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Abstract—5G networks have emerged as the only viable
solution to render a satisfying level of performance to different
types of services, each of them with very stringent traffic re-
quirements. One of those services are Ultra-Reliable Low-Latency
Communications (URLLC). A use case where these services are
especially sensitive are vehicular networks. Therefore, in order
to satisfy their traffic requirements, adequate resource allocation
schemes should be devised. However, the time-varying nature of
the channel conditions in wireless networks renders this process
challenging. In this paper, we consider the problem of jointly
allocating Radio Access Network (RAN) resources and computing
resources (to process the data from vehicles) such that all the
traffic requirements of individual users are met and the utility
is maximized for different types of fairness. We formulate an
optimization problem for the general case of α-fairness, explore
its characteristics, and consider in more detail the opposite sides
of fairness; the case of no fairness provided (α = 0) and the
max-min fair allocation (α → ∞). For each of these problems,
we propose polynomial-time assignment heuristics. Using data
from real traces, we show that the performance achieved with
our approaches is not more than 1% away from the optimum.

Index Terms—5G, Vehicular networks, URLLC, α-fairness.

I. INTRODUCTION

There are three service types provided by 5G networks [1]:
enhanced mobile broadband (eMBB), massive machine-type
communications (mMTC), and ultra-reliable low-latency com-
munications (URLLC). The services that are of mMTC type
require support to serve a large number of devices and low
energy consumption. Very high data rates with high spectral
efficiency are needed for eMBB. Our focus in this paper are
URLLC type of services with the focus on vehicular users.

URLLC corresponds to applications like autonomous driv-
ing, remote surgery, and remote monitoring and control [2].
Their main requirements are to deliver packets with a very
high reliability within a short time (on the order of ms), which
is quite challenging. Furthermore, besides being transmitted,
those data need to be processed as well, which complicates
handling the data even further. The challenge is even more
emphasized given the constrained network resources in the
cell, and the ever increasing number of entities competing
for those resources. The aforementioned URLLC services are
not only sensitive to abiding by those stringent requirements,
but given their nature, any failure to comply may bring a
serious risk to human lives. Hence, the paramount importance
of enabling their flawless operation.

Enabling this impeccable operation is especially challenging
in cellular networks, where the channel characteristics of
users exhibit dynamic behavior over time due to mobility and

processes like shadowing. Thus, to provide a given data rate
and the adequate amount of resources to process the data that
will satisfy those stringent requirements, a proper resource
allocation scheme has to be used on two levels: on the Radio
Access Network (RAN) side and on the analyst side (e.g.,
edge cloud) for computing. Furthermore, due to the presence
of multiple users in the cell, the operator needs to allocate
those resources in an efficient way in order to satisfy those
requirements for as many users as possible.

There are some important questions that arise related to
joint network and edge cloud resource allocation that pro-
vides fairness among the users. Firstly, what is the policy
that enables achieving different types of fairness with joint
allocation of both RAN and computing resources in the use
case of vehicular networks, while satisfying all the pertinent
traffic requirements? Secondly, how does the requirement on
the maximum allowed delay affect the overall utility?

To answer the aforementioned questions, in this paper, we
formulate an optimization problem, with which the goal is to
provide general α-fairness, after meeting the allowed maxi-
mum latency of all users, and given the constrained resources
on both the RAN and edge side. We then look in more depth
at two types of fairness, and propose polynomial-time algo-
rithms which provide near-optimal results. The assumptions
we make in this work are very realistic, like assuming a
user experiences different channel gains over different channel
resources (blocks), irrespective on how close they are in the
frequency dimension. The results we provide in this paper
are particularly important for the network operator, as they
indicate how resources should be allocated to increase the total
utility, while providing certain types of fairness, and also to
get an idea on the inter-play of the assignment of different
types of resources so that the delay guarantee is met. The main
message of this paper is that the overall utility depends on the
delay constraint for the no fairness case, while it depends on
the number of users for the max-min fairness. Specifically, our
principal contributions are:

• We formulate the problem of joint allocation of network
and edge computing resources as a Network Utility Max-
imization (NUM) problem and solve the integer-relaxed
version for general α.

• As the original problem is NP-hard, we propose
polynomial-time algorithms for α = 0 and α → ∞ that
provide near-optimal performance.

• We evaluate our approach using real data from measure-
ments and provide some interesting engineering insights.
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The remainder of this work is organized as follows. In
Section II we discuss some related work. This is followed
by the system model and problem formulation in Section III.
In Section IV, we provide the analysis, whereas in Section V
approximation algorithms for the two extremes of fairness are
proposed. We evaluate the performance in Section VI. Finally,
Section VII concludes this work.

