
Citation: You, Y.; Guo, X.; Zhong, X.;

Yang, Z. A Few-Shot Learning-Based

EEG and Stage Transition Sequence

Generator for Improving Sleep

Staging Performance. Biomedicines

2022, 10, 3006. https://doi.org/

10.3390/biomedicines10123006

Academic Editor: Tommaso Bocci

Received: 16 October 2022

Accepted: 19 November 2022

Published: 22 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

A Few-Shot Learning-Based EEG and Stage Transition
Sequence Generator for Improving Sleep Staging Performance
Yuyang You 1,† , Xiaoyu Guo 1,†, Xuyang Zhong 2,† and Zhihong Yang 3,*

1 Beijing Institute of Technology, School of Automation, Beijing 100081, China
2 Department of Electrical and Computer Engineering, Technical University of Munich,

80333 Munich, Germany
3 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical

College, Beijing 100193, China
* Correspondence: zhyang@implad.ac.cn; Tel.: +86-10-5783-3219
† These authors contributed equally to this work and shared the title of first autor.

Abstract: In this study, generative adversarial networks named SleepGAN are proposed to expand
the training set for automatic sleep stage classification tasks by generating both electroencephalogram
(EEG) epochs and sequence relationships of sleep stages. In order to reach high accuracy, most
existing classification methods require substantial amounts of training data, but obtaining such
quantities of real EEG epochs is expensive and time-consuming. We introduce few-shot learning,
which is a method of training a GAN using a very small set of training data. This paper presents
progressive Wasserstein divergence generative adversarial networks (GANs) and a relational memory
generator to generate EEG epochs and stage transition sequences, respectively. For the evaluation of
our generated data, we use single-channel EEGs from the public dataset Sleep-EDF. The addition of
our augmented data and sequence to the training set was shown to improve the performance of the
classification model. The accuracy of the model increased by approximately 1% after incorporating
generated EEG epochs. Adding both the augmented data and sequence to the training set resulted
in a further increase of 3%, from the original accuracy of 79.40% to 83.06%. The result proves that
SleepGAN is a set of GANs capable of generating realistic EEG epochs and transition sequences
under the condition of insufficient training data and can be used to enlarge the training dataset and
improve the performance of sleep stage classification models in clinical practice.

Keywords: few-shot learning; generative adversarial network; single-channel electroencephalogram;
sleep stage classification

1. Introduction

As a restorative process, sleep plays a critical role in maintaining physical and mental
health [1]. Monitoring the process of sleep is vital to people’s health and diagnosing sleep
disorders. In the field of sleep science, experts measure the quality of sleep by observing
electrical activity recorded by sensors attached to various parts of the body. These signals
are reflected in a polysomnogram (PSG) [2]. Human sleep processes can be classified into
different stages according to sleep manuals, such as those by Rechtschaffen and Kales (R
and K) [3] and the American Academy of Sleep Medicine (AASM) [4]. For instance, the
stages of sleep are divided into awake (W), rapid eye movement (REM), and non-rapid
eye movement (NREM). Stage W refers to the state of wakefulness in early sleep. In the
REM stage, the eyes move rapidly, and the level of brain activity is basically the same as
in the awake stage. In the NREM period, the muscles of the whole body are relaxed, the
heart rate and breath slow down, and no eye movement appears. NREM is divided into
stages S1, S2, S3, and S4 in R and K and stages N1, N2, and N3 in the AASM manual. The
EEGs of different sleep stages are shown in Figure 1.

Biomedicines 2022, 10, 3006. https://doi.org/10.3390/biomedicines10123006 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10123006
https://doi.org/10.3390/biomedicines10123006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0002-3062-379X
https://doi.org/10.3390/biomedicines10123006
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10123006?type=check_update&version=3

Biomedicines 2022, 10, 3006 2 of 12Biomedicines 2022, 10, 3006 2 of 13

Figure 1. The EEG of different sleep stages according to the AASM manual. From top to bottom and
left to right are W, N1, N2, N3, and REM.

Sleep staging manually based on sleep manuals is a time-consuming approach for
sleep experts, so recent studies have focused on developing machine learning methods to
automatically classify sleep stages. Some of these studies have aimed to utilize a number
of algorithms to extract features from PSG signals, such as wavelet transform [5] and em-
pirical mode decomposition [6]. Then, they use the extracted features as the input of the
classifier to train models, such as random forest [7] and ensemble support vector machine
[8]. Other studies have constructed deep neural networks (DNNs) to automatically extract
features from raw data. The performance of DNNs has been proven to be effective in pre-
vious studies. Most of these studies [2,9,10] are based on convolutional neural networks
(CNNs) and recurrent neural networks (RNNs). Refs. [11,12] introduced attention mech-
anisms into sleep staging. Ref. [13] proposed a graph-temporal fused CNN model. An
increasing number of DNNs with different structures have been successfully used in sleep
stage classification tasks, as shown by the studies mentioned above.

Most current deep learning methods rely on large-scale training data to reach a fine
generalization performance. However, acquiring PSG data and labeling samples is expen-
sive and time-consuming. Thus, models based on single-channel EEGs and few-shot train-
ing algorithms are becoming popular topics in the field of sleep staging [2,11,14].

