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Abstract
Tensor interpolation is an essential step for tensor data analysis in various fields of appli-
cation and scientific disciplines. In the present work, novel interpolation schemes for
general, that is, symmetric or non-symmetric, invertible square tensors are proposed.
Critically, the proposed schemes rely on a combined polar and spectral decomposition
of the tensor data T = RQT𝚲Q, followed by an individual interpolation of the two rota-
tion tensors R and Q and the positive definite diagonal eigenvalue tensor 𝚲 resulting
from this decomposition. Two different schemes are considered for a consistent rotation
interpolation within the special orthogonal group SO(3), either based on relative rota-
tion vectors or quaternions. For eigenvalue interpolation, three different schemes, either
based on the logarithmic weighted average, moving least squares or logarithmic moving
least squares, are considered. It is demonstrated that the proposed interpolation proce-
dure preserves the structure of a tensor, that is, R and Q remain orthogonal tensors and𝚲
remains a positive definite diagonal tensor during interpolation, as well as scaling and
rotational invariance (objectivity). Based on selected numerical examples considering
the interpolation of either symmetric or non-symmetric tensors, the proposed schemes
are compared to existing approaches such as Euclidean, Log-Euclidean, Cholesky and
Log-Cholesky interpolation. In contrast to these existing methods, the proposed interpo-
lation schemes result in smooth and monotonic evolutions of tensor invariants such as
determinant, trace, fractional anisotropy (FA), and Hilbert’s anisotropy (HA). Moreover,
a consistent spatial convergence behavior is confirmed for first- and second-order realiza-
tions of the proposed schemes. The present work is mainly motivated by the frequently
occurring necessity for remeshing or mesh adaptivity when applying the finite element
method to complex problems of nonlinear continuum mechanics with inelastic consti-
tutive behavior, which requires the consistent interpolation of tensor-valued history data
for the transfer between different meshes. However, the proposed schemes are very gen-
eral in nature and suitable for the interpolation of general invertible second-order square
tensors independent of the specific application.
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1 INTRODUCTION

Tensor interpolation is an essential step for tensor data analysis in various fields of application and scientific disciplines,
for example, in medicine, computer vision, general physics, or continuum mechanics. For example, diffusion tensors
are second-order symmetric positive definite tensors, which describe anisotropic diffusion behavior, for example, visual-
ized by diffusion tensor imaging (DTI) in the field of medicine. In continuum mechanics, the deformation gradient is a
second-order non-symmetric invertible tensor, whose polar decomposition in a rotation tensor and a symmetric positive
definite tensor describes the local rotation and stretch of material fibers. The present work is mainly motivated by adap-
tive finite element discretizations for problems of nonlinear continuum mechanics with inelastic constitutive behavior
(see, e.g., References 1-6), which requires the consistent interpolation of tensor-valued history data (e.g., the deformation
gradient associated with the inelastic part of the deformation) for the transfer between coarse and fine mesh. In partic-
ular, the developed tensor interpolation schemes has been integrated into a novel mesh regularization approach based
on finite element distortion potentials as proposed by the authors for the computational modeling of material expansion
processes with extreme volume change.7 However, the proposed schemes are very general in nature and suitable for the
interpolation of general invertible second-order square tensors independent of the specific application. Strictly speaking,
the term interpolation refers to interpolation functions that pass through the data values at given data points (interpola-
tion property). For simplicity, throughout this work, the notion tensor interpolation includes also the more general case
of tensor approximation, where an approximation function approximates the data values at given data points without
exactly representing them.

There is a considerable amount of literature on tensor interpolation methods, predominantly for second-order sym-
metric positive definite tensor as outlined in the following. A direct approach is an Euclidean interpolation, where the
tensor components, that is, the coordinates when expressed in a specific coordinate frame, are individually interpolated.
In principle, arbitrary scalar interpolation functions, for example, linear or bilinear Lagrange interpolation functions,
can be applied. However, as consequence of this simple interpolation approach, the invariants of the tensor cannot be
controlled. For instance, the so-called swelling effect,8 that is, a strongly non-monotonic evolution of determinant, trace
and fractional anisotropy (FA), has been observed for this class of interpolation schemes. Wang et al.9 proposed a scheme
for symmetric positive definite tensors utilizing a Cholesky decomposition to interpolate the resulting lower triangular
tensors. Even though it preserves positive definiteness and symmetry, it does not provide control over the remaining
invariants. Batchelor et al.,10 Pennec et al.,11 Lenglet et al.,12 and Fletcher and Joshi13 derived interpolation schemes
from a tensor metric defined on the Riemannian manifold of positive definite tensors, resulting in an affine invariant
interpolation. Riemannian approaches can evade the swelling effect while retaining positive definiteness. However, these
schemes typically go along with significant computational costs and in some cases even lack a closed-form represen-
tation of the interpolation. Also, an extension to an arbitrary number of data points and to higher-order interpolation
is not straight-forward for most of these schemes. A close approximation of the Riemannian approaches, which are
not exactly affine invariant however, is denoted as Log-Euclidean interpolation and was proposed by Arsigny.8 In this
context, the notion Log-Euclidean refers to the Euclidean, that is, componentwise, interpolation of tensor logarithms.
While this scheme perseveres positive definiteness and a monotonic evolution of the determinant, it typically results in a
non-monotonic evolution of the trace. Lin14 proposed a new Riemannian metric via Cholesky decomposition termed as
Log-Cholesky metric. The corresponding tensor interpolation is realized via Cholesky decomposition followed by a log-
arithmic transformation of the diagonal terms of the resulting lower triangular matrix. Also for this approach, the trace
of the tensor typically evolves in a non-monotonic manner.

Spectral decomposition followed by a separate interpolation of the resulting rotation and eigenvalue tensors was
proposed by Yang et al.15 for symmetric positive definite tensors. Accordingly, the final tensor is reconstructed from inter-
polated Euler angles or quaternions and logarithmically transformed eigenvalues. This method guarantees a monotonic
evolution of determinant, trace, and FA interpolation, while preserving symmetry and positive definiteness. The inter-
polation between multiple data points is approximated by employing spherical linear interpolation (slerp), designed for
rotation interpolation between two data points. In contrast, Collard et al.16 proposed to use a linear weighted quaternion
scheme for rotation interpolation of problems with multiple data points, which is applicable for small to moderate rel-
ative rotations between the data points. Wang et al.17 employed the so-called spectrum-sine interpolation. Accordingly,
the rotation interpolation is carried out based on the relative angles between the eigenvectors.

In summary, there are two main classes of interpolation approaches for symmetric positive definite tensors that pre-
serve positive definiteness and result in a monotonic evolution of invariants such as determinant, trace and fractional
anisotropy (FA): schemes based on either (i) Riemannian metrics or on a (ii) spectral decomposition followed by a separate
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interpolation of rotations and eigenvalues. However, to the best of our knowledge, none of the existing approaches fulfills
all of the following requirements, which are relevant for many practical applications:

1. Interpolation/approximation of an arbitrary number of data points
2. Suitability for higher-order interpolation
3. Scaling and rotational invariance (objectivity)

Moreover, relevant applications often involve non-symmetric tensors, while the aforementioned methods can only be
applied to symmetric tensors. Only a few interpolation approaches for non-symmetric tensors can be found in literature,
for example, the works by Prakash et al.1 and Frydrych et al.2 in the context of adaptive finite element discretizations for
crystal plasticity (CPFEM). These approaches rely on a polar decomposition of a non-symmetric tensor (the deformation
gradient) in a rotation tensor and a symmetric positive definite tensor (the stretch tensor) followed by a separate inter-
polation of rotation and stretch tensor. However, a standard Euclidean (component-wise) interpolation is applied to the
stretch tensor, that is, positive definiteness and a monotonic evolution of tensor invariants such as determinant, trace and
fractional anisotropy (FA) cannot be guaranteed.

The present contribution aims to close this gap by proposing novel interpolation schemes for general, that is, sym-
metric or non-symmetric, invertible square tensors, which preserve positive definiteness and monotonicity of invariants.
Moreover, the proposed schemes are suitable for data sets of arbitrary size, that is, not limited to the interpolation between
only two tensors and suitable for higher-order interpolation. Critically, the proposed schemes rely on a combined polar
and spectral decomposition of the tensor data T = RQT𝚲Q, followed by an individual interpolation of the two rotation
tensors R and Q and the positive definite diagonal eigenvalue tensor 𝚲 resulting from this decomposition. For eigen-
value interpolation, three different schemes are considered: The first one is the logarithmic weighted average investigated
by Yang et al.15 and Collard et al.,16 which can be identified with a weighted geometric mean. As second scheme, a
moving least squares approximation of the eigenvalues is utilized. Apart from these two well-established methods, a
new approach based on a moving least squares approximation of logarithmic eigenvalues is proposed. It will be demon-
strated that this approach, denoted as logarithmic moving least squares, combines the advantages of the aforementioned
two schemes, namely preservation of positive definiteness and suitability for higher-order approximation. Apart from
eigenvalue interpolation, two different schemes are considered for a consistent interpolation of the rotation tensor R
within the special orthogonal group SO(3): The first scheme is a moving least squares approximation of relative rotation
vectors and can be identified as an extension of the approach proposed by Crisfield and Jelenic18 from 1D interpola-
tion to multidimensional approximation. The second scheme represents the so-called spherical weighted average (SWA)
proposed by Buss and Fillmore19 based on quaternions. While the main novelty of the present work is the consistent
split of the overall tensor interpolation problem in a separate eigenvalue and rotation interpolation, it is emphasized
that various alternatives exist in the literature for the subtask of rotation interpolation. In the context of geometrically
exact beam theories or multibody system dynamics, for example, interpolation methods for the special orthogonal group
SO(3) and the special Euclidean group SE(3) have been discussed extensively.18,20-28 In particular, Han and Bauchau27

present a very general framework based on properly defined metrics on the rotation or motion manifold and show
that many existing interpolation schemes for rotation and motion can be derived from minimization problems for
these metrics.

It is demonstrated that the proposed interpolation procedure based on a combined polar and spectral decomposition
preserves the structure of a tensor T, in the sense that R and Q remain orthogonal tensors and 𝚲 remains a positive def-
inite diagonal tensor during interpolation, as well as scaling and rotational invariance (objectivity). Based on selected
numerical examples considering the interpolation of either symmetric or non-symmetric tensors, the proposed schemes
are compared to existing approaches such as Euclidean, Log-Euclidean, Cholesky and Log-Cholesky interpolation. In con-
trast to these existing methods, the proposed interpolation schemes result in smooth and monotonic evolutions of tensor
invariants such as determinant, trace, fractional anisotropy (FA), and Hilbert’s anisotropy (HA). Moreover, a consistent
spatial convergence behavior is confirmed for first- and second-order realizations of the proposed schemes.

The paper is organized as follows: In Section 2.1, the basics of polar and spectral decomposition are presented. In
Sections 2.2 and 2.3, the fundamentals of rotation tensor parameterization and the proposed schemes for rotation inter-
polation, either based on relative rotation vectors or quaternions, are presented. The different approaches for eigenvalue
interpolation are proposed and discussed in Section 2.4. Eventually, the overall tensor interpolation procedure and the
resulting properties are discussed in Section 2.5. Selected numerical examples and test cases are presented and analyzed
in Section 3. A summary and concluding remarks are given in Section 4.
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2 METHODOLOGY

This section describes the necessary mathematical preliminaries and delineate the proposed tensor interpolation
methods.

