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Abstract

Ultrasound imaging is a well-established imaging technique allowing for real-time
tissue imaging without exposure to ionizing radiation. The automation of ultrasound
acquisitions through medical robots is a promising technique that has been recently
explored in the scientific literature. The advantages of automatizing ultrasound
acquisitions are manyfold. Firstly, it potentially constitutes a precious aid for novice
radiologists, thus mitigating the operator dependence in ultrasound acquisition and
interpretation. Secondly, it frees the operator from the burden to manipulate the
ultrasound probe while performing surgical tasks.

Compared to other medical robots, the design and implementation of robotic-ultrasound
systems present many challenges. Manual ultrasound acquisitions and interpretation,
are complex tasks that require understanding and identification of anatomical features
in presence of noise and artifacts and different image appearances, correct mapping of
these features in an anatomical consistent fashion, and finally capability of navigating
the probe to maximize the image quality. All these skills are acquired by sonogra-
phers during their studies and careers, and all of them need to be transferred to the
robotic-ultrasound system, to enable smooth navigation of the ultrasound transducer,
maximizing the quality and information content of the acquired data.

The aim of this dissertation is to examine the challenges of robotics-ultrasound
systems. Within this work, we explore different methodologies for ultrasound image
processing and their integration within visual servoing systems for robotic navigation.
Additionally, we discuss the limitations of using limited and variable ultrasound data
for network training and we analyze potential solutions through data augmentation
are discussed.
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Zusammenfassung

Die Ultraschallbildgebung ist ein bewährtes bildgebendes Verfahren, das die Darstel-
lung von Gewebe in Echtzeit und ohne die Exposition von ionisierender Strahlung
erlaubt. Die Automatisierung von Ultraschalluntersuchungen durch Medizinroboter
ist eine neue vielversprechende Technik mit vielfältigen Vorteilen. Erstens stellt sie
eine wertvolle Hilfe für unerfahrene Radiologen dar und verringert so die Variabi-
lität zwischen Untersuchungen von verschiedenen Bedienern für die Erfassung und
Auswertung. Zweitens wird der Bediener von der Last befreit, die Ultraschallsonde
während der Durchführung chirurgischer Aufgaben manuell zu führen.

Im Vergleich zu anderen medizinischen Robotern stellen sich bei der Entwicklung und
Implementierung von Roboter-Ultraschallsystemen viele Herausforderungen. Manuel-
le Ultraschallaufnahmen und -interpretationen sind komplexe Aufgaben, die das Ver-
ständnis und die Identifizierung anatomischer Merkmale in Gegenwart von Rauschen,
Artefakten und unterschiedlichen Bilderscheinungen erfordern. Zusätzlich erfordert es
die korrekte Abbildung dieser Merkmale in einer anatomisch konsistenten Weise und
schließlich die Fähigkeit zur Navigation der Sonde um die Bildqualität zu maximie-
ren. All diese Fähigkeiten werden von Sonographen während ihrer Ausbildung und
ihrer beruflichen Laufbahn erworben und müssen auf das Roboter-Ultraschallsystem
übertragen werden, um eine reibungslose Navigation des Ultraschallwandlers zu
ermöglichen und die Qualität und den Informationsgehalt der erfassten Daten zu
maximieren.

Das Ziel dieser Dissertation ist es, die Herausforderungen von Roboter-Ultraschallsystemen
zu untersuchen. Im Rahmen dieser Arbeit untersuchen wir verschiedene Methoden
der Ultraschallbildverarbeitung und deren Integration in visuelle Servosysteme für die
Roboternavigation. Darüber hinaus werden die Limitationen der Verwendung begrenz-
ter und variabler Ultraschalldaten für das Netzwerktraining erörtert und mögliche
Lösungen durch Datenerweiterung analysiert.
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2Introduction

Ultrasound imaging is a simple, flexible, and comparatively cheap medical imaging
modality for image-based guidance and diagnostics [4], [14], [26], [31], [68], [118].
Compared to other imaging modalities such as CT and X-ray, ultrasound imaging
offers a range of advantages including flexibility, lower cost, the absence of ionizing
radiation, and dedicated rooms. However, it also presents a number of challenges,
such as the presence of noise and artifacts [1], [2] and the low signal-to-noise ratio,
which can make the data interpretation difficult. Moreover, the manual acquisition of
ultrasound data renders the acquisition procedure highly dependent on the skills of
the operator and also affects their capability to perform other tasks simultaneously,
such as surgical resection or needle injections [15], [105].

Robotics-ultrasound systems have been proposed as a way to address the operator
dependence of traditional ultrasound, improve repeatability and reduce fatigue [6].
These systems typically consist of an ultrasound probe mounted on a robotic arm,
automatically driven to acquire a target and provide real-time feedback to the robot
during a procedure. This eliminates the need for the operator to manually handle the
ultrasound probe, allowing them to focus on other tasks [6], [10], [62].

Robotic-ultrasound systems face a number of challenges. While improving the repeata-
bility of the ultrasound acquisition, such systems must also ensure patient comfort
and safety and avoid losing image quality [9]. This requires careful monitoring of the
robot-patient interactions and the implementation of a control strategy that ensures
the safety of the procedure. Additionally, the robot’s control strategy must allow for
fine-tuning of its motion based on multiple external feedback sources, such as images
and sensor data, to achieve a high-quality of the acquired data that is sufficient for
proper processing and interpretation [52], [102]. Gaining an understanding of how
to define a control strategy for the robot is not trivial. To explore potential solutions
and gain insight into this challenge, it may be helpful to examine the ways in which
expert sonographers control and coordinate their motions while performing ultra-
sound acquisitions. It is worth noting that expert sonographers do not simply follow a
predetermined trajectory when manipulating the ultrasound probe; rather, they lever-
age a variety of factors during the acquisition process, including visual information
displayed on the monitor, their variation with respect to the probe orientation and
motion, and other sensory inputs like tactile feedback [27], [36]. For instance, they
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utilize their understanding of anatomy to anticipate where certain features should
appear, using this understanding to guide probe navigation. In addition, they take
advantage of the knowledge they have acquired through experience with ultrasound
systems, such as the recognition that maintaining a perpendicular orientation to highly
reflective surfaces like bone can enhance image contrast and reduce blurriness [27].
The operator may also complement the visual feedback by utilizing techniques such as
palpation to identify specific features that may not be clearly visible on the ultrasound
data and adjust the probe accordingly [30], [58]. Finally, the operator has developed
expertise in interpreting and "reading" ultrasound data, which requires a high level of
experience and the ability to identify features irrespective of the particular scanner
and parameters utilized, patient anatomy, and the presence of noise and artifacts.

In this dissertation, we examine and discuss how the incorporation of and leveraging
physical properties present during ultrasound acquisition, in a manner similar to how
sonographers do in practice.

2.1 Motivation and Problem Statement

The main objective of this thesis is to analyze the various components and aspects
that make up a robotic ultrasound system, with a focus on ultrasound data processing
and visual servoing. In doing so, we take inspiration from the strategies used by
sonographers and we aim to identify the skills that we need to impart to our system.

To achieve this, we focus on the following key questions:

• How can we integrate visual and non-visual feedback into the robotic control
in a way that allows the robot to effectively utilize all available information
to navigate the patient’s body? In this dissertation work, we address this
question by proposing a new controller design, taking inspiration from the way
sonographers integrate tactile and visual information in order to gain robust and
reliable insights into the patient’s anatomy. Similarly, our proposed controller
exploits temporal deep learning techniques to leverage both vision and force
feedback to achieve this.

• How can we ensure that the system is generalizable, even with a limited amount
of data, and how can we address the problem of limited data in the case of ultra-
sound imaging? In this dissertation, we address the issue of data augmentation
by proposing a new technique that defines data-specific augmentations based
on the physics of the generation of ultrasound data. We further discuss the
potential of augmentation techniques that aims at more realistically increasing
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the diversity of the data and simulating the sources of variability encountered in
clinical practice.

• How can the robot learn to use and refine the anatomical prior based on the
information gathered from ultrasound acquisition, and how can we teach the
system to navigate the ultrasound probe based on image feedback in order to
maximize image quality? In this dissertation work, we address this question by
designing a new trajectory generation method, that estimates the optimal probe
orientations, ensuring both the best volume coverage and minimizing the effect
of acoustic shadowing on the compounded 3D volume.

2.2 Thesis Structure

This thesis is divided into five chapters.

Chapter 1, 2, 3: List of Authored and Co-authored Publications,
Introduction and Related Work

The first chapter presents the list of publications of the candidate, including those
utilized for the grading of this thesis as well as those not included. The second chapter
offers an introduction to the work presented, including a general overview of the area
of robotic ultrasound and a brief introduction to the open research questions that are
addressed or discussed within this manuscript.

Chapter 3: Robot Control

Chapter 3 presents a more detailed description of the more common control modes in
robotics, with a particular focus on control modes commonly used in medical imaging
and robotic ultrasound. The aim of the chapter is to provide an understanding of the
mathematical equations defining robot dynamics and how to control modes are con-
structed on top of these equations to achieve desired robot behaviors. The integration
of such control modes with visual servoing methodologies is also introduced. Finally,
the chapter discusses how visual/haptic feedback can be further exploited to refine the
robot control, and how this relates to control strategies adopted by sonographers.
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Chapter 4: Ultrasound Imaging

Chapter 4 provides an overview of ultrasound image formation, starting from the
generation and recording of ultrasound waves and proceeding to the compounding of
2D images and 3D volumes. The chapter begins by discussing the physics of ultrasound
image formation and its relationship to noise and artifacts characterizing this imaging
modality. It then introduces the challenges of training deep learning models on
ultrasound data, given the limited availability of (public) ultrasound datasets and the
wide variability of such data, and finally discusses the impact and the potential of data
augmentation as a means of addressing these limitations.

Chapter 5: Force-Ultrasound Fusion

Chapter 5 discusses visual-tactile integration for robot control, in relation to the oper-
ator’s multisensory control of the ultrasound probe. The work focuses on the specific
application of spinal injections. The chapter presents a system that aims to automati-
cally navigate the robot and identify vertebral levels, with the goal of ensuring safe
and precise lumbar injections [91]. During the robot scanning, both force and imaging
data are acquired. The method leverages the capability of ultrasound to provide
information about internal anatomy and of force sensors to provide information on
the tactile appearance of the spine anatomy. To account for the temporal nature of
both data, temporal convolutional networks are utilized to fuse the data modalities.
Compared to state-of-the-art methods, the proposed method utilizes a combination
of ultrasound and force data, which allows it to provide the robot with both visual
and tactile feedback during the scanning, while other methods rely solely on either
ultrasound or X-ray data, and do not provide tactile feedback. Secondly, the use of
deep learning for processing ultrasound data and a temporal convolutional network
for data fusion allows for improved accuracy and robustness in the identification of
vertebral levels. Overall, the proposed method has the potential to improve the preci-
sion and safety of lumbar spinal injections, while reducing the reliance on ionizing
radiation and the operator’s manual skills.

Chapter 6: Physics-Inspired Augmentation

Chapter 6 discusses the challenges of training deep learning models on ultrasound
data, given the limited availability of open datasets and the high variability of ultra-
sound data. To address these challenges, the use of data augmentation techniques
that accounts for the physical characteristics of ultrasound images is proposed and
discussed in relation to standard augmentation techniques which are instead opti-
mized for photographic images [115]. The proposed techniques include deformation,
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reverb, and signal-to-noise ratio adjustments, and are applied to US B-mode images
to improve the generalization and performance of deep neural networks. The suit-
ability of these physics-inspired data augmentation techniques for ultrasound images
is compared to more commonly used techniques, which do not reflect the physical
properties of ultrasound and can generate unrealistic images if used improperly. The
effectiveness of these techniques is evaluated for the tasks of bone classification and
segmentation on a spine ultrasound dataset. The potential applications of the pro-
posed method are manyfold, including the creation of autonomous applications such
as robotic ultrasound acquisitions.

Chapter 7: Path Optimization

Chapter 7 discusses optimization strategies to update robot trajectories in order to
maximize the quality of the ultrasound images for 3D compounding. Specifically,
it focuses on the challenges posed by the occurrence of acoustic shadowing, which
occurs in presence of tissue interface with very different acoustic impedance and can
obscure the structures beneath. This is a particular concern in diagnostic imaging or
image guidance for the heart and liver, such as radiotherapy and radiosurgery. When
these procedures are performed manually, clinicians typically identify optimal probe
positions to minimize shadowing artifacts caused by the rib cage. When it comes
to automated, robotic acquisitions, smart trajectory planning methods potentially
improve image quality while reducing ultrasound acquisition time, thus enabling its
use in new medical tasks. Chapter 7 presents a novel method for reducing the effect
of acoustic shadowing in ultrasound image acquisition and volume compoundings
through the optimization of robotic probe poses [121]. The proposed pipeline is
modular and adaptable to specific tasks, regions of interest, or imaged structures, and
does not require physician assistance, external sensors, or pre-acquired data. The
major contributions of the proposed method include the development of a modular
optimization pipeline for robotic-ultrasound acquisitions and a volume coverage
optimizer for maximizing the ultrasound coverage of the anatomy of interest. The
proposed method is evaluated against standard (i.e., perpendicular) and random
ultrasound scans in simulations, and initial results show the feasibility of translation
to real case scenarios.

Chapter 8: Conclusions and Future Directions

Chapter 8 presents the conclusion and discussion of the works presented within this
dissertation.
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3Related Work

Medical robotics is a well-established field that is experiencing significant growth and
development across a wide range of applications [10], [18], [53], [81], [99]. Medical
robots are commonly used for diagnostics and treatments, both in telerobotic mode
and as semi- or fully autonomous systems [59], [100]. Robotics-ultrasound systems
are a subset of medical robots and are mainly used for image-based diagnostics and
guidance in surgery [8], [11]. The application of robotic-ultrasound systems has been
described in the literature in various fields such as orthopedics [102], neurosurgery
[62], [91], vascular imaging [21], [39], [48], [73], [104], [112], [114], cardiac
imaging [49], as well as breast [69], [94], prostate [29], [54], and abdominal imaging
[32], [49], [94].

One of the key challenges in the development of robotics-ultrasound systems is the
design of an effective control strategy that combines a suitable force control setup with
a visual servoing methodology enabling the system to correctly interpret ultrasound
data and respond (i.e. move/act) appropriately based on this interpretation. Re-
searchers have therefore been seeking to develop techniques that enable the systems
to interpret ultrasound data and adjust their behavior accordingly, as well as ensure
the safety and comfort of the patient [9], [34], [108].

Robotic ultrasound systems typically consist of a robotic arm with an ultrasound
transducer mounted on top of it via a holder. Some systems also incorporate sensors
such as RGB-D cameras to provide visual feedback before contact with the patient’s
skin, thereby avoiding potential collisions [32], [43], [44], [56], [63], [103], [114].
The interaction between the system and the patient is a delicate matter, as the contact
between the transducer and the patient’s skin must be properly tuned to ensure both
patient comfort and proper coupling between the ultrasound probe and the skin. To
achieve this, many researchers have suggested using a force control scheme along
the z-axis of the robot [44], [48], [73], [82], [104], [112]. Force feedback can
be further utilized to receive tactile feedback, and/or to estimate the mechanical
properties of the examined tissues, thus better characterizing them [47], [57], [63],
[65], [85], [86], [104]. The control of the other degrees of freedom varies more
widely depending on the specific application. Generally, an initial trajectory or pose is
computed based on anatomical priors obtained from pre-operative MR or CT imaging,
or by anatomical landmarks previously selected by the operator [44], [49], [62],
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[94]. Once the robot has reached the predefined position, the feedback coming from
the ultrasound image is used to adjust the robot’s position. The way the image is
processed to compute a desired input robot position highly depends on the application.
Some authors propose to exploit the noise and artifacts characterizing ultrasound
imaging, to compute the control variables to navigate the robot [25], [37], [98]. As
an example, confidence maps can be used to quantify acoustic shadowing, in a way
to navigate the robot to poses where the tissues are more visible [37], [85]. In other
cases, image segmentation and/or feature extracted from the ultrasound data are used
to compute the relative displacement from a desired plane/pose, thus to compute
the necessary robot motion to reach it [23], [28], [29], [33], [39], [42], [46], [73],
[91]. Deep reinforcement learning methods have also been proposed for navigating
the robot based on input b-mode images [82], [107], [109], [112], [116]. In these
cases, the state vector is one or more b-mode data, and the reward for each action
is based on the distance gained from the target location. With the advent of deep
learning, many authors suggested using deep networks to process ultrasound images
and extract the robot control parameters [91], [96], [123]. Deep Learning methods
are also often used within robotic ultrasound systems for segmenting the acquired
ultrasound data, in a way to ease the operator in data interpretation [75], [97], [103],
[104], [123].

Deep Learning for ultrasound data segmentation, classification, and analysis has been
widely described in the literature [74], [88], [93], [120], [122]. However, training
deep learning models on ultrasound data is a challenging fact, due to different
factors: i) Ultrasound data acquisition is time-consuming, and there exists very few
openly available datasets [70]. ii) The appearance of ultrasound data largely varies
among ultrasound scanners, between patients, and depending on the acquisition
parameters and operator skills [113]. Therefore, it is challenging to train a model able
to generalize well over the whole ultrasound data distribution. iii) Data annotation
is challenging due to the already described difficulties in interpreting ultrasound
data. To overcome these problems, some authors proposed to use augmentation
techniques [76], to artificially increase the size of the ultrasound dataset [117].
Data augmentation techniques can be categorized into two main groups: synthetic
data generation and image modification. Synthetic data generation involves the use
of models such as generative adversarial networks (GANs) to generate additional
data [70], [79], [90], [95], [106], [110], [111]. However, the effectiveness of this
approach may be limited by the amount of available data for training the GAN. In
contrast, image modification involves applying classical image modifications, such as
translation, scaling, rotation, flipping, brightness variations, and noise addition, to
the existing dataset. This approach has been employed in the context of ultrasound
imaging for tasks such as bone segmentation [51], [60], [64], [67], [71], [78], [80],
[83], [87], [89], [92].
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It is worth noting that the presence of robotic arms in the system allows for the
acquired ultrasound data to also include tracking information. As a result, several
researchers have proposed combining these images into 3D data in order to create a
volumetric representation of the explored anatomy and enable 3D to 3D registration
with pre-operative data [21], [39], [43], [50], [65], [94], [103], [104], [114], [123].
The process of combining ultrasound images into 3D data, known as 3D volume
compounding, has been widely studied in both free-hand and robotic ultrasound [3].
It involves recombining the B-mode data into a volumetric representation, which
has the advantage of reducing noise and providing enhanced information from the
acquisition. Additionally, it allows for registration with other 3D data [5]. However,
ultrasound compounding can come at the cost of introducing new artifacts or enhanced
shadowed regions [17], [101].
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4Robot Control

In the context of robot control, we typically refer to strategies for controlling the
joint torque in order to achieve the desired configuration of the robot joints. To
effectively implement these strategies, it is necessary to understand the dynamics of
the robot, thus to derive its dynamics equations. This chapter presents a description
of the derivation of the dynamic equations for a robot arm manipulator with a fixed
extremity, followed by an overview of the main control strategies: position, stiffness,
impedance, and force control. In addition, the chapter covers the integration of
visual servoing into the control scheme and how sensor information can be used in
combination to gain insights into tissue anatomy.

