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Abstract 

Car following behaviour is one of the main behaviours in microscopic traffic flows and is 

therefore an important part of traffic flow modelling. Various car-following models have 

been proposed based on respective following principles, e.g., keeping desired space 

gap, resulting in different sets of model parameters. Moreover, traffic flows usually illus-

trate distinct characteristics under very different traffic scenarios. Car-following models 

thus should be specifically tuned to fit the traffic flow in concern, in particular the following 

principle and model parameters, such that they can be used to simulate the traffic flow 

with high accuracy and assist the analysis and evaluation of traffic management and 

control measures. Considering the complicated vehicle interactions around the highway 

entrances and exits areas, the thesis is to apply the genetic algorithm (GA) and particle 

swarm optimization (PSO) algorithm to calibrate car-following models for the highway 

entrances and exits traffic flows using a number of trajectory collections from Germany 

highway entrances and exists. Moreover, the heterogeneity in car-following behaviours 

of vehicle combination (i.e., car following car, car following truck, truck following car, truck 

following truck) is also specifically considered in the thesis. Wiedemann model is se-

lected for calibration due to its superiority in theoretical logic and easy application in 

popular traffic simulators, such as VISSIM and SUMO. Furthermore, fundamental dia-

grams are extracted from the selected trajectories to validate the nonnegligible differ-

ences in the traffic flow at highway entrances and exits from urban traffic and freeway 

traffic. The experiment results show that PSO generally outperformed GA in terms of 

convergence speed and convergence results in the devised car-following calibration pro-

cedure. Importantly, the calibrated Wiedemann models can replicate the respective traf-

fic with a relative percentage error of less than 10%. 

Keywords: car-following model, Wiedemann model, genetic algorithm, particle swarm 

optimization, highway entrance/exit 
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1. Introduction 

1.1. Background and Motivation 

The simulation of traffic flows presents an essential focus in the field of traffic control and 

planning. The traffic flow simulation reproduces the behaviour and characteristics of a 

natural traffic flow and provides a foundation for the implementation of traffic flow regu-

lation and traffic planning. 

Car-following models are an essential component of traffic flow simulation. It simulates 

the following behaviour of vehicles in their driving direction: the following vehicle adjusts 

its velocity and acceleration to the preceding vehicle's driving behaviour (Olstam & 

Tapani, 2004). The car-following model defines the interaction of drivers in the same lane 

of the traffic flow by defining the response of the target vehicle to the driving behaviour 

of the vehicle in front of it in the same lane with it (Brackstone & McDonald, 1999). Since 

the publication of the first car-following model (Pipes, 1953), various car-following mod-

els have been developed in accordance with different logical foundations, like stimulus-

based models (Gazis et al., 1961), safety distance models (Gipps, 1981), optimal speed 

models (Bando et al., 1995), psycho-physical models (Wiedemann & Reiter, 1992), etc. 

Among these models, the Wiedemann model has the most well-established theoretical 

logic and has been proven as capable of simulating microscopic traffic flows under di-

verse traffic scenarios. Therefore, several mainstream traffic flow simulation software 

nowadays utilises the Wiedemann model as the foundation for car-following simulations. 

The behavioural characteristics of microscopic traffic flows are susceptible to the influ-

ence of external factors. The typology of roadways, the composition type of microscopic 

traffic flows, the countries or regions situated, and time-of-day contribute to variations in 

traffic flow characteristics. By varying the parameter set settings of the model, the model 

is enabled to simulate traffic flows with different characteristics. To improve the simula-

tion accuracy of the model, the parameter set of the model needs to be adjusted accord-

ing to the traffic scenario being simulated. 

The process of adjusting the parameter set of models by using observed data to improve 

the accuracy of the simulation is known as calibration. To reflect actual driver behaviour 

in the simulation, before a car-following model is used for microscopic traffic flow simu-

lations, the parameters in the model should be calibrated. The calibration of car-following 

models usually uses real-world traffic trajectory data recorded in the traffic scenario with 

similar characteristics.  
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For the acquisition of real-world traffic trajectory data, several researchers have collected 

the data by installing sensors and cameras on vehicles (Pourabdollah et al., 2017; Zhu 

et al., 2018). However, as drivers differ individually in their driving styles and conventions, 

extrapolating the overall condition from the sample situation could easily be biased, es-

pecially with the insufficient sample. Therefore, some studies calibrated the car-following 

models by using datasets that record the overall traffic flow trajectory (He et al., 2015; 

Liu et al., 2021). 

The interaction of vehicles surrounding highway entrances and exits is complicated. To 

ensure the safety of vehicles during travel, the simulation of traffic flow in this scenario 

is meaningful. The Wiedemann model was selected as the calibration model because of 

the complete logical basis and the possibility of direct application in mainstream micro-

scopic traffic flow simulators such as SUMO and VISSIM. In this thesis, a recently pub-

lished dataset recording traffic flow variations in the surroundings of entrances and exits 

in German highways was utilized for the calibration. Considering the influence of the 

heterogeneity of vehicle types on driving behaviour, in this study different types of fol-

lowing pairs are distinguished and calibrated separately. Because of the multi-parameter 

property of the Wiedemann model, the calibration was conducted by using genetic algo-

rithm (GA) and particle swarm optimization (PSO) methods. 

1.2. Research Questions and Objectives 

The main objective of this study was to calibrate the car-following model of entrance/exit 

area in German highway and to obtain separate sets of parameters for different types of 

vehicles. Based on the above objectives, the following research questions are proposed: 

1) What is the difference of highway entrance/exit traffic flow from the other traffic 

scenarios?  

2) What is the difference between the following behaviour of different vehicle types?  

3) Are the simulations using the calibrated model resembling real traffic situations? 

1.3. Contribution 

The main contributions of this thesis are threefold: 

1) A newly published dataset is utilized to analyse the following behaviour of vehi-

cles in a highway entrance/exit scenario and the car-following model is calibrated 

by using this dataset. 
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2) The behavioural differences between vehicle types were considered. The car-

following data was filtered by different vehicle types and the respective parame-

ter sets are calibrated separately. 

3) The characteristics of the traffic trajectory data from the highway entrance/exit 

area were analysed utilizing the traffic flow fundamental diagram, which con-

firmed the non-negligible differences of traffic flow around the highway en-

trance/exit compared to the regular highway sections. 

1.4. Thesis Structure 

Chapter 1 of the thesis presents the background and motivation for the study, describes 

the study objectives, and provides an overview of the thesis in general. Chapter 2 re-

views the previous literature in general and presents the current literature gaps in terms 

of the car-following model and the calibration methods. Chapter 3 focuses on the meth-

odology used in this study. Chapter 4 introduces the dataset. In this chapter, traffic flow 

data is processed and analysed. Chapter 5 presents the results of the study as well as 

the analysis and discussion of the results. Chapter 6 provides an overall review and 

summary of the thesis and discusses the problems from the study as well as an outlook 

of possible further work. Figure 1 shows the framework of the thesis structure. 

 

Figure 1 Thesis framework 
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2. Literature Review 

In this chapter, the previous research relevant to the topic of this thesis is reviewed and 

summarised. Section 2.1 introduces the origins and development of the car-following 

model. In section 2.2 different car-following models are classified and briefly introduced. 

Sections 2.3 explains the reasons for calibrating the car-following model and the meth-

ods commonly used. These two methods are used in this thesis to calibrate the car-

following model. Section 2.4 describes the current research gap. 

2.1. Car-Following Models 

Car-following models describe the following behaviour of drivers towards the vehicle in 

front of them in the traffic flow. Based on the rules of safe driving in traffic regulations, 

the theory of car-following was first proposed by Pipes in 1953 (Pipes, 1953). Using the 

car-following model, the driving behaviour of individual drivers can be simulated, which 

plays an important role in the study of microscopic traffic flows. The purpose of car-fol-

lowing model is to describe the influence of the leading vehicle on the driving behaviour 

of the vehicle behind during driving process from the individual level. The car-following 

process is one of the main processes in modern traffic flow theory. With the rise and 

development of autonomous driving, the importance of this type of model has increased 

further in recent years. 

 

Figure 2.1  Typical illustration for car-following 

Figure 2.1 illustrates a typical vehicle following scenario. The car-following behaviour 

studies the longitudinal travel process of the vehicle. As the following car, the driving 

behaviour of the yellow vehicle is modulated by the behaviour of the blue vehicle ahead 

in the same lane (Olstam & Tapani, 2004).  
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Depending on the regulation logic used, car-following models were classified into five 

categories. Table 1 shows a summary comparison of the categories. A brief introduction 

and comparison between these five types of models is given in the next subsection. 

Table 2.1 Classification of car following models based on their logic (Ahmed et al., 2021) 

Model Class Model logic and Assumption 
Representative 
Model 

Stimulus based models 

The stimulus-response function between the leader and 
follower vehicle: the acceleration of the follower is propor-
tional to its speed, the speed difference between follower 
and leader, and the space headway.  

Gazis-Herman-
Rothery (GHR) 
model 

Safety distance models 
The follower always keeps a safe distance from the front 
vehicle.  

Gipps model 

Desired measure models 

An ideal situation represented by certain measures (e.g., 
following distance and following speed) is assumed. The 
following driver is constantly attempting to eliminate the 
difference between the ideal and actual situation. 

Intelligent driver 
model (IDM) 

Optimal velocity models 

The optimal safe velocity of following vehicle depends on 
the distance between follower and leader and the acceler-
ation of the following vehicle is determined based on the 
difference between the actual speed and the optimal 
speed(Lazar et al., 2016). 

Optimal velocity 
model (OVM) 

Psycho-physical models 
Thresholds are used to regulate the driving behaviour of 
following vehicle. The driver reacts to the vehicle when a 
threshold value for relative speed or spacing is reached. 

Wiedemann model 

2.2. Comparison of Different Car-Following Models 

2.2.1. General Motors model and Gazis-Herman-Rothery model 

The General Motors (GM) model is initial developed by General Motors research lab in 

1958 and it was expanded and improved in 1961 (Gazis et al., 1961). The GM model 

might be the most widely known car-following model, and it provides the basis for all 

other car-following models with varying sensitivity parameters (Koutsopoulos & Farah, 

2012). The original GM model is a linear model with a constant sensitive parameter and 

has a very simple structure, where the acceleration of the following vehicle is linearly 

related to the relative speed between it and the leading vehicles (Ahmed et al., 2021). 

One of the reasons for the deviation between the basic GM model's simulation of the 

following vehicle's acceleration and the actual situation is that the impact of the spacing 

between the front and following vehicles on the stimulus is not considered. Based on 

this, an extended GM model was proposed by Gazis et al. (1961), which is also known 

as the Gazis-Herman-Rothery (GHR) model. In GHR model the acceleration equation is 

extended to incorporate traffic density as a sensitive term and proposes different sets of 
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parameters to decide the acceleration and deceleration. The GHR model also consider 

the non-linear behaviour in the sensitivity of the distance between the following and the 

leading vehicle and sensitivity of the relative speed of the following vehicle.  

A large amount of work on the calibration of the GHR model was published between the 

1960s and 1990s (Brackstone & McDonald, 1999). However, models based on GM 

model are currently used less frequently because of their own limitations in behaviour. 