2.1 Tensor decomposition

For any invertible tensor T ∈ R3×3, the unique polar decomposition is defined according to

T = RU, (1)

where R is a rotation tensor and U ∈ R3×3 is a symmetric, positive definite tensor. When T is a symmetric tensor, the
rotation part R reduces to an identity tensor. The spectral decomposition of U reads U =

∑
i 𝜆

in̂i
⊗ n̂i, where n̂i are the

unit eigenvectors and 𝜆i are the eigenvalues of U. Equivalently, U can be represented by the tensor product

U = QT𝚲Q, (2)

with the diagonal eigenvalue tensor𝚲 = diag(𝜆1
, 𝜆

2
, 𝜆

3) and the rotation tensor Q spanned by the eigenvectors of U accord-
ing to QT = [n̂1

, n̂2
, n̂3]. The eigen decomposition of U is not unique, as Q depends on the choice of eigenvectors. When

the order of the eigenvectors is fixed, it is unique up to sign change. Combining (1) and (2), any invertible non-symmetric
tensor T ∈ R3×3 can be decomposed into two rotation tensors R and Q as well as a tensor 𝚲 containing three scalar
eigenvalues 𝜆1

, 𝜆

2
, 𝜆

3 according to T = RQT𝚲Q.
In the tensor interpolation strategy proposed in this work, the rotations and eigenvalues will be interpolated individu-

ally. This split of the total tensor interpolation is motivated by the intention to preserve the structure as well as the crucial
physical properties of the interpolated tensors.

On the one hand, various properties of a physical object represented by a tensor are reflected by the invariants of
the tensor, for example, its eigenvalues. A separate interpolation of the eigenvalues allows to tailor the corresponding
interpolation functions (see Section 2.4) in order to preserve essential properties such as monotonicity and positiveness of
the eigenvalues and of alternative tensor invariants such as determinant, trace, fractional anisotropy (FA), and Hilbert’s
anisotropy (HA). To give an example from nonlinear continuum mechanics, a standard polynomial interpolation of the
positive eigenvalues of the stretch tensor U might lead to a negative interpolated value (e.g., if eigenvalues are close to zero
or the interpolation grid is relatively coarse), which is highly undesirable from both, a physical and a mathematical point
of view: Negative values of the interpolated eigenvalue mean that infinitesimal volume elements become negative and the
deformation is not an invertible mapping anymore, which ultimately prohibits a consistent mathematical representation
of the problem.

On the other hand, also the rotation tensors R and Q are associated with important physical properties, for example,
objectivity. A separate interpolation of these tensors allows to exploit elaborate rotation interpolation schemes from the
literature, which have been shown to preserve the structure of rotation tensors (i.e., the interpolated tensor is again a
member of the rotation group) as well as objectivity. Some of these schemes offer further desirable properties, for example,
the exact representation of constant curvature states. To give a practical example, in mechanical problems involving slen-
der structures the overall deformation is typically dominated by the rotation contributions (and not by local strains).
As demonstrated in Section 3.3, a separate rotation interpolation (e.g., with schemes exactly representing constant cur-
vature states) can allow to interpolate the overall deformation gradient significantly more accurate in this scenario as
compared to a direct (Euclidean) interpolation of the tensor coordinates.

Remark 1. The proposed tensor interpolation approach mainly addresses invertible tensors T = RU decom-
posed into a rotation tensor R and a symmetric, positive definite tensor U. An example of a physical object
represented by such a tensor is the deformation gradient in nonlinear continuum mechanics. Scenarios where
U is a negative definite tensor can always be transformed into the former case by first interpolating the ten-
sor −T and then switching the signs of the tensor components after interpolation. In cases where the rotation
contribution vanishes, that is, R = I3, the general tensor T simplifies to a symmetric tensor U, which can be
treated with all the methods described below as long as it is positive (or negative) definite. However, there
are applications where physical objects are represented by symmetric but indefinite tensors (i.e., involving
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positive and negative eigenvalues in general). Examples are stress and strain tensors in nonlinear continuum
mechanics. Since the tensor U is still symmetric in this case, the spectral decomposition (2) still exists. In
this case, any rotation interpolation scheme from Section 2.3 can still be applied to the tensor Q, while the
eigenvalues of 𝚲 can only be interpolated with the MLS-scheme according to Section 2.4.2, as the other two
investigated schemes are only suited for the interpolation of positive eigenvalues.

2.2 Rotation tensor parameterization

Various different parametrizations for rotation tensors have been proposed in literature.20-23,28 A three-component param-
eterization is achieved, for example, by rotation (pseudo) vectors or Euler angles. Alternatively, unit-quaternions or
angle-axis parameterization give rise to four rotation parameters. This work focuses on rotation parametrization either
by rotation vectors 𝜽 or by unit-quaternions q̂.

A rotation tensor R can be considered as element of the special orthogonal group SO(3), which is a smooth differential
manifold, that is, a compact Lie group with dimension 3, according to:

SO(3) ∶= {R ∈ R
3×3 ∶ RTR = I3, det(R) = 1}, (3)

where I3 is the second-order identity tensor in R3. The Lie algebra associated with the Lie group is denoted as 𝔰𝔬(3), and
represents the tangent space to the Lie group at identity:

𝔰𝔬(3) ∶= TISO(3) ∶= {S(a) ∶ S(a) = −S(a)T ∀a ∈ R
3}, (4)

where S(a) ∈ R3×3 is a skew-symmetric tensor with S(a)b = a × b ∀a,b ∈ R3. The skew-symmetric tensor S(a) maps
vectors from R3 to the Lie algebra 𝔰𝔬(3) such that,

S(a) =
⎡
⎢
⎢
⎢
⎣

0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤
⎥
⎥
⎥
⎦

with a =
⎡
⎢
⎢
⎢
⎣

a1

a2

a3

⎤
⎥
⎥
⎥
⎦

or [S(a)]ij = −𝜀ijkak, (5)

where 𝜀ijk is the Levi-Civita symbol. Formally, the map from Lie algebra to Lie group is given by the exponential map
R = exp(S(a)) ∶ 𝔰𝔬(3)→ SO(3), based on the power series expansion of the exponential function.

2.2.1 Rotation vectors

A closed-form parametrization of the rotation tensor, and the exponential map, by means of a rotation vector 𝜽 ∈ R3 is
given by the so-called Rodrigues formula:

R(𝜽) = exp(S(𝜽)) = I3 + sin(𝜃)S(e𝜽) + (1 − cos(𝜃)) S(e𝜽)S(e𝜽), (6)

where 𝜃 represents the scalar rotation angle and e𝜽 the axis of rotation associated with the rotation vector 𝜽 = 𝜃e𝜽. The
unique computation of a rotation vector from a given rotation tensor is possible within 𝜃 ∈ ] − 𝜋, 𝜋], for example, by
applying Spurrier’s algorithm (see References 29 and 18). Formally, this inverse mapping from rotation tensor to rotation
vector is denoted as 𝜽(R)∶ SO(3) → R3, governed by exp(S(𝜽)) = R.

Finally, two rotation tensors R1(𝜽1) and R2(𝜽2), with corresponding rotation vectors 𝜽1 and 𝜽2, can be related by the
relative rotation tensor R21(𝜽21) according to:

R2(𝜽2) = R1(𝜽1)R21(𝜽21)⇔ R21(𝜽21) = R1(𝜽1)TR2(𝜽2), (7)

with the identity RT = R−1 for all elements of SO(3). For given rotation vectors 𝜽1 and 𝜽21, the resulting compound
rotation tensor R2(𝜽2) can be calculated according to (7), and the associated rotation vector 𝜽2 can be extracted using, for
example, Spurrier’s algorithm. Note, that these rotation vectors are non-additive, that is, 𝜽2 ≠ 𝜽1 + 𝜽21.
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Remark 2. Equation (7) describes the rotation update from R1 to R2 via right-multiplication with R21.
Alternatively, an update procedure based on left-multiplication can be defined according to

R2(𝜽2) = R12(𝜽12)R1(𝜽1)⇔ R12(𝜽12) = R2(𝜽2)R1(𝜽1)T . (8)

It can be shown that the relations R12 = R1R21RT
1 and 𝜽12 = R1𝜽21 hold between the relative rotations based

on either right- or left-multiplication.

2.2.2 Quaternions

A quaternion q̂ ∈ H is considered as element of the four-dimensional vector space H = {q̂ = a + b̂i + ĉj + d ̂k ∶ a, b, c, d ∈
R} with basis {1, ̂i, ̂j, ̂k}. The scalar (or real) and vector (or imaginary) part of the quaternion shall be denoted as q = a
and q = b̂i + ĉj + d ̂k such that q̂ = q + q with q ∈ R. The multiplication of two quaternions q̂ and p̂, often denoted as
Hamilton or quaternion product, is defined as

q̂p̂ = qp − q ⋅ p + qp + pq + q × p, (9)

which is non-commutative because p̂q̂ = qp − q ⋅ p + qp + pq − q × p. Here, the dot product ⋅ and the cross-product ×
for the vector part of the quaternion are inherited from the Euclidian vector space R3. A unit quaternion q̂ ∈ H1 defined
via ||q̂|| =

√
a2 + b2 + c2 + d2 =

√
q2 + q ⋅ q = 1 can be interpreted as element of the 3-sphere S3

S
3 = {q̂ ∈ H ∶ ||q̂|| = 1}. (10)

Based on the scalar rotation angle 𝜃 and the axis of rotation e𝜽 (with ||e𝜽|| = 1) as defined in Section 2.2.1, a unit
quaternion q̂ and its inverse q̂−1 are defined according to:

q̂(𝜃, e𝜽) = cos(𝜃∕2) + sin(𝜃∕2)e𝜽, q̂−1(𝜃, e𝜽) = q̂(−𝜃, e𝜽) = cos(𝜃∕2) − sin(𝜃∕2)e𝜽. (11)

From (11), it can be verified by trigonometric manipulations that an alternative parametrization of the rotation tensor (6)
can be stated as:

R(q̂) = I3 + 2qS(q) + 2S(q)S(q) with q = cos(𝜃∕2), q = sin(𝜃∕2)e𝜽, (12)

Note, that R(q̂) = R(−q̂), that is, the quaternions q̂ and −q̂ represent the same rotation. In contrast, the rotation by a
negative angle−𝜃 is given by the inverse quaternion q̂−1 according to (11). Again, Spurrier’s algorithm29 can be employed
to extract a unique quaternion from a given rotation tensor. The inverse mapping from rotation tensor to quaternion is
formally denoted as q̂(R) ∶ SO(3) → H1. In case of a compound rotation according to (7), the corresponding quaternions
can be related in a straightforward manner using the quaternion product (9) (see Reference 30):

q̂2 = q̂1q̂21. (13)

Remark 3. If left-multiplication according to (8) is used for the rotation update, the quaternion update reads

q̂2 = q̂12q̂1. (14)

Remark 4. Apart from rotation vectors and quaternions, which are used in this work, various alternatives
can be used for rotation tensor parametrization. An obvious variant is to directly use the nine coordinates
of the rotation tensor for a given basis, which can be interpreted as the coordinates of the three direc-
tors spanning the rotation tensor, along with six orthonormality conditions. A direct tensor interpolation
based on this parametrization leads to a loss of orthonormality in general. This aspect can be accounted for
through the usage of re-orthormalization procedures or modified mechanical models that are suitable for
non-orthonormal tensors.23,31
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2.3 Rotation tensor interpolation

Consider a set of N rotation tensors R1, … ,RN ∈ SO(3) distributed in space with corresponding position vec-
tors x1, … , xN ∈ Ω. The associated rotation vectors and unit quaternions shall be denoted as 𝜽1, … ,𝜽N ∈ R3 and
q̂1, … , q̂N ∈ H1, respectively. This section aims to construct a smooth rotation tensor field based on this N data points
that allows to approximate the rotation tensor Rp at a given location xp within the domain Ω.

