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Treating Noise and Anomalies
in Vehicle Trajectories

from an Experiment with a Swarm of Drones
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Constantinos Antoniou

Abstract—Unmanned aerial systems, known as “drones,”
are relatively new in collecting traffic data. Data from drone
videography can have potential applications for traffic research.
Drones can record the vehicles from their aerial point-of-view
and provide their naturalistic driving behavior. Processing raw
data from drones to remove noise and anomalies is crucial to
ensure that the data are fit for subsequent applications, e.g.,
the development of traffic flow or crash risk models. This study
uses a part of the pNEUMA dataset, a large dataset with almost
half a million trajectories captured by a swarm of drones over
Athens, Greece. This novel dataset offers an opportunity to
analyze the data attributes and treat the noise and outliers in
the data. We use a combination of smoothing filters and Extreme
Gradient Boosting with adaptive regularization to process the
speed and acceleration profiles of the vehicle trajectories in the
dataset. Our approach can help prospective data users treat this
or similar trajectory datasets alternatively to applying manual
thresholds and assist in accelerating research in microscopic
traffic analysis.

Index Terms—drone data, trajectory data, anomaly detection,
machine learning

I. INTRODUCTION

RESEARCHERS and practitioners need real-world traffic
data to study traffic behavior and implement traffic

management strategies. Traffic data collection is classified
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into point, edge, and area-wide measurements [1]. Traditional
traffic data collection, such as count data collection from
loop detectors, is a form of point measurement. Point-to-point
measurement using Floating Car Data (FCD) and Bluetooth
scanners have also gained prominence in the last few years.
These data collection methods have limited observability,
i.e., for a few selected road segments or from the selected
fleet of vehicles. In recent years, advances such as fast
microprocessors, efficient storage, and wireless communica-
tion technologies have allowed the use of drones for many
civil applications [2]. Aerial footage from Unmanned Aerial
Systems (UAS) or more commonly known as “drones”, is
one of the newest methods for collecting traffic data and has
notable advantages such as observation of naturalistic driving
behavior and detailed driving trajectory [3], [4].

In 2018, a large-scale drone data collection (pNEUMA)
was conducted in Athens, Greece, which covered a large
extent in the context of urban driving [5]. The pNEUMA
dataset collected by [5] is part of an open science initia-
tive that researchers from different disciplines can use to
develop and test their models. The authors describe the
challenges of collecting video data for an extended area. An
essential set pertains before and during the drones’ flight,
which must be planned and accurately determined because of
weather, battery backup, video quality, regulatory approvals,
and technical expertise. However, another set of essential
challenges pertains to post-processing the video recording
after the drone flight. The researchers use state-of-the-art
computer vision algorithms to detect and track vehicles and
extract vehicle trajectories from the raw videos. Since the
errors in the vehicle’s position are in the order of 20 cm
or less [5], trajectory extraction follows quite accurately the
vehicle’s position. Nevertheless, vehicles are not point objects
but cover significant space; minor errors in the position can
accumulate when speed or acceleration variables are calcu-
lated. Furthermore, the urban driving environment is more
complex than highways due to the increased heterogeneity
of vehicle classes, traffic signals, congestion, intersections,
parking vehicles, and occlusion due to high-rise buildings
and trees [6]. All these factors could introduce noise and
anomalies or outliers in the extracted trajectories from the
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drone videos, and thus, the data may require additional
treatment. There is an opportunity to address this issue by
analyzing the trajectories and treating the noise and anoma-
lies. These data contain many naturalistic trajectories, and
thus filtering the anomalies and smoothing the noise could
accelerate subsequent research attempts. For researchers to
fully take advantage of such a detailed and large dataset, it
is first necessary to find appropriate techniques to detect these
cases and filter them efficiently.

We identify the problematic cases based on the accelera-
tion from the original dataset in this paper. First, we treat the
noise and anomalies in the vehicles’ speed and acceleration
time series obtained from vehicles’ trajectories using noise
filters and an anomaly detection model. Then, a sensitivity
analysis is conducted to choose the best parameter setting
to classify representative/ usual and anomalous data. Our
study’s main contribution is applying existing noise filters
and machine learning based anomaly detection model to data
collected from drones by using the challenging pNEUMA
dataset. In this pursuit, we use Extreme Gradient Boosting
(XGBoost) with adaptive regularization to create an anomaly
mask for each trajectory. The remainder of the paper is struc-
tured as follows: Section 2 concisely reviews the literature
on this topic, Section 3 presents the methodology of the
study, Section 4 provides the data description and illustrates
some of the problematic cases, followed by Section 5 on
data analysis, Section 6 shows the results of this research,
and lastly, we conclude the study and present its limitations
and implications.

II. LITERATURE REVIEW

Sensor measurements often come with errors. Noise and
anomalies (also referred to as outliers) are two of the common
types of errors [7]. These errors deviate the measured signal
from its desirable value, and therefore the data require
processing before use. The desired value is the best possible
representation of the true underlying signal that can be mea-
sured [8]. The desired value may differ from the absolute true
value of a signal that may or may not be possible to measure.
Processing time-series or sequence data is classified into three
main tasks: filtering, smoothing, and prediction. Kalman [9]
formalized the distinction between filtering and smoothing.
Suppose, the observed time sequence y(t0), . . . , y(tn) of
length n+1 from which we need to estimate the unobservable
or desired value of the true signal at t = ti, where ti is the
time of interest. If ti < tn, it is data smoothing, whereas if
ti = tn, it is data filtering and if ti > tn, then it is a prediction
task [9]. In the following paragraphs, we briefly introduce
the topics of noise and anomaly, followed by a discussion of
a few studies on vehicle trajectory datasets from the traffic
research domain.

