
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Semester Thesis

Autonomous Driving Simulator and
Benchmark on Neurorobotics Platform

Jun Meng

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Semester Thesis

Autonomous Driving Simulator and
Benchmark on Neurorobotics Platform

Autonomes Fahren Simulator und Benchmark
auf Neurorobotics Plattform

Author: Jun Meng
Supervisor: Prof. Dr.-Ing. habil. Alois C. Knoll
Advisor: Liguo Zhou
Submission Date: Dec. 15, 2022

I confirm that this semester thesis is my own work and I have documented all sources and
material used.

Garching bei München, Dec. 15, 2022 Jun Meng

Abstract

Autonomous driving simulator development is as important as the development of au-
tonomous driving pipeline itself. Basing on the high qualified simulation framework Neu-
rorobotic Platform, the cross-platform game engine Unity and the well developed robotic
communication framework Robot operation System (ROS), we plan to develop an autonomous
driving simulator of high performance, which consists of AI brain engine, weather engine,
robot engine, pedestrian engine, AI car engine and city+cars engine. To satisfy the require-
ments on real-time and capability, we develop the software basing on ROS2. Two of the basic
applications are object detection and depth estimation, which are implemented with YOLOv5
and Semi-global Block Matching (SGBM) correspondingly. In terms of object detection, we
trained the YOLO model for our own scenarios specially; In terms of depth estimation, we
use the mature SGM algorithm to generate a global depth map, and then combine the results
of object detection to obtain the depth value at the center point of the object bounding box as
the result of object distance estimation.

iii

Kurzfassung

Die Entwicklung von Simulatoren für autonomes Fahren ist genauso wichtig wie die Ent-
wicklung der autonomen Fahrpipeline selbst. Basierend auf dem hochqualifizierten Simu-
lationsframework Neurorobotic Platform, der plattformübergreifenden Game-Engine Unity
und dem gut entwickelten Roboterkommunikations-Framework Robot Operating System
(ROS) planen wir, einen autonomen Fahrsimulator mit hoher Leistung zu entwickeln, der
aus KI-Gehirn-Engine, Wetter-Engine, Roboter-Engine, Fußgänger-Engine, AI-Auto-Engine
und City+Cars-Engine besteht. Um den Anforderungen an Echtzeit und Leistungsfähigkeit
gerecht zu werden, entwickeln wir die Software auf Basis von ROS2. Zwei der Basisanwen-
dungen sind Objekterkennung und Tiefenschätzung, die mit YOLOv5 und Semi-global Block
Matching (SGBM) entsprechend umgesetzt werden. In Bezug auf die Objekterkennung haben
wir das YOLO-Modell speziell für unsere eigenen Szenarien trainiert; In Bezug auf die Tiefen-
schätzung verwenden wir den ausgereiften SGM-Algorithmus, um eine globale Tiefenkarte zu
generieren, und kombinieren dann die Ergebnisse der Objekterkennung, um den Tiefenwert
am Mittelpunkt des Objektbegrenzungsrahmens als Ergebnis der Objektentfernungsschätzung
zu erhalten.

iv

Contents

Abstract iii

Kurzfassung iv

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 1
1.3 Outline . 2

2 Background 3
2.1 Neurorobotics Platform (NRP) . 3
2.2 Examples of autonomous driving simulation platform 4

2.2.1 CARLA . 4
2.2.2 Autoware . 5

2.3 Robot Operation System (ROS) . 5
2.3.1 Computation graph model of ROS . 6
2.3.2 Improvements in ROS2 . 7

2.4 Simulation environment modelling and rendering 9
2.4.1 Gazebo . 9
2.4.2 RoadRunner . 10
2.4.3 Unity . 10

2.5 The KITTI dataset . 11
2.6 YOLO: You Only Look Once . 11
2.7 Stereo depth estimation . 13

3 Implementation and visualization 15
3.1 ROS node layout . 15
3.2 Object detection: YOLOv5 . 17

3.2.1 Train a YOLOv5 object detector for KITTI dataset 18
3.2.2 Custom ROS message YOLOlabels.msg 18

3.3 Stereo depth estimation: SGBM . 20
3.3.1 Matching cost computation . 20
3.3.2 Cost aggregation . 20
3.3.3 Disparity computation . 21
3.3.4 Disparity optimization . 21
3.3.5 StereoSGBM parameter configuration . 22
3.3.6 Obtain depth map from disparity map 24

v

Contents

3.4 Ground truth distance computation . 27
3.5 Visualization in Rviz . 28

4 Conclusion and discussion 30
4.1 Conclusion . 30
4.2 Discussion . 30

List of Figures 31

List of Tables 32

Bibliography 33

vi

1 Introduction

1.1 Motivation

Developing autonomous driving platform is rife with challenges. Chief among them remains
the estimated 8.8 billion miles of road testing that would be required to ensure fully au-
tonomous cars are safe enough to hit the road. Besides, most of the errors occurring on real
platforms and corner cases are hard to reproduce, and can result in severe traffic accidents.

The autonomous driving simulation was developed to reduce field testing times and to
separate problems for testing, making debugging easier, and finally reducing damages of
real vehicles. This is also convenient for student projects, where access to an expensive and
complex real platform cannot always be guaranteed.

1.2 Contribution

In general, we attempt to achieve the following functionalities: send the collected images,
point clouds from virtual sensors in Unity to ROS2 in the corresponding ROS message format;
Implement object detection and stereo depth estimation algorithms in the corresponding
ROS execution units (i.e. nodes), process the data published from Unity, and obtain the
information we need: the detected objects in the image and their distances to our ego agent
in the simulation environment; Finally publish and visualize them back in Unity.

Figure 1.1: Development concept

1

1 Introduction

My contribution to this project is ROS2-related software development, using KITTI dataset
as the substitution of those that are supposed to be published from Unity. A summary of
work needed to be done is as follows:

(1) Publish KITTI raw data in ROS2 and visualize them in Rviz. Prepare to test the
algorithm implementations.

(2) Develop ROS2 application for object detection by implementing YOLOv5 algorithm.

(3) Develop ROS2 application for stereo depth estimation by implementing SGBM algo-
rithm.

(4) Visualization and inspect estimated depths using point cloud ground truth.

1.3 Outline

The first chapter introduces an overview of this project. In chapter 2, the softwares like
ROS and Unity and the algorithms like YOLO and SGBM for our development are intro-
duced. Chapter 3 gives the detailed contents about algorithm implementation and parameter
configuration. Finally in chapter 4 I draw the conclusion and discuss about some possible
improvements of our development.