Drivers respond to arbitrarily any small change in stimulus, e.g., the relative speed of the 

following vehicle to the leading vehicle is still influenced by its leading vehicle even at 

very large relative distances. When the relative speed is zero, the follower's response 

disappears. In case that the magnitude of fluctuations of acceleration increases, GHR 

model creates a larger headway than reality. Moreover, microscopic analysis from Rock-

well and Treiterer confirms that the car-following behaviour is likely to vary with traffic 

and flow conditions (Rockwell et al., 1968), which is not considered in GM-based models.  

2.2.2. Gipps model 

Gipps model is the first general model based on safety distance logic. Unlike the GM-

based models that use the stimulus-response equations, in the safety-distance model a 

safe following distance is always maintained between the following vehicle and the lead-

ing vehicle. Within a safe distance, a collision would be unavoidable if the driver of the 

lead vehicle acted “unpredictably” (Brackstone & McDonald, 1999). The basic rule of 

safety distance was quoted by Pipes in 1953 from the safe driving regulations of the 

California Motor Vehicle Code: "A good rule for following another vehicle at a safe dis-

tance is to allow yourself the length of a car (about fifteen feet) for every ten miles per 

hour you are traveling" (Pipes, 1953).  

As an important development of safe-distance model, the Gipps model was proposed by 

Gipps in 1981. The Gipps model records the car-following behaviour when leading vehi-

cle exists and the free-flowing behaviour of the vehicle when no vehicle is ahead. The 

following driver plans his or her speed for the following instant (i.e., after the time delay) 

to make sure he or she can stop safely even the leading vehicle break suddenly. In case 

that there is no vehicle in front of the driver, the driving speed can be obtained from the 

empirical formulations which combines two conditions: (a) the speed never exceeds the 

driver’s desired speed; and (b) the acceleration decreases as the speed increases and 

becomes zero until the desired speed is reached (Gipps, 1981).  

Gipps model has been extended, modified, and calibrated by various researchers and is 

used in a variety of micro-simulation tools, such as AIMSUN, DRACULA, and SISTM for 

its simple calibration requirements (Barceló & Casas, 2005). However, one weakness of 
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the safe-distance model such as Gipps model is that the drivers’ perception is not con-

sidered. Any minor changes might end in the reaction of the following driver (Lazar et al., 

2016). 

2.2.3. Intelligent Driver model 

The intelligent driver model (IDM) is one of the most popular models using desired 

measures (Treiber et al., 2000). The IDM considers both the desired speed and the de-

sired space headway. When the front vehicle is far away, the IDM performs as a free-

flow model where the acceleration is controlled by the desired speed of the driver. The 

desired space headway in IDM is dependent on several factors: speed, speed difference, 

the maximum acceleration, a comfortable deceleration, the minimum spacing at the 

standstill situation, and the desired time headway. The IDM introduces a maximum ac-

celeration and a comfortable deceleration rate, which prevents the model from producing 

unrealistically high acceleration or deceleration. This is a significant advantage of the 

IDM over earlier car-following models such as the GHR and Gipps models (Saifuzzaman 

& Zheng, 2014). The IDM was later extended by Treiber et al. in 2003. This extended 

model captures the effects of driver adaptation to the surrounding environment by using 

a memory function (Treiber & Helbing, 2003). This extension was based on the obser-

vation that after spending time in congested traffic, most drivers will adjust their driving 

style.  

The main difficulty for models with desired measures such as IDM is that most parame-

ters are inherently unobservable, which makes their estimation more challenging. As a 

result, many such models are not empirically estimated using real traffic data. 

2.2.4. Optimal Velocity model 

The instability of traffic flow can lead to congestion on highways and expressways. To 

describe this erratic behaviour, the optimal speed model is proposed (Bando et al., 1995). 

The OVM uses the equation of motion of each vehicle to describe the dynamic process 

of traffic congestion. Bando makes three assumptions about this model, including: (a) 

each driver responds to the stimulus of the vehicle in front of him with a legal speed; (b) 

each driver observes the motion of the vehicle in front of him and controls his accelera-

tion/deceleration accordingly to maintain safe speed; (c) no response time delay is con-

sidered. In the OVM model, the driver does not overtake the vehicle in front of him under 

any circumstances. This model ensures that erratic traffic flows generate congestion ra-

ther than traffic accidents. 

Like the GHR model, OVM has the advantage that the model structure is simple and 

easy to calibrate using numerical methods. Another advantage of the OVM is that it is 
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better able to simulate following traffic in congested conditions on expressways and high-

ways. However, as noted in some studies (Lazar et al., 2016), in some cases OVM can 

produce unrealistically large accelerations. 

2.2.5. Wiedemann model 

The Wiedemann model is one of the most studied psycho-physical models. This type of 

model considers the driver's behaviour as varying according to the traffic state he/she is 

in. Psycho-physical models use a “perceptual threshold” to define the boundary condi-

tions for different states, which is a function of relative speed and relative distance to the 

leading vehicle (Wiedemann, 1974). The driver only responds to changes in spacing or 

relative speed when the threshold is reached. In this way, it also records the driver's 

attention to small spacing and lack of following behaviour for large spacing. In 1992, 

Wiedemann and Reiter applied the psycho-physical method to a simulation system 

named MISSION (Fellendorf & Vortisch, 2010). The Wiedemann model describes the 

interaction of follower and leader vehicle pairs using varying thresholds in four different 

regimes (Wiedemann & Reiter, 1992), including (1) free-flowing (the subject vehicle is 

not influenced by the leading vehicle), (2) approaching (the subject vehicle is influenced 

consciously by the slower leading vehicle), (3) following (The subject vehicle uncon-

sciously follows the preceding vehicle and the following behaviour approaches a steady 

state equilibrium), and (4) emergency (critical situations requiring braking action).  

 

Figure 2.2 Schematic representation of thresholds and regimes in Wiedemann model  

Six thresholds are defined in the relative speed and space diagram for the following pair, 

including: 

 AX: the desired distance, 

 ABX: the desired minimum following distance (the lower limit of the following regime), 

 SDX: the maximum following distance (the upper limit of the following regime), 
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 SDV: the approaching point where the following driver perceives that he or she is 

approaching a slower leading vehicle, 

 CLDV: the decreasing speed difference, and 

 OPDV: the increasing speed difference. 

Figure 2.2 depicts the boundary limits of the regime for different thresholds. 

The concepts involved in the Wiedemann model have rarely been studied. While the 

whole system is able to simulate driving behaviour very well, the calibration for individual 

thresholds does not always seem to be accurate. However, many simulations have 

shown that the basis on which it is built is undoubtedly the most consistent and best 

describes most of the characteristics we see in daily driving behaviour (Brackstone & 

McDonald, 1999). Therefore, it is currently used by most micro-simulation systems, such 

as VISSIM and SUMO. Since its introduction, the Wiedemann model has been continu-

ously enhanced. In 1999, Wiedemann updated his model (Wiedemann 99, W-99) from 

the original one (Wiedemann 74, W-74) and defined some of the thresholds in a different 

way to simulate freeway traffic better. For this reason, the driving behaviour in PTV VIS-

SIM is set to W-99 for freeway driving and W-74 for urban driving.  

After combing through the existing mainstream car-following models, it can be seen that 

the early models (such as the GHR and Gipps models) have a simple structure and fewer 

parameters to be calibrated, which makes them easy to apply. Desired measure models, 

such as the IDM model, are difficult to calibrate using real traffic data as their parameters 

are not directly observable. Optimal velocity models are good at simulating the dynamics 

of traffic flows, such as congestion on highways, but can still produce unrealistically large 

accelerations in specific cases. Psychophysiological models, such as the Wiedemann 

model, are the most complete car-following models available to describe the logic of 

driver behaviour and can describe most of the observed features of the daily driving 

behaviour well, and therefore it is the dominant car-following model used in most mi-

crosimulation systems today. However, the calibration of individual thresholds in it is not 

always accurate. For these reasons, we choose the Wiedemann model to calibrate and 

simulate the following behaviour. 

2.3. Calibration of Car-Following Model 

The car-following model describes the behaviour of the vehicle in the longitudinal direc-

tion, which includes not only the driving behaviour of the driver, but also the local traffic 

rules and possible restrictions. Drivers in different countries have different driving styles, 

drive different types of vehicles, and are subject to different traffic regulations. Drivers' 

driving behaviour and habits also respond differently on different road types. Therefore, 
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a car-following model could not simply use the default set of parameters directly to han-

dle a particular task. Parameters must be modified and adapted to fit the problem under 

consideration. This process is known as calibration. Calibration are defined as (Treiber 

& Kesting, 2013): “Calibration is the estimation of parameters to maximize the model’s 

descriptive power to reproduce local driver behaviour and/or collective traffic-flow char-

acteristics. The descriptive power is specified by an objective function to be applied to 

the test data.” For linear car-following models, such as the GM model, the solution can 

be obtained directly by linear regression. However, for most non-linear car-following 

models, after constructing the objective function using mathematical methods, the ap-

proximate minimum value of the objective function needs to be obtained by iteration. The 

following discussion focuses on the mathematical principles of constructing the objective 

function and the commonly used non-linear optimisation methods. 

2.3.1. Mathematical Principles 

There are two main mathematical methods to formulate the calibration problem, the least 

squared errors, and the maximum likelihood. 

1) The Ordinary Least Square (OLS) method 

OLS is an intuitive method in regression analysis to approximate the solution of overde-

termined systems. The objective function is defined directly in terms of a sum of squared 

errors (SSE), or the mean squared error (MSE) between the test data and the model 

prediction. The MSE is treated as a function of the parameters while the data are fixed. 

For models which comprise a linear combination of the parameters, the regression model 

is linear, which is called linear least squares. For non-linear models, generally could not 

find a closed-form solution. In this case, numerical algorithms are used to find the value 

of the parameters that minimize the objective. By setting initial values and iteratively re-

fining the parameters, an approximation to the minimum value can be obtained. 

2) Maximum likelihood estimation (MLE) 

The MLE is a method of estimating the parameters of an assumed probability distribution. 

As the MLE is explicitly based on probability, random elements with specific properties 

are necessary. If the model to be calibrated is deterministic, random noise needs to be 

added to it. The probability or probability density 𝑝(𝒚𝑖
𝑠𝑖𝑚|𝜷) is defined that, at time 𝑡𝑖, the 

model makes the predictions 𝒚𝑖
𝑠𝑖𝑚 to a given parameter vector 𝜷 and suitable data driven 

conditions for the prior stem 𝑡𝑖−1 or the initial state. The state to be predicted could be 

the speed and the gap between the following-pair, but also the detector counts, travel 

times, or propagation velocities of traffic waves. The likelihood function is defined as the 

joint probability that the model predicts all data points. The MLE of a parameter is 
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obtained by maximizing the likelihood function. The MLE reduces the calibration problem 

to a multi-variate non-linear optimization problem.  

2.3.2. Non-linear Optimizations 

For the problem that minimizing non-linear functions of several variables, is usually a 

complex task with no unique “one size fits all” solution. In terms of speed and robustness, 

the “best” solution for finding the global minimum depends on the complexity of the ob-

jective function.  

 

Figure 2.3 Examples of objectie function: (a) smooth function with a single global minimum, (b) smooth function with no 

definie minimum, and (c) objective function with a rugged fitting landscape (Treiber & Kesting, 2013). 

