, whereas Kopp and Molchanov (2018) work on the space of 
càdlàg functions equipped with the Skorohod (J1) metric, Mai (2020) works with 
the Lévy metric defined for distribution functions. While it is known that the two 
metrics are not equivalent in general, one can actually prove that their induced Borel 
�-algebras on the space of non-decreasing paths coincide. Thus, implicitly both 
references indeed work with the same objects. In particular, (Mai 2020, Lemma 1) 
implicitly shows with a tedious and probabilistic proof that the Lévy measure of a 
non-decreasing strong-idt process is concentrated on non-decreasing paths. In this 
regard, Proposition  2.16 provides a more direct proof of this fact. Moreover, it is 
even more general, since it holds for arbitrary non-decreasing and non-negative id-
processes and not just strong-idt processes.

�

[
exp

(
−

d∑
i=1

ziHti

)]
= exp

(
−

d∑
i=1

zib(ti) + ∫M0
∞

(
exp

(
−

d∑
i=1

zix(ti)

)
− 1

)
�(dx)

)

(
Ht

)
t≥0 ∼

(
n∑
i=1

H
(i)
t

n

)

t≥0
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Proof of Theorem 3.1

Proof 

“⇒ ” Let n ∈ ℕ . Since X is min-id, there exist i.i.d. sequences (X(i,1∕n))1≤i≤n
∈ (−∞,∞]ℕ such that X ∼ min1≤i≤n X(i,1∕n) . First, we claim that the exchangeabil-
ity of X implies the exchangeability of X(1,1∕n) . Seeking a contradiction, we 
assume that X(1,1∕n) is not exchangeable. In this case, there exists {i1,… , id} ⊂ ℕ 
such that (X(1,1∕n)

1,i1
,… ,X

(1,1∕n)

1,id
) is not exchangeable. By similar arguments as in the 

proof of Proposition 2.8 there exist x ∈ ℝd and a permutation � on {1,… , d} such 
that ℙ(X(1,1∕n)

d
> x) ≠ ℙ(X

(1,1∕n)

d
> 𝜋(x)) . This yields 

 which is a contradiction. Therefore, X(1,1∕n) is exchangeable. Now, de Finet-
ti’s Theorem yields the existence of i.i.d. nnnd càdlàg processes 

(
H(i,1∕n)

)
1≤i≤n 

∈ D∞(ℝ) such that 

 where ((E(i)

j
)j∈ℕ)1≤i≤n are i.i.d. unit exponential independent of 

(
H(i,1∕n)

)
1≤i≤n . 

Obviously, limt→−∞ H
(i,1∕n)
t = 0 almost surely, since ℙ

(
X
(1∕n)

i,j
= −∞

)
> 0 other-

wise. Moreover, ℙ
(
H

(i,1∕n)
t = ∞

)
< 1 for all t ∈ ℝ , since � = ∞ . Therefore, 

H(i,1∕n) satisfies Condition (◊�) . It remains to show that H(1,1) =∶ H is infinitely 
divisible and unique. Let Fk denote the survival function of (X1,… ,Xk) and recall 
that 

(
X
(1,1∕n)

1
,… ,X

(1,1∕n)

k

)
∼ F

1∕n

k
 . Choose z ∈ ℕd and t ∈ ℝd , then 

ℙ(Xi1
> x1,… ,Xid

> xd) = ℙ

(
X
(1,1∕n)

i1
> x1,… ,X

(1,1∕n)

id
> xd

)n

≠ ℙ

(
X
(1,1∕n)

i1
> 𝜋(x)1,… ,X

(1,1∕n)

id
> 𝜋(x)d

)n

= ℙ
(
Xi1

> 𝜋(x)1,… ,Xid
> 𝜋(x)d

)
,

(
X
(i,1∕n)

j

)
j∈ℕ

∼ inf
{
t ∈ ℝ ∣ H

(i,1∕n)
t ≥ E

(i)
j

}
,

L(z, t) = �

�
exp

�
−

d�
j=1

zjHtj

��
= �

�
exp

�
−

d�
j=1

zj�
k=1

Htj

��

= F∑d
j=1 zj

(t1,… , t1
⏟⏞⏟⏞⏟
z1 times

,… , td ,… , td
⏟⏞⏟⏞⏟
zd times

)

=

�
F
1∕n∑d

j=1 zj

�n

(t1,… , t1
⏟⏞⏟⏞⏟
z1 times

,… , td ,… , td
⏟⏞⏟⏞⏟
zd times

)

= �

�
exp

�
−

d�
j=1

zj�
k=1

H
(1,1∕n)
tj

��n

= �

�
n�
i=1

exp

�
−

d�
j=1

zjH
(i,1∕n)
tj

��

= �

�
exp

�
−

d�
j=1

zj

n�
i=1

H
(i,1∕n)
tj

��
.
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 Using the fact that the Laplace transform of a non-negative random vector is 
uniquely determined by its values on ℕd , see Kleiber and Stoyanov (2013) for 
more details, this shows that Ht ∼

∑n

i=1
H

(i,1∕n)
t  . Since t and n were arbitrary, we 

get that H is infinitely divisible. The uniqueness of H follows from 

“⇐ ” We refer to the survival function of (X1,… ,Xd) by Fd . Since exchangea-
bility of X is obvious by construction, it suffices to show that F

1∕n

d
 is a survival 

function of a random variable on (−∞,∞]d for every d, n ∈ ℕ and that � = ∞ . 
By Corollary 2.14, there exist i.i.d. extended chronometers (H(i,1∕n))1≤i≤n such 
that H ∼

∑n

i=1
H(i,1∕n) . It easily follows that limt→−∞ H

(1,1∕n)
t = 0 , which implies 

that H(1,1∕n) ∈ M0
∞

 . For t ∈ ℝd , we get 

 Since H(1,1∕n)
tj

 is càdlàg we obtain that 

 is the survival function of the first d components of the exchangeable sequence 

 Therefore, X is min-id. Moreover, � = ∞ , since H satisfies Condition (◊�2) . 
Thus, X satisfies Condition (◊) . Since d and n were arbitrary, the claim follows.

Proof of Theorem 3.5

Proof  Theorem  3.1 and Proposition  2.9 provide a one-to-one correspondence 
between the min-id sequence X , a (unique) Lévy measure � on M0

∞
 with drift b, and 

an exponent measure � on Eℕ

∞
 . Choosing t ∈ ℝd , d ∈ ℕ ∪ {∞} , we can rewrite this 

correspondence as

�

�
exp

�
−

d�
j=1

zjHtj

��
= F∑d

j=1 zj
(t1,… , t1
⏟⏞⏟⏞⏟
z1 times

,… , td,… , td
⏟⏞⏟⏞⏟
zd times

).

Fd(t) = �

[
exp

(
−

d∑
j=1

Htj

)]
= �

[
exp

(
−

d∑
j=1

n∑
i=1

H
(i,1∕n)
tj

)]

= �

[
exp

(
−

d∑
j=1

H
(1,1∕n)
tj

)]n

.

F
1∕n

d
(t) = �

[
exp

(
−

d∑
j=1

H
(1,1∕n)
tj

)]

X(1,1∕n) ∶=
(
inf

{
t ∈ ℝ ∣ H

(1,1∕n)
t ≥ Ei

})
i∈ℕ

∈ (−∞,∞]ℕ.
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where G = 1 − G is a survival function of a random variable on (−∞,∞] and � is 
the image measure of the Lévy measure � under the transformation h ∶ M

0

∞
→ M

0

∞
,

x ↦ 1 − exp(−x(⋅)) . This implies that for every d ∈ ℕ ∪ {∞}

A similar argument as in the proof of Proposition 2.8 yields

It remains to verify the properties of � . Obviously, �
(
0D∞(ℝ)

)
= 0 . Applying the ine-

qualities 1 − x ≤ min{1,− log(x)} and min{1,− log(x)} ≤ e(1 − x) for any x ∈ [0, 1]   
yields

as well as

Therefore, the integrability condition of � is equivalent to the integrability condi-
tion of �.	� ◻

ℙ
(
X1 > t1,… ,Xd > td

)
= 𝔼

[
exp

(
−

d∑
i=1

Hti

)]

= exp

(
−

d∑
i=1

b(ti) − ∫M0
∞

1 − exp

(
−

d∑
i=1

x(ti)

)
𝜈(dx)

)

= exp

(
−

d∑
i=1

b(ti) − ∫M0
∞

1 −

d∏
i=1

exp
(
−x(ti)

)
𝜈(dx)

)

= exp

(
−

d∑
i=1

b(ti) − ∫M
0

∞

1 −

d∏
i=1

G(ti)𝛾(dG)

)

= exp

(
−

d∑
i=1

b(ti) − ∫M
0

∞

⊗d
i=1

ℙG

(
(−∞,∞]d ⧵ (t,∞]

)
𝛾(dG)

)
,

𝜇d

(
Ed
∞
⧵ (t,∞]

)
= 𝜇b,d

(
(−∞,∞]d ⧵ (t,∞]

)

+ ∫M
0

∞

⊗d
i=1

ℙG

(
(−∞,∞]d ⧵ (t,∞]

)
𝛾(dG).

𝜇d(A) = 𝜇b,d(A) + ∫M
0

∞

⊗d
i=1

ℙG(A)𝛾(dG) for all A ∈ B(Ed
∞
).

�M
0

∞

G(t)𝛾(dG) = �M
0

∞

1 − G(t)𝛾(dG) ≤ �M0
∞

min{1, x(t)}𝜈(dx) < ∞

�M0
∞

min{1, x(t)}𝜈(dx) ≤ e�M
0

∞

1 − G(t)𝛾(dG) = e�M
0

∞

G(t)𝛾(dG) < ∞.
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Proof of Proposition 4.1

Proof  We observe that

is given by integration of the (measurable) function (S,G) ↦ − log (1 − G(t∕S)) 
w.r.t. the Poisson random measure N. Similarly, for z ∈ [0,∞)d , 

∑d

i=1
ziHti

 is given 
by the integration of (S,G) ↦

∑d

i=1
−zi log

�
1 − G(ti∕S)

�
 w.r.t. the Poisson random 

measure N. Therefore, the Laplace transform of H is given by the (one-dimensional) 
Laplace transform of an integral over a Poisson random measure. An application of 
(Resnick 2007, Proposition 3.6) yields

Thus, H is infinitely divisible and the exchangeable min-id sequence X associated 
with H has exponent measure ��,� . We can express the survival function of X as

which finishes the argument.

Proof of Proposition 4.2

Proof  It is easy to see that H(�) is infinitely divisible, since x(⋅) ↦ ∫ ⋅
0
 is a measurable 

map in D∞
(
[0,∞)

)
 . By the generalized Lévy–Itô representation (Rosiński 2018, Prop-

osition 3.1 and Theorem 5.1) there exists a version V ′ of V such that

Ht =
∑
k≥1

− log
{
1 − Gk

(
t

Sk

)}
= �[0,∞)×M

0

∞

− log
(
1 − G

(
t

S

))
N(d(S,G))

L(z, t) = �

[
exp

(
−

d∑
i=1

ziHti

)]

= �

[
exp

(
−∫[0,∞]×M

0

∞

d∑
i=1

−zi log
(
1 − G

( ti
S

))
N(d(S,G))

)]

= exp

(
−∫[0,∞] ∫M

0

∞

1 −

d∏
i=1

(
1 − G

( ti
s

))zi

�(dG)�(ds)

)
.

ℙ(X > t) = exp

(
−�M

0

∞
�

∞

0

1 −
∏
i∈ℕ

(
1 − G

( ti
s

))
𝜅(ds)𝜌(dG)

)

= exp

(
−�M

0

∞
�

∞

0 �[0,∞]ℕ
�

{
yi ≤ ti

s
for some i ∈ ℕ

}(
⊗i∈ℕℙG

)
(dy)𝜅(ds)𝜌(dG)

)

= exp

(
−�M

0

∞
�[0,∞]ℕ �

∞

0

�

{
s ≤ max

i∈ℕ

ti

yi

}
𝜅(ds)

(
⊗i∈ℕℙG

)
(dy)𝜌(dG)

)
,

(
V �
s

)
s≥0 =

(
bV (s) + �D∞(ℝ)

x(s)N(dx)

)

s≥0
,



	 F. Brück et al.

1 3

where N denotes a Poisson random measure on D∞
(
[0,∞)

)
 with intensity �V . Note 

that the compensating term in the generalized Lévy–Itô representation can be omit-
ted by (Rosiński 2018, Theorem 5.1). Moreover, N can be chosen as a random meas-
ure on D∞

(
[0,∞)

)
+
∶= {x ∈ D∞

(
[0,∞)

)
∣ x(t) ≥ 0 for all t ≥ 0} , which follows by 

similar arguments as in the proof of Proposition 2.16. Thus,

Since N is �-finite and concentrated on non-negative functions we can use Fubi-
ni’s Theorem to obtain

which is a decomposition of H(�) into a non-decreasing deterministic drift b(�)(t) ∶=
∫ t

0
b(s)�(ds) and an integral over a Poisson random measure ∫

D∞
(
[0,∞)

)
+

x
(�)(t)N(dx) , 

where x(�)(t) ∶= ∫ t

0
x(s)�(ds) is a non-decreasing function in D∞

(
[0,∞)

)
+
 . There-

fore, using the usual formula for the Laplace transform of an integral over a Poisson 
random measure (Resnick 2007, Proposition 3.6), we obtain for arbitrary z ∈ [0,∞]d 
and t ∈ [0,∞)d

Note that

(
H

(�)
t

)
t≥0 =

(
�

t

0

Vs�(ds)

)

t≥0

∼

(
�

t

0

(
bV (s) + �D∞

(
[0,∞)

)
+

x(s)N(dx)

)
�(ds)

)

t≥0
.

(
�

t

0

(
bV (s) + �D∞

(
[0,∞)

)
+

x(s)N(dx)

)
�(ds)

)

t≥0

=

(
�

t

0

bV (s)�(ds) + �D∞
(
[0,∞)

)
+

�
t

0

x(s)�(ds)N(dx)

)

t≥0
,

�

[
exp

(
−

d∑
i=1

ziH
(�)
ti

)]
= �

[
exp

(
−

d∑
i=1

zi

(
b
(�)
ti

+ ∫D∞
(
[0,∞)

)
+

x(�)(ti)N(dx)

))]

= exp

(
−

d∑
i=1

zib
(�)
ti
−

∫D∞
(
[0,∞)

)
+

1 − exp

(
−

d∑
i=1

zix
(�)(ti)

)
�V (dx)

)
.

exp

(
−

d∑
i=1

zib
(𝜅)
ti

− ∫D∞
(
[0,∞)

)
+

1 − exp

(
−

d∑
i=1

zix
(𝜅)(ti)

)
𝜈V (dx)

)

(⋆)
= exp

(
−

d∑
i=1

zib
(𝜅)
ti

− ∫M0
�

1 − exp

(
−

d∑
i=1

zix(ti)

)
𝜈𝜅(dx)

)
,
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since we use that x(�) ∈ M0
�
 and we only omit those terms in (⋆) for which exp

�
−
∑d

i=1
  

zix
(�)(ti)

)
= 1.
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A.2 Exact simulation of continuous max-id processes with applications to

exchangeable max-id sequences [8]

Summary

This paper provides an exact simulation algorithm for stochastic processes of the type

X̃ :=
(
X̃t

)
t∈T

:=

(
max
i∈N

fi(t)

)
t∈T

, (16)

where M =
∑

i∈N δfi denotes a Poisson random measure on the space of continuous functions.

Stochastic processes with representation (16) are known as continuous max-id processes. These

processes frequently appear when investigating or modeling maxima of independent stochastic

processes, since, under mild conditions, the weak limit (if it exists) of the scaled pointwise

maxima of independent stochastic process is necessarily max-id.

The exact simulation algorithm presented in this paper is a generalization of the simulation

algorithm for continuous max-stable processes, a subclass of continuous max-id processes, pre-

sented in [19]. The simulation algorithm is exact in the sense that it allows to exactly simulate

the max-id process X̃ at a finite, but arbitrary, number of locations. Additionally, it provides an

approximation of the whole process X̃ from below. Besides generalizing the class of stochastic

processes that may be simulated, the simulation algorithm proposed in this paper has two ad-

ditional major advantages. First, I consider non-continuous margins, which may be relevant for

practical applications, but is a feature that cannot be captured by max-stable processes. Second,

I avoid the computation of the conditional (on f(t) = k) probability distribution of the intensity

measure of the Poisson random measure M . This is usually a challenging and non-standard task,

since the intensity measure of the Poisson random measure M is an infinite measure in most

cases.

Further, I provide a complexity analysis of the proposed simulation algorithm. It shows that

the expected number of random functions that need to be simulated to obtain an exact sim-

ulation of X̃ at a certain prespecified number of locations is essentially equal to the number

of these locations, plus an additional penalty term, which penalizes non-continuous marginal

distributions.

The motivation to develop a simulation algorithm for continuous max-id processes stems from

[10]. The main result of [10] is that we provide a stochastic representation of an exchangeable

min-id sequence

−X̃ :=
(
inf
{
t ∈ R

∣∣ H(t) ≥ Ei

})
i∈N

,

where H denotes a non-negative and non-decreasing infinitely divisible càdlàg process and

(Ei)i∈N denotes a sequences of i.i.d. exponential random variables with mean 1. Even though

this stochastic representation is appealing and suggests to simulate −X̃ as the first passage

time of H over the (Ei)i∈N, it turns out that even the approximate simulation of the infinitely

88



divisible process H is usually quite challenging. Moreover, standard simulation methods via the

Lebesgue density of the finite-dimensional distributions cannot be applied, since such densities

usually do not exist or are not available in closed form. Thus, it was an open problem to find a

description of −X̃ which is suitable for simulation purposes.

The central observation with respect to this regard is that simple calculations provide that X̃ :=

−(−X̃) may be viewed as a continuous max-id process with index set T = N. The elaborations

in Section 4 of the core article [8] show that the simulation algorithm applied to X̃ essentially

boils down to simulating a finite number of “simple” conditionally i.i.d. sequences, which is

usually much easier than (approximately) simulating H. To illustrate the general simulation

procedure for X̃, I particularly derive a representation of the family of Sato-frailty sequences

−X̃ in terms of (16). The family of Sato-frailty sequences was introduced in [42], but simulation

algorithms of such sequences were previously only available for some particular representatives

of this family. As a side result, I characterize the Lévy measure of self-similar additive processes.

Moreover, the application of the simulation algorithm to more general classes of exchangeable

min-id sequences is sketched.

As a side result, I also provide a simulation algorithm which is tailored to finite dimensional

max-id random vectors, i.e. max-id processes with index set T = {1, . . . , d}. The reason for

the special treatment of max-id random vectors is that the intensity measure of the associated

Poisson random measure is usually described by exploiting the geometric structure of Rd, e.g. as

a scale mixture of probability distributions on a unit-sphere. Viewing these exponent measures

as measures on the space of continuous functions on {1, . . . , d} is not nicely compatible with the

inherent geometric structure, which illustrates the need of a special treatment of such max-id

random vectors.
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An algorithm for the unbiased simulation of continuous max-(resp. min-) infinitely
divisible stochastic processes is developed. The algorithm only requires the simulation
of finite Poisson random measures on the space of continuous functions and avoids
the necessity of computing conditional distributions of infinite (exponent) measures.
The complexity of the algorithm is characterized in terms of the expected number of
simulated atoms of the Poisson random measures on the space of continuous functions.
Special emphasis is put on the simulation of exchangeable max-(or min-) infinitely
divisible sequences, in particular exchangeable Sato-frailty sequences. Additionally,
exact simulation schemes of exchangeable exogenous shock models and exchangeable
max-stable sequences are sketched.
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1. Introduction

This paper provides an exact simulation algorithm for real-valued continuous stochastic processes X := (Xt)t∈T with
the property that for every given n ∈ N there exist independent and identically distributed (iid) stochastic processes(
X (i,n))

1≤i≤n such that

X ∼ max
1≤i≤n

X (i,n). (1)

Such stochastic processes are called maximum-infinitely divisible (max-id) processes and they essentially constitute the
class of possible weak limits of pointwise maxima of triangular arrays of independent stochastic processes [2]. Recently,
max-id processes have attracted attention in the modeling of extreme events, see e.g. [6,16,29], while its subclass of
max-stable processes is the central object of study in the extreme value theory of iid stochastic processes.

Under the assumption that X and t ↦→ sup{x ∈ R | P (Xt > x) = 1} are continuous, [2,14] show that X can be
represented as the pointwise maximum of a (usually infinite) Poisson random measure (PRM) N =

∑
i∈N δfi on the space

of continuous functions, i.e.,

X ∼ max
i∈N

fi. (2)

The intensity measure µ(·) := E [N(·)] of the PRM N is also called the exponent measure of X and it uniquely characterizes
its distribution. The initial motivation for our simulation algorithm for X stems from [10, Algorithm 1], who have provided
an exact simulation algorithm for continuous max-stable processes. In this paper, we generalize the ideas of [10] to a
simulation algorithm for continuous max-id processes. The key ingredient of their and our simulation algorithm is the PRM

E-mail address: florian.brueck@tum.de.
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representation of X in (2) and its associated exponent measure. Basically, both simulation algorithms can be deduced from
results of [11,12] about the conditional distribution of a specific decomposition of the PRM N . This specific decomposition
of the PRM N allows to simulate only those functions which are relevant to determine the values of X at certain locations
t1, . . . , td and to approximate the whole sample path of X via the pointwise maximum over those finitely many functions.
The mechanism of our simulation algorithm can be summarized as follows.

(i) Simulate only those functions
(
f (1)j

)
1≤j≤k1

which maximize (2) at the first location t1;

(ii) For n ∈ {2, . . . , d}: Given the maximizing functions at locations t1, . . . , tn−1, i.e.
{
f (i)j

⏐⏐ 1 ≤ i ≤ n − 1, 1 ≤ j ≤ ki
}
,

we only simulate those functions
(
f (n)j

)
1≤j≤kn

which possibly contribute to the maximum in (2) at location tn;

(iii) Use X̂ = max{1≤j≤kn,1≤n≤d} f
(n)
j to approximate the sample path of X and additionally obtain (Xt1 , . . . , Xtd ) =

(X̂t1 , . . . , X̂td ).

Motivated by the recent results of [7], we apply the proposed simulation algorithm for continuous max-id processes
to the simulation of exchangeable sequences of random variables Y := (Yi)i∈N with the property that for every n ∈ N
there exist iid sequences of random variables Y (i,n)

:=

(
Y (i,n)
j

)
j∈N

Y ∼ min
1≤i≤n

Y (i,n). (3)

Such sequences are known as minimum-infinitely divisible (min-id) sequences and are as well characterized by a so-
called exponent measure [37]. It is obvious that 1/Y is a sequence of exchangeable random variables with stochastic
representation (1), therefore simply being a particular example of a general continuous max-id process with index set
T = N. According to de Finetti’s seminal theorem every exchangeable sequence of random variables admits the (unique)
stochastic representation

Y ∼
(
inf
{
t ∈ R

⏐⏐ Ht ≥ Ei
})

i∈N , (4)

where (Ei)i∈N is a sequence of independent and identically distributed (iid) Exponential random variables with unit mean
and (Ht)t∈R denotes a (unique in law) non-negative and non-decreasing (nnnd) stochastic process with càdlàg paths. [7]
show that when Y has the stochastic representation (3) then the associated nnnd càdlàg process H satisfies the property
that for every given n ∈ N there exist iid stochastic processes

(
H (i,n)

)
1≤i≤n such that

H ∼

∑
1≤i≤n

H (i,n). (5)

Such processes are called infinitely divisible (id) and were extensively investigated in [32]. In analogy to the Lévy–
Khintchine triplet of id random vectors on Rd, nnnd id càdlàg processes are characterized by a so-called (path) Lévy
measure on the space of càdlàg functions and a deterministic càdlàg (drift-)function [32].

In theory, the stochastic representation (4) immediately suggests a simulation algorithm for Y as the first passage
times of the id process H over iid Exponential barriers. In practice, however, even the approximate simulation of the
associated id process H is usually a challenging task. For instance, when the d-dimensional marginal distributions of
Y becomes a multivariate Exponential distribution [26], then H must belong to the class of Lévy processes [22], i.e. H
must have stationary and independent increments. Unfortunately, even for Lévy processes, exact simulation algorithms
are only known for specific families and approximate simulation algorithms are extensively discussed in the literature,
e.g. see [1,5,9]. Thus, the lack of the ability to simulate general id processes H limits the practical use of the stochastic
representation (4), even though one may be able to analytically characterize the law of the id process H .

To overcome this challenge, we exploit the stochastic representation of 1/Y in terms of maxima over points of a
Poisson random measure, which can be derived from (2) and the Lévy measure and drift of the associated id process H .
More specifically, [7, Corollary 3.7] shows that the exponent measure of 1/Y can be uniquely characterized as a (possibly
infinite) mixture of iid sequences in terms of the Lévy measure and drift of the associated id process H . This will allow
us to construct an exact simulation algorithm for Y via 1/Y , while essentially simulating a finite number of conditionally
iid sequences.

The rather general theoretical results about the simulation of exchangeable min-id sequences are then used to derive
an exact simulation algorithm for the class of exchangeable Sato-frailty sequences, which have been fully characterized an-
alytically in [21]. Exchangeable Sato-frailty sequences can be characterized as the class of exchangeable min-id sequences
associated to self-similar additive processes, i.e. they are associated to stochastically continuous càdlàg processes with
independent increments which have the additional property that there exists some γ > 0 such that for all a ≥ 0 we have
(Hat)t≥0 ∼ (aγHt)t≥0, see e.g. [33, Section 3] for more details on self-similar additive processes. Even though analytical
expressions of their multivariate marginal distributions are available, the simulation of such sequences has so far only been
feasible for small sample sizes or some particular cases, which is due to the fact that the simulation of the associated self-
similar additive process is generally complicated. We characterize the exponent measure of an exchangeable Sato-frailty
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sequence in terms of the Lévy measure of the associated self-similar additive process and illustrate that our simulation
algorithm essentially boils down to the simulation of two-dimensional random vectors.

In a recent article [38] have independently developed a simulation algorithm for continuous max-id processes on
compact non-empty real domains T under the additional assumption of continuous marginal distributions. Their algorithm
follows similar ideas as [10, Algorithm 1] translated to the max-id case. However, both of these algorithms require the
computation of certain conditional distributions of the (infinite) exponent measure, which is usually a challenging task.
Moreover, our framework is more general than that of [38], since we will explicitly consider arbitrary locally compact
metric spaces T as index sets and non-continuous marginal distributions. This level of generality is necessary for our
purposes, since we put special emphasis on simulation algorithms for exchangeable max-id sequences which have locally
compact (but not compact) index sets and possibly non-continuous marginal distributions.

The remainder of the paper is organized as follows. Section 2 summarizes the theoretical background on continuous
max-id processes. Section 3 introduces the exact simulation algorithm for continuous max-id processes and characterizes
the complexity of the algorithm. In Section 4 we illustrate how our simulation algorithm for continuous max-id processes
can be used to simulate exchangeable max-id sequences and we derive a particular exact simulation algorithm for
exchangeable Sato-frailty sequences in Section 5. Section 6 provides a short example of how our simulation algorithm for
exchangeable Sato-frailty sequences could be used in practice. Appendix A provides a general exact simulation algorithm
tailored to max-id random vectors. Technical lemmas and proofs can be found in Appendix B.

2. Continuous max-id processes

Let us first introduce some notation. The index set T always denotes a locally compact metric space. Moreover, let
C(T ) := {f | f : T → R is continuous} denote the space of real-valued continuous functions on T equipped with the
Borel σ -algebra generated by the topology of uniform convergence on compact sets. For some given function h ∈ C(T )
let Ch(T ) := {f | f ∈ C(T ), f ≥ h, f ̸= h} denote the space of continuous functions dominating h. A real-valued stochastic
process defined on an abstract probability space (Ω,F,P) is denoted by X := (Xt)t∈T . Vectors in Rd are denoted in lower
case bold letters. The projection of X to t := (t1, . . . , td) is denoted as X t := (Xt1 , . . . , Xtd ). The operators max,min, inf, sup
are always interpreted as pointwise operators, e.g. supi∈N fi is interpreted as the pointwise supremum of the functions
(fi)i∈N. The Dirac measure at a point f is denoted as δf . For a (random) point measure N =

∑
i∈N δfi we frequently use the

notation f ∈ N to denote that N has an atom at f , i.e. to denote that N({f }) ≥ 1. With this notation at hand we can state
the definition of max-id processes and their associated vertices.

Definition 1 (Max-id Process). A stochastic process X ∈ RT is called max-id if for all n ∈ N there exist iid stochastic
processes

(
X (i,n))

1≤i≤n such that

X ∼ max
1≤i≤n

X (i,n).

The vertex of X is defined as the function

(hX (t))t∈T := (sup{x ∈ R | P (Xt > x) = 1})t∈T ∈ [−∞,∞)T .

The most common choices for the index set T of a max-id process are subsets of Rd and Zd. However, since requiring
additional structure for T does not yield any simplifications in the following derivations, we keep the discussion as general
as possible.

It is obvious that g(X) := (g (Xt))t∈T defines a max-id process for every non-decreasing real-valued function g
whenever X is a max-id process. This implies that, e.g., exp (X) − exp (hX ) defines a non-negative max-id process with
vertex 0 := (0)t∈T . In this paper, we restrict the discussion to continuous max-id processes with continuous vertex,
meaning that hX and t ↦→ Xt (ω) are continuous functions for every ω ∈ Ω . Thus, we can assume that a continuous
max-id process X with continuous vertex is non-negative with vertex hX = 0, since every continuous max-id processes
X ′ with continuous vertex hX ′ can be transformed to a continuous max-id process X with vertex hX = 0 by setting
X := exp

(
X ′
)
− exp (hX ′).

Under the assumption of a continuous and finite vertex, [11,14] have shown that a continuous max-id process X can
be represented as the pointwise maxima of atoms of a Poisson random measure (PRM) on ChX (T ). We summarize their
results in the following theorem with the convention max∅ := 0.

Theorem 1 (Spectral Representation of Continuous Max-ID Process [11,14]).

