
1

PP5GS – An Efficient Procedure-Based and Stateless
Architecture for Next Generation Core Networks

Endri Goshi, Raffael Stahl, Hasanin Harkous, Mu He, Rastin Pries, and Wolfgang Kellerer

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—The introduction of the Service-Based Architecture
(SBA) for the 5G Core Networks has drastically changed the
way these networks are designed and operated. Aiming for higher
flexibility and agility, the adoption of SBA is the first step towards
cloud-native deployments of 5G Core. However, the high degree
of functional decomposition in SBA has implications in terms
of increased inter-NF signaling traffic during the execution of
control plane procedures, as well as an increased complexity in
orchestrating a system with tight inter-NF dependencies. In this
work, we introduce PP5GS as a stateless 5G Core architecture
that implements a procedure-based functional decomposition of
the 5G Core NFs. We develop Per-Procedure NFs for four differ-
ent control plane procedures and perform extensive evaluations
in a private cloud environment orchestrated with Kubernetes.
The results show that PP5GS requires up to 34% and 55%
less computing resources compared to the baseline stateful and
stateless systems, respectively, while generating at least 40% less
signaling traffic. Moreover, complex control plane procedures can
complete up to 50% faster. Lastly, the results show that PP5GS
is a more feasible architecture in leveraging edge-offloading of
5G Core NFs.

Keywords—5G Core, SBA, Control Plane, Performance Mea-
surements

I. INTRODUCTION

The 5th Generation (5G) of mobile communication net-
works is envisioned to support a wide range of new use-
cases and an ever-increasing number of connected devices.
The high-bandwidth requirements of enhanced Mobile Broad-
Band (eMBB) necessitate smaller cell sizes, and consequently
increase mobility-related traffic [1], [2]. Moreover, massive
Machine-Type Communication (mMTC) introduces the large-
scale deployment of IoT devices and other end-user equipment
with high control to data traffic ratio [3]. Therefore, from a
control plane perspective the exploding number of connected
devices and the unprecedented volume of control traffic lead
to concerns of scalability and potential signaling storms [4].

Guided mainly by the flexibility limitations of the previous
generations and the lack of agility in developing new features,
3rd Generation Partnership Project (3GPP) introduced the
Service-Based Architecture (SBA) for the 5G Mobile Core
Network (5GC) in its Release 15 [5]. In the recent years,
internet applications tend to incorporate cloud-native design

Endri Goshi, Raffael Stahl and Wolfgang Kellerer are with the
Chair of Communication Networks, Technical University of Munich,
80333 Munich, Germany (e-mail: endri.goshi@tum.de; raffael.stahl@tum.de;
wolfgang.kellerer@tum.de).

Hasanin Harkous and Rastin Pries are with Nokia, 81541 Munich, Germany
(e-mail: hasanin.harkous@nokia.com; rastin.pries@nokia.com).

Mu He, at the time this work was conducted, was with Nokia, 81541
Munich, Germany (e-mail: mu.he@tum.de).

principles to tackle their flexibility and agility issues. There-
fore, the adoption of SBA aims to introduce cloud-native con-
cepts such as microservices to 5GC deployments. SBA follows
an approach of a high degree of functional decomposition
coupled with a granular task distribution among the Network
Functions (NFs). While this simplifies each component from
an individual perspective, it does the opposite from a system
perspective. The increased number of NFs involved in serving
incoming traffic as well as the number of messages exchanged
between them have lead to very high signaling overhead [6].
Consequently, the increased signaling overhead has shown to
have a direct impact on the fulfillment of signaling traffic
Service-Level Agreements (SLAs) [7].

Furthermore, as users are usually concerned about the
experienced data plane latency, the untimely processing of
control plane traffic can have a direct effect on the data plane
access latency [8]. SBA inherently produces tight inter-NF
dependencies which may cause scalability issues and increased
control plane latencies if not tackled by complex orchestration
mechanisms [9]. In the light of this, efficiently leveraging
distributed cloud environments for 5GC deployments becomes
a difficult task.

The main research question that we address in this work
is whether we can perform a different functional split for
the 5G & Beyond Core Networks that aims to increase the
performance of mobile networks while still maintaining a
high degree of flexibility, necessary for deployments in cloud
environments. While recent research works have introduced
improved designs [10], [11] and protocol simplifications [6],
[12] for legacy 4G Core Networks, this work aims to solve
practical issues with the current SBA deployments.

In order to develop a feasible architecture for the current
and the Next Generation Mobile Networks, the main chal-
lenge lies on designing a system able to solve the following
problems: i) high inter-NF signaling overhead observed during
the execution of control plane procedures; ii) increased laten-
cies or procedure completion times; and iii) constrained NF
placement in a distributed 5GC infrastructure. Therefore, to
address performance concerns of the distributed SBA, in this
work we propose a novel architecture for 5G & Beyond that
implements a procedure-based functional split for the control
plane NFs. The Per-Procedure and Stateless 5G (PP5GS)
architecture achieves this by means of consolidating most of
the procedure processing logic in a single Per-Procedure NF
(PPNF). The diversity of the number and type of the involved
NFs in different procedures means that each PPNF can process
only the corresponding procedure, e.g., a RegNF serves the
incoming UE Registration traffic. The consolidation of the

2

processing logic greatly reduces the generated traffic overhead
and eliminates some of the impacts of network conditions in
the experienced procedure completion time. Moreover, PPNFs
are simpler to orchestrate because there are less inter-NF
dependencies to be considered and the system’s performance
can be better estimated. In addition, PP5GS offers function-
level scalability in contrast to the instance-level scalability in
5GC SBA. PP5GS is shown to be more resource efficient and
that is an important factor in edge deployments where the
resources are scarce. In addition, we identify an issue that
is usually overlooked with respect to the edge-offloading of
5G SBA NFs. In its current state, offloading control plane
NFs to the edge can be counter-productive as the cost of
inter-NF communication for procedure execution can lead to
degraded performance. By design, PPNFs can overcome this
issue since the processing logic is almost entirely integrated
into a single NF. Further, we argue that PP5GS brings added
value in use-cases where knowledge of incoming control traffic
can be leveraged to accelerate critical procedures, e.g., in an
airport scenario with frequent Registration and PDU Session
Establishment procedures the operator can accelerate their
completion by deploying the relevant PPNF closer to the
users. Nonetheless, the advantages apply to a centralized 5GC
deployment as well. In [13], we have discussed overall aspects
of the motivation and high level design of a 5GC system
that implements a procedure-based functional decomposition.
However, the system presented there serves only as a proof of
concept with only a partial implementation and evaluation of
RegNF. This paper makes the following contributions:

• We develop a stateless 5GC by implementing a 3GPP-
compliant Unstructured Data Storage Function (UDSF)
and enabling the other NFs to store their state remotely
and retrieve it when needed.

• We implement a gNodeB (gNB) & User Equipment (UE)
emulator that can generate control traffic in a scalable
way for a range of procedures. Additionally, we develop
a User Plane Function (UPF) emulator that can handle
the high input rates of PDU Session related procedures.

• We design PP5GS as a stateless and procedure-based sys-
tem for 5GC. Four PPNFs are implemented to handle the
execution of Registration, PDU Session Establishment,
PDU Session Release and Deregistration procedures.

• We deploy PP5GS in a Kubernetes cluster and perform
detailed evaluations, comparing it against the baseline
stateful 5GC as well as the stateless version. PP5GS
outperforms the other systems in terms of CPU uti-
lization, procedure completion time and communication
overhead. Additionally, we highlight its superiority in
edge offloading scenarios.

The remainder of the paper is structured as follows. Section
II presents related work in the areas of mobile core network
designs and stateless systems. Background information with
respect to 5GC and technologies used in this work is given in
Section III. PP5GS system’s design and implementation are
explained in Section IV, while in Section V we present the
evaluation setup and the obtained results. Lastly, Section VI
provides a discussion on the results and concludes the paper.

II. RELATED WORK

Re-architecting the mobile core network: CleanG [6]
leverages Network Function Virtualization (NFV) and Soft-
ware Defined Networking (SDN) to design an architecture
that minimizes the control plane latency as well as the data
plane updates latency. In their architecture, the authors propose
a single control plane NF and a single data plane NF with
consolidated logic, while considerably simplifying the control
plane protocols. TurboEPC [12] considers the Evolved Packet
Core (EPC) of 4G and leverages data plane programmability
to offload some control plane tasks to the data plane. By
modifying the division between control and data plane tasks,
a significant fraction of signaling traffic is offloaded. SoftBox
[10] and PEPC [11] propose similar EPC-in-the-box solutions.
In Softbox, both the control and data plane processing logic
is consolidated in the same container, on a per-UE basis.
On the other hand, PEPC only consolidates the UE state in
EPC in a single location, while efficient access to the state
is achieved by reorganizing the NFs. In Neutrino [14], the
authors redesign the Mobility Management Entity (MME)
by introducing a consistency protocol capable of ensuring
fast failure recovery, a fast serialization engine and proactive
geo-replication. The adoption of technologies such as NFV,
SDN or data plane programmability are now a reality in
5G. In this work, we argue that while softwarization brings
great flexibility to 5GC, there are also issues that need to be
tackled. Our system aims to explore better ways to leverage
the flexibility of softwarization, and at the same time minimize
the ramifications on performance.