II. RELATED WORK

In [3], the authors consider the network slicing process for
the three types of services in 5G to determine the optimal
amount of slices for each service type in order to satisfy
service requirements. However, it is not mentioned what is the
required data rate that needs to be provided to URLLC users
to satisfy their latency requirement. A paper concerned with
the uplink of URLLC is [4]. However, the objective in [4] is
not to increase the utility, nor to provide any type of fairness.
Moreover, the processing part is not considered either.

Further, the work in [5] considers the optimal transmission
and resource allocation for URLLC in cellular systems. The
resource allocation is derived for fixed and adaptive transmis-
sion attempt assignments. While [5] is also concerned with
reducing the required resources, the setup and the objective
are different from our work, and providing fairness is not one
of the aims. To meet the latency and reliability requirements
in 5G networks, the authors in [6] propose a periodic resource
allocation scheme. Packet sizes are constant. However, the
scope of [6] is limited as the environment is a factory, and
providing any sort of fairness is not the objective.

The problem of admission control for URLLC traffic has
previously been considered in [7], where the focus is on two
scenarios. In the first, all the users undergo homogeneous
traffic and channel conditions and the maximum number of
users that can be admitted is determined. In the second
scenario in [7], the users are characterized by heterogeneous
traffic and channel conditions, and an admission policy is
provided whether to admit a new user in the network or not. As
opposed to our work here, [7] does not optimize any function.

Another related work is [8], in which there are three
objectives, similar to our work: maximize the total throughput
in the network, provide proportional fairness, and attain max-
min fairness. However, in [8] the first goal is to provide
a given constant data rate to everyone and then reallocate
the unused resources to the users according to the respective
policies that lead to the aforementioned objectives. There are
some important differences between our work and [8] though.
While our setup is related to URLLC traffic, the target of [8]
are users with eMBB traffic. Satisfying the requirements of
URLLC users is more challenging.

Finally, the authors of [9] analyze different questions on
URLLC RAN resource allocation. While they define an op-
timization problem where the sum over users satisfying their
Service-Level-Agreement (SLA) is maximized, they do not
provide a solution to the problem but just an analysis of its
NP-hardness. Additionally, they cover the problem of deciding
whether a given set of users can be scheduled such that their

SLA is fulfilled. They provide a feasible resource allocation in
polynomial time. However, the given solution is not optimal
and per-block rates are either zero or a fixed number, which
is a simplified approach compared to our assumptions.

III. PROBLEM FORMULATION

A. System Model

The possibility of network slicing in 5G [10] enables
assigning dedicated network resources to the same type of
service, e.g., users with URLLC type of traffic that have the
same reliability and latency requirements and are located in
the area covered by the same gNodeB. Throughout this paper,
we assume that the users of interest in the cell belong to the
same use case, and hence require the same service quality. 5G
uses Physical Resource Blocks (PRBs) as the unit of allocation
on a per-slot basis, where slots are grouped into frames with
a length of 10 ms. The number of slots per frame depends on
the subcarrier spacing [11].

We consider vehicular users within the coverage area of
a 5G macro base station (gNodeB) in the sub-6 GHz band
(Fig. 1). The focus is on the uplink and the processing is done
at the edge (which we assume is collocated with the Base
Station (BS)). The system consists of a single BS, multiple
vehicular users, and edge computing resources. There are N
users simultaneously requesting a service by sending a packet
to the BS, where the sent information is processed. To enable
the communication, there are K PRBs available in the RAN.
Additionally, L edge computing resources are available for the
receiving entity to process the information.

Channel conditions vary from one frame to another. Users
experience different channel conditions, i.e., different Channel
Quality Indicator (CQI) values, across different PRBs even
within the same frame. There are 15 possible values of the
CQI [11]. Because of the user’s mobility and the time-varying
nature of the channels, the per-PRB CQI (which is a func-
tion of Signal-to-Interference-Plus-Noise-Ratio (SINR)) also
changes from one frame to another, whose value depending on
the Modulation and Coding Scheme (MCS) used sets the per-
PRB rate per frame. Hence, scheduling has to be performed
across two dimensions, time and frequency. Since the focus is
on URLLC traffic, the procedure of sending and processing
the information must be executed within a maximum time of
Tmax.1 Therefore, at least one PRB and one edge computing
resource must be assigned to every user, as otherwise the
delay constraint cannot be fulfilled. A PRB and also each edge
computing resource can only be allocated to one user and can
either be fully allocated or unassigned.

Packet size: We assume that the packet sizes, ∆, are
fixed [12]. This is reasonable as we are considering services
in which the data are organized in small packets [12].

Packet generation: Packets are generated periodically on a
per frame basis.

1While the requirement for ultra-high reliability for this type of traffic
translates into transmitting more than 99% of the packets successfully within
the maximum latency, here we are even more conservative and require that
all the packets have to be transmitted and processed within the deadline.
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Fig. 1. Illustration of the system model.

