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Abstract

As more Highly Automated Driving (HAD) functions are implemented using Machine
Learning (ML)methods, the challenge of validating them becomes ever more important.
These challenges arise since classical software validation methods were not developed
to validated ML-based HAD functions.

In this dissertation, we present methods to develop validation safety arguments
considering various aspects of ML algorithms: From the datasets used to train them,
through the feature embeddings within them, to the overall design of the algorithms. On
the one hand, we introduce methods to compare the feature embeddings of various Deep
Neural Network (DNN) architectures, allowing an engineer to choose an architecture
based on more than just the classification performance. We compare the architectures
based on their clustering ability in the feature embedding space and visualisations
thereof. We argue that a compact clustering of the feature embeddings is a desirable
property of a DNN architecture. Thus, we extend this safety argument to create
k-means friendly feature embedding spaces. We additionally introduce a method to
reject spurious classification outputs.

On the other hand, we discuss and analyse the distributional shifts present in two
public highway driving datasets (the highD and the NGSIM datasets). We demonstrate
that these negatively affect the performance of ML-based HAD functions by reducing
the classification accuracy by up to 70%. On top of that, we introduce a fine-tuning
algorithm to trade-off the performance on the source and the target distributions.

Finally, we propose an interpretable Lane Change Detector (LCD) algorithm based
on the anomaly detection capabilities of Deep Autoencoders (DAEs). We demonstrate
the interpretability of the algorithm, and show how an engineer can choose the
parameters according to the desired HAD function performance. Throughout this
dissertation, we use a lane change prediction task as a safety-critical HAD function
use-case to demonstrate the proposed methods.

Ultimately, the techniques presented in this dissertation can be used individually
or in combination to validate various aspects of ML-based HAD functions by diversity.
They could, for example, also be used as evidence in a safety case for validation.
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Introduction1
The vision of developing and deploying Automated Driving Systems (ADSs) and
Autonomous Vehicles (AVs) has been around for decades. It comes with the promise
of making our streets safer; there was an average of 32,189 motor vehicle related
fatalities over the past decade (2010-2020) in the US alone [1]. However, until recently,
developing ADSs was confined to academic areas of research, e.g., [2]. The Society
of Automotive Engineers (SAE) defines six levels of automation of road vehicles,
ranging from no driving automation and driver assistance functions (levels zero and
one), all the way through conditional to full driving automation (levels three through
five) [3]. An example of a level three ADS could be an AV which can chauffeur its
passengers for sustained amounts of time on the highway; A level five ADS can drive
in any environment without constraints. As defined by the SAE, an ADS or Highly
Automated Driving (HAD) function1 are “design-specific functionalities” which can
perform part or all of the driving automation at SAE automation levels three through
five [3].

One approach to implement the ADS task of observing the environment and
outputting the controls of the AV is to split the task into modules [4], e.g., with a
sensing, a perception, a prediction, and/or a planning module (green boxes in Fig. 1.1).
Each module can contain specific HAD functions, e.g., the perception module can
contain a function to detect lane markings on a highway or the prediction module
can contain a function to predict the actions of surrounding vehicles. This modular
pipeline design gives engineers the ability to design each module according to the
engineering requirements, and to verify and validate it accordingly. Another option is
to design an ADS in an end-to-end fashion (purple box in Fig. 1.1), i.e., taking the raw
sensor inputs and outputting the controls of the vehicle. An end-to-end ADS can be
more challenging to design, as an engineer has to take all possible inputs into account
when designing the whole system.

To alleviate the burden on engineers to model every possible scenario which AVs

1Note, in the SAE definition, the authors define these as driving automation system features. However,
as not to confuse these features with the methods presented in this dissertation, we refer to them as HAD
or ADS functions.
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Sensing Perception Prediction Planning

Environment

End-to-end

Control

Figure 1.1: A modular design vs. an end-to-end design of an ADS.

might encounter—either in a modular or an end-to-end design—, Machine Learning
(ML)-based HAD functions have become popular in recent years. These ML-based
HAD functions are able to learn representations from a limited number of training
scenarios. Thus, they belong to the class of data-driven functions in contrast to
model-driven functions. ML-based algorithms have been implemented in a myriad of
different HAD functions, see, e.g., [5] for an overview.

Despite ML-based algorithms’ ability to achieve superhuman performance on
various tasks, the challenge of verifying and validating theHAD functions incorporating
them remains unsolved. The lack of explicit function specificationsmakes it challenging
to apply the current functional safety standards like, e.g., ISO 26262 [6]. Moreover,
they require representative datasets to train on, since the quality of the HAD function
directly depends on the quality of the data used to train it. An advantage of ML-based
HAD functions is their ability to generalise from (relatively few) training scenarios.
However, this comes at the price of engineers not always fully understanding the
black-box nature of these methods. We explore these aspects (and more) of ML-based
HAD functions in Chapter 2.

In this work, we consider ML-based HAD functions in the prediction module of an
ADS. To this end, we assume that the perception module, which typically precedes the
prediction module, outputs lists of the objects surrounding the ego vehicle with their
corresponding attributes. These objects are usually tracked over time such that the input
to the ML-based HAD functions are multi-variate time-series data. There are various,
publicly available datasets containing such data, e.g., the highD dataset [7] or the Next
Generation SIMulation (NGSIM) datasets [8; 9]. On top of that, car manufacturers
also collect and manage (proprietary) datasets. Throughout this work, we consider
the safety-critical HAD function of predicting when the vehicles surrounding the ego
vehicle are going to change lanes. We refer to this as the Time to Lane Change (TTLC)
classification task; More details are provided in Section 3.5. An early prediction cannot
only increase the comfort of the passengers in the ego vehicle, but it can also ensure
that a potential evasive manoeuvre is carried out safely and correctly.

2



1.1 Contributions

For example, the authors of [10] implement a Recurrent Neural Network (RNN)-
based algorithm with Long Term Short Term Memory (LSTM) cells [11] to classify
and predict when the vehicle is going to change lanes. The authors of [12] extend this
RNN architecture to use Gated Recurrent Unit (GRU) cells [13] and extend the function
to also predict the time until the lane change is completed. Recently, the authors of [14]
use a similar RNN-based architecture with LSTM cells to predict the time to left lane
changes and the time to right lane changes; Based on these time estimates, the driving
manoeuvre can be classified.2 Despite these algorithms displaying state-of-the-art
performance in the TTLC problem with multi-variate time-series inputs, the challenge
of validating the proposed algorithms is not addressed.

1.1 Contributions

We introduce various methods in this dissertation to address the challenge of validating
ML-based HAD functions. These methods focus on different aspects of the ML
algorithms, and provide an analysis and evidence for the safety of the HAD function
where it is implemented. The scientific publications containing the results related to
this dissertation are listed below.

Journal Publication:

1. O.DeCandido,M.Koller, andW.Utschick, “EncouragingValidatable Features in
Machine Learning-based Highly Automated Driving Functions,” IEEE Trans. on
Intell. Vehicles, vol. 8, no. 2, pp. 1837–1851, 2023. doi: 10.1109/TIV.2022.3171215

Conference Publications:

2. O. De Candido, X. Li, and W. Utschick, “An Analysis of Distributional Shifts
in Automated Driving Functions in Highway Scenarios,” in Proc. IEEE 95th
Veh. Technol. Conf. (VTC2022-Spring). IEEE, 2022. doi: 10.1109/VTC2022-
Spring54318.2022.9860453

3. O. De Candido, M. Binder, and W. Utschick, “An Interpretable Lane Change
Detector Algorithm based on Deep Autoencoder Anomaly Detection,” in
Proc. IEEE Intell. Vehicles Symp. (IV). IEEE, 2021, pp. 516–523. doi:
10.1109/IV48863.2021.9575599

2Note, details about the aforementioned ML algorithms will be explained in Chapter 3.
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Chapter 1. Introduction

4. O. De Candido, M. Koller, O. Gallitz, R. Melz, M. Botsch, and W. Utschick,
“Towards Feature Validation in Time to Lane Change Classification using Deep
Neural Networks,” in Proc. IEEE 23rd Intell. Transp. Syst. Conf. (ITSC). IEEE,
2020, pp. 1697–1704. doi: 10.1109/ITSC45102.2020.9294555

1.2 Outline

This dissertation is organised as follows: In Chapter 2, we introduce research related
to guaranteeing or arguing for the safety of ML-based algorithms. We focus on HAD
applications wherever applicable, and discuss the challenges related to validating
ML-based HAD functions. We end the chapter with a discussion of the overall
validation philosophy introduced in this dissertation: Validation by Diversity.

In Chapter 3, we discuss the preliminaries related to ML algorithms. We begin by
motivating the use of ML algorithms and then introduce the multi-variate time-series
data. Following this, we introduce the Deep Neural Network (DNN) architectures and
optimisation strategies we investigate in this dissertation. Finally, we introduce the
TTLC classification problem as a use-case and the multi-variate time-series datasets
used in this work.

In Chapter 4, we introduce the methods to validate ML-based HAD functions by
investigating the feature embeddings of various DNN architectures. We first introduce
a passive analysis method, and then introduce a method to encourage more meaningful
feature embeddings. Furthermore, we introduce a method to reject spurious outputs of
an ML algorithm.

From there, we introduce the notion of distributional shifts between highway
driving datasets in Chapter 5. We qualitatively and quantitatively analyse the two
datasets we use, and show how the distributional shifts between them affect ML-based
methods trained on them. Additionally, we introduce a fine-tuning method taking the
distributional shifts into account—we are able to trade-off the forgetting of the source
distribution and the learning of the target distribution.

In Chapter 6, we introduce an interpretable ML-based Lane Change Detector
(LCD) algorithm. We show how an engineer can choose the parameters for this method
depending on the performance they require, and investigate the interpretability of the
proposed LCD algorithm.

Finally, in Chapter 7, we summarise the methods introduced in this dissertation
and an outlook onto further work.
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Safety of Machine Learning
Algorithms 2

In this chapter, we discuss the safety of Machine Learning (ML) algorithms used in
safety-critical applications. We primarily focus on methods pertaining to ML-based
Highly Automated Driving (HAD) functions, but we discuss general applications and
methods where appropriate. We begin by exploring the various techniques to make
ML algorithms interpretable in Section 2.1. Following this, we discuss methods to
create safety envelopes in Section 2.2. In Section 2.3 and Section 2.4, we introduce
methods to verify and to validate ML-based HAD functions, respectively. Ultimately,
in Section 2.5, we discuss the methods introduced in this dissertation and how they
could be used as evidence to support a safety case to validate ML-based HAD functions.

For an overview of where ML is implemented in HAD functions, the reader can
refer to [5]. For a more in-depth review of ML safety topics (and possible solutions),
the reader can refer to [19; 20; 21].

2.1 Machine Learning Interpretability

In recent years, the field of Explainable Artificial Intelligence (XAI) has become
popular within the ML research community as a way to better interpret and explain
why ML algorithms make their decisions, see, e.g., [22; 23; 24]. Fundamentally,
these explanations should be human interpretable. In general, there are two sub-goals
within XAI: (i) to make the model intrinsically transparent; or (ii) to provide post-hoc
explanations of the decisions an ML algorithm makes [25].1 Researchers have further
proposed interpretability methods focusing on the inner working of an ML algorithm,
see, e.g., [27] and references therein.

An example of how to make an ML algorithm intrinsically transparent is to use
simple ML techniques such as linear models or Decision Trees (DTs) (as long as they
are not extremely deep). Furthermore, an engineer could compose an ML algorithm

1These categorisations of the XAI sub-goals are also sometimes referred to as the interpretability and
the explainability of ML algorithms, respectively. For further details on this topic, see, e.g., [26, Ch. 2].
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out of interpretable parts which might include more complicated techniques, e.g., Deep
Neural Networks (DNNs). Intrinsically interpretable methods allow an engineer to
fully comprehend the whole model, and to directly understand why a decision was
made. Methods to provide post-hoc explanations of ML algorithms can be based
on visualisation tools, e.g., heat-mapping methods [28; 29], or on providing textual
explanations for a given output, e.g., [30; 31]. These methods not only help an engineer
understand why an ML algorithm makes its decision but also to extract information or
insights from the learned algorithms.

Within the Autonomous Vehicle (AV) community, researchers have proposed XAI
method in various HAD functions. For example, in [32], the authors introduce a
steering angle control algorithm based on driving video data. They provide visual
interpretability using attention heat-maps, highlighting regions in the 2D-image that
might influence the algorithm’s decision. This form of XAI is an example of a post-hoc
explanation of the regions in the input space influencing the ML algorithm. In [33],
the authors propose the use of interpretable representations in an end-to-end ML-based
motion planner. These are used to visualize the motion forecasting and to quantify
the corresponding object detection performance. This form of XAI is an example of
making the ML algorithm intrinsically interpretable.

2.2 Safety Envelopes

When cyber-physical systems such as AVs employ ML-based algorithms, one line of
research to maintain their safety is to consider the system as a whole, i.e., abstract
everything to a system level including all of the software and all of the hardware. This
allows engineers to ensure the safety of the whole system irrespective of what methods
are implemented in its subparts. For example, we can ensure that the planned actions
of the AV remain safe whilst simultaneously providing a positive utility to the end-user,
even if the Automated Driving System (ADS) modules contains ML-based functions.
Generally, methods which enable safety on a system level are referred to as safety
envelope or safety bag approaches [34].

In [35], the authors propose creating a safety envelope around the AV by encoding
the rules of safe driving manoeuvres, e.g., safe distances or the rules of right-of-way,
and checking whether they are infringed upon. They call this safety envelope algorithm
“responsibility-sensitive safety.” These rules can be checked by a computer before the
AV tries to take an action to ensure that the system remains safe. For example, the
safety envelope algorithm will check whether the minimum distance to the surrounding
vehicles is maintained before performing the action; if this is not the case, the action
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will not be carried out. This work has been extended and used in a myriad of work
within the AV research community, e.g., [36; 37; 38]. A similar approach to building
a safety envelope was pursued in [39] to define safe control policies of AVs—they call
their approach the “safety force field.” These safety envelope approaches fall under the
doer/checker approach to safety [34]. On the one hand, we have a (possibly) ML-based
HAD function intending to carry out an action, and on the other hand, we have a
system to check that these intended actions are safe. The checker systems, are usually
implemented using traditional software techniques, thus, it is possible to validate them
using traditional validation methods.

By abstracting the AV to a system level, we can ensure that the AV only takes safe
and useful actions by defining a safety envelope around it. For example, we know
that right-of-way will not be taken from other vehicles and that the AV will maintain
a safe distance to all surrounding vehicles. These rules are checked before the AV
attempts to carry out an action. However, a safety envelope argument does not address
the safety of the ML-based HAD functions themselves. This is a limiting factor of
safety envelope approaches when considering ML-based HAD functions.

2.3 Machine Learning Verification

According to the IEEE standards vocabulary, verification is defined as “confirmation,
through the provision of objective evidence, that specified requirements have been
fulfilled” [40]. This was informally defined by software engineer Barry Boehm via
the question “Am I building the product right?” [41]. In this section, we consider
verification as methods to ensure that the original requirements of a system, function,
or product are properly fulfilled. Therefore, in order to verify an ML-based HAD
function, specific requirements for the function must first be defined and their fulfilment
subsequently checked.

In terms of the verification of ML-based methods, most researchers focus on
abstracting the specific requirements into a set of constraints, e.g., the requirement
that the output of the ML algorithm always lies within a certain range. Solvers such
as mixed integer linear programming solvers or satisfiability modulo theory solvers,
can then be used to verify whether these constraints are fulfilled. For DNNs with
Rectified Linear Unit (ReLU) activation functions, the authors of [42] transform the
neurons of the network into Boolean combinations of constraints and use a satisfiability
modulo theory solver to verify if the constraints are satisfiable or not. This method
was successfully implemented to verify the output properties of a DNN in an airborne
collision avoidance system, e.g., whether the output of the DNN controller would lead
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to a collision for certain initial conditions. This work was extended in [43] to allow for
the verification of larger DNNs.

An approach to verify the adversarial robustness of Convolutional Neural Networks
(CNNs) with ReLU activation functions is presented in [44]. In their work, the authors
introduce a framework they call AI2 which represents CNNs using an abstract
interpretation (see [45]) allowing them to approximate the program’s behaviour and
verify its outputs. They applied their verification method to an image classifier where
the input images are perturbed in an attempt to fool the DNN. They are able to verify
the robustness of the classifier against these perturbations on multiple datasets. In [46],
the authors introduce a mixed integer linear program formulation of a DNN with
ReLU activation functions. Given this formulation, the outputs of the DNN can be
verified—they experiment with various classification tasks and show that their method
can verify the outputs of shallow DNNs.

In summary, we observe that most verification methods of ML algorithms focus
on DNNs with ReLU activation functions due to their favourable properties. Since we
focus on validating ML-based HAD functions in this dissertation, we do not explore
the verification of ML-based methods in more detail.2 Moreover, to the best of our
knowledge, no ML verification methods have explicitly been evaluated on ML-based
HAD functions.

2.4 Machine Learning Validation

The definition of validation according to the IEEE standards vocabulary is “confirma-
tion, through the provision of objective evidence, that the requirements for a specific
intended use or application have been fulfilled” [40]. In contrast to verification, Boehm
informally defined this via the question “Am I building the right product?” [41]. Thus,
the difference between verification and validation is whether we are checking that the
system fulfils the specified requirements (verification) or whether it fulfils the intended
use-case (validation). Therefore, in order to validate ML-based HAD functions, we
consider methods which provide evidence that the ML algorithm produced the intended
HAD function.

As defined in [48, Sec. 2.4], the validation of ML-based HAD functions generally
falls into three categories: (i) data validation; (ii) qualitative validation; or (iii)
quantitative validation. Data validation mainly focuses on analysing the training
and test data used to train and evaluate the ML algorithms, respectively. If the

2For an overview of verification methods of ML algorithms, we refer the interested reader to [19, Sec.
4] or [47, Sec. 6].
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data are not representative enough, the missing scenarios must be added to ensure
that the data coverage is improved upon. For example, if the training data only has
right-hand-drive scenarios, any ML algorithm trained on these data would likely fail
when exposed to left-hand-drive scenarios. Qualitative and quantitative validation
methods focus on the ML algorithms themselves. To qualitatively validate an ML
algorithm, methods should be implemented to help an engineer understand the inner
representations or the reasons for a certain output (similar to ML interpretability,
cf. Section 2.1). Quantitative validation focusses on extracting rules or concepts from
the learned ML algorithms. Overall, qualitative and quantitative validation methods
can be used to better understand decision processes within the ML algorithms. In
terms of ML-based methods for HAD, most research focuses on the data validation
and qualitative validation [48].

In terms of data validation, various researchers are working on methods to generate
simulated test samples to test ML-based algorithms. A recent research project called
PEGASUS [49], promoted by the German Federal Ministry for Economic Affairs
and Energy, focused on creating a scenario database to test AVs and validate HAD
functions. These scenarios are categorised based on their abstraction level, ranging
from functional scenarios through logical to concrete scenarios. This allows an
engineer to test ML-based HAD functions at these different abstraction levels. In [50],
the authors train two generative ML-based models on the highD dataset [7], which
allows them to generate new, highway driving trajectories. This work was extended
in [51] to generate more realistic driving trajectories. These trajectories can then be
used to test other ML-based driving functions as part of a simulated dataset validation.
The authors of [52], introduce another scenario generation method based on dynamic
programming estimating the distribution of failures of an AV. They use this distribution
to create specific scenarios which cause the AV to fail. Using data validation methods,
an engineer is able to test an already trained ML-based HAD function to find scenarios
where the function fails.

Quantitative validation aims to extract rules or concepts from DNNs, see, e.g., [53;
54]. An understanding of these rules or concepts can be used in a safety argument,
e.g., by extracting the rules within a DNN, an engineer can more easily use expert
knowledge to validate the learned function. These methods are similar to the inner
interpretability methods introduced in [27] (cf. Section 2.1). Since we primarily focus
on dataset validation and qualitative validation methods, we do not elaborate further
on the quantitative validation methods. Moreover, to the best of our knowledge, these
methods have not been explicitly used in HAD applications.

A majority of the work to qualitatively validate ML-based methods use inter-
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pretability methods, e.g., visualisation techniques or textual explanations, to aid in
explaining why, or interpreting how, a certain decision was made. Thus, these methods
are closely related to work in ML interpretability (cf. Section 2.1). In the following,
we explore some qualitative validation methods leveraging ML interpretability.

In [55], the authors propose training an ADS controller end-to-end using DNNs,
however, they additionally train a heat-mapping method and textual explanations to
interpret the current outputs of their model. This allows them to both visually and
textually validate that the AV makes correct driving manoeuvres based on two inter-
pretability techniques. In [56], the authors introduce a method to extract interpretable
features frommulti-variate time-series data using heat-mapping techniques—ultimately,
producing an enhanced dataset which can be used in downstream tasks. This dataset
was used in [57], where a lane change prediction architecture is proposed which is
interpretable by design. The architecture is based on a mixture-of-experts design, split-
ting the time-series input domain into distinct segments and training an interpretable
classifier on each time segment. Since the latter method primarily focuses on building
an interpretable architecture by design, it has the advantage that the ML-based HAD
function can be directly validated.

We believe that a direct comparison of validation methods is challenging since each
method investigates, or attempts to improve, a different aspect of the ML algorithm.
Therefore, an engineer should have a toolbox of validation methods at hand to
appropriately validate the ML-based HAD function in a given situation.

2.4.1 Validation via Safety Cases

Since ML-based HAD functions lack explicit function specifications, they are chal-
lenging to validate using the current functional safety standards. The challenge of
applying the Verification and Validation (V&V) methods from ISO 26262 [58] given
ML-based functions is explored in [6]. The lack of specific software requirements
when designing ML-based algorithms makes applying the V-model3 (cf. [58, Part 6])

3The ISO 26262 standard is based on V-models as reference processes for the V&V of different
phases of the product design. Within the standard, a V-model is proposed for the V&V of the software
development. These methods and processes provide a strategy to develop error-free software. The left arm
of the V-model describes the methods and processes to design the software at different abstraction levels,
e.g., the specification of software safety requirements or the software architectural design, culminating in
the technical implementation of the software. The right arm of the V-model describes the methods and
processes to verify and to validate, i.e., to test and to integrate, the implemented software units. This is
where the V&V of the implemented software is performed—the software is verified and validated against
the software design requirements from the left arm of the V-model. All stages of software development
must be well documented and checked against the related technical safety requirements.
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for V&V challenging. The safety of the intended functionality standard, ISO/PAS
21448 [59], aimed to overcome these challenges by abstracting the requirements away
from hardware and software (including ML-based driving functions), to scenarios
where the function is intended and designed to be used. These scenarios are either
known or unknown and are either hazardous or non-hazardous. It requires that driving
functions operate in the absence of reasonable risk, i.e., engineers should reduce
the reasonable risk in hazardous scenarios (both known or unknown). However,
the ISO/PAS 21448 mainly focusses on driver assistance functions instead of HAD
functions [60].

AV researchers have proposed generating safety cases to validate AVs incorporating
ML-based algorithms, see, e.g., [61; 34; 48]. Safety cases—also known as safety
assurance cases—have been used in safety engineering for decades. Their purpose
is to “communicate a clear, comprehensive and defensible argument that a system
is acceptably safe to operate in a particular context” [62]. They are built of three
elements: (i) safety requirements; (ii) safety arguments; and (iii) supporting evidence.
The safety arguments should provide enough evidence to argue that the system is “safe
enough” in a given context.4 The goal structuring notation [62; 63] is one example of
how to document a safety case. Fundamentally, a safety case is built on the supporting
evidence, so the methods to provide this evidence are crucial.

In [64; 65; 66; 67], the authors take the first steps of proposing safety cases to
argue for the safety of ML-based HAD functions. They do not, however, propose
methods to be used as supporting evidence for their safety claims, as this is out of the
scope of the papers. The methods presented in this work could be used as evidence for
the safety goals in the proposed safety cases. On the other hand, these methods can be
used independent to a safety case.

2.5 Validation Safety Arguments by Diversity: Overview

In this dissertation, we propose safety argumentation methods by considering different
aspects of an ML-based HAD function. Building upon the previously mentioned
work, we propose both qualitative validation methods and dataset validation methods
(cf. Section 2.4). The safety argument methods also build upon interpretability research
(cf. Section 2.1).

An overview of the proposed validation methods can be seen in Fig. 2.1. In

4Note, both the ISO 26262 and the ISO/PAS 21448 standards build a safety case using safety arguments,
however, the V&V methods proposed in these standards do not consider ML-based HAD functions due
to the difficulty of defining ML-based function specifications and the related safety requirements.

11



Chapter 2. Safety of Machine Learning Algorithms

Simulation

HighD [7]

NGSIM [8]

Architecture1

Architecture2

ArchitectureL

y1

y2

yL

Dataset Distribution (Chapter 5)

Feature Embeddings (Chapter 4)

Algorithm Design (Chapter 6)

Figure 2.1: Overall philosophy of Validation by Diversity: Various methods to provide
safety arguments for an ML-based HAD function. These methods consider various
aspects of the ML algorithms—from the datasets used to train them to the features
extracted by different architectures.

Chapter 4, we argue that comparing the classification performance of different DNN
architectures is insufficient in safety-critical applications. Therefore, we develop a
safety argument using inner and post-hoc interpretability methods (cf. [25; 27]). We
propose comparing the architectures based on how well the feature embeddings cluster
and how meaningful they are. Expanding on this validation safety argument, we
use an algorithm to create k-means friendly spaces to improve the clustering of the
feature embeddings. We additionally propose a method to reject spurious classification
outputs.

On the other hand, the datasets used to train the ML-based HAD functions are also
important to argue for safety. In Chapter 5, we investigate the distributions of various
highway driving datasets. We observe a shift in their distributions and document how
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this affects ML-based classifiers trained on one dataset and tested on another. This
problem can arise when an ML-based HAD function is trained on a dataset from one
country, but deployed in another country. To address the arising issues, we propose
a method to fine-tune an ML algorithm and trade-off the forgetting and the learning
between the two distributions. Finally, in Chapter 6, we consider the design of the
overall ML-based HAD function. We propose an intrinsically interpretable Lane
Change Detector (LCD) algorithm using ML-based anomaly detection algorithms. We
demonstrate how an engineer can choose the algorithm’s parameters in an interpretable
manner.

On the one hand, the methods presented in this dissertation can be used as evidence
for safety, e.g., in an overarching safety case (cf. Section 2.4.1). On the other hand,
they can be directly used by an engineer, e.g., to decide which DNN architecture is
most suitable for the given HAD function using the available data or to investigate
the dataset distributions. Since the proposed methods consider various aspects of ML
algorithms, we call the overall safety philosophy: Validation by Diversity.
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Machine Learning Preliminaries 3
In this chapter, we introduce theMachine Learning (ML) fundamentals used throughout
this dissertation. Since this topic has been thoroughly studied in various scientific
papers and textbooks, see, e.g., [68; 69; 70], we focus on the parts of ML algorithms
we investigate in this work. First, we briefly motivate the use of ML algorithms as data-
driven functions in Section 3.1; Section 3.2 describes the time-series data we consider.
Then, Section 3.3 explores the various Deep Neural Network (DNN) architectures
employed in multi-variate time-series classification tasks. We subsequently discuss the
procedure of optimising the tunable parameters in these ML algorithms in Section 3.4.
Finally, Section 3.5 concludes this chapter by introducing the Highly Automated
Driving (HAD) function and the datasets used in this dissertation.

3.1 Motivation

The rise in popularity of ML1 algorithms in recent years has come hand-in-hand with
the feedforward DNN, see, e.g., [68]. These DNNs take an input and transform it
using multiple non-linear transformations to an output. This output is subsequently
used for the task at hand, e.g., classification or regression. For classification problems,
such a DNN aims to learn the mapping

f : X→ Y,x 7→ f(x;P) (3.1)

with the DNN’s tunable parameters collected in P , an arbitrary input x ∈ X from
the domain X, and the set of class labels Y = {y1, y2, . . . , yK} (assumingK classes
in total). In the case of ML-based algorithms, the underlying statistical model is
unknown, and hence, the derivation of the DNN model’s parameters relies on a given
dataset ofM input/output pairs

D =
{

(x1, y1), (x2, y2), . . . , (xM , yM )
}
⊂ X× Y. (3.2)

1Note, throughout this dissertation we use the term ML to refer to both classical ML methods,
e.g., Decision Trees (DTs) or k-Nearest Neighbours (k-NN) classifiers, and modern deep learning
methods. A description of the history of these fields can be found in, e.g., [68, Ch. 1].
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This dataset can be further split into a training, a validation, and a test dataset.
The reliance on datasets is the reason why ML algorithms are referred to as

data-driven algorithms compared to model-driven algorithms. In the latter, a model
of the given application is derived from physical rules. In contrast, the model in a
data-driven algorithm is derived directly from the data. ML methods’ ability to learn
representations from a limited number of (training) examples alleviates the burden
on engineers to explicitly model every scenario or environment the function might
encounter. However, this comes with the trade-off that the engineer will have to put
extra effort into validating the data-driven model using, e.g., expert knowledge.

