
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Integrating Numerical Backend Modularity
into Torchquad Using Autoray

Fritz Hofmeier

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Integrating Numerical Backend Modularity
into Torchquad Using Autoray

Integrierung von Numerischer Backend
Modularität in Torchquad mittels Autoray

Author: Fritz Hofmeier
Supervisor: Prof. Dr. rer. nat. habil. Hans-Joachim Bungartz
Advisors: Dr.-Ing. Pablo Gómez, M.Sc. Fabio Gratl
Submission Date: April 15, 2022

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, April 15, 2022 Fritz Hofmeier

Abstract

GPU programming for the Python3 language has become increasingly popular,
especially in the context of machine learning. However, the number of backends
which provide an array programming interface for GPUs has increased as well and
algorithms which are implemented with different interfaces are often incompatible.
torchquad is an example of a Python3 module which implements multi-dimensional
numerical integration on GPUs and it has employed the array programming interface
provided by the backend PyTorch. No module providing equivalent features is available
for other backends, such as JAX and TensorFlow.

The autoray module offers an interface for array programming that automatically
works for numerical Python3 modules with an API which is similar to NumPy’s API.
Since it enables algorithm implementations which support multiple backends at once,
autoray tackles the compatibility problem.

The topic of this thesis is the adaptation of torchquad’s code so that it uses autoray
instead of PyTorch and thus supports numerical integration with the backends NumPy,
JAX and TensorFlow in addition to PyTorch. Furthermore, this thesis includes
investigations about the limitations of modularity between backends, code compilation
with PyTorch, JAX and TensorFlow, and performance differences between backends.

Execution time comparisons reveal that PyTorch, JAX and TensorFlow all parallelize
well on the GPU, and without compilation, PyTorch is often more than twice as fast
as JAX and TensorFlow. Furthermore, the use of autoray has not led to a decrease
in code readability in torchquad and the limitations of modularity are mostly due to
backend-specific differences, so we can conclude that autoray is in general well-suited
to implement computations with support for multiple backends.

iii

Zusammenfassung

GPU Programmierung in der Python3 Sprache wurde mit der Zeit immer gefragter,
insbesondere im Zusammenhang mit maschinellem Lernen. Allerdings hat sich die
Anzahl der Backends, die eine Schnittstelle für Array-Programmierung für GPUs zur
Verfügung stellen, auch erhöht und Algorithmen, die unterschiedliche Schnittstellen
verwenden, sind oft zueinander inkompatibel. torchquad ist ein Beispiel für ein Python3
Modul, das mehr-dimensionale numerische Integration auf GPUs implementiert und
die Schnittstelle des PyTorch Backends verwendet. Es gibt kein Modul mit equivalenten
Eigenschaften für andere Backends, wie z.B. JAX und TensorFlow.

Das autoray Modul implementiert eine Schnittstelle für Array-Programmierung, die
automatisch für numerische Python3 Module funktioniert, welche in ihrer API NumPy
ähneln. Da es Implementierungen von Algorithmen ermöglicht, die mehrere Backends
gleichzeitig unterstützen, kann autoray das Kompatibilitätsproblem lösen.

Das Thema dieser Arbeit ist die Anpassung von torchquad’s Code, damit es autoray
statt PyTorch verwendet und dadurch numerische Integration mit den Backends
NumPy, JAX und TensorFlow zusätzlich zu PyTorch unterstützt. Zudem enthält
diese Arbeit Untersuchungen über die Grenzen der Modularität zwischen Backends,
Code Kompilierungen mit PyTorch, JAX und TensorFlow, und Performanzunterschiede
zwischen Backends.

Vergleiche von Ausführungszeiten zeigen, dass die Parallelisierung auf der GPU
mit PyTorch, JAX und TensorFlow gut funktioniert und dass ohne Kompilierung
PyTorch oft mehr als doppelt so schnell wie JAX und TensorFlow ist. Des Weiteren
hat sich die Code-Lesbarkeit in torchquad durch die Verwendung von autoray nicht
verschlechtert und die Grenzen der Modularität werden hauptsächlich von Backend-
spezifischen Unterschieden verursacht. Dadurch kann man schlussfolgern, dass autoray
im Allgemeinen gut geeignet ist, um Berechnungen zu implementieren, die mehrere
Backends unterstützen.

iv

Contents

Abstract iii

1 Introduction 1

2 Background 3
2.1 Quadrature Algorithms . 3
2.2 Numerical Python3 Modules . 5

2.2.1 Common Numerical Operations 5
2.2.2 The autoray Module . 7
2.2.3 Numerical Backend Implementation Techniques 9
2.2.4 Supported Numerical Backends 10
2.2.5 Available Compilation Methods 11

2.3 Hardware Acceleration . 13
2.4 Related Work . 14

3 Implementation 16
3.1 torchquad’s Code Structure . 16
3.2 Common Code Rewriting Steps . 19
3.3 Random Number Generation . 20
3.4 Special Numerical Operations . 22

3.4.1 Cartesian Tensor Product . 22
3.4.2 Addition at Indices . 23

3.5 Compiled Functions in torchquad . 24
3.6 Limitations . 25

4 Results 27
4.1 Example Integrands . 27
4.2 Benchmarking . 28

4.2.1 Time Measurement . 29
4.2.2 Example Quadrature Time Comparisons 29
4.2.3 Time Comparisons of Quadrature Steps 32
4.2.4 Impact of Floating-Point Precisions 35
4.2.5 Time Comparisons with Gradient Calculation 36

v

Contents

4.3 Profiling . 39
4.3.1 Profiling Tools . 39
4.3.2 Profiling Setup . 41
4.3.3 Execution Trace Comparisons . 45
4.3.4 Execution Traces for 1D Integrands 46
4.3.5 Memory Requirement Comparisons 48

4.4 VEGAS+ Accuracy Comparisons . 54

5 Conclusion and Future Work 56

List of Figures 58

List of Tables 58

Bibliography 59

vi

1 Introduction

In recent years, data science and machine learning have become increasingly popular.
These scientific disciplines typically involve expensive numerical calculations with a
large amount of data and sometimes the calculations are executed for a long time on
high-performance computing systems. Since the computations can often be parallelized
with single-instruction, multiple-data (SIMD) operations, executing them on GPUs,
TPUs, FPGAs or other dedicated hardware can lead to a significant reduction of
execution time and overall power consumption. While it is possible to use a low-level
language such as C to achieve high performance, the numerical calculations are often
implemented via the interpreted Python3 language, which is considered easy to learn
and has numerous modules for scientific computing.

The Python3 interpreter is slow in comparison to compiled languages; therefore, there
are tools, for example NumPy and PyTorch, that have an array programming interface
which enables a user to implement their calculations with high-level SIMD array
operations [Har+20]. In the context of this thesis, these tools are denoted numerical
backends. The exact implementation of the array operations in a backend is hidden
from the user. Therefore, the developers of a backend can add support for dedicated
hardware to increase performance. Furthermore, the execution of these operations
defines a dynamically-generated computational graph, which makes it possible to
implement a backend that records this graph for further computations. Examples
for these computations are backpropagation for the calculation of a gradient and
the compilation of the graph to optimised machine code for a further increase in
performance.

There are numerous popular Python3 modules which implement a numerical
backend. These backends often have a similar user-facing array programming interface
although they differ in their implementation and support for dedicated hardware,
distributed computing, numerical derivation techniques, lazy execution of numerical
operations, and other functionality. If a developer desires to employ GPUs for
fast computations, they may implement their algorithm with PyTorch, for example.
However, this backend choice can hinder the application of the algorithm in Python3
programs which employ another backend, for example TensorFlow, and the algorithm
can only be executed on hardware which is supported by PyTorch. Using the similarity
in array programming interfaces between backends, the Python3 module autoray

1

1 Introduction

tackles this problem by offering an interface which wraps backend-specific APIs and
automatically dispatches numerical operations to the currently selected backend.

The torchquad module is developed by the European Space Agency’s Advanced
Concepts Team. In version 0.2.4, torchquad is implemented with the PyTorch backend
and it is the first module for numerical integration with PyTorch which supports
multi-dimensional integrands, differentiability, and execution on the GPU [GTM21].
The main contribution described in this thesis is a rewrite of torchquad’s code so
that it uses autoray instead of PyTorch for numerical operations. Using autoray, most
numerical integrators of torchquad now support NumPy, JAX and TensorFlow in
addition to PyTorch. This enables users to employ the same quadrature algorithms
in different Python3 projects which target different backends and hardware. In
addition to support for multiple backends, the work conducted during this thesis
includes an investigation of backend-specific code compilation to increase performance
for repeated quadrature, and detailed performance analyses between backends and
compilation options. Furthermore, code changes include the addition of special
numerical operations, which have led to performance increases especially with the
VEGAS+ integrator.

The next chapter in this thesis first gives background information about quadrature
algorithms. Then it describes Python3 modules for numerical calculations such as
autoray and the numerical backends, available hardware for SIMD operations, and
work related to this thesis. After that, Chapter 3 explains the integration of autoray
into torchquad and optional function compilation for increased performance, and then
describes limitations of support for multiple backends. Then Chapter 4 presents an
investigation of performance differences between JAX, TensorFlow and PyTorch with
various configurations and shows a validation of the accuracy of torchquad’s VEGAS+
implementation. Finally, Chapter 5 concludes this thesis.

2

2 Background

This chapter first gives an overview about the quadrature algorithms supported by
torchquad. Then it explains how numerical computations are commonly implemented
in the Python3 language. After that, it describes hardware for parallelized computing
and other work related to this thesis.

2.1 Quadrature Algorithms

Numerical integration, also called quadrature, refers to the numerical approximation
of an integral and typically involves the substitution of

∫
D f (x)dx with the sum

∑x∈P⊂D wx f (x), where D is the integration domain, f is the integrand function, P
is a finite set of sample points, and wx is a weighting coefficient for the corresponding
sample point x. The sample points and weighting coefficients differ between quadrature
rules. At the time of writing, torchquad supports five multi-dimensional quadrature
methods: the non-deterministic Monte Carlo and VEGAS+ [Lep21], and three composite
Newton-Cotes methods, which are the composite Trapezoid, Simpson and Boole rules.
In torchquad, the integration domain for all quadrature methods is a d-dimensional
hypercuboid, which is a generalisation of a rectangle to multiple dimensions; however,
in general, there are many possible domain types, for example the surface of a sphere
and the two-dimensional unbounded space R2. With the Newton-Cotes rules, the
sample points P are points in a regular grid which is d-dimensional, has n points per
dimension and is translated and scaled into the integration domain. For example,
for the domain D = [0, 3]d, we have P = {0, 3

n−1 , 6
n−1 , . . . , 3}d. To calculate an integral

result, the quadrature method evaluates the integrand at these sample points and then
applies the multi-dimensional composite Trapezoid, Simpson or Boole rule. With the
Monte Carlo method, P is a set of N points randomly chosen in the integration domain
and the integral result is V

N ∑x∈P f (x), where f is the integrand and V is the integration
domain volume.

The VEGAS+ quadrature method, also called VEGAS Enhanced, is adaptive, so
it alternatingly evaluates the integrand and updates its strategy to select the next
set of sample points. Similarly to Monte Carlo quadrature, VEGAS+ evaluates the
integrand at randomly chosen sample points; however, it applies importance and
stratified sampling, and evaluates the integrand at multiple sets of sample points

3

2 Background

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x2

Figure 2.1: Visualisation of the VEGAS map transformation along the first two
dimensions for a four-dimensional integrand. The integrand is a sum of two
Gaussian peaks centered around (0.33, 0.5, 0.5, 0.5) and (0.67, 0.5, 0.5, 0.5), so
the transformation along the first dimension moves points close to x1 = 0.33
and x1 = 0.67, and the transformation along the second dimension moves
points close to x2 = 0.5. The image is taken from [Lep21].

due to its adaptivity. It uses a so-called VEGAS map and stratification to transform
random sample points so that the number of points is high in regions where the
integrand has a major impact on the integral result or has a high variance and low
in other regions. The VEGAS map maintains a monotonically increasing, piecewise
linear function for each dimension of the integration domain. When an optimised
map is applied to a set of sample points, it moves the points into regions where
the absolute value of the integrand is high, which can have the effect of flattening
peaks. Since there is a separate piecewise linear function for each dimension, the
flattening of the map works well if the regions where the integrand is large are parallel
to the integration domain boundary surfaces and has no significant effect if these
regions are diagonally shaped. Figure 2.1 shows an example visualisation of a VEGAS
map transformation. The stratification partitions a domain into hypercuboids and
determines how many points to sample per hypercuboid. To calculate a set of sample
points for an integrand evaluation in VEGAS+, the stratification generates random
sample points, under the condition that each hypercuboid contains the configured
number of points, and then the VEGAS map transforms these points. The number
of points for a hypercuboid is set to a high number if the integrand has a higher
variance within the region corresponding to this hypercuboid in comparison to other
regions. In comparison to the map, the stratification works well for diagonal integrands;

4

2 Background

however, the number of hypercuboids scales exponentially with the dimension, whereas
the resolution of the map does not depend on the dimensionality. Since the optimal
map and stratification are unknown, VEGAS+ estimates them from previous sample
points and corresponding integrand evaluations, which constitutes the adaptivity of
VEGAS+. There are numerous parameters which influence the adaptation of the map
and stratification to the integrand, and some of these parameters depend on the exact
implementation of the algorithm.

All of these quadrature rules can be parallelized well with SIMD operations. The
grid points for the Newton-Cotes rules can be calculated with a Cartesian product,
which is explained in Subsection 3.4.1, and the performance-critical part of the final
Newton-Cotes integral calculation can be implemented with sums and products which
involve array slices of dimension d − 1, where d is the dimensionality of the integration
domain. The Monte Carlo rule consists of random number generation and a sum
of the integrand output, which can both be parallelized, and a parallelization of
all performance-critical calculations in a VEGAS+ implementation is also possible,
but it is more involved as explained later in this thesis. In comparison to the non-
deterministic rules, the Trapezoid, Simpson and Boole rules can exactly integrate
polynomials of degree one, three and five, respectively, but in general, for a high
accuracy with composite Newton-Cotes integration, the required number of sample
points grows exponentially with the dimension. This exponential growth is an example
of the so-called curse of dimensionality, which denotes the phenomenon that for
certain algorithms the computational complexity increases exponentially with the
dimension [BBC61]. The next section describes Python3 modules with which it is
possible to implement efficient numerical integration.

2.2 Numerical Python3 Modules

Python3 has modules which enable fast numerical calculations. This section first
explains commonalities between the numerical backend modules and autoray’s interface
to abstract away differences between these backends. After that it describes the
numerical backends NumPy, Torch, JAX and TensorFlow, which are currently supported
by torchquad, and features of these backends such as support for code compilation.