2

2 Background

This chapter introduces the tools, datasets and softwares we used for the development of our
autonomous driving simulation platform.

2.1 Neurorobotics Platform (NRP)

The Neurorobotics Platform (NRP) [1] is an integrative simulation framework: it enables in
silico experimentation and embodiment of brain models inside virtual agents interacting with
realistic simulated environments.

Figure 2.1: NRP basic model

Drawing upon the potential of both neurosciences and Artificial Intelligence in robotics,
the NRP allows its users to observe, analyse and test the emergence of behavioural patterns
in virtual agents controlled by state-of-the-art models of brain architecture and functions.
The result is an unprecedented approach to simulation in which theoretical brain models
can be checked against data-driven models thanks to simulations that take into account the
dynamics of both the environment and of the agent itself.

NRP offers full feature set of a robot simulator and at the same time is arbitrarily scalable
for massively parallel robotics experiments. In principle, self-driving cars are also a type of

3

2 Background

robot. Based on NRP we develop an autonomous driving simulation system featuring high
parallelism, minimalisim and photorealism.

2.2 Examples of autonomous driving simulation platform

Autonomous vehicles as cyber physical systems can be divided into sensing, computing,
and actuation modules. Sensing devices, such as cameras, and laser scanners (LiDAR) are
mostly used for Autonomous driving in urban areas. Computation is a foremost module
of self-driving technology. Scene understanding, for instance, requires the location of ego
vehicle, detection of static and moving obstacles around the ego vehicle, and prediction
modules for predicting detected objects trajectories, whereas path planning is handled by
motion based and mission-based modules. Actuation modules handle stroking and steering.
These twisted control commands are generated by the path following module. Each module
works with its own set of algorithms, uses deep learning networks, sensor data fusion etc.

Compared to other robots, self-driving cars have different requirements in terms of real-
time behaviour and calculation speed. They have to master a wide range of manoeuvre from
precise path-finding in parking situations to high-speed driving on highways [2]. There are
already several well-developed autonomous driving simulators. Having insights through
them, we can get some basic principles for our developing works.

2.2.1 CARLA

CARLA [3] has been developed from the ground up to support development, training, and
validation of autonomous driving systems. In addition to open-source code and protocols,
CARLA provides open digital assets, such as urban layouts, buildings, vehicles etc. The
highlighted features of CARLA are:

(1) Scalability via a server multi-client architecture: multiple clients in the same or in
different nodes can control different actors.

(2) Flexible API: CARLA exposes a powerful API that allows users to control all aspects
related to the simulation, including traffic generation, pedestrian behaviors, weathers,
sensors, and much more.

(3) Autonomous Driving sensor suite: users can configure diverse sensor suites including
LIDARs, multiple cameras, depth sensors and GPS among others.

(4) A wide range of environmental conditions: The simulator supports two lighting
conditions – midday and sunset – as well as nine weather conditions, differing in cloud
cover, level of precipitation, and the presence of puddles in the streets.

(5) Combination Unity and ROS2: Substitute Unity as the simulation environment and
accomplish Unity’s ROS2 integration.

4

2 Background

Figure 2.2: Three of the sensing modalities provided by CARLA. From left to right: normal
vision camera, ground-truth depth, and ground-truth semantic segmentation

2.2.2 Autoware

Autoware [4] is an open-source software stack for self-driving vehicles, built on the Robot
Operating System (ROS). It includes all of the necessary functions to drive an autonomous
vehicles from localization and object detection to route planning and control, and was created
with the aim of enabling as many individuals and organizations as possible to contribute to
open innovations in autonomous driving technology.

Figure 2.3: Autoware software architecture

2.3 Robot Operation System (ROS)

Robot Operating System (ROS or ros) is an open-source robotics middleware suite. It is not
an operating system (OS) but a set of software frameworks for robot software development.
Sometime before 2007, the first pieces of what eventually would become ROS began coalescing
at Stanford University. Later on Willow Garage began developing the PR2 robot as a follow-up
to the PR1, and ROS as the software to run it. Groups from more than twenty institutions
made contributions to ROS, both the core software and the growing number of packages
which worked with ROS to form a greater software ecosystem. ROS has provided the robot
community with a relatively complete set of intermediate layers, tools, software and even
common interfaces and standards. It can be said that with ROS, developers in the field of

5

2 Background

robotics industry can quickly develop system prototypes and do testing and verification
without reinventing wheels. Software in the ROS Ecosystem can be separated into three
groups:

• language- and platform-independent tools used for building and distributing ROS-based
software;

• ROS client library implementations such as roscpp, rospy, and roslisp;

• packages containing application-related code which uses one or more ROS client li-
braries.

ROS was designed to be open source, intending that users would be able to choose the
configuration of tools and libraries which interacted with the core of ROS so that users could
shift their software stacks to fit their robot and application area. As such, there is very little
which is core to ROS, beyond the general structure within which programs must exist and
communicate. In one sense, ROS is the underlying plumbing behind nodes and message
passing. However, in reality, ROS is not only that plumbing, but a rich and mature set of tools,
a wide-ranging set of robot-agnostic abilities provided by packages, and a greater ecosystem
of additions to ROS (Figure 2.4). As one of the most popular projects in the robot-related
open source community, there are already a large number of well-developed open source
applications based on ROS, covering perception, planning, control, positioning, SLAM and
mapping, visualization and almost all robot fields.

Figure 2.4: ROS equation: Plumbing + Tools + Capabilities + Ecosystem = ROS

2.3.1 Computation graph model of ROS

There are four major components behind ROS computation graph model:

• Node: A node represents one process running the ROS graph. Every node has a name,
which it registers with the ROS master before it can take any other actions. Multiple
nodes with different names can exist under different namespaces, or a node can be
defined as anonymous, in which case it will randomly generate an additional identifier
to add to its given name. Nodes are at the center of ROS programming, as most ROS
client code is in the form of a ROS node which takes actions based on information
received from other nodes, sends information to other nodes, or sends and receives
requests for actions to and from other nodes.

6

2 Background

• Topic: Topics are named buses over which nodes send and receive messages. Topic
names must be unique within their namespace as well. To send messages to a topic,
a node must publish to said topic, while to receive messages it must subscribe. The
publish/subscribe model is anonymous: no node knows which nodes are sending
or receiving on a topic, only that it is sending/receiving on that topic. The types of
messages passed on a topic vary widely and can be user-defined. The content of these
messages can be sensor data, motor control commands, state information, actuator
commands, or anything else.

