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Abstract

Optimal treatment planning for patients diagnosed with brain tumors requires an
understanding of the disease dynamics. Mathematical formalization of the tumor
progression typically implies resorting to a system of differential equations. Such a
system of equations describes the spatial and temporal evolution of the tumor profile
through parameterized domain-specific knowledge. To calibrate the mathematical
model with respect to the empirical data, one has to utilize parametric inference
schemes. Currently existing optimization schemes can provide both point and proba-
bilistic estimates of the model parameters. However, their prohibitively long compute
times hinder large-scale validation and, thus, a translation of such formulations to
clinical practice.

This dissertation addresses the computational bottleneck of brain tumor model
personalization by developing efficient algorithms for parametric inference. First, we
provide an introduction to the brain tumor modeling field, discussing tumor biology,
its diagnostics, and treatment, Chapter 2. Then, we discuss the fundamentals of and
state-of-the-art techniques for forward and inverse tumor growth models, Chapters 3
and 4. Chapter 5 lays out our first study within this thesis, where we introduce a fast
learnable tumor growth solver as an efficient substitution to traditional numerical
forward model simulators. In Chapter 6, we show how deep learning can also be used
to significantly reduce the computational cost for the inverse models by reducing
the number of simulations required to achieve convergence in parametric estimation.
Finally, Chapter 7 demonstrates an alternative optimization scheme to obtain patient-
specific tumor model parameters within clinically acceptable computational time.
Concluding remarks complete the dissertation.
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Zusammenfassung

Eine optimale Behandlungsplanung für Patienten mit Hirntumor erfordert ein Verständnis
der Krankheitsdynamik. Die mathematische Formalisierung der Tumorprogression
greift in der Regel auf ein System von Differentialgleichungen zurück. Ein solches
Gleichungssystem beschreibt die räumliche und zeitliche Entwicklung des Tumor-
profils durch parametrisiertes domänenspezifisches Wissen. Zur Kalibrierung des
mathematischen Modells mittels der empirischen Daten werden parametrische Infe-
renzverfahren verwendet. Derzeitige Optimierungsverfahren sind in der Lage, sowohl
Punktschätzungen, als auch probabilistische Schätzungen der Modellparameter zu
liefern. Ihre langen Rechenzeiten (Tage oder sogar Wochen) verhindern jedoch eine
Validierung auf größeren Patientenkohorten und somit eine Übertragung dieser Model-
le in die klinische Praxis. Um den limiterenden Faktor der Rechenzeit zu eliminieren,
befasst sich diese Dissertation mit der Entwicklung effizienter Algorithmen für die
parametrische Inferenz zur Personalisierung von Hirntumormodellen. Die Dissertation
beginnt mit einer Einführung in das Gebiet der Hirntumormodellierung. In Kapitel 2
werden Tumorbiologie, Tumordiagnostik und Tumorbehandlung erörtert. Kapitel 3
behandelt die Grundlagen und zeitgemäße Techniken zur vorwärtsgerichteten (for-
ward) Tumorwachstumsmodellierung. Inverse Tumorwachstumsmodelle werden in
Kapitel 4 erläutert. In Kapitel 5 wird ein schnell erlernbarer Tumorwachstumslöser als
effizienter Ersatz für traditionelle numerische Vorwärtsmodellsimulatoren vorgestelt.
Kapitel 6 illustriert wie Deep Learning zur erheblichen Reduktion der Rechenzeit
eingesetzt werden kann. Hierzu wird die Anzahl der zur Konvergenz der parametri-
schen Schätzung benötigten Simulationen verringert. Darauffolgend wird in Kapitel
7 ein alternatives Optimierungsverfahren zur raschen Ermittlung patientenspezifi-
scher Tumormodellparameter vorgestellt. Abschlußbemerkungen komplettieren die
Dissertation.
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Introduction

Glioma is an aggressive primary brain tumor associated with a poor prognosis [2]
and a median survival time of 15 months [3]. The pathology is characterized by a
highly infiltrative spread of tumor cells into surrounding healthy tissues. Such spread
complicates the surgery procedure and thus lowers its effectiveness. This, in turn,
necessitates follow-up treatments such as chemo- and radiotherapy.

For radiotherapy, every new patient undergoing the treatment requires customized
planning. The planning includes identifying a three-dimensional volume inside a
patient’s brain to be irradiated with X-rays. To identify an abnormal tumor area,
expert neuroradiologists investigate medical scans obtained by imaging diagnostic
modalities, such as magnetic resonance imaging (MRI). The area which is visibly
distinguishable in terms of image contrast from healthy brain tissue could be defined as
the area for tumor irradiation. Years of clinical practice, however, revealed that such
irradiation volume definition leads to a high rate of tumor recurrence after treatment.
Despite the advances in the MRI technique providing high spatial resolution, the MRI
modality does not yet portray complete information about the tumor spread. Below
certain tumor cell concentrations, tumor spread is not sufficiently distinguishable on
MRI scans. Thus, irradiating only the visible tumor volume can lead to post-treatment
tumor recurrence since the low-concentration tumor area is left untreated.

To address this imaging limitation, current radiotherapy guidelines suggest irradi-
ating a volume extended by a few centimeters margin around the MRI-derived tumor
boundaries [4], [5]. Despite the improved prognosis brought by such planning, it is
still far from optimal. First, such a definition implies targeting potentially healthy
brain tissue confined within the margin. Furthermore, it can still miss targeting
tumor cells outside of this margin in the case of highly anisotropic tumor distribution.
Finally, it is unclear what the exact distance of this margin should be 1. Thus, there
is a clear need for personalized radiotherapy planning.

Due to a lack of empirical support for identifying the full spatial distribution
of tumor cells, a potential direction for radiotherapy personalization is based on

1This explains notably varying margin definition over official radiotherapy guidelines [4], [5]
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1. Introduction

Figure 1.1: An illustration of a brain tumor. A typical pathology feature is a higher
vascularization compared to healthy brain volume. The figure is generated by the
stable diffusion [6].

computational modeling. The overarching goal of this approach is to utilize a
mathematical model to simulate the progression of glioma. The simulated tumor
profile can then be used for defining the irradiation volume.

In more technical terms, the main objective of the modeling-based approach is to
solve the inverse problem - find tumor model parameters resulting in a simulation
best describing the empirical tumor information. In this thesis, such information
is obtained from medical imaging modalities. Various methods exist to calibrate a
brain tumor forward model with respect to medical scans [7]. The methods based on
PDE-constrained optimization typically provide point estimates of the tumor model
parameters. Another class of Bayesian methods provides probabilistic estimation for
the best matching parameters. The unifying drawback of the methods is, however,
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the fact that they require a large number of simulations to reach convergence of the
parametric estimation. In the most computationally demanding cases of probabilistic
approaches, the convergence requires up to tens of thousands of simulations. At
the same time, a single simulation, even for simplistic mathematical models, can
take a few minutes of computation. These constraints result in prohibitively long
computing times for solving the inverse problem (up to multiple days on above-average
hardware), questioning the utility of the modeling-based approach for clinical needs.
The objective of this doctoral dissertation is to develop algorithmic solutions that
would allow efficient solving of the inverse problem, opening the doors for its clinical
translation.

Contribution

This thesis contributes to the biomedical modeling field by providing several techniques
to infer biophysical model parameters from medical imaging data. Paper-by-paper,
we addressed the computational bottlenecks for both forward and inverse problems,
steadily reducing the time for tumor model personalization. In more detail, we made
the following contributions:

1. Development of a learnable forward tumor growth model that serves as a
surrogate for numerical tumor model solvers. The surrogate represents an end-
to-end deep learning pipeline that takes input model parameters and simulation
geometry and outputs the corresponding simulation. The learnable surrogate
achieves a 50x speedup compared to a highly efficient numerical forward solver
at the error cost acceptable for the downstream personalization task.

2. Development of a learnable inverse scheme to substitute traditional Markov
Chain Monte Carlo sampling for model personalization. The proposed inverse
scheme bypasses the Monte Carlo method’s necessity to define an analytical form
for the likelihood function. The likelihood is instead learned from simulated
data. This procedure allows, in turn, to reduce by one order the number of
parameters required for convergence in parametric estimation.

3. Development of a novel scheme for tumor model inversion. The method elimi-
nates the need to simulate thousands of samples for every new patient-specific
geometry. As an alternative to sampling methods, the presented technique
implies learning inverse mapping – from simulation to model parameters – in a
reference brain atlas. The network is trained only once in the atlas space on
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1. Introduction

a large set of simulations. For every new patient, we obtain patient-specific
model parameters by registering patient information to the atlas space and
performing inference with the trained beforehand network. Such a scheme
allows performing model personalization within four to seven minutes instead
of days or even weeks using traditional parametric inference approaches.

4



Biomedical background

This chapter is dedicated to the fundamentals of tumor pathophysiology, its clinical
diagnostics, and treatment. After discussing biological features differentiating cancer-
ous and normal physiology, we describe imaging diagnostics modalities allowing to
monitor the progression of the disease. The chapter concludes with an introduction
to existing treatment strategies to eradicate tumor progression.

2.1 Glioma pathophysiology

A distinguishing hallmark of all cancer types is abnormal cell proliferation. According
to medical vocabulary, an agglomerate of excessively dividing cells is referred to as
a neoplasm. A neoplasm occurring inside the brain – glioma – is the focus of this
dissertation.

Glioma can be classified into benign and malignant types. The latter is character-
ized by high infiltration into surrounding healthy tissues. In turn, infiltrative growth
results from the loss of intercellular adhesion molecules, leading to detachment from
the gross tumor volume. Due to built-in genetic programs, malignant glioma cells
gain, in addition to high proliferation, high motility facilitating penetration through
the volume of the neighboring tissue [8].

Rapidly growing tumor demands an increased blood supply, delivering nutrients
and oxygen to the cell population. As a result, excessive blood vessel growth is induced
to supply the normal metabolic needs, known as angiogenesis. During angiogenesis,
new vessels are formed from existing ones by processes of sprouting and splitting
[9]. The sprouting manifests as an active proliferation of blood vessel (endothelial)
cells to form sprouts that link neighboring existing vessels. In contrast, splitting
angiogenesis implies the formation of new vessels directly from the existing ones
through the reorganization of cells.

Despite breaking control mechanisms through angiogenesis, after a certain increase
in the cancerous cell population, the increase in blood supply reaches its limits. Con-
sequently, the cells in the core of the tumor get deprived of nutrient supply, resulting

5



2. Biomedical background

Figure 2.1: An illustration of cancerous cells infiltrating the membrane of healthy
tissue. Infiltrating glioma growth is a stark manifestation of pathology malignancy.
The figure is generated by the DALLE [1].

in the formation of a so-called necrotic core. Therefore, gliomas typically appear
as ring-enhancing structures – necrotic core in the middle and actively proliferating
enhancing part along the circumference of the core.

Another typical brain tumor characteristic is the formation of edema. Edema
represents a fluid build-up around the tumor ring. The cause for its appearance
can be understood as a body response to the presence of a foreign entity (glioma)
inside the brain. Edema is commonly present for both benign and malignant gliomas
and occupies a notably large area around the tumor. Thus, edema alone can cause
increased intracranial pressure and impaired function of nerves and vessels [10].
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2.2. Glioma imaging

2.2 Glioma imaging

Figure 2.2: Examples of MRI (T1, FLAIR) and PET images of brain tumor. P1-P5
labels indicate different patients. Copyright © 2022, IEEE.

Magnetic resonance imaging

Advances in the 20th century in understanding the fundamentals of atomic physics led
to several practical applications. For example, the seminal works of Rabi [11], Purcell
[12], and Bloch [13] on nuclear magnetic resonance resulted in the development of MRI
technology. Today, MRI is a widely used imaging diagnostic system, especially for
medical needs. It can portray both anatomical as well as functional information about
the body. In contrast to other modalities, such as computed tomography, MRI provides
richer visualization capabilities for soft tissues, like brain tissues. By controlling the
sequence between the external magnetization of the atomic nucleus constituting the
brain matter and the inner relaxation of induced magnetic moments, a particular
visualization focus can be brought to the tissue of interest. The primary MRI
sequences are referred to as T1 and T2 [14]. T1 MRI sequence highlights fatty tissue
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2. Biomedical background

and is thus valuable for contrasting white and gray matter as they vary in fat content.
T2 sequence enhances areas rich in water content and is, therefore, preferable for
detecting edema. Another frequently used MRI sequence, fluid-attenuated inversion
recovery (FLAIR), allows suppression of the fluid signal. FLAIR can be used in brain
imaging to suppress, e.g., the cerebrospinal fluid signal.

Positron-emission tomography

Positron-emission tomography (PET) is another example of atomic physics trans-
lation to medical routine practice [15]. PET is an imaging modality that utilizes
radioactive tracers to quantify local changes in metabolism. Radiotracers such as
FET (Fluoroethyl-L-tyrosine) injected in the body can be taken up and trapped
by cells, especially malignant ones demanding abnormal nutrient supply. Gamma
rays emitted by the tracers are detected by cameras, allowing spatial visualization of
metabolic activities. The PET-derived metabolic activity provides more quantita-
tive information about tumor cell concentration than MRI. However, PET imaging
provides worse resolution - typically 4mm vs. 1mm (MRI) per voxel.

Computed tomography

Computed tomography (CT) is a medical imaging modality that uses X-rays to create
detailed cross-sectional images of the body [16]. During a CT scanning, a patient
lies on a table that moves through a circular machine that produces X-rays. The
X-rays are directed at the head from different angles, and reconstruction algorithms
combine the resulting 2D X-ray absorption maps to create detailed 3D brain images.
CT scans can help identify morphological properties such as the tumor’s size, shape,
and location.

2.3 Glioma treatment

Treatment options for glioma include surgery, radiation- and chemotherapy. Due
to the disease’s severity and fast progression, a combination of these treatments is
often applied. In some cases, immunotherapy can be recommended - a more recent
treatment that stimulates a patient organism’s immune system to attack tumor cells
[17].

Surgery is typically the first treatment for glioma. During the surgical operation,
cancerous tissue is mechanically resected while trying to preserve as much healthy
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2.3. Glioma treatment

brain tissue as possible. In the case of the tumor’s proximity to functionally important
brain regions, complete resection of the tumor might not be an option. Then partial
removal can be carried out to reduce cranial pressure and the tumor area to be treated
by follow-up radio- and chemotherapies.