1. If X is a continuous max-id process with vertex hX = 0 then there exists a PRM N on C0(T ) with locally finite intensity
measure µ, called exponent measure, which satisfies

µ

({
f ∈ C0(T )

⏐⏐⏐⏐ sup
k∈K

f (k) > ϵ

})
< ∞ for all compact K ⊂ T and ϵ > 0 (6)

such that

X ∼ max
f∈N

f .

3
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Fig. 1. Illustration of extremal and subextremal functions of a PRM N . Functions in solid-blue belong to N+

(0,...,5) , functions in dashed-red belong to
N−

(0,...,5) .

2. Conversely, given a locally finite measure µ on C0(T ) which satisfies (6), there exists a PRM N on C0(T ) with intensity
µ such that

X := max
f∈N

f

defines a continuous max-id process with vertex hX = 0.

It is easy to see that P
(
N(C0(T )) = ∞

)
= 1 if and only if µ is an infinite measure. For example, this is the case if

P(Xt > 0) = 1 for some t ∈ T . Since this is a desired property in many applications, a simulation of X via the simulation
of the infinite PRM N is usually practically infeasible. However, it is crucial to observe that the value of X t := (Xt1 , . . . , Xtd )
is fully determined by the atoms of the random measure of extremal functions at t

N+

t :=

∑
f∈N

δf 1{f (ti)=Xti for some 1≤i≤d
}. (7)

Thus, all atoms of the random measure of subextremal functions at t

N−

t :=

∑
f∈N

δf 1{f (ti)<Xti for all 1≤i≤d
} (8)

are irrelevant when we are solely interested in X t . N+

t , resp. N−

t , are called the extremal, resp. subextremal, point measure
at t . Fig. 1 illustrates the extremal and subextremal functions of a continuous max-id process on R with t = (0, 1, . . . , 5).
[12, Section 2] analyze the extremal and subextremal random point measures of a continuous max-id process and show
that they are indeed well-defined. Moreover, they show that

N+

t is an almost surely finite random measure if and only if one of the following conditions is satisfied:
(i) µ(C0(T )) < ∞, or

(ii) µ(C0(T )) = ∞ and min
1≤i≤d

Xti > 0 almost surely. (9)

If one of the conditions in (9) is satisfied, it is sufficient to determine the finite number of atoms of the random measure
N+

t in order to obtain X t via

X t =

(
max
f∈N+

t

f (t1), . . . ,max
f∈N+

t

f (td)

)
.

Additionally, the random measure N+

t also yields an approximation (from below) of the whole sample path of X via

X ≈ X̂ := (X̂t )t∈T :=

(
max
f∈N+

t

f (t)

)
t∈T

.

Thus, to obtain an exact simulation of X t and to approximate the sample path of X via X̂ we simply need to focus on
simulation algorithms of the finite random point measure N+

t .
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The main ingredient of our simulation algorithm for N+

t will be based on the conditional distribution of N−

t given N+

t ,
which is derived in [11, Lemma 3.2]. More specifically, it is shown that the conditional distribution of N−

t given N+

t is
given by the distribution of a PRM with intensity 1{f (ti)<Xti ,1≤i≤d}dµ(f ). To illustrate the implications of this result, let us
assume we are given an initialization N+

t1 ⊂ N+

t ̸= N of N+

t . To obtain N+

(t1,t2)
we only need to consider those atoms of N−

t1
which belong to N+

t2 . Given N+

t1 , the random measure N+

t2 \ N+

t1 is the restriction of N−

t1 to the (measurable) set{
Ñ extremal point measure on C0(T ) at location t2 and concentrated on

{
f (t2) ≥ max

f̃∈N+
t1

f̃ (t2)
}}
.

Now, [11, Lemma 3.2] implies that, conditional on N+

t1 , the random measure N+

t2 \ N+

t1 has the same distribution as
argmaxf∈N̄ f (t2), where N̄ is a PRM with intensity

1{
f (t1)<maxf̃∈N+

t1
f̃ (t1) and f (t2)≥maxf̃∈N+

t1
f̃ (t2)
}dµ(f ).

Assuming that maxf̃∈N+
t1
f̃ (t2) is positive, (6) implies that N̄ is a finite PRM. Therefore, one may simulate N+

t by iterative
simulation of finite PRMs with intensities

1{
f (ti)<maxf̃∈N+

(t1,...,tn)
f̃ (ti) for all 1≤i≤n and f (tn+1)≥maxf̃∈N+

(t1,...,tn)
f̃ (tn+1)

}dµ(f ), 1 ≤ n ≤ d − 1. (10)

From a practical perspective one should note that it is sufficient to be able to simulate from a finite PRM with intensity
1{f (t)≥c}dµ(f ) for all t ∈ T and c > 0 to simulate the PRMs with intensities (10), assuming that maxf̃∈N+

(t1,...,tn)
f̃ (tn+1) > 0.

To verify the claim, recall that the restriction of any PRM N̂ with intensity µ̂ to an arbitrary measurable set A again defines
a PRM with intensity 1{f∈A}dµ̂(f ). Thus, to simulate a PRM with intensity (10), one can simulate a finite PRM with intensity

1{
f (tn+1)≥maxf̃∈N+

(t1,...,tn)
f̃ (tn+1)

}dµ(f )
and simply ignore those atoms which do not satisfy the constraints in (10).

Remark 1 (Infinite N+

ti ). It is easy to see that the event Xti = 0 implies N+

ti = N . Thus, when µ is an infinite
measure, the simulation of N+

ti requires the simulation of infinitely many atoms with probability P
(
Xti = 0

)
= exp(−µ(

{f ∈ C0(T ) | f (ti) > 0})). However, one may avoid this unpleasant situation by discarding finite exponent measures from
µ. Consider the set of possibly 0-valued locations

J0 :=
{
j ∈ {1, . . . , d}

⏐⏐ P (Xtj = 0
)
> 0

}
and consider the exponent measures of the form

µj (·) = µ
(
· ∩
{
f ∈ C0(T ) | f (tj) > 0, f (tk) = 0, k < j, k ∈ J0

})
, j ∈ J0. (11)

Note that the µj are supported on disjoint sets and that each µj is finite, since 0 < P
(
Xj = 0

)
≤ exp

(
−µj (C0(T ))

)
.

Therefore, it is possible to (exactly) simulate independent max-id processes (X̂ j)j∈J0 by the simulation of independent
PRMs with finite exponent measures

(
µj
)
j∈J0

. It remains to consider the residual of the exponent measure µ, given by
µ̃ := µ−

∑
j∈J0
µj, which is more easily described as

µ̃ (·) = µ
(
· ∩
{
f ∈ C0(T ) | f (tj) = 0, j ∈ J0

})
. (12)

Let Ñ denote a PRM with intensity µ̃ and let X̃ denote the continuous max-id process associated with the exponent
measure µ̃. It is not difficult to show that µ̃ is either vanishing or an infinite measure and that X̃ satisfies P

(
X̃tj = 0

)
= 1

for all j ∈ J0. Therefore, the exact simulation of X̃ t only involves the simulation of the finite random measure Ñ+

(ti)i̸∈J0
.

Moreover, it is easily seen that X admits the representation

X = max
{
X̃;max

j∈J0
X̂ j
}
,

which shows that X t can be determined by the pointwise maxima of finitely many finite random point measures.

So far, we have assumed that we are given a finite initialization N+

t1,...,tn of N+

t with maxf∈N+
t1,...,tn

f (tn+1) > 0 and, under

this assumption, we have shown that we only need to simulate from finite PRMs to obtain N+

t1,...,tn+1
, resp. X̂ . In Section 3

we show that the ability to simulate from a PRM with intensity 1{f (t)≥c}dµ(f ) for every t ∈ T and c > 0 is also sufficient
to obtain such initializations of N+

t . Thus, we construct an algorithm for the exact simulation of X t and approximation of
X via X̂ , which solely requires the ability to simulate finite PRMs with intensities 1{f (t)≥c}dµ(f ) for all t ∈ T and c > 0.
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3. Exact simulation of continuous max-id processes

The main ingredient of our algorithm is the possibility to simulate from the finite PRMs with intensities 1{f (t)≥c}dµ for
all t ∈ T and c > 0. Based on our developments in Section 2, Algorithm 1 provides an exact simulation procedure for a
continuous max-id process with vertex 0.

Algorithm 1: Exact simulation of continuous max-id process with vertex 0
Result: Unbiased sample of (Xt1 , . . . , Xtd ) and approximation of the max-id process (Xt )t∈T .

1 Set µj (·) = µ
(
· ∩
{
f ∈ C0(T ) | f (tj) > 0, f (tk) = 0, k < j, k ∈ J0

})
, j ∈ J0;

2 Set µ̃ (·) = µ
(
· ∩
{
f ∈ C0(T ) | f (tj) = 0, j ∈ J0

})
;

3 for j ∈ J0 do
4 Simulate a finite PRM Nj with intensity µj and set X̂ j = maxf∈Nj f ;
5 end
6 Set X̃ = 0;
7 for i = 1, . . . , d, i ̸∈ J0 do
8 if X̃ti = 0 then
9 Set Ñ+

= ∅;
10 Set cu = ∞ and cl = c for some c > 0;
11 while Ñ+

= ∅ do
12 Simulate a finite PRM Ñ+ with intensity 1{cu>f (ti)≥cl}dµ̃(f );
13 for f ∈ Ñ+ do
14 if f (tk) ≥ X̃tk for some k < i, k ̸∈ J0 then
15 Set Ñ+

= Ñ+
\ {f }

16 end
17 end
18 Set cu = cl and set cl = cl/2;
19 end
20 else
21 Simulate a finite PRM Ñ+ with intensity 1

{f (ti)≥X̃ti }
dµ̃(f );

22 for f ∈ Ñ+ do
23 if f (tk) ≥ X̃tk for some k < i, k ̸∈ J0 then
24 Set Ñ+

= Ñ+
\ {f }

25 end
26 end
27 end
28 Set Ñ+

ti =
{
f ∈ Ñ+

| f (ti) ≥ f̃ (ti) for all f̃ ∈ Ñ+
}
;

29 Set X̃ = max
{
maxf∈Ñ+

ti
f , X̃

}
;

30 end
31 Set X̂ = max

{
maxj∈J0 X̂ j, X̃

}
;

32 return X̂

The validity of Algorithm 1 is verified in the following theorem.

Theorem 2 (Validity of Algorithm 1). Let X denote a continuous max-id process with vertex hX = 0 and exponent measure
µ. Then, Algorithm 1 stops after finitely many steps and its output X̂ approximates X from below and satisfies X̂ t ∼ X t .

Clearly, Algorithm 1 reduces to lines 6–30 if no margin of X t has an atom at 0, since in such cases we have J0 = ∅ and
µ̃ = µ. Moreover, it is worth mentioning that, even though X̂ t is max-id, the stochastic process X̂ ≤ X is generally not
max-id, since N+

t is not a PRM on C0(T ).

Remark 2 (Reason for Splitting µ into
∑

j∈J0
µj + µ̃). The reason for splitting µ into the disjoint parts µj and µ̃ is to divide

the simulation of X into separate simulations of finite random measures. First, we directly simulate
(
Xtj

)
j∈J0

, i.e. those
locations at which {Xtj = 0} occurs with positive probability, since a naive simulation of Xtj via the respective extremal
functions at tj may result in the necessity of simulating an infinite PRM with positive probability (Remark 1). Second,

6
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we simulate those atoms of a PRM N with intensity µ, which have not been simulated yet and possibly contribute to
X t = maxf∈N f (t). Since (X̃tj )j∈J0 = 0 by the definition of µ̃, we can solely focus on the simulation of (X̃tj )j̸∈J0 . This precisely
requires the simulation of the extremal functions at (tj)j̸∈J0 of the PRM Ñ with intensity µ̃. The key observation is that
the definition of the µj ensures that X̃ does not have atoms at 0 at the locations (tj)j̸∈J0 , which implies that the extremal
point measure Ñ+

(tj)j̸∈J0
is finite by (9). Therefore, we can use (10) to obtain a sample of Ñ+

(tj)j̸∈J0
via the simulation of finite

PRMs. Combining the two simulated processes by taking pointwise maxima we obtain an approximation X̂ of X which
satisfies X̂ t ∼ X t .

Remark 3 (Simulation Algorithm for Max-stable Processes [10]). A max-stable process with unit Fréchet margins can be
represented as X ∼ maxi∈N ζiψi, where N =

∑
i∈N δ(ζi,ψi) is a PRM with intensity dµ = s−2dsdQ and Q is a probability

measure on C0(T ) such that
∫
ψ(t)Q (dψ) = 1 for all t ∈ T . In this case, one can show that N+

t only contains a single
function, denoted as ψ̂t . The regular conditional distribution of ψ̂t given Xt = z is obtained in [12, Proposition 4.2]. This
result can be used to represent the PRM with intensity 1{sψ(t)>0}s−2dsQ (dψ) as a PRM with intensity s−2dsdQt , where
Qt denotes the conditional distribution of ψ̂t/Xt given Xt . Thus, one may simulate a PRM with intensity 1{f (t)≥c}dµ by
successively simulating points of a PRM with intensity 1{s≥c}s−2dsdQt . With this specific procedure for the simulation of a
PRM with intensity 1{f (t)≥c}dµ, Algorithm 1 essentially reduces to the exact simulation algorithm of continuous max-stable
processes in [10].

Remark 4 (Conditional Distribution of Max-id Process). Similar to max-stable processes with unit Fréchet margins,
[12, Proposition 4.1] provides the conditional distribution of the extremal function of a continuous max-id process X
with continuous marginal distributions at a location t , given that Xt = z. Intuitively, the conditional distribution can
be described as the regular conditional distribution of the exponent measure µ given Xt = z, denoted as Qt,z , where
the formal definition of a regular conditional distribution of a possibly infinite exponent measure can be found in
[12, Appendix A2]. Thus, the extremal function for a single location t can be found by first drawing a random variable
Z ∼ Xt and then drawing the extremal function according to Qt,Z . Surprisingly, not only the extremal function at a location
t follows the conditional (on Z) distribution Qt,Z , but so do the subextremal functions. More formally, assume that you
are given a PRM

∑
i∈N δZi on (0,∞) where Z := maxi∈N Zi ∼ Xt . Then, conditioned on (Zi)i∈N, the PRM with intensity

1{f (t)>0}dµ can be represented as
∑

i∈N δfZi
, where the fZi ∼ Qt,Zi are independent. [38] have recently and independently

proposed an algorithm for the exact simulation of max-id processes, which is based on the just described procedure to
simulate a PRM with intensity 1{f (t)>0}dµ. However, determining and simulating the conditional distribution Qt,Z of an
exponent measure is a challenging task and is only a sufficient but not a necessary criterion for the simulation of the PRM
with intensity (10).

Remark 5 (Simulation Algorithm for Max-id Random Vectors). Exponent measures of non-negative max-id random vectors
are often described via the geometric structure of [0,∞)d, e.g. as scale mixtures of probability distributions on unit
spheres. Examples of such families of max-id random vectors are given by random vectors with reciprocal Archimedean
copula [13], max-stable distributions [31] and reciprocals of exogenous shock models [34]. For these families it is generally
surprisingly inconvenient to apply Algorithm 1 due to the difficulty of describing the PRM with intensity 1{f (i)≥c}dµ in a
simple manner. Therefore, we provide a simulation algorithm which is tailored to the specific representations of exponent
measures on [0,∞)d in Appendix A.

3.1. Complexity of Algorithm 1

The main difficulty of Algorithm 1 lies in the simulation of the atoms (functions) of the PRMs in line 12 and 21.
Therefore, to analyze the complexity of Algorithm 1, we may focus on the number of functions that need to be simulated
to obtain X̂ . Since the number of simulated functions during the execution of Algorithm 1 is a random variable, we
characterize its complexity in terms of the expected number of simulated functions. To this purpose, we extend a result
by [27,28] about the expected size of the extremal point measure of max-stable processes at locations t = (ti)1≤i≤d to
max-id processes.

Lemma 1. Let X denote a continuous max-id process with vertex hX = 0 and exponent measure µ. The expected size of the
extremal point measure at location t = (t1, . . . , td) is given by

E
[⏐⏐N+

t

⏐⏐] = E
[∫

C0(T )
1{f (ti)≥Xti for some 1≤i≤d}dµ(f )

]
.

7
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To deduce the expected number of simulated functions during the execution of Algorithm 1 we additionally assume
that the simulation of the atoms of a PRM with intensity µ̃ can be conducted in a top-down fashion as follows:

For all (ti)i̸∈J0 we assume that we can consecutively simulate the atoms
(
f (i)j

)
j∈N

of a PRM

Ñ =

∑
j∈N

δf (i)j
with intensity µ̃ such that f (i)1 (ti) ≥ f (i)2 (ti) ≥ · · · . (13)

Assumption (13) allows to conduct lines 7–30 of Algorithm 1 more efficiently: For a fixed i ̸∈ J0 one consecutively
simulates f (i)1 , f

(i)
2 , . . . such that f (i)1 (ti) ≥ f (i)2 (ti) ≥ · · · and stops as soon as one has found all extremal functions at a

location ti. All extremal functions at location ti are found as soon as one has found a j ∈ N such that f (i)j is an extremal
function at location ti and f (i)j+1 is subextremal function at location ti. In general, it is necessary to simulate the f (i)j until
the first subextremal function at a location ti is found, since X̃ may not have continuous marginal distributions and there
may exist more than one extremal function at a location (ti)i̸∈J0 . Of course, if the distribution of X̃ti is continuous, one can
stop as soon as the first extremal function at location (ti)i̸∈J0 is found, since there can only exist one extremal function at
each continuous margin of X̃ by [12, Proposition 2.5]. Thus, assumption (13) allows to avoid the simulation of more than
one subextremal function at each location (ti)i̸∈J0 , which may not be excluded if one conducts Algorithm 1 in its original
formulation of Theorem 2.

For the remainder of this subsection we assume that Algorithm 1 is conducted according to assumption (13).
Assumption (13) may be regarded as reasonable, since it is satisfied for many continuous max-id processes. For instance,
it is satisfied if one assumes that X̃ has continuous marginal distributions and that one conducts the simulation of the
PRMs in lines 12 and 21 of Algorithm 1 based on the conditional distribution of a max-id process as described in Remark 4.
Moreover, the assumption may also be satisfied when simulating certain exchangeable max-id sequences, see Sections 5
and 6.

Theorem 3. Under the assumption that a PRM with intensity µ̃ may be simulated according to assumption (13), the expected
number of simulated functions during the execution of Algorithm 1 is given by

d − |J0| + µ
({

f ∈ C0(T ) | f (tj) > 0 for some j ∈ J0
})

+

∑
i̸∈J0

E
[
µ̃

({
f ∈ C0(T ) | f (ti) ∈

[
X̃ti ,∞

)})]
.

Moreover, when X̃ (ti)i̸∈J0
has continuous marginal distributions, the expected number of simulated functions during the execution

of Algorithm 1 is equal to

d − |J0| + µ
({

f ∈ C0(T ) | f (tj) > 0 for some j ∈ J0
})
.

Theorem 3 may be interpreted as follows: The expected number of simulated functions is equal to the number of
locations where X has continuous margins plus an additional term which accounts for the possibility that |N+

t | > 1 is
possible at locations where X has non-continuous margins.

It is easy to see that Theorem 3 includes the complexity characterization [10, Proposition 9] of the algorithm for
the simulation of continuous max-stable processes described in Remark 3. There, the authors showed that the expected
number of simulated functions in their algorithm is equal to the number of locations where the continuous max-stable
process is simulated exactly. Theorem 3 shows that the same result holds when Algorithm 1 is applied to continuous
max-id processes with continuous margins. Thus, when measuring simulation complexity only in terms of the expected
number of simulated functions, there is no increase in simulation complexity when considering a continuous max-id
processes with continuous margins instead of a continuous max-stable process. Moreover, it follows that, as a byproduct,
we have shown that the expected number of simulated functions in the algorithm for exact simulation of a continuous
max-id process with continuous margins and compact index set of [38] is equal to the number of locations where the
max-id process is simulated exactly, since it is exactly based on the assumption that the PRMs appearing in Algorithm 1
may be simulated according to assumption (13).

4. Exact simulation of exchangeable max(min)-id sequences

When considering max-id sequences, i.e. T = N, the assumption of continuity of the max-id process X is irrelevant,
since C0(N) = [0,∞)N \ {0}. Therefore, Algorithm 1 is applicable to all max-id sequences with vertex hX = 0, which may
be satisfied for every max-id sequence after suitable transformations of the margins. However, to apply Algorithm 1, it
remains to find a suitable description of the exponent measure of a max-id sequence X on [0,∞)N \ {0} such that the
PRM with intensity 1{f (n)≥c} can be simulated. To achieve this, we focus on the results of [7], who describe the structure
of exponent measures of exchangeable min-id sequences, i.e. of exchangeable sequences Y := 1/X , where X is max-id.
To this purpose, let us recall the most important results of [7].

8
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Theorem 4 ([7, Corollary 3.7]). Y ∈ (0,∞]
N is an exchangeable min-id sequence if and only if

Y ∼ (inf{t ≥ 0 | H(t) ≥ Ei})i∈N , (14)

where (Ei)i∈N are iid Exp(1) and H = (Ht)t≥0 ∈ [0,∞]
[0,∞) is a (unique in law) nnnd id càdlàg process which satisfies H0 = 0.

We say that an exchangeable max-id sequence X corresponds to an id process H if and only if Y = 1/X is the
exchangeable min-id sequence corresponding to H . Similar to max-id sequences, the survival function of Y can be
expressed in terms of an exponent measure µ̄. It can be related to the exponent measure of X noting that P(Y > x) =

P
(
X < 1

x

)
= exp

(
−µ

((
−∞, 1

x

)∁))
= exp

(
−µ̄

(
(x,∞]

∁)), where µ̄(A) := µ
(
{x ∈ [0,∞)N | 1/x ∈ A}

)
is called the

exponent measure of the exchangeable min-id sequence Y . From this relation it is easy to see that a PRM N̄ =
∑

∞

i=1 δf i
with intensity µ̄ can be transformed to a PRM N =

∑
∞

i=1 δ1/f i with intensity µ. Thus, we can generate atoms of N by
taking reciprocals of atoms of N̄ . In the following, we will show how the correspondence (14) can be used to generate
atoms from N̄ (and thus from N).

Let us recall several facts about id processes. It is well-known that id random vectors on [0,∞]
d are in one-to-one

correspondence with a pair (υ, b), where υ is a (Lévy)measure on [0,∞]
d
\ {0} satisfying certain integrability conditions

and b ∈ [0,∞]
d is a deterministic (drift)vector. [32] has elegantly extended this characterization to id processes and [7]

have used these results to prove that the Laplace-transform of an nnnd id càdlàg process which satisfies H0 = 0 is given
by

E

[
exp

(
−

d∑
i=1

aiHti

)]
= exp

(
−

d∑
i=1

aib(ti) −

∫
M
1 − exp

(
−

d∑
i=1

aig(ti)

)
dν(g)

)
, a, t ∈ [0,∞)d, d ∈ N, (15)

where ν is a unique (Lévy)measure on the path space

M :=
{
g : [0,∞) → [0,∞] | g(0) = 0, g nnnd and càdlàg, g ̸= 0

}
,

which satisfies
∫
M min{1, g(t)}dν(g) < ∞ for all t ≥ 0 and b ∈ M is a unique deterministic (drift)function. From (15) and

the formula for the Laplace transform of a PRM, see e.g. [31, Section 3], one can deduce that

H ∼ b + Ĥ

may be decomposed into a deterministic drift b and a ‘‘completely random’’ process
(
Ĥt

)
t≥0

∼
(∫

M g(t)dNH (g)
)
t≥0, where

NH :=
∑

i∈N δgi is a PRM on M with intensity measure ν. Combining (14) and (15) we obtain that

P (Y > x) = E

[
exp

(
−

∞∑
i=1

Hxi

)]
= exp

(
−

∞∑
i=1

b (xi)−

∫
M
1 − exp

(
−

∞∑
i=1

g (xi)

)
dν(g)

)
, x ∈ [0,∞)N.

This shows that the exponent measure µ̄ of the exchangeable min-id sequence Y is given by

µ̄ (A) = µ̄b(A) +

∫
M

⊗
∞

i=1

(
1 − exp (−g(·))

)
(A)dν(g),

where

• µ̄b denotes the exponent measure of an iid sequence with stochastic representation
(
inf
{
t ≥ 0 | b(t) ≥ E(1)

i

})
i∈N

and marginal distribution function 1 − exp(−b(·)),
• ⊗

∞

i=1

(
1−exp (−g(·))

)
denotes the distribution of an iid sequence with marginal distribution function 1−exp(−g(·))

and
∫
M ⊗

∞

i=1

(
1 − exp (−g(·))

)
(A)dν(g) denotes the exponent measure of an exchangeable max-id sequence with

stochastic representation
(
inf
{
t ≥ 0 | Ĥ(t) ≥ E(2)

i

})
i∈N

and
(
E(j)
i

)
i∈N
, j ∈ {1, 2} denote independent sequences of iid unit Exponential distributed random variables. In other

words, µ̄ is the sum of the exponent measure of an iid sequence and a (possibly infinite) mixture of iid sequences. Since
addition of two exponent measures stochastically corresponds to applying component-wise minima to two independent
min-id sequences, we get

Y ∼ min
{(

inf
{
t ≥ 0 | b(t) ≥ E(1)

i

})
i∈N

;

(
inf
{
t ≥ 0 | Ĥ(t) ≥ E(2)

i

})
i∈N

}
,

which shows that the only difficulty in the simulation of Y is the simulation of the sequence
(
inf
{
t ≥ 0 | Ĥ(t) ≥ E(2)

i

})
i∈N

.

Hence, for our analysis, we can ignore the presence of µ̄b, i.e. assume that b = 0, and focus on the simulation of the min-id
sequence

(
inf
{
t ≥ 0 | Ĥ(t) ≥ E(2)

i

})
i∈N

with exponent measure of the form

µ̄ (A) =

∫
M

⊗
∞

i=1 (1 − exp(−g(·))) (A)dν(g). (16)

9
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Representation (16) implies that the atoms of the PRM N̄ with intensity µ̄ can be generated as follows:

(i) Generate a PRM NH =
∑

i∈N δgi on M with intensity measure ν;
(ii) For each gi, draw an iid sequence f̄ i with distribution function 1 − exp

(
−gi(·)

)
;

(iii) Set N̄ =
∑

i∈N δf̄ i .

As mentioned previously, a PRM N with intensity µ is then obtained by taking the reciprocal of each atom of N̄ , i.e. by
defining N :=

∑
i∈N δ1/f̄ i . Therefore, a PRM with intensity 1{f (n)≥c}dµ can be generated by the simulation of a finite PRM

with intensity

µ̄ (· ∩ {f (n) ≤ 1/c}) =

∫
M

⊗
∞

i=1

(
1 − exp (−g(·))

)
(· ∩ {f (n) ≤ 1/c}) dν(g)

=

∫
⊗

∞

i=1

(
1 − exp (−g(·))

) ({
f ∈ ·

} ⏐⏐ f (n) ≤ 1/c
) (

1 − exp
(
−g (1/c)

))
dν(g). (17)

It is important to observe that (1 − exp(−g(1/c))) dν(g) defines an exponent measure with total finite mass

Cc := − log
(
E
[
exp

(
−H1/c

)])
= − log

(
P (Y1 > 1/c)

)
= − log

(
P (X1 < c)

)
. (18)

Thus, to simulate from a PRM with intensity 1{f (n)≥c}dµ, it is sufficient to be able to simulate from the probability measure
Pc := C−1

c (1 − exp(−g(1/c))) dν(g) on M. Since the measure ν can be chosen rather arbitrarily, it is hopeless to expect
a general recipe for the simulation of Pc . However, there are many families of stochastic processes for which ν can be
conveniently described such that simulation from Pc becomes feasible. One of these families is the class of self-similar
additive processes [17], [33, Section 3], which will be investigated in the next section.

5. Exchangeable Sato-frailty sequences

Choosing (Ht)t≥0 in (14) as a non-negative and non-decreasing additive process, also called additive subordinator,
gives rise to the class of so-called exchangeable exogenous shock models [20,34]. Exchangeable exogenous shock models
are characterized by the property that every d-dimensional margin Y d of Y can be stochastically represented as the
minimum of independent random shocks, each of them affecting a certain subset of components of Y d. More formally,
every d-dimensional margin of the exchangeable exogenous shock model Y can be represented as

Y d ∼
(
min

{
EI
⏐⏐ I ⊂ {1, . . . , d}, i ∈ I

})
1≤i≤d , (19)

where the shocks (EI)I⊂{1,...,d} denote independent non-negative random variables with continuous distribution function
and EI1 ∼ EI2 if |I1| = |I2|. Moreover, the distribution of the EI is uniquely linked to the Laplace transform of the associated
additive subordinator H . In principle, the results of [20,34] could be used to simulate the d-dimensional margins of an
exchangeable exogenous shock model. However, even if the Laplace transform of the associated additive subordinator is
known analytically, it is numerically challenging to compute the distribution of the individual shocks EI and 2d random
variables have to be simulated to determine Y d. Thus, if d is large, it is practically infeasible to simulate an exchangeable
exogenous shock model via the representation (19). Alternatively, one could use the representation (14) to generate a
sample of X , which circumvents the curse of dimensionality. Unfortunately, the simulation of the additive subordinator
H is usually infeasible or only possible approximatively. Therefore, an exact and efficient simulation of high dimensional
exchangeable exogenous shock models has remained an open problem to date.