Similar to our approach, authors in [15] propose to improve
the performance of Long Term Evolution (LTE) during the
execution of critical events by means of “logic-based NF
segregation”. However, their solution’s scope is limited to an
offloading mechanism deployed alongside EPC, unlike PP5GS
where our goal is to have a fully functioning 5G and Beyond
Core with a per-procedure functional split. MobileStream
[16] decomposes the functional blocks of monolithic EPC
entities, and leverages real-time stream processing frameworks
to assemble them into control plane pipelines. While this
framework offers scalability and programmability, it is still
a distributed architecture where the stream communication
between the blocks can span between several machines and
thus it can suffer from similar issues as SBA. On the other
hand, PP5GS is still distributed from a system point of
view, but the centralization of the processing logic on a per-
procedure basis into the PPNFs makes it possible to tackle the
overhead of the distributed architectures. Recently, the work
in [17] has introduced an architecture where the core net-
work is conceptualized as a single large-scale and distributed
web service, with the functional split following the system
procedures and services instead of the network functions.
While they argue about the benefits of their architecture, they
have not performed any evaluations. PP5GS is deployed in
a private cloud environment and thoroughly evaluated for
varying procedures and deployment scenarios.

Lastly, to the best of our knowledge, there has been no
previous work that investigates the problems with offloading

3

5GC control plane NFs to the edge. In this work, we identify
a critical issue that stems from the adoption of SBA in cloud
environments that span to the edge, and detail how our system
can overcome it.

Stateless mobile core: MMLite [18] and dMME [19]
implement and investigate the scalability of stateless MME
entities. More specifically, MMLite presents a stateless and
fully decomposed MME entity where each control procedure
is implemented in its own microservice. dMME proposes the
deployment of geographically distributed MMEs with remote
storage. SCALE [4] does not implement statelessness but
instead proposes a two-tier architecture for MMEs with load-
balancers and processing entities. It uses state replication
to synchronize the deployed instances. In ECHO [20], a
distributed and highly available EPC architecture tailored for
public cloud deployments is presented. State is stored in an
external entity and reliability is ensured with an end-to-end
distributed state machine replication protocol. Lastly, authors
in [21] investigate the impact of introducing statelessness to
the 5G SBA. Their focus is on designing mechanisms that
reduce the cost of transactional statelessness by sharing the
user state among NFs and exploiting parallelism in execution.
However, they only focus on Access and Mobility Function
(AMF), Session Management Function (SMF) and UPF.

In this work we enable statelessness for all the 5G SBA NFs,
contrary to state of the art works which focus either on a set
of 5GC NFs or on EPC entities. Such stateless architecture
is adequate for cloud deployments where state updates occur
frequently. Furthermore, we introduce PP5GS as a procedural
stateless architecture with high performance gains compared
to stateless SBA.

III. BACKGROUND

In this section, we look into the architecture of 5G Core
Networks (5GC) with its most important features and how
the communication between its entities is realized in the
control plane. Moreover, we provide details on a 5GC project
that is considered as the baseline for our work. The major
changes in designing and operating 5GC are empowered by
the introduction of the cloud-native paradigm in this domain.
Therefore, we highlight Kubernetes [22] as a integral tech-
nology and present some concepts used in developing our
proposed architecture and building the evaluation framework.

A. 5G Core & Service-Based Architecture

Starting with 3G, the mobile networks are separated in two
main parts, namely: i) the Access Network (AN), and ii) the
Core Network (CN). As the name suggests, the AN enables the
User Equipment (UE) to gain access to the service provider’s
network. The AN can be described as a pool of distributed
entities that provide coverage for the UEs, a task which in
the case of Radio Access Networks (RAN) is achieved by the
Base Stations (so-called gNBs in 5G).

For the UEs to be able to register with the operator and then
communicate with other UEs or exchange data with services in
the Internet, the AN needs to be connected to the CN. Starting
with Release 14 [23], the CN implements the concept of

AMF SMF PCF UDR

NSSF AUSF UDM NEF NRF

UPF DN

Nausf

Namf Nsmf Npcf Nudr

Nudm Nnssf Nnef Nnrf

N4
N6

ControlData

UE gNB
N1 N2

Fig. 1. 5G Core Service-Based Architecture as introduced by 3GPP.

Control and User Plane Separation (CUPS), similar to the one
applied in SDN. In terms of control plane functionalities, the
CN offers authentication, mobility and session management,
policy control, network slicing, etc. Additionally, its user plane
which consists of the User Plane Function (UPF) offers data
tunneling, routing and forwarding, policy enforcing, etc.

5G Mobile Networks are envisioned to enable new use-cases
in the areas of enhanced Mobile Broadband (eMBB), massive
Machine-Type Communication (mMTC) and Ultra-Reliable
and Low-Latency Communications (URLLC) [24]. Therefore,
the CN should be designed while considering scalability,
flexibility and automation. Being the main organization tasked
to develop mobile communication specifications, 3GPP first
introduced a standardized version of the 5G Mobile Core
Architecture (5GC) in Release 15 [5], supporting several
architectural principles [25], such as:

• Modularized Network Functions - The partial adoption of
CUPS principles and deployment of 4G EPC entities as
Virtual Network Functions (VNFs), meant that the future
generations of CN could move away from the monolithic-
based design of NFs. Therefore, the 5GC is based on
highly modularized and distributed NFs that rely on inter-
NF communication to serve the control plane procedures.

• Adoption of cloud-native and web-scale technologies - At
the core of this principle reside concepts such as: i) agile
development, ii) microservice architecture, and iii) con-
tainer orchestration. An agile development process brings
a lot of flexibility and lowers the time-to-market for
new 5GC NFs and features. Additionally, a microservice
architecture and container orchestration technologies aid
the agile development style and enable a more fine-
grained orchestration and scaling of the workloads.

• Distribution of processing power to the edge of the
network - By adopting a distributed architecture, the
operators have now the flexibility to orchestrate their CN
not only at the central office, but also at the Edge of the
network. The processing capacity of the Edge can now
be exploited, resulting in lower delays and less burden
on the transport links connecting the Edge to the Core.

These architectural principles led to the introduction of the
5G Service-Based Architecture (SBA), shown in Fig. 1. This
architecture further decomposes the legacy EPC NFs such as
MME with its functionalities being split between the Access
and Mobility Function (AMF), Session Management Function
(SMF) and Authentication Server Function (AUSF), as well

4

as introduces new NFs such as Network Repository Function
(NRF) or Network Slice Selection Function (NSSF). In EPC,
the number of NFs was small and point-to-point interfaces
were implemented for the communication between them (e.g.,
MME and Home Subscriber Server [HSS]). However, the
situation changes greatly in 5G where the highly modularized
and distributed SBA necessitates a simplification of inter-NF
communication mechanisms. To address this, Service-Based
Interfaces (SBIs) are introduced for the inter-NF communica-
tion. Similar to the microservice architecture, SBI is a concept
borrowed from the IT applications domain. The main idea
behind it is that each 5GC NFs exposes its services through
REST interfaces that are defined in standardized OpenAPI [26]
descriptions. During start-up the NFs register their services to
the NRF, where other NFs can discover and consume them by
sending HTTP/2 requests. Overall, the adoption of SBIs marks
a significant shift in how the CN is designed and operated,
distinguishing it from the previous generations.

B. State Management in 5GC

In Section III-A, we mentioned that the adoption of cloud-
native principles and technologies is one of the main pillars
of the 5GC design. As such, the deployment of NFs in
cloud environments is performed using lightweight containers
distributed among the available hardware resources. However,
aiming to optimally schedule services in the infrastructure,
cloud orchestration tools can decide at any time to terminate a
container, move them into new machines or horizontally scale
the deployed instances. Moreover, containers are not inherently
designed to be highly reliable and may fail at any time.

A stateful application maintains locally the necessary con-
text for its correct operation. In case the application crashes or
is terminated, the information is lost and hence, affects directly
the offered services. Therefore, the absence of guaranteed
liveliness for a given instance makes the deployment of stateful
applications unfeasible. In comparison, a stateless application
is designed by separating the processing logic from the state
database (DB). When the application needs context informa-
tion, it queries the DB and upon finishing the processing, it
updates the information in the DB. Stateless services can be
scaled-out when the input load increases, as processing is not
bound to any specific instance. In contrast, stateful services
require traffic to be routed always to the instance which has
the context information, hence requiring more careful lifecycle
management than the stateless and ephemeral instances.

Aiming to support stateless deployments of 5GC, 3GPP
introduced the Unstructured Data Storage Function (UDSF)
to be used as a state DB. Statelessness in 5GC can be
implemented at a procedural or transactional level [21]. A
transaction can be defined as a single interaction between two
NFs (e.g., request/response), and a procedure comprises a set
of transactions. In the case of a procedural stateless NF, the
information is exchanged only at the beginning and the end
of the procedure. On the other hand, a transactional stateless
NF communicates with UDSF for each individual transaction.
While it is more fine-grained, transactional statelessness in-
troduces a lot of overhead. Due to their design, some NFs

cannot extract information regarding the ongoing procedure,
making transactional statelessness the only implementable
option. Nonetheless, statelessness is a feature and as such it is
up to the developers and operators to decide what information
to include as part of the state and how to store/retrieve it,
as seen fit for their deployment. For more information on our
implementation of statelessness in 5GC, refer to Section IV-A.

C. Free5GC

Free5GC [27] is one of the first open-source implementa-
tions of the 5GC SBA. In its early versions, it started as an ex-
tension of the NextEPC [28] towards 5GC by migrating MME,
Serving Gateway (SGW), and Packet Data Network Gateway
(PGW) to AMF, SMF and UPF. New 5GC NFs were added
gradually, together with a full migration to SBIs according to
the 3GPP and OpenAPI specifications. Starting from v3.0.0,
Free5GC offers a fully operational 5GC SBA implementation
compliant with Release 15 and a viable platform for 5GC
evaluations and feature-testing [29].

Free5GC is developed following an agile process, where
each of the NFs are developed separately, thus allowing for fast
improvements and integration of new features. The Free5GC
system offers: i) control plane NFs including AMF, SMF,
AUSF, NRF, NSSF, Policy Control Function (PCF), Uni-
fied Data Management (UDM) and Unified Data Repository
(UDR); ii) a softwarized User Plane Function (UPF). The
control plane functions are implemented using Go [30] which
allows building scalable applications with a very small mem-
ory footprint. Additionally, the NFs can be easily containerized
because their code can be compiled into static binaries. The
UPF, on the other hand, is implemented in C language and
serves as a good prototype for testbed deployments of 5GC.