As shown in Reference 18, a direct spatial interpolation of rotation vectors 𝜽j for j = 1, … ,N using standard interpola-
tion functions (e.g., polynomials, NURBS, etc.) leads to a violation of objectivity. Instead, in order to achieve an objective,
that is, frame-invariant, interpolation scheme, relative rotation vectors need to be considered for interpolation. Thereto,
in a first step, a reference rotation tensor R0 is defined, which can be conveniently chosen as the rotation tensor Rj asso-
ciated with one of the given data points xj. Within this work, the data point that is closest to the interpolation point xp is
chosen for this purpose. Now, for every rotation tensor Rj with j = 1, … ,N, the relative rotation tensor Rr

j with respect
to the reference rotation tensor R0 can be calculated according to (7):

Rr
j = R0TRj. (15)

From Rr
j according to (15), the corresponding relative rotation vector 𝜽r

j or relative quaternion q̂r
j can be extracted. Accord-

ing to (13), the relative quaternion can also be directly calculated as q̂j = q̂0q̂r
j . In the following sections, two different

interpolation strategies based on either relative rotation vectors 𝜽r
j or relative quaternions q̂r

j are presented, resulting in
a relative rotation vector 𝜽r

p or relative quaternion q̂r
p at the interpolation point P with associated relative rotation tensor

Rr
p. In both cases, the rotation tensor at the interpolation point P can be recovered from

Rp = R0Rr
p. (16)

2.3.1 Rotation vector interpolation

In order to approximate the relative rotation vector at the point xp, a moving least square scheme is used to construct a
continuous relative rotation vector field 𝜽r(x) based on N data points at positions xj with corresponding relative rotation
vectors 𝜽r

j for j = 1, … ,N. Thereto, 𝜽r(x) is approximated component-wise as polynomial according to

𝜽
ri(x) ∶= p(x)ai

, (17)

where the index i = 1, 2, 3 represents the three components of the relative rotation vector, p(x) ∈ Rm is the polynomial
basis function vector of order m, and ai ∈ Rm are the corresponding vectors of coefficients. For example, a complete
quadratic basis in 3D with corresponding coefficients is given by

p = [1 x y z x2 y2 z2 xy yz xz], aiT =
[
ai

0 ai
1 ai

2 ai
3 ai

4 ai
5 ai

6 ai
7 ai

8 ai
9
]
, (18)

with x = (x, y, z)T ∈ R3. The unknown coefficient vectors ai are obtained by minimizing the weighted residual

r =
N∑

j=1
w̃(xj)

[(
p(xj)a1 − 𝜽r1

j

)2
+

(
p(xj)a2 − 𝜽r2

j

)2
+

(
p(xj)a3 − 𝜽r3

j

)2
]

, (19)

where w̃(xj) is a normalized weighting function. Within our work, we employ the normalized weights according to:

w̃(xj) ∶=
w(xj)

∑N
j=1w(xj)

such that
∑

j
w̃(xj) = 1. (20)

Here the weighting function w(xj) can be any monotonic continuous function that decreases as it moves away from the
interpolation point xp. For example, an exponential weighting function, with control parameter c, reads

w(xj) = exp
(
−c||xj − xp||

2)
. (21)
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8 of 32 SATHEESH et al.

Minimization of the residual r according to (19) leads to the following result for the unknown coefficient vectors:

ai = P−1bi with P =
N∑

j=1
w̃(xj)p(xj)Tp(xj) and bi =

N∑

j=1
w̃(xj)p(xj)T𝜽ri

j . (22)

The condition number of P ∈ Rm×m depends on the number and location of the data points xj within the domain Ω. The
necessary condition for a non-singular matrix P is N ≥ m. Once the unknown coefficient vectors ai have been calculated,
the components of the relative rotation vector at position xp can be determined by evaluating (17) for x = xp:

𝜽
ri
p ∶= p(xp)ai

. (23)

Remark 5. When the order of the polynomial basis equals the number of data points (m = N), the mov-
ing least squares method reduces to the least squares method. In this case, the objective function in (19)
simplifies to

r =
N∑

j=1

[(
p(xj)a1 − 𝜽r1

j

)2
+

(
p(xj)a2 − 𝜽r2

j

)2
+

(
p(xj)a3 − 𝜽r3

j

)2
]

. (24)

Furthermore, in this special case, the resulting relative rotation vector field is interpolatory, that is,
𝜽

ri(xj) = 𝜽ri
j .

Remark 6. In our work, the moving least squares approaches are formulated in a local coordinate system with
origin at xp, that is, in the local system the coordinates of the interpolation scheme are given as xp = 0.

Remark 7. The normalized exponential weighting function defined through (20) and (21) resembles the
classical softmax function used in probability theory and machine learning. The normalization property
in (20) together with the non-negative nature of the exponential function makes it suitable for multi-class
classification tasks.

2.3.2 Quaternion interpolation

As second approach to approximate the rotation tensor at the point xp, the spherical weighted average (SWA) as proposed
by Buss and Fillmore19 shall be considered. Let q̂r

1, … , q̂r
N ∈ H1 be the relative unit quaternions at N given data points

as defined above, and w̃1, … , w̃N normalized weights (see (20)) at these data points such that
∑

j w̃j = 1 and w̃j > 0.
The spherical weighted average q̂r

p at position xp is the unit quaternion that minimizes the following weighted geodesic
distance function

q̂r
p = arg minq̂r f (q̂r) with f (q̂r) = 1

2

N∑

j=1
w̃j dS3(q̂r

, q̂r
j )

2 and dS3(q̂r
, q̂r

j ) = || ln
(
(q̂r)−1q̂r

j
)
||, (25)

where dS3(q̂r
, q̂r

j ) denotes the shortest geodesic distance between q̂r and q̂r
j on S3.19,32 As demonstrated in Appendix A,

the shortest geodesic distance can be reformulated to give the following simple expression

dS3
(

q̂r
, q̂r

j
)
= ̃
𝜃∕2 with ̃

𝜃 = || ̃𝜽||, R( ̃𝜽) = R(q̂r)TR
(

q̂r
j
)
, (26)

where ̃
𝜃 is the norm of the rotation vector associated with the relative rotation tensor between R(q̂r) and R(q̂r

j ). In Ref-
erence 19 it is shown that the SWA approach fulfills partition of unity, that is, q̂r

p = q̂r
const if q̂r

j = q̂r
const ∀j ∈ {1, … ,N},

and the interpolation property, that is, q̂r
p = q̂r

j if w̃j = 1 for one given j. It is important to note that the parameterization
of quaternions is unique up to sign change (q̂ and −q̂ result in the same rotation tensor). As discussed in Reference 19,
a unique solution q̂r

p of (25) can only be found if all quaternions q̂r
j lie within the same hemisphere of S3. A procedure to

enforce this prerequisite is presented in Section 2.5.1. Eventually, Buss and Fillmore proposed two iterative algorithms to
solve the optimization problem (25), one based on a steepest decent approach resulting in a linear convergence behav-
ior, and one based on a Newton-type algorithm resulting in a quadratic convergence rate. In the present work, the latter
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SATHEESH et al. 9 of 32

approach has been employed. For algorithmic details and an in-depth mathematical analysis of the SWA approach, the
interested reader is referred to Reference 19.

Remark 8. For N= 2, the SWA approach reduces to the well-known spherical linear interpolation (slerp),
initially introduced by Ken Shoemake33 in the context of computer graphics. Based on two quaternions
q̂1, q̂2 ∈ H1 and a weight w ∈ [0, 1], the slerp scheme is defined according to

q̂(w) = slerp(q̂1, q̂2,w) = (q̂2q̂−1
1 )wq̂1, (27)

which fulfills the interpolation property q̂(w = 0) = q̂1 and q̂(w = 1) = q̂2.

2.4 Eigenvalue interpolation

In the following subsections, three different variants will be presented for interpolating the eigenvalues 𝜆1
, 𝜆

2
, 𝜆

3 of the
stretch tensor U according to (1) and (2) based on given eigenvalue data 𝜆1

j , 𝜆
2
j , 𝜆

3
j at the points xj with j = 1, … ,N.

2.4.1 Logarithmic weighted average

According to this variant, the eigenvalues are logarithmatically transformed and individually interpolated as investigated
in References 15 and 16:

𝜆

i
p = GM{𝜆i

1, … , 𝜆

i
N} ∶= exp

( N∑

j=1
w̃(xj) ln(𝜆i

j)

)

for i = 1, 2, 3, (28)

where w̃j are the weights according to (20) and fulfilling
∑

j w̃j = 1 as well as w̃j > 0. This averaging procedure can be
identified as the weighted geometric mean (GM) of a general data yj > 0 fulfilling the essential property (see Reference 15)

min{y1, … , yN} ≤ GM{y1, … , yN} ≤ max{y1, … , yN}, (29)

that is, it can be identified as a monotonic interpolation scheme resulting in an interpolated eigenvalue that is always
larger than (or equal to) the smallest eigenvalue and smaller than (or equal to) the largest eigenvalue in the data set.
Among others, this characteristic evades the so-called swelling effect, that is, the determinant of the interpolated tensor
is more than the determinant of the original tensors (see Reference 8). Moreover, swelling leads to a decrease in fractional
anisotropy (FA) (see Appendix B) and trace. Furthermore, when interpolating positive definite tensors, property (29)
ensures that the interpolated eigenvalues remain positive, and, thus that also the interpolated tensor is positive definite,
which is an important property for many physical applications.

Remark 9. Exemplarily, the upper bound of the monotonic interpolation property according to (29) shall be
briefly verified in the following. For simplicity, let us assume that we consider general data yj > 0, and the
data points are numbered in a manner such that y1 represents the maximal value of the given data, that is,
y1 = max{y1, … , yN}. Using the partition of unit property of the weights, that is,

∑
j w̃j = 1, the interpolation

scheme (28) can be rewritten as

yp = exp

( N∑

j=1
w̃j ln(yj)

)

=
N∏

j=1
yw̃j

j = yw̃1
1

N∏

j=2
yw̃j

j = y
(

1−
∑N

j=2w̃j

)

1

N∏

j=2
yw̃j

j = y1

N∏

j=2

( yj

y1

)w̃j

. (30)

If the weights are positive, that is, w̃j > 0, this result can be used to state the following inequality, which
concludes the proof of (the upper bound of) the monotonic interpolation property according to (29):

yp = y1

N∏

j=2

( yj

y1

)w̃j

≤ y1 if y1 ≥ yj, w̃j > 0 for j = 1, … ,N. (31)
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10 of 32 SATHEESH et al.

Remark 10. In machine learning and information theory, the negative logarithmic weighted average is called
the cross-entropy function. It is primarily used as a loss function and quantifies the dissimilarity between
predicted and true probabilities.

2.4.2 Moving least squares eigenvalue approximation

The second variant for eigenvalue interpolation relies on a moving least squares approach as already presented in
Section 2.3.1. Thereto, the eigenvalue fields 𝜆i(x) are defined as polynomials according to

𝜆

i(x) ∶= p(x)ai
, (32)

The unknown coefficient vectors ai are obtained by minimizing the weighted residual

r =
N∑

j=1
w̃(xj)

[(
p(xj)a1 − 𝜆1

j

)2
+

(
p(xj)a2 − 𝜆2

j

)2
+

(
p(xj)a3 − 𝜆3

j

)2
]

. (33)

Minimization of the residual r according to (33) leads to the following result for the unknown coefficient vectors:

ai = P−1bi with P =
N∑

j=1
w̃(xj)p(xj)Tp(xj) and bi =

N∑

j=1
w̃(xj)p(xj)T𝜆i

j. (34)

The weighting functions w̃(xj) are given by (20). This method is very beneficial when interpolating between negative and
positive eigenvalues, for example, between negative-definite and positive-definite tensors. However, the nature of the
interpolated field depends on the choice of polynomial basis and the data set. As a result, the method can not guarantee
monotonic interpolation under all circumstances.

2.4.3 Logarithmic moving least squares eigenvalue approximation

The third variant for eigenvalue interpolation represents a modification of the moving least squares approach presented
in the last section. In particular, the final approximated fields 𝜆i(x) are given as exponential of a polynomial approximation
according to

𝜆

i(x) ∶= exp(p(x)ai), (35)

Moreover, the unknown coefficient vectors ai are obtained by minimizing the weighted residual

r =
N∑

j=1
w̃(xj)

[(
p(xj)a1 − ln(𝜆1

j )
)2
+

(
p(xj)a2 − ln(𝜆2

j )
)2
+

(
p(xj)a3 − ln(𝜆3

j )
)2

]

, (36)

including the deviation between the approximation function and the logarithm of the data. Minimization of the residual r
according to (36) leads to the following result for the unknown coefficient vectors:

ai = P−1bi with P =
N∑

j=1
w̃(xj)p(xj)Tp(xj) and bi =

N∑

j=1
w̃(xj)p(xj)T ln(𝜆i

j). (37)

The weighting functions w̃(xj) are again given by (20). Unlike the logarithmic weighted average in Section 2.4.1, the
logarithmic moving least squares scheme does not result in a monotonic approximation (or interpolation for N = m).
But, in contrast to the standard moving least squares approach in Section 2.4.2, this logarithmic moving least
squares approach ensures a non-negative approximation (interpolation). This is already very beneficial for the inter-
polation of symmetric, positive definite tensors since negative eigenvalues/determinants as well as singularities
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SATHEESH et al. 11 of 32

(i.e., zero eigenvalues/determinants) can be avoided. In contrast to the logarithmic weighted average in Section 2.4.1, this
scheme can be extended to arbitrary polynomial orders.

