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Abstract

The recent advancements in computing, communications, and sensing have made process
control over networks an essential part of today’s technology and services. Such applications
rely on fast and regular information exchange between hardware and software components
in order to accomplish a particular goal in the physical environment. In such a setting,
the level of the achieved performance is tightly intertwined with the service offered by the
communication network. To date, themain approach taken by the industry and standardization
has been centered around either offering higher data rates by introducing new frequency bands
or defining specific performance targets to satisfy in the form of a minimum throughput,
reliability and/or a maximum end-to-end latency, whereas the meaning and value behind the
transmitted bits have been considered irrelevant to the technical problem.

This thesis investigates control-aware network protocol design, specifically focusing on
wireless resource management in a multi-user scenario. In particular, it considers a typical
networked control scenario comprising multiple feedback loops closed over a wireless com-
munication network. To introduce awareness of the application and context into the network,
we assign a value to each piece of information, defined as the expected uncertainty reduction
at the destination upon its reception. First, we show that the value of information (VoI)
depends on its freshness and control system dynamics, hence is application-specific. Next,
we propose novel control-aware resource allocation schemes based on the newly derived VoI
metric. In addition, we show that a significantly higher control performance can be achieved
than it can be done by conventional techniques. Our evaluation comprises various network
topologies ranging from single-hop to multi-hop communication and from constant to time-
varying packet loss. Our investigations are not only based on simulation results but also on
experimental validations using software-defined radios communicating over a shared wireless
channel.

The investigations that are carried out in this thesis should contribute to the network design
in future wireless systems, specifically if the users are networked control applications. Our
work reveals the need for a paradigm shift from content-agnostic approach to an application-
and context-dependent network design if improving the control performance is the primary
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goal. This thesis demonstrates an example of control-aware protocol design in wireless com-
munication networks and encourages the adoption of such techniques by the standardization
and industry.



Kurzfassung

Die jüngsten Fortschritte in den Bereichen Datenverarbeitung, Kommunikation und Sen-
sorik haben die Prozesssteuerung über Netzwerke zu einem wesentlichen Bestandteil der
heutigen Technologie und Dienstleistungen gemacht. Solche Anwendungen sind auf einen
schnellen und regelmäßigen Informationsaustausch zwischen Hardware- und Softwarekom-
ponenten angewiesen, um eine bestimmte Aufgabe in der physischen Umgebung zu erfüllen.
In einem solchen Umfeld ist das Niveau der erreichten Leistung eng mit dem vom Kom-
munikationsnetz angebotenen Service verknüpft. Bisher haben sich die Industrie und die
Standardisierung hauptsächlich darauf konzentriert, entweder höhere Datenraten durch die
Einführung neuer Frequenzbänder anzubieten oder spezifische Leistungsziele in Form eines
Mindestdurchsatzes, einer Zuverlässigkeit und/oder einer maximalen End-to-End-Latenz zu
definieren. Dadurch wurden die Bedeutung und der Wert hinter den übertragenen Bits als
irrelevant für das technische Problem erachtet.

In dieserArbeit wird dasDesign von kontrolliertenNetzwerkprotokollen untersucht, wobei
der Schwerpunkt auf dem drahtlosen Ressourcenmanagement in einemMehrbenutzerszenario
liegt. Insbesondere wird ein typisches vernetztes Regelungsszenario betrachtet, das mehrere
Rückkopplungsschleifen umfasst, die über ein drahtloses Kommunikationsnetz geschlossen
werden. Um das Bewusstsein für die Anwendung und den Kontext in das Netzwerk einzubrin-
gen, weisen wir jeder Information einen Wert zu, der als die erwartete Reduzierung der Un-
sicherheit am Zielort nach ihrem Empfang definiert ist. Zunächst zeigen wir, dass der Wert
der Information (WoI) von ihrer Aktualität und der Dynamik des Regelungssystems abhängt
und daher anwendungsspezifisch ist. Anschließend schlagen wir neuartige kontrollorien-
tierte Ressourcenzuweisungssysteme vor, die auf der neu abgeleiteten WoI-Metrik basieren.
Darüber hinaus zeigen wir, dass so eine deutlich höhere Kontrollleistung erreicht werden
kann als mit herkömmlichen Techniken. Unsere Evaluierung umfasst verschiedene Netzw-
erktopologien, die von Single-Hop- bis zu Multi-Hop-Kommunikation und von garantierten
Übertragungen bis zu zeitvariablen Paketverlusten reichen. Unsere Untersuchungen basieren
nicht nur auf Simulationsergebnissen, sondern auch auf experimentellen Validierungen mit
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softwaredefinierten Funkgeräten, die über einen gemeinsamen drahtlosen Kanal kommu-
nizieren.

Die in dieser Arbeit durchgeführten Untersuchungen sollten einen Beitrag zum Netzw-
erkdesign zukünftiger drahtloser Systeme leisten, insbesondere wenn es sich bei den Be-
nutzern um vernetzte Regelungssystemen handelt. Unsere Arbeit zeigt die Notwendigkeit
eines Paradigmenwechsels von einem inhaltsagnostischen Ansatz zu einem anwendungs- und
kontextabhängigen Netzwerkdesign, wenn die Verbesserung der Kontrollleistung das primäre
Ziel ist. Diese Arbeit demonstriert ein Beispiel für kontrollorientiertes Protokolldesign in
drahtlosen Kommunikationsnetzen und ermutigt zur Übernahme solcher Techniken durch die
Standardisierung und die Industrie.
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Chapter 1

Introduction

The recent advancements in computing, communications, sensing and control have made real-
time control an essential part of today’s technology and services. Examples are abundant:
autonomous cars [ZGK13], Unmanned Aerial Vehicles (UAVs) [Cue+19], smart home, smart
agriculture, and telerobotics [ZGK13]. Nowadays, a significant portion of such systems relies
on timely and regular information exchange between their Hardware (HW) and Software
(SW) components over wireless communication networks, mainly because of their reduced
installation and maintenance costs and increased system flexibility [Par+18].

From a systems theory perspective, control systems that are closed over a wireless commu-
nication network are called Wireless Networked Control Systems (WNCS). A typical WNCS
involves a controller, which aims to drive the state of a plant process to the desired value. The
controller actions, also referred to as control input or signal in the literature, are calculated
with the help of a sensor that operates remotely and sends measurements over a wireless link.
As a result, the performance of WNCS becomes strictly intertwined with the behavior of the
network. If the network cannot provide the controller with regular and accurate information,
e.g., due to high packet loss, or the incoming information does not accurately represent the
system’s current state, e.g., due to high end-to-end delays, the ability of the system to achieve
control-specific goals drops. In this case, we talk about the deterioration of the control per-
formance or, equivalently, of theQuality of Control (QoC). Generally, significant degradation
of QoC leads to physical damage in the system or the environment. In extreme cases, it may
even result in severe injuries or death.

Inserting awireless network into the feedback loop presents new challenges both for control
and communications engineering and research. In addition to requiring multidisciplinary
knowledge, it forces researchers to revisit the analytical methods, considerations, and design
choices from the conventional control theory to find novel solutions in order to minimize
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2 Chapter 1. Introduction

the adverse effects caused by the network. Broadly speaking, the research on WNCS can be
classified into two broad categories [GC10]:

I. Control over networks deals with the stability analysis and control strategies for WNCS
to model and compensate for network-induced imperfections.

II. Control of networks aims to make the communication networks more suitable for WNCS
applications through efficient and application-aware protocol design and architectures.

The first category has been heavily studied by the control community over the past decades
and is not the focus of this thesis. The second category, into which the scope of this thesis
falls, has shown limited adoption by the industry and researchers, although 3rd Generation
Partnership Project (3GPP) considers remote control and monitoring as one of the key driving
use cases of the fifth generation (5G) cellular networks. Generally speaking, the problem
of making the communication networks more suitable for emerging applications has been
simplified down to the parameter selection problem of a given network or optimization
problems w.r.t. conventional metrics such as throughput or delay [LG04; PAJ11; SSM18;
Par+18].

The main approach taken by the networking community has been limited to either offering
wider bandwidth to copewith the increasing demand for higher data rates or satisfying selected
performance targets specified for the considered use case [CB21]. For example, 3GPP sets up
to 1 Gbit/s Downlink (DL), and 500 Mbit/s Uplink (UL) data rate targets for indoor hotspot
environments, as well as an end-to-end latency bound up to 10 ms [TS22.261]. In addition,
it is also common in the standardization to define performance targets that are specific to
the type of the industrial application. To name a few examples, [TS22.104] requires the
communication network to achieve a maximum end-to-end latency of 1 ms to 50 ms for
mobile robots and 10 ms for process automation and closed loop control for periodic traffic.
This way, the network is expected to reliably transmit a given data stream in its entirety as fast
as possible, while remaining oblivious to the meaning behind the transmitted bits.

However, due to the rapidly increasing number of connected devices, a bottleneck repre-
sented by the scarcity of resources is considered inevitable. Thus, the networking community
is forced to explore new metrics and methods beyond one-size-fits-all approaches, as in the
case of abstraction through delay or throughput. A step towards this vision was the intro-
duction of Age of Information (AoI), proposed in [Kau+11]. AoI is a metric quantifying
information freshness and is defined as the time that has elapsed since the generation of the
freshest information about a monitored process available at the destination. It is particularly
applicable to systems by which fresh information is desired to achieve better performance,
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such as in a typical WNCS scenario. The main difference between AoI and conventional
metrics, such as throughput or delay, is that AoI is an application layer metric from the per-
spective of the destination and is defined only if the transmitted information has a generation
time. That means it does not apply to general networking use cases, such as file transfer or
video-on-demand services, e.g., Netflix, and YouTube, as the transmitted data do not possess
any real-time characteristics.

Information freshness has emerged as a novel field in networking research together with
increasing popularity of the metric associated with it. AoI has attracted the research commu-
nity as it gives direct insights into how much a particular packet would contribute to reducing
staleness in case of a successful reception. This differs from forwarding a packet as fast as
possible or sending as many bits as possible. If the transmitted information is already outdated
until its reception time, the benefit of receiving this information is generally expected to be
low from the monitor’s perspective. In fact, it has been shown that timely updating is not the
same as maximizing network utilization or ensuring that the transmitted packets are received
with the lowest possible delay [Yat+21; KYG12a].

By definition, the AoI captures the timeliness aspect of information, whereas it is indepen-
dent of the content. In other words, according to the AoI metric, two pieces of information are
of identical importance, if they are equally old. However, if the communication is conveyed
for a particular application-specific goal, the real “value” behind a transmission is insepara-
ble from its communication purpose and the context. The value of a piece of information
beyond its freshness is addressed by the emerging notion of Semantics of Information (SoI),
defined as the significance of data relative to its transmission purpose [Uys+22; Pop+20]. The
consideration of SoI opens the way for prioritization of the most valuable information in a
congested scenario and/or prevents a wasteful utilization of the limited networked resources
by allowing only those transmissions that are essential for the considered task. While the
value and freshness of information fall under the umbrella of SoI, it is of utmost importance
that future communication systems are designed in a semantics-aware manner if a complete
convergence of control and communications is to be achieved.

In the research field of networked control, the application of AoI and Value of Information
(VoI) is a novel research question around which this thesis is centered. This thesis aims to
design network protocols addressing the resource scarcity problem with a special focus on
centralized resource scheduling for WNCS. In particular, it proposes scheduling policies that
are AoI- and VoI-aware and investigates the connection between SoI and control performance.
The question we would like to answer is how to efficiently distribute resources amongmultiple
feedback control loops closed over a shared wireless communication network if the network
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cannot accommodate the generated traffic in its entirety. However, the design, optimization,
and realization of such protocols come with a set of challenges that this thesis aims to tackle.

1.1 Research Challenges and Contributions

The following text gives a more detailed overview of the key research challenges this thesis
aims to tackle. Moreover, it highlights the main contributions related to each research
challenge. In the remainder of this section and the following chapters, we do not strictly
follow a chronological order of the underlying publications for presentation purposes.

A) Metric selection, derivation and cross-domain system modeling

One of the first steps towards efficient network design for WNCS is to provide the network the
ability to assess the importance of a piece of information1 for the underlying task. This is only
possible through metrics that successfully capture the application-specific performance and
the efficiency at fulfilling the communication purpose. However, this is not a straightforward
task as today’s wireless networks do not cater to the value of a particular piece of information
for the targeted communication goal. Instead, multiple variations of throughput, delay and
fairness are used to approximate the demand for specific applications and services [Mam+22;
TS22.104].

At this point, the following research questions arise: How to classify the value of a
particular piece of information in the context of WNCS? Specifically, how is the freshness
aspect of information connected to its value and importance for the communication purpose?
Last but not least, how can the network utilize this additional information to improve its
decision-making and the quality of the resulting task accomplishment? Answering these
questions is not trivial as it requires deep knowledge of control and communications.

Contributions:

We first consider a single feedback control loop closed over a multi-hop line network.
Firstly, we are interested in the behavior of AoI at the destination when each link is subject to
packet loss. To that end, we derive a closed-form expression for the probability distribution of
AoI. As our primary objective is to improve the QoC of control applications but not to maxi-
mize information freshness, we derive the dependency between the AoI and network-induced
estimation error in a feedback control loop. In particular, we show that the problem of QoC
maximization is not an equivalent problem to maximizing information freshness. Further-
more, we combine the notion of AoI distribution and estimation error into an optimization
1Here, a “piece of information” refers to the smallest amount of bits that are meaningful together and contain

the state of a particular process, e.g., a status update packet in process automation.
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problem and demonstrate how the distributions of age can be utilized to improve control
performance in WNCS.

B) Design of feasible and optimal control-aware networking protocols

Network design for WNCS mandates broad considerations that flow into the design process,
e.g., channel conditions for individual users, hardware impediments, energy awareness, and
the requirements specific to the underlying services and applications. In current cellular
networks, use-case-specific requirements are handled through separation of Quality of Service
(QoS) flows into different profiles [TS23.501]. In case of guaranteed bit rate flows, to which
most of the industrial applications belong, each traffic flow is characterized by certain QoS
parameters such as guaranteed flow bit rate, maximumflow bit rate, andmaximum packet loss.
Consequently, the network tries to match the QoS requirements of the traffic through cross-
layer protocols, e.g., in data link layer throughQoS-aware radio resourcemanagement. Widely
adopted QoS-aware scheduling policies are predominantly based on such requirements, e.g.,
throughput, delay, and energy consumption [Cap+13]. As a result, the network, and especially
how the scheduling is done, is entirely agnostic to the content of the transmitted data and SoI,
such as freshness or value. However, the network could benefit from going one step beyond
conventional metrics, especially regarding resource management for WNCS.

When it comes to designing networking protocols that are aware of the control applications
(i..e, control-aware) and the semantics of the transmitted information, e.g., value, there are
several complications and aspects that one needs to consider. First, the scheduler should
continuously be able to prioritize users based on channel conditions, the information available
at the destination, and the information that is stored in the transmission buffers. However,
having practical feasibility in mind, it would be unrealistic to assume that the scheduler has
global knowledge about the system, e.g., the actual content of the information that is present
on the other side of the network. The challenge here is to find a control-aware solution to the
scheduling problem that is feasible from a practical perspective and efficient when prioritizing
the most critical and urgent transmissions in the network. Second, the existing literature
dealing with centralized scheduling policies that depend on the time dynamics of control
systems is very limited. Such policies should be designed while system-specific models from
the control theory flow into the decision-making process. This constitutes another challenge
as it implies that these control-system-specific models should be propagated down to the
data link layer where the scheduling takes place. Moreover, this comes with an additional
price of increased complexity and effort while designing such protocols and requires careful
consideration for the overall system design.

Contributions:



6 Chapter 1. Introduction

To tackle the research questions elaborated above, we consider a wireless network com-
prised ofmultiple heterogeneous feedback control loops. We set our focus onwirelessMedium
Access Control (MAC) protocols and study how the limited network resources should be dis-
tributed among network resources to achieve a higher QoC. Our cross-layer approach is based
on the utilization of the VoI, which captures the amount of uncertainty reduction at the monitor
in case of a successful transmission, for scheduling decisions. We show that already with
simple heuristics based on the VoI, we are able to improve the control performance when
compared to providing information freshness in the network.

In order to extend our heuristic approach, we first consider a shared UL scenario with
constant packet loss and formulate a stochastic optimization problem,whichwe solve optimally
through the value iteration technique. If the loss is dynamic, then the scheduling problem is
modeled as a finite horizon problem and solved optimally through dynamic programming. In
addition, we extend the problem formulation to a joint UL and DL setting. We show through
Monte Carlo experiments that the proposed optimal policies outperform the greedy approach
as well as other conventional scheduling policies widely used in the existing literature.

C) Practical implementation of control-aware scheduling algorithms

The theory allows us to model the interconnection between control and communication. Do-
ing so, it enables us to design and test novel networking mechanisms hinting at potential
performance increase when employed. However, when it comes to real-life deployment,
the promised performance gain may diminish on account of the random nature of the wire-
less channel, hardware imperfections and errors. In consequence, the verification of newly
proposed solutions in a practical setup becomes of paramount importance.

To validate novel customized protocols using real-life connections, an idea would be to use
widely available products and standards, for instance, a Wi-Fi access point based on the IEEE
802.11 standard. However, altering such devices’ communication protocol stack is usually
not straightforward, which constitutes a barrier to the implementation of such customized
scheduling algorithms in practice. Moreover, there are a lot of aspects flowing into the design
process ranging from the selection of the HW and tools to the implementation of both control
applications and communication layers in SW. Additionally, the practical implementation
introduces new challenges that are mostly assumed to be solved in theoretical papers or
simulations, e.g., perfect synchronization among users for time-slotted medium access and
global knowledge about the network by decision-making entities. As a result, conducting
an experimental study and research on such a complex system is challenging and requires a
notable effort and time.

Contributions:
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We extend the coverage of this thesis from theoretical research to systems research by im-
plementing an end-to-end system involving multiple control applications running in real-time
and communicating over a shared physical wireless channel. Due to the flexible adaptation and
implementation of their MAC layer processing, we conduct an experimental study involving
multiple Software-Defined Radios (SDRs) and control applications of heterogeneous classes.
By implementing a broad range of packet queueing and scheduling policies suggested by
this thesis’ theoretical contributions, we can validate the performance gain through a control-
aware protocol design on real HW and pinpoint the essential design issues for their practical
deployment. Our implementation is based on the open-source GNU Radio [Rad] framework
that provides a rich set of signal processing blocks to replace the traditional hardware modules
of transceivers.

1.2 Outline

Fig. 1.1 presents a high-level structure of this thesis for future reference. The remainder of
the content can be broken down into chapters as follows.

Chapter 2

This chapter explains the general structure of a WNCS and presents the components of a
feedback control loop. Additionally, it briefly introduces the concept of AoI and its application
in communication networks. Thereby, it provides the background knowledge from the control
theory necessary to follow the remaining chapters.

Chapter 3

This chapter deals with communication over a multi-hop line network for two distinct packet
queueing strategies. First, it studies the probability distribution of AoI for an N -hop line
network where each hop employs a Last Come First Serve (LCFS) queue with packet discard,
which has been shown to be optimal for maximized information freshness. Here, we perform
a probability analysis and derive the Probability Mass Function (PMF) for the discrete-time
AoI model. Next, we relax the assumption of the LCFS queueing strategy and consider a
multi-user network comprised of multiple First Come First Serve (FCFS) queues, which is
the most commonly encountered queueing strategy in today’s communication systems. Again
having the probability distribution of AoI, we utilize it to formulate an optimization problem,
and by solving it, we show that the estimation performance is maximized when the optimal
resource allocation is selected. In this chapter, we define the direct relationship between AoI
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and the expectedmean squared estimation error given an age. TheMean Squared Error (MSE)
derived in this section is reused in the following chapters to tackle the centralized wireless
resource scheduling problem for WNCS. This chapter is based on the following publications:

• O. Ayan, H. Murat Gürsu, A. Papa and W. Kellerer, “Probability Analysis of Age of
Information in Multi-Hop Networks”, IEEE Networking Letters (LNET), 2020.

• O. Ayan, A. Ephremides andW. Kellerer, “Age of Information: An Indirect Way To Im-
prove Control System Performance”, IEEE Conference on Computer Communications
Workshops (INFOCOMWKSHPS), 2021.

Chapter 4

In this chapter, we study the centralized scheduling for multi-loop scenarios in which the
network resources are scarce and thus have to be efficiently distributed among users. We first
study the resulting QoC if the network targets a maximized information freshness through
AoI-aware scheduling. In the same section, we propose a greedy scheduling algorithm that
is based on the age-dependent MSE derived in Chapter 3. Next, we formulate the scheduling
problem as a discounted cost problem and find the optimal solution as an improvement over
the greedy scheduling algorithm. Here, we apply the value iteration technique to find the
optimal scheduling decision given a network state as described in [Ber95]. In contrast to the
previous algorithm, which guarantees optimality only if the channel conditions are static over
time, we convert the problem to a finite horizon problem and solve it for a single-hop wireless
link.

In the last section of this chapter, we extend the finite horizon problem to a joint UL
and DL scheduling and conduct an extensive study of various scheduling policies from the
existing literature. All evaluations in this chapter are based on simulations. The main body
of this chapter consists of the following publications:

• O. Ayan, M. Vilgelm, M. Klügel, S. Hirche and W. Kellerer, “Age-of-information vs.
value-of-information scheduling for cellular networked control systems”, ACM/IEEE
International Conference on Cyber-Physical Systems (ICCPS), 2019.

• O. Ayan, M. Vilgelm andW. Kellerer, “Optimal Scheduling for Discounted Age Penalty
Minimization in Multi-Loop Networked Control”, IEEE Consumer Communications &
Networking Conference (CCNC), 2020.

• O. Ayan, H. M. Gürsu, S. Hirche and W. Kellerer, “AoI-based Finite Horizon Schedul-
ing for Heterogeneous Networked Control Systems”, IEEE Global Communications
Conference (GLOBECOM), 2020.
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• O. Ayan, A. Ephremides, S. Hirche, W. Kellerer, “Optimal Finite Horizon Scheduling of
Wireless Networked Control Systems”, IEEE/ACM Transactions on Networking, 2023.

Chapter 5

This chapter implements a centralized scheduling framework on real HW by using SDRs.
First, we investigate how the QoC is impacted when different queueing strategies are selected.
Next, we proceed with the optimal queueing strategy based on our measurements and tackle
the resource allocation problem under different MAC protocols, including contention-based
and contention-free techniques. All evaluations in this chapter are conducted through an
experimental testbed that involves multiple control and communication processes running in
real time. The scope of this chapter is based on the following publications:

• O. Ayan, H. Y. Özkan and W. Kellerer, “An Experimental Framework for Age of
Information and Networked Control via Software-Defined Radios”, IEEE International
Conference on Communications (ICC), 2021.

• O.Ayan, P.Kutsevol, H.Y.Özkan,W.Kellerer, “Semantics- andTask-Oriented Schedul-
ing for Networked Control Systems in Practice”, IEEE Access, 2022.

Chapter 6

We conclude this thesis by summarizing the key results. Moreover, we present an outlook
for interesting future research directions that can be seen as a natural extension of the main
contributions of this work.
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Chapter 2

Background: A Brief Introduction to
Information Freshness and Control
Systems

This section serves as an introduction to the necessary concepts and topics that are relevant
to comprehend the following chapters. It consists of two main blocks. First, we define AoI
and give a few examples of how it is used in wireless communication networks. Second, we
familiarize the reader with the basics of control theory that appear in the content to come.
Please note that the chapter should not serve as a replacement for control theory textbooks.
We refer the reader to other sources that are intended to teach control theory, e.g., [rM08].

2.1 Age of Information in Wireless Networks

A notable portion of applications that falls under the category WNCS, e.g., video-based
control of an inverted pendulum over a wireless network, a drone in a warehouse that is
remotely controlled by a central station, share a common feature: their operation relies
on time-stamped state measurements that are transmitted between source-destination pairs
through a communication network. Generally, having a more recent, i.e., fresh, observation
about the remote system state is beneficial for control performance.

2.1.1 Definition of Age of Information

Suppose a monitor that receives state measurements from a remotely operating sensor in
the form of packet transmissions, as depicted in Fig. 2.1. In such a setting, AoI quantifies
information freshness from the perspective of the destination. If the freshest information at

11
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Figure 2.1: A remote sensor, e.g., temperature sensor, humidity sensor, sending system state infor-
mation to a monitor through a communication network. Measurements are transmitted in the form of
status update packets. The sensor has the current state information belonging to time t whereas two
past status update packets, i.e., t > t2 > t1 are on their way to the destination.

time

Figure 2.2: An example evolution of AoI in continuous time. Note that the value after a successful
reception corresponds to the difference between the generation and the reception time instances.

the monitor at time t has the generation time-stamp ν(t), then the AoI, ∆(t), is defined as:

∆(t) = t− ν(t). (2.1)

In plain words, AoI is the elapsed time since the generation of the most recent information
about the system state that the destination has received. This thesis uses AoI and age as
synonyms describing the process ∆(t). Let us have a look at Fig. 2.1 once again and assume
that the monitor has successfully received ν(t) = t0 some time ago. The status update packets
containing state measurements from t1 and t2 with t0 < t1 < t2 < t are still traversing the
communication network. Note that the higher the timestamp, the fresher its information.
From Eq. (2.1), it is evident that the value of ∆(t) grows linearly over time until a fresher
packet, e.g., the one generated at t1, is received. If the packet containing t1 is delivered at
time t′1, the value of ν(t′1) is updated and the AoI drops to t′1 − t1. In other words, the new
value of AoI immediately after the reception corresponds to the time that the packet has spent
in the network, i.e., packet delay. An example evolution of AoI following the aforementioned
time behavior is depicted in 2.2.

It is important to realize that AoI depends both on delay and inter-delivery time between
two successful receptions´ at the destination. One could suppose that a necessary condition
to minimize AoI is to inject status update packets into the network as frequently as possible.
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However, it has been shown that this may lead to significantly bad AoI performance under
certain conditions, e.g. if the packets have to go through FCFS queues [KYG12a]. On the
other hand, if the packet generation rate is too low, ν(t) is updated very rarely, thus leading to
high peaks of ∆(t). This aspect makes the AoI an exciting topic for research and engineering
of time-critical applications such as real-time monitoring and control.

We have introduced the concept of AoI and its connection to information freshness. At
this point, the following question arises: How does one measure the performance of a network
w.r.t. AoI? Two metrics that are frequently used in the existing literature stand out: I) Time-
average AoI, II) Average Peak AoI [Yat+21]. The first metric captures the mean AoI during a
time period T . If we denote time-average age as ∆, it can be formulated as:

∆ =
1

T

∫ T

0

∆(t)dt. (2.2)

Furthermore, the average peak AoI, ∆̂, does not evaluate age during the complete duration of
T but considers only those instances at which ∆(t) is about to drop due to a new reception at
the destination. If the set of time instances at which the monitor receives a new status update
packet as D = {t′0, t′1, . . . }, as in Fig. 2.2, the average peak AoI can be obtained from:

∆̂ =
1

|D|
∑

{t | t∈D}

∆(t) (2.3)

with |D| being the cardinality of set D. Throughout this thesis, we are going to employ ∆ to
quantify performance w.r.t. information freshness. Note that a lower ∆ indicates a better AoI
performance.

2.1.2 Application of Age of Information in Wireless Networks

AoI has been used in various contexts in the existing literature. This sub-section presents a
wide selection of research papers that include AoI in their system model, with a special focus
on wireless MAC protocols.

Data link layer: When a communication network is comprised of multiple users, they
usually need to share network resources in order to exchange information between source-
destination pairs. Especially in a wireless network scenario, a simultaneous transmission
using the same frequency resources may corrupt the received information, and in return, lead
to a packet loss event. As a result, themonitor can not be updatedwithmore recent information
about the remote process; hence AoI keeps growing. Therefore, avoiding simultaneous access
to the shared medium is crucial to provide information freshness in a multi-user wireless
monitoring scenario.
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Some of the existing works consider contention-based medium access permitting the uti-
lization of the same network resources by multiple users [Che+22; CGL20; KM21; Mun21;
MAE20; Yan+22; YK17]. [Che+22] and [Yan+22] focus on the Slotted ALOHA mechanism
and study average AoI performance analytically. Moreover, they show that the age perfor-
mance can be further improved by applying variations of Slotted ALOHA compared to its
conventional version. Similarly, [CGL20] proposes a threshold-based slotted random access
protocol that is able to outperform Slotted ALOHA. Furthermore, [Mun21] derives a closed-
form expression of the average AoI achieved by Irregular Repetition Slotted ALOHA (IRSA).
Their work shows that IRSA outperforms slotted ALOHA w.r.t. information freshness in the
network.

On the other hand, in [MAE20; KM21], users use Carrier Sense Multiple Access (CSMA)
protocol to access the shared medium. [MAE20] provides a mathematical expression for
average AoI when CSMA protocol is employed. [KM21] considers status updates arriving
according to a stochastic process. They optimize the CSMA protocol to improve information
freshness and additionally verify their analytical conclusions through practical measurements.
Last but not least, [YK17] shows that Slotted ALOHA leads to a worse age performance by a
factor of 2e in comparison to a simple contention-free protocol. The selected contention-free
protocol is a simple heuristic allowing users to take turns while limiting the maximum number
of retransmissions for each packet.

AoI has been used as a metric in contention-free medium access protocols. In such a
setting, the users follow a particular transmission schedule that aims to prevent collisions and
thus increase the chance of a successful reception significantly. One of the most prominent
examples of such is [Kad+18], which addresses the problem of AoI minimization in a single-
hop wireless network. In their work, the authors study three simplistic scheduling policies
and derive performance guarantees for various network configurations. Another work that
studies AoI-optimal scheduling policies is [Kad+16]. In [KM21], the authors show that if all
users are experiencing identical channel conditions, the greedy AoI scheduler, prioritizing the
user with the highest age, is optimal. Furthermore, [HMD20] develops optimal scheduling
algorithms based on Markov Decision Process (MDP) and Whittle index policy depending
on whether the information arrival statistics are available as prior knowledge. Another work
using the Whittle index policy to minimize AoI is [TM19]. In their work, the authors show
that the proposed low-complexity algorithm offers close to optimal performance.

Network and Transport Layers: In addition to the data link layer, the problem of
improving information freshness has been studied within higher layers. For instance, [Yat21]
evaluates AoI performance in a network that utilizes gossip protocol for packet forwarding.
[TKM17; TTM22] propose a scheduling policy for multi-hop networks with interference
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constraints. In addition, [FKRB19; FKB19a; FKB19b; BSU19] consider a multi-source
multi-hop network setting. In these works, authors follow an analytical approach and derive
fundamental bounds for average age performance. Another work focusing on multi-hop
networks is [SKY19]. However, in contrast to the works mentioned above, the authors of
[SKY19] focus on the transport layer and improve the network’s information freshness through
a congestion control mechanism called age control protocol.

2.2 Related Topics From Control Theory

2.2.1 System Modeling

A model is a mathematical representation of a physical, biological or information system
[rM08]. Models may be derived either from laws of physics or experimental data and allow
us to understand and predict the behavior of systems in time. For instance, the evolution of
number of cases in a population during pandemic, the motion of an object in three dimensional
space, buffer occupancy in a queuing systemare examples to such systems that can be explained
and predicted through utilization of mathematical models.

A common way of modeling physical systems, whose state change in time according to a
certain rule, is using a set of ordinary differential equations such as:

ẋ =
dx

dt
= f (x(t),u(t)) , (2.4)

where the term dx/dt represents the time derivative of the system state x(t) ∈ Rn. Moreover,
u(t) ∈ Rm is a vector of external control inputs. If the mapping function f : Rn×Rm→ Rn

does not explicitly depend on time, then the system is said to be time-invariant.

Let us have a look at a simple example. Eq. (2.5), also known as the governing equation,
completely describes the mechanics of a spring-mass system with damping. The variable
q(t) ∈ R is the displacement of the mass m w.r.t. its rest position. The friction element c(q̇)
is a nonlinear function of the mass velocity q̇.

mq̈ + c(q̇) + kq = u(t). (2.5)

On the other hand, if the function f is linear and time-invariant at the same time, then the
system is called a Linear Time-Invariant (LTI) system. An LTI system can be represented by
a set of equations in the following form:

dx

dt
= Ax+Bu, (2.6)
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Figure 2.3: An inverted pendulum.

where A ∈ Rn×n and B ∈ Rn×m are constant matrices. In the literature, the A and B
matrices are called system and input matrix, respectively. In many cases, the governing
equation of the system contains non-linear elements. However, it is quite common in the
control theory literature to linearize them around the equilibrium point that approximates the
behavior of the system during operation.

