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Abstract

Lithium-ion batteries degrade during operation and storage. This leads to a decrease in the energy
and power that can be delivered by battery systems. Monitoring of the degradation is an important
task for battery management systems (BMSs), as accurate estimates on the state of health (SOH) of
the battery are needed in order to guarantee the reliable operation of battery-powered systems. In
addition to this, methods to derive information on the battery degradation from the measurement data
recorded by the BMS during regular operation could enable the analysis of the impact of operating
conditions on battery degradation without the need for extensive laboratory experiments.
In this thesis, two methods for the estimation of the SOH of lithium-ion batteries are presented. In
the first method, the shape of the voltage curve that can be measured during partial constant cur-
rent charging phases is used to determine the degradation modes that have occurred during battery
aging. With this method, accurate estimates on the remaining cell capacity can be obtained from
partial charging processes at current rates of up to approximately C/4, if the state of charge (SOC)
window between 10% and 80% is contained in the measured charging curves. In addition to this, if
lower currents are used, the method also allows to estimate the loss of active material at the individual
electrodes based on partial charging processes. The method is independent of the estimation of the
SOC and no prior information on the progress of battery aging is needed.
The method is based on a mechanistic model describing the electrical behavior of lithium-ion cells dur-
ing aging. The invariance of the shape of the half-cell open-circuit potential (OCP) curves of electrode
materials during aging is a central hypothesis for this type of models. In this thesis, this hypothesis is
experimentally investigated for two state-of-the-art electrode materials. It is found, that the shape of
the half-cell OCP curve of NMC-811 does not change significantly during cycle aging while the shape
of the OCP curve of silicon-graphite changes. This change is probably due to a decrease in the relative
capacity contribution of the silicon because of a faster degradation of the silicon in comparison to the
graphite.
It is further shown that neglecting these changes on the half-cell level leads to an underestimation of the
loss of active anode material, an overestimation of the loss of cathode material, and an overestimation
of the loss of lithium inventory for the investigated cell type, if the degradation modes are determined
based on full-cell open-circuit (OCV) curves. The errors are in the order of a few percentage points.
In order to consider changes in the shape of the half-cell OCP curve of silicon-graphite, the half-cell
OCP curve is described by a blend electrode model. The mechanistic cell model is thus expanded to
the component level. This model extension allows the estimation of the remaining capacity fraction
provided by the silicon based on full-cell charging curves measured at a low current.
The second method for SOH estimation presented in this thesis is based on the correlation between the
increase in the gas pressure inside the case of prismatic lithium-ion cells and the decrease in the cell
capacity. This correlation was empirically observed in an aging study that is presented in this thesis.
In addition to this, results on the dependence of the gas pressure inside prismatic lithium-ion cells on
the SOC and the temperature are presented.
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Kurzfassung

Lithium-Ionen-Batterien altern im Laufe des Betriebs und während Lagerzeiten. Hierdurch verringern
sich die Energie und die Leistung, die von Batteriesystemen zur Verfügung gestellt werden können.
Die Überwachung dieser Alterung ist eine wichtige Aufgabe von Batteriemanagementsystemen, da eine
genaue Schätzung des Gesundheitszustandes (engl. state of health, SOH) der Batterie für einen zu-
verlässigen Betrieb von batteriebetriebenen Anwendungen notwendig ist. Methoden zur Bestimmung
der Batteriealterung aus während des regulären Betriebs erfassten Messdaten könnten außerdem dazu
eingesetzt werden, den Einfluss der Betriebsbedingungen auf die Batteriealterung basierend auf Feld-
daten zu untersuchen.
Im Rahmen dieser Arbeit wurden zwei Methoden zur SOH-Bestimmung von Lithium-Ionen-Batterien
entwickelt. Die erste Methode besteht darin, die auftretenden Degradationsmoden anhand der Form
der während Teilladevorgängen gemessenen Spannungskurven zu bestimmen. Mit dieser Methode kann
die verbleibende Zellkapazität mit hoher Genauigkeit, basierend auf Teilladekurven, die mit Ladestrom-
raten von bis zu ca. C/4 aufgezeichnet wurden, bestimmt werden. Eine Voraussetzung dafür ist, dass
der Ladezustandsbereich zwischen 10% und 80% in der Ladekurve enthalten ist. Für den Fall, dass
niedrigere Stromraten verwendet werden, erlaubt die Methode zusätzlich die Abschätzung des Aktiv-
materialverlusts der einzelnen Elektroden. Die Methode funktioniert unabhängig von einer etwaigen
Ladezustandsschätzung und es werden keine im Vorfeld gewonnenen Informationen über den Verlauf
der Batteriealterung benötigt.
Die Methode basiert auf einem mechanistischen Zellmodell, welches das elektrische Verhalten von
Lithium-Ionen-Zellen im Verlauf der Alterung beschreibt. Es ist eine zentrale Annahme in dieser Art
von Modellen, dass sich die Form der Halbzell-Ruhepotentialkennlinien (engl. open-circuit potential
curves, OCP-Kurven) mit der Zellalterung nicht verändert. In dieser Arbeit wird diese Annahme für
zwei dem Stand der Technik entsprechenden Elektrodenmaterialien experimentell überprüft. Es wird
gezeigt, dass sich die Form der OCP-Kurve von NMC-811 während der Alterung nicht signifikant än-
dert. Die Form der OCP-Kurve von Silizium-Graphit weist hingegen deutliche Änderungen im Verlauf
der Alterung auf. Diese Änderungen werden von einer Abnahme des relativen Beitrags des Siliziums zur
Elektrodenkapazität, ausgelöst durch eine schnellere Alterung des Siliziums im Vergleich zum Graphit,
hervorgerufen.
Des Weiteren wird gezeigt, dass für den untersuchten Zelltyp die Vernachlässigung dieser Änderungen
auf der Halbzellebene zu einer Unterschätzung des Anodenaktivmaterialverlusts, einer Überschätzung
des Kathodenaktivmaterialverlusts sowie einer Überschätzung des Verlusts von zyklisierbarem Lithium
führt, wenn die Degradationsmoden basierend auf Vollzell-Ruhespannungskurven bestimmt werden.
Die Abweichungen sind in der Größenordnung einiger Prozentpunkte. Um die Änderungen der Form
der Halbzell-OCP-Kurve von Silizium-Graphit zu berücksichtigen, kann die Halbzell-OCP-Kurve durch
ein Mischelektrodenmodell beschrieben werden. Das mechanistische Zellmodell wird hierdurch auf
die Elektrodenkomponentenebene erweitert. Diese Modellerweiterung ermöglicht die Abschätzung des
verbleibenden Kapazitätsanteils, der durch das Silizium bereitgestellt wird, basierend auf mit geringem
Strom gemessen Vollzell-Ladekurven.
Die zweite in dieser Arbeit vorgestellte Methode zur SOH-Schätzung basiert auf der Korrelation zwis-
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Kurzfassung

chen dem Anstieg des Gasdrucks innerhalb des Gehäuses prismatischer Zellen und der Kapazitätsab-
nahme der Zellen während zyklischer Alterung. Diese Korrelation wurde im Rahmen einer in dieser
Arbeit gezeigten Alterungsstudie beobachtet. Außerdem werden Ergebnisse zur Abhängigkeit des Gas-
drucks von Ladezustand und Temperatur gezeigt.
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1 Introduction

1.1 The significance of battery electric storage for the energy
transition

The transition of the global economy and society towards carbon neutrality is one of the major chal-
lenges of our age. In the 2015 Paris Agreement, the Conference of the Parties to the United Nations
Framework Convention on Climate Change agreed on the common goal to hold the increase in the
global average temperature to well below 2 ◦C above pre-industrial levels and to pursue efforts to limit
the temperature increase to 1.5 ◦C as this would significantly reduce the risks and impacts of climate
change [1]. In order to achieve this goal, the European Union (EU) and its member states have de-
clared to target a reduction of 55% in greenhouse gas emissions by 2030 compared to 1990 [2] and to
reach a climate-neutral EU by 2050 [3]. This ambitious endeavor will only be successful if substantial
progress can be reached in all economic sectors including energy production, industry and transport.
The EU has therefore set the target of a 32.5% improvement in the efficiency of its primary and final
energy consumption by 2030 compared to a historic baseline [4] and to reach a contribution of at least
32% of renewable energy in the final energy consumption by 2030 [5]. Even more ambitious goals are
currently discussed on the European level [6].

In the transport sector an average reduction of the CO2 emissions per kilometer from passenger cars
sold in the EU by 37.5% from 2021 levels by 2030 has been agreed on [7]. The most important strategy
for the reduction of the greenhouse gas emissions in the transport sector is the stepwise replacement of
cars with an internal combustion engine by electric cars, including battery electric vehicles (BEVs) and
plug-in hybrid electric vehicles (PHEVs). During the last decade, there has been a continuous increase
in the number of annual new electric car registrations as well as in the share of electric vehicles in
total new car registrations in the EU [8], as shown in figure 1.1. In 2021, BEVs already accounted for
9.0% and PHEVs for 8.8% of the total new car registrations [8]. This trend is expected to continue
during the next years [9] and the EU aspires that zero- and low-emission vehicles should constitute
a share of at least 35% of new passenger cars in 2030 [7]. Following the current negotiations on the
European level, these goals might even get drastically tightened in the near future, culminating in a
CO2 reduction goal of 100% for new passenger vehicles registered in the EU from 2035 onward [10].
As of today, lithium-ion batteries are the primarily used energy storage technology for electric vehicles
[11]. In comparison to other battery technologies, they have an exceptionally high gravimetric energy
density of about 250 Whkg−1 [12]. Also prices for lithium-ion batteries have fallen dramatically during
the last decade to reach about 130 $ kWh−1 [12]. The lithium-ion battery pack is a key component of
today’s electric vehicles and constitutes a significant share of the total production costs of a BEV.

Besides their high significance for the electrification of the transport sector, lithium-ion batteries are
also expected to play a major role in the transformation of the energy sector. The increase in the
share of renewable energy sources, which are fluctuating in their nature, will require an electricity
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Figure 1.1: Share of electric vehicles in new car registrations in the EU between 2010 and 2021. Based
on data from [8].

system with greater flexibility [13; 14]. Stationary energy storage systems using lithium-ion batteries
are predicted to provide part of this flexibility [13; 14]. The services which can be offered by these
systems to compensate for the fluctuations of renewable energy sources include frequency regulation,
electric supply capacity reserves and renewable capacity firming [13]. In addition to this, battery
electric storage systems are anticipated to be used at large scale to increase the local self-consumption
of decentralized energy generation [13; 15]. The most important application of this type will probably
be time shifting of the electricity produced by photovoltaic (PV) systems from daytime to the evening
and night [13]. The increase in the cumulated capacity of stationary large-scale storage systems (LSSs)
based on lithium-ion batteries installed in Germany is shown in figure 1.2. LSSs are defined as projects
with a storage capacity ≥ 1MWh and/or a nominal power output of ≥ 1MW here [15].

Due to their significance for the decarbonization of the transport sector as well as for stabilizing the
supply of electrical energy in a grid with a high share of fluctuating renewable sources, lithium-ion
batteries are a key technology for the transition towards a carbon-neutral future. In order to facilitate
an even broader use of this technology, it is important to better understand how lithium-ion batteries
perform in applications throughout their life cycle, which usually spans multiple years for electric
vehicles and stationary storage systems. Being able to monitor and predict the energy and power that
can be delivered by a lithium-ion battery pack is an essential requirement both for the development
of safe and reliable battery-powered systems as well as for optimizing the operation strategy of the
systems.

1.2 Introduction to battery degradation and state of health
estimation

Lithium-ion batteries degrade during usage and time [17; 18]. This leads to a decrease in the usable
energy and power and eventually to the end of the usable lifetime of a battery [19]. In the field of
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Figure 1.2: Cumulated capacity of large-scale storage systems based on lithium-ion batteries in Ger-
many between 2012 and 2021. Based on data from [15; 16].

battery degradation research, there are three main topics, which are described in the following:

1. Understanding and modeling the mechanisms of battery degradation

Since the commercialization of lithium-ion batteries, a lot of research has been dedicated to deepen
the understanding of the fundamental physical and chemical mechanisms that cause the degradation
effects observable on cell and system level [17; 18; 20]. Still, the degradation mechanisms occurring in
lithium-ion batteries and their interplay are highly complex and not fully understood on a microscopic
level until today. It is therefore not yet possible to predict battery degradation of a certain system
based on the material and design parameters using first-principle models.

2. Empirical modeling of degradation effects

The prediction of battery degradation as a function of operating conditions is highly important in an
application context, for example to provide a reasonable warranty for a battery-powered product, to
calculate the economic feasibility of stationary energy storage projects, to optimize the operation strat-
egy in order to enhance the lifetime of an application or to design a system for which a certain lifetime
of the battery is crucial, e.g., during space missions [21]. Due to the lack of fundamental understanding
of the degradation mechanisms, empirical models are mostly used to describe and simulate the degra-
dation of battery cells and systems [19]. These empirical aging models are parameterized based on
aging tests conducted in the laboratory. This approach is time and cost intensive and it is a tremen-
dous effort to test the degradation of a certain type of battery cell under all relevant combinations
of operating conditions. In addition to this, the conditions in laboratory experiments usually differ
from the conditions in the application [19]. This limits the transfer from the degradation observed in
laboratory experiments to the application. Due to these shortcomings, it would be highly beneficial
to develop methods that allow the parametrization of empirical aging models based on data that is
recorded directly in the application and under operating conditions. This approach would have the
advantage that battery aging under all relevant operating conditions could be monitored without the
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need for costly and time consuming tests in the laboratory. The insights on the aging behavior of a
certain type of system could then be used to optimize the operating strategy of such systems in the
future.

3. Quantification of degradation effects during operation

The third important research goal is the development of methods that allow the quantification of
battery degradation throughout the lifetime of a system [22–24]. This task, which is often called
state of health (SOH) estimation, is usually performed by the battery managment system (BMS) of a
battery system. Accurate determination of the remaining energy and power that can be provided by
a battery is crucial in many applications, for example to estimate the remaining range of an electric
vehicle or the energy that can be provided by a stationary storage system. Precise and robust SOH
estimation is a key requirement for the reliability of many battery-powered applications. It can also
be used to determine the residual value of a system which is important for example when a system is
resold. In addition to this, accurate methods for SOH estimation are also a prerequisite to enable the
parametrization of empirical aging models based on field data.
A vast number of methods for SOH estimation for lithium-ion batteries has been presented in the
literature [22–24]. The methods can be classified into three main categories concerning the input data
that is used:

• Aging model-based SOH estimation: The SOH is estimated by monitoring the operation con-
ditions of the battery, and then translating the operation history into an estimate for the SOH
using a pre-parametrized empirical aging model.

• Feature correlation-based SOH estimation: A correlation between a feature that is measurable
during battery operation and the SOH is established empirically. Whenever the feature can be
measured during operation, the correlation is used to estimate the SOH. This category includes
most methods using machine learning techniques.

• Physical model-based SOH estimation: The physical behavior of the battery, e.g. in the electrical
domain, is described by a model. The model parameters contain the SOH or quantities that
allow the calculation of the SOH. The model parameters are updated during battery operation
based on measurement data.

While all three approaches have their individual advantages, only the last category enables the parame-
trization of aging models based on field data. The physical model-based approach has also the great
advantage that no aging experiments conducted in the laboratory are needed for algorithm develop-
ment, except for testing and validation purposes.

The three research goals in the field of battery degradation research are closely linked to each other:
Fundamental understanding of battery degradation mechanisms is the basis for physical model-based
SOH estimation. It can also motivate the selection of features for feature correlation-based SOH
estimation and the structure of empirical aging models. Empirical aging models are the basis for aging
model-based SOH estimation and physical model-based SOH estimation is a requirement for field data
based aging model parametrization. The interconnections between the different topics in the field of
battery degradation research are presented in figure 1.3.
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Figure 1.3: Research topics in the fields of battery degradation research. The studies presented in the
scope of this thesis are represented by sheets with Roman numerals which are associated
with the research topic they are mainly contributing to.

1.3 Scope and structure of this work

The individual studies presented in the scope of this thesis are classified into the context of the field
of research in figure 1.3. As described in the previous section, accurate and robust SOH estimation
for lithium-ion batteries is important for the reliable operation of battery systems. The main goal
of this work is the development of two novel methods for SOH estimation for lithium-ion batteries.
The first method investigated in the scope of this work is a feature correlation-based method in which
the correlation between the increase in the gas pressure inside a prismatic lithium-ion cell and the
decrease in the cell capacity during cycle aging is used to estimate the SOH (Study I). The second
method is physical model-based. The concept of this method is to use the voltage curve measured
during CC charging phases to determine the remaining capacities of the individual electrodes and the
electrode balancing and thus to estimate the remaining cell capacity (Study IV). This second method
is based on the mechanistic cell model introduced by Dubarry et al. [25]. This modeling approach
associates changes in the full-cell open-circuit voltage (OCV) curve of lithium-ion cells with clusters of
degradation mechanisms, so called degradation modes, that have occurred during aging. It is a central
hypothesis of the mechanistic modeling approach that the shape of the half-cell open-circuit potential
(OCP) curves of the electrodes does not change during aging [26]. In the scope of this thesis, it is
investigated, whether this aging-invariance can also be assumed for cells with silicon-graphite (SiC) as
anode material (Study II + III), which can be regarded as a preliminary step for Study IV. Apart from
this, this investigation also contributes to a better understanding and modeling of the degradation of
SiC, which could also be useful in other contexts.

The remaining part of this work is structured as follows: the fundamentals of lithium-ion batteries
with emphasis on the OCV and the mechanical behavior, are presented in section 2.1. An overview on
the current understanding of battery degradation on different levels of abstraction is given in section
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1 Introduction

2.2. In section 2.3, an overview on the definitions and requirements for SOH estimation as well as a
literature review on methods for SOH estimation are presented.
In the main part of this work, four research articles are presented: in chapter 3, the aforementioned
method for SOH estimation based on internal gas pressure measurements is presented (Study I).
In chapter 4, results on the aging-invariance of half-cell OCP curves are presented. This includes
experimental results on the change in the shape of the half-cell OCP curves of SiC and nickel manganese
cobalt oxide (NMC)-811 during cycle aging (Study II), presented in section 4.1. Results on the impact
of these changes on the shape of the full-cell OCV curve (Study III) are presented in section 4.2. In
chapter 5, the method for SOH estimation based on charging curves is presented (Study IV). The key
results of all studies contained in this thesis are collectively discussed and a general conclusion is drawn
in chapter 6. Finally, an outlook on possible future research directions is given in this chapter. The
structure of this thesis is graphically illustrated in figure 1.4.
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Chapter 1: Introduction

Chapter 2: Aging of lithium-ion batteries and state of health estimation

Chapter 3: Measurement of internal gas pressure for state of health estimation
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2 Aging of lithium-ion batteries and state of health
estimation

2.1 Fundamentals of lithium-ion batteries

In this section, different topics related to lithium-ion batteries, which are necessary for the understand-
ing of the main part of this thesis, are presented.

2.1.1 Components and working principle

A lithium-ion cell is an electrochemical cell that contains two electrodes and an electrolyte [27]. The
components and the working principle of lithium-ion cells are schematically shown in figure 2.1. During
charging and discharging of lithium-ion cells, lithium cations intercalate and deintercalate into/from
the electrodes, which can be described as a spatially separated redox reaction [28]. The most common
active material for lithium-ion negative electrodes is graphite [27] and the half-cell reactions at this
electrode are described [29] by

LixC6 xLi+ + x e− + C6. (2.1)

During discharging of the full-cell, the reaction direction goes from the left to the right as lithium-ions
deintercalate from the graphite and the graphite electrode gets oxidized. The generated lithium-ions
are then transported to the positive electrode via the electrolyte while the released electrons go through
the external electric circuit and can be used to do work. At the positive electrode, lithium-ions are
inserted into the host structure. The positive electrode host structures of the cells investigated in this
work are layered transition metal oxides and the half-cell reactions at this type of positive electrodes
are simplified described by

Li1−xMO2 + xLi+ + x e− LiMO2 (2.2)

where M represents a combination of Ni, Mn and Co. The reaction direction during discharging of the
full-cell goes from the left to the right as the positive electrode gets reduced. The complete full-cell
reactions at both electrodes can then be simplified described [30] by

LixC6 + Li1−xMO2 C6 + LiMO2. (2.3)

Lithium-ion cells can be reversibly charged and discharged and therefore both electrodes can be
reduced or oxidized depending on the reaction direction. For the nomenclature of the electrodes, the
discharging case is defined as standard and the negative electrode which gets oxidized in this case is
called anode while the positive electrode which gets reduced is called cathode [30]. This definition is
also used throughout this thesis.
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2 Aging of lithium-ion batteries and state of health estimation

In order to enable controlled charging and discharging of the cell, both electrodes need to be ionically
connected by an electrolyte, which is typically a mixture of organic solvents in which a lithium salt is
dissolved [27]. At the same time, the electrodes need to be electrically separated which is accomplished
by a porous separator in between the electrodes [27]. The separator is soaked with electrolyte and allows
transport of lithium-ions while it prevents the contact and electrical shorts between the electrodes.
Conductive materials like carbon black and binders are typically added to the electrode active materials
in order to increase the electrical conductivity and structural stability of the electrodes [27]. The
electrode slurries are coated onto metal foils which serve as current collectors and which are connected
to the cell terminals. Copper is used for the anode current collector while aluminum is used for the
cathode current collector [31]. The components of the cell are contained either inside a hard metallic
case (cylindrical cells, prismatic cells, and coin-cells) or inside a flexible metallic composite foil (pouch
cells) [31]. In the following, some background information on the anode material types used in the
cells that are investigated in the main part of this work (chapter 3-5) is provided.