4.1 Robot Arm Manipulators as a Dynamical
System

In order to understand the dynamics of a robot and manipulate its joints to achieve
a specific behavior, it is necessary to analyze the robot as a dynamical system. A
dynamical system can be defined as a system that changes over time and can be
represented mathematically by a set of differential equations. The derivation of these
equations is essential for analyzing the system’s behavior and its relationships with
the physical quantities involved. For instance, in the case of a point mass subjected
to a constant force F , Newton’s laws dictate that the dynamics of the system can be
described by the following differential equation:

F = ma = m
∂v

∂t
= m

∂2x

∂2t
(4.1)

where x, v, a are the point position, velocity, and acceleration, respectively, and m the
point mass. The differential equation in Equation 4.1 describes how the position of a
point mass will change over time in response to the applied force F . While robots are
not point masses and their dynamics are typically more complex, understanding the
dynamics equations governing their motion is crucial for predicting their response to
input joint forces (or torques). These equations, which uniquely describe the behavior
of the robot over time, can be derived using Lagrange mechanics. It is worth noting
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that both Newton and Lagrange mechanics can be used to derive these equations
and that the latter can be derived from the former. For further information on the
derivation of Lagrange mechanics, the reader is referred to [13].

4.1.1 Useful Definitions

Before proceeding to the derivation of the dynamic equations for a robot, it is necessary
to introduce some key concepts and definitions related to the use of Lagrange’s
mechanics.

In a multi-body system consisting of n particles, the following quantities can be
defined:

Generalized Coordinates

A set of parameters that completely specify the configuration of a physical system

Generalized Forces

Given a set of forces acting on the particles of the system, generalized forces are
defined as:

Qj =
n∑

i=1
Fi

∂ri

∂qj
for j = 1, ..., m (4.2)

where ri is the position vector of ith particle of the system, Fi the resultant of the
forces acting on the ith particle , and q1, ..., qm are the generalized coordinate for that
system.

Note: In simpler terms, generalized forces can be thought of as an extension
of the Newtonian concept of forces for multi-body systems, where it is useful to
describe the system using a set of generalized coordinates. For example, a robot
arm manipulator can be viewed as a multi-body system, and a convenient choice
of generalized coordinates is the joint angles. These angles satisfy the definition of
generalized coordinates, as knowing their values allows us to uniquely determine
the configuration of the robot. The concept of generalized forces is less intuitive,
but they can be understood as representing the component (or projection) of the
forces acting on the robot along the generalized coordinates. As an example, the
generalized forces acting on a robot manipulator might be the torques applied at
each of its joints (that is, the rotational forces applied by the joint motors) or the
torques generated by the gravitational force acting on the robot’s joints.
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Jacobian Matrix

In the context of a robot arm manipulator, what does the Jacobian matrix represent?
Consider the ith joint and let ri be the location of the link centroid in the base
coordinate system. Let the set of generalized coordinates q1, ..., qm represent the link
angles. The Jacobian matrix defines the transformation between the generalized
coordinates q1, ..., qm and the locations ri of theith robot’s links.

dri = Jidq (4.3)

where J is the Jacobian for the ith link and q = [q1, ..., qm]. We can rewrite equation
4.4 to make the Jacobian explicit as:

Ji = dri

dq
(4.4)

Furthermore, if we define both sides of the equation by dt we obtain that

ṙi = vi = Jiq̇ (4.5)

Note: In simple terms, we can say that the (k, j) element of the Jacobian quantifies
how much effect a variation in the generalized coordinate k will have on the
displacement of a joint i along the jth cartesian coordinate. In fact, for a robotic
arm with m links, where we defined the set of generalized coordinates {q1, ..., qm},
we can write

dri =


dri_x

dri_y

dri_z

 = Jiq =


∂ri_x

∂q1
...

∂ri_x

∂qm
∂ri_y

∂q1
...

∂ri_y

∂qm
∂ri_z

∂q1
...

∂ri_z

∂qm




dq1

...

dqm

 =


∂ri_x

∂q1
dq1 + .. + ∂ri_x

∂qm
dqm

∂ri_y

∂q1
dq1 + .. + ∂ri_y

∂qm
dqm

∂ri_z

∂q1
dq1 + .. + ∂ri_z

∂qm
dqm


(4.6)

4.1.2 Lagrange derivation of the Robot manipulator dynamic
equations

Let’s consider a robot manipulator system, and let’s call T and U the kinetic and
potential energy of the system, respectively. We further define a set of generalized
coordinates {q1, .., qm}, corresponding to the joint angles, and a set of generalized
forces {Q1, .., Qm}. For such a dynamic system, Lagrangian dynamic equations are
defined as:

d

dt

∂L

∂q̇j
− ∂L

∂qj
= Qj for each j = 1, ..., m. (4.7)
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where L = T − U . If we rewrite 4.7 as a function of K and U we obtain:

d

dt

∂T

∂q̇j
− d

dt

∂U

∂q̇j
− ∂T

∂qj
+ ∂U

∂qj
= Qj for each j = 1, ..., m. (4.8)

Let’s now try to derive each of these quantities (T , U and their partial derivatives).
T : The Kinetic Energy of the system
For the robot manipulator system described above, we can define the kinetic energy
for each link i as:

Ti = 1
2mivci

T vci + 1
2ωi

T Iiωi (4.9)

where mi is the mass of the ith link, vci the linear speed of the ith link centroid, ωi

the angular velocity of the ith link centroid and I the Inertia matrix of the ith link.
The total kinetic energy is defined by the sum of the kinetic energies of each link:

T =
m∑

i=1
Ti =

m∑
i=1

1
2mivci

T vci + 1
2ωi

T Iiωi (4.10)

Note: The reader might have noticed that the two terms of the above formulation
for a solid body (the link) resembles the definition of a point mass translational
and rotational kinetic energy, according to Newton’s mechanics:

T lin
i = 1

2miv
T
i vi

T rot
i = 1

2Iiωi
T ωi

(4.11)

where mi is the mass of the particle, vi its linear velocity, ωj its angular velocity
and I its moment of inertia. In fact, a rigid body can be seen as an ensemble of
points, for each of which we can define kinetic energy according to 4.11. Equation
4.9 derives from the integration of the kinetic energy (defined according to 4.11)
over all of the points constituting a solid body (as, for example, the robot ith

link). In simple terms, we can consider the formulation in 4.9 as a generalized
formula for the kinetic energy for a generic rigid body, where the linear and
angular velocities vi and ωj are referred to the body centroid, and I is an inertial
matrix which depends on the geometry of the body.

As we want to work with the set of generalized coordinates {q1, .., qm}, we now have
to refer to these quantities with respect to such coordinates:

vci = JL
j q̇

ωi = JA
j q̇

(4.12)

where JL
i is the Jacobian matrix relating the linear velocity of the ith link centroid and

the joint angles {q1, .., qm}, and JA
i is the Jacobian matrix relating the linear velocity
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of the ith link centroid and the joint angles {q1, .., qm}. Therefore, we can rewrite 4.13
as

T = 1
2

m∑
i=1

mi(JL
i q̇)T (JL

i q̇) + (JA
i q̇)T Ij(JA

i q̇) = 1
2 q̇T Hq̇ (4.13)

where H is called Multi-Body Inertial Matrix. Now, we have to compute the deriva-
tives of the kinetic energy, to substitute in Equation 4.8:

d

dt

∂T

∂q̇j
− ∂T

∂qj
− d

dt

∂U

∂q̇j
+ ∂U

∂qj
= Qj for each j = 1, ..., m. (4.14)

Which yields:

d

dt

∂T

∂q̇j
− ∂T

∂qj
= d

dt

∂

∂q̇j
(1
2 q̇T Hq̇) − ∂

∂qj
(1
2 q̇T Hq̇)

=
m∑

i=1
Hikq̈i +

m∑
i=1

( d

dt
Hik)q̇i − ∂

∂qj
(1
2

m∑
i=1

m∑
k=1

Hikq̇iq̇k)
(4.15)

In matrix form, we can rewrite equation 4.15 as

d

dt

∂T

∂q̇j
− ∂T

∂qj
= Hq̈ + q̇T Cq̇ (4.16)

(C) is a matrix that depends both on the joint position and on their velocity. C is
associated with centrifugal and Coriolis forces applied to the robot.

U : The Potential Energy of the System
If gravity is the only conservative force, then the potential energy of the system is
given by:

U = −
m∑

i=1
migrci (4.17)

As for the kinetic energy, we have to compute the derivatives of the kinetic energy, to
substitute in Equation 4.8:

d

dt

∂T

∂q̇j
− ∂T

∂qj
− d

dt

∂U

∂q̇j
+ ∂U

∂qj
= Qj for each j = 1, ..., m. (4.18)

We notice that the U does not depends on q̇j , therefore:

�
�
��d

dt

∂U

∂q̇j
+ ∂U

∂qj
= −

m∑
i=1

mig
∂rci

∂qj
for each j = 1, ..., m. (4.19)
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As ∂rci
∂qj

only depends on q, we can rewrite equation4.19 as:

d

dt

∂U

∂q̇
+ ∂U

∂q
= τg (4.20)

where the j − th component of τg is given in equation 4.19

Q: The Generalized forces
When analyzing generalized forces applied to a robotic arm, we consider both the
torques applied to the robot’s joints and the external forces applied to the robot
(usually to its end-effector). Therefore, the external generalized forces can be written
as:

Qj = τj + JT
j,..F for each j = 1, ..., m (4.21)

where τj is the torque acting on the j-th joint and JT
j,.. the jth line of the Jacobian

matrix, F the external force acting on the robot, JT
j,..F the generalized force component

due to the external force on the joint j.

Combining all the terms together, and considering them for all the m links in the
robot, we can derive the following equation

Hq̈ + q̇T Cq̇ + τg(q) = τ + JT F (4.22)

which we can write in its final, known, form as:

Hq̈ + Sq̇ + τg = τ + JT F (4.23)

We can express the same equation in cartesian coordinates as:

Hxẍ + Sxẋ + gx = J−T τ + F (4.24)

where Hx, Sx and gx can be computed by substituting JT x in the previous equa-
tions.

It is important to keep in mind that τ constitutes our control variable. That is,
regardless of the behavior we want to enforce on the robot, the only thing we can act
on are the torques applied to the joints. We can therefore rewrite equation 4.24 as:

τ = JT (Hxẍ + Sxẋ + gx − F ) (4.25)
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4.2 Control Strategies for Robot manipulators

Now that we have a clear understanding of how to describe the dynamic behavior of
a robot manipulator, let’s consider the various strategies that can be used to control
its motion in space and with respect to the surrounding environment.

One approach to controlling the motion of a robotic arm is to specify a target trajectory
q(t) and compute the desired joint velocity q̇ and accelerations q̈ by taking the first
and second derivative of the trajectory. If we can estimate the Coriolis and centrifugal
forces and the inertial matrix of the robot, we can compute the necessary torques
to follow the desired trajectory. However, if the robot is interacting with objects
in the environment, such as a wall that impedes its motion in a certain direction,
we must also consider the reaction forces generated between such objects and the
robot. More precisely, we need to understand how we want the robot to interact with
the external environment. Some common control schemes include position control,
stiffness control, impedance control, force control, and mixed force-impedance control.
Visual servoing and other sensing modalities can be further included in the control
scheme.

4.2.1 Position Control

It is important to note that pure position control is not typically achievable in real-
world situations. However, for the sake of understanding, let’s consider how pure
position control might work in the scenario described earlier, where the robot is
interacting with objects in the environment. In a pure position control scenario, the
robot would attempt to follow the target trajectories at all costs, generating as much
force as necessary to counteract the reaction forces applied by the environment. In
other words, it would "break through" the wall if necessary to achieve the desired
position.

4.2.2 Stiffness Control

In the case of stiffness control, we require the robot to behave like a pure spring (Fig.
4.1). In mathematical terms, this is equivalent to say that we enforce that the robot
effector behaves according to:

−Km(x − xd) = F (4.26)

Where F is the external force, x the measured position of the robot end-effector, xd

the desired position of the robot end-effector, Km the spring stiffness, which is set
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𝐅

𝑲𝒎

Fig. 4.1: Behavior of a robot under stiffness control, where the robot behaves as if a spring
with stiffness Km were attached to its end-effector

depending on the desired behavior. This means that in the presence of external forces
F that deviate the robot from its original trajectory, the robot will apply torques to
its joints in a way that "pushes against" the direction of the force, with an intensity
that linearly increases with the magnitude of the external force. It is worth noting
that pure position control is equivalent to a stiffness control with infinite stiffness.

While pure stiffness control offers a certain degree of freedom, its application in the
medical domain can still lead to undesirable behaviors, such as the application of
undesired forces on the patient body.

4.2.3 Impedance Control

To address the limitations of pure stiffness control, we can modify the robot model
by adding a damper in parallel with the spring, effectively treating the robot as a
mass-spring-damper system (see Figure 4.2).

𝐅

𝑲𝒎𝑴𝒎

Fig. 4.2: Behavior of a robot under impedance control, where the robot behaves as if a spring
with stiffness Km and a damper with damping coefficient Dm−m were attached to
its end-effector

The purpose of the damper is to limit the speed of the robot to the desired speed. In
the presence of sudden external forces, the robot will apply a force proportional to the
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displacement from its desired position in an attempt to return to that position, but it
will do so without sudden changes in speed, avoiding abrupt and unwanted motion.

Mm(ẍ − ẍd) + Dm(ẋ − ẋd) + Km(x − xd) = F (4.27)

Using the mass-spring-damper model described above, we can substitute the corre-
sponding equations into the general equation for the robot’s torques (equation 4.28),
resulting in:

τ =HJ−1{ẍ + J̇ q̇ + M−1
m [Dm(ẋ − ẋd) + Km(x − xd)]}

+Sq̇ + τg + JT [HxMm − I]F
(4.28)

4.2.4 Force Control

In some cases, it is important to be able to directly control the interaction forces
between the robot and the environment. In force control, the external forces are set
to a desired value:

τ = JT (Hxẍ + Sxẋ + gx − Fdesired) (4.29)

Force control is often used to control the robot in a direction where the motion is
almost zero, such as in the case of robotic ultrasound, where it is applied only in the z

direction with the assumption of negligible velocity and acceleration. Thus, equation
4.30 can be simplified to:

τ = JT (gx − Fdesired) (4.30)

This provides a reasonable force control law when the robot is stationary. However, it
is often beneficial to incorporate feedback from external force sensors to continuously
monitor and correct any deviations from the desired force due to simplifications in the
model. With the inclusion of force sensors as feedback, equation 4.30 can be rewritten
as:

τ = τg − JT (Fdesired + KfpFe + Kfi

∫
t
Fe(t)dt) (4.31)

where Fe is the difference between the desired force and the measured force, Kfp and
Kfi are constant gains.
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4.2.5 Hybrid Control

As mentioned previously, pure force control is rarely used in practice. Instead, it is
more common to use a combination of force and motion (e.g. impedance) control, as
shown in Figure 4.3. In this approach, force control is used along the axes where full
control over the applied forces is desired, while impedance control is used along the
remaining axes to control the trajectory. This hybrid control approach allows for the
desired level of control to be applied in each specific direction.

𝐅_externals

𝑲𝒎

𝑴𝒎
𝐅_desired

Fig. 4.3: Behavior of a robot under hybrid impedance -force control, where impedence control
is used along the horizontal axis while force control is used along the vertical axis.

4.3 Visual Servoing in Robotics

In the previous section, we discussed how to control the joint torques of a robot to
achieve a desired behavior, including the use of hybrid force/impedance control to
maintain a constant applied force in certain directions while allowing the robot to
move along a predefined trajectory in other degrees of freedom. However, in some
situations, such as in the case of ultrasound acquisitions, defining an offline trajectory
beforehand may not be optimal. This is because differences in the anatomy between
the time when pre-operative data was taken and the time of the acquisition, as well as
the potential for limited visibility of the anatomy due to artifacts such as shadowing,
can lead to errors in the offline trajectory. To address these issues, it is often necessary
to incorporate visual feedback into the robot control loop. This can be achieved by
processing ultrasound images to extract relevant features, using these features to
compute the desired location of the robot relative to the current one, and using the
computed displacement to update the desired position input to the controller. The
specific strategies for implementing visual servoing will vary depending on the specific
application and the organ being scanned (Fig. 4.4).
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Fig. 4.4: Schematic representation of the incorporation of visual servoing into the robot
control scheme.
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5Ultrasound Imaging

In this chapter, we will examine the fundamental concepts of ultrasound imaging,
including the definition and characteristics of ultrasound waves, their generation, and
the physical principles underlying the formation of ultrasound images. We will also
discuss the impact of noise and artifacts on ultrasound images and the challenges of
using deep learning techniques for ultrasound image processing, with a particular
focus on the issue of data augmentation.

5.0.1 Ultrasound Imaging - Image Formation Principles

Ultrasound refers to acoustic waves that have frequencies higher than 20 KHz. Acoustic
waves are defined as the propagation of variations in the density of a medium through
space and time. For example, when a violinist plays a chord on a violin, the chord
vibrates periodically, causing the surrounding air to compress and rarefy periodically.
These areas of compression and rarefaction propagate through the air, constituting an
acoustic wave (Fig. 5.1).