Radiation therapy utilizes high-energy beams of X-rays to kill cancer cells and
shrink the tumor size. Typically it is applied externally, using a machine delivering
the radiation to the glioma area. In some cases, though, it can be applied internally
using so-called brachytherapy. During brachytherapy, radioactive material is placed
into or near the lesion. Several studies showed that such treatment could reduce
radiotherapy side effects by reducing damage to neighboring healthy tissue [18], [19].

Finally, chemotherapy is a treatment that uses specific medicine mainly to inhibit
tumor cell proliferation. The medicine is typically injected intravenously but can also
be given orally. The therapy can be applied prior to surgery to reduce tumor size as
well as after surgery to target any remaining tumor cells [20].
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Tumor modeling

Brain tumors are a severe health concern, and understanding the causes of their
progression is essential for improving treatment strategies. In this section, a reader
will be introduced to mathematical means to describe the development of tumors.
The main focus will be laid on the usage of differential equations for the pathology
description. We will start with the simplest type of differential equations - the ordinary
differential equations (ODEs). Then the partial differential equations (PDEs) will be
discussed on a concrete example of reaction-diffusion PDE formalism.

Figure 3.1: A sketch of brain tumor evolving in time. The figure is generated by
the DALLE [1].

3.1 ODE-based tumor models

ODEs are a type of differential equations that involve an independent variable (usually
time), an unknown function of the independent variable, and one (or more) derivatives
of the unknown function with respect to this variable. ODEs describe the behavior
of dynamic systems in many natural science and engineering fields that change over
time.
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3. Tumor modeling

These differential equations can be classified into first-order and higher-order equa-
tions depending on the order of the derivative of the unknown function. Depending
on the equation’s complexity, ODEs are solved analytically or numerically.

ODEs can also serve to model the growth of brain tumors. The simplest ODE
used to model tumor growth is based on the exponential model [21]. It belongs to
the first-order ODE type and assumes that cells proliferate at a linear rate, leading
to exponential growth:

dy

dt
= α · y (3.1)

where y models the size of the tumor population, and α is a growth rate.
Another ODE applied to describe brain tumor growth is based on the logistic

growth model. This model evolves the tumor cell population in time with a rate of
change proportional to the current population size. The growth of the population is,
however, limited by the brain’s capacity - the capacity to support the tumor’s growth,
e.g., with nutrients [21], [22]. The logistic growth model is often written as follows:

dy

dt
= ρ · y · (1− y

K
) (3.2)

where ρ is the intrinsic growth rate of the tumor, and K is the carrying capacity
of the brain.

Yet another Gompertz model is widely used to describe tumor evolution [23], [24]:

dy

dt
= α · exp(−βt) · y (3.3)

here, the coefficient α is the initial cell division rate, and β can be thought of as
the rate of exponential decay of α.

Other ODE models have been developed to describe the tumor treatment, including
models that consider the effects of chemotherapy [25] and radiation therapy [26]

3.2 PDE-based tumor models

In contrast to ODEs, PDEs are differential equations that involve partial derivatives of
an unknown function with respect to two (or more) independent variables. Thus, PDEs
describe physical systems that involve multiple variables changing simultaneously.
Analogously to ODEs, PDEs can be classified based on the order of their derivatives.
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3.2. PDE-based tumor models

PDEs are widely utilized to model the growth of brain tumors and their treatment
[27], as well as other phenomena that occur in the brain, such as the blood flow [28]
or the electrical activity of neurons [29].

3.2.1 Reaction-diffusion equation

The reaction-diffusion equation is a typical PDE model that describes a wide range
of biological and chemical phenomena, including brain tumor growth [30]–[32]. In the
case of glioma modeling, it can describe how the tumor cells’ concentration changes
in time due to cell diffusion and proliferation, i.e., the production of new tumor cells
through the division process. The equation can be written as:

∂c

∂t
= D

∂2c

∂x2
+ f(ρ, c) (3.4)

where c is the concentration of tumor cells, D is the diffusion coefficient, and
f(ρ, c) is a function that describes the reaction process with ρ denoting the reaction
parameter (e.g., cell proliferation rate).

The diffusion coefficient D defines how easily glioma cells migrate through the
medium of brain tissues. Cell migration can depend on various factors, such as the
cell’s size and shape or the brain tissue’s viscosity. The diffusion coefficient D is
crucial in understanding and modeling how a tumor grows and spreads within the
brain. For example, a tumor with a high D likely invades nearby tissues, while a
tumor with a low D forms a more contained tumor mass. For gliomas, the former is
assumed to be more common.

Similarly to the diffusion term, the reaction term f(ρ, c) in the reaction-diffusion
equation determines the overall dynamics of the system, influencing the trajectory of
the cell concentration c evolution. The form of the reaction term can vary depending
on the specific chemical reactions being modeled. A common approach to model brain
tumor growth is by using a reaction term representing the proliferation of tumor cells:

f(ρ, c) = ρc(1− c)

The term f(ρ, c) can also include the angiogenesis effect [33], or the death of
tumor cells through radiotherapy or chemotherapy [27], [34]–[36].
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3. Tumor modeling

3.2.2 Reaction-advection-diffusion equation

The reaction-advection-diffusion equation describes how a spatial distribution of
a substance’s concentration changes over time in a system that involves chemical
reactions, advection (the movement of the substance by a fluid or other carrying
medium), and diffusion. The equation can model the transport of substances in a
medium, for example, the transport of gases or particles [37].

The equation is typically written as a PDE of the form:

∂c

∂t
= ∇(D∇c) +∇(cv) + f(c,v) (3.5)

where v is the fluid’s or carrier’s velocity, D is the diffusion coefficient, and ∇
is a nabla operator. The function f(c,v) represents the chemical reactions that are
taking place in the system.

In brain tumor growth modeling, the reaction-advection-diffusion equation can
model the movement of various substances within the brain tissue, such as oxygen
or nutrients. The equation can also describe the mass effect of a growing tumor.
The mass effect here refers to the physical pressure a brain tumor exerts on the
surrounding tissue as the lesion grows. A system of partial differential equations to
describe this process could be written as:

∂c

∂t
= ∇(D∇c)−∇(cv) + ρc(1− c) (3.6)

∂m

∂t
+∇ · (m⊗ v) = 0 (3.7)

∇ · (λ∇u+ µ(∇u+∇u⊤)) = γ∇c (3.8)

∂u

∂t
= v (3.9)

∇c · n = 0 boundary condition (3.10)

m = 0 boundary condition (3.11)

u = 0 boundary condition (3.12)

v = 0 boundary condition (3.13)

here m = (mWM(i, t), mGM(i, t), mCSF (i, t)) denotes the brain tissue maps for
voxel i and time t, ρ is a tumor cell proliferation rate, u is a displacement vector
and v is a displacement velocity. The driver for the displacement in this model is
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3.2. PDE-based tumor models

the mass effect resulting in tissue displacement. The linear elasticity model, Eq. 3.8,
describes the interaction between the tumor and normal parenchyma. The elasticity
model is parameterized through the Lame coefficients (µ, λ). Finally, the mass effect
depends on the choice of the mass effect parameter γ. Choosing γ=0 would result in
the simplistic reaction-diffusion PDE with u=0 and v=0 [38].
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Inverse problem in tumor modeling

The numerical modeling of complex systems discussed in the previous chapter plays a
vital role in many scientific disciplines. However, viewed from a practical perspective,
the foremost objective is establishing a link between a mathematical model and
empirical observations. This chapter will introduce several formalisms used to connect
a physical (forward) model with empirical brain tumor data. In other words, this
chapter is dedicated to solutions to the inverse problem.

In what follows, we first discuss the methods of PDE-constrained optimization.
We then discuss another family of methods to address the inverse problem based on
sampling, such as Monte Carlo sampling.

4.1 PDE-constrained optimisation

In PDE-constrained optimization, the goal is to minimize a discrepancy between real
data ỹ under a constraint that simulated data y satisfies a PDE of interest. First,
solving PDE-constrained optimization problems involves using numerical techniques
to approximate the solution of the PDE. In addition, one has to construct an
optimization algorithm to find the solution to the objective function subject to these
approximations [39].

The optimization problem can be formulated as follows:

min
y,u

J(y, u) subject to F (y, u) = 0, (4.1)

where u represents a control optimisation variable, J(y, u) is the objective function
to be minimized, and F (y, u) = 0 represents the PDE constraint. This optimization
problem seeks to find the values of y and u that minimize the objective function
J(y, u) while satisfying the constraint F (y, u) = 0.

The objective function is typically represented as:

J(y, u) = ||ỹ − y||2 + β||u||2 (4.2)
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where β is a coefficient controlling the so-called Tikhonov regularization term [40],
which is used to mitigate the ill-posed character of the problem.

Various techniques can be used to solve PDE-constrained optimization problems,
including the penalty, primal and dual, or adjoint-state methods. The overarching
idea is to cast the PDE into the minimization objective alongside the J(y, u) function.
For example, the penalty method solves the following problem:

min
y,u

J(y, u) = ||ỹ − y||2 + β||u||2 + λ||F (y, u)||2 (4.3)

here λ is the penalty coefficient controlling that the solution y corresponds to the
PDE, F (y, u) = 0.

Gradient-based algorithms, such as gradient descent or Newton’s method, or
global optimization schemes, such as genetic or simulated annealing, are typically
used to solve the minimization objective [41].

In the context of glioma modeling, several works successfully explored the PDE-
constrained formalism [7], [42]–[47]. Under this formalism, the variable y would
represent the cell concentration while u can represent variables, e.g., related to tumor-
induced tissue deformation [44]. However, the typical drawback of PDE-constrained
optimization is the computational complexity, especially for complex systems with
many variables and constraints. Some of these methods, such as gradient-based
optimization algorithms, may be relatively fast but may not always find the globally
optimal solution. Other methods, such as a family of global optimization methods,
can be slower but more likely to find the optimal solution.

4.2 Monte Carlo sampling methods

Monte Carlo sampling is a technique for approximating a distribution or expected
value by generating a large number of random samples and analyzing the statistical
properties of the obtained sample population. This method can estimate the value of
complex distributions or expectations that cannot be computed analytically.

There are many different versions of the Monte Carlo sampling algorithm, each
having specific characteristics [48]. Some of the most common versions of the Monte
Carlo methods are:

Importance sampling. The importance sampling algorithm generates samples
from a distribution q(x) (typically Gaussian or a mixture of Gaussians) different from
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4.2. Monte Carlo sampling methods

Figure 4.1: A sketch of the distributions (target p(x) and sampling ones q(x))
which are involved in the importance sampling algorithm. During compute of the
expectation, each sample is weighted by a value wi, wi = p(xi)/q(xi).

the target distribution p(x) but easier to sample from [49]. The samples are then
weighted based on the ratio between the target and the sampling distributions, Fig.
4.1. Finally, the weighted samples are used to estimate the desired expectation value
(or distribution):

E(f(x)) =

∫
f(x)p(x) =

∫
f(x)

p(x)

q(x)
q(x) ≈ 1

n

∑

i

f(xi)p(xi)/q(xi) (4.4)

where E(f(x)) is the expectation value of the function of interest f(x).

Rejection sampling. Similarly to importance sampling, the rejection sampling
algorithm implies generating samples from a different distribution that is easy to
sample from to approximate the desired statistical quantity. But instead of weighting
each sample, it rejects samples not from the target distribution.
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Stratified sampling. This version of the Monte Carlo sampling algorithm involves
dividing the domain of the target distribution into subregions and generating samples
from each subregion separately. Stratified sampling can be more efficient than simple
Monte Carlo sampling from a variance reduction point of view if the target distribution
is nonuniform.

Markov chain Monte Carlo (MCMC) sampling. MCMC implies generating
a sequence of samples that form a Markov chain [50], with every new sample being
dependent on the previous sample in the chain [51]. In addition to estimating complex
distributions, MCMC sampling is often used to perform Bayesian inference. A typical
MCMC algorithm works as follows:

1. Begin with a point x0 at a random position in the sample space.
2. Propose a new sample using a conditional distribution g(x1|x0), where g(|) is

commonly a Gaussian distribution.
3. Calculate the acceptance ratio α of the new position based on the distribution

we want to sample from (or a distribution that is proportional to the one) - α =
p(xi+1)/p(xi).

4. With probability equal to α move to the new position. Otherwise, stay in the
current position.

5. Repeat steps 2 to 4 for a predefined number of iterations or till convergence.
By repeating these steps, we obtain a sequence of samples that can be used to

approximate the desired distribution.
In relation to PDE, Monte Carlo methods sample free model parameters, which

are then propagated through the forward model to obtain corresponding physical
simulations. By relating the distribution of the simulations with empirical data, one
can infer statistical properties, e.g., the posterior probability of the model parameters
given the data.

Existing literature exploring variations of Monte Carlo sampling for the inverse
brain tumor modeling [52]–[54] shows promising results in linking a tumor model with
medical imaging data. However, similarly to the PDE-constrained optimization, the
drawback of the sampling methods is the convergence rate. To obtain convergence
of parametric estimation, such techniques require thousands or tens of thousands
of generated samples. This can result in multiple hours or days of computation
depending on the complexity of the forward model.

To address these limitations was the primary goal of this Ph.D. dissertation.
Starting from the next chapter, we introduce our attempts to accelerate the parametric
inference.
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Synopsis: Modeling of brain tumor dynamics has the potential to advance therapeu-
tic planning. Current modeling approaches resort to numerical solvers that simulate
the tumor progression according to a given differential equation. Using highly-efficient
numerical solvers, a single forward simulation takes up to a few minutes of compute.
At the same time, clinical applications of tumor modeling often imply solving an
inverse problem, requiring up to tens of thousands of forward model evaluations
when used for a Bayesian model personalization via sampling. This results in a
total inference time prohibitively expensive for clinical translation. While recent
data-driven approaches become capable of emulating physics simulation, they tend
to fail in generalizing over the variability of the boundary conditions imposed by the
patient-specific anatomy. In this paper, we propose a learnable surrogate for simulat-
ing tumor growth which maps the biophysical model parameters directly to simulation
outputs, i.e. the local tumor cell densities, whilst respecting patient geometry. We
test the neural solver in a Bayesian model personalization task for a cohort of glioma
patients. Bayesian inference using the proposed surrogate yields estimates analogous
to those obtained by solving the forward model with a regular numerical solver. The
near real-time computation cost renders the proposed method suitable for clinical
settings. The code is available at https://github.com/IvanEz/tumor-surrogate.
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Geometry-aware neural solver for fast Bayesian
calibration of brain tumor models

Ivan Ezhov, Tudor Mot, Suprosanna Shit, Jana Lipkova, Johannes C. Paetzold, Florian Kofler, Chantal Pellegrini,
Marcel Kollovieh, Fernando Navarro, Hongwei Li, Marie Metz, Benedikt Wiestler and Bjoern Menze, Member,

IEEE

Abstract—Modeling of brain tumor dynamics has the potential
to advance therapeutic planning. Current modeling approaches
resort to numerical solvers that simulate the tumor progression
according to a given differential equation. Using highly-efficient
numerical solvers, a single forward simulation takes up to a
few minutes of compute. At the same time, clinical applications
of tumor modeling often imply solving an inverse problem,
requiring up to tens of thousands of forward model evaluations
when used for a Bayesian model personalization via sampling.
This results in a total inference time prohibitively expensive for
clinical translation. While recent data-driven approaches become
capable of emulating physics simulation, they tend to fail in
generalizing over the variability of the boundary conditions
imposed by the patient-specific anatomy. In this paper, we
propose a learnable surrogate for simulating tumor growth which
maps the biophysical model parameters directly to simulation
outputs, i.e. the local tumor cell densities, whilst respecting
patient geometry. We test the neural solver in a Bayesian model
personalization task for a cohort of glioma patients. Bayesian
inference using the proposed surrogate yields estimates analogous
to those obtained by solving the forward model with a regular
numerical solver. The near real-time computation cost renders
the proposed method suitable for clinical settings. The code is
available at https://github.com/IvanEz/tumor-surrogate.