Graphite Graphite is a carbonaceous material with a layered structure [32]. Lithium can intercalate
in between the carbon layers to form lithium-graphite intercalation compounds. At ambient pressure, a
maximum of one lithium atom per six carbon atoms can intercalate (x ≤ 1 in LixC6) [32], which results
in a theoretical gravimetric capacity of 372mAhg−1 [33]. At low lithiation, lithium is not inserted
in between all the graphene layers but there are periodically unoccupied layer gaps. Thus, during
lithiation and delithiation of graphite, different phases, so-called stages, form in the graphite [34; 35].
The staging is a thermodynamic phenomenon that is related to the energy necessary for broadening
the van der Waals gap between two graphene layers [36] and the repulsive interactions between the
intercalated lithium-ions, which makes few but highly occupied van der Waals gaps energetically favored
[32]. The number of graphene layers in between layers that are filled with lithium atoms decreases
during lithiation and increases during delithiation. The stages are usually referred to by the number
of graphite layers between two lithium layers. In some cases, partly lithiated stages are energetically
favorable, they are usually marked with an additional ’L’ (for liquid-like) [34; 37]. The concept of
graphite stages is schematically shown in figure 2.2. The following stages are reported in the literature
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Figure 2.1: Components and working principle of a lithium-ion cell during discharging.
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2.1 Fundamentals of lithium-ion batteries

[34; 37–40] where x refers to the degree of lithiation in LixC6: Stage 1 (LiC6, x = 1), stage 2 (LiC12,
x = 0.5), stage 2L (x ≈ 0.25), stage 3 (LiC27, x ≈ 0.22), stage 4 (LiC36, x ≈ 0.17), and a dilute
stage 1L (LiC72, x ≈ 0.083). The differentiation and exact crystallographic description of the lowly-
lithiated phases (x < 0.5) is still subject to ongoing research [35; 36]. Graphite is used as anode active
material in the cells that are investigated in the study on internal gas pressure measurements for SOH
estimation, which is presented in chapter 3.
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Figure 2.2: OCP of graphite during lithiation and delithiation. The regions of the OCP curves with
large slope are associated with lithiation stages of graphite. The structure of selected
graphite stages is schematically presented.

Silicon-graphite Due to its high theoretical gravimetric capacity of 3572mAhg−1 [41] and its low
electrochemical potential, silicon is a promising negative electrode material for lithium-ion cells [42].
In contrast to the intercalation-type reaction between graphite and lithium-ions, the electrochemical
reaction between silicon and lithium-ions is an alloying reaction [42]. Silicon exhibits a pronounced
expansion of up to 400% upon lithiation [43], which is a challenge for the cycle stability of this material.
A strategy to combine the high capacity of silicon with the cycle stability of graphite is to use blends
of silicon and graphite as anode material. The overall gravimetric capacity of the electrode can be
significantly increased by adding comparably small amounts of silicon to the graphite [44], while still
decent cycle stability is retained [45]. The commercial cells used for the studies presented in chapter
4 and 5 have SiC anodes [45–50].

2.1.2 Open-circuit voltage models

Full-cell OCV curves and half-cell OCP curves are investigated in chapters 4 and 5 in the main part
of this thesis. In the following, the theoretical background on models for the full-cell OCV and the
half-cell OCP is presented.
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2 Aging of lithium-ion batteries and state of health estimation

Fundamentals The following description of the fundamentals of the OCV is based on [28]. The driv-
ing force behind the Faradaic reactions in a lithium-ion cell is the difference between the electrochemical
potentials of the reactive species, i.e., the lithium atoms, in the electrodes. The electrochemical poten-
tial of a species in a phase is a thermodynamic quantity that depends on the temperature, pressure,
chemical composition and electrical state of the phase. The change in energy per electrochemical redox
reaction in a lithium-ion cell is given by the change in Gibbs free energy

∆G = µcat − µan (2.4)

where G is Gibbs free energy, µcat is the electrochemical potential of lithium in the cathode and µan is
the electrochemical potential of lithium in the anode. According to the aforementioned convention, the
electric potential of the electrode defined as anode is more negative, and therefore its electrochemical
potential is higher. If the two electrodes are electrically connected via an external circuit, electrons
will spontaneously flow from the anode to the cathode while the same number of lithium-cations will
be transferred from the anode to the cathode. The change in Gibbs free energy is negative in this case
as it is a spontaneous reaction by which energy is released from the system. This energy can be used to
do work in the external circuit and the difference in electrochemical potential between the electrodes
is the theoretical maximum for the electrical work that can be done per reaction.

The electrochemical potential (µ) of lithium at the surface of intercalation electrodes depends mainly
on the chemical composition of the electrode, including the degree of lithiation at the surface, and, to
a lesser extent, on the temperature (T ) and the molality (m) of lithium-ions in the electrolyte at the
surface which can be described by

µ = µΘ +RT ln(mγ) (2.5)

where γ is the activity coefficient, µΘ is the electrochemical potential at standard conditions and R is
the universal gas constant.

The change in Gibbs free energy per reaction is related to the electrical voltage UOCV that can be
measured between the two electrodes of a lithium-ion cell at thermodynamic equilibrium according to

∆G = −nFUOCV, (2.6)

where n = 1 is the number of electrons transferred per reaction and F is Faraday’s constant. This
voltage is called (full-cell) OCV. Thus, the OCV of a lithium-ion full-cell depends on the electrochemical
potentials of both electrodes. Similar to this, the difference in the electrochemical potential of lithium
in one of the electrodes to the electrochemical potential of lithium in a reference electrode is linked to
the (half-cell) OCP (UOCP), which is equal to the voltage that can be measured between the lithium
intercalation electrode and an ionically connected reference electrode via

µ− µref = −nFUOCP. (2.7)

This relation allows the description of the electrochemical potential of an intercalation electrode at
equilibrium conditions by a measurable electrical voltage. The common reference for the electrochem-
ical potential of lithium in intercalation electrodes is the electrochemical potential of lithium in a
metallic lithium electrode (Li/Li+), which is always higher than the electrochemical potential in an
intercalation electrode at equilibrium. In this work, OCP refers to the electric potential of a half-cell
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2.1 Fundamentals of lithium-ion batteries

under equilibrium conditions where Li/Li+ is used as reference, while OCV refers to the voltage be-
tween the electrodes of a full-cell at equilibrium conditions. The OCP between the anode and a lithium
metal reference is denoted as Uan and the OCP between the cathode and a lithium metal reference is
denoted as Ucat in this thesis. For practical reasons, the use of electrochemical potentials is avoided in
most approaches for modeling the physical behavior of lithium-ion cells and the thermodynamic prop-
erties of electrode materials at equilibrium are directly described by the half-cell OCP with respect to
lithium metal.

The relation between the half-cell OCP of the electrodes vs. Li/Li+ and the full-cell OCV can be
derived by using the equality between equation 2.4 and equation 2.6

−nFUOCV = µcat − µan, (2.8)

adding µref − µref = 0 to the right side of the equation

−nFUOCV = (µcat − µref)− (µan − µref), (2.9)

using equation 2.7 at the right side of the equation for both cathode and anode

−nFUOCV = −nFUcat − (−nFUan), (2.10)

and finally canceling the constants

UOCV = Ucat − Uan. (2.11)

The full-cell OCV is therefore simply described by the difference between the electrical half-cell OCP
of the cathode and the electrical half-cell OCP of the anode, both with respect to Li/Li+ or any other
chosen reference.

The electrochemical potential of lithium intercalation electrodes significantly depends on the lithiation
degree of the electrode. The half-cell OCP of the electrodes therefore changes during lithiation/delithi-
ation. In the modeling frameworks which model the behaviour of lithium-ion cells on the electrode or
half-cell level, this is represented by implementing the OCP of the individual electrodes as functions of
lithiation degree, so called half-cell OCP curves. Examples for this are electrochemical Newman-type
p2D models [49] or the mechanistic model introduced by Dubarray et al. [25]. In more practically-
oriented models that only model physical quantities on the full-cell level, the half-cell origin of the
full-cell OCV is often neglected and the full-cell OCV curve, i.e., the relationship between full-cell
OCV and full-cell state of charge (SOC), is directly used as model parameter [51]. A description of
the cell voltage at thermodynamic equilibrium is a fundamental part of every model for the electrical
behaviour of a lithium-ion cell and it is also needed for most physical model-based methods for SOH
estimation. In the following, an overview on approaches for modeling the half-cell OCP curve and the
full-cell OCV curve is given.

Dependence of the half-cell OCP on the lithiation degree The OCP of a lithium intercalation elec-
trode as a function of the lithiation degree is defined by the thermodynamic properties of the electrode
material. The process of lithium intercalation is generally not uniform due to the complex interactions
of intercalated lithium atoms and the host structure [52]. The lithiation/delithiation of graphite fol-
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2 Aging of lithium-ion batteries and state of health estimation

lows the staging process described in section 2.1.1, during which different phases of lithiated graphite
with individual structural and thermodynamic properties are formed. At certain lithiation degrees the
graphite is almost exclusively in one phase. In these single-phase regions, the graphite intercalation
compound is described as a solid solution and the OCP varies strongly with the lithiation degree, as
the filling fraction of the lithiated layers continuously changes [52]. Between the single-phase regions,
the coexistence of two adjacent phases is thermodynamically favorable. In these two-phase transition
regions, the chemical composition of the two phases does not change significantly, but the ratio in
which the two phases are present in the electrode changes. In these regions, the chemical potential
of both phases is the same at equilibrium and exhibits only minor change as long as both phases
coexist. This results in a plateau of the OCP curve in this region [52]. The intercalation process of
typical cathode materials like transition metal layered oxides also takes place as a series of two-phase
transitions between a number of different phases of lithium intercalation compounds. For example,
NMC-811, the cathode material that is used in the commercial cell investigated in chapters 4-5, forms
three different hexagonal and one monoclinic phases during lithiation/delithiation [53; 54].

There are thermodynamic models based on the description of Gibbs free energy of an intercalation
material, so called phase-field models, that allow the prediction of phases, phase-transition regions and
also the OCP curve [52; 55]. The objective of such models is rather to provide a framework for the
theoretical understanding of the processes occurring during lithium intercalation/deintercalation than
to quantitatively predict the OCP curve of a certain material.
In contrast to this, there are also models which do not establish a relation between the fundamental
material thermodynamics and the OCP curve of an electrode, but which describe the OCP curve
based on empirically determined parameters. A commonly used model of this type is the multiple-
species multiple-reaction (MSMR) model [56–60]. In this model, an electrochemical potential and an
associated OCP is assigned to the possible intercalation sites for the lithium-ions. There are j types of
intercalation sites with different energy, which are sometimes called galleries [60]. j also corresponds
to the number of voltage plateaus of the OCP curve. The OCP of a specific gallery Uj is calculated as

Uj = U0
j +

ωj

F/(RT )
ln

(
Xj − xj

xj

)
(2.12)

where U0
j is the lithium concentration-independent standard electrode potential of this gallery. Xj

is the number of lithiation host sites of the gallery divided by the total number of host sites of the
material and xj is the fraction of the filled host sites of this gallery. ωj is a unitless parameter that
describes the degree of disorder of the intercalation reaction of gallery j. At equilibrium, the OCP of
all galleries is equal and corresponds to the half-cell OCP (Uj = UOCP∀j). By solving equation 2.12
for xj and summing up over all galleries (

∑
j xj = x), an expression for the overall lithiation degree of

the electrode (x) can be obtained

x =
∑
j

Xj

1 + exp[ F
RTωj

(UOCP − U0
j )]

. (2.13)

Equation 2.13 is then the model description for the OCP curve and the model can be parametrized
by fitting this equation to a measured half-cell OCP curve. The model is then parameterized by the
number of galleries j and the three parameters U0

j , ωj and Xj for every gallery [57; 60]. Due to its
generic formulation, the MSMR model can be used to model the OCP curve of graphite [56–60], the
OCP curve of cathodes materials that are lithiated/delithiated via two-phase transition reactions [57;
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59; 60] and even to model the OCP curve of substitution-alloy materials such as lithiated silicon [58].
There are also other thermodynamics-motivated models that describe the shape of an experimentally
determined OCP curve, e.g. the Redlich-Kister model [61; 62] or a model based on an expansion of
the Nernst equation by terms describing the interactions associated with the staging phenomena [63].

Due to the fact that first-principles thermodynamic models can not predict the OCP curve of lithium
intercalation electrodes with the necessary accuracy until now, the OCP curve of a specific electrode
material is usually obtained experimentally [49] regardless of whether it is then described by the MSMR
model, fitted by a simpler analytical equation or directly implemented into a cell model as a lookup
table. Common methods for measuring half-cell OCP curves are described in 2.1.3.

The OCP curve generally differs during lithiation and delithiation [57; 64; 65]. This phenomenon is
called voltage hysteresis. It is caused by the fact that different thermodynamically stable electrode
configurations with the same lithiation degree can be reached via the lithiation and the delithiation
reaction [65]. Individual OCP curves for the lithiation and the delithiation direction are therefore often
used in electrical cell models [66].

Temperature dependence of the half-cell OCP curve The part of the electrochemical potential that
is independent from the concentration of lithium-ions on the electrode surface (see equation 2.5) also
depends on the temperature because of the thermodynamic definition of Gibbs free energy. The change
in Gibbs free energy per reaction is described by

∆G = ∆H − T∆S (2.14)

where H is the enthalpy and S the entropy of the system [28]. Thus, the OCP curve is temperature-
dependent [60]. The change in entropy upon lithiation/delithiation depends on the lithiation degree and
can be determined by measuring the OCP at a certain lithiation degree during a change in temperature
[67]

∆S(x) = nF
dUOCP(x)

dT
. (2.15)

Blend electrode open-circuit potential The OCP curve of a blend electrode material, such as silicon-
graphite, depends on the thermodynamic properties and thus on the OCP curves of its components.
Schmidt et al. proposed a model to describe the OCP curve of blend electrodes [68], which is used to
describe the OCP of SiC electrodes in chapter 4.2. In this model, the differential intercalation capacity
(in AsV−1) at voltage U (C∆Int(U)) is described as

C∆Int(U) = γ1 · C∆Int1(U) + γ2 · C∆Int2(U) (2.16)

where C∆Inti is the differential intercalation capacity of the ith component (in AsV−1) and γi are
factors to scale the active masses of the components. The blend OCP curve is obtained by integrating
equation 2.16

Qblend(UOCP) =

∫ Umax

UOCP

C∆Int(U)dU (2.17)
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2 Aging of lithium-ion batteries and state of health estimation

to obtain a description for the charge of the intercalated lithium at a certain OCP (Qblend(U)), and
then taking the inverse

UOCP(Qblend) = f−1(Qblend(UOCP)). (2.18)

In this way, the capacity contributions of both components at a certain voltage are added up and the
blend OCP curve is obtained. The parameters γi are obtained by fitting equation 2.18 to a measured
blend OCP curve. The concept of blending the component OCP curves is schematically displayed in
figure 2.3. The half-cell OCPs of the two electrode components are denoted as Ucomp1 and Ucomp2.
The component specific SOCs are denoted as xcomp1 and xcomp2. This model was experimentally
validated for blends of nickel cobalt aluminum oxide (NCA) and lithium managanese oxide (LMO)
with different mass fractions [68]. The same approach was used by Jung for modeling NMC/LMO
as well as graphite/soft carbon blend OCP curves [69]. Anseán et al. modeled the blend electrode
OCP of SiC using this approach [70]. The modeling approach is limited to near equilibrium scenarios
in which the current through the cell is negligible. If higher current are passing through the cell,
the overpotentials, which could be generally different for the individual electrode components, need
to be considered [68]. More complex blend electrode models are used to capture the inhomogeneous
lithiation/delithiation of silicon and graphite at higher current rates [66; 69].
Due to the difference in the OCP curves of silicon and graphite, the silicon is primarily lithiated at
the beginning of the lithiation of SiC while the graphite is mainly lithiated later at lower half-cell
potentials. During delithiation, the graphite is preferably delithiated before the silicon is delithiated
[71]. The OCP curve of silicon has a pronounced hysteresis [72; 73] which needs to be considered
in a blend electrode OCP model. For example, different component OCP curves for lithiation and
delithiation can be used [66].
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Figure 2.3: Blend OCP model presented by Schmidt et al. [68]. Data for graphite (component 1) [46]
and silicon (component 2) [74] is shown.

Full-cell OCV curve models According to equation 2.11, the full-cell OCV curve, i.e., the OCV as a
function of full-cell SOC (xfull) can be calculated as the difference between the half-cell OCP curves as

UOCV(xfull) = Ucat(xcat)− Uan(xan) (2.19)
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where Ucat and Uan are functions of the electrode SOCs xcat and xan [25; 75]. The full-cell SOC
range is defined in between the lower and the upper cut-off voltage of the full-cell. Due to practical
reasons, most cathode materials can not be fully delithiated as explained in section 2.1.3. Thus, the
electrode SOC range is defined by the part of an electrode capacity that can be reversibly lithiated
and delithiated [60]. In this work, xan = 0 corresponds to the state where the anode is at the upper
half-cell cut-off voltage (delithiated) while xan = 1 corresponds to the state in which the anode is at
the lower half-cell cut-off voltage (lithiated). xcat = 0 corresponds to the state in which the cathode is
at the upper half-cell cut-off voltage (delithiated) and xcat = 1 corresponds to the state in which the
cathode is at the lower half-cell cut-off voltage (lithiated). The relationship between the full-cell SOC
and the electrode SOCs is defined by the capacitive and stoichiometric balancing of the electrodes.
The electrode balancing can be determined by shifting and scaling the half-cell OCP curves in a way
that their difference matches the measured full-cell OCV curve as shown in figure 2.4. To do this,
the half-cell OCP curves get linearly scaled on the SOC-axis by αan and αcat respectively. αan and
αcat therefore denote the factor by which each reversibly usable electrode capacity exceeds the full-
cell capacity. The relative position of the half-cell OCP curves on the SOC-axis is determined by an
offset βan and βcat with respect to the starting point of the full-cell OCV curve, i.e., xfull = 0. The
shifting and scaling of the half-cell OCP curves resembles a transformation of the electrode SOC into
the corresponding full-cell SOC. For the anode, this transformation is described by

xfull = xan · αan + βan (2.20)

while for the cathode it is described by

xfull = (1− xcat) · αcat + βcat. (2.21)

Solving equation 2.20 for xan and equation 2.21 for xcat and inserting them into equation 2.19 results
in a model description of the full-cell OCV curve as a function of full-cell SOC

UOCV(xfull) = Ucat(1− (xfull − βcat)/αcat)− Uan((xfull − βan)/αan). (2.22)

The electrode balancing is therefore completely described by the the four alignment parameters αan,
αcat, βan and βcat [25]. This OCV model is the basis for the mechanistic cell model described in section
2.2.2 and which is used in the studies presented in section 4.2 and chapter 5 in the main part of this
thesis.

In many cell models that are used for state estimation, measured full-cell OCV curves are directly
implemented as lookup tables [51; 64; 76; 77] without considering the OCP of the half-cells and the
electrode balancing. Measured full-cell OCV curves are also sometimes fitted with mathematical model
equations that are not physically motivated but which resemble a memory-optimized implementation
of the OCV curve using a limited number of parameters. Possible model equations include polynomial
and exponential models [78; 79]. The MSMR model approach can also be applied to describe full-cell
OCV curves. In this case, the individual phases are not assigned to a specific electrode [75].
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Figure 2.4: Full-cell OCV curve as difference between half-cell OCP curves. Figure based on [47].

2.1.3 Methods for measuring the open-circuit voltage

Measurements of full-cell OCV curves and half-cell OCP curves are described in the main part of this
thesis. In this section, an overview on the methods for such measurements is provided.

Measurement of full-cell OCV curves The two established methods for determining the OCV curve
of a full-cell are described in the following.

The OCV of a cell is defined as the voltage that can be measured between the terminals when the
cell is in an equilibrium state. A common method for measuring the OCV of a cell is therefore to
bring the cell to a certain SOC, let it rest under open-circuit conditions, and then measure the ter-
minal voltage after relaxation [36; 57; 65; 77; 80–82]. This method is referred to as incremental OCV
measurement [80]. Complete equilibrium can never be reached as there are continuous side reactions
like self-discharge or processes associated with calendar aging even at open-circuit conditions [83]. A
quasi-equilibrium state is therefore usually defined to be reached if the change in terminal voltage
during a certain time is below a threshold. The relaxation time after which this equilibrium is reached
is different for individual cell types and also depends on the SOC, the temperature and the current
that was applied before the relaxation period. The duration of the relaxation period is usually in the
order of a few hours [65; 80; 81]. The complete measurement procedure consists of fully charging or
discharging the cell first, followed by alternating phases of CC discharging/charging and relaxation [81].