2.2.1.1 An example control application: Inverted Pendulum

A common control application that is widely used in the literature is an inverted pendulum
depicted in Fig. 2.3. It consists of a pendulum mounted on a motorized cart. The goal of the
controller is to keep the pendulum in upright position through horizontal movements of the
cart. The continuous-time dynamics of the system are characterized through the following
two governing equations:

(M +m)ξ̈ + bξ̇ −ml cos(φ)φ̈+ml sin(φ)φ̇2 = u

−ml cos(φ)ξ̈ + (I +ml2)φ̈−mgl sin(φ) = 0 (2.7)

When the system is operating around the equilibrium point, corresponding to a small angular
deviation, i.e., φ = 0, we can apply the following approximations:

sin(φ) ≈ φ

cos(φ) ≈ 1

φ̇2 ≈ 0 (2.8)

After substituting (2.8) into the nonlinear governing equations, (2.7), we obtain the following
two linearized equations of motion:

(M +m)ξ̈ + bξ̇ −mlφ̈ = u

(I +ml2)φ̈−mglφ = mlξ̈ (2.9)
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Equivalently, we can rearrange the equations into matrix form as follows:
ξ̇

ξ̈

φ̇

φ̈

 =


0 1 0 0

0 −(I+ml2)b
I(M+m)+Mml2

m2gl2

I(M+m)+Mml2
0

0 0 0 1

0 −mlb
I(M+m)+Mml2

mgl(M+m)
I(M+m)Mml2

0



ξ

ξ̇

φ

φ̇

+


0

I+ml2

I(M+m)+Mml2

0
ml

I(M+m)+Mml2

u. (2.10)

Note the relationship between (2.10) and (2.6) with x = [ξ ξ̇ φ φ̇]T .

As an alternative to continuous-time representation, one can describe the system state
at discrete time instances. That is, if we divide the time into equidistant discrete points as
k = 0, 1, 2, . . . , we can formulate the system state at k + 1, i.e., x[k + 1], in the form of a
difference equation as:

x[k + 1] = f(x[k],u[k]). (2.11)

In other words, (2.11) describes which value the next system state will take as a function of the
previous state and the applied control input at time step k. Similar to the continuous case, if
the mapping function f is linear in x and u, the system is characterized by a matrix equation
as:

x[k + 1] = Ax[k] +Bu[k]. (2.12)

So far, the considered control system has not contained any stochastic component. That is,
given an initial state x[0] and the following control inputs u[0], . . . , T , we can obtain the exact
state value at a later time step k according to:

x[k] = Akx[0] +
k−1∑
j=0

Ak−j−1Bu[j], (2.13)

with Ap representing the p-th power of the matrix A. However, in order to bring theory
closer to practice, control theory considers random disturbances in the model. This gave rise
to stochastic control theory that deals with dynamical systems subject to disturbances which
are characterized as stochastic processes [Å12]. As a result, we will consider the following
difference equation throughout the thesis if not stated otherwise:

x[k + 1] = Ax[k] +Bu[k] +w[k] (2.14)

where w ∈ Rn ∼ N (0,Σ) are independent random variables following a zero-mean normal
distribution with covariancematrixΣ. Gaussian noise is a very popular choice in the literature
to model external disturbances on the system state [Å12; Mam17; Sol+22; Ber95].
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2.2.2 Linear Quadratic Regulators

A common and useful way of measuring control performance, i.e., QoC, in control theory,
is using a quadratic cost function that depends both on the trajectory of the system state
throughout a time horizon and the control effort spent during that period. Consider an LTI
system characterized by the difference equation from (2.14) and a quadratic cost function:

J = (x[T ])TQx[T ] +
T−1∑
k=0

(x[k])TQx[k] + (u[k])TRu[k], (2.15)

where Q ∈ Rn×n and Rm×m are positive semi-definite symmetric matrices of appropriate
size. The minimization of J is referred as Linear Quadratic Regulator (LQR) problem and
particularly important if we want to keep the system state close to the origin while taking the
control effort into account1. The quadratic form is often seen reasonable, as a high penalty is
induced if the state deviation is large and a low penalty is induced if the deviation is close to
zero [Ber95].

The solution to the LQR problem is given by a linear stationary control law:

u[k] = −Lx[k], (2.16)

with L ∈ Rm×n mapping a state to the optimal control input. Note that the control law
is called stationary as it does not change over time. The optimal feedback gain matrix L
minimizing the cost function J can be calculated as:

L = (BTPB +R)−1BTPA, (2.17)

where P ∈ Rn×n is a positive semi-definite, symmetric matrix satisfying the Discrete Alge-
braic Riccati Equation (DARE):

P = ATPA− (ATPB)(R+BTPB)−1(BTPA) +Q. (2.18)

The equation (2.16) is based on the assumption that the controller has the perfect knowledge
of the current state x[k] to calculate the control input. However, as we are going to discuss in
section 2.2.3 to follow, the linearity of the control law is preserved for the case of imperfect
state information.

2.2.3 Wireless Networked Control System(s)

This thesis focuses on control systems that are closed over a wireless communication network.
In particular, we assume a scenario in which the system state is transmitted over a wireless
1Throughout this thesis, without loss of generality, we assume that the set value lies at the origin, i.e., x = 0.
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Figure 2.4: A networked control system transmitting sensor measurements over a communication
network.

link to the controller. Figure 2.4 illustrates such a feedback loop that includes an imperfect
sensor-to-controller link. Considering that a wireless network may introduce packet dropouts
and delay, the controller may not necessarily have the perfect knowledge of the current system
state x[k] at time k. If this is the case, x[k] on the Right-hand Side (RHS) of (2.16) has to be
replaced with, x̂[k], the expected system state from the controller’s perspective, i.e,:

u[k] = −Lx̂[k]. (2.19)

A simple way of realizing such a control logic, particularly in practical scenarios, would
be to assume the system state to stay constant between two consecutive successful updates
at the controller, similar to sample-and-hold mechanism. This approach has been used in
various previous works on WNCS, e.g., [HDT13; Tro+21; Bha+21]. However, an alternative
technique is running a model-based estimation at the controller that takes advantage of the
time-invariant model of the system [LG04; Mam17; Mai+22; MH14].

In fact, for linear systems with quadratic criteria, as in this thesis, it is optimal to consider
estimation and control as two separate blocks. That is, an estimation block computing the
state estimate in the form of a conditional mean given the observed state. Additionally, a
linear feedback that calculates a control input based on the estimated state as if the system
state could be measured exactly. This is referred as separation theorem in the control literature
and such a controller based on it is called certainty equivalence controller [Å12; Kl20].

Now, let us consider a scenario as depicted in Fig. 2.4. A sensor periodically samples
the plant state and these measurements are transmitted in the form of status update packets
over an imperfect wireless link to the controller. Let us further assume that the network
introduces packet loss and delay, hence the most recent information about the system state that
the controller has is from ν(k) with ν(k) < k. In other words, it is known to the controller at
time step k that the system state at ν(k) was x[ν(k)]2. As a result, the conditional expectation
2Here, we implicitly assume that at each sampling event, the sensor records the index of the discrete time step,

similar to timestamp, and this information is contained in the status update packets.
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of the system state given x[ν(k)] is defined as:

x̂[k] , E
[
x[k]

∣∣ x[ν(k)]
]
. (2.20)

Due to the stochastic nature of the control system, it is evident that as long as k 6= ν(k) holds,
a mismatch between the actual state x[k] and the estimated state x̂[k] is expected to occur.
Consequently, the vector that is defined as the difference between the system state and its
conditional expectation can be formulated as:

e[k] , x[k]− x̂[k], e ∈ Rn. (2.21)

The variable e[k] is also called network-induced error in the WNCS literature [YWB00;
Mam+17]. The network-induced error plays a major role in the remainder of this thesis. In
particular, this thesis is shaped around the following core idea: If the source of performance
degradation in QoC is the presence of the imperfect communication network (when compared
to the ideal network case), the communication network should try to minimize the network-
induced (negative) effects on control applications. As we are going to show in the following
sections, we are able to improve the offered control performance by targeting a reduction in
the estimation error.



Chapter 3

Distributions of AoI And Their
Application in Networked Control
Systems

The advancements in sensing, computing, and communications over the past decades have
accelerated the adoption of time-sensitive applications in today’s networks. Nowadays, a
significant portion of data traffic belongs to applications that exchange packets to accomplish
application-specific tasks in real-time. In contrast to traditional networking technologies,
which were designed to maximize throughput and reduce delay while being oblivious to
the information content, the future communication systems are envisioned to incorporate
semantics of information such as freshness and value into network and protocol design.

In this chapter, we consider two distinct scenarios that allow us to demonstrate the impor-
tance of SoI for network design. In the first scenario, which is mainly based on [Aya+20b],
we focus on a single source-destination pair communicating over a multi-hop line network.
By modeling the AoI as a discrete-time process, we derive the PMF of AoI analytically, under
the assumption that each node is capable of replacing any older packet with a more recent
one. In the second scenario, summarizing the main results from [AEK21], we relax the packet
replacement assumption but focus on a single-hop queueing system operating according to the
FCFS strategy. By leveraging results from the existing literature, which allow us to derive the
PMF of AoI in discrete-time queues, we demonstrate how distributions of AoI can be used to
improve control performance of WNCS. Some derivations presented in this chapter constitute
a basis for the following chapters. An overview of the related work is presented at the end of
this chapter.

21
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3.1 The Single-User Multi-Hop Case

3.1.1 System Description

We consider a real-time monitoring scenario in which a physical process sends status updates
over anN -hop line network to a monitor. The packets carrying the latest state of the monitored
process are generated periodically at the source node. We call the generation of an update
packet a sampling event. The time between two consecutive sampling events is called a
sampling period.

The network time is divided into equally long slots that can accommodate a single trans-
mission between any consecutive nodes in the network. That is, the transmission of a status
update packet starts at the beginning of a slot and completes within the same slot. While a
time slot is the smallest time unit in our system model, the sampling period is assumed to be a
multiple of a time slot duration. If we denote the sampling period and the time slot duration as
tp and ts, respectively, it holds that ts ·m = tp withm being a positive number. For instance,
one can imagine a time slot length of 1 ms and a sampling period of 10 ms.

Under the assumption that the process’ state is Markovian, having received an update, the
monitor does not benefit from the reception of older status updates. Thus, older packets are
considered obsolete and “non-informative” at any location in the network. To that end, each
node discards any older packet in the transmission queue upon the arrival of a fresher update.
As a result, our model has no queuing effect as there is always a single packet to be forwarded.
A new update at any node is re-transmitted until it is successfully received by its next hop
or replaced with more recent information. Please note that this implies the assumption of
a feedback mechanism between neighboring nodes, e.g., in the form of an acknowledgment
packet.

Generally speaking, in a typical wireless multi-hop scenario, devices are scattered in a
wide area. For instance, in an environmental Wireless Sensor Networks (WSN) scenario
set up for cattle monitoring, a transmission range of 500 m was used [Cor+10]. In such a
setting, depending on the distance between two neighboring nodes, the success probability
of a transmission may be less than one, e.g., due to path attenuation. We assume a positive
time-invariant packet loss probability between consecutive nodes along the path to model this
effect. Such a model corresponds to the Rayleigh block fading model representing the average
behavior of the wireless medium. Please note that our model does not allow for spatial or
time dependency between two different transmissions.

If we denote the packet loss probability at the n-th hop by pn, the outcome of any
transmission on that link can be abstracted as aBernoulli trialwith a constant failure probability
pn. An example two-hop network that is subject to constant packet loss is depicted in Fig.
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Source Relay Dest.p1 p2

Figure 3.1: An example 2-hop line network with constant packet loss probabilities at each hop. Status
update packets are sent from the source node to the relay node, from which they are forwarded to the
monitor in a separate transmission.

3.1. The figure illustrates a scenario, in which status update packets are first sent to a relay
node with a constant packet loss probability of p1. The information that is available at the
relay node is then forwarded to the destination with a failure probability of p2.

The nodes follow a fixed transmission schedule and are allowed to transmit only in their
respective time slots. In order to simplify the following analysis, we assume that the time
slot allocation is in alignment with each node’s appearance order along the path. [Alu+09]
suggests similar transmission patterns for multi-hop networks that enable the reception of a
newly generated status update packet within the same sampling period afterN -hops. Fig. 3.2
demonstrates how such a transmission schedule would look like if the source and destination
were three hops apart. Note that the status update packet carrying the k-th sample reaches the
destination within the same sampling period of seven time slots.

k

k

k

k

k+1

Process
timeline k k + 1

tp
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Dest.

Figure 3.2: Example 3-hop scenario, i.e., N = 3 with a sampling period of 7 slots, i.e., m = 7.
Together with dashed lines, the orange circle illustrates the path of the k-th update. The following
status update, k+1, is available seven slots after the previous sampling event k. The empty transmission
slots indicate that the slots are either idle or allocated to other applications.

Age model: In chapter 2, we introduced the discrete-time model for control systems,
which alters its state only in those instances when there is a new sampling event. In other
words, the system state remains constant throughout the entire sampling period. Motivated
by [Maa+20], which assumes aging only when the system status is changed, we model the
time dynamics of AoI as a discrete-time process, being synchronous to the source’s sampling



24 Chapter 3. Distributions of AoI And Their Application in Networked Control Systems
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Figure 3.3: An example evolution of the AoI at the receiver. A new status update is received in
sampling period k. During the following 3 sampling periods, the monitor fails to update its most recent
information.

events. To that end, we evaluate the age at the monitor only once in each sampling period
and right before the following sampling event1. In doing so, we allow the age to be zero
if the most recent system state is available at the destination prior to a sampling event. To
illustrate this effect, we present Fig. 3.3 showing an example evolution of the discrete-time
AoI process. Despite of the "staircase" shape in network’s time resolution, the age increases
linearly at every sampling event from the monitor’s perspective, i.e., application layer. This
differentiation is emphasized in the figure through the blue and orange dashed lines.

For a better understanding of the following analysis, let us give an index to each link over
the path starting from one. Given an N -hop line network consisting of N such links and
N + 1 nodes, with node 0 being the source node and node N being the destination, let link
n correspond to the first hop between the nodes indexed by 0 and 1. Next, let us introduce
an indicator variable γn[k] ∈ {0, 1} for each link n ∈ {1, 2, . . . , N}, which indicates the
outcome of the transmission in sampling period k over link n . If the transmission fails, γn
is zero with a constant probability of pn. Analogously, γn[k] takes the value of one if the
transmission on the n-th link is successful, i.e., Pr[γn[k] = 1] = 1− pn,∀k.

Furthermore, given ∆0[k] = 0, ∀[k], let ∆n[k] ∈ N0 represent the AoI at node n after
the activation of the n-th link within the k-th sampling period. Hence, it follows that the
discrete-time model of the age is characterized by:

∆n[k] =

∆n−1[k] , if γn[k] = 1,

∆n[k − 1] + 1 , otherwise.
(3.1)

The reason for ∆0 to be zero at all times is the source node having access to the latest system
state following a sampling event. Let us remind that throughout the network, an older status
update packet is replaced if a new piece of information arrives. It follows from the model that
∆N [k] is the age at the monitor at the end of the k-th sampling period.
1This is similar to the approach in [Kad+16], which allows a reduction of AoI only at the end of a sampling

period.
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As depicted in Fig. 3.2, our scenario allows each hop to have a single slot between two
consecutive sampling events. In addition, the successful forwarding of a new information is
represented by a single probability. However, our model can be generalized to multiple slots
case under the condition that each slot allocated to a link n occurs before the subsequent link
n + 1 and multiple copies of the same packet is sent using different resources to increase
redundancy. In such a setting, the definition of a loss event depends on all transmissions being
unsuccessful. Equivalently, if we denote the loss probability of a single transmission by p∗n
and there are C copies of the same packet being sent, then the next node fails to retrieve the
new status update only if all of these transmissions fail, i.e., pn = (p∗n)C . Hence, the AoI
model from (3.1) remains valid for the combined loss probability pn if the sampling period is
long enough to accommodate all transmissions along the path.

3.1.2 Probability Analysis of AoI:

This section presents a mathematical discussion on AoI distribution and provides a recursive
algorithm to calculate the occurrence probability of an age value at each network node. The
results presented in the following text are based on [Aya+20b]. Let us first start with the
single-hop case and build on it in an incremental fashion.

The single-hop case: Consider a source-destination pair connected via a wireless link
having a constant packet loss probability p1 ∈ (0, 1). Following our age model from (3.1), ∆0

is zero at all times, since the packet at the source is always fresh. This implies that a successful
update of the monitor is followed by a reset of AoI to zero. In other words, if γ1[k] = 1, then
∆1[k] = ∆0[k] = 0. On the other hand, the possibility of having an age value of δ1 is possible
if and only if δ1 consecutive failed transmissions follow a successful transmission. Thus, its
occurrence probability can be obtained from:

Pr [∆1[k] = δ1] = (1− p1) · pδ11 , ∀k. (3.2)

Consequently, we can write the expected AoI at the monitor as a sum of all possible age values
weighted by their occurrence probability as:

E[∆1] =
∞∑
δ1=0

Pr [∆1[k] = δ1] · δ1 =
p1

1− p1

. (3.3)

The two-hop case: Before extending our results to N -hop, let us briefly elaborate on the
two-hop scenario consisting of a source, an intermediate (relay), and a destination (monitor)
node, as previously depicted in Fig. 3.1. The first link connecting the source and the relay node
has a constant loss probability of p1. Similarly, the second link between the relay-destination
pair is subject to packet loss with time-invariant probability of p2. Note that the occurrence
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of a loss event on either links is independent from each other. Therefore, we can analyze each
link independently.

The age model at the relay node follows the previously derived equations (3.2) and (3.3).
However, the information that is being forwarded over the second link may not be from the
current sampling period. To explain this phenomenon in a toy example, suppose that a status
update packet from time k is forwarded to the relay node but the second transmission is not
successful. Hence, the monitor cannot be updated within the same sampling period, i.e.,
∆2[k] = ∆2[k − 1] + 1. In the next sampling period, i.e., k + 1, if the second link gets
activated without the first link being active, i.e., γ1[k + 1] = 0 and γ2[k + 1] = 1, then the
monitor is provided with an information that is one sampling period old. In this case, the AoI
at the destination drops to one instead of zero.

Having shown that the newly received information at the monitor may be outdated due
to “in-network aging”, let us proceed with the closed form equation for a two-hop network.
First, let us denote the latest time instance, at which the monitor has been updated, by k22.
At this point, the age at the relay and monitor nodes equalize, in accordance with the success
case from (3.1). Hence, we can write ∆1[k2] = δ1. In consequence, we can treat the AoI
at the monitor, i.e., ∆2[k], as an independent aging process that depends on the transmission
outcome of the second link. Thereby, we can formulate the probability of having an age δ2 at
the monitor as:

Pr [∆2[k] = δ2 | ∆1[k2] = δ1] =

0 , if δ2 < δ1,

(1− p2) · pδ2−δ12 , if δ2 ≥ δ1.
(3.4)

The equation above states that given ∆1[k2] = δ1, the age at the destination cannot be lower
than the age at the relay node, as the correspond packet must have passed through it in the past3.
Additionally, due to the age increment by one after every sampling period, the model dictates
δ2 − δ1 consecutive failures on the second link following the initial successful transmission
between the two nodes. In the equation above, δ1 represents the first link’s contribution to the
age at the monitor. Additionally, the remaining share δ2 − δ1 of the current age ∆2[k] = δ2

is introduced through the packet loss events on the second link. Alternatively, δ2 − δ1 can be
interpreted as the second link’s contribution to the current age.

Next, we focus solely on the non-zero addends from (3.4), which allows us to apply the
law of total probability. Doing so, we obtain the marginal probability as:

Pr [∆2[k] = δ2] =

δ2∑
δ1=0

Pr [∆2[k] = δ2 | ∆1[k2] = δ1] · Pr [∆1[k2] = δ1] . (3.5)

2Imagine k2 as a particular sampling period in the past, i.e., k2 < k.
3This is results from the line network assumption. It does not hold for general multi-hop networks.



3.1. The Single-User Multi-Hop Case 27

After plugging (3.2) and (3.4) in (3.5) one can derive the following closed-form expression as
a function of the known parameters p1 and p2:

Pr[∆2[k] = δ2] =

δ2∑
δ1=0

(1− p1) · p1
δ1 · (1− p2) · p2

δ2−δ1

=(1− p1)(1− p2)p2
δ2

δ2∑
δ1=0

(
p1

p2

)δ1

=(1− p1)(1− p2)p2
δ2 ·

1−
(
p1
p2

)δ2+1

1− p1
p2

=(1− p1)(1− p2) · p2
δ2+1 − p1

δ2+1

p2 − p1

. (3.6)

As the last row of the equation is undefined for the equality case p1 = p2, due to a zero
denominator, one can simply use the first row of (3.6).

The expected AoI at the destination can be derived following the same steps as it has been
done for (3.3). Hence, expected age at the monitor is given as:

E [∆2] =
p1

1− p1

+
p2

1− p2

. (3.7)

The n-hop case: It is evident from (3.7) that the expected age at any node n, indexed
according to its appearance over the path, can be calculated by:

E [∆n] =
n∑
i=1

pi
1− pi

. (3.8)

By applying the law of total probability once again, we provide the following probability for
hop n having the age δn as:

Pr [∆n[k] = δn] =
δn∑

δn−1=0

Pr [∆n[k] = δn | ∆n−1[kn] = δn−1] · Pr [∆n−1[kn] = δn−1] .

(3.9)
For instance, the closed-form expression for the three-hop case can be obtained from (3.9) by
plugging in our results from (3.6):
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Pr[∆3[k] = δ3] =

δ3∑
δ2=0

(1− p3)p3
δ3−δ2 · (1− p1)(1− p2) · p2

δ2+1 − p1
δ2+1

p2 − p1

=
p3
δ3+1

∏3
i=1(1− pi)

p2 − p1

·
δ3∑
δ2=0

((
p2

p3

)δ2+1

−
(
p1

p3

)δ2+1
)

=
p3
δ3+1

∏3
i=1(1− pi)

p2 − p1

·

(p2

p3

) 1−
(
p2
p3

)δ3+1

1− p2
p3

−
(
p1

p3

) 1−
(
p1
p3

)δ3+1

1− p1
p3


=

∏3
i=1(1− pi)
p2 − p1

·
(
p2 ·

p3
δ3+1 − p2

δ3+1

p3 − p2

− p1 ·
p3
δ3+1 − p1

δ3+1

p3 − p1

)
=

∏3
i=1(1− pi)
p2 − p1

·
2∑
j=1

(−1)j · pj ·
p3
δ3+1 − pjδ3+1

p3 − pj
(3.10)

Lastly, we present Algorithm 1, a pseudo-code for recursive probability calculation for
any n hop. The algorithm has a time complexity of O((δn + 1) · n).

Algorithm 1 Recursive age function: f(δn, n,p
n) = o

Input: δn age, n number of hops, pn vector of loss probabilities for n hops
Output: o the probability of age δn with n hops

Initialize: o← 0
if n = 1 then
return (1− pn) · pnδn

else
for δn−1 ∈ [0 δn] do
o← o+

(
(1− pn) · pnδn−δn−1

)
· f(δn−1, n− 1,pn−1)

end for
return o

end if

3.1.3 Numerical Results

In order to verify our analytical results, we conduct a simulative study using a three-hop
network. To that end, we simulate a line network consisting of a source, two relay nodes
and a destination. Each simulation run consists of T = 100 000 sampling periods. Each
scenario, characterized by a triplet of the packet loss probabilities on each link, is repeated
100 times. The notation for the scenario is in the following form (p1, p2, p3), whereas p1,
p2, and p3 are the loss probabilities on the source-to-relay, relay-to-relay, relay-to-destination
links, respectively.
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Figure 3.4: AoI probability mass function of two combinations of three hop loss probabilities pl
with average as well as the expected AoI E[∆3] = 10.3333, rounded to 4 decimal places. Higher
loss probability p1 = 0.9 in the first hop increases the distribution tail compared to moderate loss
probabilities on all three links.

In compliance with the age model from the equation (3.1), we evaluate the AoI at the end
of each sampling period and the long-term average AoI at the destination is calculated as:

∆̄3 ,
1

T

T−1∑
k=0

∆3[k]. (3.11)

Note that the equation above is the discrete-time version of the continuous-time mean AoI,
given in (2.2). Furthermore, the average peak age, ∆̂, is measured as in (2.3), taking solely
the values prior to a successful reception at the monitor into account.

We select the following two scenarios:

• S1 = (p1 = 0.9, p2 = 0.4, p3 = 0.4),

• S2 = (p1 = 0.8, p2 = 0.7, p3 = 0.8).

having the equal expected AoI at the monitor rounded to four decimal places, i.e., E[∆3] =

10.3333. S1 represents a scenario that contains extremely bad channel condition on the first
hop but two further links with relatively better conditions. S2 depicts a scenario in which
all three links are subject to moderately high packet loss. Fig. 3.4 shows the AoI PMF for
S1 and S2. It contains both the analytical and simulation results. While the analytical value
is obtained from (3.10), the value corresponding to simulations, labeled as “Sim”, is the
normalized occurrence frequency of an age value throughout the runs. One can clearly see
the analytical and simulation results overlapping. Moreover, we can observe that the tail of
the distribution is longer in S1 than in S2.
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Figure 3.5: Inverse cumulative distribution function for two combinations of three hop loss proba-
bilities pl with expected age E[∆3] = 10.3333. Higher loss probabilities increase the AoI for higher
reliability targets. Moreover, for higher reliability targets, the average peak AoI varies drastically
compared to the actual AoI.

Next, we present in Fig. 3.5 the Inverse Cumulative Distribution Function (ICDF), as
well as the average peak AoI performance to draw further conclusions regarding the reliability
guarantees. In spite of the equality between their expectedmeanAoI performances, first aspect
to notice is the difference between their average peak age performance, marked by arrows in
the figure. While S1 results in ∆̂3 = 12.3, an average of ∆̂3 = 14.0 is achieved in the case of
S2. Having that said, we can see from the figure that S1 and S2 pose significant differences
beyond 10−1 when it comes to providing maximum age guarantees. Particularly, if we are
dealing with applications that require high reliability in terms of the maximum achieved AoI,
e.g., three nines, or equivalently 99.9%, both scenarios differ around a maximum age of 20

levels. However, surprisingly, S2 is a more desirable setting for limiting the maximum age
with a particular probability than S1, although the peak age performance is worse than S1.
Thereby, we can conclude that neither the average nor the peak AoI is a sufficient standalone
indicator if we aim to offer reliability guarantees for real-time applications. Instead, the entire
probability distribution should be taken into account.

3.2 The Multi-User Single-Hop Case

In this section, we consider a single-hop wireless network with multiple control applications.
As one of the key contributions of this section, one can name the utilization of AoI distribution
for control performance maximization. More importantly, this is the first section in this thesis



3.2. The Multi-User Single-Hop Case 31

deriving the relationship between information freshness and estimation performance. This
section is based on [AEK21].

3.2.1 System Model

We consider a wireless communication network comprised ofN independent LTI control sub-
systems. Each sub-system i, the components of which are a plant, a sensor, and a controller,
behaves according to the following difference equation in discrete-time:

xi[t+ 1] = Aixi[t] +Biui[t] +wi[t]. (3.12)

The variables are defined as in (2.14) with sub-script i being used for sub-system indexing.
Time is assumed to be slotted, while the slot duration is normalized to unity. In contrast to
the previous section, throughout the following analysis, each control sub-system is sampled
with the slot frequency. That is, when the network’s time advances from t to t + 1, the i-th
sub-system’s state changes from xi[t] to xi[t+ 1].

The system state measured by each sensor is transmitted over a shared wireless communi-
cation link to the controller. Each transmission between the i-th sensor-controller pair starts
and ends within the same slot. Moreover, the shared channel is subject to packet losses that
varies among sub-systems but is constant over time. In other words, each status update packet
is received by the controller with a success probability of µi, hence modeled as a packet
erasure channel.

The success probability µi is strictly related to the resource allocation, which is done
centrally prior to deployment. In fact, one can imagine it as follows: A limited set of
resources is distributed among multiple users by a central entity. Each system is assigned to a
set of resources, e.g., multiple channels, on which they broadcast the copies of a status update
packet simultaneously. For this information to be received by the controller, it is enough to
receive at least one of those copies, which occurs with the probability µi. Hence, µi defines
the aggregated success probability of the sensor-to-control link. To that end, we approximate
the behavior of such a network with scarce resources through the following equation:

N∑
i=1

µi ≤ R,

0 ≤ µi ≤ 1, ∀i. (3.13)

R ∈ R denotes the total network capacity and is a scalar. Simply put, the equation states that
once the resource allocation is done, the sum of all sub-systems’ success probabilities is upper-
bounded by R. Note that we assume µi to be linear and continuous in [0, 1]. Such a model is
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a rough approximation of resource-limited networks, typically abstracted as a maximum rate.
However, it captures the key characteristics of a centralized resource allocation problem in
networks with resource constraints.

In our considered scenario, we assume that sensors are incapable of replacing an outdated
packet with a more recent one, e.g., due to constrained computational capabilities, limited
flexibility of the communication stack, etc.. Instead, we assume that they the status update
packets must traverse a FCFS queue of infinite capacity. However, the sensors are able
to control the packet injection rate by choosing an admission probability λi ∈ [0, 1]. In
consequence, any sampled information xi[t] is injected into the packet queue with a constant
probability of λi. Equivalently, any state measurement is discarded with 1− λi and excluded
from further consideration. Lastly, each packet, that is admitted into the packet queue,
is retransmitted until at least on of its copies is received4. The resulting behavior of the
transmission queue can be modeled as a Geo/Geo/1 discrete-time queue with service rate µi.

The controller is a certainty equivalence controller with the control law:

ui[t] = −Lix̂i[t]. (3.14)

The estimated state x̂i[k] is defined as in (2.20). It is important to remind that x̂i[k] is the
current state that the controller expects the controlled process to have by looking at the most
recent information xi[νi[t]]. Now, let us substitute (3.12) into (2.20) and formulate x̂i[k] as a
function of the known variables:

x̂i[t]
(2.20)
= E [Aixi[t− 1] +Biui[t− 1] +wi[t− 1] | xi[νi(t)]]

(2.20)
= E

[
Ai (Aixi[t− 2] +Biui[t− 2] +wi[t− 2]) +Biui[t− 1] +wi[t− 1] | xi[νi(t)]

]
(2.20)
= E

[
A
t−νi(t)
i xi[νi(t)] +

t−νi(t)∑
q=1

Aq−1
i Biui[t− q] +

t−νi(t)∑
q=1

Aq−1
i wi[t− q] | xi[νi(t)]

]

= A
t−νi(t)
i xi[νi(t)] +

t−νi(t)∑
q=1

Aq−1
i Biui[t− q], (3.15)

where Ap denotes the p-th power of the matrix A. Note that the last line consists only of
known vectors and does not contain any random variable. On the contrary, the third line is
a function of normal random vectors wi. However, as the normality is preserved by linear
transformations, each addend of the form Aiwi[t] is also normal with zero mean [BT08].
Thus, we were able to get rid of them in the final equation.

How one should interpret the final equation is as follows: When the i-th controller receives
a new status update packet, carrying the state information xi[t−νi(t)] generated at time νi(t),
4The feedback about the transmission outcome is provided by an instant ACK/NACK mechanism
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it calculates (3.15) and thereby obtains the state estimate remotely. This also implies that the
time-invariant system parameters such as Ai and Bi as well as the control input history is
available at the controller. As the controller is anyways the entity deciding the control inputs,
this does not impose additional communication or simplifications in the system model.

3.2.1.1 Estimation Error and Age of Information

Next, we proceed with the network-induced error from (2.21) that is defined as the difference
between the actual and estimated system states. We formulate the Mean Squared (estimation)
Error MSE as a function of the system parameters:

E
[
‖ei[t]‖2 | xi[νi[t]]

] (2.21)
= E

[
(xi[t]− x̂i[t])T (xi[t]− x̂i[t]) | xi[νi[t]]

]
(3.12),(3.15)

= E

t−νi(t)∑
q=1

Aq−1
i wi[t− q]

T t−νi(t)∑
q=1

Aq−1
i wi[t− q]


= E

t−νi(t)∑
q=1

(wi[t− q])T
(
Aq−1
i

)T t−νi(t)∑
q=1

Aq−1
i wi[t− q]


A
= E

t−νi(t)∑
q=1

(wi[t− q])T
(
Aq−1
i

)T
Aq−1
i wi[t− q]


B
=

t−νi(t)∑
q=1

tr
(
(Aq−1

i )TAq−1
i Σi

)
(3.16a)

=

t−νi(t)−1∑
q=0

tr
(
(Aq

i )
TAq

iΣi

)
. (3.16b)

A: Noise vectors are i.i.d. thus uncorrelated.
B: Expectation of a random vector’s, i.e., v, quadratic norm with covariance matrix Σv is
E[vTMv] = (E[v])TME[v] + tr(MΣv). In the equation above and in the remainder of this
thesis, tr denotes the trace operator. MT is the transpose of a matrixM .