A subclass of exchangeable exogenous shock models has been investigated in [21] by restricting (Ht)t≥0 to the class
of self-similar subordinators (aka Sato subordinators), meaning that H is an additive subordinator and that there exists
some index γ > 0 such that for all a ≥ 0 (Hat)t≥0 ∼ (aγHt)t≥0. The exchangeable sequences associated to self-
similar subordinators are called exchangeable Sato-frailty sequences. [33, Section 3] shows that every self-similar additive
process H with index γ is uniquely associated to its distribution at unit time. The law of H1 belongs to the class of self-
decomposable distributions, meaning that for every c ∈ (0, 1) there exists a random variable H (c) independent of H1 such
that H1 ∼ cH1+H (c). Self-decomposable laws constitute a broad subclass of infinitely divisible distributions, e.g. containing
the (inverse-)Gaussian, Laplace, (tempered-)stable, Fréchet, Pareto, Exponential and (inverse-)Gamma distribution as well
as several laws appearing in financial modeling as the CGMY, Normal Inverse Gaussian and Meixner distribution [3,8,36]
to provide some examples. Furthermore, every self-decomposable distribution can be obtained as the law of a unique
self-similar additive process with index γ at unit time. Thus, there is a one-to-one correspondence of self-similar additive
subordinators with index γ , non-negative self-decomposable distributions and the class of exchangeable Sato-frailty
sequences.

Moreover, [33, Proposition 16.5] shows that the index γ of a self-similar process can be changed to an arbitrary index γ̃
via the simple time change t ↦→ t γ̃ /γ . Combined with [7, Corollary 3.2], which shows that a time-change of the self-similar
subordinator corresponds to the marginal transformation a ↦→ aγ /γ̃ of the associated exchangeable Sato-frailty sequence,
we can w.l.o.g. assume that γ = 1 to simplify further derivations.

10
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The key quantity of our simulation algorithm will be the univariate Lévy measure υ of the self-decomposable
distribution of H1. It allows us to derive a convenient representation of the path Lévy measure of the associated self-similar
subordinator, which then translates into a simple representation of the exponent measure of the associated exchangeable
Sato-frailty sequence via (16). To this purpose, we recall several characterizations of self-decomposable laws, which are
provided in [33, Section 3]. First, [33, Theorem 15.10] shows that the Lévy measure υ of a non-negative self-decomposable
distribution is absolutely continuous w.r.t. the Lebesgue measure with density of the form υ(da) = k(a)a−11{a>0}da, where
k denotes some non-increasing right-continuous function such that

∫
∞

0 min{a, 1}k(a)a−1da < ∞.
Noting that k defines a measure ρk on (0,∞) by ρk

(
(a,∞)

)
:= k(a), a > 0, we can rewrite υ as υ(da) =

ρk
(
(a,∞)

)
a−1da. It turns out that ρk defines the Lévy measure of another non-negative id distribution [33, Theorem

17.5]. Thus, there exists a non-negative and non-decreasing Lévy process, also called Lévy subordinator,
(
L(k)t

)
t≥0

with
univariate Lévy measure ρk and, according to [33, Equation (17.2)], the self-decomposable distribution with Lévy measure
υ can be recovered from L(k) as the distribution of the infinitely divisible random variable

∫
∞

0 exp(−s)dL(k)s . Due to this
representation L(k) is called the Background Driving Lévy process (BDLP) of the self-decomposable distribution with Lévy
measure υ . [17] shows that not only the self-decomposable distribution associated with Lévy measure υ , but also the
associated self-similar subordinator H can be recovered from (the law of) L(k) by

(Ht)t≥0 :=

(∫
∞

− log(min{t;1})
exp(−s)dL(k,1)s +

∫ log(max{1,t})

0
exp(s)dL(k,2)s

)
t≥0

, (20)

where L(k,i)i=1,2 denote two iid copies of L(k). This particular representation of the self-similar subordinator H allows us to
derive a representation of its associated path Lévy measure in terms of the Lévy measure of the BDLP.

Lemma 2 (Lévy Measure of Self-similar Subordinator Via Lévy Measure of BDLP). Let (Ht)t≥0 denote a self-similar subordinator
with index 1 and let L(k) denote the BDLP associated to H1. The Lévy measure of H can be expressed as

ν(A) =

∫
(0,∞)2

1{
as1{·≥s}∈A

}s−1ds ⊗ ρk(da); A ∈ B(M), (21)

where ρk denotes the Lévy measure of L(k).

Assuming that k(·) = ρk
(
(·,∞)

)
is differentiable we obtain the following corollary.

Corollary 1 (Lévy Measure of Self-similar Subordinator Via Density). Let (Ht)t≥0 denote a self-similar subordinator with index
1 associated to the self decomposable distribution with Lévy measure dυ = k(a)a−1da. If k is differentiable, then the path Lévy
measure ν of (Ht)t≥0 is given by

ν(A) = −

∫
(0,∞)2

1{
a1{·≥s}∈A

}k′
(
as−1) s−2dsda; A ∈ B(M).

Having determined the Lévy measure of a self-similar subordinator we can express the exponent measure of the
associated exchangeable Sato-frailty sequence by (16) as

µ̄(A) = −

∫
∞

0

∫
∞

0
⊗

∞

i=1

(
1 − exp (−a) 1{·≥s}

) ({
(f (i))i∈N ∈ A

})
k′
(
as−1) s−2dads,

assuming that k(·) = ρk
(
(·,∞)

)
is differentiable. Thus, to apply Algorithm 1, we need to simulate a PRM with intensity

(17) expressible as

−

∫
∞

0

∫ 1/c

0
⊗

∞

i=1

(
1 − exp

(
−a1{·≥s}

)) ({
f ∈ ·

} ⏐⏐⏐⏐ f (n) ≤
1
c

)
k′
(
as−1) s−2 (1 − exp(−a)) dsda.

The only difficulty in the simulation of this PRM is the simulation of the random vector (A(c), S(c)) with joint distribution
−1{s∈(0,1/c)}1{0<a}C−1

c k′
(
as−1

)
s−2 (1 − exp(−a)) dads, where the normalizing constant Cc was defined in (18). However, it

is easy to see that the marginal density of A(c) is given by

gA(c) (a) = 1{a>0}C−1
c a−1k(ac) (1 − exp(−a)) (22)

and that the conditional density of S(c) given A(c) is given by

gS(c)|A(c) (s) = −1{s∈(0,1/c)}k′
(
A(c)s−1) s−2

((
A(c))−1

k
(
A(c)c

))−1
. (23)

Thus, a sample of (A(c), S(c)) can be generated by first sampling a random variable A(c) with density gA(c) and then, given
A(c), sampling a random variable S(c) according to the conditional density gS(c)|A(c) . Altogether, this implies that we can
sample from a PRM with intensity (17) by the following procedure:

11
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(i) Draw a random variable Θ ∼ Poi(Cc);
(ii) For 1 ≤ i ≤ Θ draw independent random variables A(c)

i according to the density gA(c) and, conditioned on A(c)
i , draw

random variables S(c)i according to the density gS(c)|A(c)i
;

(iii) For each pair (A(c)
i , S

(c)
i ) draw an iid sequence f

(
A(c)i ,S(c)i

)
:=

(
f

(
A(c)i ,S(c)i

)
j

)
j∈N

with marginal distribution
(
1 −

exp
(
−A(c)

i

))
δS(c)i

+ exp
(
−A(c)

i

)
δ∞ and set f

(
A(c)i ,S(c)i

)
n = S(c)i ;

(iv) The PRM with intensity (17) is given by
∑Θ

i=1 δ
1/f

(
A(c)i ,S(c)i

) .
Therefore, Algorithm 1 can be employed to generate exchangeable Sato-frailty sequences if the associated function k
is differentiable. When k is not differentiable, one can still obtain a representation of µ̄ in terms of ρk via Lemma 2.
However, the simulation procedure of a PRM with intensity (17) slightly changes and requires the simulation of a random
vector with density 1{s∈(0,1/c)}1{0<a}C−1

c s−1(1 − exp(−as))dsdρk(a), which cannot be conducted without assuming further
regularity properties of ρk.

Remark 6 (Sampling of the Densities gA(c) and gS(c)|A(c) ). If the function k is known analytically, one can use rejection
sampling to obtain (exact) samples from random variables with density gA(c) , see e.g. [24, p. 235 ff.] for more details
on rejection sampling. To simulate a random variable with density gS(c)|A(c) one could also use rejection sampling
if k′ is known analytically, but one should notice that its associated distribution function is given by GS(c)|A(c) (s) =

k(A(c)s−1)A(c)k
(
A(c)c

)−1 1{0<s<1/c}. Therefore, rejection sampling and the (numerical) inverse transform sampling method
may be used to sample random variables with density gA(c) and conditional density gS(c)|A(c) .

Remark 7 (Extension to Exchangeable Exogenous Shock Models). [32] shows that an id process H is additive if and only
if its path Lévy measure is concentrated on one-time jump functions of the form a1{·≥s}. In many cases, the univariate
Lévy measure υt of the real-valued random variable Ht is absolutely continuous w.r.t. to the Lebesgue measure, meaning
that υt (da) = k(a, t)da. If k(a, ·) is differentiable on (0,∞) for almost all a one can obtain a similar expression of the
path Lévy measure of an additive process as in Corollary 1. It can be easily checked that the image measure of the map(
(0,∞) × (−∞,∞), k′(a, s)dads

)
→ M; (s, a) ↦→ a1{·≥s} satisfies the conditions of [32, Theorem 2.8] and thus defines a

valid Lévy measure of a driftless additive process H̃ . We obtain that

E
[
exp

(
iz
(
b(t) + H̃t

))]
= exp

(
izb(t) +

∫
R\{0}

∫
∞

0

(
exp

(
iza1{t≥s}

)
− 1 − iza1{t≥s}1{a≤1}

)
k′(a, s)dsda

)
= exp

(
izb(t) +

∫
R\{0}

∫ t

0

(
exp (iza)− 1 − iza1{a≤1}

)
k′(a, s)dsda

)
= exp

(
izb(t) +

∫
R\{0}

(
exp (iza)− 1 − iza1{a≤1}

)
k(a, t)da

)
= E [exp (izHt)] ,

since lims→0 k(a, s) = 0 for almost all a ̸= 0 by the stochastic continuity of additive processes. Thus, b + H̃ and H are
identical in distribution, given that additive processes are uniquely determined by their marginal distributions. Therefore,
the path Lévy measure of H is given by

ν(A) =

∫
R\{0}

∫
∞

0
1{

a1{·≥s}∈A
}k′(a, s)dads; A ∈ B

(
D
(
[0,∞)

))
,

where D
(
[0,∞)

)
denotes space of real-valued càdlàg functions. Similar to Sato-frailty sequences, this allows to sample

the exchangeable sequence associated to an additive subordinator with univariate Lévy measure υt (da) = 1{a>0}k(a, t)da
by repeatedly drawing random vectors (A(c), S(c)) and conditionally iid sequences.

Remark 8 (Extension to Exchangeable Max-stable Sequences). Stochastic processes H which satisfy (Hnt)t≥0 ∼

(∑n
i=1 H

(i)
t

)
t≥0

for all n ∈ N and iid copies
(
H (i)
)
i∈N of H are called strongly infinitely divisible w.r.t. time (strong-idt). [23] has shown

that the max-id sequence X corresponding to a strong-idt process in (14) is max-stable, meaning that its marginal
distributions can be obtained as a limit distribution of scaled maxima of iid random vectors. The general form of the
exponent measure of an exchangeable max-stable sequence X has been derived in [19]. However, it still involves the law
of a stochastic process and does not directly translate into a simple simulation procedure for Algorithm 1. [4,25] have
investigated subfamilies of strong-idt processes with the particular representation

(
Hf (t)

)
t≥0 =

(∫
∞

0 f (s/t)dLs
)
t≥0, where

(Lt)t≥0 denotes a Lévy subordinator and f denotes a non-negative, non-increasing left-continuous function. [25] provides
exact simulation algorithms for the d-dimensional margins of the corresponding exchangeable max-stable sequence in
the particular case f (s) = limu↗s − log(F (u)) for some fixed distribution function F , whereas the models in [4] could only

12
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be simulated when L is a compound Poisson process. Lemma 3 from Appendix B yields a rather simple representation of
the exponent measure of the exchangeable max-stable sequence associated to Hf in terms of the path Lévy measure of
L, which can be translated into a representation of the exponent measure of X as a mixture of iid sequences in terms of
the law of a random vector (A(c), S(c)). Thus, similar to Sato-frailty sequences, the examples from [4,25] can essentially be
simulated by repeated simulations of a random vector (A(c), S(c)) and conditionally iid sequences.

6. Illustration of the simulation algorithm

In this section we exemplarily demonstrate how Algorithm 1 can be used to simulate an exchangeable Sato-frailty
sequence in practice. We rather aim at providing a proof-of-concept like exposition than to fine-tune the presented
example to its most efficient simulation procedure. We chose the Inverse Gaussian (IG) distribution as our guiding
example. The IG distribution is known to be self-decomposable [15] and its Lévy measure is given by

υ(da) = 1{a>0}
δ

√
2π

a−
3
2 exp

(
−
γ 2a
2

)
da, where δ, γ > 0.

Therefore, the Lévy measure of the associated self-similar subordinator is characterized by the function

k(a) =
δ

√
2π

a−1/2 exp
(

−
γ 2a
2

)
, a > 0.

One should note that a simulation of the associated exchangeable Sato-frailty sequence X via its stochastic representation
(14) would either require the simulation of the whole path of the infinitely active BDLPs in (20) or the direct simulation of
the increments of the associated self-similar subordinator. However, the simulation of the whole path of the BDLPs cannot
be practically achieved nor can the increments of the associated self-similar subordinator be efficiently simulated, since
their law cannot be easily characterized. Thus, Algorithm 1 can be seen as the natural choice regarding the simulation
of X . It is quite easy to see that the associated random vector (A(c), S(c)) can be simulated by rejection sampling for the
random variable A(c) with density (22) and inverse transform sampling for the random variable S(c)|A(c) with conditional
density (23). We have simulated the corresponding sequence X for various values of (δ, γ ) and report our results in terms
of scatterplots of the associated copula C(u1, . . . , ud) = P (F1(X1) ≤ u1, . . . , Fd(Xd) ≤ ud), since copulas do not depend on
the marginal distribution of X . In particular, the associated copula is independent of the index of self-similarity of the
associated self-similar subordinator. The copula corresponding to X has been analytically derived in [21] and is given by

C(u1, . . . , ud) =

d∏
i=1

exp

⎛⎜⎝δγ
⎛⎜⎝
√1 + i

(
log
(
u[i]
)

δγ
+ 1

)2

− i −

√1 + (i − 1)

(
log
(
u[i]
)

δγ
+ 1

)2

− (i − 1)

⎞⎟⎠
⎞⎟⎠ ,

where u[i] is defined as the ith order statistic of (u1, . . . , ud). Thus, the associated copula only depends on δγ . Fig. 2
provides the empirical copula plots for dimensions d ∈ {2, 3} and δγ ∈ {1/10, 2, 10} and shows that the margins of X
become less dependent with increasing δγ .

To empirically verify the complexity characterization of Algorithm 1 given in Theorem 3, Fig. 3 shows the average
and standard deviation of the number of simulated sequences to produce one sample of the exchangeable Sato-frailty se-
quences associated to the IG distributions with δγ ∈ {1/10, 2, 10} and various dimensions d ∈ {1, 5, 10, 25, 50, 100, 250,
500, 1000, 2500, 5000, 10000} over 500 repetitions. Note that we applied Algorithm 1 in accordance with assumption
(13) as follows: After simulating the random vectors

((
A(c)
i , S

(c)
i

))
1≤i≤Θ

where Θ ∼ Poi(Cc) via the (conditional) densities

(22) and (23), we can simulate the sequences associated to the
((

A(c)
i , S

(c)
i

))
1≤i≤Θ

in increasing order of the S(c)i . It is

easy to see that this procedure allows to simulate a PRM with intensity µ according to assumption (13). Therefore, the
expected number of simulated sequences is equal to d, since the one-dimensional marginal distributions of exchangeable
Sato-frailty sequences are continuous. Fig. 3 empirically verifies this result, showing that the average number of simulated
sequences over 500 repetitions is always close to d, independently of δγ and d. Interestingly, the standard deviation of the
number of simulated sequences seems to depend on δγ . Thus, the example shows that, even though the expected number
of simulated sequences (or functions) in Algorithm 1 is always equal to d when the margins of X follow a continuous
distribution, its standard deviation may depend on properties of the associated continuous max-id process.

7. Discussion

We have developed an algorithm for the exact simulation of continuous max-id processes, based on their representa-
tion as a pointwise maximum over functions in a PRM. Our algorithm is solely based on the ability to simulate PRMs with
finite intensity measures, which facilitates its wide applicability. The complexity of the algorithm has been characterized
in terms of the expected number functions that need to be simulated to obtain a sample of the continuous max-id process.

Exemplarily, we have derived the exponent measure of an exchangeable Sato-frailty sequence and demonstrated
the applicability of our algorithm theoretically and in practice, thereby providing the first exact simulation algorithm

13
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Fig. 2. Empirical copula plots of the two- and three-dimensional margins of 1000 samples of the exchangeable Sato-frailty sequences associated to
the IG distribution with parameters δγ ∈ {1/10, 2, 10} (top, middle, bottom).

for high dimensional samples of this family. We have sketched how the simulation algorithm for exchangeable Sato-
frailty sequences can be generalized to certain families of exogenous shock models and max-stable sequences without
increasing its practical complexity. This enables the possibility to consider the construction principle of exchangeable
min-id sequences in (4) by means of its desired analytical properties, without the need of having a suitable simulation
algorithm for the associated id process at hand. Appendix A discusses an alternative simulation algorithm for max-id
random vectors, thereby accounting for the natural geometric descriptions of many known families of finite dimensional
exponent measures. An application of our algorithm to a continuous max-id process with uncountable index set is left
for future research. We think that the proposed simulation algorithm may be extended to upper semicontinuous max-id
processes with obvious modifications, however the technical details need to be carefully worked out and are also left for
future research.

14
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Fig. 3. The average (left) and standard deviation (right) of the number of simulated sequences to obtain one sample of the exchangeable Sato-frailty
sequences associated to the IG distribution for various values of δγ and dimensions d over 500 repetitions.
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Appendix A. Exact simulation of max-id random vectors

This section is devoted to the exact simulation of a max-id random vector X ∈ [0,∞)d. Since X can be viewed as
a continuous max-id process on T = {1, . . . , d} Algorithm 1 is, in principle, applicable to every max-id random vector.
However, the exponent measure of a max-id random vector is often more easily described by exploiting the specific
geometric structure of [0,∞)d. For example, a common representation of an exponent measure of a max-id random
vector is the scale mixture of a probability distribution on the non-negative unit sphere of some norm on Rd. Two famous
representatives of this class of exponent measures are the exponent measures of max-stable random vectors with unit
Fréchet margins [31, Chapter 5] and random vectors with reciprocal Archimedean copula [13,18], see Example 2. In both
cases, a simulation of X via Algorithm 1 would require to deviate from the natural description of the exponent measure
to simulate a PRM with intensity 1{f (n)≥c}dµ(f ). Thus, there is a need to adapt Algorithm 1 to exploit the natural structure
of many exponent measures of max-id random vectors. Again, to simplify the theoretical developments, we can w.l.o.g.
assume that hX = 0.

Our goal is to generalize the algorithms of [10,18,35] to max-id random vectors. Similar to Algorithm 1 we will only
simulate those atoms of the PRM N =

∑
i∈N δxi with intensity µ which may be relevant to determine maxi∈N xi = X . We

start by dividing [0,∞)d into disjoint ‘‘slices’’ Sn of finite µ-measure. Then, assuming that we can simulate finite PRMs Nn
with intensities µ (· ∩ Sn), we iteratively simulate the Nn until a stopping criterion is reached. To obtain a valid stopping
criterion we need to assume that the slices Sn eventually approach 0, which is mathematically described as eventually
residing in an open ball around 0. This will force the algorithm to stop after finitely many steps, since atoms of the PRM
N in a neighborhood of 0 eventually cannot contribute to the maximum of the already simulated points.

Example 1. Assume that the atoms of the PRM N are given by the points in Fig. A.4. A possible execution of our algorithm
could be described as follows: In the first step, all atoms of the PRM above the blue line are simulated, which corresponds

15
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Fig. A.4. Illustration of Algorithm 2.

to S1 = {x | x1 + x2 ≥ 0.6, x1, x2 ≥ 0}. Since the pointwise maximum of atoms of N above the solid-blue line is not above
the dashed-blue line {x | mini=1,2 xi = 0.6} there are possibly some atoms of N which can contribute to the pointwise
maximum of N and which have not yet been simulated. Therefore, in a second step, we simulate all points between the
solid-blue and the solid-green line, which corresponds to S2 = {x | 0.3 ≤ x1 + x2 < 0.6, x1, x2 ≥ 0}. The red triangle
denotes the pointwise maximum of the simulated points above the solid-green line. Since it is above the dashed-green
line {x | mini=1,2 xi = 0.3} it is the maximum of the PRM N and the algorithms stops.

Let us formalize the proposed algorithm. Let B∞
r (x) :=

{
y ∈ Rd

| max1≤i≤d |yi − xi| < r
}
denote the open ball of radius

r around x w.r.t. the supremum norm. We assume that we can simulate from finite PRMs Nn with intensities µ (· ∩ Sn),
where (Sn)n∈N is a sequence of disjoint sets which satisfy

(i) µ (Sn) < ∞ for all n ∈ N,
(ii)

⋃
∞

n=1 Sn = [0,∞)d \ {0},
(iii) for all r > 0 there exists m(r) ∈ N such that

⋃
n≥m Sn ⊂ B∞

r (0).

Under these conditions on Sn we can propose the following algorithm for the exact simulation of max-id random vectors
with exponent measure µ.

Algorithm 2: Exact simulation of max-id random vector with vertex 0
Result: Unbiased sample of (X1, . . . , Xd) with exponent measure µ.

1 Set µj (·) = µ
(
· ∩
{
x ∈ [0,∞)d \ {0} | xj > 0, xk = 0, k < j, k ∈ J0

})
, j ∈ J0;

2 Set µ̃ (·) = µ
(
· ∩
{
x ∈ [0,∞)d \ {0} | xj = 0, j ∈ J0

})
;

3 for j ∈ J0 do
4 Simulate a finite PRM Nj with intensity µj and set X̂ j = maxx∈Nj x;
5 end
6 Set X̃ = 0 and n = 1;
7 while there is no r > 0 such that

⋃
m≥n Sm ⊂ B∞

r (0) and mini̸∈J0 X̃i ≥ r do
8 Simulate the finite PRM Ñn with intensity µ̃ (· ∩ Sn);
9 Set X̃ = max

{
maxx(n)∈Ñn

x(n), X̃
}
;

10 Set n = n + 1;
11 end
12 Set X̂ = max

{
maxj∈J0 X̂ j, X̃

}
;

13 return X̂

Theorem 5 (Validity of Algorithm 2). Let X ∈ [0,∞)d denote a max-id random vector with exponent measure µ. Then,
Algorithm 2 stops after finitely many steps and its output X̂ satisfies X̂ ∼ X .
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The use of Algorithm 2 is illustrated by the following example in which we provide an exact simulation algorithm
for a large family of max-id distributions. As a byproduct, the simulation algorithm for max-stable random vectors
[10, Algorithm 2] and the simulation algorithm for random vectors with reciprocal Archimedean copula
[18, Algorithm 1] are unified in a common simulation scheme.

Example 2 (Common Simulation Scheme for Max-stable Random Vectors with Unit Fréchet Margins and Random Vectors with
Reciprocal Archimedean Copula). Let S∥·∥ := {x ∈ [0,∞)d | ∥x∥ = 1} denote the non-negative part of the unit sphere of
some norm ∥ · ∥ on Rd. Consider an exponent measure of the form

µ(A) = µ1 ⊗ µ2
({

(m1,m2) ∈ (0,∞) × S∥·∥ | m1m2 ∈ A
})
, A ∈ B

(
[0,∞)d

)
, (A.1)

where µ2 is a probability measure on S∥·∥ and µ1 is a measure on (0,∞) which satisfies µ1
(
[r,∞)

)
< ∞ for all r > 0.

Setting µ1 = s−2ds and ∥·∥ = ∥·∥1 yields the family of max-stable distributions with unit Fréchet margins [31, Section 5],
whereas setting ∥ · ∥ = ∥ · ∥1 and µ2 to the uniform distribution on S∥·∥1 yields the family of distributions with reciprocal
Archimedean copula and marginal distribution function exp

(
−µ1((·,∞))

)
[18].

Let
(
Ej
)
j∈N denote a sequence of iid unit Exponential random variables and let (Y i)i∈N denote a sequence of iid random

vectors with distribution µ2, which is independent of
(
Ej
)
j∈N. It is well known that the standard Poisson point process on

[0,∞) with unit intensity can be represented as
∑

∞

i=1 δ
∑i

j=1 Ej
. Denoting µ↼1 (t) := sup{s ∈ (0,∞) | µ1 ([s,∞)) ≥ t} it is

easy to see that [31, Proposition 3.7] implies that
∑

∞

i=1 δµ↼1
(∑i

j=1 Ej
) is a PRM with intensity µ1. Moreover, [31, Proposition

3.8] implies that

N =

∞∑
i=1

δ(
µ↼1

(∑i
j=1 Ej

)
,Y i

)
is a PRM with intensity µ1 ⊗ µ2. Therefore, simulating N

(
· ∩
(
[r,∞) × S∥·∥

))
is achieved by iteratively simulating the

iid random vectors (Ei,Y i) until µ↼1
(∑i

j=1 Ej
)
< r . Note that this only requires the simulation of finitely many random

vectors since µ1 ([r,∞)) < ∞. Choosing Sn =
[ 1
n ,

1
n−1

)
× S∥·∥ one can easily check that the Sn satisfy all the required

constraints. Therefore, Algorithm 2 can be applied to exponent measures of the form (A.1). The stopping criterion of
Algorithm 2 depends on the chosen norm ∥ · ∥, but if ∥ · ∥ = ∥ · ∥p for some p ≥ 1, it is easy to see that the algorithm
stops at least as soon as µ↼1

(∑i
j=1 Ej

)
< mini̸∈J0 X̃i.

Remark 9. Example 2 is easily extended to exponent measures of the form

µ(A) =

∫
∞

0

∫
S
1{m1m2∈A}K (m1, dm2)dµ1(m1),

where S denotes a bounded subset of [0,∞)d \ {0} and K (·, ·) is a Markov kernel which satisfies K (m1, S) = 1 µ1-almost
surely. For example, such ideas are used in [16, Section 3.3] to construct the finite dimensional distributions of a spatial
max-id process.

Appendix B. Proofs and technical lemmas

Lemma 3 (Lévy Measure of Stochastic Integral w.r.t. id Process). Let f : [0,∞) × [0,∞) → [0,∞) denote a measurable
function such that f (s, ·) is non-decreasing and right-continuous for all s ∈ [0,∞). Let (Ht)t≥0 denote a non-negative càdlàg
id process of bounded variation on compact sets with Lévy measure ν and drift b. Moreover, assume that 0 ≤ Hf (t)(ω) :=∫

∞

0 f (s, t)dHs(ω) < ∞ for all t ≥ 0 and ω ∈ Ω and that the conditions of [30, Theorem 2.7] are satisfied. Then(
Hf (t)

)
t≥0 =

(∫
∞

0
f (s, t)dHs

)
t≥0

defines an nnnd càdlàg id process with Lévy measure

νf (A) = ν

({
x ∈ D

(
[0,∞)

) ⏐⏐⏐⏐ ∫ ∞

0
f (s, ·)dx(s) ∈ A and

∫
∞

0
f (s, ·)dx(s) ̸= 0

})
,

A ∈ B (D([0,∞))) and drift bf (t) :=
∫

∞

0 f (s, t)b(ds).

Proof of Lemma 3. Well-definedness follows from the conditions of [30, Theorem 2.7]. Infinite divisibility is obvious.
The càdlàg property of Hf follows from Hf (t) < ∞ for all t > 0 and the non-decreasingness and right-continuity of f (s, ·).
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Since ν is σ -finite [32, Proposition 2.10] implies that there exists a PRM N =
∑

i∈N δxi with intensity ν, such that

(Ht)t≥0 ∼

(∫
x(t)N(dx) + b(t)

)
t≥0

=

(∑
i∈N

xi(t) + b(t)

)
t≥0

.