Generative adversarial networks (GANs) have produced groundbreaking results for
the generation of realistic images [15]. In recent years, GAN has also been used for EEG
data augmentation. Most state-of-the-art (SOTA) EEG generation methods serve the field
brain–machine interface (BMI) [16] and emotional recognition [17]; only a few studies
have applied GAN to sleep staging tasks. Ref [18] proposed five EEG data augmentation
methods for solving the class imbalance problem in sleep staging; however, the lack of
sleep data and data variety is still a problem. Compared with sleep staging tasks, the
length of the EEG utilized in these tasks (around 2 s) is much shorter than the 30 s EEG
epoch and overnight PSG in sleep staging. Furthermore, for brain–computer interfaces,
there are as many different EEGs as there are control signals. However, EEGs for sleep
staging have five classes according to the AASM manual. Therefore, it is hard to transfer

Figure 1. The EEG of different sleep stages according to the AASM manual. From top to bottom and
left to right are W, N1, N2, N3, and REM.

Sleep staging manually based on sleep manuals is a time-consuming approach for
sleep experts, so recent studies have focused on developing machine learning methods to
automatically classify sleep stages. Some of these studies have aimed to utilize a number of
algorithms to extract features from PSG signals, such as wavelet transform [5] and empirical
mode decomposition [6]. Then, they use the extracted features as the input of the classifier
to train models, such as random forest [7] and ensemble support vector machine [8]. Other
studies have constructed deep neural networks (DNNs) to automatically extract features
from raw data. The performance of DNNs has been proven to be effective in previous
studies. Most of these studies [2,9,10] are based on convolutional neural networks (CNNs)
and recurrent neural networks (RNNs). Refs. [11,12] introduced attention mechanisms
into sleep staging. Ref. [13] proposed a graph-temporal fused CNN model. An increasing
number of DNNs with different structures have been successfully used in sleep stage
classification tasks, as shown by the studies mentioned above.

Most current deep learning methods rely on large-scale training data to reach a
fine generalization performance. However, acquiring PSG data and labeling samples is
expensive and time-consuming. Thus, models based on single-channel EEGs and few-shot
training algorithms are becoming popular topics in the field of sleep staging [2,11,14].

Generative adversarial networks (GANs) have produced groundbreaking results for
the generation of realistic images [15]. In recent years, GAN has also been used for EEG
data augmentation. Most state-of-the-art (SOTA) EEG generation methods serve the field
brain–machine interface (BMI) [16] and emotional recognition [17]; only a few studies
have applied GAN to sleep staging tasks. Ref. [18] proposed five EEG data augmentation
methods for solving the class imbalance problem in sleep staging; however, the lack of
sleep data and data variety is still a problem. Compared with sleep staging tasks, the length
of the EEG utilized in these tasks (around 2 s) is much shorter than the 30 s EEG epoch and
overnight PSG in sleep staging. Furthermore, for brain–computer interfaces, there are as
many different EEGs as there are control signals. However, EEGs for sleep staging have
five classes according to the AASM manual. Therefore, it is hard to transfer EEG generation
methods for BMI and emotional recognition to the generation of sleep EEG epochs.

Biomedicines 2022, 10, 3006 3 of 12

This study introduces a data augmentation method based on GANs for sleep stage
classification. The main contributions of our research are as follows:

(1) We propose a set of EEG-oriented progressive Wasserstein divergence GANs (WGAN-
div) [19] that can adapt to sleep data and generate EEG epochs with few real data. The
model can generate realistic 1D EEG epochs corresponding to different sleep stages and
push the accuracy of the sleep staging model from 0.775 to 0.804.

(2) We generated stage transition sequences based on a relational memory (RM) gener-
ator [20], which was used to generate a long text. This scenario is similar to stage
transition sequence generation, and thus, we propose a few-shot learning-based model
to generate plausible sequences such that the generated samples can be used in the
training of the models based on RNNs [21], which have been proven to be capable of
extracting sequential features from EEG data, thereby further pushing the accuracy of
classification model from 0.804 to 0.831.

(3) We evaluated our GANs by feeding both real data and EEG epochs and sleep stage
transition sequences generated by us into a sleep staging model. In addition, we
adopted the 1-NN method to ensure the efficiency of our GANs. The results showed
that our GANs are capable of generating representative EEG epochs and plausible
sleep stage transition sequences. With the help of the augmented data, the accuracy of
the sleep staging model improved significantly after training with only a few samples.

2. Materials and Methods
2.1. Datasets

We evaluated our method on the publicly available dataset SleepEDF [1]. There are
two subsets in this dataset, Sleep Cassette (SC) and Sleep Telemetry (ST), which focus on the
age effects and temazepam effects on sleep, respectively. Each recording in this dataset is
composed of two EEG channels (Fpz-Cz and Pz-Oz), one electromyogram (EMG) channel,
one electrooculogram (EOG) channel, and one oro-nasal respiration signal. We selected the
Fpz-Cz channel EEG recordings from subset SC as our training and validation data. Here,
Fpz-Cz and Pz-Oz refer to the positions of the electrodes. The placement of the electrodes
is shown in Figure 2.

Biomedicines 2022, 10, 3006 3 of 13

EEG generation methods for BMI and emotional recognition to the generation of sleep
EEG epochs.

This study introduces a data augmentation method based on GANs for sleep stage
classification. The main contributions of our research are as follows:
(1) We propose a set of EEG-oriented progressive Wasserstein divergence GANs

(WGAN-div) [19] that can adapt to sleep data and generate EEG epochs with few real
data. The model can generate realistic 1D EEG epochs corresponding to different
sleep stages and push the accuracy of the sleep staging model from 0.775 to 0.804.

(2) We generated stage transition sequences based on a relational memory (RM) gener-
ator [20], which was used to generate a long text. This scenario is similar to stage
transition sequence generation, and thus, we propose a few-shot learning-based
model to generate plausible sequences such that the generated samples can be used
in the training of the models based on RNNs [21], which have been proven to be
capable of extracting sequential features from EEG data, thereby further pushing the
accuracy of classification model from 0.804 to 0.831.