2.2.1 Common Numerical Operations

This section explains common operations of Python3 modules which implement a
NumPy-like API. While it is possible to store a large vector of floating-point numbers as
a list or a similar Python3 container type and use Python3 loops to perform component-
wise operations on them, the flexibility of the data types and data structures makes it

5

2 Background

a Data structure

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes

per element
3 × 8 = 24 bytes

to jump one

row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2

4 5

7 8

00

33

66
x[:,::2]→ with slices

with steps

0 2

3 5

6 8

9 11

0 11 2

3 44 5

6 77 8

9 1010 11
Slices are start:end:step,

any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×
3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum

axis 1

18 22 26

sum

axis 0

66

sum

axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays

with broadcasting
→x →

,
2

1 1 0
x

,

1 1

2 2

1 0

1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2
,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Figure 2.2: NumPy’s fundamental array concepts, which include the array data
structure, array indexing, component-wise operations, broadcasting, and
reduction operations such as a sum along a dimension. The visualisation is
taken from [Har+20].

difficult for the Python3 implementation to optimise the executed machine code for a
low memory usage and running time. To solve this problem, it is possible to use the
tensor type of a numerical backend, which implements a NumPy-like API.

Array programming with NumPy [Har+20] describes the fundamental array concepts
which apply to numerical backends implementing the NumPy-like API or an API
similar to it. Figure 2.2 shows a visualisation of these concepts.

From a user perspective, a tensor, also called array, is an object which contains a
hidden pointer to raw data in the memory and information about this data such as the
element data type and tensor shape, and the object has methods to perform common
numerical operations. The raw data corresponds to an array in low-level languages
such as C or to a similar data buffer on specialised hardware, e.g. GPUs. The element
data type defines how many bytes one element in the raw data occupies and how to

6

2 Background

interpret the elements; a data type can be, for example, an IEEE 754 32 bit floating-point
number. The shape information defines the number of elements and the dimensionality
for numerical operations on the tensor. Figure 2.2 additionally shows tensor views,
which are tensors where some of the raw data is skipped according to the information
in an additional strides entry in the tensor data structure. Numerical backends may
employ views to reduce the memory usage in some situations, which we can consider
to be an implementation detail that can differ between backends.

There are dedicated functions to create tensors with user-specified shapes and to
convert a Python3 container, e.g. a list, to a tensor. In comparison to a vector or
matrix interpretation of an array, on a tensor multiplication, exponentiation, and other
Python3 operations are all executed component-wise. If a binary operation is applied
on tensors with different shapes, broadcasting is used for the component-wise operation
unless the shapes are incompatible. Conceptually, broadcasting repeats each of the
operand tensors along some of their dimensions until they have the same shape and the
following binary operation is executed component-wise. For example, adding a tensor
x of shape (3, 4) to a tensor y of shape (1, 4) first repeats y three times along its first
dimension and then performs component-wise addition with x. Implementation-wise,
the repetition and component-wise operation can be merged for a higher performance
and lower memory requirement.

Since tensors in torchquad are often very large and tensor operations can be executed
lazily or be traced for a JIT compilation, we can think of Python3 as a language for
metaprogramming which enables us to define computationally intensive quadrature
algorithms with tensor operations.

2.2.2 The autoray Module

With the Python3 library autoray (AUTOmatic-arRAY) [Gra+], we can write Python3
code for numerical calculations with operations that are automatically dispatched to a
chosen numerical backend, which makes it possible to reuse the same code for multiple
backends. These backends implement a NumPy-like API.

The so-called do function is autoray’s main component for backend-agnostic
numerical operations. This function receives as arguments a numerical operation,
the arguments for this operation, and optionally the numerical backend. The numerical
operation argument is a string and can be, for example, "sum", which maps to the
numpy.sum function if NumPy is the backend. The arguments for the numerical
operation in this example include the tensor on which to perform the sum and optional
arguments such as axis. autoray has multiple ways to define the backend for the
numerical operation. The backend argument of do can be omitted, a tensor, or a string,
e.g. "numpy". If it is a tensor, autoray infers the backend string from it. If it is omitted,

7

2 Background

1 c = [0.3, 2.0, 5.0]

2

3 import numpy as np

4 def f_np(x):

5 y = np.array(c, dtype=x.dtype)

6 return np.sum(y * x[:3])

7

8 import torch

9 def f_torch(x):

10 y = torch.tensor(c, dtype=x.dtype)

11 return torch.sum(y * x[:3])

12

13 import tensorflow as tf

14 def f_tf(x):

15 y = tf.constant(c, dtype=x.dtype)

16 return tf.math.reduce_sum(y * x[:3])

17

18 from jax import numpy as jnp

19 def f_jax(x):

20 y = jnp.array(c, dtype=x.dtype)

21 return jnp.sum(y * x[:3])

1 c = [0.3, 2.0, 5.0]

2

3 from autoray import numpy as anp

4 def f(x):

5 y = anp.array(c, dtype=x.dtype, like=x)

6 return anp.sum(y * x[:3])

Figure 2.3: Simple example code to showcase an application of autoray. All
five functions get as input a one-dimensional tensor x and calculate
f (x) = 0.3x1 + 2x2 + 5x3 with vectorized tensor operations. In the function
on the right, autoray determines the backend for the tensor initialisation
of y from the tensor x passed to the like argument, the current backend
automatically handles the slicing of x and multiplication by y, and for the
sum operation, autoray determines the backend from the tensor passed as
input argument to anp.sum. The code images were generated with Geany.
Left: Separate implementations of f for NumPy, PyTorch, TensorFlow and
JAX which all support only the respective backend.
Right: A single function which supports all backends simultaneously using
autoray.

8

2 Background

autoray either uses a backend defined by a context manager or it infers the backend
string from a tensor input argument of the numerical operation, for example the first
argument in case of the sum operation.

When autoray executes the do function, it first determines the numerical backend.
Then it uses the numerical operation string and backend string as key to get a cached
function which maps NumPy-like to backend-specific arguments and then applies a
backend-specific function on the mapped arguments. For example, if the operation
and backend strings are "sum" and "torch", it may replace an axis argument with
dim and then executes torch.sum. If the function is not cached, autoray creates it,
which typically involves the import of the numerical backend and the assembling of a
function which replaces, for example, argument names. From a user perspective,
two application examples of do are the replacements of x = torch.ones((3,1))
by do("ones", (3,1), like="torch") to initialise a PyTorch tensor with ones and
torch.sum(x, dim=0) by do("sum", x, axis=0) to execute the sum operation. Since
autoray caches the functions in a dictionary, its time overhead is mostly negligible
compared to the time required for the execution of the numerical operations.

In addition to the do function, for a different code style autoray offers a NumPy
mimic object which internally executes do. torchquad commonly imports this
object and denotes it anp. To use anp instead of do, we can replace, for example,
do("sum", x, axis=0) by anp.sum(x, axis=0) when performing the sum operation.
Figure 2.3 shows an example where a function supports multiple backends using
autoray. Furthermore, autoray has helper functions for backend-agnostic type
conversions, common naming of data types and backend name inference from tensors.

2.2.3 Numerical Backend Implementation Techniques

This section explains terms and implementation techniques which are common to
numerical backends and may be helpful to distinguish backend-specific compromises
between flexibility and performance. [Suh+21] gives an overview about implementation
techniques for fast numerical computations in Python3. It is possible to differentiate
between eager execution mode and execution of a static graph. With eager execution,
the Python3 code is executed and performs numerical operations or calls functions
which do not belong to a numerical backend, for example message printing. For
higher performance, the numerical backend may execute operations on the GPU
asynchronously to the Python3 interpreter as long as it is transparent to the user; for
example, a print statement may execute concurrently to a numerical computation
on the GPU unless the to-be-printed message contains the output of this numerical
computation. On the other hand, a backend can support the compilation of a Python3
function to a static graph of numerical operations. This compilation can be tracing,

9

2 Background

where Python3 code is executed once to collect executed numerical operations, direct
compilation, where a subset of the Python3 language is compiled by the backend
instead of being executed by the CPython interpreter, or a compromise between tracing
and direct compilation [Suh+21]. Later the operations in the graph can be executed
without interpreting the Python3 code again. Since the graph can be strongly optimised
and compiled to hardware-specific machine instructions, its execution is typically faster
than eager execution of the Python3 code, but it is less flexible because complicated
Python3 control flow may not be preserved during tracing or cannot be compiled.

Accelerated Linear Algebra (XLA) [Goo] is a compiler for a graph of numerical
computations developed by Google. It abstracts away the conversion of the graph to
machine code optimised for a given hardware. Its most important optimisation is the
fusion of nodes in the graph, for example to merge a multiplication and addition into a
single CUDA kernel [Goo]. The abstraction is helpful to add support for new hardware
to libraries which use XLA [NSW18]. XLA has some limitations which restrict its
applicability; for example, input tensors of the computation graph must have a fixed
size [SVK20] and operations which change data in-place are unsupported [Suh+21].

2.2.4 Supported Numerical Backends

The numerical backends and their versions currently supported by torchquad are
PyTorch 1.10.0, TensorFlow 2.7.0, JAX 0.2.25 and NumPy 1.19.5. All of these backends
are free open-source software. In comparison to NumPy, the other backends are all
frameworks for machine learning and support automatic differentiation and CUDA.

PyTorch is the numerical backend which torchquad supported before the code
changes associated with this thesis. In comparison to other deep learning frameworks
such as TensorFlow, PyTorch has a great focus on high performance in eager execution
mode [Pas+19]. The performance-critical parts of PyTorch are implemented in the C++
libtorch library, which simplifies implementations of Torch in multiple programming
languages and allows fast vectorized tensor operations [Pas+19]. Furthermore, when
using CUDA, PyTorch often executes operations on the GPU asynchronously from the
Python3 interpreter, which can lead to a performance improvement [Pas+19].

TensorFlow is a numerical backend developed by Google. Its initial version was
released in 2015 [LP19] and it is the successor of DistBelief from 2011, which is
part of the Google Brain project [Mar+15]. Since version 2, which was released
in 2019 [He19], it uses eager execution mode by default. It also supports trace
compilation of Python3 code to a static graph, which is optimised with TensorFlow’s
Grappler1 graph optimisation system, and additionally with XLA if it is enabled. XLA

1TensorFlow graph optimization with Grappler: https://www.tensorflow.org/guide/graph_
optimization (Accessed: 2022-03-16)

10

https://www.tensorflow.org/guide/graph_optimization
https://www.tensorflow.org/guide/graph_optimization

2 Background

performs hardware-specific optimisation [Goo] but TensorFlow disables it by default
for backwards compatibility since some of TensorFlow’s functionality is unsupported
by XLA.

JAX (JAX is Autograd and XLA) [Bra+18] is another numerical backend developed
by Google. It is based on XLA for fast compiled numerical operations [SVK20] and
Autograd [MDA15] for automatic differentiation of functions. It supports execution
of a static graph compiled with XLA and eager execution mode, where it performs
numerical operations asynchronously. Since it is built to use XLA from the ground
up [SVK20], functions which execute numerical operations in JAX should be pure
and avoid indexed assignments. In comparison to PyTorch and TensorFlow, the
Python3 module for JAX itself does not implement a large number of common machine
learning algorithms; these algorithms are available in separate modules, for example
Flax [Hee+20], Haiku [Hen+20] and Elegy [Poe21].

NumPy is the main array programming module for Python3 and is used by many
other Python3 modules, for example Matplotlib and pandas [Har+20]. It was first
published in 2005 and is based on two predecessors: Numeric and Numarray, which is
a reimplementation of Numeric [Har+20]. NumPy does not support execution on the
GPU and uses only a single CPU core. However, it is optimised for a fast synchronous
eager mode execution, thus calling array operations has less overhead compared to
other backends, and it uses SIMD instructions of the CPU.

2.2.5 Available Compilation Methods

PyTorch, TensorFlow and JAX offer functions to compile Python3 code, which can
increase the performance significantly. With JAX we can wrap a Python3 function
with jax.jit so that it is compiled just in time (JIT) into code optimised for selected
hardware. During the first execution of the wrapped function, JAX executes the
Python3 code while tracing which numerical operations are performed, which gives
a computational graph encoded in the jaxpr intermediate language; then it applies
the XLA compiler on the jaxpr code to generate optimised machine code, and finally,
it evaluates the function on the user-provided arguments and returns the result. In
subsequent executions of the wrapped function, JAX executes only the compiled code.2

This means the Python3 interpreter executes the function’s Python3 code only once and
side effects, such as printing messages to stdout, no longer happen when the compiled
function runs. Even without jax.jit, JAX internally compiles some of its functions just
in time during the first execution, which leads to a noticeable time difference between

2JAX’s JIT compilation documentation: https://jax.readthedocs.io/en/latest/jax-101/
02-jitting.html (Accessed: 2022-03-17)

11

https://jax.readthedocs.io/en/latest/jax-101/02-jitting.html
https://jax.readthedocs.io/en/latest/jax-101/02-jitting.html

2 Background

the first and later function executions; with NumPy, PyTorch and TensorFlow this time
difference is much smaller if the function is not explicitly compiled.

In comparison to JAX’s JIT compilation, TensorFlow’s tf.function uses Autograph
by default, which, in addition to tracing, analyses Python3 code to convert conditions
and loops to compiled code if the conditions depend on user-provided input [Suh+21].
tf.function with Autograph calls the function with a special abstract argument and
can execute all branches of a condition at once to generate a compiled function which
contains those conditions.3 If one of the branches throws an exception, the compiler
executes it and thus fails. JAX’s compilation on the other hand does not permit such
conditions which depend on the input at all. It is also possible to explicitly disable
autograph in tf.function with an argument. Furthermore, tf.function has the
jit_compile=True argument, which enables JIT compilation to XLA and thus further
speeds up the compiled program. This argument is disabled by default because some
TensorFlow operations cannot be compiled with XLA. Analogously to jax.jit, we can
wrap a function with tf.function and it is compiled during its first execution.