Fig. 5.1: Top: The areas of air compression and rarefaction produced by a sound wave.
Bottom: The sinusoidal representation of the acoustic wave, where p0 is the wave
amplitude and λ is the wavelength

From a mathematical viewpoint, we can describe the behavior of such perturbations
in space and time as:

p(t, x) = p0sin(wt + kx) (5.1)
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Where w = 2π/T is the angular frequency, k = 2π/λ is the wave number, T is the
period of the wave and lambda is the wavelength. We can derive the velocity of
propagation of the wave as

v = ∆space

∆time
= λ

T
(5.2)

As for the acoustic waves caused by the vibrations of the violin chord, ultrasound
waves are produced by mechanical vibrations that propagate through a medium as
areas of compression and rarefaction. However, unlike the acoustic waves produced
by the vibrations of a violin chord, the vibrations that generate ultrasound occur at
a much higher frequency and are induced in a class of materials called piezoelectric
materials.

Piezoelectricity
In the second half of the 19th century, the Curie brothers discovered that certain
materials could produce an electrical field when subjected to mechanical strain or
pressure: this phenomenon is called piezoelectricity. In this chapter, we will explore
the role of piezoelectricity in the creation of ultrasound images. First, we will examine
the molecular basis of piezoelectricity and how materials respond to electric fields.
We will then delve into how an electric field can be generated by and produce strain,
and how this property is utilized in the construction of ultrasound transducers. The
interested reader can refer to [16] for further information on piezoelectricity.

Behavior of Materials in an Electric Field

What happens to a solid when we place it in an electric field, that is, when it is subject
to a potential difference (Fig. 5.2)?

+ + + + + + + + +

- - - - - - - - -

ΔV

Fig. 5.2: The electrical field generated by the presence of a potential difference ∆V . Negative
charges (red circles) cannot travel towards positive charges (green circles) due to
the presence of insulating material in between them.

When a solid is placed in an electric field, a potential difference is established, which
can result in the generation of a current in metallic materials. This current can lead to
the uneven distribution of charge within the material, causing a polarization of the
material. However, for insulating materials, such as dielectrics, charges are not able
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to freely move within their structures and therefore a current is not generated when
exposed to an electric field. However, when subject to an electrical field, they are still
able to polarize. That is, due to the generation and/or alignment of their electrical
dipoles to the electric field, they undergo a separation of their positive and negative
charges. To better understand these properties, it is worth it to spend a few words on
the concept of the electrical dipole of a molecule.

An electric dipole is a system (in our case the molecule constituting the material)
where the centers of positive and negative charges are separated. In nature, there are
molecules that possess a moment of dipole even in absence of an electric field (polar
molecules) and molecules that do not (non-polar molecules) (Fig. 5.3).

+

+

+

-

- ±

+

-
+

-

-

-

+ +-

Fig. 5.3: (left) a non-polar molecule (right) a polar molecule. It can be appreciated how in
the non-polar molecule the negative and positive charge center coincides, due the
molecule geometry. The elongated geometry in the non-polar molecule causes the
centers of positive and negative charges to differ, causing a non-null dipole moment.

Similarly, dielectrics can be categorized into polar and non-polar dielectrics depending
on the nature of their constituting molecules.

Polarization in non-polar dielectrics is caused by a modification of the of the arrange-
ment of the molecule, due to the presence of an electric field, with the consequent
generation of an electric dipole which aligns with the electric field (Fig. 5.4). In polar
dielectrics, the polarization arises from the re-alignment of the existing electric dipoles
(which, in absence of an electric field, are randomly distributed) with the electric field
(Fig. 5.5).

Piezoelectric Materials

Piezoelectric materials are a category of materials that is able to polarize in presence
of a mechanical strain. Similarly to what is described for dielectrics, the polarization
following a mechanical strain is induced by the generation of a molecular dipole due to
molecules deformation (for non-polar piezoelectrics) (Fig. 5.6) or by the re-alignment
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Fig. 5.4: A non-polar dielectric in absence of an electric field. (right) A non-polar dipole
undergoing polarization due to the presence of an electric field. It can be noticed
how the presence of an electric field causes a rearrangement of the charges within
the molecule, thus the split of positive and negative charge centers and consequently
the generation of a non-null dipole moment.
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Fig. 5.5: Molecules in a dielectric cannot freely move in the solid. However, their structure
allows for minor motions as changes in their orientation align to an applied elec-
trical field. This figure shows the example of a polar dielectric, which undergoes
polarization due to the re-orientation of its electrical dipoles.

of electrical dipoles of the material induced by the mechanical deformation (Fig. 5.7).

Notably, some piezoelectric materials also show the reverse effect. That is, mechanical
deformation is induced when the solid is subject to an external electrical field. This is
called the inverse piezoelectric effect.

Ultrasound Transducers

So far, we have seen that thanks to the discovery of the Curie brothers in 1880, there
exists materials that are able to:
a. Deform when subject to an external electrical field, i.e. to an external voltage
(direct piezoelectric effect)
b. Generate an electrical field, i.e. a voltage, when subject to mechanical deformation
(inverse piezoelectric effect)
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Fig. 5.6: Polarization occurring in a polar piezoelectric material due to the application of a
mechanical strain ϵ. The polarization leads to the generation of a net electric field
within the dipole, thus of a voltage difference ∆V which can be measured at its side
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Fig. 5.7: Polarization occurring in a polar piezoelectric material due to the application of a
mechanical strain ϵ. The polarization leads to the generation of a net electric field
within the dipole, thus of a voltage difference ∆V which can be measured at its side

As we already know the relation between a vibrating object and the generation of an
acoustic wave, we can see how:
a. The application of a certain voltage at a frequency TX on a piezoelectric element
will generate a sound wave at a frequency TX.
b. An incoming ultrasound wave with a frequency RX reaching the piezoelectric
element will generate a vibration (thus a mechanical deformation) of the piezoelectric
element at a frequency RX, leading to the generation of an electrical voltage at the
extremity of the piezoelectric element.

Furthermore, we know that when an acoustic wave reaches a reflective surface, it
is reflected back. Let’s assume to have one piezoelectric transducer, placed at a
distance d from a point Pi. Both transducer and point are immersed in a medium
where sound propagates with a constant velocity v. When the transducer emits an
ultrasound wave, the propagating wave will travel in the medium until it encounters
the reflective point. Here part of the wave will be absorbed, the part will pass through
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the surface and part will be reflected. The reflected wave, which we call echo travels
back towards the piezoelectric element. When it reaches the piezoelectric element, a
mechanical deformation is induced in the element, and a voltage difference develops
at its extremities (Fig. 5.8).
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Fig. 5.8: The generation of an ultrasound wave and the generation of an echo from a point P
reached by the ultrasound wave

If we record the time at which we measure the voltage caused by the echo, we can
compute the distance between the transducer and point P as:

d = techo

2v
(5.3)

Similarly, if we look at the voltage recording at time techo, we can gather information
on the reflectiveness of the point Pi located at a distance d from the piezoelectric
element:

ri(d) = V oltage(t = 2dv) (5.4)

where ri(d) is a measure of the reflectivity of the point i located at a distance d from
the piezoelectric element.

Although this simple experiment shows the potential of using a piezoelectric transducer
to obtain spatial information, it is evident that it presents many shortcomings as we
introduce more complex scenarios. As an example, let’s imagine introducing multiple
reflective points in the scene instead of one (Fig. 5.9)

We can see that points located at the same distance from the transducer will generate
echos at the same time instant, making it impossible for the system to disentangle
echo signals coming from the different spatial locations (Fig. 5.9, left). Moreover,
if the multiple points are located at different distances from the transducer, their
contribution might cancel due to the destructive interference of the two waves. Given
these considerations, how do we make sure that what we are recording is uniquely
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Fig. 5.9: Left: generation and recording of simultaneous echoes generated from point masses
located at equal distances from the ultrasound source. Right: generation and
recording of echoes undergoing destructive interference

associated with a given point P? Firstly, we have to focus the wave propagation
along a given direction, in order to "isolate the source of the echo" and stimulate one
point at a time. There are different techniques to focus the ultrasound beam. The
most commonly used one is the electronic focusing. In electronic focusing, multiple
piezoelectric elements are activated with a delay pattern, in a way that the acoustic
waves generated by the different elements sum up in a constructive manner only in a
limited area, thus creating a focused beam. The line along which such beams travel is
called scanline (Fig. 5.10)

Fig. 5.10: The transmit delay pattern to achieve focusing (i.e. constructive interference) at a
focus point

Notice that in all the other positions outside of the beam, the waves have a "random"
phase shift with respect to each other. If we introduce a sufficient number of transducer
elements, we can reasonably assume that the contributions of the waves outside of
the scan line cancel each other due to phase misalignment.

A given point P lying on the scanline, will generate an echo that reaches the transducer
i at the time:

ti
echo(P ) = 2vdi (5.5)

where ti
echo(P ) is the echo generated by the point P on the transducer i and di is the

distance between P and the transducer element i. Therefore, we can apply delays
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in the receiving signals, so to isolate, for each transducer, the echo generated by the
same points in space. After we have isolated the contribution of a given point along
the scanline on each element of the transducer, we can sum up the (delayed) signals
to improve the overall signal-to-noise ratio (Fig. 5.11). This procedure of emitting a
set of pulses with a transmit delay pattern, receiving the echo with a receive delay
pattern, and summing up the recorded data is called Delay-and-Sum (DAS).

P P

+Delay

Fig. 5.11: The delayed pattern applied to the transducer elements to synchronize them to the
reception of the echoes coming from point P

To account for tissue absorption, a Time-Gain-Compensation is typically applied to
the signal upon recording. That is, signals are weighted by an exponential factor in
space, to account for the fact that as the ultrasound wave travels in the tissue it also
gets absorbed according to the:

I = I0e−βx (5.6)

where β is called the absorption coefficient of the medium.

Until now, we have been looking at ultrasound waves and ultrasound image formation
with a "magnifying lens", through which we could analyze interactions between waves
and points at a microscopic scale, that is, at the scale of the ultrasound wavelengths.
We have seen how these wavefronts interact with each other to create constructive
and destructive interference, and how point sources behave when reflecting incom-
ing ultrasound waves. To be able to analyze other characteristics of the ultrasound
image and image formation, we need now to move to a larger scale, and under-
stand how the ultrasound beams created via electronic focusing interact with other
materials/surfaces.

When an ultrasound beam traveling along a certain direction encounters a surface, its
interaction with the surface can be mainly described by two phenomena:
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1. Reflection
2. Refraction

Reflection causes an echo signal to be generated and travels back to the source along
a given propagating direction which depends on the incident angle between the
incoming beam and the surface. Refraction is related to the propagation of the beam
into the tissue, with an angle that depends on the properties of the media the beam
travels through (Fig. 5.12).

𝛼

𝛽

Fig. 5.12: The integration between an ultrasound beam with a surface. Part of the beam (blue
arrow) propagates in the surface with refraction angles α, and part (red arrow) is
reflected back with a reflection angle β equal to the angle between the incoming
beam (black arrow) and the normal to the surface (dashed line)

Note that all that we have described at a microscopic scale still holds true. They are the
(microscopic) cause underneath these phenomena that we observe at a macroscopic
level. That is, reflection and refraction are the macroscopic results of the contribution
of interaction between each point in the surface and the ultrasound waves.

5.0.2 Ultrasound Imaging - Noise and Artifacts

In the previous subsection, we have seen how ultrasound waves are utilized to
generate focused beams, and how echoes from reflective surfaces are exploited to
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gather a spatial reconstruction of the environment. In this process, we indeed had to
make some assumptions. As an example, we had to assume that, when electronically
generating a focused beam, waves fronts outside of the scanline would undergo
destructive interference, thus not contributing to the recorded signals. Moreover, we
assumed that the propagation speed is constant and that the beam never deviates from
the scanline. Although reasonable, all these assumptions do not always fully hold true.
Excitations of regions outside of the focused beam might occur. Moreover, the speed
of sound is not constant and changes in different tissues. Different tissues in turn
can have different refraction indexes, thus causing beams to be refracted from their
desired path. These and other phenomena commonly occur during ultrasound data
recording and reconstruction, affect the overall signal-to-noise ratio, and in general
lead to the generation of different noises and artifacts in the reconstructed images.
In the next paragraphs, we will give an introduction to the most common noise and
artifacts on ultrasound images, together with their physical explanation in relation to
what was discussed in the previous section.

1. Signal-to-Noise ratio and contrast
In ultrasound b-mode compounding, it is generally assumed that ultrasound waves
will interfere constructively along the scanlines and cancel each other out elsewhere
due to destructive interference. However, for a finite number of piezoelectric elements,
this is not always the case. Even outside the scanline, the constructive and destructive
interference between waves can still generate specific patterns and produce spurious
signals that can reach the transducer elements during recording, reducing the overall
signal-to-noise ratio. Additionally, tissue absorption can significantly reduce the
intensity of the ultrasound beam in regions far from the transducer, causing decreased
contrast and visibility of different anatomical structures.

1. Speckle Noise
Speckle noise is a common source of noise in ultrasound images. It is caused by the
scattering of ultrasound waves by molecules in tissues, which reflects the waves in
random directions. The scattered waves from different particles combine to create
an interference pattern that is recorded by the ultrasound transducer, resulting in
a characteristic scattered texture in the image. While the presence of speckles can
sometimes be useful for characterizing tissue in ultrasound images, they can also
reduce the visibility of certain anatomical structures and make data interpretation
more difficult.

2. Mirroring
The mirroring effect occurs when the ultrasound ray is reflected off a surface and
then bounces off a second structure before returning to the transducer (Fig. 5.13).
This second reflective structure causes the ultrasound ray to be redirected toward the
transducer, resulting in the creation of a mirrored image.
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𝛼

𝛽

Fig. 5.13: Illustration of the mirroring effect in ultrasound imaging, where the original
ultrasound ray is reflected off a surface and then bounces off a second structure
before returning to the transducer, resulting in a mirrored image of the second
reflective object.

Multiple reflection and Reverberation

Previously, we discussed how an echo wave can be generated by the interaction
between an ultrasound pulse emitted by a transducer and a reflective surface. But
what happens when the echo wave reaches the transducer surface? Part of the
wave energy is first converted into mechanical energy, causing the vibration of the
piezoelectric element, and then into electrical energy due to the piezoelectric effect.
However, some of the waves may also be reflected back towards the tissues. The
reflected echo will then travel back towards the reflective structure and be reflected
again, resulting in an echo at techo = 4d/v, where d is the distance between the
transducer and the reflective structure and v is the sound propagation velocity in the
medium. This process can create the appearance of multiple reflections of the same
structure at multiples of the actual distance between the object and the transducer(Fig.
5.14).

Reverberation can also be caused by multiple reflections between reflective surfaces.
In this case, reverberation is generated by multiple reflections occurring between
parallel surfaces located close to each other.

Acoustic Shadowing
As previously discussed, ultrasound imaging relies on the reflection of ultrasound
waves at tissue interfaces. The amount of energy reflected depends on the tissue
properties, specifically the reflectivity. Tissues with high reflectivity will reflect a
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Fig. 5.14: Representation of multiple reflections against the ultrasound transducer, showing
the reflection of the echo from the blue structure back to the transducer and then
back to the structure, resulting in the creation of multiple echoes at different
timestamps

significant portion of the incoming energy, causing the energy of the wave passing
over the surface to be highly attenuated. As a result, structures beneath highly
reflective surfaces will be reached by a weak ultrasound wave, resulting in a low-
energy echo signal and the creation of dark regions in the reconstructed ultrasound
image (Fig. 5.15).

Speed Displacement
Earlier, when deriving the relationship between the location of a point in space and the
time at which its echo signal is recorded, we made the assumption that the propagation
speed of ultrasound waves is constant. While this is a reasonable approximation, the
speed of sound can vary among different tissues. If we assume a constant speed of
sound, vc, then we would expect a structure at a distance d from the transducer to
generate an echo at tideal

echo = 2dvc. However, if the actual speed of sound in the tissue
is higher than the assumed value, vreal, then the reflected echo will occur earlier
than expected, at treal

echo = 2dvreal < tideal
echo . As a result, the echo received from the

structure at a distance d from the transducer will be incorrectly associated with the
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Fig. 5.15: Illustration of the acoustic shadow created by a highly reflective structure (black
rectangle) partially obscuring structures beneath it

point d = treal
echo/2vc, rather than d = treal

echo/2vreal. This leads to a vertical shift of the
imaged structure compared to its actual position (Fig. 5.16).

Fig. 5.16: Image showing the deformation of a structure caused by the varying propagation
speed of the ultrasound wave along different scanlines

5.0.3 Ultrasound Imaging and Deep Learning - Data
Augmentation

Ultrasound is a valuable imaging modality that allows for the acquisition of body
images without exposing the patient or operator to ionizing radiation. However, as
we have seen, ultrasound images can be affected by various artifacts, noise, and
potentially low signal-to-noise ratios. To address these issues, researchers have
attempted to use deep learning networks to automatically process and de-noise
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ultrasound data. Ultrasound data are often presented as B-mode images, which are
pixelized matrices where each spatial location represents the reflective property of
the surface point at that location in the body. Due to the similarity with photographic
images, it is common in the literature to transfer techniques used for photographic
image analysis to ultrasound data. An example of this is data augmentation, which
involves introducing random transformations to the input data during the training
of the neural network. These transformations are intended to artificially increase
the input data distribution and introduce new transformations that will help the
network generalize better to real data. Common augmentations used in photographic
imaging include rotation, scaling, translation, and in some cases, random affine or
deformable transformations. The main scientific question addressed in this thesis is: is
it reasonable to use such transformation techniques for ultrasound data, or should we
focus on identifying specific transformations that better represent the data distribution
of ultrasound B-mode images? The answer to this question is somewhat complex.
When we augment data during training, we impact the network in multiple ways: (i)
we force the layers of the network to correctly classify features even in the presence of
transformations that do not occur in the training dataset but may occur in the test set,
and (ii) we force the network to focus on and base its classification on transformation
invariant features. This means that, for example, the effect of using Gaussian noise for
data augmentation will be noticeable regardless of whether Gaussian noise is present
in the actual data distribution. When trained with Gaussian noise augmentation, the
network will not only learn to classify images in the presence of Gaussian noise, but it
will also be forced to focus on features that are invariant to the injected transformation.
In simpler terms, any form of data augmentation should ideally force the network
to "isolate" features that are invariant to these transformations and use them for
classification. Therefore, augmentation in general is advisable regardless of the overall
data distribution of the training/testing population. On the other hand, in cases where
the training dataset is very small, as is often the case with medical data, the subset
of training data may not be representative of the actual data distribution and may
not fully reflect its variance. In these cases, introducing data-specific augmentation
may be beneficial in providing the network with additional training data to learn
features that are not present in the original dataset or to ensure that the network
learns features that are invariant to application-specific transformations. Therefore,
it is recommended to use both standard and modality-specific data augmentation
for network training. We expect standard augmentation techniques to improve the
training as they can help the network learn transformation-invariant features, which
are likely to be characterizing features of the structure being classified. Modality-
specific transformations will help the network learn any transformation or feature
that is not present in the training dataset, thus giving cues toward relevant features
which are not possible in general but are specific and likely to occur in that specific
modality.
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5.1 Ultrasound 3D Volume Compounding

Ultrasound volume compounding consists in combining a set of tracked ultrasound
images into a volumetric object. There are three main techniques to perform volume
compounding: voxel-based and pixel-based methods [19]

5.1.1 Voxel-based methods

In voxel-based volume compounding techniques, the values of the voxels in the
target volume are determined by considering the nearest pixels among the acquired
ultrasound images. These pixels are often weighted according to their proximity to
the voxel, and the value assigned to the voxel is calculated as the weighted average of
these pixels. (Fig. 5.17).