Index Terms—Bayesian inference, physics-based deep learning,
glioma, model personalization, tumor modeling, MRI, FET-PET

I. INTRODUCTION

S IMULATION of brain tumor progression can provide
complementary information to medical imaging for ra-

diotherapy planning. As shown in [1]–[13], tumor modeling
can be employed to define a personalized radio-treatment area
using biophysical models to estimate the most likely directions
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of tumor cell infiltration instead of solely targeting tumor area
visible on a scan. These methodologies mainly imply solving
an inverse problem: finding the parameters of the biophysical
tumor growth model resulting in a simulation output that best
matches an empirical observation outlining the pathology.

Existing approaches for inverse tumor modeling resort to
deterministic [2], [4], [14] as well as probabilistic Bayesian
[15]–[17] formalisms. All these approaches rely on excessive
amount of forward simulations required for inferring patient-
specific parameters. The number of simulations ranges from
several thousand for approximate methods [5], [15], [17] to
tens of thousands in case of fully Bayesian analysis [3].
The forward brain tumor models are often based on the
reaction-diffusion equation and are implemented using highly-
efficient numerical solvers. In [16], authors employ the Lattice
Boltzmann method which allows parallelized computing and
takes ca. 80 seconds on a 60 core machine for simulating the
pathology growth. In [3], the forward model is implemented
by means of a multi-resolution adapted grid solver with a
simulation time of 1-3 minutes using 2 cores. Despite the
computational advances of the solvers, the minutes of a single
forward model evaluation multiplied by thousands of forward
integrations necessary for the inverse problem can result in
weeks of total computing time. This constrains the testing of
more elaborate tumor models (e.g., considering cell mixtures
or multiple competing patho-physiological processes [18]),
and translation of the personalized radiotherapy planning into
clinical practice [1]–[4].

As recent years showed, speeding up heavy conventional
computation becomes feasible using end-to-end learning meth-
ods. The data-driven methodology has also penetrated the field
of numerical computing [19]–[29]. Learnable surrogates were
proposed for various scientific computing tasks in the natural
sciences by exploiting fully-connected [30]–[32], convolu-
tional [33]–[35], and hybrid [36]–[38] neural architectures.
Among them are two methods that proved capable of learning
even a direct mapping from the space of parameters driving
a simulator to the space of the simulator solutions in a static
geometry [34], [35]. Unfortunately, these promising methods
are incapable of dealing with inference in arbitrary complex
geometries, such as those dictated by patient-specific anatomy.
This limits their transfer to model personalization that is
crucially dependant on an adaption to the patient specific
simulation domain.

The contribution of the paper is the following: we introduce
a learnable method emulating a numerical tumor growth
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Fig. 1: Geometry-aware neural solver. The network is composed of two main parts: a) brain anatomy encoder that maps the anatomy volumes
(WM, GM, CSF) to a latent representation, b) brain tumor decoder that takes as input an embedding (via a fully-connected (FC) layer) of
the parameters {D, ρ, T}, concatenated with the latent representation from (a), and maps the resulting tensor to the 3D tumor simulation
volume. Downsampling in the encoder is implemented as a convolution with stride 2 (other convolutions in the network have kernel size 3
and stride 1). Upsampling in the decoder is via the nearest-neighbor interpolation followed by convolutional operations. The convolutional
block is composed of N repetitions of convolutional operation (with number of channels #ch 128) and ReLu non-linearity.

forward solver. Specifically, we introduce a learnable anatomy
encoder that enables a patient-specific simulation of the tumor
growth process. To the best of our knowledge, this is the
first network-based approach in the computational pathology
field that maps parameters of the biophysical model directly to
the simulation outputs while generalizing over the simulation
geometry. To illustrate the power of this approach, we use
reaction-diffusion tumor growth model, since this is most used
model and it also serves as a base for many more complex
models. We achieve a 50× speed-up compared to an advanced
numerical solver by employing the tumor model surrogate with
an anatomy encoder that enforces patient-specific boundary
conditions. This enables a fast Bayesian model personalization
that is consistent with the baseline numerical solver.

II. METHOD

1) Forward tumor model: The simulations that we aim to
emulate are generated by a 3D numerical solver relying on
the Fisher-Kolmogorov type of partial-differential equations
(PDE). The equation describes the evolution of the pathology
by considering diffusion and proliferation of the tumor cells
under the Neumann boundary condition (B.C.):

∂u

∂t
= ∇(D∇u) + ρu(1− u), (1)

WMCSF GMT1c

Fig. 2: An example of an MRI T1c scan from the dataset and
corresponding probabilistic segmentations offering information on
the expected tissues underneath and nearby the tumor (obtained by
registering the brain atlas to patient space).

∇u · n = 0 B.C. (2)

Here, u is the normalized 3D tumor cell density, D denotes
the diffusion tensor, ρ is the rate of cell proliferation, and n is
the normal vector to the boundary. We assume the infiltration
of the tumor cells to occur only in white matter (WM) and
grey matter (GM), considering isotropic diffusion with D =
D · I (where D ∈ {Dw, Dg} is a diffusion coefficient in white
or grey matter, and I is an identity matrix). Both WM and
GM constitute the simulation domain while cerebrospinal fluid
(CSF) and skull determine the patient-specific boundary. The
segmentations are extracted from medical scans of patients
diagnosed with the tumor. Given the probabilistic nature of
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the WM and GM segmentation maps used here, the diffusion
coefficient is defined as Di = pwiDw+pgiDg , where pwi and
pgi denote the percentage of the WM and GM at the voxel i.
The diffusion coefficient in white matter Dw is considered to
be greater than in grey matter. We considered two models with
the ratio Dw/Dg equal 10 and 100. The input to the solver
is a set of parameters θP = {Dw, ρ, x, y, z, T}, where x, y, z
define the position of the function u at time T = 0, which is
initialized as a point source.

2) Learnable forward model surrogate with anatomy en-
coder: Our goal is to learn a tumor model surrogate which
maps parameters of the pathology model θP to corresponding
simulations u(θP ) given a patient-specific anatomy. We base
our method on [35] which is designed to emulate the mapping
for fluid simulations in a static spatial domain. Different from
[35], we need to consider patient-specific boundary conditions.
To this end, we introduce an anatomy encoder that imposes
anatomical boundary conditions, Fig. 1.

The numerical solver’s output u(θP ) has a size of 128 ×
128 × 128 voxels. However, to provide a greater anatomical
variability to the dataset on which we train the surrogate, we
crop all simulated outputs and corresponding brain anatomies
to 64×64×64 volumes, centered at the initialization location
x, y, z. The 64 × 64 × 64 is greater than half the brain size
and tumors bigger than this are incompatible with life.

The architecture of the tumor model surrogate consists of
the following parts:

- Brain anatomy encoder which encodes non-overlapping
3D volumes of the brain tissues WM, GM, and CSF through
a series of convolutional blocks. The blocks are composed of
alternating convolution operations (with fixed parameters of
kernel size 3, stride 1, and the number of channels 128) and
a non-linearity in the form of a linear rectifier. Each block is
equipped with a skip connection linking the input and output of
the block via an element-wise sum. Downsampling between
the blocks is achieved by a convolutional operation with a
stride of two,

- Brain tumor decoder that takes a 1D vector of the
parameters {D, ρ, T} alongside with the encoded anatomy
as input. Note that we do not condition the decoder on the
initialization location x, y, z, since as mentioned above we
crop all training volumes exactly at this location. Thus, the
network is taught to reproduce the tumor in the center for any
volume. Before being passed to the decoder, the 1D vector of
the model parameters is mapped via a fully connected layer to
a tensor of size 8×8×8×3 and is concatenated with the tensor
of the encoded brain anatomy. The resulting tensor is gradually
upsampled through a series of convolutional blocks analogous
to the encoder and nearest-neighbor upsampling (we refer the
reader to [39] for a detailed discussion on why such type of
upsampling is preferred over the deconvolution operation). At
the end of the series, a 4D tensor 64 × 64 × 64 × 128 is
convolved to the output prediction - a 3D tumor simulation
volume (height 64, width 64, depth 64). The decoder design
is adopted from [35], [40].

For constructing the loss function, we can consider several
semantically different sections of the output volume: CSF area
(because no tumor cells are to be expected here), tumor area

(because the algorithm should focus on this area ignoring
the significantly larger normal brain), remaining brain area
(composed of WM and GM voxels not present under tu-
mor area), background (BG). We experimented with different
combinations of this compartments in the loss, Tab. 1. The
following loss definition outperforms other ways of defining
spatial dependency in the cost function:

Ltotal = ‖usim − upred‖tumor1 + ‖usim − upred‖CSF1 (3)

where the error between the predicted by the surrogate (upred)
and simulated by the numerical solver (usim) cell concentra-
tion is computed under L1 norm separately in the tumor area
and in the CSF area.

3) Bayesian model personalization: To demonstrate the
applicability of the neural surrogate, we perform Bayesian
tumor growth model personalization substituting the numerical
solver with the learnable one. As calibration data we use two
types of imaging modalities: (a) T1 contrast-enhanced and
FLAIR MRI modalities that allow estimating the morphologi-
cal characteristic of the visible tumor; (b) FET-PET scans that
provide information about the metabolic activity of the tumor.

Analogous to [15], [16], we relate the output of the tumor
growth solver u(θP ) to imaging information via a probabilistic
model,

p(D | u, θ) = p
(
yT1c | u, θI

)
· p
(
yFLAIR | u, θI

)
·

· p
(
yPET | u, θI

) (4)

where image observations D = {yT1c,yFLAIR,yPET } are
assumed to be independent, and θ = {θP , θI} constitute
parameters of the pathology model θP and the probabilistic
imaging model θI . The latter is defined differently according
to the type of modality:

- MRI modalities provide information in the form of binary
tumor segmentations (yT1c,yFLAIR). Thus we assign for each
voxel a discrete label yMi ∈ {0, 1}, M ∈ {T1c, FLAIR}. We
model the probability of observing yT1c,yFLAIR for a given
concentration u(θP ) with Bernoulli distribution,

p
(
yT1c,FLAIR | u, θMI

)
=
∏

i

p
(
yMi | ui, θMI

)
=

=
∏

i

α
yMi
i,M · (1− αi,M )

1−yMi ,
(5)

T1Gd FLAIR Fet-pet

Fig. 3: An illustration of the imaging information used for
Bayesian model calibration: binary segmentations obtained
from T1Gd and FLAIR modalities, and FET-PET signal which
is proportional to the tumor density.
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Tumor age CSF

Fig. 4: Comparison between tumor volumes predicted by
the surrogate and numerical solver. Each column represent
a different value of tumor age T from 100 to 1000 days
with intervals of 100 days. The images were obtained by
inferring individual 3D volumes for all time points and taking
a central 2D slice from each volume. The rows framed in
green correspond to the ground truth simulation. The CSF
delineation constraining the tumor growth is framed in red.

where αi,M is the probability of observing tumor-induced
changes defined as a double logistic sigmoid,

αi,M (ui, uc) = 0.5+0.5·sign
(
ui − uMc

)

1− e−

(ui−uMc )
2

σ2α




(6)
With this formulation, we postulate that the tumor is not visible
on a scan below the threshold level uMc . The parameter σα is
introduced to take uncertainty in the threshold concentration
uMc into account.

- FET-PET modality (yPET ) provides continuous informa-
tion in each voxel and can be assumed to be proportional to
the tumor density [3], [41], [42]. In this case we model the
likelihood imaging function by a Gaussian distribution with
unknown constant of proportionality b:

p
(
yPET | u, θMI

)
=
∏

i

p
(
yi | ui, θMI

)
=
∏

i

N
(
yi − bui, σ2

)

(7)
Here, σ models uncertainty in the PET signal, which is
considered to be normalized yPETi ∈ [0, 1].

In total there are eleven parameters (six pathology model
parameters θP = {Dw, ρ, x, y, z, T} and five imaging model
parameters θI = {uT1c

c , uFLAIRc , σα, b, σ}) which we infer

Fig. 5: A qualitative comparison between the simulated and
predicted tumors embedded in the 3D brain anatomy.

Fig. 6: The mean absolute error analysis over the tumor age (an
input parameter) on the in-house test set. The error between
the tumors (from numerical and neural solvers) is computed
analogous to the first term in the proposed loss - in the area
where the tumor concentration simulated using the numerical
solver is greater than zero. Dots depict the means of the MAE
distribution, error bars - the standard deviations. The analysis
shows minor error increase with the increase of the tumor size.

from the triplet of medical scans D = {yT1c,yFLAIR,yPET }
using a Markov Chain Monte Carlo (MCMC) sampling algo-
rithm [43].

4) Implementation: The numerical tumor solver used for
obtaining the simulation dataset is a highly parallelized glioma
solver returning a 3D normalized tumor concentration profile
on a uniform spatial grid [3].

The surrogate network is trained using the Adam optimizer
with decay rates β1 = 0.5 and β2 = 0.999 for 30 epochs,
which was observed to be sufficient for convergence. The
learning rate is cosine annealed from 10−4 to 2.5×10−6 over
the training and the batch size is 16. The input parameters’
ranges are min-max normalized. The training time is about
6 days on an NVIDIA Quadro P8000 using the Tensorflow
framework.