Engineers implement ML-based methods in ever more parts of the Autonomous
Vehicle (AV) pipeline. Many computer vision tasks in HAD functions are already
solved using ML-based methods, some of these tasks include: semantic segmentation,
where each pixel of an image is classified to a predefined category [71; 72]; detecting
objects in an image, where a bounding box is created around each object [73; 74];
or detecting objects from 3-D point cloud data [75]. ML-based algorithms are also
implemented in various other HAD functions, see, e.g., [5] for an overview.

The key ingredients of any ML method are:

1. The choice of function, i.e., the DNN architecture;

2. The choice of learning framework, i.e., the loss function, the optimiser, and/or
the (hyper)-parameters;

3. The dataset from which the function’s parameters should be derived.

In the rest of this chapter, we introduce the relevant ingredients for the ML algorithms
used throughout the dissertation.

3.2 Time-Series Data

We use multi-variate time-series data as input to the ML-based functions. First, we
formally introduce some definitions for ML based on time-series signals.

Definition 1. A univariate time-series signal is an ordered vector of N real values,

xT =
[
x[1] x[2] . . . x[N ]

]
∈ R1×N . (3.3)
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Definition 2. Amulti-variate time-series signal is collection of Γ univariate time-series
signals,

X =

x
T
1
...
xT

Γ

 ∈ RΓ×N . (3.4)

A multi-variate time-series signal can also be viewed per time-step by summarising
the values of the different univariate time-series signals at that time-stamp in a vector,
i.e.,

X =
[
x̄[1] . . . x̄[N ]

]
∈ RΓ×N , (3.5)

where x̄[n] = [x1[n], . . . , xΓ[n]]T ∈ RΓ at each time-stamp n = 1, . . . , N .
We are also interested in short sequences within the time-series signals.

Definition 3. Given a time-series signal xT ∈ R1×N , a sub-sequence xT
p is a sampling

of lengthW < N of contiguous time-stamps from xT, i.e.,

xT
p =

[
x[p] x[p+ 1] . . . x[p+W − 1]

]
∈ R1×W , (3.6)

for 1 ≤ p ≤ N −W + 1.

Finally, we introduce the collection of all possible sub-sequences generated by
passing a sliding window over the time-series signal with a constant window size
W [76].

Definition 4. Given a time-series signal xT ∈ R1×N , the collection of sub-sequences
(sliding windows) xT

p for p = 1, . . . , N −W + 1 of a constant window sizeW < N

can be generated by the following

win(x;W ) =
{[

x[p] x[p+ 1] . . . x[p+W − 1]
]
∈ R1×W : (3.7)

for p = 1, . . . , N −W + 1
}

Definitions 3 and 4 can be extended to extract sub-sequences and sliding windows
of multi-variate time-series signals using the definition of multi-variate time-series
signals from Definition 2.
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Figure 3.1: Abstract FC-DNN architecture.

3.3 Deep Neural Network Architectures

Over the years, various DNN architectures have been introduced for different applica-
tions. Each architecture creates feature embeddings in a different manner which we
will investigate in later chapters. In this section, we introduce the considered DNN
architectures in detail.

The general structure of a DNN is depicted in Figure 3.1. The input signal X
is processed by C blocks before being linearly transformed to the output via Fully
Connected (FC) linear layer. Each processing block can either be a single linear
transformation followed by a non-linear activation function or it can be multiple
mappings combined in a unique way (cf. Transformer-based methods in Section 3.3.4).
We assume there are Λ layers in total—including the layer(s) in the C processing
blocks and the final FC layer. In the following, we discuss the different possible
mapping functions investigated throughout this work.

3.3.1 Fully Connected Deep Neural Networks

We first introduce the FC DNN. In this architecture, the non-linear functions in each
layer i of the DNN—where i = 1, . . . ,Λ—can be expressed as

x(i) = g
(
W (i)x(i−1) + b(i)︸ ︷︷ ︸

z(i)

)
. (3.8)

The learnable parameters of the DNN are collected in

P = {W (i) ∈ RN(i)×N(i−1) , b(i) ∈ RN(i) : 1 ≤ i ≤ Λ}. (3.9)

To this end, we consider a processing block (cf. Figure 3.1) in a FC-DNN to perform the
mapping defined in (3.8). This impliesC = Λ−1. The signal z(i) is the representation
in layer i before the non-linear activation function. The non-linear activation function
g is applied element-wise. Throughout this dissertation, if not otherwise stated, we use

18



3.3 Deep Neural Network Architectures

xT
Γ

xT
1

Co
nv
. 1

Co
nv
. 2

Co
nv
. C

G
A
P

FC y

Figure 3.2: Abstract Convolutional Neural Network (CNN) architecture for multi-
variate time-series data considered in this dissertation.

the hyperbolic tangent function as the non-linear activation function, i.e., g = tanh.
The output activation function depends on the application at hand.2

3.3.2 Convolutional Neural Networks

The general CNN architecture we consider is depicted in Figure 3.2. Since we consider
multi-variate time-series data, we interpret the input as a multi-channel input—each
input attribute of the time-series signal is therefore considered a channel. This is
passed through C consecutive convolutional blocks depicted as Conv.1, . . . ,Conv.C .
These blocks are built of different convolutional layers, which will be discussed in
the following sub-sections. Note, we refer to the input time-series samples as having
multiple input channels, but after Conv.1, we refer to the filtered signals as feature maps.
After the convolutional blocks we employ a Global Average Pooling (GAP) layer,
which takes the average of each filtered signal per feature map (see Section 3.3.2.6).

In this work, we consider convolutional blocks built up of two components:3 first,
a convolutional layer is applied to generate feature maps, and second, the feature maps
are passed through a non-linear activation function. The feature maps are time-series
signals, i.e., vectors, after the convolutional layer. For high-dimensional input data,
one can additionally incorporate pooling layers, e.g., average pooling or max pooling,
in the convolutional blocks to reduce the dimensions. The non-linear functions can be
described as

xγ = g (zγ) , (3.10)

where both xγ ∈ RN and zγ ∈ RN represent time-series signals. The index
γ ∈ {1, 2, . . . ,Γ(i)} represents the feature map γ; Γ(0) = Γ describe the input

2Note, for multi-class classification tasks, the softmax activation function is used at the output, which
is not applied element-wise.

3For simplicity, we further assume the following: (i) no padding is added to the time-series signals,
i.e., extra zeros to keep the signal length the same before and after convolution; (ii) a stride of one; (iii)
and no time dilation.
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channels. For the sake of simplicity, we will drop the layer index i in the feature maps
wherever possible in the following. Note, the feature maps zγ in layer i are a function
of the signals xγ in the previous layer i− 1.

We can stack the feature maps in a layer, such that we can write the output using
the 1-D CNNs as

z =



z1
...
zγ
...

zΓ(i)


= W



x1
...
xγ
...

xΓ(i−1)


+ b, (3.11)

where z ∈ RΓ(i)(N−L+1), xγ ∈ RN , and b ∈ RΓ(i)(N−L+1) is a vector of bias
terms. The total weight matrixW ∈ RΓ(i)(N−L+1)×Γ(i−1)N has a different structure
depending on the type of 1-D CNN architecture used. We will introduce the different
structures in the following sub-sections.

We define an operator to create a matrix with a Toeplitz structure of the vector
w =

[
w[1] w[2] . . . w[L]

]T
∈ RL as

toep (w;N) =
[
L0w, L1w, . . . , LN−Lw

]T
(3.12a)

=


w[1] w[2] . . . w[L] 0 . . . 0

0 w[1] w[2] . . . w[L]
. . . ...

... . . . . . . . . . . . . . . . 0

0 . . . 0 w[1] w[2] . . . w[L]

 ∈ RN−L+1×N ,

(3.12b)

with the selection matrix defined as

Ll =
[
0L×l, IL×L, 0L×(N−L−l)

]T
∈ RN×L, (3.13)

where the parameter N is the length of the signal which the filter will be convolved
with, and l = 0, . . . , N − L.

With this Toepliz matrix, we can define the discrete-time convolution as

z = w ∗ x = toep (w;N)x (3.14)

where ∗ represents the discrete-time convolution between the signal x ∈ RN and the
vector (1-D filter) w ∈ RL.
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3.3.2.1 Standard Convolutional Layers

The first type of 1-D convolutional layer we consider is the standard convolution. It
was originally introduced for 2-D CNNs in [77] to work with image data. These 1-D
filters are applied to each feature map of the previous layer and summed up to generate
a feature map in the current layer. This can be interpreted as learning a Finite Impulse
Response (FIR) filter for each input feature map and summing over the filtered signals.

The total weight matrix (see (3.11)) for the standard convolution layer has the
structure

Wconv. =

 toep(w1,1;N) . . . toep(w1,Γ(i−1) ;N)
... . . . ...

toep(wΓ(i),1;N) . . . toep(wΓ(i),Γ(i−1) ;N)

 , (3.15)

with wγ,c ∈ RL for γ = 1, . . . ,Γ(i) and c = 1, . . . ,Γ(i−1). We use the Toeplitz
operator from (3.12a). Since each row of (3.15) represents a feature-map at the output
(zγ), we see that we sum over all of the input signals from the previous layer.

As the input signals we consider are multi-variate time-series data, the filters in the
first convolutional block (Conv.1) can be interpreted as FIR filters on the raw input data.
These not only extract temporal correlations, but also cross-channel correlations within
the input signals. However, we should note that each feature map z(1) in the first layer
(and in the subsequent layers) is a summation of the filtered input signals. Thus, it is
difficult to give a physical interpretation of the feature maps when employing a standard
1-D convolution. For example, in the first layer, filtered acceleration signals will be
summed together with filtered distance signals, losing their physical interpretation.
We return to this observation in Section 3.3.2.5.

3.3.2.2 Depth-wise Separable Convolutional Layers

The second type of convolutional layer we consider is a depth-wise separable convolu-
tion, popularised in recent years for image classification, see, e.g., [78; 79]. The main
idea behind the 1-D depth-wise separable convolution is to split the convolutional
task into two parts: first, the temporal correlations per feature map are extracted;
and second, the cross-channel correlations are extracted using a 1 × 1 convolution
operation.4 By splitting the convolutional operation into two stages, the number of
required parameters is reduced with similar performance (cf. [82]).

4A 1× 1 convolution operation is a multiplication of each input channel with a scalar, allowing us to
reduce the number of output channels. This is sometimes used before a 2-D convolutional operation to
reduce the overall number of parameters of the network without reducing the performance [80; 81].
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We can write the total weight matrix (see (3.11)) for the depth-wise separable
convolution layer as

Wsep. =

 w1,1toep(w1;N) . . . w1,Γ(i−1)toep(wΓ(i−1) ;N)
... . . . ...

wΓ(i),1toep(w1;N) . . . wΓ(i),Γ(i−1)toep(wΓ(i−1) ;N)

 , (3.16)

with wγ,c ∈ R and wc ∈ RL for γ = 1, . . . ,Γ(i) and c = 1, . . . ,Γ(i−1). We use
the Toeplitz operator from (3.12a). We see the two parameters of the convolutional
operation in (3.16): a FIR filter wc ∈ RL is learned for each input signal from the
previous layer, and then these are weighted using the scalars wγ,c ∈ R.

When applying the depth-wise separable convolution to the multi-variate time-
series data, we note that for each convolutional block in the CNN, only one FIR filter
wc is learned per feature map. Therefore, only the most discriminative temporal corre-
lations can be extracted from the input feature map, however, due to the multiplication
with the weights wγ,c, the influence of each input feature map for each output feature
map can be adjusted. If we look at the signals in the first layer of the CNN, we see
that this means, the influence of the cross-channel correlation between, e.g., a filtered
acceleration signal and a filtered distance signal, can be adjusted using these weights.
Again, similar to the standard 1-D convolution, a physical interpretation of the filtered
signals is lost after the first layer, due to the mixing of input feature maps with different
physical units.

3.3.2.3 Local Convolutional Layers

The third type of 1-D convolutional layer we consider is the locally connected 1-D
convolutional layer. It is similar to the standard 1-D convolution; however, the weights
are no longer shared over the whole input signal, i.e., a new set of L weight parameters
is learned for each part of each feature map of the input sequence.

We can write the total weight matrix (see (3.11)) for the local convolutional layers
as

Wlocal =


toep (w1,1,0, . . . ,w1,1,N−L;N) . . .

... . . .
toep

(
wΓ(i),1,0, . . . ,wΓ(i),1,N−L;N

)
. . .

 , (3.17)

with wγ,c,k ∈ RL for γ = 1, . . . ,Γ(i), c = 1, . . . ,Γ(i−1), and k = 1, . . . , N − L.
We slightly abuse the notation of the toep operator where each filter vector wγ,c,k is
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multiplied with the selection matrix Lk, as defined in (3.12a). Note, we assume the
input signals xγ are always the same length, i.e., N .

By relaxing the weight sharing condition in the standard convolutional layer, we
allow the CNN to learn discriminative temporal correlations at each possible sequence
of the input signals. This comes at the price of more parameters per feature map, since
the weights at each sequence of the input signal are learned independently. Therefore,
discriminative reoccurring temporal correlations might not be learned by the network.

3.3.2.4 Set of Learnable Weights in CNNs

In this sub-section, we discuss the set of learnable weights which the previously
introduced 1-D CNN architectures are able to learn. Due to the Toeplitz structure of the
1-D convolutional layers, the set of possible learnable weights is different, depending
on which 1-D convolutional layer is used.

To this end, we assume the linear transformation between layers i and i− 1 have
Γ(i) and Γ(i−1) feature maps, respectively. Without loss of generality, we assume there
is no bias vector.

Proposition 1. The sets of learnable weights between two layers of a CNN with Γ(i)

and Γ(i−1) feature maps, using different 1-D convolutional layers are related as follows

Wsep. ⊆Wconv. ⊆Wlocal, (3.18)

where the set of possible weights are defined as

Wconv. = {W ∈ RΓ(i)(N−L+1)×Γ(i−1)N : W has the form (3.15)}, (3.19a)

Wsep. = {W ∈ RΓ(i)(N−L+1)×Γ(i−1)N : W has the form (3.16)}, (3.19b)

Wlocal = {W ∈ RΓ(i)(N−L+1)×Γ(i−1)N : W has the form (3.17)}. (3.19c)

Proof. First, we show thatWsep. ⊆Wconv. andWsep. ⊆Wlocal. SupposeW1 ∈Wsep..
Comparing the structure in (3.16) to (3.15), we observe that

W1 ∈Wconv. ⇒ Wsep. ⊆Wconv., (3.20)

withwa,b = wa,bwa for a = 1, . . . ,Γ(i) and b = 1, . . . ,Γ(i−1). Moreover, comparing
(3.16) to (3.17), we observe that

W1 ∈Wlocal ⇒ Wsep. ⊆Wlocal, (3.21)

with wa,b,k = wa,bwa for a = 1, . . . ,Γ(i), b = 1, . . . ,Γ(i−1), and k = 1, . . . , N − L.
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Next, we show that Wconv. * Wsep. and Wconv. ⊆Wlocal. SupposeW2 ∈Wconv.
where the relationship between two filters is wa,b 6= αwc,b for some index a 6= c and
a scalar α ∈ R. Therefore, comparing (3.15) and (3.16), we see that

W2 /∈Wsep. ⇒ Wconv. * Wsep.. (3.22)

On the other hand, comparing (3.15) and (3.17), we see that

W2 ∈Wlocal ⇒ Wconv. ⊆Wlocal, (3.23)

with wa,b,k = wa,b for a = 1, . . . ,Γ(i), b = 1, . . . ,Γ(i−1), and k = 1, . . . , N − L.
Finally, we show that Wlocal * Wconv. and Wlocal * Wsep.. SupposeW3 ∈Wlocal

where the relationship between two filters is wa,b,k 6= wa,b,m for some index k 6= m.
Thus, by inspection, we see that

W3 /∈Wconv. ⇒ Wlocal * Wconv., (3.24)

and

W3 /∈Wsep. ⇒ Wlocal * Wsep.. (3.25)

3.3.2.5 Multi-Channel Convolutional Neural Networks

Up to this point, we consider CNN architectures where all input channels—or input
signals—are processed through the same CNN blocks. However, this leads to the
summation of (filtered) signals with different physical units, which may be undesirable.
Therefore, we consider further CNN architectures where each input channel is filtered
individually; similar to the CNN design in [83]. In this design, instead of processing the
multi-variate input signal as one signal, i.e., processing all of the input channels at once,
each input channel is filtered individually. This architecture is visualised in Figure 3.3.
Each of the input channels 1, . . . ,Γ is separately processed by convolutional blocks
until they are concatenated before the output.

As discussed in the previous sub-sections, the multi-variate time-series signals we
consider have different physical units, e.g., m for distances or m/s for velocities. By
filtering these signals and summing them together, they lose their physical interpretation
after the first layer of 1-D CNN filters. The architecture depicted in Fig. 3.3 can be
interpreted as a trade-off between interpretability and feature extraction: on the one
hand, we raise the overall interpretability of the CNN by using an Multi-Channel
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Figure 3.3: Abstract MC-CNN architecture for multi-variate time-series data, where
each channel is separately transformed.

(MC) architecture since we can investigate each channel separately and the physical
interpretation of the signals is maintained throughout the network. On the other hand,
by separating the input channels, only temporal correlations can be extracted by the
CNN, i.e., the cross-channel correlations are only taken into consideration by any FC
linear layers at the output of the CNN.

A result of using an MC architecture is that in the first layer, each convolutional
block creates one feature map for each filter, i.e.,

z(1)
c = Wc,·x

(0) + bc ∀c ∈ {1, . . . ,Γ(0)}, (3.26)

whereWc,· is the c-th column of the total weight matrix which can have the form
(3.15), (3.16), or (3.17). We consider three MC-CNN architectures which use the
various convolutional layers defined in Sub-Sections 3.3.2.1, 3.3.2.2, and 3.3.2.3.
Proposition 1 still holds in the case of an MC-CNN architecture.

3.3.2.6 Global Average Pooling

The GAP layer was first proposed in [84] to prevent overfitting in the final, fully
connected layers of a CNN. Moreover, the authors also argue that it introduces a
robustness against spatial translation of input images. In this case, the robustness
would be against the specific temporal location of the signal of interest.

In the GAP layer, the signal of each feature map after the Cth convolutional block
is averaged over the remaining time dimension, i.e., each filter map is replaced by its
average signal. This can be expressed as

z(Λ−1)
γ =

1

N(Λ−1)

N(Λ−1)∑
n=1

x(Λ−1)
γ [n] ∈ R. (3.27)

Therefore, an average signal is taken for each feature map x(Λ−1)
γ in the penultimate

layer where γ ∈ {1, . . . ,Γ(Λ−1)}. Note, we can also consider the GAP layer as part of
the final convolutional block.
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Figure 3.4: Abstract RNN architecture for multi-variate time-series data.

3.3.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a popular architecture choice when working
with time-series or sequential data, see, e.g., [68, Ch. 10]. As the name suggests,
RNNs allow for information to be passed recurrently through time which helps the
network learn time dependences.

The general architecture is depicted in Figure 3.4. We see that at each time-
stamp, the inputs x̄[n] are passed to the RNN block, which outputs a hidden state
representation h[n]. The block T represents a one time-stamp delay of the hidden state
representation h[n] which is subsequently fed back into the RNN block. The hidden
state representation h[n] is also transformed by a linear layer to the output labels y.5
Ultimately, the RNN block computes the following:

z[n] = Whh[n− 1] +Wxx[n] + b, (3.28)

with the linear transformation matricesWh andWx used to transform the hidden
state representations from the previous time-stamp and the inputs from the current

5Note, the output labels can also have a time-stamp dependency, i.e., y[n]. However, as we only
consider one label for each time-series input, we omit this notation for consistency.
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Figure 3.5: The RNN architecture unrolled over time for multi-variate time-series data.

time-stamp, respectively. The vector b is the bias term. The hidden state representation
of the current time-stamp is subsequently calculated as

h[n] = g(z[n]), (3.29)

with a non-linear activation function g applied element-wise. The output labels are a
linear transformation of the hidden state representations

y = softmax
(
W (Λ)h[n] + b(Λ)

)
∈ (0, 1)|Y|, (3.30)

with the softmax activation function (cf. (3.41)).
Another possible representation of a RNN is depicted in Figure 3.5. Here, we see

the RNN architecture unrolled over time, i.e., we assume an input time-series datum of
N time-stamps and we see that the RNN block processes each input and hidden state
representation and passes the hidden state representation on to the next time-stamp.
After the N th time-stamp of the input is passed to the RNN block, the output label y
is calculated as described in (3.30). This unrolled representation of an RNN is useful
for the methods presented in Chapter 4 and Chapter 5.

3.3.3.1 Gated Recurrent Neural Networks

Due to the special recurrent structure of RNNs, they cannot be trained using the
standard backpropagation algorithm (see Section 3.4). Instead, they need to be trained
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using special algorithms, e.g., backpropagation through time [85]. These algorithms
need to take into consideration that the loss at a certain time-stamp not only depends
on the hidden state representation at the current time-stamp, but it also influences the
hidden state representation at the next time-stamp. This can lead to the hidden state
representations either exploding or vanishing—this problem when training RNNs is
referred to as the exploding or vanishing gradient problem [86; 87].

To overcome the vanishing gradient problem, and to help learn long-term depen-
dences in the time-series data, researchers introduced gating mechanisms. This is
achieved by scaling the hidden state representations in the RNN block using gates.
These gates are generated by applying the sigmoid activation function to a weighted
sum of hidden state representations and inputs. The sigmoid activation allows for a
data-dependent scaling of the current hidden state representations. These additional
hidden state representations improve the gradient flow, and thereby help mitigate the
exploding/vanishing gradient problem.

In recent years, two RNN architectures have become popular: the Long Term Short
Term Memory (LSTM) block [11] and the Gated Recurrent Unit (GRU) block [88; 13].
These RNN blocks have the same input and hidden state representations as a standard
RNN block (cf. Figure 3.4 or Figure 3.5), however, they further introduce a state unit
representation s[n] which is contained within the RNN block and has a self-loop
similar to the hidden state representations. This state unit representation can control
the long-term dependencies the RNN can learn. The LSTM block includes three gates:
(i) an input gate to scale the inputs; (ii) an output gate to scale the outputs; and (iii)
a forget gate to scale the state unit representation inside the RNN block. The GRU
block simplifies this structure and uses a single gate to control the forgetting factor
and the state unit representation. For more details about these RNN architectures, the
interested reader can look into the original publications or refer to [68, Ch. 10.10],
[89, Ch. 4].

3.3.4 Transformer Networks

In recent years, transformer-based methods, see, e.g., [90], have surpassed RNN
and other feed-forward DNN architectures in popularity. They show state-of-the-art
performance in many ML applications, e.g., natural language processing [90; 91; 92],
image generation [93], image classification [94], or time-series classification [95]. They
combine the efficient parallelisation benefits of training feed-forward DNNs with the
ability to learn the importance between different parts of the input signal, i.e., they can
learn long-term dependencies in the data similar to the hidden state representations of
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an RNN without the challenge of the exploding/vanishing gradient problem. Moreover,
they scale better to larger network sizes than RNNs, see, e.g., [96; 90, Tab. 1].

3.3.4.1 (Self-)Attention Mechanism

The attention mechanism is at the core of the transformer-based methods [90].
Fundamentally, it is the process of allowing the transformer-based model to learn
which parts of the input signal it should “attend” to for the current task. It is inspired
by database retrieval problems where one has a database of keys and values; given a
new input query, which key does it align best to? To this end, we define the query, the
keys, and the values as vectors

q,k[n],v[n] ∈ Rd, (3.31)

for n = 1, . . . , N key-value pairs of items in the database. Note, we can assume that
the key-value pairs are time-stamps of a time-series signal. Next, we define a notion of
similarity between the query and the keys in the database. Commonly, the (scaled)
inner product is used

s[n] = 〈q,k[n]〉 = qTk[n] ∈ R, ∀n = 1, . . . , N. (3.32)

Once a similarity score (attention score) is calculated for every query key pair, we
normalise the scores to get the normalised attention score

a[n] = softmax(s[n]) =
exp(s[n])∑N

m=1 exp(s[m])
, ∀n = 1, . . . , N. (3.33)

Finally, the output is calculated as the weighted sum of the values

o =

N∑
n=1

a[n]v[n]. (3.34)

If there was one key which was most similar, i.e., a[n]→ 1 for the key at time-stamp
n, to the query, then the output in (3.34) would be the value corresponding to that key.
In general, this is not the case, and the output is a weighted sum of the value vectors,
where the weighting values indicate how much influence each key value has on the
output.

To generate queries at each time-stamp, q[n] for n = 1, . . . , N , we transform the
time-series input at each time-stamp into a d-dimensional space. We can collect all
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time-stamps into the matrices

Q =
[
q[1], . . . , q[N ]

]
= WqX ∈ Rd×N , (3.35a)

K =
[
k[1], . . . , k[N ]

]
= WkX ∈ Rd×N , (3.35b)

V =
[
v[1], . . . , v[N ]

]
= WvX ∈ Rd×N , (3.35c)

with the multi-variate time-series inputX ∈ RΓ×N (cf. Definition 2). The matrices
Wq ∈ Rd×Γ,Wk ∈ Rd×Γ,Wv ∈ Rd×Γ are tunable parameters of the transformer
network. The same steps highlighted in (3.32), (3.33), and (3.34) are performed on
these queries, keys, and values. Moreover, we introduce the notion of self-attention
here, since the queries, keys, and values are all linear transformations of the inputX .
This allows the attention mechanism to relate different parts of the same input signal.

Applying (3.32), (3.33), and (3.34) to the collected time-stamps, we arrive at the
output of the (self)-attention mechanism

O = V AT = V softmax(QTK)T, (3.36)

with the attention matrix A ∈ RN×N , which summaries how similar each query
(Q) is to the keys (K). Note, the inner product in (3.32) is now performed after
the transformation by W T

qWk of the input signals. Therefore, the self-attention
mechanism learns a linear transformation into a space where the similarities are most
useful for the task at hand.

Next, we introduce a non-linearity such that a transformer-based model built
of self-attention mechanisms can learn useful representations. Thus, the matrix O
is transformed by means of a FC linear layer with a non-linear activation function.
Moreover, if we consider the multi-variate time-series sample as introduced in (3.35),
the self-attention pipeline is missing a notion of sequential order, see, e.g., [90]. To
this end, we can add a positional encoding6 to the query, key, and value embeddings,
e.g., by adding a sinusoidal position representation

e[n] =


sin(n/100002/d),

cos(n/100002/d),
...

sin(n/10000),

cos(n/10000),

 ∈ Rd (3.37)

6Note, when stacking multiple self-attention blocks, the positional encoding is only added to the input
signal to the first self-attention block.
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Figure 3.6: The inner workings of a multi-headed self-attention block.

where the new embeddings are

q̃[n] = q[n] + e[n] ∈ Rd, (3.38a)
k̃[n] = k[n] + e[n] ∈ Rd, (3.38b)
ṽ[n] = v[n] + e[n] ∈ Rd. (3.38c)

Furthermore, we can include multiple self-attention heads in one attention block,
i.e., instead of learning one embedding matrix for the queries, keys, and values, we split
this into multiple embeddings and apply the self-attention to each of the embeddings.
Thus, we learn three sets of matrices {Wq,1, . . . ,Wq,h}, {Wk,1, . . . ,Wk,h}, and
{Wv,1, . . . ,Wv,h}, whereWa,b ∈ Rd/h×Γ for all a = q, k, v and b = 1, . . . , h. Here,
h is the number of attention heads. This gives us h output matrices Oh (cf. (3.36)),
which are subsequently combined with a FC linear layer.

Finally, the original authors of the (self-)attention mechanism [90] introduce a few
components to the attention mechanism to help with training: (i) they use residual
layers [97] (Res.) around the self-attention mechanism and the FC linear layer; (ii) they
introduce layer normalisation [98] after the self-attention mechanism and the FC linear
layer; (iii) and, they scale the inner product (cf. (3.32)) by

√
d, with the dimension d

of the embedding space. Figure 3.6 depicts the complete self-attention processing
block. The main self-attention mechanism is summarised in the “Multi-head Attention”
sub-block. The “Res. & Norm.” blocks represent the residual connections and layer
normalisation.
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Figure 3.7: Abstract gated transformer architecture for multi-variate time-series data.