Remark 11. Again, when the order of the polynomial basis equals the number of data points (m = N), the
logarithmic moving least squares approximation simplifies to a logarithmic interpolation according to

𝜆

i(x) ∶= exp

( m∑

j=1
p̃j(x) ln

(
𝜆

i
j
)
)

, (38)

where the interpolation functions p̃j(x) fulfill the interpolation property p̃j(xk) = 𝛿jk, with the Kronecker delta
𝛿jk. Taking the exponential of the logarithmic interpolation according to (38) ensures that the interpolation
property is preserved for the final interpolated eigenvalues, that is, 𝜆i(xk) = exp

(∑m
j=1𝛿jk ln

(
𝜆

i
j

))
= 𝜆i

k.

2.4.4 Comparison of eigenvalue interpolation methods

In this section, the properties of the three different eigenvalue interpolation schemes shall be briefly verified and com-
pared using a one-dimensional data set. Thereto, data points xj and corresponding data values yj > 0 with j = 1, … ,N
are considered. In Section 2.4.1 it has been demonstrated that the logarithmic weighted average (also denoted as weighed
geometric mean) represents a positive and monotonic interpolation according to (29), that is, for given positive data
values, the interpolated value also remains positive and lies between the minimum and maximum value of the given
data. Clearly, due to the exponential mapping in (35), also the proposed logarithmic moving least squares approach of
Section 2.4.3 leads to a positive interpolated value. In contrast to the weights w̃(xj) > 0 used in the geometric mean, the
polynomial shape functions p(xj) employed in the logarithmic moving least squares approach can also take on negative
values. Therefore, the proof according to (31) as well as the resulting monotonic interpolation property (29) is not valid for
these shape functions. This means, for given positive data values the logarithmic moving least squares approach results
in an interpolated value that also remains positive, but it does not necessarily lie between the minimum and maximum
value of the given data. Eventually, the standard moving least squares approximation according to Section 2.4.2 fulfills
neither of these properties, that is, for given positive data values, the interpolated value can be negative, and, thus does
not necessarily lie between the minimum and maximum value of the given data.

To verify the aforementioned properties, a one-dimensional numerical test is performed. Consider the data set
(xj, yj(x)) = {(1, 0.1), (2, 0.1), (3, 1.0)}. Now the interpolation is performed within the domain x ∈ [1, 3] using (a) the
logarithmic weighted average (LOG) according to Section 2.4.1, (b) moving least squares (MLS) with quadratic basis
according to Section 2.4.2, and (c) logarithmic moving least squares (LOGMLS) with quadratic basis according to
Section 2.4.3. The interpolation results are visualized in Figure 1, which confirms the aforementioned properties. Accord-
ingly, the MLS scheme fails to preserve the monotonicity and positiveness of the input data in the interval x ∈ [1, 2].
In contrast, the LOG scheme preserves both, monotonicity and positiveness, while resulting in a rather non-uniform
interpolation, that is, showing significant variations in the second derivative (curvature). Finally, the LOGMLS approach
combines the properties of the other two by resulting in a uniform and strictly positive interpolation curve. Even though
the LOGMLS interpolation is not monotonic, it is preferable in many practical applications. In practice, positiveness is
typically more important than monotonicity since zero or negative eigenvalues might lead to a non-physical system behav-
ior and to a singular tensor. Moreover, in contrast to the LOG scheme, the proposed LOGMLS approach can be extended
to arbitrary interpolation orders.

2.5 Overall tensor interpolation procedure

Let T1, … ,TN ∈ R3×3 be invertible non-symmetric tensors defined at spatial positions x1, … , xN ∈ Ω. The individual
steps of the proposed interpolation procedure to find Tp at position xp are summarized in the following.

Step 1: Perform polar decomposition Tj = RjUj of the tensors according to (1). Thereto, solve the eigenvalue problem for
the tensor U2

j = TT
j Tj, resulting in the eigenvectors n̂1

j , n̂
2
j , n̂

3
j and the squared eigenvalues

(
𝜆

1
j

)2
,

(
𝜆

2
j

)2
,

(
𝜆

3
j

)2. The
symmetric tensor Uj can then be represented as Uj =

∑
i 𝜆

i
j n̂i

j ⊗ n̂i
j. Afterwards, the rotation tensor is recovered
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12 of 32 SATHEESH et al.

(A) (B) (C)

F I G U R E 1 Comparison of eigenvalue interpolation methods based on the data set (xj, yj(x)) = {(1, 0.1), (2, 0.1) (3, 1.0)}. Data is
interpolated in the domain x ∈ [1, 3] by weighted logarithmic mean (LOG), by moving least squares (MLS) method with a quadratic basis,
and logarithmic moving least squares (LOGMLS) with a quadratic basis and depicted in (A), (B), and (C), respectively.

from Rj = TjU−1
j . Be aware that the index j = 1, … ,N refers to the given data points, and a repeated index j does

not imply summation over this index.
Step 2: Compute the eigenvector tensors Qj according to (2). The rows of Qj are given by the normalized eigenvectors

n̂1
j , n̂

2
j , n̂

3
j . The tensor Qj is not unique since the permutation of rows will result in rotation tensors that also

satisfy (2). To impose uniqueness, we arrange the rows of Qj (and also the eigenvalues within the diagonal tensor
𝚲j) in decreasing order of the eigenvalues, that is, the first row of Qj corresponds to the eigenvector n̂1

j of the
largest eigenvalue 𝜆1

j . With this procedure, the rotation vector is unique up to sign change of the eigenvectors.
Since the determinant of the rotation tensor has to be +1, there are four possible ways to construct Qj out of
the calculated eigenvectors or their reflections. Such a non-uniqueness has to be avoided since it will introduce
discontinuities in the interpolation scheme. In order to achieve a unique definition of the rotation tensor Qj, we
choose the sign of the eigenvectors such that the relative rotations between associated eigenvectors (e.g., between
all n̂1

j for j = 1, … ,N) at positions xj close to the interpolation point xp is reasonably small. This procedure is
outlined in detail in Section 2.5.1.

Remark 12. For the proposed interpolation strategy, the assignment of eigenvalues and eigenvectors
from different data points xj is a critical issue. As outlined above, the default approach to solve this
problem is to arrange eigenvalues (and associated eigenvectors) at each data point in decreasing order,
that is, interpolation takes place between all largest eigenvalues, between all medium eigenvalues
and between all smallest eigenvalues from the N data points. As long as the data points xj are located
close enough to the interpolation point xp, it can be assumed that the ranges of largest, medium
and smallest eigenvalues are clearly separated, and this procedure is justified. However, in scenarios
where an overlap occurs between the ranges of largest, medium and smallest eigenvalues, this pro-
cedure can be suboptimal. As demonstrated in Section 3.3, in some applications (e.g., interpolation
of the deformation gradient in slender structures) an alternative strategy might be favorable, where
eigenvectors (and associated eigenvalues) from different data points xj are assigned by considering
their orientation relative to the eigenvectors at a reference point (e.g., one of the data points xj).

Step 3: To ensure objectivity of the interpolation procedure, Rj and Qj are transformed into relative rotation tensors
based on a reference rotation tensor as outlined at the beginning of Section 2.3. Depending on the chosen rotation
interpolation strategy, either the associated relative rotation vectors 𝜽r

j (rotation vector interpolation according
to Section 2.3.1) or the relative quaternions qr

j (quaternion interpolation according to Section 2.3.2) are extracted
from the relative rotation tensors. After the rotation interpolation based on either relative rotation vectors or
quaternions, the associated relative rotation tensors Rr

p and Qr
p at the interpolation point xp have to be calculated.

It is emphasized that the calculation of a rotation tensor out of a rotation vector or quaternion is unique since the
maps R(𝜽) ∶ R3 → SO(3) and R(q̂) ∶ H1 → SO(3) are isomorphic and 2 ∶ 1 homomorphic, respectively. Eventu-
ally, the relative rotation tensors Rr

p and Qr
p are converted into the sought-after absolute rotation tensors Rp and

Qp according to (16).
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SATHEESH et al. 13 of 32

Step 4: In a next step the eigenvalue interpolation is performed based on Sections 2.4.1,2.4.2, or 2.4.3. Within this work,
we follow the logarithmic interpolation scheme according to Section 2.4.1 if not specified differently. Once the
interpolated eigenvalues 𝜆1

p, 𝜆
2
p, 𝜆

3
p are found, the diagonal eigenvalue tensor 𝚲p is constructed.

Step 5: Finally, the interpolated tensor at the interpolation point xp is constructed from Tp = Rp
{

QT
p𝚲pQp

}
.

From the two different variants for rotation interpolation, that is, based on either rotation vectors (R) according to
Section 2.3.1 or quaternions (Q) according to Section 2.3.2, and the three different variants for eigenvalue interpolation,
that is, based on the logarithmic weighted average (LOG) according to Section 2.4.1, moving least squares (MLS) accord-
ing to Section 2.4.2, or logarithmic moving least squares (LOGMLS) according to Section 2.4.3, we get the six different
interpolation variants R-LOG, Q-LOG, R-MLS, Q-MLS, R-LOGMLS, and Q-LOGMLS which will be investigated in the
following examples. In the special case of symmetric tensors Tp, only the tensors Qj will require a rotation interpolation
(Rj = I).

2.5.1 Imposing uniqueness on eigenvectors and quaternions

As discussed above, the eigenvectors n̂1
j , n̂

2
j , n̂

3
j of the tensors Uj are only defined up to their signs. The basic idea of

the following re-orientation procedure is to define the orientation of the eigenvectors at all data points such that the
angular distance between the eigenvectors is minimized. In a first step, the eigenvectors n̂1

j corresponding to the largest
eigenvalues are considered. For the following procedure, a reference eigenvector n̂1

0 is required, which can be conveniently
chosen as an arbitrary eigenvector n̂1

j out of the data points xj. Within this work, the data point that is closest to the
interpolation point xp is chosen for this purpose as it has most influence on the interpolated values at xp. Now, for every
eigenvector n̂1

j the geodesic distance with respect to n̂1
0 is calculated according to dS2

(
n̂1

0, n̂
1
j
)
= arccos

(
n̂1

0 ⋅ n̂1
j
)

(note, that
the unit eigenvectors n̂1

0 and n̂1
j are elements of the unit-sphere S2, and the geodesic distance represents the enclosed

angle). The sign of an eigenvector n̂1
j is inverted if dS2

(
n̂1

0,−n̂1
j
)
< dS2

(
n̂1

0, n̂
1
j
)

(see Figure 2). The same procedure is applied
to the eigenvectors n̂2

j associated with the median eigenvalues, and the third eigenvector n̂3
j at every data point is found

by the vector product of the first and second eigenvector. Theoretically, there is an ambiguity if the angular separation
is ±𝜋∕2. However, for data points xj that are reasonably close to the interpolation point xp, it is expected that the angle
enclosed by associated eigenvectors is always smaller than 𝜋∕2.

The same strategy is adopted to choose between quaternions q̂ and their antipodes −q̂ in the context of the
quaternion-based interpolation strategy to ensure that all quaternions lie in the same hemisphere as discussed in
Section 2.3.2. An arbitrary quaternion q̂r

j has to be chosen as reference quaternion q̂r
0 for this procedure. Within this

paper, again the data point closest to the interpolation point is chosen for this purpose. For all data points j = 1, … ,N,

F I G U R E 2 Illustration of the eigenvector reorientation procedure. Consider the reference eigenvector n̂1
0 as well as two neighbouring

eigenvectors n̂1
1 and n̂1

2 together with their reflections −n̂1
1 and −n̂1

2, mapped onto S2. The green dashed line represents the geodesic path
between n̂1

0 and n̂1
1. Here vector n̂1

1 is chosen for interpolation as dS2 (n̂1
0, n̂

1
1) < dS2 (n̂1

0,−n̂1
1). In the case of n̂1

2, the reflected vector (blue dotted
arrow) is chosen as dS2 (n̂1

0,−n̂1
2) < dS2 (n̂1

0, n̂
1
2).
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14 of 32 SATHEESH et al.

