
Technische Universität München
TUM School of Computation, Information and Technology

Monte Carlo Averaging for Uncertainty Estimation in Neural
Networks

Cedrique Rovile Njieutcheu Tassi

Vollständiger Abdruck der von der TUM School of Computation, Information and 
Technology der Technische Universität München zur Erlangung eines
Doktors der Ingenieurwissenschaften (Dr. Ing.)
genehmigten Dissertation.

Vorsitz: apl. Prof. Dr. Georg Groh

Prüfende der Dissertation:

1. Prof. Dr. Rudolph Triebel

2. Prof. Dr. Stefan Leutenegger

3. Prof. Dr. Guillermo Gallego

Die Dissertation wurde am 01.02.2023 bei der Technische Universität München
eingereicht und durch die TUM School of Computation, Information and Technology am
03.07.2024 angenommen.



I confirm that this thesis is my own work and I have documented all sources and material
used.

Munich, 01.02.2023 Cedrique Rovile Njieutcheu Tassi



Acknowledgments

This thesis would not have been possible without the contribution of a number of
people whom I will try to thank here.
First, I would like to express my gratitude to Prof. Dr. Stefan Leutenegger for

giving me the opportunity to conduct my PhD thesis at the German Aerospace Center
(DLR), Institute of Optical Sensor Systems, Department of Real-time Data Processing.
His invaluable help and guidance were vital for the completion of this thesis.

I would also like to thank Prof. Dr. Rudolph Triebel for his invaluable supervision
and constructive suggestions. His guidance has always left me with much space for
exploring new directions.

In addition, I would like to thank all my colleagues from the Department of Real-time
Data Processing, especially Dr. Patrick Irmisch and Maik Wischow, who shared
with me the burden of a tiring but rewarding work of conducting a PhD thesis.

Moreover, I would like to thank my colleagues Auliya Unnisa Fitri and Jakob
Gawlikowski from the Institute of Data Science for the meetings wherein we discussed
our ideas and results.
Furthermore, I wish to thank the anonymous reviewers of all publications who were

involved in this thesis for their insightful comments and suggestions.
I would also like to thank my family, especially my aunt (Djeukam Bernadette), my

grandmother (Djomgoue Marie), my brother (Nimeni Tassi Eric), and my sisters
(Yameze Tassi Christelle, Djeumeni Tassi Irene, and Siewandji Tassi Adrienne
Sandra), for their unconditional and unending love, understanding, and support.
Finally, I would like to thank my late grandfather (Njieutcheu Bernard), late

father (Tassi Tondomnou Pierre), late mother (Njieutcheu Tchagam Emeraude
Charlie), and late brothers (Ngueukam Tassi Franck and Kameni Tassi Pignore
Xavier), to whom I dedicate this thesis. Without them, this day would not have been
possible.



Abstract
Although neural networks have been used for pattern classification for decades, con-
volutional neural networks (CNNs) have become increasingly important over the past
several years. In particular, CNNs are utilized in automated scenarios for traffic sign
recognition and disease classification. However, they still suffer from overfitting and
lack of robustness to undesired inputs. Hence, they can generate overconfident false
predictions (FPs), which can be dangerous and costly, especially when used in safety-
and/or mission-critical applications. Here, overconfident FPs can (1) cause collisions in
robotic applications, (2) prompt false treatments in medical applications, or (3) increase
costs in financial applications. These significant consequences limit the use of CNNs in
the aforementioned fields even though their technological potential is of great interest.
To overcome these limitations and encourage the widespread use of CNNs in safety-
and/or mission-critical applications, we aim to prevent FPs by improving the separability
between true predictions (TPs) and FPs. To achieve this, we will force the degree of
confidence (measuring uncertainty) to be high for TPs and low for FPs. This is based on
the hypothesis that if the confidence is high for TPs and low for FPs, both TPs and FPs
will be well-separated using a threshold. Therefore, the research questions are as follows:

(1) Which method forces the degree of confidence to be high for TPs and low for FPs?

(2) Under what circumstances does the method work?

(3) At what cost does the method help to maintain a low confidence for FPs and a
high confidence for TPs?

To address the first question, we develop a method called Monte Carlo averaging (MCA)
and compare it to related methods, such as baseline (single CNN), Monte Carlo dropout
(MCD), ensemble of CNNs, and mixture of Monte Carlo dropout (MMCD). To answer
the second question, we gauge the performance of the developed and related methods
on four datasets with different difficulties. In addition, we gauge the performance of
the developed and related methods on different CNNs to assess their performance on
different architectures. Further, we investigate the impact of applying logit instead of
probability averaging on the developed and related methods, as well as the impact of
reducing the strength of regularization during training. To address the third question,
we evaluate the ability of the developed and related methods to separate TPs and FPs
and examine the classification accuracy, calibration error, and inference time.

iv



Abstract

Experimental results show improvements in the developed MCA and the state-of-the-art
MMCD compared to the other related methods (baseline, MCD, and ensemble of CNNs).
Specifically, similar to MMCD, the developed MCA can preserve the accuracy of the
underlying ensemble, which may increase the baseline accuracy. The baseline accuracy
could only be preserved by MCD. Both MMCD and MCA improve the separability of
TPs and FPs at the cost of increasing the calibration error and inference time. However,
applying logit instead of probability averaging in MCA and related methods or reducing
the strength of regularization decreases the calibration error at the cost of negatively
impacting the separability of TPs and FPs. Hence, there is a tradeoff between improving
the calibration and improving the separability of TPs and FPs. Although the performance
of all methods heavily relies on the dataset and/or architecture, MCD and MMCD are
more sensitive to the dataset and/or architecture.
Overall, we developed MCA to force the degree of confidence to be high for TPs

and low for FPs in order to improve the separability of TPs and FPs. Compared to
the state-of-the-art MMCD, the developed MCA is more than four times faster, has
the same purpose and underlying principle, and shows similar or sometimes better
performance. Therefore, we suggest utilizing MCA instead of MMCD for applications
that require separability of TPs and FPs and where the computational budget is limited.
MCA may also be advantageous for other fields of machine learning, such as active or
reinforcement learning, where uncertainty is required. Moreover, MCA is preferable in
the field of explainable artificial intelligence, which explores the role of uncertainty to
explain predictions and increase the social acceptance of CNN-based decision-making
systems. Finally, MCA opens new perspectives to fuse features of ensemble members.

Keywords: Machine learning, Deep learning, Classification, Convolutional neural
network, Ensemble, Bayesian neural network, Monte Carlo dropout, Mixture of Monte
Carlo dropout, Confidence calibration, Uncertainty quantification, Uncertainty estimation,
Separating true predictions and false predictions, Regularization strength, Logit averaging

v



Kurzfassung
Obwohl neuronale Netze seit Jahrzehnten zur Musterklassifikation verwendet werden, hat
CNNs in den letzten Jahren immer mehr an Bedeutung gewonnen. Insbesondere werden
CNNs in automatisierten Szenarien zur Verkehrszeichenerkennung und Krankheitsklas-
sifizierung eingesetzt. Sie leiden jedoch immer noch unter Overfitting und mangelnder
Robustheit gegenüber unerwünschten Eingaben. Daher können sie overconfident FPs
erzeugen, was gefährlich und kostspielig sein kann, insbesondere wenn sie in sicherheits-
und/oder missionskritischen Anwendungen eingesetzt werden. Hier kann overconfident
FPs (1) Kollisionen in Roboteranwendungen verursachen, (2) falsche Behandlungen in
medizinischen Anwendungen auslösen, oder (3) Gewinn in Finanzanwendungen vermin-
dern. Diese erheblichen Konsequenzen schränken die Verwendung von CNNs in den
vorgenannten Bereichen ein, obwohl ihr technologisches Potenzial von großem Interesse
ist. Um diese Einschränkungen zu überwinden und den weit verbreiteten Einsatz von
CNNs in sicherheits- und/oder missionskritischen Anwendungen zu fördern, wollen wir
FPs verhindern, indem wir die Trennbarkeit zwischen TPs und FPs verbessern. Um dies
zu erreichen, wollen wir die Konfidenz (welche die Unsicherheit misst) erzwingen, für
TPs hoch und für FPs niedrig zu sein. Dies basiert auf der Hypothese, dass TPs und
FPs durch einen Schwellenwert gut getrennt werden können, wenn die Konfidenz für TPs
hoch und für FPs niedrig ist. Die Forschungsfragen lauten daher wie folgt:

(1) Welche Methode brauchen wir, um eine hohe Konfidenz für TPs und niedrige
Konfidenz für FPs zu erzwingen?

(2) Unter welchen Umständen funktioniert die vorgeschlagene Methode?

(3) Zu welchem Preis trägt die vorgeschlagene Methode dazu bei, eine hohe Konfidenz
für TPs und eine niedrige Konfidenz für FPs aufrechtzuerhalten?

Um die erste Forschungsfrage zu beantworten, entwickeln wir eine Methode namens
MCA und vergleichen sie mit verwandten Methoden wie baseline (single CNN), MCD,
ensemble of CNNs, und MMCD. Um die zweite Forschungsfrage zu beantworten, evaluieren
wir die Performance von MCA und verwandten Methoden an vier Datensätzen mit
unterschiedlichen Schwierigkeiten. Darüber hinaus evaluieren wir MCA und verwandten
Methoden auf verschiedenen CNNs, um ihre Performance auf verschiedenen Architekturen
zu bewerten. Außerdem bewerten wir die Auswirkung der Anwendung von Logit anstelle

vi



Kurzfassung

Probabilitäten in MCA und verwandten Methoden sowie die Auswirkung der Verringerung
der Regularisierungsstärke. Um die dritte Forschungsfrage anzugehen, bewerten wir die
Fähigkeit von MCA und verwandten Methoden, TPs und FPs zu trennen, und analysieren
die Klassifikationsgenauigkeit, der Kalibrierungsfehler, und die Inferenzzeit.
Experimentelle Ergebnisse zeigen eine Verbesserung des entwickelten MCA und des

State-of-the-Art MMCD gegenüber verwandten Methoden wie Baseline, MCD, und En-
semble von CNNs. Insbesondere kann MCA, ähnlich wie MMCD, die Klassifikationsgenau-
igkeit des zugrunde liegenden Ensembles bewahren, welches die Klassifikationsgenauigkeit
von Baseline erhöhen kann, die von MCD nur bewahrt werden kann. Sowohl MMCD
als auch MCA verbessern die Trennbarkeit von TPs und FPs auf Kosten einer Erhö-
hung des Kalibrierungsfehlers und der Inferenzzeit. Die Anwendung von Logit anstelle
Probabilitäten in MCA und verwandten Methoden oder die Verringerung der Regularisie-
rungsstärke vermindert jedoch den Kalibrierungsfehler auf Kosten der Beeinträchtigung
der Trennbarkeit zwischen TPs und FPs. Daher gibt es einen Kompromiss zwischen der
Verbesserung der Kalibrierung und der Verbesserung der Trennbarkeit zwischen TPs und
FPs. Obwohl die Performance aller Methoden stark von dem Datensatz und/oder der
Architektur abhängt, sind MCD und MMCD empfindlicher gegenüber dem Datensatz
und/oder der Architektur.

Zusammengefasst haben wir MCA entwickelt, um eine hohe Konfidenz für TPs und eine
niedrige Konfidenz für FPs aufrechtzuerhalten und die Trennbarkeit von TPs und FPs
zu verbessern. Im Vergleich zum State-of-the-Art MMCD, ist das entwickelte MCA mehr
als viermal schneller, hat den gleichen Zweck und das gleiche zugrunde liegende Prinzip,
und zeigt eine ähnliche oder manchmal bessere Performance. Daher empfehlen wir die
Verwendung von MCA anstelle von MMCD für Anwendungen, die eine Trennbarkeit
zwischen TPs und FPs erfordern und bei denen das Rechenbudget begrenzt ist. MCA
kann auch für andere Bereiche des maschinellen Lernens von Vorteil sein, wie z. B. Aktive
oder Reinforcement Learning, wo Unsicherheit erforderlich ist. Darüber hinaus ist MCA
vorzuziehen im Bereich der erklärbaren Maschinenlernen, die die Rolle von Unsicherheit
untersucht, um Vorhersagen zu erklären und die soziale Akzeptanz von CNN-basierten
Entscheidungssystemen zu erhöhen. Schließlich eröffnet MCA neue Perspektiven, um
Merkmale von Ensemblemitgliedern zu fusionieren.

vii



Publications derived from this thesis
[70] Cedrique Rovile Njieutcheu Tassi. “Bayesian convolutional neural network: Ro-

bustly quantify uncertainty for misclassifications detection”. In: Pattern Recog-
nition and Artificial Intelligence: Third Mediterranean Conference, MedPRAI
2019, Istanbul, Turkey, December 22–23, 2019, Proceedings 3. Springer. 2020,
pp. 118–132.

[99] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee,
Matthias Humt, Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung,
Ribana Roscher, et al. “A survey of uncertainty in deep neural networks”. In:
Artificial Intelligence Review 56.Suppl 1 (2023), pp. 1513–1589.

[101] Cedrique Rovile Njieutcheu Tassi, Anko Börner, and Rudolph Triebel. “Monte
Carlo averaging for uncertainty estimation in neural networks”. In: Journal of
Physics: Conference Series. Vol. 2506. 1. IOP Publishing. 2023, p. 012004.

[102] Cedrique Rovile Njieutcheu Tassi, Jakob Gawlikowski, Auliya Unnisa Fitri, and
Rudolph Triebel. “The impact of averaging logits over probabilities on ensembles
of neural networks.” In: AISafety@ IJCAI. 2022.

[103] Cedrique Rovile Njieutcheu Tassi, Anko Börner, and Rudolph Triebel. “Regu-
larization Strength Impact on Neural Network Ensembles”. In: Proceedings of
the 2022 5th International Conference on Algorithms, Computing and Artificial
Intelligence. 2022, pp. 1–9.

viii



Nomenclature
If not stated otherwise, the following symbols have the following meanings:

Models

f A trained neural network

f0 An untrained but initialized neural network

fm The neural network for the mth ensemble member

fDiscriminatorm The discriminator for the mth ensemble member

fDiscriminator The discriminator of a neural network based classifier

fFeatureExtractorm The feature extractor for the mth ensemble member

fFeatureExtractor The feature extractor of a neural network based classifier

fFeatureSampling A feature sampling model parameterized by random variables drawn from
known distributions

g A sensing model, for example, a camera

h An annotator model, for example, a human

hn A Bayesian hypernetwork

Hyperparameters

β The number of datapoints or samples in minibatches

γ Learning rate

ν Momentum

B The number of equallyspaced bins

C The number of channel of an input image

ix



Nomenclature

F The number of convolution kernels or feature maps, also referred to as the dimension
of features

H The height of an input image

K The number of possible output classes

M The number of ensemble members

N The number of data points or samples within a dataset

S The number of stochastic forward passes in MCD or MMCD

W The width of an input image

Other symbols

α A sampling mask including random variables drawn from a Gaussian distribution

β A sampling mask including random variables drawn from a Bernoulli distribution

ε A random noise

x̂ Output of a feature extractor, also referred to as feature vector

x̂a A feature vector obtained after application of the feature averaging operation

x̂s A feature vector obtained after application of the feature sampling operation

x̂amn The nth average feature vector of the mth ensemble member

x̂ms A feature vector sampled at the sth forward pass by the mth ensemble member

x̂m The feature vector for the mth ensemble member

x̂mi The ith element of the feature vector x̂m

ŷ Output of a neural network, also referred to as the predicted label for x

λ The inverse temperature constant

|x̂| The cardinality or number of elements of x̂

µ Mean

∇L The gradient vector

z The average logit vector

x



Nomenclature

σ Standard deviation

θ Neural network weights, also referred to as parameters

a A feature or neuron output

d A small location of the input image of size I × J

e Sensing errors

k A logit vector of size K, also referred to as the input to softmax

L The cross-entropy loss

l A convolution kernel of size I × J

r A pooling region

u The predictive uncertainty

x Output of a sensing model, also referred to as the input to a neural network

x0 Input to a sensing model, also referred to as the measurements of an object in the
operating environment

y Output of the annotator model, also referred to as the ground-truth label for x

z A logit vector, also referred to as an input to the softmax function

zm The logit vector for the mth ensemble member

Spaces

X The input space

Y The output or label space

Sets

R The set of real numbers

bτ The set of indices of evaluation samples whose confidences fall into the interval
Iτ =] τ−1

B
, τ
B

] with τ ∈ [1, B]

Dtrain The training dataset

UK The set of standard unit vectors of RK

xi



Nomenclature

Probabilities

N () A normal probability distribution

p() The average discrete probability vector

KL() The Kullback-Leibler divergence

p() A discrete probability vector of size K, also referred to as the softmax output

pm() The discrete probability vector for the mth ensemble member

ps() The discrete probability vector for the sth forward pass

pamn () The discrete probability vector for the nth feature averaging operation of the mth

ensemble member

pms() The discrete probability vector for the sth forward pass of the mth ensemble
member

pk The probability that x belongs to class k ∈ [1, K]

pz The discrete probability vector obtained from the average logit vector z

xii



Contents
Acknowledgments iii

Abstract iv

Kurzfassung vi

Publications derived from this thesis viii

Nomenclature ix

1. Introduction 1
1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3. Motivation for uncertainty estimation . . . . . . . . . . . . . . . . . . . . 4
1.4. Research objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5. Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6. Challenges to overcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7. Solution approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.10. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2. Fundamentals 17
2.1. Definition of a classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2. A CNN-based classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1. Building blocks of a CNN-based classifier . . . . . . . . . . . . . . 18
2.2.2. Supervised learning of a CNN-based classifier . . . . . . . . . . . 23

2.3. Uncertainty in a CNN-based classifier . . . . . . . . . . . . . . . . . . . . 24
2.3.1. Uncertainty sources . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2. Uncertainty type . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3. Uncertainty estimation . . . . . . . . . . . . . . . . . . . . . . . . 26

xiii



Contents

3. Related works 29
3.1. Bayesian neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1. Definition of a Bayesian neural network . . . . . . . . . . . . . . . 29
3.1.2. Principles of a Bayesian neural network . . . . . . . . . . . . . . . 30
3.1.3. Properties of a Bayesian neural network . . . . . . . . . . . . . . 30
3.1.4. Variational inference techniques . . . . . . . . . . . . . . . . . . . 31
3.1.5. Summary and implications . . . . . . . . . . . . . . . . . . . . . . 34

3.2. Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1. Definition of an ensemble . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2. Principles of an ensemble . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3. Properties of an ensemble . . . . . . . . . . . . . . . . . . . . . . 37
3.2.4. Ensembles and uncertainty estimation . . . . . . . . . . . . . . . 39
3.2.5. Challenges in building ensembles . . . . . . . . . . . . . . . . . . 40
3.2.6. Techniques for building ensembles . . . . . . . . . . . . . . . . . . 40
3.2.7. Summary and implications . . . . . . . . . . . . . . . . . . . . . . 43

4. Uncertainty estimation methods 44
4.1. Related methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1. Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.2. Monte Carlo dropout . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.3. Deep ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.4. Mixture of Monte Carlo dropout . . . . . . . . . . . . . . . . . . . 47

4.2. Monte Carlo averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2. Analyzing features extracted by ensemble members . . . . . . . . 52
4.2.3. Applying feature averaging in ensemble members . . . . . . . . . 53

4.3. Importance of feature averaging or feature sampling . . . . . . . . . . . . 54
4.4. Comparison of feature sampling and feature averaging . . . . . . . . . . . 55
4.5. Summary and implications . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5. Empirical comparison of MCA and related methods 58
5.1. Analyzing accuracy and calibration error . . . . . . . . . . . . . . . . . . 58
5.2. Analyzing the ability to separate TPs and FPs . . . . . . . . . . . . . . . 60
5.3. Analyzing the inference time . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4. Summary and implications . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6. Addressing underconfidence by averaging logit instead of probability 67
6.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2. Using logit instead of probability averaging . . . . . . . . . . . . . . . . . 67
6.3. Impact of logit averaging on accuracy and calibration error . . . . . . . . 70

xiv



Contents

6.4. Impact of logit averaging on the ability to separate TPs and FPs . . . . . 71
6.5. Summary and implications . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7. Addressing underconfidence by reducing the regularization strength 75
7.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2. Regularization strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3. Effect of reducing regularization strength on accuracy and calibration error 76
7.4. Effect of reducing regularization strength on ability to separate TPs and FPs 77
7.5. Summary and implications . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8. Discussion 81
8.1. Research objective and questions . . . . . . . . . . . . . . . . . . . . . . 81
8.2. Research methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.3. Research results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9. Summary 87
9.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.2. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A. Experimental setup 91
A.1. Experimental datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.2. Experimental architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.3. Training details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.4. Inference details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.5. Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.5.1. Evaluating the classification accuracy . . . . . . . . . . . . . . . . 95
A.5.2. Evaluating the quality of uncertainty . . . . . . . . . . . . . . . . 96

A.6. Evaluation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

List of Figures 101

List of Tables 105

Acronyms 107

References 109

xv



1. Introduction

1.1. Background
Artificial intelligence in general and machine learning in particular, plays an increasingly
important role in many scientific areas. Predominantly, neural networks have exhibited
unprecedented success in recent years. The basic idea behind neural networks was
postulated decades ago based on a mathematical modeling of the biological brain through
the interconnection of artificial neurons (computing units) that form a structure consisting
of a great number of layers (each with a great number of units). The learning process
of neural networks essentially consists of a chain of gradient calculations, with the help
of parameters that minimize a given error function. Owing to the emergence of large
datasets, increasing computational power, and tremendous advances in deep learning,
modern architectures such as CNNs rapidly gain ground in recent years and have now
emerged as a leading technology for solving complex data analysis problems. CNNs have
propelled the significant progress of various fields such as natural language processing,
handwriting recognition, text classification, visual instance retrieval, and image processing,
just to name a few. Specifically, CNNs are utilized in scene recognition, face recognition
and verification, human pose estimation, vehicle search and reidentification, off-road
obstacle avoidance, traffic sign recognition, and speech recognition. Therefore, sooner or
later, CNNs will highly impact our daily lives.

1.2. Problem statement
Despite the great successes and ongoing advances in deep learning, deep neural networks
such as CNNs still have complications such as overfitting and lack of robustness.

Overfitting Given a training and test dataset, a deep neural network f is said to overfit
the training dataset if there exists another deep neural network f ′ such that f ′ has
more error than f on the training dataset, but f ′ has less error than f on the test
dataset. Simply put, overfitting occurs when a deep neural network error on the test
dataset is higher than its error on the training dataset. Bejani et al. [1] discussed
and summarized several factors that cause overfitting. The two main factors are as
follows: the deep neural network may learn noise inherent in the training instead

1



1. Introduction

of the underlying pattern in the data and the deep neural network may memorize
the training data owing to the large capacity (number of parameters) of the deep
neural network or the lack of training data. In addition, Bejani et al. [1] discussed
and summarized existing methods to avoid overfitting in deep learning. One of the
methods is early stopping [2, 3], which reduces the training time and prevents the
deep neural networks from memorizing training data through continuous update
of weights and biases. Since deep neural networks with large weights exhibit a
high level of overfitting, several weight norm penalties [4, 5] have been proposed to
force the deep neural networks learn smaller weights. To further curb overfitting,
standard and advance data augmentation techniques have been proposed to increase
the size of the training data [6, 7, 8]. In addition, dropout [9] and variants [10, 11],
such as randomly removing some neurons (connections, channels, blocks, or data)
at training, force a deep neural network to become sensitive to individual neuron
(connection, channel, block, or data point) and to therefore, generalize better
on unseen data. Batch normalization [12, 13] is another method that counters
overfitting by augmenting (via scaling and shifting) internal feature representations
using data statistics extracted from training batches. Despite the encouraging
progresses in addressing overfitting, deep neural networks still exhibit certain levels
of overfitting [14] resulting in generalization errors (e.g., test classification error)
and false predictions (FPs). For instance, assume that a CNN was trained and
achieved a classification accuracy of 99.99% on the test data; however, it has a
test error of 0.01% that indicates FPs. Moreover, overfitting causes overconfident
[15] and miscalibrated [16] predictions, which means that deep neural networks
can make overconfident FPs. Empirically, miscalibration occurs when the average
confidence on the test dataset does not match the classification accuracy. In this
context, we say that a deep neural network is overconfident when the average
confidence is greater than the classification accuracy and underconfident when the
average confidence is lower than the classification accuracy.

Lack of robustness A deep neural network is said to lack robustness when it cannot
process undesired inputs in an acceptable manner. Particularly, in the presence of an
undesired input, the deep neural network makes FPs instead to remain silent (e.g.,
“I don’t know”) or seek human guidance. The violation of the principle of empirical
risk minimization primarily causes the lack of robustness. According to Vapnik [17],
the empirical risk minimization principle states that by minimizing the training
error, a deep neural network will generalize to previously unseen data, under the
condition that novel data points and labels are drawn from the same distribution
as the training data. Nevertheless, deployed deep neural networks often encounter

2



1. Introduction

out-of-domain (OOD)1 and domain-shift2 examples that are different from the
training data of deep neural networks. The mismatch between the input and
training data distribution can result in violations of the empirical risk minimization
principle, thereby leading to FPs. For instance, Hendrycks and Dietterich [18]
empirically showed that CNNs change predictions when corruptions such as blur
and noise (non-affine transformation) are applied on the input. The inability of
the training data to capture all possible representations (present in the real-world)
of a given pattern resulted in mismatches between the input and training data
distribution. For instance, noise that is inherent in the input data owing to variable
illumination, camera angle, clutter, occlusion, or other physical phenomena (e.g.,
changes in temperature, vibration, or mechanical stress) cannot be completely
represented in the training data. In addition, the inability of a deep neural network
to learn all possible representations present in a given training data caused the
mismatches. This is justified by the fact that the training error is usually nonzero.
Moreover, many works such as that of Goodfellow et al. [19] that aimed to design
adversarial3 examples have experimentally showed that deep neural networks can
react in an unexpected and incorrect manner to slight perturbations of their inputs.
Furthermore, Nguyen et al. [20] empirically showed that deep neural networks can
be easily fooled, because they can classify many unrecognizable objects with high
confidence as members of a well-known class. Improving the robustness of deep
neural networks against perturbed or unknown examples has become an important
research topic in machine learning. Some works [21, 22] augmented the training data
with adversarial examples. However, learning augmented examples may result in
overfitting [23] and may not provide robustness to unlearned examples. Other works
[24, 25, 26] evaluated measures of the predictive uncertainty for detecting adversarial
examples. According to Hendrycks and Gimpel [27] and further acknowledged by
Liang et al. [28], deep neural networks tend to assign higher softmax scores to in-
distribution than distribution-shift and out-of-distribution examples. Consequently,
they evaluated softmax scores to determine whether an input is misclassified or
from a distribution different from the training one. Despite the encouraging efforts
in building robust deep neural networks, modern classifiers such as CNNs are still
prone to misclassifications and cannot completely process distribution-shift and

1Out-of-domain (or out-of-distribution) examples are data with scenarios never seen by a deep
neural network at training. These examples always exist because a training dataset can never capture
all scenarios present in the real world.

2Domain-shift (or distribution-shift) examples are training data affected by a set of pertur-
bations such as changes in camera lens and lighting conditions, occlusions, clutter, adversarial
perturbations, random noise, geometric transformations, and other physical phenomena such as
changes in temperature or mechanical stress.

3Adversarial examples are perturbed inputs that have been intentionally slightly modified by human
attackers to fool a model. The perturbations are usually imperceptible to a human observer.

3



1. Introduction

out-of-distribution examples in an acceptable manner.

Environment

Sensing model Inference model

Annotator model
Model building

process

Actuator
model

Action

CNN

Figure 1.: A CNN-based classifier as inference model and part of the decision-making
unit of a safety- and/or mission-critical system. The CNN processes an image
x generated by a camera representing the sensing model to produce a signal
ŷ for the actuator, that is, the CNN specifies what action the actuator must
take in the operating environment. Herein, overconfident FPs made by the
CNN will result in false actions by the actuator, which can possibly damage
the operating environment. Overconfident FPs occur owing to changes in the
environment inherent in x0, sensing errors e inherent in x, or errors in the
annotation or model building process inherent in f()

1.3. Motivation for uncertainty estimation
The abovementioned complications such as overfitting and lack of robustness can be costly
and dangerous, especially when deep neural networks are part of the decision-making unit
of safety- and/or mission-critical applications. Figure 1 presents a CNN-based classifier
producing actuator signals. False prediction or actuator signal will result in false action
in the environment, which leads to significant consequences such as collisions in robot
applications, potential false treatments in medical applications, or increased costs in
financial applications. These three cases are further discussed as follows:

Collisions in robotic applications Over the past decades, the adoption of deep learning
in robotic applications can be attributed to its major advances. According to

4



1. Introduction

Pierson and Gashler [29], specific applications are in collision prediction [30, 31],
door recognition for robot navigation [32], pedestrian detection [33], and prediction
of traffic maneuvers [34]. In all these applications, failure in recognition or prediction
can cause collisions. These collisions can damage the robot, which results in severe
economic losses, and also damage the operating environment. For instance, if a
pedestrian prediction system in a self-driving car fails to predict the presence of a
human, it can result in collision and potential loss of human life.

False treatments in medical applications In recent years, deep learning has become
the standard for medical diagnosis, especially in diagnostic imaging. Specifically,
it can be utilized in the diagnosis of eye diseases such as diabetic retinopathy
[35], diagnosis of skin cancer [36], and recognition of lymph node metastasis of
breast cancer [37]. In all these applications, false recognition or diagnosis can
potentially lead to no or false treatments. For instance, the absence of diabetic
retinopathy in the scanned images of the eyes can erroneously result in preventing
the doctor to administer the necessary treatments to a patient. On the contrary, a
false recognition of the presence of diabetic retinopathy can encourage a doctor to
administer unnecessary treatments to a patient. An unnecessary treatment is not
only costly for a patient but also exposes a patient to potentially years of physical
discomfort and pain and to all kinds of risk associated with the treatment. False
treatments not only have negative consequences on patients but also diminish the
trust of (potential) patients to medical practices, which can cause economic losses
to the healthcare industry.

Increased costs in financial applications In recent years, deep learning has gained pop-
ularity in financial and banking services owing to the proliferation of financial
technology. Specifically, according to Huang, Chai, and Cho [38] and Ozbayoglu,
Gudelek, and Sezer [39], deep learning has been utilized in banking and credit risk
prediction [40], exchange rate prediction [41], and financial market prediction [42].
In all these applications, false predictions can lead to severe financial losses. For
instance, imagine that a credit risk prediction system attributes a good score to a
potential client who is in reality ineligible for credit. Consequently, the client can
obtain a credit that will cause an interruption of cash flows to the bank later on
because the client cannot repay the loan or meet contractual obligations. This can
result in increased costs for collection or even potential collapse of the financial
institution if the number of clients with false credit score is large.