The second established method to measure the OCV of a lithium-ion cell is to measure the termi-
nal voltage during constant low-current charging or discharging between the lower and upper cut-off
voltage. This method is sometimes called quasi-stationary OCV measurement. The idea behind this
approach is that if a small enough current is used to charge or discharge the cell, the deviation of
the terminal voltage from the OCV is negligibly small. On the one hand, this approach has two
main advantages over the relaxation based method: firstly, it is usually much faster, and secondly,
the resolution in the SOC dimension is theoretically only limited by the maximum sampling rate of
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the testing instrument and the available memory for data storage. On the other hand, the voltage
measured at a certain SOC usually differs from the value obtained via a relaxation measurement with
long relaxation time, especially if comparably high current rates are used. Even when low current
rates are used, there is still some deviation from the OCV measured after relaxation as the cell is
not completely at rest during the measurement [77]. Typical current rates for quasi-stationary OCV
measurements range from C/10 [81] over C/20 [84–86], C/25 [87; 88] and C/30[49; 60] to C/50 [89].
Some authors encourage to conduct an extended constant voltage (CV) or dither phase before the CC
phase in order to make sure that the electrodes are at a well defined stoichiometry at the beginning of
the test [60]. Besides the limitations of this method, it is still preferably applied if the measurement
data is to be analyzed via differential voltage analysis (DVA), incremantal capacity analysis (ICA) [81]
or degradation mode analysis (DMA) (see section 2.2.3) because quasi-continuous voltage data over
the whole SOC range can be obtained. Dubarry et al. recommend to sample the quasi-OCV curve
with a resolution of approximately 1mV if it is intended to be used for DVA or ICA [90].

Measurement of the half-cell OCP curves The OCP curves of electrodes can not be retrieved from
the full-cell OCV but must be measured individually for the electrodes [60]. There are two approaches
for accessing the OCP vs Li/Li+ of individual electrodes. One method is to insert a reference electrode
into a full-cell that allows the independent measurement of the electrode potentials [91]. This approach
is comparably complex and has the disadvantage that only the part of the half-cell OCP accessible in
the voltage operation window of the full-cell can be measured. The second, and more frequently used
method, is to build half-cells containing an electrode sample as working electrode and lithium metal
foil as counter electrode. Half-cells are often built as coin-cells [57; 85; 88; 92], typically in the 2032
coin-cell format [49; 60; 93]. Also, cells that include a lithium metal reference electrode in addition to
the lithium counter electrode [94] and pouch cells [95] are sometimes used.

If the electrode material of a commercial cell for which the OCP is to be measured is not available, e.g.
as sheets, the first step is to open up the cell and to extract samples from the electrodes. The cells are
usually discharged until the lower-cut off voltage [94] and then opened in a glove box under argon atmo-
sphere [60; 93] in order to prevent reactions of the electrodes with moisture. If the current collectors are
coated with active material on both sides, the active material has to be removed on one side prior to the
sample extraction. This is done by mechanical scraping often in combination with using a solvent [57;
60; 93; 94]. Sometimes, the electrode sheets are additionally washed with dimethyl carbonate (DMC)
which influences the shape of the measured OCP curve [94]. Afterwards, the electrode samples can
be extracted from the electrode sheet or jelly roll by using a circular punch [57; 60; 93]. The half-cell
assembly is also performed inside the glove box. A typical half-cell coin-cell stack is shown in figure 2.5.

Positive case Spring

Spacer Electrode sample

Separator Lithium metal foil

Spacer Negative case

Figure 2.5: Half-cell coin-cell stack as used in [46].

The measurement method is the same as for full-cell OCV measurements, i.e., the half-cell OCP is
measured either by bringing the electrode to different lithiation degrees and measuring the voltage vs.
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Li/Li+ after a relaxation period [57; 82] or as the voltage recorded during a quasi-stationary low-current
lithiation or delithiation process whereby the latter approach is more frequently used. To measure the
quasi-stationary OCP curve, the half-cell is first charged or discharged to the respective cut-off voltage
vs. Li/Li+. In some studies, an additional CV phase or dither profile [60] is applied after reaching the
cut-off voltage. The cell is then fully discharged or charged until the opposite cut-off voltage is reached
[60]. The current rates used for the CC charging and discharging range from C/20 [86; 92; 95; 96] over
C/25 [97; 98], C/30 [60], C/33 [93] to C/100 [49]. The voltage limits for cycling the half-cells have
to be selected carefully in order to prevent harmful side reactions. Graphite and SiC should not be
lithiated below 0V vs. Li/Li+ to prevent lithium plating. Positive electrode materials should not be
lithiated to low potentials either to prevent high material stress and cracking [60]. During delithiation,
copper corrosion which occurs above about 3V vs. Li/Li+ for most electrolytes should be avoided
for the anode samples [60]. The positive electrodes might experience a structural breakdown and also
electrolyte decomposition may occur at voltages above 4.3V vs. Li/Li+ [60]. Cut-off voltages used in
the literature for quasi-stationary half-cell OCP measurements are listed in table 2.1.

Table 2.1: Cut-off voltages for half-cell OCP curve measurements.

Electrode material Umin / V Umax / V Reference

Graphite 0.01 1.5 [60]
Graphite 0.05 2.0 [86]
Graphite 0.005 1.2 [95]
Graphite 0.01 1.5 [93]
Graphite 0.01 1.5 [88]
Graphite 0.05 2 [96]
SiC 0.01 1.7 [49]
NMC (unknown composition) 2.1 4.3 [60]
NMC (unknown composition) 3.0 4.35 [86]
Lithium cobalt oxide (LCO) 3.5 4.35 [95]
NMC/LCO blend 2.5 4.3 [93]
NMC/LCO blend 3.0 4.3 [88]
NMC-811 3.0 4.3 [49]
NMC-523 3.0 4.35 [96]
NMC-811 3.0 4.4 [92]
NMC-111 3.0 4.4 [92]

As for full-cell OCV measurements, a disadvantage of quasi-stationary OCP measurements is that there
is always some overpotential as the cell is not in an equilibrium state [60]. Trying to compensate for
these overpotentials is difficult, as the resistances leading to these overpotentials are SOC dependent
[60]. Apart from this, Lu et al. describe three additional problems occurring during the measurement
of quasi-stationary OCP curves [60]:
The ”missing-data problem” consists in the fact that the stoichiometric range that is accessible during
low-current lithiation differs from the range that is accessible during low-current delithiation if the
half-cell is brought to a specified stoichiometry prior to the test using an extended CV phase or dither
profile. This is caused by the rapid impedance increase when approaching a completely lithiated or
delithiated state.
The second problem is the ”inaccessible-lithium problem”, which means that a practical lithium in-
tercalation electrode can not be fully lithiated or delithiated in an experiment due to restriction of
the voltage range because of the considerations described above. This results in the fact, that some
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regions of the OCP curve are not obtainable during experiments and that the measurable electrode
SOC does not directly correspond with the absolute stoichiometry needed for most physico-chemical
models. A transformation from apparent electrode SOC to absolute electrode lithiation is thus needed
for these models. This transformation can be realized by associating characteristic points in the OCP
curve with absolute lithium concentrations [49].
The last problem Lu et al. address is the ”data-quality problem”, which means that the experimental
data obtained during quasi-stationary OCP measurements is noisy because of the limited voltage quan-
tification of the test system and statistical fluctuations during the experiment. This is problematic if
the data is to be analyzed via ICA. The last two problems are not specific to quasi-stationary OCP
measurements but also occur during stationary OCP measurements.

2.1.4 Mechanical behaviour

The lithiation and delithiation of common electrode materials used in lithium-ion cells leads to changes
in their mechanical and geometric properties. The consequences of this effect on the gas pressure inside
the case of prismatic cells is investigated in chapter 3 of this work. The theoretical background on this
topic is described in the following.

Reversible volume change of negative electrodes Graphite anodes expand during lithiation and
contract during delithiation [35; 99]. The volume change is not linear with the lithiation degree but
differs for the different graphite stages. In the region where the dilute graphite stages 4L-2L are formed,
the volume changes more rapid with lithiation degree compared to the region of the stage 2L-2 phase
transition [35; 100]. During the 2-1 phase transition, the volume change upon change in lithiation is
again more pronounced [35; 100; 101]. A total volume change of 13.2% is reported for the graphite
unit cell upon lithiation from C6 to LiC6 [35]. The electrode thickness is reported to increase by 7%
during lithiation [101].
Pure silicon exhibits a much larger expansion of up to 400% upon lithiation [43]. Blend electrodes
containing both silicon and graphite exhibit less pronounced volume change upon lithiation and delithi-
ation [44]. The thickness change of SiC blend electrodes increases linearly with the increase in silicon
content [44].

Reversible volume change of positive electrodes In comparison to the graphite-based anode mate-
rials, layered metal oxide-based cathode materials show a smaller volume change upon lithiation and
delithiation [102; 103]. The volume of NMC-111 decreases only by less than 2% until a lithiation
degree of 1/3 is reached [102–104]. During complete delithiation, which is usually avoided during op-
eration, values between 3-5% have been reported for the decrease in volume in comparison to the fully
lithiated state [102–104]. A similar behaviour is also found for nickel-rich NMC-811: the decrease in
volume during delithiation is small until a lithiation degree of about 30% is reached. This is followed
by a collapse of the interlayer spacing and an associated volume decrease during complete delithiation
[105].

Cell level volume changes The way how volume change on the electrode level translates to volume
and thickness changes on the cell level depends on the cell design and the external mechanical conditions
under which the cells are operated. The cell level thickness change of pouch cells that are operated
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without external mechanical constraints can be measured with a dilatometer [100; 106]. The associated
non-linear volume change of the different graphite stages during lithiation and delithiation can be
observed in the cell level thickness change [100].
Pouch cells that are mechanically constrained during operation, which is often the case in applications,
can not expand freely during lithiation. In this case, the stack stress between cell and constraint fixture,
which can be measured by a load cell, increases reversibly during charging of the cell [107]. In addition
to the reversible change in cell thickness or stack stress, the cell thickness or stack stress irreversibly
increases during long-term cycling which is associated to solid electrolyte interface (SEI) growth and
irreversible changes in the electrode structure [107; 108]. For cells with a rigid case, the volume change
of the electrodes can result in a strain of the casing, which has been reported for coin-cells [109] and
cylindrical cells [110; 111].

Internal gas pressure Lithium-ion cells with a rigid case usually contain some free volume on top of
the electrode stack or jelly-roll that is filled with gases. The gas pressure inside lithium-ion cells with
rigid case also changes depending on the SOC due to the volume change of the electrodes [35; 112;
113]. The system can be described by the ideal gas law

p · V = nG ·R · T (2.23)

where p is the pressure inside the cell case, V is the free volume and nG is the amount (moles) of gas
in the volume [112]. The measurable gas pressure is therefore influenced by V which depends on the
electrode expansion and the temperature [113]. In addition, the internal gas pressure can increase due
to gas formation which is discussed in section 2.2.1.
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2.2 Aging of lithium-ion batteries

In the main part of this thesis, different topics concerning the degradation of lithium-ion batteries are
investigated. In this section, an overview on the current understanding of the degradation of lithium-
ion batteries is thus provided.
The degradation of lithium-ion batteries can be described on three levels of abstraction: The most
detailed level are degradation mechanisms that describe the physical and chemical processes occurring
within the cell during aging on a microscopic level. The degradation mechanisms are often clustered
according to the cell component they are affecting, but also according to their impact on the thermo-
dynamic and kinetic behavior of the cell. These clusters are called degradation modes. They form
the second level of abstraction. The degradation modes finally result in degradation effects that are
observable on the cell level [18; 19; 97; 114]. The connection between degradation mechanisms, degra-
dation modes and degradation effects is schematically shown in figure 2.6. In this section, an overview
on the topic of lithium-ion cell degradation spanning these three levels of abstraction is provided. In
addition, a detailed literature review on methods for the diagnosis of battery degradation based on
quasi-stationary OCV curves is provided in section 2.2.3, as such methods are applied and advanced
in the main part of this thesis.

Degradation mechanism Degradation mode Degradation effect

pSEI layer growth

Structural disordering

TM dissolution

Graphite exfoliation

Particle  fracture

Lithium plating
Loss of anode active

material (LAM )an

SEI layer growth

Electronic isolation

Pore blocking

Electrolyte decomposition

Gas generation

Loss of cathode active
material (LAM )cat

Loss of lithium
inventory (LLI)

Impedance increase

Capacity fade

Power fade

Figure 2.6: Schematic overview on degradation of lithium-ion batteries on three levels of abstraction.
Commonly assumed correlations between degradation mechanisms and degradation modes,
as well as between degradation modes and degradation effects are shown based on [18–20;
97; 114].
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2.2.1 Degradation mechanisms

The most important degradation mechanisms and concepts for modeling degradation mechanisms are
presented in this section, but not all mechanisms described in the literature can be described in the
scope of this work. More detailed reviews on degradation mechanisms can be found in [17; 18; 20].

Anode degradation mechanisms An important degradation mechanism occurring on the anode is
the growth of the SEI layer. During the formation of a lithium-ion cell, an SEI layer is formed on
graphite and lithium metal anodes because common electrolytes are not stable at the low potentials
these anode are operated at [17]. The SEI layer should be ionically conductive in order to allow
lithiation/delithiation of the anode material, but at the same time it should be electrically isolating
to prevent further electrolyte reduction. Still, an ongoing growth of the SEI during aging is often
observed [18]. SEI layer growth may also lead to pore blockage which subsequently can increase the
risk of lithium plating [115]. The SEI layer growth is also reported to lead to an irreversible expansion
of graphite-based anodes [99]. SEI growth leads to loss of lithium inventory (LLI) as cyclable lithium
is trapped in the SEI. It also results in an increase in impedance [18].
Another important degradation mechanism that occurs on both electrodes is particle cracking due to
the expansion/contraction of the electrode material during lithiation/delithiation (see section 2.1.4).
Particle cracking can lead to a loss in the electronic and ionic conductivity, the formation of isolated
islands and thus evoke loss of active material (LAM) and increase in impedance [18]. In the case of
the anode, particle cracking can also lead to a fracturing of the SEI which results in the formation
of additional SEI on the freshly exposed particle surfaces. This is sometimes called SEI repair [116].
Enhanced particle cracking is observed for silicon containing anodes due to the large volume change
of silicon upon lithiation/delithiation [18].
If the potential at the anode surface is below 0V vs. Li/Li+, lithium-ions can form metallic lithium
instead of intercalating into the anode material, which is called lithium plating [117]. Lithium plating
can have a thermodynamic origin if the anode is already fully lithiated, as well as a kinetic origin, if
0V vs. Li/Li+ is reached due to a large overpotential at high current rates or at low temperatures
[18; 118]. Lithium plating results in LLI as the plated lithium can undergo subsequent side reactions
to form SEI or if the plated lithium gets electrically isolated [18].

Cathode degradation mechanisms As for the anode, cathode materials can suffer from particle crack-
ing [116]. Apart from this, the degradation mechanisms occurring at the cathode strongly depend on
the material composition. The following degradation mechanisms are reported for NMC materials,
which are investigated in the main part of this thesis. Lattice oxygen can get oxidized resulting in a
dissolution of transition metals (TMs) [119]. TM dissolution can also be triggered by acidic species
such as hydrofluoric acid (HF) that are formed from traces of moisture. Ni2+ can be dissolved in the
electrolyte leading to a decomposition of electrolyte. Dissolved TM ions can form a surface layer on
the cathode referred to as positive solid electrolyte interface (pSEI) or cathode electrolyte interface
(CEI). Ni2+ and Li+ can also switch their positions (site exchange) in the crystal of NMC. All of these
mechanisms lead to LAM and an increase in impedance [18].
Another important degradation mechanism for nickel-rich NMC during prolonged cycling is the for-
mation of a resistive, electrochemically inactive layer on the surface of the primary particles [120–122],
which is also referred to as phase change [18]. As some of the active material is irreversible transformed
into this inactive surface layer, the overall electrode capacity decreases [120]. In addition to this, the
formation of the surface layer leads to a severe increase in the charge transfer resistance [120; 121].
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This leads to a higher overpotential during cycling, which can result in a gradual decrease of the usable
electrode SOC window if fixed currents and voltage limits are used [120]. The formation of the surface
layer is reported to be at least partly driven by cracking of the secondary particles which leads to
the exposure of additional primary particle surfaces to the electrolyte [121] and furthermore causes an
increase in the cell impedance due to a reduction of the electrical connection of the primary particles
[50]. Another degradation mechanism for nickel-rich NMC is the formation of an additional fatigued
bulk phase in the delithiated state. This phase can only be partly delithiated during regular cycling
conditions due to kinetic limitations [121; 122].

Gassing Some of the degradation mechanisms that occur during operation [123] and storage [113] of
lithium-ion batteries involve gas formation. This is relevant for this work as a correlation between the
internal gas pressure inside prismatic cells and the remaining cell capacity is investigated in chapter
3. For unconstrained pouch cells, the gas formation results in a volume expansion of the cell [124;
125]. For cells with a rigid case, the gas formation results in an increase in the internal gas pressure,
which can be described by an increase in the gas amount nG in the ideal gas equation (equation 2.23).
The gassing is reported to occur mainly on the negative electrode where electrolyte compounds react
with lithium containing compounds during SEI formation [113; 126; 127]. The gassing is therefore
especially pronounced during the first cycles [128]. The gas species that are produced can contain CO
[123], CO2 [123], CH4 [123], C2H4 [123; 127], C2H6 [123; 127] and C3H8 [123]. The amount of gas is
influenced by the used additives [127]. Reactions with trace water also have been reported to lead to
the formation of CO2 [127] or H2 [113]. The reaction of electrolyte compounds with Li2CO3 or LiOH
at the positive electrode surface can result in the formation of CO2 [124] and the release of O2 from
the cathode crystal lattice has been reported for NMC materials [54].
The amount of gas production is often reported to correlate with the capacity fade during cycle ag-
ing [113; 123; 126; 129]. The gases that are formed during side reactions might even enhance future
capacity loss [130]. The gas formation during cycle aging is reported to be less pronounced for cells
containing lithium iron phosphate (LFP) as cathode active material [131].

In order to obtain a better understanding of the interactions between different degradation mechanisms
and to enable the prediction of cell degradation under different operating conditions with reduced
parametrization effort, physico-chemical aging models that explicitly model individual degradation
mechanisms have been developed. In a recent work by O’Kane et al., the degradation mechanisms
SEI layer growth, lithium plating, particle fracture and LAM are added to a Doyle-Fuller-Newman
model [132]. Keil and Jossen presented a p2D model including SEI formation as well as reversible and
irreversible lithium plating and stripping [133]. More examples for physics-based aging models can be
found in [134; 135]. An overview on the state of the art of physico-chemical degradation modeling is
given in [18].

2.2.2 Degradation modes

Battery aging is a complex process consisting of many single mechanisms as described in section 2.2.1.
Direct observation of individual degradation mechanisms during observation is difficult [18]. In addi-
tion, a bottom-up physical explanation of aging based on single effects on the micro scale might not
be able to capture battery aging as a whole, as also effects in the meso and macro scale have a huge
influence on the aging which can not be covered by the microscopic models [97]. One possibility to

25



2 Aging of lithium-ion batteries and state of health estimation

reduce the complexity in describing cell aging is to investigate so called degradation modes that are
clusters of degradation mechanisms that can be differentiated based on full-cell measurements [18; 25;
97].

The main degradation modes are loss of active material at the anode (LAMan), loss of active material
at the cathode (LAMcat) and LLI. LAM includes all degradation mechanisms that lead to a reduction
in the lithiation capacity of an electrode. LLI describes all mechanisms that result in a reduction of
the amount of cyclable lithium. Some authors consider stoichiometric drift, i.e., a change in electrode
balancing as a separate degradation mode [18] but this can also be regarded as a consequence of
the other aforementioned degradation modes. Apart from these degradation modes that affect the
thermodynamic behavior, i.e., the shape of the OCV curve, there is also a change in the dynamic
behavior of the cell associated with degradation. This can be collectively described by the degradation
mode impedance increase [18].