(A)

(B)

F I G U R E 3 Problem setup for (A) one-dimensional examples with two data points at x1 = (−5, 0)T and x2 = (5, 0)T and (B)
two-dimensional examples with four data points at x1 = (5, 5)T , x2 = (−5, 5)T , x3 = (−5,−5)T , and x4 = (5,−5)T .

the geodesic distance between q̂r
0 and q̂r

j is computed as dS3
(

q̂r
0, q̂

r
j
)
= arccos

(
q̂r

0 ⋅ q̂r
j
)

(see Appendix A). The sign of a
quaternion q̂r

j is inverted if dS3
(

q̂r
0,−q̂r

j
)
< dS3

(
q̂r

0, q̂
r
j
)
.

Finally, the eigenvector reorientation method presented above shall be illustrated by a numerical test case, considering
two symmetric anisotropic tensors T1 and T2 at x1 and x2, respectively (see Figure 3a for the problem setup). The eigen-
values of both tensors are

{
𝜆

1
1,2, 𝜆

2
1,2, 𝜆

3
1,2

}
= {20, 4.0, 1.0}. The primary eigenvector n̂1

2, that is, the eigenvector associated
with the largest eigenvalue, of tensor T2 is oriented at 𝜋∕2 with respect to the coordinate axis e1, that is, ∢

(
e1
, n̂1

2
)
= 𝜋∕2.

Two cases are considered based on the eigenvector orientation of T1. Case 1: ∢
(

e1
, n̂1

1) ≈ 0 and case 2: ∢(e1
, n̂1

1) ≈ 𝜋. Note
that the respective eigenvectors resulting from these two cases are antiparallel, that is, scaled by −1. Thus, both cases
result in the same tensor. The interpolation is carried out by two different approaches, either an Euclidean (E), that is,
component-wise, tensor interpolation (see Section 3 for more details) and the R-MLS scheme using a rotation vector-based
rotation interpolation. Note that the scheme used for eigenvalue interpolation (LOG, MLS or LOGMLS) does not influence
the results for this example, since the eigenvalues of both tensors are identical. The results are illustrated in Figure 4A–C.
Since the components of the final tensor T1 are identical for both aforementioned cases, the Euclidean interpolation yields
the same result in both cases, which is illustrated in Figure 4A. Even though the two anisotropic tensors T1 and T2 only
differ via a relative rotation while having identical eigenvalues, the Euclidean scheme leads to an interpolated tensor at
the midpoint that is isotropic (the ellipsoidal representation results in a sphere). In other words, this simple interpolation
scheme cannot preserve the anisotropy of the original tensor data, which is denoted as swelling. In contrast, the proposed
approaches (e.g., R-MLS) result in the desired pure rotation interpolation in case of identical eigenvalues of both tensors,
that is, the anisotropy of the tensors is exactly preserved in this case. However, in the presented extreme case that the two
tensors T1 and T2 differ by a relative rotation of 𝜋∕2, the eigenvector interpolation becomes non-unique according to the
two aforementioned cases of eigenvector orientation. The interpolation results for these two cases based on the R-MLS
scheme are illustrated in Figure 4B,C. Finally, it shall be mentioned, that for practically relevant examples (i.e., when the
tensor data points are reasonably close to the interpolation point) the relative orientation angle between the tensor eigen-
vector bases is typically smaller than 𝜋∕2, thus the proposed interpolation schemes are unique. Moreover, in Section 3.3,
an alternative scheme is presented to uniquely determine eigenvector orientations in the context of nonlinear continuum
mechanics, which also works in case of very large relative rotations.

2.5.2 Invariant properties of interpolation methods

The tensor interpolation schemes proposed in the last sections are scaling invariant, that is, under arbitrary scaling of all
tensors Tj ∈ R3×3

, j = 1, … ,N with a positive scalar 𝛼 ∈ R+ the shape of the interpolated tensor Tp = Int(Tj) ∈ R3×3

remains unchanged:

∀𝛼 ∈ R
+ ∶ Int(𝛼Tj) = Int(Rj(𝛼Uj)) = Int(RjQT

j (𝛼𝚲j)Qj)

= Int(Rj) Int(QT
j ) Int(𝛼𝚲j) Int(Qj) = 𝛼 Int(Rj) Int(QT

j ) Int(𝚲j) Int(Qj)

= 𝛼 Int(Tj), (39)
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SATHEESH et al. 15 of 32

(A)

(B)

(C)

F I G U R E 4 Comparison of rotation vector-based (R-MLS) and Euclidean (E) interpolation for interpolation between two tensors based
on an eigenvector reorientation procedure. The two tensors T1 and T2 are placed at x1 and x2, respectively (see Figure 3A). Tensor T1 is
defined by the eigenvalues {𝜆1

1, 𝜆
2
1, 𝜆

3
1} = {20, 4.0, 1.0} whose primary eigenvector is oriented at 𝜋∕2 with respect to coordinate axis e1

(
i.e., ∢

(
e1
, n̂1

1
)
= 𝜋

2

)
. Tensor T2 has the same eigenvalues as T1. Two cases are considered based on the relative orientation of the primary

eigenvector of T2. Case 1: ∢(e1
, n̂1

2) ≈ 0 and case 2: ∢
(

e1
, n̂1

2
)
≈ 𝜋. The ellipsoidal representation of the interpolated tensors is illustrated for:

(A) E (cases 1 and 2 identical), (B) R-MLS of case 1, and (c) R-MLS of case 2. The ellipsoid color represents the tensor determinant.

where the operator Int(⋅) represents the interpolation. In the context of the eigenvalue interpolation, the scaling invariance
Int(𝛼𝚲j) = 𝛼Int(𝚲j) is well-known and can be verified in a straight-forward manner for all the three employed schemes,
that is, the logarithmic weithed average (LOG) according to Section 2.4.1, the moving least squares (MLS) approach
according to Section 2.4.2, and the logarithmic moving least squares (LOGMLS) approach according to Section 2.4.3.
Among others, scaling invariance makes the methods independent of the choice of physical units. In addition to scal-
ing invariance, the rotation vector-based and quaternion-based rotation interpolation schemes according to Section 2.3.1
and 2.3.2 are rotational invariant. This means, if all rotation tensors Rj, j = 1, … ,N are rotated by a constant rotation
tensor M ∈ SO(3), also the interpolated rotation tensor Rp = Int(Rj) ∈ SO(3) is rotated by M:

∀M ∈ SO(3) ∶ Int(MRj(𝜽)) = MInt(Rj(𝜽)) and Int(MRj(q)) = MInt(Rj(q)). (40)

This property is fulfilled since relative rotation vectors (and quaternions) are used for interpolation, as demonstrated in
Reference 18. Thus, due to Int(MRj) = MInt(Rj) and Int(QjMT) = Int(Qj)MT , also the following rotation invariance is
fulfilled for the tensor Tp = Int(Tj) = Int(Rj) Int(QT

j ) Int(𝚲j) Int(Qj):

∀M ∈ SO(3) ∶ Int(MTjMT) = MInt(Tj)MT
. (41)

This property makes the interpolation methods objective, that is, invariant under arbitrary rigid body rotations. Finally,
the combined scaling and rotation invariance can be stated as:

∀𝛼 ∈ R
+ and ∀M ∈ SO(3) ∶ Int(M𝛼TjMT) = 𝛼(MInt(Tj)MT). (42)

The scaling and rotation invariance is highly desirable in applications such as DTI processing and problems of nonlinear
continuum mechanics (solved, e.g., by the finite element method).

In the following, the rotation invariance shall be verified numerically using four tensors. Three identical tensors with
primary eigenvector orientation of ∢(e1

, n̂1
1,2,3) ≈ 𝜋∕2 with eigenvalues {𝜆1

1,2,3, 𝜆
2
1,2,3, 𝜆

3
1,2,3} = {7.5, 1.25, 1.0} are placed at

x1 = (5, 5)T , x2 = (−5, 5)T , and x3 = (−5,−5)T , see Figure 3B. The fourth tensor is positioned at x4 = (5,−5)T with a pri-
mary eigenvector orientation of ∢(e1

, n̂1
4) = 0 with eigenvalues {𝜆1

4, 𝜆
2
4, 𝜆

3
4} = {10, 3, 1.0}. The tensors are rotated by a

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7373 by T
u M

uenchen B
ibliothek, W

iley O
nline L

ibrary on [25/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



16 of 32 SATHEESH et al.

constant rotation tensor M = Me3
(
𝜋

3

)
Me2

(
𝜋

6

)
Me1

(
𝜋

12

)
(see Reference 34, eq. 1.108), where Mei (𝜃j) is the rotation about

the coordinate axis ei by an angle 𝜃j, resulting in a general 3D rotation. The results are visualized in Figure 5A–C for
the proposed Q-LOG scheme (quaternion-based interpolation or rotations), and in Figure 5D–F for the proposed R-LOG
scheme (rotation vector-based interpolation of rotations). Specifically, Figure 5A,D represent the non-rotated, original
tensor field resulting from the interpolation Int(Tj), j = 1, 2, 3, 4; Figure 5B,E represent the tensor field resulting from
interpolation of the rotated tensors MTjMT

, j = 1, 2, 3, 4, and Figure 5C,F represent the original, interpolated tensor field
subsequently rotated according to MInt(Tj)MT . Visually, no difference can be seen between the variants Int(MTjMT) and
MInt(Tj)MT for both interpolation schemes, which confirms rotation invariance according to (41). The same procedure
is carried out for four well-established tensor interpolation schemes from literature, that is, for the so-called Euclidean
(E), Log-Euclidean (LOG-E), Cholesky (C), and Log-Cholesky (LOG-C) interpolation as introduced in Section 3. In order
to quantify the deviation in eigenvector orientation at the interpolation point xp = (0, 0)T due to non-objectivity, the
following metric is introduced

||𝜃n|| =

( 3∑

i=1

[
arccos(ni

p,Int(MTjMT) ⋅ ni
p,MInt(Tj)MT )

]2
)1∕2

, (43)

which is plotted for the two proposed interpolation schemes and the four schemes from the literature in Figure 6.
It can be seen that, apart from the proposed methods, only the Euclidean interpolation scheme is objective, owing to the
distributive property of the tensor multiplication. The other three interpolation schemes from literature (LOG-E, C, and
LOG-C) suffer from severe non-objectivity.

(A)

(D) (E) (F)

(B) (C)

F I G U R E 5 Verification of rotation invariance for interpolation of four symmetric tenors. Subfigures (A) and (D): Interpolation results
for original tensors for quaternion- and rotation vector-based rotation interpolations methods. Subfigures (B) and (E): Interpolation results
when a rigid body rotation MTjMT with M = Me3 ( 𝜋

3
)Me2 ( 𝜋

6
)Me1 ( 𝜋

12
) is pre-multiplied to the input data. Subfigures (C) and (F):

Post-multiplication of the original interpolated tensor field in (A) and (D) according to MInt(Tj) MT .
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SATHEESH et al. 17 of 32

F I G U R E 6 Verification of rotation invariance for interpolation of four symmetric tenors. Deviation in eigenvector orientation at the

interpolation point xp = (0, 0)T according to ||𝜃n|| =

(
∑3

i=1

[

arccos(ni
p,Int(MTjMT) ⋅ ni

p,MInt(Tj)MT )
]2

)1∕2

for the proposed methods R-LOG and

Q-LOG as well as for four methods from the literature: Euclidean interpolation (E), Log-Euclidean interpolation (LOG-E), Cholesky
interpolation (C) and Log-Cholesky interpolation (LOG-C).