A. Noise

Noise is the unwanted component of the signal which
is not relevant to a specific task. Removal or treatment of
noise is a general prerequisite for data usage. The source
of noise in the data can be the measuring device or sensor
and its surroundings during the data collection, e.g., in drone
videography, noise can be introduced due to the vibrations
of the camera apparatus. This could be characterized by the
presence of a periodic high-frequency signal superimposed
on the desired value. Data processing methods can also
introduce noise in the data, e.g., extraction of trajectories
from even a stabilized video could be noisy depending on the
algorithms and tools used. For time-series data, smoothing
refers to a broad array of methods to remove the noise
from the data. This is commonly done by allowing only the
low frequency of the signal to pass while attenuating the
high-frequency component [10]. The moving average filter is
one of the most common low-pass filters, where the current
estimate is the rolling average of neighboring values.

Savitzky-Golay (SG) filter is another example of a low-
pass filter. SG filter (SGF) is an efficient method of data
smoothing using local least-square polynomial approximation
[11]. Polynomial fitting on a sub-sequence of length 2M+1
(where M is a positive integer) and then evaluation of the
polynomial’s output at the central point is equivalent to the
convolution of the sub-sequence with a fixed set of integers
(impulse response) [12]. The output samples (y) obtained
from the discrete convolution of fixed weights (h) with the
input sample (x) is shown in (1) [11]:

y[n] =

M∑
m=−M

h[m] · x[n−m] =

n+M∑
m=n−M

h[n−m] · x[m]

(1)
For a uniformly spaced sequence, the weights are com-

puted only once based on the length of the sub-sequence
(window size 2M+1) and the polynomial degree. This is
beneficial for the sensor data because the sensor data are
generally generated at a fixed frequency and equally spaced.
Common weights for every convolution operation on the sub-
sequence make it highly efficient in speed and memory. The
output of the SG filter is suitable for subsequent application
of the anomaly detection algorithm due to the high signal-
noise ratio. For a polynomial of degree 0 or 1, SG filter is
equivalent to a moving average filter [12].

Gaussian Filter (GF) is another popular filter, especially in
image processing. As the name suggests, the input sample is
convoluted with a Gaussian kernel (2) to get the smoothed
estimates:

N(x) =
1√
2πσ

e−
x2

2σ2 (2)

Wherein σ is the standard deviation. The kernel is trun-
cated symmetrically beyond a specified number of σ. The
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output of the GF is weighted more towards the central values
of the input samples due to the characteristic shape of the
Gaussian kernel. This makes the GF a gentler smoothing
filter than a moving average filter [13]. We want to point out
that the methodical steps in noise filters, such as numerical
approximation or truncation, could introduce or exacerbate
errors in processed data [14]. It is a matter of trade-off
between introducing these errors and removing the data’s
noise. Filters are justified if their output is closer to the
desired value than the input data.

B. Anomalies

The term “anomaly” refers to a behavior different from
the usual or representative behavior of the system [15].
When the primary objective is to recover the representative
signal, anomalies are detected, removed, or replaced. In
contrast to the noise, anomalies are not always unwanted.
Anomaly detection in time-series data is an active research
topic in various fields, such as finance, network security,
and health [15]. Time-series data can consist of either a
single-point anomaly or an anomalous sub-sequence. In high-
frequency sensor data, sequence anomalies can be prominent
as a single disturbance in the signal can span over mul-
tiple points. For instance, unrealistic high transient values
or peaks can characterize anomalies in the data. Chandola
et al. [15] categorized the anomaly detection techniques
under classification, clustering, nearest-neighbor, statistical,
information-theoretic, and spectral-based methods. Anomaly
detection can be seen as a supervised learning task, but this
is practically constrained due to the often unavailability of
ground-truth labels. This is why unsupervised techniques
hold significant potential for anomaly detection. These meth-
ods aim to find the best separation between the usual and
anomalous data points/ sequences based on the specified
parameters (distance, density, and probability). For instance,
Eskin [16] used a machine learning model to learn the
probability distribution over the data and then applied a
statistical test to detect the anomalies.

C. Noise and anomalies in vehicle trajectory data

It is essential to clarify what is considered usual or
representative behavior of the system viz-a-viz “abnormal” or
“unusual” within the scope of our study. This study deals with
the naturalistic trajectory data, which is of great interest to the
researchers as it provides in-situ driving behavior. In a recent
study [17], the authors review the trajectory smoothing/
filtering techniques to process trajectory data from diverse
data sources such as ground-based camera videos, drone
videos, and instrumented vehicles. Since our study focuses
on anomaly detection, we list the range of acceleration and
deceleration noted in some previous studies (Fig. 1). We
point out that the drone videography data are still in the
early phases, and thus there are limited studies on processing

such data. We consider a few prominent studies from other
data sources dealing with vehicle trajectories to compensate
for this. We also identify the context and data sources in
these studies. The values are from different contexts (driving
environment, vehicle types, data collection, and processing
methods) and have varying ranges. Therefore, the context of
a study should be considered before the acceptability of the
acceleration range.