Figure 2.3 shows three forms of objective functions. Figure 2.3 (a) and (b) show the local 

trajectory ML calibrations, and (c) shows a global OLS calibration to stationary detector 

data. 

The calibration methods for car-following models can be grouped into two categories. 

The first category revolves around the concept of local fit. At each simulation step, the 

empirical vehicle state is fed into the formulated model to predict its acceleration. A cost 

function is then constructed to capture the error between the simulated acceleration tra-

jectory and the corresponding experimental data, and the parameters are adjusted 

through iterations to minimize the error. This type of problem generally has a smooth 

objective function. 

For smooth and unimodal objective functions (Figure 2.3 (a)), which are differentiable 

and have a global minimum, the global optimum solution can be found using simple de-

terministic methods. Commonly used methods are: 
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 Newton’s method: This method assumes that the objective function is quadratically 

differentiable and approximately quadratic. At each iteration, the objective function is 

approximated by a quadratic function and the extreme point of this function is the next 

iteration point. The advantage of Newton’s method is fast convergence. 

 Gauss-Newton algorithm: This algorithm is a variation of Newton's method specifically 

for minimization of the sums of squares. The second derivatives are no longer re-

quired; however, this method is less robust compared to the Newton’s method.  

 Gradient descent method: the search path proceeds always along the gradient at the 

last iteration point in this method. Along this direction we can easily determinate the 

minimum by a linear search, which becomes the new iteration point. This method is 

slower but more robust than the Newton and Gauss-Newton methods. 

 Levenberg-Marquardt algorithm: This method makes a smooth transition between the 

gradient descent method and the Newton’s method and therefore combines the ad-

vantages of them. The transition is controlled by an adaptive “trust region”, which 

prevents premature convergence of the Gauss-Newton method. Levenberg-Mar-

quardt algorithm is the most popular method for objective functions in form of a differ-

entiable sum of squares. 

The second category of calibration is global-fit. Compared with local-fit, the global-fit cal-

ibration results better in the minimization of fitting error than a local-fit calibration (Punzo 

& Simonelli, 2005). However, global fit often results in highly non-linear, non-smooth ob-

jective functions. In this situation, the four deterministic methods described above are no 

longer viable because of the difficulties of derivatives calculations (Li et al., 2016). There-

fore, stochastic optimization methods need to be used to escape such minimum. Sto-

chastic optimization methods are optimization methods that generate and use random 

variables. Introducing randomness into an optimization method, can, on the one hand 

speed up progress, and on the other hand, allow the method to escape from the local 

optimum and eventually approach the global (approximate) optimum. In addition, algo-

rithms using stochastic optimization methods can often achieve almost uniformly good 

performance on many types of problems. In practice, a variety of algorithms based on 

stochastic optimization have been widely used in calibration problems for global fitting. 

Genetic algorithms (GA) and particle swarm algorithms (PSO) are popular metaheuris-

tics that have been successfully applied in recent years to calibrate car-following models. 

 Genetic algorithm (GA) 

Genetic Algorithms (GA) is a metaheuristic inspired by Darwinian evolutionary theory, in 

which the survival of fitter creatures and their genes were simulated. In the 1960s and 

1970s, John Holland and his students invented and extended genetic algorithms 

(Holland, 1992). Most of the models of GA that exist today are based on Holland's theory. 
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GA is an algorithm based on population. In GA, each possible solution corresponds to a 

chromosome and each parameter to be optimized represents a gene on the chromo-

some. A fitness function is used to assess the fitness of each individual in the population. 

GA simulates natural selection mechanisms, with a greater probability of selecting indi-

viduals with higher fitness values. After selection, chromosomes crossover to improve 

solutions. To prevent the solution from being trapped in a local optimum, in each iteration 

the operator randomly changes the genes of a portion of the individuals in the population. 

This part is called variation, which increases the exploration behaviour of the GA. 

Through selection, crossover, and mutation, the more suitable solution is maximally re-

tained and perpetuated, while the diversity of the population is maintained. 

GA is widely used in multi-objective optimization problems due to its global, parallel, and 

robust characteristics. Moreover, GA is simple in terms of search improvement and does 

not suffer from the restrictive assumption of search space. GA has been used to solve 

problems in a variety of fields, including engineering, medicine, and finance. In the trans-

portation field, GA has now been successfully applied to many aspects, such as dynamic 

traffic signal control (Sun et al., 2006), air traffic control (Hu & Di Paolo, 2009), and traffic 

model calibration (Yu & Fan, 2017). 

 Particle Swarm Optimization (PSO) 

The Particle Swarm Optimization (PSO) algorithm of continuous nonlinear functions was 

proposed by R. Eberhart and J. Kennedy in 1995 (Eberhart & Kennedy, 1995). The con-

cept was inspired on the one hand by the behaviour of social animals, especially the 

foraging behaviour of flocks of birds and fish (Marini & Walczak, 2015). On the other 

hand, the PSO algorithm is also related to genetic algorithms and evolutionary strategies.  

PSO can be described imaginatively as a flock of birds searching for food in a region. 

The flock's task is to find the largest food source (the global optimal solution). Throughout 

the search process, the flock lets other birds know the location of the food source by 

passing information about their respective positions to each other. Eventually, the whole 

flock will gather around the food source, i.e., what we call the optimal solution is found 

and the problem converges. 

An advantage of PSO is that it does not require the optimization function to be differen-

tiable, divisible, and continuous. In addition, PSO has a fast convergence rate and a 

simple algorithm structure that is easy to program and implement. However, a disad-

vantage of the PSO algorithm is that it tends to cause premature convergence due to the 

rapid disappearance of particle diversity. For a search space with multiple local optima, 

the PSO algorithm can easily fall into a local optimum and fail to obtain a global optimum. 
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As a result, the PSO algorithm is generally suitable for optimization problems with a high-

dimensional search space, where have multiple local optimum points, and for problem 

which is not necessary to obtain a very exact solution. Several researchers have used 

PSO to solve the problems in traffic field, such as calibrating the car-following model in 

congested traffic conditions (Aghabayk et al., 2016), the simulation of large-scale traffic 

flow (Liu & Yang, 2022), and developing a lane change model for autonomous based on 

PSO (Sheppard & Haberman, 2021).  

2.3.3. The current state of calibration of Wiedemann models 

In terms of car-following model calibration, in terms of three dimensions, including the 

type of car-following model, the calibration methods, and the road scenarios, numerous 

researchers have published a large number of studies in more than half a century since 

the introduction of car-following models. 

On the calibration of the Wiedemann model, Chaudhari et al. calibrated the W-99 model 

by using trajectory data based on Root-mean-square deviation (Chaudhari et al., 2022). 

Motion cameras are used to calibrate driving behaviour parameters of different types of 

vehicle-following pairs using parameter estimation methods on a main section of a mo-

torway in Los Angeles, California, U.S.A. (Durrani et al., 2016). The GA is also used in 

the calibration of the Wiedemann model, such as the calibration using real-world driving 

data in Sweden (Pourabdollah et al., 2017), the real-world data collected in the Shanghai 

Naturalistic Driving Study (SH-NDS) of urban expressway in China (Zhu et al., 2018), 

and the trajectory data at the High accident-prone roads in USA (Hamdar et al., 2015). 

In 2015, PSO is used to calibration the parameters in VISSIM (Rrecaj & MBombol, 2015). 

Aghabayk et al. used PSO to calibrate the Wiedemann model for a mixed traffic flow 

including heavy vehicles (Aghabayk et al., 2016).  

Focusing on different traffic scenarios, the GA is used to calibrate the Wiedemann model 

for an actuated signalized intersection (Park & Qi, 2005), in mixed traffic (Manjunatha et 

al., 2013), and the traffic environment with connected and autonomous vehicles (Liu & 

Fan, 2020). Leyn and Vortisch performed manual simulations of theGerman motorway 

following models using the Vissim tool (Leyn & Vortisch, 2015). 

2.4. Literature Gap 

As mentioned in the previous sections, a great deal of research has been published on 

the car-following model in the nearly 70 years since its introduction, but at the same time 

there are still a large number of gaps to be explored. 
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1) In the current mainstream research on the calibration of car-following models us-

ing real-world data, the data is mainly collected through sensors and cameras 

mounted on the vehicle. This approach has the following drawbacks: (a) only in-

formation on the trajectory of a particular vehicle can be collected, and the collec-

tion of information grows exponentially with the number of vehicles. As a result, 

traffic trajectory data collected based on sensor information is typically on the or-

der of 10 squared; (b) individual samples are susceptible to traffic conditions 

(e.g., congestion, accidents, etc.) which can lead to biased estimates of the en-

tirety, and the resulting outcome does not accurately represent the full picture of 

this traffic scenario in general. 

2) Car-following model calibration for German highway ramp areas using real-world 

data has not yet been reported. German motorways are unique in that they (a) 

have many sections with no speed limits and (b) German drivers have driving 

habits that place a high premium on the experience of driving at high speeds. 

Therefore, car-following models calibrated by previous researchers using traffic 

data from other countries and other road types cannot be directly applied to the 

traffic scenario of German motorway ramps and need to be calibrated using data 

from the same traffic scenario. 

Based on the two gaps mentioned above, the contributions of this thesis are: (a) the use 

of overall traffic trajectory data taken by drones for calibration, which has a large data 

sample size and can reduce the impact of bias caused by individual differences on the 

overall estimation; (b) the sampling location is the area near the entrance/exit of a Ger-

man highway, which is calibrated separately by distinction the type of vehicle in following 

pairs (truck or car) to obtain specific car-following model parameters for the following 

behaviour of different vehicle types in this specific traffic scenario. 
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3. Methodology 

In this chapter, the methodology used in this thesis will be introduced. The introduction 

of the methodology consists of four parts. Section 3.1 introduces briefly the software and 

tools used in this study. Section 3.3 defines the Wiedemann 99 model. In section 3.4 the 

processes of the GA and PSO methods are explained separately. 

3.1. Software and Tools 

The programming language used in this thesis is Python 3.8. Python is a widely used 

programming language in scientific research because of its large number of libraries on 

data processing, optimization algorithms, and visualization. The list of python libraries 

used in this thesis is as follows: 

 Data processing and computation: Pandas, NumPy 

 Visualization and plotting: Matplotlib 

 GA and PSO: Scikit-opt 

 Other operations: Black, Sys, Pathlib 

The hardware used in this thesis is a HP laptop with i7-1065G7 CPU and 16 GB RAM. 

3.2. Operating procedures 

 

Figure 3.1 Thesis methodology 
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3.3. Car-following model 

As we use data from the Highway, the Wiedemann 99 model (W-99) is better suited to 

this road scenario. Figure 3.2 describes the thresholds and the driving regimes. The 

complete flow chart for calculating the acceleration𝑎𝑛(𝑡 + 1) by using W-99 model is 

shown in Figure 3.3 below (Zhu et al., 2018).  