The trace-compilation for the PyTorch backend, torch.jit.trace, behaves more like
Ahead-Of-Time compilation because it executes the function with example inputs to
produce a compiled version. torch.jit.trace only executes the Python3 code once and
remembers the executed numerical operations, which is similar to JAX’s compilation,
whereas another function, torch.jit.script, reads and compiles Python3 source code
to TorchScript4. The use of torch.jit.trace requires more code than the compilations
with TensorFlow and JAX. It needs a function which has only positional arguments,
which we need to define explicitly in the code, and it needs example arguments, which
we can define with additional code. With jax.jit and tf.function the function
is compiled automatically on its first execution and always returns a result whereas
torch.jit.trace compiles the function explicitly and we need separate code to execute
the compiled function. Additional ways to compile code for PyTorch are CUDA Graphs
and PyTorch/XLA. CUDA Graphs5 were recently added in PyTorch 1.10.0 during the
time of this thesis and their API is not yet stable. For their application in torchquad,
they have too many constraints on the Python3 code: All input tensors must have the
requires_grad attribute enabled, i.e. the function should be used for backpropagation,
and an error showed that autoray uses operations which are not permitted when

3Effects of Autograph’s tracing process: https://github.com/tensorflow/tensorflow/blob/
170529f4df7aaeebe1c8c2ae6c1256c44becb4fa/tensorflow/python/autograph/g3doc/reference/
control_flow.md#effects-of-the-tracing-process (Accessed: 2022-03-17)

4PyTorch’s TorchScript documentation: https://pytorch.org/docs/stable/jit.html (Accessed: 2022-
03-25)

5CUDA Graphs introduction: https://pytorch.org/blog/accelerating-pytorch-with-cuda-graphs/
(Accessed: 2022-03-18)

12

https://github.com/tensorflow/tensorflow/blob/170529f4df7aaeebe1c8c2ae6c1256c44becb4fa/tensorflow/python/autograph/g3doc/reference/control_flow.md#effects-of-the-tracing-process
https://github.com/tensorflow/tensorflow/blob/170529f4df7aaeebe1c8c2ae6c1256c44becb4fa/tensorflow/python/autograph/g3doc/reference/control_flow.md#effects-of-the-tracing-process
https://github.com/tensorflow/tensorflow/blob/170529f4df7aaeebe1c8c2ae6c1256c44becb4fa/tensorflow/python/autograph/g3doc/reference/control_flow.md#effects-of-the-tracing-process
https://pytorch.org/docs/stable/jit.html
https://pytorch.org/blog/accelerating-pytorch-with-cuda-graphs/

2 Background

PyTorch captures a CUDA stream. PyTorch/XLA [Suh+21] enables compilation to XLA
for PyTorch and is available in Google Colab to support TPUs. At the time of writing,
there is apparently no prebuilt version of PyTorch/XLA which works with Python
3.9 on the Python Package Index (PyPi) or Anaconda, and PyTorch/XLA does not yet
support CUDA according to its documentation.

The trace compilations of all backends have the following in common: The Python3
function is executed only once to generate a compiled function and thus side effects
such as printing messages or global variable modification are lost when executing the
compiled code. Therefore, the to-be-compiled function should be pure. The applications
of compilation in torchquad are explained in Section 3.5.

2.3 Hardware Acceleration

There exists a broad range of hardware which is specialised to accelerate numerical
calculations which involve linear algebra, and numerical backends often focus on
high-performance with a subset of this hardware; for example, we can assume that
NumPy targets CPUs whereas PyTorch mainly targets GPUs, and Google’s JAX and
TensorFlow mainly target both GPUs and TPUs. While it is possible to implement
numerical operations with For loops provided by the programming language, the
language may use the CPU with only a single thread and no vector instructions. We
can consider the use of CPU vector instructions, multiple cores and the use of multiple
CPUs as hardware acceleration which is implemented in common numerical backends.

Graphics Processing Units (GPUs) are hardware accelerators which are mainly
designed for graphics processing tasks. These tasks typically involve SIMD operations,
so GPUs have a significantly higher number of concurrently executing threads than
CPUs and higher memory bandwidth while each thread is slower than a thread
on the CPU and has less cache memory [Mem+17]. In comparison to a CPU, the
use of a GPU often requires driver software since most GPU architectures differ
between vendors. To implement numerical operations, it is possible to use APIs
designed for graphics processing, e.g. Vulkan, APIs for general-purpose processing
with common GPUs, e.g. Open Computing Language (OpenCL), and vendor-specific
proprietary general-purpose processing APIs, e.g. NVIDIA’s Compute Unified Device
Architecture (CUDA) [Mem+17]. Due to the GPU architecture differences, achieving
high performance is often easier with vendor-specific APIs than APIs which support
many devices; for example, a performance comparison between OpenCL and CUDA
with near-identical kernels shows smaller execution times with CUDA [KDH11].
torchquad currently focuses on fast quadrature with CUDA but has plans to investigate
support for other hardware as well in the future.

13

2 Background

In addition to CPUs and GPUs, there exists hardware specifically designed for
numerical operations, which are common in the field of machine learning. Tensor
Processing Units (TPUs) were developed by Google in 2015 and are employed in
datacentres which perform inference for deep learning [Jou+17]. In comparison to
GPUs, the main purpose of the TPU is the acceleration of machine learning algorithms
to reduce the average energy consumption per numerical operation. According to
[Jou+17], which compares the TPU with a CPU and GPU for deep learning inference
using TensorFlow in datacentres, the TPU focuses on low latency instead of average
throughput, which is different with CPUs and GPUs, and the TPU reached a significant
speedup over a CPU and GPU for the selected tasks while requiring less power for
the same computations. Field-Programmable Gate Arrays (FPGAs) are another type of
hardware which can be used for a concurrent execution of numerical operations. With
this hardware, applications related to machine learning often execute faster than on the
CPU and require less power than a GPU [NSW18]. Software support for the TPU and
FPGAs [NSW18] is enabled by XLA, which is explained in Subsection 2.2.3. Testing on
Google Colab has shown that it is possible to use torchquad with a TPU; however, the
results chapter of this thesis excludes measurements for a TPU because of difficulties
with the parallel installation of PyTorch, JAX and TensorFlow all with TPU support on
Google Colab.

2.4 Related Work

This section describes two alternatives to autoray, other work about performance
comparisons between backends, and other Python3 modules for numerical integration
and VEGAS+. An alternative way to implement Python3 code which works with
multiple backends at once is NumPy’s __array_function__ protocol.6 Similarly to
autoray’s NumPy mimic, with this protocol NumPy can dispatch a numerical operation
to a function of the backend which corresponds to the input arguments. In comparison
to autoray, at the time of writing the protocol is still very experimental, it only works
with numerical backends which implement this protocol, thus it is not compatible with
old versions of backends or backends which are no longer in active development, and it
may not target complex functionality such as lazy execution. Another Python3 module
for numerical backend modularity is unumpy [Qua21] by Quansight Labs. While it may
provide functionality similar to autoray, its documentation mentions a very incomplete

6__array_function__ protocol: https://numpy.org/neps/nep-0018-array-function-protocol.
html (Accessed: 2022-03-17)

14

https://numpy.org/neps/nep-0018-array-function-protocol.html
https://numpy.org/neps/nep-0018-array-function-protocol.html

2 Background

coverage and no support for JAX and TensorFlow.7

Most of the work which compares performances between PyTorch, JAX or TensorFlow
seems to focus on high-level machine learning functionality and not on the low-level
numerical operations which we are interested in; for example, [CS17] investigates the
benefit of compilation with XLA in TensorFlow for machine learning algorithms such
as Convolutional Neural Networks and [LP19] compares CPU and GPU times for well-
known Artificial Neural Networks with TensorFlow 1.13. In [SVK20], Pranav Subramani
et al. investigate existing and new Differentially Private Stochastic Gradient Descent
(DPSGD) implementations for JAX, TensorFlow and PyTorch, and compare execution
times with and without function compilation. Since implementing DPSGD involves
low-level numerical calculations, their performance comparisons have similarities to
the benchmarking of torchquad in this thesis; similar to our results, compilation with
XLA has led to significant performance improvements and they have reached a higher
performance with XLA-compiled code for JAX than for TensorFlow 2. They also
compare generated XLA assembly code and its optimisation between TensorFlow and
JAX.

There are numerous numerical integration modules for Python3. For example, SciPy
and quadpy [Sch+21] support well-known multi-dimensional quadrature rules, and
sparseSpACE [Obe+21] implements adaptive Sparse Grid quadrature rules, which are
well suited to tackle the curse of dimensionality. In comparison to these modules,
torchquad focuses mainly on the parallelization of numerical integration on the GPU
and on support for full differentiability, which, for example, enables its application
in the context of gradient descent optimisation techniques. Furthermore, related
modules which implement VEGAS+ integration are VegasFlow [CC20a][CC20b], which
supports TensorFlow on the GPU, G. P. Lepage’s reference implementation [Lep21],
and Yongcheng Wu’s CIGAR [Wu20], which is an implementation in C++ and the basis
for torchquad’s VEGAS.

7Quansight Labs’ unumpy documentation at the time of writing: https://web.archive.org/web/
20220310132356/https://unumpy.uarray.org/en/latest/generated/unumpy.html

15

https://web.archive.org/web/20220310132356/https://unumpy.uarray.org/en/latest/generated/unumpy.html
https://web.archive.org/web/20220310132356/https://unumpy.uarray.org/en/latest/generated/unumpy.html

3 Implementation

The main change in torchquad’s code is the addition of support for other numerical
backends than PyTorch. In addition to the replacement of functions from PyTorch with
those of autoray, the code has to fulfil certain requirements so that it works with all
backends. After a summary of torchquad’s classes and methods, the next sections
describe these requirements and the implemented code changes, the abstraction of
backend-specific random number generation in torchquad, and numerical operations
which torchquad requires but which are not implemented directly by all backends.
After that, this chapter explains backend-specific function compilation to increase
the performance and properties of the backends which limit the possibilities of code
modularisation with autoray.

3.1 torchquad’s Code Structure

This section gives an overview about torchquad’s implementation of the quadrature
rules at the time of writing. Important classes and their methods can be summarized
as follows:

• The Trapezoid, Simpson, Boole, MonteCarlo, and VEGAS classes implement
numerical integration rules and have the following methods in common:

– .integrate(fn, dim, N, integration_domain, backend="torch", [...])
numerically integrates the dim-dimensional integrand fn on the given in-
tegration domain with the integration rule corresponding to the class. It
evaluates the integrand up to N times. If the integration domain is a tensor,
it infers the backend from it; otherwise, it uses the backend string argu-
ment. With the non-deterministic MonteCarlo and VEGAS, the method has
additional arguments for random number generation, and for VEGAS it has
further arguments to configure the adaption to the integrand.

– .evaluate_integrand(fn, points) evaluates the integrand fn on the given
sample points and counts the number of evaluations.

• Trapezoid, Simpson, and Boole are subclasses of NewtonCotes and have the
following methods:

16

3 Implementation

– .calculate_grid(N, integration_domain) calculates sample points on a
regular grid for the integrand evaluation.

– .calculate_result(function_values, dim, n_per_dim, hs) applies the
composite Newton-Cotes rule, which differs between the three integrator
subclasses. function_values is the integrand output, which is an output of
.evaluate_integrand(fn, points), and the other arguments are used to
define the grid structure on which the function was evaluated.

– .get_jit_compiled_integrate(dim, N, integration_domain, backend) com-
piles the previous two methods and assembles a function which performs
numerical integration for a given integrand and domain, as explained in
Section 3.5.

• MonteCarlo is structured similarly to the composite Newton-Cotes integrators
and it has the following methods:

– .calculate_sample_points(N, integration_domain, seed=None, rng=None)
returns N points randomly chosen within the integration domain. seed and
rng are arguments which can influence the random number generation.

– .calculate_result(function_values, integration_domain) returns an
integral result for the given integrand output and domain, analogously
to the method of the NewtonCotes classes.

– .get_jit_compiled_integrate([...]) compiles the previous two methods
and is analogous to the method with the same name of the NewtonCotes
classes.

• The RNG class implements backend-agnostic random number generation and is
explained in Section 3.3.

• VEGAS implements the VEGAS+ [Lep21] rule. In comparison to the other
integrators, its integration cannot be structured into the execution of three
methods where one of them evaluates the integrand, and VEGAS does not
support JAX and TensorFlow, as explained in Section 3.6. VEGAS uses VEGASMap
and VEGASStratification for sample point calculations and adaption to the
integrand.

• VEGASMap implements the map component of VEGAS+ and has the following
methods:

– .get_X(y) moves the points y into regions where the absolute value of the
integrand is high. This transformation works well as soon as the VEGASMap
has adapted to the integrand. As explained in Section 2.1, the method applies

17

3 Implementation

a monotonically increasing, piecewise linear mapping on each component of
y, where the mapping is different for each dimension.

– .get_Jac(y) returns the Jacobian of VEGASMap’s transformation.

– .accumulate_weight(y, jf_vec2) collects information about an integrand
output which is needed to update the mapping transformation later. y are
sample points which were previously passed to .get_X(y), and jf_vec2 is
the squared product of the integrand output and the Jacobian entries from
.get_Jac(y).

– .update_map() updates the mapping transformation, which contributes to
the adaptation to the integrand function.

• VEGASStratification implements the stratification component of VEGAS+ and
has the following methods:

– .get_NH(nevals_exp) gets as input an approximate overall number of
evaluations nevals_exp and returns a tensor which defines the number of
points per hypercuboid. As explained in Section 2.1, hypercuboids covering
parts of the integration domain where the integrand has a high variance
receive more points as soon as the VEGAS+ stratification has adapted to the
integrand.

– .get_Y(nevals) returns points which are sampled randomly from the
integration domain and fulfil the condition that the number of points that
are in each hypercuboid is defined by nevals, which is an output of the
.get_NH(nevals_exp) method.

– .accumulate_weight(nevals, weight_all_cubes) collects information about
an integrand output which is needed to update the stratification later. nevals
is the output of the .get_NH(nevals_exp) method and weight_all_cubes
is the product of the integrand output with the Jacobian entries from the
VEGASMap.

– .update_DH() recalculates values which .get_NH(nevals_exp) uses to
determine the number of points per hypercuboid, which contributes to
the adaptation to the integrand function.

The actual implementation of torchquad has more details which are hidden here for
brevity and can be found in torchquad’s documentation. For example, some methods
have more default values for their arguments, such as default numbers of evaluations N,
there are additional helper classes which torchquad uses internally, e.g. BaseIntegrator
and IntegrationGrid, and torchquad has helper functions to configure logging and

18

3 Implementation

the floating-point precision. The next section describes general code changes for the
implementation of numerical backend modularity in torchquad.

3.2 Common Code Rewriting Steps

The three main steps which have been followed to support other numerical backends
than PyTorch with autoray can be summarized as follows. The first step is the
replacement of numerical operations which use PyTorch with corresponding operations
from autoray’s NumPy mimic. This includes the following changes:

• Replace the import of the torch module with the import of autoray’s NumPy
mimic, which is denoted anp in torchquad’s code.

• Replace functions from the torch module with corresponding functions from anp

• For numerical operations where autoray cannot infer the backend from input
arguments, add the like argument to specify the backend explicitly as a string
or via a tensor from the same backend. These operations are mostly tensor
initialisations.

• Replace torch-specific argument names with the corresponding NumPy argument
names; for example, replace dim with axis

After this step, the code executes the same PyTorch operations as before, but in an
indirect way since these operations are wrapped by autoray. This step involves the
largest code changes and is similar to a code-style-only change. Since these changes are
separate from the other steps, it can be easier to find a bug if a regression happens later.