3 RESULTS

This section presents numerical examples to verify the proposed tensor interpolation schemes using synthetic data for
non-symmetric and symmetric tensors. For the case of symmetric tensors, also existing interpolation schemes from
literature can be employed. For comparison, we consider the following four schemes from literature:

1. Euclidean interpolation (E): This scheme represents a component-wise weighted average Tp =
∑N

j=1wjTj.
2. Cholesky interpolation (C):9 First, the tensor is decomposed into lower triangular matrices according to Tj = LjLT

j ,
followed by a component-wise weighted averaging of Lj according to Lp =

∑N
j=1wjLj. Finally, the interpolated tensor

reads Tp = LpLT
p .

3. Log-Euclidean interpolation (LOG-E):8 First, perform the eigendecompostion (see (2)) such that Tj ∶= QT
j 𝚲jQj then,

the tensor logarithms are computed based on the definition ln(Tj) ∶= QT
j ln(𝚲j)Qj. Finally, the interpolated tensor is

determined as the exponential of the weighted average of the tensor logarithms according to Tp = exp
(∑N

j=1wj ln(Tj)
)
.

4. Log-Cholesky (LOG-C):14 First, the tensor is decomposed into lower triangular tensors according to Tj = LjLT
j such

that Lj =
⌊

Lj
⌋
+

⌈
Lj
⌉
, where ⌊⋅⌋ is the strictly positive diagonal part of Lj and ⌈⋅⌉ is the remaining unrestricted part of

Lj. Then, the lower triangular matrix is interpolated according to Lp = exp
(∑N

j=1wj ln
(⌊

Lj
⌋))

+
∑N

j=1wj
⌈

Lj
⌉
. Finally,

the interpolated tensor is reconstructed as Tp = LpLT
p .

For a quantitative assessment of the shape and size of the interpolated tensors we consider the following metrics:
determinant, trace, fractional anisotropy (FA) and Hilbert anisotropy (HA).35 FA is a rotation-invariant dimensionless
parameter defined according to (B1). An isotropic tensor results in FA = 0, and for a highly anisotropic tensor FA → 1.
The rotation invariant parameter HA is defined as

HA = ln(𝜆max∕𝜆min),

where 𝜆max and 𝜆min are the maximal and minimal eigenvalue, respectively. An isotropic tensor results in HA = 0, and for
a highly anisotropic tensor HA → ∞. Note that we always have positive eigenvalues for the considered positive definite
tensors. The dimensionless parameters FA and HA are scaling invariant, that is, they only depend on the shape of the
tensor and remain unchanged when scaling the tensor by a scalar factor. Moreover, we quantify the relative orientation
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18 of 32 SATHEESH et al.

between two symmetric tensors using the cosine of the angle included by the primary eigenvectors (i.e., the eigenvectors
associated with the maximal eigenvalue) according to

cos
[
∢
(

n̂1
1, n̂

1
2
)]
= n̂1

1 ⋅ n̂1
2. (44)

3.1 Interpolation of symmetric, positive-definite tensors

In the first two numerical examples, symmetric tensors are considered. This scenario allows for comparison with
well-known tensor interpolation schemes from the literature such as Euclidean, Log-Euclidean, Cholesky, and
Log-Cholesky interpolation, which have been designed for symmetric tensors only.

3.1.1 Interpolation of two symmetric tensors

To verify the robustness of the proposed interpolation schemes, the extreme case of interpolating between two anisotropic
tensors that are nearly orthogonal

(
i.e., relative angle between the primary eigenvectors of the tensors ∢

(
n̂1

1, n̂
1
2
)
≈ 𝜋∕2

)

is considered as illustrated in Figure 7. The first tensor T1 is located at x1 = (−5, 0)T (see Figure 3A) with eigenvalues{
𝜆

1
1, 𝜆

2
1, 𝜆

3
1
}
= {10, 1.0, 1.0} and primary eigenvector orientation (i.e., angle between the global Cartesian base vector e1

and the eigenvector n̂1 associated with the maximal eigenvalue) of ∢(e1
, n̂1

1) = 𝜋∕4. The second tensor T2 is located at
x2 = (5, 0)T with eigenvalues

{
𝜆

1
2, 𝜆

2
2, 𝜆

3
2
}
=

{
20, 4.0, 1.0

}
and primary eigenvector orientation of ∢(e1

, n̂1
2) = 0.99 ⋅

(−𝜋∕4) ≈ −𝜋∕4. Note that the primary eigenvector orientation of the second tensor has been chosen such that the rel-
ative orientation between the tensors ∢

(
n̂1

1, n̂
1
2
)

is slightly smaller than 𝜋∕2, which represents the most challenging
scenario. For a relative angle of exactly 𝜋∕2, the proposed eigenvector re-orientation scheme (see Section 2.5.1) results in
non-unique solutions since ∢

(
n̂1

1, n̂
1
2
)
= ∢

(
n̂1

1,−n̂1
2
)
. However, in practical applications the data points should be reason-

ably close to the interpolation point. Thus, the relative orientation between the tensors should be significantly smaller
than 𝜋∕2.

When looking at the results for the Euclidean and Log-Euclidean interpolation schemes (Figure 7A,B), the ellip-
soidal eigenvalue/eigenvector representation of the tensor at positions close to xp = (0, 0)T shows a disk-like shape, which
demonstrates that the anisotropic shape of the tensor is not preserved by the interpolation scheme. This effect is less
pronounced but still present for the Cholesky and Log-Cholesky interpolation schemes (Figure 7C,D). In contrast, the
proposed interpolation schemes Q-LOG, R-LOG, R-MLS, and R-LOGMLS (Q-MLS (Q-LOGMLS) has not been plotted

(A) (B) (C)

(D) (E) (F)

(G) (H)

F I G U R E 7 Ellipsoidal representation of tensors showcasing the shape and orientation for interpolation between two symmetric tensors
using different interpolation schemes. Here the color of the ellipsoid is its determinant. Two tensors T1 and T2 are placed at x1 = (−5, 0)T and
x2 = (5, 0)T , respectively (see Figure 3A). Tensor T1 is defined by eigenvalues

{
𝜆

1
1, 𝜆

2
1, 𝜆

3
1
}
= {10, 1.0, 1.0} and primary eigenvector orientation

∢
(

e1
, n̂1

1
)
= 𝜋∕4. Tensor T2 is constituted by eigenvalues

{
𝜆

1
2, 𝜆

2
2, 𝜆

3
2
}
= {20, 4.0, 1.0} and primary eigenvector orientation ∢(e1

, n̂1
2) ≈ −𝜋∕4.
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SATHEESH et al. 19 of 32

(A) (B) (C)

(D) (E)

F I G U R E 8 Plot of different tensor metrics for interpolation between two symmetric tensors as displayed in Figure 7.

since the results are very similar to R-MLS (R-LOGMLS)) preserve the anisotropic shape of the tensors very well and
lead to a smooth transition in tensor orientation and shape as depicted in Figure 7E–H. Remarkably, the orientation
of the interpolated tensor at xp = (0, 0)T is the arithmetic mean of the orientations of the tensors T1 and T2, that is,
∢(e1

, n̂1
p) = [∢(e1

, n̂1
1) + ∢(e1

, n̂1
2)]∕2 ≈ 0.

The aforementioned trends are confirmed, and become even clearer, when looking at Figure 8, illustrating the evolu-
tion of the aforementioned metrics (determinant, trace, FA, HA, cos[∢(n̂1

1, n̂
1
p)]) of the interpolated tensor for the different

interpolation schemes. As expected, all methods except the Euclidean interpolation show a monotonic increase of the
determinant (Figure 8A). A slight non-monotonic decrease in the interpolated trace is observed for the Log-Euclidean,
Cholesky, and Log-Cholesky schemes (see Figure 8B). The anisotropy metrics FA and HA are plotted in Figure 8C,D. It is
striking that all methods from literature (E, LOG-E, C, and LOG-C) lead to a strongly non-monotonic interpolation in both
anisotropy metrics FA and HA, which is not present for the proposed schemes (Q-LOG, R-LOG, R-MLS, and R-LOGMLS).

The cosine of the angle included between the primary eigenvector of T1 and the primary eigenvector of the interpolated
tensor Tp, that is, cos[∢(n̂1

1, n̂
1
p)] is plotted in Figure 8E. From this plot, it is evident that the tensor orientation is not

considered in the Euclidean and Log-Euclidean interpolation scheme, which leads to a jump in the eigenvector orientation
between two neighboring interpolation points. For the Cholesky and Log-Cholesky schemes, the interpolated tensor close
to the position x = (0, 0)T is rather orientated towards T2. For the proposed schemes, the orientation changes gradually
such that the orientation of the interpolated tensor at xp = (0, 0)T is the arithmetic mean of the orientations of the tensors
T1 and T2 (dashed green line at cos[∢(n̂1

1, n̂
1
p)]≈ 1∕

√
2).

To sum up, it can be concluded that the proposed schemes (Q-LOG, R-LOG, R-MLS, R-LOGMLS,1 Q-MLS, and2

Q-LOGMLS) lead to a smooth and monotonic interpolation in all considered metrics. This is not the case for the
interpolation methods from literature (E, LOG-E, C, and LOG-C).

1not plotted
2not plotted
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20 of 32 SATHEESH et al.

3.1.2 Interpolation of four symmetric tensors

The second numerical test case is carried out for four anisotropic tensors and associated data points placed at the four
corners of a square with x, y ∈ [−5; 5] (see Figure 3B). Three of these four tensors are chosen identical, which are located
at x1 = (5, 5)T , x2 = (−5, 5)T , and x3 = (−5,−5)T and exhibit a primary eigenvector orientation of ∢(e1

, n̂1
1,2,3) ≈ 𝜋∕2 with

eigenvalues
{
𝜆

1
1,2,3, 𝜆

2
1,2,3, 𝜆

3
1,2,3

}
= {7.5, 1.25, 1.0}. The fourth tensor is located at x4 = (5,−5)T with a primary eigenvector

orientation of ∢
(

e1
, n̂1

4
)
= 0 with eigenvalues

{
𝜆

1
4, 𝜆

2
4, 𝜆

3
4
}
= {10, 3, 1.0}.

The interpolation results for E, LOG-E, C, LOG-C, R-LOG, and Q-LOG methods in terms of ellipsoidal eigen-
value/eigenvector representation and corresponding FA and HA contour plots are depicted in Figure 9A,B, which

(A)

(D)

(G) (H) (I)

(E) (F)

(B) (C)

F I G U R E 9 Ellipsoidal representation (first column) of tensors featuring the shape and orientation and contour plots of tensor metrics
FA and HA (second and third column) for interpolation between four symmetric tensors employing different interpolation methods. The
color of the ellipsoid is its determinant. Here three symmetric tensors (T1,2,3) with eigenvalues {𝜆1

1,2,3, 𝜆
2
1,2,3, 𝜆

3
1,2,3} = {7.5, 1.25, 1.0} and

primary eigenvector orientation ∢(e1
, n̂1

1,2,3) ≈ 𝜋∕2 are placed at x1 = (5, 5)T , x2 = (−5, 5)T and x3 = (−5,−5)T (see Figure 3B). The fourth
tensor T4 at x4 = (5,−5)T is defined by eigenvalues {𝜆1

4, 𝜆
2
4, 𝜆

3
4} = {10, 3, 1.0} and primary eigenvector orientation ∢(e1

, n̂1
4) = 0.
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(J) (K) (L)

(M) (N) (O)

(P) (Q) (R)

F I G U R E 9 (Continued)

confirm the trends already observed for the interpolation of two tensors. For the Euclidean, Log-Euclidean,
Cholesky, and Log-Cholesky interpolation methods, FA and HA show a non-monotonic evolution (depicted by
discontinuous and non-smooth contour lines in second and third columns of Figure 9A,B except for R-LOG
and Q-LOG), resulting in a disk-like shape of the ellipsoidal eigenvalue/eigenvector representation, that is, an
isotropic tensor, in some regions of the interpolation domain. In contrast, the proposed schemes (R-LOG and
Q-LOG) show a monotonic evolution of FA and HA, preserving anisotropy. Moreover, the quaternion-based
(Q-LOG) and the rotation vector-based (R-LOG) rotation interpolation schemes result in very similar tensor
orientation fields.
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(A)

(C) (D)

(B)

F I G U R E 10 Interpolation between non-symmetric and symmetric tensors employing R-LOG and Q-LOG methods. Subfigures (A) and
(C) are the ellipsoidal representation (the color denotes the tensor determinant) portraying shape and orientation of the symmetric
component U and subfigures (B) and (D) depict the primary eigenvector ̂ñ1

j of rotation component R of the tensor. The first tensor T1 = R1U1

is located at x1 = (−5, 0)T (see Figure 3A). The symmetric component U1 is constituted by eigenvalues {𝜆1
1, 𝜆

2
1, 𝜆

3
1} = {10, 1.0, 1.0} and

primary eigenvector orientation ∢(e1
, n̂1

1) = 𝜋∕4 and the rotation component is defined as R1 = Re3 (𝜃1 ≈ 1
2
𝜋) (see (45)). The second tensor

T2 = U2 at x2 = (5, 0)T is defined by eigenvalues {𝜆1
2, 𝜆

2
2, 𝜆

3
2} = {20, 4.0, 1.0} and primary eigenvector orientation ∢(e1

, n̂1
2) ≈ −𝜋∕4.