Find Closest
Pixel

Assign
Closest Pixel

Fig. 5.17: Schematic representation of the voxel assignment in the case of voxel-based meth-
ods for volume compounding

This approach ensures that all voxels in the target volume are filled, however, it should
be noted that in areas of the volume where there is insufficient coverage from the
ultrasound images, the values assigned to the voxels may not accurately reflect the
true values, potentially leading to artifacts in the resulting compounded volume.

5.1.2 Pixel-based methods

In pixel-based image composition techniques, the values of the voxels in the target
volume are determined by considering the corresponding pixels in the ultrasound
images. The value of each pixel is assigned to the closest voxel in the target volume.
When multiple pixels are assigned to the same voxel, the values can be interpolated
or the value of the closest pixel can be retained (Fig. 5.18).

It should be noted that this approach may result in empty holes in the compounded
volume if no voxel is found to be closest to a pixel in the source ultrasound data. These
holes can be filled by interpolating the values of nearby voxels. However, it should be
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Fig. 5.18: Schematic representation of the voxel assignment in the case of pixel-based meth-
ods for volume compounding

noted that, as for the previous method, in areas of the target volume where there is
insufficient coverage from the source images, the values assigned to the voxels may
not accurately reflect the true values, potentially leading to artifacts in the resulting
composite volume.
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6.1 Introduction and Motivation

In this chapter, we introduce a novel approach for integrating visual feedback derived
from ultrasound data and haptic feedback from force sensors for the purpose of
actuating a robot in autonomous scanning tasks. Within this context, the specific
application of spinal injections is examined. Spinal injections are commonly utilized
in neurosurgical procedures for the release of anesthetics in pain treatment, such as
epidural injections, facet joint injections, and nerve blocking [66], [77]. The precise
placement of the needle is of vital importance to prevent unwanted side effects. Due to
the periodic shape of the spine, injections at incorrect vertebral levels are a potential
hazard. To mitigate this risk, procedures are typically guided by either palpation or
X-ray guidance. Palpation, while safe as it does not expose the patient or surgeon to
ionizing radiation, can be error-prone as it relies heavily on the expertise of the surgeon
and the identification of specific anatomical landmarks in the spine. On the other hand,
X-ray guidance offers a more accurate alternative to palpation [7], but exposes both the
patient and surgeon to ionizing radiation, making it inadvisable for certain populations
of patients. As a safe and accurate alternative to X-ray guidance, ultrasound guidance
has been proposed in the literature. Compared to palpation, ultrasound guidance
provides a more comprehensive, real-time representation of the patient’s anatomy,
increasing the overall accuracy of the procedure [20]. However, compared to x-ray
imaging, ultrasound imaging presents challenges such as image interpretation due to
noise and artifacts. Noise and artifacts in ultrasound images of the spine are primarily
caused by the highly reflective nature of the bones, leading to multiple reflections
and mirroring artifacts. Additionally, the complex organization and shape of vertebral
bones, in conjunction with their angle relative to the ultrasound probe, can result in
artifacts arising from reflections in undesired directions. To alleviate these problems,
several authors have proposed utilizing deep learning techniques to automatically
process ultrasound images, providing the user with higher-level information such as
the current vertebral location or the injection point location, without the need for
manual interpretation of the data.

6.1.1 Current State of Automatic Vertebral Classification and
Robotic Ultrasound for Spinal Injections

The identification of the correct vertebral level is crucial for spinal injections to
ensure a proper injection site. Some authors propose utilizing a technique known
as panorama stitching to "stitch" together ultrasound data in order to obtain a full
lateral section representation of the spine. This approach, as described in studies such
as [22] and [41], can be used to identify vertebral levels by extracting the periodic,
hyper-echoic regions in the ultrasound data. These hyperechoic regions can be further
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processed using techniques such as enhancing filters to extract the bony structures and
finding local minima on the extracted pattern [22] or template matching to extract
specific landmark locations [41].

Alternatively, the ultrasound probe can be moved along the spine with a transverse
orientation, and images of the spine can be acquired and classified as the probe
moves upwards. In the study by [55], a Convolutional Neural Network (CNN) was
used to classify the ultrasound data acquired along the spine as either vertebrae or
intervertebral gaps. The classification was then passed to a state machine, which
processed the data in time, and outputted a prediction of the current vertebral
number.

The advancement of technology in the field of medicine has led to the development of
robotic ultrasound systems as a means of addressing the challenges faced by surgeons
in performing spinal injections. In a study by [62], a semi-automatic system was
designed and tested to address these challenges. In the proposed pipeline, the surgeon
initiates the scan, which is then performed autonomously by the robot. The surgeon
then identifies the injection location on the acquired volume and the robot navigates
to the corresponding position on the patient’s body, performing the injection using
a calibrated needle guide rigidly attached to the ultrasound probe holder. Though
promising results were demonstrated in clinical practice, further improvements are
needed to reduce the reliance on manual input from clinicians for navigation.

6.1.2 Fusing Haptic and Visual Feedback for
Robotic-Ultrasound Scanning

This chapter presents a novel technique for combining visual and haptic feedback
in order to guide a robot in the task of scanning and identifying vertebral levels for
spinal injections. As described in [91], this work addresses the limitations of current
methods by taking inspiration from expert sonographers, who rely on both visual
and haptic feedback to identify vertebral levels. In our proposed system, we utilize
force sensors to gather information on the outer profile of the patient’s anatomy, and
ultrasound data to acquire information on the inner anatomy. By fusing this data, we
are able to provide a robust and accurate localization of vertebral levels. Compared to
existing methods, our proposed system integrates automatic classification and analysis
of sensor data for robotic actuated spinal ultrasound acquisitions. To the best of
our knowledge, this is the first system to rely on both haptic and visual feedback
for vertebra localization, mimicking the visual and palpation feedback of standard,
manually performed procedures.

6.1 Introduction and Motivation 47



6.2 Fusing Haptics and Vision for Robot Control -
Method

In this section, we will discuss the methodology we used for the system design, data
acquisition, and processing pipeline. Before doing so, we will give a brief introduction
to relevant anatomical structures and notation, which we will refer to throughout the
chapter.

6.2.1 Useful Notation and Anatomy

The spine consists of 33 vertebrae. In this work, we will focus on the 5 lumbar ones,
where facet joint injections are typically performed. The lumbar vertebrae are labeled
from L5 to L5 moving from the sacrum location upwards (Fig. 6.1).

L5
S1

L5–sacrum
gap

L4

L3

L2

L1

Fig. 6.1: The lumbar vertebrae in the human spine

The most prominent part of each vertebra, located at its axis of symmetry, is called
spinous process. The articular joint connecting subsequent vertebrae are called
facet joint. We call the transverse probe orientation the orientation of the probe
perpendicular to the spine direction and paramedian-sagittal probe orientation the
orientation of the probe parallel to the spinal cord 6.2b.

6.2.2 System Design

The utilized robot ultrasound system consists of the following elements:
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(a) Data acquisition with a
probe in transverse orientation
and the respective ultrasound
image of the spinous process.

(b) Data acquisition with the
probe in paramedian sagittal
orientation and the respective
ultrasound image of the facet
joint.

Fig. 6.2: The probe orientation with respective ultrasound views ©2020 IEEE

• A KUKA LBR iiwa 7 R800 robotic arm, equipped with 6 joints and links and
certified for human interactions.

• A FTD-GAMMA (SCHUNK GmbH & Co. KG) 6-axis force-torque sensor.

• A custom-designed, 3D printed ultrasound probe holder

• A zonare L8-3 linear probe with purely linear and trapezoidal imaging modes.

• An Epiphan DVI2USB 3.0 frame-grabber (Epiphan Systems Inc. Palo Alto,
California, USA). The frame grabber was set to use a 800x600 resolution and 30
fps sampling rate.)

• A workstation equipped with an NVIDIA Titan V GPU with 12 GB of graphic
memory.
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Fig. 6.3: The system setup ©2020 IEEE

6.2.3 Autonomous Scanning Pipeline

During the autonomous scanning, the patient lies on the treatment bed in a prone
position. The robot is manually placed at the level of the sacrum location with the
probe in a transverse orientation. The robot autonomously moves upwards along the
spine direction. During the acquisition, ultrasound data and force data are acquired
simultaneously. The acquisition lasts for around 10 seconds and is performed in
breath-hold. Upon identification of the vertebral level, the ultrasound probe takes
a further scan of the desired vertebra with a paramedian-sagittal orientation and
automatically identifies the facet plane. An enhanced image of the facet can be
additionally computed and provided to the sonographers to ease the injection.

6.2.4 Data Acquisition for Parameters Tuning and Model
Training

To fine-tune the parameters of the acquisition and to train and validate the deep-
learning classification models, three offline datasets were acquired (Table 6.1).
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Dataset I

The dataset I was acquired on 19 subjects and consists of ultrasound data only. During
the acquisition, the probe was robotically navigated from the sacrum location up the
spine, in order to fully cover the whole lumbar section of the spine. The probe was
oriented with a transverse orientation and used with a pure linear imaging modality.
The force applied by the robot was kept constant at 2 Newtons and the speed to 20
mm/s. From this dataset, we manually labeled each frame as either being a vertebra
or a vertebral gap.

Vertebra Intervertebral
Gap

Fig. 6.4: Vertebra Classification as it was done for Dataset I

Dataset II

Dataset II was acquired on 14 subjects and consists of ultrasound data and force data.
As for dataset I, the probe was robotically navigated from the sacrum location up the
spine, in order to fully cover the whole lumbar section of the spine and oriented with
a transverse orientation and used with a pure linear imaging modality. The acquisition
was performed with 3 different force values, i.e., 2, 10, and 15 N, and with 3 different
robot speeds, i.e. 12, 20, 40 mm/s. Before each acquisition, we manually counted the
vertebrae using both the ultrasound probe and palpation and labeled each ultrasound
data with classification labels defining vertebrae and non vertebrae frames. The force
data were synchronized with the ultrasound data, such that the classification was
valid for both data.

Dataset III Dataset III was acquired on 19 subjects and consists of ultrasound data
only. The probe was robotically navigated over the whole spine with the probe in a
paramedian-sagittal orientation and the probe used in a trapezoidal, steered modality.
The force applied by the robot was constant and set to 2 N and the speed to 5 mm/s.
The data are both classified as containing a facet or non-containing a facet, similar
to what was done in dataset I for the spinous process. Additionally, we manually
segmented the bones on the frame where they are visible (Fig. 6.5).
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Fig. 6.5: Vertebral Bone Labelling in Dataset III

Tab. 6.1: DATASET TABLE WITH CORRESPONDENT SIZE, DATA AND SENSOR SETTINGS
©2020 IEEE

Dataset
N.

Subjects
Acquired Data

Probe
Orientation

Applied
Force [N]

Robot
Speed

[mm/s]

Dataset 1 19 B-Mode Linear US Transverse 2 20

Dataset 2 14
B-Mode Linear US

Force Data
Transverse [2, 10, 15]

[12, 20,
40]

Dataset 3 19 B-Mode Convex US
Paramedian-

Sagittal
2 5

6.2.5 Force Data Extraction

When performing the robotic-actuated acquisition, we utilize a hybrid force-impedance
controller with the force-controlled direction being the z-axis of the robot, perpen-
dicular to the patient body. This means that we expect the force applied along the z
direction to always be constant. Therefore, we can model the interaction between the
robot and the robotically actuated ultrasound probe as follows.

If we assume that there are no vertebrae below the ultrasound probe, the tissue can
be modeled as a homogeneous tissue, and we can say that in this case the probe
purely moves along the y direction, and not along z. That is, the reaction forces from
the tissues balance the force applied by the robot. If a vertebra is present below the
ultrasound probe, the local direction of the surface along which the probe moves
suddenly changes. If we consider the slow motions of the probe, at a given timestamp
t0 we will still have the reaction forces balance the applied force along the z-axis.
However, due to the inclination of the surface, we now also have the development
of a force along the y direction (see Fig. 6.6a). This force can be measured via a
force sensor and results in a signal like the one depicted in Fig. 6.6b. The description
given above holds true for the ideal case of a robot moving at a constant (slow) speed
along the y-axis, ensuring that the y-component is pure to be associated with the
reaction force with the vertebral body. However, the robot experiences an initial
acceleration and final deceleration during its motion, causing a low-frequency drift
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(a) (b)

Fig. 6.6: (a) The modeled interaction between robot and patient back during the robotic
scanning procedure. (b) Z component (red) and Y component (blue) of the force
signal recorded over a single vertebra. ©2020 IEEE

in the signal. To correct this, we first compute the low-frequency drift by applying a
low-pass second-order Butterworth filter with a cutoff frequency of 0.05 Hz. We then
subtract the computed drift from the original signal. Finally, we low-pass filter the
resulting signal with a second-order Butterworth filter with a cutoff frequency at 0.3
Hz, we normalize the signal between 0 and 1 and we resample such that samples are
equally spaced in space (instead of time) (Fig. 6.7).
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Fig. 6.7: The pre and post-processed force signal.

Within this work, we studied the effect of the subject BMI and desired force along
the z-axis on the recorded force signal on the axis y. Expectedly, we noticed that for
subjects with lower BMI, the vertebrae profile is well visible in the recorded signal,
independent on the BMI value. For subjects with higher BMI, vertebral levels are better
visible with higher forces (of 10 to 15 N). A profile of the force signal measured along
the y direction, with respect to the force applied along the z direction, is reported in
Figure 6.8 for two subjects with BMI values above and below 23.
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Fig. 6.8: The force signal recorded in the y-axis with 3 different values (2, 10 and 15 N) of
the z-force applied by the robot for subjects with BMI < 23 (left) and for subjects
with BMI > 23 (right). ©2020 IEEE

In light of these findings, we empirically set the acquisition force to 10 N for subjects
with BMI < 23 and to 15 N for subjects with BMI > 23.

6.2.6 Ultrasound Data Extraction and Processing

What we obtain from the ultrasound scanning is a sequence of B-mode images each
of which is associated with a tracking matrix. The signal we are interested in is a 1-D
signal providing us information on the location of vertebral level along the spine. To
obtain a such signal, we, therefore, need to process the tracked ultrasound data to
reduce them into a 1D vector. For such purpose, we utilize a Convolutional Neural
Network trained for the task of binary classification, where for each frame we extract
its probability of containing a vertebra. For the network training, we utilize Dataset 1,
where we manually labeled the ultrasound data as either "vertebra" or "intervertebral
gap". We then fuse the classification value with the corresponding timestamp to
get a classification in space on the location of the vertebrae. For the classification,
we evaluated 3 different states of art classification neural networks:ResNet18 [38],
DenseNet121 [45], VGG11 with batch normalization [40] and we compared their
classification performance in the following cases: a) Using random initial weights b)
Using pre-trained weights obtained from the network pre-trained on ImageNet [24]
as an initialization for the weights c) Using pre-trained weights obtained from the
network pre-trained on ImageNet [24], and freezing them during training except for
the last layer (i.e. fine-tuning the last layer only).
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The ground truth labels are binary values where 1 corresponds to the presence of a
vertebra in the analyzed image and 0 corresponds to no vertebra in the image. For
training, we used Cross entropy as the loss function, Adam optimizer, and initial
learning rate equal to 0.0005

During the procedure, the b-mode images belonging to the ultrasound sweep acquired
along the spine are processed using the trained Convolutional Networks. Therefore,
we obtained a set of classification predictions for each image in the sweep. Each
of these classification predictions is a value between 0 and 1 corresponding to the
probability of that given bmode image containing a vertebra. We then concatenate
these values spatially along the y-direction utilizing the tracking data coming from the
robot. To remove high-frequency noise coming from misclassification, we low-pass
the obtained signal using a II order Butterworth filter with 0.3 Hz cutoff frequency,
and resample the obtained signal such that the samples have equal mutual distance in
space.

6.2.7 Haptic-Visual Data Fusion

The rationale behind fusion haptic and visual data is to increase the robustness of
the acquisition procedure. Similarly, as sonographers do, we leverage haptics and
visual data, in a way to have a better understanding of the patient’s anatomy. In fact,
it can be the case sometimes that vertebral levels are well detectable via palpation
but not visible on ultrasound data due to noise and artifacts. This can be appointed
to multiple reflection artifacts due to the reflectivity of bones and spine geometry,
as well as shadowing artifact and suboptimal probe-skin coupling which is likely to
occur for thin patients, where the spinous process is prominent and doesn’t allow
for a flat contact area. In some other cases, vertebrae might not be easily detectable
via palpation but can be detected on the acquired ultrasound data. This can be the
case for subjects with particular spine anatomies or high BMIs. An example of this is
reported in Fig. 6.9a.

To account for these problems, we introduce a novel method to fuse force and
ultrasound data. To this end, we utilize a Temporal Convolutional Network.