B. Optimization Problem Formulation

In this paper, the goal is to maximize the utility over all
users after satisfying their traffic requirements, taking into
account the constrained RAN and computing resources. We
focus on the general case of guaranteeing α-fairness, in the
same spirit as the NUM approach [13]. We have the following
optimization formulation:

max
I,m

N∑
i=1

fα
i (Ii,mi) (1a)

s.t.
∆

γi
+

∆

mip
≤ Tmax, ∀i, (1b)

N∑
i=1

mi ≤ L, (1c)

N∑
i=1

Iij ≤ 1, ∀j, (1d)

K∑
j=1

Iij ≥ 1, ∀i, (1e)

Iij ∈ {0, 1}, ∀i, j, (1f)
mi ∈ N \ {0}, ∀i, (1g)

where

fα
i (Ii,mi) =

=

{
1

1−α

(
(γi)

1−α
+ (mip)

1−α
)
, α ̸= 1

log (γi) + log (mip) , α = 1
, (2)

and γi denotes
∑K

j=1 IijΦij . In the problem formulation, the
decision variable I = {Iij} denotes the N×K PRB allocation
matrix in a given frame. Namely, if Iij = 1, then PRB j is
assigned to user i in that frame. The N×K matrix Φ = {Φij}
contains the data rates user i would experience when being
allocated PRB j. It is derived from the CQI values that are
reported for the users. The decision variable m = {mi} is
an N × 1 vector consisting of the number of allocated edge
computing resources per user i. The amount of data sent by
each user at a time is ∆. Lastly, the parameter p denotes the
processing rate that one edge computing resource can provide.

The objective (1a) maximizes the utility for general α ∈
[0,∞). Note that α = 0 corresponds to the case of no-fairness,
whereas α → ∞ describes the max-min fairness. Apparently,

as there are two types of resources to be allocated, they both
affect the value of utility gained. In (2), the first term (both for
α ̸= 1 and α = 1) corresponds to the utility from assigning
RAN resources to user i, while the second term denotes the
utility after allocating a number of computing resources.

Constraint (1b) describes the maximum tolerable latency
for every user. The finite amount of computing resources is
captured by (1c). Constraint (1d) merely states that every block
can be assigned to at most one user, whereas (1e) stipulates
that every user needs to receive at least one PRB. Finally, (1f)
and (1g) describe the integer nature of the decision variables,
where the latter constraint includes the minimum number of
one computing resource that must be assigned to every user.

IV. ANALYSIS

The structure of the optimization problem described pre-
viously belongs to the class of Integer Nonlinear Programs,
which are generally known to be NP-hard [14]. Therefore, we
need some heuristics to obtain a solution to the aforementioned
optimization problem.

The approach we propose in this work consists of two
steps. First, we relax the requirement on the decision variables
to be integer and show that under those circumstances the
transformed optimization problem is convex and solvable in
polynomial time. Then, in Section V, we describe the second
step of the method, which shows how to obtain the integer
solutions using special algorithms.

We proceed with the first step, showing the convex nature
of the problem (1), when Iij ∈ [0, 1] and mi ∈ [1,∞). As the
constraints (1c)-(1g) are linear, they are obviously convex. To
show that the objective function is concave, it must be shown
that the function fα

i (Ii,mi) is concave, as the sum of concave
functions is a concave function itself. We have:

Lemma 1. The function fα
i (Ii,mi) is concave.

Proof. The gradient of fα
i (Ii,mi) for α ̸= 1 is

∇fα
i (Ii,mi) =

[
Φi1γ

−α
i . . . ΦiKγ−α

i p(mip)
−α
]T

.

Then, the Hessian matrix of fα
i (Ii,mi) for α ̸= 1 is

∇2fα
i (Ii,mi) =

= −αγ−α−1
i


Φ2

i1 . . . Φi1ΦiK 0
...

. . .
...

...
ΦiKΦi1 . . . Φ2

iK 0

0 . . . 0 p2(mip)
−α−1

γ−α−1
i

 .

The characteristic polynomial of ∇2fα
i (Ii,mi) for α ̸= 1 is

det(∇2fα
i (Ii,mi)− λI) =

= (−1)K−1λK−1
(
αp2(mip)

−α−1 + λ
)
∗(

αγ−α−1
i Φ2

i1 + · · ·+ αγ−α−1
i Φ2

iK + λ
)
,

where I denotes the identity matrix in the correspond-
ing dimension and λ are the eigenvalues of the Hessian
∇2fα

i (Ii,mi) for α ̸= 1, which can easily be found to be

λ1, ..., λK−1 = 0,
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λK = −αγ−α−1
i

(
Φ2

i1 + · · ·+Φ2
iK

)
,

λK+1 = −αp2(mip)
−α−1.