Moreover, N , b and ν can be chosen to be concentrated on the space of non-negative càdlàg functions of bounded variation
on compact sets [32, Theorem 3.4], denoted as BV+

r . Therefore,

(
Hf (t)

)
t≥0 ∼

(∫
∞

0
f (s, t)

(
lim
n→∞

n∑
i=1

xi

)
(ds) +

∫
∞

0
f (s, t)b(ds)

)
t≥0

=

(
lim
n→∞

∫
∞

0
f (s, t)

(
n∑

i=1

xi

)
(ds) +

∫
∞

0
f (s, t)b(ds)

)
t≥0

=

⎛⎜⎜⎝ ∑
i∈N∫

∞
0 f (s,·)xi(ds)̸=0

∫
∞

0
f (s, t)xi(ds) +

∫
∞

0
f (s, t)b(ds)

⎞⎟⎟⎠
t≥0

=

(∫
BV+

r

x̃(t)dÑ(x̃) +

∫
∞

0
f (s, t)b(ds)

)
t≥0

,

where

Ñ :=

∑
i∈N∫

∞
0 f (s,·)xi(ds)̸=0

δ∫∞

0 f (s,·)xi(ds)

denotes a PRM on D([0,∞)) with intensity νf , since the map x ↦→
∫

∞

0 f (s, ·)x(ds) is measurable in D
(
[0,∞)

)
equipped

with the sigma-algebra generated by the finite dimensional projections. It is easy to see that νf satisfies νf (0) = 0 and∫
BV+

r
x(t)dνf (x) < ∞ by the conditions of [30, Theorem 2.7]. Thus, νf is a Lévy measure and the lemma is proven. □

Proof of Theorem 2. By (11), µj is a finite measure for each j ∈ J0. Thus, X̂ j is obtained by the simulation of a finite PRM
Nj with intensity µj. Therefore, Algorithm 1 stops after finitely many steps if and only if the for-loop from lines 7–30 stops
after finitely many steps. Thus, consider the setting of line 7 and let Ñ denote a PRM with intensity µ̃ defined in (12). By
the definition of µ̃we obtain that the associated max-id process X̃ satisfies P(X̃tj = 0) = 1 for all j ∈ J0 and P

(
X̃ti > 0

)
= 1

for all i ̸∈ J0. Thus, if X̃ti = 0 and i ̸∈ J0, there is almost surely some c > 0 such that Ñ+

ti ⊂ Ñ (· ∩ {f ∈ C0(T ) | f (ti) ≥ c}).
Moreover, if X̃ti > 0, we get that Ñ+

ti ⊂ Ñ(· ∩ {f ∈ C0(T ) | f (ti) ≥ X̃ti}) almost surely. Thus, the simulation of X̃ only
requires the simulation of PRMs with finite intensity measures and stops after finitely many steps. It remains to prove
that X t ∼ X̂ t and that X̂ approximates X from below. Observe that X̂ = max

{
maxj∈J0 X̂ j, X̃

}
in line 31 is the maximum of

two independent stochastic processes. The first process maxj∈J0 X̂ j is an exact simulation of the sample path of a continuous
max-id process with exponent measure µ

(
· ∩
(
∪j∈J0{f ∈ C0(T ) | f (tj) > 0}

))
. The second process X̃ is an exact simulation

of maxf∈Ñ+

(ti)i̸∈J0

f . Thus, X̂ t = max
{
maxj∈J0 X̂ j(t); X̃ t

}
is an exact simulation of a max-id random vector with exponent

measure∑
j∈J0

µj ({(f (t1), . . . , f (td)) ∈ ·})+ µ̃ ({(f (t1), . . . , f (td)) ∈ ·})

= µ

(
{(f (t1), . . . , f (td)) ∈ ·} ∩

(⋃
j∈J0

{f (tj) > 0}
))

+ µ
(
{(f (t1), . . . , f (td)) ∈ ·} ∩ {f (tj) = 0 ∀ j ∈ J0}

)
= µ ({(f (t1), . . . , f (td)) ∈ ·}) ,

which is the exponent measure of X t and shows that X̂ t ∼ X t . Furthermore, it is easy to see that

X̂ ≤ max
f∈Ñ or f∈Nj
for some j∈J0

f ∼ X,

which shows that X̂ approximates X from below. □

Proof of Lemma 1. Recall that [12, Appendix A.3] verifies that N+

t and N−

t are well-defined point measures. Thus,
⏐⏐N+

t
⏐⏐

is an N0 ∪ {∞}-valued random variable and E
[⏐⏐N+

t
⏐⏐] is well defined. Following the ideas of [27,28], consider some a > 0
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and the set Aa = {f ∈ C0(T ) | f (ti) ≥ a for some 1 ≤ i ≤ d}. Then µ(Aa) < ∞, |N(Aa)| ∼ Poi (µ(Aa)) and

E
[⏐⏐N+

t (Aa)
⏐⏐] = E

[⏐⏐N(Aa)
⏐⏐]− E

[⏐⏐N−

t (Aa)
⏐⏐] =

∫
C0(T )

1{f (ti)≥a for some 1≤i≤d}dµ(f ) − E
[
E
[⏐⏐N−

t (Aa)
⏐⏐ ⏐⏐⏐⏐ N+

t

]]
=

∫
C0(T )

1{f (ti)≥a for some 1≤i≤d}dµ(f ) − E
[∫

C0(T )
1{f (ti)≥a for some 1≤i≤d}1{f (ti)<Xti for all 1≤i≤d}dµ(f )

]
= E

[∫
C0(T )

1{f (ti)≥a for some 1≤i≤d}1{f (ti)≥Xti for some 1≤i≤d}dµ(f )
]
,

where we used that, conditioned on N+

t , N−

t is distributed as a PRM with intensity 1
{f (ti)<maxf̃∈N+

t
f̃ (ti)}

dµ(f ). We conclude

by considering three cases:

(i) Assume that P
(
Xtj > 0

)
= 1 for all 1 ≤ i ≤ d. When a ↘ 0 the monotone convergence theorem implies that

E
[⏐⏐N+

t

⏐⏐] = E
[∫

C0(T )
1{f (ti)≥Xti for some 1≤i≤d}dµ(f )

]
.

(ii) If P
(
Xtj = 0

)
> 0 for some 1 ≤ i ≤ d and µ is a finite measure then one may set a = 0, which immediately implies

E
[⏐⏐N+

t

⏐⏐] = E
[∫

C0(T )
1{f (ti)≥Xti for some 1≤i≤d}dµ(f )

]
.

(iii) If P
(
Xtj = 0

)
> 0 for some 1 ≤ i ≤ d and µ is an infinite measure then

E
[⏐⏐N+

t

⏐⏐] = ∞ = E
[∫

C0(T )
1{f (ti)≥Xti for some 1≤i≤d}dµ(f )

]
,

since P
(⏐⏐N+

t
⏐⏐ = ∞

)
≥ P

(
Xti = 0 for some 1 ≤ i ≤ d

)
> 0. □

Proof of Theorem 3. Obviously, the expected number of simulated functions (atoms) of the PRMs with intensities
(
µj
)
j∈J0

is ∑
j∈J0

µj (C0(T )) =

∑
j∈J0

µ

(
· ∩

{
f ∈ C0(T ) | f (tj) > 0, f (tk) = 0, k < j, k ∈ J0

})
= µ

({
f ∈ C0(T ) | f (tj) > 0 for some j ∈ J0

})
.

Thus, the expected number of functions that need to be simulated to obtain
(
X̂ j

)
j∈J0

is equal to µ
({

f ∈ C0(T ) | f (tj) > 0

for some j ∈ J0
})

.

It remains to compute the expected number of simulated functions to obtain X̃ . At each location (ti)i̸∈J0 , according to
Algorithm 1 and assumption (13), we can consecutively simulate the atoms f (i)1 , f

(i)
2 , . . . of a PRM Ñ (i) with intensity µ̃

such that f (i)1 (ti) ≥ f (i)2 (ti) ≥ · · · until the first subextremal function is found. Since all simulated atoms which satisfy
f (i)j (tk) ≥ X̃tk for some k < i, k ̸∈ J0, are rejected we obtain that the number of functions that need to be simulated to
obtain X̃ is⏐⏐⏐Ñ+

(ti)i̸∈J0

⏐⏐⏐+∑
i̸∈J0

(⏐⏐⏐{f (i)j

⏐⏐ f (i)j (tk) ≥ Xtik
for some k ̸∈ J0, k < i; f (i)j (ti) ≥ Xti

}⏐⏐⏐+ 1
)
.

Note that the number of rejected functions is increased by 1, since we have to simulate until the first subextremal function
at each location ti is obtained. Thus, the expected number of functions that need to be simulated to obtain X̃ is given by

E
[⏐⏐Ñ+

(ti)i̸∈J0

⏐⏐]+ d − |J0| +

∑
i̸∈J0

E
[⏐⏐⏐{f (i)j

⏐⏐⏐ f (i)j (tk) ≥ X̃tk for some k ̸∈ J0, k < i; f (i)j (ti) ≥ X̃tk

}⏐⏐] .
The expectation of the first term is provided by Lemma 1. To determine the remaining expectation we calculate

E
[⏐⏐⏐{f (i)j

⏐⏐ f (i)j (tk) ≥ X̃tk for some k ̸∈ J0, k < i; f (i)j (ti) ≥ X̃ti

}⏐⏐⏐] =

E
[
E
[⏐⏐⏐{f (i)j

⏐⏐ f (i)j (tk) ≥ X̃tk for some k ̸∈ J0, k < i; f (i)j (ti) ≥ X̃ti

}⏐⏐⏐ ⏐⏐⏐⏐ Ñ+

(tk)k̸∈J0,k<i
,{

f (i)j

⏐⏐ f (i)j (tk) < X̃tk for all k ̸∈ J0, k < i
}]]

.
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Note that
{
f (i)j

⏐⏐ f (i)j (tk) < X̃tk for all k ̸∈ J0, k < i
}

and
{
f (i)j

⏐⏐ f (i)j (tk) ≥ X̃tk for some k ̸∈ J0, k < i
}

are disjoint

measurable sets and therefore, conditioned on
(
Xtk

)
k̸∈J0,k<i, the restrictions of the PRM Ñ (i) on each of the two sets

are independent PRMs with intensities 1{
f (i)j |f (i)j (tk)<X̃tk for all k̸∈J0,k<i

} and 1{
f (i)j |f (i)j (tk)≥X̃tk for some k̸∈J0,k<i

}. Moreover, since

Ñ+

(tk)k̸∈J0,k<i
and

{
f (i)j

⏐⏐ f (i)j (tk) < X̃tk for all k ̸∈ J0, k < i
}
determine

(
X̃tk

)
k̸∈J0,k<i

and X̃ti we get

E
[
E
[⏐⏐⏐{f (i)j

⏐⏐ f (i)j (tk) ≥ X̃tk for some k ̸∈ J0, k < i; f (i)j (ti) ≥ X̃ti

}⏐⏐⏐ ⏐⏐⏐⏐ Ñ+

(tk)k̸∈J0,k<i
,{

f (i)j

⏐⏐ f (i)j (tk) < X̃tk for all k ̸∈ J0, k < i
}]]

= E
[∫

C0(T )
1

{f (tk)≥X̃tk for some k̸∈J0,k<i; f (ti)≥X̃ti }
dµ̃(f )

]
= E

[∫
C0(T )

1
{f (tk)≥X̃tk for some k̸∈J0,k<i}dµ̃(f )

]
− E

[∫
C0(T )

1
{f (tk)≥X̃tk for some k̸∈J0,k<i; f (ti)<X̃ti }

dµ̃(f )
]
.

Now, Lemma 1 implies

E
[∫

C0(T )
1

{f (tk)≥X̃tk for some k̸∈J0,k<i}dµ̃(f )
]

− E
[∫

C0(T )
1

{f (tk)≥X̃tk for some k̸∈J0,k<i; f (ti)<X̃ti }
dµ̃(f )

]
= E

[⏐⏐Ñ+

(tk)k̸∈J0 ,k<i

⏐⏐]− E
[∫

C0(T )
1

{f (tk)≥X̃tk for some k̸∈J0,k≤i}

(
1 − 1

{f (ti)≥X̃ti }

)
dµ̃(f )

]
= E

[⏐⏐Ñ+

(tk)k̸∈J0 ,k<i

⏐⏐]− E
[⏐⏐Ñ+

(tk)k̸∈J0 ,k≤i

⏐⏐]+ E
[∫

C0(T )
1

{f (ti)≥X̃(ti),f (tk)≥X̃tk for some k̸∈J0,k≤i}dµ̃(f )
]

= E
[⏐⏐Ñ+

(tk)k̸∈J0 ,k<i

⏐⏐]− E
[⏐⏐Ñ+

(tk)k̸∈J0 ,k≤i

⏐⏐]+ E
[∫

C0(T )
1

{f (ti)≥X̃(ti)}
dµ̃(f )

]
= E

[⏐⏐Ñ+

(tk)k̸∈J0 ,k<i

⏐⏐]− E
[⏐⏐Ñ+

(tk)k̸∈J0 ,k≤i

⏐⏐]+ E
[
µ̃

({
f ∈ C0(T ) | f (ti) ∈

[
X̃ti ,∞

)})]
.

Thus,

E
[⏐⏐Ñ+

(ti)i̸∈J0

⏐⏐]+ d − |J0| +

∑
i̸∈J0

E
[⏐⏐{f (i)j

⏐⏐ f (i)j (tk) ≥ X̃tk for some k ̸∈ J0, k < i; f (i)j (ti) ≥ X̃tk

}⏐⏐]
= E

[⏐⏐Ñ+

(ti)i̸∈J0

⏐⏐]+ d − |J0| +

∑
i̸∈J0

E
[⏐⏐Ñ+

(tk)k̸∈J0 ,k<i

⏐⏐]− E
[⏐⏐Ñ+

(tk)k̸∈J0 ,k≤i

⏐⏐]+ E
[
µ̃

({
f ∈ C0(T ) | f (ti) ∈

[
X̃ti ,∞

)})]
= d − |J0| +

∑
i̸∈J0

E
[
µ̃

({
f ∈ C0(T ) | f (ti) ∈

[
X̃ti ,∞

)})]
. (B.1)

If X̃(ti)i̸∈J0
has continuous marginal distribution we can stop as soon as we found an extremal function at each location

(ti)i̸∈J0 . Therefore, the term d − |J0|, which comes from the simulation of the first subextremal function, may be omitted
from (B.1) and we get∑

i̸∈J0

E
[
µ̃

({
f ∈ C0(T ) | f (ti) ∈

[
X̃ti ,∞

)})]
=

∑
i̸∈J0

E
[
µ̃

({
f ∈ C0(T ) | f (ti) ∈

(
X̃ti ,∞

)})]
=

∑
i̸∈J0

E
[
− log

(
Fti
(
X̃ti

))]
= d − |J0|,

where Ft (x) := P(X̃t ≤ x) denotes the marginal distribution function of X̃t and it is well known that − log
(
Fti (X̃ti )

)
∼ Exp(1), since Fti (X̃ti ) is uniformly distributed on [0, 1] when X̃t follows a continuous distribution. Combining the results
above we obtain the claimed complexity of Algorithm 1. □

Proof of Lemma 2. Note that the Lévy measure νk of L(k) on M is given by the image measure of the map((
(0,∞), λ0,∞

)
×
(
(0,∞), ρk

))
→ M; (s, a) ↦→ a1{·≥s},

where λ0,∞ denotes the Lebesgue measure on (0,∞) and ρk denotes the univariate Lévy measure of L(k)1 . To derive the
path Lévy measure of the self similar subordinator (Ht)t≥0, we first need to derive the path Lévy measures of the two
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independent id processes L̂(1)t :=
∫

∞

− log(min{t;1}) exp(−s)dL(k,1)s and L̂(2)t :=
∫ log(max{1,t})
0 exp(s)dL(k,2)s . Note that for t ∈ [0, 1]∫

∞

− log(t)
exp(−y)

(
a1{·≥s}

)
(dy) = a exp(−s)1{s≥− log(t)}

and for t > 1∫ log(t)

0
exp(y)

(
a1{·≥s}

)
(dy) = a exp(s)1{s≤log(t)}.

An application of Lemma 3 shows that the Lévy measure of L̂(1) is given by

ν1(A) = λ0,∞ ⊗ ρk

({
(s, a)

⏐⏐⏐⏐ a exp(−s)1{s≥− log(min{·,1})} ∈ A
})

; A ∈ B(M)

and that the Lévy measure of L̂(2) is given by

ν2(A) = λ0,∞ ⊗ ρk

({
(s, a)

⏐⏐⏐⏐ a exp(s)1{s≤log(max{·,1})} ∈ A
})

; A ∈ B(M).

This implies that the path Lévy measure of the self-similar subordinator H is given by ν = ν1 + ν2, since L̂(1) and L̂(2) are
independent. It remains to verify (21). To this purpose we simply verify that the Laplace transform of H coincides with
the Laplace transform of an id process with path Lévy measure (21), since a path Lévy measure is unique.

E

[
exp

(
d∑

i=1

ziH(ti)

)]
= exp

⎛⎝∫ ∞

0

∫
∞

0

(
1 − exp

(
−

d∑
i=1

zia exp(−s)1{s≥− log(min{ti,1})}

))
dsρk(da)

⎞⎠
+ exp

⎛⎝∫ ∞

0

∫
∞

0

(
1 − exp

(
−

d∑
i=1

zia exp(s)1{s≤log(max{ti,1})}

))
dsρk(da)

⎞⎠
= exp

⎛⎝∫ ∞

0

∫ 1

0

(
1 − exp

(
−

d∑
i=1

zias1{− log(s)≥− log(min{ti,1})}

))
s−1dsρk(da)

⎞⎠
+ exp

⎛⎝∫ ∞

0

∫
∞

1

(
1 − exp

(
−

d∑
i=1

zias1{log(s)≤log(max{ti,1})}

))
s−1dsρk(da)

⎞⎠
= exp

⎛⎝∫ ∞

0

∫
∞

0

(
1 − exp

(
−

d∑
i=1

zias1{ti≥s}

))
s−1dsρk(da)

⎞⎠ . □
Remark 10 (Path Lévy Measure of General Self-Similar Processes). The path Lévy measure representation in (21) is not
only valid for nnnd self-similar processes but also valid for general self-similar processes, where ρk denotes the Lévy
measure of the BDLP of H1. Moreover, since a self-similar process with index γ > 0 corresponds to a time change of a
self-similar process with index 1, the path Lévy measure ν(γ ) of a self-similar process with index γ is simply obtained by
applying the same ‘‘time change’’ to the Lévy measure of the self-similar process with index 1, i.e. by the image measure
of (M, ν) → M, (f (t))t≥0 ↦→ (f (tγ ))t≥0.

Proof of Theorem 5. The µj are finite intensity measures by their definition in (11). Therefore, Algorithm 2 stops after
finitely many steps if and only if the while-loop from lines 7–11 stops after finitely many steps. It is obvious that the
simulation of each PRM Ñn only requires the simulation of finitely many points. Thus, we need to check that the condition
C :=

{
there is no r > 0 such that ∪m≥nSm ⊂ B∞

r (0) and mini̸∈J0 X̃i ≥ r
}
is violated after finitely many steps. Let Ñ denote

the PRM with intensity µ̃. It is easy to see that condition C is eventually violated after finitely many steps if and only
if mini̸∈J0,x∈Ñ xi > 0 almost surely. By the construction of µ̃ we have P(X̃i = 0) = 0 for all i ̸∈ J0, which implies that
mini̸∈J0,x∈Ñ xi > 0 almost surely and the algorithm stops after finitely many steps.

It remains to prove that X̂ ∼ X . Clearly, if condition C is violated for some n ∈ N and r > 0, then all points of the PRM
Ñ in ∪m<nSm have already been simulated and X̃ = maxx∈Ñ(·∩(∪m<nSm))

x. A point x ∈ Ñ
(
· ∩
(
∪m≥nSm

))
can only increase

a non-zero component (X̃j)j̸∈J0 of X̃ if maxi̸∈J0 xj ≥ r . However, since ∪m≥nSm ⊂ B∞
r , we actually have that X̃ = maxx∈Ñ x.

Thus, X̃ is max-id with exponent measure µ̃. Combining this with the fact that the µj and µ̃ are supported on disjoint
sets, we obtain that X̂ is max-id with exponent measure

∑
j∈J0
µj + µ̃ = µ, which proves the claim. □
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B Further Publication

B.1 A corrected Clarke test for model selection and beyond [9]

Summary

The main result of this article is that we provide an omnibus statistical test for hypotheses of

the form

H0 : E [C(f1(X, θ⋆1), f2(X, θ⋆2), X)] = 0, (17)

where C denotes a fixed, real-valued, possibly non-smooth (criterion) function and f1(·, θ⋆1) and
f2(·, θ⋆2) denote the “optimal” representatives of some families of possibly non-smooth models

M1 := {f1(·, θ1) | θ1 ∈ Θ1} and M2 := {f2(·, θ2) | θ2 ∈ Θ2} for some property of the random

vector X. The main advantage of our framework is that we do not impose any smoothness

assumptions on (C, f1(·, ·), f2(·, ·)), which is usually a source of technical difficulties. Instead,

we require that the function (θ1, θ2) 7→ E [C(f1(X, θ1), f2(X, θ2), X)] is differentiable at (θ⋆1, θ
⋆
2),

which may be interpreted as a smoothed version of C(f1(·, ·), f2(·, ·), ·). With an emphasis on

non-smooth (C, f1(·, ·), f2(·, ·)) and econometric applications, we provide several examples that

illustrate the wide applicability of our framework.

We further prove that the test statistic

Tn :=
1√
n

n∑
i=1

C(f1(Xi, θ̂1,n), f2(Xi, θ̂2,n), Xi)

asymptotically follows a normal distribution under H0, where (θ̂1,n, θ̂2,n) denotes some (asymp-

totically normal) estimator of (θ⋆1, θ
⋆
2) and (Xi)i∈N denotes an i.i.d. sequence of samples from

X. Moreover, we provide estimators for the asymptotic variance of Tn as well as its bootstrap

consistency. The core assumption which is needed to deduce these results is

A : lim
n→∞

E
[(

C(f1(X, θ⋆1), f2(X, θ⋆2), X)− C(f1(X, θ̂1,n), f2(X, θ̂2,n), X)
)2]

→ 0

in probability, which essentially ensures that the fluctuation of C(f1(·, θ̂1,n), f2(·, θ̂2,n), ·) around
C(f1(·, θ⋆1,n), f2(·, θ⋆2,n), ·) is small with high probability.

A particularly important example of a non-smooth function C is given by C(f1, f2) =

1{log(f1)−log(f2)>0} − 1/2, which yields the null hypothesis of the Clarke test [15, 14] for non-

nested model comparison of competing families of parametric densities f1(·, θ1) and f2(·, θ2)
given by

HC
0 : P

(
log (f1(X, θ⋆1))− log (f2(X, θ⋆2)) > 0

)
=

1

2
.

The author of [15, 14] claimed that
∑n

i=1 1{log(f1(Xi,θ̂1,n))−log(f2(Xi,θ̂2,n))>0} is Binomial distributed

under HC
0 . However, we show that this claim is not even asymptotically correct and our re-

sults imply that
√
n
(
n−1

∑n
i=1 1{log(f1(Xi,θ̂1,n))−log(f2(Xi,θ̂2,n))>0} − 1/2

)
asymptotically follows
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a normal distribution under HC
0 . Furthermore, it is easy to see that HC

0 is not meaningful if

f1(·, θ⋆1) = f2(·, θ⋆2), i.e. when the “optimal” models in both families are identical. Therefore, we

have introduced the so-called modified Clarke null hypothesis

H̃C
0 : P

(
log (f1(X, θ⋆1))− log (f2(X, θ⋆2)) > 0

)
= P

(
log (f1(X, θ⋆1))− log (f2(X, θ⋆2)) < 0

)
,

which may be embedded into our general framework by choosing C(f1, f2) = 1{log(f1)−log(f2)>0}−
1{log(f1)−log(f2)<0}. This null hypothesis sensibly generalizes HC

0 to situations where f1(·, θ⋆1) =
f2(·, θ⋆2) may not be excluded. However, assumption A may not be satisfied in some situations

when f1(·, θ⋆1) = f2(·, θ⋆2), which is why we propose an alternative testing procedure of H̃C
0 that

essentially uses a smoothed version of C.

A simulation study illustrates the finite sample properties of our testing framework in a linear and

quantile regression setting. Moreover, we illustrate the finite sample properties of our proposed

test statistic for the modified Clarke null hypothesis in the case f1(·, θ⋆1) = f2(·, θ⋆2). An empirical

analysis of stock return data illustrates that the original Clarke test proposed in [15, 14] may

lead to erroneous conclusions in practice and that our framework mitigates these problems.

As a side product, we provide sufficient conditions such that the empirical variance of bootstrap

replicates of an arbitrary test statistic converges to the true asymptotic variance of this test

statistic. This way of estimating asymptotic variances seems to be a common approach in prac-

tice, but, to the best of our knowledge, has not been theoretically verified in a general framework

before.

Individual contributions

In my master thesis [7] I solely investigated the asymptotic behavior of the Clarke test for non-

nested models. I proved that the stated asymptotic distribution of the Clarke test in [15, 14]

is wrong and provided the asymptotic normality, bootstrap consistency and consistency of the

estimators of the asymptotic variance for the particular case of the Clarke test for non-nested

models. The idea to investigate the asymptotic behavior of the Clarke test in my master thesis

was developed by Jean-David Fermanian and Aleksey Min, the proofs were all developed and

carried out by myself, relying on some hints of Jean-David Fermanian. For my doctoral thesis,

to explicitly prevent double-counting, only those parts of this paper that go beyond my master

thesis are to be accredited.

During my PhD we have substantially generalized the scope of the paper. We now consider a

general, possibly non-smooth, criterion function. The Clarke test is merely a particular example

which may be deduced from a specific choice of a non-smooth criterion function and is discussed

in a separate section of the paper. All the proofs and results have been adapted to the generalized

framework. Jean-David Fermanian and I were responsible for extending the framework and the

proofs.

Moreover, we have introduced a modified Clarke test, which is also applicable to nested models.
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The idea for the modified Clarke test was generated by me and the test statistic proposed to

test the modified Clarke null hypothesis was developed by Jean-David Fermanian. Additionally,

we have provided the consistency of an estimator for the asymptotic variance of an arbitrary

test statistic, which is based on the empirical variance of the bootstrap replicates of this test

statistic. The formulation and the proof of this result were carried out by me.

Several examples for possible applications of our tests were developed by Jean-David Fermanian

and refined by me. The simulation section was mainly developed by Aleksey Min, while Jean-

David Fermanian and I were significantly involved in selecting the provided examples and I

was mainly responsible for theoretical verification of the applicability of our testing procedure

to the stated examples. The empirical analysis was developed by Jean-David Fermanian and

the corresponding simulations were carried out by Aleksey Min. Everybody was significantly

involved in the writing of all parts of the paper so that it is impossible to exactly determine

which parts were written by which person.

I am the main author of this article.
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a b s t r a c t

We introduce a large family of model selection tests based on the expectation of an
arbitrary, possibly non-smooth, parametric criterion function of the data. The consid-
ered methodology is illustrated for several econometric problems, including linear and
quantile regression. It covers the case of strictly locally non-nested models and some
overlapping models. The asymptotic theory of the proposed test statistic is stated. A
general exchangeable bootstrap scheme allows the evaluation of its limiting law as
well as its asymptotic variance. Our framework includes the tests for non-nested model
selection of Vuong (1989) and Clarke (2007) as particular cases. We show that the
statistic of the latter test is not Binomial distributed as originally stated and we provide
its corrected limiting law. In a simulation study, we empirically verify the distributional
approximation of our test statistic in a finite sample and examine the empirical level and
power of the corresponding model selection tests in various settings. Finally, an analysis
of a financial dataset illustrates the proposed model selection procedure at work.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In econometrics and statistics, the problem of model selection is usually tackled by likelihood-based comparisons.
The most famous criteria are the AIC and the BIC proposed by Akaike (1998) and Schwarz (1978), respectively. They
are based on the Kullback–Leibler Information Criterion (KLIC) (Kullback and Leibler, 1951), which measures a pseudo-
distance between a proposed density and the true density of the observations. Both criteria penalize (minus) the sample
log-likelihood by the number of estimated parameters. Among several candidates, the model with the lowest AIC or BIC
is selected. Both criteria share nice properties as ‘‘dimension-consistency’’ and asymptotic optimality (see Burnham and
Anderson (2002), Section 6). However, neither approach provides any information about the statistical significance of the
choice between two or more models.

This drawback of AIC and BIC criteria can be mitigated by some tests for model comparison, following the seminal
paper Vuong (1989), which was also based on the KLIC. Vuong (1989) derived the asymptotic distribution of the log-
likelihood ratio of two competing densities, whose parameters are estimated in a preliminary stage. Based on this result,
it is possible to formally test whether two competing families of densities are equally well approximating the unknown
density of the observations. The Vuong test is applicable to overlapping or non-nested model comparisons, meaning that
the competing families share some common densities or not, respectively. It has been applied in many empirical works due
to its simple interpretation and implementation (see e.g. Fafchamps (1993), Bonnal et al. (1997), Cameron and Heckman
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E-mail addresses: florian.brueck@tum.de (F. Brück), jean-david.fermanian@ensae.fr (J.-D. Fermanian), min@tum.de (A. Min).
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(1998), Caballero and Engel (1999), Nyarko and Schotter (2002), Karaivanov and Townsend (2014) and Kendall et al.
(2015), among many others).

The seminal paper of Vuong (1989) has induced many contributions and extensions. In particular and without being
exhaustive, Lavergne and Vuong (1996) studied a MSE-based testing procedure for discriminating between two sets
of regressors. Rivers and Vuong (2002) extended Vuong (1989) to deal with weakly dependent observations, allowing
for a wide variety of estimation techniques besides the KLIC. Li (2009) falls within this framework using a simulated
mean squared error of predictions as another lack-of-fit criterion. In a semiparametric model, Chen and Fan (2005) used
likelihood ratios to discriminate between two parametric copula families. Chen et al. (2007) proposed a nonparametric
likelihood ratio testing procedure to choose between a parametric model and a moment condition model when both
models could be misspecified. The relation between Bayesian forecast averaging and frequentist model selection and
prediction has been studied in Hong and Preston (2012). In Vuong (1989), the difference between the KLIC of two
competing models exhibits a variety of limiting distributions depending on whether the two models are overlapping
or not. Therefore, using the KLIC typically requires pre-testing to decide which distribution should be used for the
computation of critical values. Shi (2015b) showed that this could generate severe size distortions in finite samples.
She proposed a one-step ‘‘nondegenerate’’ test that achieves uniform asymptotic size control in the overlapping and the
non-overlapping cases.

Clarke (2007) combined the ideas of the Vuong test and the paired sign test: the selection between two non-nested
parametric models is based on the median of the log-ratio of the two competing densities. Clarke’s intuition is that the
better model will yield higher likelihoods than the worse, on average and under the true underlying DGP. Then, the
Clarke test statistic simply counts the number of likelihood ratios greater than one among all observations. Therefore,
this statistic is claimed to be Binomial distributed, a trap one can easily fall into. A nice feature of the Clarke test is its
wide range of applicability (the median of any distribution always exists) and a (falsely assumed) known law under the
null. However, Clarke (2007) lacks mathematical rigor. In particular, the assessed law of the Clarke test statistic under the
null is wrong due to the influence of first-stage estimators (see Appendix B).

Nonetheless, the Clarke test has been extensively used and invoked in the academic literature. Besides statistics
(Panagiotelis et al., 2012), this test has been applied in many different fields: political science (Imai and Tingley, 2012;
Martin and Vanberg, 2014), economics (Harrison et al., 2015; Czajkowski et al., 2009), finance (Agarwal and Taffler,
2008; Markwat et al., 2009), financial econometrics (Czado et al., 2012), actuarial science (Erhardt and Czado, 2012),
psychometrics (New and Grainger, 2011; Douven and Schupbach, 2015), accounting (Barth et al., 2012; Verbeeten and
Vijn, 2010), medicine (Hofbauer et al., 2015; Zhou et al., 2016), etc. For instance, in the context of decision-making under
risk, Hey and Panaccione (2011) implemented an experimental design in which subjects are asked to take two sequential
decisions concerning the allocation of a given sum of money. Individuals are then classified as resolute, sophisticated,
myopic or naive through an intensive use of the Clarke test (see Table 5 in Hey and Panaccione (2011)).