Temporal Convolutional Network

A Temporal Convolutional Network, or TCN, is a specialized type of Convolutional
Neural Network designed to handle temporal data, such as time series or videos.
These networks are built using a series of 1D convolutional filters, which can be
applied in both a causal and acausal manner to extract relevant temporal patterns
from the input signal. By stacking multiple layers of these convolutional filters, TCNs

6.2 Fusing Haptics and Vision for Robot Control - Method 55



(a) (b) (c)

Fig. 6.9: (a) Force signal, Ultrasound signal, and labels in the presence of non-corrupted
force and ultrasound data. (b) Force signal, Ultrasound signal, and labels in the
presence of noisy ultrasound data. (c) Force signal, Ultrasound signal, and labels in
presence of noisy force signal. ©2020 IEEE

can learn increasingly complex temporal patterns in the data, similar to how 2D
convolutional networks learn increasingly complex spatial patterns at different scales.
Compared to LSTMs, TCNs offer several advantages, such as larger temporal receptive
fields and less susceptibility to issues like vanishing gradients. Additionally, the use
of dilated convolution can further expand the capture range of TCNs, allowing them
to effectively handle long-range dependencies in the data. The dilated convolution
between an input signal F and a kernel k is defined as:

(F ∗l k)t =
∑

s+lt=p

F (s)k(t) (6.1)

where l is the dilation factor. It can be noticed that with increasing values of the
dilation factor, the receptive field of each output sample gets wider.

In this work, we utilized a temporal convolutional network, which architecture is
devised from [72]. The architecture contains three different stages, each one directly
trained to regress the vertebral level associated with each input sample. Subsequent
stages have the purpose to refine the output of the previous one. The input data
consists of a 2-channel signal, where one channel is the signal coming from the force
sensor, processed as described in Seq. 7.2.1 and the second channel consists of the 1D
signal extracted from the ultrasound data as described in Seq.7.2.2. We call N the
number of samples in the input signal. The architecture of each stage is the same (Fig.
6.10).
Architecture of the Single Stage: The architecture of the network is the following:
i A 1x1 convolutional layer containing 32 filters, which resizes the input signal into
a 32xN sequence. ii 9 1xD dilated convolutional layer with increasing dilation sizes
and kernel size 3.
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Fig. 6.10: The architecture of the single stage of the 1D convolutional network for data fusion.
©2020 IEEE

Similarly to [72] we used cross-entropy for network training, batch size 1 Adam
optimizer, the learning rate of 0.0005 and we trained for 110 epochs. We used 34
input sequences acquired over 9 subjects for training (7 for training, 2 for validation),
and 4 subjects for test. For the test subjects, we set the acquisition force to 10N or
15N depending on the subject BMI and the robot velocity to 20 mm/s.

6.2.8 Facet Plane identification

In order to localize the facet joints in an ultrasound image, the plane that contains
the joints is identified using a ResNet18 CNN trained with Adam optimization, cross-
entropy loss, and a learning rate of 0.0005 that decays by 0.1 every 5 epochs for
30 epochs. The training data set consists of 15 subjects, 12 for training and 3 for
validation, and the test set consisted of 4 subjects. Next, the position of the facet
joints on the identified plane is localized using a FCN-ResNet101 CNN trained to
regress heatmaps. This method has been shown to produce state-of-the-art results for
landmark position detection. The input to the network is a 3-channel image which
includes the original ultrasound image, the Bone Probability Map, and the image
gradient along the y-direction. The network was trained for 50 epochs with an initial
learning rate of 0.001 on 13 subjects, validated on 3 subjects, and tested on 4 subjects,
with 7 vertebral scans per subject.

6.3 Experiments
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Tab. 6.2: RESULTS OF 5-FOLDS CROSS-VALIDATION STUDY FOR VARIOUS MODELS WITH
DIFFERENT TRAINING MODES. ©2020 IEEE

ResNet18 DenseNet121 VGG11

Case a 0.817 ± 0.118 0.878 ± 0.047 0.635 ± 0.15
Case b 0.929 ± 0.006 0.89 ± 0.014 0.878 ± 0.055
Case c 0.6 ± 0.02 0.577 ± 0.006 0.63 ± 0.03

6.3.1 Ultrasound Signal Processing

In table 6.2 we report the accuracy results for the binary classification networks
trained on ultrasound data for vertebrae presence recognition. We can see that the
best accuracy is obtained by utilizing pre-trained weights obtained from pretraining the
network on ImageNet, yielding an accuracy of 0.929 ± 0.006 in 5 cross-fold validation
experiments. We then tested the network yielding the best performance among the
5 trained for the 5 cross-fold validation tests and tested on the test set, yielding an
accuracy of 0.938, showing that the training distribution well represents test one.

In table 6.3 we reported the confusion matrix evaluated on the test data, where we
normalized the values bu the total number of frames. The values expressed in a
number of frames are reported in parentheses.

Tab. 6.3: CONFUSION MATRIX FOR THE BEST MODEL PERFORMANCE EVALUATED ON
THE TEST SET OF 4 SUBJECTS. ©2020 IEEE

Predicted
n = 1392 Vertebra Intervertebral Gap

Actual
Vetrebra

True Positive
0.459 (n = 640)

False Negative
0.04 (n = 56)

Intervertebral Gap
False Positive
0.02 (n = 30)

True Negative
0.478 (n = 666)

6.3.2 Force-Ultrasound Data Fusion

We evaluated the capability of the Temporal Convolutional Network to correctly label
the vertebral levels. We tested the network on a group of 5 unseen subjects, thus
on 25 vertebral levels. We utilized both the TCN and a conventional peak detector
(CPD) for the task of vertebral level counting. We set the parameters of the peak
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Tab. 6.4: THE CLASSIFICATION PERFORMANCES AND DISTANCE FROM THE GROUND
TRUTH VERTEBRAE POSITION FOR ALL TESTED METHODS. FOR THE TCN
METHODS THE RESULTS ARE REPORTED AS MEAN (STD) FOR THE 5-FOLD
CROSS VALIDATION. ©2020 IEEE

Correctly Classified
Levels [num/total]

Distance from
Ground Truth Label [mm]

Below Average Above Overall Below Average Above Overall

Image 0.4 0.73 1.0 0.72
27.359
(26.9)

9.85
(14.0)

3.079
(1.96)

9.74
(15.95)

Force 0.2 0 0 0.04
20.01
(9.779)

37.58
(7.10)

30.7
(3.70)

32.09
(10.3)

CPD
Fusion 1.0 0.933 1.0 0.96

2.495
(3.2)

2.357
(1.8)

2.386
(2.196)

2.39
(2.23)

Image
0.48
(0.09)

1.0
(0.0)

0.68
(0.097)

0.832
(0.03)

10.93
(0.90)

3.7
(1.17)

8.224
(1.20)

6.05
(0.735)

Force
0.439
(0.079)

0.92
(0.06)

0.72
(0.16)

0.784
(0.04)

14.74
(2.8)

6.18
(1.79)

8.88
(1.46)

8.43
(1.02)

TCN
Fusion

0.439
(0.149)

1.0
(0.0)

0.6
(0.0)

0.808
(0.03)

12.64
(1.6)

3.76
(0.99)

8.72
(0.70)

6.52
(0.5)

detector empirically to 0.5 amplitude threshold and 10 samples of the minimum
distance between peaks. We evaluated the performance of the proposed pipeline in
the following scenarios, for both the TCN and the peak detector:

1. Using the pure image signal in the input

2. Using the pure force signal in the input

3. Using the fusion of force and image signals in the input

We obtained the fusion signal for the peak detector as the sum of the force and
ultrasound signals. For the peak detector, each detected peak leads to a transition to
the next vertebral level.

In our analysis, we considered the performance of the networks with respect to the
height of the subjects. To this end, we divided the test subjects into 3 groups of heights:
i) height < 163cm (below average), ii) height between 163cm and 183cm (average)
and iii) height > 183cm (above average). The height threshold was selected based on
the height distribution in the training set, where the mean is equal to 173cm and the
standard deviation to 10cm. For each height group, we analyzed the performance of
the TCN and peak detector when using the three different input signals, both in terms
of classification accuracy and distance to the corresponding peak in the ground truth
labels. We define success in classifying vertebral levels as having an overlap of more
than 0.5 between the labels and predictions, which is in line with previous research in
the field (as seen in [55]). The result of the analysis is reported in table 6.4.
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We can see that the Temporal Convolutional Network yields better results for subjects
with average height compared to the peak detector, in the case of a pure image, pure
force, and fusion signals as input. The TCN’s ability to learn anatomical priors during
the training process is a possible explanation for its ability to classify vertebral levels
so accurately for average spinal lengths (i.e. average heights). This means that the
TCN is able to identify vertebral levels not just based on the presence or absence of
peaks in the input signals, but also by taking into account what it has learned about
the structure of the spine. This is particularly evident when looking at results using
the pure force signal only as the input. In these cases, L5 is often not detectable as it is
less prominent compared to upper lumbar vertebrae and this often results in a missing
peak at the beginning of the force signal. Additionally, the robot’s initial acceleration
can also add noise in this region in the force signal (as seen in Fig. 6.11).

Fig. 6.11: The predicted (red line) and ground-truth (black line) vertebral levels for pure
force-based, pure ultrasound-based, and force-ultrasound fusion both when using
a peak detector and a tcn. Subject 1 with anatomical characteristics non-well-
represented in the tcn training set (Subject Gender: Male, BMI: 30, Height: 186
cm). Subject 2 with anatomical characteristics well-represented in the tcn training
set (Subject Gender: Female, BMI: 22, Height: 172 cm). ©2020 IEEE

When dealing with subjects with heights far from the training distribution, the peak
detector method yields better performance compared to the TCN. This suggests
that the distribution of the training dataset might not be sufficiently representative
of these categories. It is our belief that retraining the network with a larger and
more representative training dataset would be beneficial for the TCN performance.
We can notice that when using the CPD for below and above-average subjects, the
fusion method yields better performance compared to the pure image and pure force
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methods, suggesting that fusion haptic and visual data has an impact on the vertebral
classification accuracy.

For the TCN, we can notice that the pure force and pure signal methods have similar
performances which are slightly higher than the pure force method. It is relevant to
notice that the ground truth was obtained by manually labeling the ultrasound data,
and was not done considering the force signal. This way of labeling the input data
has an impact on the performance of the TCN. Specifically, it is biasing the results
towards the pure-image-based TCN, meaning that, given that the network correctly
classifies a vertebral level for all input data (i.e. force, image, fusion), it is likely that
the distance from the ground truth peak is lower for the pure image data, given that
the ground truth was defined on images. Therefore, the pure image method can be
considered an upper bound in terms of distance to the ground-truth data.

6.3.3 Facet Plane Identification

The spatial discrepancy between the planes identified by the model and the labeled
planes was evaluated using a sample of 4 test subjects from Dataset 3, which included
20 vertebrae sweeps and a total of 40 facet joints (two joints per sweep and five
sweeps per subject). Out of the 40 joints evaluated, 37 had a mean distance error
of 2.08 ± 2.63 mm between the detected and manually labeled planes. This error is
within the range of 5 mm or less, as noted in [12], which is considered sufficient for
successful facet joint injections. However, for the remaining 3 joints, the error was
found to be 8.43 ± 8.98 mm An example image of the enhanced facet is presented in
figure 6.12.

6.4 Conclusions

In conclusion, we proposed a novel method to automatize spinal injections by means
of robotic-ultrasound acquisition. In this work, we proposed a pipeline for automatic
vertebral level counting and facet plane detection. Our proposed method leverages the
visual information coming from ultrasound data and the haptic information coming
from force sensors to obtain robust results on the vertebrae’s location along the spine.
To this end, we proposed an interaction model between the ultrasound probe and
the patient’s back, and we derived from it an interpretation of the data acquired via
the force sensor. We further proposed a processing pipeline for reducing the drifts
in the force signal and reducing the ultrasound data into a 1-D signal consisting
of the probability of each location containing a vertebral level. We proposed two
methods for the fusion of haptic and visual data. A standard CPD, which showed
robust performance independent on the training set size, for different heights of the
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Fig. 6.12: The result of the facet detection and facet enhancement for one sample test sweep

test subjects and a TCN method. Expectedly, the TCN showed lower performance
on data far from the training distribution but showed promising results in average-
height subjects suggesting its potential for the procedure in presence of larger training
datasets.
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7.1 Introduction and Motivation

This chapter introduces ultrasound physics-inspired data augmentation approaches
for improving learning algorithms in ultrasound imaging tasks such as classification
and segmentation. An improved accomplishment of these imaging tasks paves the
way toward autonomous robotic ultrasound acquisitions.

Deep learning methods have thus far revolutionized machine perception of the visual
world. And recently, these approaches are rising up to improve common ultrasound
imaging tasks such as classification, segmentation, and registration empty citation
However, several challenges inherent in ultrasound data hinder the progress and
success of these algorithms in the ultrasound imaging domain. The main culprits are
low signal-to-noise ratio (SNR) and the presence of artifacts arising from reverberation,
phase aberration, and scattering. The issues, in addition to inter-operator dependency,
render the interpretation of ultrasound data difficult for deep learning models and
humans. The deep learning models face an additional challenge; the ultrasound
image datasets are restricted due to the difficulties inherent in image acquisition and
annotation. Moreover, the ultrasound datasets must reflect the significant variability
within acquired data resulting from different operators and ultrasound systems for
the deep learning models to be generalizable. Data augmentation is a remedy for the
aforementioned challenges arising from limited data and lack of variability.

7.1.1 Current State of Augmentation Approaches in
Ultrasound Imaging

Data Augmentation in machine learning refers to augmenting the dataset for the
purpose of improving the generalizability of models. For instance, one common
approach in the visual domain is to apply transformations to the data points, such as
rotation and flipping. These transformations keep the semantics of the data points
intact and provide the model with more data and more cues toward the predictive
features within the dataset. Intuitively, augmentation approaches that modify the
data assist the model in learning features that are invariant to the modifications and,
depending on the choice of modification approach (e.g., rotation transformation), can
lead to model generalizability. Data augmentation becomes specifically effective in the
regime of limited data. And as discussed earlier, ultrasound image datasets are limited
in magnitude. Moreover, due to the difficulty in understanding the features within
the image and the various features introduced by artifacts, augmentation can be
additionally helpful for guiding the models toward learning generalizable features.
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In the domain of ultrasound image analysis, we can categorize the data augmentation
approaches into two groups: image synthesis approaches and image modification
approaches. In the first category, we can generate new data points and augment
the dataset by training a generative model on the dataset [70], [79], [90], [95],
[106], [110], [111]. The generative models can be optimized without any need
for data annotation and thus have access to larger datasets. For instance, Zaman
et al. [95] leverage generative adversarial networks (GANs) to generate synthetic
ultrasound images that simulate variable roll and pitch motions, depths, and time-gain
compensations. While a promising approach, generative-based approaches require
large datasets. Moreover, they can generate unrealistic data points depending on the
resulting generative model and thus misguide the models trained on them towards
features that are not generalizable. The second category applies modifications to the
images. The common modifications are random translations, rotations, scaling, and
adding noise (e.g., gaussian) [51], [60], [64], [67], [71], [78], [80], [83], [87], [89],
[92]. Specifically, [71], [89], [92] apply random flipping, [64], [71], [80], [83], [87],
[89], [92] apply random shifting, [64], [67], [80], [87], [90], [92] apply rotation
transformation, and [80], [83] modify the brightness of the images. An interesting
image modification approach is that of Baka et al. [51] for the task of ultrasound bone
segmentation in ultrasound spine images. In addition to mirroring, [51] leverages
localized free-form deformations.

7.1.2 Intelligent Augmentation by Leveraging Physics of
Ultrasound

Albeit being helpful by guiding the model toward learning features invariant to
these modifications, these modifications generate unrealistic samples that risk the
generalizability of the models since these unrealistic samples do not represent the
variability in the test data. Some of these modifications, such as horizontal flipping
7.2 are reasonable as it is equivalent to Π rotation of the probe. However, a vertical
flipping (7.2) does not abide by the physics of attenuation as it leads to a shadowing
region between the probe and a reflector. Translation and rotation transformations also
generate unrealistic points as the transducer will be displaced to meaningless positions,
resulting in voids between the wave source and tissues in the acquisition. The unreal-
generated augmented samples motivate our work in this chapter. We leverage the
physical principles governing ultrasound imaging to apply realistic modifications to
ultrasound images. Specifically, we leverage the mechanics of tissue deformation while
applying the transducer to subjects. We introduce releasitc artifacts by considering
reverberation and generate scans with various signal-to-noise ratios. The augmented
data thus has a higher likelihood to match the distribution of unseen ultrasound
images on test datasets and real scenarios.
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Fig. 7.1: The proposed physics-inspired data augmentation framework: using ultrasound
scans and their corresponding bone annotations (yellow), we generate augmenta-
tions leveraging the physical properties of ultrasound scanning (green) and can also
merge multiple augmentations (blue).

Fig. 7.2: Examples of applying classical augmentation approaches to ultrasound scans: a)
horizontal flipping, b) vertical flipping, c) rotation, d) translation, e) scaling, f)
shearing, g) brightness adjustment.

7.1.3 Contributions

Inspired by the physical principles governing ultrasound imaging, we propose a set
of data augmentation methods that augment the dataset with samples more likely
to appear in test scenarios, thus improving the generalizability of the models. The
approaches utilize the mechanics of tissue deformation, the physical effects resulting
in reverberations, and the engineering of signal-to-noise ratio. The variability intro-
duced by these augmentation techniques is physically and anatomically consistent
with ultrasound scans. The presented methods are thoroughly evaluated on prin-
cipal ultrasound image analysis tasks, bone segmentation, and classification. The
improvement on these tasks translates to the downstream task of intelligent robotic
ultrasound imaging. In addition to the methodological contributions, we introduce a
spine ultrasound dataset that can foster future research efforts in robotic ultrasound
imaging.

7.2 Physics-inspired Data Augmentation
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7.2.1 Augmentation by Deformation

During ultrasound acquisition, the operator (robot or sonographer) applies a variable
force on the scanned subject. Applying force by placing the transducer on the scanned
subject induces deformation in the scanned tissues and the resulting ultrasound image.
The deformation caused by the variability in applied force can thus be a major factor
in the variability existing in ultrasound images across datasets. Inspired by this
phenomenon, we propose simulating this deformation on the ultrasound images to
perform data augmentation.