The proof for α = 1 is omitted here, as the calculations
follow the exact same procedure as for the case α ̸= 1. Since
all eigenvalues of the Hessian ∇2fα

i (Ii,mi) (for any α) are
smaller than or equal to 0, the Hessian is negative semidefinite,
and thus the function fα

i (Ii,mi) is concave ∀α.

We proceed with exploring the nature of (1b). We have:

Lemma 2. Constraint (1b) is convex.

Proof. Let us denote the left-hand side of (1b) as

ti(Ii,mi) =
∆

K∑
j=1

IijΦij

+
∆

mip
=

∆

γi
+

∆

mip
.

The gradient of ti(Ii,mi) is

∇ti(Ii,mi) =
[
−∆Φi1

γ2
i

. . . −∆ΦiK

γ2
i

−∆
m2

ip

]T
.

Then, for the Hessian of ti(Ii,mi) we have

∇2ti(Ii,mi) =
2∆

γ3
i

∗


Φ2

i1 . . . Φi1ΦiK 0
...

. . .
...

...
ΦiKΦi1 . . . Φ2

iK 0

0 . . . 0
γ3
i

m3
ip

,

 .

Computing the determinant of ∇2ti(Ii,mi)− λI, we obtain

det(∇2ti(Ii,mi)− λI) =
= (−1)K−1λK−1

(
2∆m−3

i p−1 − λ
)
∗(

2∆γ−3
i Φ2

i1 + · · ·+ 2∆γ−3
i Φ2

iK − λ
)

.

Hence, the eigenvalues of the Hessian ∇2ti(Ii,mi) are

λ1, ..., λK−1 = 0,

λK = 2∆γ−3
i

(
Φ2

i1 + · · ·+Φ2
iK

)
,

λK+1 = 2∆m−3
i p−1.

Since all the eigenvalues of the Hessian ∇2ti(Ii,mi) are
greater than or equal to zero, the Hessian is positive semi-
definite and thus the function ti(Ii,mi) is convex.

Theorem 3. The relaxed-variable version of the optimization
problem (1) is convex.

Proof. Given Lemma 1, Lemma 2, and the fact that (1c)-(1g)
are linear proves that (1) is a convex problem.

For the purpose of proving the polynomial-time solvability
of the relaxed optimization, the problem is reformulated into
a convex optimization problem with generalized inequality
constraints in the following. For the subsequent derivations,
we define the n-dimensional quadratic cone as

Qn =

{
x ∈ Rn |x1 ≥

√
x2
2 + · · ·+ x2

n

}
,

the n-dimensional power cone parameterized by a real number
ζ ∈ [0, 1] as

Pn
ζ =

{
x ∈ Rn |xζ

1x
1−ζ
2 ≥

√
x2
3 + · · ·+ x2

n, x1, x2 ≥ 0

}
,

and the exponential cone as

Kexp =
{
x ∈ R3 |x1 ≥ x2e

x3/x2 , x1, x2 > 0
}

.

First, we write the relaxed optimization problem in epigraph
form and introduce the slack variables ski, k ∈ {1, 2}, i ∈
{1, ..., N}, so that the problem transforms into

min
g,I,m,s

g

s.t. −
N∑
i=1

hα
i (s1i, s2i, g) ≤ 0, (3a)

∆

s1i
+

∆

s2i
− Tmax ≤ 0, ∀i, (3b)

(1c), (1d), (1e),
0 ≤ Iij ≤ 1, ∀i, j, (3c)
1−mi ≤ 0, ∀i, (3d)

s1i =

K∑
j=1

IijΦij , ∀i, (3e)

s2i = mip, ∀i, (3f)

where

hα
i (s1i, s2i, g) =

{
1

1−α

(
s1−α
1i + s1−α

2i

)
+ g, α ̸= 1

log (s1i) + log (s2i) + g, α = 1
.

Next, we introduce conic reformulations for the con-
straints (3a) and (3b).

Lemma 4. The constraint (3b) can be written as(
s1i + s2i −

∆

Tmax
; s1i, s2i,

∆

Tmax

)
∈ Q4. (4)

Proof. By definition, (4) transforms into√
s21i + s22i +

∆2

T 2
max

≤ s1i + s2i −
∆

Tmax
.

Squaring both sides and subtracting everything below the
square root on both sides leads to

0 ≤ 2s1is2i − 2
∆

Tmax
(s1i + s2i),

which is easily transformed into
∆

s1i
+

∆

s2i
− Tmax ≤ 0,

by dividing by −2s1is2i, and multiplying by Tmax.