The model for the full-cell OCV curve described in section 2.1.2 can be used to link the change in
the full-cell OCV curve during aging with these degradation modes (DMs). A graphical illustration
of the effect of the individual DMs on the full-cell OCV curve is provided in figure 2.7. In figure 2.7a
the full-cell OCV curve and the half-cell OCP curves of a pristine cell are shown. The capacities of
the electrodes and the capacity associated with the lithium inventory of the cell are also schematically
depicted as bars.
The scaling factors of the individual half-cell OCP curves (αan and αcat) describe the individual
electrode capacities in terms of the actual full-cell capacity. The absolute electrode capacity can be
obtained by multiplying the scaling factors with the actual full-cell capacity Cact

Can = αan · Cact, (2.24)

Ccat = αcat · Cact. (2.25)

The LAM is then calculated as the relative loss in electrode capacity, i.e., for the anode

LAMan =
(Can,ini − Can)

Can,ini
, (2.26)

where Can,ini denotes the anode capacity of the pristine cell. Similar for the cathode

LAMcat =
(Ccat,ini − Ccat)

Ccat,ini
(2.27)

applies, where Ccat,ini is the pristine cathode capacity. LAMan results in a shrinking of the half-cell
OCP curve of the anode as shown in figure 2.7c. If the lost material is assumed to be in a delithiated
state, LAMan is modeled by a linear scaling of the anode OCP curve with the left (delithiated) end
point kept fixed. The resulting full-cell OCV curve is shown as a saturated curve in this figure. The
reduction of Can and the resulting reduction of the capacity that can be accessed inside the full-cell
voltage limits (Cact) is also schematically illustrated. In this example, LAMan has the effect that the
cell, which was initially limited by the cathode at the end of charge (EOC), is now limited by the
anode at EOC and a portion of the cathode capacity and the lithium inventory at high cell voltages
can not be accessed anymore.
Analogously, LAMcat leads to a shrinking of the cathode OCP curve as shown in figure 2.7d. If the lost
material is assumed to be in a delithiated state, LAMcat is modeled as a linear scaling of the cathode
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OCP curve with the right (delithiated) end point kept fixed. Also here, the resulting full-cell OCV
curve is represented by a saturated line and the effect on the usable full-cell capacity is schematically
shown. In this example, the full-cell, which was initially limited by the anode capacity at end of
discharge (EOD) is now limited by the cathode at EOD and a portion of the anode capacity and the
lithium inventory at low full-cell voltages can not be accessed anymore.

The lithium inventory Clit is the lithium that is available for delithiation in both electrodes [136]. It
can be calculated as the sum of the amount of lithium that can be delithiated from the cathode and
the amount of lithium that can be delithiated from the anode until the upper voltage limit of the
respective electrode is reached. This quantity is related to the alignment parameters [47] according to

Clit = (αcat + βcat − βan) · Cact (2.28)

as illustrated in figure 2.4. It should be noted here that the signs of βcat and βan are negative. The
LLI is defined as

LLI =
(Clit,ini − Clit)

Clit,ini
(2.29)

where Clit,ini is the lithium inventory in the pristine state. LLI results in a relative shift of the positions
of the half-cell OCP curves as shown in figure 2.7b. LLI can be modeled as a right shift of the anode
OCP curve. The resulting full-cell OCV curve is shown as a saturated line. In the schematic illustration
of the component capacities, it can be seen that the pure LLI simulated in this example would result in
inaccessible capacity reserves in both electrodes and thus to a reduction of the usable full-cell capacity.

This concept of degradation modes, i.e., the linkage between clusters of degradation mechanisms and
a characteristic change in the electrical behavior of a lithium-ion cell, was introduced by Dubarry et
al. in 2012 [25]. The concept for describing cell degradation and the associated electrical cell model is
also referred to as the mechanistic cell model or the mechanistic modeling approach [26]. The concept
provides a component-specific description of degradation as had been contained in earlier electrochem-
ical models [137; 138], but its complexity is much lower. The concept of degradation modes has been
used in studies with focus on different aspects since then [26]: due to the reduced complexity, the
degradation modes can be easily determined from full-cell quasi-stationary OCV curve measurements,
which lead to a widespread use of DMA as a diagnostic method [68; 84; 85; 96; 98; 116; 139–146] (see
2.2.3).
The concept of degradation modes has also frequently been used in the prognostic direction to simulate
the performance of cells during aging [147–150]. The mechanistic modeling framework was also used
to generate large synthetic datasets of voltage vs. capacity curves that can be used to train diagnostic
algorithms based on statistical or deep learning methods [151]. A review of applications and extension
of the concept of degradation modes and the associated modeling framework is provided in [26].
In some studies, it is differentiated whether the LAM occurs while the electrode is in a lithiated or a
delithiated state. Depending on the lithiation state, the end of the half-cell OCP curve associated with
the delithiated or the lithiated state is used as origin of the scaling of the half-cell OCP curve associ-
ated with the LAM [25]. This differentiation can be used in prognostic models to simulate the effect
of LAM at different lithiation states on the evolution of the full-cell OCV curve [25; 147; 149; 152]. In
the following, some aspects concerning the mechanistic modeling approach are discussed in more detail.
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Figure 2.7: Impact of the degradation modes on the full-cell OCV curve based on [25; 97]: (a) No
degradation, (b) LLI, (c) LAMan, (d) LAMcat. For each scenario, the shifting and scaling
of the half-cell OCP curves and the resulting full-cell OCV curve is shown. The initial full-
and half-cell curves are shown as light-colored lines in (b-d). The voltage plotted on the
Y-axis is vs. Li/Li+ for the half-cell curves. A schematic representation of the utilization of
the electrode capacities and the lithium inventory is additionally shown for each scenario.
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Representation of cell dynamics Apart from LAM and LLI, which impact the cell capacity and the
cell voltage at quasi-equilibrium conditions, some degradation mechanisms also alter the overpoten-
tial that occurs when a non-negligible current is flowing through the cell. In the original modeling
framework presented by Dubarry et al. an approach for modeling the overpotential on electrode level
throughout aging is described [25]. This is done by modeling each electrode as a simple equivalent-
circuit model (ECM) consisting of an electrode SOC-dependent voltage source that resembles the
half-cell OCP, a resistor that resembles all quasi-instantaneous overpotentials (R1) and an RC-circuit
(R2, C2) to model overpotentials with non-negligible time constants as shown in figure 2.8. They
parameterize this model based on half-cell lithiation/delithiation curves measured at different current
rates. Aging-induced changes in the electrode resistance and kinetics can then be simulated by alter-
ing the value of the passive ECM elements. Aging-related changes in electrode kinetics can also be
simulated by altering the effective current rate at the electrodes [25]. The changes in the cell dynamics
leading to increased overpotentials and finally a decrease in the power that can be delivered by a cell
can also be defined as additional degradation modes. Until now, there is no established definition and
nomenclature for this type of degradation modes.
From the representation in figure 2.8 it becomes clear, that the mechanistic cell model is an ECM
in which phenomena on the half-cell level and their evolution during aging are modeled. In cases
in which overpotentials are neglected, e.g. in low-current scenarios, the ECM only contains the two
voltage sources representing the half-cell OCPs.

+Li/Li

Uterminal

Cathode

Anode

U (x )cat cat

R1,cat

R1,an

R2,an

R2,cat

C2,cat

C2,anU (x )an an

Figure 2.8: Mechanistic full-cell model with half-cell sub-models. The subscript ”cat” denotes that
an element models the overpotential at the cathode. The subscript ”an” denotes that an
element models the overpotential at the anode.

Experimental confirmation and limitations of the concept of degradation modes The validity of
the concept of degradation modes has been experimentally investigated: Schmidt et al. prepared
full-cells where they artificially introduced LLI and LAMcat by using different amounts (areas) of
active material to simulate LAM or electrodes harvested from cells at different SOC to simulate loss
of active lithium [68]. The full-cell OCV curves of these manipulated cells showed the features that
were expected from the model, which experimentally confirms the validity of the modeling approach.
Similar results were later also presented by Birkl et al., who additionally confirmed the validity of the
modeling approach for LAMan [97].
Validation of the LAM calculated from full-cell measurements via measuring the capacity of harvested
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electrode samples is difficult: Sieg et al. reported that the LAMan calculated from the capacity loss
measured for harvested graphite samples was smaller than the LAMan expected from the full-cell OCV
curve [153]. They assume that accessible anode material decreases because the anode gets partly
covered by a surface layer. This apparent LAM is reverted during electrode sample harvesting, as
the surface layer sticks to the separator and is therefore removed in the half-cell configuration. The
conditions during the half-cell measurement thus significantly differ from the conditions in the full-cell.
Also, Coron et al. found that the measured half-cell capacity of a harvested samples from an aged anode
was larger than what had been expected based on the full-cell OCV [154]. Their explanation for this
is that the anode degrades inhomogeneously and the samples were extracted from a comparably less
degraded area. The degradation modes that can be determined from full-cell measurements are thus
limited to resemble an average degradation over the respective electrode and spatial inhomogeneity of
degradation is not modeled with this approach.

Aging-invariance of the OCP curve It is a central hypothesis in most studies using the mechanistic
modeling approach that the shape of the half-cell OCP curves stays constant during aging. This as-
sumption is motivated by the fact that in theory the OCP at a certain lithiation degree is a property
that results from the thermodynamics of the intercalation material which should not change if the
structure of the material stays the same. This is why LAM is usually modeled as a linear scaling of
the half-cell OCP curves without changing the shape of the curve.
There is only a limited number of studies investigating this aspect experimentally by cycling full-cells
and characterizing electrode samples harvested from the aged cells: Liu et al. measured the OCP curves
of LFP and graphite samples harvested from aged full-cells. They did not find significant changes in the
curve shape compared to the pristine state [155]. Bloom et al. found minor aging-induced differences
in the OCP curve shape of graphite, which they associated with co-intercalation of the solvent [156].
Larger changes in the OCP curve shape have been found for blend anodes consisting of graphite and sil-
icon. They are associated with a faster degradation of the silicon in comparison to the graphite [41; 50;
157]. The change in the capacity contribution of the components of a blend electrode can be captured
by a blend electrode model as described in section 2.1.2. Modeling of blend electrodes by two half-cell
ECMs connected in parallel, which is conceptually equivalent to the blend electrode model proposed by
Schmidt et al. [68], was also proposed by Dubarry et al. [25]. A model in which two electrochemically
active anode components are considered is shown in figure 2.9. Similarly, a core-shell behavior can be
modeled by a serial connection of half-cell ECMs [25]. Also the formation of new phases such as oxide
surface layers or plated lithium can be modeled with this framework by additional electrode compo-
nents connected in parallel. This type of blend electrode model has been used to simulate the full-cell
OCV curves of cells with SiC anodes assuming individual rates for the LAM of graphite and silicon [70].

The evolution of the OCP curve of cathode materials has also been investigated: Li et al. showed that
no additional phases are observable in the half-cell OCP curves of aged NMC-811 [50]. Also Jung et
al. reported that the OCP curve of NMC-811 does not change significantly during cycle aging [92],
if it has not been exposed to air prior to the cycling. Lee et al. found that the full-cell OCV curve
can be fit more accurately by two half-cell OCP curves, if the shape of the half-cell OCP curve of a
NMC cathode is adapted during aging [85]. As possible reasons for the change in the OCP curve of
NMC they suggest transition-metal dissolution, structural disordering of the electrode and surface film
modification. Jia et al. showed that the full-cell OCV curve can be reconstructed with higher accuracy
if half-cell OCP curve measured for aged half-cells are used [96].
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R1,comp2
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Figure 2.9: Mechanistic full-cell model with half-cell and electrode component sub-models. The sub-
script ”cat” denotes that an element models the overpotential at the cathode. The subscript
”comp1” denotes that an element models the overpotential at anode component 1. The
subscript ”comp2” denotes that an element models the overpotential at anode component
2.

Another origin for an apparent change in the shape of the OCP curve is increased spatial inhomogene-
ity of the lithiation degree in the electrodes. Fath et al. modeled the OCP curve of inhomogeneously
lithiated electrodes as the average of several OCP curves that are constructed slightly shifted against
each other on the SOC-axis [146]. Schindler et al. proposed to model inhomogeneous electrode aging
by using an SOC-dependent scaling factor for the alignment of the half-cell OCP curves [144].

Degradation mode-based aging models In some studies, the empirically determined relationship
between individual degradation modes and stress factors during aging is described by model equations.
This approach is conceptually similar to the well established empirical aging models on full-cell level
described in section 2.2.4. Honkura et al. determined the degradation modes LAMan, LAMcat and
LLI during calendar aging and found that while the LLI followed a square root of time dependence,
the LAM of both electrodes can be better described by an exponential function of time [158]. They
extrapolated the progression of the individual degradation modes to predict the full-cell capacity fade
and found that this approach yields more accurate results than the classical square root of time
model for calendar aging. A similar method was later presented by Downey et al. who modeled the
LAM to follow an exponential function of time and the relative shift between the electrode half-cell
curves to have a square root of time dependence during cycle aging [159]. In a simulation study they
showed that their approach yields a more accurate prediction of the remaining useful lifetime (RUL)
in comparison to a capacity-based approach. Lui et al. experimentally determined the degradation
modes based on low-current charging curves measured at different aging stages during cycle aging [89].
They extrapolated the observed degradation trends using exponential and power-law model equations
and showed that this extrapolation enables an accurate prediction of the capacity fade if the operating
conditions are kept constant.
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2.2.3 Diagnostic methods based on open-circuit voltage curves

As described in section 2.2.2, LAM and LLI are linked to a characteristic change in the shape of
the full-cell OCV of lithium-ion cells. Because of this, measurements of the quasi-stationary OCV
curve obtained at different states during aging are often used to analyze and quantify the degradation
modes that have occurred in lithium-ion cells. Three types of diagnostic methods based on OCV curve
measurements can be differentiated. They are presented in this section.

Differential voltage analysis The differential voltage analysis was established for lithium-ion cells
by Bloom et al. in 2004 [160]. As described in section 2.1.2, during the lithiation/delithiation of
common electrode materials, different phases of partly lithiated host material are formed in a sequence
of two-phase transitions. The slope of the half-cell OCP is comparably small during these two-phase
transitions while it is larger at lithiation degrees in between the two-phase transitions where the elec-
trode consists almost exclusively of one phase. This phenomenon can be visualized by plotting the first
derivative (dU/dQ) of a quasi-stationary OCV curve as a function of SOC [160]. The dU/dQ-axis is
often normalized by multiplication with the cell capacity [156; 160]. Peaks in this differential voltage
(DV) plot correspond to single phases while valleys correspond to two-phase transitions. The method
can be applied both to full-cell and half-cell voltage curves [156]. If it is applied to full-cell OCV curves,
the phases and two-phase transitions of both half-cells are superimposed.
DVA can be applied to qualitatively analyze the charging/discharging behavior of lithium-ion cells
[161]. This also includes the estimation of the lithiation degree of the electrodes [101; 162–164] and the
capacity contribution of blend electrode components [165]. The distance between characteristic DV
curve features can be used to determine the capacity of one of the electrodes [83; 153; 162; 166; 167] or
of blend electrode components [166]. Under the assumption of an aging-invariant OCP curve shape,
the distances between DV features can also be used to determine the LAM of individual electrodes
during aging. A broadening of the DV peaks is associated with an increase in the spatial inhomogeneity
of the lithiation degree during charging/discharging [153].
The association of the peaks with one of the half-cells is generally done manually based on the general
knowledge on the shape of the half-cell OCP curve of the respective electrode material [155; 161; 166].
In order to eliminate the influence of measurement noise, which would be amplified by the differenti-
ation and result in high peaks in the DV plot, measured quasi-stationary OCV curves are sometimes
filtered before they are differentiated in the scope of the DVA [156]. A thorough discussion of the DVA
method can be found in [168].

Incremental capacity analysis The non-linear slope of the OCV curve can also be analyzed by calcu-
lating the local antiderivative (dQ/dU) and plotting it as a function of terminal voltage [25; 70; 81; 91;
140; 147; 169]. This method is called incremantal capacity analysis. In contrast to the DVA, the peaks
correspond to two-phase transitions while the valleys correspond to single phase configurations in this
representation. Constant offsets in the absolute OCV curve translate into a shift of the incremental
capacity (IC) curve on the voltage axes.
A change in the absolute OCV curve associated with a degradation mode also leads to a change in the
shape of the IC curve. Characteristic features, so called feature of interest (FOI), of the IC curve are
thus often used as indicators for the degradation modes or as indicators for the overall cell capacity
[70; 147; 170–172]. An overview of such methods for SOH estimation is provided in section 2.3.2. The
mechanistic modeling approach described in section 2.2.2 can also be used to simulate the IC curve for
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different assumptions for the degradation modes [70; 90; 147; 170; 172]. The results of such simulations
can then be compared to experimentally determined IC curves to associate changes in the IC curve
with degradation modes.
Numerically, the IC is often calculated simply as finite differences (∆Q/∆U at terminal voltage U)
[81]. The value for ∆U is typically in the order of 5mV [81]. Lu et al. suggested to process the
raw data by applying a ”histogram counting” method in which stoichiometric equidistant data sam-
ples inside a certain voltage range are counted to calculate the IC with reduced noise [60]. A similar
filter method for the calculation of IC curves, which is called Level Evaluation Analysis (LEAN),
was proposed by Feng et al. [173]. Dubarry et al. recommend to take the average of a low-current
charging and discharging quasi-stationary OCV curves as basis for DVA and ICA as overpotentials
can be mainly eliminated this way [90]. A review on methodical aspects of the ICA is given in [168; 174].

Full-cell OCV curve alignment According to the mechanistic model described in section 2.2.2, the
information on the capacities and the balancing of the electrodes is contained in the full-cell OCV
curve. Thus, a set of plausible alignment parameters can be obtained if a simulated full-cell OCV
curve matching the measured full-cell OCV curve can be found. An OCV curve can be simulated
according to equation 2.22 by calculating

UOCV,model(xfull, θ) = Ucat(1− (xfull − βcat)/αcat)− Uan((xfull − βan)/αan) (2.30)

for different values of xfull ∈ Xfull where Xfull is the SOC range in which the measured full-cell OCV
curve is available. E.g. Xfull = [0, 1] if the OCV curve is measured over the complete SOC range. θ is
a vector that contains the alignment parameters

θ = [αan,αcat,βan,βcat]. (2.31)

The variation of the alignment parameters that is executed in order to find a plausible solution set for
θ can be graphically described as shifting and scaling of the half-cell OCP curves until their difference
matches the measured full-cell OCV curve. This curve alignment can be executed manually [49; 89].
To facilitate the manual alignment, the DV curves or the IC curves, in which the characteristic features
are more pronounced, can be aligned instead of the absolute OCV curves [49; 89].

More reproducible results for the alignment parameters and in general also a more accurate reconstruc-
tion of the OCV curve can be obtained if the variation of the alignment parameters is not executed
manually but automatically using an optimization algorithm. Automatized alignment of measured
full-cell OCV curves has been used as a diagnostic method for degradation mode analysis by many
authors during the last decade [75; 84–86; 89; 93; 96–98; 139; 140; 145; 146]. Automated curve align-
ment eliminates the bias introduced by the manual alignment and the automation aspect is also a
prerequisite for implementing such a method in an application context. The optimization problem can
generally be formulated as

argminθ∈Ω f(θ) (2.32)

subject to: g(θ) = 0 (2.33)

h(θ) ≤ 0 (2.34)
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Figure 2.10: Schematic representation of the method of full-cell OCV curve alignment.

where f(θ) is the objective function, which is generally a non-linear function of the alignment parame-
ters and Ω is the search space for alignment parameters. g(θ) and h(θ) are non-linear functions that are
used to define additional constraints on the solution space. The method of degradation mode analysis
based on automated full-cell OCV curve alignment including the necessary inputs and the obtained
outputs is schematically shown in figure 2.10.

There are multiple settings that influence the robustness and also the computational effort of the
optimization procedure:

• Objective function: there are several options for the objective function that is used to describe the
degree of matching between the simulated and the measured full-cell OCV curve. A commonly
used function is the sum of squared errors (SSEs) between the simulated and the measured curve
[85; 136]

f(θ) =
∑
i

(UOCV,model(xfull,i, θ)− UOCV,meas(xfull,i))
2 , (2.35)

where UOCV,meas(xfull) is the measured full-cell OCV as a function of full-cell SOC and xfull,i is
a set of, typically equally spaced [175], interpolation points on the SOC-axis covering the SOC
range of the measured full-cell OCV. This objective function makes sure that the absolute OCV
curves match and that larger local deviations are penalized by taking the squared difference.
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Alternatively, the root-mean-square error (RMSE) of the absolute OCV curves is often used as
objective function to achieve these goals [84; 86; 96; 98; 140; 141; 145; 175–179]. Another option
is to minimize the squared difference of the DV curves that can be calculated from the measured
and simulated OCV curves [144; 180]. The objective function is then defined as

f(θ) =
∑
i

(
dUOCV,model(xfull,i, θ)

dxfull

∣∣∣
xfull,i

− dUOCV,meas(xfull,i)

dxfull

∣∣∣
xfull,i

)2

, (2.36)

i.e., the sum of the squared differences of the local slope of the measured and simulated OCV
curve at a set of, typically equally spaced [145], interpolation points. This objective function
emphasizes the alignment of the features in DV curve which corresponds to aligning the posi-
tions where the different phase transitions of the electrodes are assumed. Constant offsets that
could be introduced by SOC-independent overpotentials both in the half-cell and the full-cell
curves are neglected with this objective function. Using DV-based objective function can be
advantageous as it emphasizes the alignment of the phases and phase-transitions which better
resembles the concept behind the mechanistic model for near equilibrium conditions. Using a
DV-based objective function is also supposed to reduce the ambiguity of the results [158].
Objective functions based on comparing the IC curves [75] and objective functions that are
weighted sums of the aforementioned functions have also been proposed by some authors [75;
86; 146; 181]. As of now, there is no consensus on the optimal objective function for OCV curve
alignment in the literature.