The next step is the replacement of numerical operations or sequences of operations
to support more numerical backends. The changes involve, for example, the following
replacements:

• Replace x.long() with astype(x, "int64") because the .long() method is
defined for PyTorch’s tensor but not the NumPy array type. This method
converts the tensor entries to 64-bit integers and astype is a backend-agnostic
type conversion function which we can import from autoray.

• Replace .unsqueeze() tensor method calls with anp.reshape function calls.
.unsqueeze() is another example of a tensor method which is supported by
PyTorch but not other backends.

• Replace sequences of numerical operations which use in-place operations. In-place
operations are not or only indirectly supported by JAX and TensorFlow, which is

19

3 Implementation

a limitation as explained in Section 3.6. The possibilities for the code replacement
are situation-dependent; for example, indexed assignments can sometimes be
replaced with anp.concatenate, anp.where and broadcasting operations.

In comparison to the first step, the code changes are usually smaller, the new code may
execute different PyTorch operations than before, and a bug which causes a regression
is more likely to be introduced in this step.

The final step is the addition of tests and support for user-configurable floating-point
precision. The tests are implemented using the pytest [Kre+21] module and check,
for example, if integrators do not crash, the integrals are as accurate as expected,
and if the data type of the result integral or individual operations correspond to the
user-configured type. To support different floating-point precisions, this step includes
the addition of dtype arguments to numerical operations. Without these arguments,
the numerical integration would work with all backends except that the user would be
unable to specify the precision which the NumPy and TensorFlow backend use for the
operations, as explained in Section 3.6.

The general code rewriting steps presented in this section are not sufficient to
implement all quadrature algorithms. torchquad also requires a backend-independent
way for random number generation and special numerical operations to execute the
quadrature algorithms, which is explained in the following sections.

3.3 Random Number Generation

The non-deterministic integrators MonteCarlo and VEGAS require a function to generate
random or pseudo-random numbers which are uniformly distributed in [0, 1).

It is possible to distinguish between pseudo-random number generators (PRNGs)
with global state and PRNGs with local state. If the state is global, a single function
call is sufficient to generate numbers and there is a single global number generator. If
the state is local, the user has to initialise the number generator before they can sample
numbers from it and it is possible to initialise multiple generators, where the state
of each one can be changed individually, e.g. by reseeding them. Random number
generation with a global state can be problematic if a user passes an integrand function
which changes the PRNG state when evaluated. If, for example, an integrand passed to
a VEGAS integrator resets the global seed to a fixed value when evaluated and VEGAS
uses the global PRNG state, VEGAS would generate the same sample points in each
iteration after the adaptation to the integrand.

While it is possible to use autoray’s anp.random.uniform to generate backend-specific
random numbers, this function maintains a global state, so instead the author has
decided to implement a RNG class in torchquad which abstracts away the differences

20

3 Implementation

between the numerical backends. This class supports a seed argument so that it is
possible to reproduce randomly generated numbers. With a fixed seed, generated
numbers are consistent if the numerical backend, its version, and the chosen hardware
do not change. If the seed is unset, the backend-specific PRNG is initialised to a
non-deterministic state. The following parts in this section explain the differences
between random number generation in the supported backends.

To generate numbers with NumPy, we can initialise a PRNG object with
rng = numpy.random.default_rng(seed) once and then sample pseudo-random
numbers from it with rng.random(size, dtype). The seed argument determines
the generator’s initial state. If it is None, the generator is initialised with a truly random
state; otherwise, the initial state is configured with the provided seed. To generate
random bits, NumPy uses a Permuted Congruential Generator1 by default at the time
of writing. An alternative way for random number generation with NumPy is to
call np.random.seed(seed) to configure a seed and numpy.random.random(size) to
generate numbers; however, these functions are deprecated, use a global state and
always use the Mersenne Twister2. In comparison to other numerical backends, NumPy
offers an additional function to generate uniform random numbers in [0, 1] instead of
[0, 1); we do not use it so that the behaviour between backends is consistent.

The PRNG of PyTorch maintains a global state for the currently selected device.
The state can be seeded with torch.random.manual_seed(seed) and set to a non-
deterministic value with torch.random.seed(), and random numbers can be sampled
with torch.rand(size, dtype). Furthermore, there are functions to get and set the
global state. By default torchquad’s RNG does not use these functions because they
can slow down the random number generation slightly, PyTorch does not discourage
the use of a global state, which is different with other numerical backends, and we
consider integrands which change a PRNG seed to be uncommon. Nonetheless, users
can explicitly enable state saving and restoring if needed.

With TensorFlow, we can initialise a randomly seeded PRNG object with
rng = tf.random.Generator.from_non_deterministic_state(), and use
rng = tf.random.Generator.from_seed(seed) if the user provides a seed, and we
can generate random numbers with rng.uniform(shape, dtype). Similar to NumPy,
TensorFlow additionally has a PRNG with a global state whose use is deprecated.

With JAX the state for number generation is directly exposed to us and can be
initialized with PRNGKey(seed). For a non-deterministic initial state, we have to
provide a truly-random seed value. To generate random numbers, we need to split

1NumPy’s Permuted Congruential Generator documentation: https://numpy.org/doc/stable/
reference/random/bit_generators/pcg64.html (Accessed: 2022-03-16)

2NumPy’s Mersenne Twister documentation: https://numpy.org/doc/stable/reference/random/
bit_generators/mt19937.html (Accessed: 2022-03-16)

21

https://numpy.org/doc/stable/reference/random/bit_generators/pcg64.html
https://numpy.org/doc/stable/reference/random/bit_generators/pcg64.html
https://numpy.org/doc/stable/reference/random/bit_generators/mt19937.html
https://numpy.org/doc/stable/reference/random/bit_generators/mt19937.html

3 Implementation

the PRNGKey object with jax.random.split into two new PRNGKey objects, remember
one of them for later number generation and pass the other one, denoted key, to
jax.random.uniform(key, shape, dtype). In comparison to PyTorch and TensorFlow,
when JIT-compiling a function which generates random numbers, the old and new
states have to be an input and output so that JAX generates different random numbers
in each invocation of the compiled function.

3.4 Special Numerical Operations

In addition to random number generation, torchquad requires numerical operations
which have short mathematical definitions but are not directly implemented by all
backends. This section describes two of them: the Cartesian product of one-dimensional
tensors, which we need to calculate grid points for Newton-Cotes integrators, and
an operation that we denote addition at indices, which enables a fast VEGAS+
implementation.

3.4.1 Cartesian Tensor Product

In comparison to the Cartesian product of sets, the output of this Cartesian tensor
product operation must be ordered for an application of a Newton-Cotes rule in later
calculations. In torchquad, the operation is implemented with anp.meshgrid, the
.ravel() method of the backend-specific tensor, and anp.stack:

1. The anp.meshgrid function gets as input d one-dimensional tensors, repeats each
input tensor along d − 1 dimensions, and returns the d repeated tensors as a list.
Each input tensor is repeated along different dimensions. With this function,
torchquad repeats tensor entries of the Cartesian product operands.

2. The .ravel() method flattens a tensor to a one-dimensional one with the same
number of elements.

3. anp.stack concatenates a list of tensors along a specified dimension. torchquad
applies it on flattened tensors from the anp.meshgrid output to generate the
Cartesian product result.

These functions are documented precisely at NumPy’s API reference3. At the time of
writing, the indexing order of the anp.meshgrid operation differs between backends.
This order defines which dimensions are chosen to repeat each input tensor. We can

3NumPy Routines documentation: https://numpy.org/doc/stable/reference/routines.html (Ac-
cessed: 2022-03-16)

22

https://numpy.org/doc/stable/reference/routines.html

3 Implementation

ignore the differences because the composite Newton-Cotes rules produce the same
result with all orders up to floating-point inaccuracies.

3.4.2 Addition at Indices

Another special numerical operation is addition at indices. Given the indices
p0, p1, . . . , pn−1 ∈ Zn

k and numbers x0, x1, . . . , xn−1, we want to calculate
yi = ∑{j∈Zn|pj=i} xj efficiently for all i ∈ Zk. This operation appears in many places in
the VEGAS+ integration. For example, for each dimension torchquad’s VEGAS map
weight accumulation, which is implemented in VEGASMap.accumulate_weight, gets as
input n numbers x⃗ and n corresponding point locations, maps the points to interval
indices p⃗, and then adds each xj to a value yi, where i = pi is the interval index.

PyTorch implements this numerical operation with the torch.scatter_add_ function,
but NumPy does not have an equivalent function to the author’s knowledge. Therefore,
torchquad has a replacement for this function using multiple indicator matrices. There
are two solutions for this replacement which require few lines of code:

1. The first solution uses a Python3 for loop which iterates over all integers j ∈ Zn

and adds xj to ypj .

2. The second solution uses an indicator matrix and is implemented in VegasFlow.4

It follows these steps:

a) Create an integer tensor with all indices in Zk using anp.arange

b) Reshape this tensor to the shape (k, 1)

c) Compare the reshaped tensor with p using anp.equal, which broadcasts
both of its input tensors and therefore creates a large indicator matrix M. In
this matrix mi,j is true if and only if xj should be added to yi according to pi.

d) Execute anp.where to replace all mi,j by

m̂i,j =

{
xj, mi,j is True

0.0, otherwise
(3.1)

e) Sum up the replaced values with anp.sum along the second matrix dimension,
which outputs y⃗.

4VegasFlow’s consume_array_into_indices: https://github.com/N3PDF/vegasflow/blob/
21209c928d07c00ae4f789d03b83e518621f174a/src/vegasflow/utils.py#L16 (Accessed: 2022-
03-16)

23

https://github.com/N3PDF/vegasflow/blob/21209c928d07c00ae4f789d03b83e518621f174a/src/vegasflow/utils.py#L16
https://github.com/N3PDF/vegasflow/blob/21209c928d07c00ae4f789d03b83e518621f174a/src/vegasflow/utils.py#L16

3 Implementation

Both of these solutions have performance limitations. The disadvantage of the first
solution is the overhead of the Python3 interpreter and the high number of single-
element array index accesses. The second solution uses vectorized operations, but it
scales poorly because the indicator matrix has n · k entries, thus we need Θ(nk) memory
and time in comparison to the Θ(n) time in the first solution. torchquad implements a
compromise between the two solutions, which can be summarized as follows:

1. Sort x⃗ and p⃗ along p⃗ unless they are already sorted

2. Partition the sorted tensors with a strided Python3 for loop. In each iteration we
consider the indices j1, j1 + 1, . . . , j2 into the sorted x⃗ and p⃗.

3. In the loop body, use the previously explained second solution with an indicator
matrix and add the result to y⃗ at the corresponding indices. The indicator matrix
has j2 − j1 + 1 columns and, since the elements in p⃗ are sorted, it requires only
pj2 − pj1 + 1 instead of k rows.

This approach has the performance advantage of vectorized operations while the
indicator matrices are sufficiently small even for large input tensors. In the current
implementation, the indicator matrices have 500 columns for all except the last for loop
iteration, and it may be possible to replace the for loop with recursive subdivisions to
reduce the sum of the number of indicator matrix entries, which may further increase
the performance with NumPy. torchquad currently partitions with the for loop since
code with recursive subdivisions would probably be more difficult to understand and
fast integration with NumPy is not one of torchquad’s main goals.

The addition at indices numerical operation is only needed for NumPy and
PyTorch at the time of writing because torchquad’s VEGAS does not support JAX and
TensorFlow. Together with anp.repeat, the operation enables a fast vectorized VEGAS+
implementation.

3.5 Compiled Functions in torchquad

Depending on the application, torchquad’s numerical integration may be executed
repeatedly on the same domain, integration grid or with the same integrand. To increase
the performance in this situation, it is possible to compile functions as explained in
Subsection 2.2.5. torchquad’s composite Newton-Cotes and Monte Carlo integrators
execute three main steps: the calculation of sample points, the integrand evaluation
on these points, and the integral result calculation given the integrand output. On
the one hand, it is possible to compile the whole integration, which includes all three
steps, by applying a backend-specific compilation function such as jax.jit. The user

24

3 Implementation

has to apply this compilation themselves because it requires comparatively few code
changes, it is possible to include more code in addition to numerical integration in a
to-be-compiled function, and the integrand function may require certain settings for the
compilation, such as disabling XLA with TensorFlow. On the other hand, torchquad
offers a method which compiles only the first and third steps. With this method, we
can obtain a performance benefit even with integrands which are not compilable. It
uses tf.function with the jit_compile=True argument for TensorFlow, jax.jit for
JAX, and torch.jit.trace for PyTorch. torchquad does not use torch.jit.script
because it fails with undefined attribute lookup errors when using autoray, probably
because TorchScript only works with a subset of the Python3 language. Compilation
for the VEGAS+ integration is not yet implemented in torchquad since it would require
extensive code changes as explained in the next section.

The benefits of compilation are investigated in Chapter 4. A disadvantage of function
compilation is the additional time required to compile or recompile the code, so if we
execute numerical integration only a few times or certain arguments, e.g. the number
of points, change frequently, the program may be slower overall.

3.6 Limitations

Some differences between numerical backends make it difficult to change Python3
code so that it works fast with all backends while the code is still easy to read and
understand. One of these differences is the support for in-place operations. With
NumPy and PyTorch, it is common to index a tensor on the left side of an equation,
for example with a slice, to set selected parts of the tensor to new values or to reduce
the memory usage in certain situations. On the other hand, with JAX an in-place
tensor change requires a special syntax and it is executed out-of-place unless the code
is compiled,5 and TensorFlow supports in-place changes only with the tf.Variable
tensor type while tf.Tensor, which torchquad commonly uses, does not support
in-place changes at all. In some situations, it is possible to rewrite the code with
anp.concatenate and anp.where without significantly deteriorating the code quality or
performance. Another difference between backends is the performance of uncompiled
code, which is investigated in Chapter 4.

torchquad’s VEGAS+ implementation uses many in-place tensor operations.
Furthermore, the code for VEGAS is written in an object-oriented way and the numbers
of sample points, thus tensor sizes, vary between iterations, which hinders trace
compilation of functions because methods adjust object members and are thus not

5In-place operations in JAX: https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.
ndarray.at.html (Accessed: 2022-03-17)

25

https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.ndarray.at.html
https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.ndarray.at.html

3 Implementation

pure, and a variation in tensor sizes leads to time-consuming recompilations. An
experimental rewritten code for the VEGAS+ stratification implementation to support
uncompiled JAX and TensorFlow was very slow compared to NumPy and PyTorch.
The author has decided to not add support for JAX and TensorFlow to the VEGAS+
implementation because function compilation would probably require extensive code
changes to group performance-relevant code not related to integrand evaluation into
pure functions, replacing in-place operations may lead to performance degradation with
PyTorch and NumPy or to code which is difficult to understand, and for TensorFlow,
there already exists the performance-optimized VEGAS+ implementation VegasFlow.