For Bayesian MCMC inference we use an implementation
of Transitional MCMC from [44] with 2048 samples per
iteration. When the MCMC is used with the numerical solver,
simulations of 128× 128× 128 size are calibrated against the
imaging information of the corresponding size. In the case of
the surrogate, the network predicts 64×64×64 tumor volumes,
which are then embedded in the original 128 × 128 × 128
domain for the calibration.

III. EXPERIMENTS

Conventional application of tumor modeling such as model
personalization (via solving an inverse problem) implies esti-
mating the model parameters by sampling over fixed, physio-
logically plausible ranges. Thus, we aim to employ the learn-
able surrogate which i) possesses an interpolation capacity for
the parameters {D, ρ, T}, and ii) is capable to extrapolate for
simulations in new geometries. To probe these properties, the
validation and test sets were formed to have only the brain
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Validation set Test set

uc = 0.2 uc = 0.4 uc = 0.8 uc = 0.2 uc = 0.4 uc = 0.8

Ablation analysis on the network structure

(a) With skip-connections (U-net) 0.572 0.575 0.576 0.563 0.565 0.569
(b) Only CSF as input 0.739 0.734 0.734 0.768 0.767 0.763

Ablation analysis on the loss function

(c) [Tumor+CSF+Brain+BG] 0.615 0.607 0.585 0.588 0.571 0.544
(d) Tumor+[CSF+Brain+BG] 0.755 0.761 0.762 0.787 0.782 0.778

(e) Tumor+CSF+Brain 0.771 0.764 0.762 0.791 0.786 0.780
(f) Tumor+CSF 0.796 0.783 0.788 0.802 0.795 0.794

TABLE I: Ablation analysis on the in-house validation (2k samples) and test (10k samples) tests: a) with skip connections
between the encoder and decoder (U-Net like); b) instead of inputting 3 volumes of different tissue types (WM, GM, CSF)
only a single volume of CSF tissue serves as an input to the network; c) a single loss is computed for the whole volume;
d) the second term in the loss is computed in the spatial complement of the first tumor term in Eq. 3; e) in addition to the
two terms in Eq. 3, a third term is added to penalize for false predictions in the remaining brain, f) the proposed architecture.
The values represent the means of the DICE score histograms. The DICE is computed for the tumor volumes upred and usim

thresholded at 0.2, 0.4, and 0.8 values of tumor cell concentration. The square brackets denote the areas included in a single
loss term, e.g. for [CSF+Brain+BG] the term is computed in the volume combining all three compartments.

MAE MAE MAE

Fig. 7: Histograms of the mean absolute error ‖upred − usim‖1 computed on the in-house test set (10k samples) within each
class of the brain tissues (WM, GM, CSF). In red, samples from the tumor model with Dw = 10Dg , in blue - from the
tumor model with Dw = 100Dg . The means of the distributions for the Dw = 10Dg model are: 0.026 (WM), 0.035 (GM),
0.007 (CSF). The means for the Dw = 100Dg model are : 0.028 (WM), 0.044 (GM), 0.008 (CSF). The fact that the network
performance on two tumor models with notably different diffusion character stays close suggests that the network is capable
of capturing not only pixel-wise CSF dependency, but also highly non-local diffusion dependency on the WM and GM.

DICE DICE DICE

Fig. 8: Histograms of the DICE score computed on the test set (10k samples) for the tumor volumes upred and usim thresholded
at 0.2, 0.4, and 0.8 values of tumor cell concentration. In red, samples from the tumor model with Dw = 10Dg , in blue -
from the tumor model with Dw = 100Dg . The means of the distributions for the Dw = 10Dg model are: 0.802 (uc = 0.2),
0.795 (uc = 0.4), 0.794 (uc = 0.8). The means for the Dw = 100Dg model are: 0.782 (uc = 0.2), 0.775 (uc = 0.4), 0.764
(uc = 0.8).
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Fig. 9: Distribution of the per-patient mean errors between the
tumors predicted by the numerical and neural solvers over 56 patients
from the BraTS dataset. The computed errors are DICE (thresholded
at uc = 0.2) and MAE. For each patient the mean DICE and
MAE are computed on 1k tumor simulations. Such evaluation on an
independent test set demonstrates that the proposed neural surrogate
possesses a high generalization ability that is stable across a high
number of tumor and patient anatomies.

anatomies unseen by the network during training, while the
parametric {D, ρ, T} triplets were sampled from the same
ranges as for the training.

1) Data and parameterization: We simulate the tumors
in probabilistic brain tissue (WM, GM, CSF) segmentations
that are obtained by registering a patient scan to the healthy
brain atlas [3], [45] (available at github.com/JanaLipkova/s3).
Different from a plain segmentation of the patient anatomy
directly from an MRI scan, such procedure offers an estimate
of the anatomy underneath the tumor. Fig.2 shows an example
of such an approximation. We use two datasets: a) in-house

set composed of MRI and PET images from 20 patients
(simulations in 10 patients’ anatomies are used as training
data, simulations in additional 5 patients for validation, and in
the remaining 5 patients for test), b) all CBICA 56 patients
of high-resolution MRI from BraTS [46] (56k simulations are
used only for test). Both datasets have resolution of isotropic
voxels of 1mm side-length, but for simulation purposes, the
calibration is performed in data downsampled to 128x128x128
that corresponds to 2mm per side-length.

For most of experiments, we considered a tumor model in
which the diffusion in white matter Dw is greater than in
grey matter Dg by 10 times (except Fig. 7 and 8, where two
diffusion models are compared - with the ratio of 10 and of
100 between the coefficients). The following ranges are used
for random uniform sampling of the model parameters: Dw ∈
[0.01, 0.08] mm2/day, ρ ∈ [0.0001, 0.03] 1/day, and T ∈
[50, 1000] day with a step size of 50 days. The tumor location
coordinates x, y, and z are sampled uniformly within the brain
volumes. It should be noted that this uniform prior can be
modified to non-uniform distributions, such as those reported
in [1], [47], to increase sampling for locations with higher
tumor incidence. The initial locations {x, y, z} were samled
within the WM and GM only. For samples with initial location
closer than 32 pixels to any of the volume borders, we do extra
padding when cropping to 64x64x64 size. In total, we have a
set of 20k parameters-simulation pairs for training.

2) Identifying the optimal algorithm on in-house dataset:
We perform several experiments on the in-house dataset to
identify an optimal architectural setup:

a) Experiments on the loss function: As mentioned in the
method section the predicted 3D image can be decomposed
into several semantic parts (CSF, tumor, WM/GM, back-
ground). An ablation analysis demonstrates that the highest
performance is achieved using the loss that focuses solely on
the tumor and CSF areas, Tab. 1f. Notably, such loss is superior
despite absence of penalization in rest of the volume.

b) Experiments on the network structure: These days in
the field of medical imaging computing, the natural baseline is
a U-Net. We performed experiments comparing the U-net type
architecture with the proposed encoder-decoder design. Fig. 10
depicts the problem with the U-Net, namely, worse capturing
of the output volume’s dependency on the model parameters,
and more pronounced false predictions in the non-tumor area.

We also analyzed how much information the proposed
network is capable to extract from the WM/GM signal. Results
from Tab.1 show that despite the highly non-local character of
dependency of the output tumor volume on the WM/GM, the
performance is dropped by up to 6% if the WM/GM is not
included in the input.

c) Experiments on robustness: We perform experiments
comapring two diffusion models with notably different dif-
fusion character (Dw/Dg = 10, Dw/Dg = 100). Fig. 7
demonstrates the distribution of the mean absolute error within
each class of the brain tissues evaluated on the whole in-house
test set (10K samples) for two types of diffusion models. Even
though we observe samples with the error in the order of
10−1, the majority of the distribution lies within the order of
10−2. In Fig. 8 we depict the histograms of the DICE score
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         Ground truth                Proposed                     U-Net

a)

b)b)

Tumor and its                                                                                                             
complement

Fig. 10: Visual comparison of the inference obtained by the
proposed method, U-Net, and the architecture with two terms
in the loss - tumor and tumor complement (as in ”d” in Tab. 1).
The U-net exhibits mispredictions of two types: a) better CSF
preservation is traded off for worse capturing of the parametric
dependency, b) more notable false predictions in the out-of-
tumor area. The proposed architecture can also produce false
predictions in the non-CSF area (which is expected due to
absence of related penalization in the loss). However, using
penalization for the tumor complement area does not warrant
absence of such noise (”Tumor and complement”).

(2|X ∩ Y |/(|X|+ |Y |)) computed between the simulated and
predicted tumor volumes which are thresholded at different
levels of the tumor cell concentration (such thresholding is
exactly the operation that we perform during the Bayesian
inference to relate tumor concentration with MRI signals, Eq.
6). The distributions are centered close to the DICE 1.0. The
smaller peak at DICE 0.0 is due to the fact that thresholding
of some simulations results in volumes containing a few
non-zero voxels, whereas thresholding of the corresponding
network predictions outputs volumes of all-zero voxels (or
vice versa). In our particular application of the tumor model
personalization such volumes are significantly smaller that the
binary MRI segmentation volumes to which we calibrate the
model and thus do not affect the Bayesian inference outcome.
In sum, given that the performance of two different tumor
models with notably different diffusion character stays within
2%, we conclude that not only effects imposed by the patient
specific CSF anatomy, but also higher order dependency on the
WM and GM (through which the diffusion tensor is defined)
are captured by the proposed surrogate.

Fig. 6 depicts the dependency of the mean absolute error
versus a network’s input - tumor age, showcasing somewhat
expected error increase with the increase of the tumor size.
Fig. 4 qualitatively illustrates the surrogate’s predictions over
tumor age.

3) Independent testing on the BraTS dataset: As mentioned
above, to provide greater anatomical variability to the training
set we performed the training on 64x64x64 crops randomly
sampled over the brain volumes of the 10 patients (20k
samples in total). That means we heavily randomize over the
field of view, inducing variability of the simulation domain
that is much larger than what one would see from inter-patient
variability (even on the large datasets like BraTS). Thus we

argue that training on 20k samples of such data is sufficient
for generalisability to an arbitrary test set generated by the
same solver within the fixed parametric ranges. To examine
our point, we performed an independent test of the proposed
network’s generalization performance on a large subset from
BraTS composed of all CBICA patients. This test, Fig. 9,
demonstrates generalization capacity that is stable across a
high number of tumor and patient anatomies.

4) Bayesian model personalization in patient data: As a
final test of the surrogate, we performed the Bayesian brain
tumor model calibration. We ran the inference on preoperative
scans of 5 patients from the in-house validation set using the
proposed neural surrogate and numerical solver. The max-a-
posterior (MAP) estimates of the tumor density are provided
in Tab.2 and tumor concentrations modeled with the MAP
estimates are shown in Fig. 11. We observe an agreement
of the glioma profiles obtained by the two methods and the
variability of the estimations is within the variability of the
Bayesian calibration.

We also observe that the learnable surrogate is trained on a
dataset with continuous uniform distribution of the diffusion
coefficient D and the proliferation rate ρ, whereas the T
parameter has a discrete interval. However, during the model
calibration, the time parameter is sampled from a continuous
interval. This implicitly suggests that the network’s interpola-
tion capacity is sufficient for parametric inference.

5) Performance speed-up: The computing time for a single
simulation using the numerical solver on 64x64x64 grid is on
average 15 seconds using an Intel Xeon with 8 CPU cores and
64GB of RAM. The time required by using the neural solver
for processing a batch of size 8 during inference is equal to
2.4s, i.e. our surrogate is 50 times faster than the numerical
solver per single simulation. Such a speed-up proportionally
reduces the computing time for the model personalization.

We want to point out that a theoretical comparison between
CPU- and GPU-based computations should be taken with
care for a few reasons. First, the neural surrogate does not
need to do any sequential computations and can batch process
multiple frames, whereas the numerical solver is successively
integrating the PDE equation in time and for a single sample.
Second, the convolutional layers are very efficiently realized in
most GPU-tailored deep learning frameworks. In this regard,
a fair comparison could imply to contrast the GPU compute
with a CPU cluster containing as many processing units as
the GPU. However, the latter is rarely available for practical
applications, and as our main goal is clinical translation, we
compare CPU and GPU platforms that are widely available.
Also, it is worth to mention that ideally the comparison should
be with a numerical solver optimized to run on GPUs.

IV. DISCUSSION

As depicted in Fig. 8, even though the Dice distributions are
peaked close to a perfect score, there is room for improvement.
For example, the anatomy encoder well captures the global
growth constraints imposed by the CSF anatomy, but tiny
CSF components of a few voxels size are often missing in
the network predictions, Fig. 4. From our experiments we
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Fig. 11: Results of the Bayesian inference for five patients to which we refer as P1-P5. The three upper rows correspond to
the imaging modalities used for tumor model calibration, namely T1c, FLAIR, and FET-PET. The two bottom rows show the
simulations of glioma with model parameters inferred via the Bayesian inference using the numerical solver and proposed
neural surrogate.

observe, that the U-Net type model better preserves the CSF,
Fig. 10. However, in the rest of the volume, the U-Net outputs
mispredictions of two types: a) better CSF preservation is
traded off for worse capturing of the parametric dependency,
b) pronounced false predictions in out-of-tumor area. This
leads to a significant performance decrease, Tab. 1. The U-
Net is known to work well on datasets which preserve voxel-
wise semantics between the network’s input and output [48]–
[51]. In our case, though, two out of three input anatomies
(WM, GM) do not affect the output (simulated 3D tumor) in
a voxel-wise fashion, but rather in a highly non-local way the

whole 3D tumor volume. Arguably, the mispredictions (at least
type “a”) may be explained by the higher emphasis on the
translation of the anatomy input signal via skip-connections
which makes the mapping from the tissues dominate the
second input-output mapping - from parameters (D, ρ, T )
to the tumor volumes. A more intelligent separation of the
input-output mappings or hybrid approaches [37] explicitly
enforcing boundary conditions might alleviate such issues.