5



1. Introduction

Environment

Sensing model Inference model

Annotator model
Model building

process

Actuator
model

Action

CNN

Uncertainty
evaluation

Figure 2.: A CNN-based classifier as inference model and part of the decision-making unit
of a safety- and/or mission-critical system. To avoid FPs, we want to estimate
and evaluate the uncertainty u inherent to the output ŷ of the CNN. The
uncertainty evaluation consists of thresholding u, for example, the predictive
confidence, to produce signals "1" for true (certain) predictions and "0" for
false (uncertain) predictions

CNN True/false
prediction

Figure 3.: Overview of the process of thresholding the predictive uncertainty. Here,
uncertainty u is measured using the predictive confidence or the softmax
score. We evaluate uncertainty by comparing the predictive confidence to the
threshold value

1.4. Research objective
The dramatic consequences of FPs hamper the wider adoption of deep neural networks
in safety- and/or mission-critical applications. Therefore, preventing FPs is vital to avoid
those significant repercussions, such as road accidents, financial loss, or false treatments,
and encourage the widespread adoption of deep neural networks. To achieve this objective,

6



1. Introduction

we estimated and evaluated the uncertainty associated with predictions, as shown in
Figure 2. Particularly, we evaluated the predictive uncertainty to separate TPs and FPs.
As shown in Figure 3, evaluating the predictive uncertainty required thresholding it at
test time. Herein, a binary classifier (detector) labels predictions as either TP or FP. As
shown in Figure 4, we want:

Low uncertainty on TPs, which occurs when a CNN-based classifier assigns an input to
the true underlying ground truth class. We refer to the set of all possible inputs that
were correctly classified by a CNN-based classifier as correctly classified in-domain
examples. We want the predictive uncertainty to be low on correctly classified
in-domain examples.

High uncertainty on FPs, which occurs when a CNN-based classifier cannot generalize
to in-domain examples (misclassified in-domain examples), when an input was
perturbed with affine or non-affine transformations (misclassified domain-shift
examples), or when an input is drawn from a distribution far from the training
distribution (misclassified OOD examples). We refer to the set of all possible inputs
that were falsely classified by a CNN-based classifier as misclassified examples. We
want the predictive uncertainty to be high on misclassified examples.

1.5. Research questions
In this thesis, our main goal is to improve the separability of TPs and FPs by estimating
and evaluating the prediction uncertainties of CNN-based classifiers. Particularly, we
want the predictive confidence measuring uncertainties to be high for TPs and low for
FPs. To achieve this, we require a method that forces CNN-based classifiers to make
FPs with low confidence (e.g., [0, 0.5[) and TPs with high confidence (e.g., [0.5, 1]). We
therefore formulated the following three research questions:

(1) What method is required to force the predictive confidence of a CNN-based classifier
to be high for TPs and low for FPs?

(2) Under what circumstances does the proposed method work?

(3) At what cost does the proposed method help to maintain a low confidence for FPs
and a high confidence for TPs?

1.6. Challenges to overcome
To address the first research question, we need to overcome the following challenges.

7



1. Introduction

Input space

Set of in-domain
data

Low
uncertainty

Set of true classified
in-domain data

Set of false classified
in-domain data

Set of domain-shift
data

Set of out-of-domain
data

Set of false classified
domain-shift data

Set of true classified
domain-shift data

True
predictions

False
predictions

High
uncertainty

Figure 4.: Overview of the input space of a classifier and the desired uncertainty profile

8



1. Introduction

The challenge in understanding the functionality of CNNs The parameters of CNNs,
which are in the order of thousands to millions, approximate a nonlinear function
used to map the given input to the desired output. The nonlinear function was
trained using the data from the prepared training dataset, the CNN architecture
specified through a large number of hyperparameters (i.e., the number of layers
and hidden units, and the types of layers such as convolution, pooling, and fully-
connected layers), the training procedure specified through a learning algorithm
(e.g., stochastic gradient descent (SGD)), a regularization method, and various
hyperparameters (i.e., the number of training iterations, regularization strength,
learning rate, and batch size). Since the nonlinear function is shaped by several
factors, the learning process with high degree of randomness is no longer sufficiently
understood. In addition, the approximation function is not easily interpretable
by humans because it is affected by various parameters. Owing to the substantial
complexity of CNNs (in terms of number of parameters), their inference processes
are also no longer sufficiently understood. Consequently, the results generated were
hard to understand or explain, which resulted into two complications. The first
is the difficulty to impose some constraints on CNN parameters because we don’t
know the relevant parameters, which affect predictions and overall functioning of
CNNs. Therefore, we treat CNNs as black-boxes because this allows us to focus on
the prediction instead of the manner in which the prediction arrives. The second
one is the difficulty to trace the source of uncertainties inherent in predictions. In
other words, if the source of the uncertainty is a priori unknown to the modeler,
then tracing it will be difficult or impossible at all owing to the substantial com-
plexity of CNNs. Therefore, we (only) evaluated uncertainty of well-known sources.
Particularly, we used five evaluation data (as shown in Appendix A.6) for different
purposes. We used test data to evaluate the classification accuracy and calibration
error and used subsets of correctly classified test data, OOD, swap, and noisy
data to assess the ability of separating TPs and FPs caused by distribution-shift,
structural perturbation, and Gaussian noise.

The challenge in choosing a principle for uncertainty estimation As shown in Fig-
ure 5, existing methods to estimate uncertainties adhere to five distinct principles.
The first principle underlying single deterministic methods is using a single determin-
istic CNN and placing a distribution over the output for uncertainty quantification
or deriving uncertainties from external information such as gradient or from un-
certainty measures such as the predictive confidence and/or entropy. The main
advantage of the methods following this principle is its computational efficiency
in training and inference, because only one CNN has to be trained and evaluated.
However, since a single CNN converges to a single local optimum in the solution
space [97] and therefore represents a single solution (or opinion), the methods

9



1. Introduction

Uncertainty
estimation
methods Test-time

augmentation
methods 4

Ensemble
methods 3

Bayesian
methods 2

Single
deterministic
methods 1

Calibration
methods 5

1 [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55] 2 [56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76] 3 [15, 77, 78, 79, 80, 81, 82, 83] 4 [84, 85, 86, 87, 88, 89,
90] 5 [91, 92, 93, 94, 95, 96, 16, 28]

Figure 5.: Visualization of different methods to estimate uncertainties

following this principle can be very sensitive to the architecture and training proce-
dure used to shape the solution. The second principle underlying Bayesian methods
is combining the predictions of multiple stochastic CNNs to estimate uncertainties.
The main advantage of the methods following this principle is that they evaluate
multiple neighboring points within a certain region and therefore include the uncer-
tainties around a single local optimum [97]. However, these methods are sensitive
to the prior distribution and the approximate Bayesian inference for estimating

10



1. Introduction

the posterior distribution. Moreover, the true nature of the prior and posterior
distribution is generally unknown, and specifying a meaningful distribution is
challenging [98]. The third principle underlying ensemble methods is combining the
predictions of multiple deterministic CNNs to estimate uncertainties. The main
advantage of the methods following this principle is that they evaluate multiple
CNNs representing multiple local optima [97]. However, these methods are compu-
tational and memory demanding because we have to store and evaluate multiple
CNNs. The fourth principle underlying test-time augmentation methods is using a
single deterministic CNN and augmenting the input data at test-time to generate
several predictions to estimate uncertainties. The main advantage of the methods
following this principle is that they use a single CNN to evaluate different simulated
poses and/or views of the same object under different simulated environmental
conditions such as illumination and lighting. However, for a given problem, the
type of augmentation (i.e., simulation of pose, view, or environmental condition)
and number of augmentations needed is a priori unknown and the computational
cost increases with the number of augmentations. The fifth and last principle
underlying calibration methods is modifying the optimization algorithm and/or
training objective for building CNNs that are inherently calibrated or adjusting
the predictions of single or multiple CNNs after the training process to reflect
empirical outcomes (accuracy). Understanding the five principles and their various
implementations is vital to decide which principle to follow and/or how to combine
the existing principles. Correspondingly, we first summarized and discussed the
existing methods in our survey paper [99]. One of the main suggestions of our
survey paper is to develop methods to estimate uncertainties that combine the
strengths of both Bayesian (single-mode exploration) and ensemble (multimode
evaluation) principles. This suggestion was applied in studies by Kahn et al. [30];
Lutjens, Everett, and How [31]; and Wilson and Izmailov [74] in building an MMCD
that utilized Bayesian inference in ensemble members. Specifically, the MMCD
utilized MCD (the most widely used approximation for Bayesian inference) in
ensemble members. Inspired by the MMCD, we developed MCA, a method that
combines the strengths of ensemble and MCD. Similar to MMCD, MCA evaluates
multiple solutions because it relies on an ensemble of CNNs and explores the un-
certainty around the individual solutions thanks to features averaging, as discussed
in Section 4.2.3.

The need for identical experimental setups According to Sinha et al. [100], one of
the challenges in machine learning research is ensuring that empirical results from
previous works are reproducible. The reproducibility of empirical results is a
necessary step not only to verify the reliability of research findings but also to
promote fair comparison of the existing methods. However, it is sometimes not

11



1. Introduction

feasible to reproduce all the experiments in a paper owing to several factors such as
private datasets, computation availability for extensive tuning, the requirement of
nonstandard compute infrastructure, or incorporation of sufficiently many baselines.
Consequently, each paper code base (if available) differs in experimental settings,
making it difficult to compare existing methods within a common benchmark.
Therefore, we reimplemented all related methods, which aids in understanding the
related methods and sheds light on the aspects of the implementation that could
affect the results of the related methods.

1.7. Solution approaches
To address the first research question, we developed MCA and compared it to related
methods, such as baseline (single CNN), MCD, ensemble of CNNs, and MMCD.
To address the second research question, we assessed the performance of MCA and

related methods on four datasets (CIFAR10, Fashion-MNIST, MNIST, and GTSRB) to
evaluate their ability to perform on tasks (datasets) with various difficulties. We expected
the task difficulty to affect the performance of MCA and related methods because some
datasets (e.g., GTSRB) have more noise inherent in their samples than others (e.g.,
MNIST). In addition, samples of some datasets (e.g., CIFAR10) are more difficult to
learn than others (e.g., MNIST). We also assessed the performance of MCA and related
methods on CNNs of three architectures (VGGNet, DenseNet, and ResNet) to evaluate
their ability to perform on architectures with various design and configurations. We
expected the architecture to affect the performance of MCA and related methods. This
is because the architecture conditions the manner in which information are propagated
from the input to subsequent layers and different architectures will result in different
gradient calculations and therefore to different solutions. Further, we evaluated the
impact of applying logit instead of probability averaging and the impact of reducing the
regularization strength on the performance of MCA and related methods. This is due
to the fact that logit averaging and the reduction of the strength of regularization can
reduce the level of inductive biases inherent in CNNs and influence the confidence of
MCA and related methods.

To address the third research question, we evaluated not only the ability of MCA and
related methods to separate TPs and FPs but also the classification accuracy, calibration
error, and inference time. We expected a good method for uncertainty estimation to
preserve the classification accuracy on the test data, to exhibit a low calibration error on
the test data, and to maintain a high degree of confidence for TPs and a low degree of
confidence for FPs.

12



1. Introduction

Table 1.: Summary of characteristics of MCA and related methods, such as baseline,
MCD, ensemble, and MMCD. The symbols S and M (with M << S) refer to
the number of stochastic forward passes in MCD and the number of members
in MCA and ensemble, respectively

Properties Baseline MCD MMCD Ensemble MCA
Nature of CNNs Deterministic Stochastic Stochastic Deterministic Deterministic
Number of CNNs trained
and evaluated 1 1 M M M

Number of feature extrac-
tors 1 1 M M M

Number of discriminators 1 1 M M M

Number of features evalu-
ated by a single discrimi-
nator

1 S S 1 M

Evaluated uncertainty as-
sociated with extracted
features?

No Yes Yes No Yes

Number of predictions to
generate 1 S M · S M M2

1.8. Results
Table 1 presents some characteristics of MCA and related methods. Herein, we can
derive that MCA is deterministic similar to baseline and ensemble, evaluates multiple
CNNs similar to ensemble and MMCD, and explores the uncertainty associated with
extracted features similar to MCD and MMCD, which are both stochastic. Experimental
results showed improvement of MMCD and MCA over related methods, such as baseline,
MCD, and ensemble. Specifically, similar to MMCD, MCA can preserve the accuracy of
the underlying ensemble increasing the baseline accuracy, which can only be preserved
by MCD. In addition, MMCD and MCA can improve the separability of TPs and FPs
by increasing the calibration error and the inference time. However, applying logit
instead of probability averaging in MCA and related methods or reducing the strength
of regularization can reduce the calibration error consequently affecting the separability
between TPs and FPs. Hence, there is a tradeoff between improving the calibration
and improving the separability between TPs and FPs. Although the performance of all
methods heavily relies on the dataset and/or architecture, MCD and MMCD are more
sensitive to the dataset and/or architecture because of the sensitivity of the predefined
distribution from which masks were drawn for feature sampling. Overall, the results
showed that the developed MCA is an alternative to MMCD. Assuming that MMCD

13



1. Introduction

and MCA are well-specified for a given dataset and architecture, they can exhibit similar
performance because they have the same purpose and underlying principle. However,
the design process of MMCD can be more time-consuming and costly than that of MCA.
This is because MMCD requires the specification of the predefined (prior) distribution
from which masks were drawn for feature sampling, while MCA relies on features
extracted from ensemble members for feature averaging. Moreover, the outcome of
feature averaging operations is deterministic while that of feature sampling operations is
stochastic. Therefore, feature sampling required more samples than feature averaging
to evaluate the uncertainties associated with the extracted features. Because of all the
advantages of MCA over MMCD, we can use MCA in lieu of MMCD for uncertainty
estimation.

1.9. Contribution
The added value of this thesis is four-fold:

(1) We summarized and discussed existing methods for uncertainty estimation in our
survey paper [99].

(2) We developed MCA for uncertainty estimation and compared it to related methods
(i.e., baseline, MCD, ensemble of CNNs, and MMCD). The results of this work
were published [101] and presented at the 2022 International Joint Conference on
Robotics and Artificial Intelligence (JCRAI 2022), which took place in Chengdu,
China, on October 14-16, 2022.

(3) We studied the impact of applying logit instead of probability averaging on the
properties of MCA and related methods. This is based on the results of our research
paper [102] published and presented at the 31st International Joint Conference on
Artificial Intelligence and the 25th European Conference on Artificial Intelligence
(IJCAI-ECAI-22) Workshop in Artificial Intelligence Safety (AISafety 2022), which
took place in Vienna, Austria, on July 23-29, 2022.

(4) We studied the impact of reducing the strength of regularization on the properties
of MCA and related methods. The results of this work were published [103] and
presented at the 2022 5th International Conference on Algorithms, Computing and
Artificial Intelligence (ACAI 2022), which took place in Sanya, China, on December
23, 2022.

1.10. Outline
This thesis is structured as follows.

14



1. Introduction

Chapter 2 presents some fundamentals. We start this chapter with a definition of
a classifier followed by the presentation of a CNN-based classifier and its core
elements. We continue by analyzing uncertainties in a CNN-based classifier with an
emphasis on sources and types of uncertainty. We end this chapter by presenting
the approach to measure uncertainties and highlighting the poor quality of the
uncertainties obtained with a single CNN (baseline).

Chapter 3 summarizes and discusses ensemble and Bayesian methods, which build the
foundations of the developed MCA. This chapter is structured in two main sections.
The first section presents the definition of a Bayesian neural network and explains
the underlying principles governing a Bayesian neural network. Afterward, we
present the inherent properties of a Bayesian neural network and discuss some
popular variational inference techniques for approximating the posterior distribution
of a Bayesian neural network. We end the first section by specifying the settings
for building a Bayesian neural network. The second section presents the definition
of an ensemble and then explains the underlying principles governing an ensemble
and its inherent properties. We continue by analyzing the challenges faced when
building an ensemble and discuss some popular existing methods to construct an
ensemble. We end the second section by discussing the ensemble method in the
context of uncertainty estimation and specifying some parameters for empirical
evaluation of an ensemble.

Chapter 4 presents the developed MCA and theoretically compares it with related
methods, such as baseline (single CNN), MCD, ensemble, and MMCD. We start
this chapter by presenting the related methods and their shortcomings. We continue
by presenting MCA and the feature averaging approach, which is at the core of
MCA. Afterward, we highlight the importance of feature sampling (inherent in
MCD and MMCD) and feature averaging (inherent in MCA) and compare them.
We end this chapter by summarizing the results of the theoretical comparison of
MCA and related methods and highlighting the implications of the results.

Chapter 5 empirically compares the developed MCA and related methods. We start
this chapter by comparing the accuracy and calibration error of MCA and related
methods. We continue by comparing the ability of MCA and related methods to
separate TPs and FPs. We end this chapter by summarizing the results of the
empirical comparison of MCA and related methods and highlighting the implications
of the results.

Chapter 6 presents the impact of applying logit instead of probability averaging in MCA
and related methods. We start this chapter by stating a rationale for applying logit
instead of probability averaging. We continue by describing the process of applying

15



1. Introduction

logit instead of probability averaging in MCA and related methods. Afterward, we
present the impact of applying logit instead of probability averaging on the accuracy
and calibration error of MCA and related methods and on the ability of MCA and
related methods to separate TPs and FPs. We end this chapter by summarizing
the results of the impact of applying logit instead of probability averaging in MCA
and related methods and highlighting the implications of the results.

Chapter 7 investigates the impact of reducing the regularization strength. We start this
chapter by giving a rationale for reducing the regularization strength. We continue
by describing the process of reducing the regularization strength. Afterward, we
study the impact of reducing the strength of regularization on the classification
accuracy and calibration error of MCA and related methods and on the ability
of MCA and related methods to separate TPs and FPs. We end this chapter by
summarizing the results of the impact of reducing the regularization strength and
highlighting the implications of the results.

Chapter 8 summarizes a rationale and main objective of this thesis followed by the chal-
lenges we faced. Afterward, it restates the research questions and the methodologies
used to address them. Finally, it discusses the results and their implications.

Chapter 9 concludes the thesis by summarizing the results, making recommendations,
and highlighting limitations and future work directions.

16



2. Fundamentals
Herein, we assume that the reader is already familiar with the concepts of traditional deep
learning such as artificial neural networks, training algorithms, supervision strategies, and
loss functions. The unfamiliar reader is referred to studies by Jain, Mao, and Mohiuddin
[104], Janocha and Czarnecki [105], and Shrestha and Mahmood [106] to learn these
basic concepts.

2.1. Definition of a classifier
In the context of image classification, let the training data Dtrain = {xi ∈ RH×W×C , yi ∈
UK}i∈[1,N ] be a realization of independently and identically distributed random variables
(x, y) ∈ X×Y , where xi denotes the ith input and yi is its corresponding one hot encoded
class label from the set of standard unit vectors of RK , UK . The symbols X and Y

denote the input and label spaces, respectively. The symbol H ×W × C denotes the
dimension of input images, where H, W , and C refer to the height, width, and number
of channels, respectively. The symbols K and N denote the numbers of possible output
classes and samples within the training data, respectively.
A classifier is a linear or nonlinear function f that maps input images xi ∈ RH×W×C

to class labels yi ∈ UK , that is

f : xi ∈ RH×W×C → yi ∈ UK ; f(xi) = yi . (2.1)

Given a new data sample x ∈ RH×W×C , a classifier predicts the corresponding target
ŷ = f(x). Many linear (e.g., support vector machine) and nonlinear (e.g., neural network)
classifiers proposed in the literature are summarized and discussed in the survey paper
of Yuan et al. [107]. Since linear classifiers operate directly on data in the original input
space, they cannot discover all hidden patterns in the given input. On the contrary,
nonlinear classifiers operate on data mapped to a higher dimensional space and can
therefore discover more hidden patterns in the given input. Consequently, nonlinear
classifiers perform (in terms of accuracy) better than the linear ones. However, owing to
the emergence of large datasets, increasing computational power, tremendous advances
in deep learning, and the success of the submission of Krizhevsky et al. [108] to the
ImageNet large-scale visual recognition challenge [109], CNNs, a special type of neural
network architectures, have become the standard for modern classifiers. This is mainly

17



2. Fundamentals

attributed to the fact that CNNs do not rely on features engineered by human experts
because they automatically learn how to extract and discriminate features at training.

2.2. A CNN-based classifier
Several architectures of CNNs such as AlexNet [108], VGGNet [110], ResNet [111], Wide-
ResNet [112], ResNeXt [113], and DenseNet [114] have been proposed in the literature to
improve the accuracy of image classification or to reduce computational costs. Rawat
and Wang [115], Khan et al. [116], and Alzubaidi et al. [117] summarized and discussed
all these architectures, which include multiple convolution, pooling, and fully connected
layers. These layers form the building blocks of a CNN-based classifier.

2.2.1. Building blocks of a CNN-based classifier
A CNN-based classifier comprises convolution, pooling, and fully connected layers (see
Figure 6). These layers are cascaded together in a hierarchical manner to form a deep
structure so that the first layer extracts a set of primitive patterns from raw pixels of
the input image, the second layer extracts patterns from the output feature maps of the
first layer, the third layer extracts patterns from the output feature maps of the second
layer, and so on. Consequently, more and more abstract representations are learned as
the information flow from input to output.

Figure 6.: Overview of a CNN architecture for image classification [115]

Convolution layers are feature extractors that learn the representations of their inputs.
They extract features by convolving a convolution kernel1 with the input (see

1A convolution kernel (also referred to as filter or mask) of a convolution layer represents the set

18



2. Fundamentals

Figure 7). Neurons of convolution layers are arranged into feature maps and each
neuron has a receptive field that depends on the size of the convolution kernel.
Neurons within the same feature map have the same receptive field or use the same
convolution kernel to perform the same operation on different parts of the image and
to therefore extract the same feature. This procedure encourages weight sharing.
Nonetheless, neurons of different feature maps within the same convolution layer
use different sets of trainable weights and therefore extract different features at the
same location. Particularly, given F convolution kernels, F different features can
be learned, yielding to F feature maps. Mathematically, the operation performed
by convolution neurons within a feature map is a discrete convolution. Let l[i, j]
denote the convolution kernel of size I ×J with 0 ≤ i < I and 0 ≤ j < J and d[i, j]
denote a small location of the input image of size I × J . The convolution of l[i, j]
with d[i, j] yields the output feature map o[i, j] defined as

o[i, j] = l[i, j] ∗ d[i, j] =
I−1∑
ĩ=1

J−1∑
j̃=1

d[i, j] · l[i− ĩ, j − j̃] ,

where ∗ is the (linear) convolution operator. Nonlinear activation functions are
placed directly after convolution operations and perform element-wise operations
on each output feature map. They facilitate the extraction of nonlinear features.
In 2011, Glorot et al. [118] found that the rectified linear unit (RELU) activation
function can perform better than conventional ones such as sigmoid and hyperbolic
tangent. A year later, Krizhevsky et al [108] popularized the RELU activation
function, which is defined as

RELU(a) = max(a, 0)

where a is the output of a neuron within a feature map. The RELU activation
function retains only the positive part of the input (a > 0) and reduces the
negative part of the input (a ≤ 0) to zero. Although this function can lead to
faster convergence by accelerating training, it can negatively affect the training
by blocking gradient backpropagation because the gradient is zero whenever a
neuron is not active or saturates [118]. Therefore, many activation functions such
as LRELU [119], PRELU [120], SRELU [121], and ELU [122] were proposed in the
literature. However, despite its drawbacks, RELU remains the most widely used
activation function, especially in the context of CNNs.

of adjustable weights used by all neurons within the same feature map. Convolution kernels are
used to represent different processes such as smoothing, blurring, sharpening, and edge detection.
Conventionally, symmetric convolution kernels are used, meaning that the origin of the convolution
kernel is usually the center element, which is well defined when I and J are odd.

19



2. Fundamentals

Figure 7.: Illustration of a convolution operation with a convolution kernel size of 3× 3
and an image size of 7× 7. Convolution kernels always extend the full depth of
the input image. Starting from the top-left corner of the input, the convolution
kernel is moved from left to right with a stride of 1. Once the top-right corner
is reached, the convolution kernel is moved with the same stride in downward
direction, and again the kernel is moved from left to right corner while keeping
the stride unchanged. This process is repeated until the kernel reaches the
bottom-right corner. Zero padding is applied to fill the border of the image

20



2. Fundamentals

Figure 8.: Illustration of a max pooling operation with a pooling region size of 2× 2 and
a feature map size of 8 × 8. Starting from the top-left corner of the input,
the pooling region is moved from left to right with a stride of 2. Once the
top-right corner is reached, the pooling region is moved with the same stride in
a downward direction, and again the region is moved from left to right corner
while keeping the stride unchanged. This process is repeated until the region
reaches the bottom-right corner. This figure is adapted from Guo et al. [123].

21



2. Fundamentals

Pooling layers operate independently over each feature map and transform joint feature
representations into more compact ones that preserve relevant information and
discard irrelevant ones. They reduce the spatial resolution or dimension of feature
maps and make extracted features invariant to small changes in position and
appearance [124, 125]. Applying pooling is dividing the input into nonoverlapping
two-dimensional regions and applying a pooling operation such as max pooling,
which is the most widely used. Given a pooling region r within a set of activations
{a1, a2, . . . , a|r|}, where |r| denotes the cardinality 2 of r, the region output or
obtained after applying the max-pooling operation is defined as

or = max(a1, a2, . . . , a|r|).

As an example, Figure 8 presents how a feature map with a size of 8× 8 is reduced
to a compact feature map with a size of 4× 4 after applying max pooling with a
pooling region with a size of 2× 2 and stride of 2.

Fully connected layers are the last layers in the hierarchy of CNNs (see Figure 6).
Usually, three fully connected layers are used to convert two-dimensional feature
maps into one-dimensional vector. These layers further process features to make
them more classifiable. Unlike pooling and convolution layers that perform local
operations, fully connected layers perform global operations. In other words,
the output of a fully connected neuron depends on all the elements of the input
vector. While the first two fully connected layers can have different number of
neurons with RELU activation function, the last fully connected layer includes K
(representing the number of possible classes) output neurons with softmax activation
function. The softmax activation function normalizes its inputs (referred to as logits
and interpreted as found evidences for possible classes [126]) to produce discrete
probabilities pk (with k = 1, . . . , K and ∑K

k=1 pk = 1) representing the probability
that the input belongs to the class associated with the kth output neuron. The
discrete probabilities pk are usually interpreted as the model confidence to its

prediction. Given the logits z =



z1
.

.

.

zK


, the softmax function estimates p =



p1
.

.

.

pK



2The cardinality of a finite set r denotes the number of its elements.

22



2. Fundamentals

as

p = softmax(z) = 1∑K
k=1 exp(λzk)



exp(λz1)
.

.

.

exp(λzK)


, λ > 0 (2.2)

where λ refers to the inverse temperature constant [127]. According to Gao and
Pavel [127], when λ = 1, Equation 2.2 defines the standard softmax function. Given
the discrete probabilities pk, we can compute the predicted class label ŷ as

ŷ = arg max
k

(pk). (2.3)

2.2.2. Supervised learning of a CNN-based classifier
Given a training data Dtrain = {xi ∈ RH×W×C , yi ∈ [0, 1]K ]}i∈[1,N ], we want to train a
CNN that maps xi to yi. We start by initializing the parameters (biases and weights)
with random values or using any other existing methods for parameter initialization
such as transfer learning, which is summarized and discussed by Zhuang et al. [128]
and Weiss, Khoshgoftaar, and Wang [129]. Afterward, we fed xi into the CNN that
estimates the discrete probability vector p̂i. The desired category for xi should have the
highest probability, but this is unlikely to happen before convergence at training [125].
Consequently, an objective (loss or cost) function that measures the error between p̂i
and yi is estimated. Traditionally, the cross-entropy loss is used in conjunction with
the softmax activation function [108, 110, 111, 114]. However, CNNs are trained using
minibatches of size β. This consists of showing β training examples to the CNN and
estimating the average cross-entropy loss as

L = 1
β

β∑
i=1

Li = 1
β

β∑
i=1

yilog(p̂i).

According to the backpropagation algorithm [130], to minimize the average cross-entropy
loss (or reduce prediction errors), the CNN will modify its internal adjustable parameters
θ = (w1, ..., w|θ|) by estimating the gradient vector ∇L = ∂L

∂θ
that, for each internal

adjustable parameter, indicates by what amount the error would increase or decrease.
According to optimization algorithms such as SGD [131], the parameter θ is adjusted in
the opposite direction to the gradient, that is,

θt+1 = νθt − γ∇L,

where γ and ν are the learning rate and momentum, respectively. The process of
minimizing the average cross-entropy loss is repeated for many batches of training data

23



2. Fundamentals

until the average cross-entropy loss stops decreasing. This indicates that the CNN
has converged to the optimal local minima or has found the optimal configuration of
parameters for performing inference after deployment.

2.3. Uncertainty in a CNN-based classifier

2.3.1. Uncertainty sources
As summarized and discussed in our survey paper [99], the following factors cause
uncertainties in CNNs.

Variability in real-world situations Environmental changes, such as variations in tem-
perature and illumination, affect the physical appearance of objects, in differences
in size, shape, color, and background clutter. For instance, plants look very different
after rain than after a drought. Cultural biases also affect the meaning given to
physical objects. For instance, German traffic signs are different from Chinese ones,
but such different signs can have the same meaning. Distribution (or domain) shift
occurs when real-world situations are not similar to training ones. Distribution-shift
can lead to FPs of CNNs owing to the perturbation of the given object size, shape,
color, or background clutter, stemming from environmental changes, or the lack
of knowledge about the given object, stemming from cultural biases. In summary,
variabilities in real-world situations can cause distribution-shift, which in turn can
cause FPs.

Errors and noise inherent to measurement systems The sensing model (or data ac-
quisition system) for acquiring inputs for CNNs, e.g., the camera used to acquire
images, is prone to several errors such as limited information in the measurements.
The lack of sufficient information in the measurements can be attributed to the
low resolution of the camera or the large distance between the physical object
and camera, which results in an object with a small size in the given input image.
Moreover, sensor noise inherent in the measurements and stemming from changes in
temperature, illumination, motion, and mechanical stress, etc. can further limit the
amount of information in the measurements. The lack of sufficient information in
the measurements results in distribution- (or domain-) shift. Distribution-shift can
lead to FPs of CNNs owing to the lack of knowledge about the given object. Overall,
errors and noise inherent in the measurement systems can cause distribution-shift,
which in turn can cause FPs.

Errors in architecture specification and training procedure As modelers, we have mul-
tiple alternative learning algorithms summarized and discussed by Pouyanfar et al.

24



2. Fundamentals

[132] and Shrestha and Mahmood [106] and architectures summarized and discussed
by Rawat and Wang [115], Khan et al. [116], and Alzubaidi et al. [117] to choose
from. In addition, there are various hyperparameters for architecture specification
(e.g., number of features, number of layers, kernel and pooling size, and input
size) or for training specification (e.g., batch size, learning rate, momentum, and
regularization parameters) to tune. This large spectrum in design choice makes the
task of choosing the best architecture and finding the best settings of parameters
challenging and error-prone. Usually, popular learning algorithms, architectures
and hyperparameters are used for a given problem (dataset) with no guarantee that
the design choices are the optimal ones. Consequently, errors in the architecture
specification and training procedure caused by our ignorance in optimal design
choices can limit the ability of CNNs in extracting domain-specific knowledge
during training. This can cause CNNs to not properly learn objects of some specific
classes during training and to therefore classify them with a low confidence or to
even misclassify them. In summary, errors in the architecture specification and
training procedure can limit the ability of CNNs to extract domain-specific knowledge,
resulting in low confident predictions or FPs.

Errors caused by unknown data A CNN is usually trained to classify a limited number
of objects, for example, classification of three objects: bus, car, and truck. However,
in the real-world, the number of possible objects is unlimited. This means that
images including unknown objects will be processed by the CNN at inference. For
instance, a CNN trained to classify images of three objects (bus, car, and truck)
can try to classify, for example, an image of a pedestrian at inference. Herein,
the lack of knowledge about the pedestrian object will hinder the CNN to extract
the meaningful features to classify a pedestrian. An alternative explanation is
the absence of an output neuron, which maps the input to the pedestrian class.
Therefore, the image of a pedestrian will be mapped to one of the three possible
classes (bus, car, or truck), which results in FPs. In the literature, unknown data
are also referred to as OOD data. In summary, the lack of domain-specific knowledge
about unknown (OOD) data can cause FPs.