Furthermore, backends differ in their setup and their data type configuration.
TensorFlow and JAX use CUDA by default, whereas for PyTorch it needs to be enabled
explicitly, and for TensorFlow, we need to enable its NumPy behaviour6. The backends
support different ways to set the floating-point precision to 32 or 64 bit. With NumPy
and TensorFlow we cannot set a global default precision but we can pass a dtype
argument to functions which initialise a tensor, with JAX the behaviour is the other
way round by default, i.e. it is possible to change the precision globally and a dtype
argument is ignored unless JAX is configured with "jax_enable_x64", and PyTorch
supports both a global default precision and use of the dtype argument. There also
are differences in automatic type conversions; for example, when NumPy divides an
array of empty shape and float32 data type by a Python3 float, it outputs an array of
empty shape and float64 data type, while other backends and the division of arrays
with non-empty shape preserve the 32-bit precision. torchquad uses pytest tests to
validate if its code uses the expected data types.

6TensorFlow’s NumPy behaviour: https://www.tensorflow.org/guide/tf_numpy (Accessed: 2022-03-
17)

26

https://www.tensorflow.org/guide/tf_numpy

4 Results

This chapter investigates the performance of torchquad’s numerical integration and
its bottlenecks with different backends. All measurements are collected on the same
computer, which has the Ubuntu 20.04 operating system, a 24-core AMD EPYC 7402
CPU, 251.65 GiB memory, and four NVIDIA GeForce RTX 3080 GPUs, from which
all except one are blacklisted with the CUDA_VISIBLE_DEVICES environment variable.
The Python3 interpreter and its modules were installed in an Anaconda [Ana21]
environment. The versions of the interpreter and modules are Python 3.9.7, the
numerical backend versions listed in Subsection 2.2.4, and autoray 0.2.5. The
next sections explain integrand functions commonly used for the measurements,
benchmarking results for time comparisons, code profiling to investigate bottlenecks
and reasons for time differences between backends, and a validation of torchquad’s
VEGAS+ accuracy.

4.1 Example Integrands

To compare the execution times and memory requirements of a quadrature algorithm
between numerical backends, the integrand should be fast to evaluate but not too
simple. It should be fast so that we can compare the times needed to calculate the
sample points, and the final integral value from the integrand’s output while ignoring
the time required to evaluate the integrand function. However, the integrand should
not be too simple because a compilation of the whole numerical integration or lazy
execution should not optimize away interesting parts of the quadrature algorithm. For
these reasons, the following sin_prod integrand is used for most benchmarking and
profiling measurements:

sin_prod(x⃗) =
dim

∏
i=1

sin(xi) (4.1)

Another example integrand, which is denoted gaussian_peaks, consists of the sum
of 25 Gaussian functions and is therefore more expensive to evaluate. It is visualized in
Figure 4.1. This integrand uses vector operations which are common to all supported
backends, so we can use it to roughly compare how well different backends scale on
the GPU and what impact their JIT compilations have on the performance.

27

4 Results

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0

0.0
0.5
1.0
1.5
2.0
2.5

gaussian_peaks_2d

1 def gaussian(a, b, c, x):

2 off = x - b

3 length_sqr = anp.sum(off * off, axis=1)

4 return a * anp.exp(-length_sqr / (2.0 * c**2))

5

6 def integrand_gaussian_peaks(x):

7 centres, vertical_sizes, horizontal_sizes = GAUSSIAN_PEAK_PARAMS

8 result = None

9 for a, b, c in zip(vertical_sizes, centres, horizontal_sizes):

10 y = gaussian(a, anp.array(b, like=x, dtype=x.dtype), c, x)

11 if result is None:

12 result = y

13 else:

14 result = result + y

15 return result

Figure 4.1: The 2D integrand gaussian_peaks.
Left: Integrand plot.
Right: Implementation of the integrand. GAUSSIAN_PEAK_PARAMS contains
parameters for 25 Gaussian functions. The code image was generated with
Geany.

Furthermore, the vegas_peak integrand, which is defined and explained later, has
been implemented for the VEGAS+ accuracy comparison in Section 4.4.

4.2 Benchmarking

For a comparison of required quadrature times between different numerical backends,
benchmarking scripts have been implemented to measure median times with different
numbers of sample points. For PyTorch, JAX and TensorFlow the scripts have three
cases for the compilation of the quadrature code:

• uncompiled: Execute code in eager mode

• parts compiled: Separately compile the three functions for sample point
calculation, integrand evaluation, and integral calculation from the integrand
output

• all compiled: Compile the whole to-be-measured code at once

While compiled functions execute faster, a long time may be required for compilation
or recompilation; in the benchmarking scripts this time belongs to the warm-ups,
so it is excluded from the measurement results. It is possible to force a CUDA

28

4 Results

synchronisation before and after the integrand evaluation as explained later in the
profiling section; testing has shown that the results for the parts compiled case
with sin_prod integrand look very similar with and without synchronisation, which
indicates that this example integrand is complicated enough for the benchmarking
measurements. More information about function compilation can be found in
Subsection 2.2.5 and Section 3.5. Since torchquad’s composite Trapezoid and Simpson
implementations, and benchmarking results for them are very similar to Boole, the next
sections exclude measurements for these integrators. Furthermore, the VEGAS integrator
is excluded because it works only with NumPy and PyTorch, and its performance
depends on how it adapts to the integrand and user-configurable arguments for this
adaptation.

The next section explains how the script measures the median time and the following
sections describe measurement results for example integrations, parts of the quadrature
computations, different floating-point precisions, and gradient calculations.

4.2.1 Time Measurement

To measure the median time required to execute a function, the benchmarking
script uses torch.utils.benchmark for PyTorch, and for all other backends it
executes warm-ups and then timeit.Timer. The script contains code to ensure
that an asynchronous computation must be finished before measuring the time. It
converts the calculated integral result to a NumPy array when comparing integration
times; this enforces a synchronisation with all backends. When comparing only
the sample point calculation time, it uses backend-specific synchronisation. With
JAX it executes the .block_until_ready() method on tensors and with PyTorch
the torch.utils.benchmark function executes torch.cuda.synchronize() to finish
asynchronous computations. For TensorFlow, the author could not find a function for an
explicit synchronization; nonetheless, the sample point calculation time measurements
coincide with the integration time measurements. NumPy does not use the GPU and a
synchronisation is not needed. The benchmarking script is configured to successively
increase the number of evaluations and to abort as soon as the median time is above a
chosen threshold or an out of memory exception happens.

4.2.2 Example Quadrature Time Comparisons

Figure 4.2 shows quadrature time comparisons for the composite Boole and Monte
Carlo implementations. For the Boole integrator, it depicts measurement results for a 1D
and 3D version of the sin_prod integrand and the 2D gaussian_peaks integrand. For
MonteCarlo, it depicts results for a high-dimensional version of the sin_prod integrand.

29

4 Results

104 105 106 107 108 109

Number of evaluations

10 4

10 3

10 2

10 1

M
ed

ia
n

tim
e

in
 s

Compilation comparison, Boole, 3D sin_prod, float32

NumPy (CPU)
PyTorch (CUDA)
JAX (CUDA)
TensorFlow (CUDA)
uncompiled
parts compiled
all compiled

104 105 106 107 108 109

Number of evaluations

10 4

10 3

10 2

10 1

M
ed

ia
n

tim
e

in
 s

Compilation comparison, Boole, 1D sin_prod, float32

NumPy (CPU)
PyTorch (CUDA)
JAX (CUDA)
TensorFlow (CUDA)
uncompiled
parts compiled
all compiled

104 105 106 107 108 109

Number of evaluations

10 4

10 3

10 2

10 1

M
ed

ia
n

tim
e

in
 s

Compilation comparison, Boole, 2D gaussian_peaks, float32

NumPy (CPU)
PyTorch (CUDA)
JAX (CUDA)
TensorFlow (CUDA)
uncompiled
parts compiled
all compiled

104 105 106 107 108 109

Number of evaluations

10 4

10 3

10 2

10 1

M
ed

ia
n

tim
e

in
 s

Compilation comparison, MonteCarlo, 7D sin_prod, float32

NumPy (CPU)
PyTorch (CUDA)
JAX (CUDA)
TensorFlow (CUDA)
uncompiled
parts compiled
all compiled

Figure 4.2: Time comparisons between backends and compilation modes.
Top left: Boole quadrature, 3D sin_prod integrand.
Top right: Boole quadrature, 1D sin_prod integrand.
Bottom left: Boole quadrature, 2D gaussian_peaks integrand.
Bottom right: Monte Carlo quadrature, 7D sin_prod integrand

30

4 Results

The plots do not look smooth, especially for compiled JAX and TensorFlow. The reasons
for this could be the optimisation decisions made by XLA for different numbers of
evaluations, and different caching behaviour of the GPU depending on how much
memory is needed. Running the benchmarking scripts multiple times always leads
to the same small spikes in the plot. For all four plots, we can make the following
common observations:

• PyTorch, JAX and TensorFlow all parallelize well on CUDA except in the 1D
uncompiled JAX and TensorFlow cases. The times start to rise after approximately
a million sample points. The reason why 1D uncompiled JAX and TensorFlow
are comparatively slow is explained in Subsection 4.3.4.

• Uncompiled JAX and TensorFlow are the slowest cases where the GPU is utilized.
We can consider JAX’s eager mode to be especially slow since it is slower
than TensorFlow for a small number of points. Furthermore, in comparison
to eager execution with the other backends, JAX’s eager mode internally compiles
individual operations during the warm-up, which is not visible in the plots.

• The benefit of compilation often decreases for JAX, TensorFlow and PyTorch in
this order.

• For a sufficiently small number of points, the all compiled JAX case is often the
fastest.

• The benefit of compiling all at once instead of three parts separately is significantly
lower than the benefit of compiling parts instead of no compiling. This
observation depends on the integrand complexity and optimisation decisions; the
profiling section shows the performance impact between the three compilation
configurations.

The gaussian_peaks integrand is expensive to evaluate, so we may use it to generally
compare the performance of numerical backends. We may conclude that trace-
compiling of expensive functions improves the performance in general and that
compiling small parts of a program separately works as well as compiling the whole
program at once with PyTorch, while with JAX and TensorFlow it makes a significant
difference if we compile all at once or the parts separately, perhaps because these two
backends are slower in eager mode than PyTorch. In comparison to the other plots, the
plot with the gaussian_peaks integrand in Figure 4.2 shows that TensorFlow and JAX
are faster in the parts compiled case than in the all compiled case. The benchmarking
script trace-compiles the whole integrate method of the Boole class, which includes
the sample point calculation and integrand evaluation, in the all compiled case while

31

4 Results

it compiles the integrand evaluation separately in the parts compiled case, so the time
difference could be due to XLA making suboptimal optimisation decisions.

The performance differences with the Monte Carlo integrator may be caused by the
pseudo-random number generator implementations. Nonetheless, the Monte Carlo
implementation parallelizes on the GPU as well as Boole.

Table 4.1 shows concrete time values from the 3D sin_prod integrand plot for a
high number of evaluations. With eager execution, PyTorch is faster than TensorFlow
and JAX by a factor of ca. 2.6 and 3.4, and in the all compiled case TensorFlow and
JAX are faster than PyTorch by a factor of ca. 7.4 and 9.0. Other integrand functions,
dimensionality and integration rules lead to different factors as can be seen in the plot
for gaussian_peaks, for example. A comparison of concrete values for these cases is
difficult since the plot has small peaks with JAX and TensorFlow.

uncompiled parts compiled all compiled
PyTorch 21.9 - 17.1
JAX 74.8 5.3 1.9
TensorFlow 58.0 5.9 2.3

Table 4.1: Median times in ms for the 3D sin_prod integrand from Figure 4.2 for
92959677 ≈ 93 · 106 sample points. The smallest times are highlighted.

4.2.3 Time Comparisons of Quadrature Steps

torchquad’s Newton-Cotes integrators execute three steps to perform the quadrature:
grid point calculation (step1), integrand evaluation, and application of the composite
Newton-Cotes rule (step3). The first two steps are the same for Trapezoid, Simpson and
Boole. The first step calculates grid points, so its performance may be mostly impacted
by memory allocation and movement times, and the third step applies a quadrature
rule, which involves a high number of additions and multiplications, and thus may
involve more arithmetic calculations than memory manipulations. This section shows
benchmarking results for the individual execution of the first and last step. Measuring
these instead of a whole quadrature as in the previous section has the advantage that
we exclude the time to evaluate the user-provided integrand and the disadvantage that
enforcing CUDA synchronisation before and after the calculations is more difficult
to implement reliably. Figure 4.3 and Figure 4.4. depict the measurement results
for step1 and step3, respectively. We can make the following observations for these
measurements:

• JAX and TensorFlow are slow with eager execution.

32

4 Results

105 106 107 108

Number of evaluations

10 4

10 3

10 2

10 1

M
ed

ia
n

tim
e

in
 s

Compilation comparison, Boole_step1, 3D, float32

NumPy (CPU)
PyTorch (CUDA)
JAX (CUDA)
TensorFlow (CUDA)
uncompiled
compiled

105 106 107 108 109

Number of evaluations

10 4

10 3

10 2

10 1

M
ed

ia
n

tim
e

in
 s

Compilation comparison, Boole_step1, 1D, float32

105 106 107 108

Number of evaluations

10 4

10 3

10 2

10 1

M
ed

ia
n

tim
e

in
 s

Compilation comparison, Trapezoid_step1, 5D, float32

Figure 4.3: Runtime comparisons of calculate_points, the first step of Newton-Cotes
integrators, for different dimensions. The 5D case uses the composite
Trapezoid instead of Boole rule since it has fewer restrictions on the valid
number of evaluations; nonetheless, the step1 calculations are the same.

33

4 Results

105 106 107 108

Number of evaluations

10 4

10 3

10 2

10 1

M
ed

ia
n

tim
e

in
 s

Compilation comparison, Boole_step3, 3D, float32

NumPy (CPU)
PyTorch (CUDA)
JAX (CUDA)
TensorFlow (CUDA)
uncompiled
compiled

105 106 107 108

Number of evaluations

10 4

10 3

10 2

10 1

M
ed

ia
n

tim
e

in
 s

Compilation comparison, Boole_step3, 1D, float32

105 106 107 108

Number of evaluations

10 4

10 3

10 2

10 1

M
ed

ia
n

tim
e

in
 s

Compilation comparison, Boole_step3, 5D, float32

Figure 4.4: Runtime comparisons of calculate_result, the third step of Boole, for
different dimensions

34

4 Results

• For a low number of points, compiled JAX and TensorFlow have the same
overhead for all dimensions whereas PyTorch’s overhead grows with the
dimension.

• Uncompiled TensorFlow in the step1 1D case rises similarly to NumPy, which
indicates that CUDA is not fully employed.

• Uncompiled JAX in the step3 1D case rises similarly to NumPy.