• Service: A node may also advertise services. A service represents an action that a node
can take which will have a single result. As such, services are often used for actions
which have a defined start and end, such as capturing a one-frame image, rather than
processing velocity commands to a wheel motor or odometer data from a wheel encoder.
Nodes advertise services and call services from one another.

• Parameter server: The parameter server is a database shared between nodes which
allows for communal access to static or semi-static information. Data which does
not change frequently and as such will be infrequently accessed, such as the distance
between two fixed points in the environment, or the weight of the robot, are good
candidates for storage in the parameter server.

ROS processes are represented as nodes in a graph structure, connected by edges called
topics. ROS nodes can pass messages to one another through topics, make service calls to
other nodes, provide a service for other nodes, or set or retrieve shared data from a communal
database called the parameter server. A process called the ROS Master makes all of this
possible by registering nodes to itself, setting up node-to-node communication for topics, and
controlling parameter server updates. Messages and service calls do not pass through the
master, rather the master sets up peer-to-peer communication between all node processes
after they register themselves with the master. This decentralized architecture lends itself
well to robots, which often consist of a subset of networked computer hardware, and may
communicate with off-board computers for heavy computing or commands.

2.3.2 Improvements in ROS2

If we say ROS1 provides a good ecology for scientific research and prototype development,
then ROS2 is the development architecture and corresponding toolchain for the deployment
environment of actual products. Since ROS1 was initially developed for the research robot
Willow Garage PR2, it is doomed that there were some shortcomings:

• No real-time characteristics;

• Not friendly to the implementations on embedded devices;

• High reliance on network, requires large bandwidth and stable connection;

• High flexibility brings non-standard programming patterns;

7

2 Background

• Only single-agent application supported.

The application of ROS is not limited to academic researches any more. To satisfy the
requirements of massive applications for certain performance (such as real-time, security,
embedded porting, etc) in industrial fields, ROS2 adopts the following strategies to improve
its applicability to production environments:

• Multiple-agent application supported;

• Implementations on embedded devices supported;

• Real-time system: real-time control supported, including real-time communication
between processes and machines;

• Non-ideal network environments compliance: The system can still work in network
environments such as low quality and high latency;

• Standardized programming model: to support build, develop, and deploy for large-scale
ROS-based purposes.

Figure 2.5: Comparison of ROS1 and ROS2

The highlights in ROS2 are Data-Distribution Service (DDS) and Quality of Service (QoS).
In contrast to ROS1, whose core is an anonymous publish-subscribe communication inter-
mediate layer based on the master central node, ROS2 uses DDS based on RTPS (Real-Time
Publish-Subscribe) protocol (Figure 2.5). DDS is an industry standard for publish-subscribe
communication of real-time and embedded systems. This point-to-point communication
pattern is similar to the middle layer of ROS1, but DDS does not need to complete the
communication between the two nodes through the master node like ROS1, which makes the
system more fault-tolerant and flexible.

Quality of Service (QoS) is a collection of policies to configure communication between
nodes. ROS1 only supports TCP-based communication, while in ROS2 users can achieve
different communication behaviors by selecting corresponding QoS profiles. With this, ROS2
can demonstrate both the reliability of TCP and the high real-time performance of UDP.

8

2 Background

2.4 Simulation environment modelling and rendering

2.4.1 Gazebo

Gazebo is an open-source 3D robotics simulator. It integrated the ODE physics engine,
OpenGL rendering, and support code for sensor simulation and actuator control. Gazebo can
use multiple high-performance physics engines, such as ODE, Bullet, etc. (the default is ODE).
It provides realistic rendering of environments including high-quality lighting, shadows, and
textures. It can model sensors that "see" the simulated environment, such as laser range
finders, cameras (including wide-angle), Kinect style sensors, etc. For 3D rendering, Gazebo
uses the OGRE engine.

As a stand-alone application, Gazebo can be used independently of ROS or ROS 2. The
integration of Gazebo with either ROS version is done through a set of packages called
"gazebo_ros_pkgs" (Fig.2.6). These packages provide a bridge between Gazebo’s C++ API
and transport system, and ROS 2 messages and services.

Figure 2.6: An overview of the gazebo_ros_pkgs interface.

9

2 Background

2.4.2 RoadRunner

RoadRunner is an interactive editor that helps design 3D scenes for simulating and testing
automated driving systems. The roadway scenes can be customized by creating region-specific
road signs and markings. Besides, signs, signals, guardrails, and road damage, as well as
foliage, buildings, and other 3D models can be inserted. RoadRunner provides tools for
setting and configuring traffic signal timing, phases, and vehicle paths at intersections.

RoadRunner supports the visualization of lidar point cloud, aerial imagery, and GIS data.
The road networks can be imported and exported using OpenDRIVE®. 3D scenes built with
RoadRunner can be exported in FBX®, glTF™, OpenFlight, OpenSceneGraph, OBJ, and USD
formats. The exported scenes can be used in automated driving simulators and game engines,
including CARLA, Vires VTD, NVIDIA DRIVE Sim®, Baidu Apollo®, Cognata, Unity®, and
Unreal® Engine.

Figure 2.7: The user interface of RoadRunner.

2.4.3 Unity

Unity is a cross-platform game engine developed by Unity Technologies. The engine can be
used to create 3D and 2D games, as well as interactive simulations and other experiences.
Unity offers a primary scripting API in C# using Mono, for both the Unity editor in the form
of plugins, and games themselves, as well as drag and drop functionality. Besides, creators
can develop and sell user-generated assets to other game makers via the Unity Asset Store.
This includes 3D and 2D assets and environments for developers to buy and sell. In the
2010s, Unity Technologies used its game engine to transition into other industries using the
real-time 3D platform, including film and automotive.

10

2 Background

2.5 The KITTI dataset

In this project, we use the KITTI dataset to develop ROS2-related software pipeline before our
virtual environment setup in Unity is ready. KITTI dataset [5], developed by the team of Prof.
Geiger from Karlsruhe Institute of Technology (KIT) and Toyota Technology Institute, is one
of the most popular datasets for the use in mobile robotics and autonomous driving. KITTI
dataset contains hours of traffic scenarios, such as the mid-size city of Karlsruhe, rural areas
and highways, which was recorded with a standard station wagon equipped with variety of
sensor modalities, including two pairs of high-resolution cameras, one RGB and the other
grayscale, a 3D laser scanner as well as IMU and GPS modules.

Figure 2.8: Fully equipped station wagon.

The recording platform is a Volkswagen Passat B6, which has been modified with actuators
for both the gas and brake pedals and the steering wheel. The data is recorded using an
eight-core i7 computer with RAID system, running Ubuntu Linux OS and a real-time database.
Sensor setup is illustrated in the Figure 2.8.