3.3.4.2 Gated Transformer Network

The original transformer network (see [90]) was designed to perform language
translation tasks, where the authors introduced an encoder-decoder architecture. The
encoder part is built by stackingmultiple multi-head self-attention blocks (as introduced
in Section 3.3.4.1) on top of each other and then feeding the corresponding output
embedding to the transformer decoder blocks. The decoder blocks are used in sequence-
to-sequence tasks as introduced in [90], e.g., when a sentence is translated from one
language to another. Since we are interested in time-series classification tasks, i.e., we
directly classify the inputs using the representations after the self-attention heads, we
do not introduce the decoder part here.

To classify time-series data, the authors of [95] introduce the gated-transformer.
As depicted in Figure 3.7, this architecture was designed to take the structure of
time-series data into account by considering the multi-variate time-series data over
the time-stamps (the “Att.T” blocks) and over the channels (the “Att.C” blocks) in
parallel. We observe that the multi-variate time-series signal processed over the
channels requires the positional encoding (E, cf. (3.38)) whereas when it is processed
over the time-stamps, this is not required. Processing the multi-variate time-series
signal in this way is similar to the two perspectives introduced in Definition 2. After
processing the time-series signals through 2C self-attention blocks, they introduce a
gating mechanism (similar to the gating in an RNN) to combine the representations
depending on their importance and finally pass the signal through a FC linear layer.

3.3.5 Deep Autoencoders

A final DNN architecture we use is a Deep Autoencoder (DAE) with 1-D convolutional
layers.7 DAEs with convolutional layers were first introduced in [99]. We use 1-D
convolutional layers since they show good representation power and they can extract
discriminative features in multi-variate time-series data, see, e.g., [100].

7We can use any of the previously introduced 1-D convolutional layers in the DAE (cf. Section 3.3.2).
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Figure 3.8: Abstract DAE architecture for multi-variate time-series data.

The general architecture of a DAE is depicted in Figure 3.8. It is built of two
functions: the encoder and the decoder. On the left side, we see the Γ input channels of
a multi-variate time-series signal which are first passed through the encoder function
enc : RΓ×N → Rp (dotted box), and then the signal is passed through the decoder
function dec : Rp → RΓ×N (dashed box). The encoder function attempts to learn a
lower dimensional representation, i.e., we assume p � Γ × N , of the input signal,
whereas the decoder function attempts to reconstruct the original input signal given
this representation, i.e., x̂T

γ ≈ xT
γ . Since the latent space dimension is smaller than the

input dimension (p� Γ×N ), this creates a bottleneck where the DAE must compress
the information in the input signal in the latent space representations. Generally, the
encoder and the decoder networks are designed symmetrically, with the same number
of convolutional blocks in each. Since we are going from a low to a high dimensional
signal in the decoder function, we need to use transposed convolutional layers or
convolutional layers with upsampling so that the dimensions at the output match. The
last layer of the encoder function and the first layer of the decoder function are both
FC linear layers. Therefore, the DAE function can be summarised as

fDAE(X) = dec(enc(X;PE);PD), (3.39)

with the encoder parameters PE and the decoder parameters PD.

3.4 Optimisation

In this section, we discuss the loss functions and optimisation techniques used to
train the previously introduced DNN architectures. To this end, we assume we have
chosen an DNN architecture and a training dataset of labelled input/output samples
Dtrain = {(X1, y1), (X2, y2), . . . , (XMtrain , yMtrain)} with inputs x ∈ X and labels
y ∈ Y.8

8Note, the techniques to train a model in an unsupervised or self-supervised manner, i.e., when the
output labels are not used to calculate the loss, are not discussed here. The interested reader can refer
to [69, Ch. 14].
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3.4.1 Cross Entropy Loss

When considering a classification task, i.e., the case where the set of labels Y is
discrete with K different labels, we use the cross entropy loss. To employ this loss,
we employ the softmax function after the final FC linear transformation of the chosen
DNN architecture. This approximates the posterior probability of each class. The
output of the DNN architecture can thus be expressed as

x(Λ) = softmax
(
W (Λ)x(Λ−1) + b(Λ)

)
∈ (0, 1)K , (3.40)

with the weight matrixW (Λ) and the bias vector b(Λ) of the final layer. The softmax

function is defined as

softmax(z)i =
ezi∑K
j=1 e

zj
, (3.41)

for a vector z ∈ RK .
In the context of a classification problem, we can tune the parameters P of the

DNN architecture using the cross entropy loss defined as

Lce(Dtrain;P) = − 1

Mtrain

Mtrain∑
m=1

K∑
c=1

tmc ln
(
xm,(Λ)
c

)
, (3.42)

with the one-hot-encoded true labels tmc ∈ {0, 1} for all of the training data indexed
by m, and the posterior probabilities defined in (3.40) for each input xm. We have
Mtrain samples in the training dataset Dtrain andK class labels.

3.4.2 Mean Squared Error Loss

On the other hand, when considering a reconstruction task, i.e., the case where we
attempt to reconstruct the input (cf. Section 3.3.5), we can use the Mean Squared Error
(MSE) loss function. To employ this loss function, we generally use a linear activation
function, i.e., no activation function, at the output. We can tune the parameters of the
DNN architecture P using the MSE loss defined as

LMSE(Dtrain;P) =
1

MtrainN2

Mtrain∑
m=1

‖Xm − f(Xm;P)‖2F , (3.43)

with the Frobenius norm ‖ · ‖F and ML algorithm represented as the function
f : RN×N → RN×N , assuming the inputs are X ∈ RN×N . Again, assuming we
haveMtrain samples in the training dataset Dtrain.
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3.4.3 Gradient Descent Algorithm

Once we have chosen an architecture and defined the loss function for the given
problem, we need to tune the parameters of the DNN architecture. Since the loss
function is a non-convex, non-linear function of the parameters P , no closed form or
global optimal solutions exist (cf. [68, Ch. 8]). To optimise the parameters, we rely on
an iterative gradient-descent optimisation algorithm, i.e., the parameters are updated
iteratively according to the gradient at the current inputs and a given step-size (also
referred to as the learning rate), i.e.,

P (t+1) ← P (t) − η∇PL(Dtrain;P), ∀P ∈ P, (3.44)

with the step-size η, iteration index t, and the gradients∇P of the loss function w.r.t. to
the parameters of the DNN architecture. This gradient-based optimisation is efficiently
implemented by the backpropagation algorithm [101].

To improve the optimisation both in terms of speed of convergence and avoiding
getting stuck in local optima, one usually performs gradient-descent on mini-batches
(random sub-sets of the training data). This is known as Stochastic Gradient Descent
(SGD). More advanced methods to improve the convergence of the gradient-descent
algorithm have been introduced in the literature, e.g., theADAMupdate rule [102] or the
RMSprop update rule, which both introduce momentum terms and additionally change
the step-size η depending on the current mini-batch and past gradient information.

Since this method of optimisation has no guarantees on the optimality of the found
parameters, we can attempt to avoid overfitting the training dataset by:9 using random
initialisations of the parameters; training various architectures on different k-folds of
the training dataset [69, Ch. 7.2]; early stopping by tracking the loss on the training
set and a validation set [69, Ch. 11.5]; regularising the parameters of the network;
or, introducing a batch normalisation [103] or layer normalisation [98] (as seen in the
attention mechanism cf. Section 3.3.4.1).

3.5 Use-Case: Time to Lane Change Prediction

We consider a Time to Lane Change (TTLC) prediction task, i.e., the task of predicting
when tracked vehicles are going to change lanes in a highway scenario, as a use-case.
Designing an ML algorithm to perform well on this task not only increases the safety
of the AV, but it can also increase the comfort of the passengers riding in the AV.

9Note, this is by no means an exhaustive list of methods to improve training ML algorithms; these are
merely the methods used in this work to help improve the training.
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Attribute Unit Description
vlat. m/s Lateral velocity
vlong. m/s Longitudinal velocity
alat. m/s2 Lateral acceleration
along. m/s2 Longitudinal acceleration
dleft m Distance to left lane marking
dright m Distance to right lane marking
dpre. m Distance to preceding vehicle in same lane
dfoll. m Distance to following vehicle in same lane
dl, pre. m Distance to preceding vehicle in left lane
dl, foll. m Distance to following vehicle in left lane
dr, pre. m Distance to preceding vehicle in right lane
dr, foll. m Distance to following vehicle in right lane

Table 3.1: Twelve of the possible input attributes.

In this section, we first introduce the highway driving datasets used to train the ML
algorithms on, and then we formally define the TTLC prediction task.

3.5.1 Highway Driving Datasets

As input data for the ML models, we use two publicly available and widely used
highway driving datasets—the highD dataset [7] and the Next Generation SIMulation
(NGSIM) [8; 9] datasets. These datasets all summarise the lane change manoeuvres of
vehicles as multi-variate time-series samples.

The highD dataset [7] was collected by flying a drone above six German highway
segments in various locations. In total, more than 16 hours of highway driving data
were collected containing thousands of lane changes. The recordings from the different
locations are combined into a single dataset.

The NGSIM dataset was collected by the NGSIM program on US highways by
filming the vehicles from multiple cameras fixed on top of skyscrapers close to the
highways. The researchers recorded the trajectories of vehicles for a period of time on
both the US highway 101 [8] and the I-80 Freeway [9]. In total, 1.5 hours of driving
data were collected; they include a few hundred lane changes each. Since both datasets
were collected within the scope of the same project, i.e., using the same pre- and
post-processing techniques, we combine them into a single NGSIM dataset. This is
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3.5 Use-Case: Time to Lane Change Prediction

equivalent to the highD dataset, which is also a collection of driving scenarios from
various locations.

From the video data, the authors use an image detection algorithm and a tracking
algorithm to extract the trajectories of the vehicles. Each vehicle trajectory contains
various attributes. We assume that the vehicles are tracked for at least N time-
stamps, defining a scenario. We summarise these in a multi-variate time-series signal
(cf. Definition 2) as

X =
[
x̄[1], x̄[2], . . . , x̄[N ]

]
∈ RΓ×N , (3.45)

where at each time-stamp n = 1, . . . , N the signal has Γ attributes.
We consider subsets of the input attributes listed in Table 3.1. The distances to the

surrounding vehicles is measured from the centre of the tracked vehicle to the centre of
the other vehicles. A snapshot from an exemplary scenario is illustrated in Figure 3.9.
We see the longitudinal and lateral velocities and accelerations of the tracked vehicle,
the distances to the left and right lane markings, and the distances to the surrounding
vehicles. In Figure 3.9, there is no preceding vehicle in the same lane or following
vehicle on the left-hand side of the tracked vehicle. Therefore, these distances dpre.
and dl, foll. are set to a maximum value, e.g., dmax = 200 [m]. Furthermore, we see that
there are two categories of input attributes: those which describe the tracked vehicle’s
trajectory (in the red boxes), and those which describe the interaction between the
other vehicles in the scenario (in the blue box). The interaction features define the
social dynamics between road vehicle users. These have been considered in previous
ML research, see, e.g., [104; 105]. It can be interesting to observe which category of
features an ML-based algorithm focusses on given different driving tasks.

3.5.2 Time to Lane Change Classification Problem

To define the TTLC prediction problem, we first extract all scenarios where the vehicle
was in view for at least N time-stamps. We assume that the driving manoeuvre to be
predicted occurs at time-stamp N . There are three possible driving manoeuvres to be
predicted: the vehicle either kept in its lane for allN time-stamps, the vehicle changed
lanes to the left or it changed lanes to the right.

To define the TTLC prediction problem as a sub-sequence classification problem,
we first take the multi-variate time-series signals (cf. (3.45)), and divide each into
P = N/Nsub. ∈ N sub-sequences of equal length Nsub.. Henceforth, every sub-
sequence is considered an input datumX ∈ RΓ×Nsub. .

Thus, every datum either belongs to a scenario where a vehicle kept in its lane or
changed lanes; left lane changes are labelled L, right lane changes are labelled R, and
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Figure 3.9: Highway scenario depicting the possible input attributes (see Table 3.1).

lane keeping manoeuvres are labelled K. We further index the labels of the lane change
sub-sequences as Lρ and Rρ, for ρ = 1, . . . , P , depending on how many sub-sequences
in the future the lane change occurs. For example, the label L1 corresponds to a
sub-sequence where a left lane change occurs in 1 ·Nsub. time-stamps, the label L2

corresponds to a sub-sequence where the left lane change occurs in 2·Nsub. time-stamps,
and so on.

Ultimately, the TTLC sub-sequence classification problem is to predict the label
of each sub-sequence X ∈ RΓ×Nsub. . The set of possible class labels is defined as
Y = {L1,L2, . . . ,LP ,K,R1,R2, . . . ,RP }. The dataset of driving manoeuvres is
summarised as

D =
{

(X1, y1), (X2, y2), . . . , (XM , yM )
}
, (3.46)

where each input is a multi-variate time-series datum X ∈ RΓ×Nsub. and has the
corresponding class labels y ∈ Y. In total, the whole dataset containsM samples.
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Validation Safety Arguments based
on Feature Embeddings4

In this chapter, we introduce methods to generate safety arguments to validate
Deep Neural Network (DNN) architectures by investigating their feature embeddings
(cf. Section 4.2). At first, we might believe that comparing DNN architectures based
on their classification performance, e.g., their accuracies, is sufficient to choose one for
a safety-critical function (cf. Section 4.4). However, as we will see, the quality of their
feature embeddings can differ significantly when passively studied. To this end, we
introduce a feature validation method (cf. Section 4.3) where we cluster and visualise
the feature embeddings to compare DNN architectures on another performancemeasure.
We argue that this analysis should be performed before choosing a DNN architecture
for a safety-critical Machine Learning (ML)-based Highly Automated Driving (HAD)
function. Additionally, we introduce methods to actively encourage better clustering
of the feature embeddings (cf. Section 4.5), thus, strengthening the safety argument
based on feature embeddings. Finally, we propose methods to reject inconsistent
classification outputs of a DNN architecture (cf. Section 4.6) inspired by the feature
validation method. The results presented in this chapter are based on those found in
our work [15; 18].

4.1 Feature Embedding Motivation

In this section, we motivate developing a safety argument based on the feature
embeddings of DNNs. It is well known that modern DNN architectures show super-
human performance on a myriad of tasks—from image classification problems to
protein folding predictions. This ability comes from the fact that DNNs learn useful
representations (or features), i.e., the activations in the hidden layers of a DNN, by
transforming the input data into a space where the task at hand can be performed
well. The features in the initial layers of a DNN have been shown to be more general,
whereas the output features are specific to the task at hand [106]. Researchers often
take advantage of this fact by pre-training large DNNs extensively on large datasets,
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and then fine-tuning the output parameters on a new task, which is contained in the
field of transfer learning [68, Ch. 15] (cf. Section 5.1).

Other work has focused on using the features in various layers to robustify DNNs,
increase confidence in the classification output, or detect adversarial examples [107].
They achieve this by quantifying the conformity of the features of a given input to
those of the training dataset. On the other hand, researchers have used the features at
the output layer of a DNN to identify out-of-distribution samples and enable open-set
classification [108]. This is possible because the features at the output layer of a
DNN show similar activation patterns for similar concepts, e.g., in image classification
problems, the feature activation patterns of sharks are similar to scuba divers but
different from baseball images [108, Fig. 1].

Another emerging field of research is visualising the features in various layers of a
DNN [109; 110]. This enables researchers to take a closer look at the concepts learned
by DNNs and gain an understanding of how human understandable concepts can be
found in the feature activations of a DNN.

To this end, we propose feature validation methods (see [15; 18]) which allow an
engineer to investigate the extracted feature embeddings of various DNN architectures
and then justify the choice of an architecture for a given task. We argue that just
because multiple DNN architectures show a similar performance on a given task,
does not mean that the feature embeddings of those architectures are of the same
quality or as understandable by a human user. We consider this a passive feature
validation method since the feature embeddings of the various DNN architectures are
only investigated and a safety argument is built around this analysis. Following from
this passive feature validation method, we extend the proposed method to actively
encourage a better clustering of the extracted feature embeddings.

4.2 Feature Embedding Architecture

In order to validate the features of different DNN architectures, we first abstract the
feature embedding in the penultimate layer of a DNN as highlighted in Fig. 4.1. To
achieve this, we pass the input samples through the DNN and extract the corresponding
feature embeddings. This is a useful abstraction since the feature embeddings in the
penultimate layer of a DNN must learn a meaningful representation of the data for the
task at hand, e.g., for a classification task these feature embeddings must be linearly
separable to the output classes. We observe in Fig. 4.1 that this abstraction of the first
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Figure 4.1: Abstract DNN architecture for multi-variate time-series data, highlighting
the feature embedding.

C processing blocks can be written as a function

feat : RΓ×N → RN(Λ−1)

X =

x
T
1
...
xT

Γ

 7→ x(Λ−1), (4.1)

which maps a multi-variate time-series input datum (X) to a feature embedding
(feat(X)) in the penultimate layer of the DNN (assuming there are Λ layers in the
DNN). This feature embedding function will be used as the foundation of the feature
validation methods presented here.

As introduced in Section 3.3, there are many different possible mappings of the C
blocks of a DNN to transform the input signal to the feature embeddings, e.g., Fully
Connected (FC) layers, convolutional layers, or attention-based layers. Depending on
the application at hand, one architecture might appear to be advantageous compared
to the others in terms of a performance criterium, e.g., the classification accuracy.
However, this does not directly indicate which DNN architecture should be used for a
safety-critical HAD function. As we see in this chapter, the feature embeddings of
different DNN architectures can vary significantly—both in terms of their clustering and
in terms of their interpretability. Therefore, an engineer should additionally investigate
the DNN architectures in more detail in order to choose one for an ML-based HAD
function.

4.2.1 Classification Architectures

In this chapter, we demonstrate the feature validation method by comparing the
performance of various DNN architectures on the Time to Lane Change (TTLC)
classification task (cf. Section 3.5.2). To this end, we train the DNN architectures
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depicted in Table 4.1. The architecture description column gives a brief reminder
of the different DNN architectures; for more details refer to Section 3.3. We see
there are multiple 1-D Convolutional Neural Network (CNN)-based architectures
(including Multi-Channel (MC) architectures), Recurrent Neural Network (RNN)-
based architectures (using either Long Term Short Term Memory (LSTM) or Gated
Recurrent Unit (GRU) cells), an attention-based architecture, and an FC-DNN. This is
a wide range of different DNN architectures including multiple state-of-the-art designs
from the Autonomous Vehicle (AV) and the time-series classification literature.

Name Architecture description
FC-DNN Fully-connected DNN (cf. Section 3.3.1)
CNN-I Standard 1-D CNN (cf. Section 3.3.2.1)
CNN-II Depth-wise Sep. 1-D CNN (cf. Section 3.3.2.2)
CNN-III Local 1-D CNN (cf. Section 3.3.2.3)
CNN-I MC Multi-channel Standard 1-D CNN (cf. Section 3.3.2.5)
CNN-II MC Multi-channel Depth-wise Sep. 1-D CNN (cf. Section 3.3.2.5)
CNN-III MC Multi-channel Local 1-D CNN (cf. Section 3.3.2.5)
LSTM-[10] RNN with LSTM cells (cf. Section 3.3.3)
GRU-[12] RNN with GRU cells (cf. Section 3.3.3)
Gated Tr.-[95] Attention-based Transformer (cf. Section 3.3.4)

Table 4.1: The various DNN architectures trained on the TTLC classification problem
and then validated using the feature validation method.

4.2.2 Simulation Setup

We consider the TTLC classification task introduced in Section 3.5.2. To generate
a suitable dataset to train the DNNs, we first extract all scenarios from the highD
dataset [7] (cf. Section 3.5.1) where the tracked vehicle is visible for N = 150 time-
stamps prior to the driving manoeuvre. Since the data are recorded at 25 Hz, this is
equivalent to 6 s. Furthermore, we consider sub-sequences of length 2 s, such that each
lane change manoeuvre is split into sub-sequences of length Nsub. = 50 time-stamps.
We have a total of three classes for left and right lane changes, and one class for the
lane keeping manoeuvre, i.e.,Y = {L1,L2,L3,K,R3,R2,R1} (cf. Section 3.5.2). The
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dataset can be summarised as

D = {(X1, y1), (X2, y2), . . . , (XM , yM )}, (4.2)

where each input multi-variate time-seriesX ∈ RΓ×Nsub. and the class labels y ∈ Y.
We consider almost all of the input attributes introduced in Table 3.1 except for the
distance to the left and the right lane markings; thus, in this chapter, we consider
Γ = 10 attributes.

After splitting the scenarios into sub-sequences and balancing the classes, we have
a total of 21,854 samples; these are separated into two disjunct sets for training and
for testing the DNNs. We use 80% of the data for the training set and 20% for the test
set, i.e., Mtrain = b0.8 ·Mc andMtest = M −Mtrain.

To train the DNNs, we use the cross-entropy loss function (cf. Section 3.4.1). We
train each algorithm using the Adam optimiser [102] with an initial learning rate of
η = 0.0005 and mini-batches of size 200. All of the network parameters are initialised
using the Glorot initialisation [111]. We employ early stopping with a patience of 20

epochs to reduce overfitting the training set. Additionally, we average the classification
performance using 10-fold cross validation (see [69]). The exact parameters and
architecture designs of the models in Table 4.1 can be found in Appendix C.1.

4.3 Feature Embedding Safety Argument

The proposed method to qualitatively validate the extracted feature embeddings in
DNNs can be summarised in two steps:

Step 1) After training the DNN, the feature embeddings of the test data, i.e., data which
are unseen during training, are extracted using the feat function (cf. (4.1)). These
feature embeddings are clustered using an unsupervised clustering algorithm; in
the experiments we use k-means clustering. We vary the number of clusters and
examine them. Since we have the true class labels, the quality of the clustering
of the different DNN architectures can be quantified using an external cluster
validation method. This is done by comparing the cluster labels, i.e., the outputs
of the clustering algorithm, to the true class labels.

Step 2) The high-dimensional feature embeddings are projected into a lower dimension
using a dimensionality reduction technique; in the experiments we use the
Uniform Manifold Approximation and Projection (UMAP) [112]. These low-
dimensional representations are visualised to allow the engineer to investigate
the meaningfulness of the feature embeddings and the clusters from Step 1). A
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feature embedding space is considered meaningful if the feature embeddings of
similar classes are embedded close together and those of different classes are far
apart. Moreover, if the feature embeddings of different classes do not overlap,
the embedding space is considered meaningful. This is especially important for
safety-critical driving manoeuvres. For example, samples belonging to the class
right lane change in the next seconds (R1) should be embedded far apart from
those belonging to the class left lane change in the next seconds (L1).

An engineer can use this feature validation method to compare different DNN
architectureswhichmight show a similar performance in terms of, e.g., the classification
accuracy. If one of the DNN architectures has more meaningful feature embeddings,
that architecture might be preferred in a given safety-critical application. Furthermore,
the fact that the feature embeddings are meaningful and have been investigated can be
incorporated into the overall validation safety argument.

4.4 Standard Feature Embedding Spaces

In this section, we discuss the results of applying the feature validation method directly
to the DNNs introduced in Section 4.2. First, we discuss the classification results and
demonstrate that the embedded features are suitable to develop a safety argument upon.
Following this, we apply the feature validation method and discuss the elements in
more detail.

4.4.1 Classification Results

First, we benchmark the DNN architectures introduced in Section 4.2. We train the
algorithms using the simulation setup discussed in Section 4.2.2.

In Table 4.2, we depict the classification results of the various DNNs. As evaluation
metrics, we use both the classification accuracy and the macro-averaged F1 score [113].
The F1,y score for class y is calculated as the harmonic mean of the precision and
recall scores

F1,y = 2
Precisiony · Recally
Precisiony + Recally

(4.3)

where the precision and recall scores are defined as Precisiony = (TPy)/(TPy +

FPy), Recally = (TPy)/(TPy + FNy) with the true positives (TPy), false positives
(FPy), and false negatives (FNy) of a given class y. The macro-averaged F1 score is
the arithmetic mean of the F1,y scores per class, i.e., F1 =

∑
y F1,y/ |Y| with the total
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Architecture
Standard Space

Accuracy [%] F1 [%]

FC-DNN 88.68(±1.01) 88.64(±1.00)

CNN-I 90.41(±0.37) 90.37(±0.37)

CNN-II 87.29(±0.47) 87.20(±0.51)

CNN-III 90.15(±0.38) 90.12(±0.40)

CNN-I MC 91.30(±0.54) 91.24(±0.55)

CNN-II MC 90.54(±0.24) 90.50(±0.24)

CNN-III MC 89.78(±1.74) 89.69(±1.79)

LSTM-[10] 91.29(±0.76) 91.24(±0.77)

GRU-[12] 92.48(±0.36) 92.49(±0.37)

Gated Tr.-[95] 90.41(±0.60) 90.41(±0.60)

Table 4.2: Classification performance of the various DNN architectures for the standard
feature embedding space. The results are averaged over the 10-folds with the 95%

confidence interval in brackets.

number of classes |Y|. All of the values are averaged over the 10-folds and the 95%
confidence intervals are shown in brackets.

We observe in Table 4.2 that the RNN-based architectures show a slightly better
performance overall, which is not surprising as these architectures were designed
specifically for the TTLC prediction task as taken from the literature. The attention-
based and CNN architectures perform almost as well as the RNN-based architectures
on this classification task. The CNN-II and FC-DNN architectures show the worst
classification performance, but not by much. Overall, we see that these architectures
all perform reasonably well on the given task, and no architecture outperforms the
others by so much that we would immediately choose it.

To further support the claim that all of the DNN architectures show a similar
classification performance, we train a k-Nearest Neighbours (k-NN) [114] and a
Decision Tree (DT) [115] classifier. To achieve this, we first embed the training data,
and train a k-NN and a DT on these feature embeddings. We use k = 5 neighbours
for the k-NN, and allow the DT to train to minimum impurity on the training set.1 In

1Note, training the DT to minimum impurity is default when using the sklearn [116] package. We
attempted to tune the DT parameters, e.g., maximum depth of the tree or the minimum number of leaves
per node, however, we did not find any significant improvement of the performance on the test dataset.
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Architecture
k-NN DT

Accuracy [%] F1 [%] Accuracy [%] F1 [%]

FC-DNN 89.22(±0.25) 89.19(±0.25) 86.48(±0.22) 86.47(±0.23)

CNN-I 89.54(±0.21) 89.48(±0.21) 87.54(±0.19) 87.52(±0.19)

CNN-II 86.08(±0.31) 86.01(±0.31) 82.58(±0.40) 82.54(±0.40)

CNN-III 89.49(±0.35) 89.44(±0.36) 86.42(±0.51) 86.40(±0.52)

CNN-I MC 87.51(±0.30) 87.45(±0.29) 87.46(±0.26) 87.45(±0.26)

CNN-II MC 85.43(±0.49) 85.39(±0.47) 86.07(±0.34) 86.05(±0.34)

CNN-III MC 85.96(±1.59) 85.95(±1.58) 85.66(±1.97) 85.63(±1.98)

LSTM-[10] 92.34(±0.30) 92.33(±0.29) 89.92(±0.37) 89.89(±0.38)

GRU-[12] 92.79(±0.30) 92.79(±0.30) 90.57(±0.43) 90.56(±0.43)

Gated Tr.-[95] 90.65(±0.58) 90.63(±0.59) 86.76(±1.37) 86.77(±1.37)

Table 4.3: Classification results of the various DNN architectures classifying the
feature embeddings in the standard space using a k-NN and a DT. The results are
averaged over the 10-folds with the 95% confidence interval in brackets.

Table 4.3, we present the classification results on the feature embeddings of the test
data. We observe that the classification performance—both in terms of the accuracy
and the F1 score—are almost the same as using the full DNN, i.e., classifying the
test data using the trained DNNs. We observe that the DTs trained on the feature
embeddings show a slightly worse performance, but this is likely due an overfitting
of the training data. However, the k-NNs perform even better than the DNN for
some architectures, e.g., the Gated Tr.-[95] or the GRU-[12]. Overall, these results
indicate that the feature embeddings learned by the various DNN architectures are
representative enough such that a simple classifier (here a k-NN or a DT) is able to
perform just as well as the DNN model.

Thus, we conclude that it is meaningful to investigate the feature embeddings in
the penultimate layer of various DNN architectures, as the representations in this layer
are expressive enough to classify the data. Moreover, the achievable classification
performance is independent of the final linear transformation.