The equations (3.16a) and (3.16b) are equivalent except for the shifted summation range
by one. We provide both versions for convenience. Having that said, these equations describe
how one can calculate the MSE as a function of the time-invariant system parameters Ai,
Σi and the difference between the current time and the generation time of the most recent
information available. Note that the latter, i.e., t − νi(t), defines the number of addends. It
is important to mention that (3.16b) holds for the equality case as well, since if t = νi(t) it
returns zero. This would correspond to a situation, in which the i-th controller has the perfect
knowledge of the actual state.
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Conforming with (2.1), we can replace the term t− νi(t) with age as:

g(∆i[t]; t) , E
[
‖ei[t]‖2] =

∆i[t]−1∑
q=0

tr
((
AT
i

)q
Aq
iΣi

)
. (3.17)

g : N0 7→ R can be seen as a age-penalty function mapping the AoI of a sub-system i to the
MSE. The RHS of the equation (3.17) is strictly increasing in age for any invertible Ai and
positive-definite noise covariance matrix Σi5.

3.2.1.2 Stationary Distribution of AoI

If a discrete-time Geo/Geo/1 queue models the communication between a source-destination
pair, the AoI follows a stationary distribution [Kos+20]. In their work, authors derive the
PMF of the AoI for given arrival and service rates λi and µi as6:

Pr[∆i = δ] =
(µi − λi)

(
1−λi
1−µi

)−δ
1− µi

− λiµiδ(1− µi)δ−1 +
λiµi(1− λi)δ
µi − λi

+

(λ2
i − λiµi(µi + 1) + µ2

i ) (1− µi)δ−1

λi − µi
. (3.18)

Note that the stability of the queue is a requirement for the equation above, hence λi
µi

= ρi <

1,∀i must hold. Equivalently, the aggregated success probability µi of each sub-system i has
to be higher than the packet admission probability λi.

(3.18) gives the probability of having ∆i = δ at the destination, i.e., controller. Thereby,
we can calculate the expected long-term average of the MSE as a function of the network
parameters λi and µi:

Ci(λi, µi) = lim
T→∞

1

T

T−1∑
t=0

eTi [t]ei[t]

=
∞∑
δ=1

Pr[∆i = δ] · g(δ)

=
∞∑
δ=1

Pr[∆i = δ] ·
δ−1∑
p=0

tr
(
(AT

i )pAp
iΣi

)
(3.19)

The equation can be interpreted as the weighted average of the age-penalties g(δ), with weights
given by the probabilities Pr[∆i = δ]. We denote the long-term average MSE as Ci(λi, µi)
throughout the following analysis.
5As we consider (non-zero) Gaussian noise in our model Σi is positive-definite by definition.
6Note that (3.18) is a shifted version of the original equation from [Kos+20]. The necessity for adaptation is that

our model allows a minimum age of one while in [Kos+20], the minimum achievable AoI is two.
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Figure 3.6: The expected long-term average of MSE, i.e., Ci, for varying service rate while the arrival
rate is fixed for all sub-systems, i.e., λi = 0.65, ∀i. Each curve corresponds to a different sub-system
with the system matrices A{1,2,3} ∈ {1.0, 1.1, 1.2}. A higher Ai represents a less stable system that is
more challenging to control. The noise covariance matrix is one for all sub-systems, i.e., Σi = 1.0, ∀i.

Let us look at the behavior of Ci for varying service rate, i.e., {µi : λi < µi ≤ 1} and
fixed λi = 0.65 presented in Fig. 3.6. Each of the three curves, depicted in different colors,
belong to a sub-system, with the system matrices being varied between 1.0, 1.1, and 1.2.
A higher Ai represents a more challenging control application due to its relatively higher
instability7. It is evident that the system dynamics play an essential role, especially when the
channel conditions are worsened. This is related to the PMF “shifting” more towards larger
age values, which in return leads to the amplification of the higher age-penalties. Governed
by the aggregated success rate of individual loops, an increase in the service rate predictably
leads to an improved estimation performance.

Fig. 3.7, on the other hands plots the MSE when the service rate is fixed. Instead, the
arrival rate is varied such that {λi : 0 < λi < µi}. We observe that a very low λi leads to
worsened estimation performance due to the increased inter-arrival times. In consequence,
the monitor cannot be updated regularly due to the under-utilization of the network resources.
Contrarily, throttling the admission probability is counterproductive w.r.t. the MSE after a
certain λi value. As a consequence of the increased arrival rate, the packets start experiencing
longer queueing times and thus become outdated when they are eventually received by the
controller.

7As the eigenvalue of a scalar system matrix Ai equals to the matrix itself. From the fundamentals of control
theory, we know that the higher the eigenvalue gets beyond one, it represents a less stable system.
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Figure 3.7: The expected long-term average of MSE, i.e., Ci, for a fixed service rate µi = 0.8 and
noise covariance matrix Σi = 1.0,∀i. Each curve corresponds to a different sub-system with the
system matrices A{1,2,3} ∈ {1.0, 1.1, 1.2}.

3.2.1.3 Optimization Problem

Now, we consider the total service rate R to be limited. We formulate an MSE minimization
problem for given arrival rates in the form of λ = [λ1λ2 . . . λN ]T . The optimization variable
isµ = [µ1µ2 . . . µN ]T and the goal is to find a vectorµ∗ that leads to the minimum age-penalty
in the network:

µ∗ =arg min
µ

N∑
i=1

Ci(λi, µi)

s.t. λi − µi < 0,∀i
N∑
i=1

µi ≤ R.

0 ≤ µi ≤ 1,∀i

(3.20)

In order to make the optimization problem tractable, we assume that the set of feasible arrival
and service rates are convex and the domain of the problem is [0, 1].

3.2.1.4 Results and Evaluation

Our goal is solve the optimization problem (3.20) and find the optimal rate allocation in the
network that leads to the maximized estimation performance. To that end, we considerN = 3

scalar control sub-systems and conduct a simulative analysis consisting ofT = 2000 time slots,
repeated 2000 times. In order to cover a more generalized setting, we assume heterogeneous
applications whose system matrices are selected as A{1,2,3} = {1.0, 1.1, 1.2}. Each of these
represents a feedback control loop with a heterogeneous time-criticality. Moreover, the
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Figure 3.8: The PMF of AoI illustrated together with the normalized occurrence frequency
of ∆i throughout our simulations. Transmission success probabilities are given as µ =
[0.594, 0.673, 0.733]T .

remaining control system parameters are assumed to be identical. That is, Σi = 1.0 and
Σi = 1.0, ∀i. For simplicity, we select Qi = 1.0 and Ri = 0 for all sub-systems. In other
words, we penalize solely the state deviation from zero but neglect the control effort. Hence,
the optimal feedback gain matrix from (2.17) simplifies toLi = Ai. Such a control law is also
referred as deadbeat control strategy in the literature. Ultimately, we consider equal arrival
rate at each sensor, i.e., λi = 0.5,∀i.

To avoid a trivial solution, we consider a scenario, in which the resources are scarce.
Therefore, the total available service rate R has to be less than the number of sub-systems in
the network. To that end, we select R = 2 < N and enforce at least one of the sub-systems
to have an aggregated success probability less than one, i.e., ∃i : µi < 1.

To obtain the solution of (3.20), we use the GEKKO optimization suite based on Python
programming language [Bea+18]. As a result, we obtain the following optimal service rates:
µ∗1 ≈ 0.594, µ∗2 ≈ 0.673, and µ∗3 ≈ 0.733. Fig. 3.8 shows the resulting stationary age
distribution together with the normalized occurrence frequency of each ∆ value. While the
least critical sub-system, i.e., i = 1, reached peak age values of ∆1[t] > 70 for some t, the
least stable loop, i.e., i = 3, never exceeded 30 throughout our simulations. The difference is
caused by the unbalanced rate allocation between the feedback loops.

Before delving into the main results, let us have a look at the relationship between the
MSE, AoI, and the control system dynamics. Fig. 3.9 combines the analytical and numerical
results for g(∆i) in a single plot. We can clearly see that as ∆i increases, the estimation
performance of more time-critical applications drop rapidly. Note that the deviation of the
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Figure 3.9: The mean squared error plotted against increasing AoI. The figure contains both analytical
and numerical results. The results illustrate the growth in MSE for increasing AoI. The oscillations
towards higher age values are caused by small sample sizes.
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Figure 3.10: The resulting mean squared error illustrated when different allocation vectors µ =
[µ1 µ2 µ3]T along the x-axis are applied. Equal sampling probability of λi = 0.5,∀i is selected.
Outliers are not displayed to avoid visual clutter. Simulation MSE is calculated by taking the average
of all 2000 repetitions. The lower and upper whiskers represent the first and third quartiles, respectively.

numerical (simulation) from analytical (theoretical) results for higher age values is caused by
the smallness of their sample size.

Figures 3.10 and 3.11 present the main results of this section. In Fig. 3.10 we compare the
estimation performance ofµ∗, solving the optimization problem (3.20), to other permutations
with three users without violating the constraints. In order to limit the number of permutations,
we have selected 0.05 as the resolution of our search space. To that end, we have divided the
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Figure 3.11: The resulting control cost in the network illustrated when different allocation vectors
µ = [µ1 µ2 µ3]T along the x-axis are applied. Equal sampling probability of λi = 0.5, ∀i is selected.
Outliers are not displayed to avoid visual clutter. The triangle marker is placed at the overall average
cost throughout 2000 repetitions of each scenario. The lower and upper whiskers represent the first
and third quartiles, respectively.

linear space between λi and one into equally distant sub-spaces with a step-size of 0.05. As we
can see from the figure, µ∗ outperforms all other rate allocation vectors sorted in ascending
order w.r.t. the average MSE8. This means, among all explored solutions, the µ∗ is indeed
the best-performing one when it comes to maximizing estimation performance.

The MSE allows us to draw conclusions about the estimation performance. On the other
hand, the actual QoC is captured by the Linear-Quadratic-Gaussian (LQG) cost given in
(2.15). Suppose a human observing the control systems’ states. The observer would be able
to judge how the control processes are performing only by looking at the state evolution over
time but not at the estimation accuracy. Hence, in addition to the MSE, we calculate the
time-average LQG cost in the network achieved throughout our simulations, J , as:

J =
N∑
i=1

Ji. (3.21)

Fig. 3.11 presents the resulting control performance of µ∗ together with other candidates, as
in Fig. 3.10. Once again, we can observe that the optimal solution is able to maximize the
QoC, although our optimization problem targets the maximization of the estimation accuracy.
The indirect improvement of the control performance can be explained through the following
intuition: A better decision making at the controller is possible when the destination is
8Note that the figure contains only the selected best-performing permutations due to space and presentation

considerations.
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provided with the information that allows it to estimate the actual state more accurately. This
is an intuitive but valuable observation showing how AoI can be utilized as an intermediate
tool for the derivation of age-dependent metrics. This close relationship between information
freshness, estimation and control reappears in multiple locations in the remainder of this
thesis.

3.3 Related Work

Related Work on AoI in Multi-hop Networks

Several studies have addressed the average AoI in multi-hop networks. In particular, [Yat18]
and [MAE18] focus on line networks and derive closed-form expressions for average AoI.
While [Yat18] assumes LCFS queue, in [MAE18] packets are forwarded in a FCFS fashion
to the monitor. Although mostly focusing on the line network case, [TKM17] extends the age
problem to a general network setting and show that the general age minimization problem
can be solved by converting all flows to single-hop and applying suitable weights on each
edge. [FKB19b] considers a multi-source, multi-monitor scenario in a multi-hop setting.
The authors derive lower bounds on the instantaneous peak and average AoI by employing
fundamental graph-theoretical measures such as connected domination number and average
shortest path length. Furthermore, [Chi+21] derives the probability distribution of peak AoI
in a tandem system composed by two consecutive FCFS queues. In contrast to the existing
works, we extend these by going beyond the mean AoI and deriving the stationary distribution
of age in an n-hop line network.

Related Work on AoI in Queueing Systems

The AoI in queueing systems have been the focus of many prior works in the literature. To
name a few prominent examples, in [KYG12a], which is one of the first works on AoI, the
authors derive the mean AoI for M/M/1, M/D/1 and D/M/1 FCFS queues. [CCE14]
shows that discarding outdated packets is significantly more beneficial w.r.t. the average AoI,
if the inter-arrival time between two consecutive packets is low. Another work considering
M/M/1 FCFS queue is [Kos+17]. In their work, authors expand the notion of aging through
non-linear functions in time, e.g., exponential and logarithmic functions, to better characterize
the importance of a new update for certain applications. [Ino+19] derives the stationary distri-
bution of continuous time AoI under various queueing disciplines such as FCFS, LCFS with
or without packet preemption. Last but not least, [Kos+20] derives the stationary distribution
of AoI, as well as, peak AoI assuming a discrete-time model. As a main contribution over



3.4. Summary 41

the state of the art, we extend the concept of non-linear aging by taking the control system
model into account. Additionally, we demonstrate how the stationary distribution of age can
be used to maximize the estimation and control performances in a network of multiple control
applications of heterogeneous type.

3.4 Summary

In this section, we have examined two distinct scenarios. In the first scenario, we have
considered a multi-hop network subject to stationary packet loss on each link. In contrast to
the second part of this chapter, we have assumed a LCFS queue of size one at each node,
meaning that any older packet in the transmission queue is discarded upon the arrival of a
more recent one. In such a setting, we were able to derive the stationary distribution of AoI.
In the second part of this chapter, we have gone one step further and utilized the PMF of AoI
to tackle optimization problems for WNCS. We were able to do so by deriving non-linear
age-penalty functions that depend on the control applications’ dynamics. Our analysis has
been based on two metrics, namely the MSE and the LQG cost capturing the estimation and
control performances, respectively.

The two networking scenarios that have been considered in this chapter enable us to
obtain stationary distribution of age. Our results demonstrate how such distributions can be
used for cross-layer performance optimization in the context of WNCS. However, in some
scenarios, such (stationary) distributions may not exist or can be computationally challenging
to calculate. For instance, if the channel conditions are time-varying, and/or if the network
is actively managing the network resources during run-time, the distribution is constantly
manipulated through the in-network decision-making. To cover such scenarios, instead of
using distributions of AoI, the following chapter explores different tools and methods for
cross-layer design in WNCS.





Chapter 4

Optimal Scheduling for Wireless
Networked Control Systems

In the previous chapter, we have shown the interplay between communications and control
in two example networking scenarios. The main results from the previous chapter suggest
that timely and regular transmissions play a central role in networked control and one way
to improve control performance is to make networks more suitable for control applications.
Moreover, the previous results indicate that information freshness, as well as, the QoC can
directly or indirectly be controlled through careful configuration of the network. In this
chapter, we change our perspective and set our focus on online decision-making mechanisms,
specifically within the data-link layer. We tackle the centralized scheduling problem in a
wireless communication network that comprises multiple heterogeneous feedback control
loops contending for the limited network resources. The key conceptual difference between
the following content and the previous chapter is that the network optimization becomes a
more dynamic and reactive process. Nevertheless, the network’s awareness of semantics of
information, such as freshness and value remains important throughout this chapter’s content.

Centralizedwireless resource scheduling is one of the key concepts and research challenges
in today’s wireless networks and standards. Despite the complexity the scheduling introduces,
when compared to simple contention-based MAC protocols, e.g., ALOHA, the benefit of
managing the network resources centrally is significantly larger in most of the cases. Current
cellular Radio Access Network (RAN) architectures rely on centralized scheduling, in which
the physical radio resources are managed by a central entity called scheduler [DPS20]. A
typical RAN architecture locates the scheduler at the Base Station (BS).

Generally, the conventional scheduling algorithms base their decisions on the statistics
collected from the users, such as the estimated channel quality, buffer status, and through-
put history [Cap+13]. With the introduction of new technology and services, e.g., remote
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monitoring, industrial applications, unorthodox metrics such as the AoI have started finding
their use in the networking protocol stack, particularly in the central orchestration of network
resources in time-critical application scenarios1. However, the application of the AoI metric
specifically for control over networks is an immature research field. Therefore, in this chapter,
we seek answers to the following questions:

1. Is it beneficial to consider the AoI for wireless resource scheduling to achieve better
control performance? How does it compare to incorporating value of information into
decision-making?

2. Can the semantics of information beyond AoI be considered managing the wireless
resources centrally, without assuming a global knowledge at the scheduler?

3. How can the network solve the centralized resource allocation problem optimally if:

a) the channel conditions are static, represented by constant packet success probabil-
ities between source-destination pairs?

b) the channel conditions are time-varying, represented by changing packet success
probabilities over time?

To answer these questions, we start with a cellular UL and DL scenario that involves
multiple WNCS communicating over a BS. We investigate whether AoI sufficiently captures
the importance of each transmission or further semantics beyond age are necessary to prioritize
the users more efficiently. In the first study, we do not consider any packet loss in the network
and propose a greedy UL and DL scheduler. The first study tackles the first and second
research questions specified above and reflects the core findings of our publication [Aya+19].
The results reveal that a significantly higher performance can be achieved if the scheduler
does not consider only the timeliness aspect of a packet but also its value.

To address the question 3.a), we introduce packet loss and formulate an infinite horizon
discounted cost problem targeting the minimization of the network-induced estimation error.
In the same study, which is mainly based on [AVK20], we compare the achieved performance
to our firstly proposed heuristic approach. Afterwards, we allow the packet loss probability
to vary over time. Thereby, we find the optimal action by looking at a finite time horizon into
the future, summarizing our work [Aya+20a]. This approach is extended in [Aya+23] through
the joint consideration of the UL and DL in the final main section. The studies involving
dynamic link qualities, i.e., [Aya+20a; Aya+23] target the question 3.b) specifically.

1We name some prominent examples of scheduling algorithms minimizing AoI in chapter 2.
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Figure 4.1: The considered scenario consisting of N feedback control loops sharing a star network.
The communication between sensor-controller pairs are enabled through a base station (BS). The
wireless resources on the UL, as well as DL are allocated by a centralized scheduler located at the BS.

4.1 Greedy Scheduler for WNCS

4.1.1 System Model

We consider a network shared by N independent LTI feedback control loops. Each sub-
system is comprised of a sensor Si, a controller Ci, and a plantPi. While each plant-controller
pair is co-located, the sensors operate remotely; hence, each control sub-system contains a
non-ideal sensor-to-controller link. We further assume that each sensor-controller pair cannot
communicate directly with each other, but are able to exchange information over a base station
(BS). As a result, the periodic observations made by each Si are transmitted in the form of
status update packets first to the BS, from where they are forwarded to the corresponding
controller Ci. Such a topology is called a star network in the literature. Fig. 4.1 illustrates the
describe scenario. Note that the sensor-to-BS link and BS-to-controller links are called UL
and DL, respectively.

The smallest time unit in our system model is a transmission slot of unit length, which
is indexed by t ∈ N. Every transmission starting in a time slot t ends within the same time
slot. The behavior of each control sub-system i is governed by the difference equation in
discrete-time as:

xi[t+ 1] = Aixi[t] +Biui[t] +wi[t], (4.1)

with the system noise being independent and identically distributed according to a zero-mean
Gaussian distribution with the diagonal covariance matrix Σi, i.e.,wi ∼ N (0,Σi). Note that
the sampling period is selected equal to the slot frequency, thus we use t to index sampling
periods in (4.1)2.

2One can imagine a slot duration of one millisecond corresponding to a sampling frequency of one kHz, or a
slot duration of ten milliseconds corresponding to 100 Hz.
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The medium access on both links is orchestrated by a centralized scheduler located at the
BS. Let us introduce a decision variable πULi [t] ∈ {0, 1} indicating whether Si is scheduled
for an UL transmission in time slot t, i.e.:

πULi [t] =

1, if Si is scheduled on the UL in time slot t

0, otherwise.
(4.2)

Similarly, another variable πDLi [t] ∈ {0, 1} takes the value of one if a packet intended for Ci is
transmitted in the t-th slot on the DL. For presentation purposes and to capture the kernel idea
of the presented content, we assume that only one user is allowed to transmit on each link3:

N∑
i=1

πULi [t] ≤ 1, and
N∑
i=1

πDLi [t] ≤ 1. (4.3)

Throughout this section, we assume that every transmission is successful and takes one
full slot duration. Moreover, if a new piece of information becomes available, for instance,
at the sensor after a sampling event, any older status update packet is discarded and replaced
by the more recent information. This ensures that every sensor has always one packet in its
UL transmission queue. In addition, having received a new information after a successful
transmission on the UL, the BS replaces any older packet from the same sub-system with
the fresher update packet. This means that each flow i has at most one packet waiting to be
transmitted on the DL. Discarding older packets come from the assumption that the status is
Markovian and the sensor observations are perfect. Therefore, having received a more recent
update, the controller does not benefit from receiving an older one.

Having said that, we introduce three new variables νSii [t], νBSi [t], and νCii [t] that denote
the generation time of the most recent information available at Si, at the BS, and at Ci,
respectively. Due to the considered packet discarding policy and periodic sampling, it holds
that νSii [t] = t,∀t. As a result, the behavior of νBSi [t] follows as:

νBSi [t+ 1] =

t, if πULi [t] = 1

νBSi [t], otherwise.
(4.4)

Moreover, νCii [t] can be characterized by the following equation:

νCii [t+ 1] =

νBSi [t], if πDLi [t] = 1

νCii [t], otherwise.
(4.5)

Note the transmission delay of one slot in equations (4.4) and (4.5).
3Note that further variations of UL and DL resource constraints are possible and have been studied in [Aya+19].



4.1. Greedy Scheduler for WNCS 47

Before the introduction of the greedy scheduling policy, let us define the instantaneous
AoI at each network node separately as:

∆Sii [t] = 0, (4.6)

∆BS
i [t] = t− νBSi [t], (4.7)

∆Cii [t] = t− νCii [t], (4.8)

The first row follows from the assumption that each sensor is able to observe the system
state xi[t] without any measurement delay. Thus, the AoI at the sensor is zero at all times.
The AoI at the BS, as well as at each controller are obtained by taking the difference between
the current time and the freshest information’s timestamp, as usual. It is important to mention
that the AoI at the BS for a sub-system i has to be less than or equal to the AoI at Ci,
because every packet received at Ci must have passed through the BS. In mathematical terms,
∆BS
i [t] ≤ ∆Cii [t],∀i, t.

4.1.2 Greedy UL & DL Scheduling Policy

In this section, we introduce two heuristic scheduling policies prioritizing flows on the UL
and DL based on the selected metric.

4.1.2.1 Age of Information Scheduler

As the name suggests, the AoI scheduler aims to increase information freshness in the network.
As a results, the final goal is given as:

min
πUL
i [t],πDL

i [t]
lim sup
T→∞

1

T

1

N

T−1∑
t=0

N∑
i=1

∆Cii [t]. (4.9)

To solve (4.9), we leverage the results from [Kad+18] suggesting that the greedy scheduling
policy is in fact age-optimal if all UL transmissions have the same success probability.
Although our network is two-hop, we can treat each link separately and first minimize the age
at the BS as:

max
πUL
i [t]

πULi [t] ·∆UL
i [t], (4.10)

s.t.
N∑
i=1

πULi [t] ≤ 1,
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and then treat the BS as source, hence define the DL problem as:

max
πDL
i [t]

πDLi [t] ·∆DL
i [t], (4.11)

N∑
i=1

πDLi [t] ≤ 1.

Ties are broken arbitrarily. The resulting {πULi [t], πDLi [t]} pair maximizing the RHS of (4.10)
and (4.11) is the UL and DL schedule for the current transmission slot t.

4.1.2.2 Value of Information Scheduler

It is evident from equations (4.10) and (4.11) that the AoI scheduler solely takes the instanta-
neous age of each sub-system, hence aiming to provide Fresher information to the controllers.
Now we introduce another heuristic scheduler that goes one step further and considers the
expected MSE stemming from the absence of fresh information. We call our proposed sched-
uler the value of information (VoI) scheduler, whereas the value of each packet is matched
with the expected MSE reduction at the receiver in case of a successful transmission.

Similar to the AoI scheduler, we select the sub-system with the highest MSE on each link.
In contrast to (4.9), the primary goal of the VoI scheduler is not maximizing the information
freshness, but rather achieving a higher estimation performance captured by the reducedMSE,
i.e.:

min
πUL
i [t],πDL

i [t]
lim sup
T→∞

1

T

1

N

T−1∑
t=0

N∑
i=1

E
[
‖ei[t]‖2] . (4.12)

Next, we are interested in finding a heuristic solution to (4.12) and therefore define the
following UL and DL scheduling policies:

max
πUL
i [t]

πULi [t] · g(∆BS
i [t]; t), (4.13)

s.t.
N∑
i=1

πULi [t] ≤ 1,

and:

max
πDL
i [t]

πDLi [t] · g(∆Cii [t]; t), (4.14)

s.t.
N∑
i=1

πDLi [t] ≤ 1,

with gi(∆i[t]; t) defined as in (3.17). In simple words, the greedy VoI scheduler selects
the user with the highest instantaneous MSE. Our solution is an heuristic solution, thus
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provides an upper bound for the scheduling problem in (4.12). Nevertheless, although it falls
behind at providing fresh information, as we are going to show in the following discussion, it
outperforms the AoI scheduler w.r.t. control performance.

4.1.3 Evaluation

In this section, we present a numerical evaluation comparing the performances of the two
heuristic schedulers that we have introduced in section 4.1.2. Our evaluation is based on
simulation results, whereas each simulation run consists of T = 20000 slots. To simplify the
analysis, we consider scalar feedback control loops, i.e., Ai,Bi,Li,Σi ∈ R,∀i. However,
the control loops are assumed to be of heterogeneous type, whereas we consider four classes
of control loops. A class is characterized by its system matrix as Ai ∈ {1.0, 1.1, 1.2, 1.3}.
In other words, two sub-systems i and j have different system matrices if they are not from
the same class, e.g., Ai = 1.0 and Aj = 1.3. Analogously, if i and j are from the same
class of applications, their system matrices are identical, i.e., Ai = Aj . The feedback gain
matrix is chosen according to the deadbeat control strategy Li = Ai. Input matrices are
equal among loops, i.e., Bi = 1.0,∀i, as well as the characteristics of the system noise, i.e.,
wi ∼ N (0, 1),∀i.

As Key Performance Indicator (KPI)s, we use the long-term average AoI per sub-system
to quantify the achieved information freshness:

∆ =
1

N

1

T

N∑
i=1

T−1∑
t=0

∆Cii [t]. (4.15)

Moreover, the average MSE is measured to quantify the adverse effects of the communication
network on the remote state estimation. TheMSE is given as:

MSE =
1

N

1

T

N∑
i=1

T−1∑
t=0

‖ei[t]‖2 . (4.16)

We vary the number of users to capture the relationship between the resource scarcity
and information freshness in the network. Specifically, we gradually increase N from four to
twenty in discrete steps as N ∈ {4, 8, . . . , 20}. Thereby, we keep the number of sub-systems
per class balanced. This means, when N = 8, each class is comprised of two-subsystems
having equal system matrices, i.e.,A1 = A2 = 1.0,A3 = A4 = 1.1, etc. Fig. 4.2 illustrates
the expected MSE at ∆i for each control loop class. It is evident that the MSE grows much
faster for systems of the fourth class withA4 = 1.3 than it does for those havingA1 = 1.0.

Fig. 4.3 shows the average AoI for increasing N when AoI- and VoI scheduling policies
are employed. Firstly, we notice that when there are more users in the network, the AoI
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Figure 4.2: The expected MSE at age ∆ for the considered scalar control loops. Note thatAi is varied
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Figure 4.3: Long-term average AoI per sub-system per slot, i.e., ∆ for varying number of feedback
control loops, i.e., N . A lower ∆ indicates a higher information freshness. The sub-systems are of
heterogeneous type representing different control task-criticalities.

increases for both schedulers. This is an expected result, since more users lead to a higher
resource scarcity, thus, the average transmission frequency of a sub-system decreases. In
addition, the AoI scheduler achieves a lower ∆ indicating a higher information freshness. As
a result, if our primary goal were providing the controllers with regular and timely updates,
we can confidently say that the AoI scheduler is a better choice than the VoI scheduler.
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Figure 4.4: Mean squared error (MSE) per sub-system per slot capturing the estimation accuracy.
A lower MSE corresponds to a higher performance. The sub-systems are of heterogeneous type
representing different control task-criticalities.

Generally speaking, a lower AoI is desirable as it means that the controllers have up-to-
date information about the system state. However, optimizing w.r.t. AoI may not necessarily
lead to a higher performance, especially if the applications have heterogeneous demands.
To validate this statement, let us compare the two schedulers in terms of MSE. Fig. 4.4
presents the achieved mean squared (estimation) error, for increasing N . One can observe
from the figure that for a low number of users, both schedulers deliver relatively close results
w.r.tMSE. On the other hand, as N increases, the AoI scheduler, which is the age-optimal
one for our considered scenario, falls behind the heuristic VoI scheduler significantly. This
shows that although having fresh information is generally beneficial in real-time monitoring
and control scenarios, the network resources should not be distributed solely by looking at the
AoI alone. On the contrary, if the primary goal is to perform better in terms of task-specific
performance criteria, one needs to explore other metrics than age as it is not capable of
capturing application-dependent criticalities except for timeliness.

4.2 Optimal Scheduler forWNCS: The Constant Loss Case

In the previous section, we have shown the superiority of the VoI over AoI as a scheduling
metric for networked control systems. However, our study has not involved any packet loss
in the network model. To bring our model one step closer to the reality, we introduce packet
loss into our model making the outcome of any scheduled transmission a stochastic process.
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Figure 4.5: The considered scenario consisting ofN feedback control loops sharing awireless channel.
The medium access is managed by a centralized scheduler.

4.2.1 System Model

We considerN control sub-systems closed over a wireless network. The time dynamics of the
control systems follow the discrete-time LTI model from (4.1). In contrast to section 4.1, the
BS-to-controller link is assumed to be ideal. On the other hand, the UL channel between the
sensors and the base station is shared, with the network access being managed by a centralized
scheduler. Time is divided non-overlapping slots, indexed by t.

Each sub-system i consists of a plant Pi, a sensor Si, and a controller Ci, as depicted in
Fig. 4.5. If a sensor i is granted channel access by the scheduler in time slot t, it transmits
the latest state information xi[t] to the controller Ci4. In case of a successful transmission,
the controller uses the new information for the remote estimation estimate of the system state,
as in (3.15). Each update packet occupies a single transmission slot, which is also equal
to the sampling period of sub-systems. We assume a constant delay of one time slot, i.e.,
any successful transmission scheduled in time slot t can be used by the controller to obtain
ui[t+ 1].

We assume packet erasure channel, where each transmission by Si is successfully received
by the controller with a constant probability, i.e., pi[t] = pi,∀t with pi ∈ (0, 1]. Let us
introduce a binary variable δi[t] ∈ {0, 1} denoting the transmission outcome and a second
variable πi[t] ∈ {0, 1} indicating the scheduling decision for sub-system i. In other words, if
the scheduler allows Si to transmit in time slot t, then πi[t] = 1. Moreover, if πi[t] = 1, then
the chance of the transmission to be successful is given as:

Pr[δi[t] = 1 | πi[t] = 1] = pi. (4.17)

Similarly, if a sensor Si transmits after being granted access, the failure probability is given
as:

Pr[δi[t] = 0 | πi[t] = 1] = 1− pi. (4.18)
4The sensors replace their packet in their transmission buffer with a more recent measurement if they are not

granted channel access.
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Note that for any user i that has not been scheduled for slot t, the chance of a successful
transmission is zero, as sensors transmit only if they are allocated a transmission slot, i.e.,
Pr[δi[t] = 1 | πi[t] = 0] = 0.

Having received a new update, the controller is always provided with a more recent
system state information, as there are no out-of-order packets in our model. In other words,
the generation time of the most recent information takes a greater value upon a successful
reception. Let νi[t] ∈ N denote the generation time of the most recent system state that the
controller Ci has observed until t, i.e., νi[t] = sup{τ ∈ N : τ < t, πi[τ ] · δi[τ ] = 1}. If Si is
scheduled for transmission in time slot t and the transmission is successful, then νi[t] is set to
t in the subsequent slot. Otherwise, it stays constant as Ci has not received a new update. As
a result, the AoI can be characterized by the following equation:

∆i[t+ 1] =

1, if πi[t] · δi[t] = 1

∆i[t] + 1, if πi[t] · δi[t] = 0
(4.19)

The first row follows from the constant delay assumption of one sampling period. Thus, a
successfully received packet sets the AoI to one5. In all other cases, covered by the second
row, the AoI increases by one every time slot, hence linearly in discrete-time. The equation
(4.19) characterizes the relationship between the scheduling decision and the AoI. Namely, if
the scheduler allows a sub-system i to transmit in slot t, then with a constant probability of pi,
the age is reset to one in the following time slot. On the other hand, for all other sub-systems
the AoI increment by one occurs with a probability of one.

Let us introduce a vector s[t] ∈ S, the i-th element of which is ∆i[t], i.e., s[t] ,

(∆1[t],∆2[t], . . . ,∆N [t]). The state space S is the N -dimensional set of positive numbers,
i.e.,NN

+ . Similarly, let a[t] ∈ A denote the scheduling action with a[t] = i indicating πi[t] = 1

and πj[t] = 0,∀j 6= i. The action spaceA is given as {∅, 1, . . . , N}. Here, a[t] = ∅ allows
a slot to be idle, i.e., a slot, in which none of the sub-systems is granted channel access.