2.3.2. Uncertainty type
As explained above, factors such as the variability in real-world situations, errors, and
noise inherent in the measurement systems can cause a distribution-shift, which in turn
can cause FPs. Herein, the cause of the false prediction is inherent in the input data.
Therefore, we refer to the uncertainty stemming from errors inherent in the input data
as data-dependent uncertainty (also referred to as statistical or aleatoric uncertainty
[133]). Data uncertainty is attributable to the lack of sufficient information to represent

25



2. Fundamentals

the real-world object in measurement data. Hence, the model cannot classify the data
accordingly because the missing information is a priori unknown to the model and
modeler. Since data uncertainty occurs in the presence of distribution-shift examples
(inputs drawn from a shifted version of the training data distribution), it can be referred
to as domain-shift uncertainty based on the source of the input data distribution.

In addition, other factors such as errors in the architecture specification and training
procedure can limit the ability of CNNs to extract domain-specific knowledge, which
results in low confident predictions or FPs. Herein, the cause of the low confident
predictions or FPs is inherent in the CNN. We therefore refer to the uncertainty stemming
from errors inherent in the CNN as model uncertainty (also referred to as systemic or
epistemic uncertainty [133]). Model uncertainty can further be subdivided into structural
uncertainty (wherein we have significant doubts that the model is even structurally
correct) and parametric uncertainty (wherein we believe that the structure of the model
is correct but are uncertain about the correct values of model parameters). Structural
uncertainty and parametric uncertainty can be reduced by improving the architecture
specification and improving the training procedure, respectively. Since model uncertainty
occurs in the presence of in-domain examples (input drawn from a data distribution
assumed to be equal to the training data distribution), it can be referred to as in-domain
uncertainty based on the source of the input data distribution.

Finally, the lack of domain-specific knowledge about unknown data can cause FPs.
Herein, the cause of the FPs is inherent in the distribution (or domain) of the input data
that are incompatible with that of the training data. We therefore refer to the uncertainty
stemming from the distributional incompatibility between the training and input data
as distributional uncertainty. Since distributional uncertainty occurs in the presence of
out-of-distribution or OOD examples (inputs drawn from the space of unknown data), it
can be referred to as OOD uncertainty based on the source of the input data distribution.

2.3.3. Uncertainty estimation
Based on the source of uncertainty, we can distinguish between model, data, and
distributional uncertainties, which occur in the presence of in-domain, domain-shift, and
OOD examples, respectively, as shown in Figure 10. Regardless, we want to estimate
the uncertainty associated with a prediction, that is, the predictive uncertainty or total
uncertainty, that summarizes the model, data, and distributional uncertainties. Therefore,
we can estimate the predictive uncertainty u (or predictive confidence) based on the
discrete probabilities pk as

u = max
k

(pk) . (2.4)

The predictive confidence measures the probability mass assigned to the predicted class
label and can be used as a measure of uncertainty. However, it is widely discussed that

26



2. Fundamentals

a CNN is often overconfident and its predictive confidence is often poorly calibrated,
leading to inaccurate uncertainty estimates [134, 27, 45, 47]. For instance, Figure 9
presents how a CNN falsely classifies rotated MNIST digits with a high confidence (low
uncertainty). Therefore, to improve the predictive confidence in a CNN-based classifier,
we develop MCA.

Figure 9.: Predictions obtained via a LeNet network trained on handwritten digits (from
0 to 9) of MNIST and evaluated on different rotations of test samples. For
some rotations, the network exhibits a high confidence on the false class owing
to confusion (e.g., 3 is confused with 8) or unknown representations. These
examples show how a CNN-based classifier can generate overconfident FPs
under data distribution shifts. This figure is adapted from Gawlikowski et al.
[99]

27



2. Fundamentals

Uncertainty
type

Model
uncertainty

Data
uncertainty

Distributional
uncertainty

Structural
uncertainty

Parametric
uncertainty

Errors in
architecture
specification

Errors in
training

procedure

Variability in
real-world
situations

Errors & noise
inherent in

measurements

Unknown
data

Figure 10.: Overview of uncertainty types and sources

28



3. Related works
Works related to ensembles and Bayesian neural networks build the foundations of the
developed MCA. Therefore, we summarize and discuss only these works in this thesis.
Other works related to single deterministic, test-time data augmentation, and calibration
methods for uncertainty estimation were summarized and discussed in our survey paper
[99].

3.1. Bayesian neural networks

3.1.1. Definition of a Bayesian neural network
Contrary to a point estimate (deterministic) neural network, a Bayesian neural network
places prior probability distributions over its parameters (weights). In other words,
neuron weights of a Bayesian neural network are random variables, which means that
neuron activations and model outputs are also random variables. Given a neural network
f with a prior distribution p(θ) placed over the neural network weights θ, the uncertainty
or degree of belief with respect to weights is achieved by inferring (or updating) the prior
distribution after encountering data to yield a posterior distribution p(θ|Dtrain) encoding
the model uncertainty. According to Bayes theorem [135], p(θ|Dtrain) is defined as

p(θ|Dtrain) = p(Dtrain|θ)p(θ)
p(Dtrain) ∝ p(Dtrain|θ)p(θ), (3.1)

where the normalization constant p(Dtrain) is called the model evidence and is defined as

p(Dtrain) =
∫
p(Dtrain|θ)p(θ)dθ, (3.2)

where p(Dtrain|θ) is the likelihood that the data inDtrain are realizations of the distribution
approximated by the neural network parameterized with θ. It encodes the data uncertainty.
Given an estimate of the posterior p(θ|Dtrain), the prediction of an output ŷ for a new
input data x is obtained by Bayesian model averaging. Bayesian model averaging consists
of marginalizing the likelihood p(Dtrain|θ) with the posterior distribution, that is

p(ŷ|x,Dtrain) =
∫
p(ŷ|x, θ)p(θ|Dtrain)dθ. (3.3)

29



3. Related works

Consequently, we accurately weigh the evidence for different hypotheses. For instance, if
the most likely hypothesis predicts “class A” but the posterior places more total mass
on hypothesis predicting “class B” we prefer predicting “class B”.

3.1.2. Principles of a Bayesian neural network
Bayesian neural network is preferably used owing to the belief that marginalizing the
likelihood p(Dtrain|θ) with the posterior p(θ|Dtrain) will help make better decisions. This
fact is supported by the following justifications.

Bayesian neural networks are ensembles of (stochastic) neural networks [60, 136]
Marginalizing p(Dtrain|θ) with the posterior p(θ|Dtrain) simulates multiple stochas-
tic neural networks parametrized by θ with their associated probability distribution
p(θ). Herein, Bayesian model averaging derives the predictions of all simulated
stochastic neural networks to estimate the prediction of an output ŷ for a new input
data x. In addition, it can reduce overfitting [56] because simulated stochastic
neural networks often exhibit a low level of confidence than the underlying point
estimate neural network. Moreover, Bayesian model averaging can improve accuracy
and calibration of neural networks [74].

Bayesian neural networks take uncertainty into account A Bayesian neural network
evaluates a single local optimum in the solution space and the uncertainty around
this local optimum [97]. This means that the prediction of an output ŷ for a
new input data x is also influenced by the neighboring points within a certain
region around the solution. This helps to quantify the uncertainty associated with
a prediction. Consequently, Bayesian model averaging offers a mathematically
grounded tool to deal with uncertainties.

3.1.3. Properties of a Bayesian neural network
Casting a point estimate neural network to a Bayesian neural network involves defining
the prior distribution to impose on parameters and specifying the approximate of the
posterior distribution. Therefore, the prior and approximate of posterior distributions
constitute the main properties of a Bayesian neural network.

Prior distribution Integrating prior knowledge into neural networks is often considered
as imposing soft constraints on parameters or activations using regularization
approaches such as dropout [9] and variants [10, 11], batch normalization [12, 13],
and data augmentation techniques [6, 7, 8]. Consequently, using a regularization
approach in a point estimate neural network can be seen as setting a prior dis-
tribution [137] from a Bayesian point of view. Since different problems specified

30



3. Related works

through different datasets require different categories of prior knowledge, choosing
the appropriate prior distribution is critical. Particularly, a technique used in one
field may not directly lead to improvement in another field, although it will be
useful if it does. Because of our lack of knowledge (as modelers) regarding the true
distribution to place over parameters and its variations from one task to another,
specifying a task-specific prior distribution for neural networks is a challenge that
is less understood [98].

Approximate of posterior distribution Bayesian model averaging, as presented in Equa-
tion 3.3, involves marginalizing the likelihood p(Dtrain|θ) with the posterior distri-
bution. However, directly inferring the posterior p(θ|Dtrain) is challenging if not
impossible in deep neural networks. This is because the size of the data and the
number of parameters are too large for the use-cases of deep neural networks and
the integral in Equation 3.3 is not computationally tractable as the size of the data
and number of parameters increase [56]. Therefore, the posterior distribution is
typically approximated via sampling approaches [138], Laplace approximation [139,
140], and variational inference [141, 142]. Sampling approaches are nonparametric
and build a representation of weights from which realizations are sampled. This
representation is not restricted by a type of distribution, that is, it can be multi-
modal or non-Gaussian. Laplace approximation estimates the log of the posterior
distribution to derive a normal distribution over weights. Therefore, it is restricted
to a type of distribution, that is, the normal distribution. Variational inference
methods approximate the posterior distribution by optimizing over a predefined,
well-known, and tractable distribution. Several approximations for the posterior
distribution exist in literature, however, reviewing all of them is beyond the scope of
this thesis. The interested reader is referred to the studies of Gawlikowski et al. [99],
Mena et al. [143], and Jospin et al. [144] for a review of different approximations
for the posterior distribution. Herein, we focus on the most popular approach, that
is, the variational inference.

3.1.4. Variational inference techniques
Variational inference is a well-known technique used in statistics to approximate the
intractable posterior distribution p(θ|Dtrain) by optimizing over a predefined, well-known,
and tractable distribution q(θ). The optimization objective is to minimize the error
between the surrogate (approximate) distribution q(θ) and p(θ|Dtrain), that is

q(θ) = arg min
q
KL(q||p) (3.4)

31



3. Related works

where the error between q(θ) and p(θ|Dtrain) is measured using the Kullback-Leibler (KL)
divergence defined as

KL(q||p) = Eq
[
log q(θ)

p(θ|Dtrain)

]
. (3.5)

Since the posterior p(θ|Dtrain) is unknown, the Kullback-Leibler divergence defined in
Equation 3.5 cannot be directly minimized. Through some algebraic manipulations, Yang
[145] reformulated the Kullback-Leibler divergence as

KL(q||p) = −ELBO + log p(ŷ|x) (3.6)

where ELBO (evidence lower bound) is defined by

ELBO = Eq
[
log p(ŷ|x, θ)

q(θ)

]
. (3.7)

Therefore, minimizing the negative ELBO is equivalent to minimizing the Kullback-
Leibler divergence. In addition, it is possible to approximate the posterior p(θ|Dtrain)
by minimizing the negative ELBO. Hinton and van Camp [141] and Barber et al. [142]
presented the early examples of research minimizing the Kullback-Leibler divergence (or
negative ELBO) between the true posterior and a surrogate distribution. Recently, several
variational inference techniques for deep neural networks such as Bayes by hypernet
[146], Bayes by backprop [58], multiplicative normalizing flows [63], or the application of
stochastic elements have been proposed in the literature.

Bayes by hypernet Similar to a hypernetwork [146] that outputs parameters of a target
network, a Bayesian hypernetwork hn takes random noise ε ∼ N (0, I) as input and
outputs independent samples approximating the surrogate distribution q(θ) placed
over the parameters θ of a target network, that is

q(θ) = q(hn(ε)) ε ∼ N (0, I). (3.8)

The Bayesian hypernetwork and the target network form a single model that is
trained by backpropagation [24]. According to Krueger et al. [24], a Bayesian
hypernetwork is a variational inference method, which can represent a complex
multimodal approximate posterior with correlations between parameters.

Bayes by backprop [58] directly model each weight as a random variable with a mean µ
and standard deviation σ, instead of approximating the posterior distribution using
a hypernetwork. Bayes by backprop is a backpropagation-compatible algorithm
for learning the parameters µ and σ describing the probability distribution placed
over a weight of a neural network. According to Krueger et al. [24], Bayes by
backprop is a special sample of a Bayesian hypernetwork, where the hypernetwork
only performs an element-wise scale (ε ∼ N (0, I)) and shift (µ) of the input noise
ε resulting in a factorial Gaussian distribution.

32



3. Related works

Normalizing flows To scale variational inference to large neural networks and datasets,
normalizing flows aim to transform a simple probability distribution (source) to a
more complex one (target). Herein, the main challenge is finding the deterministic
map that transforms the source to the target distribution with conservation of
probability mass. This is achieved, for example, by applying a sequence of invertible
transformations until a desired level of complexity is attained [57]. The length of
the sequence of transformations affects the complexity of the posterior distribution.
However, different transformations result in different characteristics of the posterior
distribution.

Stochastic elements Existing stochastic elements to regularize deep neural networks
such as dropout [9] and variants [10, 11], and batch normalization [12, 13] can be
used for variational inference. MCD is the most widely known [56, 60, 62], where
dropout layers, such as Bernoulli distributed random variables, are used during
training for regularization and during inference for approximating the posterior
distribution. Different extensions evaluating the use of dropout layers in pooling
and/or convolutional layers instead of fully-connected layers [70], or different
dropout masks (such as Gaussian, Bernoulli, or a cascade of Gaussian and Bernoulli
[70]), or different dropout strategies (such as DropConnect that drop connections
instead of activations [71, 61] or structured dropout that drop layers, blocks, or
channels [69]) were investigated. Supported with a lot of evidence, a combination
of different extensions can lead to higher accuracy or better representation of
uncertainty estimates [61, 70]. Approximation of the posterior distribution with
batch normalization has also been suggested in the literature [68].

In summary, several variational inference techniques can be utilized to approximate the
posterior distribution p(θ|Dtrain). These techniques either train a hypernetwork to predict
the posterior using Bayes by hypernet, model all weights as random Gaussian variables
using Bayes by backprop, transform a simple well-known probability distribution to a
complex one via normalizing flows, or take advantage of existing stochastic elements in
deep neural networks. Using different techniques results in different approximations of the
posterior distribution. For instance, Krueger et al. [24] experimentally showed that Bayes
by hypernet is a better regularizer and defends better against adversarial examples than
MCD and Bayes by backprop. However, MCD performs better than Bayes by hypernet
on detecting anomalies. Notwithstanding these results, the experiments were conducted
on shallower (small) neural networks. In addition, Blundell et al. [58] empirically
showed that Bayes by backprop yields comparable performance (in terms of accuracy)
than MCD on MNIST classification on a fully connected neural network. However,
there appears to be no reported studies regarding complex problems using deep neural
networks. Louizos and Welling [63] empirically showed that multiplicative normalizing

33



3. Related works

flows generate better uncertainty estimates than MCD, however, their experiments were
conducted on shallower neural networks. Consequently, it remains confusing which of the
three techniques, namely, Bayes by hypernet, Bayes by backprop, and normalizing flows,
can be utilized on complex problems using deep neural networks. Particularly, training a
hypernetwork or modelling all weights as random variables can be more time-consuming
and requires a large memory demand than applying stochastic elements. In addition,
using stochastic elements for variational inference is easy to implement and allows cheap
samples from q(θ). Furthermore, several works [147, 148, 149] have demonstrated the
practical values of MCD. However, applying Bayes by backprop results in a full Bayesian
neural network because all parameters are given prior distributions, whereas applying
MCD results in a sub-Bayesian neural network because only parameters of the last layers
are given a prior distribution. Therefore, Zeng et al. [150] investigated the position and
number of Bayesian layers required to approximate a full Bayesian neural network. They
found that only few Bayesian layers placed closed to the output of a deep neural network
are sufficient. Similarly, Brosse et al. [151] evaluated the quality of the uncertainty
estimates obtained by making only the last layer Bayesian. They found that the last
layer Bayesian neural networks perform similarly well than the full Bayesian neural
networks. Kristiadi et al. [152] complemented the empirical evidence of Brosse et al.
[151] with a theoretical justification that supports why just making the last layer Bayesian
is cost-efficient and sufficient in quantifying uncertainty. According to Zeng, Lesnikowski,
and Alvarez [150] and Brosse et al. [151], having multiple Bayesian layers in a Bayesian
neural network may compromise the accuracy and does not improve uncertainty estimates.
On the contrary, the more Bayesian the layers are, for example, by using high dropout
probability, the more uncertainties we can capture at the cost of sacrificing the accuracy
[150, 70]. Taken together, all these works demonstrate that a single MCD layer placed
closed to the output of a deep neural network, for example, at the input of the first fully
connected layer, is sufficient for qualitatively quantifying uncertainty. Moreover, these
works provide empirical evidence that demonstrate how MCD is sensitive to the dropout
strategy, probability, and mask.

3.1.5. Summary and implications
The main idea of the Bayesian principle is to define parameters of a point estimate neural
network as random variables by specifying a prior distribution to impose on parame-
ters. This is based on a rationale that marginalizing the likelihood with the posterior
distribution will help make better decisions. Moreover, the main challenge in building a
Bayesian neural network is correctly specifying the prior and posterior distributions. The
specification of the prior distribution is often achieved using regularization approaches.
Among the existing regularization approaches, we will use dropout, batch normalization,
and standard label-preserving data augmentation techniques such as rotation, translation,

34



3. Related works

flipping, shearing, and additive Gaussian noise for integrating prior knowledge into neural
networks. The posterior distribution is often approximated via variational inference
techniques. Among existing variational inference techniques, we will use the popular
MCD (see Section 4.1.2), which was utilized in some studies [56, 60, 78, 83, 79] for
uncertainty estimation. Furthermore, we will use MCD because its practical value has
been proven in several works [147, 148, 149].

35



3. Related works

3.2. Ensembles

3.2.1. Definition of an ensemble
While a Bayesian neural network is an implicit or stochastic ensemble [9], an ensemble
(also called a committee [153], multiple classifier systems [154], or mixture of experts [155])
denotes an explicit or deterministic ensemble that consists of a set of deterministic neural
networks referred to as ensemble members. The ensemble members are independently
trained and stored, which results in a linear increase in the required memory and
computation power with each additional member. This is true for both training and
testing. Given an ensemble f : X → Y with members fm : X → Y for m ∈ 1, 2, ...,M ,
the ensemble prediction is obtained, for example, by averaging over the predictions of
the members such as CNNs, that is

f(x) = 1
M

M∑
m=1

fm(x) .

3.2.2. Principles of an ensemble
The main rationale for utilizing an ensemble is the fact that a group of decision makers
make better decisions than a single decision maker. Hansen and Salamon [156], Simonyan
and Zisserman [110], and He et al. [111] provided empirical evidence that support
this argument by proving that an ensemble improves accuracy. In addition, related
justifications have been given to support this argument as follows.

An ensemble approximates the posterior distribution of a Bayesian neural network
According to Blundell et al. [58], performing Bayesian model averaging to estimate
the posterior distribution is equivalent to using an ensemble of an infinite number of
neural networks. Therefore, an ensemble is a finite sample approximation to the pos-
terior distribution [157, 158, 159]. Wilson et al. [74] empirically demonstrate that
an ensemble can provide a better approximation to the posterior distribution than
standard Bayesian approaches. Specifically, while standard Bayesian approaches
reformulate the posterior distribution using Bayes theorem [135], an ensemble
approximates the posterior distribution by learning several different parameter
settings and averaging over the resulting neural networks.

An ensemble captures the distribution of possible solutions According to Kawaguchi
[160], given a neural network to train, the number of possible solutions (local min-
ima) increases exponentially with the number of parameters. Therefore, a trained
neural network is one of the possible solutions that exhibit the same accuracy on
the training data. By combining multiple neural networks trained independently,

36



3. Related works

an ensemble captures the distribution of all possible solutions and reduces the risk
of choosing the wrong solution.

An ensemble enriches the space of representable functions [161] For various appli-
cations, correctly modeling the true unknown function using a neural network
may not be possible owing to the limited number of parameters. Therefore, by
combining multiple neural networks, it may be possible to expand the space of
representable functions and to therefore correctly approximate the true unknown
function. Domingos [162] supported this argument by empirically demonstrating
that an ensemble constructed based on bagging (explained in Section 3.2.6) reduces
the classification error because it changes the model space that better fits the input
domain.

An ensemble reduces estimation and optimization errors Building a neural network
is prone to several errors stemming from the design process (e.g., errors in architec-
ture specification) and/or training process (e.g, errors in parameter initialization).
These design and training errors induce a bias and variance in the neural networks.
Many empirical studies [161, 163] confirmed that an ensemble reduces the bias and
variance inherent in individual ensemble members.

3.2.3. Properties of an ensemble
An ensemble can be characterized based on two main properties, namely, redundancy
and diversity, as shown in Figure 11.

Ensemble redundancy

Ensemble redundancy (or redundancy in prediction space of multiple neural networks) is
the ability of ensemble members to make similar predictions of the inputs. To explain
the advantages of redundancy, imagine that we have an ensemble of three members. If
the three members are not redundant in the domain of all possible inputs, then two of
the three members will always make wrong predictions. Therefore, the ensemble will
always make wrong predictions and will therefore be inaccurate. To avoid this inaccuracy,
constructing redundant ensemble members is critical. Tumer and Ghosh [164] supported
this argument by showing how correlation among individual ensemble members can affect
the accuracy of an ensemble.

Ensemble diversity

Ensemble members must have different characteristics; otherwise, there would be no
performance improvement if they have similar ones. Diversity is the differences between

37



3. Related works

Ensemble
properties

Redundancy Diversity

Complementary
diversity

Noncomplementary
diversity

Accuracy &
calibration

Uncertainty

Figure 11.: Overview of the properties of an ensemble such as redundancy and (comple-
mentary and noncomplementary) diversity. Accuracy is driven by redundancy
and complementary diversity, while uncertainty is driven by noncomplemen-
tary diversity, which negatively affects accuracy and calibration

38



3. Related works

ensemble members and can be monitored by analyzing their prediction errors. Diversity
exists because ensemble members have different modalities 1. Moreover, it has two types:
complementary and noncomplementary diversity.

Complementary diversity Diversity in ensemble members is complementary, if there is
enough redundancy to compensate for the prediction errors. In other words, if some
of the ensemble members make prediction errors for a given input, the others should
make accurate predictions to correct them. The complementary diversity reduces
generalization error and therefore boosts accuracy. Specifically, the accuracy of
an ensemble is obtained based on two regions of the input domain: the redundant
region, where all members agree, and the complementary diversity region, where
members compensate for the errors of others. Krogh et al. [165] and Hansen and
Salamon [156] provided theoretical and empirical evidence stating that diversity in
error distributions across ensemble members can improve ensemble performance.
In addition, according to Zhang et al. [69], the more accurate (redundant) and
the more (complementary) diverse the ensemble members, the more accurate the
ensemble. Furthermore, according to Zhang et al. [69] and further supported by
Rahaman and Thiery [81], confidence calibration is correlated to (complementary)
diversity and the more (complementary) diverse the ensemble members, the better
the ensemble calibration.

Noncomplementary diversity Diversity in ensemble members is noncomplementary,
if there is not enough redundancy to compensate for the prediction errors. In
other words, if some of the ensemble members make prediction errors for a given
input, the others cannot make accurate predictions to correct them. Hence, the
noncomplementary diversity can increase the model uncertainty at the cost of
reducing the accuracy and/or increasing the calibration error.

3.2.4. Ensembles and uncertainty estimation
Using an ensemble for uncertainty estimation has a long history. Parker [166] reviewed
some works that use ensembles to investigate uncertainty in the climate context. However,
it is only until the work of Lakshminarayanan et al. [15] that the application of ensembles
for uncertainty estimation in deep learning has gained momentum. Some related works
[78, 83, 79] compared ensembles to other methods of uncertainty estimation such as MCD
and concluded that ensembles performed better than MCD. Moreover, Gustafsson et
al. [83] experimentally showed that ensembles are more reliable and suitable to real-life
applications than MCD. These findings aligned with the results reported by Beluch et
al. [78] who found that ensemble methods generate more accurate and better calibrated

1Modality here is the manner in which ensemble members extract and explore feature representations.

39



3. Related works

predictions than MCD on active learning tasks. While Ashukha et al. [167] evaluated
the performance of ensembles in capturing in-domain uncertainty, Lakshminarayanan,
Pritzel, and Blundell [15] and Ovadia et al. [79] evaluated the performance of ensembles
in capturing OOD uncertainty. Moreover, Rahaman and Thiery [81], Ashukha et al.
[167], and Wu and Gales [168] calibrated ensembles via temperature scaling to improve
the quality of uncertainty estimates.

3.2.5. Challenges in building ensembles
Building diverse ensembles is challenging. One obstacle is the fact that the ensemble
members are trained for the same task using the same training data and are therefore
often highly redundant. Another obstacle is the fact that diversity and redundancy are
conflicting concepts because we cannot maximize diversity without minimizing redundancy
and vice versa. Moreover, introducing different types of diversity in ensembles requires
different strategies and may be conflicting. For instance, introducing noncomplementary
diversity for driving model uncertainty may harm the calibration. Furthermore, we still
do not have a clear understanding of diversity. For instance, given an existing method to
build an ensemble, it remains unclear what type (and to what extent) of diversity the
method introduced.

3.2.6. Techniques for building ensembles
Different techniques to build an ensemble exist in the literature, which were originally
proposed to improve accuracy [156]. This means that all existing works that utilized
an ensemble to improve uncertainty or calibration adopt a technique that was initially
proposed to improve accuracy. We reviewed and discussed the most popular approaches
for introducing diversity in an ensemble, such as random initialization, data shuffling,
bagging, boosting, data augmentation, and network architecture. Other approaches, such
as random subspace [169], learning under a unified ensemble-aware loss [170], snapshot
ensembles [171], and learning rate scheduling [172] are rarely used in the literature,
especially in the context of uncertainty estimation; hence, they are not reviewed and
discussed in this thesis.

Random initialization is the process of assigning random values to parameters (weights
and biases) of ensemble members. It is well known that two identical architectures
optimized with different initializations will converge to different solutions [97],
leading to decorrelated prediction errors. This is because different initializations
have different gradient calculations, using which parameters are found to minimize
the given error function. Hansen et al. [156], Krizhevsky et al. [108], and Simonyan
et al. [110] utilized the randomness introduced in the process of initializing
parameters to build ensembles for improving accuracy.

40



3. Related works

Data shuffling is the process of randomly selecting training data points for building
minibatches (small to large number of training data points). Particularly, to limit the
sensitivity of gradient calculations to a single training data point, training of neural
networks is conducted on minibatches. Different minibatches result in different
gradient calculations and subsequently, to different solutions. The randomness
introduced in the process of building minibatches can introduce diversity in ensemble
members. In the literature, data shuffling is always used in addition to random
initialization; this is exemplified in the work of Laschiminarayanan et al. [15],
where they used random initialization and data shuffling to build an ensemble for
uncertainty estimation.

Bagging (bootstrap aggregation) [173] uses subsets of the training data uniformly
sampled with replacement from the original training data to train ensemble members.
The random process of sampling training data points with replacement results in
subsets of the training data including similar training data points while missing
others. Therefore, bagging not only diversifies the distribution but also reduces
the size of the training data of single ensemble members and therefore encourages
specialization. Krogh et al. [165] utilized bagging to build an ensemble to boost
the accuracy. However, according to Lee et al. [170], bagging can result in
poorly calibrated ensembles caused by (noncomplementary) diversity owing to the
modification of the training data distribution.

Boosting uses subsets of the original training data, similar to bagging, however, the
ensemble members are trained in sequence and each one is trained to focus on
the mistakes of others [174]. Herein, training data points falsely classified by
already trained ensemble members are included in the training data of the next
ensemble member to be trained and are given more importance. Therefore, the
training data for the next ensemble member to train is obtained in a deterministic
way, contrary to bagging, wherein they are obtained randomly and independently
from the performance of previous trained members. Moghimi et al. [175] applied
boosting to CNNs to create an ensemble and improve its accuracy.

Data augmentation modifies the training data distribution while increasing the size
of the training data in contrast to bagging and boosting wherein they reduce
it. Augmenting the size of the training data can be achieved using existing data
augmentation techniques reviewed by Shorten et al. [6]. Different data augmentation
techniques result in different gradient calculations and solutions. Consequently,
the randomness introduced in a single or different data augmentation approaches
can be used to introduce diversity in ensemble members. For instance, Nanni et
al. [176] used different data augmentation approaches to improve the accuracy
of an ensemble for bioimage classification. Another example is the work of Guo

41



3. Related works

and Gould [177], wherein they improved the performance of an ensemble for object
detection by training ensemble members on different subsets of the training data
augmented using existing benchmarking datasets. Specifically, they augmented the
PASCAL VOC dataset [178] with the Microsoft COCO dataset [179]. However,
according to Wen et al. [82], data augmentation approaches such as MixUp [180]
can improve the accuracy of an ensemble at the cost of impairing the calibration.
Maroñas et al. [181] and Rahaman and Thiery [81] provided empirical evidence
supporting this negative impact of MixUp training on ensemble calibration. Wen
et al. [82] argued that label smoothing [91, 94] in MixUp training is responsible for
impairing the calibration. On the contrary, Maroñas et al. [181] and Rahaman and
Thiery [81] argued that the distributional shift (or data uncertainty) resulting from
convex mixing of pairs of images is responsible for the negative impact of MixUp
training on the calibration of an ensemble.

Network architecture involves introducing diversity through the structure (architecture)
rather than through the parameters using methods such as random initialization,
bagging, boosting, or data augmentation. Specifically, the architecture of a neural
network conditions the manner in which information are propagated from the input
to subsequent layers. Different architectures result in different gradient calculations
and therefore to different solutions. According to Zhang et al. [69], architectural
or structural diversity can help promote model diversity. This is exemplified in
their work, wherein they dropped structure elements (channels or blocks) instead
of processing units (neurons) to promote model diversity and improve confidence
calibration. In addition, Herron et al. [182] used neural architecture search to
build an ensemble of structural diverse neural networks and achieved an increased
accuracy owing to the structural diversity. Moreover, Guo and Gould [177] improved
the accuracy of an ensemble to detect objects by building ensemble members using
different architectures. Particularly, they used the GoogLeNet [183] architecture
for some ensemble members and the VGG-16 [110] for others.

In summary, while some techniques for building an ensemble such as random initialization,
data shuffling, and network architecture train ensemble members on the same original
training data, other methods such as bagging, boosting, and data augmentation train
them on different modified training data. Therefore, redundancy is ensured in an
ensemble by utilizing the same original training data or including similar training data
points in modified training data. Livieris et al. [184] compared bagging and boosting
strategies for building ensembles. They concluded that bagging performs better on a
small number of ensemble members while boosting performs better on a large number of
ensemble members. Therefore, since a small number of ensemble members are preferred
over a large one to keep the requirement in memory and computational demand in

42



3. Related works

minimum, bagging strategies are preferred over boosting ones. However, Lee et al.
[170] experimentally showed that the diversity introduced in ensemble members via
random parameter initialization is more useful than that introduced via bagging. They
concluded that random initialization may be preferred over bagging for building an
ensemble because of the large parameter space and the requirement for large training
data. Moreover, according to Lee et al. [170], bagging can result in poorly calibrated
ensembles. Although data augmentation enlarges the size of the training data, which
helps meet the requirement for large training data, it can result in poorly calibrated
ensembles, especially when using modern data augmentation techniques such as MixUp
[180]. This is exemplified in the studies of Maronas, Ramos, and Paredes [181] and
Rahaman and Thiery [81]. Consequently, standard label-preserving data augmentation
techniques such as rotation, translation, and flipping, are preferred over modern ones for
building calibrated ensembles. Nonetheless, we note that the calibration of an ensemble
can be improved using post-hoc methods such as temperature scaling [16] as exemplified
in the studies of Rahaman and Thiery [81], Ashukha et al. [167], and Wu and Gales
[168].