The empirical analyses with the Clarke test usually deal with a comparison of either regression-type models with a
specified log-likelihood or parametric distributions. Many applications simultaneously use the Clarke and Vuong tests and
the reported p-values of the former are usually significantly lower than those of the latter. As a consequence, contradictory
empirical assessments may easily be drawn based on the two tests: e.g. see Koliai (2016) or Panagiotelis et al. (2012). We
will explain the source of such possible inconsistencies and our empirical analysis will illustrate this issue once more.
Currently, the seminal paper Clarke (2007) is cited in roughly 300 academic works and new papers regularly use it
incorrectly. Therefore, there is an urgent need to rectify its use under a theoretical and practical point of view.

In this paper, we propose a family of general model selection tests, which can be applied to many different settings. The
Vuong and Clarke tests for strictly locally non-nested models (see Definition 4.1 in Section 4) are covered by the proposed
framework. Using techniques from the empirical process theory, we show that a properly normalized test statistic is
asymptotically normal. As a corollary, we revisit the original Clarke test and provide its corrected asymptotic distribution
under the null hypothesis. Since its asymptotic variance is usually not available in closed form, we provide a weakly
consistent estimator based on estimated numerical derivatives. Additionally, we propose an exchangeable bootstrap
scheme to evaluate the limiting law of our general test statistic and its respective asymptotic variance.

The paper is organized as follows. In Section 2, we introduce a general framework for model selection with a
possibly non-smooth criterion function and also motivate the original Clarke test. Moreover, we discuss several potential
applications of the proposed model selection methodology in econometrics. Section 3 discusses the asymptotic normality
of a test statistic for the general model selection procedure and provides a consistent numerical estimator for its unknown
limiting variance. In Section 4, we deduce the asymptotic normality of the corrected Clarke test for strictly locally non-
nested models. Section 5 discusses a modified Clarke-type test approach when the optimal competing models may
coincide partially or completely. The validity of a general exchangeable bootstrap procedure is stated in Section 6.
Additionally, we prove that the empirical variance of bootstrap replications of the test statistic also constitutes a consistent
estimator of the unknown asymptotic variance. In Section 7, a simulation study investigates the finite sample performance
of the test statistic in linear and quantile regression settings. Additionally, a short empirical investigation of a modified
Clarke test for identical optimal models is provided. Section 8 provides a real data application of the corrected Clarke test
and compares it to the original test by Clarke (2007). Section 9 summarizes and concludes the paper. The proofs have been
postponed to Appendix A. In Appendix B, an illustrative example shows that the original Clarke test statistic is generally
not Binomial distributed.
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2. The Vuong test, the Clarke test and beyond

Let us introduce our mathematical framework for model selection, define the main test statistic of interest and set
some notations. Consider a probability space (Ω,A, P) and a random vector X : Ω → Rd. Expectations E[·] refer to the
law of X , by default. We cover the case of continuous, discrete or mixed distributions. In many applications the vector X
can be split into two subvectors Y , the ‘‘explained’’ variable, and Z , the ‘‘explanatory’’ variable (also called ‘‘covariates’’).
The conditional distribution of Y given Z induces a law PY |Z on Rd′

with d′
≤ d, which becomes the topic for modeling

purposes when the marginal law of the covariates Z is assumed to be the same for all models.
The paradigm of our model selection can be summarized as follows: given two competing model specifications, which

one is best-suited to the true Data Generating Process (DGP)? Both families, only one, or neither are allowed to be
correctly specified or misspecified. Formally, consider two families of models F := {fα : Rd

→ RdF | α ∈ Θα} and
G := {gβ : Rd

→ RdG | β ∈ Θβ}, respectively, for two compact parameter sets Θα ⊂ Rdα and Θβ ⊂ Rdβ . Typically, the
latter maps are Radon–Nikodym densities of X (or of Y | Z) w.r.t. a common given dominating measure µ. Nonetheless,
nothing precludes from considering regressions of Y on Z , conditional quantiles or others.

Further, assume that there exist some ‘‘pseudo-true’’ values (see Sawa (1978) and Monfort (1996)) α⋆ and β⋆ that
belong to the interior ofΘα andΘβ , respectively, and sequences of estimators (α̂n)n∈N and (β̂n)n∈N such that α̂n = α⋆+oP (1)
and β̂n = β⋆+ oP (1). In general, α⋆ and/or β⋆ are the parameter values which minimize a criterion (a divergence, or even
a true distance) between fα and/or gβ and a corresponding map given the true DGP. For instance, when F and G are
sets of densities, α⋆ (resp. β⋆) may be defined as the minimizer of E

[
ln fα(X)

]
(resp. E

[
ln gβ (X)

]
), i.e. the minimizer of the

Kullback–Leibler distance between the first (resp. second) density model and the true DGP. Nonetheless, it is not necessary
to be restricted to such definitions in the considered framework. In other words, we do not assume anything on α⋆ and
β⋆, except the following zero assumption:

H0 : E
[
H
(
fα⋆ (X), gβ⋆ (X), X

)]
= 0, (1)

where H : RdF ×RdG ×Rd
→ R is a known measurable map. Most often, E[H(f (X), g(X), X)] is interpreted as a ‘‘distance’’

between f and g even if it is not required that the latter quantity has to satisfy the corresponding mathematical definition.
Under H0, one considers the models F and G as equally well-suited given the true DGP. The third argument of H increases
the range of potential applications. In particular, it allows the use of different ‘‘weights’’ depending on the location of X .
Moreover, we cover the case of non-differentiable maps H , traditionally a source of technical difficulties.

In the literature, it is customary to distinguish between several situations: two models F and G are non-nested when
F ∩ G = ∅, overlapping when F ∩ G ̸= ∅ and nested when F ⊂ G or G ⊂ F . In this paper, we consider two slightly
different situations: the case of strictly locally non-nested competing models when (α, β) belongs to a neighborhood of
(α⋆, β⋆) (see Definition 4.1 in Section 4), or the case P

(
fα⋆ (X) = gβ⋆ (X)

)
> 0. When the two competing models F and G

are strictly locally non-nested, a test of H0 is typically based on the test statistic

Ĉn :=
1
n

n∑
i=1

H
(
fα̂n (Xi), gβ̂n (Xi), Xi

)
, (2)

where (Xi)i∈N denotes an i.i.d. sample from X and α̂n and β̂n denote the estimators of α⋆ and β⋆, respectively.
In econometrics, the most common case by far is to assume that fα(·) and gβ (·) are some candidate densities of

X , parameterized by α and β , respectively. If H(f (·), g(·), ·) = log(f (·)/g(·)), then the two competing models will be
considered as equivalent (i.e. H0 is satisfied) when their Kullback–Leibler divergences from the true law of X are the same.
When allowing for covariates Z whose law does not depend on the parameters, this is equivalent to consider fα(· | z) and
gβ (· | z), the candidate densities of Y given Z = z. We obtain the null hypothesis

HV
0 : E

[
log
(
fα⋆ (X)

)]
= E

[
log
(
gβ⋆ (X)

)]
.

In the case of covariates, we have written fα(X) instead of fα(Y | Z), since fα(Y | Z) can always be viewed as a function
of X . Obviously, when E

[
H(fα⋆ (X), gβ⋆ (X), X)

]
> 0, the first model is preferred over the second one, and inversely when

E
[
H(fα⋆ (X), gβ⋆ (X), X)

]
< 0. In case α̂n and β̂n are pseudo-maximum likelihood estimators, HV

0 is the null hypothesis of
the popular test of Vuong (1989). When dealing with non-nested models its test statistic

n−1/2
n∑

i=1

{log
(
fα̂n (Xi)

)
− log

(
gβ̂n (Xi)

)
}

is asymptotically normal under HV
0 .

In the presence of covariates, the same result applies. In the case of overlapping models, the latter asymptotic variance
may be equal to zero, precluding the building of usual confidence intervals. That is why Vuong (1989) promotes a
two-stage testing procedure with a pre-test of the zero assumption HV

00 : fα⋆ (·) = gβ⋆ (·).
To avoid confusion between the Vuong tests for non-nested and overlapping models we refer to the one-(resp. two-)

step Vuong test when a test of HV
0 is conducted without (resp. with) a pre-test of HV

00. The pre-testing procedure to
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manage overlapping situations can be seen as a weakness, due to a loss of power and practical inconvenience. To solve it,
some authors have tackled the case of non-nested and overlapping models simultaneously. Notably, Shi (2015b) and Liao
and Shi (2020) add higher-order adjustments to the numerator and/or the denominator of the Vuong Studentized log-
likelihood ratio. By cleverly weighting individual log-likelihoods, Schennach and Wilhelm (2017) obtained another pivotal
test statistic. Hsu and Shi (2017) and Shi (2015a) use similar techniques to manage the case of conditional moment
identities and/or inequalities. Liao and Shi (2020) extended the conceptual ideas of Shi (2015b) to semi/non-parametric
models. Due to the additional amount of randomness induced by simulation techniques, the test statistic in Li (2009) is
never degenerate and allows to choose among competing structural models.

Generally speaking, all Vuong-type tests try to check H0 : D
(
P, Pα⋆

)
= D

(
P, Pβ⋆

)
, for some pseudo-distance D, as

noticed by many authors (see Li (2009), Liao and Shi (2020), among others). This particular case of H0 is obtained by
comparing a measure of discrepancy between each competing model and the true underlying distribution. One can say
that such procedures ‘‘separate’’ the features of the two models, by dealing with them independently. In our notation,
separability means that one can write H(f (·), g(·), ·) = H1(f (·)) − H2(g(·)) for two measurable maps H1 and H2.

The previous situation of separability is more the exception than the rule. For instance, Clarke (2007) proposed to
choose H(f (·), g(·), ·) = 1

{
log(f (·)/g(·)) > 0

}
− 1/2, yielding a non-separable criterion. As in Vuong (1989), the maps

fα and gβ are densities, assuming that the competing models are non-nested. In this case, H0 translates to Clarke’s null
hypothesis2

HC
0 : P

(
log
(

fα⋆ (X)
gβ⋆ (X)

)
> 0

)
=

1
2

· (3)

The ‘‘separability feature’’ of Vuong-type tests cannot be exploited here. Instead of comparing two models in terms of
their KLIC, Clarke proposed a ‘‘distribution-free’’ test statistic by considering the median of log (fα(Y | Z))− log

(
gβ (Y | Z)

)
.

Then, under Clarke’s approach, both models F and G are equally suited to describe the distribution of X if the median of
log (fα⋆ (X))− log

(
gβ⋆ (X)

)
is equal to 0. Note that the considered function H is a discontinuous function due to its jump at

zero, which induces a technical hurdle to manage the situation P
(
fα⋆ (X) = gβ⋆ (X)

)
> 0. Under such circumstances, it is

impossible to control the regularity of the map (α, β) ↦→ P
(
log
(
fα(X)/gβ (X)

)
> 0

)
in a neighborhood of (α⋆, β⋆) without

too restrictive assumptions.
To test HC

0 , Clarke proposed the test statistic

B̂n :=

n∑
i=1

1

{
log

(
fα̂n (Xi)
gβ̂n (Xi)

)
> 0

}
=

n∑
i=1

1

{
log

(
fα̂n (Yi | Zi)
gβ̂n (Yi | Zi)

)
> 0

}
,

and he claimed that it is Binomial distributed. The theoretical counterpart

Bn :=

n∑
i=1

1
{
log
(

fα⋆ (Xi)
gα⋆ (Xi)

)
> 0

}
=

n∑
i=1

1
{
log
(

fα⋆ (Yi | Zi)
gβ⋆ (Yi | Zi)

)
> 0

}
of B̂n is indeed Binomial distributed. However, as it is illustrated in Appendix B, B̂n is generally not Binomial distributed,
neither for fixed n nor asymptotically, due to the additional randomness and dependence induced by the estimators α̂n
and β̂n. Necessary modifications of some asymptotic laws due to first-stage estimators have been pointed out for a long
time in the literature (see Durbin (1973), e.g.). Apparently and surprisingly, this erroneous statement on the limiting law
of the Clarke test has never been noticed in the literature.

In this paper, we provide the corrected asymptotic distribution of a normalized Clarke test statistic in the case of
strictly locally non-nested models. If fα⋆ = gβ⋆ , i.e. the two ‘‘optimal models’’ are identical, HC

0 is not satisfied. This
may be considered as a drawback of the Clarke approach. To make progress on this problematic case, we propose to
test HC

0 with a modified null hypothesis — see Section 5, or to test H0 given in (1) for convenient maps H , which are
smoother than (f , g) ↦→ 1{log(f /g) > 0} and may allow to handle the case P

(
fα⋆ (X) = gβ⋆ (X)

)
> 0. Indeed, assume that

H in (1) is ‘‘sufficiently regular’’ and satisfies H(f , f , ·) = 0. Then, H0 may be satisfied for some strictly locally non-nested
models and for some models with P

(
fα⋆ (X) = gβ⋆ (X)

)
> 0. A typical choice for such a smooth function H is given by

H(f , g, ·) = Ψ (f − g) − 1/2, where Ψ denotes some distribution function which satisfies Ψ (0) = 1/2. For example, set
Ψ (t) = Φ(t/χ ), with a sufficiently small tuning parameter χ > 0, where Φ denotes the cumulative distribution function
of the standard normal distribution. Compared to (3), this means softening a non-differentiable discontinuous map, as
usual in Machine Learning theory. Actually, both cases are complementary and will be managed in the next sections. To
be specific, we study the asymptotic law of our general test statistic defined in (2) which covers both aforementioned
situations. We state the limiting law of

√
n Ĉn under H0. In particular, setting H(f (·), g(·), ·) = 1{f (·) > g(·)} − 1/2, we

recover Clarke’s test statistic B̂n.
Let us illustrate the relevance of the original Clarke null hypothesis HC

0 and other Clarke-type null hypotheses in
econometrics. We focus on the case of ‘‘no-separability’’ which cannot be managed by Vuong-type tests.

2 Since fα and gβ do not need to have the same support, it can occur that log(fα(X)/gβ (X)) is not well-defined when one or both densities are
zero. In such cases, formally set log(fα(X)/0) := +∞, log(0/gβ (X)) := −∞ and log(0/0) := 0. According to these definitions HC

0 can be rewritten as
HC

0 : P
(
fα⋆ (X) > gβ⋆ (X)

)
= 1/2.
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• Linear regression: Assume two competing linear regression models

Y = rα⋆ (Z) + εα⋆ , E[εα⋆ | Z] = 0, or Y = r̄β⋆ (Z) + ε̄β⋆ , E[ε̄β⋆ | Z] = 0.

The traditional way of discriminating between such models is to compare the variances of their residuals. The
two models would then be similar if E[ε2α⋆ ] = E[ε̄2β⋆ ]. In line with HC

0 , our zero assumption would rather be
H0 : P

(
|εα⋆ | > |ε̄β⋆ |

)
= 1/2, which allows to test for structural differences in the error terms of both models. Clearly,

a violation of H0 would imply that the prediction error of one model tends to be smaller than the prediction error
of the other model. In contrast to standard variance comparisons, which only involve the marginal second moment
of (εα⋆ , ε̄β⋆ ), H0 accounts for the joint distribution of the error terms (εα⋆ , ε̄β⋆ ), independently of their moments.
Moreover, H0 is insensitive to rare occurrences of large values (outliers) of εα⋆ , resp. ε̄β⋆ , which usually have a large
impact on the magnitude of their second moments.
Setting fα(X) = Y − rα(Z) and gβ (X) = Y − r̄β (Z) the most general case of H0 is given by

E
[
H
(
Y − rα⋆ (Z), Y − r̄β⋆ (Z), (Y , Z)

)]
= 0,

for some map H such that H(f , f , ·) = 0 for every real f . In particular, such tests would provide a tool for selecting
a subset of relevant explanatory variables.

• Quantile regression: The two competing models aim to predict the conditional quantiles of a random variable Y | Z ,
where Y given Z = z is assumed to be a continuous random variable for every z. For a given quantile level τ ∈ (0, 1)
they are defined as the function q(z) such that P

(
Y ≤ q(z, α⋆) | Z = z

)
= τ for almost every z. Define the loss

function ρτ (t) = t
(
τ − 1(t ≤ 0)

)
. The two competing models q1(z, α)α∈Θα and q2(z, β)β∈Θβ seek to minimize their

corresponding expected loss given by E
[
ρτ
(
Y − qi(Z, ·)

)]
, i = 1, 2. Let α⋆ and β⋆ denote the respective minimizers

of this criterion. Then, similarly to linear regression and in the same spirit as Clarke’s HC
0 , it would make sense to

test

P
(
ρτ
(
Y − q1(Z, α⋆)

)
> ρτ

(
Y − q2(Z, β⋆)

))
= 1/2 (4)

for structural differences in the error terms, or even to test

P
(
q1(Z, α⋆) > q2(Z, β⋆)

)
= 1/2 (5)

for structural differences in the predicted quantiles. Nonetheless, when the former assumption is not satisfied, this
does not provide a way of choosing among the two models F and G. In other terms, (4) is more relevant than (5)
for model selection purposes. The particular case τ = 1/2 yields the Least Absolute Deviation estimator for which
ρ1/2(t) = |t| and we would test

P
(
|Y − q1(Z, α⋆)| > |Y − q2(Z, β⋆)|

)
= 1/2.

Model selection in quantile regression is usually based on some distorted first moment of predicted absolute errors
(check functions, as in Liao and Shi (2020) e.g.). On the other side, model selection procedures based on Clarke-type
null hypotheses have a similar interpretation as in the linear regression setting. Particularly, they involve the joint
distribution of the predicted absolute errors, are independent of the moments of the error term, and are less sensitive
to outliers.
As before, the general null hypothesis H0 may be rewritten as

E
[
H
(
Y − q1(Z, α⋆), Y − q2(Z, β⋆), (Y , Z)

)]
= 0.

Finally, choosing H(f (·), g(·), ·) = H0(f (·), g(·))1(· ∈ C) for some map H0 and some appropriate Borelian subset C
could provide a way of choosing between two measures of systemic risk as CoVaR (see Adrian and Brunnermeier
(2016)).

• Conditional expectiles: For any τ ∈ (0, 1), the τ -th expectile of Y given Z = z (Newey and Powell, 1987) is a real
number e(τ , z) that minimizes E

[
ρ̃τ (Y−m) | Z = z

]
over m for almost all z. Here, ρ̃τ (t) := t2

(
τ−1(t ≤ 0)

)
, justifying

the terminology ‘‘asymmetric least squares’’. Nonetheless, more general maps ρ̃τ (t) := ψ(t)
(
τ − 1(t ≤ 0)

)
have

been proposed too (Breckling and Chambers, 1988). As for quantile regressions, consider two competing parametric
models for conditional τ -expectiles, say fα(z) and gβ (z). The performances of the two latter models can be considered
as similar if

P
(
ρ̃τ
(
Y − fα⋆ (Z)

)
> ρ̃τ

(
Y − gβ⋆ (Z)

))
= 1/2.

• Limited-dependent variables: Assume that Y ∈ {0, 1} is discrete. Typically, this arises in usual binary classification
problems (Logit-Probit/SVM/trees, etc.). Denote fα(X) and gβ (X) as the likelihoods of Y | Z under both model
specifications: with a slight abuse of notation set

fα(X) := P(Y = 1 | Z, α)YP(Y = 0 | Z, α)1−Y , and
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gβ (X) := P(Y = 1 | Z, β)YP(Y = 0 | Z, β)1−Y .

Note that

P
(
log
(

fα⋆ (X)
gβ⋆ (X)

)
> 0

)
= EZ

[
1
{
P(Y = 1 | Z, α⋆) > P(Y = 1 | Z, β⋆)

}
P(Y = 1 | Z)

+1
{
P(Y = 0 | Z, α⋆) > P(Y = 0 | Z, β⋆)

}
P(Y = 0 | Z)

]
.

Clearly, P
(
log
(
fα⋆ (X)/gβ⋆ (X)

)
> 0

)
> 1/2 means that the model F makes better predictions than the model G

on average. Therefore, it makes sense to consider the two families of classifiers F and G as equally well suited
classifiers if Clarke’s null hypothesis HC

0 : P
(
log
(
fα⋆ (X)/gβ⋆ (X)

)
> 0

)
= 1/2 is satisfied. Alternatively, the expected

misclassification rate (EMR) under F is given by

EMR(F) := E
[
(1 − Y )1

{
P(Y = 1 | Z, α⋆) > P(Y = 0 | Z, α⋆)

}
+ Y1

{
P(Y = 1 | Z, α⋆) < P(Y = 0 | Z, α⋆)

}]
. (6)

Thus, it would make sense to test H0 : EMR(F) = EMR(G), where EMR(G) is defined similarly. In other words, both
model specifications will be considered as equivalent if their expected proportions of misclassified outcomes are
similar. Note that most binary classifiers are based on a rule such as: ‘‘Y = 1 iff h(Z | θ ) ≥ 0 for some known
parametric family h and some finite dimensional parameter θ ’’. Therefore, a more general version of (6) would be
EMR(F) := E[fα⋆ (X)], where fα⋆ (X) := (1 − Y )1

{
h(Z | α⋆) ≥ 0

}
+ Y1

{
h(Z | α⋆) < 0

}
. Similarly, EMR(G) := E[gβ⋆ (X)],

where gβ⋆ (X) := (1 − Y )1
{
h̄(Z | β⋆) > 0

}
+ Y1

{
h̄(Z | β⋆)

}
. All the latter points of view are particular cases of (1)

with non-smooth H and we could conduct a test of H0 by setting H
(
fα(·), gβ (·), ·

)
:= fα(·) − gβ (·).

• Stochastic dominance: a cumulative distribution function F1 first-order dominates another cumulative distribution
function F2 when F1(x) ≤ F2(x) for every x. If we consider that fα and gβ are cumulative distribution functions, one
says that the model F first-order dominates the model G if P

(
fα⋆ (X) ≤ gβ⋆ (X)

)
= 1. This is a particular case of

H0, with H(f , g) = 1(f ≤ g) − 1. However, without modification, Theorem 3.1 only applies to tests of the null
hypotheses P

(
fα⋆ (X) ≤ gβ⋆ (X)

)
= 1 − ϵ for some small ϵ > 0, which can be seen as an ‘‘approximated’’ first-order

stochastic dominance property. Such ideas are close to the concept of ‘‘Almost Stochastic Dominance’’ (Leshno and
Levy, 2002), even if the latter property cannot easily be written as (1). Alternatively, one could test the equivalent null
hypothesis H0 : E

[
Ψ
(
max{0; fα⋆ (X) − gβ⋆ (X)}

)]
= 0, where Ψ denotes a sufficiently smooth distribution function

with Ψ (0) = 0, for which it is likely that the assumptions of Theorem 3.1 are satisfied.

3. Limiting behaviors for an omnibus test

We first study our general-purpose statistic
√
n Ĉn defined in (2). If not explicitly stated otherwise (e.g. as in

Theorem 3.1), we will always assume that the null hypothesis H0 from (1) is satisfied.
Following the usual notations in the field of empirical processes (e.g. see van der Vaart and Wellner (1996)), denote

Pf =
∫
Ω
f (X(ω))dP(ω) = E[f (X)] for any measurable function f : Rd

↦→ R. Let (Xi)i∈N denote a sequence of i.i.d.
realizations of the random vector X whose law is P . We refer to the law of the sequence (Xi)i∈N by P. The empirical
measure associated with (Xi)1≤i≤n is denoted as Pn := n−1∑n

i=1 δXi , where δXi denotes the Dirac measure at Xi. Similarly
to Pf , define Pnf := n−1∑n

i=1 f (Xi). In the proofs, we frequently use the expression Gnf :=
√
n(Pn − P)f . Further, u · v

denotes the Euclidean scalar product of two vectors u and v. For any δ > 0, denote Eδ := [α⋆1 − δ, α⋆1 + δ] × · · · × [α⋆dα −

δ, α⋆dα + δ] × [β⋆1 − δ, β⋆1 + δ] × · · · × [β⋆dβ − δ, β⋆dβ + δ] and

φ(x, α, β) := H
(
f (x, α), g(x, β), x

)
.

Moreover, for γ > 0 and Eγ ⊆ Θα × Θβ , we denote Hγ := {φ(·, α, β) | (α, β) ∈ Eγ }. Since (α⋆, β⋆) is assumed
to be an interior point of Θα × Θβ , such a γ > 0 always exists and Hγ is well-defined. Define the random function
φn := H

(
fα̂n (·), gβ̂n (·), ·

)
= φ(·, α̂n, β̂n) as well as φ⋆ := H

(
fα⋆ (·), gβ⋆ (·), ·

)
= φ(·, α⋆, β⋆). Finally, we use ⇝ to denote weak

convergence in l∞(Hγ ) := {ζ | ζ : Hγ ↦→ R; supf∈Hγ
|ζ (f )| < ∞} equipped with the supremum norm, according to the

standard theory of van der Vaart and Wellner (1996). The following assumptions are required to prove the asymptotic
normality of

√
nĈn.

Assumptions.

B1. α⋆ and β⋆ belong to the interior of Θα and Θβ , respectively.
B2. The (measurable) estimators satisfy

√
n(α̂n − α⋆) = Gn(s1) + oP(1) and

√
n(β̂n − β⋆) = Gn(s2) + oP(1) for some

measurable functions s1 and s2 with E
[
s1(X)2

]
< ∞ and E

[
s2(X)2

]
< ∞.
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B3.
∫
(φn − φ⋆)2 dP = EX

[
(φn(X) − φ⋆(X))2

]
tends to zero in probability.

B4. There exists some γ > 0 such that the function

h : Eγ → R ; (α, β) ↦→

∫
φ(x, α, β) dP(x) =

∫
H
(
fα(x), gβ (x), x

)
dP(x)

is continuously differentiable at (α⋆, β⋆).

Note that, by Dominated Convergence, Assumption B3 is satisfied when the map H is continuous and bounded,
assuming B2 and strong consistency of the first-stage estimators. Otherwise, when H is discontinuous, it is necessary
to directly check B3, which is the case for the Clarke test (see the proof of Corollary 4.2). Moreover, note that H0 simply
means h(α⋆, β⋆) = 0. Assumption B2 is true for many M- and Z-estimators: e.g. see Theorems 2.11–2.13 in Kosorok
(2008). In other words, we do not restrict ourselves to ML or quasi-ML parameter estimators, contrary to Vuong (1989)
and Clarke (2007). We denote

h1(α, β) :=

[
∂

∂α1
, . . . ,

∂

∂αdα

]⊺
h(α, β), and h2(α, β) :=

[
∂

∂β1
, . . . ,

∂

∂βdβ

]⊺
h(α, β),

where x⊺ denotes the transpose of the vector x. The first part of the next theorem shows the asymptotic normality of
√
n Ĉn under H0. Parts (ii) and (iii) handle the two possible cases under the alternative.

Theorem 3.1. Assume that there exists γ > 0 such that Hγ is P-Donsker and Assumptions B1–B4 are satisfied. Then the
following statements are valid.

(i) Under H0, i.e. E
[
H
(
fα⋆ (X), gβ⋆ (X), X

)]
= 0, we have

√
n Ĉn ⇝ N (0, σ 2), where

σ 2
= Var

(
φ(X, α⋆, β⋆) + h1(α⋆, β⋆) · s1(X) + h2(α⋆, β⋆) · s2(X)

)
.

(ii) If E
[
H
(
fα⋆ (X), gβ⋆ (X), X

)]
< 0, then

√
n Ĉn → −∞ P-almost surely.

(iii) If E
[
H
(
fα⋆ (X), gβ⋆ (X), X

)]
> 0, then

√
n Ĉn → +∞ P-almost surely.

The proof of this theorem has been postponed to Appendix A.1. Under (ii), the optimal model from G should be
preferred over the optimal model from F , and the opposite under (iii). Note that we do not explicitly require any
nested/non-nested/overlapping assumption concerning the two competing models. Nonetheless, such features would
be relevant to verify (or falsify) the validity of the key Assumption B3 and B4 for a particular map H . Moreover, it
may happen that φ⋆ = h1 = h2 = 0 which implies σ = 0. In such situations, Theorem 3.1 states convergence to
a degenerate distribution and the corresponding testing procedures cannot be conducted. For example, the degenerate
limiting distribution appears when fα⋆ = gβ⋆ and one would falsely apply the one-step Vuong test for non-nested model
selection. Moreover, as for the one-step Vuong test, a test of H0 based on

√
n Ĉn can suffer from finite sample size

distortions when σ is close to zero, because Theorem 3.1 is not stated uniformly w.r.t. the unknown DGP nor the competing
models. Some uniformly exact asymptotic size results of this type have been obtained by Shi (2015b), Schennach and
Wilhelm (2017) and Liao and Shi (2020) in the framework of Vuong (1989) and are left for further research in the
framework of Clarke (2007). For more details on the situation fα⋆ = gβ⋆ , we refer to the discussion around the Clarke
test in Section 5.

In the latter theorem, we require that Hγ is P-Donsker, a standard assumption in empirical process theory. It can
be explicitly verified in many cases: see Van der Vaart (2000) (Section 19) and Brück (2019) for a verification of this
assumption for the corrected Clarke test. Essentially, it just means that the complexity of Hγ is not too high.

Considering E[H(fα⋆ (X), gβ⋆ (X), X)] as an unknown parameter C∞ that is empirically estimated by Ĉn, our inference
strategy is exactly that of two-step parametric estimators: in a first stage, estimate (α⋆, β⋆) by (α̂n, β̂n); in a second stage,
plug-in the latter estimates in an empirical moment formula to evaluate C∞. The asymptotic theory of such two-step
parametric estimators is well-known: see some textbooks as White (1996) (Section 6.3) or Wooldridge (2010) (Section
12.4). In particular, when the first-stage estimators (α̂n, β̂n) are based on some moment conditions, the limiting law of
√
n Ĉn is deduced from the usual theory of Z-estimators (Newey (1984), Murphy and Topel (1985), e.g.). Unfortunately,

the latter results cannot be applied here because they require more restrictive regularity assumptions than ours. Indeed,
the strength of Theorem 3.1 is due to the fact that we do not impose the differentiability of (α, β) ↦→ H

(
fα(x), gβ (x), x

)
for every x but rather of h, its expectation under P . In many cases h will be differentiable, even though H may not be
differentiable, since integrating over a probability measure is similar to a smoothing procedure.