46



4.4 Standard Feature Embedding Spaces

4.4.2 Feature Validation in Standard Spaces

As we observe in Table 4.2 and Table 4.3, all of the DNN architectures show similar
classification performances on the TTLC classification task. However, since this is
a safety-critical HAD function, an engineer would want to rely on more than just
the classification performance to decide which architecture to use. To this end, we
employ the passive feature validation method (cf. Section 4.3) to validate the feature
embeddings extracted by the different DNNs. By employing this method, we are able
to investigate the various architectures and compare them using a measure other than
just the classification accuracy. We will refer to the feature embeddings of the DNNs
trained with the standard cross-entropy loss to be in the standard feature embedding
space.

4.4.2.1 Feature Clustering

In the first step of the proposed feature validation method, we cluster the extracted
feature embeddings of the test data using an unsupervised clustering algorithm: k-
means clustering with k = K ′ clusters.2 After clustering, we obtain a set of cluster
labels {c′1, . . . , c′K′}. We vary the number of clustersK ′. Moreover, we use the fact
that we have the true labels of each embedded feature, such that we can use an external
cluster validation method to quantify the clustering results.

We use the Adjusted Rand Index (ARI) [117; 118] to validate the cluster labels.3
The ARI gives the percentage of samples where the cluster label and the true class
label are the same. The rand index lies within the interval [0, 1], however, the ARI can
become slightly negative if the rand index is larger than its expected value. The ARI is
adjusted for randomness in the clustering labels, e.g., a permutation of the clustering
labels would produce a different rand index, but this is corrected for when using the
ARI. A low ARI indicates that the cluster labels do not correspond to the true class
labels, and a high ARI indicates that they do. The ARI is calculated based on the
contingency matrix D ∈ NK×K′ , where every row corresponds to one of the true
labels and every column corresponds to one of the possible cluster labels (assuming
there are K ′ cluster labels). The matrix element [D]i,j ∈ N counts the number of

2Note, during the DNN training, the test dataset Dtest remained unseen.
3Note, the cluster labels {c′1, . . . , c′K′} do not necessarily have an obvious relationship with the true

class labels y ∈ Y.
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Figure 4.2: The average ARI values vs. the number of clusters K ′ in the standard
feature embedding space.

samples in cluster j with the true class label i. The ARI is calculated as [118]
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where
(
a
2

)
is a binomial coefficient defined as 0 if a = 0 or 1, and the notation [D]i,·

and [D]·,j represents a sum over row i and a sum over column j, respectively. The
total number of samples isMtest.

We run the k-means clustering algorithm with 100 random initialisations and take
the clustering with the lowest inertia value, i.e., the smallest sum of squared distances
between the samples and their closest cluster centre, for each number of clustersK ′.
We vary the total number of clusters withinK ′ ∈ {2, . . . , 3 ·K}, with the total number
of true classesK = |Y|; in the simulationsK = 7.

The results of the clustering in the standard embedding space are depicted in
Fig. 4.2. The ARI values are averaged over the 10-folds for each DNN architecture.
Furthermore, we indicateK ′ = 7 on the horizontal-axis, since this is the total number
of classes in the TTLC classification problem. Most of the DNN architectures show a
peak at aroundK ′ = 7 which is unsurprising. However, the MC CNN architectures
show a different behaviour—they have lower ARI values over the whole range ofK ′

and their maximum ARI value is not at K ′ = 7, but they are still able to classify
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4.4 Standard Feature Embedding Spaces

the data reasonably well. This could be due to the fact that k-means clustering is
not suitable in the feature embedding space generated by these architectures. The
RNN-based architectures show the best ARI value at K ′ = 7, closely followed by
the attention-based method. The CNN-based and the FC-DNN architectures all
perform equally well, just slightly worse than the state-of-the-art architectures from
the literature.

These results give us an interesting insight into the feature embedding spaces
generated by the different DNN architectures: despite their similar classification
performances, a clustering of the feature embeddings compared to the true test labels
can vary depending on the chosen architecture. Therefore, if an engineer has the choice
between different architectures, they might be more inclined to choose one whose
feature embeddings cluster well. Additionally, we have another quality measure to
evaluate and compare classification algorithms by. This could be added as a statement
to the overall safety argument of the given ML algorithm.

4.4.2.2 Feature Visualisation

In the second step of the feature validation method, we visualise the high-dimensional
feature embeddings. We do this in order to gain an understanding of the relation-
ship between the feature embeddings of the different classes and to validate the
k-means clustering algorithm performed in the first step. To this end, we visualise the
extracted feature embeddings of the test data using a state-of-the-art dimensionality
reduction technique, UMAP [112]. In the following, we discuss the UMAP results
using the CNN-I architecture, however, a similar analysis can be performed on the
feature embeddings of any of the other DNN architectures.4

The UMAP results for the CNN-I architecture are depicted in Fig. 4.3. We perform
the UMAP algorithm using the following parameters: 15 neighbours in the high
dimensional space5; and a minimum distance of 0.5 in the lower dimensional space.
These parameters were chosen as they show a good representation of both the local
and the global structures within the test dataset and within the different clusters.

In Fig. 4.3a, we see the UMAP embeddings of the test dataset in the standard
feature embedding space. The samples are labelled with their corresponding label
from the test dataset. We observe that those samples belonging to left and to right
lane changes shortly before the lane change (labels: L2, L1, R2, R1, respectively) are
embedded apart from each other. Moreover, the samples with these labels are clustered

4In Appendix A.1, we plot the UMAP representations of the feature embeddings of two further
architectures: the GRU-[12] and the CNN-II MC.

5Note, the high dimension space at the input of the UMAP is the feature embedding space.
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Figure 4.3: The UMAP representation for the CNN-I architecture with different labels
in the standard feature embedding space.

reasonably compactly together. On the other hand, the samples which are far away
from the lane change (labels: L3, R3) are embedded close together and overlapping
with the samples from the lane keeping scenarios (label: K). Intuitively, this can be
explained by the fact that the input attributes which describe a lane change long before
the event happens are similar to those which describe a lane keeping scenario, e.g., the
tracked vehicle usually remains in the centre of their lane and does not accelerate in a
lateral direction. The main difference between these three classes will be found in the
attributes describing the social interactions in the scenario (cf. Section 3.5).

In Fig. 4.3b, we see the same UMAP samples, now labelled with the cluster
labels from the k-means clustering performed in the first step of the feature validation
method. This plot corroborates the ARI results we observe in Fig. 4.2, i.e., the cluster
labels found via k-means clustering in the feature embedding space of the CNN-I
architecture corresponds reasonably well to the true sample labels. We see that the
samples with cluster labels C ′3, C ′4, C ′5, and C ′7 almost perfectly correspond to the
class labels L1, L2, R1, and R2, respectively. We also see in Fig. 4.3b that the three
overlapping classes L3, R3, andK are labelled as three clusters (C ′1, C ′2, and C ′6) by
the k-means clustering. This would explain why the ARI was strictly smaller than 1
for this architecture. Moreover, we see that the cluster centres µk′ are also reasonable.
Overall, we observe in Fig. 4.3 that the feature embedding space generated by the
CNN-I architecture is meaningful, and that the k-means clustering results are also
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interpretable using the UMAP visualisations.

4.5 k-means Friendly Feature Embedding Spaces

Motivated by the interesting observation that DNN architectures showing equally
good classification performance (in terms of their accuracies and their F1 scores),
can generate feature embeddings of varying quality. We now introduce a method to
actively encourage meaningful feature embeddings of DNNs.

Thus, we build upon the passive analysis by actively creating a feature embedding
space which shows—both quantitatively and qualitatively—better clustering. This not
only strengthens the safety argument built from the feature validation method, but
also improves the interpretability of the embedded features. Moreover, an engineer
can strengthen the safety argument to an already validated DNN architecture which
does not yet demonstrate promising clustering abilities by additionally employing
k-means friendly training.

4.5.1 Generating k-means Friendly Spaces

We introduce a k-means friendly feature embedding space at the output of the feature
embedding function (cf. (4.1)). This is inspired by the k-means friendly space used
in the latent space of a Deep Autoencoder (DAE), see, e.g., [119; 120]. The latent
space is located between the encoder and the decoder of a DAE. These papers motivate
a k-means friendly space such that the embeddings in the latent space are clustered
depending on the intrinsic properties in the data. For example, if you were to train a
DAE on a dataset with different classes, the latent space of the DAE should cluster
into these depending on their common attributes. In contrast, we are motivated to
ensure a k-means friendly feature embedding space in the penultimate layer of a DNN
classifier to strengthen the overall safety argument.

To achieve this, we introduce an additional loss term (similar to [119]) to the
standard cross-entropy loss function used to train classifiers (cf. Section 3.4.1)

Lce + k-means(Dtrain;P) = Lce(Dtrain;P) + α · 1

2

Mtrain∑
m=1

‖feat(Xm)−Hπm‖22 ,

(4.5)

with the tunable parameters P of the DNN architecture, a trade-off parameter α > 0,
a matrix of cluster centres H ∈ RN(Λ−1)×Ω, and a selection vector πm ∈ {0, 1}Ω

with ‖πm‖1 = 1. Ultimately,Hπm is the cluster centre closest to feat(Xm). The
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Chapter 4. Validation Safety Arguments based on Feature Embeddings

Algorithm 1 k-means Friendly Training
1: Inputs: DNN including parameters P , number of epochs E, number of clusters

Ω in feature embedding space
2: Initialisation: Initialise the cluster centre matrix [H]i,j ∼ U(hmin, hmax) and

randomly assign each training sample to a cluster via πm.
3: for epoch = 1, . . . , E do
4: G← ∇PLce + k-means(Dtrain;P)

5: Update the parameters of the DNN to minimise (4.5) using the gradients G and
an optimiser, e.g., Stochastic Gradient Descent (SGD) or ADAM

6: form = 1, . . . ,Mtrain do
7: πm ← arg mineω∈{e1,...,eΩ} ‖feat(Xm)−Heω‖22
8: end for
9: for ω = 1, . . . ,Ω do
10: [H]·,ω ←

∑
m∈Cω feat(Xm)/ |Cω| {Compute the mean of all feature em-

beddings corresponding to cluster ω as the new cluster centre.}
11: end for
12: end for

cross-entropy loss and the feature embedding function are defined in (3.42) and (4.1),
respectively. We assume there are Ω ∈ N clusters in the k-means friendly feature
embedding space. Since we aim to create a feature embedding space which encourages
a clustering of the labelled data, we only consider the case where Ω = K, whereK
is the number of classes. This parameter must be set before training. Since this loss
function should be minimised, the additional term in (4.5) ensures that the extracted
feature embeddings lie close, in terms of the Euclidean distance, to the selected cluster
centre. These cluster centres are randomly initialised and each sample is assigned to a
cluster centre.

To train a DNN with the loss function defined in (4.5), we alternate between
optimizing the parameters of the DNN (P), assigning the cluster selection vectors π,
and updating the cluster centres stored inH , similar to [119]. The training algorithm
is summarised in Algorithm 1.

To initialise the k-means friendly training algorithm, we first randomly sample
the cluster centres to lie within the range of the activation function of the feature
embedding space, e.g., for the tanh activation function hmin = −1 and hmax = +1.
Next, each sample is randomly assigned to a cluster. For each epoch of training, we
first update the DNN parameters P according to the k-means loss function (4.5) in
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4.5 k-means Friendly Feature Embedding Spaces

Lines 4 and 5. In Lines 6–8, we iterate over all samples in the training set and assign
each to the closest cluster centre—the vector eω ∈ {0, 1}Ω has the value 1 only at the
ωth index. Finally, we update the Ω cluster centres according to the extracted feature
embeddings in Lines 9–11. We define the set of training sample indices which belong
to a specific cluster ω as Cω = {m : πm = eω, ∀m}.

4.5.1.1 Computational Complexity of k-means Friendly Training

The computational cost of calculating the gradient in Line 4 and updating the
parameters in Line 5 is a constant multiple of evaluating the additional k-means loss
term in (4.5) [121, Ch. 3]. The exact computational complexity of this step depends on
the implemented DNN architecture (cf. Section 3.3). Furthermore, the computational
complexity of finding the closest cluster centre (Lines 6–8) and updating the cluster
centres (Lines 9–11) has a computational cost of O(ΩN(Λ−1)Mtrain), where N(Λ−1)

is the dimension of the feature embedding space andMtrain is the number of training
samples. The feature embeddings only have to be calculated once per epoch after
Line 5 by performing a forward pass through the DNN. These can then be stored for the
subsequent calculations. We assume the k-means friendly training is done offline—as
most DNNs are trained offline before deployment—, so the additional computational
complexity should not pose a problem. The online complexity is not affected by the
proposed approach.

4.5.2 Classification Results

Now, we report the classification performance after training theDNNswithAlgorithm 1.
Similar to Section 4.4, we use the DNN architectures introduced in Section 4.2 and
train them using the simulation setup discussed in Section 4.2.2. We use a trade-off
parameter α = 0.1 in (4.5) for the following architectures: CNN-I, CNN-I MC, and
FC-DNN; for the other architectures, we use a trade-off parameter of α = 1.

The classification performances of the k-means friendly trained DNNs are reported
in Table 4.4. Again, we report the classification accuracies and the macro-averaged F1

scores. If we compare the classification results in Table 4.4 with those in Table 4.2, we
observe that the classification performances are decreased due to the k-means friendly
training, e.g., the FC-DNN loses 2.82% and 3.06% in terms of classification accuracy
and the F1 score, respectively. For some of the DNN architectures, e.g., the LSTM-
[10], CNN-II, or attention-based models, the k-means friendly training maintains or
marginally increases the classification performance. By investigating the classification
performances, we can observe that some DNN architectures are more robust to the
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Architecture
k-means Friendly Space

Accuracy [%] F1 [%]

FC-DNN 85.86(±1.43) 85.58(±1.58)

CNN-I 84.64(±1.42) 84.43(±1.46)

CNN-II 90.86(±0.39) 90.80(±0.40)

CNN-III 91.12(±0.65) 91.10(±0.66)

CNN-I MC 84.60(±2.96) 84.35(±3.09)

CNN-II MC 85.71(±2.60) 85.29(±3.03)

CNN-III MC 89.68(±0.61) 89.63(±0.61)

LSTM-[10] 91.05(±2.77) 91.03(±2.81)

GRU-[12] 88.96(±2.20) 88.97(±2.21)

Gated Tr.-[95] 90.38(±1.75) 90.31(±1.79)

Table 4.4: Classification performance of the various DNN architectures in the k-
means friendly feature embedding space. The results are averaged over the 10-folds
with the 95% confidence interval in brackets.

k-means friendly training than others. This could be attributed to the fact that some
architectures already clustered well before k-means friendly training or that some
k-folds diverged during training. The performances remain relatively similar between
the different architectures, so that they seem equally well-suited for the TTLC task
even after k-means friendly training.

4.5.3 Feature Validation in k-means Friendly Space

After observing the effect of using k-means friendly training, we want to investigate
the extracted feature embeddings using the feature validation method. We saw that
the k-means friendly feature embedding space slightly reduces the classification
performance of the DNNs. However, in this section, we show that the k-means friendly
training achieved our main goal: to create a feature embedding space which both
qualitatively and quantitatively shows an improved clustering of the data.

4.5.3.1 Feature Clustering

The first step in the feature validationmethod is to quantify the clustering of the extracted
feature embeddings. To this end, we use the ARI measure. In Fig. 4.4a, we plot the
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(a) Average ARI in the k-means friendly feature embedding space.
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Figure 4.4: Subplot (a): Average ARI values vs. the number of clusters K ′ in the
k-means feature embedding space. Subplot (b): Gain in ARI atK ′ = 7.

average ARI value in the k-means friendly feature embedding space. By encouraging
a k-means friendly feature embedding space, almost all of the DNN architectures
now have a maximum ARI value atK ′ = 7. This indicates that the k-means friendly
training works as expected by clustering the feature embeddings according to the class
they belong to since we set Ω = K. In Fig. 4.4a, we also observe that the MC CNN
architectures—which had poor clustering in the standard feature embedding space—
now show the best clustering for K ′ around K clusters. This result highlights the
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Figure 4.5: The UMAP representation for the CNN-I architecture with different labels
in the k-means friendly feature embedding space. The qualitative feature embeddings
in these plots should be compared with the standard feature embedding space in
Fig. 4.3.

potential gain in clustering which the k-means friendly training introduces. In Fig. 4.4b,
we calculate the gain in ARI atK ′ = 7, i.e., ∆ARI = ARIk-means − ARIstandard. We
observe that the average ARI is improved for all of the architectures besides the
GRU-[12], where the average ARI slightly decreased. This could be due to the fact that
the average ARI for the GRU-[12] is already high in the standard feature embedding
space and that on certain k-folds the k-means friendly training diverged (see the
discussion in Section 4.5.4). However, the average ARI value of the GRU-[12] is still
relatively good compared with the other DNN architectures.

As clustering the feature embeddings is the first step of the feature validation
method, the ARI results show the promise of using the k-means friendly training. As
mentioned earlier, the k-means friendly training can be used in conjunction with any
DNN architecture such that if an architecture is already validated using another method,
we can strengthen the safety argument by additionally employing k-means friendly
training. Next, we explore the qualitative results of feature validation by visualising
the feature embedding space to see the improvement.
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4.5.3.2 Feature Visualisation

In Fig. 4.5, we plot the UMAP embeddings of the CNN-I architecture in the k-
means friendly feature embedding space. Note, since we have two different feature
embedding spaces, we have two different UMAP functions, indicated by the axis
{u1, u2} for the standard space, and {ū1, ū2} for the k-means friendly feature embed-
ding space (compare Fig. 4.3 and Fig. 4.5).

We observe a direct qualitative improvement of the clustering in the feature
embedding space when we compare Fig. 4.5a to the UMAP embeddings in Fig. 4.3a.
Each cluster corresponding to a class label is more compactly clustered, e.g., looking at
the cluster of samples with label R1, we see in Fig. 4.5a that the samples are compactly
clustered together, whereas in Fig. 4.3a these samples are more spread out; we could
almost argue that there are two sub-clusters of the class R1 in Fig. 4.3a. The same
observation can be made when looking at the representations of the other driving
manoeuvres. Moreover, the shapes of the true class labels and cluster labels are similar
in Fig. 4.5a and Fig. 4.5b. This is reflected in the larger ARI since the ARI compares
the cluster labels to the true class labels, so the more samples with the same labels, the
larger the ARI value.

This result indicates that we achieved the goal of creating a k-means friendly
feature embedding space where the feature embeddings of the different classes are
clustered compactly together. Not only are the quantitative clustering results better
than for the standard feature embedding space, but the qualitative UMAP results
also show an improvement in clustering. These aspects help when interpreting the
extracted feature embeddings for feature validation. Moreover, this directly improves
the interpretability of the extracted feature embeddings. Thus, a safety argument using
the feature validation method is improved upon due to the k-means friendly training
introduced in this section.

4.5.4 Discussion on k-means Friendly Spaces

The k-means friendly training algorithm actively creates a feature embedding space
showing both quantitatively and qualitatively better clustering of the extracted feature
embeddings. By improving the clustering of the feature embeddings, we contend that
a stronger safety argument can be attached to the DNN trained in this manner, i.e., the
feature embeddings of the safety relevant classes are more compactly clustered leading
to better interpretability. Furthermore, if an already validated DNN previously did not
show good clustering, e.g., the MC CNN architectures, this can be addressed using the
proposed method.
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Architecture
Early Stopping Epoch

Standard Space k-means Friendly Space

FC-DNN 72(±7) 22(±0)

CNN-I 111(±4) 22(±0)

CNN-II 90(±15) 226(±25)

CNN-III 126(±16) 342(±28)

CNN-I MC 279(±28) 105(±83)

CNN-II MC 290(±24) 283(±98)

CNN-III MC 290(±48) 698(±64)

LSTM-[10] 130(±6) 241(±77)

GRU-[12] 152(±21) 97(±67)

Gated Tr.-[95] 74(±9) 175(±55)

Table 4.5: Average early stopping epoch during the training of the DNNs. The results
are averaged over the 10-folds with the 95% confidence interval in brackets.

These benefits also increase the interpretability of the DNN architectures as we not
only rely on the classification performances to compare them, but can evaluate them on
their feature embedding clustering as well. This increase in interpretability, however,
comes at a price in classification performance—this can be interpreted as the cost
of interpretability, see, e.g., [22; 122]. In a practical application, the engineer must
make a trade-off between increasing the interpretability of their ML-based method
and the performance of that method. We argue that the k-means friendly training
in combination with the feature validation method, can give the engineer a stronger
safety argument for the validation of the chosen ML-based method. Moreover, in
the following section, we propose a method to regain some of the lost classification
performance.

On the other hand, the proposed k-means friendly training algorithm is sensi-
tive to the initialisation of the DNN parameters and the cluster centre matrix H
(cf. Algorithm 1). Moreover, the hyper-parameter choices, e.g., initial step-size or
model parameters, also affect the k-means friendly training. This can be seen in
the average early stopping epoch during training of the various DNNs, depicted in
Table 4.5. Compared to training the DNN using the standard cross-entropy loss, the
k-means friendly training, in general, stops earlier (since we employ an early stopping
criteriumwhen training the DNNs). For the architectures which stop quickly, the valida-
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Algorithm 2 Distance-based Rejection Rule
1: Inputs: Input datumX , classification function fDNN
2: Parameters: Cluster centres {µc}K

′
c=1, distance measure d, labelling function λ,

the distance r.
3: yDNN ← fDNN(X)

4: k′ ← arg minc=1,...,K′ d(µc, feat(X))

5: ycluster ← λ(k′)

6: if ycluster = yDNN and d(feat(X),µk′) ≤ r then
7: Accept yDNN
8: else
9: Reject yDNN
10: end if

tion loss increases indicating that the k-means friendly training was diverging. For the
architectures which trained longer during the k-means friendly training, e.g., CNN-II,
the classification performance was better than for the standard training. Moreover, the
early stopping epoch varies between 10-folds more during k-means friendly training,
further indicating that a good initialisation is important. Therefore, k-means friendly
training should be combined with a fine-tuning of the hyper-parameters.

4.6 Classification Rejection Rules

In the preceding sections, we presented the feature validation method, where we
investigate the ability of various DNN architectures to extract feature embeddings
which cluster according to their class labels. However, we observe a trend that the
classification performance is negatively affected by the k-means friendly training.
As a counter measure, we propose a method to take advantage of the clustering of
the feature embeddings according to their classes by rejecting classification outputs
which are not consistent with the cluster they belong to. This allows us to regain the
classification performance lost through k-means friendly training.

We introduce an algorithm to reject spurious DNN classification outputs by
computing the distance of the feature embedding of a given input to the closest cluster
centre. We check whether the corresponding cluster label matches the classification
label and whether the feature embedding lies close to the cluster centre. If the
classification label differs from the label of the closest cluster centre, we reject the
classification. The algorithm is summarised in Algorithm 2.

Algorithm 2 depends on the following parameters: pre-defined cluster centres
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{µc}K
′

c=1 in the feature embedding space (e.g., those obtained from k-means clustering);
a distance measure d : RN(Λ−1) × RN(Λ−1) → R to compare the feature embedding
with the cluster centres; and, a label mapping function λ : {1, . . . ,K ′} → Y, mapping
the cluster centre index to a class label. Note, since there can be a different number of
cluster centres than classes,K ′ 6= K, the labelling function is necessary to map the
cluster index to an output class label. In Line 3, we classify the input sample using the
DNN. In Line 4, we find the cluster centre closest (in terms of the pre-defined distance
measure d) to the feature embedding feat(X) of the sample. Then, a cluster class
label is calculated using the label mapping function in Line 5. Finally, in Lines 6–10,
the output classification is accepted if two conditions are met: (i) the cluster class
label and the DNN class label are the same; and (ii) the feature embedding is within a
distance r of the chosen cluster centre. Otherwise, the classification output is rejected.

Intuitively, we can understand Algorithm 2 as follows: As we observed in the
previous sections, the feature embeddings in the penultimate layer of a DNN are
generally clustered according to their class labels. Therefore, we can use the training
dataset to calculate the cluster centres. We can subsequently compare the distance of
the feature embedding of an input sample to the closest cluster centre. If the label at the
output of the DNN matches the label of that cluster centre and the feature embedding
lies within the distance r of that cluster centre, then we accept the DNN classification;
otherwise, we reject it.

In the following, we introduce two possible methods to obtain the cluster centres
and two possible distance measures. We refer to the classification rejection methods
according to the distance measures they are based on.

4.6.1 Euclidean-based Rejection

In Fig. 4.2 and Fig. 4.4a, we observe that most DNN architectures show a high ARI
for the number of clusters equal to the number of classes (K ′ = K). Since the
k-means clustering used to calculate the cluster labels is based on the Euclidean
distance metric, the first rejection rule is based on this metric, too.

To this end, we first use the cluster centres {µc}K
′

c=1 we obtain from clustering the
training data. As a distance measure, we use the Euclidean distance from the cluster
centres to the feature embedding, i.e., dE(µc,a) = ‖a− µc‖22. Each cluster centre is
labelled with the majority class label in that cluster.
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4.6.2 Mahalanobis-based Rejection

The authors of [123] postulate that employing the softmax activation function at the
output of a DNN implies that the feature embeddings in the penultimate layer are fit
to a class-conditional Gaussian distribution. If we assume a multivariate Gaussian
distribution for the class-conditional probabilities in the feature embedding space,
i.e., we assume the feature embeddings are distributed according to N (µc,Σ) with a
mean µc and tied covariance matrix Σ, we see that the Linear Discriminant Analysis
(LDA) classifier has a similar structure to the softmax output of a DNN, see, e.g., [124,
Ch. 4.2]. We can write the posterior distribution of the LDA as

p(y = c|x) =
exp

(
µT
cΣ
−1x − 1

2µ
T
cΣ
−1µc + log(ξc)

)∑
c′ exp

(
µT
c′Σ
−1x − 1

2µ
T
c′Σ
−1µc′ + log(ξc′)

) , (4.6)

with the tied covariance matrix Σ, the class mean µc, and the class prior probability
ξc. If we compare (4.6) with the softmax (3.41), we see that the posterior estimate at
the output of the DNN is similar to the LDA if we set the weight vector and bias term
equal to

w(Λ),T
c = Σ−1µc, (4.7)

b(Λ)
c = −1

2
µT
cΣ
−1µc + log(ξc), (4.8)

for c = 1, . . . ,K.
Since the LDA classifier uses the Mahalanobis distance to optimally classify data

under the aforementioned assumptions, we are motivated to use this as the distance
measure in Algorithm 2. The Mahalanobis distance is calculated as

dM (µc,a; Σ) = (a− µc)TΣ−1(a− µc), (4.9)

with a class-conditional mean vectorµc and the tied covariance matrix Σ. We estimate
the class-conditional sample means and sample covariance matrix on the training
dataset as

µc =
1

|Mtrain,c|
∑

m∈Mtrain,c

feat(Xm), (4.10)

Σ =
1

Mtrain

Mtrain∑
m=1

(feat(Xm)− µ)(feat(Xm)− µ)T, (4.11)

with the set of indicesMtrain,c = {m : ym = c,∀ym ∈ Dtrain}. The tied covariance
matrix is calculated using the mean embedding of all of the training samples, i.e., µ =

1/Mtrain
∑Mtrain

m=1 feat(Xm).
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In the end, we use the following parameters for the distance-based rejection rule in
Algorithm 2: the sample class means are used as cluster centres, i.e., {µc}Kc=1 from
(4.10); the Mahalanobis distance as defined in (4.9) is used as a distance measure; and,
the labelling function simply takes the label of µc as the cluster label.

4.6.3 Classification Rejection Rules: Results (r =∞)

Using the two rejection rules defined in the previous sections, we can perform inference
on the test dataset again and reject spurious classifications. Note, the DNNs do not
need to be retrained to apply the rejection rules—they are merely applied during
inference. In this section, we take r =∞ around the cluster centres, i.e., we only check
whether the cluster label is equal to the classification label in Line 6 of Algorithm 2.

Table 4.6 summarises the classification performances of the various DNN archi-
tectures using the previously introduced rejection rules. The column “Rejections [%]”
shows the percentage of test data samples which were rejected. As a reference, we
could imagine uniform randomly rejecting test data samples. However, if the data
are independent,6 we would expect this neither to affect the classification accuracy
nor to affect the F1 score, e.g., if we have a classification accuracy of 90% and then
randomly reject p% of the samples, we would still have a classification accuracy of
90% on the remaining (100 − p)% of the samples. Therefore, any improvement in
performance after applying the rejection rules indicates that we are rejecting incorrect
classifications.