(3) We evaluated our GANs by feeding both real data and EEG epochs and sleep stage
transition sequences generated by us into a sleep staging model. In addition, we
adopted the 1-NN method to ensure the efficiency of our GANs. The results showed
that our GANs are capable of generating representative EEG epochs and plausible
sleep stage transition sequences. With the help of the augmented data, the accuracy
of the sleep staging model improved significantly after training with only a few sam-
ples.

2. Materials and Methods
2.1. Datasets

We evaluated our method on the publicly available dataset SleepEDF [1]. There are
two subsets in this dataset, Sleep Cassette (SC) and Sleep Telemetry (ST), which focus on
the age effects and temazepam effects on sleep, respectively. Each recording in this dataset
is composed of two EEG channels (Fpz-Cz and Pz-Oz), one electromyogram (EMG) chan-
nel, one electrooculogram (EOG) channel, and one oro-nasal respiration signal. We se-
lected the Fpz-Cz channel EEG recordings from subset SC as our training and validation
data. Here, Fpz-Cz and Pz-Oz refer to the positions of the electrodes. The placement of
the electrodes is shown in Figure 2.

Figure 2. The position of electrodes of EEG acquisition system. The letters F, T, C, P, and O refer to
the electrodes placed in the frontal, temporal, central, parietal, and occipital lobes, respectively.
Figure 2. The position of electrodes of EEG acquisition system. The letters F, T, C, P, and O refer to
the electrodes placed in the frontal, temporal, central, parietal, and occipital lobes, respectively.

The recordings were divided into 30-s epochs, and each epoch was manually cate-
gorized into one of the eight classes in accordance with the R and K standard by sleep
specialists. Most of the sleep staging models, including our baseline classification model,

Biomedicines 2022, 10, 3006 4 of 12

adopt a 5-class classification standard in the AASM manual. For convenience in comparing
the classification performance, we selected AASM as the standard and maintained consis-
tency with the references, merging S3 and S4 into N3. Moreover, we included W epochs
of 30 min before and after the sleep periods. We also left out the MOVEMENT and UN-
KNOWN stages, as they had no relationship to our classification tasks [4].

2.2. EEG Epoch Generation

The GAN framework is composed of two networks; one is the discriminator and the
other is the generator [15]. The discriminator is trained to judge whether the input data are
real data or fake data. The generator tries to generate samples that tend to be recognized as
real by the discriminator, and its input is a latent noise variable z. Hence, the generator is
forced to produce better samples by the discriminator [16].

The main disadvantage of GAN is the instability problem of the discriminator. It may
become possible for the discriminator to recognize only a limited range of input distribution
modes as real. Therefore, the generator will only produce a limited range of outputs. This
phenomenon is called modal collapse, which has been the topic of many studies [22–25].

Wasserstein GANs (WGANs) and their improved version [23] show promising ad-
vances in training stability and mode diversity. The Wasserstein distance introduced by
WGAN is a metric that can measure the distance between any two distributions, that is,
how similar any two distributions are. WGAN aims to minimize the Wasserstein distance
between real data and fake data distributions; however, the original form of the Wasserstein
distance is hard to compute, so the dual form of the Wasserstein distance is proposed, which
requires a strict 1-Lipschitz constraint. WGAN-div introduced Wasserstein divergence,
which does not require the 1-Lipschitz constraint, to solve this problem [19]. Thus, the
losses of the discriminator and generator are:

LD = Ex f∼q(x)

[
D
(

x f

)]
− Exr∼ p̃(x)[D(xr)] + kEx̂∼r(x)

[
‖∇x̂D(x̂)‖p

2

]
(1)

LG = Exr∼ p̃(x)[D(xr)]− Ex f∼q(x)[D(G(z))]) (2)

where p̃(x) is the real data distribution, q(x) is the fake data distribution, and r(x) is
a distribution with the same sample space as p̃(x) and q(x). x f ∼ q(x) refers to the
generated data x f following the distribution q(x). xr ∼ p̃(x) refers to the real data xr
following the distribution p̃(x). x̂ are the random interpolates between the real and
fake samples. D(x) means the output of the discriminator, while x is the input of the
discriminator. Similarly, in Equation (2), G(z) is the output of the generator, while z is the
input of the generator. Therefore, D(G(z)) means that the output of the generator G(z)
is the input of the discriminator. p and k are hyperparameters, which are determined by
experiments. In our model, p and k were set to 2 and 6, respectively.

The architectures of the generator and discriminator and the training algorithm were
based on those of ConSinGAN [26]. ConSinGAN proposed several methods to improve the
generation performance and accelerate the training, such as multistage training, learning
rate scaling, and an improved rescaling pyramid [27].

Multistage training started on a low resolution in the first few iterations, learning a
mapping from noise to a low-resolution EEG epoch (see “Generator: Stage 0” Figure 3).
The generator size was increased by adding three additional convolutional layers once the
training of stage n has converged. There was a residual connection between the original
upsampled features and the output of additional convolutional layers [28]. This process
was repeated N times until the desired output resolution was reached. Note that additional
noise was added to the features at each stage [29,30] to improve diversity.

In the default setting, we trained the last three stages of a generator to avoid overfitting.
The parameters of the discriminator are initialized to the parameters of the former stage
instead of reinitializing to random values, which can accelerate the training process.