Another aspect we want to point out is that we do not em-
pirically observe pronounced false predictions in the non-CSF
area, even without explicit penalization, as in the proposed
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D ρ T x y z σ b uT1c
c uFLAIRc σα MAE

P1 Numerical
solver 0.08994 0.01550 572.582 0.3098 0.6748 0.2819 0.2177 0.6384 0.7976 0.3718 0.0514

0.09Neural
surrogate 0.08976 0.01657 553.019 0.3071 0.6657 0.2818 0.1702 0.7198 0.7344 0.3364 0.0500

P2 Numerical
solver 0.08920 0.01993 503.146 0.6121 0.6706 0.3411 0.2358 0.7309 0.6502 0.4376 0.0688

0.18Neural
surrogate 0.08945 0.02882 418.631 0.6217 0.6445 0.3316 0.2434 0.6324 0.6316 0.4337 0.0799

P3 Numerical
solver 0.08998 0.01555 572.128 0.4129 0.3544 0.2900 0.2326 0.7023 0.6088 0.3608 0.0735

0.15Neural
surrogate 0.08990 0.02897 418.946 0.4230 0.3678 0.2901 0.2498 0.6561 0.6294 0.3662 0.0772

P4 Numerical
solver 0.07967 0.00813 733.13 0.6421 0.5502 0.3151 0.1832 1.0146 0.6007 0.5458 0.0757

0.06Neural
surrogate 0.04362 0.00817 776.41 0.6707 0.5613 0.3224 0.1966 1.0136 0.6237 0.5192 0.0579

P5 Numerical
solver 0.08938 0.01080 686.923 0.5530 0.6203 0.3147 0.2484 0.6000 0.6023 0.3775 0.0796

0.05Neural
surrogate 0.08360 0.01066 687.841 0.5701 0.6259 0.3276 0.2411 0.7044 0.6098 0.3790 0.0759

TABLE II: MAP estimates of the marginal distribution from the Bayesian calibration on the patient data P1-P5 (from Fig. 11)
using the numerical solver and proposed neural surrogate. The prior ranges are chosen as follows: Dw ∈ [0.01, 0.08] mm2/day,
ρ ∈ [0.0001, 0.03] 1/day, T ∈ [30, 1000] days, σ ∈ [0.01, 0.25], b ∈ [0.6, 1.02], uT1c

c ∈ [0.6, 0.8], uFLAIRc ∈ [0.05, 0.6], and
σα ∈ [0.05, 0.08]. The MAE between the predicted and simulated tumors is computed analogous the 1st term of the network loss
- in the area where the tumor from the numerical solver is greater than zero. We observe an agreement of the model parameters
obtained by the two methods and the variability of the estimations is within the variability of the Bayesian calibration.

loss definition. Moreover, penalization for false predictions in
the loss does not improve performance (Tab. 1). We attribute
the superiority of the loss with only two compartments to the
fact that adding extra compartments to the loss introduces a
”conflict” of gradients - the optimization focus distorts from
the tumor and CSF areas, which are the only areas that affect
the numerical simulations. We do sometimes observe low-level
noise in the non-penalized area, but at the same time, as Fig.
10b also shows, using penalization for the tumor complement
area does not warrant absence of such noise.

Next, further research would benefit from considering dif-
ferent scenarios for the diffusion process with respect to its
homogeneity and isotropy to evaluate the proposed network’s
learning capacity. In our work, we consider inhomogeneity by
using spatially varying diffusion tensor (Sec. II-1). However,
the question of how to consider anisotropy and how to in-
troduce and weight the off-diagonal elements of the diffusion
tensor into the simulation we believe is an open one. It is
also closely related to how to model the Diffusion Tensor
Imaging signal itself (the common ellipse, only the first eigen-
component to suppress the tumor edema effect, a stick and ball
model). We felt this questions have not been answered well
yet elsewhere, and thus we focused on isotropy only.

Lastly, we do not have a definite answer to whether
the mentioned limitations and resulting approximation errors
are acceptable for clinical translation. Neither do we know
whether the Bayesian calibration itself under the simplistic
Fisher-Kolmogorov formalism is suitable for the translation.
Both require a study on a large cohort of patients, post-surgery
analysis, etc. [1]–[4]. However, we find the proposed method
to be a solid baseline in the search for optimal tumor model
surrogate, which in turn can significantly speed up our search
for a biophysical model descriptive enough for clinical trials.

V. CONCLUSION

We present the first learnable surrogate with anatomy en-
coder for tumor growth modeling that is capable of mapping
the model parameters to the corresponding simulations while
respecting patient-specific anatomy. Our method achieves real-
time simulation 50× faster than numerical solver. Since the
learnable surrogate was tested in general PDE settings, we be-
lieve the technique can be adopted to more complicated tumor
growth models and similar 4D inverse modeling problems.
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Synopsis: Understanding the dynamics of brain tumor progression is essential for
optimal treatment planning. Cast in a mathematical formulation, it is typically
viewed as an evaluation of a system of partial differential equations, wherein the
physiological processes that govern the growth of the tumor are considered. To
personalize the model, i.e. find a relevant set of parameters, with respect to the
tumor dynamics of a particular patient, the model is informed from empirical data,
e.g., medical images obtained from diagnostic modalities, such as magnetic-resonance
imaging. Existing model-observation coupling schemes require a large number of
forward integrations of the biophysical model and rely on simplifying assumptions on
the functional form, linking the output of the model with the image information. In
this work, we propose a learning-based technique for the estimation of tumor growth
model parameters from medical scans. The technique allows for explicit evaluation of
the posterior distribution of the parameters by sequentially training a mixture-density
network, relaxing the constraint on the functional form, and reducing the number of
samples necessary to propagate through the forward model for the estimation. We
test the method on synthetic and real scans of rats injected with brain tumors to
calibrate the model and predict tumor progression. .
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Abstract. Understanding the dynamics of brain tumor progression is
essential for optimal treatment planning. Cast in a mathematical formu-
lation, it is typically viewed as evaluation of a system of partial differen-
tial equations, wherein the physiological processes that govern the growth
of the tumor are considered. To personalize the model, i.e. find a relevant
set of parameters, with respect to the tumor dynamics of a particular
patient, the model is informed from empirical data, e.g., medical images
obtained from diagnostic modalities, such as magnetic-resonance imag-
ing. Existing model-observation coupling schemes require a large number
of forward integrations of the biophysical model and rely on simplifying
assumption on the functional form, linking output of the model with
the image information. In this work, we propose a learning-based tech-
nique for the estimation of tumor growth model parameters from medical
scans. The technique allows for explicit evaluation of the posterior dis-
tribution of the parameters by sequentially training a mixture-density
network, relaxing the constraint on the functional form and reducing the
number of samples necessary to propagate through the forward model
for the estimation. We test the method on synthetic and real scans of
rats injected with brain tumors to calibrate the model and to predict
tumor progression.

1 Introduction

Modeling brain tumor progression holds a promise of optimizing clinical treat-
ment planning. An appropriate tumor model, personalised with respect to the
patient-specific growth dynamics, could quantify clinically relevant information
- the tumor’s morphology and its character of evolution [1, 2]. Existing mathe-
matical description of the pathophysiological system spans from the intracellular
level of gene expression to the macroscopic level of bio-mechanical tumor-tissue
interaction. The latter is the scale at which the medical imaging analysis is typi-
cally carried out as this is the scale where medical scans are most interpretative.

Among the family of macroscopic models, the reaction-diffusion class of equa-
tions [3] is most widely adopted to characterize information visible on medical

? The authors contributed equally to the work.
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scans. Under such equations the evolution of tumor cell density is tracked by
considering tumor-relevant physiological processes, such as proliferation of can-
cerous cells, i.e. increase of the cells number due to its division, and the cells’
migration into surrounding tissue. Various approaches have been developed to
link the output of the model, the distribution of the cell density, with the tu-
mor visible on images [1, 2, 4–9]. Methods as in [5] make a certain assumption
on the cell density along visible tumor outlines and fit the model output to im-
age observation that includes lesion growth and tissue displacement. The model
adjustment, realized by means of a PDE-constrained optimisation scheme, al-
lows to obtain a point estimate of free model parameters. Bayesian methods [1,
7–9] cast the problem in a probabilistic formulation and provide estimation of
the parameters along with confidence intervals via Markov Chain Monte Carlo
(MCMC) sampling. The authors of [7] rely on the travelling wave formulation of
[4] together with a Bayesian parameter estimation. In [1, 9], authors construct
a probabilistic graphical model wherein the probability of imaging signal is de-
fined to be dependent on the biophysical model’s output. For magnetic-resonance
images (MRI), the probability of observing abnormality is defined as a logistic
sigmoid function of the tumor cell density. Phenomenological introduction of
the functional form leaves the question whether it possesses a capacity to ap-
proximate the mapping between cell density and the imaging information. Also,
generating samples from the posterior distribution as with the MCMC methods
requires large number of evaluations of the forward model, which can be of the
order 10-100 thousand evaluations [1, 9]. This results in an expensive computa-
tional cost, impeding clinical validation of more complex models and eventually
the approach’s adoptability to a routine daily use within clinical settings.

In this paper, we adopt methodological advances in the estimation of forward
model parameters, relying on learning-based strategy [10, 11]. The technique al-
lows for explicit evaluation of the distribution over the parameters by training
a mixture-density network (MDN) [12]. The MDN, modeled as a feedforward
fully-connected network, maps the output of the model to parameters of the dis-
tribution in a non-linear fashion. As theoretical works [13] prove, such a network
can serve as a universal function approximation, thus relaxing the necessity of
introducing an explicit form for the likelihood, relating the model output and
imaging data. In summary, the contributions of this paper are threefold: (1)
We make the technique applicable to PDE-based tumor growth models, (2) We
validate our method on synthetic and real data of rats implanted with cancer
cell lines, using two time points for the model initialization and calibration, (3)
We demonstrate that the technique provides more accurate parametric estima-
tions and requires less forward model’s samples as compared to explicit Bayesian
formulation even with highly efficient MCMC sampling method.

2 Method

Tumor growth model. We base our forward model on the reaction-diffusion
equation, describing the tumor progression via spatial and temporal evolution of
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the cancerous cell density. Particularly, a special type of the reaction-diffusion
formalism, the Fisher-Kolmogorov equation, is used:

∂u

∂t
= ∇(D∇u) + ρu(1− u), in Ω (1)

n · ∇u = 0, in ΓΩ . (2)

Eq. (1) considers two pathophysiological processes: the logistic proliferation of
the cells and its diffusion into neighbouring tissue. u denotes the tumor cell
density in the volume of the brain Ω, D is the diffusion tensor and ρ denotes
tumor proliferation rate. The diffusion is assumed to be heterogeneous: with
different degree of infiltration in the white and the grey matters, and restricted
in the ventricles area. We impose no-flux boundary condition Eq. (2), n denotes
the unit vector orthogonal to the boundary of the simulation domain ΓΩ and
∇ is the gradient operator. We performed experiments with two variants of
the model initialization: as a seed point at a fixed location rrr* (u(rrr, 0) = u0
if rrr = r∗r∗r∗, u(rrr, 0) = 0 elsewhere), and as an approximation of the cell density
distribution, obtained from an image observation at the first monitoring time
point (u(rrr, 0) = u0(rrr)).

Linking tumor model and image observation. We calibrate the model
parameters from image observations in the form of 3D binary tumor segmen-
tations, obtained from MRI modalities. Two MRI modalities, T1-gadolinium
hyper-intensities (featuring active tumor core) and T2-hyper-intensities (featur-
ing whole tumor), were used in order to better describe the right tumor mor-
phology. To make the output of the model consistent with the segmentations we
make a physiologically plausible assumption that regions of abnormalities visi-
ble on the images correspond to regions of high cell infiltration. Respecting the
assumption, we introduce two additional parameters uT1, uT2 for thresholding
the simulated cell density profile, leading to isolines of the tumor cell density
that we assume to match outlines of the tumor visible in a given modality. The
thresholded binary volumes are combined by element-wise summation to form a
3D label map.

Neural parameters inference. We can view the forward model’s output X –
the 3D label map – as a sample from a likelihood distribution p(X|θ) conditioned
on a set of parameters θ = {D, ρ, uT1, uT2}. The distribution p(X|θ) cannot be
in general evaluated, but its samples are readily available from the tumor model.
Given an observation Xobs – segmentations of the tumor in the MRI modalities
(summed element-wise), our goal is to infer the posterior distribution of the
tumor model parameters, using the Bayes rule: p(θ|Xobs) ∝ p(Xobs|θ)p(θ).

In [1, 9], the likelihood is approximated by Bernoulli distribution with the
parameter of the distribution defined as logistic sigmoid function. In our work,
for inference of the forward model’s parameters, we adopt a methodology that
allows to learn a nonlinear mapping from the output of the model directly to
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posterior distribution over its parameters [10]. The inference is based on the
neural posterior estimation (NPE), wherein an approximated posterior qφ(θ|X),
modeled as a mixture density network, converges to the true posterior p(θ|X)
(via the Kullback-Leibler divergence minimization) by iteratively performing the
following steps illustrated in Fig. 1:

1) [Blue box ] Pairs {θi, Xi}Ni=1 are generated to form a training dataset.
First, the tumor simulator parameters {Di, ρi} are sampled from a prior p(θ)
distribution (which is uniform at the first iteration step s = 1) and corresponding
simulation is propagated until the fixed time point t∗ to obtain the 3D cell density
profile ui. Then, ui is transformed to obtain binary segmentation masks, using
the other two sampled parameters {uT1

i , uT2
i }. Together, the segmentation masks

form Xi.
2) [Yellow box ] The MDN is trained by taking Xi as input and outputting

parameters αsk,µµµ
s
k,ΣΣΣ

s
k of a mixture of Gaussians qφs(θ|X) =

∑
k α

s
kN(θ|µµµsk,ΣΣΣs

k)
of K components. The objective of the approximated posterior qφs(θ|X) training
is to maximize the total log-loss, L(φs) =

∑
i log(qφs(θi|Xi)).

3) [Orange box ] The trained MDN is used to infer observation specific pa-
rameters of the Gaussian mixture αsobs,µµµ

s
obs,ΣΣΣ

s
obs by evaluating qφs(θ|X = Xobs)

at the observation Xobs - the label map, obtained from MRI segmentations at
t∗.

4) [Red box ] Finally, the observation specific parameters are used to update
estimation of the posterior ps(θ|Xobs) = qφs(θ|X = Xobs;α

s
obs,µµµ

s
obs,ΣΣΣ

s
obs), which

then used as a proposal distribution for sampling model parameters during the
next iteration.
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Fig. 1. 1-step of the neural posterior inference. Tumor growth model’s parameters
{D, ⇢, uT1

c , uT2
c } are sampled from prior uniform distribution and propagated through

the model. The output of the model u is thresholded to obtain binary segmentation
masks, which then serve as input to the MDN network, outputing parameters of a
Gaussian mixture. The training objective is log-loss of the mixture.