• In the step1 case with many points, PyTorch has no performance gain from
compilation and is slower than compiled JAX and TensorFlow. Furthermore,
compiled JAX is slightly faster than compiled TensorFlow.

• In the step3 case with many points, PyTorch benefits from compilation and
depending on the dimensionality different backends are the fastest.

• In the step3 case with few points, PyTorch is often faster than TensorFlow.

4.2.4 Impact of Floating-Point Precisions

With different floating-point precisions, plots over the number of evaluations have
shown that for a sufficiently small number of points the precision has a negligible
overhead on the performance and for a high number of points the differences between
precisions converge to constant factors, which was visible as nearly-parallel lines in the
plots. Therefore a time comparison for a fixed high number of evaluations, which is
shown in Table 4.2, suffices to compare performances. From these values, we can infer
that JAX and TensorFlow have similar times with 16-bit and 32-bit numbers, especially
if code is compiled, and the slight performance benefit with 16-bit numbers may be
caused by smaller memory usage. On the other hand, PyTorch has a significant speedup
with 16-bit numbers. Furthermore, with 64-bit numbers all backends show larger times;
for example, in the all compiled JAX case, calculations with 64-bit precision are more
than 16 times slower. NumPy uses the CPU instead of CUDA for calculations and
therefore it does not have hardware support for 16-bit numbers. In comparison to 32-bit
numbers, times with 16-bit and 64-bit numbers are approximately 2.9 and 2.0 times
larger with NumPy.

35

4 Results

uncompiled parts compiled all compiled
float16, JAX 44.1 1.7 0.9
float16, TensorFlow 26.7 2.6 1.2
float16, PyTorch 6.0 4.7 4.7
float32, JAX 50.7 2.4 0.9
float32, TensorFlow 31.8 2.9 1.2
float32, PyTorch 10.2 7.9 7.9
float64, JAX 78.0 23.5 15.0
float64, TensorFlow 74.7 18.9 13.3
float64, PyTorch 27.1 22.6 22.6

float16 float32 float64
NumPy (fewer points) 118.0 40.8 80.6

Table 4.2: Median times in ms for different floating-point precisions with the 3D
sin_prod integrand and Boole quadrature.
Top: 42508549 ≈ 42.5 · 106 sample points with backends which use CUDA;
the times for the fastest backends for a given precision are highlighted.
Bottom: 1295029 ≈ 1.3 · 106 sample points with NumPy

4.2.5 Time Comparisons with Gradient Calculation

Figure 4.5 shows time comparisons for quadrature with and without computations
of the gradient over the integration domain for the 3D sin_prod integrand with the
composite Boole rule. The benchmarking setup is as follows:

• For the parts compiled cases, the benchmarking script compiles only the sample
point calculation, integrand evaluation and calculation of the integral from
function values, while the gradient calculation is not compiled.

• For the parts compiled and the uncompiled case, the backend-specific gradient
calculation is implemented as follows:

– With PyTorch, the gradient is calculated with the .backward() method
applied on the integral result in each measurement.

– With TensorFlow, the gradient is calculated with the tf.GradientTape()
context manager in each measurement.

– With JAX, a gradient function is calculated once with jax.grad(func) in the
first warm-up and then this returned gradient function is executed in each
measurement.

• The gradient calculation in the all compiled case is different:

36

4 Results

105 106 107 108

Number of evaluations

10 3

10 2

10 1

M
ed

ia
n

tim
e

in
 s

105 106 107 108

Number of evaluations

10 3

10 2

10 1
M

ed
ia

n
tim

e
in

 s

105 106 107 108 109

Number of evaluations

10 4

10 3

10 2

10 1

M
ed

ia
n

tim
e

in
 s

105 106 107 108 109

Number of evaluations

10 3

10 2

10 1

M
ed

ia
n

tim
e

in
 s

Gradient calculation comparison, Boole, 3D sin_prod, float32

PyTorch, gradient (CUDA)
JAX, gradient (CUDA)
TensorFlow, gradient (CUDA)
PyTorch (CUDA)
JAX (CUDA)
TensorFlow (CUDA)
uncompiled
parts compiled
all compiled

Figure 4.5: Runtime comparisons between backends with and without gradient
calculation over the integration domain. The top left subplot compares
times between backends when calculating gradients and the other subplots
compare times with and without gradient calculation separately for each
backend.

37

4 Results

– With JAX, the returned gradient function is compiled.

– With TensorFlow, the context manager is included in a function which is
compiled.

– With PyTorch, the code for numerical integration is compiled and the
.backward() call is excluded from trace compilation because compiling
it does not work.

The backend-specific benchmarking setup differences are probably the reason why the
JAX and TensorFlow times are significantly larger in the parts compiled than in the
all compiled case for small numbers of sample points. Ignoring these differences, the
gradient calculation times have many similarities to the integral calculation times shown
in Figure 4.2; for example, for sufficiently small numbers of evaluations, the slowest
and fastest cases are uncompiled and fully compiled JAX and the second slowest and
second fastest cases are uncompiled and fully compiled TensorFlow, for a high number
of evaluations compiled JAX and TensorFlow overtake PyTorch, and all three backends
parallelize well on the GPU. We can also see a difference when comparing the plots: for
a high number of evaluations, TensorFlow is slightly faster than JAX when calculating
gradients with the sin_prod integrand. Table 4.3 contains concrete measurement values
for a high number of sample points. For the given setup with gradient calculation, in
eager mode execution, PyTorch is faster than JAX and TensorFlow by a factor of ca.
3.1 and 2.3, whereas in the all compiled case, JAX and TensorFlow are faster than
PyTorch by a factor of ca. 5.1 and 6.3.

uncompiled parts compiled all compiled
PyTorch 6.2 4.7 4.7
JAX 45.1 1.5 0.5
TensorFlow 22.5 1.9 0.8
PyTorch (grad) 46.9 45.0 45.0
JAX (grad) 146.5 14.5 8.9
TensorFlow (grad) 105.6 10.7 7.2

Table 4.3: Median times in ms for the 3D sin_prod integrand from Figure 4.5 for
25153757 ≈ 25 · 106 sample points. The lowest times for each backend with
and without gradient calculation are highlighted.

With the gaussian_peaks integrand, compiled TensorFlow and JAX are approxi-
mately equally fast when calculating gradients and the parts compiled case is slower
than the all compiled case, which was different when not calculating gradients in
Figure 4.2. Furthermore, with this integrand, the gradient calculation overhead is much

38

4 Results

lower, probably because the integrand is expensive to evaluate. Otherwise, the perfor-
mance differences between backends are similar to the differences with the sin_prod
integrand. This section does not show concrete values or plots for the gaussian_peaks
integrand because of the similarity with the measurement results for the sin_prod
integrand.

4.3 Profiling

In addition to benchmarking, we can investigate how much time torchquad spends
on individual numerical operations and the memory requirements for computations.
The next sections first explain software tools to perform such investigations, and
the common configuration and setup for profiling measurements, and then describe
measurement results which show differences in execution and memory traces between
backends.

4.3.1 Profiling Tools

Available profiling tools can be classified into backend-specific tools, which are part
of the numerical backend modules, and general tools, which work for any Python3
code. PyTorch, JAX and TensorFlow have backend-specific profilers with context
managers in Python3 which can trace selected code and save the collected data for a
visualisation in TensorBoard1. The context managers are torch.profiler.profile(),
jax.profiler.trace() and tf.profiler.experimental.Profile() for the respective
backends. The interactive TensorBoard trace visualisation shows when and how long
functions are executed in the context manager’s scope over time. It additionally shows
at which time the GPU is busy with CUDA operations and where these operations
are executed asynchronously. Figure 4.6 and the following figures show cropped
screenshots of TensorBoard trace visualisations. TensorBoard can also plot the memory
usage over time, which is shown in Figure 4.10, for example. Since torchquad targets
fast quadrature on the GPU, code is not profiled with the NumPy backend. In the next
sections, these context managers are employed to investigate time and memory usage;
for completeness, the rest of this section describes other tools which are not used for
profiling in this thesis and the reasons for not choosing them.

JAX offers a function to save the current device memory profile to a file which can
be decoded by Google’s pprof tool.2 This function can be helpful to detect memory

1TensorFlow’s TensorBoard profiling guide: https://www.tensorflow.org/guide/profiler?hl=en
(Accessed: 2022-03-24)

2JAX’s Device Memory Profiling documentation: https://jax.readthedocs.io/en/latest/device_
memory_profiling.html (Accessed: 2022-03-18)

39

https://www.tensorflow.org/guide/profiler?hl=en
https://jax.readthedocs.io/en/latest/device_memory_profiling.html
https://jax.readthedocs.io/en/latest/device_memory_profiling.html

4 Results

leaks or to investigate which Python3 functions initialise large tensors, but it does not
measure the memory usage over time or the peak memory usage, so it is not suited
for our purposes. For example, executing the function after calculating the integral
provides no useful information because deallocated tensors, e.g. the sample points, are
not part of the profile.

cProfile3 is a general profiling tool. It is part of the Python3 implementation and
enables measuring how often and how long each function in Python3 code executes. It is
possible to wrap the to-be-profiled code in a context manager, print summary statistics
and visualise collected profiling information in a web browser with SnakeViz [Dav+21].
In comparison to the backend-specific profiling tools, cProfile does not generate a trace
and it does not profile CUDA functions and other low-level operations. Furthermore,
if code is fully compiled or executed asynchronously, the performance of Python3
functions does not represent the performance of parts of the quadrature algorithm.

Another general profiling tool is Memory Profiler [PG+20], which is developed by
Fabian Pedregosa and others. It adds the mprof executable, with which it is possible
to measure how much memory a program requires over time. To do this, it executes
the program and at the same time it queries the operating system for the required
host memory per thread in small fixed time intervals. The collected data can then be
visualised in a plot. Another feature of Memory Profiler is line-by-line profiling of
the memory usage in Python3 code. For our purposes this tool is unsuitable because
mprof does not measure the GPU memory usage, the backend-specific profilers also
measure and plot memory usage over time, and line-by-line profiling causes problems
with JAX’s asynchronous execution.

Other profiling tools include NVIDIA’s developer tools4. With Nsight Systems, which
offers the nsys command and uses Nsight Compute, it is possible to profile CUDA
applications. For PyTorch, nsys can be used together with PyProf5 to include additional
information in the profiling output such as executed PyTorch operations and to limit
the profiling to a certain region in the Python3 code. Since the backend-specific profilers
also show CUDA information in the trace and other TensorBoard pages, the author has
decided not to use nsys for the quadrature algorithm profiling.

3Python’s profiler documentation: https://docs.python.org/3/library/profile.html (Accessed:
2022-03-18)

4NVIDIA’s overview of its developer tools: https://developer.nvidia.com/tools-overview
(Accessed: 2022-03-17)

5PyProf user guide: https://docs.nvidia.com/deeplearning/frameworks/pyprof-user-guide/
profile.html (Accessed: 2022-03-17)

40

https://docs.python.org/3/library/profile.html
https://developer.nvidia.com/tools-overview
https://docs.nvidia.com/deeplearning/frameworks/pyprof-user-guide/profile.html
https://docs.nvidia.com/deeplearning/frameworks/pyprof-user-guide/profile.html

4 Results

4.3.2 Profiling Setup

The profiling scripts use composite Boole quadrature with a 4D sin_prod integrand,
which is defined in Section 4.1, 17850625 ≈ 18 · 106 sample points, and 32-bit
floating-point precision unless noted otherwise. To distinguish between the time
needed for the integrand evaluation and remaining quadrature-related calculations,
the scripts have explicit synchronisation between the three steps, which are sample
point calculation, integrand evaluation and integral calculation. For PyTorch this
means calling torch.cuda.synchronize() before and after integrand evaluation
and with JAX the synchronisations are implemented with .block_until_ready()
method calls on JAX tensors. TensorFlow does not have a function for explicit
synchronisation to the author’s knowledge, so the integrand evaluation cannot be
separated in the corresponding traces. In the trace visualisations, the three steps
of the Boole quadrature implementation are denoted calculate_grid (or step1),
integrand execution (synced) and calculate_result (or step3), and the whole
quadrature is implemented in Boole’s integrate method. Separating the integrand
in the trace with synchronisations does not work when the whole integrate method
is compiled. The profiling scripts additionally convert the final quadrature result to
a NumPy array to ensure that any asynchronous execution has finished before the
measurement ends, which is similar to the synchronisation for benchmarking described
in Subsection 4.2.1.

The next sections show profiling results which use the setup and tools described in
this and the previous sections.

41

4 Results

Figure 4.6: TensorBoard visualisation of collected traces with JAX and different
compilations for the previously described setup. Without compilation, there
are numerous small operations in the CUDA stream, and calculate_grid
and calculate_result are comparatively slow.
Top: Code executed in eager mode (uncompiled).
Middle: Sample point calculation, integrand evaluation, and result
computation separately compiled (parts compiled).
Bottom: Whole integrate method compiled (all compiled)

42

4 Results

Figure 4.7: TensorBoard visualisation of collected traces with TensorFlow and different
compilations for the previously described setup. Without compilation, there
are numerous small operations in the CUDA stream, and calculate_grid
and calculate_result are comparatively slow.
Top: Code executed in eager mode (uncompiled).
Middle: Sample point calculation, integrand evaluation, and result
computation separately compiled (parts compiled).
Bottom: Whole integrate method compiled (all compiled)

43

4 Results

Figure 4.8: TensorBoard visualisation of collected traces with PyTorch and different
compilations for the previously described setup. Without compilation, there
are numerous small operations in the CUDA stream.
Top: Code executed in eager mode (uncompiled).
Middle: Sample point calculation, integrand evaluation, and result
computation separately compiled (parts compiled).
Bottom: Whole integrate method compiled (all compiled)

44

4 Results

4.3.3 Execution Trace Comparisons

Figure 4.6, Figure 4.7 and Figure 4.8 show screenshots of TensorBoard trace
visualisations for JAX, TensorFlow and PyTorch. Each trace corresponds to a numerical
integration. In these pictures, the horizontal axis corresponds to the time and on the
vertical axis there are rows showing GPU utilisation information and rows for the
Python3 interpreter stack. Since the stack is depicted over time, it has a hierarchical
shape and it is visualised with an icicle plot. Where possible, asterisks were added
to highlight the rows which show the execution of the three steps mentioned in the
previous section. Except for TensorFlow, these rows show the explicit synchronisation
before and after the integrand evaluation. The duration of each numercal integration
is shown on the top of the pictures. The colours serve only as a means for a visual
distinction between the rectangles. Analogously to the benchmarking measurements,
we can distinguish between the uncompiled, parts compiled and all compiled cases.
From the visualisations we can make the following observations:

• In the uncompiled case, the program executes a high number of small operations
on the GPU, whereas in the other two cases, there are only a few operations
executed on the GPU. This may indicate that the main benefit of compilation is
due to the fusion of operations executed on the GPU. In the three trace figures this
is visible in the rows which show CUDA stream operations: There are numerous
small stripes in the uncompiled cases and big rectangles in the other cases.