• Search space: the search space Ω should be chosen as narrow as possible in order to avoid phys-
ically not plausible results for θ, but at the same time it should be chosen as wide as necessary
in order to avoid the results to be determined by the selection of the search space. βan and βcat

should be restricted to negative values as the half-cell curves are always left-shifted in compar-
ison to the full-cell OCV curve. For cells that are limited by the anode capacity at the EOD,
which is mostly the case, βan should be close to zero. αan and αcat need to be greater than
or equal to 1 as the full-cell capacity can never exceed the lowest half-cell capacity. In studies
that investigate the evolution of degradation modes during cell aging, the search space is often
defined to allow a certain relative variation of the individual alignment parameters based on the
best fit that is determined for the preceding aging state [86]. Some authors restrict the search
space even more rigorously based on physical considerations, e.g. by requiring at least a certain
anode excess at EOC [86].

• Initial values: a physical plausible set of initial values should be chosen in order to achieve a fast
convergence of the optimization and also to avoid results that correspond to a local minimum of
the objective function. Using the best fit obtained for the preceding aging state as initial param-
eters is suggested by some authors [86]. In some studies, the optimization is run multiple times
with different sets of initial values to avoid the results to correspond to a local minimum [85; 98].

• Additional constraints: Additional constraints can be used to avoid physically non-plausible
results. An example constraint for the case in which a simulated OCV curve is aligned to a
measured complete quasi-stationary charging curve would be

UOCV,model(xfull,max, θ) ≥ Umax, (2.37)
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where xfull,max is the largest SOC value for which the curve is measured and Umax is the upper
cut-off voltage used for the charging process. This constraint forces the right side of the sim-
ulated OCV curve to cover at least the upper cut-off voltage for the operation of the full-cell.
Similarly, the modeled OCV at 100% SOC can be forced to be equal to the upper-cut off voltage
[136].

• Optimization algorithm: The following algorithms have been used in the literature to find a so-
lution for the optimization problem: interior-point (IP) algorithm [145], Levenberg-Marquardt
(LM) algorithm [182], non-linear least squares (NLLS) optimization [183], sequential quadratic
programming (SQP) techniques [85], the genetic algorithm (GA) [93; 140; 175; 177], particle
swarm optimzation (PSO) [96; 139; 141; 176], the Monte-Carlo (MC) algorithm, and a pattern
search (PS) algorithm [146]. In many studies the selected algorithm is also not reported on (see
table 2.2).

• Optimization criteria: the optimization is regarded to have converged if certain optimization
criteria are fulfilled. The selection of these criteria can influence the results that are obtained by
the optimization in principle. Still, this topic is not covered in most studies reporting on degra-
dation mode analysis via OCV curve fitting. RMSEs between the simulated and the measured
OCV curve in the order of a few mV have been reported in the literature [57; 96; 140; 141; 145;
183].

An overview on studies in which degradation modes are analyzed based on automated fitting of OCV
curves is provided in table 2.2. It can be seen that in most studies, low-current (≤C/20) charging or
discharging curves are used as input and aging-invariance of the half-cell OCP curves is assumed.

In some models a differentiation between the loss of cyclable lithium caused by loss of lithiated active
material and the loss of cyclable lithium caused by stoichiometric drift (also known as electrode slip-
page) due to lithium consuming side reactions is made [25]. The loss of lithiated active material, which
can be simulated by scaling the half-cell curve fixed at the lithiated end, leads to the same change in
the shape of the full-cell OCV curve as a combination of the loss of delithiated active material and
LLI, which can be simulated by scaling the half-cell curve fixed at the delithiated end and subsequent
shifting of the curve. The two effects can thus not be differentiated based on the final full-cell OCV
curve [81; 88; 93; 144; 170].

The model used to simulate the full-cell OCV curve can be extended to cover additional effects, e.g.,
a term describing the overpotential can be introduced [86; 93; 140]. Additional model parameters de-
scribing the cell impedance are then obtained by optimization alongside the aforementioned alignment
parameters [86; 140]. Another extension of the method is to use a model for the lithiation inhomo-
geneity (see section 2.2.2), and to obtain the degree of inhomogeneity as an additional optimization
parameter [93; 146]. The method can also be extended by using simulated OCP curves obtained with
a blend electrode model (see section 2.2.2). This allows to estimate the capacity contribution of in-
dividual electrode components based on the full-cell OCV curve. This was shown for the first time
for SiC blend anodes in the study presented in section 4.2 of this work. The same approach was also
recently used by Kirkaldy et al. to obtain results on the impact of the SOC window used for cycling
on the component specific degradation of silicon [81]. A similar approach was used by Ando et al. to
separate the LAM of NMC and LMO contained in a blend cathode [184]. A change in the shape of the
half-cell OCP curves has also been considered by Jia et al. by using half-cell OCP curves measured
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for aged electrode material to fit the full-cell OCV curves of aged cells. They reported that the fit
accuracy can be increased this way [96]. Lee et al. assumed a change in the curve shape of NMC and
expanded the method by calculating a new OCP curve for the NMC cathode, if the fitting accuracy
of the full-cell OCV curves drops below a certain threshold [85].
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2.2 Aging of lithium-ion batteries

2.2.4 Degradation effects on the cell level

The most important effects of the degradation mechanisms on the macroscopic cell level are capacity
fade and an overall resistance increase which leads to a reduction of the power that can be provided
by the cell. Capacity fade can be caused both by LAM and by LLI. It should be noted, that these
degradation modes sometimes do not directly lead to capacity fade. This is the case when lithium
inventory or electrode capacity that does not contribute to the cell capacity in the full-cell operating
range is lost. Power fade can be caused by LAM at both electrodes as well as by impedance increase
[18–20; 97; 114]. The capacity accessible under typical operation conditions also decreases as the cell
resistance increases as the voltage limits are reached earlier during charging or discharging. The two
degradation effects are thus closely connected with each other.

There are many studies in which cell level degradation effects are investigated. They are often described
using comparably simple analytical equations [19]. This types of aging models are called empirical
aging models, as there is no direct link between a first-principles description of individual degradation
mechanisms and the equations that are used to describe the degradation effects on the cell level. Still,
the selection of the model equations is often motivated by assumptions on the underlying degradation
mechanisms, which is why these models are sometimes also referred to as semi-empirical aging models.
The main aim of these models is to allow the prediction of cell degradation under different operating
conditions, which is needed in the scope of system design and optimization of operation strategies
[19]. Most empirical aging models presented in the literature concentrate on describing the remaining
capacity or the capacity fade as a function of stress factors, but there are also studies in which the
change in cell impedance during aging is analyzed [189; 190]. The scope of empirical aging models is
typically limited to the main part of a cells lifetime before any mechanisms leading to rapid capacity
fade [191; 192] occur. In most empirical aging-models, calendar and cycle aging contribute to the total
aging in a purely summative way [190; 193] described by

Closs = Closs,cal + Closs,cyc, (2.38)

where Closs is the total capacity loss, Closs,cal the part of the capacity loss caused by calendar aging
and Closs,cyc the part of the capacity loss caused by cycle aging. For the parametrization of a cycle
aging model, simulated values for the calendar aging part of the aging have to be subtracted from the
measurement results to obtain the pure cycle aging part [190; 193]. The capacity fade during calendar
aging is often modeled by an equation of the form

Closs,cal = f(T ,SOC) · tz (2.39)

where the exponential factor z describes the impact of storage time on the capacity fade. A value of 0.5
is often chosen for z [193; 194] based on the consideration that the capacity fade during calendar aging
is mainly caused by SEI formation, which is a self-inhibiting process [195]. The function f(T ,SOC)

describes the impact of temperature and SOC on the rate of calendar capacity fade. Empirical models
for cycle aging are usually functions of the total charge throughput, as it is assumed that the additional
degradation caused by the cycling scales with this quantity. Similar to the calendar aging models, the
impact of charge throughput is often modeled by a power-law dependence [19]

Closs,cyc = f(T ,SOC,DOD, I) ·Qtot
z. (2.40)
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2 Aging of lithium-ion batteries and state of health estimation

Here, the function f(T ,SOC,DOD, I) describes the impact of the stress factors on the rate of cycle
aging. In contrast to calendar aging, SOC stands for the mean SOC of the cycling window. The depth
of discharge (DOD) of the cycling window as well as the current rate are additional stress factor that
are often assumed to influence the rate of cycle aging. Sometimes the current rate during charging and
discharging are treated individually [193]. Cycle aging models are often more complex than models for
calendar aging, because a strong interaction between the stress factors is assumed [193]. A detailed
review on the current state of empirical aging modeling on the cell level is given in [19].
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2.3 State of health estimation

2.3 State of health estimation

In the main part of this thesis, two novel methods for SOH estimation of lithium-ion batteries are
presented. In this section, a general introduction to the topic of SOH estimation and a review on
methods for SOH estimation that have been proposed in the literature are provided.

2.3.1 Definitions, general approaches, requirements and validation

Definitions of the state of health In the context of lithium-ion batteries, the term SOH denotes an
abstract quantity that describes the condition of a battery cell or system regarding its degradation.
There is no standardized definition of the state of health in the literature [22]. The most common
definitions are related to the degradation effects observable on cell level (see section 2.2.4). In many
contexts, the SOH is defined as the ratio between the actual, i.e., remaining, cell capacity Cact and
the initial cell capacity Cini [108; 196–200]:

SOH =
Cact

Cini
. (2.41)

The nominal capacity is also often used for the denominator in equation 2.41 instead of the initial
capacity. In order to obtain a complete and exact definition, equation 2.41 needs to be complemented
by the test conditions that are used to measure Cact and Cini. These test conditions are also not stan-
dardized in the literature, which has the consequence that there is a multiplicity of possible definitions,
even if only capacity-based SOH definitions are considered. In most studies, where SOH is used as a
quantitative parameter, an exact definition is provided specifically for the respective study.
Other common definitions for the SOH are based on the increase of the overall internal resistance of
a battery, which can limit the power that can be delivered by the battery [22]. Also this category
of SOH definitions contains a multiplicity of variants that are differentiated by the way the internal
resistance is measured. If, for example, a direct current (DC) current pulse is used to determine the
internal resistance, measurements at different SOCs, temperatures and with different pulse duration
will lead to different resistance values and thus to different values for an resistance-based SOH.

This indeterminacy of the term SOH makes it difficult to compare the results from different studies
and also to clearly define the scope and goal of methods for SOH estimation, as this term can refer
to multiple different estimation objectives. The complexity can be significantly reduced by treating
SOH estimation as an application driven task: depending on the application-specific requirements,
an individual definition for the SOH should be used. If, for example, the remaining capacity under
typical discharging conditions is of interest in a specific application context, a quantity defined this
way should form the basis for the definition of the SOH for this application context. In the scope
of SOH estimation method development, a quantity that is expected to be relevant in an application
context should be used as basis for the definition of the SOH. Even if the exact requirements on
the estimated quantity differ in another application context, e.g., if the remaining discharging capacity
at a different current rate or temperature is required, methods can often be adapted to this specific goal.
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2 Aging of lithium-ion batteries and state of health estimation

In this work, the scope of SOH estimation is narrowed to the determination of the remaining cell
capacity. In the remaining part of this section, the term SOH refers to a quantity based on the re-
maining cell capacity, such as defined in equation 2.41, without further specifications, in order to allow
a comparison between different studies on an abstract level.

General approaches for SOH estimation Following this narrowed definition of SOH, SOH estimation
refers to a method that allows the estimation of the actual capacity of a battery cell or system. In
principle, the actual capacity could also be directly measured by performing a full charging/discharging
cycle with accurate current measurement. In most practical applications, this is either technically not
possible or at least unfavorable due to the effort and temporary unavailability of the system. As already
briefly introduced in section 1.2, on a very abstract level, there are three approaches for SOH estima-
tion which are denoted as aging model-based, feature correlation-based and physical model-based in
this work. The abstract concepts behind these three approaches are schematically represented in figure
2.11 and discussed in the following. An overview on concrete methods for SOH estimation described
in the literature is provided in section 2.3.2.

Aging model-based

Feature correlation-based

Physical model-based

Aging history

Σ (t, Q , T,tot

SOC, DOD, I)

Aging model

Σ

SOH

SOH=f(Σ)

SOH=f(Σ)

Measurable feature Correlation

SOH=f(λ)

λ

SOH

SOH=f(λ)

t

U

U

IC

SOC

DV

CV

λ
λ

λ

λ

Operation measurements

t

I

Û
2arg min (Û-U)

t

U

Physical model
parameterization

SOH=f(θ)

I

θ

Figure 2.11: Schematic representation of the three general approaches for SOH estimation. Σ denotes
an abstract, potentially aggregated, representation of a cells aging history. λ represents
any kind of feature that can be measured directly or indirectly during the lifetime of a
battery. θ denotes a vector containing the free model parameters of the physical model
used to describe the cell behaviour in a certain context.
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In aging model-based SOH estimation methods, an aging model, i.e., a known correlation between
the operation history and the remaining capacity that can be expected, is used to determine the SOH
[198; 199; 201]. The conditions under which the cell or system is operated are tracked throughout its
lifetime. The aging model can then be used to obtain an estimate on the remaining capacity based on
the tracked operation history, whenever needed.
The challenge for this type of SOH estimation methods consists in the development and parametrization
of an accurate aging model for the cell or system. In general, the capacity fade depends non-linearly on
a variety of stress factors [19]. These dependencies need to be represented to obtain an accurate and
universally applicable aging model, which leads to a large parametrization effort. Another drawback is
that the aging tests needed for parametrizing the aging model, which can last for several years, need to
be completed before an algorithm for SOH estimation based on the aging model can be implemented
in a BMS. Aging-model based SOH estimation methods are only applicable to the analysis of field
data if an aging model is available for the cell or system under investigation.

Feature correlation-based SOH estimation methods are based on a known correlation between a
feature that is measurable during battery operation and the remaining capacity. The measurable fea-
ture can for example be the duration of the CV phase of the charging procedure [202; 203], the height
or position of a peak in the IC or DV spectrum of the cell [204], or the stack stress measured for a
constrained cell [108]. Whenever this feature is measured during operation, the correlation can be used
to obtain an estimate on the SOH. The method for SOH estimation based on internal gas pressure
measurement presented in chapter 3 belongs to this category as well as most SOH estimation methods
using machine learning techniques.
The challenge for this type of SOH estimation methods consists in the identification of the feature to
SOH correlation. The correlation needs to be valid for all relevant aging conditions, which is difficult
to prove in laboratory studies. As for the aging model-based methods, the correlation needs to be
parameterized via lengthy aging experiments before the method can be applied. Another drawback
is that in the application, SOH estimation is only possible in situations in which the feature can be
measured.

The physical model-based SOH estimation methods rely on a mathematical model that describes
the physical behaviour of a cell or system in a certain context. The model is defined by its structure,
which needs to be determined beforehand, but the model parameters do not need to be known before-
hand. Both the model input and the model output need to be quantities that are measurable during
operation. A common example for such a model is an electrical ECM that relates current as model
input to the terminal voltage as model output [205–207]. During operation, the model inputs are
measured and the model output is calculated assuming an initial guess for the model parameters. The
difference between the simulated and the measured model output is an indicator for the correctness
of the model parameters used for the simulation. Then, optimization or model identification meth-
ods are used to adapt the model parameters to minimize the difference between the simulated and
the measured model output. The model is thus parameterized based on measurement data obtained
during operation. In a last step, the actual capacity, which is either an explicit model parameter or
a quantity that can be calculated using the now parameterized model is determined. The method
for SOH estimation based on reconstructing the OCV curve from partial charging curves presented in
chapter 5 is a contribution to this category of methods.
The main challenge for physical model-based SOH estimation methods is the identification of a model
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2 Aging of lithium-ion batteries and state of health estimation

structure that accurately describes the behaviour of the cell or system throughout aging under all rele-
vant conditions. Another challenge is the development of efficient algorithms for the model parameter
estimation. With methods of this type, SOH estimation is only possible in situations where suitable
input and output data for parametrizing the model can be measured. Another problem is that with
increasing number of free model parameters, the obtained results can become ambiguous as different
sets of model parameters lead to a minimization of the difference between input and output.

Requirements and validation The requirements for SOH estimation methods are specific to the in-
dividual application. It is therefore difficult to quantify the general performance of a specific method.
The accuracy obtained for the estimation of the remaining capacity in a certain scenario is often used
as an indicator for the performance of a method, but this is only one aspect that needs to be addressed.
Other dimensions of the requirements on SOH estimation methods are:

• Parametrization effort: in a practical context, a key requirement is often set by the available
resources and data. If, for example, the SOH is to be determined based on field data from
a system for which no aging model or correlation between a specific feature and the SOH is
available, aging model-based and feature correlation-based models are not applicable. The need
and effort for model parametrization can thus be defined as an additional evaluation criterion
for SOH estimation methods.

• Feature observability: feature correlation-based methods and physical model-based methods are
only applicable in situations where the relevant feature or model input/output is measurable. A
concrete method can thus only be applied if this situation occurs with the necessary frequency
during operation. The frequency of the occurrence of such relevant situations can be defined as
another, application-specific evaluation criterion for SOH estimation methods.

• Aging path universality: another important aspect is whether a method performs well for cells
aged under different conditions, which is often neglected in the literature. This is important
as different aging conditions might trigger different degradation mechanisms that result in a
different evolution of the features used for SOH estimation.

• Transferability to other cell types: most methods for SOH estimation presented in the literature
are developed for one specific cell type. The transferability to another cell types is an important
aspect for the wider applicability of an SOH estimation method.

• Robustness: finally, also the robustness of the methods, i.e., whether the results are influenced
by external factors that are not explicitly considered by the method should be considered. This
includes for example, if the temperature at which a feature used in a feature correlation-based
method is measured influences the estimated SOH.

The discussion of these additional aspects is typically outside the scope of studies presenting methods
for SOH estimation. Thus, also the validation of SOH estimation methods is mostly restricted to the
quantification of the capacity estimation accuracy for a certain scenario. This approach is justified in a
proof-of-concept stage, as long as it can be assumed that the scenario used for algorithm validation is
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2.3 State of health estimation

realistic for some kind of application. A review on approaches for validating SOH estimation methods
is provided in the following. Four different approaches for SOH estimation algorithm validation can be
found in the literature. The constant current (CC) discharging capacity directly measured in temporal
proximity to the validation period is used as reference by most authors.

One option is to apply the SOH estimation algorithm to measurement data recorded during cell aging.
Some authors apply constant current constant voltage (CCCV) cycling for cell aging and use the data
of the cycling as algorithm input [202; 203; 208–222]. This has the advantage that a reference CC
discharge capacity is measured at each cycle. On the other hand, continuous CCCV cycling does not
occur in most real application. The applicability of the algorithm to real operation data is therefore not
shown. Many studies that use this kind of algorithm validation do not use original measurement data
but apply their algorithms to publicly available datasets [203; 209–212; 220; 222]. An overview on such
datasets is provided in [223]. Other authors use aging data where a profile typical for the dynamic
operation during battery discharging in an electric vehicle (EV) is combined with CCCV charging
[224–227]. In this case, capacity measurements during periodic checkups are used as reference. Most
of the times, full cycles [224; 225; 227] or at least very large SOC windows (>80%) are used for these
cycling experiments. Long pauses during the discharging are not implemented and the general cycling
to pause ratio is much higher than in a real EV application. Both of these aspects lead to significant
differences between the data that would be available in a real application and the data that is used
for algorithm validation. There are some studies where more realistic varying conditions are used for
algorithm validation [201; 228–230]. Still, only very short rest times are implemented in these studies
compared to the typical use profile of a BEV.

The second widely used option is to apply the algorithms to comparably short validation tests peri-
ods representing a use case, which are typically not longer than a few hours. The tests are typically
part of the periodic characterization procedures during long-term aging experiments and a capacity
measured before or after the validation test is used as reference [231–239]. The advantage of this
method is that the profile used for algorithm validation, which should be as close to the application
profile as possible, is independent of the aging profile. In this way, the cell aging can be accelerated
by rapid cycling or high temperatures, while the test data recorded for algorithm validation is still
close to the data available in an application. An example for such a validation test is to completely
discharge a fully charged cell with an EV driving profile [231]. There are also some studies in which
special profiles that enhance the observability of the feature used by the algorithm, are applied as
part of the regular characterization routine and used for algorithm validation [240–242]. For example,
the validation profile can contain low-current charging periods to enhance the visibility of DVA peaks
[240]. Another special case of this option is found in some studies focused on methods for model iden-
tification: here, short periods of dynamic cell operation are used to demonstrate the performance of
the model identification algorithm at one single aging state and no aging is applied at all [225; 243–247].