3.2.7. Summary and implications
The main idea behind the ensemble principle is combining the individual predictions
of multiple diverse neural networks (ensemble members) to estimate uncertainty. The
ensemble members need to be as accurate and diverse as possible for the ensemble
principle to be effective. The main challenge when building ensembles is to tradeoff
redundancy and diversity among the ensemble members. Therefore, several techniques
(reviewed and discussed in Section 3.2.6) were proposed in the literature. Among these
techniques, we used random initialization, data shuffling, and standard (label-preserving)
data augmentation techniques such as rotation, translation, flipping, shearing, and
additive Gaussian noise to build ensembles because these techniques do not (strongly)
affect the calibration of an ensemble. However, the needed memory and computational
requirements increased linearly with the number of ensemble members for training and
inference, thereby limiting the deployment of an ensemble in many practical applications
where the available computation power or memory is limited. Notwithstanding this,
several researchers [79, 167] have shown that using a small number of ensemble members
is sufficient to achieve a good-performing ensemble. For this reason, we will use a small
(5-20) number of ensemble members to keep the requirement in memory and computation
at minimum.

43



4. Uncertainty estimation methods
Herein, we are not concerned with improving the classification accuracy, reducing the
number of parameters, or improving the training or inference time of CNN-based classifiers.
Rather, our goal is to improve the quality of the predictive uncertainty. Particularly, we
want the predictive confidence measuring uncertainty to be high for TPs and low for FPs.
Therefore, we developed MCA, which is inspired by the MMCD, which combines the
strength of both ensemble and MCD.

4.1. Related methods

Convolution &
pooling layers

Discriminator

Fully connected
layers

Output class
probabilities

Feature extractor

Input image 

Figure 12.: Illustration of the two main modules of a CNN-based classifier. The feature
extractor is achieved using convolution and pooling layers, while the discrim-
inator is achieved using fully connected layers. The parameters of the two
modules are jointly learned during the training process

4.1.1. Baseline
Baseline is a single CNN. As explained in Section 2.2, a CNN is a neural network
with multiple layers such as convolution, pooling, and fully connected layers. CNN-
based classifiers for image classification are designed to extract relevant features directly
from raw pixel of the given input image and to discriminate them. Subsequently,
such classifiers include two main modules (see Figure 12): a features extractor and
discriminator. Therefore, a CNN-based classifier is a composite of two nonlinear functions

44



4. Uncertainty estimation methods

fFeatureExtractor() and fDiscriminator() parameterized by trainable model parameters (i.e.,
the neural network weights). Therefore

f : x ∈ RH×W×C → ŷ ∈ UK ; fDiscriminator(fFeatureExtractor(x)) = p(ŷ|x) . (4.1)

One of the main drawbacks of baseline is that it relies on a unique solution shaped by a
single CNN and the discriminator of this single CNN does not evaluate the uncertainty
associated with the extracted features.

Feature
extractor


Discriminator

MCD

Feature
sampling


Figure 13.: Overview of prediction estimation via MCD applying feature sampling in a
single CNN

4.1.2. Monte Carlo dropout
MCD is one of the most widely used variational inference methods for approximat-
ing a Bayesian neural network. As shown in Figure 13, MCD mainly samples x̂ =
fFeatureExtractor(x) with masks derived from known distributions such as Gaussian,
Bernoulli, or cascade of Gaussian and Bernoulli distribution [70]. In other words,
MCD is achieved using a nonlinear function fFeatureSampling() parameterized by random
variables obtained from known distributions, that is

fMCD : x̂ ∈ RF → x̂s ∈ RF ; x̂s = fFeatureSampling(x̂) , (4.2)

where F is the dimension of the feature vector x̂. In our study [70], we compared the
quality of uncertainty estimates obtained via dropout sampling with masks derived from
Gaussian, Bernoulli, or cascade of Gaussian and Bernoulli distributions. Among these,
we used the cascade of Gaussian and Bernoulli distributions, which reduces the number
of active neurons owing to the Bernoulli distribution and helps strengthen/weaken the
magnitude of active neurons owing to the Gaussian distribution. Herein, sampling is
achieved with random variables obtained from the cascade of Gaussian and Bernoulli
distributions and MCD samples x̂, as shown in Figure 17a and exemplified in Figure 14.
MCD estimates p(ŷ|x) by the mean of S feature sampling operations, that is

p(ŷ|x) ≈ 1
S

S∑
s=1

ps(ŷ|x) ≈ 1
S

S∑
s=1

fDiscriminator(x̂s). (4.3)

45



4. Uncertainty estimation methods




Figure 14.: An example showing two feature sampling operations, where x̂ is the original
feature vector, α1 and α2 are the sampling masks including random variables
obtained from a Gaussian distribution at the first and second feature sampling
operation, β1 and β2 are the sampling masks including random variables
obtained from a Bernoulli distribution at the first and second feature sampling
operation, and x̂1 = x̂ ∗α1 ∗β1 and x̂2 = x̂ ∗α2 ∗β2 are the perturbed feature
vectors obtained from the first and second feature sampling operation.

We refer to MCD as an average of S stochastic CNNs. Although the discriminator of MCD
evaluates the uncertainty associated with the extracted features, MCD relies on a unique
solution shaped by a single CNN. This means that the S stochastic CNNs are bounded
around the same unique solution. Moreover, the modeler can incorrectly specify the
predefined distribution from which masks will be obtained for feature sampling (or feature
perturbation). Since the architecture and dataset affect the predefined distribution [185],
specifying the optimal parameters (e.g., dropout probability) for a given dataset and
architecture can be time-consuming and costly and can therefore increase the complexity
of building MCD.

4.1.3. Deep ensemble
Deep ensemble is an ensemble (see Section 3.2) of deep neural networks. It was utilized
by Lakshminarayanan, Pritzel, and Blundell [15]; Ashukha et al. [167]; Beluch et al. [78];
Gustafsson, Danelljan, and Schon [78]; and Ovadia et al. [79] to estimate uncertainties.

46



4. Uncertainty estimation methods

Feature
extractor Discriminator

Feature
extractor Discriminator

Feature
extractor Discriminator

Figure 15.: Overview of prediction estimation via ensemble

As shown in Figure 15, given a set of CNNs fm = fDiscriminatorm(fFeatureExtractorm(·))
for m ∈ 1, 2, ...,M , the ensemble prediction p(ŷ|x) is estimated by averaging over the
predictions of the CNNs, that is

p(ŷ|x) = 1
M

M∑
m=1

pm(ŷ|x) = 1
M

M∑
m=1

fDiscriminatorm(fFeatureExtractorm(x)) . (4.4)

We refer to a deep ensemble (or an ensemble for short) as an average of M deterministic
CNNs. Although an ensemble overcomes the drawback of baseline and MCD by relying
on multiple solutions shaped by multiple CNNs, it does not evaluate the uncertainty
associated with the extracted features. Specifically, the discriminators of the members of
an ensemble do not evaluate the uncertainty associated with the outputs of the feature
extractors.

4.1.4. Mixture of Monte Carlo dropout
MMCD was utilized by Kahn et al. [30]; Lutjens, Everett, and How [31]; and Wilson and
Izmailov [74] to estimate uncertainties. While MCD relies on a single solution shaped by
a single CNN but additionally evaluates the uncertainty associated with the extracted
features, an ensemble evaluates multiple solutions shaped by multiple CNNs but does not
evaluate the uncertainty associated with the extracted features. Therefore, as shown in
Figure 16, MMCD utilizes MCD on the members of an ensemble to capitalize the power
and overcome the drawback of an ensemble by evaluating the uncertainty associated with
the extracted features. Given a set of CNNs fm = fDiscriminatorm(fFeatureExtractorm(·)) for

47



4. Uncertainty estimation methods

Figure 16.: Overview of prediction estimation via MMCD by applying feature sampling
in multiple CNNs

m ∈ 1, 2, ...,M , the MMCD prediction p(ŷ|x) is estimated as

p(ŷ|x) ≈ 1
M · S

M∑
m=1

S∑
s=1

pms(ŷ|x) ≈ 1
M · S

M∑
m=1

S∑
s=1

fDiscriminatorm(x̂ms), (4.5)

where x̂ms = fFeatureSampling(x̂m) is a feature sampled from x̂m = fFeatureExtractorm(x), as
shown in Figure 17a and exemplified in Figure 14. We refer to MMCD as an average
of M · S stochastic CNNs. Although MMCD overcomes the drawback of an ensemble
by applying MCD in ensemble members to force their discriminators to evaluate the
uncertainty associated with the extracted features, MMCD can experience some of
the problems of MCD. Particularly, the modeler of MMCD can incorrectly specify the
predefined distribution from which masks will be obtained for feature sampling. Moreover,
the design process of MMCD can be more complex than that of an ensemble because the
predefined distribution needs to be fine-tuned for a given architecture and dataset.

48



4. Uncertainty estimation methods

(a) feature sampling

(b) feature averaging

Figure 17.: Comparison of feature sampling (inherent in MMCD) and feature averaging
(inherent in MCA)

49



4. Uncertainty estimation methods

4.2. Monte Carlo averaging

4.2.1. Motivation
MMCD evaluates the uncertainty associated with the extracted features by obtaining
masks from a predefined distribution. The nature and/or parameters specifying this
distribution are a priori unknown (to the modeler) and vary depending on the dataset
and architecture. Hence, the process of building an MMCD can be time-consuming and
costly because the predefined distribution needs to be fine-tuned for a given dataset
and architecture. Therefore, we developed MCA, which doesn’t require a predefined
distribution (from which masks will be obtained for feature sampling). Similar to MMCD,
MCA relies on multiple solutions shaped by multiple CNNs and evaluates the uncertainty
associated with the extracted features. However, instead of applying MCD on ensemble
members, similar to MMCD, for feature perturbation, MCA averages features extracted by
the different ensemble members. Specifically, MCA evaluates the uncertainty associated
with the features extracted by one ensemble member by, sequentially and in a pairwise
manner, averaging or perturbing them with the features extracted by other ensemble
members. This is based on a rationale that features extracted by ensemble members are
different and can therefore be used for feature perturbation.

0 1 2 3 4 5 6 7 8 9
Bins of RMSE

0

50

100

150

# 
of

 sa
m

pl
es

0 1 2 3 4 5 6 7 8 9
Bins of CS

0

200

400

Figure 18.: Histograms of root mean square error (RMSE) and cosine similarity (CS)
measuring the similarity between features extracted by different ensemble
members. Lower bins include lower values, while higher bins include higher
values of RMSE and CS. The results were obtained via CIFAR10 using an
ensemble of CNNs trained with strong regularization (SR) and using the
subset of correctly classified test data, as shown in Appendix A.6

50



4. Uncertainty estimation methods










Figure 19.: An example showing feature averaging operations performed by the first,
second, and third ensemble members. x̂1, x̂2, and x̂3 are the feature vectors
extracted by the first, second, and third ensemble members, respectively.
x̂a12 = 1

2(x̂1 + x̂2), x̂a13 = 1
2(x̂1 + x̂3), x̂a21 = 1

2(x̂2 + x̂1), x̂a23 = 1
2(x̂2 + x̂3),

x̂a31 = 1
2(x̂3 + x̂1), and x̂a32 = 1

2(x̂3 + x̂2) are pairwise averaged features,
which are used to evaluate the uncertainty associated with extracted features.
Particularly, the discriminator of the first ensemble member processes x̂1,
x̂a12 , and x̂a13 . The discriminator of the second ensemble member processes
x̂2, x̂a21 , and x̂a23 . Lastly, the discriminator of the third ensemble member
processes x̂3, x̂a31 , and x̂a32 .

51



4. Uncertainty estimation methods

4.2.2. Analyzing features extracted by ensemble members
Given members m ∈ 1, 2, ...,M and n ∈ 1, 2, ...,M (with n 6= m), we measure the
similarity between feature vector x̂m = fFeatureExtractorm(x) and x̂n = fFeatureExtractorn(x)
via root mean square error (RMSE) and cosine similarity (CS). RMSE measures the
difference in magnitude between x̂m and x̂n and determines whether the two vectors
are similar in terms of magnitude. CS measures the cosine of the angle between the
two vectors and determines whether the two vectors are pointing in (roughly) the same
direction. The RMSE is defined as

RMSE =

√√√√ 1
F

F∑
i=1

(x̂mi − x̂ni )2, (4.6)

and the CS is defined as
CS = x̂m · x̂n

||x̂m|| · ||x̂n||
, (4.7)

where ||x̂m|| is the Euclidean norm of vector x̂m. The lower (closer to 0) the RMSE,
the smaller the error between x̂m and x̂n and the greater the match between the two
vectors in terms of magnitude. Moreover, the higher (closer to 1) the CS, the smaller
the angle between x̂m and x̂n and the greater the match between the two vectors in
terms of orientation. Figure 18 presents the histograms of RMSE and CS measuring
the similarity between features extracted by two members of an ensemble. The results
show that only higher bins of RMSE and lower bins of CS are populated, that is, the
RMSE and CS between x̂m and x̂n are higher (closer to 1) and lower (closer to 0),
respectively. This implies that features extracted by ensemble members are different
in terms of magnitude and orientation, that is, they extract different features from the
same given input. To further support this argument, we evaluated the classification
accuracy when discriminators of ensemble member m (only) evaluate features extracted
by ensemble member n which is denoted by n 6= m. Hence, we estimate p(ŷ|x) as

p(ŷ|x) = 1
M2

M∑
m=1

M∑
n=1

pmn(ŷ|x) = 1
M2

M∑
m=1

M∑
n=1

fDiscriminatorm(x̂n) . (4.8)

Afterward, we observed that the accuracy drastically declined, meaning that discrimina-
tors of ensemble member m cannot correctly evaluate features extracted by ensemble
member n. For instance, the accuracy of an ensemble of DenseNet trained on CIFAR10
using strong regularization (SR) drops to 17.73% from 89.50% when we estimated p(ŷ|x)
as showed in Equation 4.8. This implies that features extracted by the ensemble members
are different and cannot be evaluated by discriminators of other ensemble members. Hence,
the feature vector x̂n of ensemble member n can be used to perturb the feature vector
x̂m of ensemble member m.

52



4. Uncertainty estimation methods

Feature
extractor Discriminator

Feature
extractor Discriminator

Feature
extractor Discriminator

Feature
averaging

Feature
averaging

Feature
averaging

Figure 20.: Overview of prediction estimation via MCA by applying feature averaging in
multiple CNNs

4.2.3. Applying feature averaging in ensemble members
To perturb the feature vector x̂m of ensemble member m using the feature vector x̂n
of ensemble member n, we must make sure that the discriminator of ensemble member
m will classify the perturbed features x̂amn to the same class associated with x̂m to
preserve the classification accuracy. Therefore, MCA performs a pairwise averaging of
x̂m and x̂n to obtain x̂amn . Particularly, MCA sequentially perturbs x̂m by averaging
it with x̂n, as shown in Figure 17b and exemplified in Figure 19. Given a set of CNNs
fm = fDiscriminatorm(fFeatureExtractorm(·)), MCA estimates p(ŷ|x) as

p(ŷ|x) = 1
M2

M∑
m=1

M∑
n=1

pamn (ŷ|x) = 1
M2

M∑
m=1

M∑
n=1

fDiscriminatorm(x̂amn ). (4.9)

where x̂amn = 1
2 x̂

m + 1
2 x̂

n. By averaging features of ensemble members in a pairwise
manner, MCA forces discriminators to evaluate the uncertainty associated with the
extracted features. We refer to MCA as an average of M2 deterministic CNNs. We
continued without considering that if MCA does not perform the pairwise averaging
and instead averages the features of more than two ensemble members, then the level of
perturbation in the averaged features will drastically increase. This will have a negative
impact on the classification accuracy. Therefore, it is recommended to integrate MCA
with the pairwise averaging proposed in this thesis. Moreover, future works can study
weighing approaches for the pairwise averaging of features of ensemble members.

53



4. Uncertainty estimation methods

TPs
FPs (OOD)

FPs (Swap)
FPs (Noisy)

0.00

0.05

0.10

0.15

0.20

0.25

AS
D

MCD
Ensemble
MMCD
MCA

Figure 21.: Comparison of the average standard deviation (ASD) obtained on CIFAR10
using CNNs with large capacities trained using weak regularization (WR)
and evaluated on TPs and FPs. TPs were obtained on subsets of test data
correctly classified, while FPs were obtained on swap, noisy, or OOD data, as
described in Appendix A.6

4.3. Importance of feature averaging or feature
sampling

It is clear that feature averaging (inherent in MCA) and feature sampling (inherent in
MMCD) are used to evaluate the uncertainty associated with the extracted features of
ensemble members. Therefore, both approaches improve the predictive uncertainty of
the underlying ensemble. However, the manner of improving the predictive uncertainty
remains ambiguous. To clarify this, we argue that by evaluating the uncertainty associated
with the features extracted by the ensemble members, MCA and MMCD can capture the
diversity between the ensemble members better than the underlying ensemble. In other
words, feature sampling and averaging help to better capture the variability between
ensemble members and to therefore improve the predictive uncertainty of the underlying
ensemble. To provide empirical evidence supporting this argument, Figure 21 presents
the average standard deviation (ASD) between predictions of the underlying ensemble,
MMCD, and MCA. The results show that for FPs owing to OOD data, the ASD of
the underlying ensemble is lower than that of MMCD and MCA. This means that the
underlying ensemble fails to capture the variability between ensemble members, while
MMCD and MCA succeed owing to feature sampling and feature averaging, respectively.

54



4. Uncertainty estimation methods

Features
extractor


DiscriminatorFeatures
sampling

MCD




Figure 22.: Illustration of the process of extracting statistical data, such as the average
cosine similarity (ACS) and average root mean square error (ARMSE), from
the sampled features. The statistical data are visualized using histograms, as
shown in Figure 23

4.4. Comparison of feature sampling and feature
averaging

Feature averaging (inherent in MCA) and feature sampling (inherent in MMCD) are
types of feature perturbation. We then evaluated how each perturbation modifies the
original features. For this purpose, we measure the similarity (using the RMSE and the
CS) between the original feature vector x̂ and the sampled (x̂s) or averaged (x̂a) feature
vector. Specifically, we estimated the average cosine similarity (ACS) and average root
mean square error (ARMSE) over perturbed samples. Figure 22 presents the process of
building histograms of ACS and ARMSE from the sampled features. The same procedure
is applied for building histograms from the averaged features. Figure 23 presents the
histograms of ACS and ARMSE obtained via feature sampling and averaging. The
results show that lower bins of ARMSE and higher bins of ACS are more populated
via feature averaging than feature sampling. This means that feature averaging results
in lower ARMSE and higher ACS than feature sampling. Moreover, this implies that
feature averaging produces features that are more similar to the original ones than feature
sampling, that is, feature averaging preserves similarity better than feature sampling.
This indicates that feature averaging can preserve the classification accuracy better than

55



4. Uncertainty estimation methods

0 1 2 3 4 5 6 7 8 9
Bins of ARMSE

0

200

400

# 
of

 sa
m

pl
es

Feature averaging

0 1 2 3 4 5 6 7 8 9
Bins of ARMSE

0

200

Feature sampling

0 1 2 3 4 5 6 7 8 9
Bins of ACS

0

500

1000

# 
of

 sa
m

pl
es

Feature averaging

0 1 2 3 4 5 6 7 8 9
Bins of ACS

0

200

400

Feature sampling

Figure 23.: Comparison of histograms of ACS and ARMSE obtained from the sampled
and averaged features. Lower bins include lower values, while higher bins
include higher values of ACS and ARMSE. The results were obtained via
CIFAR10 using an ensemble of CNNs trained with SR and using the subset
of correctly classified test data, as described in Appendix A.6

feature sampling. We continued without considering that feature sampling results in
higher ARMSE and lower ACS owing to dropout that eliminates some relevant features.
By fine-tuning the dropout probability, we can achieve performance similar to MCA;
however, this fine-tuning process can be time-consuming and costly.

4.5. Summary and implications
We aim to improve the separability of TPs and FPs by estimating and evaluating the
uncertainty associated with predictions of CNN-based classifiers. Particularly, we want
the predictive confidence measuring uncertainty to be high for TPs and low for FPs.
Therefore, we developed MCA inspired by the MMCD, which combines the strength of
ensemble and MCD. Similar to baseline, MCD relies on a unique solution shaped by a
single CNN and evaluates the uncertainty associated with the extracted features. On the
contrary, an ensemble evaluates multiple solutions shaped by multiple CNNs but does

56



4. Uncertainty estimation methods

not evaluate the uncertainty associated with the extracted features. By applying MCD
in ensemble members, MMCD evaluates multiple solutions shaped by multiple CNNs
similar to an ensemble and also evaluates the uncertainty associated with the extracted
features similar to MCD. However, MMCD can have the same drawback as MCD, that
is, the modeler of MMCD can incorrectly specify the predefined distribution from which
masks will be obtained for feature sampling. Moreover, the design process of MMCD
can be more complex than that of an ensemble because the predefined distribution needs
to be fine-tuned to a given architecture and dataset. Therefore, MCA replaces feature
sampling operations (inherent in MMCD) with feature averaging operations. Particularly,
MCA evaluates the uncertainty associated with the features extracted by one ensemble
member by sequentially averaging it in a pairwise manner with the features extracted
by other ensemble members. This is based on a rationale that features extracted by
ensemble members are different. Feature sampling and averaging help to better capture
the variabilities of ensemble members and to therefore improve the predictive uncertainty
of the underlying ensemble. However, feature averaging can preserve the classification
accuracy better than feature sampling, because feature averaging can preserve the
similarity between perturbed features and the original ones better than feature sampling.
In addition, feature averaging relies on features extracted by ensemble members, while
feature sampling requires a predefined distribution, which relies on the dataset and
architecture. Moreover, the outcome of feature averaging operations is deterministic
while that of feature sampling operations is stochastic. Therefore, feature sampling can
required more samples than feature averaging to evaluate the uncertainty associated with
extracted features, owing to this stochastic nature. Consequently, this can increase the
inference time. To provide empirical evidence supporting these theoretical findings, we
empirically compared MCA and related methods.

57



5. Empirical comparison of MCA
and related methods

We empirically compared MCA and related methods such as baseline (single CNN),
MCD, ensemble, and MMCD. We expect a good method to estimate uncertainties to
preserve the accuracy while giving a good estimate of uncertainty (confidence). There-
fore, we empirically compared all methods with respect to the accuracy and quality of
confidence. We evaluated the quality of confidence by assessing the degree of confidence
calibration and the ability to separate TPs and FPs. Specifically, we assessed the degree
of confidence calibration by evaluating the calibration errors. In addition, we assessed
the ability to separate TPs and FPs by evaluating the average confidence. Appendix A.5
presents all evaluation metrics (accuracy, expected calibration error (ECE), and aver-
age confidence). In addition, Appendix A.2 presents the experimental architectures.
Moreover, Appendix A.1 presents the experimental datasets. Particularly, experiments
were conducted on CIFAR10, MNIST, and Fashion-MNIST and GTSRB evaluated on
DenseNets, VGGNets, and ResNets, respectively. Appendix A.4 presents all inference
details.

5.1. Analyzing accuracy and calibration error
Tables 2 and 3 present the classification accuracy (CA), average confidence (AC), and
ECE of MCA and related methods for CNNs with small and large capacities, respectively.
The results show that MCD can preserve the accuracy of the underlying baseline,

especially for CNNs with large capacities. However, it can reduce the accuracy of the
underlying baseline for CNNs with small capacities. For instance, as shown in Table 3, on
CIFAR10, MCD decreased the accuracy of baseline to 85.76% from 86.02% for CNNs with
large capacities. However, as shown in Table 2, on the same CIFAR10, MCD decreased
the accuracy of baseline to 77.96% from 83.07% for CNNs with small capacities. This
means that the decrease in the accuracy of baseline caused by MCD is minimal for CNNs
with large capacities but large for CNNs with small capacities. Notwithstanding this, as
shown in Table 2, whether MCD will (significantly) decrease the accuracy of baseline
depends on the capacity of the underlying CNN and the dataset. For instance, as shown
in Table 2, on MNIST, MCD decreased the accuracy of baseline to 98.26% from 98.39%.

58



5. Empirical comparison of MCA and related methods

Table 2.: classification accuracy (CA),
average confidence (AC) (in
bracket), and ECE obtained via
CNNs with small capacities (see
Table 13) trained using SR (see
Table 9). The results were ob-
tained using test data, as de-
scribed in Appendix A.6

CA (AC)
[
%
]
↑ ECE

[
%
]
↓

CIFAR10 (DenseNets)
Baseline 83.07 (89.80) 7.00
MCD 77.96 (59.44) 18.53
Ensemble 89.46 (84.64) 5.15
MMCD 86.67 (57.58) 29.10
MCA 89.03 (68.04) 21.01
Fashion-MNIST (ResNets)
Baseline 90.90 (91.82) 1.68
MCD 88.98 (74.80) 14.28
Ensemble 92.74 (87.99) 5.11
MMCD 91.47 (71.38) 20.10
MCA 92.32 (72.86) 19.55
MNIST (VGGNets)
Baseline 98.39 (98.07) 0.83
MCD 98.26 (88.76) 9.54
Ensemble 98.95 (97.67) 1.39
MMCD 98.83 (89.41) 9.45
MCA 98.61 (88.43) 10.22
GTSRB (ResNets)
Baseline 97.12 (98.79) 1.79
MCD 97.11 (91.91) 5.37
Ensemble 98.57 (97.59) 1.13
MMCD 98.50 (91.58) 6.93
MCA 97.95 (94.67) 3.34

Table 3.: Classification accuracy (CA),
average confidence (AC) (in
bracket), and ECE obtained via
CNNs with large capacities (see
Table 14) trained using SR (see
Table 9). The results were ob-
tained using test data, as de-
scribed in Appendix A.6

CA (AC)
[
%
]
↑ ECE

[
%
]
↓

CIFAR10 (DenseNets)
Baseline 86.02 (86.36) 2.06
MCD 85.76 (70.58) 15.22
Ensemble 90.15 (83.48) 6.75
MMCD 89.67 (69.85) 19.82
MCA 89.75 (69.27) 20.49
Fashion-MNIST (ResNets)
Baseline 88.58 (85.22) 3.70
MCD 89.07 (71.60) 17.48
Ensemble 92.99 (86.87) 6.34
MMCD 93.09 (75.64) 17.46
MCA 92.96 (69.88) 23.09
MNIST (VGGNets)
Baseline 98.18 (98.14) 0.74
MCD 98.15 (94.53) 3.88
Ensemble 99.11 (98.25) 1.12
MMCD 99.13 (94.78) 4.48
MCA 99.13 (85.34) 13.81
GTSRB (ResNets)
Baseline 93.41 (97.17) 3.87
MCD 93.38 (90.30) 3.54
Ensemble 94.68 (92.55) 2.59
MMCD 94.71 (85.74) 9.05
MCA 94.62 (77.56) 17.18

In addition, the results show that an ensemble can preserve or improve the accuracy
of the underlying baseline for CNNs with small and large capacities. For instance, as
shown in Table 2, on MNIST, ensemble increased the accuracy of baseline to 98.95%
from 98.39%. However, on CIFAR10, ensemble increased the accuracy of baseline to
89.46% from 83.07%. Table 3 presents a similar pattern.

59



5. Empirical comparison of MCA and related methods

Moreover, the results show that MMCD can preserve the accuracy of the underlying
ensemble, especially for CNNs with large capacities. However, it can reduce the accuracy
of the underlying ensemble for CNNs with small capacities. For instance, as shown in
Table 3, on CIFAR10, MMCD decreased the accuracy of the underlying ensemble to
89.67% from 90.15% for CNNs with large capacities. However, as shown in Table 2,
on the same CIFAR10, MMCD decreased the accuracy of the underlying ensemble to
86.67% from 89.46% for CNNs with small capacities. This means that the decrease
in the accuracy of the underlying ensemble caused by MMCD is minimal for CNNs
with large capacities but large for CNNs with small capacities. Notwithstanding this,
as shown in Table 2, whether MMCD will (significantly) decrease the accuracy of the
underlying ensemble depends on the capacity of the underlying CNNs and the dataset.
For instance, as shown in Table 2, on MNIST, MMCD decreased the accuracy of the
underlying ensemble to 98.83% from 98.95%.

Further, the results show that MCA preserves the accuracy of the underlying ensemble
for all datasets and for CNNs with small and large capacities. For instance, as shown
in Table 2, on CIFAR10, MCA decreased the accuracy of the underlying ensemble to
89.03% from 89.46% for CNNs with small capacities. In addition, as shown in Table 3, on
the same CIFAR10, MCA decreased the accuracy of the underlying ensemble to 89.75%
from 90.15% for CNNs with large capacities.
Finally, the results show that whether the calibration error of baseline is better than

that of an ensemble depends on the capacity of the underlying CNNs and the dataset.
For instance, as shown in Table 3, on all datasets except GTSRB, the ECE of baseline
is lower than that of ensemble. However, as shown in Table 2, on all datasets except
CIFAR10, the ECE of baseline is lower than that of ensemble. In addition, the results
show that an ensemble is better calibrated than MCD, MMCD, and MCA owing to the
low ECE of ensemble. Moreover, the results show that MCD is (often) better calibrated
than MMCD and MCA owing to the low ECE of MCD. However, whether MMCD is
better calibrated than MCA depends on the capacity of the underlying CNNs and the
dataset. For instance, as shown in Table 3, on CIFAR10, the ECE of MMCD is lower
than that of MCA for CNNs with large capacities. On the contrary, as shown in Table 2,
on the same CIFAR10, the ECE of MCA is lower than that of MMCD for CNNs with
small capacities. However, as shown in Tables 2 and 3, on MNIST, the ECE of MMCD
is lower than that of MCA for CNNs with small and large capacities.