(A)

(D) (E) (F)

(B) (C)

F I G U R E 11 Tensor metrics for interpolation between non-symmetric and symmetric tensor as displayed in Figure 10.
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3.2 Interpolation of non-symmetric tensors

In this section, we explore the interpolation of non-symmetric tensors (T = RU). We demonstrate extreme
cases of interpolation similar to the examples presented for symmetric tensor in the previous section.
These extreme cases are achieved by specifying the primary eigenvector orientation (∢(e1

, n̂1
j )) of the

symmetric part U and the angle of rotation for the rotation part R. While the interpolation of U is
again visualized by means of ellipsoidal representation, the interpolated rotation tensor field R is repre-
sented by its primary eigenvector ̂ñ1

j (not to be confused with primary eigenvector n̂1
j of the symmetric

tensor U).

3.2.1 Interpolation of two tensors

In the first step, the interpolation between an invertible, non-symmetric, positive definite tensor (T1 = R1U1) and a
symmetric, positive-definite tensor (T2 = U2) is carried out. The tensors T1 and T2 are located at x1 = (−5, 0)T and
x2 = (5, 0)T (see Figure 3A). The symmetric part U1 is defined by eigenvalues {𝜆1

1, 𝜆
2
1, 𝜆

3
1} = {10, 1.0, 1.0} and a pri-

mary eigenvector orientation of ∢(e1
, n̂1

1) = 𝜋∕4. The symmetric tensor U2 is defined by eigenvalues {𝜆1
2, 𝜆

2
2, 𝜆

3
2} =

{20, 4.0, 1.0} and a primary eigenvector orientation of ∢(e1
, n̂1

2) ≈ −𝜋∕4. The rotation part of both tensors is defined as
Rj = Re3(𝜃j) with

Re3(𝜃j) =
⎡
⎢
⎢
⎢
⎣

cos(𝜃j) − sin(𝜃j) 0
sin(𝜃j) cos(𝜃j) 0

0 0 1

⎤
⎥
⎥
⎥
⎦

, (45)

which is the rotation about the coordinate axis e3 by an angle 𝜃j. The rotation angle of both tensors is given as
𝜃1 ≈ 𝜋∕2 and 𝜃2 = 0. The relative orientation of the primary eigenvectors of the symmetric parts U1 and U2 is
again nearly 𝜋∕2, that is, ∢(n̂1

1, n̂
1
2) ≈ 𝜋∕2. The ellipsoidal representation of the interpolated tensor for this extreme

case is depicted in Figure 10. The orientation is gradually interpolated for both rotation interpolation schemes
R-LOG and Q-LOG (Figure 10A,C). Moreover, the evolution of the primary eigenvector of R as resulting from
these two schemes is illustrated in Figure 10B,D. The characteristic metrics determinant, trace, FA, and HA of the
symmetric part U are plotted in Figure 11A–D. These plots again demonstrate a monotonic change of anisotropy
without swelling, preserving tensor shape and size. The orientation parameters cos[∢(n̂1

1, n̂
1
p)] and cos[∢( ̂ñ1

1, ̂ñ
1
p)] in

Figure 11E,F describe a gradual and monotonic change of orientation for both tensor components U and R.
The interpolated tensors Up and Rp at xp = (0, 0)T show a relative orientation of ≈ 𝜋∕4 with respect to U1

and R1 at x1 = (−5, 0)T , that is, ∢( ̂ñ1
1, ̂ñ

1
p) ≈ 𝜋∕4 and ∢

(
n̂1

1, n̂
1
p
)
≈ 𝜋∕4, respectively (denoted by green dashed

lines).

3.2.2 Interpolation of four tensors

In this section, the interpolation studies for non-symmetric tensors are extended to four data points placed at
the four corner points of a square with x, y ∈ [−5; 5] (see Figure 3B). Three of these four tensors T1,2,3 are
non-symmetric and identical, which are located at x1 = (5, 5)T , x2 = (−5, 5)T and x3 = (−5,−5)T . The symmetric part
U1,2,3 of these tensors is defined with eigenvalues

{
𝜆

1
1,2,3, 𝜆

2
1,2,3, 𝜆

3
1,2,3

}
= {7.5, 1.25, 1.0} and primary eigenvector ori-

entation ∢(e1
, n̂1

1,2,3) ≈ 3𝜋∕4. The rotation part of these tensors is given by Re3 according to (45) with 𝜃1,2,3 ≈ 𝜋∕2.
The fourth tensor is symmetric T4 = U4 and located at x4 = (5,−5)T with eigenvalues

{
𝜆

1
4, 𝜆

2
4, 𝜆

3
4
}
= {15, 5, 1.0} and

primary eigenvalue orientation ∢
(

e1
, n̂1

4
)
= 𝜋∕4. The ellipsoidal representation of the interpolated tensors is dis-

played in Figure 12. Again, the results from rotation vector-based (R-LOG) and quaternion-based (Q-LOG) rota-
tion interpolation are very similar. The tensor orientation is smoothly interpolated for both, the symmetric part U
and the rotation part R. Again, the shape and size of U are preserved during interpolation. This observation is
confirmed by Figure 12 (third column), which again shows a monotonic evolution of FA across the interpolation
domain.
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24 of 32 SATHEESH et al.

3.3 Convergence study: Application to nonlinear continuum mechanics

3.3.1 General problem setup

In this section, we explore the application of the proposed tensor interpolation schemes in the context of nonlinear con-
tinuum mechanics, and investigate the convergence behavior of the interpolation methods for general non-symmetric
tensors. In nonlinear continuum mechanics the deformation gradient F is the fundamental kinematic variable describ-
ing the mapping (deformation) of an infinitesimal material fiber dX (red arrows in Figure 13) in the initial state (material
configuration) to its new position dx in the current deformed state (spatial configuration):

dx = F ⋅ dX with F = 𝜕x
𝜕X
. (46)

In general, for an arbitrary deformation, F is non-symmetric and strictly positive definite. The right polar decomposition
of the deformation gradient reads F = RU, where R represents the rotation and U the stretch of a material fiber. Thus,
the symmetric positive definite tensor U is also denoted as stretch tensor.

(A)

(D) (E) (F)

(B) (C)

F I G U R E 12 Interpolation between three non-symmetric tensors and a symmetric tensor with R-LOG and Q-LOG methods. Subfigures
(A) and (D) are the ellipsoidal representation portraying shape and orientation (the color is its determinant) of the symmetric component U,
subfigures (B) and (E) depict the primary eigenvector ̂ñ1

j of rotation component R, and subfigures (C) and (F) are the contour plots of the
tensor metric FA of U. Here three identical non-symmetric tensors T1,2,3 = R1,2,3U1,2,3 are placed x1 = (5, 5)T , x2 = (−5, 5)T and x3 = (−5,−5)T

(see Figure 3B). The symmetric part U1,2,3 is defined by eigenvalues {𝜆1
1,2,3, 𝜆

2
1,2,3, 𝜆

3
1,2,3} = {7.5, 1.25, 1.0} with primary eigenvector

orientation ∢(e1
, n̂1

1,2,3) ≈ 3𝜋∕4 and the rotation part by R1,2,3 = Re3 (𝜃1,2,3 ≈ 1
2
𝜋) (see (45)). The fourth tensor T4 is symmetric that is, T4 = U4

and is located at x4 = (5,−5)T . Tensor U4 is defined by eigenvalues {𝜆1
4, 𝜆

2
4, 𝜆

3
4} = {15, 5, 1} and primary eigenvector orientation

∢(e1
, n̂1

4) = 𝜋∕4.
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SATHEESH et al. 25 of 32

In the following, the deformation of a slender body with length L and height H = L∕10 is considered (see Figure 13). In
continuum mechanics, the deformation of such bodies can be described by means of beam theories. Based on the so-called
geometrically exact beam theory, the deformation gradient associated with such a slender body can be formulated as
Reference 28:

F = [g1(s1) + 𝜸(s1) − k(s1) s2 g1(s1)]⊗ g01(s1) + g1(s1)⊗ g02(s1). (47)

Here, s1 ∈ [0;L] is an arc-length coordinate describing the beam centerline, and g01, g02 as well as g1, g2 are local basis
vectors in the initial and deformed configuration, respectively. Moreover, k(s1) is the curvature of the beam centerline and
the strain vector 𝜸 is given by

𝜸(s1) = 𝜂(s1)g1 + 𝜉(s1)g2, (48)

where 𝜂 and 𝜉 are the shear and axial strain, respectively. In this study, we consider four data points X1, X2, X3, and X4 at
initial positions (L,H∕2)T , (0,H∕2)T , (0,−H∕2)T , and (L,−H∕2)T (see Figure 13) defining a rectangle of size L ×H. The
performance of the proposed interpolation methods is quantified by considering the error between the interpolated defor-
mation gradient and the corresponding analytical value according to (47) evaluated at the center of the beam (L∕2, 0)T .
For comparison, we consider all interpolation methods defined in Section 2.5, that is, R-LOG, Q-LOG, R-MLS, Q-MLS,
R-LOGMLS, and Q-LOGMLS.

3.3.2 Alternative strategy for eigenvector assignment

In the following numerical studies, deformed configurations will be considered, where the relative rotation angle
between the deformation gradients at positions X2, X3 and the deformation gradients at positions X1, X4 are identi-
cal or close to 𝜋, and therefore the strategy for eigenvector assignment based on eigenvalue magnitude as presented
in Section 2.5.1 is no longer applicable. However, in examples of nonlinear continuum mechanics, in particular when
considering slender structures, an alternative strategy for eigenvector assignment seems to be more natural. Thereto,
we consider eigenvectors ̂N associated with the material configuration, which–according to the theory of nonlin-
ear continuum mechanics–are related to the eigenvectors n̂ in the spatial configuration via the rotation part R of
the deformation gradient according to ̂N = RTn̂. In the initial "straight beam" configuration, there are two directions

F I G U R E 13 Kinematic quantities of beam deformation. Consider a beam of length L and height H clamped at the edge s1 = 0. The
initial configuration (left) is described by the material coordinates X. The deformed configuration (right) is represented by the spatial
coordinates x. The red arrows symbolize the fibers where the vectors dXj represent material fibers, whereas the spatial fibers are denoted by dxj.
Here the deformation gradient F = 𝜕x

𝜕X
describes the mapping from initial configuration to deformed configuration governed by dx = F ⋅ dX.
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26 of 32 SATHEESH et al.

that can be distinguished from a mechanical point of view: the beam’s length direction s1, and the beam’s trans-
verse direction s2. For such slender structures, the normal strains in the beam length direction typically dominate
the overall deformation. This means, an eigenvector in the material configuration whose orientation is identical or
close to the s1-direction exists. Thus, for each data point, the eigenvector that encloses the smaller relative angle with
respect to the global s1-direction, is denoted as n1

j , and the eigenvector with the larger relative angle is denoted as
n2

j . In summary, when applying the proposed tensor interpolation schemes to slender structures, the basic idea is
the following: The relative rotation between material eigenvectors is typically small even when the relative rotation
between spatial eigenvectors is very large, which enables a unique eigenvector assignment even for large deformation
problems.