Biomedicines 2022, 10, 3006 5 of 12Biomedicines 2022, 10, 3006 5 of 13

Conv
Block

Conv
Block

Conv
BlockUp

Conv
Block

++

Noise

Noise

Noise

Noise Conv
BlockUp ++

Noise

Conv
BlockUp ++

Noise

Conv
Block Up

three
convolutional

layers
: linear

upsampling:

Conv
Block

Loss

Real

Fake

Discriminator

Generator:
Stage 0

…

Stage 0 Stage 1 Stage N-1

Stage 0 Stage 1

Stage 0

Generator:
Stage 1

Generator:
Stage N-1

… …

parameters
copy: + add:

Conv

Conv

Conv

Conv
one

convolutional
layer

:

Figure 3. An overview of a model of EEG epochs generation. The training starts at stage 0 with a
small generator and small sample resolution. With increasing stages, both the generator capacity
and the sample resolution increase. Gaussian noise is used as additional noise.

In the default setting, we trained the last three stages of a generator to avoid overfit-
ting. The parameters of the discriminator are initialized to the parameters of the former
stage instead of reinitializing to random values, which can accelerate the training process.

Assume the resolution of stage n is 𝑥, 𝑥ே is the output size of the last stage. Then 𝑥 is defined as 𝑥 = 𝑥ே × 𝑟ቀ ಿషభౢౝ(ಿ)ቁ∗୪୭(ேି)ାଵ, n=0, 1, …, N-1. There are 4 stages in our
training process (stages 0, 1, 2, and 3), so N is the number of growing stages set to 4. 𝑟 is
a rescaling factor defined as:

𝑟 = ඨ𝑆𝑆ಿషభ
(3)

In Equation (3), 𝑆 is the size of the real samples, which equals 3000, and 𝑆 is the
size of the latent noise vector, which is 100. Therefore, the output sizes of our 4 stages were
100 (stage 0), 230 (stage 1), 965 (stage 2), and 3000 (stage 3).

Note that the training samples were mean-normalized EEG epochs since the normal-
ization was capable of accelerating the convergence of the model [31], so the amplitudes
of generated samples were also between −1 and 1. To generate samples with realistic am-
plitudes, we used two strategies for denormalization. The first strategy was recording the
means, maximums, and minimums of training samples as sets of normalization factors
and then randomly selecting a set of normalization factors to denormalize the generated
sample. The second strategy was generating new sets of normalization factors through
SMOTE [32] on the basis of the sets of normalization factors of real samples. Then, we
denormalized the generated samples with generated sets of normalization factors.

Figure 3. An overview of a model of EEG epochs generation. The training starts at stage 0 with a
small generator and small sample resolution. With increasing stages, both the generator capacity and
the sample resolution increase. Gaussian noise is used as additional noise.

Assume the resolution of stage n is xn, xN is the output size of the last stage. Then xn

is defined as xn = xN × r(
N−1

log (N)
)∗log (N−n)+1, n = 0, 1, . . . , N − 1. There are 4 stages in our

training process (stages 0, 1, 2, and 3), so N is the number of growing stages set to 4. r is a
rescaling factor defined as:

r = N−1
√

Sn
Sr

(3)

In Equation (3), Sr is the size of the real samples, which equals 3000, and Sn is the size
of the latent noise vector, which is 100. Therefore, the output sizes of our 4 stages were
100 (stage 0), 230 (stage 1), 965 (stage 2), and 3000 (stage 3).

Note that the training samples were mean-normalized EEG epochs since the normal-
ization was capable of accelerating the convergence of the model [31], so the amplitudes
of generated samples were also between −1 and 1. To generate samples with realistic
amplitudes, we used two strategies for denormalization. The first strategy was recording
the means, maximums, and minimums of training samples as sets of normalization factors
and then randomly selecting a set of normalization factors to denormalize the generated
sample. The second strategy was generating new sets of normalization factors through
SMOTE [32] on the basis of the sets of normalization factors of real samples. Then, we
denormalized the generated samples with generated sets of normalization factors.

2.3. Stage Transition Sequence Generation

The transition of sleep stages is periodic, with each sleep cycle taking about 90 min [33].
According to the rules of sleep stage transition, sleep experts can use information from the
past and future to classify the current sleep stage. Many automatic sleep stage classification
methods have also attempted to use RNNs, which are capable of considering information
from the past, to improve classification performance. In reality, epochs are manually sliced
from a long EEG signal segment and are correlated to the epochs before and after them.

Biomedicines 2022, 10, 3006 6 of 12

However, EEG epoch generation can only generate independent epochs. Hence, the
generated samples cannot be applied to the training of the models based on RNNs.

To make the generated samples available in the training of models based on RNNs, we
proposed stage transition sequence generation. The stage transition sequence generator we
utilized was the generator of RelGAN by Weili, N. et al. [20] based on relational memory
(RM), which was used to generate a long text. In our scenario, the sequences only consisted
of five different sleep stages, so we only needed a minor modification of the vocabulary to
make the model available for the task.

The architecture of the generator is shown in Figure 4. The RM generator mainly
consisted of attention and gate mechanisms.

Biomedicines 2022, 10, 3006 6 of 13

2.3. Stage Transition Sequence Generation
The transition of sleep stages is periodic, with each sleep cycle taking about 90 min

[33]. According to the rules of sleep stage transition, sleep experts can use information
from the past and future to classify the current sleep stage. Many automatic sleep stage
classification methods have also attempted to use RNNs, which are capable of considering
information from the past, to improve classification performance. In reality, epochs are
manually sliced from a long EEG signal segment and are correlated to the epochs before
and after them. However, EEG epoch generation can only generate independent epochs.
Hence, the generated samples cannot be applied to the training of the models based on
RNNs.

To make the generated samples available in the training of models based on RNNs,
we proposed stage transition sequence generation. The stage transition sequence genera-
tor we utilized was the generator of RelGAN by Weili, N. et al. [20] based on relational
memory (RM), which was used to generate a long text. In our scenario, the sequences only
consisted of five different sleep stages, so we only needed a minor modification of the
vocabulary to make the model available for the task.