Fig. 2. 2-step of the neural posterior inference. Observation data fed in the MDN
trained during the first step. The network outputs observation-specific parameters of
a Gaussian mixture that serves as a proposal distribution for sampling tumor model’s
parameters at the next iteration.
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Fig. 1. 1-step of the neural posterior inference. Tumor growth model’s parameters
{D, ⇢, uT1

c , uT2
c } are sampled from prior uniform distribution and propagated through

the model. The output of the model u is thresholded to obtain binary segmentation
masks, which then serve as input to the MDN network, outputing parameters of a
Gaussian mixture. The training objective is log-loss of the mixture.

Fig. 2. 2-step of the neural posterior inference. Observation data fed in the MDN
trained during the first step. The network outputs observation-specific parameters of
a Gaussian mixture that serves as a proposal distribution for sampling tumor model’s
parameters at the next iteration.
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Fig. 1. The neural posterior estimator. At the heart of it is a mixture density network
that maps input data to closed form estimates of the model parameters. It guides the
patient-specific simulation of the tumor growth in an efficient iterative fashion.
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During successive iterations all the four steps are identical except the step 2,
that requires modification of the training objective. To compensate for the fact
that we sample from the proposal distribution, the objective function is weighted
by a ratio between the prior and proposal distributions p(θi)/p

s(θi|Xobs) [10]:

L(φs) =
∑

i

p(θi)

ps(θi|Xobs)
log(qφs(θi|Xi)) (3)

Implementation. We implement the tumor simulator using 3D extension of
the multi-resolution adaptive grid solver [14], allowing for high-parallelization.
The typical execution time is 20-40 seconds with 8 CPU cores. The architecture
of the neural estimator represents a feedforward fully-connected network with a
single hidden layer of 100 units with tanh as an activation function. We initialize
the weights of the network with He-normal [15] at the first iteration and use
the weights trained at the iteration step s for initialization at the s+1 step.
The latter allows to implicitly reuse the samples from previous iterations: for
memory efficiency, it is desirable to avoid having to store and reuse directly
old samples since we are dealing with 3D volumes. The network was trained
using the Adam optimizer [16] for 100 epochs at each iteration. For each subject
a separate network is employed. We run the experiments on NVIDIA Quadro
P6000 GPU.

3 Experiments

Data. In our experiments, we use synthetic and real data of human glioma cells
injected in the rat brain. For producing the synthetic data, we simulate a 3D
tumor in the anatomy, obtained from rats brain atlas. We initialize the tumor as
a seed point at a fixed location with the diffusion coefficient in the white matter
Dw = 0.02 [mm2/day] greater than in the grey matter Dw = 10Dg, and prolifer-
ation rate ρ = 0.6 [1/day]. To generate tumor segmentations masks, we threshold
the simulated normalized cell density profile at uT1 = 0.7 and uT2 = 0.25 for T1
and T2 modalities, respectively, at a single calibration time point (t∗ = day 9).
The day 11 is used for the model validation. The real data were obtained by in-
jecting F98 tumor cell lines in rats brain. The tumor progression was monitored
at several time points from day 9 to day 16, using T1w, T2w, and DWI imag-
ing modalities. The images were expert-annotated. Since the initial condition of
tumor location and shape is unknown in the real rats due to the injection, we
made use of the DWI modality at the first monitoring time point (day 9) for
model initialization. The apparent diffusion coefficient (ADC), calculated from
the DWI, can be considered to be inversely proportional to the tumor cell den-
sity [17]. We used the ADC, confined within the T2w segmentation volume, as
initial condition (in the late time states of tumor progression, the complex tumor
microenviroment, hypoxia and necrosis complicate the simple inversely propor-
tional relation). The binary segmentations from the T1w and T2w at the next
time point (t∗ = day 11) are used for inference of the model parameters, and at
the following days (14 and 16) we validate the model predictions, Fig. 3.
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Results on synthetic data. For a sensitivity analysis of the inference, exper-
iments on the synthetic data were first performed. In Fig. 2 we show a pairwise
correlation of the forward model parameters {D, ρ, uT1, uT2} obtained with the
neural posterior estimator and the explicit Bayesian inference with MCMC sam-
pling from [1]. For both methods, 1000 samples were used for the inference.
Depicted by red stars and orange vertical lines are ground truth (gt) data. The
proposed method provides the maximum a posteriori estimation (MAP)
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Fig. 2. Posterior distribution of the tumor growth model’s parameters inferred for
the synthetic rats data: 1D distributions along the diagonal (for the NPE and MCMC
methods) and 2D marginals (for the NPE) elsewhere. Depicted by red stars and orange
vertical lines are ground truth data. Tumors simulated in the rats brain atlas using the
ground truth parameters, and MAP parametric estimates obtained by the NPE and
MCMC-based methods are shown on the inset. The top row depicts 2D slices of the
cell density profile at the inference time point (day 9), and the bottom row - at the
prediction time point (day 11).
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for all the parameters in a close agreement with the gt data. In consistency with
[1], for the MCMC, based on the likelihood formulation as a logistic sigmoid, the
information in the form of binary segmentations is not sufficient to recover the gt
parameters. At the same time, the NPE is more computationally efficient, since
we observe accurate estimates after running 4 iterations of the posterior update,
whereas the MCMC-based method requires about 20 sampling generations for
convergence. This is attributed to a) sampling from a range of the parametric
space more relevant to the observation after each iteration, b) efficient use of
the samples as the technique does not imply any rejection thereof. The inset
on the Fig. 2 shows the tumor cell density computed with the MAP parametric
estimations from each method, in comparison with the ground truth data.

Results on real data. We validated the method on two real rat cases. Fig. 3
shows the tumor cell distributions for one of the rats,
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INFERENCE PREDICTIONSINITIALIZATION

T
1
w

T
2
w

M
A

P

ADC

case 1

case 2

Fig. 3. Data preparation and results of the inference for the real rat cases. After the
injection of cancer lines, the rats are monitored at four time points by means of the
T1w, T2w and DWI modalities. The inverse ADC from the DWI at day 9 serves as
an initial condition for the tumor model. The model parameters are inferred from the
binary segmentations, obtained from the T1w and T2w scans at day 11. The model
predictions, simulated using MAP estimations of the D, ρ parameters, are validated at
days 14 and 16. In the bottom row, the predicted tumor cell density profiles, overlayed
on the T2w, are shown. In the middle row, the pink outlines are boundaries of the T2w
segmentations. The inset shows volume dynamics of the T2w binary segmentations,
obtained from the annotation and predicted by the model, for two rats (the rat case
1 corresponds to the scans shown above). The inferred parametric uncertainties were
propagated through the model to obtain mean and standard deviation (blue bars) of
the dynamics.
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simulated using the inferred MAP estimates, at the calibration time point (day
11) and at the validation points (days 14 and 16).The volume dynamics of T2
tumor segmentations for both rats, calculated from the annotation and pre-
dicted by the model, is shown on the inset. The predicted segmentations were
obtained by thresholding the simulated cell density profile at the inferred uT2

level. While the volumes are in good agreement at the calibration time (an indi-
cation of plausible parametric inference), the model prediction underestimates
the real tumor dynamics at the validation points. This can be attributed to
simplifying assumptions of the Fisher-Kolmogorov model, such as constant pro-
liferation and diffusion for all time points, which limit model’s ability to describe
the nonlinear character of the real tumor progression. As the proposed inference
scheme opens an avenue for efficient parametric estimation, we will test more
complicated tumor growth formalisms, e.g., accounting for tissue displacement
and microenviromental influence, in future work.

4 Conclusion

We present an approach for inferring parameters of a tumor model from in-
formation available on medical scans relying on a learning-based strategy. The
approach allows for more efficient parametric estimation, as compared to the con-
ventional Bayes description with MCMC type of sampling, and exempts from
the necessity to introduce an explicit form, linking the biophysical model with
image observation. Despite we demonstrate the applicability of the method to
tumor modeling, the method can be adopted to other physical modeling prob-
lems that require calibration from imaging modalities.

Acknowledgment: Ivan Ezhov and Suprosanna Shit have received funding
from the European Unions Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement TRABIT No 765148.
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Synopsis: Current treatment planning of patients diagnosed with a brain tumor, such
as glioma, could significantly benefit by accessing the spatial distribution of tumor
cell concentration. Existing diagnostic modalities, e.g. magnetic resonance imaging
(MRI), contrast sufficiently well areas of high cell density. In gliomas, however, they
do not portray areas of low cell concentration, which can often serve as a source
for the secondary appearance of the tumor after treatment. To estimate tumor cell
densities beyond the visible boundaries of the lesion, numerical simulations of tumor
growth could complement imaging information by providing estimates of full spatial
distributions of tumor cells. Over recent years a corpus of literature on medical image-
based tumor modeling was published. It includes different mathematical formalisms
describing the forward tumor growth model. Alongside, various parametric inference
schemes were developed to perform an efficient tumor model personalization, i.e.
solving the inverse problem. However, the unifying drawback of all existing approaches
is the time complexity of the model personalization which prohibits a potential
integration of the modeling into clinical settings. In this work, we introduce a deep
learning based methodology for inferring the patient-specific spatial distribution of
brain tumors from T1Gd and FLAIR MRI medical scans. Coined as Learn-Morph-
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Infer, the method achieves real-time performance in the order of minutes on widely
available hardware and the compute time is stable across tumor models of different
complexity, such as reaction-diffusion and reaction– advection–diffusion models. We
believe the proposed inverse solution approach not only bridges the way for clinical
translation of brain tumor personalization but can also be adopted to other scientific
and engineering domains..

Contributions of thesis author: data processing, designing and implementing the
algorithmic solution, manuscript writing.
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Abstract

Current treatment planning of patients diagnosed with a brain tumor, such as

glioma, could significantly benefit by accessing the spatial distribution of tu-

mor cell concentration. Existing diagnostic modalities, e.g. magnetic resonance

imaging (MRI), contrast sufficiently well areas of high cell density. In gliomas,

however, they do not portray areas of low cell concentration, which can often

serve as a source for the secondary appearance of the tumor after treatment.

To estimate tumor cell densities beyond the visible boundaries of the lesion,

numerical simulations of tumor growth could complement imaging information

by providing estimates of full spatial distributions of tumor cells. Over recent

years a corpus of literature on medical image-based tumor modeling was pub-

lished. It includes different mathematical formalisms describing the forward

tumor growth model. Alongside, various parametric inference schemes were de-
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veloped to perform an efficient tumor model personalization, i.e. solving the

inverse problem. However, the unifying drawback of all existing approaches is

the time complexity of the model personalization which prohibits a potential

integration of the modeling into clinical settings. In this work, we introduce a

deep learning based methodology for inferring the patient-specific spatial dis-

tribution of brain tumors from T1Gd and FLAIR MRI medical scans. Coined

as Learn-Morph-Infer, the method achieves real-time performance in the order

of minutes on widely available hardware and the compute time is stable across

tumor models of different complexity, such as reaction-diffusion and reaction-

advection-diffusion models. We believe the proposed inverse solution approach

not only bridges the way for clinical translation of brain tumor personalization

but can also be adopted to other scientific and engineering domains.

Keywords: Inverse modeling, physics-based deep learning, glioma, model

calibration, tumor modeling, MRI

1. Introduction

Glioblastoma (GBM) is the most aggressive brain tumor, characterized by

varying and unknown infiltration into the surrounding tissue. After resection of

the tumor mass visible in MRI scans, current treatment includes radiotherapy

targeting tissue around the visible lesion to account for residual tumor cells.

Tumor recurrence is however present in most cases, possibly due to patient-

specific and non-uniform distribution of residual tumor cells. Personalization of

the clinical (irradiation) target volume could spare more healthy tissue and in-

crease progression-free survival by potentially avoiding recurrence (Stupp et al.,

2014, Harpold et al., 2007, Jackson et al., 2015, Lipkova et al., 2019).

Current computational approaches for personalizing radiotherapy planning

often rely on solving an inverse problem for GBM growth models (Hogea et al.,

2008, Konukoglu et al., 2010b, Geremia et al., 2012, Menze et al., 2011, Le

et al., 2017, Lipkova et al., 2019, Scheufele et al., 2020, Subramanian et al.,

2020a, Hormuth et al., 2021, Lorenzo and et al, 2021). In this context, the
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growth (forward) models are based on partial differential equations (PDEs)

that describe the evolution of tumor cell density in the brain anatomy. The

inverse model aims to identify free parameters of the forward model that best

match the observation, e.g. tumor outlines from medical imaging modalities.

To identify such parameters, the inverse problem can be cast as constrained

optimization (Hogea et al., 2008, Mang et al., 2012, Scheufele et al., 2019) or

Bayesian inference formulations (Menze et al., 2011, Lipkova et al., 2019, Ezhov

et al., 2020, 2019).

Predominantly, existing forward GBM models view tumor progression at

the macroscopic level by describing gross biomechanical phenomena. These in-

clude diffusive motion and proliferation of tumor cells (under simplistic reaction-

diffusion PDEs) (Menze et al., 2011), interaction between the tumor and sur-

rounding tissue (i.e. mass-effect) (Subramanian et al., 2020a), necrotic core

formation (Patel and Hathout, 2017), etc. Despite methodological advances in

computing the inverse model, the total time for model personalization is still

large amounting to multiple hours using such simplistic forward models (Subra-

manian et al., 2020a, Hormuth et al., 2018, Scheufele et al., 2019). For example,

in (Scheufele et al., 2019) the authors exploit a highly efficient quasi-Newton

optimization scheme to infer parameters of the reaction-diffusion model. The

inference converges after ∼5 hours of compute on 11 dual-x86 CPU nodes for

2563 resolution. In (Subramanian et al., 2020a), the mass-effect model is solved

using an analogous optimization scheme but implemented on a GPU leading to

the same order of compute time for the 2563 grid (and up to 1 hour for 1283

resolution). Bayesian methods providing uncertainty estimate of the parametric

inference (Lipkova et al., 2019) can take an even longer time (up to days) of

computing on specialized CPU clusters.

Recently, machine learning solutions entered the field of PDEs. Learnable

solutions for both forward (Raissi et al., 2019, Sitzmann et al., 2020, Stevens and

Colonius, 2020, Thuerey et al., 2020, Kasim et al., 2020, Kim et al., 2018) and

inverse (Papamakarios and Murray, 2016, Lueckmann et al., 2017, Dax et al.,

2021) models were developed. In (Papamakarios and Murray, 2016, Lueckmann
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et al., 2017), the authors proposed a Bayesian framework that allows bypassing

a compute of intractable likelihoods necessary for the Bayesian inference. This

notably speeds up the inference, however, it still requires thousands of simula-

tions to be generated by the forward model, which in turn can still result in

many hours of compute for the inverse problem. In concurrent to our work

(Dax et al., 2021), a solution to the inverse problem providing point estimates

was proposed. This is achieved via learning a mapping from the physical model

simulations directly to the model parameters by leveraging access to large sim-

ulated data. Unfortunately, this method is not capable to deal with the varying

geometry of the simulation domain. Moreover, as our paper shows, direct map-

ping to physical model parameters can result in a deterioration of prediction

accuracy since the inverse mapping between simulations and parameters is not

bijective.