4.2.2 Problem Statement

We are interested in stationary scheduling policies Π that map the state space to admissible
action space as Π : S 7→ A. In contrast to section 4.1, in which the slots were allocated to
the user with the highest MSE, we formulate an infinite horizon optimization problem that
aims to achieve a minimum MSE in the network by following the framework in [Ber95]. To
that end, we model the entire system as an MDP with states s, actions a, and the immediate

5Hence, the AoI takes a positive integer value, i.e., ∆i[t] ∈ N+,∀i, t.
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state cost g(s) as:

g(s[t]) ,
N∑
i=1

∆i[t]−1∑
q=0

tr
((
AT
i

)q
Aq
iΣi

)
︸ ︷︷ ︸

as in (3.17)

. (4.20)

Simply put, (4.20) gives the total MSE in the network given a network state s[t].

Our objective is to find a stationary optimal policy π∗ ∈ Π that minimizes the total MSE
over an infinite horizon, given an initial state s[0], i.e.:

Jπ∗(s[0]) = min
π∈Π
Jπ(s[0]) (4.21)

with:

Jπ(s[0]) = lim
T→∞

Eπ

[
T−1∑
t=0

γtg(s[t])

]
. (4.22)

Eπ indicates that the expectation is taken w.r.t. the transition probabilities between the states
when the scheduling policy π is selected. Moreover, γ ∈ (0, 1) is a positive scalar value
called discount factor.

Definition 1. A scheduling policy is called γ-optimal if it minimizes the discounted cost over
an infinite horizon, thus minimizing the right hand side of (4.22) [Ber95].

The role of the discount factor γ is adjusting the effect of the expected future costs on
immediate decision. Specifically, any cost that is incurred h slots from now is worth only γh

times what it would cost if it were received immediately. Hence, as γ approaches one, the
scheduler weights future penalties more and thereby becomes more far-sighted.

4.2.3 Scheduler Design

4.2.3.1 Approximating Sequence of the MDP

Theoretically, the MDP consists of infinite states as the age is not upper-bounded, thus can
grow infinitely. In fact, the state space corresponds to NN

+ , thus by definition is a countable
N -dimensional infinite set. As it is not possible to iterate through infinite states in practice,
we apply a technique called Augmentation Type Approximating Sequence (ATAS) of the MDP
[Sen09].

Let us define a non-empty finite state space SM ⊂ S that includes only those states with
all elements being less than or equal to M , i.e., ∆i ≤ M,∀i, hence dividing S into two
disjoint sets. On the other hand, the states that contain at least one element exceeding M
belong to the infinite set S \SM . Put differently, as long as the age values of all sub-systems
are less thanM + 1, the state is considered to be in SM .
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Figure 4.6: Augmentation type approximating sequence for the exemplary MDP with one sub-system
i and the maximum augmented age M . Given the current state s[t] = M and action a[t] = i,
we redistribute the excess probability of a transition from M to M + 1 back to the state M , i.e.,
Pr[s[t+ 1] = M |s[t] = M,a[t] = i] = 1− p1.

Now, we apply the ATAS method that approximates the original MDP by limiting the
state space. In particular, suppose the following two scenarios: 1) in state s ∈ SM an
action a is taken. With a certain probability pass′ it leads to a next state s′ ∈ SM within
the same finite state space SM . 2) in state s ∈ SM an action a is taken and a transition
to another state ŝ /∈ SM is possible with the probability pasŝ ≥ 0. The probability pasŝ is
called excess probability and is defined as the transition probability from a state s ∈ SM
to another state ŝ /∈ SM outside the finite space. When the ATAS is applied, the transition
probabilities conforming with the first scenario remain unchanged. However, for the second
case, all excess probabilities are redistributed to states s′ in SM according to a probability
distribution fs′(s, a, ŝ,M). If we denote the resulting MDP by MDPM , the definition of the
ATAS follows from [Sen09].

Definition 2. A sequenceMDPM is an augmentation type approximating sequence of anMDP
if for each ŝ /∈ SM , given s, s′ ∈ SM, and a ∈ A, there exists a probability distribution
fs′(s,a, ŝ,M) such that

pass′(M) = pass′ +
∑

ŝ∈S\SM

pasŝ fs′(s, a, ŝ,M). (4.23)

The application of the ATAS in our use case can be explained as follows: Let ∆̃
(M)
i [t]

be the augmented AoI for the i-th sub-system with ∆̃
(M)
i [t] = min(∆i[t],M). That is, we

truncate AoI to M if its value exceeds M . As we do not allow AoI values greater than M ,
the newly created state space is finite with SM = {1, . . . ,M}N . Fig. 4.6 illustrates the
resulting MDPM for a single sub-system i given that the scheduler decides to schedule the
user at ageM , i.e., a[t] = i. The figure shows that although the actual age of the sub-system
grows beyondM , our model approximates prevents the augmented age to grow beyondM by
redistributing the excess probability 1− p1 back to the maximum allowed ageM . Hence, the
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resulting MDPM is an approximation of the actual behavior of the system. To avoid visual
clutter, we proceed with the approximating sequence to simplify the notation and consider the
resulting state space SM .

As we have the states, actions and transition probabilities of the finite MDPM , let us define
the immediate cost associated with each state-action pair as:

C(s[t], a[t]) =
N∑
i=1

g(∆̃
(M)
i [t]), (4.24)

with s ∈ SM . Note that C(s[t],a[t]) considers only the MSE and is independent of the taken
action. Nevertheless, one can easily introduce an additive communication cost term to the
equation, to capture, for instance, the energy cost of a transmission or possibly heterogeneous
resource demands by sub-systems to transmit a single packet.

4.2.3.2 γ-optimal Discounted Error Scheduler (DES)

We propose a γ-optimal stationary scheduling policy minimizing the discounted infinite
horizon problem given in (4.22). The state costs are modeled by the approximations in (4.24)
for a given augmentation levelM . To that end, we employ the standard value iteration approach
with dynamic programming from [Ber95]. The proposed algorithm solves the approximated
problem optimally for a given γ and an augmentation levelM .

Value iteration: Each state s is associated with an initial value function J0(s). We
iterate through all states, while updating the cost of each state as:

Jk+1(s) = min
a∈A
{E [C(s, α) + γJk(s′)]}

= min
a∈A
{C(s, α) + γE[Jk(s′)]}

= min
a∈A

{
C(s, α) + γ

∑
s′∈SM

pαss′ Jk(s′)
}
. (4.25)

The cost of each state is dictated by the discounted expected cost after taking the optimal
action, i.e., the action that minimizes the RHS of the Bellman equation (4.25). As before, pass′
denotes the success probability from a state s to a successor state s′ after taking the action α,
i.e., Pr[s[t + 1] = s′ | s[t] = s, a[t] = α]. In [Ber95], it has been shown that as k goes to
infinity, the value functions will converge to an optimal cost, i.e., limk→∞ Jk = J ∗ for any
given initial value function J0. After the convergence, the optimal actions minimizing the
RHS of (4.25) constitute the stationary optimal policyπ∗. Algorithm 2 illustrates the practical
implementation of the value iteration algorithm for zero initial cost, i.e., J0(s) = 0,∀s. A
positive threshold value θ is used to decide whether the algorithm has converged. The lower
θ is selected, the more precise are the final value functions.



4.2. Optimal Scheduler for WNCS: The Constant Loss Case 57

Algorithm 2 Value iteration
Require: θ
for all s ∈ SM do
J (s)← 0; {Initialize state costs, e.g., as zero}

end for
repeat
u← 0; {Helper variable to track the changes in state costs}
for all s ∈ SM do
Update J +(s) as in (4.25);
u← max(u, |J +(s)− J (s)|); {Track the maximum change during iteration}
J (s)← J +(s); {Update the state cost}

end for
until u ≤ θ
π∗(s)← arg min

a∈A
J (s); {Optimal action at s minimizes the RHS of (4.25)}

return π∗

4.2.4 Evaluation

In this section, we compare the performance of the DES scheduler to the greedy approach
from section 4.1, as well as to the γ-optimal AoI scheduler proposed in [HMD17]. Our
evaluation is based on numerical results generated through simulations.

4.2.4.1 γ-optimal AoI Scheduler (AoIS)

The idea behind the AoIS is very similar to our proposed DES except for the immediate cost
of a state. Namely, instead of using the MSE, the each state is penalized by the sum of the
instantaneous ages at each controller, i.e.:

CAoI(s[t], a[t]) =
N∑
i=1

∆̃
(M)
i [t]. (4.26)

In otherwords, the γ-optimalAoI-based scheduling policy can be obtained by simply replacing
the cost functionC(s, a) in (4.25)with the one above. Aswe are going to show in the remainder
of this section, the resulting policy outperforms all of the selected schedulers w.r.t. information
freshness.

4.2.4.2 Greedy Error Scheduler (GES)

The GES considered in this section is a slightly modified version of the VoI scheduler from
section 4.1. Different than the VoI scheduler, which is channel-unaware by definition, the GES
weights the age-penalty function g(∆i) by the packet success probability pi. The inclusion
of the channel quality in decision-making is necessary as we have introduced the packet loss
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Figure 4.7: Scheduling policies of (a) AoIS, (b) GES, and (C) DES for two sub-systems depicted in
a grid structure. The state matrices of the sub-systems are selected as A1 = 1.1 and A2 = 1.3 to
capture the heterogeneity among control applications. The loss probabilities are selected to be equal,
i.e., p1 = p2 = 0.5. Moreover, γ = 0.9,M = 7, and θ = 0.1 have been used for the AoIS and DES
policies. The dark squares correspond to states s = (∆1,∆2), in which the scheduler decides for the
first user, i.e., a = 1. In those states colored in yellow, e.g., s = (1, 7), the second user is scheduled,
i.e., a = 2.

into our model. However, using the success probability as a weighting factor in front of the
actual cost function is a heuristic approach. Having said that, we provide the GES policy as
follows:

max
πi∈{0,1}

{πi[t] · pi · g(∆i[t])}

s.t.
N∑
i=1

πi[t] ≤ 1. (4.27)

The sub-system i maximizing the equation is scheduled for transmission, i.e., a[t] = i.

Fig. 4.7 depicts the considered policies, namely AoIS, GES, and DES, for a simplified
setting. Specifically, the figures shows the stationary policy for two sub-systems differing in
system matrices Ai. The policy in Fig. 4.7a is symmetrical, as AoIS is independent of the
control system parameters and the packet success probabilities are identical. On the other
hand, figures 4.7b and 4.7b show asymmetrical nature caused by the sub-systems’ discrepancy
in system stability.

4.2.4.3 Simulation Setup

For our numerical evaluation, we consider N = 5 scalar control sub-systems that differ in
their systemmatrix asA1,2,3,4,5 = {1.1, 1.3, 1.5, 1.7, 1.9}. The random packet loss probability
characterizing the shared wireless channel is identical for each user, i.e., pi = 0.9,∀i. The
feedback gain matrix is given as Li = Ai corresponding to the deadbeat control strategy.
Moreover, the input and noise covariance matrices are selected equal as Bi = 1 and Σi = 1
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Figure 4.8: Long-term average age of information vs. discount factor γ for discounted error (DES),
AoI (AoIS), and greedy error (GES) schedulers. Out of five control loops, only one sub-system is
allowed to transmit simultaneously. Transmission success probability is equal for all sub-systems, i.e.,
pi = 0.9 ∀i. 95% confidence intervals are too small to be plotted.

for all sub-systems. We choose the augmentation levelM as 25, to reduce the state space from
infinite to finite length. The stopping condition for the value iteration algorithm presented in
Alg. 2 is selected as θ = 0.1.

Our simulative study is based on Monte Carlo experiments. Each simulation run consists
of T = 20 000 time slots and is repeated 100 times. The performance comparison between
the selected schedulers are made based on the long-term average MSE and the AoI per time
slot calculated as:

MSE =
1

T

1

N

T−1∑
t=0

N∑
i=1

‖ei[t]‖2 (4.28)

∆ =
1

T

1

N

T−1∑
t=0

N∑
i=1

∆i[t] (4.29)

We employMSE as the mainmetric quantifying the estimation performance and∆ to capture
the average freshness performance at the controllers. The discount factor is varied from 0.1 to
0.9 in discrete steps of 0.1, i.e., γ = {0.1, 0.2, . . . , 0.9} to study its effect on the selected KPIs.
It is important to remind that as γ increases, the γ-optimal policy becomes more far-sighted
and expected future costs play a more important role in current actions.

4.2.4.4 Numerical Results

Fig. 4.8 shows the average AoI in the network when AoIS, GES, and DES policies are
utilized for resource allocation. ∆ is plotted against increasing values of the discount factor
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Figure 4.9: Illustration of network resources shares for different sub-system classes over 100 simulation
runs. Numbering in the legend indicate the class i with the respective system matrices A1,2,3,4,5 =
{1.1, 1.3, 1.5, 1.7, 1.9}. Lines with and without markers belonging to the same class i illustrate the
average network resource share granted to i by the discounted (DES) and greedy (GES) error schedulers,
respectively. 95% confidence intervals are too small to be displayed.

γ. We can observe that the AoIS outperforms the GES and DES in terms of information
freshness at the receiver nodes. An interesting observation is the concave shape of the DES
curve for the varying discount factor. In order to elaborate on this effect, we present Fig. 4.9
illustrating the average network shares of individual sub-systems given in percentages. A value
of αi% indicates that the i-th system has been scheduled in αi% of all available transmission
slots. The figure presents the network shares of individual classes i ∈ {1, . . . , 5} with system
matricesAi = {1.1, 1.3, 1.5, 1.7, 1.9} for varying γ. The results give insights into the resource
management and reveals that the discount factor γ effects each application class differently.
For instance, an increase in γ from 0.1 to 0.5 does not have any effect on sub-systems two,
four, and five. However, doing so prioritizes class three over class one application. As a result,
the gap between the first and third feedback loops grows. Such a behavior leads to a reduced
fairness w.r.t. the resource distribution and in return an increase in the average age. Further
growth of γ beyond 0.5, however, reverses this behavior, and increases the prioritization and
network share of the second application withA2 = 1.3. Thereby, the distribution of resources
becomes more balanced, hence the AoI decreases. On the other hand, the GES shows a more
balanced distribution, which in return outperforms the DES in terms of information freshness,
as visible in Fig. 4.8. Additionally, when the AoIS is selected, all sub-systems coincide at
20% regarding the network shares, as they are treated equally irrespective of their system
dynamics. However, Fig. 4.8 does not include those curves to improve presentation.
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Figure 4.10: Long-term average mean squared error plotted against the discount factor γ. The results
are based on discounted error (DES), greedy error (GES), and AoI (AoIS) scheduling policies. Vertical
error bars represent 95% confidence intervals for Monte Carlo simulations with 100 repetitions.

Fig. 4.10 presents the estimation performance captured by the network-wide MSE, i.e.,
MSE. The discount factor γ is varied along the x-axis. In alignment with our previous results
from section 4.1, the AoIS, which is always optimal for the given γ value, is outperformed
by the GES and DES policies. Note that the AoIS neglects the system dynamics and treats
all users equally as long as channel conditions are identical. On the other hand, the DES
outperforms the greedy scheduler for all γ values. Moreover, a more far-sighted policy
achieved by increasing the discount factor helps with reducing the MSE further. Note that the
scheduler becomes more far-sighted as γ increases and possible high costs in the future play
a greater role in current decisions. Contrarily, when a small γ the GES is selected, the policy
rushes for immediate rewards reducing worsening the estimation performance.

4.2.4.5 Selecting the Augmentation LevelM

The augmentation level parameter M is one of the key design parameters for the proposed
scheduling algorithm. In particular for a given number of usersN , the cardinality of the state
space SM equals toMN increasing the computational complexity of the value iteration algo-
rithm significantly. On the one hand, the scalability of the proposed approach suffers heavily
from a largely selectedM value. On the other, if a largerM is utilized, the ATAS approaches
to the original problem and may potentially improve the performance. Put differently, the
selection of the parameterM is a trade-off between complexity and performance. To that end,
we vary the augmentation level M and obtain the stationary optimal policy as described in
the algorithm 2. Doing so, we investigate the impact ofM on the achieved performance.
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Figure 4.11: Achieved MSE plotted against the discount factor parameter γ when the discounted error
scheduler (DES) is employed. Each curve belongs to one of the five selected augmentation levels
M ∈ {15, 16, 17, 20, 25}. Vertical error bars represent 95% confidence intervals for Monte Carlo
simulations with 100 repetitions.

Fig. 4.11 presents theMSE plotted against γ for five different values ofM , namely, 15,
16, 17, 20, and 25. If we look at theM = 15 curve, we can observe that it achieves the worst
performance among the considered values. This results from a less accurate cost functions
due to a higher approximation level6. Consequently, an increase in M leads to a reduction
in the MSE. Nevertheless, the performance gain diminishes after a certainM value, which is
evident especially from the overlapping M = 20 and M = 25 curves. This shows that the
growth in complexity through a higherM does not necessarily lead to a performance gain in
the same magnitude.

In addition, we present the network shares of individual sub-systems i over γ for two of
the selected values of M , i.e., M = 15 and M = 25. As visible in Fig. 4.12, both policies
differing only inM parameter follow very similar trajectories. The largest deviation between
the two curves can be observed for the first sub-systemwithAi = 1.1. Despite of the relatively
small differences in, how the resources are distributed among sub-systems, the difference in
the estimation performance is significant. This shows that although the performance gain
diminishes after a certain point, the selection ofM parameter should be selected carefully in
order to capture the original problem fairly well.

6Since we limit the maximum cost to g(∆̃(M)) for each sub-system i, the approximating finite sequence does
not represent the original MDP, as accurate as, when a higherM is selected.
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Figure 4.12: Illustration of the network shares for different sub-systems over 100 simulation runs.
Numbering in the legend indicate the class i with the respective system matrices A1,2,3,4,5 =
{1.1, 1.3, 1.5, 1.7, 1.9}. Identical markers belong to the same class i. Dotted and dashed lines il-
lustrate the average network resource share granted to i by the discounted error scheduler (DES) with
augmentation levelsM = 15 andM = 25, respectively. 95% confidence intervals cannot be seen due
to their small sizes.

4.3 Optimal Scheduling: The Dynamic Loss Case

In the previous section, we have focused on optimal stationary scheduling policies in a single-
hop multi-user scenario. Each sub-system has been subject to a random packet loss, the
probability of which was constant over time. In this section, we allow the packet loss to change
dynamically while focusing again on a single-hop topology. As the infinite horizon problem
formulation would be sub-optimal due to the changing transition probabilities within the
MDP, we formulate the centralized scheduling problem as a Finite Horizon (FH) optimization
problem. We solve it optimally using the dynamic programming framework from [Ber95].

4.3.1 System Model

We consider a network of N independent LTI feedback control loops sharing a single-hop
wireless communication network. Each system consists of a co-located plant-sensor pair and a
remotely operating controller. The plant, sensor, and controller of the i-th system are denoted
by Pi, Si, and Ci, respectively. While the plant-to-sensor link is ideal, the sensor observations
need to be transmitted over a wireless link to the controller in form of status update packets.
We assume that each packet can carry at most a single state information.

Time is normalized to unity and the smallest time unit in our model is a time slot indexed
by t ∈ N. Each slot accommodates one transmission and every transmitted packet starting
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Figure 4.13: Gilbert-Elliott model with good (G) and bad (B) states and their state transition proba-
bilities. In the good state, the packet transmissions along a communication link are more likely to be
successful than when in the bad state.

in slot t ends within the same slot. Moreover, the access to the shared wireless medium
is managed by a centralized scheduler. At the beginning of each time slot, the scheduler
determines which sensor Si is allowed to transmit in the same slot, whereas all other sensors
except for i do not initiate any transmission. In other words, if we use a binary variable
πi(t) ∈ {0, 1} indicating whether Si is scheduled in time slot t, then a πi(t) = 1 implies a
scheduling decision for the i-th sub-system with

∑N
i=1 πi(t) = 1. We assume a constant delay

of one slot, i.e., any transmitted information during the time slot t is available at the controller
at t+ 1.

The link quality between each sensor-controller pair is dynamic and modeled in the form
of time-varying packet loss probability pi(t) ∈ (0, 1). In particular, the channel between each
Si and Ci follow the Gilbert-Elliott (GE) model [Gil60], which is based on a two-state Markov
chain, as depicted in Fig. 4.13. The state of each sensor-to-controller link, σi ∈ {G,B},
alternates between the good (G) and the bad (B) states, which define the current packet loss
probability between Si and Ci. That is, when in G, the loss probability is lower than the one
in B, i.e., pG < pB. As a result, the failure probability of a transmission in time slot t can be
characterized as follows:

pi(t) =

pG , if σi(t) = G,

pB , if σi(t) = B.
(4.30)

The transition from the good state to the bad state occurs with a stationary probability pG2B.
Similar, pB2G denotes the probability for σi(t) to switch from the G state to the B state, i.e.:

pG2B , Pr [σi(t+ 1) = B | σ(t) = G] , ∀i, t, (4.31)

pB2G , Pr [σi(t+ 1) = G | σ(t) = B] , ∀i, t. (4.32)

It is important to mention that each link behaves independently and the random variables σi
and σj with i 6= j are not correlated. The probabilities of staying in the same state are given as
pG2G , 1− pG2B and pB2B , 1− pB2G. The GE model has been widely used in the literature
to model packet loss in real-time networks, e.g., [HH08; Bil+15]. Despite its simplicity,
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the two-state GE model has been shown to be fairly accurate to represent Rayleigh-fading
channels when then channel quality does not vary dramatically over time [SHD98; WC96]7.

Given that Si is scheduled, δi(t) = 1 and δi(t) = 0 indicate a successful and a failed
transmission, respectively:

Pr[δi(t) = 0 | πi(t) = 1] = pi(t) (4.33)

Pr[δi(t) = 1 | πi(t) = 1] = 1− pi(t). (4.34)

On the other hand, for all users that have not transmitted in slot t, by definition, the chance of
a successful reception is zero, i.e.:

Pr[δi(t) = 1 | πi(t) = 0] = 0. (4.35)

We assume that control loops operate slower than the network. That is, each sensor
Si observes the system state periodically once in every Di ∈ Z+ slots. We call these
periodic instances a sampling event, at which a status update packet carrying the latest state
information is generated. Additionally, the time between two consecutive sampling events
is called a sampling period. Let ti,o denote the time of the first sampling event of the i-th
sub-system that is selected uniformly in the half-open interval [0, Di]8. Hence, the set of time
slots, in which a sampling event occurs is defined as:

Gi , {ti,o, ti,o +Di, ti,o + 2Di, . . . }. (4.36)

The generation of packets is periodic and independent of the communication network.
However, due to resource constraints, some of these packets may not get the chance to
be transmitted before the next sampling event. In addition, having received an update, the
controller does not benefit from receiving an older observation, since older data are considered
to be obsolete and non-informative according to our systemmodel. In consequence, the sensors
discard any older packet in their transmission upon the generation of a new status information.
Hence, each sensor stores only the most recent state of the plant process until the subsequent
sampling event. To characterize this mathematically, let us introduce a variable νSii (t) ∈ Gi
that denotes the generation time of the most recent information at Si. The following equation
states the relationship between the sampling events and νSii (t):

νSii (t) =

t , if t ∈ Gi,
νSii (t− 1) , otherwise.

(4.37)

7For scenarios, in which the channel quality varies dramatically over time, a finite-state Markov channel with
more than two states is recommended [WM95].

8ti,o ∈ N can be interpreted as the time offset initiating the operation of control applications. As we allow ti,o
to be different for each sub-system, we do not assume any synchronization between the sampling events of any two
different users.
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The behavior of νSii (t) is similar to the Zero-Order-Hold (ZOH) concept used to represent
discrete-time signals in continuous-time. Note that those slots in the set Gi are the only ones,
in which the information at Si is updated.

In the case of a successful transmission, the controller is supplied with the latest informa-
tion available at the sensor. If we use νCii,r(t) to denote the time stamp of the latest information
that has been successfully transmitted over the wireless link, it can be characterized by:

νCii,r(t+ 1) =

ν
Si
i (t) , if δi(t) · πi(t) = 1,

νCii,r(t) , otherwise.
(4.38)

Note the delay of one transmission slot in the equation above.

We assume that any new information received by the controller can be utilized for the
subsequent sampling period at the earliest. That is, once the controller determines the control
input for the ki-th sampling period, it cannot be changed further before the next sampling
event. Having received a new packet over the wireless link, the controller stores it until the
next sampling event at which it decides for the following control input ui[ki + 1]. Therefore,
if we denote the generation time of the latest utilized packet by Ci as νCii,u(t), its time evolution
is given as:

νCii,u(t+ 1) =

ν
Ci
i,r(t+ 1) , if t+ 1 ∈ Gi,
νCii,u(t) , otherwise.

(4.39)

The distinction between νi,r(t) and νi,u(t) is necessary, because the controller may receive
new packets during a sampling period that affect neither the control input nor the system state
before the following sampling period. In Fig. 4.14, we illustrate the relationship between
νSii (t), νCii,r(t), and ν

Ci
i,u(t) with a brief example. In the figure, the controller receives two status

update packets successfully at t1 and t2 causing the equalization of νSii and νi,r. However,
as νCii,u can only be modified at each sampling event, the νCii,u follows ν

Ci
i,r with a certain delay.

Note that νSii shows a staircase behavior as the information at the sensor is updated at each
sampling event through a new observation of the system state.

We represent the behavior of the i-th control sub-system by the following LTI model:

xi[ki(t) + 1] = Aixi[ki(t)] +Biui[ki(t)] +wi[ki(t)], (4.40)

with9:
ki(t) =

⌊t− ti,o
Di

⌋
. (4.41)

9For t < ti,o, ki(t) takes a negative value. We allow this since ti,o defines the initialization of sub-systems and
the system behavior before ti,o is not taken into account for the remaining analysis.



4.3. Optimal Scheduling: The Dynamic Loss Case 67

t

ki + 1 ki + 2 ki + 3 ki + 4 ki + 5

ti,o + kiDi ti,o + (ki + 5)Diδi(t1) = 1 δi(t2) = 1

νSii (t),
νCii,r(t),
νCii,u(t)

ν
Si
i →

ν
Ci
i,r →

← ν
Ci
i,u

Figure 4.14: Evolution of generation time νSii (t), received time ti,r(t), and the update time νCii,u(t)

depicted in y-axis versus time in x-axis. νSii (t) and νCii,u(t) are updated periodically every Di slots,
while νCii,r(t) can be updated asynchronously. On the x-axis with δi(t1,2) = 1, two cases of successful
packet transmission for sub-system i are depicted. Note that while νCii,r(t) changes subsequent to the
reception of any new information, νCii,u(t) follows νCii,r(t) only at the instances of sampling events.

The role of ki(t) is providing the transition from slot timing into sampling period, since their
granularity differs. In other words, while t is incremented by one every time slot, ki(t) is
incremented every Di slots. Furthermore, ki(t) tells us, in which sampling period the sub-
system currently is. At the beginning of each sampling period ki(t), i.e., at t = ti,o + ki(t)Di,
the controller Ci obtains the control input ui[ki(t)] based on the available observation history.
We omit the continuous time notation in ki(t) and use the shorthand notation ki for brevity in
the following analysis.

The discrete-timemodel enables the progress of the control and communication in different
rate. Namely, in control, changes in system state occur at sampling events10. Doing so,it can
be argued that from the controller’s perspective, the information of interest ages in discrete
steps and by one every Di slots. Thus, we define the AoI in units of sampling periods. As a
result, the AoI in any slot t is normalized by the sampling periodDi and can be obtained from
the following equation:

∆i(t) =

⌊
t− νCii,u(t)

Di

⌋
. (4.42)

It is important to point out that as the packets are received at least one slot delayed, they can
first be utilized at least Di slots after their generation. Therefore, the nominator of (4.42) can
not be less than Di according to our network model. As a result, the minimum AoI in our
considered scenario is one, i.e., ∆i(t) ≥ 1,∀i, t.
10We assume that the sampling period of each sub-system is selected small enough such that the changes between

consecutive sampling events are negligible.



68 Chapter 4. Optimal Scheduling for Wireless Networked Control Systems

Due to the presence of packet losses and resource scarcity, the controller cannot be updated
during every sampling period. Instead, the controller estimates the system state remotely based
on the LTI model and the most recent observation it has received. Let xi[ki −∆i[ki]] be the
most recent knowledge at Ci that is ∆i[ki] sampling periods old. Similar to (3.15), we can
derive the conditional expectation of the system state as:

x̂[ki] = A
∆i[ki]
i xi[ki −∆i[ki]] +

∆i[ki]∑
q=1

Aq−1
i Biui[ki − q]. (4.43)

As a result, the expected MSE at Ci is expressed by:

E
[
(ei[ki])

T ei[ki]
]

=

∆i[ki]−1∑
r=0

tr
((
AT
i

)r
(Ai)

r Σi

)
, (4.44)

as before.

4.3.2 Problem Statement

Our goal is propose a scheduler thatmaximizes the total estimation performance in the network
by minimizing the MSE. We are interested in the calls of scheduling policies π that consist
of a sequence of scheduling decisions a(τ) for the next H ∈ Z+ transmission slots, i.e.,
π = {a(t), . . . , a(t + H − 1)}. As in the previous section, a(t) = i implies that πi(t) = 1

and πj(t) = 0 for all j 6= i. H is the FH parameter that defines how many future time slots is
taken into account, while deciding for the current scheduling action. Therefore, the selection
of H controls the far-sightedness of the FH scheduling policy.

Let us define a vector s ∈ Z3N representing the network state in terms of νSii , νCii,r, and
νCii,u:

s(t) ,

νs(t)νr(t)

νu(t)

 (4.45)

with:

νs(t) ,
[
νS11 (t) . . . νSNN (t)

]T (4.46)

νr(t) ,
[
νC11,r(t) . . . νCNN,r(t)

]T (4.47)

νu(t) ,
[
νC11,u(t) . . . νCNN,u(t)

]T (4.48)

Each of νs, r, and u are of length N . Next, we define the set of feasible scheduling actions
given the network state as:

A(s(t)) = {∅} ∪ {i : νSii (t) > νCii,r(t)} (4.49)
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The equation above implies that the action set is constrained by filtering out those sub-systems
that do not have any new data to transmit, i.e., when the most recent observation has been
transmitted over the wireless link to the controller. The empty action represents the case, in
which none of the sub-systems is eligible for transmission.

Given the network state s(t) and the scheduling decision a(t), the transition probability
to a next state s′(t + 1) strictly depends on the instantaneous condition of the wireless link,
i.e., pi(t). Let us consider a toy example with νs(t) = [3 5]T and νr(t) = [3 1]T . As the
controller of sub-system i = 1 has already received the system state that has been generated
at t = 3, the scheduler does not consider a(t) = 1 as a feasible action. On the other hand, the
second sensor has a fresher measurement than the one present at C2. Therefore, the scheduler
decides for a(t) = 2. Once the action is taken, the transmission can either be successful with
a probability of 1− p2(t) or fail with p2(t). In the success case, the vector νr(t+ 1) becomes
νr(t + 1) = [3 5]T . In the case of a packet loss, the controller is not updated and it holds
that νr(t + 1) = νr(t). By removing the action a(t) = 1 from A(s(t)), scheduling decision
for the first user, we reduce the set of feasible actions without losing optimality. As we are
going to show later, this enables us to reduce our search space and improve the computational
complexity of the considered problem.

Our goal is to minimize the total MSE in the network by choosing the best possible
scheduling actions at each time slot. Let C(s(t)) define the total MSE in the network:

C(s(t)) , E

[
N∑
i=1

(ei[ki(t)])
Tei[ki(t)]

]
. (4.50)

One can also interpret C(s(t)) as the state cost that is incurred by visiting the state s(t). As
a result, given a scheduling policy π mapping a network state to a scheduling decision, the
expected finite horizon cost Jπ(s(t)) can be given as:

Jπ(s(t)) , Eπ

[
t+H∑
τ=t

C(s(t))

]
. (4.51)

The subscript π in (4.51) indicates that the expectation is taken when the scheduling policy π
is employed over the horizon H . Hence, the optimal policy π∗ is the one minimizing (4.51),
i.e.:

Jπ∗(s(t)) = min
π
Jπ(s(t)) = J ∗(s(t)). (4.52)

Throughout the following analysis, we refer to the optimization problem in (4.52) as the
H-stage problem and drop the subscript π for brevity.

It is important to emphasize that the H-stage problem considers all possible future states
and costs that can be incurred throughout the considered time horizon, i.e., [t, t+H]. However,
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any state that is unreachable in this time window is irrelevant to the optimization problem. On
the contrary, the infinite horizon problem presented in section 4.2 incorporates all states and
their respective costs are incorporated into the decision-making through the value iteration
technique. We can say that while theH-stage problem is an optimization problem terminating
inH time slots from “now”, the infinite horizon problem looks at an infinitely long time period.