For the cases α ∈ (0, 1) and α ∈ (1,∞), we convert
constraint (3a) to the constraints (6) by setting β = 1 − α
and introducing the slack variable uki: Bringing the sum over
sβki to the right side of the inequality results in

−g ≤ 1

β

2∑
k=1

N∑
i=1

sβki, (5)

which is transformed into
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(5) =



−gβ ≤
2∑

k=1

N∑
i=1

uki,

uki ≤ sβki, ∀k, i; α ∈ (0, 1)

g |β| ≥
2∑

k=1

N∑
i=1

uki,

uki ≥ sβki, ∀k, i; α ∈ (1,∞)

.

(6a)

(6b)

(6c)

(6d)

Now, we consider the case α ∈ (0, 1), which implies that
β ∈ (0, 1).

Lemma 5. The constraint (6b) can be written as
(ski, 1;uki) ∈ P3

β . (7)

Proof. By definition, (7) is equivalent to

sβki1
1−β ≥

√
u2
ki, ski ≥ 0,

which simplifies to
sβki ≥ uki, ski ≥ 0.

The constraint ski ≥ 0 that is introduced with this reformula-
tion is fulfilled due to constraints (3c) and (3d).

Next, consider α ∈ (1,∞), which implies that β ∈
(−∞, 0).

Lemma 6. The constraint (6d) can be written as
(uki, ski; 1) ∈ P3

1/(1−β). (8)

Proof. By definition, (8) transforms into
u
1/(1−β)
ki s

−β/(1−β)
ki ≥

√
12, uki ≥ 0, ski ≥ 0,

which simplifies to
uki ≥ sβki, uki ≥ 0, ski ≥ 0,

when taking everything to the power of (1−β) and multiplying
both sides by sβki. The additional constraints uki ≥ 0 and
ski ≥ 0 that are introduced with this reformulation are met
due to the positiveness of ski implied by (3c) and (3d).

Lastly, consider the case of α = 1. In this scenario, the
constraint (3a) must be rewritten to

−g ≤
2∑

k=1

N∑
i=1

log ski, (9)

by adding the sum of the logarithms on both sides. Using again
the slack variables uki, (9) can be expressed as

−g ≤
2∑

k=1

N∑
i=1

uki, (10a)

uki ≤ log ski, ∀k, i. (10b)

Lemma 7. Constraint (10b) can be rewritten as
(ski, 1, uki) ∈ Kexp. (11)

Proof. By definition, (11) is equivalent to
ski ≥ 1 ∗ euki/1, ski > 0,

which can be written as
log ski ≥ uki, ski > 0

when taking the logarithm of both sides. The additional
constraint ski > 0 that is introduced with this reformulation
is fulfilled due to the constraints defined in (1e) and (3d).

Theorem 8. The relaxed-variable version of the optimization
problem (1) can be written as a convex optimization problem
with generalized inequality constraints.

Proof. Given Lemmas 4, 5, 6, and 7 and the fact that (3a) is
linear for α = 0 concludes the proof.

Problem (1) reads in a relaxed form, written as a convex
optimization problem with generalized inequality constraints
for any α ∈ [0,∞):

min
g,I,m,s,u

g (12a)

s.t. −
N∑
i=1

eαi (s1i, s2i, u1i, u2i, g) ≤ 0, (12b)

(1c), (1d), (1e), (3c), (3d), (3e), (3f), (4), (12c)

where

(12b) =


(3a), α = 0

(6a), (7), ∀k, i, 0 < α < 1

(10a), (11), ∀k, i, α = 1

(6c), (8), ∀k, i, α > 1

.

For the final verification of the polynomial-time solvability
of the optimization problem stated in (12), we define the
following generalized logarithms and note their degrees. More
details on the generalized logarithm can be found in Section
11.6 in [15]. The generalized logarithm for the n-dimensional
quadratic cone Qn can be designed as [15]

ΓQ(x) = log

(
x2
1 −

n∑
i=2

x2
i

)
. (13)

The degree of a generalized logarithm can be calculated as
θΓ = ∇Γ(x)Tx, cf. [15]. The degree of the function ΓQ(x) is
therefore 2. Additionally, we define the generalized logarithm
for the n-dimensional power cone Pn

ζ as

ΓP(x) = log

(
x2ζ
1 x

(2−2ζ)
2 −

n∑
i=3

x2
i

)
+

(1− ζ) log(x1) + ζ log(x2), (14)

as introduced in [16]. The degree of the function ΓP(x) is
calculated as 3. Finally, we define the generalized logarithm
for the exponential cone Kexp as [16]