To simulate the deformation on a specific ultrasound image arising from a probe
displacement dprobe, we need to compute the probe displacement’s corresponding
deformation field (DF). We denote the formation at each point (x, y) by Σ(x, y). The
deformation field can be characterized using the physical laws governing the applied
force to the area (tensile stress σ = F

EA) and the compression (ϵ). The relationship
is modulated by Young’s modulus, Y = σ

ϵ . To simulate the deformation field arising
from the probe displacement on an ultrasound scan, we impose a few assumptions
for simplification. We assume that the probe is applied vertically on the medium
(along the axial axis) and that the soft tissues are homogenous and isotropic. The
bone is also considered a body without deformation. We also consider the lateral
deformation negligible and assume that the compression happens only on the tissues
between the transducer and the static body (the bone). In principle, we can remove
this assumption and compute the compression for the lateral tissues. However in this
work, we resort to simulating the compression of the tissues in between the probe
and the bone and simulate the lateral compression using a gaussian smoothing term.
Please refer to Fig. 7.3 for an overview of the method.

Following the assumptions and considering the coordinate system placed on the bone
(Fig. 7.3), the deformation for the lateral tissues will be constant and equal to the
probe displacement dprobe. For the tissues in between the transducer and the static
body, the compression is computed by ϵ = F

EA , where A denotes the probe area in
contact with the medium and E denotes Young’s modulus. The relationship can be
reformulated as F = EA

dprobe

yprobe
, where yprobe denotes the vertical coordinate of the

probe as seen from the bone coordinate system. The compression characterizes the
deformation at each point arising from the transducer’s force on the area in contact.
Thus, the deformation at each point (Σ(x, y) is

Σ(x, y) =
∫

ϵyydy

∣∣∣∣
Σ(x,0)=0

= −H(−y) F

EA
y = −H(−y)

dprobe

yprobe
y (7.1)
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Fig. 7.3: Augmentation by Deformation Pipeline: Left: The image displays relevant forces
and coordinate systems. The force applied by the transducer is represented with red
arrows, and the feedback force from the bone is with green arrows. The coordinate
system placed on the bone is represented by (xb, yb) and the transducer centroid
coordinate space by (xp, yp). Right: The B-mode ultrasound scan and its correspond-
ing bone annotation. The bone annotation is used in the pipeline for computing
the deformation field (Σ) induced by the transducer force. The deformation field
is displayed in the transducer coordinate system to avoid generating a gap on top
of the ultrasound scan. We apply a gaussian smoothing on (Σt) to account for and
approximate the lateral forces. The resulting deformation field is then applied to
the original scan and the annotation.

The deformation field computed by Eq. 7.1 is in the coordinate system placed on the
bone. Applying it to the ultrasound image will result in generating voids under the
transducer. Therefore, we compute the deformation field in the coordinate system
of the probe so that the applied transformation does not introduce the void to the
ultrasound image. The new deformation field can be computed by adding an offset
equal to dprobe. The deformation field in the probe’s coordinate system is denoted by
Σt, and ybone denotes the vertical position of the bone. The deformation field Σt is
applied to the tissues in between the probe and the bone. The lateral deformations
are approximated by a gaussian smoothing term. The methodology is described as a
pseudo algorithm in Algorithm 1.

Algorithm 1 Deformation Field Computation (Σt)

for i, j = 1 : Width, Height do
Σ(i, j)t = −dprobe if (i, j) is bone or below bone
Σ(i, j)t = −dprobe/ybone · j if (i, j) is above bone
Σ(i, j)t = 0 else

end for
smooth(Σt(i, j))

To augment the dataset with deformed samples, we compute the deformation for
multiple randomly selected probe displacement dprobe values.
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7.2.2 Augmentation by Reverberation

A commonly occurring artifact in ultrasound data is due to the reverberation phe-
nomenon. Knowing the physics of this phenomenon, we can simulate the artifact in
images and augment the datasets realistically by introducing the reverberation artifact.
The phenomenon is due to the sound wave being echoed multiple times on a highly
reflective matter. Assuming a constant speed of sound c in a medium, having bounced
from a reflective tissue at ∆, the wave generates an echo in t1 = 2∆/c. If the reflected
wave is bounced back from a highly reflective surface, the sound wave can reflect back
from the transducer-tissue interface and generate another echo at t2 = 4∆/c and can
give the impression that another reflective surface exists at a distance ∆r:

∆r = 2∆ = t1c = t2c

2 (7.2)

As the wave can bounce several times and generate multiple echoes, the phenomenon
is known as reverberation. The reverberation artifact can then show several times
in multiples of ∆ within the ultrasound scan. Knowing the principles behind the
reverberation artifact within ultrasound images, we can simulate them and augment
the dataset by reverberation artifact. To accomplish this, we first identify the reflective
surface within the image that leads to the reverberation effect. In our use case, the
reflective surface is the bone; thus, we first identify the bone centroid (xc, yc), and
the centroid is represented in the coordinate probe space. Based on the previous
statement regarding reverberation, the location of the artifact will then be in 2yc.
Therefore we select a patch around the bone centroid and attempt to merge the patch
into the image in location 2yc such that it shows up as a reverberation artifact. For
merging the path with the image, we perform a weighted sum of the two. We denote
the weighting factor by wr and consist of a Gaussian filter and a scaling factor ri. We
refer to this scaling factor as reverberation intensity, as it controls the intensity value
of the reverberation artifact. For augmenting the dataset, we sample the reverberation
intensity ri randomly. During the merge step, the original image is weighted by
1 − wr.

7.2.3 Augmentation by SNR Modification

In this section, we augment the dataset by tampering with the signal-to-noise ratio
(SNR). The signal in the B-mode ultrasound scans refers to coherent structures such as
bones, while the noise refers to speckle patterns. In essence, our method can enhance
or diminish the intensity values of the signal within the image. SNR variability is
a common property of ultrasound scans from different sources. Thus augmenting
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Fig. 7.4: Augmentation by Reverberation Pipeline. Left: A schematic representation of the
transmitted wave echoing on the bone at depth ∆ and time t1 and the reverberation
echo happening at time t2. In the following time-amplitude plot, the signals arising
from the first echo t1 and the reverberation echo t2 are represented. The echo effect
at depth ∆ and the reverberation effect at depth 2∆ are shown on the following
B-mode image. Right: Sythnetic generation of reverberation artifact on B-mode
scans for the purpose of data augmentation. The bone is extracted from the original
ultrasound scan and repeated at the reverberation depth and is finally added to the
original B-mode scan.

the dataset via SNR modification increases the likelihood of matching the training
distribution with the testing and real-world ultrasound data distribution.

To modify the SNR, we need to first identify the signal and distinguish it from the
noise. For instance, we need to distinguish between the bone structures and the
background. Subsequently, we can enhance the signal, i.e., rendering the bones more
visible. We leverage local energy (LE) maps Bridge for identifying the signal within
B-mode ultrasound images. LE is a methodology that computes the energy of the
signal present at different pixel locations in the image using the monogenic signal
components derived from an ultrasound image. The monogenic components are fe(x),
fo1(x) and fo2(x), and the local energy at each location x in the image is computed
as:

LE(x) = fe(x)2 + fo1(x)2 + fo2(x)2 (7.3)

Having normalized the images by local energy values, we multiply the local energy
values with different scaling factors for bone and non-bone pixels. The local energy of
bone pixels is scaled by ib, and the non-bone pixels are scaled by ibg. These factors
modulate the energy ratio between bone and background. Specifically, whenever
ib > ibg, we enhance the bone energy values, and whenever ib < ibg, the background
pixel energy values are enhanced. I.e., we are enhancing bone visibility versus
background and vice versa. In the end, we modify the B-mode ultrasound scan by
the updated local energy values, thus modifying the SNR of the scan. For generating
various samples for augmentation, we randomly select values for ib, and ibg.
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Fig. 7.5: Augmentation by SNR modification pipeline: First, we compute the local energy
(LE) map using the input US scan. We then multiply the computed LE map with the
bone intensity and background intensity values and apply weighting to obtain tuned
LE maps. Subsequently, we sum the tuned maps and multiply them with the original
scan to compute the SNR-modified scan.

7.3 Experiments

The augmentation approaches in this chapter are introduced to improve ultrasound
image analysis tasks that facilitate intelligent autonomous robotic ultrasound acquisi-
tions. Two prominent tasks are ultrasound image classification and segmentation:

7.3.1 Classification

To carry out the task of bone classification in ultrasound images, we procured a dataset
comprised of 5,692 frames retrieved from 22 individuals. The frames were divided
into two disjoint classes depending on their content. The first class contains at least
one bone per frame, while the other class contains no bones in each frame. To ensure
the generalizability of the trained models, we employ a subject-level approach in
splitting the dataset into three distinct subsets: The training set contains 3821 frames
from 16 subjects, the validation set contains 1037 frames from 4 subjects, and the
testing set contains 834 frames from 2 subjects. This approach makes the model less
prone to overfitting to a specific group of subjects and more probable to generalize to
new subjects.

7.3.2 Segmentation

For segmenting bones in ultrasound images, a dataset consisting of 5,284 frames
that contain bones is procured. The frames are annotated in a pixel-wise fashion;
that is, each individual pixel is labeled as either a bone or non-bone. To improve the
generalizability of the models, a subject-level approach is leveraged in dividing the
dataset into three distinct subsets similar to the classification tasks: The training set
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Tab. 7.1: The range of parameter values for the augmentation approaches (classical and
physics-inspired) in our experiments. For each augmentation algorithm, its parame-
ter is uniformly selected within the range.

Augmentation Parameter Value Range

Classical

rotation in degree -10 - 10
translation (horizontal and vertical) 0.2, 0.2
scaling in both axis 1, 1
shearing in both axis 1, 1
brightness 0.2

Proposed
deformation - dprobe 30 - 100
reverb - ri 0.50 - 0.9
SNR - ib, ibg 0.70 - 1.40

(3,972 frames from 17 subjects), validation set (782 frames from 5 subjects), and
testing set (500 frames from 2 subjects).

7.3.3 Dataset Acquisition

We trained the models on a dataset of 10,656 ultrasound scans acquired from 24
healthy individuals with a Body Mass Index (BMI) range of 20 to 25. The ultrasound
images were gathered using a Zonare z.one ultra sp Convertible Ultrasound System
(Zonare Medical Systems Inc.) and an L8-3 linear probe. The parameters of the system
were set to the specific following configuration; with the image depth set to 7cm, the
gain set to 92%, the frequency set to 10 MHz, and the sampling rate set to 13 Hz.

7.3.4 Implementation Details

The neural network models are implemented using the PyTorch 1.7.1 framework and
trained on an NVIDIA Titan V 12 GB HBM2 GPU utilizing the Polyaxon platform.
The source code for our proposed approaches, experiments and the procured dataset
is publicly available to facilitate reproducibility and future research. In order to
assess the effect of each of our proposed augmentation approaches, we incorporated
them individually in network training on the segmentation and classification tasks
and compared them against existing data augmentation techniques. The chosen
parameters for augmentation techniques are detailed in Table 7.1. Our proposed
augmentation techniques were only applied during the training step for both the
segmentation and classification tasks.
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Tab. 7.2: Results of applying augmentation approaches to the two tasks of segmentation
(UNet) and classification (DenseNet). The results are the average and the standard
deviation (±) of 5-fold cross-validation

Segmentation Classification

DSC HDF ACC F1

None 0.589 ± 0.07 20.72 ± 3.84 0.876 ± 0.06 0.770 ± 0.15
Classical 0.625 ± 0.03 17.76 ± 3.17 0.883 ± 0.04 0.780 ± 0.09
Reverb 0.604 ± 0.03 19.71 ± 2.20 0.883 ± 0.03 0.802 ± 0.04

Deformation 0.626 ± 0.01 19.06 ± 3.63 0.865 ± 0.04 0.759 ± 0.11
SNR 0.626 ± 0.02 17.24 ± 1.83 0.877 ± 0.06 0.764 ± 0.16
All 0.600 ± 0.02 17.32 ± 2.97 0.834 ± 0.02 0.742 ± 0.04

7.3.5 Neural Network Architectures and Training

We leverage a U-Net neural network architecture Ronneberger for the bone segmen-
tation tasks. We utilize a DenseNet121 Huang for the classification task. In terms of
training, a learning rate of 0.01, Adam optimizer, and Binary Cross Entropy (BCE)
loss function were used as the training parameters. The utilized architectures and
training parameters are standard in the literature and have repeatedly been shown to
be effective in many studies.

7.3.6 Evaluation Metrics

To assess the performance of the models, we used 5-fold cross-validation for both
segmentation and classification experiments. To evaluate the segmentation model, we
used two mainstream metrics: Dice Score (DSC) and the Hausdorff Distance (HDF).
We also reported the standard deviation of these two metrics, which indicate to what
degree the results vary between the folds. For the classification task, we utilized
average accuracy (ACC) and F1-score (F1), which are widely used in the literature
to evaluate the classification models’ performance. We also reported the standard
deviation of the results between folds.

7.4 Results and Discussion

The results for both segmentation and classification experiments are reported in Table
7.2 for various augmentation techniques: classical augmentation, augmentation by
reverberation, deformation, and SNR modification. We also present the results for the
case of applying all proposed augmentations (presented as "All").
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Classification
We see the result of applying each augmentation technique during the training of
the bone classification model in Table 7.2 on the right column. The results demon-
strate that the model trained using reverberation-based augmentation outperforms
other augmentation approaches by 2.7% in the F1-Score metric. This highlights the
potential of reverberation-based augmentation in improving model performance. In
line with our findings on the segmentation task, it can be observed that using a
combination of all augmentation techniques does not provide any additional benefit
in the classification task.

Segmentation
In the context of segmentation performance, we observe that (in Table 7.2) augmen-
tation approaches are significantly effective, as evidenced by the increase of DSC (Dice
Similarity Coefficient ) by 2 4% and the improvements in HDF (Hausdorff Distance).
The segmentation task is more challenging than the classification, and we observe
that the data augmentations’ effectiveness becomes more evident. Augmentation by
deformation and SNR modification outperform classical augmentation methods by
1%. Moreover, augmentation by SNR modification results in the lowest HDF distance
among all methods. Furthermore, we observe that utilizing the proposed augmenta-
tions demonstrates the least amount of variation among the folds, thus indicating the
consistency of their performance of improvement. By combining all of the proposed
augmentations, it is observed that there is a decline of 2% in performance. The decline
may be caused by the absence of the combined cases in the unseen test sets.

Summary of Findings
The findings suggest that the incorporation of augmentation by deformation and
SNR modifications demonstrate a positive impact on the task of bone segmentation,
while augmentation by reverberation is found to have a positive impact on the bone
classification task. Future investigations could aim at investigating more realistic and
anatomically-consistent ultrasound image modifications for training more generaliz-
able neural networks. The improved models will, in turn, lead to more intelligent
robotic ultrasound imaging systems.
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8.1 Robotic Path Optimization

8.1.1 Introduction and Motivation

It has previously been established that the utilization of robotics-ultrasound systems
presents the advantage of being able to acquire tracked ultrasound data. This is
achieved through the synchronization of ultrasound image data with the 3D pose of
the robot. By utilizing information on the geometry of the image, such as the spacing
and 3D position, the position of each pixel in space can be inferred and a 3D volume
can be reconstructed, according to what is described in section 5.1.

There are several methods for determining the optimal trajectory of the robot to
acquire the ultrasound scan. One straightforward approach involves manually defining
a region of interest above the anatomy to be scanned and performing a parallel
ultrasound scan. This method is simple and does not require additional hardware, but
it does not account for the presence of ultrasound artifacts or suboptimal coupling
between the ultrasound probe and skin. To address these issues, an initial trajectory
can be estimated based on the surface to be scanned. For example, authors have
proposed using an RGB-D camera to acquire the mesh of the patient’s external surface
and design a trajectory to ensure the probe moves perpendicular to the surface on a
region of interest [43], [44]. Others have proposed adjusting the ultrasound probe
trajectory in real time based on the acquired ultrasound data to maximize image
quality. As an example, [35] proposes to compute the ultrasound image entropy and
adjust the position and orientation of the probe to maximize such value. Other authors
propose using confidence maps to navigate the robot and maximize image confidence
[37], [52].

Although these approaches have shown promising results, they also have some limita-
tions:

1. Despite efforts to acquire a trajectory perpendicular to the patient’s surface, non-
flat surfaces can still result in incomplete coverage of the anatomy of interest.

2. The visibility of the structure of interest can be negatively impacted by the
presence of shadowing structures.

3. Even when navigating the robot to maximize confidence/entropy, some areas of
the volume of interest might remain uncovered.

In this chapter, we present a novel methodology for computing robot trajectories.
Our inspiration for this methodology comes from the field of outdoor area scanning,
where small motorized robots gather information about the environment by traveling
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around unseen areas [84]. In such a field, the purpose of the robot is i to explore
as many unseen areas as possible in the region of interest, ii try to reach unseen
areas by avoiding known occlusions, iii be aware of seen regions and avoid re-
scanning. Analogously, in the context of ultrasound data acquisition, our objective
is to thoroughly examine the anatomy of interest while also striving to gather as
much information as possible about regions that may be impacted by artifacts such
as acoustic shadowing. To achieve this, it is necessary to i Establish a trajectory that
ensures full coverage of the area of interest, ii Determine areas that are not visible (i.e.,
accurately classify regions affected by artifacts), iii Identify alternative trajectories to
access areas impacted by corruption.

To accomplish this objective, we introduce a novel approach for determining the
robot’s trajectory as follows:

1. We establish a first optimizer to guarantee complete coverage of the area be-
ing scanned. The first optimizer is agnostic to the presence and location of
shadowing structures and only operates based on the defined region of interest,
regardless of its shape. A first ultrasound scan is performed based on the result
of this first optimization process

2. A second optimizer analyzes the data collected during the first acquisition and
performs two tasks: a. It identifies areas affected by shadowing and b. It
suggests alternative trajectories that would allow approaching the corrupted
areas from different angles.

The proposed method is modular and offers multiple advantages: i. It provides
a general optimizer for volume coverage that is independent of the shape of the
scanned area and can be modified with additional regularised according to the specific
requirements of the application. ii. It allows for calculating pixel-wise occlusion
occurrence in the acquired images and employs a second optimizer to refine the initial
trajectory in order to i. avoid rescanning of already known regions, and ii. explore the
corrupted areas from angles that may minimize the occlusion.