 

Figure 3.2 Thresholds and driving regimes in W-99 model (Zhu et al., 2018) 

The corresponding thresholds in the flow chart are represented as: 

∆𝑋(𝑡) =  𝑋𝑛−1(𝑡) − 𝑋𝑛(𝑡) −  𝐿𝑛−1 

∆𝑉(𝑡) =  𝑉𝑛−1(𝑡) − 𝑉𝑛(𝑡)  

𝑆𝐷𝑋𝑐 =  𝐶𝐶0 + 𝐶𝐶1 ∙ 𝑉𝑠𝑙𝑜𝑤𝑒𝑟 

𝑉𝑠𝑙𝑜𝑤𝑒𝑟 = {
𝑉𝑛(𝑡), 𝑖𝑓 ∆𝑉(𝑡) > 0  𝑜𝑟  𝐿𝑉𝑎𝑐𝑐(𝑡) < −1 𝑚/𝑠2

𝑉𝑛(𝑡) − ∆𝑉(𝑡) ∙ 𝑅𝑁𝐷, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑅𝑁𝐷 = 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑅𝑎𝑛𝑑𝑜𝑚 [−0.5, 0.5] 

𝑆𝐷𝑉 = 𝐶𝐶6 ∙ (∆𝑋(𝑡) − 𝐿𝑛−1)2 

𝑆𝐷𝑋0 = 𝑆𝐷𝑋𝑐 + 𝐶𝐶2 

𝑆𝐷𝑋𝑣 = 𝑆𝐷𝑋0 + 𝐶𝐶3(∆𝑉(𝑡) − 𝐶𝐶4) 
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𝐶𝐿𝐷𝑉 = {
−𝑆𝐷𝑉 + 𝐶𝐶4, 𝑖𝑓 𝑉𝑛−1(𝑡) > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑂𝑃𝐷𝑉 = {
𝑆𝐷𝑉 + 𝐶𝐶5, 𝑖𝑓 𝑉𝑛(𝑡) > 𝐶𝐶5

𝑆𝐷𝑉, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where: 

𝑋𝑛, 𝑋𝑛−1 = position of the following and leading vehicle respectively, 

∆𝑋 = following gap (m), 

𝑉𝑛, 𝑉𝑛−1 = velocity of the following and leading vehicle respectively (m/s), 

𝐿𝑛−1 = length of the leading vehicle (m), 

∆𝑉 = speed difference between the following and leading vehicle (m/s), 

𝑆𝐷𝑋𝑐 = minimum safe following distance (m), 

𝐿𝑉𝑎𝑐𝑐 = acceleration of the lead vehicle (m/s2),  

𝑆𝐷𝑉 = perception threshold of speed difference (m/s), 

𝑆𝐷𝑋0 = maximum following distance (m), 

𝑆𝐷𝑋𝑣 = distance threshold of following vehicle perceiving its approach to a slower leader 

(m), 

𝐶𝐿𝐷𝑉 = perception threshold of speed difference at short decreasing distances (m/s), 

𝑂𝑃𝐷𝑉 = perception threshold of speed difference at short but increasing distances (m/s), 

𝑉𝐷𝐸𝑆 = desired speed of following vehicle (km/h), 

𝑎𝑚𝑎𝑥 = maximum acceleration of vehicle (m/s2), and 

𝐶𝐶0 to 𝐶𝐶9 = model parameters. 

Table 3.3 shows the constraints applied to the Wiedemann 99 parameters according to 

Zhu et al. in 2018. The following data and boundaries are used as a reference for the 

initial value setting when initialising the following model. 
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Table 3.3 Wiedemann parameters value (Zhu et al., 2018) 

 

Parameter description Bounds Mean Std. dev. 5% 95% 

𝐶𝐶0 [m] Standstill gap  [0, 20] 1.0192 0.9696 0.1056 2.5673 

𝐶𝐶1 [m] Headway time  [0, 5] 1.4242 0.4326 0.8200 2.1980 

𝐶𝐶2 [m] “Following” variation [0, 10] 5.8715 3.9500 0.5208 9.9986 

𝐶𝐶3 [s] Threshold for entering “following” [-20, 0] -17.1579 4.7313 -19.9700 -4.5030 

𝐶𝐶4 [m/s] Negative “following” threshold [-5, 0] -0.2312 0.2604 -0.9616 -0.1006 

𝐶𝐶5 [m/s] Positive “following” threshold [0.1, 5] 1.7946 1.5706 0.1391 4.7846 

𝐶𝐶6 [10-4 rad/s] Speed dependency of oscillation [0.1, 20] 3.5519 3.8974 0.2664 11.0473 

𝐶𝐶7 [m/s2] Oscillation acceleration [−1, 1] 0.5350 0.3343 0.0974 0.9729 

𝐶𝐶8 [m/s2] Standstill acceleration [0, 8] 4.0101 3.1826 0.1087 7.9984 

𝐶𝐶9 [m/s2] Acceleration at 80 km/h [0, 8] 2.6549 3.0612 0.1095 7.8852 

𝑉𝐷𝐸𝑆 [km/h] Desired speed of following vehicle [1, 150] 86.0492 17.8998 67.2759 124.1050 
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Figure 3.2 Calculation process in Wiedemann 99 model for acceleraton of following vehicle (Zhu et al., 2018) 
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3.4. Calibration Methods 

Calibration refers to the adjustment of model parameters to improve the ability of the 

model to replicate driving behaviour and traffic characteristics. Figure 3.4 shows a gen-

eral framework of calibration. According to this framework, calibration is an iterative pro-

cess by which the error between the simulated and real values is reduced until a stopping 

criterion is achieved. 

 

Figure 3.3  General framework of calibration 

As mentioned before, in this study, the calibration methods are GA and PSO. There are 

several reasons for choosing these two optimisation methods. Firstly, as the Wiedemann 

model has multiple parameters and thresholds and there is no direct correlation between 

the thresholds, it is difficult to calibrate it directly using numerical methods. Using me-

taheuristic algorithms such as GA and PSO, by introducing randomness, largely reduces 

the amount of computation involved in the search process and can avoid the problem of 

difficult solutions using numerical methods. Secondly, the GA and PSO process is sim-

ple, the results are intuitive and the meaning of the parameters in the algorithm is easy 

to understand and adjust. The algorithms make few or no assumptions about the problem 

being optimised and, because of the stochastic nature, can search a very large space of 

candidate solutions. And by adjusting the parameters and repeating the experiments, 

convergence to the optimal solution can be achieved. 
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3.4.1. GA 

The genetic algorithm consists of three main steps in each iteration: selection, crossover, 

and mutation. Figure 3.4 illustrates the basic processes of the GA. 

 

Figure 3.4 Flow chart of GA 

1) Selection 

According to Darwin’s theory of evolution, in the natural world, the most adapted individ-

uals in nature have a greater chance of surviving and carrying on their genes to the next 

generation through mating. This causes their gene frequencies to increase in the next 

generation. To simulate natural selection, the GA used in this thesis selects individuals 

within a population by fitness proportionate selection. This selection method uses the 

fitness level to associate a probability of selection. For individual 𝑖 in the population with 

𝑁 individuals, 𝑓𝑖 is its fitness, and its probability of being selected is expressed as: 

𝑝𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑁
𝑗=1

 

This can be imagined as similar to a roulette wheel in a casino. Figure 3.4 shows an 

example of the roulette wheel. A proportion of the wheel is allocated to each of the pos-

sible selections based on their fitness value. It can be observed that the best individual 
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(with the highest Fitness value), i.e., individual 4, had the largest proportion of the roulette 

wheel, while the worst individual (individual 1) had the lowest proportion. In each selec-

tion phase of GA, two individual is selected by the roulette wheel. 

 

Figure 3.5 An example of the mechanism of fitness proportionate selection (roulette wheel selection) 

2) Crossover 

The two solutions selected by the selection process (the parent solutions) will be used 

to create the next generation. The two parent solutions will be crossed over to create two 

new child solutions. GA in this thesis uses the double-point crossover method. Figure 

3.5 shows the concept of double-point crossover. Two crossover points are picked ran-

domly from the parent chromosomes and the bits in between these two points are 

swapped between the parent chromosomes. 

 

Figure 3.6 Concept of double-point crossover 

3) Mutation 

After the child solutions have been created, one or more of their genes will be randomly 

mutated. Mutations introduce another layer of randomness to maintain the diversity of 

the population. This operator reduces the probability that the GA will fall into a local op-

timum solution. In this thesis bit string mutation is the strategy of mutation, which gene 

at random locations was flipped.  
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3.4.2. PSO  

The PSO algorithm for tracking the global optimum 𝐺𝐵𝐸𝑆𝑇 published by R. Eberhart and 

J. Kennedy in 1995 has a simple form. 

 

Figure 3.5 Flow chart: Steps of PSO algorithm. 

 

The position of the 𝑖𝑡ℎ particle in D-dimensional hyperspace is described by a vector 𝒙𝑖: 

𝒙𝑖 = [𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, . . . , 𝑥𝑖𝐷] 

And the particle swarm is formed by the population of N candidate solutions: 

𝑿 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑, . . . , 𝒙𝑵} 

In each time iteration, the position of particle changes by: 
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𝒙𝒊(𝑡 + 1) = 𝒙𝒊(𝑡) + 𝒗𝒊(𝑡 + 1) 

The mathematical formula of changing the velocity is: 

  𝒗𝒊(𝑡 + 1) =  𝑤 ∙ 𝒗𝒊(𝑡)  + 𝑐1 ∙ 𝑹1(𝑡) ∙ (𝑃𝐵𝐸𝑆𝑇𝑖 − 𝒙𝒊(𝑡)) + 𝑐2 ∙ 𝑹2(𝑡) ∙ (𝐺𝐵𝐸𝑆𝑇 − 𝒙𝒊(𝑡)),  

where 𝑤 is inertia factor of particle swarm, 𝑐1 and  𝑐2 are two acceleration constants rep-

resenting “cognitive coefficient” and “social coefficient” respectively. In general, 𝑐1 and 

𝑐2 take values in the interval [0, 4]. They weight the two control the behaviour of particles. 

𝑹1 and 𝑹𝟐 are two matrices of random numbers generated from a uniform distribution in 

[0, 1). For the tendency of the particles to move, they give a random effect. 𝑃𝐵𝐸𝑆𝑇𝑖 is the 

personal optimum recorded of the 𝑖𝑡ℎ particle.  

The stopping criterion can usually be one of the following three conditions: 

 Achieve a specified number of iterations, 

 𝐺𝐵𝐸𝑆𝑇 remains unchanged after a specified number of iterations since the last up-

date, or 

 attain the prespecified target of fitness value (Marini & Walczak, 2015). 
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4. Data Description 

This chapter describes the processing and filtering of data. Section 4.1 describes how 

and where the data were collected and section 4.2 explains pre-processing operations 

on the data, including outlier removal and aggregation. Section 4.3 performs exploratory 

data analysis on the data. Section 4.4 describes the fundamental diagram of the road 

segment. In section 4.5, the following pairs are filtered out. The process is illustrated in 

Figure 4.1. 