2.6 YOLO: You Only Look Once

YOLO (You Only Look Once) [6] is a one-stage object detection algorithm introduced by
Redmon et al. in the year 2016. The two-stage algorithms like R-CNN use region proposal
methods to first generate potential bounding boxes in an image and then run a classifier
on these proposed boxes, which causes high computational consumption and cannot satisfy
the real-time capability. In comparison to this, YOLO reframes object detection as a single
regression problem, straight from image pixels to bounding box coordinates and class
probabilities.

YOLO uses only one convolutional neural network simultaneously predicts multiple
bounding boxes and their class probabilities, trains on full images and directly optimizes

11

2 Background

Figure 2.9: YOLO pipeline

detection performance. The unified model brings several benefits over traditional object
detection algorithms:

• Fast and acceptable accurate detection: YOLO can process streaming video in real-time
with less than 25 milliseconds of latency and achieves more than twice the mean average
precision of other real-time systems;

• Reasons globally about the image: YOLO sees the entire image during training and
test time so it implicitly encodes contextual information about classes as well as their
appearance;

• Learns generalizable representations of objects: YOLO performs well on different image
styles. With the learned generative features it is less likely to break down when applied
to new domains or unexpected inputs.

YOLO divides the input image into S × S grid and for each cell predicts B bounding boxes
and confidence scores for those boxes, which indicates how confident the model is that
the box contains an object and also how accurate it thinks the box is that it predicts. The
confidence is defined formally as Pr(Object) ∗ IOUtruth

pred , where IOU means intersection over
union. Each bounding box consists 5 predictions: x, y, w, h as well as the confidence we just
mentioned. The (x, y) coordinates represent the center of the box relative to the bounds of
the grid cell. The width and height are predicted relative to the whole image. Each grid cell
also predicts C conditional class probabilities Pr(Classi|Object), which are conditioned on the
grid cell containing an object. For each grid cell only one set of class probabilities would be
predicted, regardless of the number of boxes B. For the whole image all these predictions
are encoded as a tensor of size S × S × (B ∗ 5 + C). At test time, the class-specific confidence
score for each box would be obtained by multiplying the conditional probabilities and the
individual box confidence predictions (Eq. 2.1). The final bounding box would be obtained
via non maximum suppression (NMS), which recursively eliminates the candidate bounding

12

2 Background

boxes with non maximal confidence scores but pretty high IOU respect to the box with the
local maximal confidence.

Pr(Classi|Object) ∗ Pr(Object) ∗ IOUtruth
pred = Pr(Classi) ∗ IOUtruth

pred (2.1)

2.7 Stereo depth estimation

With two cameras we can infer depth, by means of triangulation, if we are able to find
corresponding (homologous) points in the two images [7]. Figure 2.10 shows a general
overview of stereo vision system. The most important parts there are camera calibration
and stereo correspondence matching. The intrinsic and extrinsic parameters of camera are
obtained from offline camera calibration, which are required when rectifying the raw images
and calculating depth from obtained disparity. And stereo correspondence matching aims
to find the homologous pixel in target image of each pixel in reference image, and then to
obtain the disparity map of the stereo pair.

Figure 2.10: Overview of a stereo vision system.

Consider two points P and Q on the same line of sight of the reference image R, where both
points project into the same image point P ≡ Q on image plane πR. The epipolar constraint
states that the correspondence for a point belonging to the (red) line of sight lies on the green
line on image plane πT of target image T (Fig. 2.11). Once we know that the search space
for corresponding points can be narrowed from 2D to 1D, we can put (virtually) the stereo
rig in a more convenient configuration, i.e. the standard form (the light yellow image planes
in Fig. 2.11), where corresponding points are constrained on the same image scanline. With

13

2 Background

Figure 2.11: Epipolar constraint.

the stereo rig in standard form and by considering similar triangles (POROT and Ppp’ in Fig
2.12a):

b
Z
=

(b + xT)− xR

Z − f
=⇒ Z =

b ḟ
xR − xT

=
b ḟ
d

(2.2)

where d = xR − xT is the disparity and Z the depth. The disparity is the difference between
the x coordinate of two corresponding points. The closer the point is to the camera, the higher
is the disparity value. Therefore, given a stereo rig with baseline b and focal length f , the
range field of the system is constrained by the disparity range [dmin, dmax]. As shown in Fig
2.12b, with discrete pixel level disparity values the depth measured by a stereo vision system
is discretized into parallel planes (one for each disparity value), which shows the necessity of
sub-pixel interpolation, which would be discussed later in subsection 3.3.4.

(a) The relationship between depth and dis-
parity

(b) Discretized depth plans

Figure 2.12: Depth calculation.

14

3 Implementation and visualization

This chapter gives an overview about my contribution to this project. The Unity-related work
is not counted in respect of this thesis. In order to develop and test algorithm integration in
ROS2, the raw image and point cloud from KITTI dataset are taken as substitution of those
that are supposed to be published from Unity. A summary of work needed to be done is as
follows:

(1) Publish KITTI raw data in ROS2 and visualize them in Rviz. Prepare to test the
algorithm implementations.

(2) Implement object detection algorithm (YOLOv5) on ROS2.

(3) Implement stereo depth estimation (SGBM algorithm) for the detected objects.

(4) Inspect estimated depths by calculating ground truth distances using labeled point
cloud.

3.1 ROS node layout

As shown in Figure 3.1, the "/kitti_node" loads raw KITTI image and point cloud data
from local, transfers them into legal ROS message format respectively and finally publishes
them. It also publishes a "/kitti_frame" topic to broadcast the current frame number to
other active nodes; The "/detect_node" instantiates an YOLOv5 detector, subscribes the
image from left RGB camera, implements object detection and publishes the result label
information as a custom ROS message YOLOlabels under the topic "/detect_labels"; The
"/stereo_node" subscribes images from left and right grey cameras to compute disparity
map using SGBM algorithm and then obtain depth map with the camera parameter. Besides,
the "/stereo_node" also subscribes "/detect_labels" from "/detect_node" to get the center
position of each detected object. Take the depth value at object center pixel as the object’s
depth. Finally, the "/stereo_node" publishes a colored disparity map and a labeled left RGB
image, indicating object classes and distances (Fig.3.2). In addition, to validate the accuracy
of estimated depth, the ground truth distances are calculated with the 3D bounding boxes
from KITTI tracking data.