In practical applications, the asymptotic variance σ 2 of the test statistic in Theorem 3.1 is unknown. To build a
consistent estimator of σ 2, we numerically estimate the partial derivatives of the function h. To this goal, let e(n) denote
some positive function and denote by uαj and uβj the jth unit vectors in Rdα and Rdβ , respectively. As an estimator of h
will use the map hn : Eγ → R, hn(α, β) :=

∫
φ(x, α, β) dPn(x), and set

ĥ1,n,i :=
1

2e(n)

(
hn(α̂n + e(n)uαi , β̂n) − hn(α̂n − e(n)uαi , β̂n)

)
, 1 ≤ i ≤ dα,
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ĥ2,n,j :=
1

2e(n)

(
hn(α̂n, β̂n + e(n)uβj ) − hn(α̂n, β̂n − e(n)uβj )

)
, 1 ≤ j ≤ dβ .

With this notation, we can propose the following estimator of σ 2.

Theorem 3.2. Consider a positive function e(n) such that limn→∞ e(n) = 0 and limn→∞

√
n e(n) = +∞. Under the

assumptions of Theorem 3.1 (or Corollary 4.2) and if sup(α,β)∈Eγ E
[
H
(
fα(X), gβ (X), X

)]
< ∞, the variance estimator

σ̂ 2
:= Pn

(
φn + ĥ1,n · s1 + ĥ2,n · s2 − Pn

(
φn + ĥ1,n · s1 + ĥ2,n · s2

))2
=

1
n

n∑
i=1

(
H
(
fα̂n (Xi), gβ̂n (Xi), Xi

)
+ ĥ1,n · s1(Xi) + ĥ2,n · s2(Xi)

)2
−

(1
n

n∑
i=1

H
(
fα̂n (Xi), gβ̂n (Xi), Xi

)
+ ĥ1,n · s1(Xi) + ĥ2,n · s2(Xi)

)2
tends to σ 2 in probability.

Again, the proof is postponed to Appendix A.2. By Slutsky’s theorem,
√
n Ĉn/σ̂ is asymptotically standard normally

distributed under H0. Moreover, by inspecting the proof of Theorem 3.1, we see that Theorem 3.2 is also valid if the null
hypothesis H0 is not satisfied. In the latter case, σ 2 is the asymptotic variance of

n−1/2
n∑

i=1

{
H(fα̂n (Xi), gβ̂n (Xi), Xi) − E

[
H(fα⋆ (X), gβ⋆ (X), X)

]}
.

This result is important if we apply our test under the alternative, since it shows that the variance estimator σ̂ 2 converges
to some finite real number and that the test statistic

√
n Ĉn/σ̂ converges to +∞ or −∞, depending on the sign of

E
[
H(fα⋆ (X), gβ⋆ (X), X)

]
.

Remark 1. The presented estimator σ̂ 2 depends on the tuning parameter e(n) that has to be calibrated. In our empirical
sections, we alternatively estimate the unknown variance σ 2 by a bootstrap procedure. The latter procedure does not
require any tuning parameter but, on the other hand, is more computationally costly.

4. Application to the Clarke test and strictly locally non-nested models

With the help of Theorem 3.1, we are ready to state the corrected limiting law of the Clarke test statistic B̂n. As
announced before, we need to assume strictly locally non-nested models in a neighborhood of the pseudo-true values.
The following definition excludes the possibility of fα⋆ (X)/gβ⋆ (X) having an atom at 1.

Definition 4.1. A couple of parametric families F = (fα)α∈Θα and G = (gβ )β∈Θβ is strictly locally non-nested on
Θα ×Θβ ⊆ Θα ×Θβ with non-empty interior if fα(X) ̸= gβ (X) a.s. for all α ∈ Θα and β ∈ Θβ .

Note that the latter definition depends on the unknown law of the true DGP and is slightly stronger than the definition
of non-nested models in Vuong (1989), since we do not allow that two rival models fα and gβ coincide on a set with
positive probability. This was not excluded in Vuong (1989), who only required that the functions fα(· | Z = z) and
gβ (· | Z = z) are not equal for PZ -almost all z and every (α, β) ∈ Θα × Θβ (‘‘strictly non-nested’’ models, Definition 2),
which allows to verify his notion of non-nestedness by checking that F ∩ G = ∅. On the other hand, the assumption
of strictly locally non-nested models may be hard to validate empirically, since the set Θδ

α=β := {x ∈ Rd
| ∃ (α, β) ∈

[α⋆−δ, α⋆+δ]×[β⋆−δ, β⋆+δ] s.t. fα(x) = gβ (x)} may theoretically have positive probability for every δ > 0, even if the
optimal models are strictly locally non-nested. Therefore, the possibility of P(Θδ

α=β ) > 0 suggests that a formal consistent
test for strict local non-nestedness seems to be difficult, if not impossible.

We want to emphasize that overlapping families of densities, i.e. families for which F ∩ G ̸= ∅, may be strictly locally
non-nested in the sense of Definition 4.1. Indeed, the competing families F and G can intersect even if they are strictly
locally non-nested in a neighborhood of the optimal parameter (α⋆, β⋆). Actually, there are only two cases of theoretical
interest for us: strictly locally non-nested models and models for which P

(
fα⋆ (X) = gβ⋆ (X)

)
> 0. In the former case, the

Clarke test null hypothesis HC
0 can be tested. The latter situation is discussed in Section 5. Let us specify Assumption B3

in the particular case of the Clarke test.

Assumption.

B3′. There exists γ > 0 such that, for any x ∈ Range(X), the functions α ↦→ fα(x) and β ↦→ gβ (x) are continuous
on Eγ . Moreover, the elements of F and G are Radon–Nikodym derivatives with respects to a common dominating
measure and there exists some γ > 0 such that the models F and G are strictly locally non-nested on Eγ . Moreover,
α̂n and β̂n are strongly consistent.
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Now, let us state the corrected asymptotic distribution of n−1/2(B̂n − n/2). To lighten notations, set

ψ(x, α, β) := log
(
fα(x)/gβ (x)

)
,

and particularize the previous φ-related notations: φC (x, α, β) := 1
{
ψ(x, α, β) > 0

}
, φC

n := φC (X, α̂n, β̂n), and φC
⋆ :=

φC (X, α⋆, β⋆).

Corollary 4.2. Assume that there exists γ > 0 such that HC
γ := {1{ψ(·, α, β) > 0} | (α, β) ∈ Eγ } is P-Donsker and that

Assumptions B1, B2, B3′, B4 are satisfied. Then the following statements are valid.

(i) Under HC
0 , i.e. if P(ψ(X, α⋆, β⋆) > 0) = 1/2, we have

1
√
n

(
B̂n −

n
2

)
⇝ N (0, σ 2

ψ ), (7)

where σ 2
ψ = Var

(
1{ψ(X, α⋆, β⋆) > 0} + h1(α⋆, β⋆) · s1(X) + h2(α⋆, β⋆) · s2(X)

)
.

(ii) If P(ψ(X, α⋆, β⋆) > 0) < 1/2, then n−1/2(B̂n − n/2) → −∞ P-almost surely.
(iii) If P(ψ(X, α⋆, β⋆) > 0) > 1/2, then n−1/2(B̂n − n/2) → +∞ P-almost surely.

The proof of this corollary has been postponed to Appendix A.3. Note that, assuming strictly locally non-nested models,
HC

0 can be rewritten in the spirit of (1) with

H(fα(x), gβ (x), x) := 1{fα(x) ≥ gβ (x)} − 1{fα(x) ≤ gβ (x)}, (8)

yielding the so-called ‘‘modified Clarke null hypothesis’’:

H̄C
0 : P

(
fα⋆ (X) ≥ gβ⋆ (X)

)
= P

(
fα⋆ (X) ≤ gβ⋆ (X)

)
. (9)

Under H̄C
0 (or HC

0 , equivalently), a similar result as in Corollary 4.2 applies, replacing B̂n − n/2 by

B̄n :=
1
2

n∑
i=1

(
1
{
fα̂n (Xi) ≥ gβ̂n (Xi)

}
− 1

{
fα̂n (Xi) ≤ gβ̂n (Xi)

})
.

According to a counter-example from Appendix B, Clarke (2007) misleadingly stated that B̂n is Binomial distributed.
This erroneous statement implied that the asymptotic variance of (B̂n − n/2)/

√
n is Var

(
1{ψ(X, α⋆, β⋆) > 0}

)
, which is

equal to 1/4 under HC
0 . Corollary 4.2 rectifies this incorrect statement. Further, note that fα(X) and gβ (X) in Corollary 4.2

are general likelihoods associated to the observation X . This extends Clarke’s initial framework, who only considered
densities w.r.t. the Lebesgue measure. In particular, we now cover the case of limited-dependent variables. Moreover,
from the proof of Theorem 3.1, we easily deduce the asymptotic ‘‘distance’’ from the Binomial distributed test statistic Bn
to B̂n.

Corollary 4.3. Under the assumptions of Corollary 4.2, we have
1

√
n

(
B̂n − Bn

)
⇝ N (0, σ 2

h ), with σ 2
h := Var

(
h1(α⋆, β⋆) · s1(X) + h2(α⋆, β⋆) · s2(X)

)
.

Corollary 4.3 tells us that the difference between the Clarke test statistic B̂n and its Binomial distributed theoretical
counterpart Bn, once properly normalized, converges to a non-degenerate continuous random variable if h1(α⋆, β⋆)·s1(X)+
h2(α⋆, β⋆)·s2(X) is not equal to 0. This is the statistical price to be paid for the estimation of the unknown quantities α⋆ and
β⋆. The calculation of s1 and s2 depends on the way α⋆ and β⋆ are estimated. A standard choice is to use pseudo-maximum
likelihood estimators α̂n and β̂n i.e.

α̂n = argmax
α∈Θα

n∑
i=1

log
(
fα(Yi | Zi)

)
and β̂n = argmax

β∈Θβ

n∑
i=1

log
(
gβ (Yi | Zi)

)
.

Under some usual conditions of regularity (White (1982), Theorem 3.1), one obtains

s1(X) := −Hessf (α⋆)−1 ∂ log
(
fα⋆ (X)

)
∂α

, s2(X) := −Hessg (β⋆)−1 ∂ log
(
gβ⋆ (X)

)
∂β

,

where Hessf (α) and Hessg (β) are the Hessian matrices of the two competing models.
In practice, the asymptotic variance σ 2

ψ from Corollary 4.2 is unknown. The asymptotic variance of the one-step Vuong
test statistic could be consistently estimated by usual sample counterparts, i.e. by Pnφ

2
n − (Pnφn)2 in our notations (Vuong

(1989), Equation (4.2)). This is due to an orthogonality property, coming from pseudo-MLE first-stage estimators. Since
we consider general moment relationships and general estimators α̂n and β̂n, we cannot hope to fulfill such orthogonality
conditions in most cases. In the particular case of the Clarke test, φC

n =
(
φC
n

)2 and the empirical variance estimator would

9
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be given by Pnφ
C
n − (Pnφ

C
n )

2, which tends to 1/4 in probability. However, Example 2 in Brück (2019) shows that σ 2
ψ is

generally not equal to 1/4, which can be explained by the additional noise that is generated by using n/2 instead of the
unknown quantity E

[
B̂n
]

= nP
(
ψ(X, α̂n, β̂n) > 0

)
to center B̂n in (7). In particular, Theorem 3.2 implies that a feasible

estimator of the asymptotic variance of the Clarke test n−1/2
(
B̂n − n/2

)
is given by

σ̂ 2
ψ :=

1
n

n∑
i=1

(
1
{
fα̂n (Xi) > gβ̂n (Xi)

}
+ ĥ1,n · s1(Xi) + ĥ2,n · s2(Xi)

)2
−

(1
n

n∑
i=1

1
{
fα̂n (Xi) > gβ̂n (Xi)

}
+ ĥ1,n · s1(Xi) + ĥ2,n · s2(Xi)

)2
.

5. A modified Clarke test in case P
(
fα⋆ (X) = gβ⋆ (X)

)
> 0

The formulation of Clarke’s null hypothesis HC
0 in (3) is not suitable for models which satisfy P

(
fα⋆ (X) = gβ⋆ (X)

)
> 0.

Indeed, in such situations, it is possible that P
(
fα⋆ (X) < gβ⋆ (X)

)
and P

(
fα⋆ (X) > gβ⋆ (X)

)
are both strictly smaller than 1/2.

When the optimal models fα⋆ and gβ⋆ are identical (the extreme situation), P
(
fα⋆ (X) = gβ⋆ (X)

)
= 1 and HC

0 would not be
satisfied. This shows that the usual Clarke null hypothesis HC

0 is not well-suited under such circumstances.
To rectify this shortcoming of Clarke’s null hypothesis, the ‘‘modified Clarke null hypothesis’’ H̄C

0 (9) can be invoked.
In the spirit of the Clarke test, H̄C

0 naturally expresses that both competing models are equally well suited to describe the
modeling problem, even if the competing models satisfy P

(
fα⋆ (X) = gβ⋆ (X)

)
> 0. Moreover, H̄C

0 and HC
0 are equivalent

if the competing models are strictly locally non-nested. Thus, H̄C
0 sensibly generalizes Clarke’s null hypothesis to a

meaningful null hypothesis for general model specifications. It is worth noting that overlapping models, i.e. F ∩ G ̸= ∅,
potentially satisfy fα⋆ = gβ⋆ and the modified Clarke test should be invoked in practice.

It is tempting to directly apply Theorem 3.1 to the respective map H from (8) and use its empirical counterpart as a
test statistic of H̄C

0 . In theory, Theorem 3.1 should provide a Gaussian limiting law even when P
(
fα⋆ (X) = gβ⋆ (X)

)
> 0.

Unfortunately, when the event {fα⋆ (X) = gβ⋆ (X)} has a strictly positive probability under P , it seems impossible to
satisfy the required regularity assumptions and to obtain a non-degenerate limiting law. The assumptions B3 and B4
are particularly problematic. To illustrate the technical difficulties assume that the underlying laws are continuous and
that fα⋆ (·) = gβ⋆ (·). Then, using the same notation as in Section 3, we have

φn(·) = 1
(
fα̂n (·) ≥ gβ̂n (·)

)
− 1

(
fα̂n (·) ≤ gβ̂n (·)

)
, and

φ⋆(·) = 1
(
fα⋆ (·) ≥ gβ⋆ (·)

)
− 1

(
fα⋆ (·) ≤ gβ⋆ (·)

)
= 0.

As a consequence, to check Assumption B3, we need to verify that

EX

[(
φn − φ⋆

)2(X)] = EX
[
1{fα̂n (X) > gβ̂n (X)} + 1{fα̂n (X) < gβ̂n (X)}

]
tends to zero in probability. However, if P(fα̂n (X) = gβ̂n (X)) = 0 – a standard situation – we deduce that EX

[(
φn −

φ⋆
)2(X)] = 1, which shows that Assumption B3 cannot be satisfied in general. Moreover, for many simple models, the

partial derivatives h1 and h2 from Assumption B4 do not exist. This can be easily checked with the Joint Normal Location
model in Example 1 of Schennach and Wilhelm (2017).

More fundamentally, the original Clarke test perspective or even its modified version H̄C
0 are not well-suited for models

with P
(
fα⋆ (X) = gβ⋆ (X)

)
> 0. Indeed, when fα⋆ and gβ⋆ are identical, focusing on the relative positions of fα̂n (X) and gβ̂n (X)

is not very relevant due to their respective statistical uncertainties. It is easy to build some situations where simply
comparing fα̂n (X) and gβ̂n (X) may lead to wrong conclusions. For instance, assume that the true DGP is a standard normal
distribution and consider the competing models F = {fα} = {fα⋆} = {ϕ}, where ϕ denotes the density of the standard
normal distribution, and

G :=
{
x ↦→ (1 + β)ϕ(x)1{|x|>1} +

(
ϕ(x) − βΦ(−1)

)
1{|x|≤1}, β ∈ [−1/2, 1/2]

}
.

It is easy to see that β⋆ = 0, which implies that fα⋆ = gβ⋆ . Thus, α̂n = α⋆ for every n, P
(
fα̂n (X) ≥ gβ̂n (X)

)
= 2Φ(−1) if

β̂n > 0, P
(
fα̂n (X) ≥ gβ̂n (X)

)
= 1 − 2Φ(−1) if β̂n < 0 and P

(
fα̂n (X) = gβ̂n (X)

)
= 1 if β̂n = 0. In other words, the likelihood

of the events of interest for conducting a (modified or not) Clarke test strongly depends on the way the parameter β̂n
tends to zero, which cannot be controlled.

Therefore, to deal with the possibility of P
(
fα⋆ (X) = gβ⋆ (X)

)
> 0, we rather promote the use of a ‘‘smoothing trick’’,

as introduced in Section 2. The idea is to replace the non-differentiable indicator functions appearing in the modified
Clarke null hypothesis by differentiable approximations. The smoothing trick can account for the uncertainty of the event
{fα⋆ (X) = gβ⋆ (X)} when only looking at fα̂n and gβ̂n and by putting less emphasis on those observations which are not
clearly in favor of either model. With the previous notations, set

Hχ (f , g, x) = Ψ

(
f (x) − g(x)

χ

)
− Ψ

(
g(x) − f (x)

χ

)
, (10)
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for some constant χ > 0 and some increasing map Ψ : R → R such that Ψ (0) = 1/2, limt→−∞ Ψ (t) = 0 and
limt→+∞ Ψ (t) = 1. A natural example is to set Ψ = Φ , the cumulative distribution function of a standard normal
distribution. The new null hypothesis is

H0,χ : E
[
Hχ (fα⋆ , gβ⋆ , X)

]
= 0. (11)

Now, under H0,χ , Assumptions B3 and B4 will be satisfied in many situations and the associated test statistic
√
n Ĉn will

be generally asymptotically normal by Theorem 3.1. The latter result is true for strictly locally non-nested models and for
most models which satisfy P

(
fα⋆ (X) = gβ⋆ (X)

)
> 0, as soon as (11) is satisfied. Obviously, testing H̄C

0 is not equivalent
to testing H0,χ in general, except the optimal models are identical, i.e. fα⋆ = gβ⋆ . Indeed, particularly in the strictly
locally non-nested case, it is possible to build some examples where H̄C

0 is satisfied but H0,χ is not satisfied for some
χ . Nonetheless, in every case, H0,χ and H̄C

0 reflect similar ideas for comparing the two competing models. When χ is
‘‘small’’, H0,χ can be seen as an approximation of H̄C

0 because Hχ pointwise approximates the discontinuous map in (9).
Moreover, if H̄C

0 is not satisfied, there exists a sequence (χn), χn → 0 such that H0,χn is never satisfied (otherwise, the
dominated convergence theorem applies). Thus, a test of H0,χ can be seen as an acceptable ‘‘proxy’’ test of H̄C

0 in general,
at least when χ is ‘‘small’’.

Generally speaking, when P
(
fα⋆ (X) = gβ⋆ (X)

)
> 0, too small values of χ will induce high asymptotic variances of

√
n Ĉn and a higher statistical uncertainty when building confidence intervals. At the opposite, too large values of χ could

induce a loss of power against some alternatives. An interesting question would be to find an optimal data-driven value
for χ to keep the asymptotic level under H0,χ ∩ H̄C

0 without losing too much power. Such a complex question would be
related to local power analyses and lies far beyond the scope of this paper.

Example 1. To illustrate the theory above, assume that Ψ = Φ , which implies that Hχ (fα̂n , gβ̂n , X) = Φ
(
(fα̂n (X) −

gβ̂n (X))/χ
)
−Φ

(
(gβ̂n (X)− fα̂n (X))/χ

)
. Additionally, assume that the true DGP follows a bivariate normal distribution with

independent standard normal margins. Introduce the (misspecified) bivariate density of X = (X1, X2) as

ψ(a1,a2)(x) :=
a1a2
4

exp
(
−a1|x1|

)
exp

(
−a2|x2|

)
, a1, a2 > 0.

It can be easily checked that the pseudo-true values for a1 and a2 are equal to a∗
:=

√
2π/2. Define the two competing

parametric families of densities as fα = ψ(α,a∗) and gβ = ψ(a∗,β). Obviously, the optimal models are identical, i.e. fα⋆ = gβ⋆
with α⋆ = β⋆ = a∗, and

h(α, β) = E
[
Φ
(
(fα(X) − gβ (X))/χ

)
−Φ

(
(gβ (X) − fα(X))/χ

)]
.

Interchanging differentiation and integration, we obtain

hk(α⋆, β⋆) =
(−1)k−1a∗

2
√
2πχ

E
[
(1 − a∗

|Xk|) exp
(
−a∗

|X1| − a∗
|X2|

)]
̸= 0, k = 1, 2,

which shows that
√
nĈn is non-degenerate asymptotically normal under H0,χ . A further empirical analysis of this example

can be found in Section 7.

Remark 2. A similar smoothing trick may be applied in the quantile regression setting when it cannot be excluded that
P
(
fα⋆ (X) = gβ⋆ (X)

)
> 0 and/or to ensure the existence of the partial derivatives h1 and h2 appearing in the asymptotic

variance of our test statistic. Similar to the (modified) Clarke test, smoothing is not necessary if the competing models are
strictly locally non-nested, as long as the law of (Y , Z) is sufficiently regular. Otherwise, consider for instance the smooth
function

lσ (t) = σ (1 − τ ) ln (2 cosh(t/σ )) 1{t ≤ 0} + στ ln (2 cosh(t/σ )) 1{t > 0},

where σ > 0 acts as a smoothing parameter. If σ is small, then lσ (t) ≈ ρτ (t), the usual non-smooth loss-function of
quantile regression. Now, one could test

E
[
ρτ
(
Y − q1(Z, α⋆)

)
− ρτ

(
Y − q2(Z, β⋆)

)]
= 0,

with the surrogate null hypothesis

H0 : E
[
lσ
(
Y − q1(Z, α⋆)

)
− lσ

(
Y − q2(Z, β⋆)

)]
= 0,

which ensures the existence of the partial derivatives h1 and h2 under suitable moment conditions on (Y , X). Moreover,
in the same spirit as the modified Clarke test, one could test

P
(
ρτ
(
Y − q1(Z, α⋆)

)
≥ ρτ

(
Y − q2(Z, β⋆)

))
= P

(
ρτ
(
Y − q1(Z, α⋆)

)
≤ ρτ

(
Y − q2(Z, β⋆)

))
11
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with the surrogate null hypothesis

H0 : E
[
Φχ

(
ρτ
(
Y − q1(Z, α⋆)

)
− ρτ

(
Y − q2(Z, β⋆)

))
−Φχ

(
ρτ
(
Y − q2(Z, β⋆)

)
− ρτ

(
Y − q1(Z, α⋆)

))]
= 0,

setting Φχ (t) = Φ(t/χ ) with a smoothing parameter χ > 0.

Remark 3. Note that the smoothing parameter χ in (11) is assumed to be fixed. In particular, we have not considered
a sequence of tuning parameters that would tend to zero. Contrary to an inference problem, the consistency of our test
statistic

√
n Ĉn under H0,χ does not require such a behavior. Nevertheless, it could be interesting to use a sample size

dependent smoothing parameter χn to ensure that Hχn tends to the discontinuous map H given in (9). Such ideas have
been used in Horowitz (1998) or Whang (2006) to construct sample size dependent smoothed versions of the empirical
likelihood in a quantile regression setting. In our testing framework, applying the modified Clarke test with Ψ = Φ and
a smoothing parameter χn such that

√
nχn → ∞, it can be proved that

√
nχnĈn is asymptotically normal under the

assumption that fα⋆ = gβ⋆ and additional regularity conditions: make a limited expansion of Φχn around zero and note
that (fα̂n − gα̂n )(Xi) ≃ (α̂n − α⋆)∂α fα⋆ (Xi)− (β̂n − β⋆)∂βgβ⋆ (Xi). Nonetheless, such a result is of little practical use because it
cannot be extended when fα⋆ ̸= gβ⋆ . Indeed, in such a case, the rate of convergence of Ĉn depends on the unknown rate
of convergence of P(Hχn − H)2, which is why we do not provide additional details towards this direction.

6. Bootstrap test statistic

Invoking bootstrap techniques, we propose an estimation procedure of the asymptotic law of the general statistic
√
n Ĉn. For this purpose, we need to introduce a slightly modified mathematical framework to account for the additional

randomness induced by the bootstrap weights.
Let (ξi,n)1≤i≤n;n∈N denote an exchangeable triangular array of non-negative random variables (bootstrap weights) on a

probability space Ω2 endowed with a probability measure PW . Assume that the ξi,n satisfy the following usual conditions
given in Section 3.6.2 of van der Vaart and Wellner (1996).

Assumption.

W1.
∑n

i=1 ξi,n = n;
W2. supn

∫
∞

0

√
PW (|ξ1,n − 1| > x) dx < ∞;

W3. EPW

[
max1≤i≤n |ξi,n − 1|

]
/
√
n −→ 0;

W4. For some constant c > 0, n−1∑n
i=1

(
ξi,n − 1

)2
−→ c2 in PW -probability.

Many usual bootstrap schemes can be obtained by choosing particular exchangeable bootstrap weights. For instance,
if (ξ1,n, . . . , ξn,n) are multinomial with parameters n and probabilities (1/n, . . ., 1/n), we recover Efron’s nonparametric
bootstrap (resampling with replacement) with c = 1. In econometrics, this corresponds to the so-called ‘‘pairwise
bootstrap’’, for which couples (Yi, Zi) are redrawn with replacement. Moreover, consider i.i.d. non-negative random
variables (ξ̃i)i∈N with mean 0 < µ < ∞ and variance 0 < τ 2 < ∞, such that

∫
∞

0

(
PW (|ξ̃1| > x)

)1/2dx < ∞. Then,
conditions W1-W4 are satisfied by setting ξi,n := nξ̃i

(∑
1≤i≤n ξ̃i

)−1
with c = τ/µ, which yields a version of a multiplier

bootstrap scheme (Kosorok (2008), Section 10.1). In the particular case of exponentially distributed random variables ξ̃i
this is called Bayesian bootstrap in the literature.

Define the exchangeable bootstrap empirical measure as P̃n := n−1∑n
i=1 ξi,nδXi . Furthermore, define the bootstrap

empirical process as G̃n :=
√
nc−1(P̃n − Pn) and assume that the sequences (Xi)i∈N and (ξi,n)1≤i≤n;n∈N originate from

a probability space with product structure as defined in Section 3 of Bücher and Kojadinovic (2018). This means that
the sequence (Xi)i∈N only depends on the first coordinate of some probability space (Ω := Ω1 ×Ω2,A := A1 × A2,PXW )

equipped with a probability measure PXW := PX ⊗ PW . Similarly, the triangular array (ξi,n)1≤i≤n;n∈N only depends on the
second component of the latter space, which implies that (Xi)i∈N and (ξi,n)1≤i≤n;n∈N are independent. We write G̃n ⇝

ξ
G to

denote conditional weak convergence in the sense of the bounded Lipschitz metric, as defined on p.73 in van der Vaart
and Wellner (1996).

It is well-known that the bootstrap empirical process G̃n weakly tends to the same asymptotic law as the empirical
process Gn (Theorem 3.6.13 in van der Vaart and Wellner (1996)). In order to prove the convergence of our bootstrap
process, we need additional assumptions on the estimators α̂n and β̂n and on the class of functions Hγ . Let α̃n and β̃n
denote some ‘‘bootstrap estimators’’ of α⋆ and β⋆, i.e. estimators of the pseudo-true values calculated from the bootstrap
sample (ξi,n, Xi)i=1,...,n. Moreover, set φ̃n := φ(·, α̃n, β̃n).

Assumption.

B5. The bootstrap estimators satisfy
√
n(α̃n−α̂n) =

√
n(P̃n−Pn)s1+oPXW (1) and

√
n(β̃n−β̂n) =

√
n(P̃n−Pn)s2+oPXW (1).

B6.
∫
(φ̃n − φn)2 dP tends to zero in PXW -probability.

12
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The exchangeable bootstrap version of Ĉn is defined as

C̃n := n−1
n∑

i=1

ξi,nφ(Xi, α̃n, β̃n) = n−1
n∑

i=1

ξi,nH
(
fα̃n (Xi), gβ̃n (Xi), Xi

)
.

The next theorem, whose proof is given in Appendix A.4, shows that the bootstrap statistic C̃n behaves similarly to Ĉn.

Theorem 6.1. Assume that Assumptions B1–B6 are satisfied, and that Hγ is P-Donsker (for the constant γ given in B4). Then,

(i)
√
n
(
C̃n − Ĉn

)
/c ⇝

ξ
N (0, σ 2).

(ii) Statement (i) is also satisfied unconditionally, replacing ⇝
ξ

by ⇝ w.r.t. PXW .

Under H0, the asymptotic law of
√
n Ĉn can be numerically approximated by independently drawing M ≫ 1 vectors

of weights, which provide M realizations C̃ (j)
n , j ∈ {1, . . . ,M}, of C̃n, given the initial sample. Therefore, this yields a

sample of
√
n
(
C̃n − Ĉn

)
/c , which follows the same asymptotic law as

√
n Ĉn. As usual, the empirical percentiles of such

values allow building confidence intervals. The bootstrap percentile method only relies on weak convergence results (not
convergence in L2). To be specific, any τ -quantile of the limiting law of

√
n
(
C̃n − Ĉn

)
/c , τ ∈ (0, 1), may be estimated by

q̂τ := inf{t | GM (t) > τ }, where

GM (t) := M−1
M∑
j=1

1
(√

n
(
C̃ (j)
n − Ĉn

)
/c ≤ t

)
,

for any t . This directly yields asymptotic confidence intervals without any asymptotic variance estimation: under H0,√
n Ĉn belongs to [q̂τ/2, q̂1−τ/2] with approximate probability 1 − τ , when n is sufficiently large. By a similar procedure,

we obtain bootstrapped p-values of the test statistic
√
n Ĉn under H0. As a particular example, the bootstrap version of

B̂n is given by

B̃n := nP̃n1{ψ(·, α̃n, β̃n) > 0} =

n∑
i=1

ξi,n1{ψ(Xi, α̃n, β̃n) > 0}.