Alongside the NFs mentioned above, a MongoDB [31]
instance is deployed. It serves as a backend database for NRF
and UDR to store NF-related and UE-related information such
as policy data, authentication keys, authentications status, etc.
However, its purpose is not to enable any form of stateless
deployment for the control plane NFs. The UE context and
the NFs’ self-context is still maintained locally.

Other alternatives exist that implement the 5G SBA such
as Open5GCore [32], OpenAirInterface 5GCN [33] and
Open5GS [34]. However, Free5GC is one of the first, open-
source and well-maintained projects and therefore it is consid-
ered for this work. We have also had the chance to contribute
to its source-code with a feature that enables the NFs to
advertise Kubernetes Service domain names when registering
to NRF, thus making the deployment of Free5GC in a cloud
environment easier [9].

D. Cloud-Native Orchestration

Public and private cloud environments conveniently offer
flexible orchestration, high resiliency and high scalability.
Thus, by leveraging cloud-native orchestration tools, tele-
com service providers benefit from: i) on-demand service
provisioning and autoscaling, ii) cost-efficient operation and
management, and iii) faster time-to-market for new services.

5

Until recently, the development process of new applications
followed a monolithic approach, where despite the logical
modularity, the application is packaged and deployed as a
single artifact. However, the monolithic architecture poses
some major drawbacks, such as:

• Applications may become too large and complex thus
affecting the start-up time.

• Difficulties in scaling because different modules may
have conflicting resource requirements.

• Difficulties in adopting new technologies as changes in
languages or frameworks will affect the entire application.

This does not mean that monolithic applications cannot
be deployed in cloud environment, though their architecture
may become a barrier if the developers want to leverage the
benefits of cloud environments. Therefore, at the core of cloud-
native deployments, resides the concept of microservices.
Contrary to monolithic applications, an application based on
the microservices architecture is split into multiple small appli-
cations or services. Each microservice implements a specific
set of functionalities and inter-communication is achieved by
exposing and consuming APIs. A typical deployment of such
architecture consists of the separation of the communication
stack, processing logic and storage management.

Containerization is a lightweight virtualization technology
that abstracts the underlying physical resources from the
applications and provides process-based isolation such that
microservices do not interfere with one another, while still
sharing the same operating system kernel. However, micro-
service applications can quickly become too complex to or-
chestrate and manage as more instances are deployed to handle
the incoming load or provide additional features. Therefore,
containerized workloads and services are generally managed
through container orchestration tools. Kubernetes (K8s) [22]
is the most used framework among public and private cloud
operators for managing their clusters. A K8s cluster consists
of a set of nodes (bare-metal or VMs), which act either as
Master or Worker. To create the cluster, the K8s control
plane applications are initialized at the Master node and
then Worker nodes are added as required by the operator’s
needs. During registration, the Workers expose their resource
information to the Master which has global knowledge over
the entire cluster and keeps track of the Workers’ states. When
new workload requests come from the operator, the Master
handles their scheduling among the available Workers. In a
cloud environment, containers are considered to be ephemeral,
meaning that they can fail or be destroyed at any time to match
the desired state of the cluster. In such cases, the advantages
of tools like K8s become apparent as it can restart crashed
applications, reschedule workloads when node failures occur,
perform rolling updates, etc.

Some K8s concepts used in this work are explained below
[35]:

• Pod - Is a group of one or more containers and it
is the smallest unit that can be created, deployed and
managed with K8s. Within a Pod, the storage and network
resources are shared.

• DaemonSet - Is used to ensure that a copy of a Pod

1 2 5 10
HTTP/2 Streams per NF

1000

2000

R
eq

ue
st

s
pe

rS
ec

on
d BadgerDB

Redis

(a) GET record operations.

1 2 5 10
HTTP/2 Streams per NF

500

1000

1500

2000

R
eq

ue
st

s
pe

rS
ec

on
d BadgerDB

Redis

(b) PUT record operations.

Fig. 2. Comparison of throughput achieved by BadgerDB and Redis for
a) read and b) write operations.

runs in all (or some) of the nodes. Use cases include
deployment of monitoring and log-collection daemons.

• Service - Communication between applications in a K8s
cluster cannot always rely on the Pods’ IP addresses
because they may not be known at initialization time
or they may change during runtime. To overcome this,
Services are introduced as an abstraction mechanism to
expose the application running on a set of Pods. Services
have their own IP address and DNS name and can load-
balance the incoming traffic among the set of Pods.

IV. SYSTEM DESIGN AND IMPLEMENTATION

In this section, details about the implementation of the Per-
Procedure Stateless 5G (PP5GS) system are given. First, the
implementation of UDSF for our stateless 5GC is presented.
Next, the architecture of Per-Procedure Network Functions
(PPNFs) is introduced and the implementation steps are sum-
marized. During the development phase, we follow Continuous
Integration and Continuous Development (CI/CD) practices.
We have set up a CI/CD pipeline into our git repository that
compiles each NF after its implementation changes. Docker
images are then built from the new binaries and pushed to our
private container registry. The stored images are easily acces-
sible during deployment and the configuration files ensure that
always the latest versions are chosen.

A. Stateless Free5GC

As part of the contributions of this work, we have imple-
mented a stateless system by separating the context from the
processing logic. 3GPP Release 15 includes a specification
for the Unstructured Data Storage Function (UDSF) which
exposes a data repository service that accepts arbitrary formed
binary payloads, the so-called blocks. Clients (other NFs) can
then store application state at the UDSF in any serialization
format. One or more blocks belong to a record, which can
store additional metadata such as Time-To-Live (TTL) dura-
tion. Additionally, a schema description can be attached to
every record to achieve self-describing data records. UDSF
exposes two hierarchical levels that allow for namespacing and
sharding of records. For ease of implementation, we choose
to serialize the application state in the JSON text format. The
block payloads are handled transparently and the received

6

bytes are returned unmodified. Being unstructured, UDSF’s
implementation is backed by a key-value database. The key is
constructed from the hierarchical and unique record identifiers.
Every record is stored as a single value to ensure safe TTL
expiration and atomic updates. One choice for the database
backend is the embedded BadgerDB database [36]. It operates
only in-process and is not distributed between instances of
UDSF. Another choice is the key-value store Redis [37]. Here
the UDSF connects to a remote database server and acts as
an SBA proxy for the 5GC. Fig. 2 shows a benchmark where
we compared the two implementations over a wide range of
payloads sampled from the different client NFs. While we
observe acceptable performance for both options even under
increasing concurrency, the embedded BadgerDB can perform
considerably more read and write operations. Therefore, in
order to ensure consistency we deploy a single UDSF instance
with BadgerDB as backend database.

In addition, some of the 5GC NFs need to be modified
to enable statelessness. NRF and UDR reuse the already
existing MongoDB connection to store subscriptions and do
not require modifications. Moreover, NSSF does not store any
UE-specific application state. For the AMF, many small NGAP
messages are exchanged in quick succession per procedure,
and therefore, procedural statelessness is a reasonable choice.
It loads the context to handle a UE at the beginning of a
procedure and stores it back on completion. To help with
development and testing, AMF will always perform an initial
Registration procedure and not query UDSF for any existing
UE context during this procedure. Following the same logic,
the UE context is not deleted from UDSF after performing a
UE-originating Deregistration procedure. Technically, UDSF
allows a get-and-forget operation, where the record is returned
and deleted in the same request.

For the remaining NFs, namely AUSF, PCF, SMF, and
UDM, we implement transactional statelessness from the
perspective of the HTTP API. On request, the NF will try
to load the UE context from UDSF and, before returning a
response, it will store it back. Using this naive implementation,
we ensure the context is always up to date and consistent. This,
however, introduces overhead, as, e.g., UDM is frequently
used by the other NFs and causes multiple exchanges with
UDSF. While UDSF supports the HTTP entity tag header
that allows the requesting NF to indicate the last known state
and avoid unnecessary communication, this mechanism is not
yet implemented by the client NFs. In SMF, the transactional
statelessness also covers any communication with the UPF as
part of the request.

B. Per-Procedure Network Functions

With the high degree of functional decomposition intro-
duced by SBA, the execution of control plane procedures
spans multiple NFs, each performing a specific task. In Table
I, the involved NFs in each of the considered control plane
procedures are shown. Between these NFs, multiple messages
are exchanged using a request/response or subscribe/notify
mechanism. While there are other control plane procedures as
well, the four selected procedures are representative given that

TABLE I
INVOLVED NFS IN THE EXECUTION OF CONTROL PLANE PROCEDURES

Procedure
NF AMF SMF AUSF PCF NRF NSSF UDM UDR

Registration ✓ ✓ ✓ ✓ ✓ ✓
PDU Sx. Est. ✓ ✓ ✓ ✓ ✓ ✓ ✓
PDU Sx. Rel. ✓ ✓
Deregistration ✓ ✓ ✓ ✓

they have different communication profiles. The Registration
and PDU Session Establishment procedures trigger complex
Service Function Chains (SFCs) where 6 and 7 NFs are
involved, respectively. On the other hand, the PDU Session
Release and Deregistration procedures rely less on inter-NF
communication and the logic is concentrated in fewer NFs.
UPF is also involved in some of the procedures, however, our
focus is only on the control plane NFs.