8.2 Methodology

In this chapter, we present the two optimization techniques aimed at determining the
optimal trajectory for covering a designated volume of interest, as well as computing
a refined trajectory that minimizes the occurrence of acoustic shadowing during
ultrasound scanning. We call these two optimizers Volume Coverage Optimizer and
Shadow Reduction Optimizer
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8.2.1 Volume Coverage Optimizer

The objective of this optimizer is to guarantee comprehensive coverage of the specified
volume of interest. The probe’s pose is represented by its position (x, y, z) and
orientation (Ωx, Ωy, Ωz). We define the space W of all possible probe poses that the
robot can assume. The optimizer’s task is to sort these poses in order of priority, with
the output being a set of weights assigned to each pose such that higher weights are
given to poses that provide better coverage of the target region of interest (ROI).

To formulate the optimization function, we first establish a voxel grid centered around
the volume of interest. When the probe scans the volume, we say that a given probe
pose covers a given voxel if the ultrasound plane at that pose intersects with the voxel.
To account for reduced resolution away from the transducer’s focal point, we adjust
the coverage value by the voxel’s distance from the probe’s focal point. Given a probe
pose t(x, y, z, Ωx, Ωy, Ωz) and a voxel v in the defined grid, we can formulate the voxel
coverage d(t, v) between the voxel v and the pose t as follows:

V oxel Coverage = d(t, v) =

f(t, v), if v is intersected by t

0, otherwise
(8.1)

where f is a function that linearly decreases with increasing distances from the focal
point.

The objective of the coverage optimizer is to determine a set of N probe poses that
optimize the coverage of the specified volume of interest. An initial derivation of the
optimization function is represented by the following equation:

EV C = c1 · exp(−
∑
t,v

d(t, v) · w(t)) (8.2)

In this equation, the coverage of the volume is computed as the sum of the coverage
over all voxels in the defined grid. However, this formulation has the drawback
of being prone to falling into local minima, where the optimizer may select poses
that only cover limited areas in repetitive manners. To mitigate this limitation, a
regularization term is added to the energy function. This way, the optimizer not only
maximizes the overall coverage but also ensures that the coverage is evenly distributed
among the voxels.
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EV C = c1 · exp(−
∑
t,v

d(t, v) · w(t)) + c2 ·
∑

v

(
∑

t

(d(t, v) · w(t) − covv)) (8.3)

where covv is the average voxel coverage. We can see that the added term forces
the variance of the voxel-wise coverage to be low, ensuring all voxels are equally
covered.

Finally, to prevent the assigned weights from diverging to large values and ensure
stability in the optimization process, we include an additional regularization term that
minimizes the sum of the frame weights:

EV C = c1 ·exp(−
∑
t,v

d(t, v)·w(t))+c2 ·
∑

v

(
∑

t

(d(t, v)·w(t)−covv))+c3 ·
∑

t

w(t) (8.4)

The coefficient c1, c2, and c3 determine the effect of each of the terms on the overall
energy function and are selected empirically. The number of poses to be selected is
chosen when a predefined desired average pose coverage is reached.

8.2.2 Shadow Reduction Optimizer

The objective of the shadow reduction optimizer is to determine an alternative trajec-
tory that reduces the occurrence of voxels being occluded in comparison to a previous
trajectory. To this end, we first need to determine which areas in the acquired volume
are occluded, i.e. to classify occluded voxels. For this purpose, we utilize confidence
maps [52]. Confidence maps are computed on B-mode ultrasound images and defined
for a given pixel as the probability of a random walk reaching a transducer element
starting from that pixel. We can therefore say that the confidence value at each pixel is
correlated with the presence of shadowing artifacts, with low confidence values being
likely associated with shadowed pixels and high confidence values with non-shadowed
pixels. Since a given voxel v in the defined grid can be intersected by different ultra-
sound planes, thus by different bmode images, we classify v as non-occluded if its
confidence value is above-threshold in at least one of the ultrasound images acquired
during the first acquisition. After classifying each voxel in terms of occlusion, we
formulate a new optimization function aimed at recalculating new pose weights in
order to maximize the coverage of the occluded voxels, while ensuring that poses
that have previously caused occlusions are not repeated, and new poses reaching
occluded voxels are explored. To summarize, such energy function should ensure the
following:
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1. Poses that cover unseen or occluded voxels are prioritized

2. When trying to explore occluded voxels, new poses should be explored, possibly
far from the ones affected by occlusions in the first acquisition.

In mathematical terms, we can formulate the energy function as:

EASR = EV Cocc +c4 ·
∑

t

[w(t) · gocc(t)]+c5 ·
∑

t

w(t) ·
∑
i,j

[∑
v∈V

d(t, v) · covered(v)
]

(8.5)

where EV Cocc is the volume coverage function as defined in section 9.2.1, computed
considering occluded voxels only and gocc(t) is a multivariate gaussian function defined
as:

gocc(t) =

 ∏
to∈O

N (to, σ2)

 (tx, ty) (8.6)

forcing the optimizer to choose poses lying as far as possible from the one where voxel
v results to be occluded. The last term is a regularizer penalizing poses that reacquire
already seen voxels.

8.3 Experiments and Results

In order to assess the proposed methodology, we made the following assumptions.
Firstly, the volume of interest was assumed to be square-shaped. Secondly, only
1 degree of freedom in rotation, specifically the tilting angle, was considered for
simplicity. As for the translational component of the probe pose, only the x, y directions
were taken into account, as the z direction is regulated by a force controller, as outlined
in section 4.2.4.

To evaluate the proposed method, we performed extensive simulation experiments in
a controlled environment. We further evaluate the potential of the application using a
real robotic-ultrasound setup and a custom-designed phantom.
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8.3.1 Simulation Experiments

To generate the simulated acquisition environment, we utilized the ImFusion software.
For the simulated acquisitions, we defined four different phantoms, depicted in Figure
8.1

Fig. 8.1: The phantom utilized for the simulation experiments ©2022 IEEE

Each phantom was assigned highly reflective properties, comparable with one of
the bone tissues in humans. We simulated two different media where the phantoms
were inserted, the first simulating water-like material and the second soft-tissue-like
material. For the simulation, we utilized a ray-tracing model, employing a generative
model to simulate speckles properties. The method was implemented in the ImFusion
suite. The acoustic impedance, speed of sound, and attenuation coefficient chosen for
the phantom and media characterization are reported in Table 8.1.

Tab. 8.1: MATERIAL PROPERTIES OF SIMULATED TISSUES

Acoustic
Impedance
(MRayl)

Speed of Sound
(m/s)

Attenuation
Coefficient
(Mhz/cm)

Phantom 0.612 3600 7.9

Water-like medium 0.149 1492 0.019

Soft Tissue-like medium 0.163 1540 0.54

We used a linear probe with a 32.5 mm width, a central frequency of 2Mhz, a depth
of 10cm, and a focal distance of 2.5cm. For the optimizers, the volume of interest was
divided into 8x10x6 voxels, and the values of the coefficients c1, c2, c3, c4, c5 were
set empirically to 1, 1, 1, 2, 500. We measured the effect of the volume coverage
optimizer in terms of covered pixels, where we used the definition of coverage defined
in 8.1. To evaluate the performance of the shadowing optimizer, we measure the
intensity level of the areas lying below the shadowing structures, as we expect that
shadowed areas appear darker.

As a baseline, we employ parallel and random robot trajectories. The impact of
the volume coverage optimizer on parallel and random scans is assessed, and the
combination of the occlusion reduction module with parallel, random, and volume
coverage optimized scans are evaluated. The results are presented in figure 8.2. The
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quantitative results for the described methods and baseline are reported in Table 8.2.

Fig. 8.2: The results of the compounding for the proposed and baseline methods ©2022 IEEE

Tab. 8.2: EVALUATION RESULTS. ASR IS SHADOW REDUCTION, VC IS VOLUME COVERAGE.
RANDOM SCANS ARE AVERAGED OVER 10 RUNS. ©2022 IEEE

phantom method
soft tissue water

avg. avg. avg. combined avg. number avg. avg. avg. number
coverage confidence intensity intensity of poses coverage confidence of poses

Square

perpend. 0.921 0.442 21.520 21.323 80 0.750 0.352 80
perpend. + ASR 0.958 0.460 22.187 28.021 138 0.942 0.441 191

random 0.598 0.287 31.267 29.655 80 0.585 0.255 80
random + ASR 0.754 0.362 25.007 29.014 162 0.741 0.332 167.7

VC 0.983 0.472 9.963 9.712 448 0.954 0.454 448
VC + ASR 0.992 0.476 5.280 10.695 468 0.954 0.454 505

Two plates

perpend. 0.894 0.429 10.033 9.020 80 0.833 0.400 80
perpend. + ASR 0.975 0.468 14.831 20.750 106 0.900 0.432 174

random 0.441 0.212 27.914 26.775 80 0.428 0.188 80
random + ASR 0.514 0.247 16.465 23.841 113 0.525 0.232 129.5

VC 0.973 0.467 10.794 10.518 448 0.883 0.424 448
VC + ASR 0.981 0.471 6.067 11.460 474 0.900 0.432 609

Two beams,
parallel

perpend. 0.915 0.439 4.825 3.822 80 0.850 0.404 80
perpend. + ASR 0.975 0.468 8.757 14.664 116 0.917 0.436 166

random 0.339 0.163 28.930 27.735 80 0.579 0.236 80
random + ASR 0.499 0.240 22.354 28.722 138.4 0.740 0.300 146.6

VC 0.992 0.476 8.268 7.266 448 0.950 0.456 448
VC + ASR 0.992 0.476 3.688 8.941 460 0.965 0.460 499

Two beams,
non-parallel

perpend. 0.890 0.427 15.517 14.466 80 0.840 0.390 80
perpend. + ASR 0.904 0.434 13.021 20.924 211 0.917 0.436 166

random 0.567 0.272 15.106 13.701 80 0.628 0.260 80
random + ASR 0.757 0.363 12.760 16.058 195.7 0.773 0.325 155.3

VC 0.910 0.437 12.935 11.827 448 0.950 0.440 448
VC + ASR 0.910 0.437 10.849 16.484 577 0.970 0.450 490

The findings indicate that the implementation of the proposed shadow-reduction
optimizer leads to an improvement in both the overall coverage and the pixel visibility,
irrespective of the type of phantom employed. However, in some cases, the use of
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this optimizer results in lower intensities below the phantom surface as compared
to compounding the images acquired during the first scan alone. This is likely to
occur when the optimizer encounters new occlusions for voxels that were successfully
covered during the initial iteration. In such scenarios, the utilization of weighted
compounding may alleviate this effect.

Moreover, the optimal outcome is obtained by combining the volume coverage opti-
mizer with the shadow reduction optimizer, albeit at the cost of lengthier scanning
times (more poses to be acquired). Therefore, for procedures where scanning time is
a critical factor (such as acquisitions performed in breath-hold), it is recommended to
employ parallel scanning in conjunction with the shadow-reduction optimizer, which
produces marginally lower performance but faster scanning times.

8.3.2 Real Robot Experiment

To evaluate the potential of the proposed methodology in a more realistic environ-
ment, we conducted experiments using a real robot scanning a custom 3D-printed
rectangular phantom placed in water. For this purpose, we used a KUKA LBR iiwa 14
R830 robot, with a Siemens Acuson ultrasound device equipped with a linear probe.
Results of the robot experiments are reported in figure 8.3 and table 8.3 and show
consistency with the simulation experiments.

Fig. 8.3: Compounding results obtained with the real robot ©2022 IEEE
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Tab. 8.3: RESULTS FOR THE PROPOSED OPTIMIZERS AND BASELINE OBTAINED WITH
THE REAL ROBOT-ULTRASOUND SETUP ©2022 IEEE

method avg. avg. number of scanning
coverage confidence poses time (s)

perpend. 0.425 0.052 40 65
perpend. + ASR 0.433 0.058 71 137

random 0.213 0.024 37 97
random + ASR 0.279 0.036 71 186

VC 0.4375 0.064 176 88
VC + ASR 0.438 0.064 211 175

8.4 Conclusion

In conclusion, this study presents novel optimization methods for robot acquisition
optimization. The effectiveness of the proposed optimizer was demonstrated through
both simulation experiments and real robot experiments. However, this work made
certain assumptions, such as the flat patient surface assumption and the reduced
degrees of freedom of the probe pose. Future research should focus on extending
the proposed method to all degrees of freedom and more complex geometries of the
working volumes. Moreover, conducting experiments on humans or animals would
allow for the evaluation of the impact of motion artifacts on the effectiveness of the
optimizers. Implementing the methods in real-time, such as modifying the probe pose
in real time to cover unexplored or shadowed pixels, presents an exciting direction for
exploration, which has the potential to mitigate motion artifacts in the acquisition.
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9Conclusion and Future Directions

In conclusion, this dissertation explores ways to design intelligent robotic ultrasound
systems by leveraging multi-sensory information with anatomical and physical pri-
ors.

In the first proposed study, we developed a robotic-ultrasound method for vertebral
level detection and counting for use in clinical spine injection procedures [91]. This
system, which integrates visual and force feedback for vertebral level classification,
demonstrated that fusing force and ultrasound data yields improved results compared
to using either type of data alone. The use of a temporal convolutional network (TCN)
was also evaluated and found to improve performance compared to a simple peak
detector, suggesting that the TCN can effectively learn anatomical priors on vertebral
level positions. The method was tested on a diverse group of healthy volunteers
and showed promising results. Future works in this direction include further clinical
studies to evaluate its accuracy in pathological patients. Further automation may
also be explored, such as automating the initial probe placement and enabling spine
tracking.

To further explore the challenges and possible solutions of training deep learning
networks in presence of limited datasets, we further investigate the role and potential
of data augmentation for ultrasound data. In our research, we focused on determining
the appropriate use of data augmentation in the context of ultrasound images, which
differ in their generation principles from photographic data. To this end, we conducted
a second study in which we introduced and evaluated a novel augmentation method
for B-mode ultrasound images on a dataset of spine ultrasound images for the task of
vertebral level detection [115]. The results showed that the proposed augmentations
improved model performance and generalization ability. However, further research is
needed to investigate the robustness of the method in other US imaging tasks and to
determine the optimal combination of augmentations.

In this research, we finally examined the impact of incorporating visual and anatomical
information derived from anatomical and physical priors, as well as ultrasound visual
feedback, on the optimization of robot trajectory generation for ultrasound scanning
[121]. To this end, we proposed a novel method for improving the performance of
robotic ultrasound scanning by implementing multiple optimization modules in a
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chain and combining the resulting sweeps for the final compounding. This method
included a volume coverage module designed to efficiently cover a desired volume of
interest, as well as a shadow reduction optimization module that optimizes visibility in
presence of acoustic shadowing. The shadow reduction module leverages the system’s
ability to identify pixels affected by acoustic shadowing in the image and adjust the
robot trajectory accordingly.

The automation of medical robotics systems, has been an active area of research in
recent years, due in part to the development of deep learning techniques that have
been effective in automatically analyzing imaging and temporal data. However, there
are still several challenges that need to be addressed in order to create truly intelligent
systems. One of these challenges is the issue of data variability and limited data
availability in medical datasets, particularly in the case of ultrasound data, which
is influenced by a range of factors such as tissue attenuation, ultrasound carrier
frequency, and artifacts. This makes it difficult to create a standardized dataset that
can represent the full range of variability across patients, scanners, anatomy, and
operators. To address this, researchers are exploring ways to effectively learn relevant
features and generalize over new, unseen data, through techniques such as data
augmentation.

Another challenge in the automation of medical robots is the integration of multiple
sensory feedbacks into the robot’s control strategies. There is an ongoing debate in
the research community about whether it is best to try to mimic human behavior or to
develop machine intelligence in a more autonomous way when it comes to building
a robotic system that should take over tasks currently performed by humans. Some
argue that machine models should be treated as "black boxes" that learn to process
data in the most effective way, while others believe that certain behaviors should be
enforced based on our existing understanding of the world, such as physical laws and
properties.

In this dissertation, we focus on integrating anatomical and physical priors into the
machine and deep learning models for robot-enabled task automation. This approach
is not meant to diminish the potential of deep models to autonomously learn tasks,
but rather reflects the belief that we still have a long way to go before achieving fully
intelligent systems, and its feasibility is still under debate. In the meantime, we can
use our understanding of physical and anatomical laws to augment the capabilities of
machine models in analyzing data quickly and effectively.

88 Chapter 9 Conclusion and Future Directions



Bibliography

[1] F. W. Kremkau and K. Taylor, “Artifacts in ultrasound imaging.”, Journal of
ultrasound in medicine, vol. 5, no. 4, pp. 227–237, 1986.

[2] G. Finet, E. Maurincomme, A. Tabib, et al., “Artifacts in intravascular ultra-
sound imaging: Analyses and implications”, Ultrasound in medicine & biology,
vol. 19, no. 7, pp. 533–547, 1993.

[3] R. Rohling, A. Gee, and L. Berman, “Three-dimensional spatial compounding
of ultrasound images”, Medical Image Analysis, vol. 1, no. 3, pp. 177–193,
1997.

[4] R. M. Comeau, A. Fenster, and T. M. Peters, “Integrated mr and ultrasound
imaging for improved image guidance in neurosurgery”, in Medical Imaging
1998: Image Processing, SPIE, vol. 3338, 1998, pp. 747–754.

[5] R. N. Rohling, A. H. Gee, and L. Berman, “Automatic registration of 3-d
ultrasound images”, Ultrasound in medicine & biology, vol. 24, no. 6, pp. 841–
854, 1998.

[6] S. E. Salcudean, G. Bell, S. Bachmann, W.-H. Zhu, P. Abolmaesumi, and
P. D. Lawrence, “Robot-assisted diagnostic ultrasound–design and feasibility
experiments”, in International Conference on Medical Image Computing and
Computer-Assisted Intervention, Springer, 1999, pp. 1062–1071.

[7] M. Y. Stitz and H. M. Sommer, “Accuracy of blind versus fluoroscopically
guided caudal epidural injection”, Spine, vol. 24, no. 13, p. 1371, 1999.

[8] S. E. Salcudean, W. H. Zhu, P. Abolmaesumi, S. Bachmann, and P. D. Lawrence,
“A robot system for medical ultrasound”, in Robotics Research, J. M. Hollerbach
and D. E. Koditschek, Eds., London: Springer London, 2000, pp. 195–202,
ISBN: 978-1-4471-0765-1.