In general, we can regain the classification performance lost using the k-means
friendly feature embedding space by applying either rejection rule. In Fig. 4.6, we
observe the difference in classification performance in the k-means friendly feature
embedding space before and after applying the rejection rules, i.e., comparing the
difference between Table 4.4 with the respective columns in Table 4.6. The average
classification accuracies of all the DNN architectures increase after applying the
rejection rules. However, for certain architectures, the Euclidean rejection rule can
lead to a reduction in the average F1 score. This can occur when the clusters are not
completely pure, i.e., the samples from some classes are split between multiple clusters
leading to too many samples being rejected by Algorithm 2.

These performance gains, however, come at the price of not classifying all test data.
Looking at Table 4.6, we see in the standard feature embedding space, the average
percentage of rejected samples is as high as 52.97% for the Euclidean rejection rule.

6The training and test data are generally assumed to be independent and identically distributed (iid) in
most ML applications.
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Architecture
Rejection
Method

Standard Space k-means Friendly Space
Accuracy [%] F1 [%] Rejections [%] Accuracy [%] F1 [%] Rejections [%]

FC-DNN Euclidean 92.73(±0.44) 90.80(±0.44) 18.75 91.82(±0.50) 90.81(±0.45) 13.20

Mahalanobis 91.72(±0.29) 91.41(±0.33) 6.50 90.94(±0.28) 90.23(±0.32) 9.10

CNN-I Euclidean 93.95(±0.32) 92.21(±0.37) 20.65 89.09(±0.91) 87.62(±1.07) 13.35

Mahalanobis 93.31(±0.18) 93.08(±0.17) 6.27 89.62(±0.33) 88.86(±0.28) 9.08

CNN-II Euclidean 91.18(±0.76) 87.14(±2.69) 19.26 93.15(±0.27) 92.95(±0.24) 4.05

Mahalanobis 89.82(±0.31) 89.37(±0.38) 7.03 93.28(±0.17) 93.03(±0.16) 5.46

CNN-III Euclidean 93.33(±0.50) 89.67(±2.84) 18.40 92.52(±0.29) 92.25(±0.30) 5.90

Mahalanobis 92.44(±0.54) 92.30(±0.58) 2.67 92.72(±0.44) 92.58(±0.48) 3.29

CNN-I MC Euclidean 94.41(±0.89) 71.03(±4.38) 49.55 88.79(±2.37) 79.59(±3.46) 19.26

Mahalanobis 93.86(±0.28) 93.54(±0.32) 9.56 89.71(±1.59) 88.73(±1.86) 10.52

CNN-II MC Euclidean 93.28(±0.76) 67.34(±3.00) 52.97 88.87(±2.77) 86.16(±4.14) 12.12

Mahalanobis 92.88(±0.30) 92.48(±0.30) 9.68 90.70(±1.02) 89.56(±1.71) 10.10

CNN-III MC Euclidean 92.23(±1.92) 64.22(±7.61) 47.90 92.42(±1.44) 91.90(±1.64) 10.13

Mahalanobis 91.27(±0.64) 90.74(±0.71) 9.09 91.79(±0.52) 91.49(±0.55) 6.58

LSTM-[10] Euclidean 93.44(±0.58) 88.16(±3.42) 11.14 92.78(±1.24) 92.57(±1.52) 3.55

Mahalanobis 93.87(±0.19) 93.68(±0.20) 4.66 93.82(±0.66) 93.62(±0.88) 4.64

GRU-[12] Euclidean 93.96(±0.22) 93.88(±0.22) 3.03 91.68(±1.34) 91.13(±1.58) 7.63

Mahalanobis 93.82(±0.21) 93.75(±0.23) 3.78 92.24(±1.13) 91.99(±1.21) 5.59

Gated Tr.-[95] Euclidean 93.42(±0.46) 92.26(±0.45) 14.05 92.41(±1.64) 86.16(±8.50) 11.97

Mahalanobis 92.83(±0.41) 92.64(±0.43) 5.10 92.78(±0.52) 92.58(±0.62) 3.99

Table 4.6: Classification performance of the various DNN architectures for both the standard feature embedding space and the
k-means friendly feature embedding space after applying the rejection rules with r = ∞. The results are averaged over the
10-folds with the 95% confidence interval in brackets.
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Figure 4.6: Classification performance change in the k-means friendly embedding
space for each DNN architecture after using either the Euclidean rejection rule (Eucl.)
or the Mahalanobis rejection rule (Maha.).

On the other hand, the k-means friendly training encourages better clustering of the
feature embeddings and reduces the average number of samples which are rejected
(especially for the Euclidean rejection rule). Even in the standard feature embedding
space, the rejection rules can improve the accuracy of the classifier (especially when
applying the Mahalanobis rejection rule).

4.6.4 Classification Rejection Rules: Results (variable r)

To further investigate the classification rejection rules, we can vary the distance around
the cluster centres to influence how many samples are rejected. As we saw, with
r =∞ the average number of rejected samples varies depending on the architecture
and whether a k-means friendly space was created (cf. Table 4.6). Now, we analyse
the classification rejection rules by varying the distance r. Since each k-fold of each
architecture creates a different feature embedding space where the distances between
embedded samples can vary on orders of magnitude (this also depends on the distance
measure used), we need to define what is close and what is far in the feature embedding
space.
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To define suitable distances we can use the feature embeddings of the training
dataset. First we map all of the training data into the feature embedding space. Then,
we calculate all of the distances of these feature embeddings to the closest cluster
centre. With these distances, we can define r in two ways: (i) we take the p-th
percentile distance as r; or (ii) we take a distance as a fixed percentage of the maximum
distance (rmax) in the feature embedding space. Choosing r to be equal to the p-th
percentile means that p percent of all of the training data distances are smaller than
r; alternatively, r is equal to a percentage of rmax. Using option (i), we are able to
compare the classification rejection rules where the percentage of rejections remains
constant between the architectures. When employing option (ii), we are able to
better investigate how compactly clustered the feature embeddings are for the different
architectures and feature embedding spaces (standard vs. k-means friendly); we are
able to investigate the classification rejection rules in both cases as well.

First, we investigate the Euclidean- and the Mahalanobis-based classification
rejection rules in the k-means friendly feature embedding space.7 In the top row of
Fig. 4.7, we see the effect of the Euclidean-based classification rejection rule using the
p-th percentile distance as r. We vary the percentile between p ∈ [5, 100]. We see in
Fig. 4.7b that the average number of rejections is almost the same for each architecture
at each percentile distance. This is as expected, since r is directly taken from the
percentiles of the distances of the training dataset. However, looking at Fig. 4.7a, we
observe that the average accuracy for each of the architectures differs. When we reject
almost all of the samples (for p = 5), some of the architectures are able to achieve
an average accuracy of almost 100%. Most of the architectures show a monotonic
decrease in the average accuracy as the distance is increased. The average accuracy
achieved at p = 100 is the same as when we use r =∞ (cf. Table 4.6). However, we
see that the GRU-[12] architecture’s accuracy first increases and then decreases. This
implies that the rejected samples are not misclassifications for small r values. Further,
this could imply that this classification rejection rule does not work well with certain
feature embedding spaces.

Similar conclusions can be drawn when using the Mahalanobis-based classification
rejection rule, as depicted in the bottom row of Fig. 4.7. We notice that theMahalanobis-
based classification rejection rule is unable to achieve 100% accuracy despite rejecting
almost all of the samples. Furthermore, additional architectures, e.g., CNN-I or CNN-
II, show a non-monotonically decreasing performance as the distance is increased.
This would imply that the Mahalanobis-based classification rejection rule is more

7An analysis of these classification rejection rules in the standard feature embedding space can be
found in Appendix A.2.
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(a) Accuracy: Euclidean-based rejection.
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(b) Rejections: Euclidean-based rejection.
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(c) Accuracy: Mahalanobis-based rejection.
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(d) Rejections: Mahalanobis-based rejection.
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Figure 4.7: Classification rejection in the k-means friendly space using the p-th
percentile distance as the distance r. The top row of plots (Fig. 4.7a and Fig. 4.7b) uses
the Euclidean-based classification rejection rule; the bottom row of plots (Fig. 4.7c
and Fig. 4.7d) uses the Mahalanobis-based classification rejection rule.

sensitive to the clustering of the samples; the tied-covariance matrix also affects the
distance calculations which influences which samples are rejected. We also observe
that the decrease in average accuracy is smaller for most architectures compared with
the Euclidean-based rejection rule. Again, the average accuracies at p = 100 are the
same as when we use r =∞.

In Fig. 4.8, we plot the average accuracy and the average number of rejections
against the distance which is set relative to the maximum distance (rmax). All of these
plots are generated using the Euclidean-based classification rejection rule. Compared
to the number of rejection plots in Fig. 4.7, where the different architectures show a
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(b) Rejections in standard space.
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(c) Accuracy in k-means friendly space.
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(d) Rejections in k-means friendly space.
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Figure 4.8: Classification rejection using Euclidean rejection rule and percentage of
max distance as the distance r. The top row of plots (Fig. 4.8a and Fig. 4.8b) is in the
standard feature embedding space; the bottom row of plots (Fig. 4.8c and Fig. 4.8d) is
in the k-means friendly feature embedding space.

similar number of classification rejections for each p-th percentile, we now observe in
Fig. 4.8b and Fig. 4.8d that there are differences between the architectures. Moreover,
we see that there is a large difference between the standard feature embedding space
and the k-means friendly embedding space. In the former, the architectures reject all
samples until r/rmax = 15%; some architectures, e.g., the MC CNN architectures,
sill reject all samples until almost r/rmax = 40%. In the k-means friendly space, the
number of rejections decreases much faster. The architectures show an improvement
in accuracy or number of rejection after r/rmax = 50% in the k-means friendly
space. In Fig. 4.8c, we see a similar performance between the architectures in the
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k-means friendly space. The GRU-[12] architecture shows a jump in the accuracy
for r/rmax = 10 and 15%. In Fig. 4.8a, the MC CNNs show a bad classification
performance for a small distance; this indicates that the feature embeddings are
poorly clustered in the standard space (as we observed in Section 4.4), and thus, the
Euclidean-based rejection rule rejects too many correct classifications.

Overall, we see that by tuning the distance r around the cluster centres, we are
able to trade off the classification accuracy with the number of rejected samples. In a
safety-critical application this trade-off can be made by the engineer, where the smaller
a distance they take, the more confident they can be with the classification outputs of
the chosen DNN architecture. We observe that some architectures produce a feature
embedding space more suitable for classification rejections than others. Moreover, the
k-means friendly training leads to feature embedding spaces which tend to harmonise
with the rejection rules.

4.7 Feature Embedding based Safety Argument: Summary

In this chapter, we introduce a feature validation method allowing an engineer to
not only rely on the classification performance of a DNN architecture to choose a
model for a safety-critical function. We start with a passive analysis of various DNN
architectures, and introduce a training method which can help encourage validatable
features. We can use k-means friendly training in combination with other validation
methods to strengthen the overall safety argument. Additionally, we introduce a method
to reject spurious classification outputs using different distance measures. This method
can be used to improve the performance of ML-based classifiers, or to increase the
confidence in the classifications.

We can use the methods from this chapter to argue for safety during the validation
of ML-based algorithms implemented in safety-critical HAD functions by considering
the feature embeddings of various DNN architectures. In the end, an engineer can
choose the DNN architecture showing the most meaningful feature embeddings with
the best clustering (in terms of a clustering quality measure, e.g., the ARI). Additionally,
they can encourage validatable features of an DNN architecture using k-means friendly
training.
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on Dataset Distributions 5

In this chapter, we discuss the challenge of using Machine Learning (ML)-based
driving functions in the presence of similar datasets with different distributions—so
called distributional shifts (cf. Section 5.2). We find that there are distributional shifts
between two publicly available highway driving datasets which can significantly affect
the classification performance of an ML-based Highly Automated Driving (HAD)
function (cf. Section 5.3). One possibility to overcome these distributional shifts is to
transfer the knowledge from one distribution to the other. We introduce a method to
trade off the forgetting of the source domain (the original training dataset) and learning
of the target domain (the other dataset) when fine-tuning an ML-based HAD function
in the presence of distributional shifts (cf. Section 5.4). We see that this method allows
an engineer to influence the desired performance of the ML-based driving function
depending on the situation. The results presented in this chapter are based on those
found in [16; 125; 126; 127].

5.1 Dataset Distributions Motivation

In this section, we motivate developing a validation safety argument based on an
analysis of the possible discrepancies between dataset distributions. Since the Society
of Automotive Engineers (SAE) introduced the various levels of driving automation in
2014 [3], the Autonomous Vehicle (AV) community has accepted that every driving
automation system, or function thereof, must be engineered to work within a pre-
defined Operational Design Domain (ODD). The ODD of a given driving function
can be specified to be, e.g., the geographical location, the time-of-day, or specific
environmental circumstances [3]. For example, a HAD function could be engineered
to work within a geographical zone like an airport or a city during the day time when
the street is well lit. However, within a given ODD, there can still be differences in
the distributions of datasets used to train ML-based HAD functions (as we will see
in this chapter). Moreover, since ML-based HAD functions lack explicit function
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specification, it is challenging to ensure that they will always work as expected within
the given ODD. This is closely related to the reasons whyML-based HAD functions are
difficult to validate using the existing methods and processes defined in the ISO/PAS
standards (cf. Section 2.4).

Therefore, we believe that only relying on the pre-defined ODD which the HAD
function should operate in is insufficient to argue for its safety when ML algorithms
are used. At most, we can collect data within an ODD and train an ML algorithm on
them. However, as we see in this chapter, this can lead to HAD functions which do
not generalise across distributions. For example, an ODD might describe a highway
scenario with clear lane markings and driving during the day-time. Two datasets,
e.g., the highD dataset and the Next Generation SIMulation (NGSIM) dataset, can
fulfil this ODD description but still have different distributions of their attributes. For
example, the distribution of longitudinal velocities or the distribution of the distances to
other vehicles can differ. Since ML algorithms rely on the distribution of the datasets,
a difference in the distribution of the data will lead to ML-based functions which may
not generalise as expected (or as required). A mismatch between distributions of the
data is known as a distributional shift. Examples of the different types of distributional
shifts which can occur in highway driving datasets will be introduced in Section 5.2.

Since no training dataset will fully cover all possible inputs, i.e., there will be a
difference in the distributions of most datasets, there are two general approaches to
tackle this challenge: (i) detecting when samples come from a different distribution
than the one the ML model was trained on; or (ii) transferring the knowledge from
one distribution or task to another. Approach (i) is useful since ML algorithms can
struggle to generalise across distributions, so we want to know when we are able to
trust the ML-based HAD functions especially in safety-critical applications and when
we should exercise caution. The other approach is useful to leverage large datasets to
(hopefully) learn generalisable ML functions. It has been (empirically) shown that
larger datasets and larger models learn more generalisable features [128]. These two
approaches are usually referred to as out-of-distribution detection and transfer learning,
respectively.

In terms of out-of-distribution detection, we assume that the data used to train the
ML algorithm is in-distribution and all other test data are out-of-distribution. There are
two general classes of out-of-distribution data: those with a covariate shift, i.e., a shift
in the inputs to the ML model, or those with a prior probability shift, i.e., a shift in the
labels of the data. We discuss these types of distributional shifts in highway driving
data in Section 5.2. An overview of different methods to detect out-of-distribution
data can be found in [129]. Generally speaking, detecting out-of-distribution data is
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closely related to the problem of quantifying the confidence of an ML algorithm. If the
model is input a sample from a different distribution, it should be able to output a low
confidence or out-right reject that sample. For example, if the longitudinal velocity of
the tracked vehicle lies outside the range of the training distribution, we would reduce
the confidence of the ML algorithm’s output.

On the other hand, we might have a large, representative dataset of highway driving
data from one country which we want to transfer to another country. For example, we
might not be legally allowed to export data collected in a specific country, however,
we could export the ML models trained on these data. When we want to transfer
the knowledge learned on the training distribution (the source domain) to another
distribution (the target domain), we refer to transfer learning. This can be done to take
advantage of large pre-trained ML models by fine-tuning the (output) layers to the
specific task at hand. The assumption is that the features extracted in the initial layers
of an ML model learn general concepts, e.g., in image processing, these could be edge
features or simple shapes. Different transfer learning tasks are categorised depending
on the problem setting, i.e., whether the domains are similar or if we have labelled
data in the source and/or the target domain, see, e.g., [130; 131]. Although transfer
learning methods consider cases where there is a distributional shift, e.g., when the
source and the target domains are assumed to be different, they do not usually consider
the implications of training under these conditions. It might be the case that we have a
distributional shift between two datasets, but we want to ensure that we do not forget
the source domain. This is the challenge of avoiding (catastrophic) forgetting which is
related to the topic of continual learning, see, e.g., [132].

The challenges of successfully dealing with out-of-distribution samples or transfer-
ring knowledge between distributions are especially important whenML algorithms are
deployed in the real-world. In this chapter, we shed light on the possible distributional
shifts which can occur in highway driving data, we analyse how these can affect
trained ML models, and we introduce a method to transfer knowledge between datasets
keeping in mind that there is a distributional shift between them.

5.2 Distributional Shifts in Highway Driving Datasets

A distributional shift or dataset shift describes the phenomenon when the distribution
of the data which were used to train the ML algorithms does not match that of the
test data [133]. Moreover, in general, the data are assumed to be independent and
identically distributed (iid), which generally does not hold in the real-world.

In supervised ML tasks, we train the algorithms on a training dataset D =
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{(xm, ym)}Mm=1, where the inputs x ∈ X and labels y ∈ Y are iid samples of an
unknown joint distribution p(x, y). Then, we test on a test dataset. In general, a
distributional shift describes the case where pA(x, y) 6= pB(x, y), where pA and pB
are the unknown joint distributions of two datasets DA and DB , e.g., A and B could
be the training and the test datasets.

In the following, we introduce the types of distributional shifts and how they can
arise. We aim to give an intuition how these could arise in highway driving datasets,
and how they might be affected by the ODD in which the ML algorithm should
function.

5.2.1 Covariate Shift

This form of shift occurs when the covariate1 distribution p(x), e.g., the distribution
of the velocities, differs between datasets. However, the posterior distribution p(y|x)

remains the same [134]. This implies that the samples in two datasets have the same
label distribution but the covariate distribution is different.

In highway driving data, this can be observed when recording data at different
locations, or in countries where the driving rules and drivers’ behaviour might differ.
For example, the average driving velocity on a German highway will be higher than
on a US highway; or the traffic density on different highway sections might differ
which would lead to different distributions of the relative distances between vehicles.
A covariate shift can lead the ML algorithm to fit the training data well, but the model
can be misspecified on a different dataset. For example, training an ML algorithm on
data collected in Germany can lead to it not generalising to US highways because the
velocities are lower and the traffic density is higher in the US. One can use importance
sampling to reweigh the samples’ contribution to the estimation error and compensate
for a covariate shift [134]. A covariate shift between two datasets might not violate the
ODD definition unless it is specific enough to eliminate a mismatch between recorded
attributes. For example, if the ODD was only highways during the day-time, two
datasets can have a covariate shift but still lie within the same ODD.

5.2.2 Prior Probability Shift

A prior probability shift, also known as a semantic or label shift [129], occurs when the
prior distribution p(y), e.g., the probability of a lane change, differs but the likelihood,
p(x|y), remains the same [133]. This can also occur when the a specific class label lies
in the support of one distribution but not in another, e.g., pA(y) > 0 but pB(y) = 0

1Note, the covariates are the input attributes or input features of the ML algorithm.
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for some realisation(s) of y ∈ Y. Moreover, since the prior probability is usually
estimated on one dataset, this estimate might not be valid for other datasets.

For example, when extracting driving manoeuvres from a highway dataset, one
dataset might have more samples with the label lane keeping than with the label lane
change compared to another dataset, indicating a prior probability shift. Moreover,
the label emergency stop could exist in one highway driving dataset and not exist in
another. Furthermore, a prior probability shift can occur in highway driving datasets
as implicit driving rules are baked into them, e.g., on German highways, vehicles
should not overtake on the right-hand side, making the label for this manoeuvre very
unlikely in a dataset recorded in Germany. However, in a country with left-hand traffic
this is highly likely. It is possible to use a priori knowledge of the problem at hand
to estimate which prior probabilities are possibly correct. Since a supervised ML
algorithm tries to predict the label y, it is unsurprising that this form of distributional
shift will affect the performance of an ML algorithm [133]. As the ODD is concerned
defining the meta-level attributes of scenarios, it does not necessarily consider whether
certain classes will be present or absent from the dataset.

5.2.3 Concept Shift

A concept shift, or concept drift [135], can be defined as the case where either the
posterior distribution p(y|x), e.g., the probability of a lane change for a given scenario,
or the likelihood p(x|y), e.g., the probability that a given scenario describes a lane
change, differs between datasets [136]. Such a shift can result from a change in the
causal relationship between the input data and the corresponding labels. It can also
occur when the concepts contained in the datasets change over time.

In highway driving data, this form of distributional shift can easily occur. For
example, the input features which describe a left lane change on a highway with
right-hand traffic will differ from those on a highway with left-hand traffic. Moreover,
as more AVs enter the highways, they will not drive exactly the same as human drivers,
which would lead to a concept drift between datasets containing only human drivers
and those containing a mix of humans and AVs. As we can expect, this is the most
difficult form of distributional shift for ML algorithms to deal with [137]. The ODD
of a given HAD may or may not be robust to concept shifts depending on how specific
it was defined. For example, on a closed geographical location, e.g., an airport, the
concepts within this ODD can be specified such that any ML algorithm trained on data
collected at a specific airport can be expected to work properly within that ODD.
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5.2.4 Possible Sources of Distributional Shifts

There can be many causes for distributional shifts, the four most common sources are
briefly described below. For more details, see, e.g., [133; 138].

5.2.4.1 Sample Selection Bias

A sample selection bias can occur whenever data are collected in the real-world under
self-imposed constraints. Thus, the data which are collected might not accurately
represent the true underlying distribution [133]. In highway driving datasets, a sample
selection bias could occur due to, e.g., the time of collection (during rush-hour or
not), the location on the highway (just before or after an on-ramp), or the weather
(recording in bad weather conditions). Additionally, since datasets are usually collected
by different teams, the pre- and post-processing techniques can differ. A properly
defined ODD should help combat the sample selection bias constraints should already
be considered in the ODD definition.

5.2.4.2 Imbalanced Dataset

In multi-class classification tasks, one class could be rarer than others, leading to
imbalanced datasets. To overcome this, researchers can randomly sub-sample the
over-represented classes and artificially balance the dataset such that each class is
represented by the same number of samples. In highway driving, lane changes are
much rarer than lane keeping manoeuvres, so researchers generally balance datasets
before training ML algorithms on them. By balancing the dataset, we introduce a
sample selection bias with a known selection bias. It is difficult for the ODD to
consider imbalanced datasets since it considers higher level attributes of the scenario.
Furthermore, the ODD does not consider what samples are contained in highway
driving datasets.

5.2.4.3 Domain Shift

As defined in [133], a domain shift occurs when the interpretation of the measurements,
e.g., the measurement units, varies for different datasets. For example, highway driving
datasets can be collected by teams in countries which use the metric measurement
units, e.g., kilometres, whereas other teams might use the imperial measurement units,
e.g., miles. This can be compensated for by mapping the representations from one
measurement unit to another. Another example could be recording a highway scenario
from a bird’s-eye view or from a vehicle driving in traffic—depending on the vantage
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point the same scenario can have various interpretations, e.g., due to occlusions. This
source of distributional shift is also difficult to capture within an ODD.

5.2.4.4 Source Component Shift

A further potential cause of distributional shifts can be the source component shift.
This occurs when the data are sampled from a number of different sources, e.g., sensors,
or if different sub-populations are measured. For example, the type of camera used
to record highway driving data can affect the dataset distribution. Here, the source
of measurement directly causes different input features and targets to be captured in
the datasets [133]. As the ODD is concerned with the scenarios where AVs should
function, they might not consider a source component shift.

5.3 Analysing Distributional Shifts in Highway Driving Datasets

The authors of [139] were the first to summarize the challenge of robustifying real-
world ML systems to distributional shifts. In the context of ML algorithms in AVs, the
authors of [64; 140] discuss the challenge of distributional shifts when deploying AVs
in the real-world. However, in these publications, the authors only state the (postulated)
challenge of dealing with distributional shifts [64]. In this section, we take this one
step further, and explicitly analyse the types of distributional shifts which can occur in
highway driving scenarios.

Due to the abundance of image data and the relative ease with which researchers
can collect new datasets, distributional shifts between image datasets have been more
thoroughly studied. In [141], the authors study the implicit biases which image datasets
contain, which is a closely related problem to distributional shifts. They show that a
classifier can easily classify which dataset images with the same class label belong to.2
Moreover, they show that when training an ML algorithm on one dataset and testing
on another, the performance drops by roughly 48%. This happens despite the fact that
each of the standard image datasets claims to be representative.

The authors of [142] show that ML algorithms trained on a popular benchmark
image dataset cannot generalize onto a novel test dataset. The authors create a new
dataset by following the same pre-processing steps used to collect the original dataset.
They show that all of the state-of-the-art ML-based classification algorithms perform
10% worse in terms of accuracy on this new dataset. This indicates that there is a
distributional shift between the original and the newly created datasets.

2Note, this is similar to the out-of-distribution detection discussed in Section 5.1.
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Recently, seven new datasets with real-world distributional shifts to train and to
test ML algorithms on were introduced in [143]. Additionally, the Shifts dataset [144]
was introduced with the same motivation; it also contains vehicle motion prediction
data. These datasets were created with domain experts to represent true distributional
shifts which can occur during deployment.

In the following, we analyse the distributional shifts which can occur in realistic
highway driving data. We analyse two publicly available highway driving datasets:
the highD dataset [7] and the NGSIM dataset [8; 9] (cf. Section 3.5.1). Numerous
publications propose ML-based driving algorithms and demonstrate them using
these datasets, see, e.g., [145] and references therein. We identify and quantify the
distributional shifts between these datasets, and show the effect they have on ML-based
safety-critical HAD functions.

5.3.1 Highway Dataset Preparation

To analyse the datasets, we first extract the attributes introduced in Section 3.5.1,
which were common between both datasets. These were all of the attributes besides
the distance to the left and to the right lane markings. We first only extract driving
trajectories belonging to the three driving manoeuvres—these will later be split into
sub-sequences for the Time to Lane Change (TTLC) classification problem. If a
tracked vehicle is in the outer most left (or right) lane, the lateral distance to vehicles
to the left (or right) of this vehicle is set to zero since there are no vehicles further left
(or right) than it. Since the NGSIM dataset is recorded in imperial units, we convert
all measurements into metric units for proper comparison. This can be noted as an
example of a domain shift (cf. Section 5.2.4.3). Furthermore, the NGSIM dataset
is recorded at a sampling rate of 10 Hz, whereas the highD dataset is recorded at a
sampling rate of 25 Hz. Thus, we sub-sample the highD dataset to have comparable
datasets. This is an example of a source component shift (cf. Section 5.2.4.4).

In the end, we summarise the tracked attributes in a multi-variate time-series signal
(cf. Definition 2)

X = [x̄[1], x̄[2], . . . , x̄[N ]] ∈ RΓ×N , (5.1)

where at each time-stamp n ∈ {1, . . . , N}, we summarise the Γ attributes in a vector
x̄[n] = [x1[n], x2[n], . . . , xΓ[n]]T ∈ RΓ. We take scenarios where each vehicle is
tracked for at least N time-stamps, and the event, i.e., the lane change, we want to
classify occurs within this time duration. In the experiments, we consider 6 s prior to
the lane change, i.e., N = 60.
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Left Right Keep Total

highD (unbalanced)
2274 2587 33822 38683

(5.88%) (6.69%) (87.43%) (100%)
highD (balanced) 2274 2274 2274 6822

NGSIM (unbalanced)
1555 500 59382 61437

(2.53%) (0.81%) (96.66%) (100%)
NGSIM (balanced) 500 500 500 1500

Table 5.1: The number of lane change (left and right) and lane keeping (keep) scenarios
in each dataset, before and after dataset balancing.

Since both datasets have a different number of lane change and lane keeping
scenarios, we perform dataset balancing before training the ML-based classifiers
(cf. Section 5.2.4.2). We uniformly random sample scenarios from each class to ensure
that the number of samples per class is equal. The total number of scenarios before
and after dataset balancing can be seen in Table 5.1. There are many more lane
keeping scenarios than lane changes before re-balancing the datasets. This imbalance
is unsurprising since lane changes are relatively rare driving manoeuvres compared
to lane keeping. Moreover, we see that the prior probability of the lane change
manoeuvres are different in the different datasets: in the highD dataset, left lane
changes are rarer than right lane changes (5.88% vs. 6.69%, respectively), however, in
the NGSIM dataset, these probabilities are reversed (2.53% vs. 0.81%, respectively).
This is an example of a prior probability shift (cf. Section 5.2.2). Moreover, this
already indicates that there are differences in the types of driving manoeuvres found in
both datasets.