The architecture of the generator is shown in Figure 4. The RM generator mainly con-
sisted of attention and gate mechanisms.

Mt × +

At

+

+

×

concat
linear

σ

tanh σ

tanhσ

σ

σ linear layer with
sigmoid activation

linear linear layer concat concatenate

tanh tanh activation × multipy

+ add

softmax softmax activation

attention mechanism

gate mechanism

softmax

softmax linear layer with
softmax activation

multi-layer
perceptron

MLP

MLP

It

Xt

Mt

Ot

PAt

drop the concatenated
input vectors from the
original memory slots

concat

flatten

multi-head
attention

add &
norm

add &
norm

add &
norm

multi-head
attention

add &
 layer norm

multi-head
attention layer

Figure 4. Overview of the relational memory generator. Mt is the memory matrix, the modules in
the purple block constitute the attention mechanism, and the modules in the orange block constitute
the gate mechanism.

An attention mechanism is capable of extracting self-attention weights from the input
so that the model can pay more attention to the important part of a sequence. In this mech-
anism, we used a multi-head attention layer [34] with skip connection and layer normali-
zation [35] to obtain the attention-weighted memory A. We further extracted the post-
attention weighted memory PA from A using an MLP with skip connection and layer
normalization.

Figure 4. Overview of the relational memory generator. Mt is the memory matrix, the modules in the
purple block constitute the attention mechanism, and the modules in the orange block constitute the
gate mechanism.

An attention mechanism is capable of extracting self-attention weights from the input
so that the model can pay more attention to the important part of a sequence. In this
mechanism, we used a multi-head attention layer [34] with skip connection and layer
normalization [35] to obtain the attention-weighted memory A. We further extracted the
post-attention weighted memory PA from A using an MLP with skip connection and
layer normalization.

A gate mechanism was specifically introduced to tackle the long dependence prob-
lem [36] in the RNN. Note that we only used the forget gate and input gate in this work. The
forget gate (the left branch) was used to electively attenuate the useless information from
the past, and the input gate (the right branch) was used to select important information
from the current time step to update the memory.

Stage transition sequence generation is a much simpler task than long text generation,
and through experiments, we found that adversarial training in RelGAN was trivial to the
performance improvement in this scenario. On the basis of our experiments, the training of
the RM generator was only supervised.

Biomedicines 2022, 10, 3006 7 of 12

We trained the model with maximum likelihood estimation (MLE) loss, which is
defined as Equation (4) below.

L = 1
N

T
∑

t=0
log
(
−Ot,It+1

)
(4)

In Equation (4), N denotes the length of the input data. It denotes the true stage at the
t-th time-step, and the RM generator is trained to predict the next possible stage (i.e., Ot)
on the basis of It. However, in sequence generation, the input sequence is not given, except
for I0, which denotes the start letter. Hence, the output at the t-th time-step is supposed to
be the input of the next time-step (i.e., It+1).

A generated stage transition sequence can be seen as a target sequence in training. For
each entry of the generated sequence (i.e., a single sleep stage), we randomly picked an
EEG epoch generated by the corresponding EEG epoch generator to synthesize a sequence
of EEG epochs. The EEG epoch sequence can then be used to train the classifier as an
augmented sample.

3. Results
3.1. Choice of Hyperparameters and Metrics

For EEG epoch generation, the detailed hyperparameters of the generator, discrimina-
tor, and training algorithm are shown in Table 1. In the hyperparameters of the generator
and discriminator (Table 1), Conv 9 denotes a convolutional layer whose kernel size was 9
and whose stride was 1. Upsampling denotes the linear upsampling method. Norm./Act.
Denotes the normalization and activation layers following the corresponding convolutional
layer, respectively. LreLU (0.05) denotes the leaky ReLU activation, whose alpha was 0.05.
The output size 32 × 100 denotes the output with 32 channels, and the size of the vector
of each channel was 100; 32 was also the number of output channels of the corresponding
convolutional layer.

Table 1. Hyperparameters of generator, discriminator, and training algorithm.

Generator

Layer Norm./Act. Output Size

Latent noise vector - 1 × 100

Stage 0: 3 × Conv 9 Batch Norm./LreLU (0.05) 32 × 100

Stage 1: Upsampling
3 × Conv 9

-
Batch Norm./LreLU (0.05)

32 × 230
32 × 230

Stage 2: Upsampling
3 × Conv 9

-
Batch Norm./LreLU (0.05)

32 × 965
32 × 965

Stage 3: Upsampling
3 × Conv 9

-
Batch Norm./LreLU (0.05)

32 × 3000
32 × 3000

Conv 9 -/Tanh 1 × 3000

Discriminator

Layer Act. Output size

Input signal - 1 × 3000

3×Conv 9 LreLU (0.05) 32 × 3000

Conv 9 - 1 × 3000

Training algorithm

General

Number of epochs to train per scale 2000

Biomedicines 2022, 10, 3006 8 of 12

Table 1. Cont.

Training algorithm

General

Gamma and milestone of
learning rate scheduler 0.1, 1600

Batch size 64

Generator: Stage n

Noise amplitude 0.1

Number of stages N 4

Concurrently trained stages Last 3 stages

Optimizer: Adam [37]
lr = 0.0005 × 0.1N-n-1

beta1 = 0.5
beta2 = 0.999

Generator inner steps 3

Discriminator

Optimizer: Adam
lr = 0.0005
beta1 = 0.5

beta2 = 0.999

Generator inner steps 3

Loss

WGAN-div loss K = 2, p = 6

Table 2 summarizes the hyperparameters used in the stage transition sequence genera-
tion. The choice of the sequence length (i.e., 180) was based on the duration of a human’s
single sleep cycle, approximately 90 min. Limited by the model’s capability, the generation
of the stage transition sequence for a whole night was difficult to achieve, and the quality
of generated sequences was unsatisfactory. Compared with other shorter sequence lengths,
the generated 180-long sequence also had better performance in tests.