5.2. Analyzing the ability to separate TPs and FPs
To evaluate the ability of MCA and related methods to separate TPs and FPs, we
compared their average confidence on evaluation data causing TPs and FPs. Specifically,
we obtained TPs on subsets of correctly classified test data, while FPs caused by struc-

60



5. Empirical comparison of MCA and related methods

Table 4.: The average confidence (AC) ob-
tained via CNNs with small ca-
pacities (see Table 13) trained
using SR (see Table 9) and eval-
uated on datasets, thereby gen-
erating TPs and FPs

TPs
↑

FPs
(OOD)
↓

FPs
(Swap)
↓

FPs
(Noisy)
↓

CIFAR10 (DenseNets) : AC
[
%
]

Baseline 97.60 35.64 74.89 100.00
MCD 67.92 22.48 42.50 41.55
Ensemble 97.51 39.82 61.20 51.25
MMCD 68.74 21.78 37.98 26.29
MCA 82.11 33.76 42.39 37.34
Fashion-MNIST (ResNets) : AC

[
%
]

Baseline 97.52 74.23 78.04 99.99
MCD 81.53 41.49 50.26 39.76
Ensemble 96.46 70.00 58.73 26.57
MMCD 79.30 45.19 41.57 21.90
MCA 80.84 44.56 43.05 35.04
MNIST (VGGNets) : AC

[
%
]

Baseline 99.28 81.95 74.22 100.00
MCD 90.56 59.03 49.37 34.76
Ensemble 99.23 80.97 60.62 77.05
MMCD 90.84 60.10 43.68 50.77
MCA 89.49 62.38 46.18 78.09
GTSRB (ResNets) : AC

[
%
]

Baseline 99.90 86.46 72.90 45.84
MCD 93.20 40.41 41.33 27.27
Ensemble 99.83 88.71 45.28 26.53
MMCD 93.21 48.31 30.64 17.56
MCA 97.17 76.86 34.94 21.89

Table 5.: The average confidence (AC) ob-
tained via CNNs with large ca-
pacities (see Table 14) trained
using SR (see Table 9) and eval-
uated on datasets, thereby gen-
erating TPs and FPs

TPs
↑

FPs
(OOD)
↓

FPs
(Swap)
↓

FPs
(Noisy)
↓

CIFAR10 (DenseNets) : AC
[
%
]

Baseline 95.93 88.29 57.88 64.43
MCD 82.69 35.72 38.56 39.18
Ensemble 96.40 38.41 50.28 51.98
MMCD 83.47 24.34 35.63 27.97
MCA 83.20 19.40 36.17 30.10
Fashion-MNIST (ResNets) : AC

[
%
]

Baseline 91.89 70.40 53.34 99.73
MCD 78.32 49.57 39.80 69.67
Ensemble 95.06 49.83 55.71 58.04
MMCD 83.26 37.40 44.21 38.81
MCA 77.12 32.83 37.83 35.83
MNIST (VGGNets) : AC

[
%
]

Baseline 99.38 60.86 61.58 99.30
MCD 96.00 44.93 49.39 93.28
Ensemble 99.34 55.95 52.59 81.46
MMCD 95.88 48.23 43.02 69.89
MCA 86.40 38.88 34.91 58.49
GTSRB (ResNets) : AC

[
%
]

Baseline 99.71 56.87 53.64 94.44
MCD 94.07 26.09 31.23 43.29
Ensemble 99.13 34.10 39.20 32.67
MMCD 92.22 17.93 27.58 21.87
MCA 84.32 16.13 21.27 12.01

tural perturbation of objects were obtained on swap data. In addition, FPs caused by
perturbation of objects with Gaussian noise were obtained on noisy data, and FPs caused
by objects of unknown domain were obtained on OOD data. Appendix A.6 presents all
evaluation data. Tables 4 and 5 present the results obtained on these evaluation data

61



5. Empirical comparison of MCA and related methods

for CNNs with small capacities and large capacities, respectively. Note that TPs and
FPs are separable when the confidence for TPs is high and the confidence for FPs is low.
Therefore, we expect the average confidence to be high on evaluation data causing TPs
and low on evaluation data causing FPs.

The results show that the average confidence of ensemble for TPs is similar to or even
higher than that of baseline, which is true for all datasets and for CNNs with small and
large capacities. However, the average confidence of MCD, MMCD, and MCA for TPs is
(often) lower than that of the underlying baseline. For instance, as shown in Table 5,
on CIFAR10, ensemble increased the average confidence for TPs of baseline to 96.40%
from 95.93%, while MCD reduces it to 82.69%. Similarly, MMCD and MCA reduced the
average confidence for TPs of the underlying ensemble to around 83% from 96.40%. This
means that while an ensemble can preserve or increase the degree of confidence for TPs,
MCD, MMCD, and MCA can reduce it. In addition, the results show that the decreased
degree of confidence (caused by MCD and MMCD) for TPs depends on the datasets and
the capacity of the underlying CNNs. For instance, as shown in Table 5, on CIFAR10
evaluated on CNNs with large capacities, MMCD reduced the average confidence for TPs
of the underlying ensemble to 83.47% from 96.40%. On the contrary, as shown in Table 4,
on the same CIFAR10 evaluated on CNNs with small capacities, MMCD reduced the
average confidence for TPs of the underlying ensemble to 68.74% from 97.51%. Herein,
the reduced average confidence for TPs is larger for CNNs with small capacities than for
CNNs with large capacities.
Furthermore, the results show that the average confidence of baseline for all FPs is

(often) larger than that of all other methods, which is true for all experiments. This
means that MCD, ensemble, MMCD, and MCA reduced the degree of confidence for FPs.
In addition, the results imply that whether an ensemble reduces the confidence for FPs
better than MCD depends on the dataset, capacity of the underlying CNNs, and/or type
of FPs. For instance, as shown in Table 5, on all datasets except CIFAR10, the average
confidence of ensemble for FPs owing to noisy data is lower than that of MCD. However,
on all datasets including CIFAR10, the average confidence of ensemble for FPs owing
to swap and OOD data is higher than that of MCD. Table 4 presents a similar pattern
between ensemble and MCD.
In addition, the results show that the average confidence of MMCD and MCA on

all FPs are (often) lower than that of the underlying ensemble, which is true for all
experiments. This means that MMCD and MCA reduced the confidence of the underlying
ensemble for all FPs. Finally, the results show that MCA can maintain a low confidence
for all FPs similar to or sometimes even better than MMCD.

62



5. Empirical comparison of MCA and related methods

Table 6.: Mean and standard deviation
of inference time (in seconds)
obtained over 100 test samples
via CNNs with small capacities
trained using SR

Time [s] ↓
CIFAR10 (DenseNets)
Baseline 0.03± 0.01
MCD 0.50± 0.02
Ensemble 0.57± 0.03
MMCD 10.58± 0.30
MCA 2.46± 0.32
Fashion-MNIST (ResNets)
Baseline 0.03± 0.01
MCD 0.54± 0.03
Ensemble 0.72± 0.01
MMCD 10.58± 0.28
MCA 2.33± 0.11
MNIST (VGGNets)
Baseline 0.02± 0.01
MCD 0.80± 0.05
Ensemble 0.49± 0.02
MMCD 13.21± 0.49
MCA 2.94± 0.38
GTSRB (ResNets)
Baseline 0.05± 0.01
MCD 0.98± 0.09
Ensemble 1.12± 0.08
MMCD 15.74± 0.70
MCA 3.59± 0.22

Table 7.: Mean and standard deviation
of inference time (in seconds)
obtained over 100 test samples
via CNNs with large capacities
trained using SR

Time [s] ↓
CIFAR10 (DenseNets)
Baseline 0.06± 0.01
MCD 1.33± 0.09
Ensemble 1.22± 0.05
MMCD 22.30± 0.42
MCA 5.00± 0.25
Fashion-MNIST (ResNets)
Baseline 0.06± 0.01
MCD 1.14± 0.07
Ensemble 1.21± 0.05
MMCD 21.72± 0.56
MCA 4.95± 0.14
MNIST (VGGNets)
Baseline 0.03± 0.01
MCD 1.72± 0.22
Ensemble 0.76± 0.05
MMCD 25.45± 0.96
MCA 4.92± 0.15
Inference time∗[s]
Baseline 0.08± 0.01
MCD 1.53± 0.11
Ensemble 1.69± 0.10
MMCD 30.31 ± 1.04
MCA 6.58± 0.32

5.3. Analyzing the inference time
To evaluate the computational cost for uncertainty estimation, we compared the inference
time (in seconds) of MCA and related methods. Tables 6 and 7 summarize the results
for CNNs with small and large capacities, respectively. The results show that the
inference time is larger for CNNs with large capacities than CNNs with small capacities.
This means that the increase in the capacity of CNNs increased the inference time.
Moreover, the results show that MMCD has the largest inference time followed by MCA.
Particularly, the inference time of MMCD is four times larger than that of MCA, which is

63



5. Empirical comparison of MCA and related methods

also significantly larger than that of ensemble and MCD. However, whether the inference
time of ensemble is larger than that of MCD depends on the architecture and/or capacity
of CNNs. For instance, as shown in Table 6, on CIFAR10, the inference time of MCD is
larger than that of the ensemble. On the contrary, as also shown in Table 6, on the same
CIFAR10, the inference time of ensemble is larger than that of MCD. Finally, the results
show that baseline has the smallest inference time among the methods.

5.4. Summary and implications
We empirically compared MCA and related methods (such as baseline (single CNN),
MCD, ensemble, and MMCD) based on the results from experiments conducted on four
datasets using three different architectures. The comparison was done considering their
accuracy, calibration errors, ability to separate TPs and FPs based on the evaluation of
the degree of confidence, and inference time.
Empirical results show that while MCD can preserve or decrease the accuracy of

the underlying baseline depending on the capacity of the underlying CNN and the
dataset, an ensemble can preserve or increase it. This finding is supported by previous
studies [110, 111], which demonstrated that an ensemble can increase accuracy. In
addition, Section 3.2.2 discusses the possible reasons explaining why an ensemble can
improve accuracy. However, while MMCD can preserve or decrease the accuracy of the
underlying ensemble depending on the capacity of the underlying CNNs and the dataset,
MCA can only preserve it. We argue that the decreased accuracy of baseline and ensemble
caused by MCD and MMCD, respectively, results from the incorrect specification of the
predefined distribution from which masks for feature sampling (inherent in MCD and
MMCD) are obtained. Specifically, the parameters shaping the predefined distribution
need to be fine-tuned according to the capacity of the underlying CNNs and the dataset.
In other words, the dropout probability of 0.5 is not optimal for all CNNs of various
capacities and all datasets. Therefore, given a specific CNN and dataset, one needs
to find the optimal dropout probability. The process of finding the optimal dropout
probability can make the design of MCD and MMCD time-consuming and costly. We
note that MCA preserves the accuracy of the underlying ensemble for all datasets and
CNNs of various capacities because feature averaging (inherent in MCA) preserves the
similarity between augmented and original features (see Section 4.4).
Further, the results show that whether ensemble is better calibrated than baseline

depends on the capacity of the underlying CNNs and the dataset. Notwithstanding this,
an ensemble is better calibrated than MCD, which is in turn (often) better calibrated
than MMCD and MCA. This is because MCD, MMCD, and MCA reduce the degree of
confidence for TPs and the larger the decrease in the degree of confidence for TPs, the
larger the calibration error. Moreover, an ensemble can reduce the degree of confidence

64



5. Empirical comparison of MCA and related methods

for FPs, thereby increasing or preserving the degree of confidence for TPs. On the
contrary, MCD, MMCD, and MCA can reduce the degree of confidence for FPs, thereby
reducing the degree of confidence for TPs. For MCD and MMCD, the decreased degree
of confidence for TPs depends on the dataset and capacity of the underlying CNNs. In
addition, whether MMCD is better calibrated than MCA depends on the capacity of the
underlying CNNs and the dataset.

Furthermore, whether an ensemble reduces the degree of confidence on FPs better than
MCD depends on the dataset, capacity of the underlying CNNs, and/or type of FPs. This
finding implies that we cannot claim that an ensemble captures uncertainty (e.g., degree
of confidence) better than MCD and vice versa. This contradicts with some previous
studies [78, 83, 79], which claim that an ensemble captures uncertainty better than
MCD. Notwithstanding this, MMCD and MCA reduced the confidence of the underlying
ensemble on all FPs. This means that MMCD and MCA capture uncertainty better
than an ensemble. This is because MMCD and MCA evaluate not only multiple features
extracted by ensemble members similar to an ensemble but also the uncertainty associated
with the individual feature. By evaluating the uncertainty associated with the individual
feature thanks to feature sampling (inherent in MMCD) and feature averaging (inherent
in MCA), MMCD and MCA capture the diversity between the ensemble members better
than an ensemble and therefore improve the uncertainty. In addition, the results show
that MCA can maintain a low confidence for all FPs similar to or sometimes even better
than MMCD.
Finally, the results show that baseline has the smallest inference time compared to

other methods. This is not surprising because baseline evaluates a single CNN and
performs a single forward pass, while other methods evaluate multiple CNNs or perform
multiple forward passes. This means that MCD, ensemble, MMCD, and MCA improve
uncertainty at the cost of increasing the inference time. Notwithstanding this, whether
the inference time of ensemble is larger than that of MCD depends on the architecture
and/or capacity of CNNs. Moreover, although the inference time of MCA is significantly
larger than that of ensemble and MCD, it is four times smaller than that of MMCD.

Overall, the empirical results imply the dominance of MMCD and MCA over previous
methods, such as MCD and ensemble. In addition, assuming that MMCD and MCA are
well-specified for a given dataset and architecture, then both methods can have similar
performance because they have the same purpose and underlying principle. However, the
design process of MMCD is more complex than that of MCA. This is because MMCD
requires the specification of a predefined distribution, from which masks will be obtained
for feature sampling, while MCA relies on features extracted by ensemble members for
feature averaging. Moreover, the inference time of MMCD is four times larger than that
of MCA owing to the large amount of feature sampling operations.
However, the main drawback of MMCD and MCA is that they reduce not only the

degree of confidence for FPs but also for TPs. The decreased degree of confidence for

65



5. Empirical comparison of MCA and related methods

TPs can increase the calibration error. If the confidence drop for TPs is too large, it can
harm the separability between FPs and TPs, for example, when the degree of confidence
for TPs falls in the intervals 0% and 50%. Therefore, ameliorating the confidence drop
for TPs can further improve the performance of MMCD and MCA. In Chapter 6 and
Chapter 7, we attempted to solve this issue.

66



6. Addressing underconfidence by
averaging logit instead of
probability

6.1. Motivation
The main drawback of MCA and MMCD is that they reduce not only the confidence for
FPs but also for TPs. Although the confidence drop for FPs is relevant, the confidence
drop for TPs is alarming. In addition, we argue that the confidence drop for TPs is caused
by inductive biases inherent in ensemble members or introduced by feature sampling
(inherent in MMCD) or feature averaging (inherent in MCA). Therefore, we utilized logit
instead of probability averaging in MCA and related methods (as shown in our research
paper [102]) to reduce the level of inductive biases negatively influencing the confidence.

6.2. Using logit instead of probability averaging
In the CNN-based classifiers, the predictions of multiple ensemble members are combined
by averaging softmax outputs (probabilities). However, as derived from our research
paper [102], we can average softmax inputs (logits) instead of probabilities to reduce
the influence of inductive biases and increase the confidence of the ensemble prediction,
as shown in Figure 24 taken from [102]. Logit averaging is due to the rationale that
logits, which are established evidences for possible classes [126], are continuous values
normalized by the softmax function to produce discrete probabilities. The softmax
normalization of continuous values (logits) to discrete values (probabilities) causes
robustness to changes in magnitudes of logits and a possible loss of information. The
possible loss of information owing to softmax normalization and/or the inductive biases
(inherent in logits) can negatively affect the confidence of individual ensemble members,
which limits the confidence of the ensemble. However, by applying logit averaging, we can
reduce the inductive biases and avoid the loss of information at the cost of being sensitive
to changes in the magnitudes of logits. Therefore, we can increase the confidence of the
ensemble, as shown in Figure 25. Intuitively, logit averaging provides the best evidence
(characterized by a low level of uncertainty caused by the reduction of inductive biases) for

67



6. Addressing underconfidence by averaging logit instead of probability

(a) Logit averaging

(b) Probability averaging

Figure 24.: An illustration of the difference between logit and probability averaging.
Herein, M CNNs are averaged to estimate the ensemble prediction

68



6. Addressing underconfidence by averaging logit instead of probability





Softmax

Figure 25.: An example showing how logit averaging increased the confidence of an ensem-
ble of four deterministic CNNs: Herein, z = 1

4
∑4
m=1 z

m, pz = softmax(z),
and p = 1

4
∑4
m=1 p

m with p1 = softmax(z1), p2 = softmax(z2), p3 =
softmax(z3), and p4 = softmax(z4). We can see that logit averaging pz
results in more confident predictions than probability averaging p. This is
because logit averaging is more sensitive to the magnitude of logits. Here, zm
with large values contribute the most to z. Particularly, z is mostly influenced
by the values of z1, that is, the contributions of z2, z3, and z4 to z are low.
On the contrary, p is influenced by the values of all probability vectors pm
and is less sensitive to the magnitude of individual logits zm

making decisions. However, probability averaging provides the best confidence regarding
decisions made using (weak) evidence (characterized by a high level of uncertainty caused
by inductive biases). This implies that a decision made based on probability averaging
considers more uncertainty than the one based on logit averaging. To reduce the level of
uncertainty in ensemble predictions, we can apply logit instead of probability averaging.
As shown in Figure 24, given an ensemble of M deterministic CNNs with logits zm, the
average logit z can be estimated by

z = 1
M

M∑
m=1

zm = 1
M

M∑
m=1

fm(x). (6.1)

and the predicted probability vector of the ensemble can be reformulated as

p(ŷ|x) = softmax(z). (6.2)

69



6. Addressing underconfidence by averaging logit instead of probability

Given MCD representing an ensemble of S stochastic CNNs with logits zs, we can
estimate the average logit z as

z ≈ 1
S

S∑
s=1

zs ≈ 1
S

S∑
s=1

fs(x), (6.3)

and reformulate the predicted probability vector of MCD, as denoted in Equation 6.2.
Similarly, given MMCD representing an ensemble of M · S stochastic CNNs with logits
zms , we can estimate the average logit z as

z ≈ 1
M · S

M∑
m=1

S∑
s=1

zms ≈ 1
M · S

M∑
m=1

S∑
s=1

fms(x), (6.4)

and reformulate the predicted probability vector of MMCD, as denoted in Equation 6.2.
Finally, given MCA representing an ensemble of M ·M deterministic CNNs with logits
zmn , we can estimate the average logit z as

z ≈ 1
M ·M

M∑
m=1

M∑
n=1

zmn ≈ 1
M ·M

M∑
m=1

M∑
n=1

fmn(x), (6.5)

and reformulate the predicted probability vector of MCA, as shown in Equation 6.2. In
the following sections, we evaluated the impact of applying logit instead of probability
averaging in MCA and related methods regarding their accuracy, calibration error, and
ability to separate TPs and FPs.

6.3. Impact of logit averaging on accuracy and
calibration error

Table 8 summarizes the classification accuracy, average confidence, and ECE of MCA
and related methods for logit and probability averaging. The results show that the
classification accuracy is nearly the same for both averaging, which indicates that logit
averaging preserves the accuracy. In addition, the results show that the average confidence
is always larger for logit than probability averaging, which indicates that logit averaging
increases the degree of confidence. Figure 25 presents the manner in which the degree of
confidence increases. Further, the results show that the ECE is always smaller for logit
than probability averaging, which means that logit averaging can reduce the calibration
error of MCA and related methods. This is because the increased degree of confidence
caused by logit averaging reduces the gap between the average confidence and classification
accuracy. For instance, on CIFAR10, applying logit instead of probability averaging in
MMCD reduces the gap between the average confidence and classification accuracy to
10.34(=|89.64-79.30|)% from 19.82(=|89.67-69.85|)%.

70



6. Addressing underconfidence by averaging logit instead of probability

Table 8.: Classification accuracy (CA), average confidence (AC) (in bracket), and ECE
for probability averaging (PA) and logit averaging (LA) obtained via CNNs
with large capacities (summarized in Table 14) trained using SR (summarized in
Table 9). The results were obtained using test data, as described in Appendix A.6

CA (AC) ↑ ECE ↓
PA LA PA LA

CIFAR10 (DenseNets)
MCD 85.76 (70.58) 85.70 (77.12) 15.22 8.61
Ensemble 90.15 (83.48) 90.15 (87.94) 6.75 2.68
MMCD 89.67 (69.85) 89.64 (79.30) 19.82 10.37
MCA 89.75 (69.27) 89.64 (74.22) 20.49 15.43
Fashion-MNIST (ResNets)
MCD 89.07 (71.60) 88.98 (77.49) 17.48 11.51
Ensemble 92.99 (86.87) 92.96 (90.07) 6.34 3.31
MMCD 93.09 (75.64) 93.08 (83.69) 17.46 9.47
MCA 92.96 (69.88) 92.89 (77.52) 23.09 15.46
MNIST (VGGNets)
MCD 98.15 (94.53) 98.20 (96.48) 3.88 1.94
Ensemble 99.11 (98.25) 99.11 (98.94) 1.12 0.56
MMCD 99.13 (94.78) 99.12 (97.55) 4.48 1.76
MCA 99.13 (85.34) 99.15 (91.71) 13.81 7.47
GTSRB (ResNets)
MCD 93.38 (90.30) 93.40 (94.87) 3.54 1.90
Ensemble 94.68 (92.55) 94.77 (96.54) 2.59 2.09
MMCD 94.71 (85.74) 94.68 (94.37) 9.05 1.52
MCA 94.62 (77.56) 94.53 (86.32) 17.18 8.23

6.4. Impact of logit averaging on the ability to
separate TPs and FPs

Figure 27 presents the average confidence of MCA and related methods on evaluation
data causing TPs and FPs. The results show that the average confidence for both TPs
and FPs increased when we applied logit instead of probability averaging. This indicates
that applying logit instead of probability averaging in MCA and related methods can
increase the degree of confidence for both TPs and FPs. Moreover, the increased degree
of confidence caused by logit averaging is sometimes of a huge margin, especially on
FPs owing to noisy data. For instance, on CIFAR10, the average confidence of the
ensemble on noisy data increases from around 50% to 85% when we applied logit instead

71



6. Addressing underconfidence by averaging logit instead of probability

TPs
FPs (OOD)

FPs (Swap)
FPs (Noisy)

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e 

va
lu

es
 o

f l
og

its MCD
Ensemble
MMCD
MCA

Figure 26.: Average values of logits obtained for TPs and FPs: TPs were obtained on
subsets of test data correctly classified. FPs were obtained on swap, noisy,
or OOD data, as described in Appendix A.6. This example shows that FPs
caused by noisy data can increase the magnitude of logit values (see the
ensemble). This experiment was conducted on CIFAR10 via CNNs with
large capacities (summarized in Table 14) trained using SR (summarized in
Table 9)

of probability averaging. This is because noisy data can increase the magnitude of logits,
as shown in Figure 26, and logit averaging is more sensitive to changes in magnitude
of logits than probability averaging (see Figure 25). This means that logit averaging
can negatively affect the separability between TPs and FPs, since it can maintain a high
degree of confidence for both TPs and FPs.

6.5. Summary and implications
To ameliorate the confidence drop for TPs, we apply logit instead of probability averaging
in MCA and related methods to reduce the level of inductive biases (inherent in ensemble
members), which are responsible for the confidence drop for TPs. To evaluate the impact
of applying logit averaging on properties (classification accuracy, calibration error, and
ability to separate TPs and FPs) of MCA and related methods, we compared the results
between logit and probability averaging.

The results show that logit averaging preserves the accuracy but increases the degree of
confidence for both TPs and FPs. This is based on the rationale that logit averaging can
preserve the position of the max element of individual logit vectors but is more sensitive
to the magnitude of logit values than probability averaging. In other words, logit values
with large magnitude contribute the most to the average logit. Herein, the magnitude of
logit values induces a nonuniform weighting for logit averaging, which is not the case for

72



6. Addressing underconfidence by averaging logit instead of probability

probability averaging.
In addition, the results show that the increased degree of confidence caused by logit

averaging can reduce the calibration error owing to the fact that it can reduce the gap
between the average confidence and the classification accuracy.
However, this increased degree of confidence can negatively affect the separability of

TPs and FPs, especially FPs owing to noisy data. This is because noisy data can increase
the magnitude of logits and logit averaging is more sensitive to changes in the magnitude
of logits than probability averaging.

Since applying logit instead of probability averaging can reduce the calibration error at
the cost of affecting the ability to separate TPs and FPs, then reducing the calibration
error on test data and improving the ability to separate TPs and FPs are contradicting
goals. Improving one may be detrimental to the other. Furthermore, given two models
A and B, if A is better calibrated than B (with respect to the ECE), then A does not
necessarily separate TPs and FPs better than B. This means that existing methods
for confidence calibration may not help to improve the separability between TPs and
FPs. To verify this hypothesis, it is recommended that future works should evaluate
the ability of existing methods for confidence calibration to maintain a low degree of
confidence for FPs. We also recommend researchers evaluate not only the calibration
error of a proposed method for confidence calibration but also the ability of the proposed
method to maintain a low degree of confidence for FPs. Finally, for mission- and safety-
critical applications where the separability of TPs and FPs is critical, we suggest to apply
probability averaging (as it is traditionally done) to avoid the negative impact of logit
averaging on the separability of TPs and FPs.

73



6. Addressing underconfidence by averaging logit instead of probability

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

25

50

75

AC

MCD
LA
PA

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100
Ensemble

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

25

50

75

MMCD

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

25

50

75

MCA

(a) CIFAR10

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100

AC

MCD
LA
PA

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100
Ensemble

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

25

50

75

MMCD

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

25

50

75

MCA

(b) Fashion-MNIST

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100

AC

MCD
LA
PA

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100
Ensemble

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100
MMCD

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

25

50

75

MCA

(c) MNIST

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100

AC

MCD
LA
PA

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100
Ensemble

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100
MMCD

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

25

50

75

MCA

(d) GTSRB

Figure 27.: The average confidence (AC) for probability averaging (PA) and logit averag-
ing (LA) obtained via CNNs with large capacities (summarized in Table 14)
trained using SR (summarized in Table 9) and evaluated on datasets gen-
erating TPs and FPs. TPs were obtained on subsets of test data correctly
classified. FPs were obtained on swap, noisy and OOD data, as described in
Appendix A.6

74



7. Addressing underconfidence by
reducing the regularization
strength

7.1. Motivation
In Chapter 6, to ameliorate the confidence drop for TPs, we applied logit instead of
probability averaging in MCA and related methods to reduce the level of inductive
biases, which are responsible for the confidence drop for TPs. We empirically found
that applying logit instead of probability averaging in MCA and related methods can
reduce the calibration error at the cost of affecting the ability to separate TPs and
FPs. We therefore suggest to apply probability averaging (as it is traditionally done)
to avoid the negative impact of logit averaging on the separability of TPs and FPs.
However, the confidence drop for TPs still remains a concern. Therefore, we propose
an alternative approach consisting of reducing the regularization strength applied at
training, as discussed in our paper [103].

7.2. Regularization strength
Regularization is an approach for modifying the training data, optimization algorithm,
or training objective to limit the growth of the parameters and, thus, speed up training,
prevent overfitting, and/or improve generalization performance. From a Bayesian point
of view, regularization can be seen as encoding specific kinds of prior knowledge. The
strength of regularization can be controlled by reducing the number of regularization
approaches applied and/or reducing the values of regularization hyperparameters. To
evaluate the impact of reducing the strength of regularization on MCA and related
methods, we compared the results obtained with weak regularization (WR) and strong
regularization (SR), as shown in Table 9. Particularly, we compared the accuracy,
calibration error, and ability of MCA and related methods to separate TPs and FPs for
WR and SR. We observed that WR results in overconfident CNNs, while SR results in
underconfident CNNs, respectively.

75



7. Addressing underconfidence by reducing the regularization strength

Table 9.: Summary of values assigned to regularization hyperparameters
Hyperparameters WR SR

Is batch normalization applied after max pooling
layers? Yes Yes

Probability of dropout applied at inputs to max
pooling layers - 0.05

Probability of dropout applied at inputs to fully
connected layers 0.01 0.5

Rotation range [degree] - [-45, +45]
Width and height shift range [pixel] - [-5, +5]
Scale intensity range - [0.9, 1.2]
Shear intensity range - 0.1
Additive Gaussian noise standard deviation range - 0.5

7.3. Effect of reducing regularization strength on
accuracy and calibration error

Table 10 presents the classification accuracy, average confidence, and ECE of MCA and
related methods for WR and SR.
The results show that, on CIFAR10, the classification accuracy of MCA and related

methods (slightly) increased when using SR instead of WR. On the contrary, on Fashion-
MNIST, the classification accuracy of MCA and related methods (slightly) decreased
when using SR instead of WR. This means that, the decreased strength of regularization
can increase or decrease the classification accuracy depending on the dataset and/or
architecture.

In addition, the results show that the decreased strength of regularization increases
the average confidence. For instance, on CIFAR10, the average confidence of ensemble
increases to 89% from around 83% when using WR instead of SR.

Moreover, the results show that the ECE of MCA and related methods decreases when
using WR instead of SR. For instance, on CIFAR10, the ECE of ensemble decreases to
2.47% from 6.75% when using WR instead of SR. This means that the decreased strength
of regularization decreases the calibration error of MCA and related methods. This is
because the decreased strength of regularization increases the average confidence and
therefore reduces the gap between the accuracy and average confidence. For instance, on
CIFAR10, the average confidence of ensemble increases from 83.48% to 89.26% when
using WR instead of SR. Consequently, the gap between the classification accuracy and
average confidence decreased to 1.24(= |88.02− 89.26|)% from 6.67 = |90.15− 83.48|)%.

76



7. Addressing underconfidence by reducing the regularization strength

Table 10.: Classification accuracy (CA), average confidence (AC) (in bracket), and ECE
obtained via CNNs with large capacities (summarized in Table 14) trained
using WR and SR (summarized in Table 9). The results were obtained using
test data, as described in Appendix A.6

CA (AC) ↑ ECE ↓
WR SR WR SR

CIFAR10 (DenseNets)
MCD 83.56 (76.80) 85.76 (70.58) 6.93 15.22
Ensemble 88.02 (89.26) 90.15 (83.48) 2.47 6.75
MMCD 87.62 (74.62) 89.67 (69.85) 13.07 19.82
MCA 87.81 (82.96) 89.75 (69.27) 4.98 20.49
Fashion-MNIST (ResNets)
MCD 92.23 (92.60) 89.07 (71.60) 1.51 17.48
Ensemble 94.52 (94.72) 92.99 (86.87) 1.39 6.34
MMCD 94.34 (91.05) 93.09 (75.64) 3.54 17.46
MCA 94.48 (92.06) 92.96 (69.88) 2.81 23.09
MNIST (VGGNets)
MCD 99.30 (99.49) 98.15 (94.53) 0.51 3.88
Ensemble 99.62 (99.50) 99.11 (98.25) 0.34 1.12
MMCD 99.63 (99.36) 99.13 (94.78) 0.47 4.48
MCA 99.61 (98.55) 99.13 (85.34) 1.20 13.81
GTSRB (ResNets)
MCD 94.33 (94.17) 93.38 (90.30) 1.41 3.54
Ensemble 97.24 (96.03) 94.68 (92.55) 1.54 2.59
MMCD 96.88 (93.13) 94.71 (85.74) 3.88 9.05
MCA 97.16 (93.22) 94.62 (77.56) 4.02 17.18

7.4. Effect of reducing regularization strength on
ability to separate TPs and FPs

Figure 28 presents the average confidence of MCA and related methods for WR and SR.
The results show that the decreased strength of regularization can increase the average

confidence for TPs. For instance, on Fashion-MNIST, the average confidence of MCD for
TPs increases to 97% from around 78% when using WR instead of SR. In addition, on
the same Fashion-MNIST, while the average confidence of MCD for TPs increases to 97%
from around 78%, the average confidence of ensemble increases to 99% from around 95%
when using WR instead of SR. Moreover, on MNIST, the average confidence of MCD
for TPs increases to 99% from around 96%, while the average confidence of ensemble

77



7. Addressing underconfidence by reducing the regularization strength

remains constant at 99% when using WR instead of SR. This means that the level of
increase in the average confidence for TPs caused by the reduction in the strength of
regularization depends on the dataset, architecture, and/or model type.