A third option is to use measurement data recorded during cell aging at real time during operation.
This data can either be obtained in long-term laboratory tests [200; 248] or recorded in a real applica-
tions in the field [198; 199; 249]. This approach of course yields the most realistic data for algorithm
validation, but it is associated with huge effort. This is why there are only a few studies using this op-
tion so far. It can be expected that algorithm validation based on field data will gain more popularity
in the future, as the technology for cloud-based recording of operation data improves.
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The last option is to follow a model in the loop approach and use simulated data for algorithm valida-
tion. In this case, an accurate cell model containing all relevant aging effects is needed. Application
scenarios like EV driving profiles are used to simulate the terminal voltage, current and temperature
during operation for cells at different aging states [205; 245; 250]. Sometimes, hardware-related re-
strictions like sensor inaccuracy or signal delays are also considered in such simulations [205]. This
approach is fast and yields reproducible results. The challenge is here to obtain a cell aging model
containing all relevant aging effects that can occur under all aging conditions.

Studies describing aging model-based SOH estimation algorithms and feature correlation-based SOH
estimation algorithms mostly do not contain any formal validation of the algorithm, but are limited
to discussing the accuracy of the analyzed correlation.

2.3.2 Methods for state of health estimation

The overview on methods for SOH estimation for lithium-ion batteries presented in this section aims
to provide examples for the most important conceptual approaches rather than to include all available
studies on this topic. Systematic reviews on methods for SOH estimation can be found in [22–24].

Aging model-based methods A large number of studies presenting empirical aging models has been
presented in recent years. A comprehensive review of these studies can be found for example in [19].
In principle, every aging model can be used for aging model-based SOH estimation, but this scope of
application is not explicitly mentioned in most studies describing aging models. The following types
of aging models have been explicitly proposed to be used for SOH estimation:

• Empirical aging model: Hamar et al. presented an empirical aging model (see section 2.2.4)
that shows a good correlation between the operation history of EVs operated in the field and
accurate capacity measurements recorded at certain points in time [198].

• Support vector regression: Nuhic et al. proposed an algorithm that uses support vector regres-
sion (SVR) to model the relation between SOH and operation history [201].

• Neuronal network: in addition to the analytical empirical model, Hamar et al. also presented
an aging model in the form of a neuronal Network (NN) [198]. Their validation results show a
higher accuracy of the NN model in comparison to the analytical model. He et al. proposed
an aging-model described by a long and short term memory (LSTM) NN that maps operation
history to residual capacity [199]. They validated their method with field data of EVs from
which they also extract the ground truth used for the model parametrization.

Feature correlation-based methods The following features have been shown to correlate with the
SOH and could thus be used for SOH estimation. This list is not conclusive, but it provides an overview
on the most common concepts for feature correlation-based SOH estimation:

• IC curve FOIs: many authors described a correlation between characteristic features of the IC
curve (see 2.2.3), so called feature of interests (FOIs), and the SOH [87; 170; 197; 204; 251].
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The most common FOIs are the peak height, peak position and peak area of the IC spectrum.
Sometimes, also a combination of several FOIs is used. Dubarry et al. suggested to simulate
the quasi-stationary OCV curves of a cell suffering from different combinations of degradation
modes [170]. Afterwards, multiple features of the IC curves such as peak positions, voltage at
the edges of the spectrum, peak half-width, voltage variation, peak intensity or intensity varia-
tion can be analyzed for their correlation with degradation modes. A multi-dimensional look up
table (LUT) correlating a selected combination of FOIs with the degradation modes can then
be created. In this way, the degradation modes can be retrieved if the combination of FOIs is
observed. As the remaining capacity can be calculated based on the degradation modes, this also
resembles a method for SOH estimation. Simulating battery degradation using the mechanistic
model allows to establish the correlation between IC FOIs and SOH without the necessity of
long and tedious aging experiments [118].

• DV curve FOIs: similar to the correlation between IC FOI and SOH, also features of the DV
curve (see 2.2.3) such as the position or height of DV peaks and valleys are found to correlate
with SOH and can thus be used for SOH estimation [204; 208].

• Shape of charging/discharging curves: also charging or discharging curves themselves contain
characteristic information that can be correlated with SOH without the need of calculating the
DV or IC first. Park et al. presented a correlation between an aging parameter that is based on
the shape of the CC discharging curve and the SOH [196]. Richardson et al. showed that there
is a correlation between the shape of partial CC charging and discharging curves with the SOH
[252]. Shen et al. proposed an algorithm that correlates the current and voltage measurements
during complete and partial CCCV charging with the SOH using a deep convolutional NN [253].
Li et al. proposed an algorithm based on random forest regression using partial CC charging
curves as input [219]. Yang et al. proposed to use a combination of manually selected features
of the charging curve (time in CC phase, time in CV phase, slope at end of CC phase and slope
at lower SOC) [203]. Guo et al. used a relevance vector machine to correlate charging curve
features with the SOH [254].

• Duration of CV phase: the duration of CV phases at the same voltage and with the same cut-off
current is reported to correlate with the SOH and can thus be used for SOH estimation [202; 203].

• Current decay during CV phase: also the time constant of the current decay during CV charging
has been shown to strongly correlate with SOH [202; 255].

• Relaxation after CCCV charging: voltage measurements from the relaxation phase after a CCCV
charging process can be correlated with the SOH using machine learning techniques [256].

• OCV curve shape: Ma et al. presented a method in which the OCV curve is first extracted from
dynamic discharge data and then fit by a model equation. The combined fit parameters of this
equation correlate with the SOH [238].

• Internal resistance: a correlation between the internal resistance measured with a DC current
pulse and the remaining capacity has been described [257]. A problem of using this correlation
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for SOH estimation is that the ratio of relative capacity fade and relative impedance increase is
generally different for different aging conditions [257]. Cai et al. presented a correlation between
characteristic points of DC current pulses with SOH modeled by a support vector regression
model that could be used for SOH estimation [200].

• Electrochemical impedance spectrum: a correlation between ECM parameters obtained by fit-
ting electrochemical impedance spectroscopy (EIS) spectra and SOH has been proposed for SOH
estimation [233].

• Mechanical quantities: some of the mechanical parameters that can in principle be measured
during operation of lithium-ion cells correlate with the SOH and have thus been proposed as
features for SOH estimation. Cannarella et al. presented a correlation between cell stack stress
and SOH [108]. Other studies present correlations between features of ultrasonic waves that are
transmitted through lithium-ion cells and SOH [258]. A major problem with these methods is
that mechanical properties are also dependent on SOC and temperature, which needs to be con-
sidered in an algorithm for SOH estimation. Another drawback of these models is the additional
effort that results from the necessity of additional sensors. The method for SOH estimation
based on measurements of the internal gas pressure inside prismatic cells presented in chapter 3
of this work is a novel contribution to this type of methods for SOH estimation.

• Entropy: Wu et al. showed that there is a correlation between the temperature evolution during
CC charging of an LCO-NCA/graphite cell and the SOH [259].

• Cumulative balancing charge: Zilberman et al. showed that there is a correlation between the
cumulative balancing charges in a pack of serially connected cells that are cycle aged and the
difference between the individual cell capacities [161]. This could help to determine the SOH of
individual cells connected in series.

Physical model-based methods The key elements of physical model-based methods are the physical
model and the algorithm used for online model parametrization. In the following list, the most common
types of physical models used for SOH estimation are presented:

• Coulomb counting: The simplest method for physical model-based SOH estimation is based on
Coulomb counting. The capacity can be determined if the charge throughput balance during a
certain period of charging or discharging is divided by the change in SOC:

Cact =
∆Q

∆SOC
. (2.42)

The only model parameter in this case is the battery capacity and the model is described by

∆SOC =
∆Q

Cact
, (2.43)

where ∆Q can be regarded as the model input and ∆SOC as the model output. If the ∆SOC

calculated by the Coulomb counting model does not correspond with the ∆SOC that is calcu-
lated based on the difference between the SOC before and after the operation phase, the assumed
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battery capacity needs to be updated. There are two main challenges for this method: first, ∆Q

hast to be measured with high accuracy. Second, a reliable method to determine the difference
in SOC before and after the operation period that is independent of Coulomb counting is needed.
Voltage-based SOC estimation is mainly used for this task, but this is problematic, as the re-
lationship between SOC and voltage, i.e., the OCV curve, also changes with cell degradation.
It has been proposed to mitigate this problem by using a suitable voltage window whose rela-
tive contribution towards the complete capacity does not change significantly during aging [260;
261]. Another option is to apply Coulomb counting only to a certain SOC window in which the
main portion of degradation is expected, and which is defined by the position of DV peaks [262].
Besides the mentioned drawbacks, Coulomb counting-based SOH estimation can yield sufficient
results in many applications and is often chosen because of the simplicity of the method.

• Equivalent circuit model: ECMs are often used to describe the electrical behaviour of lithium-ion
cells and systems. The model input is usually the current and often additionally the temper-
ature. The model output is typically the terminal voltage. A typical ECM for a lithium-ion
battery consists of a voltage source modeling the OCV as a function of SOC, a serial resistance
modeling the ohmic internal resistance and one or several RC-circuits modeling overpotentials
that exhibit a transient behaviour. The most important model element for the SOH estimation
is the OCV. One option is to use an OCV curve that is externally determined during initial
model parametrization and to regard the shape of the OCV curve to be invariant during aging.
In this case the only free model parameter describing the static part of the model is the cell
capacity. This approach is used in many SOH estimation algorithms based on Kalman filter
techniques [205; 206]. Other studies consider a change in the shape of the OCV curve, which
more realistically resembles the actual physical behaviour of aged cells. In these models, the
OCV curve is implemented as an analytical equation that includes parameters that are obtained
via model identification based on operation data throughout aging [249; 263]. The equations
describing the OCV curve do not explicitly consider the half-cell origin of the full-cell OCV
curve.
Different algorithms have been used in the literature for online parametrization of ECMs with
the aim of SOH estimation. This includes the Big-Bang Big-Crunch algorithm [249], different
types of Kalman filters [205–207], least squares optimization [264; 265] and a combination be-
tween Extended Kalman Filter, recursive least squares optimization and a parameter varying
approach [263].

• Mechanistic cell model: The mechanistic cell model described in section 2.2.2 is a special case
of an ECM, in which the half-cell origin of the full-cell OCV curve is explicitly modeled and
associated with degradation modes. Using full-cell OCV curve alignment (see section 2.2.3) is
typically used to parameterize this type of model. The same approach has also been proposed
as a method for SOH estimation. The model input is here the charge throughput during CC
charging or discharging and the model output is the terminal voltage. Two aspects need to be
considered to apply this method, which was originally developed for the analysis of complete low-
current CC charging and discharging curves, to data frequently observable in applications: first,
complete charging or discharging phases are rarely observed in many applications. It would
therefore be beneficial if the method could also be applied to partial charging or discharging
curves. Second, in the case in which CC charging is applied, the current is typically in a range
where the overpotential cannot be neglected and the charging curve does not resemble a quasi-
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stationary state. These aspects have been recently investigated by some authors:
Yang et al. showed that accurate SOH estimation based on partial charging curves measured
at a current rate of C/3 is possible with this method, if the overpotential is compensated by a
resistance term and if the available SOC window includes at least the range between 20-70%
[86]. Lee et al. investigated the theoretical estimation uncertainty of the alignment parameters
based on partial OCV curves [136]. They found that the analytical error bound decreases with
increasing size of the SOC window and that the inclusion of regions with a high voltage slope
improves the estimation accuracy. Dey et al. proposed an algorithm for the identification of
a half-cell-based model using dynamic input data [266]. Marongiu et al. showed that accu-
rate SOH estimation for a LFP/graphite cell is possible if the length of the upper two full-cell
OCV plateaus is observable [142; 143]. This detection of the voltage plateau length represents a
slightly different approach than the pure OCV curve alignment. Higher current rate input has
also been investigated by Lu et al. who compensated the overpotential during CC phases by a
linearly SOC-dependent resistance term [75]. The algorithm presented in chapter 5 of this work
comprises another contribution to this type of SOH estimation methods.

• Physico-chemical models: reduced order physico-chemical models can also be parameterized
based on voltage and current measurements obtained during operation and then be used to
calculate the SOH. For example, Bartlett et al. proposed to parameterize a single-particle
model based on operation data using an Extended Kalman Filter, a Kalman smoother and a
particle filter [230]. Online parametrization of a single-particle models was also proposed by
other authors [267; 268].
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In the scope of the study presented in this chapter, a novel method for SOH estimation based on
measurements of the gas pressure inside prismatic lithium-ion cells is described.
The physical quantities that are measured by a BMS, which form the basis for SOH estimation, are
usually limited to voltage, current and temperature. The available information on the battery can be
enhanced by using sensors that measure additional physical parameters of the cell during operation.
This additional information could in principle be used to improve the safety monitoring or the state
estimation, including SOH estimation, performed by the BMS. This concept was investigated in the
scope of the joint research project Multifunktionale intelligente Batterie Zelle (multi-functional smart
battery cell) funded by the German Federal Ministry of Education (grant number 03XP0027G), which
was partly carried out at the Chair for Electrical Energy Storage Technology at the Technical Univer-
sity of Munich.
In the scope of this project, prismatic lithium-ion cells in the PHEV2 format with integrated and
attached sensors were manufactured and tested. The active anode material of the cells was graphite.
NMC-111 was used as active cathode material. The cells were equipped with a reference electrode
and a thermocouple inside the cell case. Outside the cell, a gas pressure sensor was glued on top of
a small hole in the top cover plate of the cell. The article titled Measurement of gas pressure inside
large-format prismatic lithium-ion cells during operation and cycle aging, which is presented in this
chapter, describes and discusses the results of measurements of the gas pressure inside the case of the
aforementioned sensor-equipped lithium-ion cells.

In the scope of this article, the influence of changes in SOC and temperature on the gas pressure
inside the cells as well as changes during long-term cycling are investigated. One general result of this
study is that long-term monitoring of the gas pressure inside the case of a prismatic cell is feasible
with a miniaturized commercially available pressure sensor and does not lead to premature battery
failure or accelerated aging. This finding is a novelty, as measurements of the internal gas pressure
of lithium-ion cells had previously only been reported for smaller cells [269; 270] or using large-scale
laboratory equipment [35; 112; 113; 123; 126; 131].
The gas pressure exhibits a reversible, non-linear dependence on SOC that is most probably due to a
change in the free volume inside the cell case caused by the expansion and contraction of the electrodes
during lithiation and delithiation (see section 2.1.4). The absolute change between the fully discharged
and fully charged state is approximately 3 kPa for the investigated cells. Three regions with different
pressure change upon SOC variation can be distinguished during charging and discharging. At SOC
below approximately 35%, the pressure exhibits a comparably strong increase with SOC, which is due
to the pronounced expansion of the graphite anode during lithiation as long as the graphite is in the
dilute stages (4L-2L). In the middle SOC region (approximately 35-73%SOC), where the graphite is
in the stage 2L-stage 2 phase transition, the gas pressure slightly decreases with increasing SOC. This
is probably due to the contraction of the cathode that dominates the overall change in the free volume
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in this SOC region where the graphite anode exhibits only a small increase upon lithiation. In the
upper SOC region above 73%, the pressure aging increases with the SOC due to the expansion of the
graphite.
It is found that the internal gas pressure reversibly and non-linearly increases with increasing temper-
ature. For an ideal gas, a linear correlation with temperature would be expected from the general gas
equation (equation 2.23). A probable cause for the additional pressure increase at elevated tempera-
ture is an increase in the partial gas pressure of electrolyte components.
During long-term cycling, the gas pressure irreversibly increases. This is most probably mainly due to
the evolution of gas during side reactions (see section 2.2.1). The gas pressure rapidly increases during
the first 100 equivalent full cycles (EFCs) and exhibits a slower increase afterwards. Cycle aging at
10 ◦C and 25 ◦C is investigated in the scope of the study but no impact of the ambient temperature
during cycling on the capacity fade or irreversible pressure change is observed. There is a comparably
large variation in the absolute gas pressure both at the begin of life as well as during the cycling for
the individual cells. This is probably due to manufacturing tolerances as the cells are custom built
prototypes. Still, the investigated cells show an approximately linear correlation between relative in-
crease in pressure and decrease in capacity during cycling after 100 EFC.

The correlation between capacity fade and internal gas pressure found in the scope of this study could
be used to estimate the SOH based on gas pressure measurements. The concept of such an algorithm
for SOH estimation as well as the necessary steps during algorithm development are outlined in the
presented article. The proposed algorithm can be categorized as feature correlation-based SOH es-
timation (see section 2.3.2). SOH estimation following the proposed concept could for example be
applied in addition to other methods that are based on voltage, current and temperature, in order to
implement a second method for SOH estimation with true redundancy. Apart from this application,
the general understanding on the impact of SOC, temperature and cycle aging upon the gas pressure
inside the case of a prismatic cell derived in the presented study, might also be valuable in the scope
of mechanical cell and pack design.

The detection of safety critical events is another possible scope of application for monitoring the inter-
nal gas pressure of battery cells which is not discussed in the presented article. Results on this topic
that were also obtained in the scope of the project Multifunktionale intelligente Batterie Zelle were
presented as part of a poster contribution titled In-situ measurement of gas pressure inside prismatic
lithium ion cells during operation and abuse scenarios at Batterieforum Deutschland in 2019.
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Publication notes
The article titled Measurement of gas pressure inside large-format prismatic lithium-ion cells during
operation and cycle aging is presented in the following. The article was published in the Journal of
Power Sources [271]. Parts of the results have been presented as poster contributions titled In-situ
measurement of gas pressure inside prismatic lithium ion cells during operation and abuse scenarios
(Batterieforum Deutschland, Berlin, 2019), Change of Gas Pressure inside Prismatic Lithium Ion Cells
during Aging (Advanced Battery Power, Aachen, 2019) and Influence of State of Charge, Temperature
and Aging on the Gas Pressure inside Prismatic Lithium Ion Cells (Batterieforum Deutschland, Berlin,
2020).

Author contribution
The concept of the study was developed by Julius Schmitt supported by discussions with Benjamin
Kraft and Jan Philipp Schmidt. The experimental design was developed by Julius Schmitt. Julius
Schmitt carried out the experiments. The experimental data was analyzed and visualized by Julius
Schmitt. Benjamin Kraft and Betina Meir provided additional experimental data recorded at their
laboratory that is not presented in the article but which was used for validation of the presented
results. Klaus Elian, David Ensling and Goran Keser provided the sensor-equipped battery cells that
were used in the study. Andreas Jossen supervised the research project as well as the scientific work
presented in the article. The manuscript was written by Julius Schmitt and was edited by all authors.
All authors discussed the data and commented on the results.
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Gas pressure in prismatic lithium-ion 
cells is measured with an attached 
sensor. 

• Measurement of gas pressure during 
long-term cycling is feasible for large 
cells. 

• Change in electrode volumes, depending 
on lithiation, affects internal pressure. 

• Dependence of internal pressure on 
temperature is investigated. 

• Pressure increase during cycling corre-
lates with capacity decrease.  
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A B S T R A C T   

In this study we investigate the influence of the state of charge (SOC), temperature and aging on the gas pressure 
inside prismatic lithium-ion cells with a LiNi1/3Mn1/3Co1/3O2 cathode and a graphite anode. The internal gas 
pressure inside lithium-ion cells has so far been only investigated for small cells using large-size laboratory 
measurement equipment. We show for the first time that measuring the internal gas pressure is also possible for 
large-format prismatic cells and by using miniaturized pressure sensors that can be integrated into a battery pack. 
We also show that this measurement method enables the monitoring of the gas pressure during long-term cycling 
without leading to premature battery failure or accelerated aging. The gas pressure depends on the SOC in a non- 
linear way. This is caused by the dependence of the electrode volumes on the degree of lithiation. The gas 
pressure also correlates non-linearly with temperature, and the magnitude of temperature dependence increases 
with aging. During long-term cycling, the pressure irreversibly increases, which is most likely due mainly to gas 
formation. The increase in pressure correlates with a loss of capacity, which basically qualifies internal gas 
pressure for an indicator for state of health.   
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1. Introduction 

The gas pressure inside prismatic lithium-ion cells is a physical cell 
parameter which has to be considered during cell design. The vent, in 
particular, must be constructed in a way that it will open at a defined 
internal pressure during abuse cases, and not during regular operation or 
as a result of pressure increase during cell aging. In addition to its 
relevance for cell design, gas pressure inside the case of prismatic or 
cylindrical cells could also provide an additional source of information 
about the state of the battery, enabling advanced state estimation. This 
would require the measurement of the gas pressure during operation. 

According to the general gas equation (1), the pressure p inside a 
closed volume V depends on the amount (moles) of gas n in the volume 
and the absolute temperature T. R is the ideal gas constant. 

p ⋅ V = n⋅R⋅T (1) 

The general gas equation refers to a hypothetical ideal gas but is also 
often a good approximation for the behavior of real gases. Applying this 
approximation, the gas pressure inside a battery cell with a rigid case 
depends on the amount of gas in the cell, the free volume inside the cell 
case, and the temperature. The gas pressure inside lithium-ion cells has 
been reported to be affected by the following effects:  

1 Production of gas during formation and aging [1–5].  
2 Reversible changes of electrode volume during intercalation and 

deintercalation of lithium, resulting in a change of free volume inside 
the cell [4,6]. 