15

3 Implementation and visualization

Figure 3.1: rqt graph

Figure 3.2: Schematic ROS program concept

16

3 Implementation and visualization

3.2 Object detection: YOLOv5

YOLOv5 is a model in the YOLO family of object detection models. It shares similar
architecture as YOLOv3 and YOLOv4 [8], which was based on Darknet framework. As shown
in Fig.3.3, the YOLO network consists of three main procedures:

(1) Backbone: A convolutional neural network that aggregates and forms image features at
different granularities;

(2) Neck: A series of layers to mix and combine image features to pass them forward to
prediction;

(3) Head: Consumes features from the neck and takes box and class prediction steps.

Figure 3.3: Object detector structure.

The largest contribution of YOLOv5 is to translate the Darknet research framework to the
PyTorch framework. The Darknet framework is written primarily in C and offers fine grained
control over the operations encoded into the network. In many ways the control of the lower
level language is a boon to research, but it can make it slower to port in new research insights,
as one writes custom gradient calculations with each new addition.

One of the novel specialties of YOLOv5 is mosaic data augmentation, which combines
four images into four tiles of random ratio. Mosaic augmentation is especially useful for
the popular COCO object detection benchmark, helping the model learn to address the well
known "small object problem" - where small objects are not as accurately detected as larger
objects.

Another specialty of YOLOv5 isauto learning bounding box anchors. The idea of learning
anchor boxes based on the distribution of bounding boxes in the custom dataset with K-means
and genetic learning algorithms was first introduced in YOLOv3. This is very important
for custom tasks, because the distribution of bounding box sizes and locations may be
dramatically different than the preset bounding box anchors in the COCO dataset. In order
to make box predictions, the YOLOv5 network predicts bounding boxes as deviations from a
list of anchor box dimensions. The most extreme difference in anchor boxes may occur if we
are trying to detect something like giraffes that are very tall and skinny or manta rays that
are very wide and flat. All YOLO anchor boxes are auto-learned in YOLOv5 with the given
custom data.

17

3 Implementation and visualization

3.2.1 Train a YOLOv5 object detector for KITTI dataset

YOLOv5 comes in four main versions: small (s), medium (m), large (l), and extra large (x),
each offering progressively higher accuracy rates and taking a different amount of time to
train (Fig.3.4). In this project we used YOLOv5s to test our pipeline. The model structure is
configured in a yaml file.

Figure 3.4: Performance comparison of YOLOv5 model vatiants.

To match with the labeled ground truth provided by KITTI, the number of class is set as 8,
including car, van, truck, pedestrian, person sitting, cyclist, tram and the classes we don’t
care as misc, which are merged into 4 classes: vehicle, pedestrian, cyclist and misc later when
drawing labels. The train result is shown in Fig 3.5.

3.2.2 Custom ROS message YOLOlabels.msg

Object detection and depth estimation are implemented in two nodes separately. As men-
tioned before, we take the depth at bounding box center as the object’s distance relative
to image plane. To achieve this, the detected bounding boxes should be published from
detection node to the stereo node via a custom ROS message. Message is one of the ROS
interfaces, which act as a crucial component for the communication of ROS applications. ROS
2 uses a simplified description language, the interface definition language (IDL), to describe
these interfaces. This description makes it easy for ROS tools to automatically generate source
code for the interface type in several target languages. The ".msg" files describes the fields
of a ROS message, declaring the data type and name of each attribute. The definition of
YOLOlabels.msg is shown in Tab. 3.1. Each attribute is an array, since there are usually more
than one detected objects in every single frame. The attributes of one object share the same
index.

Table 3.1: Content of YOLOlabels.msg.
Name x y w h conf cls
Data type int32[] int32[] int32[] int32[] float32[] int32[]

18

3 Implementation and visualization

(a) YOLOv5 train result

(b) YOLOv5 confusion matrix

Figure 3.5: YOLOv5 training result on KITTI dataset.

19

3 Implementation and visualization

3.3 Stereo depth estimation: SGBM

Semi-Global Block Matching (SGBM), is OpenCV’s implementation of Hirschmüller’s original
Semi-Global Matching (SGM) algorithm [9] [10], which calculates disparity map from a pair
of rectified stereo images. The original SGM uses pixel-wise aggregation cost, while SGBM
allows matching blocks. If the block size is set to 1, it’s the same as working on pixels. So the
"Block" in SGBM actually means calculating each cost value in blocks (domain summation
operation) for disparity optimization. The SGBM requires rectified images, which are already
privided in KITTI dataset. Generally, the semi-global matching algorithm consist of following
4 procedures:

(1) Matching cost computation;

(2) Cost aggregation;

(3) Disparity computation;

(4) Disparity refinement.

3.3.1 Matching cost computation

Matching cost is actually the pixel-based absolute difference between pixel intensities I. The
correlation between the pixel to be matched and the candidate pixels can estimate their
probability of being the homologous point.

The disparity search slope D = Dmax − Dmin is defined before homologous point searching.
During disparity searching, each single pixel would get a vector of size D, containing the
matching costs at this pixel under every disparity value in slope D. Therefore, for the whole
image of size W × H we will get a three dimensional matrix of size W × H × D, which is
called disparity space image (DSI). Each element C(x, y, d) of the DSI matrix represents the
cost of the correspondence between the intensity at pixel (x, y) in reference and the intensity
at pixel (x+d, y) in target, i.e. IR(xR, y) and IT(xR + d, y), which can indicate the likelihood
and/or confidence of this correspondence.

3.3.2 Cost aggregation

Improve the accuracy that matching cost indicates pixel correlation. Since only considering
local information, pixelwise cost calculation is generally ambiguous and wrong matches can
easily have a lower cost than correct ones, due to noise or when the pixel is in a weak texture
or repeated texture area.

Cost aggregation aims to establish the relationship between neighboring pixels with a
certain criteria, such as neighboring pixels should have a continuous disparity value, to
optimize the cost matrix. This optimization is generally global. The cost value of a single
pixel under a certain disparity will be recalculated according to that of its neighboring pixels
under the same or some nearby disparity value to obtain a new DSI matrix, S.

20

3 Implementation and visualization

For SGM, the problem of stereo matching can be formulated as finding the disparity
image D that minimizes the energy E(D) (Eq.3.1), which indicates the pixelwise cost and the
smoothness constraints.