Bokare and Maurya [18] analyzed the acceleration and
deceleration behavior of different vehicles using Global Po-
sitioning System (GPS) data. They noted that acceleration
rates (for all vehicles except trucks) increase from minimum
to maximum at initial speeds and then decrease with speed.
Sangster et al. [19] used naturalistic data (“100-Car study”)
from different sources such as GPS, On-board Diagnostics
(OBD) and accelerometer box for studying the car-following
behavior. Their study found that lags in GPS data can result in
oscillations in calculated speed. They identified the outliers
in the speed and acceleration time series by checking the
observed data against the anticipated physical limitations and
replaced outliers with the interpolated data. As a result, they
transformed the maximum instantaneous acceleration (nega-
tive sign for deceleration) ranging [-303.6 m/s2, 303.0 m/s2]
in the raw data to [-8.9 m/s2, 9.0 m/s2] in the smoothed data.
Punzo et al. [20] used jerk values (derivative of acceleration)
to identify the infeasible accelerations in Next Generation
Simulation (NGSIM) dataset, which pertains to highway
context. Further on, Montanino and Punzo [21] reconstructed
trajectories from the NGSIM dataset using steps such as
outlier and noise removal and local reconstruction. They
adopted a threshold of 8 m/s2 and 5 m/s2 for deceleration
and acceleration, respectively, for outlier detection, and after
reconstruction, longitudinal accelerations range in [-5 m/s2,
3 m/s2]. They mention that vehicle mistracking is a likely
source of error when extracting the trajectories from the
video recordings. Coifman and Lee [22] addressed the vehicle
mistracking by manually re-extracting the trajectories with
better quality from the NGSIM videos while reporting that
the errors in the data cannot be corrected through cleaning
or interpolation. Analysis by Kruber et al. [23] on a newer
dataset [Highway Drone Dataset (highD dataset)] on German
freeways found longitudinal accelerations in the range [-
6.3 m/s2, 5.6 m/s2]. Xu et al. [24] collected longitudinal
acceleration data using motion sensors on a two-lane moun-
tain highway. They applied data filtering and peak detection
algorithms to remove noise and determine the maximum
accelerations. According to their findings, acceleration values
ranged between [-7.1 m/s2, 2.8 m/s2] and [-1.2 m/s2, 1.4
m/s2] for small and heavy vehicles, respectively. In the urban
driving context, Kanagaraj et al. [25] extracted trajectories
from a video recording on a section of the road. They
smoothed the data using locally weighted regression and
obtained longitudinal accelerations in [-4.6 m/s2, 4.7 m/s2].
OpenACC is a recently released dataset related to car-
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Fig. 1. Acceleration and deceleration ranges in the selected studies [17]–
[19], [21], [23]–[26], [28]–[30] including those using naturalistic trajectory
data.

following experiments. In this study, Makridis et al. [26] used
U-Blox M8 devices that were equipped with motion sensors
and Global Navigation Satellite System (GNSS) receivers.
They post-processed speed and acceleration values using the
piece-wise cubic polynomial to compensate for the noise
levels in the raw data. The range of accelerations is about [-12
m/s2, 10 m/s2] considering human and Adaptive Cruise Con-
trol (ACC) drivers. Fard et al. [14] used wavelet transform
and wavelet-based filter to process the outliers and noise in
the NGSIM data. Their method detects outliers based on the
local properties of the data and thus is an improvement over
globally defined thresholds. Venthuruthiyil and Chunchu [27]
reconstructed an error-prone trajectory from video data using
locally weighted polynomial regression. In their recent work
[17], they processed drone video data by retrieving missing
data and then smoothing the data. Before smoothing, they
removed the outliers using a median filter. A median filter
is a statistical filter wherein the window size and threshold
are specified to detect outliers. Afterward, they processed the
data using the combination of Recursively Ensembled Low-
pass filter (RELP) and adaptive tri-cubic kernel.

D. Summary and research gaps

From the above discussion, we find that studies for high-
way driving are more prevalent than urban driving. The
range of practical or possible acceleration/ deceleration can
depend on many factors, such as desired speed, driving
context (intersection, highway, ramp), vehicle class and type,
driving style, surrounding vehicles, and data sources. One
of the challenges of drone videography is that the errors
in the data are not consistent as it could be a result of

extrinsic (wind burst, object occlusion) and intrinsic (image
processing, object tracking [22]) causes, e.g., the reasons
for outliers in the drone data could be i) a sudden wind
burst that can move the drone, ii) tracked vehicles with
reduced visibility (minor roads, occlusion due to buildings
or trees), iii) vehicles being tracked in the edges or not
well-calibrated areas of the video. Although computer vision
algorithms have advanced massively during recent years, it
has been recognized in previous studies that trajectory data
from drone videography have a heavy-tailed data distribution
due to outliers and needs special treatment [5], [17].

Compared to noise treatment, outlier detection is a rela-
tively challenging task to identify systematic issues during the
data collection process, thus requiring specialized treatment.
Accelerations with unrealistic peaks characterize outliers.
They are generally removed in the trajectory datasets using
a pre-defined threshold [31] or a statistical filter (such as
the median filter used in [17]) on the speed or acceleration
series. Such thresholds are manually defined by domain
experts with care so that possible driving observations are not
classified as outliers (false positives) [21]. Simple heuristics
such as global thresholds are also trajectory invariant and
cannot account for complex scenarios. An all-embracing and
insufficiently flexible filter would not be suitable, as there
is always the caveat of over-smoothing or false positives. It
overlooks crucial information, especially when it comes to
lane-changing maneuvers or aggressive driving behavior like
harsh acceleration or harsh deceleration [32]–[34]. Outlier
detection is challenging, given the heterogeneity of traffic
and driving behaviors.

We want to highlight the drawbacks of simple and popular
outlier detection methods, namely z-score or modified z-score
algorithms. Using domain expertise to label the anomalies,
one needs to specify the window size (over which statistical
measure such as mean or median is estimated) and threshold
distance (such as the number of standard deviations). There
is a trade-off between false positives and false negatives
depending on the window size and threshold distance, which
emphasizes fine-tuning these parameters. Using mean or
median statistics can be biased in urban traffic when the
vehicle is stationary at the intersection and thus needs tuning
for each vehicle.

Research by Fard et al. [14] is based on local detection
of outliers using wavelet transforms. The use of wavelet
transform has its own challenges, such as the selection of the
mother wavelet [14]. Large and diverse datasets, such as the
pNEUMA dataset from drones, demand complex heuristics
for anomaly detection, and their manual specification is
impractical. The above aspects emphasize selecting a scalable
methodology for a large dataset, which exploits data-driven
or machine learning models and replaces complex heuristics.