Further, on CIFAR10, the average confidence of ensemble for FPs due to OOD data
increases to 99% from around 38% when using WR instead of SR. This indicates that
the decreased strength of regularization can also increase the average confidence for FPs.
Moreover, on CIFAR10 and Fashion-MNIST, the average confidence of ensemble for FPs
due to OOD data is higher, but on MNIST, it is lower for WR than SR. In addition, on
CIFAR10 and MNIST, the average confidence of MMCD for FPs due to swap data is
higher, but on Fashion-MNIST, it is lower for WR than SR. This indicates that whether
the decrease in the strength of regularization will increase the average confidence for FPs
depends on the dataset, architecture, and/or model type. Finally, on MNIST, the average
confidence of MCD for FPs due to noisy data is lower, but for FPs due to OOD data, it
is higher for WR than SR. In addition, on Fashion-MNIST, the average confidence of
ensemble and MMCD for FPs due to swap and noisy data is lower, but for FPs due to
OOD data, it is higher for WR than SR. This indicates that whether the decrease in the
strength of regularization will increase the average confidence for FPs depends on the FP
type.

7.5. Summary and implications
To ameliorate the confidence drop for TPs caused by inductive biases inherent in ensemble
members, we proposed to reduce the strength of regularization applied at training (as
discussed in our paper [103]). To evaluate the impact of the reduced strength of
regularization on properties (classification accuracy, calibration error, and ability to
separate TPs and FPs) of MCA and related methods, we compared results for WR and
SR.
The results show that the decrease in the strength of regularization can increase or

decrease the classification accuracy depending on the dataset and/or architecture. This
is not surprising because the optimal strength of regularization depends on the dataset
and/or architecture. This is because some datasets (e.g., GTSRB) have more noise
inherent in their samples than others (e.g., MNIST) and samples of some datasets (e.g.,
CIFAR10) are more difficult to learn than of the others (e.g., MNIST). In addition,
some architectures (e.g., DenseNet and ResNet) introduce a certain level of implicit
regularization via the network depth or width. Therefore, the increased strength of
regularization may not always improve the classification accuracy as is claimed by Ioffe
and Szegedy [12] and Hinz, Barros, and Wermter [186].
The results also show that the decreased strength of regularization decreases the

calibration error of MCA and related methods. This is because the decrease in the strength

78



7. Addressing underconfidence by reducing the regularization strength

of regularization increases the degree of confidence and therefore the average confidence.
This increase in the average confidence reduces the gap between the classification accuracy
and average confidence and therefore improves the calibration error.
Furthermore, the decreased strength of regularization can increase the degree of

confidence for both TPs and FPs, and the level of increase in the degree of confidence
depends on the dataset, architecture, model type, and/or FP type. This is because the
decreased strength of regularization can increase the values of logits, and the increased
values of logits can increase the degree of confidence for both TPs and FPs depending
on the dataset, architecture, model type, and/or FP type. This implies that the
decreased strength of regularization can negatively affect the separability between TPs
and FPs (based on the evaluation of the degree of confidence) depending on the dataset,
architecture, model type, and/or FP type, because a WR can maintain a high degree of
confidence for both TPs and FPs.

Overall, the reduced strength of regularization can ameliorate the confidence drop for
TPs and therefore improves the calibration error at the cost of affecting the separability
between TPs and TPs. This finding suggests that reducing the calibration error on test
data and improving the ability to separate TPs and FPs are two contradicting goals.
Improving one may be detrimental to the other. Further, given two models A and B, if
A is better calibrated than B (with respect to the ECE), then A does not necessarily
separate TPs and FPs better than B. This means that existing methods for confidence
calibration may not help to improve the separability between TPs and FPs. To verify this
hypothesis, it is recommended that future works should evaluate the ability of existing
methods for confidence calibration to maintain a low degree of confidence for FPs. We
also recommend researchers to evaluate not only the calibration error of a proposed
method for confidence calibration but also the ability of the proposed method to maintain
a low degree of confidence for FPs. Finally, for mission- and safety-critical applications
where the separability of TPs and FPs is critical, we suggest to apply MCA and related
methods with CNNs trained using SR (as it is traditionally done) to avoid the negative
impact of WR on the separability of TPs and FPs.

79



7. Addressing underconfidence by reducing the regularization strength

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

25

50

75

AC

MCD
WR
SR

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100
Ensemble

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

25

50

75

MMCD

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

25

50

75

MCA

(a) CIFAR10

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100

AC

MCD
WR
SR

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100
Ensemble

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100
MMCD

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100
MCA

(b) Fashion-MNIST

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100

AC

MCD
WR
SR

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100
Ensemble

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100
MMCD

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100
MCA

(c) MNIST

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

25

50

75

AC

MCD
WR
SR

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100
Ensemble

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

25

50

75

MMCD

TP
s

FP
s (

OO
D)

FP
s (

Sw
ap

)

FP
s (

No
isy

)0

50

100
MCA

(d) GTSRB

Figure 28.: The average confidence (AC) obtained via CNNs with large capacities (sum-
marized in Table 14) trained using WR and SR (summarized in Table 9) and
evaluated on datasets generating TPs and FPs. TPs were obtained on subsets
of test data correctly classified. FPs were obtained on swap, noisy, and OOD
data, as described in Appendix A.6

80



8. Discussion

8.1. Research objective and questions
A CNN-based classifier is prone to overfitting and lacks robustness to undesired inputs
(e.g., OOD, swap, or noisy examples). Therefore, it can generate overconfident false
predictions (FPs), which can be dangerous and costly, especially when it is part of
the decision-making unit of a safety- and/or mission-critical application. For instance,
overconfident FPs can
(a) Cause collisions in robotic applications

(b) Provide false treatments in medical applications, or

(c) Increase cost in financial applications.
To avoid these consequences and encourage the widespread use of CNN-based classifiers
in safety- and/or mission-critical applications, we aim to prevent FPs by improving the
separability of FPs and true predictions (TPs). Therefore, we seek to improve the quality
of the confidence (measuring uncertainty) in terms of maintaining a high confidence for
TPs and low confidence for FPs. This is based on the hypothesis that if the confidence is
high (e.g., ]0.5, 1]) for TPs and low (e.g., [0, 0.5]) for FPs, then both TPs and FPs can be
well-separated using a threshold. However, we require a method that forces CNN-based
classifiers to generate FPs with low confidence and TPs with high confidence. Therefore,
we formulated the three following research questions:

(1) What method forces the predictive confidence to be high for TPs and low for FPs?

(2) Under what circumstances does the method work?

(3) At what cost the method helps to maintain a low confidence for FPs and a high
confidence for TPs?

8.2. Research methodology
To address the first research question (What method forces the predictive confi-
dence to be high for TPs and low for FPs?), we overcame the following challenges
presented in Section 1.6:

81



8. Discussion

(a) The challenge in understanding the underlying functionality of CNNs. This chal-
lenge introduces two difficulties. The first difficulty is our inability to impose
some constraints on parameters of CNNs because we do not know the relevant
parameters, the manner in which the relevant parameters affect predictions, and
the constraints to impose on them. To overcome this first difficulty, we treated
CNNs as black-boxes. This allows us to focus on the prediction instead on the
manner in which the prediction arrives. The second difficulty is our inability to
trace the source of uncertainty inherent in a prediction. To overcome this second
difficulty, we (only) evaluate uncertainty of well-known sources. Specifically, we
used five evaluation data for different purposes. We used test data to evaluate
the classification accuracy and calibration error. In addition, we used subsets of
correctly classified test data, OOD, swap, and noisy data to evaluate the ability to
separate TPs and FPs caused by distribution shift, structural perturbation, and
noise, respectively. These data were presented in Appendix A.6.

(b) The challenge in choosing a principle for uncertainty estimation. Specifically,
existing methods for estimating uncertainty adhere to five distinct principles.
Understanding the five distinct principles, as well as, their various implementations
was mandatory in deciding which principle to follow and/or how to combine the
existing principles. To overcome this challenge, we summarized and discussed
existing methods for estimating uncertainty in our survey paper [99]. One of
the main suggestions of our survey paper is to build methods for uncertainty
estimation that combine the strengths of both Bayesian (single-mode exploration)
and ensemble (multimode evaluation) principles. We followed this suggestion and
developed Monte Carlo averaging (MCA), which is similar to mixture of Monte
Carlo dropout (MMCD), which combines the strengths of both ensemble and Monte
Carlo dropout (MCD).

(c) The need for identical experimental setups to compare the developed MCA and
related methods (baseline (single CNN), MCD, ensemble, and MMCD). To overcome
this challenge, we reimplemented baseline, MCD, ensemble, and MMCD. This was
helpful in understanding the methods and it sheds light on the aspects of the
implementation that could affect the results.

In summary, to address the first research question, we developed MCA and empirically
compared it to related methods. To tackle the second research question (Under what
circumstances the developed method works?), we evaluated the performance of
the developed and related methods on four different datasets (CIFAR10, Fashion-MNIST,
MNIST, and GTSRB) to assess their ability to perform on datasets with different
difficulties. We expect the performance of all methods to depend on the task difficulty.
This is because some datasets (e.g., GTSRB) have more noise inherent in their samples

82



8. Discussion

than others (e.g., MNIST). Besides, samples of some datasets (e.g., CIFAR10) are more
difficult to learn than samples of others (e.g., MNIST). We also evaluated the performance
of the developed and related methods on CNNs of three different architectures (VGGNet,
DenseNet, and ResNet) to assess their ability to perform on different architectures. We
expect the performance of all methods to depend on the architecture. This is because
the architecture conditions the manner in which information is propagated from the
input to subsequent layers, and different architectures will result in different gradient
calculations and therefore to different solutions. Further, we investigated the impact of
applying logit instead of probability averaging in the developed and related methods,
as well as, the effect of reducing the regularization strength on the performance of the
developed and related methods. This was motivated by the hypothesis that both logit
averaging and the reduction of the strength of regularization can reduce the level of
inductive biases inherent in CNNs and therefore help to address underconfidence in the
developed and related methods. To approach the third research question (At what
cost the developed method helps to maintain a low confidence for FPs and
a high confidence for TPs?), in addition to analyze the ability of the developed and
related methods to separate TPs and FPs, we also analyzed the classification accuracy,
the calibration error, and the inference time. We expect a good method for uncertainty
estimation to preserve the classification accuracy on the test data, to exhibit a low
calibration error on test data, and to maintain a high degree of confidence for TPs and
low degree of confidence for FPs.

8.3. Research results
Theoretically, MCD relies on a unique solution obtained using a single CNN similar to
baseline; however, it considers the uncertainty associated with the extracted features. In
contrast to MCD, ensemble evaluates multiple solutions obtained using multiple CNNs
but does not consider the uncertainty associated with the extracted features. Similar to
ensemble, MMCD evaluates multiple solutions obtained using multiple CNNs but also
considers the uncertainty associated with the extracted features similar to MCD. However,
the modeler of MCD or MMCD can incorrectly specify the predefined distribution from
which masks will be obtained for feature sampling. Moreover, the design process of MCD
and MMCD can be more time-consuming and costly than that of ensemble because
the predefined distribution needs to be fine-tuned for a given architecture and dataset.
To address the limitations of MMCD, the developed MCA replaces feature sampling
operations (inherent in MMCD) with feature averaging operations. Particularly, the
developed MCA evaluates the uncertainty associated with the features extracted from
one ensemble member by sequentially averaging them in a pair-wise manner with the
features extracted from other ensemble members. This is based on the rationale that the

83



8. Discussion

features extracted from different ensemble members are different and therefore represent
a source of noisy information used for feature perturbation. Feature sampling (inherent in
MMCD) and feature averaging (inherent in MCA) help to better capture the variability
between ensemble members and to therefore improve the predictive uncertainty of the
underlying ensemble.

Empirically, baseline has the smallest inference time compared to other methods. This
is not surprising because baseline evaluates a single CNN and performs a single forward
pass, while other methods evaluate multiple CNNs or perform multiple forward passes.
Therefore, MCD, ensemble, MMCD, and MCA improve the baseline uncertainty at the
cost of increasing the inference time. Notwithstanding this, whether the inference time
of ensemble is larger than that of MCD depends on the architecture and/or capacity of
CNNs. Although the inference time of MCA is significantly larger than those of baseline,
MCD, and ensemble, it is four times smaller than that of MMCD.
In addition, the empirical results show that while MCD can preserve or decrease the

accuracy of the underlying baseline depending on the capacity of the underlying CNN
and/or the dataset, ensemble can preserve or increase the accuracy. This finding is
supported by previous studies [110, 111], which demonstrated that an ensemble can
increase the accuracy. Section 3.2.2 discusses the possible reasons explaining why an
ensemble can yield enhanced accuracy. However, while MMCD can preserve or decrease
the accuracy of the underlying ensemble depending on the capacity of the underlying
CNNs and/or the dataset, MCA can only preserve it. We argue that the decreased
baseline and ensemble accuracy caused by MCD and MMCD, respectively, resulted
from the incorrect specification of the predefined distribution from which masks for
feature sampling (inherent in MCD and MMCD) are obtained. We also argue that MCA
preserves the accuracy of the underlying ensemble for all datasets and CNNs of various
capacities because feature averaging (inherent in MCA) preserves the similarity between
perturbed and original features (Section 4.4).
In addition, the empirical results show that whether an ensemble is better calibrated

than baseline depends on the capacity of the underlying CNNs and/or the dataset.
Notwithstanding this, an ensemble is better calibrated than MCD, which is in turn
(often) better calibrated than MMCD and MCA. This is because MCD, MMCD, and
MCA reduce the degree of confidence for TPs and the larger the decrease, the larger the
calibration error. Besides, an ensemble can reduce the degree of confidence for FPs but
increase or preserve the degree of confidence for TPs. On the contrary, MCD, MMCD,
and MCA can reduce the degree of confidence for FPs at the cost of reducing the degree
of confidence for TPs. For MCD and MMCD, the level of decrease in the degree of
confidence for TPs depends on the dataset and the capacity of the underlying CNNs.
However, whether MMCD is better calibrated than MCA depends on the capacity of the
underlying CNNs and/or the dataset.

Moreover, the baseline (often) maintain a high degree of confidence for both TPs and

84



8. Discussion

FPs. This means that baseline cannot separate TPs and FPs better than other methods.
However, whether ensemble reduces the degree of confidence for FPs better than MCD
depends on the dataset, capacity of the underlying CNNs, and/or type of FPs. This
result implies that we cannot claim that ensemble can separate TPs and FPs better
than MCD and vice versa. In other words, we cannot claim that ensemble captures
uncertainty better than MCD. This contradicts with the previous studies [78, 83, 79],
which claim that ensemble captures uncertainty better than MCD. Notwithstanding
this, MMCD and MCA can maintain a low degree of confidence for FPs better than
baseline, MCD, and ensemble. This means that both MMCD and MCA can separate
TPs and FPs better than other methods. This is because MMCD and MCA evaluate not
only multiple features extracted by different members similar to ensemble but also the
uncertainty associated with the extracted features owing to feature sampling (inherent in
MMCD) and feature averaging (inherent in MCA). In addition, MCA can maintain a
low confidence for FPs similar to or sometimes even better than MMCD. This means
that MCA can separate TPs and FPs similar to or sometimes even better than MMCD.
This is not surprising because MCA and MMCD have the same purpose and rationale.

The main drawback of MMCD and MCA is that they do not only reduce the degree
of confidence for FPs but also for TPs. To ameliorate the confidence drop for TPs, we
applied logit instead of probability averaging in MCA and related methods (as discussed
in our research paper [102]) to reduce the level of inductive biases (inherent in ensemble
members), which are responsible for the confidence drop for TPs. The results show that
logit averaging preserved the accuracy but increased the degree of confidence for both
TPs and FPs. This is because logit averaging preserves the position of the max element
of individual logit vectors but is more sensitive to the magnitude of logit values than
probability averaging. Therefore, the magnitude of logit values induces a nonuniform
weighting for logit averaging, which is not the case for probability averaging. In addition,
the increased degree of confidence caused by logit averaging can reduce the calibration
error. This is because the increased degree of confidence can reduce the gap between
the average confidence and the classification accuracy. However, it can negatively affect
the separability of TPs and FPs, especially FPs owing to noisy data. This is because
noisy data can increase the magnitude of logits and logit averaging is more sensitive to
changes in the magnitude of logits than probability averaging.
As an alternative approach to ameliorate the confidence drop for TPs, we reduced

the strength of regularization applied at training (as discussed in our paper [103]). The
results of the empirical comparison of MCA and related methods for weak regularization
(WR) and strong regularization (SR) show that the decreased strength of regularization
can increase or decrease the classification accuracy depending on the dataset and/or
architecture. This is not surprising because the optimal regularization strength depends
on the dataset and/or architecture. In addition, some datasets (e.g., GTSRB) have
more noise inherent in their samples than others (e.g., MNIST) and samples of some

85



8. Discussion

datasets (e.g., CIFAR10) are more difficult to learn than samples of others (e.g., MNIST).
Moreover, some architectures (e.g., DenseNet and ResNet) introduce a certain level of
implicit regularization via the network depth or width. Therefore, the increased strength
of regularization may not always improve the classification accuracy as is claimed by
Ioffe and Szegedy [12] and Hinz, Barros, and Wermter [186]. In addition, the decreased
strength of regularization decreases the calibration error of MCA and related methods.
This is because the decreased strength of regularization increases the degree of confidence.
The increase in the degree of confidence reduces the gap between the classification
accuracy and average confidence and therefore improves the calibration error. Moreover,
the decreased strength of regularization can increase the degree of confidence for both
TPs and FPs, and the level of increase in the degree of confidence depends on the dataset,
architecture, model type, and/or FP type. This is because the decreased strength of
regularization can increase the values of logits, and the increased values of logits can
increase the degree of confidence for both TPs and FPs depending on the dataset,
architecture, model type, and/or FP type. This implies that the decreased strength of
regularization can negatively affect the separability between TPs and FPs depending on
the dataset, architecture, model type, and/or FP type because a WR can maintain a
high degree of confidence for both TPs and FPs.

86



9. Summary
We developed Monte Carlo averaging (MCA) to improve the quality of the predictive
confidence measuring uncertainty for improving the separability of true predictions (TPs)
and false predictions (FPs). The developed MCA enforces CNN-based classifiers to
generate FPs with low confidence (e.g., [0, 0.5]) and TPs with high confidence (e.g.,
]0.5, 1]). We theoretically and empirically compared the developed MCA with related
methods, such as baseline (single CNN), Monte Carlo dropout (MCD), ensemble, and
mixture of Monte Carlo dropout (MMCD). We also studied the circumstances under
which the developed and related methods perform and analyzed the cost for maintaining
a low confidence for FPs and high confidence for TPs. The results show that:

(1) While MCD can preserve or decrease baseline accuracy depending on the capacity
of the underlying CNN and/or dataset, ensemble can preserve or increase baseline
accuracy. While MMCD can preserve or decrease ensemble accuracy depending
on the capacity of the underlying CNNs and/or dataset, MCA can only preserve
ensemble accuracy.

(2) Whether ensemble is better calibrated than baseline depends on the capacity of the
underlying CNNs and/or the dataset. However, ensemble is better calibrated than
MCD, which is in turn (often) better calibrated than MMCD and MCA. Moreover,
whether MCA is better calibrated than MMCD depends on the capacity of the
underlying CNNs and/or the dataset.

(3) Baseline cannot separate TPs and FPs better than other methods. Whether
ensemble can separate TPs and FPs better than MCD depends on the dataset,
capacity of the underlying CNNs, and/or the type of FPs. However, MMCD and
MCA can separate TPs and FPs better than other methods. Besides, MCA can
separate TPs and FPs similar to or sometimes even better than MMCD.

(4) The inference time of MCA is significantly larger than that of baseline, MCD, and
ensemble but it is four times smaller than that of MMCD.

Overall, the results imply the dominance of MMCD and MCA over previous methods,
such as baseline, MCD, and ensemble. Specifically, MMCD and MCA can improve
the separability of TPs and FPs at the cost of increasing the calibration error and the
inference time. The increased calibration error is based on the rationale that MMCD

87



9. Summary

and MCA do not only reduce the degree of confidence for FPs but also for TPs. To
ameliorate the confidence drop for TPs and therefore improve the calibration error, we
applied logit instead of probability averaging in MCA and related methods. The results
show that logit averaging:

(5) preserves the classification accuracy of MCA and related methods, but increases
the degree of confidence for both TPs and FPs

(6) reduces the calibration error of MCA and related methods

(7) negatively affect the separability of TPs and FPs.

As an alternative approach to ameliorate the confidence drop for TPs and therefore
reduce the calibration error, we reduced the strength of regularization applied at training.
The empirical results of the comparison of MCA and related methods for weak regular-
ization (WR) and strong regularization (SR) show that the decrease in the strength of
regularization:

(8) increases or decreases the classification accuracy of MCA and related methods
depending on the dataset and/or architecture

(9) reduces the calibration error of MCA and related methods

(10) affects the separability between TPs and FPs depending on the dataset, architecture,
model, and/or FP type.

Since applying logit instead of probability averaging in MCA and related methods or
reducing the strength of regularization can ameliorate the confidence drop for TPs and
therefore reduce the calibration error at the cost of harming the separability between
TPs and FPs. We argue that reducing the calibration error on test data and improving
the ability to separate TPs and FPs are two contradicting goals. Improving one may be
detrimental to the other. In addition, given two models A and B, if A is better calibrated
than B, then A does not necessarily separate TPs and FPs better than B. This means
that existing methods for confidence calibration may not help to improve the separability
between TPs and FPs. To verify this hypothesis, it is recommended that future works
investigate the ability of existing methods for confidence calibration to maintain a low
degree of confidence for FPs. We also recommend researchers evaluate not only the
calibration error of a proposed method for confidence calibration, but also the ability of
the proposed method to maintain a low degree of confidence for FPs. Notwithstanding
this, for mission- and/or safety-critical applications where the separability of TPs and
FPs is critical, we suggest to apply probability averaging (as it is traditionally done) to
avoid the negative impact of logit averaging on the separability of TPs and FPs. We

88



9. Summary

also suggest applying MCA and related methods with CNNs trained using SR (as it is
traditionally done) to avoid the negative impact of WR on the separability of TPs and
FPs.

9.1. Conclusion
Based on the results presented so far, we conclude that the developed MCA is an
alternative to MMCD. Assuming that both MMCD and MCA are well-specified for a
given dataset and architecture, they can have similar performance because they have
the same purpose and rationale. Specifically, both approaches evaluate multiple features
extracted from multiple ensemble members and evaluate the uncertainty associated
with the extracted features thanks to feature averaging (inherent in MCA) and feature
sampling (inherent in MMCD). However, the design process of MMCD can be more
time-consuming and costly than that of MCA. This is because MMCD requires the
specification of a prior distribution (which is sensitive to the dataset and architecture)
from which masks will be obtained for feature sampling, while MCA relies on features
extracted from ensemble members for feature averaging. Moreover, the outcomes of
feature averaging and sampling operations are deterministic and stochastic, respectively.
Therefore, feature sampling required more samples than feature averaging to evaluate the
uncertainty associated with the extracted features. Particularly, empirical results show
that the inference time of MMCD is four times larger than that of MCA. In summary,
the developed MCA

• is four times faster than,

• has the same purpose and rationale as, and

• performs similar to or sometimes even better than the state-of-the-art MMCD.

Owing to all the advantages of MCA over MMCD, we preferred MCA instead of MMCD
for applications (such as collision prediction [30], door recognition for visual-based robot
navigation [32], and pedestrian detection [33]) where the separability of TPs and FPs is
critical and where the computational budget is limited. MCA can enable CNN-based
classifiers to explicitly decide to ignore uncertain predictions or pass them to human
experts [60]. In addition, MCA can benefit other fields (such as active learning [187,
188, 150], online learning [78], and reinforcement learning [60, 31, 58]) where uncertainty
is required. Moreover, MCA can benefit the field of explainable artificial intelligence,
which explores the role of uncertainty to explain predictions and increase the social
acceptance of CNN-based decision-making systems [189, 190]. Finally, MCA opens new
perspectives to fuse (or average) features of ensemble members, aiming at representing
more sophisticated forms of the prior distribution. Besides, feature averaging is a specific

89



9. Summary

type of feature augmentation, which can be used for regularizing an ensemble of neural
networks trained under a unified loss.

9.2. Limitations
One of the limitations of MCA is that it can improve the separability of TPs and FPs
at the cost of increasing the calibration error on the test data. A fundamental open
question now is: How much can we compromise calibration to achieve better separation
between TPs and FPs? To address this question, one should first understand that the
ECE is a measure to evaluate in-domain uncertainty. Specifically, a small value of ECE
indicates that MCA or related methods can separate TPs and FPs due to incorrect
classifications of in-domain examples. This is because a small value of ECE indicates
that MCA or related methods can assign a high confidence for TPs and low confidence
for FPs. However, a large value of ECE does not necessarily mean that MCA or related
methods cannot separate TPs and FPs. For instance, the ECE is huge for MCA and
MMCD because these two methods reduce the confidence for both TPs and FPs, not
because they cannot maintain a high confidence for TPs and a low confidence for FPs.
Overall, the ECE and therefore the calibration error can be huge because MCA or related
methods (1) can reduce the confidence for TPs (as in this thesis) or (2) cannot separate
TPs and FPs. A huge ECE is acceptable for the first reason. However, for the second
reason, a huge ECE is not acceptable in applications where the separability of TPs and
FPs is critical.

Another limitation of MCA is that it relies on multiple members similar to an ensemble
and MMCD. A large number of members may require a large amount of storage memory.
For instance, each MCA investigated in this thesis is based on an ensemble of 20
CNNs. The 20 CNNs require approximately 59 megabytes of storage memory, which
can inhibit the use of MCA in applications with limited storage memory. Therefore, it
is recommended that future research explore pruning methods reviewed by Tsoumakas,
Partalas, and Vlahavas [191] to reduce the number of ensemble members to three or five
and to therefore reduce the storage memory requirement.

Finally, in this thesis, all empirical results were obtained using benchmarking datasets,
which are possibly different from real-world application datasets. Although the developed
MCA can perform similarly well and sometimes even better than the state-of-the-art
MMCD on benchmarking datasets, the applicability of the developed MCA on real-world
application datasets remains uncertain. Therefore, it is recommended that future works
evaluate the developed MCA on real-world applications, such as collision prediction [30],
door recognition for visual-based robot navigation [32], and pedestrian detection [33].

90



A. Experimental setup
Our experimental setup includes experimental datasets, experimental architectures,
training details, evaluation metrics, and evaluation data.

Table 11.: Summary of experimental datasets

Datasets Image
type

Image size
[Pixels]

Training
data size

Test
data
size

No. of
classes

No. of
images
per class

MNIST Grayscale 32 × 32 60000 10000 10 Balanced
Fashion-
MNIST Grayscale 32 × 32 60000 10000 10 Balanced

GTSRB Grayscale 32 × 32 39209 12630 43 Unbalanced
CIFAR10 Color 32 × 32 × 3 50000 10000 10 Balanced

A.1. Experimental datasets
To evaluate the ability of MCA and related methods to perform on tasks (datasets) with
various difficulties, we conducted experiments on four benchmarking datasets: MNIST
[125], Fashion-MNIST [192], CIFAR10 [193], and GTSRB [194]. Figure 29 presents some
image examples of these datasets.

MNIST contains grayscaled images of ten categories of digits ranging from 0 to 9. The
digits are centered inside images of 28x28 pixels. The number of images per digit
is balanced. MNIST includes 60,000 and 10,000 images for training and testing,
respectively.

Fashion-MNIST contains grayscaled images of ten categories of Zalando’s articles. The
articles are inside images of 28x28 pixels. The number of images per articles is
balanced. Similar to MNIST, Fashion-MNIST includes 60,000 and 10,000 images
for training and testing, respectively.

CIFAR10 includes colored images of ten categories of common objects. The objects
appear in various poses and are not always centered inside the images of 32x32

91



A. Experimental setup

(a) CIFAR10 (b) Fashion-MNIST

(c) MNIST (d) GTSRB

Figure 29.: Examples of images of the experimental datasets

pixels. The number of images per category is uniformly distributed. CIFAR10
includes 50,000 and 10,000 images for training and testing, respectively.

GTSRB includes colored images of 43 categories of common German traffic signs. The
traffic signs have different poses and are not always centered inside the images. The

92



A. Experimental setup

images have sizes varying from 15x15 to 222x192 pixels. The number of images
per traffic sign is not uniformly distributed. GTSRB includes 39,209 and 12,630
images for training and testing, respectively.

Table 12.: Capacity or number of parameters (in millions) of experimental architectures
Small
capacity

Large
capacity

Increase
factor

CIFAR10 (DenseNets) 5.02 21.36 4.25
Fashion-MNIST (ResNets) 7.15 31.27 4.37
MNIST (VGGNets) 6.15 26.86 4.37
GTSRB (ResNets) 31.40 7.22 4.35

Table 13.: Summary of CNN architectures with small capacities:
[
conv3× 3− 64

]
de-

notes a convolution operation with 64 convolution filters of size 3× 3.
[
·
]
× 3

denotes 3 consecutive operations of
[
·
]
. max2 × 2 denotes a max pooling

operation over a 2× 2 pixel window, with stride 2. FC − 2048 denotes 2048
fully connected neurons. The GlobalAveragePooling2D [195] operation is used
to reduce the spatial dimension of inputs to fully connected layers

Layers VGGNet ResNet DenseNet
Input

Convolution
[
conv3× 3− 64

]
× 3

conv1× 1− 64
conv3× 3− 64
conv1× 1− 64

× 3

conv1× 1
conv3× 3

× 6

Pooling max2× 2 max2× 2
conv1× 1
max2× 2


Convolution

[
conv3× 3− 256

]
× 3

conv1× 1− 256
conv3× 3− 256
conv1× 1− 256

×3

conv1× 1
conv3× 3

× 6

Pooling max2× 2 max2× 2
conv1× 1
max2× 2


GlobalAveragePooling2D
FC − 2048
FC − 2048
FC −K

93



A. Experimental setup

A.2. Experimental architectures
To evaluate the ability of MCA and related methods to perform on different architectures,
we conducted experiments on three popular architectures: VGGNet [110], ResNet [111],
and DenseNet [114]. Tables 13 and 14 present these architectures for networks with small
and large capacities, respectively. Table 12 presents the capacities of these networks for
the experimental datasets.
VGGNet is an architecture with convolution, pooling, and fully connected layers. Each

convolution layer performs three consecutive convolution operations with con-
volution filter size of 3 × 3. In addition, each convolution layer includes many
convolution filters: 64, 128, 256, or 512. Convolution neurons are equipped with
RELU activation functions. Convolution layers are followed by max pooling layers.
Max pooling is performed over a 2 × 2 pixel window, with stride 2. The last
max pooling layer is followed by three fully connected layers. The first two fully
connected layers include 2048 or 4096 neurons equipped with RELU activation
functions, and the third fully connected layer includes K neurons equipped with
softmax activation functions.

ResNet is an architecture similar to the VGGNet. However, its convolution layers
replace some 3 × 3 convolution filters with 1 × 1 ones and include residual (or
identity shortcut) connections used to alleviate the vanishing-gradient problem.
Convolution layers combine features of identity connections with their outputs
through summation before they are passed on to the subsequent (max pooling)
layers.

DenseNet is an architecture similar to the ResNet, but with densely connected convolu-
tion layers. Specifically, each convolution layer obtains additional inputs from all
preceding convolution layers. DenseNet alleviates the vanishing-gradient problem
with dense connections instead of residual ones similar to ResNet. While ResNet
combines features through summation, DenseNet combines features by concate-
nating them, which increases the number of channels of inputs to max pooling
layers. To reduce the number of channels of inputs to max pooling layers, DenseNet
performs 1× 1 convolution operations at inputs to max pooling layers. Herein, we
set the grow rate conditioning the number of feature maps per convolution layers
to 24.