4.3.3 Finite Horizon Scheduler

We propose a FH scheduler that schedules the “best” user by solving the finite horizon
optimization problem. In [Ber95, p. 25] it has been shown that the optimal cost J ∗(s(t)) can
be obtained by minimizing the RHS of the H-stage problem (4.52) starting at s(t), i.e.:

Jτ (s(τ)) = min
a(τ)∈A(s(τ))

E [C(s(τ)) + Jτ+1(s(τ + 1))] , τ ∈ {t, t+ 1, . . . , t+H − 1},
(4.53)

with the terminal cost given as:

Jτ+H(s(t+H)) = C(s(t+H)). (4.54)

The subscript τ of Jτ is used to emphasize that the cost is associated with a state s(τ) that
appears at the τ -th stage of the H-stage problem11.

One can find the optimal cost J ∗(s(t)), as well as the optimal policy π∗ by iterating
backwards in time from stage H to zero. As shown in [Ber95], if the optimal action a∗(τ)

minimizing the RHS of (4.53) is taken at each state appearing within the H stages of the FH
problem, the policy π∗ defining the best action at every s(τ) over the FH is optimal.

The H-stage problem can be modeled as a tree structure, while each node represents a
network state s(τ) occurring at stage t ≤ τ ≤ t + H . The nodes occurring in the same slot
form a level together, whereas the root node constitutes the 0-th level of the tree by itself.
Note that the root node corresponds to the current network state s(t). The nodes that appear
in the last, i.e., H-th, level are called leaf nodes.

The backwards iteration to solve theH-stage problem can be viewed as visiting all levels of
the tree starting from the leaf nodes and taking the optimal action at each node that minimizes
the expected future costs. It is important to mention that while a level τ is being visited
the cost of all possible next states from the next level have already been assigned the value
obtained from (4.53). Hence, the operation of the FH scheduler can be summarized by the
following steps:

1. Initialize the current state s(t) as the root of the tree structure.
11Each stage corresponds to a time slot in our model.
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s(t)

s1(t+ 1) s2(t+ 1) s3(t+ 1)

Pr[δ1(t) = 1|a(t) = 1]
Pr[1|2]

Pr[0|1]

Pr[0|2]

Pr[0|∅]

Level 0

Level 1

Figure 4.15: An example tree structure with two sub-systems for H = 1. Each edge is labeled with
the corresponding transition probability, i.e., Pr[δi(t) | a(t)]. The states s1 and s2 stand for the success
cases, in which the scheduled sub-system updates the controller successfully. On the other hand, s3

represents the failure case, in which none of the controllers is provided with a new piece of information.

2. Starting from the root node, determine the feasible actions at each node, A(s(τ)) for
t ≤ τ < t+H and subsequently all possible next states s(τ + 1) given an action a(τ).

3. Add all possible next states as child nodes to the next level with the corresponding
transition probabilities from the parent node.

4. Repeat steps (2)-(4) until the H-th level of the tree has been constructed.

5. Assign costs to all states starting from the leaf nodes as in (4.53) and (4.54).

Let us consider a toy example with two sub-systems sampled every time slot, i.e., Di = 1

and νSii (t) = t, ∀i, t. Having the sampling frequency equal to the slot frequency, is a special
case and implies νCii,r(t) and ν

Ci
i,r(t) for all i and t. Fig. 4.15 shows a single-level tree constructed

by the FH scheduler. The root node is the current network state s(t). s1(t + 1), s2(t + 1),
and s3(t + 1) are possible next states to follow s(t). Note that s1, s2, and s3 are also the
leaf nodes of the tree structure, as H = 1 is assumed. Furthermore, the edges between
the states are labeled with the corresponding transition probabilities that are written as the
conditional probabilities given a scheduling decision. If we assume the initial state to be
s(t) = [t t a b a b]T , the possible next states can be given as:

s1(t+ 1) = [t+ 1 t+ 1 t b t b]T (4.55)

s2(t+ 1) = [t+ 1 t+ 1 a t a t]T (4.56)

s3(t+ 1) = [t+ 1 t+ 1 a b a b]T (4.57)

For the sub-system with a successful transmission, the timestamp of the received information
is updated, i.e., νCii,r(t + 1) = νCii,u(t + 1) = νSii (t) = t. For those sub-systems that are either
not scheduled or fail to update the destination despite of being scheduled in t, νCii,r(t+ 1) and
νCii,u(t+ 1) remain unchanged relative to the previous slot.
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Control Application Parameters
Class 1 A(1) = 1.1 B(1) = 1.0 L(1) = 1.1 Σ(1) = 1.0 D(1) = 3

Class 2 A(2) = 1.2 B(2) = 1.0 L(2) = 1.2 Σ(2) = 1.0 D(2) = 3

Class 3 A(3) = 1.3 B(3) = 1.0 L(3) = 1.3 Σ(3) = 1.0 D(3) = 3

Class 4 A(4) = 1.4 B(4) = 1.0 L(4) = 1.4 Σ(4) = 1.0 D(4) = 3

Table 4.1: Selected parameters of our four considered control application classes. The superscript
indicates the class index and should not be confused with matrix power.

Having the entire tree constructed as described previously, the scheduler assigns state
cost to each state starting from the leaf nodes. Once the algorithm completes, it obtains the
optimal scheduling policy π∗ defining the best action a∗(t) at the root node. Consequently,
the optimal action is executed by the FH scheduler. It is important to emphasize that, although
the scheduler looks intoH future slots and obtains the optimal action for each possible future
state, the steps (1)-(5) have to be repeated every time slot. This is because the root node, as
well as packet the loss probabilities alter.

The complexity of the FH scheduling algorithm is dictated by the number of nodes in the
tree structure. In particular, if all control loops are sampled as fast as the slot frequency, as in
our toy example, the resulting tree structure consists of ((N+1)H+1−1)/N nodes. This represents
the worst-case scenario in terms of computational complexity. In the Big-O notation, the
scheduling algorithm’s complexity can be expressed by O(NH). Increasing the sampling
period beyond one reduces the number of nodes, because not having any new information to
transmit after updating the destination already with the most recent one, reduces the action
space. Put differently, if νSii (t) = νCii,r(t), meaning that the destination has already the most
recent information about the system state, then the scheduler does not consider that particular
user within its action set, i.e., i /∈ A(s(t)). Thereby, the number of nodes becomes less than
the worst-case.

4.3.4 Numerical Evaluation

4.3.4.1 Simulation Details

In order to evaluate the performance of our proposed scheduler, we conduct a numerical
evaluation based on Monte Carlo experiments. To that end, we consider four classes of
applications, each having a different system matrix as given in Tab. 4.1. The difference
in system matrices lead to different open-loop instabilities, thus represent a heterogeneous
task-criticality among sub-systems, with class 4 being the most challenging one. Note that the
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feedback gain matrix L(·) is chosen equal to the system matrix, corresponding the deadbeat
control strategy12.

We simulate eight feedback control loops, i.e., N = 8 for T = 20000 time slots. Each
application class is represented by two sub-systems, i.e., A1 = A2 = A(1) and A3 = A4 =

A(2), etc. The control loops are initialized with xi[0] = wi[0] with the system noise following
wi ∼ N (0,Σi). In addition, the arrival time of the first sampling event is selected randomly
from a discrete uniform distribution as ti,o = U{0, Di−1} such that the control loops operate
in an asynchronous fashion. The Gilbert-Elliott channel model is characterized by pG = 0.2,
pB = 0.6, pG2B = 0.1, and pB2G = 0.2. While the consideredmodel applies to all sub-systems
in the network, their individual channel states σi(t) are not synchronized.

The FH parameter H is varied from one to six to investigate the impact of making the
FH scheduler more far- or short-sighted on the estimation performance. Each configuration
characterized by the selected H is repeated 200 times. Similar to the previous sections, the
estimation performance is captured by the long-term average MSE in the network, i.e.:

MSE =
1

N

1

T

N∑
i=1

T−1∑
t=0

(ei(t))
Te(t). (4.58)

The average AoI performance is defined analogously and captures the information freshness.

4.3.4.2 Results

Fig. 4.16 shows the long-term average MSE achieved by the FH scheduler for H ∈
{1, 2, . . . , 5}. The figure illustrates MSE obtained as in (4.58) together with the mean
MSE of individual control application classes. We observe a drastic reduction inMSE as we
increase the FH parameterH from one to two. However, beyondH = 3, despite of increasing
far-sightedness of the scheduler, the performance gain diminishes. The mean MSE values for
each H are given in the table below.

Horizon H 1 2 3 4 5
MSE 13.72 6.64 6.08 5.96 5.94

Improvement in % - 51.58 % 8.40 % 2.06 % 0.27 %

The second row contains the MSE improvement in percentages relative to the previous H
parameter, i.e., H = 2 relative to H = 1, H = 3 relative to H = 2, etc. It is important to
mention that for higher values ofH , the contribution of individual application classes, tend to
meet. This effect follows from equal weighting of MSE among sub-systems while obtaining
12This is equivalent to assuming Qi = 1.0 and Ri = 0 for all Ci, neglecting the penalty for control effort. By

solving the DARE from (2.17), we obtain Li = Ai for the optimal feedback gain matrix.
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Figure 4.16: Long-term average MSE for increasing H . While the solid line, i.e., MSE represents
the average performance of the entire network, the dashed lines belong to the considered control
application classes. The vertical bars represent 95% confidence interval.

the cost in (4.20) which in turn leads to equal long-term averages as the scheduling actions
become more “long-term optimal”.

Fig. 4.17 presents the resulting performance w.r.t. information freshness. As one can
see from the figure, the long-term average AoI is different for each application class. This is
an expected result, as the proposed scheduling considers the MSE as the state cost and not
the instantaneous AoI of sub-systems. This leads to an unbalanced distribution of resources
due to the heterogeneous task-criticalities of systems. For instance, the sub-systems from the
fourth class achieve a lower AoI than those of class one, i.e., ∆

(4)
< ∆

(1). This shows that
less stable systems have been scheduled more frequently than more stable ones. In addition,
we observe from the figure that asH increases, ∆

(3) and ∆
(4) decrease. This is caused by the

increasing foresight of the scheduler and ability to prevent high future costs that may follow
due to multiple consecutive failed transmissions. It is important to mention that although the
sub-systems from the fourth class have received more resources than other application classes,
their contribution to the network-wideMSE is still the highest.

The figure clearly shows that the distribution of network resources among different appli-
cation classes changes for varyingH . Moreover, the estimation performance depicted in Fig.
4.16 is affected by the scheduling decisions. However, the performance gain beyondH = 3 is
not significant despite the exponentially increasing computational complexity. The following
table shows the number of tree nodes capturing the complexity together with the worst-case
bound:
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Figure 4.17: Long-term average AoI for increasing H . While the solid line, i.e., ∆ represents the
average performance of the entire network, the dashed lines belong to the considered control application
classes. The vertical bars represent 95% confidence interval.

Horizon H 1 2 3 4 5
FH 9.96 84 678 5451 43840
Worst-case 10 91 820 7381 66430

Table 4.2: Comparison of the number of tree nodes in worst-case scenario to the measured average in
simulations.

The difference between the first and second rows is due to the constrained action space,
which narrows down the algorithm’s search space. This shows that obtaining the optimal
policy becomes significantly more costly w.r.t. the complexity. However, the performance
does not improve in the same order of magnitude beyond a certain point13. Nevertheless,
such a trade-off between the complexity and performance can be found by controlling the H
parameter.

4.4 Joint Uplink & Downlink Scheduling of Wireless
Networked Control Systems

In the previous section, we have introduced a mathematical framework that formulates the
centralized resource allocation for WNCS closed over a single-hop network as a finite horizon

13Note that this particular point is strictly scenario dependent.
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Si Ci

xi[t+ 1] = Aixi[t] +Biui[t] +wi[t]

Pi
xi[t] ui[t]

N

wi[t]

UL DLBS

Figure 4.18: N linear time invariant (LTI) control systems are closed over a shared star network. The
UL and DL transmissions occur according to a transmission schedule determined by the BS. While the
solid connectors represent ideal links, the wireless links prone to packet loss and delay are depicted by
dashed connectors.

optimization. We have shown that as the scheduling algorithm considers a longer time
horizon into the future, the scheduling algorithm performs better that comes with the cost
of computational complexity. In this section, we introduce a second wireless hop, which
adds a DL to the previously considered UL scenario, hence making the proposed algorithm
very applicable in cellular networks. The proposed scheduling algorithm that is optimal for
the considered FH H , jointly considers the information flow on both UL and DL. Moreover,
we compare our algorithm, which minimizes the MSE for a given H , to other age-penalty
functions used in the existing literature. Numerical results reveal that the consideration of
control system specific parameters, as done by our proposed metric, outperforms all other
considered approximating functions w.r.t. estimation and control performances. This section
can be seen as an extension of sections 4.1 and 4.3.

4.4.1 System Model

We consider N independent feedback control loops that are closed over a shared wireless
communication network14. Each loop i is comprised of a plant Pi, a controller Ci, and a
sensor Si. The plant state is fully observable by the sensor at all times. Each observation
of the plant state is transmitted in the form of status update packets over a wireless link to
the BS, from where they are forwarded to Ci. The sensor-to-BS and the BS-to-controller
links are called UL and DL, respectively. Such a topology is referred to as a star network
in the literature [TM21] and resembles the one observed in cellular networks, when each

14Here, independent means that the system dynamics of one sub-system do not affect any other sub-system.
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sensor-controller pair is located in the same cell of a mobile network. Similarly, the star
network can be observed in industrial communications, where status updates are first sent to
an access point and forwarded to the destination along a second link. Fig. 4.18 illustrates the
considered scenario in the following analysis.

Time is normalized to unity and indexed in the form of slots, i.e., t ∈ Z. A time slot is the
smallest time unit in our model. Each transmission of a status update packet starts and ends
within the same slot t. Moreover, any UL packet that has been transmitted in slot t cannot be
forwarded earlier than in the subsequent slot t + 1 over the DL. This implies that any packet
generated by Si requires at least two transmission slots until it is successfully decoded by the
controller Ci15.

Access to the wireless medium is controlled by a centralized scheduler that is located at
the BS. Each sensor transmits only when it is granted access to the UL channel. Moreover,
if there are multiple packets waiting to be forwarded in the DL, the scheduler decides which
one to send. Let πULi (t), πDLi (t) ∈ {0, 1} indicate whether a user has been scheduled for
a UL and DL transmission in slot t, respectively. The scheduler assumes that any two or
more simultaneous in the same link would fail due to collision. Therefore, if sensor Si is
scheduled for a UL, i.e., πi(t) = 1, then for any other sensor Sj with j 6= i, πj(t) = 0 holds.
Analogously, the scheduler transmits only a single DL packet in slot t. As a result, it holds
for both links that

∑
i π

UL
i (t) ≤ 1 and

∑
i π

DL
i (t) ≤ 1 at all times.

Each link follows the GEmodel, as depicted in Fig. 4.13. If the Si-to-BS is in a good state,
i.e., σULi (t), the outcome of a UL transmission by Si fails with a probability of pULi (t) = pG.
Analogously, pDLi denotes the failure probability of a transmission between the BS and Ci. On
the other hand, when inB state, the packet loss probability in the corresponding link becomes
pB, with pB > pG. The resulting behavior can be formulated as:

pULi (t) =

pG , if σULi (t) = G,

pB , if σULi (t) = B,
pDLi (t) =

pG , if σDLi (t) = G,

pB , if σDLi (t) = B,
(4.59)

The transitions between the good and bad states occur with a stationary probability pG2B

and pB2G for all sub-systems, i.e.:

pG2B , Pr
[
σULi (t) = B | σULi (t− 1) = G

]
= Pr

[
σDLi (t) = B | σDLi (t− 1) = G

]
,

pB2G , Pr
[
σULi (t) = G | σULi (t− 1) = B

]
= Pr

[
σDLi (t) = G | σDLi (t− 1) = B

]
.

(4.60)

15This is different than in sections 4.2 and 4.3 considered models, which assume a constant delay of one slot in
case of a success.
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It is important to mention that σULi (t) and σDLi (t) are two independent random variables.

Let the binary variable δULi (t) ∈ {0, 1} indicate a successful reception for the UL by
δULi (t) = 1. Moreover, it becomes zero in case of a failed transmission with a probability of
pULi (t) given that the sensor Si has been scheduled, i.e.:

Pr
[
δULi (t) = 0 | πULi (t) = 1

]
= pULi (t),

Pr
[
δULi (t) = 1 | πULi (t) = 1

]
= 1− pULi (t). (4.61)

The definition for the DL is analogous:

Pr
[
δDLi (t) = 0 | πDLi (t) = 1

]
= pDLi (t),

Pr
[
δDLi (t) = 1 | πDLi (t) = 1

]
= 1− pDLi (t). (4.62)

For the sake of completeness, we provide the probability of a successful reception by the
BS under the condition that a sub-system i has not been scheduled in time slot t as zero,
i.e., Pr

[
δ
UL/DL
i (t) = 1 | πUL/DLi (t) = 0

]
= 0. This follows from the assumption that any

sub-system i refrains from transmitting unless it has been granted medium access by the
scheduler.

We assume that sensors measure the system state at the beginning of each slot16. This
means that a new packet is generated by a sensor Si every slot and is ready to be transmitted
without any measurement delay. We assume a LCFS strategy with packet drop meaning that
every new packet replaces the outdated one in the transmission queue. As a result, there is
always a single packet in the transmission queue that contains information about the current
system state.

4.4.1.1 Age of Information Model

According to the description above, out network comprises 2N + 1 nodes, i.e., N sensors, N
controllers and the BS.We construct a model, in which we define the AoI from the perspective
of each node separately. To that end, let us first define the AoI for loop i at the BS, i.e., ∆BS

i (t)

as the elapsed time since the generation of the freshest information. It can be expressed as the
difference between now and the generation time of the most recent information as:

∆BS
i (t) , t− νBSi (t), (4.63)

where the dynamics of νBSi (t) are given as:

νBSi (t+ 1) =

νBSi (t) , if πULi (t) · δULi (t) = 1,

t , if πULi (t) · δULi (t) = 0.
(4.64)

16This is different than the previous section, in which we assume the sampling period of multiple slots. Although
both assumptions are valid from the practical point of view, the model used in this section simplifies the presentation.
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Figure 4.19: A sample sequence of age at the BS and at the controller i. Such a sequence for ∆BS
i (t)

and ∆Cii (t) can be observed in our system when the UL transmissions scheduled at t0 − 1, t0, t0 + 3,
and t0 + 5 are successful in the interval t ∈ [t0 − 1, t0 + 5], respectively.

It is important to emphasize that in case of successful transmission, νBSi (t + 1) drops to t.
This behavior is caused by the fact that the status update packets in the UL always contain the
plant process’ system state; or equivalently:

∆Sii (t) , t− νSii (t) = 0, ∀i, t. (4.65)

The equation above also implies that the AoI at the BS followed by a successful transmission
is always one:

∆BS
i (t+ 1) =

∆BS
i (t) + 1 , if πULi (t) · δULi (t) = 1,

1 , if πULi (t) · δULi (t) = 0,
(4.66)

The definition of the AoI at the controllers is analogous and can be characterized as:

∆Cii (t) , t− νCii (t), (4.67)

with:

νCii (t+ 1) =

νBSi (t), , if πULi (t) · δULi (t) = 1,

νCii (t), , if πULi (t) · δULi (t) = 0,
(4.68)

In simple words, if the controller does not receive any new information in slot t, the timestamp
of the latest observation remains constant. Otherwise, upon receiving a packet, νCii (t + 1) is
overwritten with the generation time of the most recent update that has been available to the
BS by t.

Fig. 4.19 illustrates a sample sequence of∆BS
i (t) and∆Cii (t) for the interval t ∈ [t0, t0 +6]

following the introduced AoI model as in (4.63) and (4.67). One should mention that due to
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the start network topology, every packet that is available at the controller must have passed
through the BS. Therefore, the AoI at the BS is always less than or equal to the age at the
controller, i.e., ∆BS

i (t) ≤ ∆Cii (t) for all t and i. Additionally, as we assume each transmissions
to take one full slot duration, ∆Cii is always greater than or or equal to two due to the fact that
sensor-controller pairs are two-hop away.

4.4.1.2 Control Model

We represent the behavior of each sub-system by the LTI model in discrete-time, i.e.:

xi[t] = Aixi[t] +Biui[t] +wi[t], (4.69)

with time-invariant system matrix Ai ∈ Rni×ni and input matrix Bi ∈ Rni×mi . Moreover,
wi[t] ∈ Rni is a zero-mean random noise vector modeling the external disturbances and
follows a multi-variate Gaussian distribution with the covariance matrix Σi ∈ Rni×ni . xi[t]
and ui[t] are vectors of appropriate sizes denoting the system state and control input. It is
important to mention that in the following analysis the time slot t of the network corresponds
to the t-th time step of control systems. In other words, the duration of a time slot equals to the
sampling period for every sub-system. As we consider unit time in our model, the sampling
period, as well as the sampling frequency equals to one17.

At the beginning of each time step, the controller calculates the control input ui[t] based
on the available observation history. In order to compensate for the shortcomings of the
wireless communication network in the feedback loop, the controller estimates the plant state
remotely based on the most recent knowledge that it has acquired. Suppose that the freshest
information until the moment when ui[t] needs to be determined is xi[t−∆Cii (t)]. Thus, the
conditional expectation of the state, which minimizes the mean squared estimation error is
given as:

x̂i[t] , E
[
xi[t] | ∆Cii (t),xi[t−∆Cii (t)]

]
= A

∆
Ci
i (t)

i xi[t−∆Cii (t)] +

∆
Ci
i (t)∑
q=1

Aq−1
i Biui[t− q]. (4.70)

The equation implies that the controller has to store the last ∆Cii (t) control inputs in the
memory. However, it does not impose any additional communication effort as this information
is already present at each Ci.

17For legacy reasons, while we use round brackets for the network and age model, we choose square brackets for
the control model. As the network and control models advance with the same speed, one could use the round brackets
for the difference equation (4.69) as well
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The goal of the closed-loop system is to minimize the LQG cost function Fi:

Fi , lim sup
K→∞

1

K

K−1∑
t=0

(xi[t])
TQixi[t] + (ui[t])

TRiui[t]. (4.71)

A lowerFi indicates a higher QoC. The optimal state feedbackmatrixLi ∈ Rmi×ni is obtained
as if every link in the feedback loop were ideal. Therefore, the control law is formulated by
the following matrix equation:

ui[t] = −Lix̂i[t], (4.72)

which corresponds to certainty equivalent control. In other words, the controller assumes a
separation principle between estimation and control. The optimal matrix Li minimizing the
LQG cost is obtained from:

Li =
(
Ri +BT

i PiBi

)−1
BT
i PiAi (4.73)

Here, the matrix Pi of appropriate size is a solution of the DARE as in (2.18). Although, the
DARE does not take any network characteristics into account, it has been shown in [Mai+22]
that the certainty equivalent controller with Li as in (4.73) is optimal despite the presence of
packet loss and delay.

We define the (network-induced) estimation error as the difference between the real and
estimated states, i.e.:

ei[t] , xi[t]− x̂i[t]. (4.74)

One can easily show that by plugging (4.69) and (4.70) in (4.74), the formula for the estimation
error can be simplified to:

ei[t] =

∆
Ci
i (t)∑
q=1

Aq−1
i wi[t− q]. (4.75)

The equation above consists of∆Cii (t) addends. Each addend is a function of the time-invariant
system matrix and a random noise vector wi[t− q].

Consequently, the MSE at Ci can be expressed as:

MSEi(∆
Ci
i [t]) , E

[
(ei[t])

Tei[t]
]

=

∆
Ci
i (t)∑
q=1

tr
(
(AT

i )qAq
iΣi

)
(4.76)

which maps the vector ei[t] ∈ Rni to a scalar value. It is important to mention that any
scheduler utilizing MSEi should be able to keep track of ∆Cii (t) remotely. Nevertheless,
since in our scenario, all packets are relayed over the BS, where the scheduler is located
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at, it would be feasible for the scheduler to obtain ∆Cii (t) through a simple acknowledgment
mechanism in the DL. Moreover, the knowledge of Ai and Σi is necessary to obtainMSEi.
Due to the fact that these are time-invariant matrices, a one-time information exchange prior
to operation would suffice. Note that (4.76) does not depend on the feedback gain matrix Li,
hence the time evolution of the MSE is independent of the controller design.

4.4.2 Greedy Uplink and Downlink Scheduling

So far, we have introduced how the communication network and feedback loops are modeled
in our considered scenario. In addition, the effects of increasing AoI at the controllers on the
estimation error has been defined. In this subsection, we discuss various greedy scheduling
policies that are relatively simple in design and implementation. Consider a scheduling policy
that decides on the UL and DL schedules based on the transmission history on both links
and broadcasts this information to every node in the network18. That is, at the beginning of
each time slot t, the scheduler determines the joint schedule a[t] = [aUL(t) aDL(t)]T with
aUL, aDL ∈ {∅, 1, 2, . . . , N}. If a user i is scheduled in the UL, i.e., aUL(t) = i, the sensor Si
initiates an uplink transmission containing the latest system state xi[t]. Note that aUL(t) = i

implies πULi (t) = 1. Similarly, aDL(t) = i means that a DL packet of sub-system i is sent by
the BS, i.e., aDL(t) = i and πDLi = 1. The usage of the empty set ∅ is particularly important
in this section. For instance, if the BS does not have any new packet in its transmission queue,
the DL slot remains idle. Such a case is covered by aDL(t) = ∅.

In order to decide whether a new packet is eligible for transmission by any of the nodes, the
scheduler utilizes the age difference between source-destination pairs in each link. For the UL
case, the eligibility criteria is given as the positive age difference, i.e., ∆BS

i (t) > ∆Sii (t) = 0.
As sensors always have a new packet to send due to their sampling frequency of one, all
sensors are eligible for transmission in every slot. However, this is not the case for the DL.
As stated in the previous paragraph, the BS may not have received new information from Si
since the corresponding controller Ci was last updated in an earlier slot. In Fig. 4.19, time
slots t0 + 2 and t0 + 3 constitute an example to such a situation, where the ages at the BS and
the controller equalize. In that case, we refer to a DL transmission towards Ci as ineligible,
due to ∆BS

i (t) = ∆Cii (t). If none of the sub-systems are eligible in slot t, then the BS does
not send any packet in the DL leading to aDL(t) = ∅.

The scheduling decisions are tightly coupled with the estimation and control performances
in the network. Depending on the scheduling policy, the AoI follows a different trajectory,
which in return affects the network-induced estimation error. Furthermore, the estimation
accuracy defines the degree of sub-optimality of control inputs that are obtained by using
18We assume that transmission of the broadcast messages is instantaneous and error-free
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the state estimate instead of the actual state, as in (4.72)19. Therefore, depending on how
the wireless network resources are distributed among multiple users, defined by the selected
scheduling policy π, the network can directly affect control performance metrics, such as
LQG cost and MSE from (4.71) and (4.76), respectively.

As an alternative to contention-free protocols, the contention-based protocols from the
existing literature may also come into consideration, e.g., ALOHA [Abr70], Slotted ALOHA
[Rob75a], and age-dependent random access protocol [CGL20]. However, despite requiring
less implementation effort due to their decentralized nature, they are also known for low
throughput in multi-user scenarios due to their high packet loss. Thus, we do not consider
contention-based protocols in this section and focus only on contention-free protocols20.

4.4.2.1 Application-Unaware Greedy Policies

Weconsider two heuristic scheduling policies that arewell studied inwireless communications
research: 1) Round-Robin (RR) and 2) Maximum Throughput (MT). These two protocols are
classified as application-unaware policies due to their negligence of application-layer metrics,
such as AoI and MSE.

Round-Robin Policy: RR is one of the most frequently deployed scheduling policies in
industry due to its ease of implementation. It has been used in cellular networks [Cap+13], as
well as in the context of remote estimation use cases [Zou+19]. Under the RR policy, all nodes
are scheduled in a predetermined fixed circular order. It can be argued that RR is a ”good”
heuristic for real-time applications as it offers fairness in time thanks to its periodic resource
allocation nature. Note that the classical RR scheduler is channel-unaware by definition as it
does not consider channel conditions, such as packet success probability.

MaximumThroughput Policy: TheMTpolicy prioritizes userswith the best channel quality,
hence targeting a throughput maximization [Cap+13]. The MT scheduler is also known for its
unfair nature as it may lead to the starvation of those users with bad channel conditions. Given
our system model, in which the channel quality is represented by the packet loss probability,
the scheduling under the MT policy is expressed as:

aUL(t) = arg min
i∈AUL(t)

pULi (t),

aDL(t) = arg min
i∈ADL(t)

pDLi (t). (4.77)

19The control law is optimal if x = x̂ since the optimal feedback gain matrix Li minimizes Fi. Due to the
impairment between the real and estimated states caused by the network, the estimation error leads to the sub-optimality
of u w.r.t. the LQG cost.

20The following chapter studies the control performance achieved by ALOHA and Slotted ALOHA protocols in
a practical setup
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Here, AUL(t) and ADL(t) denote the feasible actions and are given as:

AUL(t) , {i : i ∈ {1, . . . , N},∆BS
i (t) > ∆Sii (t)} (4.78)

= {1, 2, . . . , N}
ADL(t) , {i : i ∈ {1, . . . , N},∆Cii (t) > ∆BS

i (t)} ∪ {∅} (4.79)

Ties are broken arbitrarily. The necessity forADL arises in order to prevent sub-system i from
being scheduled, although the BS does not have any novel update to send. As we are going
to show later, by defining the set of feasible actions, we are able to reduce the computational
complexity of our proposed algorithm.

4.4.2.2 Application-Aware Greedy Policies

As an alternative to application-unaware policies, we introduce two centralized greedy
scheduling mechanisms from the state-of-the-art: 1)Maximum Age First (MAF) and 2)Max-
imum Error First (MEF). Their implementation relies on the propagation of the application
layer metrics such as AoI and MSE down to the data link layer; thus, they can be considered
as more challenging and complex to implement when compared to RR and MT.

Maximum Age First Policy: As the name suggests, the MAF policy is a greedy strategy
that prioritizes the user with the highest instantaneous age [Bed+19]. It has also been called
“maximum age first” in the literature [Chi+22]. When the MAF policy is applied, the users
are scheduled according to the following rule:

aUL(t) = arg min
i∈AUL(t)

∆BS
i (t), (4.80)

aDL(t) = arg min
i∈ADL(t)

∆Cii (t). (4.81)

(4.82)

The main difference between MAF and RR is that the MAF is adaptive to the outcome of
the past transmissions, whereas RR is not. In particular, if a user is scheduled in the UL but
the transmission fails, i.e., πULi (t) = 1, δULi (t) = 0, one can expect that the same scheduling
decision is made in the subsequent slot t + 1 as well. However, under the RR strategy, the
scheduling actions are taken in a fixed order, independent of the outcome of transmissions.

Maximum Error First Policy: The MEF policy is firstly proposed by Walsh et al. in [WY01]
for single-hop multi-loop scenarios. In its original form, it prioritizes the user with the highest
network-induced error, i.e., a(t) = arg max

i
‖ei[t]‖. However, since the actual system state

xi[t] is unknown to the centralized scheduler, it is not feasible to assume a global knowledge
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of ei[t]. Therefore, we rule out a scheduling design based on the actual error ei[t] and limit
our study to the utilization of the MSE from (4.76).

Moreover, we normalize the MSE by the value it takes when AoI is one. The necessity for
normalization can be explainedwith the help of an example: Consider two control applications
of different types sharing the wireless communication network. By definition, each element
in ei(t) ∈ Rni has the same unit as the system state xi(t), e.g., kelvin, meter, radians. Thus,
comparing theMSE in its raw formmay potentially lead to comparison of numbers in different
orders of magnitude, hence would only be possible if all sub-systems’ units were identical.
To overcome this issue, we suggest normalizing the MSE as:

nMSEi(∆i(t)) ,
MSEi(∆i(t))

MSEi(1)
, (4.83)

such that the resulting metric is dimensionless. The normalized MSE (nMSE) captures how
rapidly the estimation inaccuracy grows relative to the baseline case of MSE at age of one.
We utilize the nMSE for scheduling instead of MSE and in consequence, our implementation
of the MEF scheduler can be expressed by:

aUL(t) = arg max
i∈AUL(t)

nMSEi(∆
BS
i (t)), (4.84)

aDL(t) = arg max
i∈ADL(t)

nMSEi(∆
Ci
i (t)). (4.85)

The MEF scheduler as defined by (4.85) is a modified version of the greedy scheduler from
section 4.1, where the MSE is normalized. It is important to mention that the MAF and MEF
schedulers ar channel-unaware as they are defined and implemented in this section.

4.4.3 Optimal Joint Uplink and Downlink Finite Horizon Scheduling

The previously introduced greedy scheduling algorithms are simple heuristics but do not guar-
antee optimality in task- and application-specific performance. As a solution, we formulate
the centralized scheduling problem as a finite horizon FH optimization problem and propose
a policy π that is optimal for a given horizon H . Our approach is based on minimizing the
expected cost over H . In brief, the H-optimal scheduler generates a tree structure including
all possible trajectories of the system, incorporating all possible states and costs that could
appear within H steps from now. As already stated in section 4.3, the longer H is, the more
"farsighted" is the algorithm, as we increase the time horizon that our scheduler takes into
account while deciding on the optimal action.
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4.4.3.1 States and Actions

Let ν(t) be a column vector of size 3N containing the generation time of the freshest
information at sensors, BS, and controllers at time t:

ν(t) ,

 ν
S(t)

νBS(t)

νC(t)

 , (4.86)

with:

νS(t) ,


t

t
...
t

 , νBS(t) ,


νBS1 (t)

νBS2 (t)
...