Table 2. Hyperparameters of stage transition sequence generation.

Model

Number of memory slots 1

Number of heads 2

Head size 64

Memory size
(number of heads × head size) 2 × 64 = 128

Number of layers of MLP in post attention 2

Hidden size of MLP 128

Activation of MLP ReLU

Training algorithm

Number of epochs 200

Sequence length 180

Batch size 64

Loss MLE loss

Optimizer: Adam
lr = 1 × 10−3

beta1 = 0.9
beta2 = 0.999

Generator inner steps 3

Biomedicines 2022, 10, 3006 9 of 12

We evaluated the performance of SleepGAN by evaluating the model DeepSleep-
Net trained with our generated data using the overall accuracy (ACC), macro-averaging
F1-score (MF1), per-class F1-score (F1), and Cohen’s Kappa coefficient (k). The ACC and
MF1 were computed as follows:

ACC = ∑C
c=1 TPc

N
(5)

MF1 = ∑C
c=1 F1c

C
(6)

where C is the number of sleep stages, which is 5, and TPc is the true positive of class c,
which indicates the number of correctly recognized class examples. N is the total number
of test samples. F1c is the per-class F1-score of class c, which is calculated by treating a
single class as a positive class and merging all other classes into a negative class.

3.2. Data Augmentation

We tested the data and sequence generated by our GANs on the model DeepSleepNet 2.
The details of our eight tests are as follows:

Test 1-1 was constructed from real data collected from one patient, which was the
benchmark of our experiment. Test 1-2 trained with real data from one patient along with
augmented data generated according to this patient’s data in one night. Test 2-1 used real
data of 1 patient and the other two patients’ two-night data for training. Test 2-2 used the
same real data as test 2-1 and augmented data generated from the patient’s one-night data.

Test 2-1-1 trained with both augmented data and data and sequences from one patient’s
one-night data and sequence. Test 2-1-2 used augmented data and sequences generated
from the data and sequences of one patient for one night, as well as real data from this
patient. Test 2-2-1 was performed with real data and sequences of one patient in one night
and two other patients in two nights and augmented data from this patient. Test 2-2-2
used real data from one patient in one night and two patients in two nights, adding both
augmented data and the augmented sequence derived from the data and sequence of this
patient for training.

Table 3 shows the classification results of using real data and augmented data as a
training set. When we chose to train our model with more real data, we found that the
performance was better than that of the original test 1-1. On the basis of test 2-1, we trained
our model with augmented data generated by our EEG generator, and the model achieved
an accuracy, macro F1, and k of 0.804, 0.717, and 0.716, respectively, thus performing the
best in our four tests.

Table 3. Classification performance of training with real data and augmented data.

Test
Name Overall Metrics Per-Class F1-Score(F1)

ACC MF1 k W N1 N2 N3 REM

1-1 0.775 0.663 0.670 0.753 0.285 0.831 0.735 0.694

1-2 0.788 0.693 0.694 0.789 0.319 0.841 0.777 0.731

2-1 0.794 0.701 0.700 0.806 0.375 0.847 0.762 0.716

2-2 0.804 0.717 0.716 0.822 0.371 0.854 0.783 0.753

We concluded, on the basis of the comparison of the results of our four different tests,
that the larger the dataset used for training, the more powerful the model will be. When
the amount of real data in different training sets was equal, the model trained with data
generated by our EEG-epoch generator was more effective.

Biomedicines 2022, 10, 3006 10 of 12

3.3. Sequence Augmentation

Based on the data augmentation experiment mentioned above, we added augmented
sequences to our training dataset. Table 4 shows the scores of our network and the details
of our test.

Table 4. Classification results of training with augmented data and augmented sequence.

Test
Name Overall Metrics Per-Class F1-Score(F1)

ACC MF1 k W N1 N2 N3 REM

2-1-1 0.811 0.708 0.719 0.721 0.418 0.850 0.756 0.792

2-1-2 0.814 0.714 0.723 0.741 0.423 0.850 0.741 0.797

2-2-1 0.829 0.735 0.745 0.745 0.438 0.864 0.769 0.844

2-2-2 0.831 0.742 0.747 0.767 0.450 0.864 0.771 0.844

As shown in Table 4, the overall metrics were much higher than when only data
augmentation was used to train the model. Therefore, the introduction of sequences
containing past and future information can improve the classification scores of the model.
Further improvement of the model’s performance can be achieved through the use of
sequences generated by our SleepGAN. Augmented sequences can enhance the diversity
of sequences as well as the generalization and robustness of the model.

3.4. Data Distribution Evaluation Via 1-NN Classifier

The K-nearest neighbor (k-NN) classification algorithm [38] is one of the classical
methods in classification tasks. K-nearest neighbor means that each sample can be classified
into the major class of k values that are closest to it. The 1-NN (1-Nearest Neighbor) classifier
is a specific form of the k-NN classifier. If we set k = 1, then the k-NN classifier is a 1-NN
classifier. The 1-NN-based two-sample test is a sample-based evaluation metric for GANs.
In two-sample testing, the 1-NN classifier is utilized to determine whether two distributions
are similar to each other [39,40].