While 2D tracking has been used in the AV motion
planning-related literature [35] and could reduce the errors
in the pNEUMA dataset; we aim to apply fast processing
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to remove errors, improving the quality of the data for
traffic-oriented purposes. While high-frequency noise can be
addressed using available techniques, detecting anomalies is
tricky since it is an unsupervised task. As a result, to fully
take advantage of such a detailed and massive dataset, it is
necessary to find appropriate techniques to detect the out-
liers (unrealistic transient peaks) and filter them efficiently.
Therefore, outlier detection based on the local properties of
the data could encompass variations among vehicle class,
driving behavior, and anomalies would be helpful and a step
toward extending the state-of-the-art. Therefore, we see an
opportunity to propose an anomaly detection method that
uses complete data (instead of a moving window) to detect
the relevant anomalies, i.e., implausible accelerations. We
present our methodology in the next section keeping in view
the large dataset, high variability in the driving attributes and
context, and minimum fine-tuning and processing speed.

III. METHODOLOGY

Before removing errors, we analyze the occurrences of
excess values of accelerations. Spatially and temporally near
vehicles can highly correlate due to traffic flow or car-
following behavior. Spatially apart but temporally near vehi-
cles can also show correlated errors due to global events such
as wind disturbance to the drone. However, such errors can
also occur on account of image processing or data processing.
Spatially near but temporally far vehicles can show similar
anomalies if passing through the same street obstructed from
drone view at different times [6]. However, if the trajectories
of vehicles are spatially and temporally apart, we expect little
error correlation among them.

Our methodology for treating noise and anomalies is
shown in Fig. 2. We treat vehicles one by one so that the
noise and anomalies are identified flexibly depending on the
vehicle’s attributes.

Let us denote the raw speed data by sit for the ith vehicle
at time t. We use the SG filter to remove the noise in the
speed time series from the raw data to obtain output vit. The
output of the SG filter will be biased because the filter is
applied to data containing anomalies. However, this is only an
intermediate step, and we will address this specific problem
subsequently. Smoothed output (from the previous step) is
a better choice for evaluating acceleration from the speed
time-series (3) than the raw data, as the gradient of noisy
data could fluctuate and give even more unrealistic values of
the accelerations.

ait =


vi
t+δt−vi

t

δt , if t = 1
vi
t+δt−vi

t−δt

2δt , if 1 < t < n
vi
t−vi

t−δt

δt , if t = n

(3)

Where v is the smoothed speed output of the SG filter, δt=
0.04 seconds as per the frame frequency of 25 Hz.

Fig. 2. Methodology flow chart

We aim to detect and process the unreasonable values
of the acceleration for the anomaly detection task. This is
akin to peak detection in a time series, where the peaks
represent anomalous behavior. Our work also makes a similar
assumption as [16], where the proportion of representative/
usual data is significantly larger than the anomalous data.
This assumption is verifiable by plotting the density plots of
data distribution and checking what portion of the data lies
within the usual range. Next, we fit a regularized machine
learning model to reconstruct the acceleration time series.
The use of reconstruction error to classify anomalies is
demonstrated in previous studies [36], [37] e.g., Sakurada
and Yairi [37] used an autoencoder (a deep learning model)
with a regularized objective function for this task.

Instead of a deep learning model, we select XGBoost
model [38] for this purpose. XGBoost is based on the concept
of Gradient Boosting Machines (GBM) but with certain algo-
rithmic and software enhancements. We select this model be-
cause boosting models are generally considered “off-the-shelf
classifiers” [39], and thus need lesser feature preprocessing
and parameter tuning than other machine learning models
such as neural networks. Two basic tunable parameters for a
gradient boosting model are the number of iterations (or the
number of estimators) and the size of each of the constituent
trees (number of leaves in the tree) [39]. Boosting trees are
computationally feasible on even large datasets since small
trees are used as weak learners (depth of a tree varying
between 4 to 8). In Boosting, observations with high residuals
generally receive ever-increasing influence with each iteration
[39]. Increasing the number of iterations and size of the tree
will result in over-fitting. Thus, it is important to stop training
the model before it starts to overfit the data. Another way
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to prevent over-fitting is by using a regularization (similar
to Ridge regression) to shrink the contribution of each tree.
XGBoost [38] uses the following regularized loss or objective
function:

L(k) =

T∑
t=1

l
(
at, â

(k−1)
t + fk (xi)

)
+Ω(fk) (4)

Where l is a differential convex loss function that measures
the difference between the target at and prediction â

(k−1)
t

acceleration, each fk corresponds to an independent kth tree
with structure q and leaf weights w, T is the number of
frames (input samples) in the series, and

Ω(f) = γK +
1

2
λ∥w∥2, (5)

K is the number of leaves in the tree, γ is the param-
eter that penalizes large trees, and λ is the regularization
parameter that penalizes the high values of w. The use of
regularization controls the over-fitting so that the models are
not sensitive to outliers. We refer the reader to the paper by
[38] for more details on the XGBoost model.