• In the all compiled cases, the integrand is no longer visible in the trace.

• With JAX and TensorFlow in the uncompiled case, the integrand execution time is
negligible in comparison to the grid point calculation and final integral calculation.
This is visible as a small bright green rectangle between evaluate_grid and
calculate_result rectangles in Figure 4.6 and Figure 4.7.

• With JAX in the parts compiled case, the explicit synchronisation before and
after the integrand evaluation is visible as magenta rectangles in Figure 4.6 and
overlaps with time where the GPU is busy.

• With PyTorch, the CUDA operations (stream 7) shown in Figure 4.8 look very
similar in the parts compiled and all compiled cases although the operations
in the Python3 CPU traces differ. This similarity may be the reason why the two
compilation cases converge to similar median times in the benchmarking results.

• With PyTorch in the parts compiled case, the first step of the quadrature and the
following CUDA synchronisation require a comparatively long time. This might
indicate a performance bottleneck in the grid points calculation. In Figure 4.8,

45

4 Results

this step is visible as a green rectangle labelled step1 and a magenta one labelled
cudaDeviceSynchronize.

4.3.4 Execution Traces for 1D Integrands

With the TensorBoard trace visualisation, we can find code segments which do not or
only partly utilize the GPU for numerical operations. When an uncompiled integrate
method of a Newton-Cotes integrator is executed with TensorFlow or JAX, parts of
the calculations are executed on the CPU. Figure 4.9 shows trace visualisations with
a single-dimensional integrand. These traces reveal that TensorFlow executes the
linspace6 operation on the CPU and then copies the result to the GPU. The input
to this operation is the integration domain and its output is used for the grid point
calculation. To investigate the missing GPU utilisation further, device placement
logging has been enabled with tf.debugging.set_log_device_placement(True). The
generated logs mention that all operations have been executed on the GPU although
the trace and benchmarking reveal that TensorFlow has used the CPU. TensorFlow
has the context manager with tf.device("/GPU:0"):7, which allows a user to specify
that all numerical operations should be executed on the GPU. Testing has shown that
with and without this context manager, and with both 32-bit and 64-bit floating-point
precisions, TensorFlow executes the linspace operation on the CPU.

With JAX, the traces show that gather operations are executed on the CPU.
These operations probably calculate a set of indices for slicing, copy them
to the GPU and then these indices are used to apply the Boole composite
quadrature rule on the integrand function’s output. As an attempt to avoid
operations on the CPU, the integration domain has been marked as committed with
jax.device_put(integration_domain, jax.devices()[0]). If a tensor is committed
to the GPU, JAX operations which have this tensor as input produce a committed tensor
as output and fail if another input argument is committed to a different device.8 JAX
has executed the gather operations on the CPU even with data committed to the GPU
and with both 64-bit and 32-bit floating-point precisions.

With a higher dimensionality, the operations on the CPU generate an output which
is asymptotically smaller than the number of integrand evaluations, which makes these
operations negligible. The incomplete utilisation of the GPU does not happen with

6TensorFlow’s linspace operation documentation: https://www.tensorflow.org/api_docs/python/tf/
linspace (Accessed: 2022-03-18)

7TensorFlow’s tf.device context manager: https://www.tensorflow.org/api_docs/python/tf/
device (Accessed: 2022-03-19)

8JAX documentation about committed devices: https://jax.readthedocs.io/en/latest/faq.html?
highlight=device_put#controlling-data-and-computation-placement-on-devices (Accessed:
2022-03-17)

46

https://www.tensorflow.org/api_docs/python/tf/linspace
https://www.tensorflow.org/api_docs/python/tf/linspace
https://www.tensorflow.org/api_docs/python/tf/device
https://www.tensorflow.org/api_docs/python/tf/device
https://jax.readthedocs.io/en/latest/faq.html?highlight=device_put#controlling-data-and-computation-placement-on-devices
https://jax.readthedocs.io/en/latest/faq.html?highlight=device_put#controlling-data-and-computation-placement-on-devices

4 Results

Figure 4.9: TensorBoard visualisation of collected traces with TensorFlow and JAX for a
one-dimensional integrand and Composite Boole quadrature. These traces
show a low utilisation of the GPU.
Top: TensorFlow, uncompiled.
Middle: JAX, uncompiled.
Bottom: JAX, uncompiled, close-up view of the gather operation

47

4 Results

the PyTorch backend or if the quadrature is compiled. In the benchmarking section
the problem is visible in plots for one-dimensional integrands. Figure 4.3 shows that
the curve for sample point calculation with uncompiled TensorFlow and NumPy rise
similarly if the integrand is one-dimensional and Figure 4.4 analogously depicts this
behaviour for the application of the composite Boole rule with JAX. In Figure 4.2, both
uncompiled TensorFlow and uncompiled JAX rise early in the single-dimension case
because the calculation of sample points and the quadrature rule application are both
parts of the numerical integration.

4.3.5 Memory Requirement Comparisons

To investigate the memory requirement of the numerical backends, we can use
the Memory View page of the TensorBoard profiler. The GPU memory usage
over time for PyTorch is shown in Figure 4.10 for a numerical integration and
Figure 4.11 for a gradient calculation of the integration with respect to the
integration domain. In the PyTorch TensorBoard profiler plugin version used for
these plots, units of the memory are shown as MB although they are MiB.9 The
implementation of the gradient calculation for profiling is mostly similar to the
gradient calculation for benchmarking explained in Subsection 4.2.5; however, here in
the all compiled case with TensorFlow, the integrate method is compiled but the
gradient calculation with the tf.GradientTape() context manager is not, and the code
has additional CUDA synchronisations as explained in Subsection 4.3.2. Since there are
N = 17850625 four-dimensional sample points with 32-bit floating-point precision, at
least N · 4 · 4 B ≈ 272.4 MiB memory is required to perform the quadrature. From the
visualisation for PyTorch we can make three observations:

• When the whole integrate method is compiled, the peak memory usage is
544.8 MiB = 2 · 272.4 MiB. This indicates that the compiled integrate function
uses approximately two times the minimum required amount of memory for the
calculation.

• Although the parts compiled case is faster than the uncompiled case, it has the
same peak memory usage of 612.9 MiB ≈ 544.8 MiB + N · 4 MiB. The minimal
amount of memory required to save the integrand output is N · 4 MiB, so we
may assume that the peak memory is caused by the simultaneous presence of
two tensors which both contain the same sample points and one tensor with the
integrand output.

9"MB" units in PyTorch’s memory visualisations: https://github.com/pytorch/kineto/blob/
0467abc6739cf9811d6e0712253671927de44506/tb_plugin/torch_tb_profiler/utils.py#L57 (Ac-
cessed: 2022-03-17)

48

https://github.com/pytorch/kineto/blob/0467abc6739cf9811d6e0712253671927de44506/tb_plugin/torch_tb_profiler/utils.py#L57
https://github.com/pytorch/kineto/blob/0467abc6739cf9811d6e0712253671927de44506/tb_plugin/torch_tb_profiler/utils.py#L57

4 Results

Figure 4.10: TensorBoard visualisation of GPU memory usage over time for an
integration with PyTorch and different compilation configurations.
Composite Boole quadrature, 4D sin_prod integrand, 17850625 sample
points, 32-bit floating-point precision. Memory is shown in MiB, not MB.
The blue and red lines correspond to the allocated and reserved GPU
memory at each point in time.
Top: Code executed in eager mode (uncompiled).
Middle: Sample point calculation, integrand evaluation, and result
computation separately compiled (parts compiled).
Bottom: Whole integrate method compiled (all compiled)

49

4 Results

Figure 4.11: TensorBoard visualisation of GPU memory usage over time for the
calculation of the gradient of an integration over the integration domain
with PyTorch and different compilation configurations. Composite Boole
quadrature, 4D sin_prod integrand, 17850625 sample points, 32-bit floating-
point precision. Memory is shown in MiB, not MB. The blue and red lines
correspond to the allocated and reserved GPU memory at each point in
time.
Top: Code executed in eager mode (uncompiled).
Middle: Sample point calculation, integrand evaluation, and result
computation separately compiled (parts compiled).
Bottom: Whole integrate method compiled (all compiled)

50

4 Results

• With gradient calculation, all three cases use 3064.3 MiB ≈ 5 · 612.9 MiB memory,
which is approximately five times the memory requirement compared to
integration without gradient calculation.

With JAX and TensorFlow, the TensorBoard Memory profiler has not worked as
expected with compiled functions; for example, in the all compiled case with a
complicated example integrand, it has reported only approximately 1 MiB peak memory
usage. Furthermore, the interactive Memory profiler plots for these two backends show
a lot of unused space, so screenshots of them are not included in this thesis. Nonetheless,
for the uncompiled case, the TensorBoard output appears reasonable and is summarized
in Table 4.4. By comparing the measurements for numerical integration to those which
additionally include gradient calculation over the integration domain, we can see
that TensorFlow has approximately twice the number of allocations and a memory
requirement which is higher by a factor of ca. 4.3, whereas JAX has approximately the
same number of allocations and the memory requirement is higher by a factor of ca.
1.3.

Peak Memory Usage Allocations Deallocations
TensorFlow 0.67 GiB 219 219
TensorFlow (grad) 2.92 GiB 444 444
JAX 1.06 GiB 511 489
JAX (grad) 1.36 GiB 548 452

Table 4.4: Peak memory usage, and the number of allocations and deallocations
reported by the TensorBoard Memory Viewer for JAX and TensorFlow in
the uncompiled case with and without gradient computation. Composite
Boole quadrature, 4D sin_prod integrand, 17850625 sample points, 32-bit
floating-point precision.

In addition to profiling composite Boole quadrature, we can also investigate the
memory usage of torchquad’s VEGAS+ implementation. Figure 4.12 shows PyTorch’s
memory usage over time for a VEGAS+ quadrature with 50 iterations and ca. 108

function evaluations. For an understanding of the plots, we need some implementation
details about torchquad’s VEGAS+ implementation:

• Before the 50 main iterations, VEGAS executes five warm-up iterations with a very
small number of points.

• Every iteration, VEGAS calculates sample points, evaluates the integrand on them,
and saves the integral result of this iteration. Furthermore, between iterations, it
updates the VEGASMap and VEGASStratification to adapt to the integrand.

51

4 Results

Figure 4.12: TensorBoard visualisation of GPU memory usage over time for VEGAS+
quadrature with PyTorch, 50 iterations, ca. N = 108 function evaluations
and 32-bit floating-point precision. Memory is shown in MiB, not MB. The
blue and red lines correspond to the allocated and reserved GPU memory
at each point in time. The excerpt of the plot which corresponds to the
iterations 35 to 39 is highlighed and denoted (5 iters).
Top: VEGAS+ quadrature.
Bottom: VEGAS+ quadrature with gradient calculation

52

4 Results

• Every fifth iteration, VEGAS resets previously calculated results and increases the
number of sample points per iteration, which is used in the next five iterations.
This means the final integral result is calculated from the integrals of the last five
iterations.

• For common integrands, the recommended number of iterations is smaller than
50. Nonetheless, here the number of iterations is high so that memory allocation
patterns or any memory leaks can be inferred more reliably from the plots.

With this information, we can make the following observations from the plots:

• Without gradient calculation, the memory usage goes back to approximately zero
after each iteration in the plot, and every fifth iteration the memory requirement
per iteration increases. This indicates that torchquad has no memory leak and
the sample points, which require the most memory, are released as soon as the
integral result for the current iteration is available and the VEGAS map and
stratification adaptation has finished.

• When calculating gradients, PyTorch has to remember the sample points used to
calculate the final result for the backwards pass, which explains the approximately
stair-shaped look in each group of five iterations.

• Since every fifth iteration old solutions are removed, the memory usage goes
down significantly when calculating gradients. It may not reach zero because
the VEGASStratification indirectly refers to the sample points of the previous
iteration; however, this is not a memory usage problem since these points are
released after the first iteration in a group of five iterations, which is visible in the
plot where the height of the first step of each stair is risen to the second step’s
height.

53

4 Results

103 104 105 106 107 108

Number of integrand evaluations

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

er
ro

r

VEGAS+ implementation comparison, integrand vegas_peak

4D, MonteCarlo
4D, VegasFlow
4D, gplepage
4D, torchquad

103 104 105 106 107 108

Number of integrand evaluations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Re
la

tiv
e

er
ro

r

VEGAS+ implementation comparison, integrand gaussian_peaks

2D, MonteCarlo
2D, VegasFlow
2D, gplepage
2D, torchquad

Figure 4.13: Convergence behaviour comparison between different VEGAS+ imple-
mentations for the vegas_peak and gaussian_peaks integrands. Many
VEGAS+ algorithm parameters differ between the implementations, so the
plot does not show if an implementation is better or worse than another
one. However, it shows that all VEGAS+ implementations converge faster
than Monte Carlo integration.

4.4 VEGAS+ Accuracy Comparisons

To validate that torchquad’s VEGAS+ implementation converges faster than Monte
Carlo integration for integrands where the VEGAS+ algorithm performs well, a script
has been written which integrates the vegas_peak and gaussian_peaks integrands with
different Python3 VEGAS+ implementations and Monte Carlo for various numbers of
function evaluations multiple times. The vegas_peak integrand is based on an example
function from G. Peter Lepage’s vegas tutorial10 and defined for the domain [0, 1]4:

vegas_peak(x) = e−100((2x1−1.5)2+∑4
i=2(xi−0.5)2) (4.2)

The other VEGAS+ implementations which are compared to torchquad are
VegasFlow [CC20a][CC20b], which is a VEGAS+ implementation optimized for
TensorFlow, and G. Peter Lepage’s vegas [Lep21], denoted gplepage here, which
is the original implementation of VEGAS+. MonteCarlo corresponds to torchquad’s
Monte Carlo implementation. For torchquad’s VEGAS the measurement script sets the

10G. Peter Lepage’s example integrand: https://vegas.readthedocs.io/en/latest/tutorial.html#
basic-integrals (Accessed: 2022-03-17)

54

https://vegas.readthedocs.io/en/latest/tutorial.html#basic-integrals
https://vegas.readthedocs.io/en/latest/tutorial.html#basic-integrals

4 Results

floating-point precision to 32 bit, for VegasFlow it uses the VegasFlowPlus integrator
and sets the number of iterations to seven, and for G. Peter Lepage’s vegas it executes
five iterations to adapt the VEGAS map and then seven iterations with alpha=0.1 to
calculate an integral result. Other configurations are left at their default value and differ
between the implementations. The plots in Figure 4.13 show the measurement results;
all VEGAS+ implementations converge faster than Monte Carlo for the vegas_peak and
more complicated gaussian_peaks integrands and have similar accuracies although
they are configured differently. Since the numbers of iterations, VEGAS map intervals
and stratification hypercubes, and other VEGAS+ algorithm configuration has a high
impact on the accuracy, the scatter plots do not represent the best possible accuracies for
the implementations; therefore, the plots do not show trend lines which approximate
the measurements.