 

Figure 4.1 Flow chart of data processing and analysis 

4.1. Data Collection 

The following dataset used in this thesis is The Exits and Entries Drone Dataset (exiD) 

from fka GmbH (Moers et al., 2022). The exiD dataset is a new dataset that records the 

trajectories of natural road users at the exits and entrances of German highways. Using 

drones, the dataset has 92 individual records at seven different measurement locations 

at highway entrances and exits between Aachen and Cologne, Germany, where the tra-

jectories of each road user and their type are extracted. In total, the traffic trajectories of 

69,172 vehicles were extracted. The dataset uses state-of-the-art computer vision algo-

rithms, the positional error is typically less than 10 cm. 
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The data containing information on traffic trajectories are recorded by camera-equipped 

drones. All videos were recorded in fine weather conditions with high visibility and little 

wind. At the flight altitude of the drone, approximately 420 meters of the highway are 

captured, which can cover a large part of the entrance and exit ramps. The video reso-

lution is 4K and 25 frames per second. A deep neural network is used to detect road 

users in records and the detections from each frame are assigned to each other using a 

tracking-by-detection approach based on location and size to generate trajectories. The 

dataset was smoothed for the position, direction, velocity, and acceleration by using a 

Rauch-Tung-Striebel (RTS) smoother, which is a linear-Gaussian smoothing algorithm. 

The dataset provides the position, heading, lateral and longitudinal speed, and acceler-

ation of the recorded vehicles at each time step. In addition, the type of vehicle and the 

ID of the surrounding vehicles are also provided. 

An overview of one recording from the exiD dataset is shown in Figure 4.1. This image 

visualizes the traffic trajectories of an entrance and exit on a German highway.  

 

Figure 4.1 Overview image of one recording from the exiD dataset (Moers et al., 2022) 

4.2. Data pre-processing 

Data pre-processing refers to the manipulation or removal of data before it is used to 

ensure or improve the quality of the data. Data pre-processing is crucial before the start 

of an experiment as the quality of the data is directly related to the quality of the final 

results. Real data may inevitably contain a large number of missing values, and noise at 

the time of collection, or there may be outliers present as a result of manual entry errors. 

Therefore, pre-processing the data can reduce the impact of "dirty" data on the results. 

The exiD dataset was post-processed after data collection. ExiD using an RTS smoother 

to obtain the smoothed position, direction, velocity, and acceleration of the traffic trajec-

tory at each timestamp. Most missing values and data errors were automatically detected 

and resolved in this step. For errors that could not be resolved automatically, the devel-

opers of this dataset performed manual checks and processing. As a result, in the 
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datasets that we obtained, the missing values and most of the outliers during the data 

collection process have been processed and replaced. For the calibration of the car-

following model, the data needs to be further filtered and aggregated based on conven-

tional data processing.  

4.2.1. Detecting and treating outlier  

The main basis for further filtering is the reasonableness of the range of values of the 

parameters. Considering the reality of German highway traffic, in this study, the longitu-

dinal velocity range of vehicles was set to be greater than 0 and less than 150 km/h. 

Observations outside this range are considered outliers. Manual inspection of the outliers 

revealed that the outliers did not appear in discrete timeframes, but always in the form 

of a continuous sequence in the data of a certain vehicle. One explanation for this phe-

nomenon might be that the driving style of some vehicles differs too much from the to-

tality, which could be caused by special circumstances or the personal style of the driver. 

As individual data deviate from the overall distribution, calibration using a dataset con-

taining these data can also lead to a decrease in the accuracy of the results. Therefore, 

vehicle information containing outliers was removed from the training dataset. 

4.2.2. Data aggregation 

In the exiD dataset, the frame rate of the recordings is 25 Hz, which means that the time 

interval between two adjacent frames is 0.04 seconds. The calibrated car-following 

model aims to simulate as accurately as possible the behaviour of each vehicle in a 

realistic traffic scenario. The average human driver's reaction time is around one second, 

so a data accuracy of 0.04 seconds is clearly too high for this study. Aggregation of the 

time series data is required to match the realistic situation. In this study, data points within 

one second are aggregated. This means that every twenty-five consecutive data points 

in the time series will be aggregated into one data point. After aggregation, we obtain 

time series data with a time interval of one second. 

4.3. Exploratory data analysis 

Exploratory data analysis of the acquired data helps to gain the understanding of the 

data and discovering the patterns. 

In this thesis, we conducted an exploratory analysis of the car and truck data separately 

to observe the distribution of the variables to be used in the calibration part of the exper-

iment. The four variables observed were longitudinal velocity, longitudinal acceleration, 

time headway and distance headway. In discussing time headway and distance head-

way, we focused on vehicles with possible following behaviour by limiting the range of 
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distance headway to those with a distance headway of less than 120 meters from the 

vehicle in front.  

As the lateral movement of the vehicle is not considered in the car-following behaviour, 

all references to velocity and acceleration in this thesis are in the longitudinal direction 

unless otherwise stated. 

4.3.1. Variables distributions of car 

 

Figure 4.2 Distribution and kernel density estimation of velocity and acceleration of car: (a) acceleration distribution, (b) 

kernel density estimation for acceleration, (c) velocity distribution, and (d) kernel density estimation for velocity. 

 

Figure 4.2 shows the velocity distribution and the acceleration distribution of car. Kernel 

density estimation helps us to observe the probability density distribution of the data in a 

more intuitive way. As illustrated, the acceleration follows an almost symmetrical uni-

modal distribution with a very sharp peak. The peak value is approximately 0 m/s2. Most 

acceleration values are in the range of -2 m/s2 and 2 m/s2. 
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The situation differs in terms of the distribution of velocity. There are obviously bimodal 

in the probability density curve about the velocity, with a first small peak occurring at 

about 4 m/s and a second large peak at about 24 m/s. A possible explanation for this is 

that there was unusual congestion on certain sections of the road during certain sampling 

periods, resulting in a lower speed distribution for this part of vehicles. This type of con-

gestion is not common and therefore the volume of data is small in the overall picture. 

The majority of vehicles had speeds in the range of 10 to 40 m/s. 

 

Figure 4.3 Distribution and kernel density estimation of distance headway and time headway of the following car: (a) 

distance headway distribution, (b) kernel density estimation for distance headway, (c) time headway distribution, and (d) 

kernel density estimation for time headway. 

As mentioned above, in the analysis of the distance headway and time headway, the 

observations are restricted to vehicles with possible following behaviour, i.e., the dis-

tance headway falls within the range (0, 120) meters. The distributions and the kernel 

density estimations are shown in Figure 4.3. It is obviously observed that both the time 

headway and distance headway show a unimodal and right-skewed distribution, which 

approximates the Rayleigh distribution in terms of shape. The kernel density estimation 

of time headway is relatively smooth. The distance headway peaks about 20 m and the 

time headway peaks at about 0.8 m/s. 
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The feature values for the probability density distributions are listed in Table 4.3 below. 

For the distribution of velocity and acceleration, a total of 755,793 observations were 

selected. For the time headway and distance headway, a total of 450,780 observations 

were selected. As the table shown, the mean value of car velocity is 26.5 m/s, the mean 

acceleration is 0.07 m/s2, the mean time headway is 1.68 s, and the mean distance 

headway is 42.68 m. 

Table 4.2 Description of the features of cars 

 𝒗 [m/s] 𝒂 [m/s2] 𝒉 [s] 𝒔 [m] 

count 755793 755793 450780 450780 

mean 26.5014 0.0699 1.6795 42.6810 

std  6.7774 0.4912 0.9852 27.2075 

min 0.0139 -6.5093 0.01 0.23 

25% 22.0163 -0.1543 0.92 21.48 

50% 26.5283 0.039 1.42 35.0049 

75% 31.6847 0.3026 2.24 58.6125 

max 41.6498 4.4765 4.99 119.99 

Where 𝒗 is the velocity, 𝒂 is the acceleration, 𝒉 is the time headway to lead vehicle, and 

𝒔 is the distance headway to lead vehicle. 25%, 50%, and 75% represents the first, sec-

onds and the third quartiles respectively. 

4.3.2. Variables distributions of truck 

Figure 4.4 illustrates the velocity and acceleration distribution of the truck. It is noticeable 

that the velocity of the truck distributes more concentrated than the velocity of the car, 

which with a steep and slightly left-skewed unimodal distribution. The kernel density es-

timation curve of the truck's velocity is unsmooth. Most of the trucks have a concentrated 

distribution of velocities between 20 and 26 m/s. 

The acceleration distribution pattern for trucks is similar to that of cars, also with a sharp, 

approximately symmetrical, and unimodal distribution, which the concentration of values 

around 0 m/s2. The distribution of trucks is more concentrated than that of cars, most 

acceleration values of trucks are in the range of -1 m/s2 and 1 m/s2. 



Data Description 32 

 

Figure 4.4 Distribution and kernel density estimation of velocity and acceleration of truck: (a) velocity distribution, (b) kernel 

density estimation for velocity, (c) acceleration distribution, and (d) kernel density estimation for accelration. 

The distribution of time headway and distance headway between a truck, as a vehicle 

with following behaviour, and the vehicle in front of it is shown in Figure 4.5. The distri-

bution of the distance headway of the truck in the interval (0, 120) meter can be approx-

imated as a right-skewed single-peaked distribution. The kernel density estimation plot 

presents a more intuitive visualisation of this. With the help of the quantile values listed 

in Table 4.3, it can be observed that most of the time headway observations are between 

1.4 s and 3.15 s, and most of the distance headway values are between 32.08 m and 

73.74 m.  

In graphical terms, the distance headway and the time headway have coherence. This 

is obviously visible in the kernel density estimation graph. The absence of smooth edges 

on the right-hand side of the graphics indicates that the distance headway and time 

headway of some of the trucks between the front vehicle are too large and beyond the 

range of values taken in this thesis. This situation is also consistent with the observation 

in real world that trucks are usually further away from the vehicle in front than cars. 
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Figure 4.5 Distribution and kernel density estimation of distance headway and time headway of the following truck: (a) 

distance headway distribution, (b) kernel density estimation for distance headway, (c) time headway distribution, and (d) 

kernel density estimation for time headway. 

 

Table 4.3 shows the distribution features of trucks. In total, there were 214,165 observa-

tions included in the velocity and acceleration distributions. For the time headway and 

distance headway, 105,940 observations were extracted. The mean value of truck ve-

locity is 23.26 m/s, the mean acceleration is 0.02 m/s2, the mean time headway is 2.33 

s, and the mean distance headway is 54.43 m. 

Table 4.3 Discription of the features of trucks 

 𝒗 [m/s] 𝒂 [m/s2] 𝒉 [s] 𝒔 [m] 

count 214165 214165 105940 105940 

mean 23.2561 0.0232 2.3319 54.4347 

std  2.9994 0.2395 1.1507 27.6877 

min 0.7971 -3.4437 0.02 0.86 
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 𝒗 [m/s] 𝒂 [m/s2] 𝒉 [s] 𝒔 [m] 

25% 22.6953 -0.0474 1.4 32.08 

50% 23.6591 0.0066 2.19 50.73 

75% 24.6941 0.0761 3.15 73.74 

max 40.7015 2.6831 4.99 119.99 

 

Where 𝒗 is the velocity, 𝒂 is the acceleration, 𝒉 is the time headway to lead vehicle, and 

𝒔 is the distance headway to lead vehicle. 25%, 50%, and 75% represents the first, sec-

onds and the third quartiles respectively. 