E(D) = ∑
p

C(p, Dp) + ∑
q∈Np

P1T[|Dp − Dq| = 1] + ∑
q∈Np

P2T[|Dp − Dq| > 1] (3.1)

The energy E(D) supports smoothness by penalizing changes of neighboring disparities,
where P1 and P2 are the penalty factors regarding to two different situations of neighboring
disparity changes. The first term is the sum of all pixel matching costs for the disparities of
D. The second term adds a constant penalty P1 for all pixels q in the neighborhood Np of p,
for which the disparity changes a little bit (i.e. 1 pixel). The third term adds a lager constant
penalty P2, for all lager disparity changes. Using a lower penalty for small changes permits
an adaptation to slanted or curved surfaces. The constant penalty for all larger changes (i.e.
independent of their size) preserves discontinuities.

3.3.3 Disparity computation

The optimal disparity value of each pixel is determined through the updated DSI S after cost
aggregation, generally with the Winner-Takes-All (WTA) algorithm (Eq3.2). Among all the
disparity values at each pixel, take the one that has the lowest cost as the optimal disparity
value at this pixel. This step is very simple, where we totally trust the cost aggregation in
the last step. That means the determination of P1 and P2 influences the accuracy of disparity
computation directly.

d(x, y) = argmin
d

|IR(x, y)− IT(x + d, y)| (3.2)

3.3.4 Disparity optimization

The obtained disparity map can be optimized by eliminating false matches, removing small
connected regions, appropriate smoothing and sub-pixel interpolation, etc. Intuitively, false
match means the aggregated cost value of the true disparity value at some pixels are not the
minimum. This can be caused by image noise, occlusion, weak or repetitive textures, and the
limitations of the algorithm. In fact, there is no algorithm that can perfectly handle all of the
above problems so far, so the elimination of false matches is necessary for all algorithms.

Considering there exists only one true disparity value at each pixel, i.e. the disparity
uniqueness constraint, the Left-Right Check (or Bidirectional Matching) algorithm generates
the disparity map twice: one assuming left image as reference getting dLR and the other right
as reference getting dRL (Fig.3.6a). Only the disparity values that have acceptable difference at
the homologous pixels in the two maps would be considered as consistent and be kept, while
those that don’t satisfy the expression 3.3 are considered as outliers, where the threshold T is
typically set to 1.

|dLR(x, y)− dRL[x + dLR(x, y), y]| < T (3.3)

21

3 Implementation and visualization

(a) Left-Right Check (b) The detected outliers are en-
coded in white

Figure 3.6: The Left-Right Check algorithm.

Since the disparity maps are typically computed at discrete pixel level [11], SGM takes
the quadratic interpolation method to obtain sub-pixel accuracy. After fitting the optimal
disparity’s and its two neighboring disparities’ cost values with quadratic curve, take the
disparity value at the minimum of fitting curve as new sub-pixel disparity (Fig.3.7).

Figure 3.7: Quadratic sub-pixel interpolation

3.3.5 StereoSGBM parameter configuration

The StereoSGBM class in OpenCV contains the following parameters:

• minDisparity: Minimum possible disparity value. Normally, it is zero but some-
times rectification algorithms can shift images, so this parameter needs to be adjusted
accordingly.

• numDisparities: Maximum disparity minus minimum disparity. The value is always
greater than zero. In the current implementation, this parameter must be divisible by
16.

• blockSize: Matched block size. It must be an odd number >=1 . Normally, it should be
somewhere in the 3...11 range.

22

3 Implementation and visualization

• P1 and P2: Two parameters that control the disparity smoothness. The larger the values
are, the smoother the disparity is. P1 is the penalty on the disparity change by plus
or minus 1 between neighbor pixels, considering the sloping or curved continuous
surfaces. P2 is the penalty on the disparity change by more than 1, considering the
edges of objects. The algorithm requires P2 > P1. Usually

P1 = 8 × numChannels × blocksize × blocksize (3.4)

P2 = 32 × numChannels × blocksize × blocksize (3.5)

• disp12MaxDiff: Maximum allowed difference (in integer pixel units) in the left-right
disparity check. Set it to a non-positive value to disable the check.

• preFilterCap: Truncation value for the prefiltered image pixels. The algorithm first
computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap]
interval. The result values are passed to the Birchfield-Tomasi pixel cost function.

• uniquenessRatio: the uniqueness detection parameters. For the matching pixels on the
left image, the lowest cost defined in the "numberOfDisparities" search interval is the
minimum cost (mincost), and the next lowest cost is second minimum cost (secdmincost).
If Eq.3.3.5 is satisfied, the difference between the lowest cost and the second cost is too
small, that is, the matching degree is not distinguished enough, the current matching
pixel is considered to be mismatched. Normally, a value within the 5...15 range is good
enough.

secdmincost
mincost

<
100

100 − uniquenessRatio
(3.6)

• speckleWindowSize: Maximum size of smooth disparity regions to consider their
noise speckles and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it
somewhere in the 50...200 range.

• speckleRange: Maximum disparity variation within each connected component. This
parameter can be regarded as the disparity connectivity condition. Calculating the
connected region of a disparity point, when the absolute value of the disparity change of
the next pixel is greater than speckleRange, the next and the current disparity pixels are
considered as disconnected. If you do speckle filtering, set the parameter to a positive
value, it will be implicitly multiplied by 16. Normally, 1 or 2 is good enough.

• mode: Set it to cv2.STEREO_SGBM_MODE_HH to run the full-scale two-pass dynamic
programming algorithm. It will consume O(W × H × numDisparities) bytes, which is
already large for 640 × 480 stereo and huge for HD-size pictures. By default, it is set to
false.

The final StereoSGBM parameter configuration is shown in Table 3.2. Some heuristics about
SGBM parameter tuning are referred from [12].

23

3 Implementation and visualization

Table 3.2: SGBM parameter settings.
Parameter Set value
minDisparity 5
numDisparities 4 × 16
blockSize 3
P1 8 × 3 × 4 × 4
P2 32 × 3 × 4 × 4
disp12MaxDiff 1
preFilterCap -1
uniquenessRatio 10
speckleWindowSize 10
speckleRange 20
mode cv2.STEREO_SGBM_MODE_SGBM_3WAY

3.3.6 Obtain depth map from disparity map

Now with the disparity map we can compute the depth map according to the triangular
relationships shown in Fig.2.12a. Instead of calculating the depth values pixelwisely with
Eq.2.2, which causes a huge memory consumption, OpenCV provides a function "reprojec-
tImageTo3D" handling this task more efficiently via re-projecting the disparity map to 3D
space (Fig.3.8).

Figure 3.8: Reproject disparity map to 3D space.

In "reprojectImageTo3D", the camera parameters are represented as a perspective transfor-
mation matrix Q, which can be inferred from OpenCV function "stereoRectify" as Eq. 3.3.6
for horizontal stereo pairs.