We introduced the 1-NN classifier to test the similarity between the distribution of the
data generated by our GANs and that of real data. It works by calculating the Euclidean
distance of two EEG epochs and classifying both generated data and real data to the
category of the nearest sample. We computed the accuracy of a 1-NN classifier trained on
real EEG epochs and generated EEG epochs with positive labels for real data and negative
labels for generated data. In this scenario, the 1-NN classifier should obtain an accuracy of
around 50%. The 50% accuracy of the 1-NN classifier means that the generated data are
very similar to real EEG signals of the same sleep stage and can hardly be distinguished
from the real one, which indicates that the two distributions match and the GANs perform
well. The average and variance accuracy of our 1-NN classifier is shown in Table 5.

Table 5. The average accuracy and variance of accuracy of using 1-NN classifier to evaluate the
distribution of data generated by GANs for each sleep stage.

Results Sleep Stages

W N1 N2 N3 R

Average 52.37% 54.84% 53.74% 57.75% 50.63%
Variance 0.003286 0.01009 0.008936 0.01277 0.000098

In Table 5, the accuracy of the 1-NN classifier is presented. To better show the distribu-
tion of accuracy, we demonstrated the mean and variance of accuracy for each sleep stage.
As shown in Table 5, the average accuracy of the 1-NN classifier in all five sleep stages
was close to 50% and the variance was very low. As a result, it can be concluded that the

Biomedicines 2022, 10, 3006 11 of 12

generated data are effective and the SleepGAN we designed performs well in generating
EEG signals.

4. Conclusions

This study proposed SleepGAN, a novel method for generating EEG epochs and
stage transition sequences from a small amount of training data. It has two networks,
progressive WGAN-div and RM generator, for data and sequence augmentation. The
model integrates stage transition sequences and EEG epochs so that generated data can be
utilized in the training set of both CNNs and RNNs. A classical sleep stage classification
model DeepSleepNet was trained using the generated data and sequence. When the 30 s
epochs of the EEG generated by our SleepGAN were added, the overall accuracy of the
model increased by 1%. After both augmented sequence and corresponding augmented
data were added, the model reached classification performance with accuracy, Macro F1,
and kappa of 83.06%, 74.24%, and 74.78%, respectively. The accuracy of the model increased
by 4% from 79.40%, which was obtained by training with only real data. The results show
that the EEG epochs and sequences produced by SleepGAN can imitate real data and
sequences well and have strong generalization. Overall, SleepGAN is a group of GANs that
can efficiently generate high-fidelity EEG epochs using a very small amount of data, which
can solve the problem of insufficient training data in automatic sleep stage classification.

Author Contributions: Conceptualization, Y.Y. and X.Z.; methodology, X.Z.; software, X.Z.; validation,
X.Z.; formal analysis, X.G.; investigation, X.G.; resources, Y.Y.; data curation, X.G.; writing—original
draft preparation, X.G.; writing—review and editing, X.G.; visualization, X.G.; supervision, Y.Y.; project
administration, Y.Y.; funding acquisition, Z.Y. Y.Y., X.G., X.Z. and Z.Y. conducted the experiments and
analyses. Y.Y. and X.G. wrote the manuscript. Z.Y. and Y.Y. provided computational resources and
experimental guidance. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the National Natural Science Foundation of China (Nos. 81973744
and 81473579), CAMS Innovation Fund for Medical Science (CIFMS) (Nos. 2022-I2M-1-018, 2022-I2M-2-
001), and the Beijing Natural Science Foundation (No. 7173267).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Link to publicly archived datasets SleepEDF: https://www.physionet.
org/physiobank/database/sleep-edfx.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zoubek, L.; Charbonnier, S.; Lecocq, S.; Buguet, A.; Chapotot, F. Feature selection for sleep/wake stages classification using

data-driven methods. Biomed. Signal Process. Control 2007, 2, 171–179. [CrossRef]
2. Supratak, A.; Dong, H.; Wu, C.; Guo, Y. DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel

EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1998–2008. [CrossRef] [PubMed]
3. Hobson, J.A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Electroen-

cephalogr. Clin. Neurophysiol. 1969, 26, 644. [CrossRef]
4. Iber, C.; Ancoli-Israel, S.; Chesson, A.L., Jr.; Quan, S.F. The AASM Manual for the Scoring of Sleep and Associated Events; American

Academy of Sleep Medicine: Westchester, IL, USA, 2007.
5. Taran, S.; Sharma, P.C.; Bajaj, V. Automatic sleep stages classification using optimise flexible analytic wavelet transform. Knowl.-

Based Syst. 2020, 192, 10536. [CrossRef]
6. Hassan, A.R.; Bhuiyan, M.I.H. Computer-aided sleep staging using complete ensemble empirical mode decomposition with

adaptive noise and bootstrap aggregating. Biomed. Signal Process. Control 2016, 24, 1–10. [CrossRef]
7. Da Silveira, T.L.T.; Kozakevicius, A.J.; Rodrigues, C.R. Single-channel EEG sleep stage classification based on a streamlined set of

statistical features in the wavelet domain. Med. Biol. Eng. Comput. 2017, 55, 343–352. [CrossRef]
8. Alickovic, E.; Subasi, A. Ensemble SVM Method for Automatic Sleep Stage Classification. IEEE Trans. Instrum. Meas. 2018,

67, 1258–1265. [CrossRef]
9. Phan, H.; Andreotti, F.; Cooray, N.; Chén, O.Y.; de Vos, M. Joint Classification and Prediction CNN Framework for Automatic

Sleep Stage Classification. IEEE Trans. Biomed. Eng. 2019, 66, 1285–1296. [CrossRef]

https://www.physionet.org/physiobank/database/sleep-edfx
https://www.physionet.org/physiobank/database/sleep-edfx
http://doi.org/10.1016/j.bspc.2007.05.005
http://doi.org/10.1109/TNSRE.2017.2721116
http://www.ncbi.nlm.nih.gov/pubmed/28678710
http://doi.org/10.1016/0013-4694(69)90021-2
http://doi.org/10.1016/j.knosys.2019.105367
http://doi.org/10.1016/j.bspc.2015.09.002
http://doi.org/10.1007/s11517-016-1519-4
http://doi.org/10.1109/TIM.2018.2799059
http://doi.org/10.1109/TBME.2018.2872652

Biomedicines 2022, 10, 3006 12 of 12

10. Kanwal, S.; Uzair, M.; Ullah, H.; Khan, S.D.; Ullah, M.; Cheikh, F.A. An Image Based Prediction Model for Sleep Stage
Identification. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan,
22–25 September 2019; pp. 1366–1370.