The main idea behind the proposed PP5GS system is to
break the tight inter-NF dependencies through the introduction
of Per-Procedure NFs (PPNFs). These new NFs are self-
contained, meaning that all the necessary logic for serving
a specific control plane procedure is integrated in the source-
code of the NF. We develop PP5GS using the source-code of
stateless Free5GC v3.0.6 (see Section IV-A) as the basis for the
new NFs. First, all the involved NFs are identified and the ob-
servations are validated with the relevant 3GPP specifications.
Due to their functions as service-discovery mechanisms or
database abstraction layers, we do not integrate NRF, UDR and
UDSF in the new PPNFs. Their implementation is dependent
on the backend database used by the operator and therefore
integrating them into multiple PPNFs is not feasible from an
implementation perspective. For example, the source-code of
the NF serving Registration procedure (RegNF) only contains
logic that in an SBA system is distributed among AMF, AUSF,
PCF and UDM. Next, each processing block that is executed
during the given procedure needs to be identified. To achieve
this, we track the requests that are initiated inside 5GC and
leverage the SBIs that the involved NFs expose through their
HTTP/REST server. By inspecting the inter-NF traffic that is
generated in 5GC, it is possible to extract the URI information
of the destination endpoints for each request, leading us to
their callback functions.

In the integration phase, AMF is considered as the base
NF and its functionalities are extended with the other pro-
cessing blocks. To better understand the architecture of PP-
NFs, we refer the reader to Fig. 3 where RegNF is shown.
Each of the highlighted processing blocks do not represent
a single callback function, but rather a logical group of
functions. RegNF retains the AMF’s NG Application Proto-
col (NGAP) and Non-Access Stratum (NAS) communication
handling logic necessary to process the packets coming from
UE and gNB, and in addition the following endpoints are
integrated: i) /nausf-auth is migrated from AUSF, ii)
/npcf-am-policy-control is migrated from PCF, and
iii) some functions from the /nudm-ueau, /nudm-uecm
and /nudm-sdm are migrated from UDM.

Moreover, a unified UE context is built such that it includes
all the information previously split among the different NFs.

7

PCFAMF

UDM

AUSF

Processing Block

Processing Block

...

...

Processing Block ...

Processing Block ...

RegNF

NGAP Handling

NAS Handling

UEAuthentication AMPolicyControl

SubsriberDataMgmtUEContextMgmtUEAuthentication

NGAP Handling

NAS Handling

UEAuthentication

AMPolicyControl

UEAuthentication

UEContextMgmt

SubsriberDataMgmtUnified Context

Fig. 3. Integration of processing blocks from different NFs in a single
Registration PPNF. The blocks highlighted with colors are the ones executed
during the Registration procedure.

Particular attention is given to any duplicated information in
order to avoid redundancy and unnecessary overhead. Since
in PP5GS there will be different NFs handling different
procedures, it is necessary that at least procedural statelessness
is implemented. Therefore, once a PPNF finishes serving a
procedure, it serializes the UE context and state and sends it
to UDSF which maintains the latest versions. The local context
is deleted to avoid wasting memory resources unnecessarily.
When a following procedure is initiated, the responsible PPNF
queries the information from UDSF before proceeding to serve
the request.

Using the methodology described above, in this work we
have successfully developed RegNF, PDUEstNF, PDURelNF
and DeregNF to execute Registration, PDU Session Establish-
ment, PDU Session Release and Deregistration procedures,
respectively, as part of our proposed PP5GS solution.

V. PERFORMANCE EVALUATION

In this work, we mainly focus on the performance assess-
ment of our proposed architecture in a small scale private
cloud-native environment. As shown in Fig. 4, we set up
a testbed composed of 11 bare-metal nodes (machines) and
use Kubernetes as the orchestration tool. The machines are
interconnected using a 1Gb switch, thus creating an isolated
environment and avoiding network interference.

In this testbed we distinguish between three types of nodes:
• Master Node - It is responsible only for running the

K8s control plane and orchestrating the deployment of
5GC systems. No additional workload is scheduled on
this node.

• 5GC Worker Node - The baseline deployment mode that
we consider is a fully distributed one where each NF is
scheduled on a separate node. This mode is selected for
two main reasons: i) to avoid multiple NFs competing for
the same physical resources, and ii) ensure comparable
communication conditions as inter-NF traffic will traverse

Worker Node

Master Node

Emulator Node

gNBEmul

Collector

NF Po
d

Kubelet

 Kubernetes Control Plane

Prometheus
 Metrics Exporter Po

d

Envoy-Proxy

Fig. 4. Overview of the framework setup for the evaluation of the different
5GC systems. The cluster is orchestrated using Kubernetes.

the same infrastructure in all scenarios. In addition to
the 5GC NFs, an Envoy-Proxy [38] instance is deployed
as a sidecar container as part of Istio [39] service-mesh.
It facilitates traffic routing and management and allows
for some metrics collection as well. The considered
deployments consist of at most 9 control plane NFs, thus
we deploy 9 worker nodes in the cluster. The cluster of
workers is homogeneous and made of DELL OptiPlex
9020 workstations equipped with an octa-core Intel i7-
4770 CPU running at 3.40GHz and 16GB of RAM.

• Emulator Node - This node is used to host the gNB
& UE Emulator (gNBEmu) application. We develop this
application for the purpose of generating scalable control
plane traffic, and evaluate the performance of the 5G sys-
tems. For more information on the implementation details
and capabilities of gNBEmu, please refer to Appendix A.
Additionally, it hosts Prometheus and Collector instances
which are necessary for the measurements setup (see
Section V-A).

All the nodes in the testbed run Ubuntu 18.04.4 LTS
with kernel version 5.0.0-23-generic. The installed container-
runtime is Docker v20.10.5. Kubernetes v1.22.1 is deployed
with Calico [40] being used as the Container Network Inter-
face (CNI) plugin.

Lastly, some of the control plane procedures that we eval-
uate necessitate the deployment of UPF. Therefore, we have
developed a lightweight UPF emulator (UPFe) that can handle
a high rate of control plane traffic. In Appendix B, you can
find a detailed description on the implementation of UPFe.

A. Measurement Setup
For the purpose of evaluating the improvements that PP5GS

brings, we consider the following Systems Under Test (SUTs):
• Stateful Free5GC - This is the default implementation

where we only optimize SCTP-related parameters (see
Appendix A). Each of the NFs is deployed in a separate
Node, as illustrated in Fig. 5a. In this work, this deploy-
ment is considered as the baseline system.

• Stateless Free5GC - It is built on top of Stateful
Free5GC, by implementing statelessness as described in

8

Pod Container Communication channel

...

W
-2 AUSF

W
-6 NRF

W
-7 UDM

W
-8 UDR

W
-1 AMF

(a)

W
-2 AMF UDMSMF PCF NSSF

W
-3 AMF SMF

W
-4 AMF PCF UDM

W
-9 UDSFW
-8 UDRW
-6 NRF

W
-1 AMF UDMAUSF PCF

(b)

...

W
-1 AMF

W
-6 NRF

W
-7 UDM

W
-8 UDR

W
-9 UDSF

(c)

W
-1 RegNF

W
-2 PDUEstNF

W
-3 PDURelNF

W
-4 DeregNF

W
-6NRF

W
-8UDR

W
-9UDSF

(d)

Fig. 5. Overview of the evaluated systems: a) Stateful Free5GC, b) Stateless Free5GC, c) Procedure-Pods, and d) PP5GS. The hardware infrastructure is the
same for all the systems.

Section III-B. As shown in Fig. 5c, in this system we
additionally deploy the UDSF instance which is shared
by the NFs to store their application state/context.

• Procedure-Pods - In this system, we consider slicing
5GC based on the control plane procedures, as illustrated
in Fig. 5b. To achieve this, we initialize multi-container
Pods where all the involved NFs (see Table I) are de-
ployed in a single Pod. This deployment requires the
use of stateless NFs since more than one instance/NF
are deployed, e.g., one AMF instance per slice. Each of
the Procedure-Pods is deployed in a separate Node. The
inter-NF communication does not leave the Pod, with the
exception of traffic destined to NRF, UDR and UDSF
which are shared between all NFs and deployed once for
the entire cluster.

• PP5GS - Instead of the standardized 5GC NFs, in this
system we deploy the PPNFs developed with the aim
of breaking the inter-NF dependencies during the execu-
tion of control plane procedures. Each of the PPNFs is
deployed in a separate node, while sharing the function-
alities of NRF, UDR and UDSF in the same manner as
Procedure-Pods. This deployment is illustrated in Fig. 5d.

In addition to the above-mentioned systems, we deploy a
metrics collection framework. First, we have written a Python
script which finds the NFs that are running in a Node and then
collects resource utilization data about them. These data points
are then wrapped as a gauge object and exposed through the
Prometheus API [41]. The Metrics Exporter script is packaged
into a Docker image and deployed as a DaemonSet in each
Node of the cluster. The Prometheus instance that runs in the
Emulator Node (see Fig. 4) is configured to periodically scrape
the endpoints every 1 s. In addition, we deploy a Collector
application. The Collector is a data sink and it implements
a HTTP server to facilitate the metrics reporting process.
Furthermore, the Collector queries the NFs’ logs and K8s
cluster state to facilitate debugging.

In Table II, we summarize the input parameters used during
the evaluation. We asses the performance of the proposed
PP5GS for four different control plane procedures: i) Registra-
tion, ii) PDU Session Establishment, iii) PDU Session Release,
and iv) Deregistration. Furthermore, we consider different

TABLE II
SUMMARY OF INPUT PARAMETERS

Parameter Value

Control plane procedure

• Registration
• PDU Session Establishment
• PDU Session Release
• Deregistration

NF deployment 1 Pod/Node
Number of new UEs/sec 25, 50, 100, 200, 300
IAT for new UEs 3ms
Measurement duration 45 s
Campaigns per scenario 8

rates of input traffic with the number of new UEs/s taking
the following values [25, 50, 100, 200, 300], and each scenario
running for 45 s. We define an interarrival time (IAT) of 3ms
for new procedures, following a uniform distribution. This
value is used only to spread the initialization of new UEs
over a 1 s interval, and it does not affect the UEs/s values
defined above. Overall, 8 campaigns for each scenario are run
in a fully automated manner and the measurements are then
aggregated.