ΓKexp(x) = log

(
x2 log

(
x1

x2

)
− x3

)
+log x1+log x2, (15)

and again note its degree as 3. For any linear inequality
constraint, a slack variable can be attached to the system of
equality constraints and the generalized logarithm for the slack
variable has degree 1, as the slack variable needs to be in
R+. Using these definitions of the generalized logarithms, a
logarithmic barrier function Λ(w) can be defined as
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Λ(w) = −
Z∑

c=1

Γc(w),

domΛ = {w | fc(w) ≺Kc
0, c = 1, ..., Z} ,

where Z = (3 + 2K)N + 2 + K for α = 0 and Z =
(5 + 2K)N + 2 + K for α ̸= 0. w is composed of the
vectorized matrix I as well as the vectors m, s = {ski},
and u = {uki}. Γc(w) are the generalized logarithms defined
above for each generalized inequality constraint fc(w) in
the convex optimization problem with generalized inequalities
defined in (12). This implies that the barrier method can
be applied in order to solve this optimization problem. The
subsequent complexity analysis is based on the property of
self-concordance.

Lemma 9. The logarithmic barrier function Λ(w) is self-
concordant.

Proof. The logarithmic barrier for the positive orthant defined
by the slack variables of all linear inequalities is a self-
concordant function as − log x is self-concordant and the sum
of self-concordant functions is self-concordant [15]. The log-
arithmic barriers established using the generalized logarithms
defined in (13)-(15) are self-concordant as well [16].

Lemma 10. The number of total Newton steps excluding the
initial centering step for solving (12) using the Barrier method
can be bounded by [15]

TBarrier =

⌈
log(θ̄/(t(0)ϵ))

logµ

⌉
∗(

θ̄(µ− 1− logµ)

χ
+ log2 log2(1/ϵ)

)
. (16)

Proof. Given Lemma 9 and the fact that (12a) is linear, the
function tg + Λ(w), which is the objective of the Barrier
method, is self-concordant. Additionally, given that this func-
tion is closed and the sublevel sets of the optimization problem
(12) are bounded leads to (16), cf. [15].

The parameter µ > 1 is an algorithm parameter of the
barrier method, t(0) > 0 is the initial value of the parameter
t of the barrier method, and ϵ > 0 is the specified tolerance
of the barrier method [15]. The parameter χ is a constant
that depends on the backtracking parameters introduced in
Alg. 9.2 in [15], which is used for line search in Newton’s
method. The last parameter θ̄ is the sum of the degrees of
the generalized logarithms Γc(w), which for the considered
problem is computed as

θ̄ =

{
(4 + 2K)N + 2 +K, α = 0

(10 + 2K)N + 2 +K, α ̸= 0
. (17)

Theorem 11. The complexity of the solution of the optimiza-
tion problem (12) in terms of Newton steps is

TBarrier = O (log (KN/ϵ) (KN + log2 log2 (1/ϵ))) . (18)

Proof. Using (17) plugged into (16) and simplifying this
expression leads to (18).

V. CONVERSION ALGORITHMS

In the previous section, it was shown that an optimal solu-
tion to the relaxed optimization problem can be found in poly-
nomial time. However, this solution is a continuous solution,
which violates the natural restriction that only integer fractions
of RAN and computing resources can be allocated. Therefore,
for the values of α = 0 and α → ∞, specific algorithms for the
conversion of the continuous solution to an integer resource
allocation were developed. First, the conversion algorithm for
the edge computing resource allocation is introduced, which is
used for both fairness cases. Afterwards, the algorithms for the
specific cases of α are presented. Thereby, J = {Jij} denotes
the N × K integer RAN allocation matrix and n = {ni} is
the N × 1 integer edge computing resource allocation vector.
I and m are their continuous equivalents.

When applying the approximation algorithms, it is assumed
that an admission control was performed before accepting
users to the network to ensure the availability of enough re-
sources. The general operating principle of the algorithms can
be explained as follows: First, the continuous edge computing
allocation is converted to an integer assignment as described in
Subsection V-A.2 Next, enough RAN resources are allocated
such that every user fulfills its latency requirement. Finally,
the remaining RAN resources are allocated with the aim of
meeting the specific fairness criterion.

A. Conversion Algorithm for Edge Computing Resources

The continuous to integer conversion of the edge computing
resource allocation is done by simple mathematical rounding.
As this procedure can lead to the assignment of more than
L edge computing resources, a limit check is conducted
after the rounding. If more than L computing resources are
allocated, then the user with a continuous allocation value
closest above ⋆.5, where ⋆ denotes an arbitrary integer, is
assigned one resource less than it would have received by strict
mathematical rounding. This is done until L edge computing
resources are allocated. Similarly, if less than L resources
are allocated, the users closest below ⋆.5 will receive one
more resource until L resources are assigned. The described
procedure is summarized in Alg. 1. Its complexity is O(N).