νBSN (t)

 , νC(t) ,


νC11 (t)

νC21 (t)
...

νCN1 (t)

 . (4.87)

We refer to the vector ν(t) as the network state and to the scheduling decision a[t] =

[aUL(t) aDL(t)]T as action. One should mention that it is possible to map each network
state ν(t) to an age vector ∆(t) with:

∆(t) ,
[
0 . . . 0 ∆BS

1 (t) . . . ∆BS
N (t) ∆C11 (t) . . . ∆CNN (t)

]T
. (4.88)

Note that mapping a given∆(t) to ν(t) is not possible as a∆(t) does not imply a unique ν(t).
We will exploit this relationship between ∆(t) and ν(t) later to use dynamic programming
for complexity reduction. Having said that, we continue with ν(t) throughout the following
analysis.

Given a network state ν(t) = ντ and an action a(t) = [i j] with i ∈ AUL(t), j ∈ ADL(t),
we can obtain the transition probability to a next state as a function of the transmission outcome
on respective links, i.e., ν(t + 1) = f(ν(t),a(t), δULi (t), δDLj (t)). In particular, if j 6= ∅,
there are four possible next states depending on the transmission outcome on each link. Given
the network state ν(t) as defined in (4.86), we can formulate the transition probabilities to the
four possible next states as:

Pr
[
ν(t+ 1) = ν11

τ+1 | ν(t) = ντ ,a(t) = [i j]T
]

=
(
1− pULi (t)

) (
1− pDLj (t)

)
Pr
[
ν(t+ 1) = ν10

τ+1 | ν(t) = ντ ,a(t) = [i j]T
]

=
(
1− pULi (t)

)
pDLj (t)

Pr
[
ν(t+ 1) = ν01

τ+1 | ν(t) = ντ ,a(t) = [i j]T
]

= pULi (t)
(
1− pDLj (t)

)
Pr
[
ν(t+ 1) = ν00

τ+1 | ν(t) = ντ ,a(t) = [i j]T
]

= pULi (t)pDLj (t) (4.89)

with:
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ν11
τ+1 =



νS(t+ 1)

νBS1 (t)
...

νSiN (t)
...

νBSN (t)

νC11 (t)
...

νBSj (t)
...

νCN (t)



, ν10
τ+1 =



νS(t+ 1)

νBS1 (t)
...

νSiN (t)
...

νBSN (t)

νC(t)


, ν01

τ+1 =



νS(t+ 1)

νBS(t)

νC11 (t)
...

νBSj (t)
...

νCN (t)


, ν00

τ+1 =

ν
S(t+ 1)

νBS(t)

νC(t)

 .

Note the differentiation between vectors written in bold, e.g., νBS(t) ∈ ZN and scalar values
νBSi (t) ∈ Z. Here, a “1” in the superscript indicates success in the corresponding link with
the first position being the UL and the second being the DL. For instance, ν10

τ+1 denotes the
next state when the UL transmission is successful, but the DL transmission fails. In case of
an idle DL slot, aDL(τ) = ∅, the number of next possible states decreases to two, i.e., ν10

τ+1

and ν00
τ+1.

4.4.3.2 The H-Stage Problem and Finite Horizon Cost

We consider a cost function g : Z3N 7→ R mapping a network state to an immediate cost of
the form:

g(ν(t)) ,
∑
i

gi(ν
Si
i (t), νBSi (t), νCii (t)). (4.90)

Here, gi : Z×Z×Z 7→ R characterizes the contribution of sub-system i to g(ν(t)). A simple
example of such a function would be the weighted sum of AoI at each node:

gi
(
νSii (t), νBSi (t), νCii (t)

)
= wSii (t− νSii (t))︸ ︷︷ ︸

=0

+wBSi (t− νBSi (t))︸ ︷︷ ︸
=∆BS

i (t)

+wCii (t− νCii (t))︸ ︷︷ ︸
=∆
Ci
i (t)

with wSii , wBSi , wCii > 0, ∀i. The selection of the cost function g plays a crucial role in the
achieved performance and should capture the task-specific targets fairly well that the network
aims at. In the results section, we will discuss the effect of selecting different cost functions
on control performance.

Let us now define an additive cost of the form:

J πH
t (ν(t)) , E

[
t+H∑
τ=t

g(ν(τ))
∣∣ πτ] (4.91)
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for an initial stateν(t) and possible future states, i.e.,ν(τ+1) = f(ν(τ),a(τ), δULi (τ), δDLj (τ)).
J πH
t denotes the expectedH-stage costwhen the scheduling policyπH = {πt,πt+1, . . . ,πt+H−1}

is employed over the horizonH . Here,πτ are functions that map a state in stage τ to a schedul-
ing decision, i.e., πτ (ν(τ)) = a(τ). The expectation is taken w.r.t. δULi (t) and δDLj (t) that
together with the scheduling decision a(t) define the occurrence probability of any next state.
In consequence, we aim to find the optimal scheduling policy π∗H for the H-stage problem
with the optimal cost:

J π
∗
H

t (ν(t)) = min
πH

J πH
t (ν(t)) (4.92)

Note that although πH looksH slots into the future, theH-stage problem is solved every time
slot, and the optimal action π∗t (ν(t)) = a∗(t) is executed both for the UL and DL.

4.4.3.3 The Finite Horizon Scheduling Algorithm

As it has been shown in [Ber95], the H-stage problem starting at t and ending at t + H can
be solved optimally by minimizing the RHS of the equation (4.92) for τ ∈ [t, t+H):

Jτ (ν(τ)) = min
a(τ)∈A(τ)

E
[
g(ν(t)) + Jτ+1

(
f(ν(t),a(τ), δULi (τ), δDLj (τ))

)]
, (4.93)

while we start from the terminal cost given as:

JH(ν(t+H)) = g(ν(t+H)). (4.94)

We refer to [Ber95, p. 25] for proof. The equations (4.93) and (4.94) can be explained in plain
words as follows: the optimal cost J π∗H (ν(t)) can be obtained by iterating backwards in time
from stageH − 1 to stage zero, while at each iteration step τ the optimal action a∗(t) solving
(4.93) is taken. Once the 0-th stage is solved, the resulting scheduling policy π∗H achieving
the minimum expected cost J π

∗
H

t is optimal.

Similar to section 4.3, we visualize theH-stage problem through anH-level tree structure.
Each node in the tree represents a network state occurring within the finite horizon. The 0-th
level consists of a single node with state ν(t) and is called the root node. Moreover, the nodes
in the last level are called leaf nodes.Starting from the root node, all feasible state-action pairs
define the remaining levels with appropriate transition probabilities. In particular, a joint UL
and DL action a(t) can lead to at most four possible next states, as previously explained in
(4.89), where each transmission is modeled by an outgoing edge. Moreover, each edge is
assigned a transition probability depending on the action, i.e., scheduling decision, and the
transmission success probability of the respective links. Once the whole tree is generated,
each state’s cost is assigned according to (4.93) and (4.94) starting from the leaf nodes. The
following steps summarize the resulting algorithm of the FH scheduler:
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Finite Horizon Scheduling Algorithm

1. Initialize the current state ν[t] as the root of the tree.

2. Starting from the root node, determine the feasible actions AUL(τ) and ADL(τ)

and subsequently all possible next states ν(τ + 1) given an action a[τ ].

3. Add the obtained next states as child nodes to the next level of the tree and initialize
the edges between the parent and child nodes with corresponding transition
probabilities.

4. Repeat steps 2. and 3. until the H-th level of the tree is constructed.

5. Assign the minimum cost and best action to each node as in (4.93) and (4.94)
starting from the leaf nodes.

Once the FH scheduling algorithm completes, the scheduler executes the optimal action
a∗(t) = π∗t (ν(t) obtained for the root node. We emphasize that even though the FH
scheduling algorithm has obtained the optimal action for all possible future states within the
horizon H , the FH scheduler algorithm must be repeated after every time slot. The reason
is the modification of the tree’s root node and the dynamically changing edge transition
probabilities caused by time-varying channel conditions. We would like to remind the reader
that the scheduler knows each link’s current loss probability but is unaware of future channel
conditions, e.g., pULi (t+1), pDLi (t+2). Therefore, the expected cost calculation is performed
as if the current packet success probabilities would remain constant throughout the following
H slots.

One can easily deduct by looking at the algorithm that constructing such a tree structure
is a heavy task in terms of computation complexity. In particular, the complexity strictly
depends on the selected FH parameter H and the scale of the network governed by N . A
detailed discussion on the FH algorithm’s complexity follows in the remainder of this section.

Selecting the cost function: We propose using an additive weighted cost function for imme-
diate state cost given as:

g (ν(t) =
N∑
i=1

wBSi nMSEi
(
∆BS
i (t)

)
+ wCii nMSEi(∆

Ci
i (t)). (4.95)

∆BS
i (t) and ∆Cii (t) are defined as in (4.63) and (4.67), respectively. wBSi and wCii are positive

weighting factors for a sub-system i. It is evident that the selected cost function does not
only consider the normalized MSE at controllers but also the nMSE at the BS. The reason
behind the consideration of ∆BS

i can be explained with the help of a toy example: Suppose a
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newly initialized network with N = 1 and H = 1. The initial AoI at each node is given as
∆S11 (0) = 0 and ∆BS

1 (0) = ∆C11 (0) = 5. In such a setting, if we only reward a cost reduction
at the controller, or equivalently, wBS1 = 0 but wC11 > 0, then a successful UL transmission
does not lead to any change in cost within the considered horizon, i.e., by t + 1. As a result,
the scheduler is indifferent between aUL(0) = 1 and aUL(0) = ∅ since it is not better-off by
scheduling any sub-system within H = 1 slots. Thus, in order to incorporate a hidden future
reward enabled through updating the BS, we choose a positive wBSi in our framework.

It is important to add that one may use different cost functions than the normalized MSE.
Such approaches exist in the relevant existing literature. Through the numerical evaluation that
we will present in section 4.4.4, the FH scheduling algorithm can operate with various age-
penalty functions. For instance, the scheduling algorithm can employ gi(t) = ∆BS

i (t)+∆Cii (t)

can target information freshness by solving the H-stage problem. Similarly, other common
functions can be utilized to penalize increasing age such as gi(t) = eαi∆

BS
i (t) + eαi∆

Ci
i (t) and

gi(t) = αi∆
BS
i (t) + αi∆

Ci
i (t) with a design parameter αi > 0 as a multiplier constant in

front of the age. Throughout the following section, we simplify the notation by dropping the
superscript. As an example, when we say that the scheduler employs the metric αi∆i(t), it
implies gi(t) = αi∆

BS
i (t) + αi∆

Ci
i (t).

4.4.4 Numerical Results and Discussion

In this section, we evaluate the performance of our pro- posed FH scheduler in terms of
the long-term average AoI quantifying information freshness, the average MSE capturing the
estimation performance, and average LQG cost quantifying the control performance in the
network. Our evaluation is not only limited to the presentation of key performance indica-
tors (KPIs) when various selected cost functions from the existing literature are employed,
but additionally, we investigate the relationship between the scheduler’s far-sightedness and
achieved performance.

4.4.4.1 Simulation Details

Our simulation consists ofN = 4 feedback control loops of heterogeneous type. In particular,
one of the sub-systems is an inverted pendulum, which is a well-known real-life application in
control theory textbooks [rM08]. As depicted in Fig. 4.20, it consists of a pendulum mounted
on a motorized cart. The controller’s objective is to hold the pendulum in upright position
by moving the cart back and forward. While the inverted pendulum (IP) has a four-by-four
system matrix, i.e., AIP ∈ R4×4, the remaining applications are a scalar control loop each,
i.e.,Ai 6=IP ∈ R.
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Figure 4.20: An inverted pendulum with motorized cart. The primary goal of the controller is to hold
the pendulum in upright position, i.e., to keep |φ| close to zero as much as possible.

The parameter selection of our control model can be summarized as:

A2 = AIP =


1.0000 0.0100 0.0001 0.0000

0.0000 0.9983 0.0191 0.0001

0.0000 0.0000 1.0017 0.0100

0.0000 −0.0049 0.3351 1.0017

 ,

B2 = BIP =


0.0001

0.1706

0.0002

0.0488

 ,

Σ2 = ΣIP =


6.4 10−7 0 0 0

0 4.9 10−7 0 0

0 0 2.74 10−5 0

0 0 0 4.87 10−5

 ,

A1 =
[
1.0
]
,A3 =

[
1.2
]
,A4 =

[
1.3
]
,

B1 = B3 = B4 =
[
1.0
]
,Σ1 = Σ3 = Σ4 =

[
1.0
]
.

Moreover, the selected parameters to determine the stabilizing feedback gain are given as:

Q1 = Q3 = Q4 =
[
100.0

]
,Q2 =


5000 0 0 0

0 0 0 0

0 0 100 0

0 0 0 0

 ,
R1 = R2 = R3 = R4 =

[
1.0
]
.
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Figure 4.21: The evolution of the normalized MSE for increasing AoI. For the scalar systems, i.e.,
i ∈ {1, 3, 4}, as the systemmatrixAi increases, a given∆ leads to a higher squared error in expectation.
Additionally, the inverted pendulum’s (IP) normalized MSE behavior is comparable to an imaginary
scalar sub-system withAi = [1.1] and Σi = [1.0].

Our results consist of 50 simulation runs that are each T = 180 000 time slots long. The
finite horizon H is varied from zero to five. When H = 0 is selected, we employ the greedy
MAF policy described in section 4.4.2. Similarly, the greedy MEF scheduler corresponds to
a combination of H = 0 with the metric nMSEi(∆i(t)).

As our primary goal is reducing the cost at the destination, for the cost function (4.95),
we penalize controller’s contribution more than the cost at BS by using a higher weight
as wBSi = 1, wCii = 2 for all i. In addition, the following parameters are used for the
Gilbert-Elliott channel model: pG = 0.1, pB = 0.4, pULG2B = pDLg2B = pULB2G = pDLB2G = 0.1.

Fig. 4.21 illustrates the evolution of the normalized Normalized Mean Squared Error
(NMSE) for increasing AoI. As depicted in the figure, each sub-system considered in our
simulations has a different expected NMSE trajectory for increasing AoI. For instance, at
∆ = 7 , the NMSE is expected to be much higher for A4 than for A1, indicating a higher
estimation error normalized by their respective default state ∆ = 1. In addition, we observe
that the inverted pendulum application lies between A1 and A3 w.r.t. NMSE. In fact, it is
comparable to an imaginary21 scalar sub-system with A = [1.1] and Σ = [1.0]. This brings
us to the selection αi in our simulations and in the following discussion. That is, we select
αi = Ai for i ∈ {1, 3, 4} and α2 = αIP = 1.1 when applicable. We would like to stress that
αi appears as a multiplicative factor in front of AoI for some of the considered cost metrics,
such as gi(t) = wBSi αi∆

BS
i (t) + wCii αi∆

Ci
i (t).

21By using the word ”imaginary”, our goal is to emphasize that this sub-system is not considered in our
simulations. It is included in the figure only for comparison.
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4.4.4.2 Key Performance Indicators

We select the long-term average AoI as the primary KPI to quantify information freshness in
the network22. The average AoI during a simulation run is measured per time slot and user;
hence it can be obtained by:

∆ =
1

T

1

N

N∑
i=1

T−1∑
t=0

∆Cii (t). (4.96)

∆ tells us, how outdated the most recent information at the controllers in average is. Despite
being an application layermetric, the average age does not state anything about the application-
specific performance beyond freshness. To that end, we measure the average NMSE and LQG
cost, calculated per time slot and per user as:

nMSE =
1

T

1

N

N∑
i=1

T−1∑
t=0

wi nMSEi(∆i(t)), (4.97)

F =
1

N

N∑
i=1

wiFi, (4.98)

with Fi as in (4.71) and sub-system weight factor wi ≥ 0,∀i. In this study, we assume
equal weight for each loop, i.e., wi = 1,∀i. Note that a lower nMSE points to a higher
estimation performance, whereas a lower nMSE indicates an increased control performance
in the network.

4.4.4.3 Results

Fig. 4.22 shows the resulting information freshness performance of the considered scheduling
policies. It plots ∆ against increasing H , while each curve belongs to a different scheduling
policy, including MT, RR, and our proposed FH scheduler operating with various age-penalty
functions. One can clearly see from the figure that the best-performing schedulers w.r.t. ∆

are the FH scheduler using linear functions of age, i.e., ∆i[t] and αi∆i[t]. Moreover, the
MT scheduler fails to provide information freshness as it prioritizes those users with the best
channel conditions, irrespective of the timeliness aspect. Although being a channel-unaware
policy, RR performs significantly better than MT due to its periodic scheduling pattern.
However, if we look at the FH scheduler using NMSE as the scheduling metric, we can
observe that it falls behind the RR scheduler. Please note that the results for MT and RR are
included multiple times in the figure for presentation purposes, although they are independent
of H . In consequence, they appear as horizontal lines parallel to the x-axis.

22Performing better or worse in information freshness is not a success indicator for QoC. AverageAoI is presented
solely for more insightful discussion.
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Figure 4.23: Long-term average normalized mean squared error (NMSE) in the network, as defined
in (4.97). In the x-axis, the horizon parameter 0 ≤ H ≤ 5 is varied. nMSE captures the mean
estimation performance in the network. Vertical error bars represent 95% confidence interval.

Fig. 4.23 presents the average estimation performance for varyingH captured by nMSE.
For presentation purposes, we intentionally left RR and MT out as they perform significantly
worse than any other FH schedulers considered in this work23. We can easily deduct from
the figure that the FH scheduler using nMSEi(∆i(t)) as cost function, outperforms all
other schedulers. This can be accounted for the ability of the metric NMSE to identify the
most valuable transmission in terms of the estimation error reduction than the other selected

23The average NMSE for RR and MT are 12.9 · 104 and 34.4 · 1010, respectively.
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average control performance in the network. Vertical error bars represent 95% confidence interval.

functions, such as ∆i(t). In particular, applying the MEF scheduler from [Aya+19], which
coincides with the greedy version of our proposed policy, i.e.,H = 0, outperforms its closest
competitor, i.e., the combination of H = 5 with eαi∆i[t], by more than 27%. Moreover,
by increasing the far-sightedness of our scheduler beyond H = 0, we are able to improve
the estimation performance further by more than 11%, compared to the MEF policy from
[Aya+19]. It is important to mention that the approximating functions αi∆i and eαi∆i(t)

outperform the FH age-optimal ∆i(t) scheduler. This reveals the potential in approximating
the task criticality by appropriate functions for those scenarios where the exact modeling is
not feasible.

Fig. 4.24 illustrates the average control cost F in the network for varying H . Similar
to nMSE, the best-performing scheduling policy regarding the control performance is the
FH scheduler using nMSEi(∆i(t)). In particular, when H = 5 is selected, the achieved
F is lower than the greedy scheduler proposed in [Aya+19] by approximately 15%. As in
Fig. 4.23, we deduct that the utilization of ∆i[t] and e∆i(t), falls behind carefully selected
heterogeneous cost functions, i.e., αi∆i, eαi∆i(t), nMSEi(∆i(t)). Notice that none of the
selected schedulers incorporate control cost into their decision-making. However, as in the
case of NMSE-based FH scheduler, the control performance can be indirectly improved as a
side-product of optimizing estimation performance.

It is important to emphasize that the availability of network resources remained unchanged
throughout our numerical evaluation. Only by controlling how the network resources are
distributed among the users, we are able to create significant performance differences between
the considered resource allocation policies. Hence, we can claim that by introducing control-
awareness into decision-making, e.g., into the MAC layer protocols, one can significantly



96 Chapter 4. Optimal Scheduling for Wireless Networked Control Systems

vary the quality of the offered service. Both figures presenting the achieved nMSE and F
confirm the importance of such an approach and reveal the potential of considering semantics
of information and control-awareness as an alternative to increasing the bandwidth to offer
the same level of service.

Remarks on inverted pendulum’s performance: To demonstrate the benefit of adopting a
control-aware approach over conventional MAC protocols in a more tangible way, we focus
on the inverted pendulum’s performance. First, let us define three success criteria specific or
the maximum allowed pendulum angle |φ[t]| in degrees:

I) |φ[t]| < 15◦| for 0 ≤ t < T ,

II) |φ[t]| < 30◦ for 0 ≤ t < T ,

III) |φ[t]| < 90◦ for 0 ≤ t < T .

The table 4.3 summarizes the number ofmeasurement runs out of fifty, inwhich |φ[t]| complies
with the selected criterion for all t ∈ [0, T ). It contains RR, MT, and the NMSE-based FH
scheduler with H = 5. In simple words, the FH scheduler is able to keep the pendulum

MT RR FH
I) 0/50 41/50 50/50
II) 5/50 50/50 50/50
III) 7/50 50/50 50/50

Table 4.3: Number of measurement runs, in which the maximum |φ| is below the upper bound.

angle within ±15◦ throughout the fifty simulation runs. On the other hand, when the MT
policy is selected, only seven out of fifty runs comply with criterion III). This suggests that a
human observer, looking at the inverted pendulum visualized in 4.20 would see the pendulum
falling in 43 runs as the pendulum angle exceeds ±90◦. Moreover, the RR scheduler leads to
satisfactory results in all runs only according to the second and third criteria.

Discussion on complexity: The selection of the horizon parameter H plays a central
role in our approach. By increasing H , one can control the time horizon, in which the FH
scheduler offers optimality for the selected age-penalty metric. However, this comes with an
exponential complexity increase for the joint UL and DL scheduling problem. Particularly,
the maximum number of states defining theH-stage problem forN sub-systems is formulated
by the following equation:

#nodes(H) =
(N2 + 2N + 1)H+1 − 1

N2 + 2N
. (4.99)
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TheH parameter allows us to control up to how many nodes the tree structure should consist
of, if the number of users is given. Note that when the MEF policy with H = 0, the tree
consists of a single root node representing the current network state. The following table
compares the number of nodes in the worst-case obtained by (4.99) to the average node count
measured during our simulations. The difference between the worst-case and simulation

H 1 2 3 4 5
worst-case 26 651 16276 4.1× 105 10.17× 106

simulations 16.3 238.6 3428 4.9× 104 7.26× 105

Table 4.4: Node count comparison between simulations and worst-case complexity.

is caused by constraining the set ADL. As we do not consider ineligible DL actions as a
candidate for the optimal policy, due to equal knowledge at the BS and a certain controller Ci,
the number of tree nodes as well as our search space is reduced.

Learning Optimal Action(s): In addition to reducing the complexity as described above,
we propose a further technique to lower the barrier to adoption in practical deployment. In
a static network with an invariant number of control loops, the FH scheduler can learn the
optimal actions over time as the same states are revisited repeatedly. That is, if the same
H-stage problem has been solved and the optimal action(s) has been determined before, it
can be stored in the memory for future reference. This approach is similar to the Dynamic
Programming (DP) method used in computer science, which stores solutions to sub-problems
for future usage.

One way to speed up the learning process is parallel computing. In particular, our
simulations employ the DP approach by running multiple threads that collectively gather
a solution set in the shared memory. Fig. 4.25 demonstrates the potential usage of this
technique. The upper sub-figure shows the ratio of an H-stage problem being already in the
solution set, which we call a DP hit. If theH-stage problem is identified as novel, referred to
as a DP miss, the optimal solution is calculated and added to the solution set afterwards. As
the network learns more solutions over time, the occurrence ratio of a DP hit takes over, and a
new execution of the FH scheduling algorithm becomes unnecessary. It is needless to say that
storing previous solutions to already visited problems comes with an increased memory cost
over time. In brief, one can say that the high computational complexity is traded for increased
memory demand.

As an important remark, we would like to mention that we are able to identify a problem
reappearing due to the limited variance in the link quality, thanks to the Gilbert-Elliott model.
That is, users experience a dynamic packet loss probability on each link that alternates between
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Figure 4.25: The upper sub-figure shows the ratio of a problem being already in the solution set by
using dynamic programming method (DP) and the occurrence ratio of a new problem. The lower
sub-figure shows the growing solution set size.

two values, i.e., pG and pB depending on the link state. However, each of these probabilities
could take any value between zero and one in a real network. Consequently, the H-stage
problem is highly likely to be a novel problem, leading to a DP miss. Nevertheless, this
issue motivates the consideration of approaches similar to [HH08]. In [HH08], the authors
adjust the parameters of a two-state Gilbert-Elliott model through adapting the coefficient of
variation identified in the real network trace. They demonstrate that the model they obtain
after the parametrization step captures the loss pattern of the real network fairly well.

Discussion on the effect of H: As we have just mentioned, the growth in computational
complexity is exponentially increasing in H . However, we cannot claim the same for the
improvement in performance. Fig. 4.26 shows the achieved estimation performance for
our NMSE-based FH scheduler in detail. We observe that for increasing H , the estimation
performance is indeed improved, identified by a decrease in nMSE. However, a significant
portion of the gain is achieved already when H reaches three. As we go beyond H = 3, the
benefit of looking into a longer time horizon diminishes. Therefore, the rightH value should
be identified prior to deployment if the complexity constitutes a bottleneck for our scenario.
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Figure 4.26: Detailed average normalized mean squared error NMSE results for the FH scheduler
with gi(t) = wBSi αi nMSEi(∆

BS
i (t)) + wCii αi nMSEi(∆

Ci
i (t)). As the scheduler becomes more

far-sighted, the estimation performance captured by nMSE improves.

Simulation versus analytic methods: As an alternative to comparing scheduling policies
through simulations, one could argue for finding an analytical solution to the cost minimization
problem characterized in (4.97). For instance, given a stationary scheduling policy, if we can
obtain a stationary distribution of AoI, we can easily map it to the average NMSE, as we
have shown in section 3.2. However, doing so, we can only get partial answers, e.g., unclear
mapping between AoI distribution and the average LQG cost from (4.98). In addition, analytic
methods may introduce significant difficulties without making substantial contributions to the
core problem. On the contrary, a simulation-based study, as we have conducted in this work,
gives definitive answers to the KPIs of interest. Additionally, simulations serve as a proof that
it is practically feasible to implement the proposed algorithm in software.

4.5 Related Work

The existing literature related to the content of this chapter can be roughly divided into two
main blocks. The first group of works study the age of information and further semantics of
information beyond age for real-time applications communicating over networks. The second
group focuses on networking protocols specifically for networked control systems.

Age of information and beyond: The AoI has emerged as a novel metric in real-time
networked systems as a metric capturing the freshness aspect of information and has received
great attention by the research community [Yat+21; Pop+22; Kad+18]. It has been used
in remote monitoring and control-oriented tasks, such as UAVs and autonomous driving
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[Sor+21; Han+22; AED19]. Note that a detailed literature review on AoI has already been
provided in chapter 2.

Although it has been widely adopted by the research community, the AoI has been shown
to be sub-optimal for decision-making in certain settings. In particular, by definition, the AoI
is agnostic to the value and content of the transmitted bits beyond their freshness property.
Hence, derivatives of AoI has emerged, to capture further semantics of information beyond
age. To name a few examples, the value of information of update (VoIU) has been proposed
in [Kos+17] to overcome the shortcomings of AoI by considering non-linear functions of
AoI. [SC19; Sun+17; Maa+20] are other examples using derivatives and non-linear functions
of AoI, e.g., f(∆(t)) = ea∆(t), in order to approximate the importance of transmitting the
next status update packet. In [Maa+20], the authors propose a novel metric called the age of
incorrect information (AoII) that considers an update “informative" only if the system state
has altered since the most recent update. The works mentioned above consider information
semantics, e.g., VoIU, AoII, as an alternative to aging as a linear process. Generally speaking,
using derivatives of AoI can be seen as heuristics towards system-dependent and task-specific
metrics.

An alternative approach is using derivatives of age that depend on the time dynamics of
the monitored process’, as it has been done in [SPU20; Kl19; Cha+19]. In contrast to these
works, the content of this chapter is targeted for multi-user scenarios, i.e., when there are
multiple feedback control loops sharing a communication network. For example, [Cha+19]
focuses on control performance in a single-loop scenario, in which the authors target the
sampling problem under constant loss probability and propose a greedy policy based on the
estimation error.

Networked control systems: The vast majority of the existingworks on networked control
systems focuses on stability conditions in the presence of a network, including but not limited
to [Cer03; Dre+05; LFJ15; Mai+22]. An alternative methodology is followed by [LG04;
GRP15; MH14; Vil+16], which study the achieved control performance under contention-
based MAC protocols. However, contention-free access to the shared wireless medium has
been found to outperform contention-based strategies through a numerical study in [LG04],
hence motivating the centralized scheduling in multi-loop WNCS scenarios.

Centralized resource allocation forWNCS have been studied in [WY01; WYB02; MEJ19;
ZZN20]. In [ZZN20], a multi-user scenario is considered, and a new metric called urgency
of information has been proposed. While [WY01] and [WYB02] propose a greedy policy,
scheduling the sub-system with the highest instantaneous estimation error, [MEJ19] solves
the problem for a given time horizon optimally, when there are no delays or losses in the
network. It is important to mention that all of these works assume global knowledge for
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decision-making. In other words, the centralized scheduler that is not co-located with the
sensor devices is assumed to have global and perfect knowledge about the content of the
information to be sent. On the contrary, the scheduling algorithm presented in this chapter
bases its decision-making on the expected value of the MSE or NMSE given the AoI.

4.6 Summary

This chapter has focused on the centralized scheduling of wireless network resources for
networked control systems. The core research question that this chapter aims to answer is the
following: How to distribute the limited network resources among multiple heterogeneous
control loops in order to keep performance deterioration at the minimum? Our starting point
has been the application of AoI in centralized scheduling, e.g., [Kad+18]. Motivated by the
application-unawareness of AoI, in section 4.1, we have employed the expected value of the
mean-squared (estimation) error as the schedulingmetric. We have shown through simulations
that although the MSE-based scheduling lacks behind the pure AoI-based scheduling in
terms of information freshness, it achieves a higher performance w.r.t. control-oriented tasks
accounted for its ability to capture the real value behind the transmitted bits. In section 4.2,
we have introduced constant packet loss into the network and solved the problem optimally
using the value iteration technique. The assumption of packet loss to be time-invariant has
been relaxed in section 4.3, in which we obtained the optimal scheduling policy for a given
finite horizon. We have shown through simulations that the estimation performance can be
improved by increasing the finite horizon for the price of increased computational complexity.
Section 4.4 extends the results of section 4.3 by considering a two-hop star network instead of
a single-hop link between the source-destination pairs. Additionally, the last section contains a
comparison between our proposedAoI-based control-dependentmetric to heuristic derivatives
of age, e.g., f(∆(t)) = ea∆(t) that have been used in the existing literature. We have shown
through simulations that if designed carefully, such heuristic functions can outperform pure
AoI-based scheduling w.r.t. control performance but lacks behind using metrics that are
specific to the control system dynamics.





Chapter 5

Implementation of Control-Aware
Scheduling for WNCS

We have shown in the previous chapter that semantics of information such as freshness
and value are particularly relevant in scenarios with limited resources, e.g., for WNCS, when
multiple feedback control loops share the wireless network. The previous chapter has revealed
that the consideration of the VoI for network and protocol design is a very effective tool for
minimizing the deterioration in control systems’ performance caused by the limitations of the
imperfect communication network. However, incorporating the SoI into the network design
may unfold new challenges that may not be straightforward to tackle in practice.

For instance, suppose a wireless network that is shared by multiple feedback control
loops. As in the previous section, the allocation of network resources is done by a centralized
scheduler. In such a setting, having the QoC maximization as the primary goal in mind,
the scheduler does not only need to measure the channel quality or keep track of the offered
throughput, but it also requires a control-specific evaluation mechanism to be able to prioritize
themost valuable information. An example to such has been shown in the previous section and
the results have shown that a significant performance improvement can be achieved. However,
when it comes to the realization of such a cross-layer and complex algorithm in practice, the
random nature of the wireless channel, approximation and hardware effects, as well as timing
errors, may obscure the performance improvement promised by the simulation results. Hence,
the additional effort spent on the protocol design may be superfluous.

In this chapter, we extend our theoretical results especially from section 4.1 through an
extensive experimental study focusing on existing MAC protocols. More specifically, in
a multi-loop scenario, we study the effect of various scheduling policies on the resulting
control performance. The core question of this chapter is the following: Despite all the non-
idealities and randomness introduced by the physical channel and hardware components, is
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Figure 5.1: Multiple feedback control loops share a wireless communication network in order to
exchange information between their components. We consider that each plant Pi, sensor Si, and
actuator Ai are co-located, whereas the controller Ci operates remotely.

it still possible to achieve a notable control performance improvement in practice through
control-aware scheduling policies that heavily rely on theoretical and control-specific system
modeling? In the remainder of this chapter we seek an answer to this question by conducting
experimental measurements on a practical testbed. For the information exchange between
sensor-controller pairs, we utilize SDRs that are programmed using the GNU Radio library
[Rad].