In the following subsections, we will introduce the Key
Performance Indicators (KPIs) and present the obtained results
from our evaluation.

B. Emulator Performance

We emphasize that the control plane traffic generation
differs from that on the data plane since a control plane
procedure requires exchanging multiple messages between
RAN and 5GC (for more information refer to Appendix A).
Therefore, we first assess the performance of gNBEmu to
confirm that it can indeed generate traffic according to its
configuration file description. The evaluation is performed for
all the SuTs and four independent measurements that run for
45 s are executed for each control plane procedure. The input
traffic consists of 100UEs/s with an IAT of 3ms. Therefore,
within 1 s it is expected that no new procedures are initialized
after t1 = 300ms.

First, we collect the procedures’ start and end timestamps
from the gNBEmu. In post processing, we then calculate the
number of UEs that are concurrently being served by the

9

Stateful Free5GC Stateless Free5GC Procedure-Pods PP5GS

0 100 200 300 400 500 600 700
Time [ms]

0

25

50

75

Q
ue

ue
d

Pr
oc

ed
ur

es
[U

E
]

(a) Registration

0 100 200 300 400 500 600 700
Time [ms]

0

15

30

45

Q
ue

ue
d

Pr
oc

ed
ur

es
[U

E
]

(b) PDU Session Establishment

0 100 200 300 400 500 600 700
Time [ms]

0

4

8

12

Q
ue

ue
d

Pr
oc

ed
ur

es
[U

E
]

(c) PDU Session Release

0 100 200 300 400 500 600 700
Time [ms]

0

4

8

12

Q
ue

ue
d

Pr
oc

ed
ur

es
[U

E
]

(d) Deregistration

Fig. 6. Number of UEs that have started a control plane procedure within 1ms for a scenario with 100 initiated UEs/s. With a uniformly distributed IAT
of 3ms, increases in the queue are expected until t1 = 300ms. The darker lines show the average values while the lighter areas denote variance based on
the standard deviation. The results confirm that gNBEmu is able to handle large volume of traffic generation, and they reveal a potential bottleneck in the
Stateless Free5GC and Procedure-Pods systems when input rates are higher than 100UEs/s.

system. In Fig. 6 we show the average number of queued
procedures (UEs) in the system within the 1 s interval for all
the considered control plane procedures. When comparing the
results of different procedures, we observe that the Registration
procedure (shown in Fig. 6a) exhibits the highest number of
queued UEs for all the systems. This is expected as it is the
most complex procedure in terms of inter-NF communication,
hence taking more time to finish each execution. Nonetheless,
the gNBEmu correctly initiates new procedures in accordance
with the traffic model and starting from t1 = 300ms the
number of queued UEs drops (i.e., there are no new procedures
initialized after this point).

Overall, PP5GS exhibits the lowest number of queued UEs
in the system for three out of four procedures. Only in the
PDU Session Release shown in Fig. 6c, we observe that
Stateful Free5GC outperforms PP5GS. On the other hand,
Stateless Free5GC and Procedure-Pods exhibit poorer perfor-
mance, especially in the case of the Registration procedure.
Out of the total 100 triggered UEs in 1 s, at t1 = 300ms
there are 73 and 82 queued UEs for the Stateless Free5GC
and Procedure-Pods, respectively. Consequently, the execution
of all queued Registration procedures finishes at ∼ 600ms
for Stateless Free5GC and ∼ 700ms for Procedure-Pods.
Therefore, we expect that for scenarios with 200 and 300UEs/s
the execution will not be completed within the 1 s and some
of the procedures will be carried to the next timeslot, leading
to an overload in the 5GC.

C. CPU Utilization

In this work, we consider CPU utilization to be one of
the main KPIs for comparing our proposed architecture with
the other SBA systems. The main reason behind this is the

importance of efficient resource utilization in cloud-native
5GC, as this inherently leads to better scalability and facilitates
edge offloading of 5GC NFs.

In our measurement setup, the Metrics Exporter script
collects CPU Utilization data every 1 s for all the deployed
NFs. The average CPU utilization values with respect to the
number of new procedures per second are shown in Fig. 7.
Stacked bar plots are chosen to better illustrate the cumulative
system CPU utilization. In Section IV-B, we explained that
the functionalities of NRF, UDR and UDSF are not integrated
in the PPNFs. Therefore, we illustrate their CPU utilization
in grayscale, while the rest of the involved NFs are shown
in colors. For the Stateful Free5GC, Stateless Free5GC and
Procedure-Pods, the utilization of AMF is highlighted and
represented in dashed lines.

For all the considered procedures and input traffic configu-
rations, the Stateless Free5GC system exhibits higher CPU
utilization compared to the Stateful Free5GC. During the
execution of more complex procedures, Stateless Free5GC
consumes on average 43% and 49% more resources for
the Registration and PDU Session Establishment procedures,
respectively. The difference becomes bigger for the PDU
Session Release and Deregistration procedures where, respec-
tively, 98% and 89% more resources are consumed. A major
contributor to this increase is the UDSF, and as can be
seen in Fig. 7c and Fig. 7d, it comprises a big chunk of
the overall CPU utilization. Nonetheless, an increase of the
consumed resources can be observed also by comparing the
colored bars. This is a result of the fact that in the stateless
system the NFs need to perform additional processing such as
serialization/deserialization of their context to communicate
with UDSF.

10

25 50 100 200 300
Initiated Procedures per Second [UE/s]

0

250

500

750

1000

C
PU

U
til

iz
at

io
n

[%
]

(a) Registration

25 50 100 200 300
Initiated Procedures per Second [UE/s]

0

200

400

600

800

C
PU

U
til

iz
at

io
n

[%
]

(b) PDU Session Establishment

25 50 100 200 300
Initiated Procedures per Second [UE/s]

0

100

200

300

400

500

C
PU

U
til

iz
at

io
n

[%
]

(c) PDU Session Release

25 50 100 200 300
Initiated Procedures per Second [UE/s]

0

100

200

300

400

C
PU

U
til

iz
at

io
n

[%
]

(d) Deregistration

Fig. 7. Average CPU utilization of 5GC NFs w.r.t. the number of initiated procedures per second, for all the considered control plane procedures. The hatched
areas represent AMF’s utilization in each of the systems where it stands as a separate NF. The solid colored areas represent the utilization of the rest of NFs
in the chain, which in the case of PP5GS are integrated together. Utilization of NRF, UDR and UDSF is shown separately since they are deployed as separate
Pods in all systems.

Similar results are observed also for the Procedure-Pods
system due to the fact that the same implementation of
NFs is used as in the Stateless Free5GC system. However,
compared to Stateless Free5GC, we observe an increase of the
NRF’s utilization by ∼ 55% during Registration and ∼ 46%
during PDU Session Establishment. The reason for this is the
higher number of deployed NFs while there is only one NRF
instance in the Procedure-Pods scenario. Moreover, an interest-
ing behavior occurs during Registration for the scenario with
300UEs/s. Unlike the previous values, Procedure-Pods setup
exhibits lower utilization compared to Stateless Free5GC. This
behavior can be explained using the observations derived from
Fig. 6a, where we concluded that for high input rates, the
execution may not always be completed within the expected
1 s time frame, leading to a bottleneck in 5GC. Therefore,
in this scenario the high number of unfinished procedures
has caused AMF to bottleneck and consequently produce less
traffic towards the other NFs in the chain.

Our proposed PP5GS system exhibits the best performance
in terms of efficient resource utilization. For the Registration
procedure, on average it requires 26% and 42% less resources
compared to Stateful Free5GC and Stateless Free5GC respec-
tively. The efficiency increases further during PDU Session
Establishment Procedure, with an improvement of 34% com-
pared to Stateful Free5GC and 55% compared to Stateless
Free5GC. For the less complex procedures, PP5GS’ perfor-
mance seems to be on-par with Stateful Free5GC which is

again a very good performance considering the added feature
of statelessness. Compared to Stateless Free5GC, ∼ 45% less
resources are required for both procedures.

D. Procedure Completion Times

One of the goals we aim to achieve with our proposed
PP5GS is the reduction of latency or Procedure Completion
Time (PCT). While generally the goal in 5G is to reduce data
plane latency, the fast completion of control plane procedures
has a direct impact on the data plane. For instance, the faster
5GC manages to complete Registration and PDU Session
Establishment, the sooner can UEs start transmitting in the
data plane. Therefore, we consider PCT to be the main KPI
denoting the performance of 5GC.

As denoted by its name, PCT is defined as the time needed
to complete the execution of a control plane procedure. Having
full control over gNBEmu allows us to collect timestamps and
directly calculate this metric. The four procedures considered
in this work are all UE-initiated and the first timestamp is
taken right before gNBEmu forwards the first message to 5GC.
Below we give some more details regarding the messages that
trigger the timestamping operation for each procedure:

• Registration - We consider the time between
Registration Request and Registration
Complete NAS messages.

• PDU Session Establishment - To mark the start of the
procedure we use PDU Session Establishment

11

Stateful Free5GC Stateless Free5GC Procedure-Pods PP5GS

25 50 100 200 300
Initiated Procedures per Second [UE/s]

100

200

300

400

PC
T

[m
s]

(a) Registration

25 50 100 200 300
Initiated Procedures per Second [UE/s]

0

100

200

300

400

500

PC
T

[m
s]

(b) PDU Session Establishment

25 50 100 200 300
Initiated Procedures per Second [UE/s]

10

20

30

40

PC
T

[m
s]

(c) PDU Session Release

25 50 100 200 300
Initiated Procedures per Second [UE/s]

5

10

15

20

PC
T

[m
s]

(d) Deregistration

Fig. 8. Procedure Completion Times w.r.t. the number of new initiated procedures per second for all the considered control plane procedures. Each box
represent data collected over 8 campaigns, each executing for 45 s. For better visibility, we have omitted the outliers from the plots while still considering
them when calculating the mean values.