B. No Fairness

If all constraints were neglected, the case α = 0 would
lead to an allocation where each PRB j is allocated to the
user who is experiencing the highest CQI value for that PRB.
The allocation of the edge computing resources could be done
randomly, as each edge computing resource offers the same
processing rate and thus contributes in the same way to the
objective no matter to which user the resource is assigned.
However, each user’s packet must be handled within a given
time. Therefore, the edge computing resources are allocated

2Note that for solving the continuous optimization only L−N computing
resources are used. Afterwards, one “extra” resource is distributed to each
user during the conversion process, cf. Algs. 2, 3, such that the integer edge
computing resource allocation per user is at least as high as the continuous
allocation, which ensures the feasibility of the integer solution.
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Algorithm 1 Integer Edge Computing Resource Allocation
Input: N,L,m
Output: n

1: function ECRALLOC(N,L,m)
2: for all mi do
3: ni = ⌊mi + 0.5⌋
4: end for
5: Create empty lists w and z.

6: while
N∑
i=1

ni > L do

7: l = 1, k = 0
8: for i = 1 to N do
9: if i /∈ w then

10: ri = mi mod ⌊mi⌋ − 0.5
11: if 0 < ri < l then
12: l = ri, k = i
13: end if
14: end if
15: end for
16: nk = ⌊mi⌋, attach k to list w.
17: end while

18: while
N∑
i=1

ni < L do

19: a = −1, b = 0
20: for i = 1 to N do
21: if i /∈ z then
22: ri = mi mod ⌊mi⌋ − 0.5
23: if a < ri < 0 then
24: a = ri, b = i
25: end if
26: end if
27: end for
28: nb = ⌈mi⌉, attach b to list z.
29: end while
30: return n
31: end function

such that users with worse channel conditions get more edge
computing resources in order to minimize the number of
required PRB allocations for that user, as allocations of PRBs
to users with lower CQI values have a negative impact on
the maximization of the objective. Once all users are assigned
enough edge computing and RAN resources to fulfill their de-
lay constraints, the remaining PRBs are allocated to the users
experiencing the best channel conditions. Alg. 2 summarizes
the previous explanations. Its complexity is O(N +K).

C. Max-Min Fairness

When α → ∞, the pure objective is characterized as the
minimization of the sum of the reciprocals of the data and
processing rates raised to a large positive number. This mini-
mization is achieved once the data and processing rates of each
user are equal. Hence, the edge computing resources are split
evenly among the users and the PRBs are allocated such that
the difference between the users’ data rates is minimized while
maximizing the minimum data rate any user is experiencing.

Algorithm 2 Integer Resource Allocation for α = 0

Input: N,K,L,m, I,Φ
Output: n,J

1: function ALLOCA0(N,K,L,m, I,Φ)
2: n = ECRALLOC(N,L−N,m) + 1, J = 0.
3: for i = 1 to N do
4: Calculate wi =

∑K
j=1 IijΦij .

5: end for
6: Create list z with users i ordered
7: s.t. ∆/wi is decreasing.
8: while list z is non-empty do
9: for user i in list z do

10: Find argmax
j

IijΦij .

11: if ∃ more than one j maximizing IijΦij then
12: Choose randomly between those j.
13: end if
14: Alloc. PRB j to user i.
15: Update Jj and set Ij = 0.
16: Calculate delay δi using ni and Ji.
17: if δi ≤ Tmax then
18: Remove user i from list z.
19: end if
20: end for
21: end while
22: for all non-allocated PRBs k do
23: Find argmax

i
Φik.

24: Alloc. PRB k to user i and update Jk.
25: end for
26: return n, J
27: end function

This kind of allocation is also done when a delay constraint
is introduced. However, the edge computing resources and
PRBs are then allocated such that the delay constraint can be
fulfilled for all users. This implies that the differences between
the users’ data rates might increase and the minimum data
rate achieved by any user might decrease. If needed, also
the computing resources might not be split equally. Thus,
in the heuristic, after the delay constraints are fulfilled, the
remaining PRBs are assigned such that the minimum data rate
is maximized. Alg. 3 aggregates the outlined procedure. Its
computational complexity is O(N +K).

VI. PERFORMANCE EVALUATION

A. Simulation Setup

For input parameters we have used a 5G trace with data
measured in the Republic of Ireland. These traces are de-
scribed in detail in [17], and a statistical analysis is given
in [18]. The parameter of interest from the trace is the CQI
with 15 levels, which serves to determine the per-block rate
of a user in a frame. These measurements were conducted for
one user, but at different days, for different applications, and
when the user was static and moving around. To mimic the
dynamic nature of the users in the simulations, we have picked
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TABLE I
PER-PRB RATES FOR DIFFERENT CQI

CQI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R (kbps) 48 73.6 121.9 192.2 282 378 474.2 712 772.2 874.8 1063.6 1249.6 1448.4 1640.6 1778.4

Algorithm 3 Integer Resource Allocation for α → ∞
Input: N,K,L,m, I,Φ
Output: n,J

1: function ALLOCAINF(N,K,L,m, I,Φ)
2: Follow lines 2 to 21 from Alg. 2.
3: for i = 1 to N do

4: Calculate wi =
(∑K

j=1 JijΦij

)|1−α|
.