In this case we can replace Assumption B6 by a more explicit sufficient assumption.

Assumption.

B6′. For any compact set K ⊂ Range(X) ψ satisfies the following uniform continuity condition: for all ϵ > 0, there exists
δ > 0 such that

∥(α, β) − (α⋆, β⋆)∥1 ≤ δ ⇒ sup
x∈K

|ψ(x, α, β) − ψ(x, α⋆, β⋆)| ≤ ϵ.

If there exists γ > 0 such that ψ(x, α, β) is continuous for all (x, α, β) ∈ Rd
× Eγ , then Assumption B6′ is satisfied

(uniform continuity on a compact subset). We can deduce the next corollary from Theorem 6.1, whose proof can be found
in Appendix A.5.

Corollary 6.2. Assume Assumptions B1, B2, B3′, B4, B5, B6′, and that Hγ is P-Donsker (for the constant γ given in B3′ and
B4). Then,

(i)
(
B̃n − B̂n

)
/(c

√
n) ⇝

ξ
N (0, σ 2

ψ ).

(ii) Statement (i) is also satisfied unconditionally, replacing ⇝
ξ

by ⇝ w.r.t. PXW .

Define C (j)
n :=

√
n(C̃ (j)

n − Ĉn)/c , where C̃ (j)
n denotes the bootstrap version of Ĉn calculated from the jth bootstrap sample,

j = 1, . . . ,M . Lemma 3.1(b) in Bücher and Kojadinovic (2018) implies that (Gn, G̃
(1)
n , . . . , G̃

(M)
n ) ⇝ (G,G(1), . . . ,G(M))

for every fixed integer M , where G̃(j)
n denotes the bootstrap empirical process calculated from the jth bootstrap sample

and G,G(1), . . . ,G(M) are independent and identically distributed. Therefore,
(
C (1)
n , . . . , C (M)

n

)
⇝
(
N (1), . . . ,N (M)

)
, where

N (1), . . . ,N (M) are i.i.d. N (0, σ 2). It is then usual practice to estimate σ 2 by its bootstrap empirical variance σ̂ 2
M , i.e. by

the sample variance (or the empirical second-order moment) of
(
C (j)
n

)
1≤j≤M

. In this case, we obtain the ‘‘bootstrap’’ test

statistic
√
n Ĉn/σ̂M .

Unfortunately, the convergence of σ̂ 2
M towards σ 2 in PXW -probability is not always guaranteed (e.g. see a counter-

example in Ghosh et al. (1984)). Indeed, the convergence in law of some sequence of statistics does not imply their
convergence in mean. Here, we provide the consistency of σ̂ 2

M under the following uniform integrability assumption,

13
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which guarantees the equivalence between convergence in law and in mean (Theorem 25.12 in Billingsley, 1995). Again,
the proof can be found in Appendix A.6.

Assumption.

B7. The sequence
((

C (1)
n

)2)
n∈N

is uniformly integrable, i.e.

lim
A→∞

sup
n

EPXW

[(
C (1)
n

)21{(C (1)
n

)2
> A

}]
= 0.

Proposition 6.3. Under HC
0 and under Assumptions B1-B7 we have

σ̂ 2
M :=

1
M

M∑
j=1

(
C (j)
n

)2 n,M→∞
−−−−→ σ 2 in PXW -probability.

7. Examples and simulation study

In this section, we present two simulation studies to explore the performance of the general test statistic
√
n Ĉn from

(2) with the respective null hypothesis H0 in (1). An additional analysis of the empirical levels/powers of the corrected
Clarke test statistic (7) is provided in Brück (2019), which also includes a simulation study for the example in Appendix B.

7.1. Gaussian regression models: the original and corrected Clarke tests

Consider Example 1 from Shi (2015b), who studies two Gaussian regression models using the two-step Vuong test
and its extensions. We do not aim to compare the performances of the Clarke test and its corrected version with
the performances of Vuong-type tests and we only borrow the framework of this instructive example. The models
F := {fα | α ∈ Θα} and G := {gβ | β ∈ Θβ} are density functions deduced from the linear regression models

F : Y = α(0)
+

Kf∑
j=1

α(j)Zf ,j + v, and G : Y = β (0)
+

Kg∑
j=1

β (j)Zg,j + u,

respectively. The covariates Zf ,j and Zg,j are jointly independent and normally distributed with expectations 0 and
variances 1. The errors u and v are again normally distributed with unknown variances σ 2

f and σ 2
g , respectively, and they

do not depend on the covariates. Note that these unknown variances σ 2
f and σ 2

g also constitute parameters of the models
F and G, respectively: our vectors of parameters are then α :=

(
α(0), α(1), . . . , α(Kf ), σf

)
and β :=

(
β (0), β (1), . . . , β (Kg ), σg

)
.

The true DGP depends on two parameters a1 and a2 and is given by

Y = 1 +
a1√
Kf

Kf∑
j=1

Zf ,j +
a2√
Kg

Kg∑
j=1

Zg,j + ϵ, (12)

where ϵ is again normally distributed with expectation 0 and variance 1. For a := a1 = a2, the null hypothesis of the Clarke
(HC

0 ) test is satisfied for every Kf and Kg , and the pseudo-true values α⋆ and β⋆ can easily be determined. In particular,
we get α⋆ = (1, a/

√
Kf , . . . , a/

√
Kf ,

√
1 + a2) for model F as well as β⋆ = (1, a/

√
Kg , . . . , a/

√
Kg ,

√
1 + a2) for model G.

To investigate the accuracy of the asymptotic distributional approximation of the corrected Clarke test given by
Corollary 4.2 and Theorem 6.1, in particular its empirical level, we draw 1000 Monte-Carlo samples from the true DGP with
a1 = a2 = 0.25, Kf = 10 and Kg = 1, 2, . . . , 20. Moreover, we illustrate that the asymptotic variance of the Clarke test
statistic is not equal to 1/4. To estimate its correct asymptotic variance, we drawM = 1000 bootstrap samples (resampling
with replacement) from each underlying Monte-Carlo sample. Even though Clarke’s null hypothesis is satisfied for any
Kg , this dimension has an influence on the accuracy of the limiting law for the Clarke test statistic normalized by the
bootstrapped standard deviation. If the numbers of covariates in models F and G significantly differ, we have observed a
rather poor approximation of the asymptotic normal distribution in small samples. Therefore, we will consider the sample
sizes n = 1000, 2500 and 5000 in the sequel.

Panel A of Fig. 1 shows QQ-plots of the Clarke test statistic normalized by the originally proposed standard deviation
1/2 for the sample size n = 2500 and Kg ∈ {1, 5, 10, 20} in model G. We can clearly conclude that the asymptotic standard
normal approximation fails for the latter test statistic since the points in the QQ-plots significantly deviate from the gray
straight line with intercept 0 and slope 1. Moreover, the shape of the QQ-plots indicate that the true asymptotic variance is
much larger than 1/4. Panel B of Fig. 1 shows similar QQ-plots for the Clarke test statistic normalized by the bootstrapped
standard deviation. For this correctly normalized test statistic, we observe that the asymptotic approximation with a
standard normal distribution acceptably holds. Further, the influence of Kg on the asymptotic normal approximation is
continuously diminishing with increasing sample size.
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Fig. 1. Linear regression example: QQ-plots of the Clarke statistic normalized by 1/2 (Panel A) and of the correctly normalized Clarke statistic (Panel
B) for sample size n = 2500 and different Kg , based on 1000 samples. The gray straight line has intercept 0 and slope 1.

Fig. 2. Linear regression example: Empirical level (Panel A) and empirical power (Panel B) of the corrected Clarke test (CT) computed with
bootstrapped p-values for Kf = 10 and different sample sizes (1000 samples). The empirical level of the original Clarke test (OT) is displayed
in Panel A, where the solid horizontal line corresponds to the nominal level of 5%.

Panel A of Fig. 2 shows the empirical level of the original Clarke test (OT) and the corrected Clarke test (CT) for sample
sizes n = 1000, 2500 and 5000 and for different number of covariates Kg . The empirical level of the corrected Clarke
test is computed by bootstrapped p-values. The gray straight line indicates the chosen significance level of 5%. First, we
observe that the original test completely fails to keep the nominal level. In contrast, the corrected Clarke test performs
better, even if it slightly over-estimates the nominal level, especially for n = 1000.

To investigate the empirical power of the corrected Clarke test, we consider different a1 and a2, namely a1 = 0.25
and a2 = 0.15. Therefore, the null hypothesis HC

0 does not hold, which means that the error of one model tends to be
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smaller than the error of the other model. For different sample sizes, we now determine the empirical powers for Kf = 10
and Kg running from 1 to 20. Panel B of Fig. 2 presents the empirical power of the corrected Clarke test computed with
bootstrapped p-values. First and as expected, the latter test becomes more powerful with an increasing sample size.
Second, the empirical power decreases by increasing the number of covariates Kg , due to a lack of estimation accuracy.
The empirical power of the original Clarke test is useless and not shown here since it did not keep the nominal level at
all.

7.2. Quantile regression models: a Clarke-type test

Let us keep the same DGP as specified in (12). Now, our aim is no longer to predict Y given some covariates Z but
rather to predict the τ -quantile of Y given some covariates Z . To this purpose, we modify the previous example towards
the two competing quantile regression models

F : qf ,α(Z) = α(0)
+

Kf∑
j=1

α(j)Zf ,j, and G : qg,β (Z) = β (0)
+

Kg∑
j=1

β (j)Zg,j,

where qf ,α(z) and qg,β (z) denote the τ -quantiles of Y given Z = z given by the models F and G respectively. Our general
testing methodology will allow to discriminate between F and G. The common inference approach is to minimize the
loss functions L

(
Y − qf ,α(Z)

)
:= τ

(
Y − qf ,α(Z)

)
1{Y > qf ,α(Z)}+ (1− τ )

(
qf ,α(Z)−Y

)
1{Y ≤ qf ,α(Z)} and L

(
Y − qg,β (Z)

)
:=

τ
(
Y − qg,β (Z)

)
1{Y > qg,β (Z)}+ (1−τ )

(
qg,β (Z) − Y

)
1{Y ≤ qg,β (Z)}, respectively. Thus, the pseudo-true value α⋆ is given

by

argmin
α∈RKf +1

E
[
L
(
Y − α(0)

−

Kf∑
j=1

α(j)Zf ,j
)]

and similarly for β⋆. Simple calculations provide

α⋆ =

(
1 +

√
1 + a22Φ

−1(τ ),
a1√
Kf
, . . . ,

a1√
Kf

)
, and β⋆ =

(
1 +

√
1 + a21Φ

−1(τ ),
a2√
Kg
, . . . ,

a2√
Kg

)
,

where Φ denotes the cumulative distribution function of a standard normal random variable. Now let us define
H(qf ,α(Z), qg,β (Z), Y ) = 1

{
L
(
Y − qf ,α(Z)

)
> L

(
Y − qg,β (Z)

)}
− 1/2 which can be seen as a version of the Clarke test

to discriminate between quantile regression models. Thus, the corresponding null hypothesis is given by

HC,q
0 : P

(
L
(
Y − qf ,α⋆ (Z)

)
> L

(
Y − qg,β⋆ (Z)

))
= 1/2.

A violation of HC,q
0 would imply that one model tends to have a larger loss than the other model. Plugging in α⋆ and β⋆

yields

L
(
Y − qf ,α⋆ (Z)

)
= f̄

(
1√
Kg

Kg∑
j=1

Zg,j; a1; a2; ϵ
)
, and L

(
Y − qg,β⋆ (Z)

)
= f̄

(
1√
Kf

Kf∑
j=1

Zf ,j; a2; a1; ϵ
)
,

for some fixed rather complicated function f̄ that we do not specify here. Therefore, if a1 = a2, HC,q
0 is clearly satisfied

since, conditioned on ϵ, the remaining random variables in f̄ are i.i.d. (apply the tower rule for conditional expectations).
Under some regularity conditions, see Section 4.3 of Koenker (2005), we also obtain the (joint) asymptotic normality of
the parameter estimators

α̂n := argmin
α∈RKf +1

1
n

n∑
i=1

L
(
Yi − qf ,α(Zi)

)
and β̂n := argmin

β∈RKf +1

1
n

n∑
i=1

L
(
Yi − qg,β (Zi)

)
.

Now, we investigate the accuracy of the asymptotic distributional approximation provided in Theorems 3.1 and 6.1. To
calculate the empirical level of the test statistic T C,q

n :=
√
nĈn/σ̂M corresponding to the null hypothesis HC,q

0 for the
particular case τ = 0.5, we draw 1000 Monte-Carlo samples from the true DGP with a1 = a2 = 0.25, Kf = 10
and Kg = 1, 2, . . . , 20. To estimate the asymptotic variance of

√
nĈn, we draw M = 1000 bootstrap samples from

each underlying Monte-Carlo sample. The null hypothesis HC,q
0 is satisfied for any Kg . However, its influence on the

distributional approximation of the test statistic is again present for small sample sizes. As for the linear regression
example, we therefore consider the sample sizes n = 1000, 2500, 5000 in the sequel.

Fig. 3 shows the QQ-plots of the test statistic T C,q
n for the sample size n = 2500 and the number of covariates

Kg = 1, 5, 10, and 20. Similarly to the linear regression case, the influence of Kg on the quality of the asymptotic normal
approximation is rather rapidly diminishing with the sample sizes. Panel A of Fig. 4 presents the empirical levels of the
test based on T C,q

n for the considered sample sizes. Here, the proposed test keeps its level relatively conveniently.
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Fig. 3. Quantile regression: QQ-plots of the test statistic T C,q
n for Kf = 10 and sample size n = 2500 (based on 1000 samples). The gray straight line

has intercept 0 and slope 1.

Fig. 4. Quantile regression: Empirical level (Panel A) and empirical power (Panel B) of the test based on T C,q
n for Kf = 10 (based on 1000 samples).

The solid horizontal line in Panel A corresponds to the nominal level of 5%.

To investigate the empirical power of the latter test, we again set Kf = 10. Further, we consider slightly different a1
and a2, namely a1 = 0.25 and a2 = 0.15. Therefore, the null hypothesis HC,q

0 does not hold. For different sample sizes, we
determine the empirical powers for Kg running from 1 to 20. Panel B of Fig. 4 presents the empirical power of the test
based on T C,q

n . As expected, the latter test becomes more powerful with an increasing sample size. Further, the empirical
power decreases by increasing the number of covariates in the competing model G, due to a rising amount of estimation
noise.

7.3. Identical optimal models: a modified Clarke test for bivariate Laplace distributions

Consider Example 1 from Section 5. We will present the empirical levels and powers of the modified Clarke test Ĉn,χ
that is associated to the map Hχ in (10) for identical optimal models and sample sizes n ∈ {100, 250, 500}. Moreover,
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Fig. 5. Rejection rates of the null hypothesis by the smoothed Clarke-type test (black lines) and the SW-test (gray lines) for sample sizes n = 100
(solid), n = 250 (dashed), n = 500 (dot-dashed) and σ = 1 + 0.05 · k with k = 0, 1, . . . , 10. The solid horizontal line corresponds to the nominal
level of 5%. The smoothing parameter χ = 2−4 and the optimal regularization parameter εn for the modified Clarke test and the SW-test are chosen,
respectively.

we will compare the latter test with the SW-test by Schennach and Wilhelm (2017). The nominal level of these tests is
set to 0.05. Note that both tests depend on a corresponding tuning parameter, which is theoretically investigated for the
SW-test and stays an open problem for our test. We follow the data-driven procedure of Schennach and Wilhelm (2017)
for the selection of their regularization parameter εn.

The models F := {fα = ψ(α,a⋆) | α > 0} and G := {gβ = ψ(a⋆,β) | β > 0} are the density functions introduced in
Section 5. Recall that the two optimal models are identical for α = β = a⋆ =

√
2π/2 if the true DGP is a bivariate

normal distribution with independent standard normal margins. Now, we simulate the first margin X1 from the normal
distribution with expectation 0 and standard deviation σ = 1 + 0.05 · k for k = 0, 1, . . . , 10 while the second margin
X2 is drawn from the standard normal distribution. It can be analytically or numerically checked that, when k = 0 (i.e.
fα⋆ = gβ⋆ ), H̄C

0 and H0,χ are both true, for any value of χ . At the opposite, when k ≥ 1, H̄C
0 and H0,χ are not satisfied,

for almost any value of χ . Thus, the percentage of rejections of the null hypothesis for k = 0 (resp. for k = 1, . . . , 10)
corresponds to the empirical level (resp. the empirical power) of our ‘‘smoothed’’ Clarke test statistic Ĉn,χ and should be
close to 5% under H̄C

0 . Note that the chosen DGP for power analysis purposes favors the model F over the model G since
the pseudo-maximum likelihood estimator of α can capture the changing data variability in the first margin. Fig. 5 shows
the empirical levels (σ = 1) and the empirical powers (σ > 1) for Ĉn,χ in addition to the SW-test, in our considered
framework and with a reasonable value of χ (see below). The empirical level of the modified Clarke test Ĉn,χ is slightly
larger than the nominal level 0.05 while the SW-test is a bit liberal. It seems that the former test is slightly more powerful
than the latter, for this example. However, this empirical observation should be dealt with caution and may be linked to
the respective choices of the tuning parameters.

To empirically illustrate the dependence of Ĉn,χ on the smoothing parameter χ , Table 1 presents the rejection fractions
of the null hypothesis for χ = 2−k, k = 10, . . . , 0. We still consider the standard deviations σ = 1 + 0.05 · k with
k = 0, 1, . . . , 10 and a single sample size n = 500. Too small values of χ do not keep the nominal level and result in a
power loss. If χ increases, then our modified Clarke test starts to keep the nominal level and becomes more powerful. We
observe that the value χ = 2−4

= 0.0625 chosen in Fig. 5 or even larger values yield convenient level and power results,
when n ∈ {100, 250, 500}. Note that, with values of χ larger than one, Φ((fα − gβ )/χ ) − Φ((gβ − fα)/χ ) significantly
deviates from the desired target 1{fα(x) > gβ (x)} − 1{fα(x) < gβ (x)} but the performances of Ĉn,χ remain very good even
in such circumstances. However, this is a consequence of our particular choices for the DPG and the considered models
and it cannot be generalized.

8. Empirical analysis

To compare the performances of the original and corrected Clarke tests in practical applications, we have considered
stock price indices per countries. We have chosen the MSCI Barra (formerly Morgan Stanley Capital International) indices
that yield standard benchmarks for financial markets and are freely available on the web. Here, we present our empirical
analysis on the daily log-returns calculated from the MSCI indices of Austria, Germany, Ireland, Italy, Netherlands,
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Table 1
Rejection rate of the null hypothesis for the different standard deviations σ and the smoothing parameters χ . The sample size n is equal to 500.
Parameter χ = 2−k

σ k = 10 k = 9 k = 8 k = 7 k = 6 k = 5 k = 4 k = 3 k = 2 k = 1 k = 0

σ = 1.00 0.200 0.205 0.181 0.143 0.106 0.066 0.056 0.052 0.048 0.046 0.049
σ = 1.05 0.385 0.415 0.410 0.358 0.286 0.223 0.190 0.181 0.175 0.173 0.172
σ = 1.10 0.637 0.697 0.717 0.685 0.630 0.550 0.527 0.504 0.488 0.495 0.496
σ = 1.15 0.817 0.919 0.935 0.930 0.912 0.884 0.860 0.860 0.840 0.840 0.847
σ = 1.20 0.731 0.939 0.991 0.991 0.986 0.979 0.976 0.973 0.969 0.971 0.969
σ = 1.25 0.537 0.855 0.994 1.000 1.000 1.000 0.999 1.000 1.000 0.999 1.000
σ = 1.30 0.294 0.654 0.969 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
σ = 1.35 0.131 0.394 0.888 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
σ = 1.40 0.073 0.217 0.745 0.994 1.000 1.000 1.000 1.000 1.000 1.000 1.000
σ = 1.45 0.062 0.112 0.557 0.988 1.000 1.000 1.000 1.000 1.000 1.000 1.000
σ = 1.50 0.099 0.046 0.320 0.960 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Singapore and Sweden from December 31, 1998 till March 12, 2018. For risk management purposes, a standard way of
calculating risk measures as Value-at-Risk or Expected Shortfall is first to ‘‘filter’’ every series of returns by removing their
conditional means. Afterwards, most often, the associated sequences of residuals could reasonably well be considered as
i.i.d. By specifying marginal parametric laws and a copula, the full multivariate process is modeled and can be simulated.
To follow this strategy, we first filter the considered seven return time series with an ARMA(p, q) − GARCH(1, 1) model
with normal innovations, p ∈ {0, 1} and q ∈ {0, 1}. Such models are popular in financial econometrics as they are the
simplest and most robust volatility models. They conveniently fit many data series (Hill et al. (2018), p.526) and are
often sufficient to capture volatility clustering features (Brooks (2014), p.430). Furthermore, a single lag for conditional
means and volatilities is often sufficient empirically (Angelidis et al. (2004), Olson and Wu (2017) p.63). For every time
series, we have chosen the best orders (p, q) of each ARMA(p, q) part by the BIC. The standardized residuals of the chosen
ARMA(p, q)− GARCH(1, 1) models represent the data on which we apply our tests. The null hypothesis of the augmented
Dickey–Fuller test for the latter series is rejected at 5% nominal level and such series of residuals will be considered as
stationary.

Now, we focus on our model residuals whose laws are most often fat-tailed, a key feature for risk measure calculation.
Here, our initial model selection problem naturally appears. By construction and for the sake of consistency, we have to
assume that the standardized residuals are i.i.d. with expectation 0 and variance 1. To satisfy the two latter constraints,
we need to consider two parametric families with at least three free parameters. Model F assumes that the standardized
residuals follow a Student distribution with location parameter zero, scale parameter s > 0 and ν degrees of freedom,
ν ∈ (2, 20). To ensure the restriction on the variance, the scale parameter s is set to s = (ν− 2)/ν. Therefore, the degrees
of freedom ν completely parameterize model F . Model G assumes that the standardized residuals follow a mixture of two
independent Gaussian distributions with zero expectation. Further parameters of this Gaussian mixture are the weight
ω ∈ (0, 1), the variance of the first mixture component σ 2

1 > 0 and the variance of the second mixture component σ 2
2 > 0.

We relate the weight ω to the first mixture component. Further, the restriction on the residual variance is satisfied if
ωσ 2

1 + (1 − ω)σ 2
2 = 1. Thus, model G is parameterized by ω and σ 2

1 . Identification and numerical maximization of the
log-likelihood of model G require further constraints on ω and σ 2

1 , namely ω ∈ (0.5, 0.9999) and σ 2
1 ∈ (0.0001, 0.9999)

to obtain a well-defined estimator for σ 2
2 .

For the considered residuals, the pseudo-maximum likelihood estimators of ν in model F range between 7.230
(Ireland) and 8.820 (Italy). The latter estimators for model G clearly indicate a non-degenerate Gaussian mixture since
the estimators of ω range between 0.504 (Germany) and 0.917 (Italy). The original Clarke test rejects the null hypothesis
in favor of F with very low p-values ranging between 6.95 · 10−36 (Singapore) and 6.08 · 10−7 (Italy). Table 2 presents
all p-values of the original Clarke test in the second column. It also displays the bootstrapped p-values for the corrected
Clarke test, which does not reject the null hypothesis for the considered standardized residuals at the 5% nominal level.
According to the last column of Table 2, the one-step Vuong test cannot differentiate between models F and G at the 5%
level either. It is not surprising that the original Clarke test rejects the null hypotheses with very low p-values, since it
is not able to keep the nominal level at all. Therefore, the use of the original Clarke test in applied science may lead to
erroneous decisions. Finally, note that our two-step selection framework as detailed above is popular in empirical science
to select ARMA-GARCH models and their parametric innovations. It may be preferred over simultaneous comparisons
of ARMA-GARCH models with different specifications and innovations using formal statistical tests, since the latter
way of working would require a corresponding asymptotic theory and related bootstrap procedures for stationary time
series.

9. Discussion and conclusion

In this paper we revisit the intuition of the original Clarke test for model selection purposes, possibly under
misspecification, which was introduced in Clarke (2007). We show that the originally proposed test statistic is not Binomial
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Table 2
P-values for the original Clarke test, the corrected Clarke test with bootstrapped p-values and one-step
Vuong test for Australia, Canada, Italy, Japan, Spain, Switzerland and UK.
Country P-value of the original Bootstrapped P-value of P-value of the

the Clarke test the corrected Clarke test one-step Vuong test

Austria 5.99 · 10−23 0.374 0.370
Germany 3.19 · 10−9 0.366 0.327
Ireland 7.17 · 10−12 0.345 0.124
Italy 6.08 · 10−7 0.099 0.094
Netherlands 3.85 · 10−8 0.390 0.328
Singapore 6.95 · 10−36 0.483 0.392
Sweden 2.69 · 10−9 0.298 0.103

distributed as claimed in Clarke (2007). To overcome this issue and to go beyond, we introduce a family of general test
statistics for model selection, which are suitable for non-smooth criterion functions. They may potentially be applied
to non-nested and some nested or overlapping competing models. Their wide range of applicability is demonstrated by
several examples including linear, quantile and logistic regression. We derive the asymptotic normality of the general
test statistic and provide its bootstrap consistency. Moreover, two consistent estimators of the asymptotic variance of
the latter test statistic – one is based on numerical derivatives, the other is based on a bootstrap approach – are studied.
As a byproduct, we prove the consistency of a general asymptotic variance estimator based on the empirical variance of
bootstrapped test statistics under minimal assumptions. We obtain that a normalized version of the original Clarke test
statistic follows an asymptotic normal distribution, whose asymptotic variance usually exceeds the asymptotic variance
of the claimed Binomial distribution.

The finite sample properties of our general test statistic are demonstrated in a simulation study with the help of linear
and quantile regression models. The results show that the original Clarke test statistic cannot keep its level under the
null hypothesis, whereas our corrected version of this test yields acceptable results. Moreover, we shortly illustrate how
a modified version of the Clarke test can be applied to models which are not strictly locally non-nested. Finally, we have
applied the corrected Clarke test to stock market data using ARMA-GARCH models. It is illustrated that the corrected
Clarke test statistic can revert the decisions made by the original Clarke test.

Further research may allow for increasing dimensions of αn and βn with increasing sample size or even for infinite
dimensional parameters (α, β). This would yield a significant extension of Theorem 3.1.

Moreover, the problem of simultaneously testing multiple competing families seems to be feasible, but would require a
lot of modifications. Additionally, a finite sample correction in the spirit of Shi (2015b), Liao and Shi (2020) or Schennach
and Wilhelm (2017) may be investigated. Finally, a mathematical framework for the optimal choice of the shrinkage
parameter e(n) in Theorem 3.2 would prove valuable.
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Appendix A. Proofs

A.1. Proof of Theorem 3.1

Proof of (i). Under the null, we can rewrite the normalized test statistic as
√
n Ĉn =

√
n(Pnφn − Pφn) +

√
n(Pφn − Pφ⋆)

= Gn(φn − φ⋆) + Gnφ⋆ +
√
nP(φn − φ⋆).

We use Corollary 2.3.12 in van der Vaart and Wellner (1996) to show that Gn(φn − φ⋆) is oP(1). Consider some arbitrary
ϵ > 0 and ν > 0. Since Hγ is Donsker, there exists δ > 0 and N ∈ N such that the equicontinuity condition (2.1.8)
from van der Vaart and Wellner (1996) is satisfied, i.e.

P
(

sup
ρP (f−g)≤δ

|Gn(f − g)| > ϵ

)
≤ ν,

for n ≥ N . Obviously, we implicitly assume the maps f and g above belong to Hγ . Moreover, Assumption B3 implies that
ρP (φn, φ⋆) :=

√
P(φn − φ⋆)2 − (P (φn − φ⋆))

2
→ 0 in probability. Therefore, we can impose P (ρP (φn, φ⋆) > δ) ≤ ν when
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n ≥ N in addition. This yields

P (|Gn(φn − φ⋆)| > ϵ)

≤ P (|Gn(φn − φ⋆)| > ϵ , ρP (φn, φ⋆) > δ)+ P (|Gn(φn − φ⋆)| > ϵ , ρP (φn, φ⋆) ≤ δ)

≤ P
(
ρP (φn, φ⋆) > δ

)
+ P

(
sup

ρP (f−g)≤δ
|Gn(f − g)| > ϵ

)
≤ 2ν.

Since ν was arbitrary, we get Gn(φn−φ⋆) = oP(1), which allows us to solely focus on the convergence of Gnφ⋆+
√
nP(φn−

φ⋆) in the remaining part of the proof. By a limited expansion of h and under H0, we have

P(φn − φ⋆) = h(α⋆, β⋆) + h1(α⋆, β⋆) · (α̂n − α⋆) + h2(α⋆, β⋆) · (β̂n − β⋆)

+ oP
(
∥α̂n − α⋆∥

)
+ oP

(
∥β̂n − β⋆∥

)
= h1(α⋆, β⋆) · (α̂n − α⋆) + h2(α⋆, β⋆) · (β̂n − β⋆) + oP

(
1

√
n

)
,

noting that h(α⋆, β⋆) = 0. Thus, we get
√
n Ĉn = Gnφ⋆ + h1(α⋆, β⋆) ·

√
n(α̂n − α⋆) + h2(α⋆, β⋆) ·

√
n(β̂n − β⋆) + oP(1)

= Gn
(
φ⋆ + h1(α⋆, β⋆) · s1 + h2(α⋆, β⋆) · s2

)
+ oP(1),

by Assumption B2. By the usual CLT, we obtain

Gn(φ⋆ + h1(α⋆, β⋆) · s1 + h2(α⋆, β⋆) · s2) + oP(1) ⇝ N (0, σ 2),

proving the result.

Proof of (ii). By the first part of the proof, we know that
√
n Ĉn = Gn(φn − φ⋆) + Gnφ⋆ +

√
nP(φn − φ⋆) +

√
nPφ⋆

= OP(1) +
√
n Pφ⋆.