Request and the timer is stopped after receiving
the PDU Session Establishment Accept NAS
message.

• PDU Session Release - PDU Session Release
Request and PDU Session Release Complete
are respectively the first and last SM NAS messages that
trigger timestamping.

• Deregistration - The UE-initiated Deregistration
procedure starts with a Deregistration Request
NAS message and ends with a UE Context Release
Complete NGAP message.

In all the procedures, except for the Registration Procedure,
there are still some exchanged messages between 5GC NFs
taking place even after we timestamp the end of the procedure.
However, in this work PCT reflects the experienced processing
time from the UE perspective and we are therefore not
interested in including the execution time of the remaining
processes.

The PCT comparisons for the four systems with respect
to the number of new initiated procedures per second are
shown in Fig. 8. The results collected for the Registration and
PDU Session Establishment procedures confirm the enhanced
performance of PP5GS compared to the baseline Stateful
Free5GC. On average, PP5GS completes Registration 42%
faster and PDU Session Establishment 50% faster than the
baseline. Similar to what we observed in CPU utilization,
statelessness of PP5GS has a higher cost for less complex
procedures. Therefore, compared to the baseline, PDU Session
Release (see Fig. 8c) and Deregistration (see Fig. 8d) take

TABLE III
CONFIGURATION OF IAT DISTRIBUTION FOR DIFFERENT TRAFFIC

PATTERNS

Configuration IAT Distribution
A Deterministic: 2.5 ms
B Bimodal: 2 ms or 3 ms with probability 0.5 each
C Multimodal: 1 ms, 2 ms, 3 ms or 4 ms with equal prob.

on average ∼ 12% and ∼ 8% longer. However, in terms of
absolute values the difference is negligible being ∼ 1ms.

On the other hand, Stateless Free5GC and Procedure-Pods
exhibit very low performance compared to the other systems.
Especially for the complex procedures, these systems scale
very poorly with the increasing input rate. In the scenario
with 300UEs/s performing the Registration procedure, average
PCTs reach 521ms and 11.48 s for the Stateless Free5GC
and Procedure-Pods, respectively. Therefore, we have excluded
them from the plots as their performance is not comparable to
the other high-performing systems.

PCT for other traffic patterns: In the evaluations pre-
sented above, we have defined a deterministic IAT of 3 ms
for all the considered number of newly initiated procedures.
To provide a better view on PP5GS’s performance and how it
compares with the baseline, we define three different configu-
rations of IAT distribution resulting in different control plane
traffic patterns. These configurations are presented in Table III,
and for each configuration we consider a scale of 400 UEs/s. In
configuration A, we consider a deterministic IAT of 2.5 ms to
accommodate the initialization of 400 UEs/s. In configuration

12

A B C
Traffic Pattern Configuration

200

400

600

PC
T

[m
s]

Stateful Free5GC
PP5GS

Fig. 9. Procedure Completion Times for the Registration procedure for
400 UEs/s with different traffic pattern configurations.

B, we consider a bimodal distribution where the IAT between
new procedures has a value of 2 ms or 3 ms where each option
has a probability of 0.5. In configuration C, a multimodal
distribution is considered where the IAT has a value of [1 ms,
2 ms, 3 ms, 4 ms], each with an equal probability of 0.25.

In Fig. 9, we show the PCT values for the Registration
procedure for the proposed PP5GS system and the baseline
Stateful Free5GC. The obtained results show that for the same
number of UEs/s, the traffic patterns yield different results
w.r.t. the PCTs. Nonetheless, PP5GS still outperforms the
baseline for all the considered configurations.

E. Control Plane Communication Overhead

With the proposed PP5GS, we show the reduction of control
plane communication overhead stemming from the adoption
of SBA and the high functional decomposition. In PP5GS, the
deployment of the self-contained PPNFs inherently reduces
the exchanged traffic because: i) there is no inter-NF commu-
nication between the integrated NFs, ii) less requests need to
be send to NRF for discovering the other NFs in the chain, and
iii) less communication with UDSF since the entire system is
procedural-stateless.

In order to evaluate this KPI, data regarding number of
HTTP requests per second are collected by leveraging the
Envoy-Proxy container (see Section V-A). The number of
requests per second with respect to the destination NF for
each of the control plane procedures are shown in Fig. 10.
As for destination NFs we consider NRF, UDR and UDSF
since they are deployed separately, and ”Other” which refers
to SBA NFs that are integrated into PPNFs. Measurements
are collected for a scenario with 100 new procedures initiated
every 1 s.

When comparing Stateless Free5GC and Procedure-Pods,
the only difference is regarding traffic destined to Other NFs.
Having a multi-container deployment in the case of Procedure-
Pods means that the inter-NF traffic does not leave the Pod
namespace, hence no traffic destined for Other. Nonetheless,
in a more optimal deployment it would make sense for
the Procedure-Pods system to avoid sending NF-discovery
requests and instead use a static addressing scheme.

To compare the total number of requests generated in the
systems, we sum the number of requests destined for each
of the involved NFs. For the Registration procedure, PP5GS
achieves a 57% reduction compared to Stateful Free5GC and
72% compared to Stateless Free5GC. During PDU Session
Establishment, PP5GS generates 61% and 72% less requests

Stateful Free5GC
Stateless Free5GC

Procedure-Pods
PP5GS

NRF UDR UDSF Other
Destination Network Function

0

500

1000

1500

R
eq

ue
st

s
pe

rS
ec

on
d

(a) Registration

NRF UDR UDSF Other
Destination Network Function

0

200

400

600

R
eq

ue
st

s
pe

rS
ec

on
d

(b) PDU Session Establishment

NRF UDR UDSF Other
Destination Network Function

0

200

400

600

800

R
eq

ue
st

s
pe

rS
ec

on
d

(c) PDU Session Release

NRF UDR UDSF Other
Destination Network Function

0

200

400

600

R
eq

ue
st

s
pe

rS
ec

on
d

(d) Deregistration

Fig. 10. Number of HTTP requests per second triggered during the execution
of different control plane procedures w.r.t. the destination NF. The values are
proportional to the number of UEs/s executing their procedures. Measurements
are collected for the scenario with 100 new UEs/s.

compared to Stateful Free5GC and Stateless Free5GC, respec-
tively. During the PDU Session Release and Deregistration
procedures, PP5GS achieves a reduction of 83% and 75%,
respectively, compared to Stateless Free5GC, while in com-
parison to Stateful Free5GC the reduction is 50% and 40%.

The measured average number of requests per second con-
firms the expected improvements as calculated by observing
the inter-NF communication patterns. For all the procedures,
PP5GS proves to be considerably more efficient in comparison
to the other systems, therefore being a very good candidate
architecture in reducing the control plane signaling overhead
in 5GC.

F. Performance Evaluation for Edge Offloading Scenarios

Lastly, we evaluate the performance of PP5GS in scenarios
where edge offloading of 5GC NFs is performed. While 5GC
SBA offers great flexibility in orchestration and deployment,
the inter-NF dependencies during procedure execution may
in fact be counter-productive. To confirm this behavior, we
set up a testbed where a logical separation between the Edge
and Core parts of the network is created. Using a tool such
as Linux Traffic Control (tc), a 5ms round-trip delay is
injected to the interface connecting the edge node to the rest
of 5GC. Then, we consider the following deployments for our
evaluation:

• Centralized 5GCN where only gNBEmu and UPF run at
the edge, while all control plane NFs are deployed in the
central cloud as shown in Fig. 11a.

• Edge AMF where only AMF is offloaded to the edge
in an attempt to increase the performance as shown in
Fig. 11b.

13

NRF PCF NSSF UDM

UDRAUSF

UPFgNBEmu

SMFAMF
+5 ms

(a) Centralized 5GCN.

NRF PCF NSSF UDM

UDRAUSF

UPFgNBEmu

SMF

AMF

+5 ms

(b) Edge offloading of AMF.

NRF UDR UDSF

UPFgNBEmu

PPNF

+5 ms

(c) Edge offloading of PPNF.

Fig. 11. Overview of the deployments considered for edge-offloading evaluations.

Central Free5GC Edge AMF Edge PPNF

25 50 100
Initiated UE/s

100

150

200

250

PC
T

[m
s]

(a) Registration

25 50 100
Initiated UE/s

40

60

80

100

PC
T

[m
s]

(b) PDU Session Establishment

25 50 100
Initiated UE/s

10

15

20

PC
T

[m
s]

(c) PDU Session Release

25 50 100
Initiated UE/s

8

10

12

14

16

PC
T

[m
s]

(d) Deregistration

Fig. 12. Procedure Completion Times w.r.t. the number of new initiated procedures per second for all the considered control plane procedures. For the
CentralizedFree5GC and EdgeAMF scenarios, the stateful implementation of Free5GC is used. Edge PPNF on the other hand uses the proposed PP5GS
implementation. For better visibility, outliers are omitted from the plots.

• Edge PPNF where depending on the procedure the rel-
evant PPNF is offloaded while NRF, UDR and UDSF
reside in the Core as shown in Fig. 11c.