Ideally, the model should mirror (or fit) the non-anomalous
segments except the anomalous segments because we want
to preserve all the information in the raw data except the
anomalies. To achieve this, we provide the input features
consisting of three features: a) smoothed speed series, b)
lateral accelerations, and c) acceleration from (3). The target
variable for the model is again the same acceleration as the
input feature since the aim of the model is to reconstruct
the acceleration time series. Therefore, the input features will
tend to be correlated. We adopt L2 regularization (Tikhonov’s
regularization) to prevent over-fitting. The value of the reg-
ularization parameter (λ) is adapted for each trajectory, as
given by:

λi = b ·max(|ai|)n, (6)

b is a constant, max(a) is the maximum acceleration value
observed for a specific trajectory, and n is a positive real
number. The rationale for using an adaptive λ is that the
vehicle trajectory data could be diverse from different drivers,
vehicles, and contexts. Thus, it makes more sense to define
an outlier within the context of each trajectory. Therefore,
we hypothesize that a single value of λ does not provide this
flexibility. λ is directly proportional to the absolute maximum
acceleration in the input data since we want the regularization
to be highly effective for the unreasonably high acceleration
values. High values of b and n cause high penalization of
the anomalies, limiting the acceleration values range. In this
paper, we use different sets of parameter combinations (b and
n) to conduct the sensitivity of the regularization for anomaly
detection. It is also possible that different combinations
of b and n lead to similar results for specific maximum
acceleration values.

We select a sufficiently large fixed value of the number
of iterations (say M ) and then constrain the model with the
L2 regularization term to prevent the model from fitting the
outliers. This is motivated by the fact that the regularization
term can prevent the model from fitting the extreme points
by imposing a high cost. The output of the boosting model
is the reconstructed acceleration profile. The reconstructed
series should almost replicate the input series for a repre-
sentative (part of) time series. The reconstructed series will
act as a mask to filter the anomalies for the problematic
time series. Therefore, the reconstructed series is called an
“anomaly mask”. We define a tolerance level (τ ) and check
if the difference between the input series and reconstructed
series exceeds that level to label the anomalous sections (0:
representative, 1: anomaly) (7). A smaller value of τ will
make the model more conservative, i.e., more data will be
labeled as anomalous and vice-versa.

labelit =

{
1, if |ait − âit| ≥ τ

0, otherwise
(7)

Where labelt is the anomaly label for the tth frame
instance of a trajectory, and ât is the reconstructed output. In
our approach, the regularized XGBoost model and τ replace
the statistical measures (mean or median) and distance metric
(number of standard deviations) to do better than the existing
methods without manually adapting the parameters for each
trajectory.

Further, if the simultaneous anomalies in the trajectory are
detected within a gap of f frames, we assign the complete
sub-sequence as anomalous for subsequent correction. This
completes the anomaly detection or labeling task. If no
anomalies are detected in the previous step, processing for
the current trajectory ends, and the next vehicle is selected.
Thus, only nominal smoothing via the SG filter is applied to
remove the noise in the absence of an anomaly.

After the anomalies are labeled, we need to recalculate
the speed ignoring the anomalous accelerations, to obtain
the refined or reconstructed speeds. We use the constant
acceleration model for speed estimation using (8). The
constant acceleration model is reasonable, given the high
frame frequency in the trajectory data. Thus acceleration is
only considered constant during the one-time step, e.g., 0.04
seconds for data recorded at 25 Hz. This step ensures that the
speed and acceleration data are internally consistent, inspired
by [21].

v̂it = v̂it−1 + âit ·∆t (8)

We replace the speed values for the anomalous points or
segments with the reconstructed speed values based on the
following:

vi,ot =

{
v̂it, if labelt = 1

sit, otherwise
(9)
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The above speed time series is treated with the low-pass
(Gaussian) filter to recover “unbiased” smoothed speeds.
Therefore, this speed series is final since the smoothing of
the raw data is done after removing anomalies. Finally, we
compute the acceleration values (3) from these speed values.
We repeat this process for all the vehicles in the sample.
Due to low errors in the position of the tracked vehicle in
the pNEUMA dataset, we do not reconstruct or adjust the
positions using the processed speed vector. Due to this, we
are prone to losing the internal consistency between position
and speed [22], and this is a subject of a future study. Finally,
we analyze the distribution of acceleration in the detected
outliers and the rest of the data for all the vehicles in the
sample.

Our method only relies on the feasible range of accelera-
tion for validating the results. It is relevant to point out that
we do not conduct jerk value analysis, as done in previous
studies by [20], [21]. This is partially mitigated in the above
step of Gaussian filter application on the speed series after
removing anomalies. This eliminates the sharp edges in the
acceleration profile.

IV. DATA COLLECTION

In October 2018, the pNEUMA experiment was con-
ducted in Athens, Greece, aiming to record traffic streams
over an urban setting using a swarm of ten drones. The
pNEUMA experiment aimed to revolutionize how drones as
an emerging technology could reshape our understanding of
traffic congestion mechanisms. Specifically, the scope was to
understand better how congestion forms and propagates in
congested multi-modal urban environments through massive
data from aerial footage, emphasizing disturbances generated
by interactions among different types of vehicles. For the
specific experiment, the morning peak (8:00 a.m. to 10:30
a.m.) was recorded for each working day of the week. For
improved safety and cooperation, the swarm would take off
from the two take-offs/ landing areas (H1 and H2 in Fig.
3) at the start of the experiment, and each drone would go
to its area of responsibility. When all drones were at their
hovering point, the recording of the traffic stream would
start simultaneously, and when the battery ran low, they
would return to the landing point. Considering that drones
could hover for up to 25 minutes, including take-off, routing,
and landing times, it was decided that each session would
take place every 30 minutes for better coordination and
standardization of the experiment. This setup allows 15 to
20 minutes of continuous monitoring of traffic. During the
temporal blind spots, trajectories were not recorded and were
not related between sessions.

The analyzed study area includes low, medium, and high-
volume arterials, around 100 busy intersections (signalized
or not), more than 60 bus stops, and close to half a million
trajectories. This massive dataset contains trajectories of

Fig. 3. The study area of pNEUMA experiment. Source: [5]

every vehicle present in the study area, calibrated in the
WGS-84 system every 0.04 seconds, as this is the maximum
frequency allowed by the video’s frame rate. The average
ground sampling distance is calculated to be 16.5 cm/px. Ex-
cept for the features that can be produced using the position
information (speed, acceleration, and distance traveled), each
vehicle type is available (car, taxi, motorcycle, bus, heavy and
medium vehicle). We refer the reader to [5] for more details
on the design of the experiment and to [6] for the recently
released drone imagery. Since this dataset is also part of an
open science initiative shared with the research community,
these data are downloadable from https://open-traffic.epfl.ch.