As we have seen in the preparation of the data, these two publicly available datasets
contain various types of distributional shifts. Although, we can overcome some of
them, e.g., by sub-sampling the highD dataset or (re-)balancing the datasets, we see
in the following analyses, that some distributional shifts between the datasets still
remain. Furthermore, we see that these remaining distributional shifts negatively affect
ML-based HAD functions trained on these datasets.

5.3.2 Qualitative Analysis

In Fig. 5.1, we plot the average attribute value at each time-stamp for all driving
manoeuvres—this represents the average attribute distribution for each attribute at
each time-stamp. The shaded area represents one standard deviation away from the
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mean. We observe that the average longitudinal velocity vlong. (upper right sub-plot) is
higher in the highD dataset. This can be expected, as this dataset was collected on a
German highway. Moreover, we observe that the distances (lower six sub-plots) to
other vehicles is much smaller in the NGSIM dataset, which implies that the traffic
density is higher. This could also explain why the average longitudinal velocities are
lower in NGSIM. The distributions of the accelerations in both the longitudinal and
lateral directions (along. and alat.) are different between the two datasets. At roughly 20
time-stamps before the event occurs (N ≈ 40) we observe that the lateral acceleration
alat. in the highD data diverges from the mean. This can be explained by the vehicles
accelerating or decelerating shortly before changing lanes to stay in flow with the
traffic.

The average trend of some of the signals is also different between the two datasets,
e.g., the attribute dr, ahead grows on average in the highD dataset and stays relatively
constant in the NGSIM dataset. This could be explained by different driving styles
between the two countries. The standard deviation of the attributes in the highD
dataset is also larger than in the NGSIM dataset. This could affect an ML algorithm
trained on these datasets, since ML algorithms update their parameters based on the
distribution of the training data. Thus, we can qualitatively conclude that there is a
covariate shift (cf. Section 5.2.1) between the highD and the NGSIM dataset.

Another qualitative analysis is to visualise the likelihood distribution for the
different driving manoeuvres. To this end, we plot the average value of the attributes
corresponding to a left lane change from both datasets in Fig. 5.2, i.e., the mean of
p(X|{y = left}). We observe that the average lateral velocity for left lane changes is
similar for both datasets. The distribution of the longitudinal accelerations (along.) are
also similar, but the NGSIM data has a higher standard deviation. The means of the
other attributes differ significantly, especially the longitudinal velocity (vlong.). We
can see that the trend of the distance attributes is different between the datasets. This
qualitative analysis indicates that there is also a concept shift (cf. Section 5.2.3) between
the two datasets. An analysis of the distribution of the other driving manoeuvre can be
found in Appendix B.3

5.3.3 Quantitative Analysis

Following the qualitative analysis of the distributional shifts, we continue with a
quantitative analysis. To this end, we employ a two-sample statistical hypothesis test

3Note, similar qualitative conclusions about the distributions of the various driving manoeuvres can
be made if we use normalised input attributes, e.g., if we normalise each attribute from each dataset to lie
within the range of [0, 1].
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Figure 5.1: Qualitative analysis of the datasets by visualising the average attribute
values at each time-stamp for all driving manoeuvres. The shaded areas represent one
standard deviation away from the mean.

to determine whether the samples in two datasets originate from the same underlying
probability distribution.

5.3.3.1 Statistical Hypothesis Tests

Suppose we have two datasets, DA = {x1, . . . ,xM} and DB = {x′1, . . . ,x′M ′},
where the samples x ∼ P and x′ ∼ Q are iid sampled from the (unknown) probability
distributions P andQ, respectively. We assume x ∈ X and x′ ∈ X . We are interested
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Figure 5.2: Qualitative analysis of the datasets by visualising the average attribute
values at each time-stamp for left lane changes. The shaded areas represent one
standard deviation away from the mean.

in distinguishing between two hypotheses: the null hypothesis,

H0 : P = Q, (5.2)

and the alternative hypothesis,

H1 : P 6= Q. (5.3)

To this end, a test statistic T : XM × XM ′ → R is constructed based on the samples
in both datasets, whereM andM ′ are the number of samples in dataset DA and DB ,
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respectively. To deal with the situation where the distribution of the test statistic is
unknown, we use the bootstrappingmethod [146], i.e., we uniformly resample the union
of the datasetsDA ∪DB without replacement, to estimate the empirical distribution of
the test statistic under the null hypothesisH0. To estimate the empirical distribution
of the test statistic under the alternative hypothesis H1 we follow a similar sampling
method as [147, Alg. 1]. We sub-sample the two datasets without replacement to
emulate having multiple original datasets. We can subsequently calculate the test
statistic T on these sub-sampled datasets under the alternative hypothesis H1.

Once we derive the test statistic under the null hypothesis H0, we can calculate
a p-value of the test statistic to estimate the statistical significance of rejecting the
alternative hypothesis. The p-value is the probability of the two-sample test returning
a test statistic at least as large as the test statistic calculated on the datasets DA and DB
(before bootstrap resampling) whenH0 is true. Thus, the null hypothesis is rejected
if the p-value lies under a pre-defined significance value α and accepted otherwise;
α is usually set to 0.01 or 0.05. This represents a 1% or 5% false alarm rate for H0

being true. Furthermore, we calculate the True Positive Rate (TPR) of rejecting the
null hypothesis when H1 is true at a 5% false positive rate using [147, Alg. 1].

5.3.3.2 Kernel Test Statistic

A popular choice of a non-parametric test statistic used for two-sample tests is based
on the MaximumMean Discrepancy (MMD) measure, see, e.g., [148] for more details.
To define the MMD, we first define a positive definite kernel k : X × X → R in a
Reproducing Kernel Hilbert Space (RKHS) H, where k(x,x′) = 〈φ(x), φ(x′)〉H
with a corresponding feature mapping φ ∈ H. The MMD measure between two
probability distributions can be defined as [148, Lemma 4],

MMD2(P,Q) = ‖µP − µQ‖2H, (5.4)

with the mean embedding of the distribution P or Q as µP ∈ H or µQ ∈ H,
respectively. The mean embeddings are defined such that EP [φ(x)] = 〈φ(x),µP 〉H
and EQ[φ(x)] = 〈φ(x),µQ〉H for all φ ∈ H. Thus, the MMD measure compares all
higher-order moments of the distributions in the RKHS. The MMD measure is equal
to 0 if and only if P = Q [148, Lemma 5]; if the kernel is universal.

If we have two datasets DA and DB whose samples are assumed to be drawn from
P and Q, respectively, we can state an unbiased empirical estimate of the squared
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MMD measure as [148, Lemma 6]

M̂MD
2
(DA,DB) =

1

M(M − 1)

M∑
i=1
j 6=i

k(xi,xj) +
1

M ′(M ′ − 1)

M ′∑
i=1
j 6=i

k(x′i,x
′
j)

− 2

MM ′

M∑
i=1

M ′∑
j=1

k(xi,x
′
j). (5.5)

In the experiments, we employ the Gaussian kernel, k(x,x′) = exp(−γ‖x− x′‖22),
wherex,x′ ∈ X, and the bandwidth parameter γ = 1/(Dσ2) with the input dimension
D and where we use σ2 as the variance of all samples in the datasets DA and DB .

5.3.3.3 Classifier Two-Sample Test

Alternatively, we can train a Deep Neural Network (DNN) to detect whether the
samples come from the same distribution—we use the Classifier Two-Sample Test
(C2ST) [149]. First, we create a training dataset S by taking an equal number of
samples from both datasets, i.e.,

S = {(xi, yi = 1)}MSi=1 ∪ {(x
′
j , yj = 0)}MSj=1, (5.6)

where the samples x ∈ DA and x′ ∈ DB , and we take MS ≤ min(M,M ′).
Furthermore, we split the dataset S into Strain and Stest, with MS,train and MS,test
samples, respectively

We train a classifier g : X→ [0, 1], which approximates the posterior distribution
p(yk = 1|x), when employing a sigmoid activation function at the output of the DNN.
A hypothesis test can now be performed by analysing the accuracy of the classifier on
the test dataset, i.e.,

TC2ST =
1

MS,test

MS,test∑
k=1

I(round(g(xk)) = yk), (5.7)

with the indicator function I. The test statistic TC2ST is Gaussian distributed with
TC2ST ∼ N (1/2, 1/(4MS,test)) [149]. Thus, the null hypothesis H0 is accepted when
the test statistic TC2ST (the accuracy of the classifier) is around 50%, and rejected
when a pre-defined threshold is exceeded, e.g., TC2ST ≥ 90%. Since we only have two
classes as the samples are labelled according to which dataset they stem from, if the
classifier has an accuracy of 50% it is the same as random guessing. Therefore, the
classifier is unable to differentiate between the two classes and H0 is accepted.
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5.3.3.4 Quantitative Results

First, we estimate the distribution of the MMDmeasures underH0 andH1 as described
in Section 5.3.3.2. We plot the estimated distributions in Fig. 5.3 for the different driving
manoeuvres in the highD and the NGSIM datasets. We observe that the distribution
of the MMD under H0 and H1 are very different, i.e., a statistical hypothesis test
would rejectH0 indicating that there is a distributional shift between the two datasets.
On top of this, we see that the distribution of the MMD measure for the different
driving manoeuvres also indicate a distributional shift. In all cases, the p-values
are smaller than α = 0.05, indicating that the null hypothesisH0 would be rejected.
Looking at the TPR under H1, we observe that a hypothesis test with a false alarm
rate of 5% would always accept H1. These results quantitatively indicate that there is
a distributional shift between the two datasets and between the driving manoeuvres
contained in the datasets (a concept shift, cf. Section 5.2.3)).

In order to verify these results, we estimate the distribution of the MMD measure
under H0 and H1 on each dataset individually. To achieve this, we split each dataset
into two disjoint sets and calculate the MMD measure on these sub-sets. The results
are depicted in Fig. 5.4. We observe in Fig. 5.4a and Fig. 5.4b that the distributions
are similar. For these results, we observe a p-value larger than α = 0.05, indicating
that the null hypothesis H0 would be accepted. Moreover, we achieve a TPR under
H1 of around 5.0% for both tests, indicating that a hypothesis test using the MMD
measure would more likely acceptH0. This indicates that there is no distribution shift
within either the highD nor the NGSIM datasets.

Following this, we analyse the results of using the C2ST to determine whether
there is a distributional shift between the datasets. The C2ST results are depicted as
the classification accuracy on Stest. The C2ST network architecture is taken from [150,
Sec. 2.2.2], with one output neuron. We train it for 50 epochs using the Adam
optimiser [102] with mini-batches of size 16 and an initial learning rate of η = 0.005.
To get reliable results, we average the accuracies of ten C2STs trained on different
train/test splits of the various datasets.

We observe in Tab. 5.2a that the C2ST rejects the null hypothesisH0 for the whole
dataset since the average accuracy is larger than 90%. Furthermore, the bottom three
rows indicate that there is a concept shift (cf. Section 5.2.3) between the two datasets
for all driving manoeuvres; the C2ST rejects the null hypothesis H0 for these as well.

In Tab. 5.2b, we show the results of the C2ST with samples only from within
one dataset, i.e., we split each dataset into two disjoint sets, and test whether the two
sub-sets come from the same distribution. The C2ST indicates that samples from
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Figure 5.3: Estimates of the MMD test statistic distribution under H0 and H1 for
different datasets and driving manoeuvres. In these cases, the hypothesis test would
reject the null hypothesis, indicating there is a distributional shift between the datasets.
(Note, the horizontal axes are discontinuous in these plots.)
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Figure 5.4: Estimates of the MMD test statistic distribution under H0 and H1 for the
same dataset. In these cases, the hypothesis test would accept the null hypothesis,
indicating there is no distributional shift within the datasets.

TC2ST [Acc. %]

DhighD vs. DNGSIM 97.25(±0.27)

Dleft
highD vs. Dleft

NGSIM 95.35(±1.14)

Dright
highD vs. Dright

NGSIM 94.25(±2.01)

Dkeep
highD vs. Dkeep

NGSIM 94.40(±1.68)

(a) Hypothesis testing between datasets.

TC2ST [Acc.%]

DhighD vs. DhighD 49.68(±0.84)

Dleft
highD vs. Dleft

highD 48.51(±1.01)

Dright
highD vs. Dright

highD 48.67(±1.63)

Dkeep
highD vs. Dkeep

highD 49.16(±0.97)

DNGSIM vs. DNGSIM 48.63(±1.10)

Dleft
NGSIM vs. Dleft

NGSIM 51.50(±3.00)

Dright
NGSIM vs. Dright

NGSIM 46.30(±2.08)

Dkeep
NGSIM vs. Dkeep

NGSIM 45.20(±1.26)

(b) Hypothesis testing within datasets.

Table 5.2: Results indicating: (a) distributional shifts between the NGSIM dataset and
the highD dataset (all TC2ST average accuracies are> 90%); (b) no distributional shifts
were detected within either dataset (all TC2ST average accuracies are around 50%).
The results are averaged over 10 random restarts with the 95% confidence interval in
brackets.
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within each dataset stem from the same distribution (since the classification accuracy is
around 50%). Moreover, the driving manoeuvres within each dataset also come from
the same underlying distribution. On top of this, these results indicate that combining
the two NGSIM datasets into one dataset, as done in this analysis, was meaningful.

5.3.4 Effects of Distributional Shifts on Learned Models

To evaluate the effect distributional shifts have on learned ML models, we train
ML-based classifiers to perform the TTLC task (cf. Section 3.5.2). We train the same
DNN architectures introduced in Chapter 4 (see Table 4.1). This was a collection of
various 1-D Convolutional Neural Networks (CNNs) architectures (including Multi-
Channel (MC) architectures), Recurrent Neural Network (RNN)-based architectures,
an attention-based architecture, and a Fully Connected (FC)-DNN.

To generate a suitable dataset to train the DNNs, we first extract all scenarios from
the highD [7] and the NGSIM [8; 9] datasets where the tracked vehicle is visible for
6 s time-stamps prior to the driving manoeuvre; equivalent to N = 60 time-stamps.
In this section, we consider sub-sequences of length 3 s, such that each lane change
manoeuvre is split into sub-sequences of length Nsub. = 30 time-stamps. Therefore,
we have a total of two classes for left and right lane changes, and one class for the lane
keeping manoeuvre, i.e., Y = {L1,L2,K,R2,R1} (cf. Section 3.5.2).4

We split both balanced datasets into disjoint sets. We use 80% of the data for the
training set and 20% for the test set, i.e.,Mtrain = b0.8 ·Mc andMtest = M −Mtrain.
Thus, we create the datasets DhighD, train, DhighD, test, and DNGSIM, train,DNGSIM, test,
respectively.

To train the DNNs, we use the cross-entropy loss function (cf. Section 3.4.1). We
train each algorithm using the Adam optimiser [102] with an initial learning rate of
η = 0.0005 and mini-batches of size 200. All of the network parameters are initialised
using the Glorot initialisation [111]. We employ early stopping with a patience of 20

epochs to reduce overfitting the training set. Additionally, we average the classification
performance using 10-fold cross validation (see [69]). The exact parameters and
architecture designs of the models in Table 4.1 can be found in Appendix C.1. The
algorithms are trained once on DhighD, train and once on DNGSIM, train.

To visualise the effect which the distributional shifts have on trainedML algorithms,
we plot the average accuracy of each classifier architecture on the test sets from both
datasets. This visualisation method was introduced in [142]. Fig. 5.5a and Fig. 5.5b

4Note, this is a slightly different TTLC task compared to Chapter 4 due to the different sampling rate
of the NGSIM dataset used in this chapter.

86



5.3 Analysing Distributional Shifts in Highway Driving Datasets

0 10 20 30 40 50 60 70 80 90 100
0

20
40
60
80
100

Acc. on DhighD, test [%]

A
cc
.o

n
D

N
G
SI
M
,t
es
t
[%

]

CNN-I CNN-II CNN-III
CNN-I MC CNN-II MC CNN-III MC
LSTM-[10] GRU-[12] Gated Tr.-[95]
FC-DNN Ideal

0 10 20 30 40 50 60 70 80 90 100
0

20
40
60
80
100

Acc. on DhighD, test [%]

A
cc
.o

n
D

N
G
SI
M
,t
es
t
[%

]

CNN-I CNN-II CNN-III
CNN-I MC CNN-II MC CNN-III MC
LSTM-[10] GRU-[12] Gated Tr.-[95]
FC-DNN Ideal

(a) Classifiers trained on DhighD, train.
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(b) Classifiers trained on DNGSIM, train.

Figure 5.5: The average accuracy of the learned ML algorithms tested on both test
datasets. The error bars represent the 95% confidence intervals. All models perform
better on the distribution they were trained on.

depict the accuracies when the models are trained on either the highD or the NGSIM
training datasets, respectively. Each plot depicts an accuracy pair of an ML-model
trained on one distribution and tested on both distributions. The error bars represent
the 95% confidence intervals. The lines labelled Ideal in Fig. 5.5 shows the ideal
transferability between two datasets if there was no distributional shift, i.e., the test
performance would be the same on both datasets.

We observe in Fig. 5.5a the accuracies of the models trained on DhighD, train. We
see that the accuracy on DhighD, test is much larger than on DNGSIM, test. Almost all
ML models achieve an accuracy of over 95% on the DhighD, test, which stems from the
same distribution as the data they were trained on (cf. Section 5.3.3.4). However, on
DNGSIM, test, the models only achieve an accuracy below 35%. We observe that the
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performance of all of classifiers drops by an average of 72%. This could be seen as
the classifiers overfitting the training distribution (DhighD, train).

On the other hand, when we train the ML models on DNGSIM, train, we obtain the
results in Fig. 5.5b. In this plot, we see that the distributional shifts do not affect the
models as much when they are trained on DNGSIM, train since the accuracy pairs lie
closer to the Ideal line. However, we see that the performance on DNGSIM, test is still
better than on DhighD, test (all accuracy pairs lie above the Ideal line). Moreover, we
observe that there is a greater spread of the classification performances of the different
classifiers, e.g., the FC-DNN classifiers are affected the most by the distributional shift,
whereas the CNN-III MC classifiers lie close to the Ideal line. In this case, the average
decrease in accuracy is only 25%. However, the accuracies on the training dataset are
not impressive. One reason for this could be that the NGSIM training dataset is much
smaller than the highD dataset; it is known that DNN models require lots of data to
train and generalise well.

5.4 Fine-Tuning under Distributional Shifts

Given the results from the previous section, we now consider how we can train an
ML-based classifier under distributional shifts. A first idea would be to use fine-tuning
to transfer the knowledge from one domain into the other, see, e.g., [130; 131].
However, as we see in the following, transferring the knowledge without any further
considerations of the distributional shifts between the two datasets will leave us with a
model which performs well on the new distribution (the target domain) but poorly on
the original distribution (the source domain). If performed naively, fine-tuning will
forget the source distribution and only fit the target distribution, i.e., we end up going
from an accuracy-pair point in Fig. 5.5a to an accuracy-pair point in Fig. 5.5b or vice
versa.

As we saw in Chapter 4, the feature embeddings in the penultimate layer of a trained
DNN are important and sufficient to perform a classification task (cf. Section 4.4.1 and
Table 4.3). Therefore, we want to use the feature embeddings from the source domain
when fine-tuning on the target domain. To this end, we introduce an additional loss
term to the fine-tuning classification loss function. This gives an engineer the ability
to control the transfer of knowledge from the source to the target domain. They can
trade off forgetting the source domain and learning the target domain. On top of that,
methods from domain adaptation tasks (cf. [130]), e.g., deep domain confusion [151]
or deep adaptation network [152], use the feature embeddings at various layers in a
DNN in the loss function to adapt a model to a new domain.
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In the following, we refer to the dataset from the source and from the target domain
as DS and DT , respectively. The DNN trained on the source domain is fS with
parameters PS ; the DNN fine-tuned on the target domain is fT with parameters PT .
The DNN fT is initialised with the parameters PS , i.e., the parameters learned on the
source domain. Ultimately, we aim to train the DNN fT on DT without forgetting
what was learned on DS .

We introduce a fine-tuning loss function aiming to keep the feature embeddings in
the target domain close to those learned from the source domain. Thus, we use the
source domain feature embeddings when fine-tuning the DNN’s parameters on the
target domain. This leads to the loss function

Lce + dist.(DT ;PT ) = (1− ζ) · Lce(DT ;PT ) + ζ · Ldist.(featfS , featfT ,DT ;PT ),

(5.8)

where Lce is the cross-entropy loss on the target domain and Ldist. is a loss function
keeping the distance between the feature embeddings from the source network (featfS )
close to those in the target domain (featfT ). The parameter ζ ∈ [0, 1) is the trade-off
between howmuch weight we put on learning the classification task on the target dataset
(Lce) and how much weight we put on keeping the feature embeddings close (Ldist.).
With a ζ = 0, we perform fine-tuning without considering the feature embeddings in
the source domain. When ζ → 1, the loss function de-emphasises the classification
task in the target domain and primarily focuses on keeping the feature embeddings in
the target domain close to those from the source domain. The distance loss function is
defined as

Ldist.(featfS , featfT ,DT ;PT ) =
1

MT

MT∑
m=1

‖featfS (Xm;PS)− featfT (Xm;PT )‖22,

(5.9)

where the feature embedding functions featfS and featfT (cf. (4.1)5) depend on the
parameters learned on the source domain PS and the target domain PT , respectively.
This loss function encourages the feature embeddings from the target domain to remain
close to those calculated using the source network.

Algorithm 3 summarises how to fine-tune the parameters on the target distribution.
As inputs to the algorithm, we require the DNN trained on the source domain (fS)
with parameters PS , a number of training epochs E, a training dataset from the target

5Note, to differentiate between the feature embedding function using the source DNN and the target
DNN, we explicitly label the function with fS and fT , respectively.

89



Chapter 5. Validation Safety Arguments based on Dataset Distributions

Algorithm 3 Fine-Tuning under Distributional Shifts
1: Inputs: DNN fS trained on DS with parameters PS , number of epochs E, target

training dataset DT , trade-off parameter ζ
2: PT ← PS
3: for epoch = 1, . . . , E do
4: G← ∇PT

[(1− ζ) · Lce(DT ;PT ) + ζ · Ldist.(featfS , featfT ,DT ;PT )]

5: Update the parameters PT of fT to minimise (5.8) using the gradients G and
an optimiser, e.g., ADAM

6: end for

domainDT , and the trade-off parameter ζ . In Line 2, we initialise the target DNN with
the same parameters learned on the source domain. In Line 4, we take the gradient of
the fine-tuning loss function with respect to the parameters PT . Then we update the
parameters PT to minimise (5.8) using the gradients G. Note, during this fine-tuning,
the parameters PS are fixed and not updated. The trade-off parameter ζ allows an
engineer to either learn more of the target domain (by setting ζ → 0) or remember
more from the source domain (by setting ζ → 1).

5.4.1 Fine-Tuning under Distributional Shifts: Results

With the proposed fine-tuning algorithm (Algorithm 3), we can now fine-tune the
parameters of the networks introduced in Section 5.3.4. We use the same 80%/20%
train/test split as introduced in the previous section for the source and the target datasets.
To fine tune the DNNs, we use the Adam optimiser [102] with an initial learning rate
of η = 0.0001 and mini-batches of size 64. We set the maximum number of epochs to
E = 100 in Algorithm 3.

In Fig. 5.6, we highlight how the trade-off parameter ζ can be used to control
forgetting of the source domain and the learning of the target domain. We fine-tune
on the CNN-I architecture; however, similar results can be achieved when fine-tuning
the other DNN architectures (see Fig. 5.7 or Appendix B.2). In Fig. 5.6a, we show
the results of fine-tuning the ML algorithm on the NGSIM dataset after originally
training on the highD dataset; we plot the converse results in Fig. 5.6b. We vary ζ
between 0 and 1, where ζ = 0 is equivalent to fine-tuning without taking the distance
loss into account (cf. (5.8)). The different ζ values are represented by the colour of the
points. We observe that by merely fine-tuning the CNN on the target distribution, we
end up with a similar performance as when we do not consider the source distribution
at all. We can compare the dark blue point in Fig. 5.6a with the corresponding point
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(a) Classifiers trained on DS = DhighD, train and fine-tuned on DT = DNGSIM, train.
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(b) Classifiers trained on DS = DNGSIM, train and fine-tuned on DT = DhighD, train.

Figure 5.6: The average accuracy of the CNN-I architecture, trained on a source
dataset DS and fine-tuned on the target dataset DT . The models are then tested on
both test datasets. The error bars represent the 95% confidence intervals.

in Fig. 5.5b. In this case, the ML algorithm performs well on the target distribution
but poorly on the source distribution likely due to the distributional shift between the
two datasets. On the other hand, we observe that by increasing ζ, we can trade off the
forgetting and learning to achieve (arbitrary) points along the curve in the accuracy
space. For example, it might be important for the ML algorithm to perform equally
well on both distributions or we might want to encourage the DNN not to forget the
source domain. We see a similar ability to influence the trade-off with ζ in Fig. 5.6b.

To highlight that the proposed fine-tuning method works on the other DNN
architectures, we plot the accuracy pairs before and after fine-tuning in Fig. 5.7. For
each DNN architecture, we plot the average accuracy on DhighD, test and DNGSIM, test.
We first plot the accuracies before fine-tuning (Pre), i.e., the accuracy pairs from
Fig. 5.5a. Then we plot the fine-tuning with ζ = 0 and with ζ → 1, to highlight
the two extreme points of the proposed fine-tuning algorithm. We see, in general,
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Figure 5.7: Classification performance before and after fine-tuning with Algorithm 3
with different ζ values. The classifiers are trained on DS = DhighD, train and fine-tuned
on DT = DNGSIM, train.

that before fine-tuning there is a large discrepancy between the accuracy on the two
test datasets (the rows with the label Pre). When we fine-tune without taking the
source distribution into account (ζ = 0), we observe that this discrepancy changes
sign, i.e., the DNN performs better on the target distribution (DT ) than on the source
distribution (DS). However, if we set ζ → 1, we see that we do not forget the source
distribution (DS) but gain performance on the target distribution (DT ). By varying
the trade-off parameter between 0 and 1, an engineer can choose a suitable parameter
for the task at hand. Moreover, the proposed fine-tuning algorithm can influence the
learning of a wide-range of DNN architectures under distributional shifts.
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5.5 Dataset Distribution based Safety Argument: Summary

Motivated by the challenge of validating ML algorithms in safety-critical HAD
functions, we turn our attention to the data which are used to train these driving
functions in this chapter. First, we recapitulate the different types of distributional shifts
which can occur in highway driving data, and we discuss when and how these shifts
may occur. Subsequently, we demonstrate that a distributional shift exists between
two public highway driving datasets. We provide both a qualitative and a quantitative
analysis of the distributional shifts between the datasets.

We additionally show that these shifts impact the performance of an ML-based
HAD function trained on the datasets. Ultimately, we introduce a fine-tuning algorithm
allowing an engineer to trade off forgetting of the source distribution and learning of
the target distribution. This method can be used in safety-critical HAD functions if a
distributional shift has been detected between two datasets, e.g., when a vehicle drives
in a new country or in novel environment conditions.

Themethods we introduce in this chapter can be used to first analyse the distribution
of the datasets where the ML-based HAD function might be deployed and to fine-tune
this ML algorithm to the new distribution. Allowing an engineer to argue for safety
by considering—and adapting an ML algorithm to—the distributional shifts between
different datasets.
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Validation Safety Arguments based
on Algorithm Designs 6

In this chapter, we discuss methods to develop safety arguments for the validation
of Highly Automated Driving (HAD) functions based on the design of the Machine
Learning (ML) algorithm (cf. Section 6.1). We focus on designing an interpretable ML
algorithm which directly aids in validating ML-based HAD functions. We introduce
an interpretable Lane Change Detector (LCD) algorithm based on an explicit decision
rule-set considering the reconstruction errors of Deep Autoencoders (DAEs) trained to
reproduce specific driving manoeuvres (cf. Section 6.2). We further demonstrate the
interpretability and tunability of this interpretable LCD algorithm (cf. Section 6.3).
The results presented in this chapter are based on those found in [17; 153].

6.1 Algorithm Design Motivation

The overall design of the ML algorithm plays a major role in creating a validation
safety argument in safety-critical applications. Whether an engineer uses a traditional
ML algorithm, e.g., a Decision Tree (DT) or a k-Nearest Neighbours (k-NN) classifier,
or if they choose to use an end-to-end learned ML algorithms1 will affect the overall
safety of the system. The former methods are directly human interpretable whereas an
end-to-end learned ML system is a black-box. On top of that, data-driven ML-based
functions are vulnerable in various ways, e.g., they can easily be attacked by perturbing
the inputs or they can be overly confident on wrong outputs.