The boxplots of the PCT with respect to the number of
new initiated procedures are shown in Fig. 12. It can be
seen that the performance of 5GC during the execution of
complex procedures drops when we offload AMF to the
edge. The reason is that the number of messages exchanged
between the AMF and the other NFs is higher than the
amount of traffic exchanged between gNBEmu or UPF and the
control plane NFs. Since every pair of messages exchanged
encounters at least 5ms of transmission delay, the PCTs
increase considerably. This is however not the case for less-
complex procedures where the processing logic is anyway
mostly contained in the AMF and the difference between the
two deployments is negligible. On the other hand, offloading a
PPNF indeed mitigates the issue seen with offloading 5G SBA
NFs. The median values of the obtained measurements for the
Registration, PDU Session Establishment and PDU Session
Release procedures are always lower than Edge-AMF. The
only exception is observed during Deregistration where Edge
PPNF exhibits similar performance to the other deployments.
The reason is due to the number of messages exchanged
between NFs deployed in the Edge and Core parts of the
network being equal in all the considered deployments. Lastly,
due to its architecture where processing logic is contained
in a single PPNF, PP5GS is able to complete most of the
procedures faster than the Centralized deployment as well.

VI. DISCUSSION AND CONCLUSIONS

In the evaluations we show that the benefits of a procedure-
based architecture are manifold, especially for control plane
procedures that require the involvement of many NFs during
their execution. First, the CPU utilization evaluation shows
that the integration of processing logic in a single NF reduces
the overall needed resources, hence increasing the energy
efficiency. Moreover, it enables deploying the 5GC NFs in
the edge, which has limited resources compared to the central
cloud. Compared to stateless deployments, PP5GS requires
∼ 42% − 55% less CPU resources. Furthermore, we demon-
strate that offloading single NFs to the edge in the case of
an SBA deployment is in fact counter-productive for some
control plane procedures. The high number of interactions with
the NFs residing in the central cloud increases the completion
time, a problem which PP5GS by design mitigates with the
processing logic integrated in a single NF. Adoption of PP5GS
allows for a reduction of at least 40% in control plane traffic.

Our evaluation shows that PP5GS is indeed faster in pro-
cessing incoming requests, especially for more complex pro-
cedures such as Registration and PDU Session Establishment
where improvements up to 50% are achieved. This insight is
particularly important because the faster these procedures are
completed, the faster the UEs can start sending their data.

From the perspective of operators, PP5GS is considerably
easier to deploy because they do not need to consider the inter-
NF dependencies and their impact on performance. Moreover,
having knowledge of the input traffic, the operators can better
orchestrate their networks by deploying and scaling PPNFs
accordingly. The operators can choose to offload some PPNFs

14

to the edge and thus provide better performance to the users
while reducing the incoming control traffic to the central core.

However, a limitation of PP5GS is that it requires a
procedure-aware traffic router able to distinguish and forward
the incoming traffic to the correct PPNFs. This entity would
then be deployed between gNBs and PPNFs, abstracting
the architecture of 5GC. In future generations of mobile
networks this routing logic can be integrated directly in the
gNB, similarly to procedure-aware routing in our gNBEmu.
Moreover, in PP5GS it can be difficult to leverage multi-
vendor deployments, at least using the same definition as of
today. However, multi-vendor deployments are still viable in
a system where each PPNF is developed from a different
vendor, as long as the state information is stored remotely
in a standardized format.

In the future, we plan to evaluate the data plane performance
and assess how adopting PP5GS in the control plane impacts
the user experience. Furthermore, we deem it important to
investigate the behavior of PP5GS in dynamic autoscaling
deployments and in the face of failures to then propose
adequate recovery mechanisms.

REFERENCES

[1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K.
Soong, and J. C. Zhang, “What will 5G be?” IEEE JSAC, vol. 32, no. 6,
2014.

[2] I. Widjaja, P. Bosch, and H. La Roche, “Comparison of MME signaling
loads for Long-Term-Evolution architectures,” in IEEE VTC, 2009.

[3] Nokia, “Signaling is growing 50% faster than data traffic,” https://bit.ly
/3OHKx4R, [Accessed July-2022].

[4] A. Banerjee, R. Mahindra, K. Sundaresan, S. Kasera, K. Van der Merwe,
and S. Rangarajan, “Scaling the LTE control-plane for future mobile
access,” ACM CoNEXT, 2015.

[5] 3GPP, “3GPP TS 23.501 - System architecture for the 5G System (Rel
15),” 2021.

[6] A. Mohammadkhan, K. K. Ramakrishnan, and V. A. Jain,
“CleanG—Improving the architecture and protocols for future
cellular networks with NFV,” IEEE/ACM Trans. Netw., vol. 28, no. 6,
2020.

[7] P. Kiss, A. Reale, C. J. Ferrari, and Z. Istenes, “Deployment of IoT
applications on 5G edge,” in IEEE International Conference on Future
IoT Technologies, 2018.

[8] Y. Li, Z. Yuan, and C. Peng, “A control-plane perspective on reducing
data access latency in LTE networks,” ACM MobiCom, 2017.

[9] E. Goshi, M. Jarschel, R. Pries, M. He, and W. Kellerer, “Investigating
inter-NF dependencies in cloud-native 5G core networks,” in CNSM,
2021.

[10] M. Moradi, Y. Lin, Z. M. Mao, S. Sen, and O. Spatscheck, “Softbox: A
customizable, low-latency, and scalable 5g core network architecture,”
IEEE JSAC, vol. 36, no. 3, 2018.

[11] Z. A. Qazi, M. Walls, A. Panda, V. Sekar, S. Ratnasamy, and S. Shenker,
“A high performance packet core for next generation cellular networks,”
in Proc. of ACM SIGCOMM, 2017.

[12] R. Shah, V. Kumar, M. Vutukuru, and P. Kulkarni, “TurboEPC: Lever-
aging dataplane programmability to accelerate the mobile packet core,”
in Proc. of ACM SOSR, 2020.

[13] E. Goshi, R. Stahl, M. He, R. Pries, and W. Kellerer, “Procedure-
based functional decomposition for 5g core network functions,” in KuVS
Fachgespraech ”Network Softwarization”, 2022.

[14] M. Ahmad, S. U. Jafri, A. Ikram, W. N. A. Qasmi, M. A. Nawazish,
Z. A. Uzmi, and Z. A. Qazi, “A low latency and consistent cellular
control plane,” in Proc. of ACM SIGCOMM, 2020.

[15] M. T. Raza, D. Kim, K.-H. Kim, S. Lu, and M. Gerla, “Rethinking LTE
network functions virtualization,” in IEEE International Conference on
Network Protocols (ICNP), 2017.

[16] J. Cho, R. Stutsman, and J. Van der Merwe, “MobileStream: A scalable,
programmable and evolvable mobile core control plane platform,” in
Proc. of ACM CoNEXT, 2018.

[17] M. Corici, E. Troudt, P. Chakraborty, and T. Magedanz, “An ultra-
flexible software architecture concept for 6G core networks,” in IEEE
5GWF, 2021.

[18] V. Nagendra, A. Bhattacharya, A. Gandhi, and S. R. Das, “MMLite: A
scalable and resource efficient control plane for next generation cellular
packet core,” in Proc. of ACM SOSR, 2019.

[19] X. An, F. Pianese, I. Widjaja, and U. G. Acer, “dMME: Virtualizing
LTE mobility management,” in IEEE LCN, 2011.

[20] B. Nguyen, T. Zhang, B. Radunovic, R. Stutsman, T. Karagiannis,
J. Kocur, and J. Van der Merwe, “ECHO: A reliable distributed cellular
core network for hyper-scale public clouds,” in Proc. of ACM MobiCom,
2018.

[21] U. Kulkarni, A. Sheoran, and S. Fahmy, “The cost of stateless network
functions in 5G,” ANCS, 2021.

[22] “Kubernetes,” https://kubernetes.io/, [Accessed July-2022].
[23] 3GPP, “3GPP TS 23.002 - Network architecture (Rel 14),” 2017.
[24] ITU-R, “IMT for 2020 and Beyond,” Tech. Rep., 2016.
[25] S. Rommer, P. Hedman, M. Olsson, L. Frid, S. Sultana, and C. Mulligan,

5G Core Networks: Powering Digitalization. Elsevier Science, 2019.
[26] OpenAPI Initiative, “OpenAPI,” https://www.openapis.org/, [Accessed

July-2022].
[27] “Free5GC,” https://www.free5gc.org/, [Accessed July-2022].
[28] “NextEPC,” https://nextepc.org/, [Accessed July-2022].
[29] K.-L. Lee, C.-N. Lee, and M.-F. Lee, “Realizing 5G network slicing

provisioning with open source software,” in APSIPA ASC, 2021.
[30] Google, “Go,” https://go.dev/, [Accessed July-2022].
[31] MongoDB Inc., “MongoDB,” https://www.mongodb.com/, [Accessed

July-2022].
[32] Fraunhofer FOKUS, “Open5GCore,” https://www.open5gcore.org/,

[Accessed July-2022].
[33] OpenAirInterface, “OpenAirInterface 5GCN,” https://openairinterface.o

rg/oai-5g-core-network-project/, [Accessed July-2022].
[34] “Open5GS,” https://open5gs.org/, [Accessed July-2022].
[35] Kubernetes, “Kubernetes Documentation,” https://kubernetes.io/docs/c

oncepts/, [Accessed July-2022].
[36] Dgraph, “BadgerDB,” https://github.com/dgraph-io/badger, [Accessed

July-2022].
[37] Redis, “Redis,” https://redis.io/, [Accessed July-2022].
[38] Envoy Project Authors, “Envoy Proxy,” https://www.envoyproxy.io/,

[Accessed July-2022].
[39] Istio Authors, “Istio,” https://istio.io/, [Accessed July-2022].
[40] Tigera Inc., “Calico,” https://www.tigera.io/project-calico/, [Accessed

July-2022].
[41] Prometheus Authors, “Prometheus,” https://prometheus.io/, [Accessed

July-2022].
[42] A. Güngör, “UERANSIM,” https://github.com/aligungr/UERANSIM,

[Accessed July-2022].

Endri Goshi completed his Bachelor of Science in
Electronics Engineering at the Polytechnic Univer-
sity of Tirana, Albania in July 2015. In May 2019, he
received his Master’s Degree in Communication En-
gineering from the Technical University of Munich
(TUM). He then joined the Chair of Communica-
tion Networks at TUM as a research and teaching
associate. His research interests include Virtualized
and Cloud-Native Mobile Core Networks, Software-
Defined Networks and Programmable Networks.