A.3. Training details
All experiments were coded in TensorFlow. All CNNs were trained using the categorical
cross-entropy, SGD, and hyperparameters, as shown in Table 15. All images were

94



A. Experimental setup

standardized and normalized by dividing pixel values by 255. Moreover, all CNNs were
regularized using dropout layers (using a cascade of Gaussian and Bernoulli distributions)
placed at inputs to max pooling layers and batch normalization [12] layers placed after
max pooling layers. In addition, dropout layers were placed at inputs to fully connected
layers. Further, we regularized using standard data augmentation techniques such as
rotation, (vertical and horizontal) translations, scaling, shearing, and additive Gaussian
noise (AGN).

A.4. Inference details
At inference, we applied feature sampling inherent in MCD/MMCD and feature averaging
inherent in MCA at inputs to the first fully connected layer. MCD samples features using
masks obtained from a cascade of Bernoulli and Gaussian distribution [70] and using a
dropout probability of 0.5. MCD performs 100 stochastic forward passes (T = 100) and
therefore samples 100 features. Ensemble, MMCD and MCA include 20 deterministic
CNNs (M = 20).

A.5. Evaluation metrics
We expect a good method for estimating uncertainty to preserve the classification accuracy,
while giving a good estimate of uncertainty. Therefore, we compared MCA and related
methods with respect to the classification accuracy and quality of uncertainty. If not
stated otherwise, N denotes the evaluation data size.

A.5.1. Evaluating the classification accuracy
The classification accuracy measures how well a trained CNN generalizes to evaluation
(e.g., test) data. We expect the classification accuracy to be high on evaluation data
obtained from the training data distribution. In contrast, we expect the classification
accuracy to be low on evaluation data obtained far from the training data distribution
(e.g., OOD examples). Given an evaluation data, the classification accuracy (CA) is
estimated as

CA = 1
N

N∑
i=1

1(ŷi = yi) (A.1)

where 1(ŷi = yi) is 1 if the condition holds or 0 otherwise.

95



A. Experimental setup

A.5.2. Evaluating the quality of uncertainty
We evaluated the quality of uncertainty by assessing the degree of confidence calibration
and by assessing the ability to separate TPs and FPs based on evaluation of the degree
of confidence.

Assessing the degree of confidence calibration

We assessed the degree of confidence calibration by evaluating the calibration error,
which is the difference between the predicted probabilities (evaluated based on the
average confidence) and true probabilities (evaluated based on the CA). We measured
the calibration error using the ECE utilized by Naeini et al. [196]; Guo et al. [16];
Laves et al. [197]; Zhang, Dalca, and Sabuncu [69]; Thulasidasan et al. [198]; Liang et
al. [199]; Wen et al. [82]; and Wu Gales [168]. Low and high values of ECE indicate
low and high calibration errors, respectively. The ECE is denoted as in Equation A.4.
It sorts and groups predictions of an evaluation data into B equally spaced bins and
weighted the difference between the average confidence and CA of bins. The bin bτ
denotes the set of indices of evaluation samples whose confidences fall into the interval
Iτ =] τ−1

B
, τ
B

]. The expected accuracy acc(bτ ) of bin bτ is denoted as in Equation A.3. The
expected confidence conf(bτ ) within bin bτ is denoted as in Equation A.2. Confidences
are well-calibrated when acc(bτ ) = conf(bτ ) ∀ τ ∈ [1, B].

conf(bτ ) = 1
|bτ |

∑
i∈bτ

ui (A.2)

acc(bτ ) = 1
|bτ |

∑
i∈bτ

1(ŷi = yi) (A.3)

ECE =
B∑
τ=1

|bτ |
N
|conf(bτ )− acc(bτ )| (A.4)

Assessing the ability to separate TPs and FPs

We assessed the ability to separate TPs and FPs by evaluating the average confidence.
While the degree of confidence can be used as a measure of uncertainty, the average
confidence can be used to evaluate the ability of CNN-based classifiers to separate TPs
and FPs. Specifically, we expect the average confidence to be high on evaluation data
generating TPs and low on evaluation data generating FPs. Therefore, the average
confidence (AC) is estimated as

AC = 1
N

N∑
i=1

ui . (A.5)

96



A. Experimental setup

(a) Test data (b) Swap data (c) Noisy data

Figure 30.: Examples of evaluation data for experiments conducted on CIFAR10

A.6. Evaluation data
We used five evaluation data for different purposes: test, subsets of correctly classified test,
OOD, swap, and noisy data. While test data are used for evaluating the CA and ECE,
subsets of correctly classified test, OOD, swap, and noisy data are used for evaluating
the ability to separate TPs and FPs.

Test data are experimental data, such as the MNIST, CIFAR10, Fashion-MNIST, and
GTSRB that include both correctly classified and misclassified test data. Test data
are used to evaluate the CA and ECE. We expect the CA to be high and the ECE
to be low on test data.

Subsets of correctly classified test data include 1000 correctly classified test data of
experimental data. Since CNNs will generate (only) TPs on these data, we used
these data to evaluate the average confidence for TPs.

Swap data are simulated using subsets of correctly classified test data structurally
perturbed by dividing images into four regions and diagonally permuting the
regions. As shown in Figure 30b, the upper left is permuted with the bottom right
and the upper right is permuted with the bottom left region. Swap data include
structurally perturbed objects within the given images. Since the structure of
objects within swap images is destroyed, we expect CNNs to generate (only) FPs
on swap data. Therefore, we used these data to evaluate the average confidence for
FPs due to structural perturbation.

Noisy data are simulated using subsets of correctly classified test data perturbed by
applying AGN of standard deviation of 500. As shown in Figure 30c, noisy data
include noise within the given images. Since CNNs will generate (only) FPs on

97



A. Experimental setup

noisy data, we used these data to evaluate the average confidence for FPs due to
noise.

OOD data are simulated using 1000 test data of CIFAR100. Since CNNs will generate
(only) FPs on these data, we used these data to evaluate the average confidence for
FPs due to domain shift.

In general, we expect the average confidence to be high (e.g., [50%, 100%]) for TPs and
low (e.g., [0%, 50%[) for FPs.

98



A. Experimental setup

Table 14.: Summary of CNN architectures with large capacities:
[
conv3× 3− 64

]
denotes

a convolution operation with 64 convolution filters of size 3×3.
[
·
]
×3 denotes

3 consecutive operations of
[
·
]
. max2×2 denotes a max pooling operation over

a 2× 2 pixel window, with stride 2. FC − 4096 denotes 4096 fully connected
neurons

Layers VGGNet ResNet DenseNet
Input

Convolution
[
conv3× 3− 64

]
× 3

conv1× 1− 64
conv3× 3− 64
conv1× 1− 64

× 3

conv1× 1
conv3× 3

× 6

Pooling max2× 2 max2× 2
conv1× 1
max2× 2


Convolution

[
conv3× 3− 64

]
× 3

conv1× 1− 64
conv3× 3− 64
conv1× 1− 64

× 3

conv1× 1
conv3× 3

× 6

Pooling max2× 2 max2× 2
conv1× 1
max2× 2


Convolution

[
conv3× 3− 128

]
× 3

conv1× 1− 128
conv3× 3− 128
conv1× 1− 128

×3

conv1× 1
conv3× 3

× 6

Pooling max2× 2 max2× 2
conv1× 1
max2× 2


Convolution

[
conv3× 3− 256

]
× 3

conv1× 1− 256
conv3× 3− 256
conv1× 1− 256

×3

conv1× 1
conv3× 3

× 6

Pooling max2× 2 max2× 2
conv1× 1
max2× 2


Convolution

[
conv3× 3− 512

]
× 3

conv1× 1− 512
conv3× 3− 512
conv1× 1− 512

×3

conv1× 1
conv3× 3

× 6

Pooling max2× 2 max2× 2
conv1× 1
max2× 2


FC − 4096
FC − 4096
FC −K

99



A. Experimental setup

Table 15.: Summary of values assigned to SGD hyperparameters
Hyperparameters Values
Learning rate (γ) 0.02
Batch size (β) 128
Momentum (ν) 0.9
Epoch 100

100



List of Figures
1. A CNN-based classifier as inference model and part of the decision-making

unit of a safety- and/or mission-critical system. The CNN processes an
image x generated by a camera representing the sensing model to produce
a signal ŷ for the actuator, that is, the CNN specifies what action the
actuator must take in the operating environment. Herein, overconfident
FPs made by the CNN will result in false actions by the actuator, which
can possibly damage the operating environment. Overconfident FPs
occur owing to changes in the environment inherent in x0, sensing errors
e inherent in x, or errors in the annotation or model building process
inherent in f() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. A CNN-based classifier as inference model and part of the decision-making
unit of a safety- and/or mission-critical system. To avoid FPs, we want
to estimate and evaluate the uncertainty u inherent to the output ŷ
of the CNN. The uncertainty evaluation consists of thresholding u, for
example, the predictive confidence, to produce signals "1" for true (certain)
predictions and "0" for false (uncertain) predictions . . . . . . . . . . . . 6

3. Overview of the process of thresholding the predictive uncertainty. Here,
uncertainty u is measured using the predictive confidence or the softmax
score. We evaluate uncertainty by comparing the predictive confidence to
the threshold value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4. Overview of the input space of a classifier and the desired uncertainty profile 8
5. Visualization of different methods to estimate uncertainties . . . . . . . . 10

6. Overview of a CNN architecture for image classification [115] . . . . . . . 18
7. Illustration of a convolution operation with a convolution kernel size of

3× 3 and an image size of 7× 7. Convolution kernels always extend the
full depth of the input image. Starting from the top-left corner of the
input, the convolution kernel is moved from left to right with a stride of
1. Once the top-right corner is reached, the convolution kernel is moved
with the same stride in downward direction, and again the kernel is moved
from left to right corner while keeping the stride unchanged. This process
is repeated until the kernel reaches the bottom-right corner. Zero padding
is applied to fill the border of the image . . . . . . . . . . . . . . . . . . 20

101



List of Figures

8. Illustration of a max pooling operation with a pooling region size of 2× 2
and a feature map size of 8× 8. Starting from the top-left corner of the
input, the pooling region is moved from left to right with a stride of 2.
Once the top-right corner is reached, the pooling region is moved with the
same stride in a downward direction, and again the region is moved from
left to right corner while keeping the stride unchanged. This process is
repeated until the region reaches the bottom-right corner. This figure is
adapted from Guo et al. [123]. . . . . . . . . . . . . . . . . . . . . . . . . 21

9. Predictions obtained via a LeNet network trained on handwritten digits
(from 0 to 9) of MNIST and evaluated on different rotations of test
samples. For some rotations, the network exhibits a high confidence on
the false class owing to confusion (e.g., 3 is confused with 8) or unknown
representations. These examples show how a CNN-based classifier can
generate overconfident FPs under data distribution shifts. This figure is
adapted from Gawlikowski et al. [99] . . . . . . . . . . . . . . . . . . . . 27

10. Overview of uncertainty types and sources . . . . . . . . . . . . . . . . . 28

11. Overview of the properties of an ensemble such as redundancy and (com-
plementary and noncomplementary) diversity. Accuracy is driven by
redundancy and complementary diversity, while uncertainty is driven
by noncomplementary diversity, which negatively affects accuracy and
calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

12. Illustration of the two main modules of a CNN-based classifier. The
feature extractor is achieved using convolution and pooling layers, while
the discriminator is achieved using fully connected layers. The parameters
of the two modules are jointly learned during the training process . . . . 44

13. Overview of prediction estimation via MCD applying feature sampling in
a single CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

14. An example showing two feature sampling operations, where x̂ is the
original feature vector, α1 and α2 are the sampling masks including random
variables obtained from a Gaussian distribution at the first and second
feature sampling operation, β1 and β2 are the sampling masks including
random variables obtained from a Bernoulli distribution at the first and
second feature sampling operation, and x̂1 = x̂∗α1∗β1 and x̂2 = x̂∗α2∗β2

are the perturbed feature vectors obtained from the first and second feature
sampling operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

15. Overview of prediction estimation via ensemble . . . . . . . . . . . . . . 47
16. Overview of prediction estimation via MMCD by applying feature sampling

in multiple CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

102



List of Figures

17. Comparison of feature sampling (inherent in MMCD) and feature averaging
(inherent in MCA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

18. Histograms of RMSE and CS measuring the similarity between features
extracted by different ensemble members. Lower bins include lower values,
while higher bins include higher values of RMSE and CS. The results were
obtained via CIFAR10 using an ensemble of CNNs trained with SR and
using the subset of correctly classified test data, as shown in Appendix A.6 50

19. An example showing feature averaging operations performed by the first,
second, and third ensemble members. x̂1, x̂2, and x̂3 are the feature vectors
extracted by the first, second, and third ensemble members, respectively.
x̂a12 = 1

2(x̂1 + x̂2), x̂a13 = 1
2(x̂1 + x̂3), x̂a21 = 1

2(x̂2 + x̂1), x̂a23 = 1
2(x̂2 + x̂3),

x̂a31 = 1
2(x̂3 + x̂1), and x̂a32 = 1

2(x̂3 + x̂2) are pairwise averaged features,
which are used to evaluate the uncertainty associated with extracted
features. Particularly, the discriminator of the first ensemble member
processes x̂1, x̂a12 , and x̂a13 . The discriminator of the second ensemble
member processes x̂2, x̂a21 , and x̂a23 . Lastly, the discriminator of the third
ensemble member processes x̂3, x̂a31 , and x̂a32 . . . . . . . . . . . . . . . . 51

20. Overview of prediction estimation via MCA by applying feature averaging
in multiple CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

21. Comparison of the ASD obtained on CIFAR10 using CNNs with large
capacities trained using WR and evaluated on TPs and FPs. TPs were
obtained on subsets of test data correctly classified, while FPs were obtained
on swap, noisy, or OOD data, as described in Appendix A.6 . . . . . . . 54

22. Illustration of the process of extracting statistical data, such as the ACS
and ARMSE, from the sampled features. The statistical data are visualized
using histograms, as shown in Figure 23 . . . . . . . . . . . . . . . . . . 55

23. Comparison of histograms of ACS and ARMSE obtained from the sampled
and averaged features. Lower bins include lower values, while higher bins
include higher values of ACS and ARMSE. The results were obtained
via CIFAR10 using an ensemble of CNNs trained with SR and using the
subset of correctly classified test data, as described in Appendix A.6 . . . 56

24. An illustration of the difference between logit and probability averaging.
Herein, M CNNs are averaged to estimate the ensemble prediction . . . . 68

103



List of Figures

25. An example showing how logit averaging increased the confidence of
an ensemble of four deterministic CNNs: Herein, z = 1

4
∑4
m=1 z

m, pz =
softmax(z), and p = 1

4
∑4
m=1 p

m with p1 = softmax(z1), p2 = softmax(z2),
p3 = softmax(z3), and p4 = softmax(z4). We can see that logit averaging
pz results in more confident predictions than probability averaging p. This
is because logit averaging is more sensitive to the magnitude of logits.
Here, zm with large values contribute the most to z. Particularly, z is
mostly influenced by the values of z1, that is, the contributions of z2, z3,
and z4 to z are low. On the contrary, p is influenced by the values of all
probability vectors pm and is less sensitive to the magnitude of individual
logits zm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

26. Average values of logits obtained for TPs and FPs: TPs were obtained on
subsets of test data correctly classified. FPs were obtained on swap, noisy,
or OOD data, as described in Appendix A.6. This example shows that FPs
caused by noisy data can increase the magnitude of logit values (see the
ensemble). This experiment was conducted on CIFAR10 via CNNs with
large capacities (summarized in Table 14) trained using SR (summarized
in Table 9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

27. The average confidence (AC) for probability averaging (PA) and logit
averaging (LA) obtained via CNNs with large capacities (summarized in
Table 14) trained using SR (summarized in Table 9) and evaluated on
datasets generating TPs and FPs. TPs were obtained on subsets of test
data correctly classified. FPs were obtained on swap, noisy and OOD data,
as described in Appendix A.6 . . . . . . . . . . . . . . . . . . . . . . . . 74

28. The average confidence (AC) obtained via CNNs with large capacities
(summarized in Table 14) trained using WR and SR (summarized in
Table 9) and evaluated on datasets generating TPs and FPs. TPs were
obtained on subsets of test data correctly classified. FPs were obtained on
swap, noisy, and OOD data, as described in Appendix A.6 . . . . . . . . 80

29. Examples of images of the experimental datasets . . . . . . . . . . . . . . 92
30. Examples of evaluation data for experiments conducted on CIFAR10 . . 97

104



List of Tables
1. Summary of characteristics of MCA and related methods, such as baseline,

MCD, ensemble, and MMCD. The symbols S and M (with M << S)
refer to the number of stochastic forward passes in MCD and the number
of members in MCA and ensemble, respectively . . . . . . . . . . . . . . 13

2. CA, AC (in bracket), and ECE obtained via CNNs with small capacities
(see Table 13) trained using SR (see Table 9). The results were obtained
using test data, as described in Appendix A.6 . . . . . . . . . . . . . . . 59

3. Classification accuracy (CA), average confidence (AC) (in bracket), and
ECE obtained via CNNs with large capacities (see Table 14) trained using
SR (see Table 9). The results were obtained using test data, as described
in Appendix A.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4. The average confidence (AC) obtained via CNNs with small capacities
(see Table 13) trained using SR (see Table 9) and evaluated on datasets,
thereby generating TPs and FPs . . . . . . . . . . . . . . . . . . . . . . . 61

5. The average confidence (AC) obtained via CNNs with large capacities
(see Table 14) trained using SR (see Table 9) and evaluated on datasets,
thereby generating TPs and FPs . . . . . . . . . . . . . . . . . . . . . . . 61

6. Mean and standard deviation of inference time (in seconds) obtained over
100 test samples via CNNs with small capacities trained using SR . . . . 63

7. Mean and standard deviation of inference time (in seconds) obtained over
100 test samples via CNNs with large capacities trained using SR . . . . 63

8. Classification accuracy (CA), average confidence (AC) (in bracket), and
ECE for PA and LA obtained via CNNs with large capacities (summarized
in Table 14) trained using SR (summarized in Table 9). The results were
obtained using test data, as described in Appendix A.6 . . . . . . . . . . 71

9. Summary of values assigned to regularization hyperparameters . . . . . . 76
10. Classification accuracy (CA), average confidence (AC) (in bracket), and

ECE obtained via CNNs with large capacities (summarized in Table 14)
trained using WR and SR (summarized in Table 9). The results were
obtained using test data, as described in Appendix A.6 . . . . . . . . . . 77

105



List of Tables

11. Summary of experimental datasets . . . . . . . . . . . . . . . . . . . . . 91
12. Capacity or number of parameters (in millions) of experimental architectures 93
13. Summary of CNN architectures with small capacities:

[
conv3× 3− 64

]
denotes a convolution operation with 64 convolution filters of size 3× 3.[
·
]
× 3 denotes 3 consecutive operations of

[
·
]
. max2× 2 denotes a max

pooling operation over a 2 × 2 pixel window, with stride 2. FC − 2048
denotes 2048 fully connected neurons. The GlobalAveragePooling2D
[195] operation is used to reduce the spatial dimension of inputs to fully
connected layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

14. Summary of CNN architectures with large capacities:
[
conv3× 3− 64

]
denotes a convolution operation with 64 convolution filters of size 3× 3.[
·
]
× 3 denotes 3 consecutive operations of

[
·
]
. max2× 2 denotes a max

pooling operation over a 2 × 2 pixel window, with stride 2. FC − 4096
denotes 4096 fully connected neurons . . . . . . . . . . . . . . . . . . . . 99

15. Summary of values assigned to SGD hyperparameters . . . . . . . . . . . 100

106



Acronyms
AC average confidence. 58, 59, 61, 71, 74, 77, 80, 96, 104, 105

ACS average cosine similarity. 55, 56, 103

AGN additive Gaussian noise. 95, 97

ARMSE average root mean square error. 55, 56, 103

ASD average standard deviation. 54, 103

CA classification accuracy. 58, 59, 71, 77, 95–97, 105

CNN convolutional neural network. iv–vii, xiii, 1–4, 6, 7, 9–15, 17–19, 22–27, 36, 41,
44–48, 50, 53, 54, 56–65, 67–72, 74, 75, 77, 79–85, 87, 89, 90, 93–99, 101–106

CS cosine similarity. 50, 52, 55, 103

ECE expected calibration error. 58–60, 70, 71, 73, 76, 77, 79, 90, 96, 97, 105

FP false prediction. iv–vii, xiv, xv, 2–4, 6, 7, 9, 12, 13, 15, 16, 24–27, 44, 54, 56, 58,
60–62, 64–67, 70–75, 77–90, 96–98, 101–105

LA logit averaging. 71, 74, 104, 105

MCA Monte Carlo averaging. iv–vii, xiv, 11–16, 27, 29, 44, 49, 50, 53–67, 70–72, 75–79,
82–91, 94, 95, 103, 105

MCD Monte Carlo dropout. iv–vii, x, 11–15, 33–35, 39, 40, 44–48, 50, 56–65, 70, 71, 77,
78, 82–85, 87, 95, 102, 105

MMCD mixture of Monte Carlo dropout. iv–vii, x, 11–15, 44, 47–50, 54–67, 70, 71, 77,
78, 82–85, 87, 89, 90, 95, 102, 103, 105

OOD out-of-domain. 3, 7, 9, 25, 26, 40, 54, 61, 62, 72, 74, 78, 80–82, 95, 97, 98, 103, 104

PA probability averaging. 71, 74, 104, 105

107



Acronyms

RELU rectified linear unit. 19, 22, 94

RMSE root mean square error. 50, 52, 55, 103

SGD stochastic gradient descent. 9, 23, 94, 100, 106

SR strong regularization. 50, 52, 56, 59, 61, 63, 71, 72, 74–80, 85, 88, 89, 103–105

TP true prediction. iv–vii, xiv, xv, 7, 9, 12, 13, 15, 16, 44, 54, 56, 58, 60–62, 64–67,
70–75, 77–90, 96–98, 103–105

WR weak regularization. 54, 75–80, 85, 86, 88, 89, 103–105

108



References
[1] Mohammad Mahdi Bejani and Mehdi Ghatee. “A systematic review on overfitting

control in shallow and deep neural networks”. In: Artificial Intelligence Review
54.8 (2021), pp. 6391–6438.

[2] Lutz Prechelt. “Early stopping-but when?” In: Neural Networks: Tricks of the
Trade. Springer, 1998, pp. 55–69.

[3] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. “On early stopping in
gradient descent learning”. In: Constructive Approximation 26.2 (2007), pp. 289–
315.

[4] Anders Krogh and John Hertz. “A simple weight decay can improve generalization”.
In: Advances in Neural Information Processing Systems 4 (1991).

[5] Christos Louizos, Max Welling, and Diederik P Kingma. “Learning sparse neu-
ral networks through L_0 regularization”. In: arXiv preprint arXiv:1712.01312
(2017).

[6] Connor Shorten and Taghi M Khoshgoftaar. “A survey on image data augmenta-
tion for deep learning”. In: Journal of Big Data 6.1 (2019), pp. 1–48.

[7] Cherry Khosla and Baljit Singh Saini. “Enhancing performance of deep learning
models with different data augmentation techniques: A survey”. In: 2020 Interna-
tional Conference on Intelligent Engineering and Management (ICIEM). IEEE.
2020, pp. 79–85.

[8] Humza Naveed. “Survey: Image mixing and deleting for data augmentation”. In:
arXiv preprint arXiv:2106.07085 (2021).

[9] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. “Dropout: A simple way to prevent neural networks from over-
fitting”. In: The Journal of Machine Learning Research 15.1 (2014), pp. 1929–
1958.

[10] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. “Regular-
ization of neural networks using dropconnect”. In: International Conference on
Machine Learning. PMLR. 2013, pp. 1058–1066.

109



References

[11] Mostafa Rahmani and George K Atia. “Data dropout in arbitrary basis for deep
network regularization”. In: 2018 52nd Asilomar Conference on Signals, Systems,
and Computers. IEEE. 2018, pp. 66–70.

[12] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: International Conference
on Machine Learning. PMLR. 2015, pp. 448–456.

[13] Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. “Under-
standing batch normalization”. In: Advances in Neural Information Processing
Systems 31 (2018).

[14] Ismoilov Nusrat and Sung-Bong Jang. “A comparison of regularization techniques
in deep neural networks”. In: Symmetry 10.11 (2018), p. 648.

[15] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and
scalable predictive uncertainty estimation using deep ensembles”. In: arXiv preprint
arXiv:1612.01474 (2016).

[16] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. “On calibration
of modern neural networks”. In: International Conference on Machine Learning.
PMLR. 2017, pp. 1321–1330.

[17] Vladimir Vapnik. “Principles of risk minimization for learning theory”. In: Ad-
vances in Neural Information Processing Systems. 1992, pp. 831–838.

[18] Dan Hendrycks and Thomas Dietterich. “Benchmarking neural network robustness
to common corruptions and perturbations”. In: arXiv preprint arXiv:1903.12261
(2019).

[19] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and
harnessing adversarial examples”. In: arXiv preprint arXiv:1412.6572 (2014).

[20] Anh Nguyen, Jason Yosinski, and Jeff Clune. “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images”. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2015, pp. 427–
436.

[21] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. “Adversarial machine learning
at scale”. In: arXiv preprint arXiv:1611.01236 (2016).

[22] Cihang Xie, Mingxing Tan, Boqing Gong, Alan Yuille, and Quoc V Le. “Smooth
adversarial training”. In: arXiv preprint arXiv:2006.14536 (2020).

[23] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis,
Aditya Nori, and Antonio Criminisi. “Measuring neural net robustness with
constraints”. In: Advances in Neural Information Processing Systems 29 (2016).

110



References

[24] David Krueger, Chin-Wei Huang, Riashat Islam, Ryan Turner, Alexandre Lacoste,
and Aaron Courville. “Bayesian hypernetworks”. In: arXiv preprint arXiv:1710.04759
(2017).

[25] Lewis Smith and Yarin Gal. “Understanding measures of uncertainty for adversarial
example detection”. In: arXiv preprint arXiv:1803.08533 (2018).

[26] Omer Faruk Tuna, Ferhat Ozgur Catak, and M Taner Eskil. “Closeness and
uncertainty aware adversarial examples detection in adversarial machine learning”.
In: arXiv preprint arXiv:2012.06390 (2020).

[27] Dan Hendrycks and Kevin Gimpel. “A baseline for detecting misclassified and out-
of-distribution examples in neural networks”. In: arXiv preprint arXiv:1610.02136
(2016).

[28] Shiyu Liang, Yixuan Li, and R. Srikant. “Enhancing the reliability of out-of-
distribution image detection in neural networks”. In: 6th International Conference
on Learning Representations. 2018.

[29] Harry A Pierson and Michael S Gashler. “Deep learning in robotics: A review of
recent research”. In: Advanced Robotics 31.16 (2017), pp. 821–835.

[30] Gregory Kahn, Adam Villaflor, Vitchyr Pong, Pieter Abbeel, and Sergey Levine.
“Uncertainty-aware reinforcement learning for collision avoidance”. In: arXiv
preprint arXiv:1702.01182 (2017).

[31] Björn Lütjens, Michael Everett, and Jonathan P How. “Safe reinforcement learning
with model uncertainty estimates”. In: 2019 International Conference on Robotics
and Automation (ICRA). IEEE. 2019, pp. 8662–8668.

[32] Wei Chen, Ting Qu, Yimin Zhou, Kaijian Weng, Gang Wang, and Guoqiang Fu.
“Door recognition and deep learning algorithm for visual based robot navigation”.
In: 2014 IEEE International Conference on Robotics and Biomimetics (robio
2014). IEEE. 2014, pp. 1793–1798.

[33] Wanli Ouyang and Xiaogang Wang. “Joint deep learning for pedestrian detection”.
In: Proceedings of the IEEE International Conference on Computer Vision. 2013,
pp. 2056–2063.

[34] Ashesh Jain, Hema S Koppula, Shane Soh, Bharad Raghavan, Avi Singh, and
Ashutosh Saxena. “Brain4cars: Car that knows before you do via sensory-fusion
deep learning architecture”. In: arXiv preprint arXiv:1601.00740 (2016).

[35] Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu, Arunacha-
lam Narayanaswamy, Subhashini Venugopalan, Kasumi Widner, Tom Madams,
Jorge Cuadros, et al. “Development and validation of a deep learning algorithm
for detection of diabetic retinopathy in retinal fundus photographs”. In: Jama
316.22 (2016), pp. 2402–2410.

111



References

[36] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter,
Helen M Blau, and Sebastian Thrun. “Dermatologist-level classification of skin
cancer with deep neural networks”. In: Nature 542.7639 (2017), pp. 115–118.

[37] Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes Van Diest, Bram Van
Ginneken, Nico Karssemeijer, Geert Litjens, Jeroen AWM Van Der Laak, Meyke
Hermsen, Quirine F Manson, Maschenka Balkenhol, et al. “Diagnostic assessment
of deep learning algorithms for detection of lymph node metastases in women
with breast cancer”. In: Jama 318.22 (2017), pp. 2199–2210.

[38] Jian Huang, Junyi Chai, and Stella Cho. “Deep learning in finance and banking: A
literature review and classification”. In: Frontiers of Business Research in China
14.1 (2020), pp. 1–24.

[39] Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer. “Deep
learning for financial applications: A survey”. In: Applied Soft Computing 93
(2020), p. 106384.

[40] Björn Rafn Gunnarsson, Seppe Vanden Broucke, Bart Baesens, Marıa Óskarsdóttir,
and Wilfried Lemahieu. “Deep learning for credit scoring: Do or don’t?” In:
European Journal of Operational Research 295.1 (2021), pp. 292–305.

[41] Svitlana Galeshchuk and Sumitra Mukherjee. “Deep networks for predicting
direction of change in foreign exchange rates”. In: Intelligent Systems in Accounting,
Finance and Management 24.4 (2017), pp. 100–110.

[42] Thomas Fischer and Christopher Krauss. “Deep learning with long short-term
memory networks for financial market predictions”. In: European Journal of
Operational Research 270.2 (2018), pp. 654–669.

[43] Philipp Oberdiek, Matthias Rottmann, and Hanno Gottschalk. “Classification
uncertainty of deep neural networks based on gradient information”. In: IAPR
Workshop on Artificial Neural Networks in Pattern Recognition. Springer. 2018,
pp. 113–125.

[44] Andrey Malinin and Mark Gales. “Reverse KL-Divergence Training of Prior
Networks: Improved Uncertainty and Adversarial Robustness”. In: Advances in
Neural Information Processing Systems. Ed. by H. Wallach, H. Larochelle, A.
Beygelzimer, F. dÁlché-Buc, E. Fox, and R. Garnett. 2019, pp. 14547–14558.

[45] Murat Sensoy, Lance Kaplan, and Melih Kandemir. “Evidential deep learning to
quantify classification uncertainty”. In: Advances in Neural Information Processing
Systems. 2018, pp. 3179–3189.

[46] Andrey Malinin and Mark Gales. “Predictive uncertainty estimation via prior
networks”. In: Advances in Neural Information Processing Systems. 2018, pp. 7047–
7058.

112



References

[47] Marcin Możejko, Mateusz Susik, and Rafał Karczewski. “Inhibited softmax for
uncertainty estimation in neural networks”. In: arXiv preprint arXiv:1810.01861
(2018).

[48] Jay Nandy, Wynne Hsu, and Mong Li Lee. “Towards Maximizing the Representa-
tion Gap between In-Domain &amp; Out-of-Distribution Examples”. In: Advances
in Neural Information Processing Systems. Ed. by H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin. 2020, pp. 9239–9250.

[49] Maithra Raghu, Katy Blumer, Rory Sayres, Ziad Obermeyer, Bobby Kleinberg,
Sendhil Mullainathan, and Jon Kleinberg. “Direct uncertainty prediction for
medical second opinions”. In: International Conference on Machine Learning.
PMLR. 2019, pp. 5281–5290.