Few machine learning approaches (Ezhov et al., 2020, Pati et al., 2020)

also appeared in the brain tumor modeling context. However, (Ezhov et al.,

2020) requires a vast amount of forward model evaluations for convergence of

parametric estimation under Bayesian settings for each new patient. In turn,

(Pati et al., 2020) requires access to a dataset of inferred model parameters that

can become prohibitively expensive to collect with the growing complexity of

the tumor model.

Potential integration of brain tumor modeling into clinical practice would

require access to a large cohort of longitudinal clinical data, allowing to esti-

mate the clinical value of a patient outcome’s forecast by the tumor models

(Yankeelov et al., 2013). Integration of current macroscopic models would also

require a thorough analysis of forecast consistency between the macroscopic de-

scription and higher complexity microscopic models encompassing subcellular

biophysics. For this, it is paramount to bring the computational cost of the in-

verse modeling to a reasonable time. Here, we propose a neural network based

methodology for predicting a patient-specific spatial distribution of GBM (from

single time-point medical scans, namely T1Gd and FLAIR MRI) that requires

neither sampling nor optimization. As such, it is potentially well suited for rapid
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model personalization in a clinical workflow, but also for scaling up preceding

feasibility studies to large patient cohorts.

Our contribution is a) a pipeline allowing to perform tumor model person-

alization in a fixed for all patients space, and b) a special learning setup for the

network (the main part of the pipeline) performing inverse model inference. The

method achieves lightning-fast performance in the order of minutes on widely

available hardware and the compute time is stable across tumor models of dif-

ferent complexity. This in turn opens the possibility of rapid testing various

biophysical models on a large dataset of patients and hence bridging the way

for clinical translation.

yT1GdyFLAIR

𝝁1 
𝝁2 
ic𝒙
ic𝒚
ic𝒛

inference in the atlas brain anatomy

forward 
registration

inverse 
registration

Patient MRI Patient-specific simulation

𝐘atlas

simulation in the atlas brain anatomy 

Tumor solver

Atlas simulation

a.

b. c.

d.
𝐘patient

𝝁1 
𝝁2 
ic𝒙
ic𝒚
ic𝒛

Figure 1: A sketch of the inference procedure of the Learn-Morph-Infer pipeline. First,

the patient’s brain tumor segmentations {yT1Gd, yFLAIR} are morphed to the brain

atlas space (a). A network trained on synthetic data inputs the morphed segmentations

and outputs corresponding tumor model parameters {µ1, µ2, icx, icy, icz} (b). The

inferred parameters are used to simulate a tumor in the atlas space (c). Finally, the

simulated tumor is morphed back to the patient space (d).
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2. Method

2.0.1. Learn-Morph-Infer Pipeline

In contrast to a few works like (Hormuth et al., 2019, Ezhov et al., 2019,

Tunç et al., 2021), we solve the inverse problem by relying only on single time-

point MRI observations of the brain tumor Y = {yT1Gd,yFLAIR}. This is the

most realistic clinical scenario as normally treatment follows immediately after

the first MRI scanning. Given a tumor observation Y , our goal is to calibrate

a set of personalized parameters θc of the forward tumor growth model that

infers the underlying patient-specific tumor cell density cpatient in the patient

anatomy3. For a given patient, this is achieved via the proposed Learn-Morph-

Infer pipeline:

• We register a patient MRI image to the brain atlas (Rohlfing et al., 2010)

and obtain a transformation matrix.

• The transformation matrix is used to morph scans based on the patient

anatomy Ypatient to scans in the atlas anatomy Yatlas as illustrated in Fig.

1a-b.

• A neural network, that has learned to solve the inverse problem Yatlas → θc

through prior training on simulated data Ysim (Fig. 1), predicts θc during

inference, Fig. 1b.

3Let us explain how we see the potential clinical utility of glioma modeling. In clinical

practice, for glioma patients normally only a single MRI scan is taken before treatment. It is

not feasible to capture the dynamics of the pathology by calibrating a tumor model from a

single scan - multiple sets of model parameters can result in the same simulated tumor profile.

Thus, one cannot reliably predict tumor evolution over time as different sets of parameters will

result in tumor trajectories diverging over time. Instead, we are only interested in identifying

a simulated tumor whose morphology (and, hence, tumor cell distribution) best matches the

morphology of the tumor we see on a single MRI scan. The best matching simulated profile will

then serve to predict tumor infiltration beyond contrast-enhancing tumor areas and thereby

define the target volume for radiotherapy (as opposed to the currently used simple EORTC

criteria - 2cm border surrounding the cavity (Young et al., 1999)).
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• These parameters θc are used as input in the tumor growth model (forward

solver) to infer a tumor cell density catlas in the atlas space, Fig. 1c.

• The tumor volume catlas is transformed back to the patient space with the

inverse transformation matrix, yielding cpatient as displayed in Fig. 1d.

2.0.2. Forward tumor model

We independently probe two types of non-linear PDEs describing tumor

growth:

Reaction-diffusion equation. First, we consider the Fisher-Kolmogorov PDE de-

scribing the evolution of the tumor cell concentration c by considering cell dif-

fusion and proliferation,

∂c

∂t
= ∇ · (D∇c) + ρc(1− c) (1)

∇c · n = 0 boundary condition (2)

Here, ρ denotes the tumor proliferation rate while the infiltrative behaviour of

the tumor is modelled by the diffusion tensor D = D · I. The equation is solved

in a three dimensional atlas brain anatomy segmented into white matter (WM),

grey matter (GM) and cerebrospinal fluid (CSF). The diffusion coefficient D

is computed for each voxel i with location (ix, iy, iz) as Di = pwiDw + pgiDg,

where pwi
, pgi describe percentages at voxel i and Dw, Dg diffusion coefficients

of WM and GM respectively, and a relation Dw = 10 ·Dg is assumed (Lipkova

et al., 2019). No cell diffusion into CSF is feasible according to the model. The

solver based on this growth model takes θc = {Dw, ρ, T, icx, icy, icz} as input

and returns a tumor cell density c. The parameters x = (icx, icy, icz) define the

initial condition where the tumor is initialized at time t=0 as a point seed. The

tumor is simulated until the time of detection T .
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Reaction-diffusion-advection equation. The second type is a non-linear reaction-

diffusion-advection PDE analogous to (Subramanian et al., 2020a). In the fol-

lowing, the brain tissue will be represented bym = (mWM (i, t), mGM (i, t), mCSF (i, t))

for each voxel i and time t. The normalized tumor cell density c = c(i, t) can

be modelled by the following equations:

∂c

∂t
= ∇ · (D∇c)−∇(cv) + ρc(1− c) (3)

∂m

∂t
+∇ · (m⊗ v) = 0 (4)

∇ · (λ∇u+ µ(∇u+∇u⊤)) = γ∇c (5)

∂u

∂t
= v (6)

∇c · n = 0 boundary condition (7)

m = 0 boundary condition (8)

u = 0 boundary condition (9)

v = 0 boundary condition (10)

Coupling Eqn. 3 to a linear elasticity model, Eqn. 5, allows considering deforma-

tion in the anatomy due to a mass effect induced by tumor growth (Subramanian

et al., 2019). The linear elasticity model is defined by the Lamè coefficients λ

and µ as specified in Eqn. 5. The displacement u is represented in the advection

term of Eqn. 3. The degree of the mass effect depends on the selection of the

mass effect parameter γ.
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Parameter symbol Parameter meaning

c Tumor cell density

D Diffusion tensor

D Diffusion coefficient

I Identity tensor

ρ Proliferation rate

n Unit vector normal to boundary

u Advection displacement

v Advection velocity

m Brain tissue maps

λ, µ Lamè coefficients

γ Mass effect parameter

Table 1: Description of parameters driving the reaction-diffusion and reaction-advection-

diffusion PDEs.

2.0.3. Linking cell density with MRI signal

MRI modalities capture structural information about the brain tumor. T1Gd

contrasts the tumor core, whereas FLAIR informs about the area of the edema

in addition to the tumor core. It is established practice (Lê et al., 2016, Lipkova

et al., 2019, Subramanian et al., 2020a, Tunc et al., 2021, Konukoglu et al.,

2010a, Menze et al., 2011) to consider binary segmentations corresponding to

the MRI scans to inform biophysical models. The binary masks contain zeros

in the area of healthy tissues and are non-zero in the tumor-related area. In

order to relate the segmentations Y = {yT1Gd,yFLAIR} to a simulated tumor

cell density c, we threshold the density at randomly sampled levels cT1Gd
t and

cFLAIR
t (cT1Gd

t > cFLAIR
t ) to obtain Ysim = {yT1Gd

sim ,yFLAIR
sim } reproducing the

real segmentations 4.

4We want to clarify here the thresholding step in more detail. The output of our tumor

solver is a continuous tumor cell density distribution. The experimental observation to which

we want to fit our tumor model simulations comes in a form of binary tumor segmentation. In

order to identify a simulation best fitting the binary segmentation, we threshold our simulated

continuous tumor cell distribution to obtain a binary volume, which in turn can already be

nicely compared with the real patient segmentation. Oftentimes, in literature people resort

to fixed values of cell density for the threshold levels. However, there is no understanding
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2.0.4. Learning the inverse model in atlas space

As discussed in the previous section, the key step of the Learn-Morph-Infer

pipeline is to learn the inverse tumor model using a neural network that can

infer a set of personalized parameters θc from corresponding tumor observa-

tions Yatlas. In order to create a dataset for the network training, we gener-

ate 100,000 tumors in the atlas space by randomly sampling tumor model pa-

rameters {Dw, ρ, T, icx, icy, icz, c
T1Gd
t , cFLAIR

t } within physiologically plausible

ranges (Swanson et al., 2000). To form the neural network input, the simulated

MRI segmentations are combined into one volume yMRI
sim = 0.666·yT1Gd

sim +0.333·
yFLAIR
sim .

Reformulation of the inverse problem. Now, the question is what should be

used as a network prediction? It is tempting to try to predict the tumor model

parameters directly. However, it is well known that the inverse problem is highly

ill-posed, i.e. numerous sets of dynamic parameters {Dw, ρ, T} correspond to

the same simulated cell density profile. Thus, we have two sources of prediction

error: a) coming from the fact that we learn a mapping from one to many.

Imagine we have two sets of dynamic parameters {Dw, ρ, T} and {D∗
w, ρ

∗, T ∗}
that result in the same tumor profile yMRI

sim . If we train a network in a supervised

fashion, every time the network predicts {D∗
w, ρ

∗, T ∗} for a {Dw, ρ, T}-yMRI
sim

pair (and vice-versa), it will be falsely penalized; b) the actual error that comes

from limited network capacity to accurately learn the mapping.

(neither agreement) in the community of what levels would best correspond to a real scenario.

Different works used different numbers in their studies (Le et al., 2017). To consider the most

general case, we randomly sampled the values within the ranges reported in the literature.
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Figure 2: A design of the inverse model network - one of the key elements of the Learn-

Morph-Infer pipeline. The network design represents a ResNet type architecture. It

takes as an input the binary brain tumor segmentations {yT1Gd, yFLAIR} and outputs

{µ1, µ2, icx, icy, icz}. Crucially, the network predicts {µ1, µ2} which are not the exact

forward model parameters but time-independent combinations thereof.

Clearly, the error of type (a) should negatively affect the learning perfor-

mance, as the network may be penalized for making a sensible prediction. To

circumvent this, we do not predict the parameters directly. As evident from Eqn.

1, normalization of the time parameter T in Eqn. 1 is equivalent to re-scaling

of the proliferation ρ and diffusion D coefficients (Subramanian et al., 2020b).

This means that for sets {Dw, ρ, T} and {D∗
w, ρ

∗, T ∗} corresponding to the same

simulated tumor, combinations of time-independent parameters µ1 =
√
DwT ,

µ2 =
√
Tρ stay constant (

√
DwT=

√
D∗

wT
∗,

√
Tρ=

√
T ∗ρ∗) (Konukoglu et al.,

2010b). Hence, predicting these combinations of time-independent parameters

µ1 and µ2 relaxes the error type (a). In order to calculate back the {Dw, ρ, T},
we introduce a third combination as v = 2

√
Dwρ. As it is not possible to infer

the velocity v from a single time-point observation, we set the velocity equal

to the mean velocity of the used sampling range, 200 mm/year (note also that

for our purpose the choice of v is irrelevant as any tumor simulation can be ob-

tained with arbitrary v (Menze et al., 2011)). Given {µ1, µ2, v}, we can calculate

{Dw = µ1v
2µ2

, ρ = µ2v
2µ1

, T = 2µ2µ1

v }.
Following this reasoning, we make the network to predict five parameters:

{µ1, µ2} and {icx, icy, icz}. Note that we do not predict {cT1Gd
t , cFLAIR

t }, as we
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do not need the threshold parameters at further steps of the Learn-Morph-Infer

pipeline.

The inverse network design. The network we chose to learn the inverse model

represents a convolutional architecture, depicted in Fig. 2. Every convolution

in the network is followed by a rectified linear unit (ReLU) nonlinearity. The

input is passed through an initial convolution of kernel size 7, stride 2 and 64

filters (k7s2f64), downsampling the volume to 643 and increasing the number of

channels to 64. This volume of size 643 x 64 is input through four convolutional

blocks, where every convolutional block contains four convolutions of kernel size

3, stride 1, and 64 filters (i.e. number of filters is kept constant throughout

the network). A convolutional block uses a skip connection to learn a residual

mapping (He et al., 2016), with the input being added element-wise to the

output of the four convolutions. The first three convolutional blocks are followed

by a MaxPool3D layer (with parameters k2s2) to downsample the 3D volumes

by two. The last convolutional block is followed by a global average pooling

layer, shrinking the 64 3D volumes to 64 neurons that can be linked through a

fully connected (FC) layer to the output. These outputs are linearly interpolated

into the [-1, 1] range for training.