A comparison of the distribution of the variables for trucks and cars follows. It can be 

noticed that cars have a wider distribution interval than trucks for both the velocity and 

acceleration variables. The distribution for trucks is more concentrated. This demon-

strates that truck drivers are less likely to exhibit acceleration/deceleration behaviour of 

large magnitude compared to car drivers. In addition, driving styles and habits of individ-

ual truck drivers differ less from each other than from the group of car drivers. 

The situation becomes different in the variables time headway and distance headway. 

Trucks show a wider distribution, while cars have a more concentrated peak. The expla-

nation for this phenomenon is that car drivers tend to keep a smaller following distance 

from the vehicle in front, whereas truck drivers usually keep a larger following distance 

because of the longer braking distance trucks required compared to cars. 

4.4. Fundamental Diagram of Traffic Flow 

The fundamental diagram gives the relationship between traffic flow speed, density, and 

volume in a section of road. It is generally used to represent the traffic capability of the 

road segment and to simulate changes in traffic flow under regulatory measures such as 

speed limits. 

Figure 4.6 shows the fundamental diagram for the data collection road section numbered 

01 in exiD dataset. In this figure 𝑞 repesents traffic volume, 𝑣 is the speed of the traffic 

flow, and 𝑘  is the traffic density in the road segment. As the seven road sections 

contained in this dataset have similar fundamental diagrams, this subsection uses the 

road segment number 01 as an example to analyze the traffic flow characteristics in this 

dataset. 
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Figure 4.6 Fundamental diagram of Data collection site 01 in exiD dataset 

It can be clearly observed from the 𝑞 − 𝑘 diagram that traffic density and traffic flux show 

a significant positive correlation. In a more typical k-q diagram, the traffic density reaches 

a maximum when the traffic flux increases to a certain value and then gradually de-

creases as the traffic flux increases. However, in Figure 4.6, this change is not observed. 

A possible explanation for this situation is the low density of traffic flow on the observed 

sections of this dataset. As the traffic flux is below the capacity of this road segment, the 

maximum traffic ability of the road is not reached and therefore the traffic density does 

not reach the maximum value of the capacity of the road section. 

Negative correlations between variables can be observed in both the 𝑞 − 𝑣  and 𝑘 − 𝑣 

plots. Compared to the 𝑞 − 𝑘 plots, the 𝑞 − 𝑣  and 𝑘 − 𝑣 plots present a less pronounced 

correlation. The explanation for this phenomenon is also because of the low density of 

traffic. In this case, the speed of the traffic flow depends mainly on the desired speed of 

each individual vehicle, which in turn is related to the driving habits of the driver and the 

characteristics of the vehicle type. Traffic flow and density have some influence on speed 

but are not the main factors. 

4.5. Selection of Following Pairs  

To begin with, we need to define the constraints of car-following behaviour. The con-

straints generally consist of three components, namely the lateral distance between the 

two vehicles (to determine that the lead vehicle is in the same lane as the following ve-

hicle), the longitudinal distance (when the front vehicle is beyond a certain distance from 

the vehicle behind, the behind vehicle is in free driving and the behaviour of the front 

vehicle has no effect on the behind vehicle), and the length of time that the following 

state is maintained (to determine that the car-following behaviour between two vehicles 

does exist and do not briefly exist in a front-to-back relationship). Table 4.4 summarize 

the parameter ranges of the car-following periods in several studies and the final criteria 

for car-following extraction used in this thesis based on previous studies. 
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Table 4.4 Summary of extraction criteria for car-following behaviour 

 Lateral distance [m] Longitudinal distance [m] Duration [s] 

(LeBlanc et al., 2013)   > 15 

(Chong et al., 2013) < 1.9 < 120 > 30 

(Fernandez, 2011)  < 100  

(Zhu et al., 2018) < 2.5 < 120 > 15 

This study 
At the same lane 

(Lane ID known)  
< 120 > 15 

 

According to most of the literature listed, the longitudinal distance between the lead ve-

hicle and the following vehicle was set to less than 120 meters and the following time 

was longer than 15 seconds in this study. By using these conditions, the following pairs 

between different types of vehicles in the dataset are filtered out. The flow chart of the 

following-pair selection, in which the following vehicle is a truck and the leading vehicle 

is a car, is illustrated in Figure 4.7.  

 

Figure 4.7 Flowchart of following-pair selection: by truck follows car 

 

Table 4.5 shows the number of car-following pairs. As can be seen in Table 4.5, in the 

dataset used in this thesis, the largest quantity of following pairs was of type car-car, with 

a total of 4,466 pairs, and the smallest quantity of following pairs was of type car-truck, 
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with only 224 pairs in 92 datasets across seven observed locations. Trucks followed cars 

the least, which might be explained by the more frequent lane changing behaviour of 

cars or by the driving habits of truck drivers who prefer to follow trucks. 

Table 4.5 Amount of different car-following type in dataset 

  Type of following vehicle 

  Car  Truck  

Type of leading 
vehicle 

Car 4466 224 

Truck  715 625 
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5. Results and Discussion  

This chapter introduces the experimental procedures and results. Section 5.1 explains 

the experimental design. In sections 5.2 and 5.3, the convergence and the performance 

of the optimization algorithms are evaluated. In section 5.4, the velocities estimated by 

the calibrated model and the observed values are compared. 

5.1. Experimental Design 

 

Figure 5.1 Flowchart of Wiedemann 99 model calibration by GA and PSO 

As shown in Figure 5.1, the experimental procedure consists of two parts, which are the 

calibration of the W-99 model and the evaluation of the calibration results. In the calibra-

tion section, the filtered car-following data is fed into the GA and PSO calibrators respec-

tively. The calibrator uses the chosen optimization algorithm (GA or PSO) to adjust the 

parameters of the model with the goal of making the difference between the model sim-

ulated output and the real observations as minimal as possible.  

5.1.1. Initialization of models 

Before calibration, the car-following model and calibrator need to be initialized. The pa-

rameters to be calibrated in the car-following model and the parameters in calibrators 

are initialized with the values recommended by the existing literature. The setting of the 
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calibrator parameters has a direct impact on the calibration results, so it is important to 

choose the appropriate parameters. 

 Wiedemann 99 model 

The initial values and bounds for the parameters to be calibrated in the W-99 model are 

given in Table 5.1. The bounds for the values are referenced from Vortisch and Zhu's 

study (Leyn & Vortisch, 2015; Zhu et al., 2018). Compared to the references, the desired 

speed boundaries 𝑉𝐷𝐸𝑆 are more narrowly defined at 72 to 108 km/h, which is set based 

on the high-speed characteristics of the traffic flow on the highway. 

Table 5.1 The default value and bound of parameters in W-99 model 

Parameter description Bounds Default  

𝐶𝐶0 [m] Standstill gap  [0, 20] 1.0192 

𝐶𝐶1 [m] Headway time  [0, 5] 1.4242 

𝐶𝐶2 [m] “Following” variation [0, 10] 5.8715 

𝐶𝐶3 [s] Threshold for entering “following” [-20, 0] -17.1579 

𝐶𝐶4 [m/s] Negative “following” threshold [-5, 0] -0.2312 

𝐶𝐶5 [m/s] Positive “following” threshold [0.1, 5] 1.7946 

𝐶𝐶6 [10-4 rad/s] Speed dependency of oscillation [0.1, 20] 3.5519 

𝐶𝐶7 [m/s2] Oscillation acceleration [−1, 1] 0.5350 

𝐶𝐶8 [m/s2] Standstill acceleration [0, 8] 4.0101 

𝐶𝐶9 [m/s2] Acceleration at 80 km/h [0, 8] 2.6549 

𝑉𝐷𝐸𝑆 [km/h] Desired speed of following vehicle [72, 108] 86.0492 

 

 GA and PSO Calibrator 

Table 5.2 and 5.3 shows the initial parameter values for GA and PSO calibrator respec-

tively. In this thesis, GA and PSO algorithms used in the calibrator are called from an 

open-source Python library named scikit-opt, which is a module built specifically for heu-

ristic algorithms (Guo, 2020). 

The initial values are set with reference to published literature on the calibration of car-

following models (Dadashzadeh et al., 2019). As PSO typically has a faster convergence 

speed than GA, a lesser maximum iteration is set for PSO in the experiments. 
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Table 5.2 Initial parameter values of PSO calibrator 

Parameter description Default 

𝑚𝑎𝑥𝐼𝑡𝑒𝑟  Maximum number of iterations  50 

𝑛𝑃𝑜𝑝  Population size 10 

𝑛𝐷𝑖𝑚  Dimension of objective function 11 

𝑝𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛  Mutation rate 0.001 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  Precision: int/float or list 1e-4 

 

Table 5.3 Initial parameter values of PSO calibrator 

Parameter description Default 

𝑚𝑎𝑥𝐼𝑡𝑒𝑟  Maximum number of iterations  40 

𝑛𝑃𝑜𝑝  Swarm size 10 

𝑛𝐷𝑖𝑚  Dimension of objective function 11 

𝑤  Inertia weight 0.5 

𝑐1  Personal learning coefficient 1 

𝑐2  Global learning coefficient 1 

 

5.1.2. Goodness-of-Fit Function Definition  

Goodness-of-Fit (GoF) function measures the accuracy of the calibrated model, which 

serves as the objective function of GA and PSO. The fitness function plays an important 

role in the selection process of an individual solution for the next generation in GA and 

determines the tendency of the particle swarm to move in PSO. In this thesis, the root-

mean-square error (RMSE) is used to define the fitness function. The RMSE is defined 

as: 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖 − 𝑥𝑖)2𝑁

𝑖=1

𝑁
 

where 𝑥𝑖 is the actual observation from real-world data in frame 𝑖, 𝑥𝑖 is the simulated 

value, and 𝑁 is the total number of frames input.  
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Since the output of the Wiedemann model is the predicted acceleration of the vehicle at 

the next time stop, the fitness function is defined as the RMSE of acceleration: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑅𝑀𝑆𝐸𝑎𝑐𝑐 =  √
∑ (𝑎𝑖 − 𝑎̂𝑖)2𝑁

𝑖=1

𝑁
 

where 𝑎𝑖 is the observed acceleration in frame 𝑖, 𝑥𝑖 is the simulated acceleration from 

W-99 model, and 𝑁 is the total number of frames input. 

5.2. Optimization Convergence Analysis 

In an optimization algorithm, convergence represents a steady state at the end of the 

process, when more iterations will not lead to further changes or improvements in the 

results. During optimization, premature convergence might be observed, where the al-

gorithm finds a stable point (usually referred to as a sub-optimal solution) too early and 

the evaluation results are worse than expected. 

5.2.1. Convergence of GA 

 

Figure 5.2 Convergence of GA calibrator: by following-pair type with car-truck, 𝑛𝑃𝑜𝑝 = 10 , 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 50 , and 

𝑝𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = 0.004 

Figure 5.2 illustrates the convergence process for calibration of the W-99 model by using 

the GA calibrator. The input following-pairs data is in type car-truck, in which the lead 

vehicle is a car, and the following vehicle is a truck. The scatter plot above shows the 

fitness value of each individual in every generation, and the line plot below presents the 

lowest fitness value achieved in each iteration. In the scatter plot we can observe that, 

in general, the distribution of fitness values for the population tends to converge as the 
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iterations increase. During the iterations, some outliers appear occasionally. This is at-

tributed to the randomness of the mutation in the algorithm. Since the direction of varia-

tion is uncertain, from the scatter plot we can observe the individuals with high fitness 

values after mutation, which are usually dropped out of the selection and do not survive 

into the next generation of inheritance. In contrast, when individuals with lower fitness 

values than their parents appear, there is a reduction in the minimum fitness value rec-

orded by the line plot. This mutation is usually passed on to the next generation. As can 

be noticed from the line plot, there is a significant decrease in the lowest fitness value of 

the population as the number of iterations increases. 