[50] Tiago Ramalho and Miguel Miranda. “Density Estimation in Representation Space
to Predict Model Uncertainty”. In: Engineering Dependable and Secure Machine
Learning Systems: Third International Workshop, EDSMLS 2020, New York City,
NY, USA, February 7, 2020, Revised Selected Papers. Vol. 1272. Springer Nature.
2020, p. 84.

[51] Jinsol Lee and Ghassan AlRegib. “Gradients as a measure of uncertainty in neural
networks”. In: 2020 IEEE International Conference on Image Processing. IEEE.
2020, pp. 2416–2420.

[52] Theodoros Tsiligkaridis. “Information Robust Dirichlet Networks for Predictive
Uncertainty Estimation”. In: arXiv preprint arXiv:1910.04819 (2019).

[53] Qingyang Wu, He Li, Weijie Su, Lexin Li, and Zhou Yu. “Quantifying Intrinsic
Uncertainty in Classification via Deep Dirichlet Mixture Networks”. In: arXiv
preprint arXiv:1906.04450 (2019).

[54] Joost Van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. “Uncertainty
Estimation Using a Single Deep Deterministic Neural Network”. In: Proceedings of
the 37th International Conference on Machine Learning. PMLR, 2020, pp. 9690–
9700.

[55] Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. “Generalized odin:
Detecting out-of-distribution image without learning from out-of-distribution
data”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020, pp. 10951–10960.

[56] Yarin Gal and Zoubin Ghahramani. “Bayesian convolutional neural networks with
Bernoulli approximate variational inference”. In: arXiv preprint arXiv:1506.02158
(2015).

[57] Danilo Rezende and Shakir Mohamed. “Variational inference with normalizing
flows”. In: International Conference on Machine Learning. 2015, pp. 1530–1538.

113



References

[58] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.
“Weight uncertainty in neural networks”. In: Proceedings of the 32nd International
Conference on International Conference on Machine Learning-Volume 37. 2015,
pp. 1613–1622.

[59] Durk P Kingma, Tim Salimans, and Max Welling. “Variational dropout and the
local reparameterization trick”. In: Advances in Neural Information Processing
Systems. 2015, pp. 2575–2583.

[60] Yarin Gal and Zoubin Ghahramani. “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning”. In: International Conference
on Machine Learning. 2016, pp. 1050–1059.

[61] Patrick McClure and Nikolaus Kriegeskorte. “Robustly representing uncertainty
through sampling in deep neural networks”. In: arXiv preprint arXiv:1611.01639
(2016).

[62] Yarin Gal, Jiri Hron, and Alex Kendall. “Concrete dropout”. In: Advances in
Neural Information Processing Systems. 2017, pp. 3581–3590.

[63] Christos Louizos and MaxWelling. “Multiplicative normalizing flows for variational
Bayesian neural networks”. In: International Conference on Machine Learning.
2017, pp. 2218–2227.

[64] Shengyang Sun, Changyou Chen, and Lawrence Carin. “Learning structured
weight uncertainty in bayesian neural networks”. In: Artificial Intelligence and
Statistics. 2017, pp. 1283–1292.

[65] Alex Kendall and Yarin Gal. “What uncertainties do we need in bayesian deep
learning for computer vision?” In: Advances in Neural Information Processing
Systems. 2017, pp. 5574–5584.

[66] Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. “Noisy
natural gradient as variational inference”. In: International Conference on Machine
Learning. 2018, pp. 5852–5861.

[67] A Wu, S Nowozin, E Meeds, RE Turner, JM Hernández-Lobato, and AL Gaunt.
“Deterministic variational inference for robust Bayesian neural networks”. In: 7th
International Conference on Learning Representations, ICLR 2019. 2019.

[68] Andrei Atanov, Arsenii Ashukha, Dmitry Molchanov, Kirill Neklyudov, and
Dmitry Vetrov. “Uncertainty estimation via stochastic batch normalization”. In:
International Symposium on Neural Networks. Springer. 2019, pp. 261–269.

[69] Zhilu Zhang, Adrian V Dalca, and Mert R Sabuncu. “Confidence calibration
for convolutional neural networks using structured dropout”. In: arXiv preprint
arXiv:1906.09551 (2019).

114



References

[70] Cedrique Rovile Njieutcheu Tassi. “Bayesian convolutional neural network: Ro-
bustly quantify uncertainty for misclassifications detection”. In: Pattern Recog-
nition and Artificial Intelligence: Third Mediterranean Conference, MedPRAI
2019, Istanbul, Turkey, December 22–23, 2019, Proceedings 3. Springer. 2020,
pp. 118–132.

[71] Aryan Mobiny, Hien V Nguyen, Supratik Moulik, Naveen Garg, and Carol C Wu.
“DropConnect is effective in modeling uncertainty of Bayesian deep networks”. In:
arXiv preprint arXiv:1906.04569 (2019).

[72] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew
Gordon Wilson. “A simple baseline for bayesian uncertainty in deep learning”. In:
Advances in Neural Information Processing Systems. 2019, pp. 13153–13164.

[73] Kazuki Osawa, Siddharth Swaroop, Mohammad Emtiyaz E Khan, Anirudh Jain,
Runa Eschenhagen, Richard E Turner, and Rio Yokota. “Practical deep learning
with bayesian principles”. In: Advances in neural information processing systems.
2019, pp. 4287–4299.

[74] Andrew G Wilson and Pavel Izmailov. “Bayesian deep learning and a probabilistic
perspective of generalization”. In: Advances in Neural Information Processing
Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin.
Vol. 33. 2020, pp. 4697–4708.

[75] Sebastian Farquhar, Lewis Smith, and Yarin Gal. “Try depth instead of weight
correlations: Mean-field is a less restrictive assumption for deeper networks”. In:
arXiv preprint arXiv:2002.03704 (2020).

[76] Jongseok Lee, Matthias Humt, Jianxiang Feng, and Rudolph Triebel. “Estimating
model uncertainty of neural networks in sparse information form”. In: International
Conference on Machine Learning. PMLR. 2020, pp. 5702–5713.

[77] Apoorv Vyas, Nataraj Jammalamadaka, Xia Zhu, Dipankar Das, Bharat Kaul,
and Theodore L Willke. “Out-of-distribution detection using an ensemble of self
supervised leave-out classifiers”. In: Proceedings of the European Conference on
Computer Vision. 2018, pp. 550–564.

[78] William H Beluch, Tim Genewein, Andreas Nürnberger, and Jan M Köhler. “The
power of ensembles for active learning in image classification”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2018,
pp. 9368–9377.

115



References

[79] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian
Nowozin, Joshua Dillon, Balaji Lakshminarayanan, and Jasper Snoek. “Can you
trust your model’s uncertainty? Evaluating predictive uncertainty under dataset
shift”. In: Advances in Neural Information Processing Systems. 2019, pp. 13991–
14002.

[80] Matias Valdenegro-Toro. “Deep sub-ensembles for fast uncertainty estimation in
image classification”. In: Bayesian Deep Learning Workshop at Neural Information
Processing Systems 2019. 2019.

[81] Rahul Rahaman and Alexandre H Thiery. “Uncertainty Quantification and Deep
Ensembles”. In: stat 1050 (2020), p. 20.

[82] Yeming Wen, Ghassen Jerfel, Rafael Muller, Michael W Dusenberry, Jasper
Snoek, Balaji Lakshminarayanan, and Dustin Tran. “Combining ensembles and
data augmentation can harm your calibration”. In: International Conference on
Learning Representations. 2021.

[83] Fredrik K Gustafsson, Martin Danelljan, and Thomas B Schon. “Evaluating
scalable bayesian deep learning methods for robust computer vision”. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops. 2020, pp. 318–319.

[84] Guotai Wang, Wenqi Li, Sébastien Ourselin, and Tom Vercauteren. “Automatic
brain tumor segmentation using convolutional neural networks with test-time
augmentation”. In: International MICCAI Brainlesion Workshop. Springer. 2018,
pp. 61–72.

[85] Murat Seckin Ayhan and Philipp Berens. “Test-time data augmentation for
estimation of heteroscedastic aleatoric uncertainty in deep neural networks”. In:
Medical Imaging with Deep Learning Conference. 2018.

[86] Guotai Wang, Wenqi Li, Michael Aertsen, Jan Deprest, Sébastien Ourselin, and
Tom Vercauteren. “Aleatoric uncertainty estimation with test-time augmenta-
tion for medical image segmentation with convolutional neural networks”. In:
Neurocomputing 338 (2019), pp. 34–45.

[87] Nikita Moshkov, Botond Mathe, Attila Kertesz-Farkas, Reka Hollandi, and Peter
Horvath. “Test-time augmentation for deep learning-based cell segmentation on
microscopy images”. In: Scientific reports 10.1 (2020), pp. 1–7.

[88] Divya Shanmugam, Davis Blalock, Guha Balakrishnan, and John Guttag. “When
and why test-time augmentation works”. In: arXiv preprint arXiv:2011.11156
(2020).

116



References

[89] Dmitry Molchanov, Alexander Lyzhov, Yuliya Molchanova, Arsenii Ashukha, and
Dmitry Vetrov. “Greedy policy search: A simple baseline for learnable test-time
augmentation”. In: arXiv preprint arXiv:2002.09103 2.7 (2020).

[90] Ildoo Kim, Younghoon Kim, and Sungwoong Kim. “Learning loss for test-time
augmentation”. In: Advances in Neural Information Processing Systems. 2020,
pp. 4163–4174.

[91] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. “Rethinking the inception architecture for computer vision”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2016,
pp. 2818–2826.

[92] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hin-
ton. “Regularizing neural networks by penalizing confident output distributions”.
In: arXiv preprint arXiv:1701.06548 (2017).

[93] Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. “Training confidence-
calibrated classifiers for detecting out-of-distribution samples”. In: International
Conference on Learning Representations. 2018.

[94] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. “When does label smooth-
ing help?” In: Advances in Neural Information Processing Systems. 2019, pp. 4694–
4703.

[95] Bindya Venkatesh and Jayaraman J Thiagarajan. “Heteroscedastic calibration
of uncertainty estimators in deep learning”. In: arXiv preprint arXiv:1910.14179
(2019).

[96] Jonathan Wenger, Hedvig Kjellström, and Rudolph Triebel. “Non-parametric
calibration for classification”. In: International Conference on Artificial Intelligence
and Statistics. 2020, pp. 178–190.

[97] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. “Deep ensembles: A loss
landscape perspective”. In: arXiv preprint arXiv:1912.02757 (2019).

[98] Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. “Functional
variational bayesian neural networks”. In: arXiv preprint arXiv:1903.05779 (2019).

[99] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee,
Matthias Humt, Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung,
Ribana Roscher, et al. “A survey of uncertainty in deep neural networks”. In:
Artificial Intelligence Review 56.Suppl 1 (2023), pp. 1513–1589.

[100] Koustuv Sinha, Joelle Pineau, Jessica Forde, Rosemary Nan Ke, and Hugo
Larochelle. “NeurIPS 2019 reproducibility challenge”. In: ReScience C 6.2 (2020),
p. 11.

117



References

[101] Cedrique Rovile Njieutcheu Tassi, Anko Börner, and Rudolph Triebel. “Monte
Carlo averaging for uncertainty estimation in neural networks”. In: Journal of
Physics: Conference Series. Vol. 2506. 1. IOP Publishing. 2023, p. 012004.

[102] Cedrique Rovile Njieutcheu Tassi, Jakob Gawlikowski, Auliya Unnisa Fitri, and
Rudolph Triebel. “The impact of averaging logits over probabilities on ensembles
of neural networks.” In: AISafety@ IJCAI. 2022.

[103] Cedrique Rovile Njieutcheu Tassi, Anko Börner, and Rudolph Triebel. “Regu-
larization Strength Impact on Neural Network Ensembles”. In: Proceedings of
the 2022 5th International Conference on Algorithms, Computing and Artificial
Intelligence. 2022, pp. 1–9.

[104] Anil K Jain, Jianchang Mao, and K Moidin Mohiuddin. “Artificial neural networks:
A tutorial”. In: Computer 29.3 (1996), pp. 31–44.

[105] Katarzyna Janocha and Wojciech Marian Czarnecki. “On loss functions for deep
neural networks in classification”. In: arXiv preprint arXiv:1702.05659 (2017).

[106] Ajay Shrestha and Ausif Mahmood. “Review of deep learning algorithms and
architectures”. In: IEEE Access 7 (2019), pp. 53040–53065.

[107] Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. “Recent advances of large-scale
linear classification”. In: Proceedings of the IEEE 100.9 (2012), pp. 2584–2603.

[108] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks”. In: Advances in Neural Information
Processing Systems 25 (2012).

[109] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
“Imagenet large scale visual recognition challenge”. In: International Journal of
Computer Vision 115.3 (2015), pp. 211–252.

[110] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for
large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[111] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning
for image recognition”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 770–778.

[112] Sergey Zagoruyko and Nikos Komodakis. “Wide residual networks”. In: arXiv
preprint arXiv:1605.07146 (2016).

[113] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. “Aggre-
gated residual transformations for deep neural networks”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 1492–
1500.

118



References

[114] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
“Densely connected convolutional networks”. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. 2017, pp. 4700–4708.

[115] Waseem Rawat and Zenghui Wang. “Deep convolutional neural networks for
image classification: A comprehensive review”. In: Neural Computation 29.9
(2017), pp. 2352–2449.

[116] Asifullah Khan, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. “A
survey of the recent architectures of deep convolutional neural networks”. In:
Artificial Intelligence Review 53.8 (2020), pp. 5455–5516.

[117] Laith Alzubaidi, Jinglan Zhang, Amjad J Humaidi, Ayad Al-Dujaili, Ye Duan,
Omran Al-Shamma, J Santamarıa, Mohammed A Fadhel, Muthana Al-Amidie, and
Laith Farhan. “Review of deep learning: Concepts, CNN architectures, challenges,
applications, future directions”. In: Journal of Big Data 8.1 (2021), pp. 1–74.

[118] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier neural
networks”. In: Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics. JMLR Workshop and Conference Proceedings. 2011,
pp. 315–323.

[119] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. “Rectifier nonlinearities
improve neural network acoustic models”. In: Proceedings of the International
Conference on Machine Learning. Vol. 30. 1. Citeseer. 2013, p. 3.

[120] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification”. In: Pro-
ceedings of the IEEE international conference on computer vision. 2015, pp. 1026–
1034.

[121] Xiaojie Jin, Chunyan Xu, Jiashi Feng, Yunchao Wei, Junjun Xiong, and Shuicheng
Yan. “Deep learning with s-shaped rectified linear activation units”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 30. 1. 2016.

[122] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and accurate
deep network learning by exponential linear units (elus)”. In: arXiv preprint
arXiv:1511.07289 (2015).

[123] Yanming Guo, Yu Liu, Ard Oerlemans, Songyang Lao, Song Wu, and Michael S
Lew. “Deep learning for visual understanding: A review”. In: Neurocomputing 187
(2016), pp. 27–48.

[124] Y-Lan Boureau, Jean Ponce, and Yann LeCun. “A theoretical analysis of feature
pooling in visual recognition”. In: Proceedings of the 27th International Conference
on Machine Learning (ICML-10). 2010, pp. 111–118.

119



References

[125] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-based
learning applied to document recognition”. In: Proceedings of the IEEE 86.11
(1998), pp. 2278–2324.

[126] Murat Sensoy, Lance Kaplan, and Melih Kandemir. “Evidential deep learning to
quantify classification uncertainty”. In: Advances in Neural Information Processing
Systems 31 (2018).

[127] Bolin Gao and Lacra Pavel. “On the properties of the softmax function with
application in game theory and reinforcement learning”. In: arXiv preprint
arXiv:1704.00805 (2017).

[128] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. “A comprehensive survey on transfer learning”. In:
Proceedings of the IEEE 109.1 (2020), pp. 43–76.

[129] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. “A survey of transfer
learning”. In: Journal of Big Data 3.1 (2016), pp. 1–40.

[130] Randall J Erb. “Introduction to backpropagation neural network computation”.
In: Pharmaceutical Research 10.2 (1993), pp. 165–170.

[131] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. “On the
importance of initialization and momentum in deep learning”. In: International
Conference on Machine Learning. PMLR. 2013, pp. 1139–1147.

[132] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa
Reyes, Mei-Ling Shyu, Shu-Ching Chen, and Sundaraja S Iyengar. “A survey on
deep learning: Algorithms, techniques, and applications”. In: ACM Computing
Surveys (CSUR) 51.5 (2018), pp. 1–36.

[133] Eyke Hüllermeier and Willem Waegeman. “Aleatoric and epistemic uncertainty
in machine learning: An introduction to concepts and methods”. In: Machine
Learning 110.3 (2021), pp. 457–506.

[134] Vishal Thanvantri Vasudevan, Abhinav Sethy, and Alireza Roshan Ghias. “To-
wards better confidence estimation for neural models”. In: ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE. 2019, pp. 7335–7339.

[135] Christopher Bishop. Pattern Recognition and Machine Learning. Springer-Verlag
New York, 2006.

[136] Zhi-Hua Zhou. Ensemble methods: Foundations and algorithms. CRC press, 2012.

120



References

[137] Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mo-
hammed Bennamoun. “Hands-on Bayesian neural networks—A tutorial for deep
learning users”. In: IEEE Computational Intelligence Magazine 17.2 (2022), pp. 29–
48.

[138] Radford M Neal. Bayesian training of backpropagation networks by the hybrid
Monte Carlo method. Tech. rep. Citeseer, 1992.

[139] John S Denker and Yann LeCun. “Transforming neural-net output levels to
probability distributions”. In: Advances in Neural Information Processing Systems.
1991, pp. 853–859.

[140] David JC MacKay. “A practical Bayesian framework for backpropagation net-
works”. In: Neural Computation 4.3 (1992), pp. 448–472.

[141] Geoffrey E Hinton and Drew Van Camp. “Keeping the neural networks simple
by minimizing the description length of the weights”. In: Proceedings of the Sixth
Annual Conference on Computational Learning Theory. 1993, pp. 5–13.

[142] David Barber and Christopher M Bishop. “Ensemble learning in Bayesian neural
networks”. In: Nato ASI Series F Computer and Systems Sciences 168 (1998),
pp. 215–238.

[143] José Mena, Oriol Pujol, and Jordi Vitrià. “A survey on uncertainty estimation
in deep learning classification systems from a Bayesian perspective”. In: ACM
Computing Surveys (CSUR) 54.9 (2021), pp. 1–35.

[144] Laurent Valentin Jospin, Wray Buntine, Farid Boussaid, Hamid Laga, and Mo-
hammed Bennamoun. “Hands-on Bayesian Neural Networks–a Tutorial for Deep
Learning Users”. In: arXiv preprint arXiv:2007.06823 (2020).

[145] Xitong Yang. “Understanding the variational lower bound”. In: variational lower
bound, ELBO, hard attention 13 (2017), pp. 1–4.

[146] David Ha, Andrew Dai, and Quoc V Le. “Hypernetworks”. In: arXiv preprint
arXiv:1609.09106 (2016).

[147] Zach Eaton-Rosen, Felix Bragman, Sotirios Bisdas, Sébastien Ourselin, and M
Jorge Cardoso. “Towards safe deep learning: Accurately quantifying biomarker
uncertainty in neural network predictions”. In: International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer. 2018, pp. 691–
699.

[148] Antonio Loquercio, Mattia Segu, and Davide Scaramuzza. “A general framework
for uncertainty estimation in deep learning”. In: IEEE Robotics and Automation
Letters 5.2 (2020), pp. 3153–3160.

121



References

[149] Marc Rußwurm, Syed Mohsin Ali, Xiao Xiang Zhu, Yarin Gal, and Marco Körner.
“Model and data uncertainty for satellite time series forecasting with deep recurrent
models”. In: 2020 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS). 2020.

[150] Jiaming Zeng, Adam Lesnikowski, and Jose M Alvarez. “The relevance of Bayesian
layer positioning to model uncertainty in deep Bayesian active learning”. In: arXiv
preprint arXiv:1811.12535 (2018).

[151] Nicolas Brosse, Carlos Riquelme, Alice Martin, Sylvain Gelly, and Éric Moulines.
“On last-layer algorithms for classification: Decoupling representation from uncer-
tainty estimation”. In: arXiv preprint arXiv:2001.08049 (2020).

[152] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. “Being bayesian, even
just a bit, fixes overconfidence in relu networks”. In: International Conference on
Machine Learning. PMLR. 2020, pp. 5436–5446.

[153] Dan Cireşan, Ueli Meier, Jonathan Masci, and Jürgen Schmidhuber. “A committee
of neural networks for traffic sign classification”. In: The 2011 International Joint
Conference on Neural Networks. IEEE. 2011, pp. 1918–1921.

[154] Michał Woźniak, Manuel Grana, and Emilio Corchado. “A survey of multiple
classifier systems as hybrid systems”. In: Information Fusion 16 (2014), pp. 3–17.

[155] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton.
“Adaptive mixtures of local experts”. In: Neural Computation 3.1 (1991), pp. 79–
87.

[156] Lars Kai Hansen and Peter Salamon. “Neural network ensembles”. In: IEEE
transactions on pattern analysis and machine intelligence 12.10 (1990), pp. 993–
1001.

[157] Pedro Domingos. “Bayesian averaging of classifiers and the overfitting problem”.
In: ICML. Vol. 747. Citeseer. 2000, pp. 223–230.

[158] Thomas P Minka. “Bayesian Model Averaging Is Not Model Combination. 2002”.
In: Comment available electronically at http://www. stat. cmu. edu/minka/paper-
s/bma. html ().

[159] Kristine Monteith, James L Carroll, Kevin Seppi, and Tony Martinez. “Turn-
ing Bayesian model averaging into Bayesian model combination”. In: The 2011
International Joint Conference on Neural Networks. IEEE. 2011, pp. 2657–2663.

[160] Kenji Kawaguchi. “Deep learning without poor local minima”. In: arXiv preprint
arXiv:1605.07110 (2016).

[161] Thomas G Dietterich. “Ensemble methods in machine learning”. In: International
Workshop on Multiple Classifier Systems. Springer. 2000, pp. 1–15.

122



References

[162] Pedro M Domingos. “Why Does Bagging Work? A Bayesian Account and its
Implications.” In: KDD. Citeseer. 1997, pp. 155–158.

[163] Robi Polikar. “Ensemble learning”. In: Ensemble Machine Learning. Springer,
2012, pp. 1–34.

[164] Kagan Tumer and Joydeep Ghosh. “Analysis of decision boundaries in linearly
combined neural classifiers”. In: Pattern Recognition 29.2 (1996), pp. 341–348.

[165] Anders Krogh, Jesper Vedelsby, et al. “Neural network ensembles, cross validation,
and active learning”. In: Advances in Neural Information Processing Systems 7
(1995), pp. 231–238.

[166] Wendy S Parker. “Ensemble modeling, uncertainty and robust predictions”. In:
Wiley Interdisciplinary Reviews: Climate Change 4.3 (2013), pp. 213–223.

[167] Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov.
“Pitfalls of in-domain uncertainty estimation and ensembling in deep learning”.
In: arXiv preprint arXiv:2002.06470 (2020).

[168] Xixin Wu and Mark Gales. “Should ensemble members be calibrated?” In: arXiv
preprint arXiv:2101.05397 (2021).

[169] Tin Kam Ho. “The random subspace method for constructing decision forests”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 20.8 (1998),
pp. 832–844.

[170] Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David Crandall, and Dhruv
Batra. “Why M heads are better than one: Training a diverse ensemble of deep
networks”. In: arXiv preprint arXiv:1511.06314 (2015).

[171] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q
Weinberger. “Snapshot ensembles: Train 1, get m for free”. In: arXiv preprint
arXiv:1704.00109 (2017).

[172] Jun Yang and Fei Wang. “Auto-ensemble: An adaptive learning rate scheduling
based deep learning model ensembling”. In: IEEE Access 8 (2020), pp. 217499–
217509.

[173] Leo Breiman. “Bagging predictors”. In: Machine Learning 24.2 (1996), pp. 123–
140.

[174] Yoav Freund, Robert E Schapire, et al. “Experiments with a new boosting al-
gorithm”. In: International Conference on Machine Learning. Vol. 96. Citeseer.
1996, pp. 148–156.

[175] Mohammad Moghimi, Serge J Belongie, Mohammad J Saberian, Jian Yang, Nuno
Vasconcelos, and Li-Jia Li. “Boosted convolutional neural networks.” In: BMVC.
Vol. 5. 2016, p. 6.

123



References

[176] Loris Nanni, Sheryl Brahnam, and Gianluca Maguolo. “Data augmentation for
building an ensemble of convolutional neural networks”. In: Innovation in Medicine
and Healthcare Systems, and Multimedia. Singapore: Springer Singapore, 2019,
pp. 61–69.

[177] Jian Guo and Stephen Gould. “Deep CNN ensemble with data augmentation for
object detection”. In: arXiv preprint arXiv:1506.07224 (2015).

[178] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. “The pascal visual object classes (voc) challenge”. In: Inter-
national Journal of Computer Vision 88.2 (2010), pp. 303–338.

[179] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. “Microsoft coco: Common
objects in context”. In: European Conference on Computer Vision. Springer. 2014,
pp. 740–755.

[180] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. “mixup:
Beyond empirical risk minimization”. In: International Conference on Learning
Representations. 2018.

[181] Juan Maroñas, Daniel Ramos, and Roberto Paredes. “Improving calibration in
mixup-trained deep neural networks through confidence-based loss functions”. In:
arXiv preprint arXiv:2003.09946 (2020).

[182] E. J. Herron, S. R. Young, and T. E. Potok. “Ensembles of networks produced from
neural architecture search”. In: International Conference on High Performance
Computing. Springer. 2020, pp. 223–234.

[183] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going
deeper with convolutions”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015, pp. 1–9.

[184] Ioannis E Livieris, Lazaros Iliadis, and Panagiotis Pintelas. “On ensemble tech-
niques of weight-constrained neural networks”. In: Evolving Systems (2020), pp. 1–
13.

[185] Alex Hernández-Garcıa and Peter König. “Data augmentation instead of explicit
regularization”. In: arXiv preprint arXiv:1806.03852 (2018).

[186] Tobias Hinz, Pablo Barros, and Stefan Wermter. “The effects of regularization on
learning facial expressions with convolutional neural networks”. In: International
Conference on Artificial Neural Networks. Springer. 2016, pp. 80–87.

[187] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. “Deep bayesian active learning
with image data”. In: International Conference on Machine Learning. PMLR.
2017, pp. 1183–1192.

124



References

[188] Remus Pop and Patric Fulop. “Deep ensemble bayesian active learning: Addressing
the mode collapse issue in monte carlo dropout via ensembles”. In: arXiv preprint
arXiv:1811.03897 (2018).

[189] Yunfeng Zhang, Q Vera Liao, and Rachel KE Bellamy. “Effect of confidence and
explanation on accuracy and trust calibration in AI-assisted decision making”. In:
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency.
2020, pp. 295–305.

[190] Umang Bhatt, Javier Antorán, Yunfeng Zhang, Q Vera Liao, Prasanna Sat-
tigeri, Riccardo Fogliato, Gabrielle Melançon, Ranganath Krishnan, Jason Stanley,
Omesh Tickoo, et al. “Uncertainty as a form of transparency: Measuring, com-
municating, and using uncertainty”. In: Proceedings of the 2021 AAAI/ACM
Conference on AI, Ethics, and Society. 2021, pp. 401–413.

[191] Grigorios Tsoumakas, Ioannis Partalas, and Ioannis Vlahavas. “A taxonomy and
short review of ensemble selection”. In: Workshop on Supervised and Unsupervised
Ensemble Methods and Their Applications. 2008, pp. 1–6.

[192] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms”. In: arXiv preprint arXiv:1708.07747
(2017).

[193] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features
from tiny images”. In: (2009).

[194] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Chris-
tian Igel. “Detection of traffic signs in real-world images: The German traffic sign
detection benchmark”. In: The 2013 International Joint Conference on Neural
Networks (IJCNN). IEEE. 2013, pp. 1–8.

[195] Min Lin, Qiang Chen, and Shuicheng Yan. “Network in network”. In: arXiv
preprint arXiv:1312.4400 (2013).

[196] Mahdi Pakdaman Naeini, Gregory F Cooper, and Milos Hauskrecht. “Obtaining
well calibrated probabilities using bayesian binning”. In: Proceedings of the... AAAI
Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence.
Vol. 2015. NIH Public Access. 2015, p. 2901.

[197] Max-Heinrich Laves, Sontje Ihler, Karl-Philipp Kortmann, and Tobias Ortmaier.
“Well-calibrated model uncertainty with temperature scaling for dropout varia-
tional inference”. In: arXiv preprint arXiv:1909.13550 (2019).

[198] Sunil Thulasidasan, Gopinath Chennupati, Jeff A Bilmes, Tanmoy Bhattacharya,
and Sarah Michalak. “On mixup training: Improved calibration and predictive un-
certainty for deep neural networks”. In: Advances in Neural Information Processing
Systems. 2019, pp. 13888–13899.

125



References

[199] Gongbo Liang, Yu Zhang, Xiaoqin Wang, and Nathan Jacobs. “Improved trainable
calibration method for neural networks on medical imaging classification”. In:
arXiv preprint arXiv:2009.04057 (2020).

126


	Acknowledgments
	Abstract
	Kurzfassung
	Publications derived from this thesis
	Nomenclature
	Contents
	Introduction
	Background
	Problem statement
	Motivation for uncertainty estimation
	Research objective
	Research questions
	Challenges to overcome
	Solution approaches
	Results
	Contribution
	Outline

	Fundamentals
	Definition of a classifier
	A cnn-based classifier
	Building blocks of a cnn-based classifier
	Supervised learning of a cnn-based classifier

	Uncertainty in a cnn-based classifier
	Uncertainty sources
	Uncertainty type
	Uncertainty estimation


	Related works
	Bayesian neural networks
	Definition of a Bayesian neural network
	Principles of a Bayesian neural network
	Properties of a Bayesian neural network
	Variational inference techniques
	Summary and implications

	Ensembles
	Definition of an ensemble
	Principles of an ensemble
	Properties of an ensemble
	Ensembles and uncertainty estimation
	Challenges in building ensembles
	Techniques for building ensembles
	Summary and implications


	Uncertainty estimation methods
	Related methods
	Baseline
	Monte Carlo dropout
	Deep ensemble
	Mixture of Monte Carlo dropout

	Monte Carlo averaging
	Motivation
	Analyzing features extracted by ensemble members
	Applying feature averaging in ensemble members

	Importance of feature averaging or feature sampling
	Comparison of feature sampling and feature averaging
	Summary and implications

	Empirical comparison of mca and related methods
	Analyzing accuracy and calibration error
	Analyzing the ability to separate cp and up
	Analyzing the inference time
	Summary and implications

	Addressing underconfidence by averaging logit instead of probability
	Motivation
	Using logit instead of probability averaging
	Impact of logit averaging on accuracy and calibration error
	Impact of logit averaging on the ability to separate cp and up
	Summary and implications

	Addressing underconfidence by reducing the regularization strength
	Motivation
	Regularization strength
	Effect of reducing regularization strength on accuracy and calibration error
	Effect of reducing regularization strength on ability to separate cp and up
	Summary and implications

	Discussion
	Research objective and questions
	Research methodology
	Research results

	Summary
	Conclusion
	Limitations

	Experimental setup
	Experimental datasets
	Experimental architectures
	Training details
	Inference details
	Evaluation metrics
	Evaluating the classification accuracy
	Evaluating the quality of uncertainty

	Evaluation data

	List of Figures
	List of Tables
	Acronyms
	References