V. ANALYSIS

For this paper, the dataset corresponding to all drones’
recordings from the last day of the experiment (10:00 a.m.
- 10:30 a.m.) is selected. These data contain trajectories of
about 10,500 vehicles with a vehicle’s position, speed, and
acceleration at 25 Hz.

First, we visualize the acceleration samples of all vehicles
(Fig. 4). For motorcycles, median acceleration (0.62 m/s2) is
slightly higher than the other vehicles. However, the range
of acceleration for motorcycles is the largest. To check the
extreme values, we also visualize the maximum acceleration
and deceleration according to the vehicle type (Fig. 4) and
find noticeable differences. The median maximum accelera-
tion or deceleration of motorcycles, taxis, and buses is greater
than those of cars and medium vehicles. In contrast, heavy
vehicles show the lowest median values. This can be partially
explained by the different acceleration capabilities (motorcy-
cles vs. heavy vehicles) and driving behavior (taxis vs. private
cars). Specifically, motorcycles, due to their limited width and
advanced maneuverability compared to other vehicles, make
their tracking more challenging [40].

In Fig. 5, we illustrate the maximum accelerations of each
vehicle at the location they occur. Excessive accelerations
(red areas of the heatmap) appear mainly in the southeast
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Fig. 4. Distribution considering the (top) all accelerations of all vehicles,
and (bottom) maximum acceleration and deceleration for all vehicles before
treatment. The number of unique vehicles for each category is mentioned in
parentheses.

Fig. 5. Heatmap showing location-wise maximum acceleration and maxi-
mum deceleration for each vehicle.

(captured by drone numbers 1, 2, 3, and 4), whereas such
instances are uncommon in the north. These can be explained
by the limitations of drone videography, such as intersections
due to bad lighting (shade, low contrast), roads on the edge
of the recorded video (due to video distortion), other tracking
issues, and data post-processing. While during the pNEUMA
experiment, the videos were stabilized, the current work did
not test for evidence of residual camera motion. Also, we
did not see any evidence suggesting the presence of such
non-vehicular motion during the experiment, processing of
the videos, or data analysis efforts.

In the pretreated data, the speed-acceleration plot (Fig. 6)
shows four “flanks” (two each for acceleration and decel-
eration). We discover these flanks are due to the noise in
the speed (and acceleration) vector. The slope of the flanks
has a unit of frequency (s−1) and is about constant, which
points to the presence of two components of noise with fixed
frequencies in the dataset. Further investigation shows that
this periodic noise is not present in the individual drone
recordings but occurred while merging the datasets, e.g.,
drone 2 and drone 3. Thus, it is not related to the nature
of the experiment or the CV algorithm but to the specific
dataset.

(a) Pretreated data showing presence of four flanks (for a sample of 1000
vehicles)

(b) Example with two noise components (N1 and N2)

Fig. 6. Acceleration-speed plots

We calculate the number of vehicles for which the magni-
tude of acceleration and deceleration exceeds a cut-off limit
(5 m/s2, 10 m/s2, 15 m/s2, 20 m/s2) over time. In Fig. 7, we
expect and see that excess acceleration occurrence reduces
with the increase in the cut-off limit. At a cut-off of 5
m/s2, we see occurrences corresponding to the previously
mentioned two components of high-frequency noise. Further,
these occurrences are also sinusoidal over about 90 seconds.
At a cut-off of 10 m/s2, only one of the two high-frequency
noises (about 1 Hz) is noticeable, meaning that the amplitude
of the other noise is lesser than 10 m/s2. Here too, the
sinusoidal nature of occurrences is even more noticeable at a
period of about 90 seconds. This systematic periodicity points
to green waves on the arterial roads covered by drones 2 and
3, during which new traffic enters and leaves these arterial
roads. At the same time, these sinusoidal occurrences exclude
the effect of wind blows, which tend to be random. No high-
frequency and sinusoidal occurrences are noticeable at a cut-
off of 15 m/s2 and 20 m/s2, which means that very high
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Fig. 7. Occurrences (positive for longitudinal acceleration and negative for
longitudinal deceleration) exceeding the cut-off limit.

acceleration values, such as more than 20 m/s2, are scattered.

Fig. 8. Heatmap showing location-wise speeds and accelerations (exceeding
6 m/s2) at frames 45 seconds apart to highlight the correlation between them
and the periodicity of excess accelerations at about 90 seconds. Similar
findings were found for deceleration.

Further spatial analysis reveals that noise and sinusoidal
behavior of anomalous instances is prevalent on drone record-
ings 1, 2, 3, and 4. This is shown in Fig. 8. The corre-
lation between vehicle influx at high speeds (green wave)
and excessive acceleration is noticeable in the bottom part
of the map. Accurate vehicle tracking can be challenging
for the object tracker during this sudden acceleration and
deceleration behavior, thus resulting in such periodicity of
anomalous instances. For terminology, we conclude that
periodic excessive acceleration values are attributed to noise,
whereas random (transient) peaks are anomalies.