 

Figure 5.3 The optimization process by GA-calibrator in different following-pair type: (a) car-car, (b) car-truck, (c) truck-

car, and (d) truck-truck. 

As can be seen in Figure 5.3 that for the four different types of following pairs, the final 

fitness value (i.e., the RMSE between predicted acceleration and observed acceleration) 

that the GA calibrator converges to differs. In comparison, the GA calibrator has a better 

convergence for the calibration of the following pair of types of truck-cars. For data of 

type car-car and truck-truck, convergence is significantly worse. Possible reasons for this 

result are as follows:  

 Algorithm features. Because of the random characteristics of both mutation and se-

lection in GA, it is probable that during this optimization process, no better mutations 
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occurred or that genes with low fitness values were mutated but not selected by rou-

lette wheel selection. Therefore, the good mutations were not passed on to the next 

generation. 

 Dataset features. As the traffic flow conditions in the entrance/exit area of the highway 

are complex, vehicles would accelerate, decelerate, and change lanes more fre-

quently in the entrance/exit area than on a normal highway. Consequently, car-follow-

ing behaviour might also be impacted and exhibits instability. 

As mentioned earlier, mutation has a significant impact on the convergence of the GA. 

Therefore, mutation rate is a key parameter in changing the GA convergence. The ap-

propriate mutation rate varies for different optimisation problems. A mutation rate that is 

too low makes "profitable" mutations less likely to occur and will reduce the speed of 

convergence, while a mutation rate that is too high may increase the probability of a 

“good” gene being changed, which might also impact GA convergence. Therefore, it is 

important to find the appropriate mutation rate for a specific optimization problem. Figure 

5.4 shows the effect of varying the mutation rate on the convergence of the GA calibrator, 

with all other parameters kept constant. 

 

Figure 5.4 The influence of different mutation rates on the convergence of the GA calibrator under identical conditions: 

following-pair type car-truck,  𝑛𝑃𝑜𝑝 = 10, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 50. 

After comparison it is observable that, under the same conditions, the optimization pro-

cess with a mutation rate of 0.002 converges significantly worse than the other two mu-

tation rates. This is because the lower mutation rate in this scenario makes the probability 
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of obtaining a good gene lower. In the initial iterations, the optimization with a mutation 

rate of 0.008 has a higher adaptation value, but after about 30 iterations, it shows similar 

convergence to the optimization with a mutation rate of 0.004. 

5.2.2. Convergence of PSO 

 

Figure 5.5 Convergence of PSO calibrator: by following-pair type with truck-car, 𝑛𝑃𝑜𝑝 = 10, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 40, 𝑤 = 0.8, 𝑐1 =

1, and 𝑐2 = 1 

The calibration convergence process by the PSO calibrator using car-truck data is shown 

in Figure 5.5. The line graph records the change in the global optimum 𝐺𝐵𝐸𝑆𝑇 as the 

number of iterations increases. From the plot, we can observe that the fitness value of 

𝐺𝐵𝐸𝑆𝑇 decreases rapidly and converges in the first few iterations. After about 15 itera-

tions, the particles converge on a single point and do not move to other positions any-

more. Fast convergence is a property of the PSO algorithm, which is consistent with our 

observations. 

Figure 5.6 below illustrates the convergence of the optimisation using the PSO calibrator 

for different types of follow-up data. It can be seen that, in general, the PSO calibrator 

converges rapidly. The calibration of type car-car data converged the slowest of the four 

types, completing convergence at the 28th iteration. For the other three types, conver-

gence was over before the 15th generation.  

From the convergence results, despite the slowest convergence rate, the lowest fitness 

value was obtained for the calibration of the car-car data. For calibrations of type truck-

truck, despite having the fastest convergence, the convergence is the worst in compari-

son in terms of convergence values. Possible explanations for this situation are as fol-

lows: 

 Premature convergence of the PSO. This is the biggest drawback of the original PSO 

algorithm. Since the particles converge too quickly and always tend to move towards 
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the GBEST obtained in this iteration, PSO could easily fall into one of the local optima 

before it has even searched for a global optimum in space. Although PSO can reduce 

the probability of falling into a local optimum by assigning random terms to the velocity 

and direction of particle motion, the standard PSO is weakly able to escape from local 

optima compared to algorithms such as GA. 

 Dataset characteristics. Since the GA calibrator also converged the worst for truck-

truck data, it is also possible that there is relatively large variability in individual follow-

ing behaviour in this combination of following-pairs. 

 

Figure 5.6 The optimization process by PSO-calibrator in different following-pair type: (a) car-car, (b) car-truck, (c) truck-

car, and (d) truck-truck. 

For PSO, three parameters have a relatively large impact on the convergence of the 

algorithm, namely the inertia weight parameter 𝑤, the cognitive coefficient 𝑐1, and the 

social coefficient 𝑐2. These three parameters affect the inertia and tendency of the parti-

cles when they move. Figure 5.7 and Figure 5.8 show the effect of the parameter 𝑤 and 

parameters 𝑐 on the convergence process of the PSO calibrator respectively, under the 

identical conditions. 
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Figure 5.7 The influence of different inertia weight parameter on the convergence of the PSO calibrator under identical 

conditions: following-pair type car-truck,  𝑛𝑃𝑜𝑝 = 10, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 40, 𝑐1 = 𝑐2 = 1.49 

As shown in the figure, the PSO calibrator converges to a minimum at 𝑤 = 0.8 for the 

inertia weight parameter. For values of 0.3 and 0.5, there is no significant difference in 

this optimisation problem. 

 

Figure 5.8 The influence of different cognitive and social coefficient on the convergence of the PSO calibrator under 

identical conditions: following-pair type car-truck,  𝑛𝑃𝑜𝑝 = 10, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 40, 𝑤 = 0.3 

The cognition term represents tendency for individuals to replicate past behaviours that 

have proved successful, while the social term represents the tendency to follow the suc-

cessful experiences of others. In mainstream research, 𝑐1 and 𝑐2 are frequently set to 
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2.0, as this allows the search to cover areas which are centred on PBEST and GBEST. 

Another commonly used value is 1.49445, which ensures convergence of the PSO algo-

rithm. Carlisle has experimented extensively and has proposed a better set of parameter 

settings, setting 𝑐1 = 2.8 and 𝑐2 = 1.3 (Carlisle & Dozier, 2001). In the present optimisa-

tion problem, as shown in Figure 5.8, the set of parameters from Carlisle has a lower 

convergence value. For the other two options, there is no significant difference in con-

vergence. 

5.2.3. Comparison of GA and PSO 

Comparing the convergence of the GA and PSO calibrators, it can be seen that PSO 

significantly outperforms GA in terms of the convergence speed of the algorithm. PSO 

requires fewer iterations to converge rapidly, while the undirected nature of mutation 

sacrifices some of the efficiency of the GA algorithm as the convergence of GA relies 

mainly on 'effective' mutation (i.e., individual in child generation obtains lower fitness 

values by mutation). The undirected nature of mutation sacrifices some of the efficiency 

of the GA algorithm. Therefore, in general, GA requires more iterations to converge than 

PSO.  

In terms of convergence performance, the PSO algorithm usually achieves a lower fit-

ness value than the GA as well. This situation is probably because the GA is still not 

completely converged after the maximum number of iterations. Therefore, in future im-

provements, a better convergence could be considered by increasing the number of it-

erations of the GA. 

5.3. Optimization Performance Analysis 

In order to understand the simulation ability of the calibrated model to car-following be-

haviour, the performance of the calibrated model needs to be assessed by comparing 

the simulated results of the model with the real observations. 

5.3.1. Calibrated parameter values of W-99 model 

Table 5.1 and Table 5.2 present the parameters of the W-99 model after calibration using 

GA and PSO respectively. Different parameter values are obtained by using data of dif-

ferent following-pair types. 

Table 5.1 Calibrated parameters of W-99 model by GA calibrator 

Parameter description Car-Car Car-Truck  Truck-Car Truck-Truck 

𝐶𝐶0 [m] Standstill gap  4.8726 5.8139 3.1064 8.0051 
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Parameter description Car-Car Car-Truck  Truck-Car Truck-Truck 

𝐶𝐶1 [m] Headway time  4.5812 4.9331 4.7698 4.7660 

𝐶𝐶2 [m] “Following” variation 7.0157 9.9659 9.3601 7.2280 

𝐶𝐶3 [s] Threshold for entering “following” -16.2409 -9.2694 -12.8016 -12.6292 

𝐶𝐶4 [m/s] Negative “following” threshold -0.9385 -2.8122 -0.8511 -2.0539 

𝐶𝐶5 [m/s] Positive “following” threshold 3.6455 0.9240 2.7024 4.8331 

𝐶𝐶6 [10-4 rad/s] Speed dependency of oscillation 17.5722 8.7354 13.6691 17.9360 

𝐶𝐶7 [m/s2] Oscillation acceleration -0.3954 0.6699 0.2151 -0.7996 

𝐶𝐶8 [m/s2] Standstill acceleration 4.3382 0.2371 4.4260 7.8375 

𝐶𝐶9 [m/s2] Acceleration at 80 km/h 2.2306 5.6909 7.6523 6.9053 

𝑉𝐷𝐸𝑆 [km/h] 
Desired speed of following vehi-
cle 

84.4924 72.234 72.0601 73.3952 

 

From Table 5.1 we could observe that the calibration results for the same parameter 

differed using different types of car-following data. Some of these results can be ex-

plained with the help of the actual meaning of the parameters. For example, the param-

eter 𝐶𝐶0, which represents the standstill gap between the two vehicles, and looking at 

the value of 𝐶𝐶0, we can see that there is a maximum standstill gap between the truck 

and the truck, a result that corresponds to the real situation. 

Table 5.2  Calibrated parameters of W-99 model by PSO calibrator 

Parameter description Car-Car Car-Truck  Truck-Car Truck-Truck 

𝐶𝐶0 [m] Standstill gap  3.5862 0 0 1.2947 

𝐶𝐶1 [m] Headway time  5 5 5 5 

𝐶𝐶2 [m] “Following” variation 10 0 7.8606 10 

𝐶𝐶3 [s] Threshold for entering “following” -20 -7.5925 -17.2691 -18.8389 

𝐶𝐶4 [m/s] Negative “following” threshold -3.6509 -3.4204 -5 0 

𝐶𝐶5 [m/s] Positive “following” threshold 0.1 0.4526 0.1 3.8594 

𝐶𝐶6 [10-4 rad/s] Speed dependency of oscillation 0.1 9.1922 20 0.1 

𝐶𝐶7 [m/s2] Oscillation acceleration 0.3198 0.9752 -0.7654 0.9885 
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Parameter description Car-Car Car-Truck  Truck-Car Truck-Truck 

𝐶𝐶8 [m/s2] Standstill acceleration 8 0 0 0 

𝐶𝐶9 [m/s2] Acceleration at 80 km/h 5.9378 0 0 0 

𝑉𝐷𝐸𝑆 [km/h] 
Desired speed of following vehi-
cle 

72 94.3696 94.0597 72 

 

Comparing the two tables above, we can see that there are significant differences be-

tween the calibrated parameters of GA and PSO calibrators. When calibrating with the 

PSO calibrator, it is observed that the particles often converge to the parameter bound-

aries of the W-99 model. This situation did not occur in the GA calibrator. For parameter 

𝐶𝐶1, the calibration converged to the upper boundary for all four following-pair types. 