If Pφ⋆ < 0, then this yields
√
n Ĉn → −∞.

Proof of (iii). Use a similar argument when Pφ⋆ > 0.

Remark 4. The proof of Theorem 3.1 has been obtained by a direct reasoning instead of applying some more general
results that are available in the literature. Indeed, the high level of generality of many papers does not yield minimal
assumptions or induces unnecessary technicalities. For example, it is difficult to apply Theorem 2 of Chen et al. (2003) that
is well-suited to nonparametric first-stage estimators. To do that, it would be necessary to discuss pathwise derivatives,
when our problem is fundamentally fully (two-stage) parametric. Moreover, we do not need to control the rate of
convergence to zero of ∥fα̂n − fα⋆∥ (for some norm in a functional space), as in their assumption (2.4). The same constraint
arises in Ichimura and Lee (2010), that requires a control of the sup-norm between the latter maps, when the key quantity
is ∥α̂n−α

⋆
∥ for us. Another classical reference is Theorem 3.3 in Pakes and Pollard (1989). But checking its assumption (iv)

is exactly redoing the main content of our proof. The same remark applies concerning Theorem 1 and Assumption N (d)
in Andrews (1994). In the literature, we are not aware of a theoretical result in a pure two-stage parametric framework
under weaker assumptions than in our Theorem 3.1.

A.2. Proof of Theorem 3.2

Define Qγ := {f +u1 · s1 +u2 · s2 | f ∈ Hγ , (u1, u2) ∈ [h1(α⋆, β⋆)−γ , h1(α⋆, β⋆)+γ ]×[h2(α⋆, β⋆)−γ , h2(α⋆, β⋆)+γ ]}.
Qγ is P-Glivenko–Cantelli, since it is a finite sum of P-Donsker classes. Additionally, Q2

γ := {q2 | q ∈ Qγ } is also P-
Glivenko–Cantelli in P-probability by Lemma 2.10.14 in van der Vaart and Wellner (1996). Then, it is sufficient to show

Pn
(
φn + ĥ1,n · s1 + ĥ2,n · s2

)k
→ P

(
φ⋆ + h1(α⋆, β⋆) · s1 + h2(α⋆, β⋆) · s2

)k
, (A.1)

in P-probability, when k = 1, 2. For k = 1, the latter result comes from the fact Qγ is P-Glivenko–Cantelli. Let us formally
prove (A.1) when k = 2. Set ϵ > 0 and denote qn := φn + ĥ1,n · s1 + ĥ2,n · s2 and q := φ⋆ + h1(α⋆, β⋆) · s1 + h2(α⋆, β⋆) · s2.
Simple calculations provide

P(q2n − q2) = P(φ2
n − φ2

⋆ ) + 2P(φn − φ⋆)ĥ1,n · s1 + 2Pφ⋆(ĥ1,n − h1(α⋆, β⋆)) · s1
+2P(φn − φ⋆)ĥ2,n · s2 + 2Pφ⋆(ĥ2,n − h2(α⋆, β⋆)) · s2
+P
(
(ĥ1,n − h1(α⋆β⋆)) · s1

)(
(ĥ1,n + h1(α⋆β⋆)) · s1

)
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+P
(
(ĥ2,n − h2(α⋆β⋆)) · s2

)(
(ĥ2,n + h2(α⋆β⋆)) · s2

)
+2

dα∑
i=1

dβ∑
j=1

(
ĥ1,n,iĥ2,n,j − h1,i(α⋆, β⋆)h2,j(α⋆, β⋆)

)
Ps1,is2,j,

which tends to zero in P-probability. Indeed, by B3 or B3′, P(φn − φ⋆)2 → 0. Moreover, by Lemma 1 (see below),
ĥ1,n,i → h1,i(α⋆, β⋆), ĥ2,n,i → h2,i(α⋆, β⋆) as well as ĥ1,n,iĥ2,n,j → h1,i(α⋆, β⋆) h2,j(α⋆, β⋆) in P-probability. Therefore,
for every ϵ > 0, we have

P
(
|Pnq2n − Pq2| > 2ϵ

)
≤ P

(
|(Pn − P)q2n| > ϵ

)
+ P

(
|P(q2n − q2)| > ϵ

)
≤ P

(
sup

q2∈Q2
γ

|(Pn − P)q2| > ϵ

)
+ P

(
∥ĥ1,n − h(α⋆, β⋆)∥1 > γ

)
+P

(
∥ĥ2,n − h2(α⋆, β⋆)∥1 > γ

)
+ P (|φn − φ⋆| > γ )+ P

(
|P(q2n − q2)| > ϵ

)
,

that tends to zero with n, by the Glivenko–Cantelli property of Q2
γ and because φn → φ⋆, ĥ1,n → h1(α⋆, β⋆), ĥ2,n →

h2(α⋆, β⋆) and P(q2n − q2) → 0 in P-probability.

Lemma 1. Consider a positive function e(n) such that limn→∞ e(n) = 0 and limn→∞

√
n e(n) > 0. Define hn : Eγ → [0, 1],

hn(α, β) =
∫
φ(x, α, β) dPn(x). Under the assumptions of Theorem 3.1 (or Corollary 4.2) and for every i ∈ {1, . . . , dα} and

every j ∈ {1, . . . , dβ}, we have

ĥ1,n,i :=
1

2e(n)

(
hn(α̂n + e(n)uαi , β̂n) − hn(α̂n − e(n)uαi , β̂n)

)
−→

∂h
∂αi

(α⋆, β⋆) and

ĥ2,n,j :=
1

2e(n)

(
hn(α̂n, β̂n + e(n)uβj ) − hn(α̂n, β̂n − e(n)uβj )

)
−→

∂h
∂βj

(α⋆, β⋆)

in probability, when n → +∞.

Proof. By simple algebraic manipulations, we obtain

ĥ1,n,i =
1

2
√
ne(n)

{
Gn

(
φ(·, α̂n + e(n)uαi , β̂n) − φ⋆

)
− Gn

(
φ(·, α̂n − e(n)uαi , β̂n) − φ⋆

)}
+

1
2e(n)

P
(
φ(·, α̂n + e(n)uαi , β̂n) − φ(·, α̂n − e(n)uαi , β̂n)

)
. (A.2)

Using that (α̂n, β̂n) → (α⋆, β⋆) in probability and that limn→∞

√
ne(n) = ∞, we get

1
2
√
ne(n)

{
Gn

(
φ(·, α̂n + e(n)uαi , β̂n) > 0 − φ⋆

)
− Gn

(
φ(·, α̂n − e(n)uαi , β̂n) − φ⋆

)}
= oP∗ (1).

Concerning the last term of the r.h.s. of (A.2), use the same Taylor expansion as in the proof of Theorem 3.1 to state

1
2e(n)

P
(
φ(·, α̂n + e(n)uαi , β̂n) − φ(·, α̂n − e(n)uαi , β̂n)

)
=

1
2e(n)

(
h1(α⋆, β⋆) ·

(
α̂n + e(n)uαi − α⋆

)
− h1(α⋆, β⋆) ·

(
α̂n − e(n)uαi − α⋆

)
+ oP (e(n))

)
,

which tends to ∂h(α⋆, β⋆)/∂αi in P-probability. The convergence of ĥ2,n,j follows analogously. □

A.3. Proof of Corollary 4.2

The proof is a direct consequence of Theorem 3.1. The only point is to check Assumption B3 in this particular case.
By the continuous mapping theorem, ψ(x, α̂n, β̂n) → ψ(x, α⋆, β⋆) P-almost surely for any x ∈ Rd, since ψ is continuous
on Eγ by Assumption B3′. Since ψ(X, α⋆, β⋆) has no probability mass at 0, by the definition of strictly locally non-nested
models, the Dominated Convergence Theorem tells us that 1

{
ψ(X, α̂n, β̂n) > 0

}
tends to 1

{
ψ(X, α⋆, β⋆) > 0

}
in L2(P),

which yields Assumption B3.
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A.4. Proof of Theorem 6.1

Proof of (i). Use the same notations as in the proof of Theorem 3.1. We know that G̃n ⇝
ξ

G by Theorem 3.6.13 in van

der Vaart and Wellner (1996) since Hγ is P-Donsker. Simple calculations provide
√
n
c

(C̃n − Ĉn) =
√
nc−1(P̃nφ̃n − Pnφn

)
=

√
nc−1P

(
φ̃n − φn

)
+ G̃nφ̃n + c−1Gn

(
φ̃n − φn

)
= G̃nφ⋆ +

√
nc−1P

(
φ̃n − φn

)
+ G̃n

(
φ̃n − φ⋆

)
+ c−1Gn

(
φ̃n − φn

)
.

By B2, B4 and B5, a Taylor expansion yields
√
nc−1P

(
φ̃n − φn

)
=

√
nc−1(h(α̃n, β̃n) − h(α̂n, β̂n)

)
= G̃n

(
h1(α⋆, β⋆) · s1 + h2(α⋆, β⋆) · s2

)
+ oP∗

XW
(1).

Moreover, Lemma 2 (proved below) says that c−1Gn
(
φ̃n − φn

)
and G̃n

(
φ̃n − φ⋆

)
are also oP∗

XW
(1). Therefore,

√
n
c

(C̃n − Ĉn) = G̃n

(
φ⋆ + h1(α⋆, β⋆) · s1 + h2(α⋆, β⋆) · s2

)
+ oP∗

XW
(1).

Now, the result follows by the usual bootstrap convergence.

Proof of (ii). The proof immediately follows from Lemma 3.1 in Bücher and Kojadinovic (2018).

Remark 5. The application of Theorem 3.6.13 in van der Vaart and Wellner (1996) requires an additional measurability
assumption on Hγ . In most cases, this assumption can be easily verified. Moreover, if we only consider the exchangeable
bootstrap schemes described in Kosorok (2008) page 19ff., the measurability assumption on Hγ can even be omitted.

Lemma 2. Under the assumptions of Theorem 6.1

(i′) (α̃n, β̃n) → (α⋆, β⋆) in PXW -probability,
(ii′) Gn

(
φ(·, α̃n, β̃n) − φ(·, α̂n, β̂n)

)
= oP∗

XW
(1), and

(iii′) G̃n
(
φ(·, α̃n, β̃n) − φ(·, α⋆, β⋆)

)
= oP∗

XW
(1).

Proof. Proof of (i′): Let us just prove that α̃n tends to α⋆ in PXW -probability, since the result for β̃n follows similarly.
Using Assumption B2 and B5, we have

α̃n − α⋆ = α̃n − α̂n + α̂n − α⋆ = (P̃n − Pn)s1 + oP∗
XW

(1).

Define new weights ξ̃i,n = n−1ξi,n, which remain exchangeable and non-negative. Our assumptions yield
∑n

i=1 ξ̃i,n = 1 and
max1≤i≤n ξ̃i,n → 0 in PW -probability. Thus, apply Lemma 3.6.16 in van der Vaart and Wellner (1996) and the conclusion
follows.

Proof of (ii′): For arbitrary constants ζ , π > 0, choose λ > 0 and N large enough such that

P∗

X

(
sup

f ,g∈Hγ :ρP (f ,g)≤λ
Gn(f − g) > π

)
≤ ζ for all n ≥ N,

which is possible due to 2.1.8 in van der Vaart and Wellner (1996). Additionally, choose N large enough such that
PXW

(
ρP (φ̃n, φn) > λ

)
≤ ζ for all n ≥ N , which is possible due to Assumption B6. We deduce

PXW
(
|Gn(φ̃n − φn)| > π

)
≤ P∗

X

(
sup

f ,g∈Hγ :ρP (f ,g)<λ
|Gn(f − g)| > π

)
+ PXW

(
|ρP (φ̃n, φn)| ≥ λ

)
≤ 2ζ .

Since ζ was arbitrary, this yields PXW
(
|Gn(φ̃n − φn)| > π

)
→ 0, i.e. Gn(φ̃n − φn) is oP∗

XW
(1).

Proof of (iii′): Note that by the Cauchy–Schwarz inequality, we have

EP
[
(φ̃n − φ⋆)2

]1/2
≤ EP

[
(φ̃n − φn)2

]1/2
+ EP

[
(φn − φ⋆)2

]1/2
.

Assumption B3 and B6 imply that ρP (φ̃n, φ⋆) → 0 in PXW -probability. For arbitrary π, ζ > 0, choose λ > 0 and N large
enough such that PXW

(
ρP (φ̃n, φ⋆) ≥ λ

)
≤ ζ and

P∗

XW

(
sup

f ,g∈Hγ ;ρP (f ,g)<λ
|G̃n(f − g)| > π

)
≤ ζ ,
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for all n ≥ N , which is possible due to the equicontinuity of the bootstrap process G̃n (see Theorem 3.6.13 in van der
Vaart and Wellner (1996)). This yields

PXW
(
|G̃n(φ̃n − φ⋆)| > π

)
≤ P∗

XW

(
sup

f ,g∈Hγ ;ρP (f ,g)<λ
|G̃n(f − g)| > π

)
+ PXW

(
ρp(φ̃n, φ⋆) ≥ λ

)
≤ 2ζ .

We deduce that G̃n(φ̃n − φ⋆) = oP∗
XW

(1). □

A.5. Proof of Corollary 6.2

Define φ̃C
n := φC (X, α̃n, β̃n). To prove the corollary, it is sufficient to prove that Assumption B6′ implies B6. Let us show

that EP

[(
φ̃C
n − φC

⋆

)2]
→ 0 in PXW -probability. Observe that

EP
[
(φ̃C

n − φC
⋆ )

2]
= P

(
ψ(X, α⋆, β⋆) > 0, ψ(X, α̃n, β̃n) < 0

)
+ P

(
ψ(X, α⋆, β⋆) < 0, ψ(X, α̃n, β̃n) > 0

)
and note that the map (α̃n, β̃n) → P(ψ(X, α̃n, β̃n) ∈ A) is measurable for any Borel set A. Choose π ∈ (0, 1) and a
sufficiently small ϵ > 0 such that P(|ψ(X, α⋆, β⋆)| ≤ ϵ) ≤ π/2. This is possible due to the strict local non-nestedness of
the proposed models f and g . Indeed, the strict local non-nestedness assumption implies 0 = P(|ψ(X, α⋆, β⋆)| = 0) =

limn→∞ P(|ψ(X, α⋆, β⋆)| ≤ 1/n), by the continuity of measures. Additionally, due to B6′, we can choose a compact set
Aπ ⊂ Rd and δ > 0, P(X ∈ Aπ ) ≥ 1−π/4, s.t. ∥(α, β)− (α⋆, β⋆)∥1 ≤ δ and x ∈ Aπ implies |ψ(x, α, β) − ψ(x, α⋆, β⋆)| < ϵ.
Moreover, for an arbitrary ν > 0 and the latter constant δ, choose N large enough such that

PXW
(
∥(α̃n, β̃n) − (α⋆, β⋆)∥1 > δ

)
≤ ν,

for all n ≥ N , which is stated in the proof of Theorem 6.1. Therefore, we get

PXW

(
P
(
ψ(X, α⋆, β⋆) > 0;ψ(X, α̃n, β̃n) < 0

)
> π

)
≤ PXW

(
P
(
ψ(X, α⋆, β⋆) > ϵ;ψ(X, α̃n, β̃n) < 0

)
>
π

2

)
+ PXW

(
P
(
ψ(X, α⋆, β⋆) ∈ (0, ϵ]

)
>
π

2

)
≤ PXW

(
P
(
ψ(X, α⋆, β⋆) > ϵ;ψ(X, α̃n, β̃n) < 0

)
>
π

2
; ∥(α̃n, β̃n) − (α⋆, β⋆)∥1 ≤ δ

)
+ ν + 0

≤ PXW

(
P
(
ψ(X, α⋆, β⋆) > ϵ;ψ(X, α̃n, β̃n) < 0; X ∈ Aπ

)
>
π

4
; ∥(α̃n, β̃n) − (α⋆, β⋆)∥1 ≤ δ

)
+ PXW

(
P
(
X /∈ Aπ

)
>
π

4

)
+ ν. (A.3)

By construction, P(X /∈ Aπ ) ≤ π/4 and the first term on r.h.s. of (A.3) is zero. As a consequence, PXW

(
P
(
ψ(X, α⋆, β⋆) >

0;ψ(X, α̃n, β̃n) < 0
)
> π

)
≤ ν. Since ν was arbitrary, P

(
ψ(X, α⋆, β⋆) > 0, ψ(X, α̃n, β̃n) < 0

)
tends to zero in PXW -

probability. Similarly, P
(
ψ(X, α⋆, β⋆) < 0, ψ(X, α̃n, β̃n) > 0

)
tends to zero in PXW -probability. Combining such arguments,

we have proven that ρ2
P (φ̃

C
n , φ

C
⋆ ) = EP

[
(φ̃C

n − φC
⋆ )

2
]
tends to zero in PXW -probability.

A.6. Proof of Proposition 6.3

It is sufficient to show that

lim
n,M→∞

⏐⏐⏐⏐EPXW

[
f
( 1
Mc2

M∑
j=1

n
(
C̃ (j)
n − Ĉn

)2)
− f

(
σ 2)]⏐⏐⏐⏐ = 0,

for every map f : R → R that is uniformly continuous and bounded. This would imply the claim, since convergence in
probability to a constant is equivalent to weak convergence to a constant.

Theorem 6.1 and Bücher and Kojadinovic (2018, Lemma 2.2) imply that EPXW

[(
C (1)
n
)2]

→ σ 2 and EPXW

[
C (1)
n
]

→ 0,

since
((

C (1)
n
)2)

n∈N is uniformly integrable by Assumption B7. Moreover, for any ϵ > 0, we can choose a δ > 0 small

enough such that f is (ϵ, δ)-uniformly continuous, Lemma 3 implies that we can find M(ϵ, δ) ∈ N and n(ϵ, δ) ∈ N such
that for any n ≥ n and M ≥ M⏐⏐⏐⏐EPXW

[
f
( 1
M

M∑
j=1

(
C (j)
n

)2)
− f

(
σ 2)]⏐⏐⏐⏐

≤

⏐⏐⏐⏐EPXW

[
f
( 1
M

M∑
j=1

(
C (j)
n

)2)
− f

(
EPXW

[(
C (1)
n

)2])]⏐⏐⏐⏐+ ⏐⏐⏐⏐f (EPXW

[(
C (1)
n

)2])
− f

(
σ 2) ⏐⏐⏐⏐

24



F. Brück, J.-D. Fermanian and A. Min Journal of Econometrics xxx (xxxx) xxx

≤ EPXW

[⏐⏐⏐⏐f ( 1
M

M∑
j=1

(
C (j)
n

)2)
− f

(
EPXW

[(
C (1)
n

)2])⏐⏐⏐⏐ 1{⏐⏐⏐⏐ 1M
M∑
j=1

(
C (j)
n

)2
− EPXW

[(
C (1)
n

)2]⏐⏐⏐⏐ > δ

}]
+ 2ϵ

≤ (C + 2)ϵ,

since f is bounded by a constant C/2 > 0. This proves the claim, since ϵ > 0 was arbitrary.

Lemma 3. For all δ, ϵ > 0 there exist M(ϵ, δ), n(ϵ, δ) ∈ N such that for all M ≥ M we have that

sup
n≥n

PXW

(⏐⏐⏐⏐ 1M
M∑
j=1

(
C (j)
n

)2
− EPXW

[(
C (1)
n

)2]⏐⏐⏐⏐ > δ

)
< ϵ.

Proof. Set
(
C (0)
n
)

:=
√
n
(
Ĉn − Pφ⋆

)
. Denote the empirical measure M−1∑M

i=1 δC (j)
n

=: PCn
M , the law of C (0)

n as PC (0)
n
, the

law of C (1)
n as PC (1)

n
and let BLK be the set of bounded Lipschitz functions with Lipschitz constant ≤ 2K . W.l.o.g. choose

ϵ, δ ∈ (0, 1). Let K (ϵ, δ) be large enough such that

EPXW

[(
C (1)
n

)21{|C (1)
n | ≥ K }

]
<

δ

24
ϵ

for all n ∈ N, which is possible since
((

C (1)
n
)2)

n∈N
is uniformly integrable. Moreover, depending on the chosen K , choose

n(ϵ, δ, K ) and M(ϵ, δ, K ) large enough such that for all n ≥ n and M ≥ M we have

sup
f∈BLK

⏐⏐⏐⏐ ∫ f (x)d
(
PC (0)

n
− PC (1)

n

)
(x)
⏐⏐⏐⏐ < δ

4
, and

PXW

(
sup
f∈BLK

⏐⏐⏐⏐ ∫ f (x)d
(
PCn
M − PC (0)

n

)
(x)
⏐⏐⏐⏐ > δ

4

)
<
ϵ

3
,

which is possible due to Bücher and Kojadinovic (2018, Lemma 2.2 (a)+(d)), since C (1)
n and C (0)

n have the same weak limit
N (0, σ 2). Note that

1
M

M∑
j=1

(
C (j)
n

)2
− EPXW

[(
C (1)
n

)2]
=

∫
x2dPCn

M (x) −

∫
x2dPC (1)

n
(x)

=

∫
min{x2, K 2

}d
(
PCn
M − PC (0)

n

)
(x) +

∫
min{x2, K 2

}d
(
PC (0)

n
− PC (1)

n

)
(x)

+

∫
|x|>K

x2d
(
PCn
M − PC (1)

n

)
(x) +

∫
|x|>K

K 2d
(
PC (1)

n
− PCn

M

)
(x).

Thus, for n ≥ n and M ≥ M , we have

PXW

(⏐⏐⏐⏐ 1M
M∑
j=1

(
C (j)
n

)2
− EPXW

[(
C (1)
n

)2]⏐⏐⏐⏐ > δ

)
≤ PXW

(⏐⏐⏐⏐ ∫ min{x2, K 2
}d
(
PCn
M − PC (0)

n

)
(x)
⏐⏐⏐⏐ > δ

4

)
+ PXW

(⏐⏐⏐⏐ ∫ min{x2, K 2
}d
(
PC (0)

n
− PC (1)

n

)
(x)
⏐⏐⏐⏐ > δ

4

)
+ PXW

(⏐⏐⏐⏐ ∫
|x|>K

x2d
(
PCn
M − PC (1)

n

)
(x)
⏐⏐⏐⏐ > δ

4

)
+ PXW

(⏐⏐⏐⏐ ∫
|x|>K

K 2d
(
PC (1)

n
− PCn

M

)
(x)
⏐⏐⏐⏐ > δ

4

)
≤ PXW

(
sup
f∈BLK

⏐⏐⏐⏐ ∫ f (x)d
(
PCn
M − PC (0)

n

)
(x)
⏐⏐⏐⏐ > δ

4

)
+ PXW

(
sup
f∈BLK

⏐⏐⏐⏐ ∫ f (x)d
(
PC (0)

n
− PC (1)

n

)
(x)
⏐⏐⏐⏐ > δ

4

)
+ 2PXW

(⏐⏐⏐⏐ ∫
|x|>K

x2dPCn
M (x)

⏐⏐⏐⏐ > δ

8

)
+ 2PXW

(⏐⏐⏐⏐ ∫
|x|>K

x2dPC (1)
n
(x)
⏐⏐⏐⏐ > δ

8

)
≤
ϵ

3
+ 2PXW

(⏐⏐⏐⏐ ∫
|x|>K

x2dPCn
M (x)

⏐⏐⏐⏐ > δ

8

)
,
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when n ≥ n̄ and M ≥ M . For our chosen K , n we obtain

2PXW

(⏐⏐⏐⏐ ∫
x≥K

x2dPCn
M (x)

⏐⏐⏐⏐ > δ

8

)
≤

16
δ
EPXW

[∫
|x|≥K

x2dPCn
M (x)

]
=

16
δ
EPXW

[
EPXW

[ 1
M

M∑
j=1

(
C (j)
n

)21{|C (j)
n | > K }

⏐⏐⏐(X1, . . . , Xn)
]]

⋆
=

16
δ
EPXW

[(
C (1)
n

)21{|C (1)
n | > K }

]
<

16
δ

·
δ

24
ϵ =

2
3
ϵ ,

where ⋆ uses that
(
C (j)
n
)
j∈N are conditionally i.i.d. given (X1, . . . , Xn). Since ϵ was arbitrary, the claim is proven. □

It is interesting to note that our proof of the consistency of σ̂ 2
M also holds in a more general setting: denote by

(
S̃(j)n

)
j∈N

a sequence of bootstrap versions of some statistic Sn under the constraint that the vectors of bootstrap weights are
independently drawn and satisfy the assumptions stated in the beginning of Section 6.

Proposition A. Assume there exists a random variable Z with finite second moment s.t. Sn ⇝ Z and S̃(1)n ⇝
ξ

Z. If
((

S̃(1)n
)2)

n∈N
is uniformly integrable, then we have

1
M

M∑
j=1

(
S̃(j)n −

1
M

M∑
i=1

S̃(i)n

)2 n,M→∞
−−−−→ Var(Z) in PXW -probability.

The proof of the general case follows exactly the same thoughts as the proof of Proposition 6.3. Simply replace
E
[(

C (1)
n
)2] by Var

(
C (1)
n
)
, and also prove that

⏐⏐⏐M−1∑M
j=1 C

(j)
n − E

[
C (1)
n
]⏐⏐⏐ → 0 in PXW -probability, which follows by the

same steps as
⏐⏐⏐M−1∑M

j=1

(
C (j)
n
)2

− E
[(

C (1)
n
]2]⏐⏐⏐ → 0 in PXW -probability.

To the best of our knowledge the consistency of such asymptotic variance estimation procedures has not been stated
elsewhere in the literature with the same degree of generality.

Appendix B. The Clarke test statistic is not binomial distributed

We present a short counterexample to illustrate that B̂n is generally not Binomial distributed when HC
0 is satisfied. In

other words, the conclusion drawn on the distribution of B̂n in Section 2.2 of Clarke (2007) is incorrect.
Let the true distribution P follow a univariate normal distribution with mean µ0 and fixed variance 1. We compare

the density of a normal distribution with fixed variance σ 2
f and the density of a normal distribution with fixed

variance σ 2
g while estimating the mean for both of these families. This translates to the families of densities f (x, α) =

(2πσ 2
f )

−1/2 exp
(
−(x − α)2/2σ 2

f

)
and g(x, β) = (2πσ 2

g )
−1/2 exp

(
−(x − β)2/2σ 2

g

)
. Note that the two models are strictly

locally non-nested according to Definition 4.1.
In the following, we will choose σf ̸= σg not equal to one, such that the null hypothesis of the Clarke test is satisfied.

Before fixing σf and σg , we check that α⋆ and β⋆ are both equal to µ0. Indeed, in the case of α⋆, we have

E
[
log
(
f (X, α)

)]
= E

[
− log(

√
2πσ 2

f ) −
(X − α)2

2σ 2
f

]
= − log

(√
2πσ 2

f

)
−

Var(X)
2σ 2

f
−

1
2σ 2

f
(µ0 − α)2 ≤ − log

(√
2πσ 2

f

)
−

Var(X)
2σ 2

f
,

where the last inequality is an equality iff we choose α = µ0. Second, estimators of the pseudo-true values α⋆ and β⋆ in
the case of known variances are obtained by pseudo maximum likelihood inference: β̂n = α̂n = X̄ , the usual empirical
mean. Third, we choose σf and σg such that the null hypothesis HC

0 in (3) is satisfied. To this goal, calculate the probability
of the set{

log
( f (X, α⋆)
g(X, β⋆)

)
> 0

}
=

{ (X − β⋆)2σ 2
f − (X − α⋆)2σ 2

g

2σ 2
f σ

2
g

> log
(
σf

σg

)}
.

Replacing α⋆ and β⋆ with µ0, and assuming w.l.o.g. that σg < σf , we get{ (X − β⋆)2σ 2
f − (X − α⋆)2σ 2

g

2σ 2
f σ

2
g

> log
(
σf

σg

)}
=

{
(X − µ0)2 > log

(
σf

σg

) 2σ 2
f σ

2
g

σ 2
f − σ 2

g

}
.
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Since (X − µ0) is standard normally distributed, we obtain

P
(
log
( f (X, α⋆)
g(X, β⋆)

)
> 0

)
= 2Φ

(
−

√log
(
σf

σg

) 2σ 2
f σ

2
g

σ 2
f − σ 2

g

)
.

Consider σg =: σ g as fixed and set (σf /σg )2 = t . Noting that the map t ↦→ t log t/(t − 1), t > 0 attains all values in R+,
we can find σ f such that

−

{
log(σ f /σ g )σ 2

f σ
2
g/(σ

2
f − σ 2

g )
}1/2

= Φ−1(1/4).

Then, with such values, HC
0 is satisfied. For instance, if σ̄g = 1/2, we get an approximated value of σ f ≈ 0.98. From now

on, consider that we have chosen σf ̸= 1, σg ̸= 1 and σf > σg such that

P
({

(X − µ0)2 > log
(
σf

σg

) 2σ 2
f σ

2
g

σ 2
f − σ 2

g

})
=

1
2
.

Therefore, the null hypothesis of the Clarke test is satisfied for the chosen values of σf and σg .
In Clarke (2007), it is stated that the statistic B̂n is Binomial distributed with parameter p = 0.5. We show that B̂n is

generally not even Binomial distributed for any p ∈ [0, 1]. For n = 2 and the considered example, the test statistic B̂2
takes the form:

1
{
log
(
f (X1, α̂2)

g(X1, β̂2)

)
> 0

}
+ 1

{
log
(
f (X2, α̂2)

g(X2, β̂2)

)
> 0

}
,

which is equal to

1
{
(X1 − X̄)2 > log

(
σf

σg

) 2σ 2
f σ

2
g

σ 2
f − σ 2

g

}
+ 1

{
(X2 − X̄)2 > log

(
σf

σg

) 2σ 2
f σ

2
g

σ 2
f − σ 2

g

}
.

The equality (X1 − X̄)2 = (X2 − X̄)2 yields

B̂2 = 2 × 1
{(X1

2
−

X2

2

)2
> log

(
σf

σg

) 2σ 2
f σ

2
g

σ 2
f − σ 2

g

}
,

which takes values in {0, 2} and is clearly not Binomial distributed.
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