3. Results

3.1. Data and implementation details

Synthetic data. The simulated tumors used for training the network have res-

olution of 1283. The simulations were generated by randomly sampling patient-

specific parameters from the following ranges: Dw ∈ [0.0002 cm2

d , 0.015 cm2

d ],

ρ ∈ [0.002 1
d , 0.2

1
d ], T ∈ [50d, 1500d], x ∈ [0.15, 0.7], y ∈ [0.2, 0.8], z ∈ [0.15, 0.7],

cT1Gd
t ∈ [0.5, 0.85], cFLAIR

t ∈ [0.05, 0.5]. The elasticity model parameters λ, µ, γ

were taken from (Subramanian et al., 2019). Tumors that are unrealistically

small or large have been discarded (based on minimum and maximum tumor

sizes of real tumors from BraTS dataset (Menze et al., 2014)). The simulations
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dataset is then divided into a training set (80000 tumors), validation set (8000

tumors) and test set (12000 tumors).

Figure 3: Qualitative comparison between the tumors inferred using the Learn-Morph-

Infer pipeline with two different network training strategies: with time-dependent

(Dw, ρ, T,x) parameters as network output, and time-independent (µ1, µ2,x) parame-

ters as output. The examples correspond to the Fisher-Kolmogorov tumor model with

MAE equal to 0.495 (within WM) and 0.496 (within GM) for time-dependent infer-

ence, and 0.048 (within WM) and 0.048 (within GM) for time-independent inference.

The first column ”MRI segmentations” corresponds to the FLAIR+T1Gd segmenta-

tion, the second one ”Inferred tumor” corresponds to the simulation inferred by the

proposed Learn-Morph-Infer pipeline, the third column ”Ground truth simulated tu-

mor” corresponds to the simulated tumor which we used for the sensitivity analysis

(see the ”Synthetic data” section for details how these test data were formed), and

the fourth ”Residual map” column is the difference between the 2nd and 3rd columns’

images.

Analogously to how we created the training data, we form synthetic test data

by thresholding a simulated tumor cgt at two levels. Then we pass the obtained
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thresholded volumes through the pipeline to infer the tumor cell distribution

cpred. Finally, we quantitatively compare the difference between cgt and cpred.

Real data. The data set of real MRI images consists of an in-house cohort of

80 patients with a newly diagnosed glioblastoma, IDH wild type as per the 2016

WHO classification of brain tumors. All patients gave written informed consent

to be part of an observational cohort. Preoperative MR images were converted

to NIfTI format. For image preprocessing (co-registration, skull stripping) and

automated tumor segmentation, we used BraTS Toolkit (Kofler et al., 2020), a

tool we developed locally and which is freely available. The average age of the

patient cohort is 60 years with a minimum of 26 and a maximum of 79 years.

The cohort is equally represented by gender.

Implementation details. For the registration between the patient and atlas

brain MRI scans, we use the Advanced Normalization Tools (ANTs) (Avants

et al., 2009). We choose a deformable SyN registration that ensures providing

both forward and inverse transformation with step-size 0.25, weight 1, and re-

gion radius for cross-correlation computation r=4. Cross-correlation is used as

a similarity metric. The optimization is performed over two resolutions with

a maximum of 50 iterations at the coarsest level, and 20 at the final level.

The tumor area on the patient scan was masked for the registration. We use

a Gaussian regularizer with a sigma of 3 operating on the similarity gradient.

These settings provided high morphing quality at relatively fast compute (∼2

minutes).

The network is initialized with He initialization as in the original ResNet

architecture (He et al., 2016), and is trained with the AdamW (Loshchilov and

Hutter, 2019) optimizer, which is a variant of the Adam optimizer (Kingma and

Ba, 2015) using decoupled weight decay. We use an initial learning rate of 6 x

10−5 which is decayed exponentially after every batch by a factor of 0.999997.

Weight decay with a factor of 0.05 is used as a regularization technique. Fur-

thermore, we train the network with a batch size of 32 and the Mean Squared

Error (MSE) loss function. All training and testing runs were executed on an

NVIDIA Quadro RTX 6000 with the PyTorch framework.
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3.2. Experiments

We perform two sets of experiments: a) on synthetic data to estimate the

accuracy of the learnable inverse model, and b) on patient MRI scans to quali-

tatively probe the transferability of the method to real data.

Experiment MAE DICE

ID
Tumor
Model

Predicted
Parameters GM WM CSF ct=0.01 ct=0.1 ct=0.8

1

FK

{Dw, ρ, T}, {x} 0.461 0.463 0.0 0.607 0.558 0.423

2 {µ1, µ2}, {x} 0.059 0.059 0.0 0.940 0.928 0.855

3 {µ1, µ2,x} 0.057 0.057 0.0 0.943 0.932 0.861

4

ME

{Dw, ρ, T}, {x} 0.089 0.087 0.059 0.846 0.807 0.737

5 {µ1, µ2}, {x} 0.059 0.057 0.054 0.877 0.841 0.772

6 {µ1, µ2,x} 0.055 0.054 0.054 0.886 0.850 0.783

Table 2: Ablation analysis on the test set (12k samples). In total, we perform 6 experiments.

First three experiments are performed for the Fisher-Kolmogorov (FK) tumor model: 1) Two

separate neural networks predicting {Dw, ρ, T} and {x = (icx, icy , icz)} , 2) Two separate

neural networks for prediction of the growth {µ1, µ2} and location {x} parameters, 3) Single

neural network predicting {µ1, µ2,x}. The last experiments 4-6 are analogous but performed

for the mass-effect (ME) model. As error measure for all experiments, we use the mean

absolute error (MAE) ||csim − cgt|| in WM, GM, and CSF, as well as DICE score between

ground truth and simulated tumor cell density thresholded at different ct. The non-zero error

in the CSF area for the ME model comes from the fact that the simulated tumor is allowed

to displace the healthy tissue including the CSF. For both FK and ME models, the usage

of a single network predicting time-independent parameters results in a notable increase in

accuracy compared to the time-dependent counterpart.

3.3. Synthetic test

In Tab. 2, for two different tumor models, we show results of the ablation

analysis, wherein we perform multiple experiments varying the neural network

input and output configurations. First, we provide empirical proof that a net-

work predicting {Dw, ρ, T} instead of time-independent parameter combinations
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{µ1, µ2} cannot be trained reliably. Mean absolute error, as well as DICE score,

improve significantly when the network predicts {µ1, µ2} (for the ME model

the improvement is less pronounced that we attribute to a higher numerical

error in our forward solver implementation for this model). Second, we tested

whether the performance can be improved by learning two separate networks

predicting growth {µ1, µ2} and initial location parameters {x = (icx, icy, icz)},
respectively. This test did not reveal an improvement compared to a single

network predicting all parameters.

Figure 4: Examples of patient-specific simulations produced using the Learn-Morph-

Infer method. The inverse model network was trained on samples from the Fisher-

Kolmogorov (3rd column) and mass effect (4th column) forward models.
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Fig. 3 qualitatively showcases the accuracy of inference using the Learn-

Morph-Infer pipeline. As discussed before, depending on the network training

strategy (either predicting time-dependent {Dw, ρ, T,x} parameters, or time-

independent {µ1, µ2,x} parameters as network output), the accuracy of the final

simulated tumor notably differs. If the proposed learning with time-independent

combinations of parameters provides close to the ground truth tumor profile,

then the learning with time-dependent combinations makes the inference hardly

useful.

Finally, we also analyzed the robustness of the proposed inverse network

against the wide range of model parameters. Fig. 5 demonstrates the distri-

bution of the mean absolute error over the range of values for the parameters

µ1, µ2 pertaining to the test set of the FK model. From these scatter plots, we

conclude that the network performance is stable across the ranges used for the

test set.

Figure 5: Distribution of the mean absolute error over the range of values for the

parameters µ1, µ2, in 2D (left) and 3D (right) views.

3.4. Real MRI patient data

We performed qualitative validation of the method on a large cohort of brain

tumor patients who underwent MRI testing. Binary segmentation corresponding

to the T1Gd and FLAIR modalities were used as input to the Learn-Morph-
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Infer method. Fig. 4 showcases examples of inferred tumor simulations for

various tumor grades and locations in patients’ brains. Out of 80 cases, there

were less than 10% cases in which the pipeline outputted wrong results: tumor

occupying the whole brain or absence of tumor.

To quantitatively estimate the accuracy of the proposed method, we com-

pared it with the publicly available glioma solver from (Lipkova et al., 2019).

Due to the computationally costly inference of the latter, we evaluated the per-

formance on 10 randomly chosen glioma patients. The results of the comparison

Figure 6: Examples of patient-specific simulations produced using the Learn-Morph-

Infer method (above) and the MCMC-based glioma solver from (Lipkova et al., 2019)

(below) for the FK model. Despite of the different nature of the methods and inevitable

errors coming from the network misprediction, the DICE score for most of the cases is

around 0.8 (the DICE was computed after thresholding the tumor cell concentration

at ct = 0.01).
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are provided in Fig. 6. For most of the cases, the overlap in terms of DICE

is around 0.8. Note that this error includes not only the contribution from

network misprediction and registration back and forth to the brain atlas space

but likely also from just different nature of the methods (our proposed method

provides point estimates, while the glioma inverse solver by (Lipkova et al.,

2019) is a probabilistic method). A natural extension of our work to reduce the

error would be to run the sampling-based (or optimization) method in patient

space after performing inference with the proposed Learn-Morph-Infer method

but within narrow parametric ranges centered around estimates predicted by

our learnable method. Or even a simpler extension - instead of the steps ”c”

and ”d” in Fig.1, one can run the tumor solver directly in patient space with

model parameters inferred at step ”b” (such procedure would mitigate the error

coming from the mismatch between brain atlas and patient anatomy).

3.5. Computing time

The total time including registration, morphing to atlas space, inference,

tumor simulation, and morphing back to patient space is 4-7 minutes. The time

for the inverse model network’s inference is around 2 seconds for 1283 resolution.

Crucially, the inference time for the more complicated model with mass effect

stays the same as for the Fisher-Kolmogorov tumor model. This emphasizes

the key practical contribution of the proposed method in that it allows constant

time model personalization for an arbitrary tumor model complexity.

4. Conclusion

We present a learnable brain tumor model personalization methodology. We

demonstrate that it is feasible to learn an inverse model in a supervised fashion

from a data set of numerical simulations. We show that the choice of output

can crucially affect network’s performance - predicting time-independent combi-

nations of parameters notably outperforms time-dependent counterparts. Such

time-independent parametrization is not limited to the PDEs considered here,
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and thus the proposed Learn-Morph-Infer pipeline can be adapted to other in-

verse problems in natural science and engineering disciplines. For the brain

tumor growth model, the Learn-Morph-Infer pipeline provides real-time perfor-

mance of the parametric inference. Most importantly, the personalization time

is stable across tumor models of different numerical complexity. These perfor-

mance benefits pave the way for clinical testing of various mathematical tumor

descriptions on a large cohort of patients.
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Concluding Remarks

Although there has been progress in treating gliomas in recent years, they remain a
significant public health problem. Ongoing research is needed to improve outcomes
for patients with such tumors. This dissertation focused on computational glioma
modeling and one of its main bottlenecks in translating the modeling into clinical
practice - the time it takes to personalize the biophysical model. Paper-by-paper, we
were addressing methodological constraints resulting in the computational bottleneck:

• Our first work resulted in the development of a surrogate based on a neural
network that can substitute a numerical forward glioma solver while achieving
50 times speed up, Chapter 5.

• In the next part of the thesis, Chapter 6, we addressed the issue of sampling
scale, i.e., the number of samples required to reach parametric convergence. We
proposed a learnable method that allows reducing by one order the number of
samples for glioma model personalization.

• Finally, in the last Chapter 7, we demonstrated a new scheme for model personal-
ization that does not require neither sampling nor optimization procedure while
bringing the compute times for every new patient to the clinically acceptable
range.

The main implications of the results achieved within the thesis are twofold: the
possibility of prompt testing tumor models of varying complexity and consequently
validating these models on a large patient cohort. Both implications are crucial for a
clinical translation.

First, modeling brain tumor growth is a complex task, and there is still much to
be understood about the biological processes involved. As such, the specific form
of the reaction, diffusion, advection, and other potential terms in a brain tumor
growth model may vary and need to be modified as a deeper understanding of the
pathology will be reached. This new information would likely necessitate constructing
glioma models of higher computational complexity. Traditional model personalization
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8. Concluding Remarks

methods would not allow performing this within practically adequate time. Second,
our methods allow now validation on a statistically significant sample of patients.
This is necessary for potential clinical trials examining radiotherapy strategies defined
through image-based modeling.

Reflecting on the limitations of the developed techniques, we have to admit that,
despite the gains in computational time during inference brought by our proposed
methods, the training phase requires a collection of simulations in the order of
thousands. The latter is achieved by employing numerical solvers as they provide
error guarantees on the PDE solution. Using the numerical solvers, the time for
collecting the training dataset scales with the model complexity. Thus, future
research probing more advanced glioma models would benefit by developing similar
learnable forward solvers that can provide error guarantees without undermining the
computational speed up. Another limitation worth mentioning is the approximation
error of the simulation domain. Our proposed methods rely on patient-specific brain
tissues, obtained by atlas registration, as the simulation domain. More elaborate
tumor models can be more dependent on brain tissue morphology and thus be more
sensitive to errors in inferred tissue maps. Therefore, the proposed works might
need to be adjusted for more complicated tumor models: either using more accurate
registration or avoiding the registration step by learning to reconstruct the brain
tissues in the patient geometry [55].

This doctoral dissertation set a goal of developing learnable personalization
of brain tumor growth models by marrying well-established biophysical numerics
with emerging data-driven paradigms. Despite the mentioned limitations, from
the computational time point of view, the marriage outcome allows us to consider
the model personalization for radiotherapy planning. From the point of view of
the plausibility of the used tumor growth descriptions, there is clearly room for
improvement. However, given that the standard irradiation volume resorts merely to
a rule-of-thumb of a few-centimeter uniform extension around the tumor area, we
hope that even simplistic tumor models used in this thesis might be advantageous
compared to the standard planning.
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[52] M. Lê, H. Delingette, J. Kalpathy-Cramer, E. R. Gerstner, T. Batchelor, J. Un-
kelbach, and N. Ayache. “Bayesian personalization of brain tumor growth model.”
In: International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer. 2015, pp. 424–432.

[53] B. H. Menze, K. V. Leemput, A. Honkela, E. Konukoglu, M.-A. Weber, N.
Ayache, and P. Golland. “A generative approach for image-based modeling of
tumor growth.” In: Biennial International Conference on Information Processing
in Medical Imaging. Springer. 2011, pp. 735–747.
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