Section 5.1 investigates the effect of the selected queueing strategy at the source devices
on information freshness and control performance. The results of section 5.1 are based on
the publication [AOK21]. Section 5.1 serves as a baseline for the following section, i.e.,
section 5.2, in which we conduct an extensive study on selected MAC protocols. The results
of section 5.2 have been published in [Aya+22]. A related work section on relevant practical
research is provided at the end of this chapter.

5.1 Effect of the Selected Queueing Strategy on
Information Freshness and Quality of Control

5.1.1 Scenario

We consider multiple control systems that are closed over a shared wireless network. As
visualized in Fig. 5.1, each loop consists of a plant Pi, a sensor Si, a controller Ci, and an
actuator Ai. Each sensor measures the plant state periodically and transmits the observed
state over the shared wireless channel to Ci. The transmissions occur in the form of status
update packets, while each packet contains a single state information. Having received a new
update, each controller responds with a packet carrying the newly calculated control input to
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Ai. The commanded input is then applied by the actuator to the plant with the goal of driving
the system state to zero.

We assume a request-response system in which the controller transmits only upon a
reception of a sensor measurement, but not triggering any transmissions itself. Each sensor-
to-controller link, as well as the controller-to-actuator link requires a single transmission,
hence the loop is closed over a two-hop wireless communication network. The formation
control of UAVs from a ground station can be given as a practical example of such a topology
with the UAVs being the plant, its positioning sensors being the sensors, the ground station
corresponding to the controller, and a set of motors installed on the UAVs serving as the
actuators.

The control sub-systems are characterized by a set of LTImatrix equalities in discrete-time:

xi[k + 1] = Aixi[k] +Biui[k] +wi[k], (5.1)

with the variables defined as in (4.69). Upon receiving a system state xi[k − ∆Cii [k]], the
controller calculates the control input according to the following control law:

uCii [k] = −Lixi[k −∆Cii [k]]. (5.2)

Here, Li ∈ Rmi×ni denotes the time-invariant feedback gain matrix. Note that in contrast
to the previous chapters, the control law is kept simple in the sense that there is no ongoing
state estimation at the controller side. That is, although Ci may have received an outdated
observation of the state that is already∆Cii [k] sampling periods older than k, the latest received
state is directly used to obtain the next control input. Additionally, we do not assume any
intelligence at the actuators, thus the latest received control input held constant until a new
packet is received. In other words, ui[k] = ui[k − 1] holds in case there has not been any
successful reception in the controller-to-actuator link during the sampling period k − 1. The
behavior of the input applied to the plant can be characterized by the following equation:

ui[k] =

ui[k − 1] , if no reception during the sampling period k − 1

−Lixi[k −∆i[k]], , if a new transmission on the Ci-to-Ai link
(5.3)

with xi[k −∆i[k]] being the system state that was used to obtain the latest control command
received by the actuator. Put differently, xi[k − ∆i[k]] denotes the freshest plant state that
Ci has successfully received, processed, and forwarded to Ai by the beginning of the k-th
sampling period1. We emphasize that the information content changes from state to control
input along the Si-to-Ci-to-Ai path and only the final applied control input, i.e., ui[k], has an
effect on the state evolution. Equations (5.2) and (5.3) imply that the control signal at Ci, as
well as the actuated signal at Ai may be obtained using an outdated knowledge of the state.
1Throughout the following analysis, we assume that a control input can be used by Ai in time step k only if it

has been received before the beginning of the k-th sampling period.
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5.1.2 Design and Implementation

Our goal is to operate the LTI feedback control loops introduced in the previous section
through a physical channel. To that end, we develop a framework programmed in Python
language implementing the control applications in real-time. For the networking part, we take
the framework presented in [Blo+13] as a starting point, which contains various GNU Radio
modules destined to run on SDRs. In particular, the framework replicates the physical layer
of the IEEE 802.15.4 standard and can interfaces any other application process, e.g., a Python
code realizing the plant process, through User Datagram Protocol (UDP) sockets.

5.1.2.1 Medium Access Control

The framework that has been proposed in [Blo+13] does not contain anyMAC considerations.
More specifically, theMAC layer processing is implemented in a way that any incoming packet
is immediately forwarded down to the physical layer processing block that is responsible for
their transmission on the wireless link. Such a MAC protocol is also called ALOHA in
the literature. As we know from the fundamental rules of wireless communications that
the ALOHA protocol causes collisions due to simultaneous access to the shared channel,
consequently leading to high packet loss. In order to minimize the amount of such collisions,
we implement an second protocol that relies on centralized resource allocation based on time
slots. The transmission schedule is communicated using beacon packets that are broadcasted
by a gateway node periodically. Among other fields required for data-link layer processing,
such as packet header, Cyclic Redundancy Check (CRC), each beacon packet contains the
duration of a time slot, denoted by TD, and the transmission schedule for the next L slots
forming a frame together2.

The beacon packets are also used for time synchronization among the SDRs. In particular,
having received a new beacon packet, each sensor aligns its timing in order to synchronize
with the slot structure. When a new time slot begins, the node that is allowed to transmit
according to the latest broadcasted beacon packet initiates the transmission of the next packet
in its transmission buffer. The gateway node, also implementing the centralized scheduler
in our scenario, allocates one sensor node at a time. Therefore, all other SDRs except the
scheduled user refrain from accessing the channel. The controllers run as parallel processes
and are co-located with the gateway node. Alternatively, one can think of controllers and the
scheduler as one node. The scheduling policy considered in this analysis is the round-robin

2If a sensor node fails to decode a beacon packet, the transmission schedule from the previous frame is assumed
to apply for the current frame.
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Figure 5.2: An example packet exchange between the gateway and two control sub-systems. In the
figure, S1 and S2 stand for the status update packets sent by the two sensor nodes. Similarly, C1 C2

represent the control inputs that are sent as a response to the both status update packets. Note that
a slot duration is long enough to accommodate a status update, as well as a control input packet. B
stands for the beacon packet. While the gateway node uses the center frequency of fC , the sensors are
sent on a different frequency fS .

(RR) scheduler. This means that each slot is allocated to a sensor according to a predetermined
order3.

In addition to the beacon packets, there are two other packet types in our network. The
status update packets are transmitted from sensors to the controller processes. They contain
a unique identifier of the sub-system, i.e., i, the generation timestamp indicating the sampling
period κ, to which they correspond to, and the system state xi[κ]. Each received status
update packet triggers the transmission of a new control input packet carrying the controller
identifier i, the sampling period κ, and the control input to be applied by the respective
actuator ui[κ] = −Lixi[κ]. Our implementation utilizes Frequency Division Duplex (FDD)
technique, i.e., both the beacon and control packets are transmitted on a distinct frequency
from status update packets. Fig. 5.2 depicts an example information exchange between the
gateway node and two sensor nodes. An initial beacon packet is followed by a status update
packet transmitted by S1. In the same slot, a control packet is generated by Ci and sent via the
gateway node to the sensor. The same procedure repeats in the subsequent slot.

5.1.2.2 Packet Management Strategies

To understand the connection between the selected packetmanagement policy and the resulting
performance, we consider various strategies that are commonly used in the literature:

• First Come First Serve with Tail Drop (FCFS-TD)

• First Come First Serve with Head Drop (FCFS-HD)

• Last Come First Serve with Packet Drop (LCFS-PD)
3We use the sub-system identifiers for that purpose and schedule the sub-systems in the increasing order, i.e.,

sub-system two with i = 2 is scheduled following the first sub-system, i = 1.
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FCFS-TD:

FCFS-HD:

LCFS-PD:

x1[k]

x2[k]

x3[k]

x1[k]

x2[k]

x3[k]

Figure 5.3: The visualization of the FCFS-TD, FCFS-HD, and LCFS-PD strategies with a transmission
buffer size of three packets. While the FCFS-TD and FCFS-HD strategies discard the most recent and
oldest packet available, respectively, according to the LCFS-PD policy, any older packet is replaced
with a new one.

Figure 5.4: Illustration of an inverted pendulum. The control input u is applied to move the cart back
and forward in order to keep the pendulum vertical. The dynamics of the system can be linearized
around the equilibrium point, which is located at φ = 0.

In our framework, all of these policies are implemented using transmission queues of finite
length. In case of the FCFS-TD strategy, if the queue is full and there is a new packet received
from the application layer, then the new packet is dropped without further consideration.
When the FCFS-HD policy is applied, a new arrival to a full queue leads to the discard of
the oldest packet. Note that the oldest packet is located at the head of the transmission queue.
Both of these strategies policies inject any incoming packet to the back of the queue, also
called the tail of the queue. However, when the the LCFS-PD policy is employed, the packet
at the queue’s head is discarded prior to the admission of the new arrival. This way, the
LCFS-PD serves only the most recent packet and discards all admitted ones. Fig. 5.3 depicts
the operation of the packet management policies.
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Figure 5.5: A sketch of our measurements setup composed of four USRP B200mini-i SDRs. Three
SDRs are used for sensor-to-controller data transmission and one SDR is used for the controller-to-
actuator traffic. On the monitor, the current state of the inverted pendulums are visualized via a
graphical interface.

5.1.2.3 Case Study: Inverted Pendulum

As a case study, we choose the task of controlling an inverted pendulum over the wireless
network. Fig. 5.4 shows a screenshot taken from our graphical user interface emulating an
inverted pendulum. The controller’s objective is to hold the pendulum in upright position
through the movements of the cart. Accounted for its unstable nature, as the pendulum
would fall if not controlled appropriately, it is an example control application that requires
fresh information to operate correctly. The discrete-time behavior is characterized by a set
of matrix equations as given in section 4.4.4.1. It is important to mention that the specified
matrices describe the behavior of the system for a sampling frequency of 100Hz. Equivalently,
in our framework, the system state is sampled every ten milliseconds and a new status update
packet is admitted into the network.

Our setup consists of three inverted pendulum processes that run in parallel on a desktop
computer. Each process is mapped to a different Software-Defined Radio (SDR) and the traffic
that is generated by the inverted pendulum process is sent over the shared wireless channel to
the gateway node. Fig. 5.5 sketches our measurement setup with three applications running
on one computer and the controller running on a separate computer. As SDR Ettus Research’s
USRP B200mini-i is used.

Each plant Pi is sampled with a constant frequency of 100 Hz and as slot duration 8 ms
is selected. The length of the frame is selected as L = 30 meaning that the RR scheduler
determines the transmission schedule for the next thirty slots. Note that each sub-system is
granted channel access every three slots as a result of the RR policy.
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Figure 5.6: Round Trip Time (RTT) measured in application layer. ALOHA does not include any
MAC layer considerations or queueing. FCFS-TD, FCFS-HD, and LCFS-PD are combined with RR
scheduler. Outliers are not displayed to avoid visual clutter.

5.1.3 Results

We compare the selected packet management strategies, namely, FCFS-HD, FCFS-TD, and
LCFS-PD in terms of performance. To that end, we measure average packet loss, Round
Trip Time (RTT), and AoI, when a different policy is employed. Moreover, to verify that our
RR scheduler helps reducing the packet loss rate, we keep track of the selected performance
metrics when the ALOHA policy is used. Each configuration is measured for twenty seconds
and is repeated forty times.

Fig. 5.6 shows the RTT performance of the selected policies, while the measurements are
recorded in the application layer and only for those packets that are responded by a control
packet. Thus, we define RTT as the time between the generation of a status update packet
and the reception of the corresponding control packet with the same sequence number4. The
results show that ALOHA performs the best in terms of delay accounted for its zero waiting
time. It is followed by the LCFS-PD strategy accounted for its packet replacement feature.
The worst strategy in terms of delay is FCFS-TD, as it discards the most recent packet if the
queue is not empty.

If we look at average packet loss, the ALOHA protocol performs the worst, as shown in
Fig. 5.7. More specifically, while the overall average loss rate is approximately 40%, we
observe that in at least one run, the ALOHA strategy has encountered an average loss rate

4We do not need any synchronization to measure the RTT as the sending, as well reception timestamps are taken
on the same computer.
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Figure 5.7: Packet loss rate for ALOHA and RR scheduler combined with FCFS-TD, FCFS-HD, and
LCFS-PD strategies. The packet loss is significantly lower when the resources are allocated centrally.
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Figure 5.8: The performance in terms of AoI measured in units of sampling periods. The data
set contains raw age values and not mean values only. Outliers are not displayed due to presentation
purposes. The circle markers correspond to themaximum andminimum values that have been achieved
throughout the measurements.

more than 80%. On the other hand, the centralized scheduler can achieve a significantly lower
packet loss rate compared to ALOHA irrespective of the selected queueing policy. Note that
the discarded packets do not contribute to packet loss statistics.

As we have seen in figures 5.7 and 5.6, employing the ALOHA protocol achieves a
lower RTT, whereas the chance of a collision between two transmitters is significantly higher.
Similarly, the additional effort put into the centralized scheduling protocol decreases the
packet loss, but an additional queueing delay is introduced into the the network. Having
said that, we present Fig. 5.8 that shows the average AoI in the network that is affected
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both by packet loss and RTT. The results suggest that transmitting only the most recent
information in a contention-free manner, i.e., RR combined with LCFS-PD, outperforms
other policies prioritizing stale packets, such as FCFS-TD and FCFS-HD. Our experimental
results coincide with the theoretical findings in [KYG12b]. Furthermore, providing regular
updates is essential for reducing information staleness at the receiver, as it can be seen from
the comparison between ALOHA and LCFS-PD with RR scheduling.

Let us now have a closer look at the performance beyond freshness and investigate the
ability of inverted pendulum applications balancing themselves successfully. To do so, we
select ±20 degrees as the maximum allowed pendulum deviation from the upright position.
Moreover, we call the time it takes the applications to violate this criterion time to failure.
Table 5.1 summarizes the results with the infinity sign representing a successful control within
the given bounds throughout the measurements. The results show that the RR scheduler with
LCFS-PD is the only one among the considered techniques that is able to keep the pendulum
angle within the specified bounds. In addition, when ALOHA is applied, the mean time to
failure is 4.96 seconds and it was able to satisfy the control criterion at least once. On the other
hand, the FCFS-HD and FCFS-TD policies were able to comply with the stability criterion at
most 1.24 and 0.93 seconds long, respectively. Thus, we conclude that the performance and
stability of our considered applications are more sensitive to receiving outdated information
than infrequent exchange of data. However, we emphasize that this is strictly scenario and
application dependent.

Time To Failure
Policies Mean Median Maximum
ALOHA 4.96 s 2.73 s ∞
FCFS-TD 0.55 s 0.53 s 0.93 s
FCFS-HD 0.81 s 0.81 s 1.24 s
LCFS-PD ∞ ∞ ∞

Table 5.1: Mean, median, and maximum time to exceed ±20 degrees of pendulum angle, referred as
time to failure. To obtain the mean and median values, only the failed runs are taken into account. The
RR scheduler with LCFS-PD policy was able to meet the requirements in each run.

5.2 Practical Study on Various MAC Protocols for
Networked Control Systems

In the previous section, we have introduced an experimental framework that enables us to
conductmeasurements using real-life connections. The first results have shown the importance
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of the selected packet management technique, but also of reducing the collisions through a
centralized resource management scheme. In this section, we explore various scheduling
mechanisms from the existing literature, such as maximum throughput, round-robin, slotted
ALOHA, and few other strategies designed to increase information freshness. Moreover, as
the primary contribution, we implement control-aware scheduling in practice and demonstrate
its effectiveness over the control-unaware methods. The content of this section is primarily
based on [Aya+22] and can be seen as an extension of the previous sections 4.1 and 5.1.

5.2.1 System Model

We considerN control applications of heterogeneous type sharing a physical wireless channel.
Each application consists of a plant Pi, a sensor Si, and a controller Ci. Sensors observe the
system state of their respective plant and transmit these to a Gateway (GW) node using the
shared network resources. In particular, the status updates carrying the state information
are sent via an SDR implementing a sensor Si to another SDR implementing the GW5. The
successfully received packets are then forwarded using a wired link to the corresponding
controller Ci. As a practical example of such a topology, we can name the camera-based
control of an inverted pendulum, in which a camera observes the system state remotely and
transmits these over a shared wireless network to the controller that is co-located with the
plant. Such a topology can be viewed asN source nodes contending for wireless resources to
transmit their status updates over a shared single-hop link. Fig. 5.9 visualizes the described
scenario.

From the theoretical AoI research, e.g., [KYG12b], we know that under the assumption
that the status is Markovian, having received an update, the controller does not benefit from
receiving an older observation. Therefore, any older packet is considered as obsolete and
non-informative, motivating the replacement of older packets by new information. Such a
policy has been implemented in section 5.1 and referred to as LCFS-PD. In compliance with
the theoretical findings, this approach has been found to outperform FCFS techniques, both
in section 5.1.3 and recent prior work [KRM21].

We utilize digital representation of control applications running as independent parallel
processes. Their behavior is modeled as discrete-time LTI systems, meaning that the system
state evolves in discrete-time steps with a constant sampling period of Ti,s. In other words, if
we index time steps using t, any consecutive time steps t and t + 1 are Ti,s seconds apart in
continuous-time and the system state is considered constant between two subsequent sampling
events. The discrete-time difference equation that characterizes the system state’s evolution

5Note that the GW node is common for all sub-systems.
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Figure 5.9: The considered scenario withN feedback control loops closed over a shared wireless link.
Each sensor/SDR Si is responsible for observing and transmitting the system state to the gateway GW,
from where they are forwarded to the corresponding controller Ci. While solid arrows stand for ideal
links, the dashed lines indicate an imperfect wireless connection between the components.

is given as:
xi[t+ 1] = Aixi[t] +Biui[t] +wi[t]. (5.4)

Here, xi ∈ Rni and ui ∈ Rmi are column vectors denoting the plant state and control input,
respectively. The system matrix Ai ∈ Rni×ni defines the linear relationship between the
current and next states. Furthermore, Bi ∈ Rni×mi is the input matrix and wi ∈ Rni is
the independent and identically distributed (i.i.d.) noise sequence that follows the zero-mean
Gaussian distribution, i.e.,wi ∼ N (0,Σi). Here, Σi is the noise covariance matrix, which is
a square diagonal matrix. To simplify the following analysis, we select the sampling period
to be identical for all sub-systems, i.e., Ti,s = Ts,∀i.

The calculation of ui[t], which is needed to drive the state to the desired value, depends
on the observation history at Ci. However, due to the fact that the state information is
communicated over the imperfect wireless link, namely the Si-to-Ci link, packet loss events
and/or the resource scarcity prevents the controller to retrieve all generated data. Besides,
the successfully received packets may be delivered with a non-negligible end-to-end delay
that is caused by the entire communication stack between the plant and controller processes.
In consequence, the controller’s knowledge about the remote state gets outdated, leading to
sub-optimal control inputs; hence to the degradation of the control performance.

In order to minimize the adverse effects caused by information staleness, each controller
employs an estimator, the task of which is to estimate the actual system state remotely. The
expected value of the remote state can be expressed given the latest received state information
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xi[νi(t)] as follows:

x̂i[t] , E [xi[t] | xi[νi(t)]]

= A
∆i(t)
i xi[νi(t)] +

∆i(t)∑
q=1

Aq−1
i Biui[t− q]. (5.5)

∆i(t) , t − νi(t) gives the number of elapsed sampling periods since the most recent
information; hence, the age of information in terms of the sampling period. The estimation
law is in alignment with (4.70). The simplified notation of AoI without the superscript is
accounted for the single-hop case.

The controller is an LQR controller, designed independent of the network. It aims to
minimize the infinite horizon quadratic cost function:

Fi , lim sup
T→∞

E

[
1

T

T−1∑
t=0

(xi[t])
TQixi[t] + (ui)

TRiui[t]

]
. (5.6)

Fi is called the linear-quadratic-Gaussian (LQG) cost function. The matrices Qi and Ri are
symmetric positive semi-definite weighting matrices of appropriate dimensions penalizing
the state error and the control effort, respectively6. A lower Fi indicates a higher control
performance, i..e, an increased QoC.

The controller obtains the control input according to a linear time-invariant control law:

ui[t] = −Lix̂i[t]. (5.7)

The optimal matrix is obtained by solving the DARE, as already explained (2.17) in chapter
2. It is worth mentioning that although the LQG does not contain any network-specific
considerations, as it has been shown in [Mai+22], the optimal Li matrix solving the DARE
leads to optimal control law if the network is prone to delays and dropouts. The network-
induced imperfections are reflected in the estimation process.

In simple words, the operation of the controller can be summarized as follows: After each
estimation step performed according to (5.5), the controller uses the estimated state x̂i[t] to
calculate the control input according to (5.7). Then ui[t] is applied to the plant Pi during the
next sampling period t. If a new data is received during the t-th sampling period, it is fed
into the the estimation algorithm to determine x̂i[t+ 1] and the same procedure is repeated to
obtain the next control input.

6We assume that the set-point to be zero. As a result, the state xi[t] is also the state error, i.e. the deviation of
the state vector from the desired point.
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5.2.1.1 Information Staleness and Effects on Control Performance

As explained in the previous section, each controller runs an estimation process based on its
latest knowledge about the system state. However, especially in a real networking scenario, it
is common to experience delays caused by data processing and transmission. Besides, a subset
of the generated data may either be discarded before any transmission or “lost" due to bad
link quality or simultaneous access. All these effects combined lead to information staleness
and, consequently, inaccuracies in the estimated state. In such a setting, the controllers take
sub-optimal actions, which then increase the state error and control effort. As a result, the
deterioration of the QoC is inevitable that is captured by an increase in the LQG cost.

As in (5.5), let xi[νi(t)] denote the most recent information available at the controller7,
indicating ∆i(t) = t − νi(t). Next, consider two real-time processes that are sampled with
a frequency of 100 Hz, thus, every 10 milliseconds, e.g., the temperature of an office room
and the location of a highly mobile Unmanned Aerial Vehicle (UAV). Generally speaking, the
room temperature is much less volatile than the location information. Suppose that we are
monitoring the states of these two systems via a communication network and we can afford
to transmit the latest state every thousandth packets, i.e., once per ten seconds. In that case,
we can intuitively see that the age cannot capture the growing uncertainty at the monitor over
time between two consecutive status updates and the value of transmitting the next packet
when the AoI reaches 1000 differs for these two applications, since they are unlike in state
dynamics.

One way of capturing the uncertainty at the monitor is to use the estimation error. The
estimation error is defined as the difference between the actual and estimated system states,
i.e.:

ei[t] , xi[t]− x̂i[t] =

∆i[t]∑
d=1

Ad−1
i wi[t− d]. (5.8)

The closed form equation for ei[t] can be obtained by subtracting (5.5) from (5.4). The mean
squared error (MSE), which is a widely used metric in the literature to quantify estimation
performance, can be calculated by taking the expectation of the quadratic form as:

MSEi[t] , E
[
(ei[t])

Tei[t]
]

(5.9)

=

∆i(t)∑
d=1

tr
(
(AT

i )d−1Ad−1
i Σi

)
, (5.10)

with the trace operator tr(.). (5.10) can be interpreted as a mapping function from age AoI to
MSE.
7νi(t) is always smaller than t because in our implementation, the calculation of ui[t] happens directly subsequent

to sampling. As it is infeasible to have “almost zero" delay in a practical setup, in our mathematical model, we do not
allow the equality case, thus, νi(t) < t, ∀t follows.
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ei[t] ∈ Rni is a multi-variate RandomVariable (RV) defined as the deviation of the system
state from its expectation. The first property of ei[t] is that it is a zero-mean multivariate RV,
i.e., E [ei[t]] = 0, with 0 being a column vector of length ni that contains only zeros. This
can easily be shown by taking the expectation of the RHS of (5.8) and applying the linearity
property of expectation. Moreover, ei[t] is a normally distributed multi-variate RV since each
addend in (5.8) is a linear transformation of the multivariate normal RVwi[t−d] ∼ N (0,Σi)

with 1 ≤ d ≤ ∆i(t). In fact, each addend follows a normal distribution with the covariance
matrix Σd = Ad−1

i Σi(A
d−1
i )T .

Proof. Given any d ≥ 1, yd[t] = Ad−1
i wi[t− d] is the d-th addend of (5.8) with yd[t] ∈ Rni

and E [yd[t]] = 0. We obtain the covariance matrix Σd as follows:

Σd , E
[
(yd − E [yd])(yd − E [yd])

T
]

= E
[
Ad−1
i wi[t− d](wi[t− d])T (Ad−1

i )T
]

= Ad−1
i E

[
wi[t− d](wi[t− d])T

]
(Ad−1

i )T

= Ad−1
i Σi(A

d−1
i )T .

As a result, the total estimation error ei[t] comprised of d independent addends, which
are {yd[t] : 1 ≤ d ≤ ∆i(t)}, is characterized by the multivariate normal distribution ei[t] ∼
N (0,Σe). Since we are able to sum up the covariance matrices as the individual addends are
independent RVs, it holds that:

Σe =

∆i(t)∑
d=1

Ad−1
i Σi(A

d−1
i )T . (5.11)

Here, it is important to emphasize that an increase in ∆i creates a new positive semi-definite
addend on the RHS. Note that ifAi is a scalar, this corresponds to an increase in the variance
of ei’s distribution. Let us illustrate this with a numerical example that involves two scalar
loops withAi ∈ {1.0, 1.2} and Σi = 1.0.

Fig. 5.10 depicts the probability density function Probability Density Function (PDF) of
estimation error for different control systems when ∆i ranges from one to eight. The figure
shows how the PDFs become more stretched as the AoI at the estimator increases. In other
words, the uncertainty of state estimation is amplified when ∆i gets higher. However, the
uncertainty grows at different rates for each sub-system as information becomes more stale.
In fact, the sub-system with Ai = 1.2 depicted at the bottom has a much wider distribution
of the squared error at ∆i = 8 than the one with Ai = 1.0 shown at the top. Fig. 5.10 can
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Figure 5.10: The probability density function of the estimation error f(ei[t]) for varying AoI values.
The distribution is characterized by ei[t] ∼ N (0,Σe) with Σe =

∑∆i[t]
d=1 A

d−1
i Σi(A

d−1
i )T . Here,

Ai = {1.0, 1.2} and Σi = 1.0 are used.

be interpreted as an illustration of how the importance of updating the controller relates to
the freshness property of information and to its context, i.e., who is sending and receiving the
information, what is the communication purpose, etc. In our toy example illustrated in the
figure, the context is defined by the goal of uncertainty reduction at two destinations that are
monitoring two remote processes with distinct system dynamics.

Although the estimation error is not a direct measure of control performance, it strongly
affects the control inputs’ accuracy. With the growing uncertainty at Ci, the utilized control
inputs become sub-optimal due to the mismatch between xi[t] and x̂i[t]. As a result, ui[t] is
not able to drive the state towards the reference value correctly. This leads to a higher LQG
cost, i.e., Fi, since the state error, as well as the spent control effort grows. This phenomenon
is shown in Fig. 5.11, in which the relationship between the inaccurate estimate and the
sub-optimal control is depicted.
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Figure 5.11: An example snapshot of the system state xi[t], control input ui[t] and estimated state
x̂i[t]. The figures illustrate how the state drifts away from the reference value due to missing status
updates about recent changes. Please notice that the distribution of the estimation error is more
stretched as ∆i increases.

In Fig. 5.11, we are able to see the interplay between age, state, estimation, and the control
input. Here, the controller has stale knowledge and expects xi[t′] to be correctly driven to
the equilibrium point of xi = 0. As the AoI increases further, the controller does not take
any immediate action, as it lacks recent data, leading to zero control input, i.e., ui[t] = 0

for t ∈ [t′, t′ + 2]. However, after receiving a successful update, the controller improves its
estimation and generates a non-zero control input at t = t′ + 3 to drive the state back to zero.
Both the state deviation and the following control effort contribute to the LQG cost and lead
to a degradation in the control performance.

5.2.1.2 Task-Oriented Communications and Problem Statement

The optimal state feedback gainmatrixLi from (5.7) assumes perfect communication between
the components of a feedback control loop. However, this contradicts our setup, in which the
state observations are to be sent over a physical wireless link. Therefore, to limit the deviation
of controller design from optimality, the network should aim to reduce the network-induced
effects, thus bringing it closer to the ideal case.
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If the network consists of multiple time-critical applications and the available bandwidth
cannot accommodate the entire traffic, it becomes essential to identify the most urgent trans-
missions to use the limited resources in an efficient manner. One way of doing so, is to
select the highest expected uncertainty reduction; or, equivalently scheduling the user with
the highest MSE8. In contrast to capturing estimation quality, the control theory uses the LQG
cost to measure the level of success in accomplishing the control objective. Although it is
challenging to formulate the exact relationship between the MSE and LQG cost analytically,
these are strongly intertwined.

Having said that, we seek to exploit the indirect relationship between estimation and
control performances. In other words, by targeting an MSE reduction, we expect to decrease
the control cost, as we have seen in the previous sections 3.2 and 4.4. Thus, we propose
implementing a customized wireless MAC protocol π using SDRs to minimize the average
LQG cost, i.e.:

π = arg min
π

lim
T→∞

E

[
1

N

N∑
i=1

Fi(π)

]
, (5.12)

with:

Fi(π) ,
1

T

T−1∑
t=0

(xi[t])
TQixi[t] + (ui[t])

TRiui[t]. (5.13)

As in (5.6), Fi(π) is the linear quadratic cost when π is employed. Section 5.2.2.2 presents
two examples of such protocols utilizing MSE as a scheduling metric.

5.2.2 MAC Protocols for Real-Time NCSs

This section presents various MAC protocols that have been implemented and tested in our
experimental study. We start by explaining three contention-based protocols in 5.2.2.1. Then,
we briefly present three contention-free techniques: 1) slotted Round-Robin RR scheduler, 2)
WiFresh from [KRM21], and 3) Maximum Error First from 4.1.2. As we are going to show
through practical measurements later, the enhanced version of the MEF scheduler stands out
in terms of QoC.

5.2.2.1 Contention-based Protocols

ALOHA: The ALOHAprotocol, originally proposed in [Abr70], is based on the simple idea of
sending any incoming data upon arrival, without any sophisticated MAC layer considerations.
As we know from the fundamentals of wireless communications that such a strategy leads to

8Note that the uncertainty reduction happens only if the transmission is successful. This requires the consideration
of channel conditions. In Sec. 5.2.2.2 we discuss in detail how the link reliability is incorporated into scheduling
decisions in our setup.
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high packet loss if the network traffic load is high and if the same resources are shared by
multiple users.

Slotted ALOHA: Slotted ALOHA (SA) have been proposed in [Rob75b] as an improvement
over ALOHA. It divides time into equally long slots, hence, is a time-slotted protocol. When a
user has data to transmit, it waits for the next slot to begin and then either transmits with a time-
invariant Channel Access Probability (CAP) pi or backs off with the remaining probability
1−pi. Similar to other time-slotted protocols, the SA assumes a universal time structure, thus,
time synchronization among users. In our framework, this is realized through beacon packets
that are transmitted periodically. Further details for synchronization are given in section 5.2.3.

SA has recently been studied in the context of information freshness in [CGL20; Han+20]9.
In particular, in [Han+20], the authors conduct an experimental study using SDRs. As derived
in [CGL20] analytically, when the SA protocol is employed, each sub-system achieves a mean
AoI ∆̄SA as follows:

∆̄SA =
1

p(1− p)N−1
. (5.14)

N ≥ 3 is the number of users in the network. As proven in the same work, the age-optimal
CAP p∗ for SA is p∗i = p∗ =

1

N
, ∀i. In the remainder of this section, we always assume

that the SA uses the optimal channel access probability. The analysis in [CGL20], as well
as the equation (5.14) are based on the assumption that the nodes continuously transmit the
most recent state information. We ensure that this requirement is fulfilled and thus, adopt the
LCFS-PD strategy instead of a FCFS queue. Moreover, the slot frequency and the frequency
of the aging process have to coincide, which is also what we assume in our study.

Age-dependent Random Access Protocol: Chen et al. proposed the Age-Dependent Ran-
domAccess (ADRA) protocol in [CGL20] as an optimal age-dependent stationary randomized
policy for large-scale wireless networks. ADRA is a threshold-based policy defining a fixed
CAP p = pi, ∀i for each user only if its instantaneous age is not below a certain threshold
value δi = δ, ∀i, i.e.:

pi(t) =

0 , if ∆i(t) < δ

p , if ∆i(t) ≥ δ
(5.15)

(5.15) implies that each source needs to know the instantaneous AoI at the receiver
to decide whether the next update packet is eligible for transmission. However, since the
sensors may not have the perfect knowledge about the observation history at the monitor,
the instantaneous age has to be estimated remotely. To that end, despite being not directly
addressed in [CGL20], our framework utilizes Acknowledgment (ACK) packets transmitted
by the GW SDR upon a successful reception. Doing so, each sensor SDR estimates the

9In [CGL20; Han+20] authors refer to slotted ALOHA as “Age-Independent Random Access (AIRA)”.
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Figure 5.12: Network-wide mean AoI ∆̄ is plotted against age-threshold δ for selected number of
users, N = {3, 5, 7}. p denotes the channel access probability for the age-dependent random access
(ADRA) protocol. The horizontal lines show the minimum achievable AoI for slotted ALOHA (SA)

with the age-optimal CAP p∗ =
1

N
.

instantaneous AoI at the controller assuming that every unacknowledged packet is lost. In
case of an unreliable control channel causing either frequent loss of ACK packets or their
significantly delayed reception, the ADRA protocol is expected to overestimate the monitor’s
AoI, thus, leading to more frequent and unnecessary activation of users.