Raffael Stahl completed his Bachelor’s Degree in
Electrical Engineering at the Technical University
of Munich (TUM) in April 2020. Since then, he has
pursued his Master’s Degree in Electrical Engineer-
ing, specializing in mobile communication network
core architectures and embedded systems.

15

Hasanin Harkous is a System Architecture Re-
search Engineer at Nokia working on 6G-related
topics. He did his Ph.D. at Nokia Bell Labs in col-
laboration with the Technical University of Munich
(TUM) at the Chair of Communication Networks.
He received his Master’s Degree in Communications
Engineering at TUM in 2018. His research focuses
on topics related to programmable data planes, per-
formance evaluation and modeling, and hardware
acceleration in telco cloud technologies.

Mu He received his Master’s Degree in Communi-
cation Engineering from the Technical University of
Munich (TUM) in 2015. He then became a research
associate at the chair of communication networks of
Prof. Wolfgang Kellerer and received his Doctor’s
Degree in 2020. His research interests covered net-
work planning, network optimization problems, P4
data plane and mobile core network optimizations.

Rastin Pries is a research project manager at Nokia.
He received his Master and Ph.D. degree in com-
puter science from the University of Wuerzburg,
Germany in 2004 and 2010. His current research
interests are on applying edge computing to cellular
networks as well as on localization and mapping
approaches for real-time digital twinning.

Wolfgang Kellerer (M’96, SM’11) is a Full Profes-
sor with the Technical University of Munich (TUM),
heading the Chair of Communication Networks at
the Department of Electrical and Computer Engi-
neering. Before, he was for over ten years with
NTT DOCOMO’s European Research Laboratories.
He currently serves as an associate editor for IEEE
Transactions on Network and Service Management
and as the area editor for Network Virtualization for
IEEE Communications Surveys and Tutorials.

16

APPENDIX

A. Traffic Generation - gNB & UE Emulator

Our proposed architecture focuses on improving the perfor-
mance of the 5GC control plane while omitting data plane
evaluations since the functional decomposition of 5GC does
not affect the UPF to the same degree as the other NFs.
Therefore, benchmarking PP5GS and comparing it with other
stateful and stateless deployments requires a tool capable of
generating a high volume of control plane input traffic (UE re-
quests). UERANSIM [42] is one open-source tool that allows
researchers to deploy multiple UE and gNB instances and
evaluate the correctness of their 5GC deployments. However,
UERANSIM executes new UEs as separate processes instead
of simply emulating their communication, thus making it not
suitable for our control plane stress-testing evaluations where
hundreds of UEs/s are initialized.

Therefore, in the absence of open-source tools that would
satisfy our requirements, we developed a gNB and UE Emu-
lator (gNBEmu). This tool supports the parallel execution of
UE-related control plane procedures for an arbitrary number of
UEs. In its current version, it implements the necessary logic
for the emulation of the four procedures mentioned in Table I,
and can be easily extended to support more procedures. It
is developed in Go language and leverages the open-source
libraries of Free5GC such as the ones related to NGAP/NAS
communication, MongoDB API, UE authentication, etc.

Before describing in more details the design and implemen-
tation of gNBEmu, we would like to point out a fundamental
difference that exists between control plane and data plane
traffic generators. Generally, when generating traffic in the
data plane, we simply need to make sure that data packets are
sent fast and the overall traffic meets the predefined model
parameters. This is however not enough for the control plane
communication. As explained in Section IV-B, the successful
completion of control plane procedures requires exchanging
a standardized set of messages between 5G-RAN and 5GC.
This means that the traffic generator must be able to initiate
new procedures, correctly parse the response coming from
AMF and use the received information to build the subsequent
messages. Similar to AMF, gNBEmu implements a Finite State
Machine (FSM) to keep track of the state of each UE in order
to correctly execute the control plane procedures. Initiating a
procedure for a UE is done using an external trigger. After that,
with each successful message exchange, the FSM advances
to the next state until the execution of the procedure has
finished. FSM is a fast mechanism that allows us to automate
the execution of procedures and ensure correctness by quickly
evaluating the response coming from 5GC.

To better understand the operation of gNBEmu and its
capabilities, we summarize its execution flow below:

1) Emulator’s context is initialized by parsing the configu-
ration file. As shown in Listing 1, the configuration file
contains a number of different parameters that define
the behavior of gNBEmu. We divide these parameters
in three categories:

• database - This block contains the name and
URL of the database (DB) that stores UE-related

database:
name: free5gc
url: mongodb://10.244.0.120:27017

ue:
servPLMNID: 20893
cipheringAlg: 0
integrityAlg: 2

emulation:
gnbIPAddress: 192.168.160.10
gnbSCTPPort: 9487
tasks:
- amf: 192.168.160.1:30320
procedure: registration
...
firstUEID: 1
warmupNumberOfUEs: 20
totalEntriesInDB: 100000
emulNumberofUEs: 1000
newUEsPerSecond: 25
IATms: 3

Listing 1. Sample configuration file for gNBEmu.

information. It is the same DB instance that is later
used by NRF and UDR to retrieve/store information
(i.e., the MongoDB instance in case of Free5GC).

• ue - Here we provide information for the emulated
UEs, such as the Public Land Mobile Network ID
(PLMNID) and the ciphering and integrity algo-
rithms used to encrypt/decrypt NAS messages.

• emulation - This block contains information
that defines the emulation process. For exam-
ple, emulNumberofUEs represents the number
of UEs to be emulated, totalEntriesInDB
represents the number of UE entries in the DB
and it can be higher than the emulated UEs,
newUEsPerSecond is the number of new proce-
dures to be triggered every second, while IATms
specifies the interarrival in milliseconds between
each trigger. The type of control plane procedures to
be executed together with the AMF’s NGAP server
information are given in the tasks list.

2) In a preemptive manner to avoid any delay during the
emulation process, gNBEmu initializes the contexts for
all the UEs that will be emulated. Therefore, unique
International Mobile Subscriber Identity (IMSI) and
authentication keys are generated for each UE. Addition-
ally, a unique RAN_UE_NGAP_ID is assigned to each
UE for the purpose of identifying it within the gNB.

3) Next, the generated contexts are used to build entries
for the DB. These entries are then submitted to the DB
in chunks (default chunk size is 20000 entries) which
greatly reduces the time to execute this step. Indexing
based on the UE-ID is also enabled because it is crucial
for the optimal operation of the DB instance.

4) gNBEmu enters the control plane procedures ex-
ecution phase. This phase is actually split into
two stages: i) warmup where a burst execution for
warmupNumberOfUEs is performed, and ii) eval-
uation where gNBEmu executes the procedures for

17

emulNumberofUEs and measurements are collected.
In the evaluation stage, the generated traffic follows the
parameters set by newUEsPerSecond and IATms.
Both these stages are performed for each of the specified
procedures in the configuration file, with a predefined
sleep period in between. New UEs are triggered using
goroutines which are lightweight execution threads.
This enables concurrency and avoids issues when spawn-
ing the execution of multiple UEs in parallel.

5) Submitting the measurements to the collector applica-
tion via HTTP communication. During the evaluation
stage, the beginning and end of all the procedures are
timestamped for each emulated UE. Using these values,
the Procedure Completion Times are calculated and they
are then submitted for post-processing to the collector.

Given that the NGAP/NAS RAN-Core communication runs
over Stream Control Transmission Protocol (SCTP), we have
made some modifications to its parameters that allow for faster
execution and thus more load generated towards 5GC. For
instance, after observing the exchanged packet sizes, we set
the SCTP socket’s read_buffer_size to 256 bytes. This
modification allows for received messages to be dispatched
and processed as fast as possible. Additionally, the default
configuration of SCTP enables a Nagle-like algorithm that re-
duces the number of packets in the network by enqueuing them
until a threshold is reached. However, this causes additional
delays in the network and therefore we have disabled it. The
aforementioned modifications are done also on the 5GC side.

Lastly, we would like to highlight the flexibility that
gNBEmu gives us with regards to traffic forwarding. In this
work we propose a functional split that is based on control
plane procedures, as explained in Section IV-B. Such an
architecture means that each of the PPNFs implements an
NGAP server and RAN needs to connect to all of them.
Therefore, to evaluate PP5GS we need to split the input traffic
according to the procedure it belongs to and forward it to the
correct endpoints. To achieve this, we implement a procedure-
based traffic forwarding mechanism in gNBEmu. For each
procedure, we provide the endpoint information in the tasks
entry of the configuration file, as explained above.

B. UPF Emulator

As mentioned in Section III-C, the Free5GC project includes
a software implementation of UPF. However, when performing
initial tests we noticed that there was a scalability issue with
the UPF. First, we tried increasing the buffer sizes in UPF
so that they would not overflow during the emulation of high
number of UEs. After some further testing, it was observed
that this modification was not enough to solve the issue
because the UPF would again break once we increase the
number of emulated UEs in parallel. Given this situation, we
realized that it would be necessary to develop a lightweight
UPF Emulator (UPFe) that would allow us to evaluate the PDU
Session Establishment and PDU Session Release procedures
for the same input rates as Registration and Deregistration.
The only requirements for UPFe were to be able to connect
to the Packet Forwarding Control Protocol (PFCP) endpoint

(e.g., SMF or PPNF), correctly parse the incoming messages,
and build the response messages indicating creation/modifi-
cation/deletion of the data plane resources. Since we focus
explicitly on the control plane performance, UPFe does not
implement any mechanism to allocate resources to the UEs
and initialize data plane tunnels. Similarly to gNBEmu, we
develop UPFe in Go and leverage the open-source PFCP
library shipped with Free5GC.