One possibility to tackle the vulnerabilities which ML-based functions display
is to apply a function corrector model around an already trained black-box ML
algorithm, see, e.g., [154; 155]. These function corrector models are motivated by
stochastic separability theories ([156; 157]) which make use of properties in high
dimensional spaces. Specifically, they take advantage of the measure concentration

1End-to-end learned HAD functions generally take the environment signal data as input to the ML
algorithm, and output the Autonomous Vehicle (AV) controls directly. This algorithm design is in
contrast to a modular design with, e.g., perception, planning, and acting modules (cf. Fig. 1.1).
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in high dimensional space such that the higher the data dimension, the higher the
probability that one can linearly separate finite sets of samples. These stochastic
separability theories were proven for various (simple) distributions, e.g., uniform
distribution on a ball or a unit cube [156; 157]. Moreover, when applied to the large
Deep Neural Network (DNN) models, the authors of [154] show a linear corrector
can separate incorrect classifications from correct classifications. Thus, a corrector
can improve the overall performance of the ML-based function. We could design a
corrector function around the original ML algorithm and correct its classifications.

Additionally, ML algorithms are vulnerable to adversarial attacks [158]—these
are perturbed inputs (usually imperceivable to the human eye) but the DNN outputs
an incorrect label with high confidence, e.g., the image of a cat can be perturbed
such that it is classified as a dog by the DNN. These adversarial attacks have also
been shown to work on time-series data, see, e.g., [159; 160; 161], and even in the
real-world by manipulating road signs, see, e.g., [162]. As more HAD functions
integrate ML-based pipelines, these adversarial attacks pose an ever greater challenge.
A popular method to defend against adversarial attacks is to include the perturbed
inputs into the training dataset and train a classifier robust to those attacks—this is
known as adversarial training [158; 163]. Another defence against adversarial attacks is
to detect which inputs are adversarial, see, e.g., [164; 165]. Therefore, when designing
an ML algorithm for an application in the real-world or safety-critical functions, we
should take defending against adversarial examples into consideration.

Another possible algorithm design choice is the extent to which the ML algorithm
is human interpretable. Since end-to-end learned ML algorithms are opaque to the
users and engineers, when they make a mistake, it is challenging to understand exactly
why it happened. We discuss the field of Explainable Artificial Intelligence (XAI) in
terms of ML safety and for the validation of ML-based safety-critical functions in
Section 2.1 and Section 2.4, respectively. The methods discussed in those sections,
show the possibility of designing interpretable ML algorithms which can, in turn,
strengthen the overall safety argument.

Overall, these algorithm design choices come with various trade-offs, e.g., there is
a trade-off between the performance of ML-based functions and their interpretability
or their robustness to adversarial or to out-of-distributional samples. These trade-offs
should be taken into consideration when comparing the performance of ML-based
functions. In this chapter, we introduce an interpretable algorithm design and allows an
engineer to choose the function parameters depending on what performance measure
they prioritise.
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6.2 An Interpretable Lane Change Detector Algorithm

The proposed interpretable LCD algorithm considers the Time to Lane Change (TTLC)
prediction use-case introduced in Section 3.5, i.e., we track surrounding vehicles
over time and detect when they are going to change lanes. Since the input data are
multi-variate time-series data (see Definition 2), we design the interpretable LCD
algorithm to take this into account. The algorithm detects a lane change depending on
the reconstruction errors of three independent ML-based anomaly detection functions—
each trained on a specific driving manoeuvre.

First, we discuss a possible method to detect anomalies—also known as outliers—
in time-series data. An overview of other possible (ML-based) methods for anomaly
detection can be found in [166; 167]. The DAE [168; 99] is a popular anomaly
detection method (see, e.g., [166]) because it is trained in an unsupervised manner,
i.e., it detects anomalies based on the intrinsic properties of the data without the need
of labels. A DAE attempts to reconstruct the input signal whilst representing the
essential information in a smaller dimensional space, i.e., it aims to minimise the
reconstruction error between input and output signals with a smaller dimensional latent
space between them (cf. Section 3.3.5). After a DAE is trained on a specific distribution,
it should only be able to reconstruct samples from the same distribution. Samples
from other distributions will be incorrectly reconstructed, and the reconstruction error
will be relatively large (compared to in-distribution samples). This is the basis of a
DAE anomaly detector—when the reconstruction error is small, the sample can be
categorised to the training data distribution and when it is large, the sample can be
flagged as anomalous.

In [169], a time-series anomaly detection algorithm is introduced using a Con-
volutional Neural Network (CNN) with an encoder/decoder architecture, similar to
the structure of a DAE. The algorithm is able to detect and classify different types
of anomalous signals in streaming time-series data. In [170], an anomaly detection
algorithm is introduced to detect abnormal trajectories of road participants at various
intersections. The authors train a DAE on sequential data recorded at these intersections.
They then classify unseen time-series samples as being normal or abnormal depending
on the reconstruction error at the output of the DAE, i.e., if the reconstruction error is
larger than a pre-defined threshold, the sample is classified as an anomaly (abnormal).

Researchers have also employed DAE algorithms in the related tasks of: recon-
structing, predicting, and generating vehicle trajectories in highway scenarios. The
authors of [171] introduce an algorithm to predict the future trajectory of vehicles
using Recurrent Neural Network (RNN)-based DAEs, which also takes the drivers’
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lane change intention into consideration. They show that this DAE architecture can
predict the lateral and longitudinal position of vehicles up to 5 s into the future.
In [50], the authors introduce multiple unsupervised ML methods to generate lane
change trajectories. They show that a DAE algorithm is able to generate new realistic
trajectories by varying the latent space representations. This work was extended in
[51] using Bézier curves to generate smoother trajectories, but the underlying DAE
architecture remains the same. Therefore, we see that a DAE is able to successfully
learn the underlying distribution of multi-variate time-series data and even reconstruct
driving trajectories.

With these results in mind, we propose an interpretable LCD algorithm, depicted
in Fig. 6.1. It takes advantage of the performance of DAEs to reconstruct driving
trajectories and detect anomalies. The algorithm classifies the lane changes based on
the reconstruction errors at the output of three independently trained DAEs (depicted
in the dashed box in Fig. 6.1): one to reconstruct left lane changes (fleft); one to
reconstruct right lane changes (fright); and one to reconstruct lane keeping (fkeep).
Since these DAEs are trained on independent datasets, we argue that they should only
be able to reconstruct samples from their respective distributions. The main idea is:
if, e.g., we have a left lane change sample, we expect a small reconstruction error
at the output of fleft (since this was the distribution fleft is trained on). At the same
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time, we expect both fright and fkeep to struggle to reconstruct this sample, and they
would have larger reconstruction errors. Therefore, we can define a threshold for the
reconstruction errors to determine when a sample belongs to the driving manoeuvres
the DAE was trained on. For the previous example, the reconstruction error of fleft
would be smaller than its corresponding threshold, and the errors of fright and fkeep
would be larger than their thresholds.

We can then define a rule-set based on these thresholds to detect upcoming
driving manoeuvres. By pre-determining these thresholds, an engineer is able to
trade off the classification performance of the detection algorithm with a reliable
detection time, i.e., whether the algorithm can reliably detect a lane change earlier
or later (cf. Definition 5). Furthermore, the proposed LCD algorithm is intrinsically
interpretable (cf. Section 2.1). We investigate this in more detail in Section 6.3.4.

6.2.1 Dataset Generation

As training data for the DAEs, we use the realistic driving data summarised in the
highD dataset [7] (cf. Section 3.5.1). First, we extract the driving manoeuvrers, i.e., left
lane changes, right lane changes, and lane keeping, from the highD dataset; These
contain the multi-variate time-series signals the DAEs should reconstruct. For the lane
keeping data, a scenario is defined where the observed vehicle remains in its lane for
all time-steps.

We create a training dataset for the DAEs as follows: first, a set of scenarios is
created

D′j =
{
X̃1, . . . , X̃Mj

}
, (6.1)

with the dataset label j ∈ {left, right, keep} and each scenario is defined as

X̃ =
[
x̄[1], x̄[2], . . . , x̄[Nlc]

]
∈ RΓ×Nlc , (6.2)

where the event, e.g., the centre of a vehicle crosses the right lane marking, occurs
at time-step Nlc. At each time-stamp n = 1, . . . , Nlc, we summarise the Γ attribute
signals in a vector x̄[n] = [x1[n], x2[n], . . . , xΓ[n]]T ∈ RΓ. We use the input attributes
which describe the tracked vehicle’s trajectory, since it was shown that these can be
reconstructed by the DAE architecture (see [50]). These trajectory input attributes are
summarised in Table 6.1.

Once we have a set of scenarios describing different driving manoeuvres—each
with a different number of samples (Mj)—we further process the data by passing a
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Attribute Unit Description
vlat. m/s Lateral velocity
vlong. m/s Longitudinal velocity
alat. m/s2 Lateral acceleration
along. m/s2 Longitudinal acceleration
dleft m Distance to left lane marking
dright m Distance to right marking

Table 6.1: The input attributes used when training the DAEs for the interpretable LCD
algorithm (in this case, Γ = 5).

sliding window over them with a constant window sizeW [76] (cf. Definition 4). This
creates a set of sub-sequences of the scenario, which the DAE should reconstruct.

Thus, the dataset for each driving manoeuvre is summarised as

Dj =
{

win
(
X̃1;W

)
, . . . ,win

(
X̃Mj ;W

)}
, (6.3)

with the dataset label j ∈ {left, right, keep}, and each input sample, after windowing,
has the dimension X̄ ∈ RΓ×W . The function win is defined in Definition 4. In total,
we have |Dj | = Mj(Nlc −W + 1) samples for each driving manoeuvre since each
scenario is split into Nlc −W + 1 sub-sequences.

With a dataset defined for each of the three manoeuvres, we split them into three
disjunct sets for: (i) training the DAE (Dtrain,j); (ii) determining the threshold values
(Dval,j); and (iii) testing the detection performance (Dtest,j). We separate the dataset
into a 70%, 10%, and 20% split of the total data |Dj |, respectively.

An introduction of the DAE architecture is presented in Section 3.3.5. Since we
aim to reconstruct the input signals, we use the Mean Squared Error (MSE) error
function to train the DAEs (cf. Section 3.4.2).

6.2.1.1 Anomaly Detection of Driving Manoeuvres

A main benefit of training a DAE on multi-variate time-series data is the ability to
detect anomalous signals (see, e.g., [166; 170]). Since the DAE can reconstruct
data which are from the same distribution as the training set, when a signal from
a different distribution is input, the reconstruction error at the output will be larger.
Thus, by observing the reconstruction error, we can estimate whether the input signal
is in-distribution or not.
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6.2.2 Interpretable Lane Change Detector Algorithm

In the first step of the proposed LCD algorithm, three DAEs (fleft, fright, and fkeep)
should be trained on representative datasets. The three DAEs are trained on left lane
changes, right lane changes, and lane keeping manoeuvres, contained in Dtrain, left,
Dtrain, right, and Dtrain, keep, respectively. Once the DAEs have been trained, the weights
are frozen, and the DAEs are only used to reconstruct the input, i.e., they are only used
for inference.

An overview of the LCD algorithm is depicted in Algorithm 4. For an arbitrary
input X̄ we first calculate the reconstruction errors (εleft, εright, and εkeep) of each
DAE (Lines 3, 4, and 5). Next, in Line 6, we calculate the difference δkeep between
the current reconstruction error εkeep and the reconstruction error from the previous
time-stamp ε′keep. By tracking the change in reconstruction error of fkeep, we track the
derivative of the reconstruction error. With the given threshold values τleft, τright, τkeep,
and τδ (cf. Section 6.2.3), the algorithm estimates which class the current window
belongs to using explicit decision rules [24, Ch. 4.5]. This highlights the direct
interpretability of the LCD algorithm. A left lane change is detected if fright cannot
reconstruct the current datum, and either fkeep cannot reconstruct it as well or the
difference δkeep is large (this is condition (a) in Lines 7 and 9). Simultaneously, fleft
can reconstruct the datum (see Line 7). A similar rule-set is used to detect right lane
changes (see Line 9). If the current datum is not a lane change, the label at the output
is y = K (lane keeping).

A slight modification to the LCD algorithm is to set the condition (a) to TRUE
for all values in Lines 7 and 9. Thus, a lane change is detected only when the DAE
corresponding to a lane change can reconstruct the current input and the DAE of the
other lane change manoeuvre cannot reconstruct it. The rest of the LCD algorithm
remains unchanged. By only considering the lane change DAEs, we lose some
explainability of why the output label was chosen, however, we gain in classification
performance. We refer to this version of the algorithm as LCDlcs.

6.2.3 Performance Trade-off: Threshold Determination

An important step in the design of the LCD algorithm is to determine the threshold
values (τkeep, τleft, τright, and τδ) to compare the reconstruction losses of different
DAEs. These thresholds—as seen in Algorithm 4—not only determine how well the
algorithm can classify each manoeuvre, but also how early a lane change is reliably
detected. Thus, they can be chosen depending on the engineering requirements—a
benefit of designing a fully interpretable ML algorithm. We use the macro-averaged
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Algorithm 4 Interpretable Lane Change Detector (LCD) Algorithm
1: Inputs: Multi-variate time-series datum: X̄ ∈ RΓ×W , reconstruction error from

previous time-stamp: ε′keep
2: Parameters: Threshold values τleft,τright, τkeep, and τδ
3: εleft ← ‖X̄ − fleft(X̄)‖2F
4: εright ← ‖X̄ − fright(X̄)‖2F
5: εkeep ← ‖X̄ − fkeep(X̄)‖2F
6: δkeep ← εkeep − ε′keep
7: if (εkeep ≥ τkeep or δkeep ≥ τδ)︸ ︷︷ ︸

(a)

and (εleft < τleft) and (εright ≥ τright) then

8: y ← L {Left Lane Change}
9: else if (εkeep ≥ τkeep or δkeep ≥ τδ)︸ ︷︷ ︸

(a)

and (εleft ≥ τleft) and (εright < τright) then

10: y ← R {Right Lane Change}
11: else
12: y ← K {Lane Keeping}
13: end if
14: return y, εkeep

F1 score [113] as the classification performance measure we aim to maximize (see
definition in (4.3)).

To this end, we create an aggregated dataset out of the validation datasets introduced
in Section 6.2.1. We label each sample with a label corresponding to the driving
manoeuvre, e.g., all samples in Dval, left are given the label y = L, all samples in
Dval, right are given the label y = R, and all samples in Dval, keep are given the label
y = K. Thus, we define the validation dataset as

Dval =
{

(Xi, yi)
}Mval
i=1

, (6.4)

where the samples are taken from Dval, left,Dval, right and Dval, keep. The total number
of samples isMval = |Dval, left|+

∣∣Dval, right
∣∣+
∣∣Dval, keep

∣∣.
On the other hand, we want the LCD algorithm to reliably detect a lane change as

early as possible before the lane change actually occurs. Thus, we define a reliable
detection time as:

Definition 5. A lane change detection is considered reliable if the prediction does not
change in the time interval between the first prediction and the actual lane change.

102



6.3 Interpretable Lane Change Detector Algorithm: Results

We search for the threshold values τ = [τleft, τright, τkeep, τδ]
T ∈ R4 which

maximise the F1 score whilst maintaining a reliable early detection on the validation
dataset Dval.

Furthermore, we define the set of reconstruction errors of each DAE on the
validation dataset as

Ej =
{
‖X − fj(X)‖2F ∈ R : ∀X ∈ Dval,j

}
, (6.5)

with the trained DAEs fj , the validation dataset for each manoeuvre Dval,j , and
j ∈ {left, right, keep}. We can now exhaustively search for the optimal thresholds
over the range τj ∈ [0,max{Ej}]. We will explore this further in the following
sections.

Alternatively, a method to estimate an appropriate threshold to define an anomalous
signal is to estimate the mean and standard deviation of the reconstruction error of
each DAE on the validation dataset. This is the method employed in [170]. To this
end, we can also set each threshold as

τj = mean{Ej}+ 3 · std{Ej}, (6.6)

with the mean and the standard deviation of the reconstruction error values on each
validation dataset from (6.5).

6.3 Interpretable Lane Change Detector Algorithm: Results

In this section, we discuss the simulation setup and results we achieved with the
LCD algorithm introduced in Section 6.2.2 compared with some ML-based reference
algorithms. We show how the LCD algorithm detects driving manoeuvres in an
interpretable manner and how the threshold parameters can be chosen by an engineer
depending on the requirements.

6.3.1 Simulation Setup

We train each DAE using the training dataDtrain,j for the respective driving manoeuvre
with the MSE loss (cf. (3.43) in Section 3.4.2). Each attribute is normalised over all
samples and all time-stamps to lie within the range [−1,+1]. To train the DAEs, we
assume the lane changes occur at time-stamp Nlc = 100, i.e., the scenarios before
windowing are of dimension X̃ ∈ [−1,+1]5×100 (cf. (6.2)). This means the DAEs
attempt to reconstruct 4 s before the lane change—this is motivated by the results
from [171; 50]. Moreover, we use a window of lengthW = 25 time-stamps which
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corresponds to sub-sequences of the time-series data of length 1 s. Thus, the inputs to
the DAEs are of dimension X̄ ∈ [−1,+1]5×25 (cf. (6.3)).

We train each DAE for 200 epochs using the Adam optimiser [102] with mini-
batches of size 200 and an initial learning rate of η = 0.0005. We use the same
architecture for each DAE, with a symmetric encoder and decoder design. The exact
parameters and architectures are summarised in Appendix C.2. The latent space has
10 dimensions.

As reference algorithms, we use two RNN-based architectures from the literature:
one with a Long Term Short Term Memory (LSTM) cell [10] and one with a Gated
Recurrent Unit (GRU) cell [12]. To train the reference algorithms, we use the same
training data which we trained the DAEs on, i.e., Dtrain, left, Dtrain, right and Dtrain, keep.2
Furthermore, we label each sample with the corresponding driving manoeuvre.
Given this training set, we can train the networks using the standard cross-entropy
classification loss (cf. Section 3.4.1). The reference algorithms are trained with the
same hyper-parameters as the DAEs, i.e., the same number of epochs, mini-batch size,
and learning rate. The RNN architectures were taken from [10] and [12]. For the CNN
architecture, we take the encoder design (cf. Appendix C.2) and change the output to 3

neurons—one for each class.

6.3.2 Lane Change Detector Algorithm Threshold Determination

Since the LCD algorithm is designed to detect lane changes in an interpretable
manner—only based on a simple rule-set—, we discuss that an engineer can choose the
threshold values to achieve the desired performance. As introduced in Section 6.2.3,
we can also calculate the threshold values based on the standard deviations on the
validation datasets. This is the simplest method to determine the thresholds and they
should give an initial indication of how the LCD algorithm works based on detecting
anomalies. Using this method, we obtain the threshold values of τkeep, std = 5.93·10−5,
τleft, std = 3.25·10−4, τright, std = 1.10·10−4, and τδ,std = −7.50·10−5. Note, τδ is
calculated on the differences of εkeep values for each sub-sequence. We denote the
LCD algorithm with these threshold values as LCDstd.

We can also exhaustively search for the threshold values for the interpretable LCD
algorithm which give us a desired functionality. To this end, we keep the thresholds
relating to the keep DAE, such that τkeep, exh = τkeep, std and τδ,exh = τδ,std. Next, we
can search over the possible thresholds for the left and the right DAEs which give us

2Note, the classification task is defined with windowed scenarios, so the resulting classifiers are
slightly different than those presented in the previous chapters.
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(c) Average reliable detection time for left lane changes.

Figure 6.2: Threshold choice for the LCD algorithm showing the trade-off between a
high F1 score and a reliable early detection.
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a desired function performance. To this end, we plot the macro-averaged F1 score
(cf. (4.3)), the average reliable detection time for left and for right lane changes (with a
reliable lane change detection from Definition 5) on the validation dataset in Fig. 6.2.
In the plot, we consider the average reliable detection times only when at least 90% of
the validation data are detected reliably. In Fig. 6.2a, we see that a threshold value
τleft = 2.72·10−4 and τright ∈ (1.84·10−4, 2.81·10−4) achieves an F1 score of over
94%. For a reliable detection time of over 2.90 s for right lane changes we require
τleft ∈ (4.69·10−6, 2.05·10−4) and τright ∈ (2.03·10−4, 3.79·10−4) in Fig. 6.2b. An
average reliable detection time of at least 2.90 s for left lane changes is achieved for
τleft ≥ 2.05·10−4 and τright ≤ 2.23·10−4 as seen in Fig. 6.2c. With these results in
mind, we choose the left and the right threshold values to be τleft, exh = 2.72·10−4 and
τright, exh = 2.23·10−4, respectively. We denote the algorithm with these threshold
values as LCDexh. We determine the same values for τleft and τright if we consider the
LCDlcs algorithm (only considering the lane change DAEs). Therefore, we use the
same threshold values for that algorithm, too.

6.3.3 Lane Change Detection Results

Now, we discuss the reliable lane change detection achieved by the different LCD
algorithms on the test dataset.3 We observe in Table 6.2a that the purely ML-
based methods achieve better classification performances than the interpretable LCD
algorithms. Interestingly, the CNN-based classifier slightly outperforms the RNN-
based algorithms on this lane change detection task. Since the encoders of the DAEs
use the same CNN architecture, the classification results support the argument that
a CNN with 1-D filters is able to extract discriminative features. The interpretable
LCD algorithm achieves a classification performance to within 4.26% and 4.13% of
the black-box ML-based methods in terms of classification accuracy and F1 score,
respectively. We observe that the LCDexh and LCDlcs algorithms achieve a better
performance compared with the LCDstd algorithm in terms of the classification metrics.
These results indicate the benefit of determining the threshold values manually. These
classification results show that the proposed LCD algorithm is able to classify the
different driving manoeuvres whilst maintaining interpretability.

In Table 6.2b, we observe the average reliable detection time results for the different
algorithms. Again, the LCD algorithms almost achieve the same performance as the
black-box ML-based classification algorithms; the CNN-based classifier achieves the

3Note, the test dataset is labelled similarly to the validation dataset such that we can calculate the
classification performance metrics on unseen data. Furthermore, the test dataset remained unseen by all
of the LCD and reference algorithms during training and threshold determination.
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Alg. Acc. [%] F1 [%] Precision [%] Recall [%]
LSTM [10] 99.62 99.62 99.59 99.66

GRU [12] 99.58 99.59 99.56 99.62

CNN 99.68 99.68 99.63 99.74

LCDstd 88.98 89.30 89.26 90.11

LCDexh 94.87 95.02 95.26 94.81

LCDlcs 95.32 95.46 95.57 95.37

(a) Lane change detection classification results.

Alg. Timeleft[s] Rel. [%] Timeright[s] Rel. [%]
LSTM [10] 3.04 99.77 3.03 99.60

GRU [12] 3.04 99.32 3.03 99.60

CNN 3.04 100.00 3.04 100.00

LCDstd 3.00 96.38 2.75 80.08

LCDexh 2.97 95.02 2.84 90.54

LCDlcs 3.00 94.80 2.87 90.34

(b) The average reliable detection time results, including a percentage of reliable (Rel.)
detections on the test dataset, for left and for right lane changes.

Table 6.2: Classification and reliable detection time results of the interpretable LCD
algorithms and the reference algorithms on the test dataset with Nlc = 100.

best overall performance. On average, the LCD algorithms can reliably predict a lane
change almost 3.00 s before left lane changes, only 0.04 s away from the black-box
DNN architectures. Their performance of detecting right lane changes is slightly
worse than left lane changes—both in terms of the time before the lane change and
the reliability. We see that the LCDstd algorithm performs equally well at reliably
detecting left lane changes; its performance of detecting right lane changes is slightly
worse. Recall, we chose the threshold values τleft and τright to achieve a reliability of at
least 90% on the validation data. As we see in Section 6.3.4, we can explain why the
LCD algorithms detect lane changes slightly later than the reference algorithms. This
is an advantage of having an interpretable ML-based HAD function.

Overall, the simulation results indicate that the proposed LCD algorithm can
reliably detect lane changes; however, it shows a (slight) performance degradation
compared to black-box DNN architectures. It is known, see, e.g., [22; 122], that an
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increase in interpretability of ML-based classifiers comes at the cost of classification
performance. This is the price of the interpretability of the classification. Moreover,
we see the direct trade-off between explainability and classification performance:
The LCDlcs algorithm ignores the lane keeping DAE and is missing a further reason
for detecting a lane change, however, it also shows better classification performance
compared with the LCDexh algorithm with a lower reliability of the detected lane
changes.

6.3.4 Interpretability of the Lane Change Detector Algorithm

In the previous sub-section, we saw that the LCD algorithm is able to classify different
driving manoeuvres almost as well as state-of-the-art, black-box ML algorithms. In
general, the reasons why ML algorithms make certain classifications is opaque and
not directly interpretable.4 Now, we demonstrate how the proposed LCD algorithm is
interpretable. To this end, we take three scenarios—one for each driving manoeuvre—
from the test dataset and assume Nlc = 200. We use this value of Nlc to test the
generalisability of the ML-based HAD funcitons. Therefore, we pass the algorithms
more windows than they were trained on, however, we see that all of the algorithms
are able to generalise to these new samples. Then, we pass each scenario through the
window function (see Definition 4), and classify each sample sequentially.

The results of passing each windowed scenario through the classifiers are depicted
in Fig. 6.3. The first driving manoeuvre—a vehicle changing lanes to the right—is
depicted between 1 s and 8 s. We see that the LCDexh algorithm outputs the label
cLCDexh = R, only once all conditions in Line 9 of Algorithm 4 are fulfilled, i.e., fleft
detects an anomalous signal, the difference between reconstructions of the DAE for
lane keeping is large, and fright is able to reconstruct the signal. Since the LCDlcs
algorithm shares the same threshold values, it also detects a right lane change at this
time-stamp. The classification occurs 4.2 s before the right lane change for the given
threshold values. Moreover, the reconstruction error at the output of fright remains
small and the reconstruction errors of fleft and fkeep increase after the lane change is
detected. We observe in the top plot that the GRU-based method initially predicts a
right lane change before the LCDexh algorithm, but then shows an erroneous label
(cGRU-[12] = K) after initially classifying the windows as a lane change to the right.
This would not be considered a reliable detection as per Definition 5. The reason for
this change in decision is not obvious nor directly explained by the RNN architecture.

4It is possible to use post-hoc methods to try and explain why an ML algorithm made a certain
decision, e.g., using heatmapping methods [28; 29]. However, this is not an inherent part of the algorithm
design.

108



6.3 Interpretable Lane Change Detector Algorithm: Results

1 3.8 8 15 18.5 22
L

K

R

right keep left

La
be
l

cLCDexh cLCDlcs cCNN
cLSTM-[10] cGRU-[12]

1 3.8 8 15 18.5 22
10−6

10−4

10−2

τkeep, exh

ε k
ee
p

1 3.8 8 15 18.5 22
10−5

10−3

10−1

τleft, det

ε l
ef
t

1 3.8 8 15 18.5 22
10−5

10−3

10−1

τright, det

Time [s]

ε r
ig
ht

Figure 6.3: Classification output of the LCD and different ML algorithms for different
driving manoeuvres, illustrating the interpretability of the LCD algorithm.

Moreover, we observe that the interpretable LCD algorithms detect the right lane
change before both the LSTM- and CNN-based architectures.

Between 8 s and 15 s, all four classifiers correctly detect that the vehicle remains
in its lane (c = K). From the reconstruction error plots, we observe that all three
DAEs are able to reconstruct the samples, with a reconstruction error smaller than
the pre-determined threshold values. This makes sense, because all DAEs are trained
on windows far before the lane change, where the vehicle stays in its lane. Finally, a
scenario where the vehicle changes lanes to the left is depicted between 15 s and 22 s.
Again, by observing the reconstruction errors, we can directly explain why the LCD
algorithm classified the sample as a left lane change. It is interesting to note that the
DAE for right lane change manoeuvres, fright, detected an anomalous signal earlier
than the DAE for lane keeping. The lane change is correctly classified 3.5 s before it
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Figure 6.4: Average reliable detection time (solid lines) and percentage of reliable
detections (dotted lines) plotted against the threshold τk. Left lane changes indicated
by: ×; right lane changes indicated by: |.

occurred, which was earlier than the other black-box ML algorithms.
The results not only highlight the interpretability of the LCD algorithm, but they

also show that the reconstruction error at the output of each DAE is independent for
different inputs. Moreover, we demonstrate how one can understand and explain the
detections made by the LCD algorithm. We also see why the LCD algorithms have
a worse classification performance: the classification decision is solely based on the
three reconstruction errors and since the errors are not large enough until close to the
driving manoeuvre, the classification output is delayed.