[9] W. Zhu, S. Salcudean, S. Bachmann, and P. Abolmaesumi, “Motion/force/image
control of a diagnostic ultrasound robot”, in Proceedings 2000 ICRA. Millen-
nium Conference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No.00CH37065), vol. 2, 2000, 1580–1585 vol.2.
DOI: 10.1109/ROBOT.2000.844822.

89

https://doi.org/10.1109/ROBOT.2000.844822


[10] P. Abolmaesumi, S. Salcudean, W. Zhu, S. DiMaio, and M. Sirouspour, “A user
interface for robot-assisted diagnostic ultrasound”, in Proceedings 2001 ICRA.
IEEE International Conference on Robotics and Automation (Cat. No.01CH37164),
vol. 2, 2001, 1549–1554 vol.2. DOI: 10.1109/ROBOT.2001.932831.

[11] P. Abolmaesumi, S. Salcudean, W.-H. Zhu, M. Sirouspour, and S. DiMaio,
“Image-guided control of a robot for medical ultrasound”, IEEE Transactions
on Robotics and Automation, vol. 18, no. 1, pp. 11–23, 2002. DOI: 10.1109/70.
988970.

[12] M. Greher Manfred, M. Scharbert Gisela, M. Kamolz Lars P., et al., “Ultrasound-
guided lumbar facet nerve block: A sonoanatomic study of a new method-
ologic approach”, Anesthesiology: The Journal of the American Society of Anes-
thesiologists, vol. 100, no. 5, pp. 1242–1248, May 2004, ISSN: 0003-3022.
eprint: jasa/content\_public/journal/jasa/931196/0000542-200405000-
00028.pdf.

[13] J. Hanc, E. F. Taylor, and S. Tuleja, “Deriving lagrange’s equations using
elementary calculus”, American Journal of Physics, vol. 72, no. 4, pp. 510–513,
2004.

[14] P. Marhofer, M. Greher, and S. Kapral, “Ultrasound guidance in regional
anaesthesia”, British journal of anaesthesia, vol. 94, no. 1, pp. 7–17, 2005.

[15] W. A. Berg, J. D. Blume, J. B. Cormack, and E. B. Mendelson, “Operator
dependence of physician-performed whole-breast us: Lesion detection and
characterization”, Radiology, vol. 241, no. 2, pp. 355–365, 2006.

[16] “Fundamentals of piezoelectricity”, in Piezoelectric Transducers for Vibration
Control and Damping. London: Springer London, 2006, pp. 9–35, ISBN: 978-1-
84628-332-1. DOI: 10.1007/1-84628-332-9_2.

[17] P. Soler, G. Delso, N. Villain, E. Angelini, and I. Bloch, “Superresolution spatial
compounding techniques with application to 3d breast ultrasound imaging”,
in Medical Imaging 2006: Ultrasonic Imaging and Signal Processing, SPIE,
vol. 6147, 2006, pp. 281–292.

[18] R. H. Taylor, “A perspective on medical robotics”, Proceedings of the IEEE,
vol. 94, no. 9, pp. 1652–1664, 2006.

[19] O. V. Solberg, F. Lindseth, H. Torp, R. E. Blake, and T. A. N. Hernes, “Freehand
3d ultrasound reconstruction algorithms—a review”, Ultrasound in medicine &
biology, vol. 33, no. 7, pp. 991–1009, 2007.

[20] J. C. A. Carvalho, “Ultrasound-facilitated epidurals and spinals in obstetrics”,
Anesthesiology clinics, vol. 26, no. 1, pp. 145–158, 2008.

[21] M.-A. Janvier, L.-G. Durand, M.-H. R. Cardinal, et al., “Performance evaluation
of a medical robotic 3d-ultrasound imaging system”, Medical image analysis,
vol. 12, no. 3, pp. 275–290, 2008.

90 Bibliography

https://doi.org/10.1109/ROBOT.2001.932831
https://doi.org/10.1109/70.988970
https://doi.org/10.1109/70.988970
jasa/content\_public/journal/jasa/931196/0000542-200405000-00028.pdf
jasa/content\_public/journal/jasa/931196/0000542-200405000-00028.pdf
https://doi.org/10.1007/1-84628-332-9_2


[22] B. Kerby, R. Rohling, V. Nair, and P. Abolmaesumi, “Automatic identification
of lumbar level with ultrasound”, Proceedings of the 30th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
08 - Personalized Healthcare through Technology, pp. 2980–2983, 2008. DOI:
10.1109/iembs.2008.4649829.

[23] R. Mebarki, A. Krupa, and F. Chaumette, “Image moments-based ultrasound
visual servoing”, in 2008 IEEE International Conference on Robotics and Au-
tomation, 2008, pp. 113–119. DOI: 10.1109/ROBOT.2008.4543195.

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
Large-Scale Hierarchical Image Database”, in CVPR09, 2009.

[25] A. Krupa, G. Fichtinger, and G. D. Hager, “Real-time motion stabilization with
b-mode ultrasound using image speckle information and visual servoing”, The
International Journal of Robotics Research, vol. 28, no. 10, pp. 1334–1354,
2009.

[26] J. C. Rippey and A. G. Royse, “Ultrasound in trauma”, Best Practice & Research
Clinical Anaesthesiology, vol. 23, no. 3, pp. 343–362, 2009.

[27] B. Ihnatsenka and A. P. Boezaart, “Ultrasound: Basic understanding and
learning the language”, International journal of shoulder surgery, vol. 4, no. 3,
p. 55, 2010.

[28] R. Nakadate, J. Solis, A. Takanishi, E. Minagawa, M. Sugawara, and K. Niki,
“Out-of-plane visual servoing method for tracking the carotid artery with
a robot-assisted ultrasound diagnostic system”, in 2011 IEEE International
Conference on Robotics and Automation, 2011, pp. 5267–5272. DOI: 10.1109/
ICRA.2011.5979594.

[29] N. Hungr, M. Baumann, J.-A. Long, and J. Troccaz, “A 3-d ultrasound robotic
prostate brachytherapy system with prostate motion tracking”, IEEE Transac-
tions on Robotics, vol. 28, no. 6, pp. 1382–1397, 2012.

[30] K. Ertan, C. Linsler, A. Di Liberto, M. F. Ong, E. Solomayer, and J. Endrikat,
“Axillary ultrasound for breast cancer staging: An attempt to identify clini-
cal/histopathological factors impacting diagnostic performance”, Breast Can-
cer: Basic and Clinical Research, vol. 7, BCBCR–S11215, 2013.

[31] F. Lindseth, T. Langø, T. Selbekk, et al., “Ultrasound-based guidance and ther-
apy”, in Advancements and breakthroughs in ultrasound imaging, IntechOpen,
2013.

[32] A. S. B. Mustafa, T. Ishii, Y. Matsunaga, et al., “Development of robotic system
for autonomous liver screening using ultrasound scanning device”, in 2013
IEEE international conference on robotics and biomimetics (ROBIO), IEEE, 2013,
pp. 804–809.

Bibliography 91

https://doi.org/10.1109/iembs.2008.4649829
https://doi.org/10.1109/ROBOT.2008.4543195
https://doi.org/10.1109/ICRA.2011.5979594
https://doi.org/10.1109/ICRA.2011.5979594


[33] C. Nadeau and A. Krupa, “Intensity-based ultrasound visual servoing: Model-
ing and validation with 2-d and 3-d probes”, IEEE Transactions on Robotics,
vol. 29, no. 4, pp. 1003–1015, 2013. DOI: 10.1109/TRO.2013.2256690.

[34] A. M. Priester, S. Natarajan, and M. O. Culjat, “Robotic ultrasound systems in
medicine”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control,
vol. 60, no. 3, pp. 507–523, 2013.

[35] I. Kuhlemann, R. Bruder, F. Ernst, and A. Schweikard, “We-g-brf-09: Force-and
image-adaptive strategies for robotised placement of 4d ultrasound probes”,
Medical Physics, vol. 41, no. 6Part30, pp. 523–523, 2014.

[36] D. Nicholls, L. Sweet, and J. Hyett, “Psychomotor skills in medical ultrasound
imaging: An analysis of the core skill set”, Journal of Ultrasound in Medicine,
vol. 33, no. 8, pp. 1349–1352, 2014.

[37] P. Chatelain, A. Krupa, and N. Navab, “Optimization of ultrasound image
quality via visual servoing”, in 2015 IEEE international conference on robotics
and automation (ICRA), IEEE, 2015, pp. 5997–6002.

[38] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition,
2015. arXiv: 1512.03385 [cs.CV].

[39] S. Merouche, L. Allard, E. Montagnon, G. Soulez, P. Bigras, and G. Cloutier, “A
robotic ultrasound scanner for automatic vessel tracking and three-dimensional
reconstruction of b-mode images”, IEEE transactions on ultrasonics, ferro-
electrics, and frequency control, vol. 63, no. 1, pp. 35–46, 2015.

[40] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition”, in International Conference on Learning Representa-
tions, 2015.

[41] S. Yu, K. K. Tan, B. L. Sng, S. Li, and A. T. H. Sia, “Real-time automatic spinal
level identification with ultrasound image processing”, in 2015 IEEE 12th
International Symposium on Biomedical Imaging (ISBI), Apr. 2015, pp. 243–
246. DOI: 10.1109/ISBI.2015.7163859.

[42] L.-A. Duflot, A. Krupa, B. Tamadazte, and N. Andreff, “Towards ultrasound-
based visual servoing using shearlet coefficients”, in 2016 IEEE International
Conference on Robotics and Automation (ICRA), 2016, pp. 3420–3425. DOI:
10.1109/ICRA.2016.7487519.

[43] C. Graumann, B. Fuerst, C. Hennersperger, F. Bork, and N. Navab, “Robotic
ultrasound trajectory planning for volume of interest coverage”, in 2016
IEEE international conference on robotics and automation (ICRA), IEEE, 2016,
pp. 736–741.

[44] C. Hennersperger, B. Fuerst, S. Virga, et al., “Towards mri-based autonomous
robotic us acquisitions: A first feasibility study”, IEEE transactions on medical
imaging, vol. 36, no. 2, pp. 538–548, 2016.

92 Bibliography

https://doi.org/10.1109/TRO.2013.2256690
https://arxiv.org/abs/1512.03385
https://doi.org/10.1109/ISBI.2015.7163859
https://doi.org/10.1109/ICRA.2016.7487519


[45] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, Densely connected
convolutional networks, 2016. arXiv: 1608.06993 [cs.CV].

[46] C. Nadeau, A. Krupa, J. Petr, and C. Barillot, “Moments-based ultrasound
visual servoing: From a mono- to multiplane approach”, IEEE Transactions
on Robotics, vol. 32, no. 6, pp. 1558–1564, 2016. DOI: 10.1109/TRO.2016.
2604482.

[47] P. A. Patlan-Rosales and A. Krupa, “Automatic palpation for quantitative ultra-
sound elastography by visual servoing and force control”, in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2016,
pp. 2357–2362. DOI: 10.1109/IROS.2016.7759367.

[48] S. Virga, O. Zettinig, M. Esposito, et al., “Automatic force-compliant robotic
ultrasound screening of abdominal aortic aneurysms”, in 2016 IEEE/RSJ
international conference on intelligent robots and systems (IROS), IEEE, 2016,
pp. 508–513.

[49] S. Wang, D. Singh, D. Johnson, K. Althoefer, K. Rhode, and R. J. Housden,
“Robotic ultrasound: View planning, tracking, and automatic acquisition of
transesophageal echocardiography”, IEEE Robotics & Automation Magazine,
vol. 23, no. 4, pp. 118–127, 2016. DOI: 10.1109/MRA.2016.2580478.

[50] O. Zettinig, B. Fuerst, R. Kojcev, et al., “Toward real-time 3D ultrasound
registration-based visual servoing for interventional navigation”, pp. 945–950,
2016.

[51] N. Baka, S. Leenstra, and T. van Walsum, “Ultrasound aided vertebral level
localization for lumbar surgery”, IEEE transactions on medical imaging, vol. 36,
no. 10, pp. 2138–2147, 2017.

[52] P. Chatelain, A. Krupa, and N. Navab, “Confidence-driven control of an ultra-
sound probe”, IEEE Transactions on Robotics, vol. 33, no. 6, pp. 1410–1424,
2017.

[53] R. Elek, T. D. Nagy, D. A. Nagy, et al., “Robotic platforms for ultrasound
diagnostics and treatment”, in 2017 IEEE international conference on systems,
man, and cybernetics (SMC), IEEE, 2017, pp. 1752–1757.

[54] S. Gerlach, I. Kuhlemann, P. Jauer, et al., “Robotic ultrasound-guided sbrt of
the prostate: Feasibility with respect to plan quality”, International journal of
computer assisted radiology and surgery, vol. 12, no. 1, pp. 149–159, 2017.

[55] J. Hetherington, V. Lessoway, V. Gunka, P. Abolmaesumi, and R. Rohling,
“SLIDE: automatic spine level identification system using a deep convolutional
neural network”, en, International Journal of Computer Assisted Radiology
and Surgery, vol. 12, no. 7, pp. 1189–1198, Jul. 2017, ISSN: 1861-6410,
1861-6429.

Bibliography 93

https://arxiv.org/abs/1608.06993
https://doi.org/10.1109/TRO.2016.2604482
https://doi.org/10.1109/TRO.2016.2604482
https://doi.org/10.1109/IROS.2016.7759367
https://doi.org/10.1109/MRA.2016.2580478


[56] R. Kojcev, A. Khakzar, B. Fuerst, et al., “On the reproducibility of expert-
operated and robotic ultrasound acquisitions”, International journal of com-
puter assisted radiology and surgery, vol. 12, no. 6, pp. 1003–1011, 2017.

[57] P. A. Patlan-Rosales and A. Krupa, “Strain estimation of moving tissue based
on automatic motion compensation by ultrasound visual servoing”, in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2017, pp. 2941–2946. DOI: 10.1109/IROS.2017.8206128.

[58] L. Schwentner, G. Helms, V. Nekljudova, et al., “Using ultrasound and palpa-
tion for predicting axillary lymph node status following neoadjuvant chemotherapy–
results from the multi-center sentina trial”, The Breast, vol. 31, pp. 202–207,
2017.

[59] G.-Z. Yang, J. Cambias, K. Cleary, et al., Medical robotics-regulatory, ethical,
and legal considerations for increasing levels of autonomy, 2017.

[60] Y. Zhu, Z. Fu, and J. Fei, “An image augmentation method using convolutional
network for thyroid nodule classification by transfer learning”, in 2017 3rd
IEEE International Conference on Computer and Communications (ICCC), IEEE,
2017, pp. 1819–1823.

[61] A. Denasi, F. Khan, K. J. Boskma, et al., “An observer-based fusion method
using multicore optical shape sensors and ultrasound images for magnetically-
actuated catheters”, in 2018 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2018, pp. 50–57.

[62] J. Esteban, W. Simson, S. R. Witzig, et al., “Robotic ultrasound-guided facet
joint insertion”, International journal of computer assisted radiology and surgery,
vol. 13, no. 6, pp. 895–904, 2018.

[63] Q. Huang, J. Lan, and X. Li, “Robotic arm based automatic ultrasound scanning
for three-dimensional imaging”, IEEE Transactions on Industrial Informatics,
vol. 15, no. 2, pp. 1173–1182, 2018.

[64] X. Qi, N. Vora, L. Riera, et al., “Automatic scan plane identification from 2d
ultrasound for pedicle screw guidance”, CAOS, vol. 2, pp. 168–174, 2018.

[65] S. Virga, R. Göbl, M. Baust, N. Navab, and C. Hennersperger, “Use the force:
Deformation correction in robotic 3d ultrasound”, International journal of
computer assisted radiology and surgery, vol. 13, no. 5, pp. 619–627, 2018.

[66] C. E. Alexander and M. Varacallo, “Lumbosacral facet syndrome”, in StatPearls
[Internet], StatPearls Publishing, 2019.

[67] A. Alsinan, M. Vives, V. Patel, and I. Hacihaliloglu, “Spine surface segmentation
from ultrasound using multi-feature guided cnn”, CAOS, vol. 3, pp. 6–10,
2019.

94 Bibliography

https://doi.org/10.1109/IROS.2017.8206128


[68] M. Antico, F. Sasazawa, L. Wu, et al., “Ultrasound guidance in minimally
invasive robotic procedures”, Medical image analysis, vol. 54, pp. 149–167,
2019.

[69] J. Carriere, J. Fong, T. Meyer, et al., “An admittance-controlled robotic assis-
tant for semi-autonomous breast ultrasound scanning”, in 2019 international
symposium on medical robotics (ISMR), IEEE, 2019, pp. 1–7.

[70] W. Al-Dhabyani, M. Gomaa, H. Khaled, and F. Aly, “Deep learning approaches
for data augmentation and classification of breast masses using ultrasound
images”, Int. J. Adv. Comput. Sci. Appl, vol. 10, no. 5, pp. 1–11, 2019.

[71] D. Q. Duong, K.-C. T. Nguyen, N. R. Kaipatur, et al., “Fully automated seg-
mentation of alveolar bone using deep convolutional neural networks from
intraoral ultrasound images”, in 2019 41st Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2019,
pp. 6632–6635.

[72] Y. A. Farha and J. Gall, “Ms-tcn: Multi-stage temporal convolutional network
for action segmentation”, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 3575–3584.

[73] F. Langsch, S. Virga, J. Esteban, R. Göbl, and N. Navab, “Robotic ultrasound
for catheter navigation in endovascular procedures”, in 2019 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), IEEE, 2019,
pp. 5404–5410.

[74] S. Liu, Y. Wang, X. Yang, et al., “Deep learning in medical ultrasound analysis:
A review”, Engineering, vol. 5, no. 2, pp. 261–275, 2019.

[75] A. Østvik, L. E. Bø, and E. Smistad, “Echobot: An open-source robotic ultra-
sound system”, Proc. IPCAI, pp. 1–4, 2019.

[76] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation
for deep learning”, Journal of big data, vol. 6, no. 1, pp. 1–48, 2019.

[77] I. M. Skaribas, J. L. Erian, D. Reynolds, and E. E. Skaribas, “Lumbar interlami-
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