24

3 Implementation and visualization

Q =

1 0 0 −c · x1

0 1 0 −c · y
0 0 0 f
0 0 − 1

Tx

c·x1−c·x2
Tx

 (3.7)

The calibration file "calib_cam_to_cam.txt" in KITTI dataset contains the original camera
parameters we need, which are processed to be the input variables for the OpenCV function
"stereoRetify" according to KITTI setup layout shown in Fig.3.9. The input parameter for
"stereoRectify" is shown in Table 3.3:

Figure 3.9: Schematic KITTI setup.

25

3 Implementation and visualization

Table 3.3: Camera calibrations.

Parameter Value

cameraMatrix1

9.037596e2 0 6.957519e2

0 9.019653e2 2.242509e2

0 0 1

Right gray cam_01 matrix

distCoeffs1

−3.639558e − 1

1.788651e − 1

6.029694e − 4

−3.922424e − 4

−5.382460e − 2

T

Right gray cam_01 distortion coefficients

cameraMatrix2

9.597910e2 0 6.960217e2

0 9.569251e2 2.241806e2

0 0 1

Left gray cam_00 matrix

distCoeffs2

−3.691481e − 1

1.968681e − 1

1.353473e − 3

5.677587e − 4

−6.770705e − 2

T

Left gray cam_00 distortion coefficients

R

0.9996 0.0223 −0.0198

−0.0222 0.0998 0.0017

0.0198 −0.0013 0.9998

Rotation matrix of cam_03 relative to cam_02, i.e. SE23

T
[
−0.5327 0 −0.0054

]
Translation vector of cam_03 relative to cam_02

26

3 Implementation and visualization

3.4 Ground truth distance computation

In this step we calculate the distance between the 3D bounding boxes of ego car to each labeled
object frame by frame. For simplification, only the xy-plane projection of the 3D bounding
boxes are considered, that means, we calculate the minimum distance between rectangles.
The problem can be broken down into calculating the distances between points and line
segments. There are three cases for projecting the point to a line segment, : the projection
point is within the line segment (Fig.3.10a), exactly at one of the endpoints (Fig.3.10b) or
outside of the segment (Fig.3.10c). For the first two cases, the distance is the length of the
perpendicular segment, while for the third case, the distance is the length of the connection
from the point to the nearer endpoint.

(a) (b) (c)

Figure 3.10: Calculate distance between point and line segment.

With this, we calculate the distance from each vertex of ego’s rectangle to the four edges
of the object’s separately (Fig.3.11a), and then calculate the distance from each vertex of the
object’s rectangle to the four edges of the ego’s in turn (Fig.3.11b). In these total 32 distances
we take the minimum as the distance between two rectangles.

(a) (b)

Figure 3.11: Calculate distance between rectangles.

27

3 Implementation and visualization

3.5 Visualization in Rviz

The labeled images, disparity map, point cloud and 3D bounding boxes would be visualized
in Rviz frame by frame. Rviz, short for “ROS visualization”, is a 3D visualization software
tool for robots, sensors, and algorithms. It can visualize the active ROS topic of the supported
message types. The visualized ROS topics are listed in Table 3.4:

Table 3.4: Visualized ROS messages.
Topic ROS message type Content
/kitti_imgraw_L/RGB sensor_msgs.Image RGB image from cam 2
/kitti_imgraw_L/gray sensor_msgs.Image Gray image from cam 0
/kitti_imgraw_R/RGB sensor_msgs.Image RGB image from cam 3
/kitti_imgraw_R/gray sensor_msgs.Image Gray image from cam 1
/kitti_disparity sensor_msgs.Image Disparity map
/kitti_egoFOV visualization_msgs.Marker Ego car’s Feld of View
/kitti_egoBBox visualization_msgs.MarkerArray Ego car’s bounding box
/kitti_pcl sensor_msgs.PointCloud2 Point cloud
/kitti_BBox visualization_msgs.MarkerArray Objects’ bounding boxes
/kitti_distance visualization_msgs.MarkerArray Distance lines with text

The 3D bounding box labels of KITTI tracking data are given in form of height, width,
length, center position (x, y, z) and rotation angle of y-axis, where x, y and z are horizontal,
vertical and depth directions in respect of the image plane. With these data the coordinates
of eight vertices of each 3D bounding box can be calculated. The order of vertex points and
connection lines are shown in Fig.3.12, where the surface with cross lines indicates the object’s
front surface, which shows the orientations of the labeled objects. The result visualization is
shown in Fig.3.13.

4

0

1

5

6

2

3

7

Figure 3.12: Point connections of KITTI 3D BBox labels.

28

3 Implementation and visualization

Figure 3.13: Visualization result in Rviz.

29

4 Conclusion and discussion

4.1 Conclusion

In this project I have successfully developed the ROS-based object detection and stereo
depth estimation applications for our autonomous driving simulation platform as well as the
visualization of 3D scenario presents including point cloud and 3D bounding box, which
prepared us for the following joint development with Unity. The current frame-per-second
(FPS) processing 1242 × 375 pixel KITTI images comes up to 30, which satisfies the real-time
requirement. The error of depth estimation for objects are within 5% relative to the true
distance.

4.2 Discussion

Due to time constraints there are some experiments and/or potential improvement which
were not implemented:

• Apply GPU boost for SGBM algorithm to improve the performance: Currently the
SGBM algorithm for depth estimation is operated on CPU, which cannot satisfy both
high accuracy and real-time. Since "cv2.STEREO_SGBM_MODE_SGBM_3WAY" has less
computation complexity and already accurate enough for our current application, we
used this instead of the full-scale two-pass mode "cv2.STEREO_SGBM_MODE_HH",
which has higher memory consumption. In our further development the HH mode
might be necessary and thus GPU should solve its latency problem.

• Achieve stereo depth estimation using deep learning methods [13] [14] [15]: There are
already some works that involve deep learning to stereo depth estimation, especially
to the stage stereo matching, such as cycle GAN [16], HITNet [17], AnyNet [18],
PSMNet [19], etc. Take cycle GAN as an example, similar to image style transformation
task, stereo depth estimation also has a process of pixel matching. The correspondence
field (i.e. the disparity map) between two image views in a calibrated stereo camera
setting can be predicted by a deep generative network, which consists of two generative
subnetworks jointly trained with adversarial learning for reconstructing the disparity
map and organized in a cycle such as to provide mutual constraints and supervision to
each other.

• Apply more YOLOv5 model variants to test the performance of object detection: In
this project I only implemented the most light-weighted variant YOLOv5s to test our
pipeline. The compatibility for more complicated models was not experimented.