6.3.5 Performance Trade-off: Early vs. Reliable Detections

The results thus far highlight the interpretability of the LCD algorithm and they
show that the performance is comparable to purely ML-based methods. Now, we
investigate the performance trade-off between early and reliable detections by varying
the threshold τk for the LCDexh algorithm. We use a test dataset with Nlc = 200 to
investigate the generalisability of the LCD algorithm.

The LSTM [10] method achieves the best performance with an average detection
time of Timeleft of 3.78 s and Timeright of 3.53 s with a reliability of 97.06% and
96.58%, respectively. Although this performance is good, it cannot directly be
improved or adapted to take the engineering requirements into account, unlike the
proposed LCD algorithm.

In Fig. 6.4, we show the trade-off between an early average reliable detection time
and the reliability estimate depending on the threshold value τk. We observe that
with a small threshold value, we achieve an average reliable detection time of 3.51 s
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and 3.15 s for left and right lane changes, respectively. However, this comes at the
cost of less reliable detections of around 73.00%. On the other hand, if we make
τk large enough, we observe a reliability estimation of 94.40% and 96.00%, which
comes at the cost of a smaller average detection time. This smaller average detection
time can be seen as the cost of a more reliable detection and vice versa. Furthermore,
the value τk,exh, which we use in the algorithms, is near the intersection point of the
curves. These results not only emphasise the benefit of a fully interpretable LCD
algorithm, but they also show how the threshold values can be chosen to achieve a
desired performance.

6.4 Algorithm Design based Safety Argument: Summary

In this chapter, we consider the complete algorithm design of an ML-based HAD
function. To this end, we introduce an interpretable LCD algorithm, based on the
reconstruction error of three independent DAEs. The LCD algorithm is parametrised
by threshold values which affect the performance. We demonstrate how an engineer can
choose appropriate threshold values for the task at hand. The performance capability
of the LCD algorithm is investigated on realistic highway driving data. We see that the
interpretable algorithm performs almost as well as black-box ML methods. Moreover,
we highlight the inherent interpretability of the proposed LCD algorithm.

The LCD algorithm we introduce in this chapter can directly be used in a safety-
critical HAD function. Since it is interpretable, an engineer can directly argue for safety
as the outputs and the reasoning for the classification can be understood; this allows
for the direct validation of the LCD algorithm. On top of that, the LCD algorithm
can use otherwise validated anomaly detectors as the DNN architectures. This would
further strengthen a safety argument based on an interpretable algorithm design.
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Conclusion and Outlook 7
7.1 Conclusion

In this dissertation, we address the challenge of validating Machine Learning (ML)-
based Highly Automated Driving (HAD) functions. We start with an investigation of
the current proposals on how to ensure the safety of ML algorithms. We see that many
validation proposals are built upon ML interpretability methods or on abstracting rules
and concepts from Deep Neural Networks (DNNs). Building a safety case is one
approach to validate a safety-critical ML-based HAD function, whereby we require
evidence to support such a case.

In Chapter 4, we introduce methods to investigate and encourage clustering of the
feature embeddings of different DNN architectures. We observe that merely relying
on the classification performance, e.g., the classification accuracy, of an ML method is
insufficient to argue for safety as many methods can show similar results. However,
when investigating the feature embeddings, we are able to identify differences between
them. On top of that, we introduce a method to encourage a k-means friendly space
in the penultimate layer of a DNN which—both qualitatively and quantitatively—
improves the clustering of the feature embeddings. Finally, we also introduce a method
to reject certain classifications at the output of the DNN, which are inconsistent with
the feature embeddings of the training data.

As ML-based HAD functions are data-driven functions, the datasets used to train
them are of utmost importance. In Chapter 5, we discuss the challenge of distributional
shifts when considering highway driving datasets. We analyse two public datasets
and show that the distributional shifts between them negatively affect ML algorithms
trained on these data. To address these distributional shifts, we introduce a fine-tuning
method taking the feature embeddings in the source and in the target domains into
consideration to tackle the trade-off between forgetting the source distribution and
learning the target distribution.

Finally, in Chapter 6, we discuss the challenge of designing a HAD function taking
ML interpretability into consideration (cf. Section 2.1). To this end, we introduce an
interpretable Lane Change Detector (LCD) algorithm which classifies lane changes
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based on the reconstruction error of three independently trained Deep Autoencoders
(DAEs). We demonstrate that the LCD algorithm is interpretable with thresholds that
can be chosen by an engineer taking the engineering requirements into account.

In this dissertation, we introduce methods addressing different parts of ML
algorithms: from the data used to train them to the overall algorithm design. These
methods can be used individually or complementarily to validate various aspects of
ML-based HAD functions or, alternatively, as evidence for a safety case. We argue
that a single validation method is unlikely to cover all aspects of ML-based HAD
functions, as they are data-driven functions without clear requirements. Therefore,
multiple validation methods are required to satisfactorily validate these functions. The
more aspects of the ML algorithm a validation safety argument considers, the stronger
the overall safety argument can be. We call this approach: Validation by Diversity.

7.2 Future Research Directions

In the following, we give an outlook on future research directions building upon the
contributions in Chapter 4, Chapter 5, and Chapter 6.

7.2.1 Feature Embeddings

Developing a validation safety argument based on feature embeddings can be extended
in various ways. We can further investigate the clusters of feature embeddings from
different DNN architectures to quantify which training samples are clustered together
by which architectures. If the clusters between architectures are different, an ensemble
of various architectures could be used to ensure a diversity of feature embeddings.
The feature embeddings could additionally be investigated using self-supervised ML
methods [172; 173]. In this case, the feature embeddings created by the different DNN
architectures can be compared to those created using supervised learning. Methods to
compare the feature embeddings (or representations) of different architectures have
been studied in, e.g., [174; 175].

Moreover, the rejected samples from each DNN architecture could also give an
insight into the feature embedding capabilities of the different DNN architectures. We
could further investigate which samples are rejected to gain an understanding about
why they were falsely classified—they could also be incorrectly labelled samples.
Another challenge of using ML algorithms in safety-critical applications is confidence
calibration [176]. The proposed classification rejection method could be adapted to
estimate the confidence of the DNN. We can subsequently reject samples where the
DNN’s confidence lies below a certain threshold.
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7.2.2 Dataset Distributions

We argue that an integral part in creating a validation safety argument for ML-based
HAD functions is based on the distribution of the training data (as discussed in
Section 2.4). An early detection of a distributional shifts is paramount. To extend the
distributional shift analysis, we could further improve the distributional shift detection,
e.g., using signature kernels in the Maximum Mean Discrepancy (MMD) [177].
Another approach to detect out-of-distribution samples would be to train an ML
algorithm to learn the data distribution and estimate the likelihood that a given input
scenario belongs to the training distribution. If this likelihood is below a certain
threshold, we can update the confidence of the DNN or reject the sample all together.

On top of that, the challenge remains to robustify ML-based HADfunctions against
distributional shifts. Thus, we can further investigate continual learning methods [132]
or fine-tuning methods within the context of ML-based HAD functions. Since there
is a heavy-tail of scenarios which can occur [178], it is important that these HAD
functions do not forget previously learned distributions and generalise to black swan
events.

7.2.3 Algorithm Designs

Finally, we argue that a validation safety argument can be based on the algorithm
design itself. The interpretable LCD algorithm can be extended by further optimising
the anomaly detection, e.g., not only using the output reconstruction error but also
taking the activations in the hidden-layers into account when detecting anomalous
signals (see, e.g., [179]). We can also use a mixture-of-experts design (as seen in [57])
which splits the input domain into sub-domains where an expert is trained on each
sub-domain. For the LCD algorithm, this could mean creating training datasets
containing scenarios at different times before the lane change, e.g., one second, two
seconds, etc., and then training DAEs on each of these datasets. Then, we could predict
the lane change depending on which of the expert DAEs detects anomalous signals.

Moreover, the interpretability of the LCD algorithm can be extended if we consider
the reconstruction error of each signal individually. Thus, potentially enabling the
LCD algorithm to also explain why a lane change is imminent, e.g., the longitudinal
acceleration is typical for a left lane change and not for a right lane change. On top
of that, the interpretability of the DAEs can be improved by using instance-based
influence methods, see, e.g., [180; 181]. These methods allow us to understand which
training samples most influence the reconstruction of the current input sample.
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Feature Embeddings:
Supplementary ResultsA

A.1 Additional Feature Embedding Visualisations

In this section, we investigate the Uniform Manifold Approximation and Projection
(UMAP) representations of two further Deep Neural Network (DNN) architectures
introduced in Chapter 4, as this is an important step in the proposed feature validation
safety argumentation method. We investigate the feature embeddings of the Gated
Recurrent Unit (GRU)-[12] and the Convolutional Neural Network (CNN)-II Multi-
Channel (MC) architectures. We choose these architectures because the GRU-[12]
architecture showed the highest Adjusted Rand Index (ARI) score in the standard feature
embedding space and the CNN-II MC architecture showed the biggest improvement
through k-means friendly training (cf. Algorithm 1). We take the trained networks
from Chapter 4 and visualise the feature embeddings of the test dataset using UMAP.

A.1.1 Standard Feature Embedding Space

First, we plot the UMAP representations in the standard feature embedding space,
i.e., the feature embedding space after training the DNN architectures with the standard
cross entropy loss (cf. Section 3.4.1). In Fig. A.1, we see the UMAP representation of
the GRU architecture; We see the embeddings with the true class labels in Fig. A.1a
and with the cluster labels in Fig. A.1b. We see that the axes are labelled with ugrui ,
i ∈ {1, 2} since these UMAP representation space is calculated especially for this
architecture. From now on, the axes of each UMAP plot will be labelled with the
corresponding architecture. We see that the safety-critical classes (L1, L2, R1, and R2)
are clustered compactly within their classes and far apart from the opposite driving
manoeuvres. The classes L3, K, and R3 are not overlapping as we saw for the CNN-I
architecture in the standard feature embedding space (cf. Fig. 4.3). We see that the
cluster labels and the true class labels agree for most classes, which explains the high
ARI score. Moreover, the cluster centres in Fig. A.1b are meaningful. Interestingly,
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Figure A.1: The UMAP representation for the GRU architecture with different labels
in the standard feature embedding space.

the feature embeddings look similar to the UMAP representations of the CNN-I
architecture after k-means friendly training (cf. Fig. 4.5).

In Fig. A.2, we plot the UMAP representations of the feature embeddings from
the CNN-II MC architecture. This architecture showed the worst ARI score in the
standard feature embedding space, implying that the extracted feature embeddings are
not well clustered according to the class labels. We see in Fig. A.2a that the classes are
overlapping. Moreover, instead of clustering the data according to the true labels, this
architecture has extracted the feature embeddings to form three distinct clusters: one
of right lane changes (top left), one of left lane changes (top and bottom cluster on the
right hand side), and one cluster of all classes (middle cluster on the right). The fact
that the cluster of left lane changes is split into two smaller clusters could be an artefact
of the UMAP representation—we see that the these have the cluster label C ′2 and C ′5 in
Fig. A.2b. Due to this clustering, the safety-critical classes L1, L2, R1 and R2 are no
longer clustered compactly together, but are spread across two distinct clusters. These
qualitative results corroborate the low ARI score calculated in Section 4.4.2.1.

We see from these results that if an architecture shows a high ARI score, it is likely
that the feature embeddings are meaningful; In contrast, a low ARI implies that the
feature embeddings are not as interpretable—making this architecture less suitable for
a safety-critical function.
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Figure A.2: The UMAP representation for the CNN-II MC architecture with different
labels in the standard feature embedding space.
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ūGRU1

ū
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Figure A.3: The UMAP representation for the GRU architecture with different labels
in the k-means friendly feature embedding space.

A.1.2 k-means Friendly Feature Embedding Space

Next, we visualise the feature embeddings of the same two architectures after k-
means friendly training (cf. Section 4.5). Since these architectures are trained again,
we label the axes with a bar to highlight that this is a different UMAP representation. In
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Figure A.4: The UMAP representation for the CNN-II MC architecture with different
labels in the k-means friendly feature embedding space.

Fig. A.3, we see the UMAP representations generated using the GRU-[12] architecture.
Comparing Fig. A.3 with Fig. A.1, we see that they are similar, i.e., the classes are
clustered compactly together and the safety-critical classes are embedded far apart
from each other. The k-means friendly training appears to have made the feature
embeddings cluster more compactly if we inspect Fig. A.3b. Moreover, there are fewer
individual samples which belong to one class but are embedded within another class
(see green L2 point in the bottom left of the L1 class). Overall, the feature embedding
space generated using k-means friendly training is similar to the standard space for the
GRU-[12] architecture. The ARI score after k-means friendly training was slightly
lower than without, however, qualitatively, we see that the feature embeddings did not
change significantly.

In Fig. A.4, we observe the UMAP representations generated by the CNN-II MC
after k-means friendly training. In Section 4.5, we saw that the k-means friendly
training helped improve the ARI score of this architecture. This is reflected in the
UMAP representations in Fig. A.4. Fig. A.4a shows that the safety-critical classes are
now better clustered together, and the right and left lane changes are embedded far
apart from each other. Each of the safety-critical classes is clustered close together,
however, we see that this architecture created two clusters per class (see class L1 in
Fig. A.4a). The classes L3, K, and R3 are still overlapping after k-means friendly
training, however, they are overlapping less than in the standard feature embedding
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(c) Accuracy: Mahalanobis-based rejection.
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(d) Rejections: Mahalanobis-based rejection.
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Figure A.5: Classification rejection in the standard feature embedding space using
the p-th percentile distance as the distance r. The top row of plots (Fig. A.5a and
Fig. A.5b) uses the Euclidean-based classification rejection rule; the bottom row of
plots (Fig. A.5c and Fig. A.5d) uses the Mahalanobis-based classification rejection
rule.

space. Moreover, we can now state that the feature embeddings are more meaningful
after k-means friendly training.

A.2 Classification Rejection Rules

In this section, we briefly discuss the classification rejection rule results when varying
the distance r (cf. Line 6 Algorithm 2). For more details on the simulation setup refer
to Section 4.6.4.

121



Appendix A. Feature Embeddings: Supplementary Results

0 20 40 60 80 100
85

90

95

100

r/rmax [%]

A
cc
ur
ac
y
[%

]

(a) Accuracy in standard space.

0 20 40 60 80 100
0

20
40
60
80

100

r/rmax [%]

Re
je
ct
io
ns

[%
]

(b) Rejections in standard space.

0 20 40 60 80 100
85

90

95

100

r/rmax [%]

A
cc
ur
ac
y
[%

]

(c) Accuracy in k-means friendly space.
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(d) Rejections in k-means friendly space.
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Figure A.6: Classification rejection using Mahalanobis rejection rule and percentage
of max distance as the distance r. The top row of plots (Fig. A.6a and Fig. A.6b)
is in the standard feature embedding space; the bottom row of plots (Fig. A.6c and
Fig. A.6d) is in the k-means friendly feature embedding space.

In Fig.A.5, we plot the results using both classification rejection rules in the standard
feature embedding space. The top row depicts the Euclidean-based classification
rejection rule and the bottom row depicts theMahalanobis-based classification rejection
rule. We choose the distance r to be the p-th percentile of the distances to the cluster
centres of the training data. Similar to the results in the k-means friendly space, we
see that the number of rejections falls when we increase the distance. However, we
now observe in Fig. A.5b that the MC CNN architectures reject more samples than
the other architectures. This corroborates the results we saw in Section 4.4.2.1: the
clustering in the feature embedding space does not align well with the classes since
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the average ARI is low. This is reflected in Fig. A.5a, where these architectures
show a poor classification accuracy even after rejecting many samples. Using the
Mahalanobis-based classification rejection rule, we see in Fig. A.5d that the number
of rejections decreases with increasing distance. The average accuracies in Fig. A.5c
all decrease monotonically where some architectures are able to classify with almost
100% accuracy when almost all samples are rejected. We observe (again) that the
GRU-[12] architecture shows an increase in performance for larger distances (this was
also observed in the k-means friendly spaces). This could lead us to conclude that the
feature embeddings extracted by this architecture are not well suited for the proposed
classification rejection rule.

In Fig. A.6, we plot the results in both feature embedding spaces using the
Mahalanobis-based classification rejection rule. In these plots, we vary the distance
as a percentage of rmax, where rmax is the maximum distance to a cluster centre in
the training data. These plots allow us to evaluate how well clustered the different
feature embedding spaces are. In the top row, we see the results in the standard
feature embedding space; In the bottom row, we see the k-means friendly space.
By comparing Fig. A.6b and Fig. A.6d, we directly see that the k-means friendly
space is better clustered since the number of rejections falls faster. The classification
performance in both feature embedding spaces shows a similar behaviour, and all
architectures converge to a specific accuracy performance quickly. The architectures
with a k-means friendly feature embedding space converge faster than in the standard
embedding space, indicating better clustering of the features.

123





Dataset Distributions:
Supplementary Results B

B.1 Analysing Distributional Shifts in Highway Driving Datasets

In this section, we present additional results of the distributional shift analysis
introduced in Chapter 5. In Fig. B.1, we plot the mean attributes of right lane changes
from both datasets. We observe that the lateral velocity (vlat.) and the longitudinal
accelerations (along.) have similar distributions in both datasets—though, the standard
deviation of the attributes is slightly different. On the other hand, the distribution
of the other attributes is noticeably different. For example, the lateral acceleration
(alat.) shows a different trend, where the data from the highD dataset first increase and
then decrease before the driving manoeuvre. Moreover, the longitudinal velocities
(vlong.) are noticeably higher on the highD dataset compared to the NGSIM dataset.
As previously discussed, this difference can be explained by the different driving
velocities on German vs. US highways. The distribution of the distances to the other
vehicles is also different between the two datasets, e.g., the distance to the preceding
vehicle to the right (dr, ahead) has a different trend between the two datasets.

In Section 5.3.3, we introduce a statistical hypothesis test based on the MMD test
statistic (cf. Section 5.3.3.2) to decide whether the sample sets come from the same
distribution (the null hypothesisH0) or whether they come from different distributions
(the alternative hypothesis H1). In Section 5.3.3.4, we reported the two-sample
hypothesis test using the MMD test statistic for the case where we compare the
distribution of one dataset to itself, e.g., the whole highD dataset is split into disjoint
sets and the distribution of these subsets are compared with each other. In those results,
we observed that there is no distributional shift within the dataset since the two-sample
hypothesis test accepts H0.

In this section, we compare the distributions of the different driving manoeuvres
from each dataset to themselves, i.e., we test whether the distribution of the driving
manoeuvres is the same within each dataset. In Fig. B.2, we plot the distribution of the
MMD statistic underH0 andH1 for the three driving manoeuvres from both datasets.
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Figure B.1: Qualitative analysis of the datasets by visualizing the average attribute
values at each time-stamp for right lane changes. The shaded areas represent one
standard deviation away from the mean.

The p-values and True Positive Rates (TPRs) are noted in the plot captions. The left
column of plots depict the highD dataset; the right column of plots depict the NGSIM
dataset. We observe that the distribution underH0 andH1 are indistinguishable for
these data, so the two-sample hypothesis test would accept H0. Thus, we conclude
that these data come from the same distribution. On top of that, the p-values are all
greater than α = 0.05, so the null hypothesis H0 is accepted.
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B.2 Fine-Tuning under Distributional Shifts

In this section, we demonstrate how the fine-tuning algorithm introduced in Section 5.4
(Algorithm 3) works on another Deep Neural Network (DNN) architecture. To this
end, we fine-tune the Gated Recurrent Unit (GRU)-[12] architecture on both the highD
dataset and the NGSIM dataset, i.e., we first train on one dataset and fine-tune on the
other dataset. We observe in Fig. B.3 that by varying the trade-off parameter ζ , we are
able to trade-off between forgetting the source domain and learning the target domain.
In Fig. B.3a, we see that the GRU fine-tuned on DNGSIM, train can be trained depending
on the task at hand, e.g., if it is important not to forget the source domain, we can set
ζ → 1, whereas if we want to learn the target domain, we can set ζ = 0.

Controlling the forgetting when fine-tuning on the highD dataset (when DT =

DhighD, train) appears to be more challenging as we see in Fig. B.3b. By varying the
trade-off parameter, we are able to influence the amount of forgetting, however, not
as much as in the other setting. This could be due to the fact that the highD dataset
is larger (cf. Section 5.3.1) and thus the DNN can learn more on the target dataset.
Moreover, we observe that the 95% confidence intervals are much larger in this setting.

Overall, these results indicate that the fine-tuning algorithm works with another
DNN architecture to trade off forgetting the source distribution and learning the target
distribution when fine-tuning a network under distributional shifts.
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Figure B.2: Estimates of the MMD test statistic distribution under H0 and H1 for the
driving manoeuvres in the same dataset. In these cases, the hypothesis test would
accept the null hypothesis H0, indicating there is no distributional shift within the
datasets.
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(a) Classifiers trained on DS = DhighD, train and fine-tuned on DT = DNGSIM, train.
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Figure B.3: The average accuracy of the GRU architecture, trained on a source dataset
DS and fine-tuned on the target dataset DT . The models are then tested on both test
datasets. The error bars represent the 95% confidence intervals.

129





Network Architectures C
In this appendix, we introduce the Deep Neural Network (DNN) architectures used
in this dissertation. All architectures are implemented using PyTorch version
1.11.0 [182] using the standard torch.nn library for the different layers (unless
otherwise stated). Thus, all architectures—and results presented—should be repro-
ducible.1

C.1 Time to Lane Change Classification Architectures

In this section, we list the DNN architectures used for the Time to Lane Change
(TTLC) classification task. In total, we train: one Fully Connected (FC)-DNN
architecture; six Convolutional Neural Network (CNN)-based architectures (including
three Multi-Channel (MC) CNN designs); two Recurrent Neural Network (RNN)-
based architectures, using a Long Term Short Term Memory (LSTM) cell and a Gated
Recurrent Unit (GRU) cell; and an attention-based architecture.

We summarise the parameters of the various architectures in Table C.1. We have
four linear layers in the FC-DNN design. The input to the FC-DNN is the number of
input channels Γ times the number of sub-sections P times the number time-stamps
per sub-section Nsub.. For the other architectures, we have Γ inputs (unless otherwise
stated). The final linear layer of every architecture maps from R100 → RK since we
use a feature embedding space of dimension 100, and we haveK = |Y| classes in the
TTLC classification task.

The parameters for the CNN-based architectures are summarised in the middle
rows of Table C.1. We have three CNN blocks for each architecture, where we use a
different CNN layer for each architecture.2 Furthermore, note that for the MC CNN
architectures, we have the three CNN layers for each of the input channels, i.e., we

1Some of our implementations can be found at https://github.com/decandido/feature-validation and
https://github.com/decandido/encouraging-validatable-features

2Note, the Conv1dSeparable and the Conv1dLocal layers are not directly defined in the standard
torch.nn library, however, they can be built using Conv1d layers and torch.nn.Parameter objects,
respectively.
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have Γ times the same three CNN layers for each input channel since we consider Γ

input channels; In most cases, we use Γ = 10 for the TTLC classification task. The
bottom rows of Table C.1 show the RNN-based architectures. We see there is a single
LSTM- or GRU-cell followed by a FC linear layer.

We adapt the implementation of the gated transformer method provided by the
authors of [95].3 We use the following parameters: a model dimension of 50; a query,
a value, and a key dimension of 16; 16 attention heads; and 3 encoder blocks. The
FC linear layer in the encoder blocks has a dimension of 100. The gated transformer
processes the input data both channel- and time-stamp-wise, and we have 3 encoder
blocks for the channels and the time-stamps.

An overview of the total number of parameters for each architecture type can be
found in Table C.2. We note that with the parameter choices summarised in Table C.1,
we have roughly the same number of learnable parameters for the FC-DNN and the
CNN-based architectures. On the other hand, the RNN-based architectures require
roughly a tenth of the number of parameters. This is due to the fact that RNN blocks are
designed to perform well on time-series data by training the weights over time-stamps,
which we observe in the results in Chapter 4 and Chapter 6. Moreover, the gated
transformer model has more learnable parameters than the other architectures since it
processes the input data both channel- and time-stamp-wise.

C.2 Deep Autoencoder Architecture

In Table C.3, we see the parameters for the Deep Autoencoder (DAE) architecture
used in the proposed Lane Change Detector (LCD) algorithm in Chapter 6. We have a
symmetric encoder/decoder design with the same number of input/output channels in
each (just in the reverse order in the decoder). To ensure that the output of the DAE is
the same dimension as the input, i.e.,X ∈ RΓ×25, we use the ConvTranspose1d layer
in the decoder network. This layer computes a form of deconvolution to effectively
upsample the signal between layers [183]. Furthermore, we have a latent space
dimension of 10. The same architecture is used for the left, right, and keep DAEs
(cf. Section 6.2). The encoder design is used as the CNN-based classifier in Chapter 6
with three output neurons for the three driving manoeuvres.

3https://github.com/ZZUFaceBookDL/GTN
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C.2 Deep Autoencoder Architecture

Architecture Layer Input Output Kernel Stride

FC-DNN

Linear Γ · P ·Nsub. Ns 375 Ns N/A N/A
Linear 375 Ns 380 Ns N/A N/A
Linear 380 Ns 100 Ns N/A N/A
Linear 100 Ns K Ns N/A N/A

CNN-I

Conv1d Γ Chs 211 Chs 1× 8 1
Conv1d 211 Chs 260 Chs 1× 5 1
Conv1d 260 Chs 100 Chs 1× 3 1
Linear 100 Ns K Ns N/A N/A

CNN-II

Conv1dSeparable Γ Chs 550 Chs 1× 8 1
Conv1dSeparable 550 Chs 552 Chs 1× 5 1
Conv1dSeparable 552 Chs 100 Chs 1× 3 1
Linear 100 Ns K Ns N/A N/A

CNN-III

Conv1dLocal Γ Chs 20 Chs 1× 8 1
Conv1dLocal 20 Chs 20 Chs 1× 5 1
Conv1dLocal 20 Chs 100 Chs 1× 3 1
Linear 100 Ns K Ns N/A N/A

CNN-I MC

Conv1d 1 Chs 65 Chs 1× 8 1
Conv1d 65 Chs 102 Chs 1× 5 1
Conv1d 102 Chs 10 Chs 1× 3 1
Linear 100 Ns K Ns N/A N/A

CNN-II MC

Conv1dSeparable 1 Chs 128 Chs 1× 8 1
Conv1dSeparable 128 Chs 256 Chs 1× 5 1
Conv1dSeparable 256 Chs 10 Chs 1× 3 1
Linear 100 Ns K Ns N/A N/A

CNN-III MC

Conv1dLocal 1 Chs 10 Chs 1× 8 1
Conv1dLocal 10 Chs 11 Chs 1× 5 1
Conv1dLocal 11 Chs 10 Chs 1× 3 1
Linear 100 Ns K Ns N/A N/A

LSTM-[10]
LSTM Γ Ns 100 HNs N/A N/A
Linear 100 Ns K Ns N/A N/A

GRU-[12]
GRU Γ Ns 100 HNs N/A N/A
Linear 100 Ns K Ns N/A N/A

Table C.1: The FC-DNN, CNN-based, and RNN-based architectures used throughout
this dissertation. The input/output columns denote the number of neurons (Ns) for the
FC linear layers, the size of the hidden neurons (HNs) for the RNN layers, and the
number of channels (Chs) for the convolution layers. All layers have a bias.
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Appendix C. Network Architectures

Architecture Parameter Count
FC-DNN 369,562
CNN-a) 370,458
CNN-b) 371,807
CNN-c) 374,847
CNN-a) MC 369,777
CNN-b) MC 377,217
CNN-c) MC 383,997
LSTM-[10] 45,507
GRU-[12] 34,307
Gated Tr.-[95] 684,117

Table C.2: An overview of the number of parameters for each of the DNN architectures.

Network Layer Input Output Kernel Stride

Encoder

Conv1d 10 Chs 20 Chs 1× 3 2
Conv1d 20 Chs 40 Chs 1× 3 2
Conv1d 40 Chs 60 Chs 1× 3 2
Linear 60 Ns 10 Ns N/A N/A

Decoder

Linear 10 Ns 60 Ns N/A N/A
ConvTranspose1d 60 Chs 40 Chs 1× 3 2
ConvTranspose1d 40 Chs 20 Chs 1× 3 2
ConvTranspose1d 20 Chs 10 Chs 1× 3 2

Table C.3: The DAE architecture for the LCD algorithm. The input/output columns
denote the number of channels (Chs) for the convolution layers and number of neurons
(Ns) for the linear layers.
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