5: end for
6: Create list z with users i ordered s.t. wi is increasing.
7: for all non-allocated PRBs k do
8: Take z(1), find argmin

k

(
max

i
(Φik)− Φz(1)k

)
.

9: Allocate PRB k to user z(1) and update Jk.

10: Set wz(1) =
(∑K

j=1 Jz(1)jΦz(1)j

)|1−α|
.

11: Reorder list z with users i s.t. wi is increasing.
12: end for
13: return n, J
14: end function

only measurements where the user was moving around. The
subcarrier spacing is 30 KHz, making the PRB width 360 KHz
and a frame consisting of 20 slots [11]. The total number of
PRBs is K = 120. The corresponding data rates per CQI are
given in Table I. The number of edge computing resources is
L = 120 and the processing rate per resource is 500 kbps.
The packet size of a packet is 5 kbit. For both types of
fairness, simulation data are gathered for N = {5, 8, 10} and
for Tmax = {3, 5, 10} ms using MATLAB R2021b together
with CVX [19] and Mosek [20]. As the integer allocation
problem is NP-hard, it was not possible to obtain optimal
integer solutions satisfying our accuracy demands. Hence, we
compare our approaches to the optimal continuous solution.

B. Benchmark (Round-Robin)

The benchmark allocation against which the special approx-
imation algorithms are compared is the Round-Robin princi-
ple. This means that all users are allocated one computing
resource and one PRB in each iteration. Once a user fulfills
its delay constraint, it will not be assigned any more resources
until every user complies with its latency target. Thereafter, the
remaining computing and RAN resources are allocated one by
one to all users, until no resources are available anymore.

C. Results for No Fairness

Various measurement points for different CQI inputs are
depicted in Fig. 2 for two selected scenarios (left two fig-
ures). For a better visibility, the benchmark objective values
are only shown once. They are in the same range for the
other depicted scenario. It is observable that the heuristic

outperforms the benchmark algorithm by far. Additionally, the
solution retrieved using Alg. 2 is, independent of N and Tmax,
almost always attaining the optimal continuous solution. The
largest deviation from the heuristic solution to the optimum
was 1% among all the scenarios in 100 data points, while the
overall average deviation for α = 0 was only 0.24%. The
good performance evaluation is supported by Fig. 3, where
the average objective value from the heuristic is very close or
equal to the average optimal continuous objective value (left
three figures). The average is taken over 100 measurement
points. Another observation from Fig. 3 is that the average
objective value increases when loosening the delay constraint.
The reason for this behavior is that more PRBs can be
allocated to users experiencing the best channel conditions,
as in general a user does not need that many resources to
fulfill its delay constraint when Tmax is increased.

D. Results for Max-Min Fairness

For the max-min fairness, α = 13 was used to mimic the
behavior of α → ∞. Due to numerical reasons during the
optimization, a higher α-value could not be used. A similar
output to the no fairness case can be observed for the max-
min fairness (right two/three figures) in Figs. 2, 3. For a better
comparability, the benchmark results are again only shown
once in Fig. 2, as they are in the same range for the other
shown scenario. The benchmark is again outperformed by
the heuristic, and the heuristic solution is almost attaining
the continuous optimum (not more than 0.0617% away),
indicating that the continuous optimum is almost an integer
optimum. The average deviation of the heuristic solution from
the continuous optimum is 0.0006%. In Fig. 3 it can be
observed that the objective value is always very close to the
optimum and gets worse the higher the number of users is,
since then the resources must be split among more users and
the reciprocals of the RAN data and the edge processing rates
get larger. The benchmark averages are largely influenced by
some outliers, where few users are experiencing very bad
channel conditions (measurments 15 and 16, see Fig. 2).

VII. CONCLUSION

In this paper, we considered the problem of jointly allo-
cating RAN and computing resources to vehicular users so
that their latency requirement is met, while simultaneously
providing α-fairness. For the special cases α = 0 and α → ∞,
we provided algorithms with polynomial-time complexity and
have shown that their performance is very close to the opti-
mum, and that they considerably outperform other well-known
resource allocation algorithms. The results were obtained with
input parameters taken from real datasets. In the future, we
plan to also consider the joint allocation of downlink RAN
resources as well as the cases α = 1 and α = 2.
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Fig. 2. Objective values for different CQI inputs for selected scenarios.

Fig. 3. Average objective values for all considered scenarios.
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