30

List of Figures

1.1 Development concept . 1

2.1 NRP basic model . 3
2.2 Three of the sensing modalities provided by CARLA. 5
2.3 Autoware software architecture . 5
2.4 ROS equation: Plumbing + Tools + Capabilities + Ecosystem = ROS 6
2.5 Comparison of ROS1 and ROS2 . 8
2.6 An overview of the gazebo_ros_pkgs interface. 9
2.7 The user interface of RoadRunner. 10
2.8 Fully equipped station wagon. 11
2.9 YOLO pipeline . 12
2.10 Overview of a stereo vision system. 13
2.11 Epipolar constraint. 14
2.12 Depth calculation. 14

3.1 rqt graph . 16
3.2 Schematic ROS program concept . 16
3.3 Object detector structure. 17
3.4 Performance comparison of YOLOv5 model vatiants. 18
3.5 YOLOv5 training result on KITTI dataset. 19
3.6 The Left-Right Check algorithm. 22
3.7 Quadratic sub-pixel interpolation . 22
3.8 Reproject disparity map to 3D space. 24
3.9 Schematic KITTI setup. 25
3.10 Calculate distance between point and line segment. 27
3.11 Calculate distance between rectangles. 27
3.12 Point connections of KITTI 3D BBox labels. 28
3.13 Visualization result in Rviz. 29

31

List of Tables

3.1 Content of YOLOlabels.msg . 18
3.2 SGBM parameter settings . 24
3.3 Camera calibrations . 26
3.4 Visualized ROS messages . 28

32

Bibliography

[1] F. Roehrbein, M.-O. Gewaltig, C. Laschi, G. Klinker, P. Levi, and A. Knoll. “The Neuro-
robotic Platform: A simulation environment for brain-inspired robotics”. In: Proceedings
of ISR 2016: 47st International Symposium on Robotics. 2016, pp. 1–6.

[2] M. Reke, D. Peter, J. Schulte-Tigges, S. Schiffer, A. Ferrein, T. Walter, and D. Matheis. “A
Self-Driving Car Architecture in ROS2”. In: 2020 International SAUPEC/RobMech/PRASA
Conference. 2020, pp. 1–6.

[3] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. “CARLA: An Open
Urban Driving Simulator”. In: Proceedings of the 1st Annual Conference on Robot Learning.
2017, pp. 1–16.

[4] V. M. Raju, V. Gupta, and S. Lomate. “Performance of open autonomous vehicle plat-
forms: Autoware and Apollo”. In: 2019 IEEE 5th International Conference for Convergence
in Technology (I2CT). IEEE. 2019, pp. 1–5.

[5] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. “Vision meets robotics: The kitti dataset”.
In: The International Journal of Robotics Research 32.11 (2013), pp. 1231–1237.

[6] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. “You Only Look Once: Unified,
Real-Time Object Detection”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2016.

[7] S. Degadwala, D. Vyas, and A. Mahajan. “Review on Stereo Vision Based Depth
Estimation”. In: International Journal of Scientific Research in Science, Engineering and
Technology (Mar. 2020), pp. 665–671. doi: 10.32628/IJSRSET207261.

[8] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao. “Yolov4: Optimal speed and accuracy
of object detection”. In: arXiv preprint arXiv:2004.10934 (2020).

[9] H. Hirschmuller. “Accurate and efficient stereo processing by semi-global matching
and mutual information”. In: 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05). Vol. 2. 2005, 807–814 vol. 2.

[10] H. Hirschmuller. “Stereo processing by semiglobal matching and mutual information”.
In: IEEE Transactions on pattern analysis and machine intelligence 30.2 (2007), pp. 328–341.

[11] S. Birchfield and C. Tomasi. “Depth discontinuities by pixel-to-pixel stereo”. In: Interna-
tional Journal of Computer Vision 35.3 (1999), pp. 269–293.

[12] P. H. Nguyen and C. W. Ahn. “Parameter selection framework for stereo correspon-
dence”. In: Machine Vision and Applications 31.4 (2020), pp. 1–15.

33

https://doi.org/10.32628/IJSRSET207261

Bibliography

[13] H. Laga, L. V. Jospin, F. Boussaid, and M. Bennamoun. “A Survey on Deep Learning
Techniques for Stereo-Based Depth Estimation”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 44.4 (2022), pp. 1738–1764.

[14] J. Zbontar, Y. LeCun, et al. “Stereo matching by training a convolutional neural network
to compare image patches.” In: J. Mach. Learn. Res. 17.1 (2016), pp. 2287–2318.

[15] J. Choe, K. Joo, F. Rameau, and I. S. Kweon. “Stereo object matching network”. In: 2021
IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2021, pp. 12918–
12924.

[16] A. Pilzer, D. Xu, M. Puscas, E. Ricci, and N. Sebe. “Unsupervised Adversarial Depth
Estimation Using Cycled Generative Networks”. In: 2018 International Conference on 3D
Vision (3DV). 2018, pp. 587–595.

[17] V. Tankovich, C. Hane, Y. Zhang, A. Kowdle, S. Fanello, and S. Bouaziz. “Hitnet: Hier-
archical iterative tile refinement network for real-time stereo matching”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 14362–
14372.

[18] Y. Wang, Z. Lai, G. Huang, B. H. Wang, L. Van Der Maaten, M. Campbell, and K. Q.
Weinberger. “Anytime stereo image depth estimation on mobile devices”. In: 2019
International Conference on Robotics and Automation (ICRA). IEEE. 2019, pp. 5893–5900.

[19] J.-R. Chang and Y.-S. Chen. “Pyramid stereo matching network”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2018, pp. 5410–5418.

34

	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation
	Contribution
	Outline

	Background
	Neurorobotics Platform (NRP)
	Examples of autonomous driving simulation platform
	CARLA
	Autoware

	Robot Operation System (ROS)
	Computation graph model of ROS
	Improvements in ROS2

	Simulation environment modelling and rendering
	Gazebo
	RoadRunner
	Unity

	The KITTI dataset
	YOLO: You Only Look Once
	Stereo depth estimation

	Implementation and visualization
	ROS node layout
	Object detection: YOLOv5
	Train a YOLOv5 object detector for KITTI dataset
	Custom ROS message YOLOlabels.msg

	Stereo depth estimation: SGBM
	Matching cost computation
	Cost aggregation
	Disparity computation
	Disparity optimization
	StereoSGBM parameter configuration
	Obtain depth map from disparity map

	Ground truth distance computation
	Visualization in Rviz

	Conclusion and discussion
	Conclusion
	Discussion

	List of Figures
	List of Tables
	Bibliography