Whereas for parameter 𝐶𝐶8, the results for car-car converge to the upper boundary, while 

the other three types converge to the lower boundary. It is difficult to conclude the pattern 

in terms of the parameter values. One conjecture for this phenomenon is that the setting 

of the boundaries may not exactly match the traffic scenario being calibrated. Another 

conjecture is that the parameters that converge to the boundaries are not strongly cor-

related with the adaptation values. In such cases, due to the algorithmic nature of PSO, 

it is likely to be observed that the particles converge to the boundaries. 

5.3.2. Estimation performance evaluation 

The distribution of relative errors could be used to assess the ability of the model to 

simulate realistic situations. Because of the frequent and sudden instantaneous changes 

in acceleration, the relative error in velocity is used for error analysis in this thesis in the 

section discussing calibration errors. Figures 5.9 and 5.10 illustrate the relative error in 

velocity for calibration of the W-99 model using the GA and PSO calibrators respectively. 

The histograms of the error distribution are differentiated by the type of car-following 

pairs. 

Figure 5.9 shows the relative error distribution between the predicted velocity and the 

actual observed values for the W-99 model after calibration by using the GA calibrator. 

It is observed that the relative error is generally distributed between the range from -0.1 

to 0.1 for the four types of following pairs and the distribution peaks are around zero. 

This means that the relative error is less than 10%. The W-99 model calibrated using the 

data with the following-pair type of truck-truck has a more concentrated relative error 

distribution, indicating that it is better calibrated. One reason for this result is the velocity 

of trucks cannot change significantly suddenly. 
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Figure 5.9 Relative error of velocity by GA calibrator in different following-pair types: (a) car-car, (b) car-truck, (c) truck-

car, and (d) truck-truck. 

 

For the W-99 model calibrated using the PSO calibrator, the distribution of relative errors 

is quite similar to that using the GA calibrator. Figure 5.10 demonstrates this intuitively. 

Similarly, the relative error of calibration using the PSO calibrator is less than 10% and 

the relative error distribution is more concentrated for the truck-truck type. 

The previous analysis shows that the truck-truck group, which converged less well in the 

calibration process, obtained the most concentrated relative error distribution in the rel-

ative error analysis. That is, although the optimization process did not converge well, the 

calibrated parameters still simulated the actual situation relatively well. This phenome-

non is perhaps an implication, pointing to the fact that the fitness function we have cho-

sen for convergence in this study perhaps does not exactly correspond with the optimi-

zation objectives. 
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Figure 5.10 Relative error of velocity by PSO calibrator in different following-pair types: (a) car-car, (b) car-truck, (c) truck-

car, and (d) truck-truck. 

  

5.3.3. Simulation by calibrated model 

The next section will focus on individuals in the traffic flow. An individual vehicle is se-

lected and the acceleration at the next time frame is simulated by using the calibrated 

W-99 model from the first frame, and then the predicted velocity for the next time frame 

is calculated by using the predicted acceleration and the current velocity. the time series 

of the predicted velocity and the observed velocity for that individual are plotted in the 

same graph. By this graph, it is possible to obtain a more intuitive picture of the model's 

ability to simulate the trajectory of an individual vehicle. 

After generating the simulation plots from the model calibrated by GA and PSO, it was 

found that the GA and PSO calibrated models presented very similar results in the indi-

vidual traffic behaviour simulation plots, therefore here only the GA-calibrated W-99 

model is analysed here as an example for the single vehicle simulation. 
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Figure 5.11 Simulation of single vehicle by GA-calibrated W-99 model of different following-pair in accelration and velocity: 

(a) car-car, (b) car-truck, (c) truck-car, and (d) truck-truck 

As can be seen in Figure 5.11(a), the single-vehicle selected in the car-car following pair 

is better modelled. The time series of acceleration is plotted on the left and the velocity 
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is plotted on the right. From the acceleration plot, we can observe that the predicted and 

observed values have the same shaped time series curve, but there is a deviation of 

about a one-time frame delay between the predicted and observed values. When re-

flected in the velocities, the time series of predicted and observed values approximately 

overlap.  

In figures 5.11 (b), (c), and (d), the predicted and observed accelerations maintain shape 

consistency in only a portion of the time frames, while large deviations occur in other 

parts. This large deviation of acceleration has an impact on the simulation results for 

velocity. In figure 5.11 (c), for example, the predicted acceleration remains at zero after 

58 second, whereas in the actual observation the acceleration rises to greater than zero 

from about 60 seconds and remains positive. This is reflected in the velocity plot, where 

the predicted speed of the vehicle remains constant after 58 second, while the actual 

speed of the vehicle stays up after a small drop until it crosses the curve with the pre-

dicted speed value. One possible explanation for this phenomenon of successive anom-

alies in the acceleration predictions at some of the time frames is due to the limitations 

of the W-99 model. The fact that the predicted acceleration remains constant from a 

certain point onward may be because certain thresholds in the model settings have been 

reached. This suggests that for a particular traffic situation there may be further possibil-

ities for the model to be refined from a design perspective. 

The relationship between the predicted and observed values of velocity can be obtained 

by setting them as the x and y axes respectively. This result is illustrated in Figure 5.12. 

Again, as the GA and PSO results are very similar, therefore only the GA results is shown 

here as an example. 

As shown in Figure 5.12, although there are some deviations, in general, the true speed 

variation is simulated by the model. the data points for the car-car following pair are 

closest to the 45-degree line, which means that the car-following model calibrated by 

using data of this type could simulates good the same car-following scenario in reality 

better. For the other three types of following pairs, the speed of the rear vehicle was able 

to coincide partially with the 45-degree line (as in figures (c) and (d)), or the speed points 

are still generally distributed around the 45-degree line despite the error between them 

(as in figure (b)). 
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Figure 5.12 45-degree-line of simulated velocity by GA calibrated W-99 model and the observed velocity of different 

following-pair in accelration and velocity: (a) car-car, (b) car-truck, (c) truck-car, and (d) truck-truck 
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6. Conclusion and Outlook 

In this chapter, a summary and outlook are given for this study. Section 6.1 reviews and 

summarises the methodology, experiments, and analysis of this thesis. In section 6.2, 

some shortcomings in this study and possible directions for improvement in subsequent 

work are discussed.  

6.1. Conclusion 

The main objective of this thesis is to calibrate the car-following model, and to obtain a 

model that is able to simulate the car-following behaviour and characteristics in micro-

scopic traffic flows in the entrance/exit areas of German highways. The thesis uses the 

exiD dataset to obtain car-following data for this specific traffic scenario, which was col-

lected for seven entrance/exit areas on a section of the German highway by using a 

drone. The filtered following pairs were divided into four datasets based on the vehicle 

types of the preceding and following vehicles, and in a subsequent process, these data 

were fed individually into a calibrator to calibrate the target car-following model and ulti-

mately resulting in different sets of parameters. 

The Wiedemann 99 model was chosen as the model to be calibrated in this thesis, as it 

is the most comprehensive model at present for the logical description of driver behaviour 

and can describe most of the observed features of everyday driving behaviour well and 

is used frequently in the simulation of highway microscopic traffic flows. Because of the 

large number of parameters (11 parameters) that need to be calibrated in the 

Wiedemann model, calibration by using traditional numerical methods is difficult and 

therefore this thesis has chosen to use meta-heuristic algorithms, namely GA and PSO, 

for calibration. 

After initialising the parameters of the Wiedemann model and the calibrators of GA and 

PSO, the following-pair data is fed into the calibrators respectively and the calibrated 

results are obtained after optimization of the algorithm. The performance of both GA and 

PSO algorithms in this optimisation problem is discussed by analysing the convergence 

of the algorithms. In order to evaluate the effectiveness of the calibration, the accelera-

tion and velocity of the following vehicle in all following pairs were simulated using the 

calibrated car-following model, and the resulting velocity time series were taken as rela-

tive errors to the actual observations in the dataset. By looking at the distribution of the 

relative errors, it was observed that after calibration, the relative errors in the model pre-

dictions were less than 10%. 
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To observe the simulation of the calibrated model for an individual vehicle, a single ve-

hicle was selected, and the velocity and acceleration of that vehicle were predicted by 

using the calibrated W99 model and the time series of predicted values were plotted on 

the same line graph as the real values. We can observe that for acceleration the predic-

tion error is greater than for velocity. In some of the line plots, the velocities simulated by 

the model essentially overlap with the observed values. At some points in time, the model 

appears to fail in its predictions, with the predicted acceleration ceasing to change after 

a certain point is reached. Presumably this occurs because a certain threshold of the 

model has been reached. This may mean that the model is still not a good enough de-

scription for the particular traffic scenario it is calibrated for. 

6.2. Outlook 

The experiment results show that GA and PSO are applicable to calibrate Wiedemann 

models for highway on- and off-ramps in general. However, there are still some issues 

that can be improved in future work. 

1) The lack of convergence in the GA algorithm. Although we have observed con-

vergence in the GA, the minimum of fitness value obtained is significantly higher 

than the PSO. By increasing the population size and the number of iterations, it is 

possible to increase the possibility of good mutant genes appearing and thus GA 

could potentially gain further convergence. 

2) The particles of PSO always converge at the bound for some parameters. For 

this problem, the bounds can be set manually in subsequent operations to avoid 

particles converging at the boundary values. Another approach that could be at-

tempted is referencing Wang's operation when using PSO for multi-parameter 

optimization (Wang et al., 2023). Before the optimization starts, a correlation 

analysis is performed on the parameters to be calibrated and those with high cor-

relation are selected for calibration. The distribution of the error values in space is 

obtained by Monte Carlo methods and Latin hypercube sampling, allowing visual 

observation of whether the lowest value of the error is indeed located at the 

boundary. 

3) The calibrator operates inefficiently. This is one of the reasons for the conver-

gence of the algorithm. To solve this problem, multiprocessing can be added to 

the GA and PSO calibrators to speed up the objective function in subsequent op-

erations, which have been shown to significantly reduce the operation time. 

4) The simulated situation for a single vehicle is not representative of the global sim-

ulation of traffic flow. When performing single-vehicle simulations, we have also 

observed that the model gives better results for some vehicles and worse results 
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for others. This is a bias due to the individual driving style and behaviour of the 

vehicle driver. Therefore, in order to evaluate the simulation of the model for the 

traffic flow overall, it is necessary to use traffic simulation software with the 

Wiedemann model, such as SUMO, to simulate each particle of the traffic flow 

separately using the calibrated parameters. The simulation data is then analysed. 

An assessment of the consistency of the traffic flow can be achieved by compar-

ing the fundamental diagram of traffic flow between simulated and observed val-

ues. 
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