A number of authors have reported experiments where the gas 
pressure inside lithium-ion batteries has been monitored during opera-
tion. Matasso et al. constructed a test chamber for examining the pres-
sure and gas formation of cylindric lithium-ion batteries [1,2,6,7]. In 
their test setup, the pressure release cap was removed from the batteries 
and they were transferred into the test chamber, which was subse-
quently sealed. Over the course of 250 cycles, an increase of gas pressure 
was observed for a cell with a lithium cobalt oxide cathode [1]. The rate 
of pressure increase per cycle decreased during cell aging, which the 
authors interpreted as a change in the primary effects leading to the 
pressure increase. They also analyzed - using gas chromatograph mass 
spectrometry - the gas inside the cell after the cycling, and identified CO, 
CO2, CH4, C2H4, C2H6 and C3H8 as components of the gas. Taking into 
account results from the post-mortem scanning electron microscopy 
analysis, they concluded that the processes causing the production of 
these gases are not related to the type of cathode material. They also 
reported that higher cycling rates lead to a higher rate of pressure in-
crease [2]. No significant gas evolution was observed between the 5th 
and 100th cycle for a lithium iron phosphate (LFP) cell [7]. Concerning 
the influence of the state of charge (SOC), they found that the pressure 
during low-rate cycling of an LFP/graphite cell is lower after discharge 
compared with the charged state [6]. Schiele et al. [3] developed a 
multichannel pressure-measurement system for observing the pressure 
inside small, self-built electrochemical cells. They used this method in 
combination with differential electrochemical mass spectroscopy, in 
order to gain insights into the gas evolution and the reactions taking 
place inside different types of lithium-ion cells. They found that gas is 
formed during the formation cycle and that the amount of gas produced 
is higher at elevated temperatures. The loss of capacity during the for-
mation phase also correlates with the pressure increase due to gassing 
[3]. Schweidler et al. used the same setup and measured the pressure of 
the gas volume at the top part of a lithium titanate oxide (LTO)/graphite 
cell during cycling [4]. By subtracting the pressure increase due to 
gassing and assuming no volume change in the LTO, the pressure change 
due to the change in the volume of graphite was calculated, and shown 
to be in good accordance with the results obtained from their X-ray 
diffraction measurements of the lithiation-dependent volume change of 
graphite. Lanz et al. [5] constructed an electrochemical cell with a 

built-in pressure transmitter to study the oxygen release at elevated cell 
potentials. Park et al. [8] used a 18650-type cell with a pressure sensor 
containing an electrode jelly roll, filler and electrolyte, in order to study 
the influence of surface modifications on the oxygen release of 
high-voltage oxide cathodes at high potentials. Measurements of inter-
nal gas pressure have also been reported for other cell chemistries, 
including nickel-metal hydride [9,10] and lithium-sulfur [11]. 

Apart from the studies where gas pressure is explicitly measured, 
there are many studies of the fundamental effects causing gassing inside 
lithium-ion batteries during formation and aging, without an explicit 
focus on pressure measurements. Production of C2H4, CO, CO2 and H2 
during the formation of lithium nickel manganese cobalt oxide (NMC)/ 
graphite cells has been reported [12]. C2H4 is formed as a product of the 
ethylene carbonate (EC) reduction at the anode when the solid elec-
trolyte interface (SEI) is formed. The H2 formed during formation cycles 
originates from the reduction of traces of water at the anode. It is also 
assumed that protic electrolyte oxidation species are transferred from 
the cathode to the anode where they are subsequently reduced, releasing 
additional H2 even after the initial traces of water have been removed by 
reduction [12]. The gas formation of LiNi0.4Mn0.4Co0.2O2/graphite 
pouch bag cells during formation was found to occur mainly during two 
distinct steps, one at 3.7 V cell voltage and one at 4.3 V [13]. It was also 
shown that the gases evolving during cycle aging do influence the 
further aging of the cells, as they can take part in chemical reactions 
[14]. At elevated temperatures, EC is reported to chemically react with 
traces of H2O, thus releasing CO2 [15]. Other authors found that at 
elevated temperatures CO is produced by reactions with the cathode 
material, while CO2 is mainly produced by reactions with the free 
lithium compounds Li2CO3 and LiOH which are also found in the cath-
odes [16]. Additional gas formation is reported for high cell potentials 
which are usually avoided during normal operation. Starting at a cell 
voltage of 4.6 V, lattice oxygen is released from NMC leading to a 
decomposition of EC accompanied by the production of CO and CO2 
[17]. 

Measurements of gas pressure inside lithium-ion batteries have 
mainly been reported for small cells [5,8] or using special experimental 
setups containing electrochemical cells [1–4,6,7]. The methods for 
measuring the internal gas pressure of lithium-ion cells described in the 
literature are useful to investigate fundamental electrochemical pro-
cesses but are not suitable for on-board monitoring of the internal gas 
pressure in an application, which is possible with the method presented 
in this work. In this study the integration of a pressure sensor attached to 
a large-format cell, and the resulting measurements of internal cell 
pressure, are described for the first time. We show that measuring the 
gas pressure is feasible with a commercially available sensor, which 
essentially enables the industrialization of the presented method for 
on-board monitoring. The used sensor could also be integrated into a 
battery pack because of its small size. The methods presented in the 
literature either use a much larger sensor or result in a significant change 
in the free volume that is accessible by the gas. Changes in the free 
volume accessible by the gas do not occur with the method presented in 
this work. This is advantageous because the operating conditions are 
then not altered compared to a regular cell in an application. The 
method for measuring the internal gas pressure presented in this work 
also shows excellent long-term stability and does not lead to premature 
battery failure or accelerated aging, which enables its use throughout 
the whole lifetime of a battery pack. To the authors’ knowledge, this is 
the first time, a method for measuring the internal gas pressure inside 
lithium-ion cells fulfilling these requirements is presented. 

We present and discuss pressure measurements during the cycle 
aging of a large-format lithium-ion cell for over 1100 equivalent full 
cycles for the first time. We show that similar observations to those re-
ported in the literature for small cells can be made with large-format 
prismatic cells. In addition to the influence of the SOC and aging on 
the cell pressure, we present and discuss measurements of cell pressure 
at different temperatures, which has not been subject to much 
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investigation to date. Based on our results, we finally draw conclusions 
about the chances and limitations of using pressure measurement for 
battery state estimation. 

2. Experimental 

2.1. Custom-built cells with pressure sensor 

In order to monitor the gas pressure inside lithium-ion cells during 
operation, custom-built prismatic cells were equipped with pressure 
sensors. The cells were manufactured by VARTA Microbattery GmbH 
(Germany). The positive electrodes consisted of lithium nickel manga-
nese cobalt oxide (LiNi1/3Mn1/3Co1/3O2, NMC-111) and polyvinylidene 
fluoride (PVDF, < 5 % wt) as the binder, coated on an aluminum current 
collector. The negative electrodes consisted of refined natural graphite, 
and both carboxymethyl cellulose (CMC) and styrene-butadiene rubber 
(SBR) as binders (total < 5 % wt), coated on a copper current collector. 
A separator with ceramic coating was used. The cells contained EC, 
dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in similar 
proportions as the electrolyte, and LiPF6 as the conducting salt. Vinylene 
carbonate (VC, < 5 % wt) was used as an additive. 

The cells were of PHEV2 format (outer dimensions of 91 mm × 148 
mm × 26.5 mm) and had a nominal capacity of 34 Ah. C-rates and 
equivalent full cycles (EFC) used in this study are always given with 
respect to this value. The cells were clamped between two steel plates (8 
mm thickness) at a distance of 26.5 mm using spacers and fixed by 
screws in order to prevent deformation of the cell case through electrode 
swelling, and to apply similar conditions to those seen in typical appli-
cations. A photograph of one of the cells in between the plates is shown 
in Fig. 1. The results presented in this publication are based on experi-
ments with four cells of this type, which are referred to as A to D. 

For sensing the gas pressure inside the cell case, SP40 pressure sen-
sors from Infineon Technology AG (Germany) were used. The integrated 
sensor package contains a pressure-sensitive membrane which lies 
beneath an opening in the sensor package. The membrane deforms upon 
variation in pressure of the volume of gas in contact with the opening of 
the package, enabling the gas pressure to be measured. It provides on- 
chip temperature compensation and analog-to-digital conversion. The 
sensors were soldered on small circuit boards with buffer capacitors and 
a standard plug for communication. The top cover plate of each battery 
case had an additional small opening. A pressure sensor on the circuit 
board was glued over this opening using a high-performance industrial 
adhesive. Afterwards, the cover plate with the sensor was mounted on 
the cell case. In this way, the membrane of the sensor was brought into 
contact with the volume of space in the battery head. Subsequently, the 
cell was filled with electrolyte and underwent formation. As displayed in 

Fig. 1, the custom-built cells also contained an internal thermocouple 
and a reference electrode inside the jelly roll, as additional sensing el-
ements. The results of the measurements with these devices will be 
addressed in a following publication. Due to the small size of the 
reference electrode and the thermocouple it is not assumed that they 
have an influence on the general behavior of the cell. 

2.2. Setup and instrumentation 

All tests were carried out at controlled ambient temperature inside 
MK53 climatic chambers from Binder GmbH (Germany). A XCTS battery 
test system from Basytec GmbH (Germany) with a voltage/current 
measurement uncertainty of 1mV/100 mA was used for electrochemical 
cycling and characterization. Temperature sensors were attached to the 
negative cell terminals to measure the outer cell temperature during 
testing. 

2.3. Test overview and initial characterization 

An overview of the experiments carried out during this study is given 
in Fig. 2. At the beginning of the experiments, as an initial character-
ization, all cells were tested with the procedures described in Table 1. 
Afterwards, the cells were repeatedly cycled for 100 cycles, then elec-
trochemically characterized and subsequently exposed to a temperature 
profile. These three steps were repeated thirteen times, resulting in an 
overall testing time of 360 days. Details of the individual testing pro-
cedures are given below. Whenever the cells were set to a certain voltage 
before or after a test, this was done at 25 ∘C using 1C constant current - 
constant voltage (CCCV) charging/discharging until |I| < 0.02C. 

2.4. Electrochemical characterization 

The electrochemical characterization procedure consisted of 
charging and discharging cycles with different current rates, followed by 
a low-current, quasi-stationary open-circuit voltage (OCV) measurement 
at 0.05C. The quasi-stationary OCV measurement was used for capacity 
measurement and to correlate pressure changes during charging and 
discharging, using differential voltage analysis (DVA). Finally, the cells 
were discharged to 3.7 V and both a charging and a discharging pulse 
were applied. The detailed test parameters are listed in Table 2. If not 
otherwise stated, the procedure was applied at 25 ∘C. The procedure was 
always preceded by a rest period of at least 6 h at the set temperature. 
Typical voltage and current measurements during the characterization 
procedure are shown in Fig. 2 (b). The characterization procedure after 
the eight cycling period was interrupted due to a technical problem. The 
results from this characterization are therefore excluded from the dis-
cussion for all cells. 

2.5. Galvanostatic intermittent titration technique with pressure sensing 

Cell open-circuit voltage and gas pressure at rest were measured at 
different SOCs using the galvanostatic intermittent titration technique 
(GITT) in order to analyze the influence of the SOC on gas pressure at 
equilibrium conditions. The experiments were carried out at 25 ∘C. The 
cells were first charged with I = 1C CCCV until U = 4.1 V; I < 0.02C. 
Subsequently, they were kept under open-circuit conditions for 6 h. 
Afterwards, a 10 s discharging pulse of 1C was applied, followed by one 
more minute of rest. Finally, 1.7 Ah of charge (corresponding to 
approximately 5 % of the cell capacity) were drawn from cells by con-
stant current (CC) discharging at 0.2C. These steps were repeated until 
the terminal voltage reached 2.5 V. Then the same procedure was 
applied in the charging direction, ending with a CCCV charging phase 
(until U = 4.1 V; I < 0.02C). This procedure was conducted during the 
initial characterization and after the cycling. 

Fig. 1. Custom-built prismatic lithium-ion cell clamped between two steel 
plates. On top of the cell, the terminals, the vent, the attached pressure sensor 
with connector printed circuit board, the terminal for a reference electrode and 
the lead-through for an internal thermocouple are visible. 
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2.6. Cycling 

Each cycling period consisted of 100 cycles, where the cells were CC 
discharged with 1C until U = 2.5 V and afterwards CCCV charged with 
1C until U = 4.1 V and I < 0.05C. There were 10 min of rest time in 
between charging and discharging. At the end of the procedure, the cells 
were discharged to U = 3.7 V. Cell A and cell B were cycled at a tem-
perature of 25 ∘C. Cell C and cell D were cycled at 10 ∘C. The cells were 
kept at the set temperature for at least 6 h before the cycling was started. 
The voltage and current during a section of a cycling period are shown in 

Fig. 2(a). 

2.7. Temperature profiles 

During the temperature profiles, the cells were kept under open- 
circuit conditions while the temperature inside the climatic camber 
was set according to the following profile in order to study the influence 
of temperature on internal cell pressure. Each set temperature level was 
reached by a linear ramp of 1.5 h duration, and then kept for 2 h. The set 
temperatures were ϑset = { 25, 30, 40, 50, 40, 30, 20, 10, 0, − 10, − 20, 
− 10, 0, 10, 20, 25}C. The set temperature during the procedure is shown 
in Fig. 2(c). 

3. Results and discussion 

3.1. Dependence of pressure on state of charge 

The results of the GITT tests, where the gas pressure is measured at 
stationary conditions at different SOCs, are used to study the influence of 
the SOC on internal gas pressure. During the GITT tests performed as 
part of the initial characterization, an irreversible pressure rise due to 
gas formation or an irreversible change in electrode volume is likely to 
occur, as is discussed below in section 3.3. After cycling the cells for 
approximately one year, a significant irreversible pressure rise during 
the test with a duration of approximately 220 h can be excluded. 

Fig. 2. Overview of the tests carried out in this study: (a) Cell voltage and 
current during a cycling period (only a section of a cycling period is shown). (b) 
Cell voltage and current during electrochemical characterization - the marked 
sections are (I) 1C/1C cycle, (II) 1C/0.2C cycle, (III) 0.05C/0.05C cycle and (IV) 
discharging the cell to 3.7 V and applying current pulses. (c) Set temperature 
during the temperature profile procedure with marked points in time where the 
gas pressure is evaluated. 

Table 1 
Procedures applied during the initial characterization with experimental 
conditions.  

Procedure Ucell  ϑ 

Electrochemical characterization – 25 ∘C  
Electrochemical characterization – 10 ∘C  
Temperature profile 3.7 V – 
Temperature profile 4.1 V – 
Temperature profile 3.3 V – 
Electrochemical characterization – 25 ∘C  
Galvanostatic intermittent titration technique – 25 ∘C  
Temperature profile 3.7 V –  

Table 2 
Steps of the electrochemical characterization procedure.  

Step Parameter Termination 

CCCV Charge I = 1C; U = 4.1 V  I < 0.02C  
Pause – t > 10 min  
CC Discharge I = 1C  U < 2.5 V  
Pause – t > 10 min  
CCCV Charge I = 1C; U = 4.1 V  I < 0.02C  
Pause – t > 10 min  
CC Discharge I = 0.2C  U < 2.5 V  
Pause – t > 10 min  
CCCV Charge I = 1C; U = 4.1 V  I < 0.02C  
Pause – t > 3 h  
CC Discharge (quasi-stationary OCV) I = 0.05C  U < 2.5 V  
Pause – t > 3 h  
CC Charge (quasi-stationary OCV) I = 0.05C  U > 4.1 V  
Pause – t > 10 min  
CCCV Charge I = 1C; U = 4.1 V  I < 0.02C  
Pause – t > 10 min  
CCCV Discharge I = 1C; U = 3.7 V  I < 0.02C  
Pause – t > 10 min  
CC Discharge (pulse) I = 1C  t > 20 s  
Pause – t > 10 min  
CC Charge (pulse) I = 1C  t > 20 s   
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Therefore, the results of the GITT tests performed after cycling the cells 
are used for the analysis of pressure dependence on the SOC. 

In Fig. 3 the change in internal cell pressure of cell A during the 
charging phase of the GITT measurement after cycling for 1215 equiv-
alent full cycles at 25 ∘C is displayed. The difference in pressure at 
different SOCs is plotted against the pressure at 0 % SOC. The influence 
of differences in temperature can be excluded because of the long 
relaxation time at each SOC. 

The internal gas pressure at stationary conditions exhibits a non- 
linear dependence on the SOC. There are three regions in the SOC 
range with different correlation between pressure and SOC change. In 
the lower SOC region (SOC < 36 %) the pressure strongly increases with 
increasing SOC. In the middle SOC range, the cell pressure slightly de-
creases with increasing SOC. In the upper SOC range (SOC > 72 %), the 
pressure again increases with increasing SOC. 

The gas pressure inside the case of lithium-ion cells can basically be 
described by the ideal gas equation (1). The temperature of the system at 
the points of evaluation during the GITT measurement is constant and 
therefore can be excluded from being the cause of the change in pres-
sure. The influence of the formation of additional gas during one cycle 
can be estimated from the results of the cycle aging experiments pre-
sented in section 3.3. During the last 89 equivalent full cycles before the 
GITT measurement, the internal pressure of cell A increases by only 0.87 
kPa. The pressure increase per equivalent full cycle in this late stage of 
cycle life is therefore below 0.01 kPa assuming a linear approximation. 
The irreversible pressure increase is thus negligible compared to the 
reversible pressure change depicted in Fig. 3. There are also no reports of 
reversible gas formation/consumption depending on the SOC in the 
literature. This means that only a change in the free volume can lead to 
the change in pressure observed during the GITT measurement. We 
conclude that the change of pressure upon SOC variation is evoked by a 
change in the free volume inside the cell case. The free volume inside the 
cell case depends on the expansion of both the anode and the cathode, 
while the total volume inside the case stays constant, as a deformation of 
the rigid cell case is prevented by two steel plates bracing the cell. 

Graphite exhibits a pronounced volume change during intercalation 
and deintercalation of lithium-ions. The change of the crystal structure 
of graphite during lithiation is a non-homogeneous process, whereby 
there are different phases inside the crystal depending on the degree of 
lithiation [18]. At low levels of lithiation, there are dilute, liquid-like 
phases usually referred to as 1L (lithium is randomly distributed in the 

graphite) [18], 4L, 3L and 2L, whereby the number refers to the number 
of unoccupied graphene layers in between partly lithiated graphene 
layers [19]. At higher degrees of lithiation, the dense, completely filled 
stages 2 (LiC 12) and stage 1 (LiC6) [18] form. Graphite half cells 
significantly increase their volume until stage 2 starts to form [4,20]. 
The exact separation and description of the dilute graphite stages is still 
under discussion [21]. Therefore, graphite stages up to 2L are referred to 
as dilute and are not further distinguished within this study as they show 
an almost uniform volume increase during lithiation [4]. There is only a 
small volume increase in graphite during the dilute-2 phase transition, 
where both dilute phases and stage 2 coexist. During the 2-1 phase 
transition at high levels of lithiation, there is again a strong increase in 
unit cell volume of graphite [4,20,22]. The total unit cell volume change 
in between C6 and LiC6 is reported to be 13.2 % [4] while electrode 
thickness has been reported to vary by 7 % [22]. 

The unit cell volume of NMC-111 decreases during delithiation 
(charging the full cell). The decrease in unit cell volume during deli-
thiation is small until a lithiation degree of about 30 % is reached 
[23–25]. The SOC dependence of gas pressure displayed in Fig. 3 is most 
likely due to the combination of the volume change at both electrodes. 
The pronounced increase in pressure during an SOC increase in the 
lower SOC range is presumably caused by the strong expansion of 
graphite during the filling of the dilute stages exceeding the shrinking of 
the cathode. In the middle SOC range, the graphite is in the dilute-2 
phase transition regime where its volume stays almost constant during 
lithiation. The overall pressure decrease during charging is most likely 
dominated here by the decrease in cathode volume as discussed below. 
The increase in pressure during the SOC increase in the upper SOC range 
is presumably due to the pronounced increase in graphite volume while 
the graphite is in the 2-1 phase transition regime, which again exceeds 
the decrease in the cathode volume during delithiation. This qualitative 
form of dependence between internal cell pressure and SOC is observed 
for all investigated cells. 

The same qualitative results regarding the SOC dependence of gas 
pressure are obtained when the change in gas pressure during the quasi- 
stationary OCV measurements - conducted as part of the characteriza-
tion procedure at fixed intervals during cycle aging - are analyzed. The 
internal gas pressure during the quasi-stationary OCV measurements at 
all aging states is shown in Fig. 4(a and b). 

In addition to this, the differential voltage change during discharging 
and charging is displayed in Fig. 4(c and d) so as to enable the further 
investigation of the correlation between pressure change and graphite 
staging. Differential voltage analysis can be used to analyze phase 
transitions of graphite [22]. SOC levels where one electrode consists of 
only one single phase (graphite stage) are observable as peaks in the 
DVA diagram. In between these peaks, the electrodes are in a phase 
transition where two phases of lithiation coexist. Both during charging 
and discharging, there is a pronounced peak in the dU/dSOC curve in 
between 70 % and 80 % SOC. This peak corresponds to the SOC level 
where the graphite is in stage 2 (LiC12). The location of stage 2 graphite 
peaks in the DVA diagrams in 4 (c,d) correspond well with the local 
minima of the pressure curves in 4 (a,b). At higher SOCs, the graphite is 
in the 2-1 phase transition; at lower SOCs, it is in the dilute-2 phase 
transition. 