In Fig. 9, the challenge of detecting the actual noise be-
comes even trickier due to the inconsistency of its occurrence.
For example, vehicle trajectory id 758 (Fig. 9) does not
need treatment; the same does not apply to vehicle id 1490,

493, or 146. The longitudinal acceleration is noisy for the
whole trajectory and shows unrealistic values (around t=
40 s for vehicle 146). Additionally, for vehicle id 1780, it
is seen that from time t1= 0 s to t2= 150 s, the noise is
negligible. In contrast, specific treatment is necessary for the
trajectory beyond t2= 150 s due to unrealistic longitudinal
acceleration values. In Fig. 9, we labeled the data according
to the drone and thus found that noise is primarily contributed
by drones 1, 2, 3, and 4. When we visualize the longitudinal
acceleration for these vehicles over a few seconds (Fig. 10),
we find that noise is synchronized for vehicles 146, 493,
and 1490, which complements previous findings (Fig. 7 and
Fig. 8) about temporal synchronization of noise and specific
locations/ drones contributing to the noise. Thus, periodic
noise and unrealistic transient values should be eliminated to
recover the desired data.

VI. RESULTS

The acceleration calculated from the second derivative
of the position is noisy. It has unreasonably high values,
possibly due to accumulated errors, as seen by the incidence
of values up to ±100 m/s2 in Figure 11(a). The histograms in
Fig. 11 are plotted on the log scale to visualize heavy-tailed
data easily. Such large values are also expected, given the
spatial resolution and high sampling frequency (25 Hz).

On the other hand, the first derivative of the speed results
in less extreme values, shown in Fig. 11(b). This could be
because the application of some smoothing filter preprocesses
the speed attribute in the pNEUMA data. Thus the processed
speed series is a better candidate for calculating acceleration,
which is also noted by [18]. Indeed we find that the first
derivative of the position with a moving average filter of
a 1-second window (25 frames) has a somewhat similar
distribution as the speed attribute given in the data. Therefore,
we rely on the speed attribute for our model and take its first
derivative to calculate the acceleration further.

The acceleration values range up to ±75 m/s2, empha-
sizing further data processing. We find that there is still
high-frequency noise in the data, and it needs treatment.
The SG filter is best suited for this task, also evident in
Fig. 11(b). The SG filter of the polynomial order one is
denoted by SG1 (same as the moving average filter) and
performs better than the polynomial of order two (SG2). The
acceleration distribution is also improved by a substantial
reduction in its heavy-tailedness on the aggregate scale. In
Fig. 11(b), the SG1 filter removes the high-frequency noise
and recovers the noise-free signal. Moreover, it also reduces
the extreme values since each point is a weighted average
of its neighborhood. Despite this, the anomalies remain, and
thus the need for anomaly detection.

We use the XGBoost implementation [38] in Python for
our study. We set the number of iterations or estimators for
the XGBoost model as 300 and use different types of the reg-
ularization parameter, i.e., fixed or adaptive (6). Fig. 12 shows
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Fig. 9. Speed, longitudinal acceleration, and lateral acceleration plots of six vehicles showing different characteristics. The number within vertical dashed
lines indicates the id of the drone which recorded the corresponding trajectory segment.

Fig. 10. Temporal synchronization of noise in the longitudinal acceleration
of selected vehicles

the effect of regularization. We find that L2-regularization
prevents the reconstructed profile from achieving extreme
values. A high λ squeezes the range of the acceleration
values, as the histogram for λ = 2000 is narrower than
that for λ = 500. After these preliminary trials, we use the
adaptive λ (with b = 20 and n = 2), which performs better
than the fixed λ in constraining the range of reconstructed
accelerations.

We analyze the characteristics of the anomaly decision
boundary in Fig. 12. The decision boundary is correlated
with the maximum acceleration simply due to the formulation
of the L2 regularization in (6). The Lowess fit (Locally
Weighted Scatterplot Smoothing) shows a linear trend be-
tween (post-processed) maximum acceleration and anomaly
decision boundary at small values. At high values, the
decision boundary is asymptomatic at around 4 m/s2, but
the range of values goes up to 7 m/s2. Thus the anomaly
detection threshold is not fixed and depends on the trained
model. We see this as an advantage of our approach compared
to the fixed threshold, which does not adjust to vehicle-
specific kinematics.

The sensitivity analysis is done on the regularization

(a) Using position coordinates

(b) Using processed speed series

Fig. 11. Savitzky-Golay filter to remove noise from acceleration series. the
y-axis is plotted on the log scale for better visualization of distribution tails
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(a) (left) Fixed λ and (right) effect of increasing λ

(b) (left) Adaptive λ with b = 20, n = 2 and (right) anomaly decision
boundary

Fig. 12. Effect of regularization parameter λ.

parameters used in the boosting model (b and n). We adopt
b ∈ {1, 2, 4, 6, 8, 10, 15, 20, 30} and n ∈ {0.5, 1, 2, 3} for
a grid-based evaluation based on the combination of these
parameters. We use the values of other parameters: τ and f
as 0.1 and 10, respectively. The results are shown in Figure
13. For low values (b = 1, n = 0.5), there is hardly any
reduction in the anomalies in the reconstructed trajectories.
In contrast, the reconstructed trajectories are heavily biased
due to false positives for the high values (b = 30, n = 3). It
is also observed that the proposed method is more sensitive
to n and less sensitive to b. In between (15 ≤ b ≤ 20, n = 2),
the parameter values are optimal for our task. These findings
also show that different combinations of b and n can produce
similar results for specific maximum acceleration values.

After removing anomalies, we use the Gaussian filter for
smoothing the data, i.e., the filter is applied to the original
data without anomalies. We find that window sizes between
12 and 25 frames provide an acceptable range of processed
accelerations. Thus, we do not recommend a single best
value but a range of values for anomaly detection and
smoothing, which can provide a practical solution. This is
obvious because our criteria for acceptance are based on
the range of final accelerations. However, it is an essential
conclusion since multiple optimal parameter combinations
help approximately recover the desired signal from the raw
data.