3.3.3 Numerical studies

In a first step of the numerical studies, a special case of the deformation (47) is considered, where axial and shear
strains vanish, that is, 𝜂 = 0 and 𝜉 = 0 (see (47)) and the curvature is constant along the beam centerline, that is,
k(s1) = k = 𝜋∕L. In this special case, the beam centerline in the deformed configuration represents a semi circle as
shown in Figure 13. Accordingly, we get the following deformations of the fibers at the four considered data points:
dX2–negative stretch; dX3–positive stretch; dX1–negative stretch plus rotation by 𝜋; dX4–positive stretch plus rotation
by 𝜋. Moreover, the analytical solution for the deformation gradient at the beam center point (L∕2, 0)T is a pure rota-
tion tensor (i.e., no stretch) with rotation angle 𝜋∕2 as shown on the very left of Table 1. According to this table, the
proposed interpolation schemes with MLS interpolation of the eigenvalues, that is, R-MLS and Q-MLS, can exactly rep-
resent this analytical solution. This result is remarkable, considering the large relative distance between the data points
and, as a result, the very large relative rotations between the associated eigenvectors at these data points. The proposed
interpolation schemes with LOG or LOGMLS interpolation of the eigenvalues, still represent the analytical solution
in very good approximation, even though not exactly. For comparison, on the very right of Table 1, also the interpo-
lated deformation gradient resulting from an Euclidean interpolation is shown. Accordingly, the Euclidean interpolation
results in a zero tensor, that is, a deformation gradient that leads to a vanishing fiber length in the current configura-
tion. This result is non-physical, thus the Euclidean interpolation of data points with such large separations cannot be
recommended.

In a second step, we study the spatial convergence behavior of the proposed interpolation schemes by subdividing
the initial beam domain, denoted as interpolation length h, successively by a factor of 2, giving rise to the sample sizes
h ∈ h ∗ { 2−1 … , 2−7}. To achieve a more general deformation state, we consider non-vanishing axial and shear strains
according to 𝜂, 𝜉 = 0.15s1 and a non-constant curvature according to k = 0.15s1. Moreover, a 2D bilinear polynomial (see
Appendix C.1) is adopted for the least squares approximation of eigenvalues and rotation vector. In the following, the
errors of the individual tensors resulting from the decomposition F = RQT 𝚲Q are considered. The error of an interpo-
lated tensor T is computed as the L2 norm of the components, that is,

√∑3
i,j=1(Tij − Tana

ij )2, where Tana is the analytical
solution. For the eigenvalues, that is, the entries of the tensor 𝚲, the absolute value of the difference from the analyti-
cal solution is evaluated individually. In Figure 14, the double-logarithmic plot of these errors over sampling size h is
shown for the proposed interpolation approaches. In particular, the error in the primary interpolation fields R, Q and 𝚲
is shown in Figure 14A–C. The error in the stretch tensor U is depicted in Figure 14E,F. Finally, the error in the result-
ing deformation gradient is portrayed in Figure 14G–I. Both the quaternion-based and rotation vector-based rotation

T A B L E 1 Interpolated deformation gradient F at (L∕2, 0)T for k = 𝜋∕L and 𝛾 = 0.

Analytic solution R-LOG Q-LOG R-MLS Q-MLS R-LOGMLS Q-LOGMLS E

⎡
⎢
⎢
⎣

0 − 1.0

1.00

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0 −1.0

0.988 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0 −1.0

0.988 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0 −1.0

1.0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0 −1.0

1.0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0 −1.0

0.988 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0 −1.0

0.988 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0 0

0 0

⎤
⎥
⎥
⎦
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SATHEESH et al. 27 of 32

interpolations combined with either the logarithmic, moving least squares, or logarithmic moving least squares eigen-
value interpolation result in a quadratic(h2) convergence order, which is the expected result for first-order interpolation
schemes.

Finally, the example is extended by considering eight data points for interpolation. The additional four data points
are located at the edge mid-points of the rectangle formed by the four original data points. Now, we employ 2D quadratic
Lagrange polynomials (see Appendix C.2) for the moving least squares approaches underlying the eigenvalue and rotation
vector-based rotation interpolation. The results for the different interpolation schemes are showcased in Figure 15A–I.
Importantly, the MLS and LOGMLS approaches used for eigenvalue and rotation interpolation result in a cubic conver-
gence rate (h3) as expected for the employed quadratic polynomials. In contrast, no higher-order schemes are available
for the logarithmic weighted average (LOG) used for eigenvalue interpolation and the spherical weighted average used
for quaternion-based (Q) rotation interpolation. Thus, also in the case of eight data points these schemes only yield a
convergence order of two. Therefore, all combinations of interpolation approaches involving either of these two schemes,

(A)

(D)

(G) (H) (I)

(E) (F)

(B) (C)

F I G U R E 14 Application to nonlinear continuum mechanics: Convergence of the proposed interpolation schemes based on four data
points. Here, the operator I(⋅) denotes the interpolation error of a given quantity in the argument.
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28 of 32 SATHEESH et al.

(A)

(D)

(G) (H) (I)

(E) (F)

(B) (C)

F I G U R E 15 Application to nonlinear continuum mechanics: Convergence of the proposed interpolation schemes based on eight data
points. Here, the operator I(⋅) denotes the interpolation error of a given quantity in the argument.

that is, Q-LOG, Q-MLS, Q-LOGMLS, and R-LOG, only result in a quadratic convergence order for F and U. In con-
trast, rotation vector-based methods in combination with MLS or LOGMLS, that is, R-MLS and R-LOGMLS, give cubic
convergence.

4 CONCLUSION

In the present contribution, novel interpolation schemes for general, that is, symmetric or non-symmetric, invertible
square tensors have been proposed, relying on a combined polar and spectral decomposition of the tensor data, followed
by an individual interpolation of the resulting rotation and eigenvalue tensors. For rotation interpolation, two different
schemes based on either relative rotation vectors (R) or quaternions (Q), have been considered. For eigenvalue inter-
polation, three different schemes based on either the logarithmic weighted average (LOG), moving least squares (MLS)
or a novel approach denoted as logarithmic moving least squares (LOGMLS) have been considered. Altogether, these
schemes resulted in six possible interpolation approaches denoted as R-LOG, R-MLS, R-LOGMLS, Q-LOG, Q-MLS, and
Q-LOGMLS.
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SATHEESH et al. 29 of 32

Based on analytical studies and selected numerical examples, the R-LOGMLS approach is recommend for future
application, as it provides the following desirable properties:

1. The orthonormality of the rotation tensors is preserved.
2. The positive definiteness of the eigenvalue tensor is preserved.
3. The anisotropy of tensors is preserved, that is, swelling is avoided.
4. Tensor invariants such as trace, determinant, Hilbert’s anisotropy (HA) and fractional anisotropy (FA) are smoothly

and monotonically interpolated.
5. Scaling and rotational invariance (objectivity) is guaranteed.
6. Interpolation of an arbitrary number of data points is possible.
7. Higher-order interpolation is possible.
8. Consistent spatial convergence orders are observed.

As an alternative, the R-LOG approach is recommended for examples where a monotonic interpolation of the eigen-
values is important, but higher-order interpolations are not required. This means, the R-LOG approach only fulfills the
first six of the aforementioned eight properties. However, it does not only preserve positive definiteness of the eigen-
value interpolation but also monotonicity. Based on selected numerical examples, it is demonstrated that well-established
approaches such as Euclidean, Log-Euclidean, Cholesky and Log-Cholesky interpolation do typically not fulfill the
important properties 1–5.

The proposed schemes are very general in nature and suitable for the interpolation of general invertible second-order
square tensors independent of the specific application. In our future research, we plan to apply the developed approaches
in the context of remeshing and adaptive finite element discretizations for complex problems of nonlinear continuum
mechanics with inelastic constitutive behavior, which requires the consistent interpolation of tensor-valued history data
(e.g., the deformation gradient associated with the inelastic part of the deformation) for the transfer between coarse and
fine mesh.
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APPENDIX A. CALCULATION OF GEODESIC DISTANCE

In the following, the expression for the geodesic distance dS3(q̂1, q̂2) = || ln(q̂−1
1 q̂2)|| between two quaterions q̂1 and q̂2 as

defined in (25) shall be further simplified. Thereto, let us consider the logarithm of a general quaternion q̂ with scalar
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part q and vector part q, which is defined as

ln(q̂) ∶= ln(||q̂||) + arccos(q∕||q̂||)
q

||q||
. (A1)

Next, let us consider a unit quaternion q̂ = cos(𝜃∕2) + sin(𝜃∕2)e𝜽 (with ||e𝜽|| = 1) according to (11), with scalar part
q = cos(𝜃∕2), vector part q = sin(𝜃∕2)e𝜽, and associated rotation vector 𝜃e𝜽. Since only rotation vectors within 𝜃 ∈ [0;𝜋]
can be uniquely extracted from a rotation tensor, we will restrict ourselves to this angular range in the following. When
considering a unit quaternion, the norm of (A1) simplifies to

|| ln(q̂)|| = arccos(cos(𝜃∕2))||e𝜽|| = 𝜃∕2 with 𝜃 ∈ [0;𝜋]. (A2)

According to (13), the quaternion product q̂−1
1 q̂2 results in a quaternion q̂21 associated with the relative rotation tensor

R21 = RT
1 R2. When inserting this relation into (A2), we get:

|| ln(q̂−1
1 q̂2)|| = || ln(q̂21)|| = 𝜃21∕2 with 𝜃21 = ||𝜽21|| ∈ [0;𝜋], R(𝜽21) = R(q̂1)TR(q̂2), (A3)

which is the expression stated in (26). To derive an alternative expression for the relative angle 𝜃21 based on the quaternions
q̂1 and q̂2, we first realize that based on (9) the scalar part of the quaternion product q̂−1

1 q̂2 is given by

Re(q̂−1
1 q̂2) = q1q2 + q1 ⋅ q2 = q̂1 ⋅ q̂2, (A4)

with q̂−1
1 = q1 − q1 and q̂2 = q2 + q2. Here, the operator Re() is defined to extract the scalar (or real) part of a quater-

nion. On the other hand, the scalar part of the relative quaternion q̂21 = cos(𝜃21∕2) + sin(𝜃21∕2)e𝜽21 is given by cos(𝜃21∕2).
Equalizing these to expressions yields:

q1 ⋅ q2 = cos(𝜃21∕2). (A5)

With this result, expression (A3) can be alternatively formulated as

|| ln(q̂−1
1 q̂2)|| = 𝜃21∕2 = arccos(q1 ⋅ q2) with 𝜃21 =∈ [0;𝜋]. (A6)

APPENDIX B. FRACTIONAL ANISOTROPY

Fractional anisotropy (FA) is a rotation-invariant dimensionless parameter defined as

FA =
3∑

i=1
3(𝜆i − 𝜆)2∕

3∑

i=1
2𝜆2

i ∈ [0, 1], (B1)

where 𝜆 = (𝜆1 + 𝜆2 + 𝜆3)∕3 is the arithmetic mean of the eigenvalues.

APPENDIX C. 2D POLYNOMIAL BASIS

C.1 Bilinear polynomial basis
A 2D bilinear polynomial basis reads

p = [1 x y xy]. (C1)

A bilinear function is plotted in Figure C1A. The figure shows a surface created by the function z(x, y) = 1 + x + y + xy in
x, y ∈ [−1; 1].
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(A) (B)

F I G U R E C1 Polynomial basis functions: (A) Bilinear surface defined by the function z(x, y) = 1 + x + y + xy and (B) quadratic surface
generated by the function z(x, y) = 1 + x + y + x2 + y2 + xy + x2y + xy2 in x, y ∈ [−1; 1].

C.2 Quadratic polynomial basis
A 2D quadratic polynomial basis can be defined as

p = [1 x y x2 y2 xy x2y xy2]. (C2)

A quadratic function is shown in Figure C1B. The figure depicts surface defined by the function z(x, y) = 1 + x + y + x2 +
y2 + xy + x2y + xy2 in x, y ∈ [−1; 1].
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