11. Phan, H.; Andreotti, F.; Cooray, N.; Chén, O.Y.; Vos, M.D. Automatic Sleep Stage Classification Using Single-Channel
EEG: Learning Sequential Features with Attention-Based Recurrent Neural Networks. In Proceedings of the 2018 40th
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA,
18–21 July 2018; pp. 1452–1455.

12. Zhu, T.; Luo, W.; Yu, F. Convolution- and Attention-Based Neural Network for Automated Sleep Stage Classification. Int. J.
Environ. Res. Public Health 2020, 17, 4152. [CrossRef]

13. Cai, Q.; Gao, Z.; An, J.; Gao, S.; Grebogi, C. A Graph-Temporal Fused Dual-Input Convolutional Neural Network for Detecting
Sleep Stages from EEG Signals. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 777–781. [CrossRef]

14. Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv.
(CSUR) 2020, 53, 1–34. [CrossRef]

15. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2014; Volume 27.

16. Yang, J.; Yu, H.; Shen, T.; Song, Y.; Chen, Z. 4-Class Mi-EEG Signal Generation and Recognition With CVAE-GAN. Appl. Sci. 2021,
11, 1798. [CrossRef]

17. Zhang, A.; Su, L.; Zhang, Y.; Fu, Y.; Wu, L.; Liang, S. EEG data augmentation for emotion recognition with a multiple generator
conditional Wasserstein GAN. Complex Intell. Syst. 2021, 8, 3059–3071. [CrossRef]

18. Hartmann, K.G.; Schirrmeister, R.T.; Ball, T. EEG-GAN: Generative adversarial networks for electroencephalographic (EEG) brain
signals. arXiv 2018, arXiv:1806.01875.

19. Wu, J.; Huang, Z.; Thoma, J.; Acharya, D.; Van Gool, L. Wasserstein divergence for gans. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

20. Weili, N.; Narodytska, N.; Patel, A. Relgan: Relational generative adversarial networks for text generation. In Proceedings of the
International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

21. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA
1982, 79, 2554–2558. [CrossRef] [PubMed]

22. Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.; Wang, Z.; Paul Smolley, S. Least squares generative adversarial networks. In Proceedings of the
IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017.

23. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the 34th International
Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017.

24. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved training of wasserstein gans. arXiv 2017,
arXiv:1704.00028.

25. Kodali, N.; Abernethy, J.; Hays, J.; Kira, Z. On convergence and stability of gans. arXiv 2017, arXiv:1705.07215.
26. Hinz, T.; Fisher, M.; Wang, O.; Wermter, S. Improved techniques for training single-image gans. In Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision, Virtual, 5–9 January 2021.
27. Shaham, T.R.; Dekel, T.; Michaeli, T. Singan: Learning a generative model from a single natural image. In Proceedings of the IEEE

International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 4570–4580.
28. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Vision and

Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
29. Isola, P.; Zhu, J.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the

IEEE Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134.
30. Jun-Yan, Z.; Richard, Z.; Pathak, D.; Darrell, T.; Efros, A.A.; Oliver, W.; Shechtman, E. Toward multimodal image-to-image

translation. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017; pp. 465–476.
31. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In

Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015.
32. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]
33. Březinová, V. Sleep cycle content and sleep cycle duration. Electroencephalogr. Clin. Neurophysiol. 1974, 36, 275–282. [CrossRef]
34. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In

Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017.
35. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
36. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
37. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
38. Abeywickrama, T.; Cheema, M.A.; Taniar, D. k-Nearest Neighbors on Road Networks: A Journey in Experimentation and

In-Memory Implementation. arXiv 2016, arXiv:1601.01549. [CrossRef]
39. Xu, Q.; Huang, G.; Yuan, Y.; Guo, C.; Sun, Y.; Wu, F.; Weinberger, K. An empirical study on evaluation metrics of generative

adversarial networks. arXiv 2018, arXiv:1806.07755.
40. Lopez-Paz, D.; Oquab, M. Revisiting Classifier Two-Sample Tests. arXiv 2016, arXiv:1610.06545.

http://doi.org/10.3390/ijerph17114152
http://doi.org/10.1109/TCSII.2020.3014514
http://doi.org/10.1145/3386252
http://doi.org/10.3390/app11041798
http://doi.org/10.1007/s40747-021-00336-7
http://doi.org/10.1073/pnas.79.8.2554
http://www.ncbi.nlm.nih.gov/pubmed/6953413
http://doi.org/10.1613/jair.953
http://doi.org/10.1016/0013-4694(74)90169-2
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.14778/2904121.2904125

	Introduction
	Materials and Methods
	Datasets
	EEG Epoch Generation
	Stage Transition Sequence Generation

	Results
	Choice of Hyperparameters and Metrics
	Data Augmentation
	Sequence Augmentation
	Data Distribution Evaluation Via 1-NN Classifier

	Conclusions
	References