We demonstrate the complete methodology in Fig. 14,
showing the de-noising, anomaly detection and removal, re-
trieval of consistent speeds, and accelerations. Here window
sizes for the SG and Gaussian filters are set as 25 frames

Fig. 13. Sensitivity analysis of the parameters b and n

and 25 frames, respectively. In the third and fourth sub-
figure in Fig. 14 for each vehicle, applying a low-pass filter
without removing anomalies will result in biased profiles due
to extreme values. We also demonstrate cases in Fig. 15
where the trajectories have either noise, anomalies, or none of
both. In the case of vehicle id 493 and 505, reconstruction
of speed and acceleration is skipped since no anomaly is
detected. This also shows our method treats data so as not to
cause significant over-smoothing when the data are without
noise or anomalies. Thus the final output in both cases is the
result of the smoothing only. The post-processed maximum
acceleration and deceleration for all types of vehicles (Fig.
16) are within the reasonable range because their values for
most of the sample vehicles’ trajectories are less than 4 m/s2.
Still, for a few samples, values go up to 9 m/s2. Fig. 16
should be compared with Fig. 4 to see the effect of noise
and anomaly treatment.

In acceleration-speed plots (Fig. 17), we show the step-
wise treatment process on 1000 vehicle trajectories with
extreme acceleration values. The top row in Fig. 17 shows
unrealistically high acceleration values due to noise and
anomalies. The output after interim noise treatment using
the SG filter (window size: 25 frames) is shown in the
panel’s second row (from the top). This is followed by the
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Fig. 14. Individual steps in the treatment of noise and anomalies for three
example vehicles ids

anomaly treatment in the third row. The output after the final
smoothing (after the removal of anomalies) by Gaussian filter
(window size: 25 frames) is shown in the bottom row of Fig.
17. The final data in the speed-acceleration plot shows that
the range of accelerations is confined within the reasonable
range. Over-smoothing can distort the time-space diagram by
drastically changing the speed or distance traveled compared
to the pretreated values. To verify this, we relied on time-
space diagrams of a sample of the vehicles. We did not find
significant differences between the distance traveled with pre-
treatment and that with post-treatment speeds.

It is also relevant to provide processing time statistics,
which can depend on many factors, such as the hardware
specifications, parallelization of the algorithms, and the num-
ber of samples in each trajectory. We used an HP desktop
Machine with eight physical cores (i7-11700F @ 2.50GHz)
and 16 GB RAM. We run our method sequentially, i.e.,
all vehicles are treated one by one. We use two cores
for the XGBoost model via the parameter n jobs. The
computation mainly involves calculating numerical gradients,
manipulating data frames, array operations, XGboost model
training, and applying low-pass filters. We record the run-
time statistics per vehicle trajectory and find that the run-time

Fig. 15. Treatment examples when trajectory has (top) only noise, (middle)
neither noise nor anomalies and (bottom) only anomalies.

Fig. 16. Distribution of the maximum acceleration and deceleration for
vehicles in the dataset after treating anomalies and noise. The same sample
is used here as in Fig. 4
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Fig. 17. Step-wise treatment output and errors

mean, median and standard deviation are 0.77 s, 0.59 s, and
1.02 s, respectively.

VII. CONCLUSION

Emerging traffic data collection methods have their ben-
efits and challenges, which is true for drone data. Before
using these data, noise filtering or anomaly detection are
essential steps to improve the data quality by minimizing
implausible values in the data. When dealing with vehicle
trajectories, a balance should be maintained between filtering
the data and retaining naturalistic driving behavior. In this
paper, we demonstrate the application of noise smoothing and
anomaly detection on the data from the aerial footage of the
pNEUMA dataset. We use SG filter, XGBoost with adaptive
regularization, and GF to remove the noise and anomalies.
We show that our approach can accurately detect anomalies
in the form of unrealistic transient peaks in the data. Adaptive
regularization adjusts itself based on the maximum accelera-
tion value and simplifies anomaly detection to fewer tunable
parameters. Using an off-the-shelf model such as XGBoost
reduces the number and effort of tuning the model.

Our approach can also be adapted to other trajectory
or sequence datasets corrupted by noise and anomalies.
However, for successful transfer, anomalies in new data
should be similar to those in the pNEUMA data, i.e., a few
unrealistic transient acceleration peaks. The treated data are
much more suitable for microscopic traffic analysis, such as
road safety analysis using surrogate measures or traffic flow
modeling (car-following or lane-changing), and can thus help
accelerate future research. In our study, we identified a range
of parameters for anomaly detection and smoothing, which
provide acceptable results. This indicates that any subsequent
analysis (traffic flow, emissions, crash safety) using trajectory
data will also be sensitive to these parameters. Thus, the
researchers should estimate confidence intervals to quantify
their results’ uncertainty.

The research is not without its limitations. As discussed,
while some of the errors are attributed to limitations of drone
videography, the absence of ground truth labels prevents
us from verifying the driving behavior or the exact causes
behind the detected anomalies in the acceleration. Therefore,
treated data might still contain errors beyond the definition of
anomalies used in this study. For instance, we only addressed
the anomalies of the unrealistic-peak character, but the errors
of other characters may also be present in the dataset. In
the absence of ground truth labels, validation of results is
challenging, and the implications of such errors depend on
the requirements and sensitivity of the subsequent analysis.
Finally, machine learning model training can be ineffective
in extremely short trajectories due to a lack of data. Although
XGBoost is less data-hungry when compared to deep neural
networks, XGBoost’s performance to detect anomalies can
still be affected when data is scarce. Future works could be
done to adjust the trajectory positions as per the treated speed
to ensure internal consistency [20], [21] (between position
and speed), and platoon consistency (with leader vehicle
and follower vehicle). Another crucial future work is de-
composing the processed speed and acceleration vectors into
longitudinal and lateral components relative to the street’s
orientation for analyzing lateral driving maneuvers.
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