55

5 Conclusion and Future Work

The previous chapter has shown that PyTorch, JAX and TensorFlow all utilize the GPU
for parallel numerical computations in torchquad. Furthermore, autoray does not lead
to performance limitations nor hinders the use of some backend-specific featues such
as automatic differentiation, compilation of numerical computations, and profiling and
debugging tools. With torchquad’s composite Boole quadrature, a high number of
integrand evaluations and a cheap three-dimensional integrand, JAX and TensorFlow
are more than seven times as fast as PyTorch when code is compiled whereas in eager
execution mode, PyTorch is more than twice as fast as the other backends.

As explained in Chapter 3 and Subsection 2.2.2, autoray wraps functions for
numerical operations. Therefore, it is possible to replace functions from PyTorch
or another single numerical backend with corresponding functions from autoray while
the numerical computations which are performed during code executions do not
change. The support for multiple numerical backends can require additional code
changes, which differ between backends and sometimes include optional features such
as support for non-default floating-point precision and function compilation. The
VEGAS+ implementation uses in-place operations and methods which change object
member variables and thus are non-pure. For PyTorch and NumPy this is not a problem.
However, in-place operations are slow or unsupported with JAX and TensorFlow in
eager execution mode and a code compilation, which does not work with non-pure
functions, is needed to achieve a reasonable performance with these backends. We
conclude that autoray can be employed for most numerical computations but the
support for multiple backends can require compromises such as avoiding features
which do not work with all targeted backends.

Future work may involve the investigation of support for more hardware in torchquad,
for example AMD GPUs, TPUs and multi-GPU setups. Furthermore, there are
numerous numerical backends in addition to the four backends considered in this
thesis, for example Dask [Das16], which enables parallelization on high performance
computing systems. Support for more backends in torchquad could be investigated;
some of these backends may already work if their API is very similar to NumPy’s API
and others may be compatible after a few code changes. Furthermore, future work
could include the addition of more features to torchquad’s quadrature algorithms, for
example support for integrands with multi-dimensional output and the possibility

56

5 Conclusion and Future Work

to reuse the VEGAS map and stratification in the VEGAS+ integrator for multiple
integrations, which may be helpful in the context of stochastic gradient descent
optimisation. Furthermore, low discrepancy sequences could be implemented as
an optional replacement for the random number generator used in the Monte Carlo
and VEGAS+ implementations, which may enable users to achieve a higher accuracy
on average for certain integrands. It is also possible to add more quadrature algorithms
to torchquad; for example, with certain integrands, a quadrature algorithm which
uses Sparse Grids could be helpful to tackle the curse of dimensionality and can be
parallelized well when using the Sparse Grid combination technique [Gar13].

57

List of Figures

2.1 VEGAS+ Map Visualisation . 4
2.2 NumPy Array Concepts . 6
2.3 Example Code for the Application of autoray 8

4.1 Gaussian Peaks Integrand . 28
4.2 Example Quadrature Time Plots . 30
4.3 step1 Newton-Cotes Time Plots . 33
4.4 step3 Boole Time Plots . 34
4.5 Median Time Plots with Gradient Calculation 37
4.6 JAX Traces . 42
4.7 TensorFlow Traces . 43
4.8 PyTorch Traces . 44
4.9 1D Traces . 47
4.10 PyTorch Memory Traces . 49
4.11 PyTorch Memory Traces with Gradient Calculation 50
4.12 VEGAS+ Memory Traces . 52
4.13 VEGAS+ Accuracy Comparisons . 54

List of Tables

4.1 Times for Example Quadrature . 32
4.2 Times for Different Floating-Point Precisions 36
4.3 Times for Example Quadrature with Gradient Calculation 38
4.4 Memory Usage Comparison . 51

58

Bibliography

[Ana21] Anaconda Inc. Anaconda Software Distribution. Version 2021.11. 2021. url:
https://anaconda.com.

[BBC61] R. Bellman, R. Bellman, and K. M. R. Collection. Adaptive Control Processes:
A Guided Tour. Princeton Legacy Library. Princeton University Press, 1961.
isbn: 9780691079011.

[Bra+18] J. Bradbury, R. Frostig, P. Hawkins, et al. JAX: composable transformations
of Python+NumPy programs. Version 0.2.5. 2018. url: http://github.com/
google/jax.

[CC20a] S. Carrazza and J. M. Cruz-Martinez. “VegasFlow: accelerating Monte Carlo
simulation across multiple hardware platforms”. In: Comput. Phys. Commun.
254 (2020). Implementation at https://github.com/N3PDF/vegasflow
(Accessed: 2022-03-17), p. 107376. doi: 10.1016/j.cpc.2020.107376.
arXiv: 2002.12921 [physics.comp-ph].

[CC20b] J. Cruz-Martinez and S. Carrazza. N3PDF/vegasflow: vegasflow v1.0.
Version v1.0. Feb. 2020. doi: 10.5281/zenodo.3691926.

[CS17] P. Chadha and T. Siddagangaiah. Performance Analysis of Accelerated Linear
Algebra Compiler for TensorFlow. May 2017. url: https://parthchadha.
github.io/xla_report.pdf.

[Das16] Dask Development Team. Dask: Library for dynamic task scheduling. 2016.
url: https://dask.org.

[Dav+21] M. Davis et al. SnakeViz, an in-browser Python profile viewer. Version 2.1.0.
2021. url: https://jiffyclub.github.io/snakeviz.

[Gar13] J. Garcke. “Sparse Grids in a Nutshell”. In: Sparse grids and applications.
Ed. by J. Garcke and M. Griebel. Vol. 88. Lecture Notes in Computational
Science and Engineering. extended version with python code https://
ins.uni-bonn.de/media/public/publication-media/sparse_grids_
nutshell_code.pdf. Springer, 2013, pp. 57–80. doi: 10.1007/978-3-642-
31703-3_3.

[Goo] Google. XLA: Optimizing Compiler for Machine Learning. url: https://www.
tensorflow.org/xla?hl=en.

59

https://anaconda.com
http://github.com/google/jax
http://github.com/google/jax
https://github.com/N3PDF/vegasflow
https://doi.org/10.1016/j.cpc.2020.107376
https://arxiv.org/abs/2002.12921
https://doi.org/10.5281/zenodo.3691926
https://parthchadha.github.io/xla_report.pdf
https://parthchadha.github.io/xla_report.pdf
https://dask.org
https://jiffyclub.github.io/snakeviz
https://ins.uni-bonn.de/media/public/publication-media/sparse_grids_nutshell_code.pdf
https://ins.uni-bonn.de/media/public/publication-media/sparse_grids_nutshell_code.pdf
https://ins.uni-bonn.de/media/public/publication-media/sparse_grids_nutshell_code.pdf
https://doi.org/10.1007/978-3-642-31703-3_3
https://doi.org/10.1007/978-3-642-31703-3_3
https://www.tensorflow.org/xla?hl=en
https://www.tensorflow.org/xla?hl=en

Bibliography

[Gra+] J. Gray et al. A lightweight python AUTOmatic-arRAY library. Version 0.2.5.
url: https://github.com/jcmgray/autoray.

[GTM21] P. Gómez, H. H. Toftevaag, and G. Meoni. “torchquad: Numerical
Integration in Arbitrary Dimensions with PyTorch”. In: J. Open Source
Softw. 6 (2021), p. 3439. url: https://joss.theoj.org/papers/10.21105/
joss.03439.

[Har+20] C. R. Harris, K. J. Millman, S. J. van der Walt, et al. “Array programming
with NumPy”. In: Nature 585.7825 (Sept. 2020), pp. 357–362. doi: 10.1038/
s41586-020-2649-2.

[He19] H. He. The State of Machine Learning Frameworks in 2019. (Accessed: 2022-
03-18). 2019. url: https://thegradient.pub/state-of-ml-frameworks-
2019-pytorch-dominates-research-tensorflow-dominates-industry.

[Hee+20] J. Heek, A. Levskaya, A. Oliver, et al. Flax: A neural network library and
ecosystem for JAX. Version 0.4.1. 2020. url: http://github.com/google/
flax.

[Hen+20] T. Hennigan, T. Cai, T. Norman, and I. Babuschkin. Haiku: Sonnet for JAX.
Version 0.0.3. 2020. url: http://github.com/deepmind/dm-haiku.

[Jou+17] N. P. Jouppi, C. Young, N. Patil, et al. “In-Datacenter Performance Analysis
of a Tensor Processing Unit”. In: SIGARCH Comput. Archit. News 45.2 (June
2017), pp. 1–12. issn: 0163-5964. doi: 10.1145/3140659.3080246.

[KDH11] K. Karimi, N. G. Dickson, and F. Hamze. A Performance Comparison of
CUDA and OpenCL. 2011. arXiv: 1005.2581 [cs.PF].

[Kre+21] H. Krekel, B. Oliveira, R. Pfannschmidt, F. Bruynooghe, B. Laugher, and
F. Bruhin. pytest. Version 6.2.5. 2021. url: https://pytest.org.

[Lep21] G. P. Lepage. “Adaptive Multidimensional Integration: VEGAS Enhanced”.
In: Journal of Computational Physics 439 (Aug. 2021). Implementation at
https://github.com/gplepage/vegas (Accessed: 2022-03-17), p. 110386.
issn: 0021-9991. doi: 10.1016/j.jcp.2021.110386.

[LP19] E. Lind and Ä. Pantigoso. “A performance comparison between CPU and
GPU in TensorFlow”. In: (June 2019). url: http://urn.kb.se/resolve?
urn=urn:nbn:se:kth:diva-260240.

[Mar+15] Martín Abadi, Ashish Agarwal, Paul Barham, et al. TensorFlow: Large-
Scale Machine Learning on Heterogeneous Systems. Software available from
tensorflow.org. 2015. url: https://www.tensorflow.org.

60

https://github.com/jcmgray/autoray
https://joss.theoj.org/papers/10.21105/joss.03439
https://joss.theoj.org/papers/10.21105/joss.03439
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry
https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry
http://github.com/google/flax
http://github.com/google/flax
http://github.com/deepmind/dm-haiku
https://doi.org/10.1145/3140659.3080246
https://arxiv.org/abs/1005.2581
https://pytest.org
https://github.com/gplepage/vegas
https://doi.org/10.1016/j.jcp.2021.110386
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260240
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260240
https://www.tensorflow.org

Bibliography

[MDA15] D. Maclaurin, D. Duvenaud, and R. P. Adams. “Autograd: Effortless
gradients in numpy”. In: ICML 2015 AutoML Workshop. Vol. 238. 2015,
p. 5.

[Mem+17] Z. Memon, F. Samad, Z. Awan, A. Aziz, and S. Siddiqi. “CPU-GPU
Processing”. In: International Journal of Computer Science and Network Security
17 (Sept. 2017), pp. 188–193.

[NSW18] D. H. Noronha, B. Salehpour, and S. J. E. Wilton. LeFlow: Enabling Flexible
FPGA High-Level Synthesis of Tensorflow Deep Neural Networks. July 2018.
arXiv: 1807.05317 [cs.LG].

[Obe+21] M. Obersteiner et al. sparseSpACE - the Sparse Grid Spatially Adaptive
Combination Environment. 2021. url: https://github.com/obersteiner/
sparseSpACE.

[Pas+19] A. Paszke, S. Gross, F. Massa, et al. “PyTorch: An Imperative Style, High-
Performance Deep Learning Library”. In: NeurIPS. 2019.

[PG+20] F. Pedregosa, P. Gervais, et al. Memory Profiler, Monitor Memory usage
of Python code. Version 0.58.0. 2020. url: https : / / github . com /
pythonprofilers/memory_profiler.

[Poe21] PoetsAI. Elegy: A High Level API for Deep Learning in JAX. Version 0.8.1.
2021. url: https://github.com/poets-ai/elegy.

[Qua21] Quansight Labs. unumpy - NumPy, but implementation-independent. 2021.
url: https://github.com/Quansight-Labs/unumpy.

[Sch+21] N. Schlömer, N. Papior, D. Arnold, J. Blechta, and R. Zetter. quadpy,
numerical integration (quadrature, cubature) in Python. Sept. 2021. doi: 10.
5281/zenodo.5541216. url: https://github.com/nschloe/quadpy.

[Suh+21] A. Suhan, D. Libenzi, A. Zhang, et al. LazyTensor: combining eager execution
with domain-specific compilers. 2021. arXiv: 2102.13267 [cs.PL].

[SVK20] P. Subramani, N. Vadivelu, and G. Kamath. “Enabling Fast Differentially
Private SGD via Just-in-Time Compilation and Vectorization”. In: arXiv
preprint arXiv:2010.09063 (2020).

[Wu20] Y. Wu. C++ Implementation of veGAs/veGAs+ algoRithm (CIGAR) for multi-
dimension Integral. 2020. url: https://github.com/ycwu1030/CIGAR.

61

https://arxiv.org/abs/1807.05317
https://github.com/obersteiner/sparseSpACE
https://github.com/obersteiner/sparseSpACE
https://github.com/pythonprofilers/memory_profiler
https://github.com/pythonprofilers/memory_profiler
https://github.com/poets-ai/elegy
https://github.com/Quansight-Labs/unumpy
https://doi.org/10.5281/zenodo.5541216
https://doi.org/10.5281/zenodo.5541216
https://github.com/nschloe/quadpy
https://arxiv.org/abs/2102.13267
https://github.com/ycwu1030/CIGAR

	Abstract
	Contents
	Introduction
	Background
	Quadrature Algorithms
	Numerical Python3 Modules
	Common Numerical Operations
	The autoray Module
	Numerical Backend Implementation Techniques
	Supported Numerical Backends
	Available Compilation Methods

	Hardware Acceleration
	Related Work

	Implementation
	torchquad's Code Structure
	Common Code Rewriting Steps
	Random Number Generation
	Special Numerical Operations
	Cartesian Tensor Product
	Addition at Indices

	Compiled Functions in torchquad
	Limitations

	Results
	Example Integrands
	Benchmarking
	Time Measurement
	Example Quadrature Time Comparisons
	Time Comparisons of Quadrature Steps
	Impact of Floating-Point Precisions
	Time Comparisons with Gradient Calculation

	Profiling
	Profiling Tools
	Profiling Setup
	Execution Trace Comparisons
	Execution Traces for 1D Integrands
	Memory Requirement Comparisons

	VEGAS+ Accuracy Comparisons

	Conclusion and Future Work
	List of Figures
	List of Tables
	Bibliography