[CGL20] derives the mean AoI for the ADRA protocol as:

∆̄ADRA =
δ

2
+

1

pq
− δ

2(δpq + 1− pq) , (5.16)

with the successful status update probability q. To obtain the value for q we refer to the
original paper. Moreover, the optimal values for δ and p, i.e., δ∗ and p∗, can be found using
the bisection method, as suggested by the authors10. Fig. 5.12 depicts the network-wide mean
AoI for varying user count N = {3, 5, 7} and δ up to 30. One can clearly conclude that if the
right parameters are selected, the ADRA protocol outperforms the SA in terms of information
freshness.

5.2.2.2 Contention-free Protocols

Round-Robin (RR): The RR is a widely used scheduling policy prioritizing each user in a
given order. Therefore, it is neither a channel-aware nor an application-aware strategy. In our
10In our results section, when comparing the ADRA protocol to others, we have used the optimal values for δ

and p.
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implementation, the users are prioritized in the same order as their unique control loop ID i.
Given that at any time slot t ∈ N only a single source node i ∈ {1, 2, . . . , N} is scheduled,
the next node to schedule can simply be found according to the following rule:

i∗(t) = arg min
i
{t+N − i mod N}, (5.17)

with the modulo operator mod . There is always a single user i that makes t+N−i mod N

zero, e.g., i∗(t) = 1, i∗(t) = 2, etc. In our framework, we enforce synchronization among
users with the help of beacon packets as in SA and ADRA protocols. Therefore, each source
node i can track the current time slot index t, through which the (5.17) can be solved.

For a given N , the RR scheduler leads to periodical transmission from each user’s per-
spective. Therefore, if there is no packet loss in the network, the discrete-time AoI curve
converges to a periodical pattern, i.e., rising up toN and then dropping to one. Put differently,
whenever the AoI reaches ∆i(t

′) = N , it is followed by a reset to ∆i(t
′ + 1) = 1 in the

subsequent slot. As a result, the long-term mean AoI of each source node is equivalent to its
mean AoI throughout N slots, which can be derived as a sum of arithmetic sequence as:

∆̄RR =
1

N

(
N

2
(1 +N)

)
=
N + 1

2
. (5.18)

Despite its simple operation, the RR scheduler comes with some challenges in practical
deployment. In addition to requiring time synchronization, it may cause underutilization of
the network resources. In particular, the RR reserves a certain amount of resource units,
e.g., a time slot, exclusively to a user. This also implies that the remaining portion of the
resource is wasted if the transmission of packet takes shorter than the allocated time span.
Especially in connected robotics and remote monitoring scenarios, in which the data packets
are small-sized, finding a suitable slot duration to accommodate exactly a single transmission
is a hidden challenge. Our experimental results reveal the performance loss caused by this
issue. However, we do not tackle the slot duration adaptation problem in this thesis and fix
the slot duration to ten milliseconds.

WiFresh: One of the most prominent examples of practical AoI research is WiFresh
[KRM21], which is a polling-based protocol, i.e., it does not rely on time synchronization. In
particular, the channel access is initiated by a poll request transmitted by the GW node. As
a response, the user, from which the information is requested, replies with the most recent
measurement that is available in the buffer.

In their work, the authors consider multiple sources transmitting to a GW using SDRs.
The GW tracks the AoI of each source process and asks for a status update packet by sending
a poll request. Additionally, it estimates the channel reliability rchi (t) between each source
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and the BS by the following equation:

rchi (t) =
RXD

i (t) + 1

TXP
i (t) + 1

, (5.19)

where RXD
i (t) and TXP

i (t) denote the number of successfully received data packets and
transmitted poll packets in the last 0.5 seconds, respectively. The next user to poll is then
defined by the max-weight policy, i.e:

i∗(t) = arg max
i
{rchi (t)∆̃i(t)}, (5.20)

with ∆̃i(t) being the estimated age of the freshest information about source node i. The need
for the age estimation arises, due to source and destination nodes being separated, and the
exact timing of sampling events at the source process are unknown to the GW. Therefore,
the GW has to estimate the AoI by tracking the sampling periods that have elapsed since the
latest reception. Our approach is similar to the one considered in [KRM21]. We would like to
mention that this is another example of hidden challenges in systems research that is revealed
only prior to practical deployment11.

Accounted for its channel awareness, the WiFresh protocol is particularly a good fit for
high mobility scenarios, in which the nodes experience dynamic link reliability. Besides,
as it does not rely on time synchronization, one can argue for its lower complexity than
implementing the SA or ADRA in practice. However, in contrast to SA or ADRA, that are
contention-based, the packet success ratio is expected to be much higher as simultaneous
channel access is avoided by virtue of the centralized polling mechanism.

Maximum Error First Scheduler (MEF): As introduced in section 4.1, the MEF scheduler
is a greedy scheduler that allocates resources by starting with the user with the highest
instantaneous estimation error. In particular, it suggests employing the MSE from (5.10) as
the scheduling metric in a time-slotted radio access network. Hence, the next user to schedule
is determined by:

i∗(t) = arg max
i
{MSEi[t]}. (5.21)

Note that i∗(t) determines the only user that is allowed to access the shared wireless channel
in time slot t. It goes without saying the the MEF scheduler relies on time synchronization.

When it comes to implementing such an age-dependent control-aware strategy on real HW,
there are a few design choices to make. One of these is the frequency of control messages
carrying the information about the transmission schedule. Similar to section 5.1, we assume
that the scheduling grant is communicated to sensor nodes via beacon packets before a frame
11For instance, the theoretical part of this thesis assumes perfect time synchronization, as well as, the exact

knowledge about sampling instants
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starts. In the following analysis, we set the length of a frame as L = 20 time slots, whereas a
time slot is ten milliseconds long. It is important to mention that since the scheduling grant
is sent once in every 200 ms, the scheduler does not get the chance to modify any decision
that has been made at the beginning of a frame. In our implementation, the GW neglects the
packet loss probability and allocates each of those 20 slots in advance as if all transmissions
were to be successful. One of the disadvantages of this approach is the incapability of the
scheduler to dynamically modify a scheduling decision during the frame, e.g., after detecting
a loss event.

The scheduling metric employed in (5.21) is strongly system-dependent; hence, its unit
varies from one control application to another. In a practical scenario comprised of multiple
heterogeneous applications, one cannot employ the RHS of (5.21) in its raw form. More
precisely, the scheduling decision based on the rawMSEmay be comparing multiple numbers
in different units and orders of magnitude. As a solution to this hidden issue, which may
only reveal itself when it comes to deploying such protocols, we propose and employ the
normalized mean squared error (NMSE) given by:

‖MSEi(t)‖ ,
MSEi[t]

MSE∆i=1

(5.22)

whereMSE∆i=1 is theMSEwhen the AoI is equal to one. Put differently, the NMSE captures
the factor, by which the MSE is amplified as the age grows beyond one. As a result, NMSE
is a dimensionless quantity. Please note that the normalization factor, i.e., MSE∆i=1, is
equal to the trace of the covariance matrix, which is the only addend in the RHS of (5.10)
when ∆i(t) equals one. Similar to MSE, when the AoI is zero, the NMSE is zero as well.
Consequently, the MEF algorithm implemented in our framework is characterized by the
following scheduling policy:

i∗(t) = arg max
i
{‖MSEi[t]‖}. (5.23)

Polling-based Maximum Error First Scheduler (pMEF): In contrast to MEF, WiFresh does
not operate in a slotted fashion. Thus, if the response to a poll packet comes earlier than
the beginning of the next slot, the WiFresh is expected to reduce the amount of idle time
between two consecutive transmissions12. Moreover, by definition, the MEF scheduler is a
channel-unaware protocol. Therefore, we propose to combine the strengths of both strategies
and propose a polling-based channel- and control-aware scheduling policy that makes its
decision according to the following rule:

i∗(t) = arg max
i
{rchi (t)‖MSEi(t)‖}, (5.24)

12In section 5.2.4, we discuss the effect of this property of polling on the AoI and control performances in detail.
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Figure 5.13: A photo of our testbed while taking measurements with twelve control sub-systems.

with rchi (t) as in (5.19). The NMSE is obtained by plugging the instantaneous estimated AoI
∆̃i(t) into (5.10).

5.2.3 Design and Implementation

5.2.3.1 Hardware and Software

Our experimental setup comprises N ∈ {2, 3, . . . , 15} control applications programmed in
Python programming language. Due to periodic sampling, each plant process outputs a packet
in constant intervals that are forwarded to the corresponding SDR Si using a UDP socket13.
After being received by the SDR, each packet traverses through multiple packet processing
blocks programmed in C++ with GNU Radio [Rad]. In contrast to [Han+20], we have not
directed the data flow of multiple source processes into a single SDR. We present Fig. 5.13
to give an idea about our experimental setup. It consists of eight computers running Ubuntu
20.04.3 LTS operating system. Ettus Research’s USRPTM B200mini-i and B205mini-i SDRs
are used for wireless data transmission.

Our framework clearly separates of the application layer and the wireless communication
stack. In particular, after their generation, the packets are written to a local UDP socket that
is read by the GNU Radio environment’s signal processing blocks. Therefore, the application
process is entirely agnostic to the communication network behind the UDP socket. Similarly,
the interfacing between the GNU Radio and the application layer is done on the receiver
side using UDP sockets. Our purpose in choosing a clear separation between the wireless
communication stack and the application layer is to simplify the integration of any internet
protocol-based application into our framework, thereby removing the barrier to its adoption.

13Each plant process Pi and sensor/SDR Si run on the same machine.
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An automation script is used to minimize the influence of a human operator on the results,
especially when the measurement runs are started, stopped, and repeated. In addition, we
discard the data belonging to the first and last five seconds of each 30-seconds-long run to
avoid transitional effects of the startup and completion phases.

5.2.3.2 Synchronization

Time synchronization is a prerequisite for realizing time-slotted MAC protocols, such as SA,
ADRA, MEF, and RR. To that end, we follow a similar approach as in [Han+20] and make
use of periodic beacon packets at the beginning of each frame. A beacon packet contains
three main fields:

• MAC header: Contains information such as packet type, MAC sequence number,
source and destination addresses.

• Payload: Contains information specific to the employed MAC protocol, such as frame
length, slot duration, i.e., TD = 10 ms, slot index, and the transmission schedule, if
applicable, e.g., for the MEF scheduler.

• CRC: Contains the 16-bits long cyclic redundancy check (CRC) field used for error
detection, mainly caused by packet collisions in our setup.

After receiving a beacon packet, each Si marks the current time as the beginning of the next
frame and sets the current slot to the time slot index indicated by the Payload field14. This
is based on the assumption that the difference in processing delays at each Si is negligible.
GNU Radio’s high_res_timer library has been used for time stamping purposes with high
resolution.

5.2.4 Evaluation

We have selected scalar control loops of three different classes representing heterogeneous
task criticalities. The least challenging class of systems are Ieasy = {1, 4, 7, 10, 13} with the
system matrix A1 = A4 = · · · = A13 = 1.0. The second and third categories, i.e., Imid =

{2, 5, 8, 11, 14} and Ihard = {3, 6, 9, 12, 15} have the systemmatricesA2 = · · · = A14 = 1.1

andA3 = · · · = A15 = 1.2, respectively. The proportionality between the system matrix and
control difficulty can be deducted from (5.4) intuitively, which defines the relationship between
the current state xi[t] and the next state xi[t+ 1]. The input and noise covariance matrices are
14Beacon packets carry information about slot duration and frame length, although they are constant in our study.

Doing so, we aim to increase the flexibility of our implementation and facilitate the study on the effect of varying slot
on network and control performance.
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selected to be equal among systems, i.e., Bi = 1.0,∀i and Σi = 1.0,∀i. Moreover, the LQR
controller design has been done using Qi = 100.0 and Ri = 1.0 for all sub-systems. This
means that the state error is penalized a hundred times more than the spent control effort.

As mentioned in section 5.2.3.1, we neglect the first and last five seconds to avoid tran-
sitional effects. Therefore, the evaluation of each metric starts after the 500-th time step and
ends with the 2500-th time step. As a result, the network-wide average AoI is calculated as:

∆ =
1

2000

1

N

2500∑
t=501

N∑
i=1

∆i(t). (5.25)

We capture estimation and control performances by the mean squared estimation errorMSE

and the LQG cost F per user, i.e.:

MSE =
1

2000

1

N

2500∑
t=501

N∑
i=1

(ei[t])
Tei[t], (5.26)

and:

F ,
1

2000

1

N

N∑
i=1

2500∑
t=501

(xi[t])
TQixi[t] + (ui[t])

TRiui[t], (5.27)

respectively. Note that as Σi = 1.0,∀i, the denominator on the RHS of (5.22) is equal to one.
Therefore, the raw MSE and the NMSE are equivalent for sections 5.2.4.1 and 5.2.4.2, i.e.,
MSE = ‖MSE‖. However, the same is not valid for section 5.2.5, in which we introduce a
new type of application into the network.

5.2.4.1 Contention-Based Protocols’ Performance

In Sec. 5.2.2.1, we have discussed three random access protocols from the literature, namely
ALOHA, SA, and ADRA. Fig. 5.14 presents the measured mean AoI and its theoretical
expectation, i.e., ∆̄SA and ∆̄ADRA. We do not include ALOHA in the figure, because the
ALOHA protocol performs significantly worse than the other two already for a very low
number of users in the network. For instance, the instantaneous age up to 1900 was observed
in one of the measurements for N = 3. Therefore, we omit ALOHA in the remaining
evaluation since it is unsuitable for time-sensitive wireless networks with multiple users.

The figure verifies that the ADRA protocol outperforms the SA protocol, as expected.
However, we can see a mismatch between the experimental results and the theoretical results
from [Han+20]. In fact, our implementation achieves better results for both protocols than
their analytical mean values. We believe that there are two main reasons behind this outcome:
1) two or more simultaneous transmissions do not necessarily lead to a packet loss. The
authors of [Han+20] have observed the same phenomenon and raised this issue in their work.
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Figure 5.14: Mean AoI of contention-based access protocols, i.e., slotted ALOHA (SA) and age
dependent random access (ADRA). Vertical bars illustrate 99% confidence intervals.

2) A data packet transmission does not occupy the entire slot, in contrast to the theory. In
our framework, a slot is 10 ms long, whereas our measurements indicate an approximate
transmission duration of 3 ms. As we do not force any synchronization in the application
layer, this allows some of the packets to miss each other in time, although they are transmitted
in the same slot. This phenomenon raises the packet delivery rate per slot above one, hence,
improving ∆ beyond the theoretical expectation.

Fig. 5.15 presents that the LQG cost capturing the control performance shows divergent
behavior for both contention-based protocols. Especially, already for N = 8, SA reaches
an LQG cost up to 1016, indicating an unstable behavior of the system state. The same
applies to the ADRA protocol when there are fifteen users in the network, i.e., N = 15,
showing the insufficiency of these protocols for multi-user scenarios with time-sensitive
control applications.

5.2.4.2 Contention-Free Protocols’ Performance

We know that the main strength of the contention-free protocols over random access protocols
is their ability to reduce the packet loss rate. This comes at a price of increased complexity
and communication overhead, as in the case of polling-based protocols. First, let us analyze
the performance of contention-free protocols w.r.t. information freshness.

Fig. 5.16 presents the achieved ∆ when N is gradually increased from two to fifteen. We
observe that the WiFresh delivers the best results by outperforming its closest competitor by
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Figure 5.15: The achieved control performance by slotted ALOHA (SA) and age-dependent random
access (ADRA) protocol. The control performance is quantified by the LQG Cost, i.e., F , defined in
(5.27). A lower F stands for a higher performance. The y-axis has been upper-bounded on account of
improved presentation.

approximately 10%. The difference betweenWiFresh and Polling-basedMaximumError First
(pMEF) is a result of the unbalanced prioritization of sub-systems by the pMEF algorithm
accounted for its control awareness. Put differently, while WiFresh polls sub-systems in a RR
fashion under constant channel conditions, the pMEF allocates a bigger portion of the network
resources to the class of more challenging sub-systems Ihard. This leads to an unbalanced age
distribution in the network and increases ∆̄. Nevertheless, as we are going to show later in
this section, pMEF is able to achieve better performance for the given control task by virtue
of its ability to identify the most valuable transmission.

In our setup, the average polling time, defined as the time between a poll request and the
reception of the corresponding data packet, is shorter than a time slot duration. Therefore,
the beacon-based protocols, such as RR and MEF initiate fewer transmissions resulting in
increased mean AoI than WiFresh and pMEF. This leads to longer idle periods for less
critical sub-systems when MEF is used. As a result, the larger gap between control-aware
and control-unaware protocols, i.e., MEF and RR, can be observed. Particularly, the MEF
scheduler achieves ∆̄ beyond 20 for N = 15, while RR achieves less than 10 for the same
number of sub-systems. Note that when RR is employed, the mean age performance matches
its theoretical expectation derived in (5.18).

Fig. 5.17 shows the fraction of network resources allocated to each class of control
applications, i.e., Ieasy, Imid, and Ihard. The figures confirms that all classes are treated
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equally when RR and WiFresh are schedulers are employed. On the contrary, more time-
critical applications are scheduled more frequently by the MEF and pMEF strategies.

Now, let us have a look at Fig. 5.18, which shows the estimation performance measured by
MSE. The results suggest that the control-aware protocols, i.e., MEF and pMEF, outperform
their direct competitors, i.e., RR and WiFresh, respectively. Especially, as the resource
scarcity grows due to increasing number of users, e.g., for N = 15, the importance of control
awareness stands out. That is, MEF achieves relatively lowerMSE than RR, although a lower
∆ has been achieved by RR. One can also say that the information freshness is traded for an
increase in the estimation performance. We can observe a similar trend, if we compare pMEF
and WiFresh. More specifically, pMEF outperforms WiFresh by up to 18% when there are
15 control sub-systems in the network.

Despite being an insightful task-specific application layermetric, theMSEdoes not capture
the control performance to the fullest extent. Nevertheless, the QoC is strongly intertwined
with the estimation accuracy, as discussed in detail in section 5.2.1.1. By virtue of this indirect
relationship between the estimation and control performances, we observe a similar trend for
the LQG cost in Fig. 5.19. From the figure, we can deduct that the pMEF strategy is able to
outperform the WiFresh protocol by up to 21%. The beacon-based protocols’ performance
follows a similar trend as well, with MEF outperforming RR by 47%. It is very important
to point out that there is a significant difference between the considered contention-free and
contention-based protocols regarding the LQG cost.
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protocols. i.e., RR and WiFresh treat all system classes equally. On the other hand, the control-aware
protocols, i.e., MEF and pMEF lead to an unbalanced distribution of resources.

5.2.5 A Real-Life Application Case Study: Inverted Pendulum

In the previous sections, we have shown the performance improvement of our proposed pMEF
scheduler over conventional protocols. The selected scalar control systems were theoretical
ones to illustrate this effect in a simple scenario. In the following analysis, we introduce a
new class of control system, namely the inverted pendulum. The discrete-time state space
representation has already peen presented in section 4.4.4.1. The same parameters have been
used in this study, thus, we omit the detailed explanation of the inverted pendulum model and
refer to section 4.4.4.1.

In order to see NMSE metric in action15, we repeat our measurements with 15 control
sub-systems, where we substitute all sub-systems of class Imid with inverted pendulums, i.e.,
A2 = A5 = · · · = A14 = AIP . Analogously, we set the input and noise covariance matrices
toBIP and ΣIP .

Fig. 5.20 shows the evolution of NMSE with increasing AoI together with the MSE for
inverted pendulum without the normalization step from (5.22). It illustrates the different
growth rate of the NMSE for our considered applications. Besides, it reveals that the inverted
pendulum lies between the Ihard and Ieasy classes concerning the NMSE. Note that due to
the significant difference in orders of magnitude between IPMSE and other curves, the usage
of the raw MSE would lead to resource starvation of inverted pendulums, in return, to their

15Here, we have to use NMSE instead of MSE, because the estimation error of a scalar loop and an inverted
pendulum are not directly comparable.
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RR, MEF, WiFresh and pMEF. A lowerMSE represents a performance raise. Vertical bars illustrate
99% confidence intervals. y-axis is drawn on logarithmic scale.

destabilization. Therefore, the following discussion considers only the usage of NMSE both
for MEF and pMEF strategies.

Similar to the previous subsections, we measure the control KPIs to validate the applica-
bility of the pMEF protocol for real-life applications. To that end, we have recorded pendulum
angle φ and cart position ξ trajectories throughout 20 measurements. To narrow down the
focus on IP, the following discussion is limited to the IP relevant metrics such as φ and the
cart position ξ and does not contain the detailed state trajectories of other sub-systems of class
Ieasy, i.e., i ∈ {1, 4, 7, 10, 13} and of class Ihard, i.e., i ∈ {3, 6, 9, 12, 15}.

In Fig. 5.21, we present an example trajectory of φi[t] in degrees for t ∈ [500, 2500] and a
randomly selected loop i. It has been recorded during one of the measurements when pMEF
scheduler operating with NMSE was in use16. From the figure, we are able to observe that the
pendulum angle is kept within ±5 degrees. In addition, Fig. 5.21 shows the maximum and
minimum values that are reached by all inverted pendulums in the network when MEF and
pMEF is employed. Due to the higher sensor-to-controller delivery rate of pMEF compared
to MEF, the pMEF achieves a better control performance w.r.t. φ. The same conclusion can
be drawn if we look at Fig. 5.22 where the minimum and maximum ξ values are presented. In
particular, we are able to observe larger spikes of ξ achieved by MEF than pMEF throughout

16The selection of the specific measurement run and loop have been made randomly, and they do not represent
an outlier w.r.t. control performance.
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the measurements. To put it another way, the cart needed to move further away from its
desired set point, i.e., ξ = 0 in order to keep the pendulum upright.

Last but not least, Fig. 5.23 depicts the average nMSE achieved when RR, MEF, WiFresh,
and pMEF are used. Each boxplot represents a control class-scheduling strategy combina-
tion. In other words, it presents the contribution of each control class to the overall NMSE
performance separately. The figure shows that control-unaware strategies, namely the RR
and WiFresh strategies, lead to an increased NMSE for the Ihard class systems. This is an
expected result of equal treatment of all sub-systems in the network, which lead to higher error
values for more critical applications. On the other hand, as we know from Fig. 5.17, MEF
and pMEF allocate more resources to Ihard systems than inverted pendulum and Ieasy. As
a result, they are able to balance out the higher task criticality of those sub-systems through
their awareness of NMSE displayed in Fig. 5.20.

5.3 Related Work

As listed in the previous chapters, the vast majority of the existing research on AoI and
Networked Control Systems (NCS) have limited their validation to analytical results or sim-
ulations. In the NCS domain, [Ara+14; Zop+20; Mag+19; Gho+21; Bha+21] are the most
prominent exceptions containing experimental measurements. For instance, [Ara+14] evalu-
ates various triggering mechanisms, such as event-triggered control and self-triggered control,
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Figure 5.20: The normalized mean squared error plotted against age, ∆, for different control sub-
systems, i.e., inverted pendulum (IP), Ieasy, Imid, Ihard. In addition, we present the raw MSE for IP
prior to the normalization step from (5.22) to illustrate its necessity.

whereas the MAC layer realized using Time-Division Multiple Access (TDMA) with the
transmission schedule determined a priori. Moreover, [Gho+21] suggests proactively send-
ing multiple control inputs at once and shows that the control performance can be improved
by doing so. In their work, the authors do not include any MAC layer considerations and
their evaluation is limited to two control applications. On the other hand, [Bha+21] tackles
collisions caused by simultaneous access. They propose a protocol in which the sensors send
a transmission request by following a random access procedure. The transmission of status
update packets occur in a contention-free way, while the users are scheduled according to the
FCFS strategy. Note that none of the existing works on NCS study control-aware design for
the medium access and hence can be distinguished from our work.

[Son+18; Bar+19; BBU19] can be named as pioneers of systems research on AoI studying
information freshness using real HW. They present AoI performance using real-life con-
nections without any modifications in the communication stack. On the contrary, [SKY19;
KM21; KRM21; Han+20; Ogu+22; Pan+22] propose to adopt an age-aware network design
while targeting different layers of the communication stack. For instance, [SKY19] proposes
an adaptive age-aware transport layer protocol that improves average AoI than those of the
widely-used UDP and Transmission Control Protocol (TCP) protocols. Furthermore, [KM21]
and [Han+20] focus on random access protocols implemented using software-defined radios
(SDRs). For instance, in [Han+20] the authors propose an age-threshold-based random ac-
cess protocol for wireless networks that reduces the mean AoI compared to the well-known
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Figure 5.22: An example trajectory of the cart position ξ whenmaximum error first (MEF) and polling
MEF schedulers are applied. ξ is plotted in meters.

slotted ALOHA protocol. The closest works to the content of this chapter are [KRM21] and
[Ogu+22]. [KRM21] proposes a contention-free wireless MAC protocol, WiFresh, realized
on SDRs and shows that the WiFresh protocol outperforms a standard WiFi network in terms
of AoI performance. The authors of [Ogu+22] develop an SDR testbed with single transmitter
and multiple receivers and compare the performance of conventional and age-minimizing
MAC scheduling policies for push- and pull-based communication scenarios. In contrast
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to the existing literature, we focus on an NCS scenario, in which the primary goal is not
providing information freshness but also achieving a higher QoC. Our framework adopts an
application-aware design, therefore, it can easily be distinguished from the state-of-the-art.

5.4 Summary

Connected robotics is envisioned as one of the driving applications for next-generation cellular
networks [SBC20]. Having access to fresh information is beneficial in real-time monitoring
and control scenarios. However, if the network serves control applications of different types
and time-criticalities, aiming for freshness may not be optimal for improving performance. On
the contrary, it had been proven sub-optimal in chapter 4 compared to customizing the network
through the adoption of control-dependent metrics for decision-making. However, when it
comes to practical deployment, the adverse and random effects introduced by the wireless
channel and hardware components may conceal the performance improvement promised by
theoretical results, making the additional effort spent on network design superfluous.

In order to validate our control-aware protocol design in a real network, we have stud-
ied realizations of various MAC protocols on hardware, contributing to systems research on
wireless networked control systems. Through an extensive study of wireless MAC protocols
in a network of multiple heterogeneous feedback control loops, we implement control-aware
centralized scheduling using software-defined radios. Our results suggest that consider-
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ing control-specific parameters for decision-making outperforms conventional methods, e.g.,
slotted ALOHA, round-robin scheduler, as well as the age-aware strategies, such as age-
dependent random access [CGL20] and WiFresh [KRM21]. The results reveal the high
potential in cross-layer design and show that the additional effort pays off with an improved
control performance.



Chapter 6

Conclusion and Outlook

To date, offering wider bandwidth and increasing data rates have been the primary approach
taken by the standardization and industry, although each new generation of mobile networks
is driven by novel applications and use cases. However, due to the rapidly increasing number
of connected devices and services, the scarcity of resources constitutes an inevitable bot-
tleneck forcing the networking community to explore new solutions beyond one-size-fits-all
approaches. One of the promising alternatives to offering higher data rates is the emerging
field of semantic communications, which is built on the idea of including the significance of
data relative to their transmission purpose in network and protocol design. Doing so allows
the network to identify and prioritize relevant and important data to improve the offered ser-
vice and filter out those with less contribution to the underlying task, thereby improving the
efficiency in resource utilization.

The proposal of the age of information (AoI), which classifies real-time information
according to its freshness, has paved the way for semantic communications. In particular,
through the introduction of AoI, the network has gained the ability to assign a particular
value to packets based on their ability to reduce the staleness at the destination. However,
as the value of information (VoI) cannot be separated from the context and communication
purpose, solely focusing on AoI may not be the optimal approach, especially when dealing
with time-critical applications. Therefore, the age- and value of information belong to the key
enablers of semantic communications while playing a vital role throughout this thesis.

6.1 Summary

This thesis has dealt with control-aware resource management for wireless networked control
systems. In particular, the AoI allowed us to define the VoI in networked control, which
quantifies the amount of uncertainty reduction at the destination. To that end, in the first

139
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half of chapter 3, we have carried out a probability analysis providing us with the stationary
distribution of age. In the second half of the same chapter, we have considered a multi-
user scenario, with the help of which we have demonstrated an example usage of the age
distribution to improve the control performance by solving an optimization problem based on
the newly derived VoI metric. In chapter 3 we have solely looked into stationary randomized
strategies and have not assumed any online decision-making mechanism.

Contrarily, in chapter 4, we have focused on cellular networks comprising multiple het-
erogeneous control applications in which a centralized scheduler orchestrates the network
resources in an online fashion. Mainly, we have studied various scheduling policies that de-
pend on the instantaneous network state determined by each user’s current link reliability and
transmission history. The main contributions of chapter 4 can be summarized in three points.
First, it suggests employing control system-specific parameters to prioritize users. Thereby, it
shows that the performance can be significantly improved through simple heuristics based on
the semantics of information beyond freshness compared to conventional methods, including
age-dependent scheduling. Second, it demonstrates how the centralized scheduling problem
can be formulated as a finite or infinite horizon problem and can be solved optimally by
applying stochastic optimization methods, such as value iteration and dynamic programming.
Lastly, we have shown that the VoI can be approximated by non-linear age-penalty functions
better than the AoI itself. However, the results suggest that one should use accurate models
to capture the real value behind the transmitted bits, e.g., by taking system dynamics into
account, if achieving a higher control performance is crucial.

Finally, in chapter 5, we have presented a proof-of-concept implementation of control-
aware scheduling and validated the most important findings from chapter 4 through experi-
mental results. In addition to our proposed control-aware strategy, our implementation covers
some well-knownMAC schemes, e.g., round robin, slotted ALOHA, but also relatively newer
schemes from the state-of-the-art, such as the age-dependent random access andWiFresh pro-
tocols. Despite all imperfections that may appear by virtue of the practical implementation,
e.g., hardware and timing errors, random nature of the wireless channel, the results reveal
the domination of control-aware scheduling over conventional policies, hence, validating the
potential of semantic communications for future generation wireless systems. Furthermore,
our experimental study proves the feasibility of realizing such protocols in practice.

6.2 Future Work and Concluding Remarks

Control-aware transport layer protocols and extended cross-layer design: In this thesis, we
have shifted the entire intelligence down to the data link layer and neglected the opportunity
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of a potential decision-making in other layers. A very good candidate for such an alternative
would be a control-aware transport layer protocol directly at the source, inspired by the notion
of event-triggering from the control domain [MEJ16]. However, to the best of our knowledge,
a combination of control-aware congestion- and medium access control does not exist in the
literature.

Throughout this thesis, the centralized scheduler located at the base station has been the
only decision-making entity. Therefore, as the scheduler operates remotely to the source, we
were only allowed to consider the estimated value of a certain data packet as a function of
age, without knowing the exact packet content. However, a very promising idea would be
implementing a value-aware transport layer protocol that is able to filter packets at the source
based on their content and a signaling mechanism to inform the centralized scheduler whether
there is a packet to transmit. Doing so, we believe that a notably higher control performance
can be achieved than it has been done in this work.

Optimal Control-Aware Scheduling with Performance Guarantees: Throughout the thesis,
our goal has been the minimization of a particular cost function, e.g., MSE, LQG cost
while designing the optimal scheduling policies. However, it is a very common approach
in the industry and standardization to target a specific service guarantee in the form of
minimum throughput, maximum end-to-end latency, and maximum allowed transmission
interval [TS22.104]. Such service requirement could also be age-dependent, e.g., average
peak age, maximum allowed age, etc. In such a setting, it becomes mandatory for the
scheduler to satisfy these bounds while deciding on the next user to schedule. As a result,
the consideration of service requirements for control-aware scheduling is one of the possible
future directions to look into that is worth investigating.

Time synchronization for age- and semantics-aware networking: The experimental study
that we have carried out in chapter 5 has provided us with some lessons learned and hidden
challenges, which have not entirely been addressed by the theoretical research on semantic
communications andWNCS.An example to such is the necessity for tracking the instantaneous
AoI within theMAC layer as it has been firstly discussed in (5.20). More specifically, although
the knowledge of the AoI is one of the vital building blocks of semantic- and task-oriented
communications, it may not be straightforward to obtain this knowledge at every location in
the network. In fact, a significant portion of theoretical research assume the global knowledge
of age and base their protocol design on this assumption. This reveals the importance of time
synchronization protocols for age-aware networks, not only for the transmission and reception
of packets (e.g. for time slots), but also for making decisions for medium access control, data
forwarding, and routing.
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