The different dilute stages are not clearly distinguishable in the DVA, 
but the onset of the dilute-2 phase transition is expected at a lithiation of 
25 % [4,18,26]. Two distinct features of the differential voltage during 
charging depicted in Fig. 4(d) can be used to determine the lithiation 
degree of the graphite as a function of full cell SOC: The stage 2 peak 
(LiC12) at 73 % SOC corresponds to a lithiation of the graphite of 50 % 
[27]. The distinct peak at 21 % is identified with stage 4 (LiC36) and 
corresponds to a graphite lithiation of 16 % [27]. According to this 
correlation, a graphite lithiation of 25 % is reached at 35 % SOC. This 
corresponds well with the position of the local pressure maximum in 
Fig. 4(a and b). The local maximum of the pressure curve during 
charging is at a slightly higher SOC than for discharging, which might be 

Fig. 3. Change of internal pressure of cell A during charging phase of GITT 
measurement after cycling for 1215 equivalent full cycles at 25 ∘C. The pressure 
difference of stationary pressures at different SOCs compared to the pressure at 
0 % SOC is shown. 
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due to the fact that the cell is not at equilibrium conditions during the 
experiment. Similar forms of gas pressure dependence on SOC have been 
reported in the literature [6]. 

The correspondence between SOC and graphite lithiation established 
via DVA can also be used to carry out an assessment of the change in 
electrode volumes in the SOC range, where a decrease in pressure is 
observed during the GITT depicted in Fig. 3. The pressure decreases 
during charging in between 42.1 % SOC and 66.2 % SOC, which cor-
responds to an increase in graphite lithiation from 29.8 % to 45.6 %. 
During this change in lithiation, the average graphene inter-layer 
spacing is supposed to only increases by 0.29 % [28]. The relative vol-
ume increase can be assumed to be the same because the in-plane vol-
ume change of graphite is negligible compared to the volume change 
along the c-axis [26]. Knowing the lithiation of the graphite at these two 
SOC points also allows to calculate the cathode potential by adding the 
anode potential to the terminal voltage of the cell after relaxation. The 
full cell rest voltages at 42.1 % SOC and 66.2 % SOC are 3.677 V and 
3.803 V respectively. The anode potential at the calculated levels of 
lithiation are 0.089 V and 0.076 V [28]. This means that the cathode 
potential increases from 3.766 V to 3.879 V. In this voltage range, the 
cathode volume is supposed to decrease by 0.327 Å3 or 0.33 % [29]. The 
shrinking of the cathode thus exceeds the swelling of the graphite in the 
middle SOC range. 

Fig. 4 also displays the progression of both pressure and differential 
voltage, depending on the aging state of the cell. The absolute pressure 
difference between the fully charged and the fully discharged state in-
creases during aging. This can be explained by an irreversible increase in 
the amount of gas in the cell, or by irreversible electrode swelling, as will 
be discussed in section 3.3. The irreversible increase in the amount of 
gas or the irreversible increase in electrode volume presumably leads to 

a higher sensitivity of the pressure to changes in the free volume, ac-
cording to the ideal gas equation. Apart from this, there are no signifi-
cant changes in the form of the pressure curve during aging. 

3.2. Dependence of pressure on temperature 

In this section the results of pressure measurements during the 
temperature profiles applied at regular intervals throughout cycle aging 
are presented and discussed. In order to use pressure measurements for 
SOC or state of health (SOH) estimation, the influence of temperature 
changes on gas pressure during operation has to be separated from other 
effects. Therefore, knowledge of the influence of temperature on inter-
nal gas pressure is crucial for state estimation using internal gas 
pressure. 

A linear dependence of gas pressure on temperature is expected from 
the ideal gas equation (1). In Fig. 5(a) the internal pressure of cell A 
measured during temperature profiles is plotted against the temperature 
at the cell surface. Only the data points during the cooling phase of the 
temperature profile are considered, in order to provide a similar tem-
perature history for all data points. This procedure is necessary because 
the cell pressure does not completely reach stationary conditions during 
the 2 h of rest time at each set temperature, even while the temperature 
measured at the cell surface reaches steady values. The points in time 
that are used for the analysis are displayed in Fig. 2(c). The pressure 
inside the cell displayed in Fig. 5(a) is higher at elevated temperatures 
for all aging states, as is to be expected according to the ideal gas 
equation. The absolute values of pressure at all temperatures increase 
during aging, which will be discussed in section 3.3. 

In Fig. 5(b) the difference quotients Δp/ΔT during the cooling phase 
are plotted as an approximation of the local slope of the curves in Fig. 5 

Fig. 4. Pressure and differential voltage during quasi-stationary OCV measurements as part of the characterization procedure of cell A at different aging states up to 
1210 equivalent full cycles. The SOC for the different aging stages is calculated considering the actual capacity at the individual aging stage. (a) Pressure during 
discharging (difference compared to pressure at the beginning of discharging). (b) Pressure during charging (difference compared to pressure at the beginning of 
discharging). (c) Differential voltage during discharging. (d) Differential voltage during charging. The raw data of both pressure measurement and DVA has been 
smoothed using a moving average filter. 
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(a). The mean temperature of each two data points used to calculate the 
difference quotients is plotted on the x-axis. As shown in Fig. 5(b), the 
gradient of the correspondence between pressure and temperature is 
higher at elevated temperatures. The measurement data can therefore 
not be explained solely by a linear relationship between the two quan-
tities, which would be expected from the gas equation. One effect that 
might be the cause of this non-linearity is the non-linear temperature 
dependence of the vapor pressure of the electrolyte, whose partial 
pressure also contributes to the total gas pressure [30]. In the investi-
gated temperature range, pure DMC is reported to have vapor pressure 
of several kPa which would have a significant impact on the total 
pressure [31]. Another finding is that the slope of pressure change upon 
temperature variation increases during aging for the whole temperature 
range. This effect can be explained by an additional amount of gas in the 
cell, or by irreversible electrode swelling, as will be discussed in section 
3.3. This might lead to a higher sensitivity of pressure to temperature 
change, according to the gas equation (1). 

3.3. Irreversible pressure increase during cycle aging 

Besides the reversible changes in gas pressure dependent on the SOC 
and temperature, the gas pressure irreversibly increases during cycle 
aging. In Fig. 6 the pressure of cell A in between cycle 100 and 200 is 
plotted as a typical example for the progression of pressure during 
cycling periods. At the beginning of each period, the pressure signifi-
cantly increases by about 5 kPa and then shows a repeating pattern 
around a mean value for each cycle. The initial pressure increase is 
caused by the elevated battery temperature during cycling. The 

repeating pattern results from a superposition of temperature changes 
during the different phases of cycling, and changes in the overall elec-
trode volume dependent on the SOC, as discussed in section 3.1. 

In the course of a period of 100 cycles, the mean value of the periodic 
pattern of pressure increases. The window in which the temperature 
fluctuates during cycling stays the same after the second cycle, as shown 
in Fig. 6. Therefore, a long-term increase in temperature can be excluded 
as a cause of the pressure increase. When the cycling ends, the cell 
temperature approaches ambient temperature, and both cell tempera-
ture and pressure reach stable values after a couple of hours. The pres-
sure at equilibrium conditions following the cycling is higher than 
before the cycling period, which means that the pressure irreversibly 
increases during cycling. The irreversible increase in gas pressure is 
probably mainly caused by an increase in the amount of gas inside the 
cell, as will be discussed below. 

In Fig. 7(a) the cell capacity of the four investigated cells measured 
during the 0.05C CC discharging phase of the electrochemical charac-
terization procedure at 25 ∘C is plotted against the charge throughput in 
equivalent full cycles. Low-current discharging is used for capacity 
measurement, in order to minimize the influence of impedance change 
on capacity measurement. All four cells show a decreasing trend in ca-
pacity. The rate of capacity decrease is large during the initial charac-
terization (between the first and the second data point) and during the 
first cycling period (between the second and the third data point). In the 
remaining part of the cycling, the capacity decreases in an approxi-
mately linear fashion with regard to charge throughput. 

Capacity progression during the main part of cycle life of lithium-ion 
cells with the same electrode materials as used in this study have been 
described as linear with regard to charge throughput, until the onset of 
accelerated aging at the end of the cell’s cycle lifetime [32,33]. The 
approximately linear capacity decrease found during the main part of 
cycle aging in our measurements is therefore in accordance with the 
literature. No accelerated capacity fade at later aging states is observed 
in our experimental data, because the cells are only cycled until a ca-
pacity fade of up to 11 % where accelerated aging is not yet expected. 
The rate of capacity decrease does not depend on the ambient temper-
ature during cycling. There are studies where a stronger capacity 
decrease is reported for very low (0 ∘C and below) and very high (40 ∘C 
and above) temperatures compared to the capacity decrease at mild 
temperatures in between these extremes for both cycle aging [32,34,35] 
and calendar aging [36,37]. The absence of temperature dependence of 
capacity fade in our experimental data is probably due to the fact that 

Fig. 5. Results of temperature profiles at different aging stages (number of 
equivalent full cycles (EFC) indicated in the legend) for cell A: (a) Pressure at 
stationary temperatures during the cooling phase of temperature profiles. (b) 
Local gradient of pressure change with temperature change (difference quo-
tient) with the mean of two adjacent temperature measurements on the x-axis. 

Fig. 6. Internal gas pressure of cell A during cycling at ambient temperature of 
25 ∘C for the second period (cycle 100 to 200). At the end of the experiment 
there are several hours of rest under open-circuit conditions. 
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both temperatures applied during cycling are inside the optimal tem-
perature window for this cell, and that no aging mechanisms caused by 
extremely low or high temperatures are triggered. 

The gas pressure inside the cells at the beginning of each electro-
chemical characterization period at 25 ∘C is shown in Fig. 7(b). The 
mean value during a time period of 60 s at the beginning of the char-
acterization procedure, where the cells have reached equilibrium con-
ditions, is shown. All cells show a general trend towards rising pressure 
during cycling. 

We assume that this irreversible increase in gas pressure is mainly 
caused by an increase in the amount of gas inside the cell. Gassing has 
been reported to be the main effect leading to an increase in pressure 
inside lithium-ion cells in literature [1–5]. Another effect which might 
contribute to the long-term increase of gas pressure is an irreversible 
increase in electrode volumes. During regular operation, the SEI on the 
graphite anode continuously grows, which might lead to an irreversible 
expansion of this cell component [38,39]. The magnitude of the irre-
versible overall thickness increase for cells with graphite anodes during 
long-term cycling is reported to be in the order of the reversible thick-
ness change due to lithium intercalation [40,41]. If a similar behavior is 
assumed for the cells under investigation in our study, the magnitude of 
the contribution of irreversible electrode swelling towards the increase 
in pressure is similar to the magnitude of pressure differences due to 
reversible electrode swelling. The contribution of irreversible electrode 
swelling is therefore most probably in the order of a few kPa. As the total 

increase of pressure is in the order of tens of kPa, the contribution of 
irreversible electrode swelling is most probably small compared to the 
contribution of gassing. Irreversible lithium plating is also known to 
result in the irreversible expansion of NMC/graphite pouch cells [42,43] 
and to lead to the formation of comparably thick surface layers on the 
anode [44]. This could also affect long-term pressure progression, but 
we do not expect plating to occur during our experiments, because of the 
mild temperatures and low current rates applied during cycling. 

A pronounced pressure increase in between the first and the second 
characterization can be observed for all cells in Fig. 7(b). The cells 
experienced a small amount of cycling in between these two measure-
ments. In addition to that, they were exposed to three temperature 
profiles at different states of charge. The pressure increase can be 
attributed to the cycling during the first electrochemical characteriza-
tion procedure at 25 ∘C and the electrochemical characterization pro-
cedure at 10 ∘C. This is assumed because the pressure values after the 
characterization procedure at 10 ∘C almost reach the values of the 
beginning of the second characterization procedure at 25 ∘C (second 
data point in Fig. 7(b)). The temperature profiles - including charging 
and discharging the cells to specific voltage levels - seem to have a minor 
impact on gassing. Strong gassing during the first formation cycle has 
been reported in literature [5,45]. Our results suggest that this pro-
nounced gassing also continues for up to 7 more cycles after the for-
mation cycle. Another possible explanation for the strong pressure 
increase during the first 7 cycles is the irreversible expansion of the 
graphite. Comparably strong irreversible graphite expansion during the 
first cycle has been reported in literature [20,39,46]. Reasons for this 
irreversible expansion are particle rearrangement [20] and solvent 
cointercalation during initial SEI formation [47]. 

When the pressure before and after the first cycling period is 
compared, the individual cells display varying behavior. This is prob-
ably due to tolerances in the cell manufacturing process. The pressure in 
cell A and B (both cycled at 25 ∘C) increases during the first cycling 
period. The pressure in cell D stays the same while the pressure in cell C 
even decreases. The pressure in cell C also decreases at later points 
during cycling, but still shows a trend towards long-term pressure in-
crease. Apart from this, the pressure in the other cells continuously in-
creases after the first cycling period. The rate of pressure increase falls 
with cycling for cell A. Similar behavior was reported in literature [1,2]. 
The pressure in cell B and D increases in an approximately linear fashion 
during cycling. 

Similar to the rate of capacity decrease, the rate of pressure increase 
seems to be independent of the temperature during cycling. This sug-
gests that the same aging mechanisms are dominant at both cycling 
temperatures. It should be noted, that there is a significant difference in 
the absolute value of pressure increase, even for cells cycled under the 
same condition. This might be due to differences in the free volume 
inside the custom-built cells, and could disguise differences in gas pro-
duction depending on the ambient temperature during cycling. Differ-
ences in between the individual cells are probably also the cause for the 
differences in initial cell pressure at the beginning of the experiments. 

In Fig. 8 the relative pressure increase is plotted against the relative 
capacity decrease. Two aging phases can be distinguished. In the first 
phase, corresponding to the initial characterization and the first cycling 
period, there is both a strong capacity loss and a significant pressure 
increase. As discussed before, this can be ascribed to ongoing formation 
processes. Beginning with the second cycling period, the two presented 
quantities exhibit an approximately linear correlation similar to results 
in the literature [1]. While all tested cells show the aforementioned 
correlation, the gradient of pressure increase with capacity loss differs 
between the cells. Differences in initial free volume are the most prob-
able reason for this. 

The correlation between the increase in gas pressure and capacity 
loss basically enables the usage of pressure measurements for SOH 
determination. A prerequisite to use measurements of the internal gas 
pressure for SOH estimation is that all cells of the same type show the 

Fig. 7. (a) Capacity during 0.05C CC discharging phase of the electrochemical 
characterizations and (b) gas pressure inside the cells at the beginning of the 
electrochemical characterization periods at 3.7 V and 25 ∘C, both plotted versus 
charge throughput. The first data point of each graph refers to the pristine cell, 
the second data point to the status after the initial characterization, and the 
following data points to the recurring characterizations during cycle aging. 
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same correlation between the increase in gas pressure and capacity loss. 
Further tests with cells that are manufactured with a higher degree of 
automation are necessary in order to evaluate if this prerequisite is 
fulfilled for commercial cells. We suggest the following approach for 
developing an algorithm that uses measurements of internal gas pressure 
for the estimation of the remaining cell capacity: First, the correlation 
between internal pressure increase and capacity decrease is determined 
through aging experiments in the laboratory in a similar way as pre-
sented in this work. Afterwards, the following algorithm could be 
implemented in the battery management system: Whenever the battery 
pack is at rest and thermal equilibrium conditions have approximately 
been reached, the internal gas pressure is measured. Then, influences of 
temperature and SOC on the gas pressure are considered by applying 
corrections to determine the gas pressure at the reference temperature 
and reference SOC, where the correlation between gas pressure and 
capacity has been recorded. In a last step, the predefined correlation 
between pressure and capacity is used to calculate the remaining ca-
pacity from the corrected gas pressure value. 

4. Conclusion 

As a key result of this study, we showed that measuring the internal 
gas pressure of large-format, prismatic lithium-ion cells with a built-in 
sensor over several hundreds of cycles is possible. Our results confirm 
the observations regarding pressure dependence on the SOC and aging 
in the literature, and show that they are transferable to large-format 
cells. 

We found a non-linear relationship between the gas pressure inside 
prismatic lithium-ion cells with LiNi1/3Mn1/3Co1/3O2 cathodes and 
graphite anodes and the SOC. This effect is most likely due to the 
dependence of the volumes of the electrodes on the degree of lithiation. 
The difference in cell pressure between the fully charged and fully dis-
charged state for the investigated prismatic cells of format PHEV2 is in 
the order of 3 kPa. In principle, this would qualify the gas pressure for an 
indicator for SOC estimation. A fundamental problem hindering the 
development of such methods is that the relationship between pressure 
and SOC is not monotone over the whole SOC range. Instead, the gas 
pressure over SOC curve has a local maximum in between 30 % and 40 
% SOC and a local minimum in between 70 % and 80 % SOC, where the 

graphite anode is in stage 2. The methods would therefore be limited to 
the low SOC range where the pressure shows a monotone change with 
regard to the SOC. 

Another main finding is that the gas pressure inside the cells has a 
non-linear relationship with temperature. The main part of the tem-
perature dependence can be explained by the linear relationship be-
tween pressure and temperature according to the general gas equation. 
The deviations from the linear relationship are most likely caused by the 
temperature dependence of electrolyte vapor pressure. The influence of 
temperature on cell pressure, considering typical temperature fluctua-
tions occurring in the battery packs of electric vehicles of several 10 K, 
would exceed the influence of the SOC on internal gas pressure by at 
least one order of magnitude. In order to achieve gas-pressure- 
measurement-based SOC estimation for such operating conditions, the 
influence of temperature needs to be compensated for, which requires a 
model description of the temperature dependence of pressure which is 
valid for all aging stages. The development of such models should be the 
subject of further research. 

During long-term cycling, we observed an irreversible increase in gas 
pressure inside the cells over more than 1100 equivalent full cycles. The 
increase in gas pressure during cycle aging correlates with the loss of cell 
capacity after 100 cycles, when formation processes have completely 
decayed. For the remaining lifetime of the cell, the gas pressure there-
fore basically qualifies for an indicator for SOH estimation. A require-
ment for such estimation methods would be that all cells of the same 
type show the same rate of pressure increase upon capacity decrease. 
The influence of different aging conditions and calendar aging on 
pressure progression will be studied in our future research. 
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4 Change in the shape of the open-circuit potential
curve during cycle aging

The full-cell OCV curve is a fundamental model parameter for most methods for physical model-based
SOH estimation (see section 2.3.2). It is also an important parameter for many models that are used
to describe the electrical behavior of lithium-ion cells. The shape of the full-cell OCV curve changes
during cell aging, which is a challenge for physical model-based SOH estimation. The change in the
shape of the OCV curve needs to be considered in the models in order to provide accurate SOH
estimates throughout aging.
The most popular way to model the change in the shape of the OCV curve of lithium-ion full-cells is
the mechanistic modeling approach introduced by Dubarry et al. [25], which is described in section
2.2.2. In this modeling framework, the change in the shape of the full-cell OCV curve during aging is
described by the degradation modes LAMan, LAMcat and LLI. The full-cell OCV curve of an aged cell
can then be calculated based on the degradation modes and the shape of the half-cell OCP curves. For
most electrode materials including graphite and most commonly used cathode materials, it is assumed,
that the shape of the OCP curve, i.e., the relationship between lithiation degree of the electrode and its
OCP, does not change during aging [26]. Thus, the half-cell OCP curve of pristine electrode material
is used to calculate the full-cell OCV curves of aged cells. In the scope of this work, it is investigated,
whether this hypothesis is also valid for blend electrodes containing both graphite and silicon, as well as
for nickel-rich NMC-811. In this chapter, the results of the experimental investigation on the half-cell
level are presented in section 4.1. In section 4.2 the consequences of the change in the shape of the
half-cell OCP of SiC on the change in the shape of the full-cell OCV curve during aging are analyzed.
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4.1 Aging-induced change in the shape of half-cell open-circuit
potential curves

In the study presented in this section, the half-cell OCP curves of SiC and NMC-811 during cycle aging
are investigated. Commercially available full-cells of the type INR18650-MJ1 built by LG Chem were
cycled using CCCV charging and CC discharging at 25◦C. This cell type was chosen for this study as it
resembles a state-of-the-art high energy cell with a silicon-containing anode. The cycling was stopped
after a different number of cycles for the individual cells, in order to obtain cells at different aging
states. After the cycling had been stopped, the cells were opened under Argon atmosphere inside a
glove box and several samples were extracted from both electrodes. Half-cells in the CR2032 coin-cell
format containing a harvested electrode sample as working electrode and lithium metal foil as counter
electrode were built subsequently. The half-cells were then cycled with a low current of approximately
C/90 to obtain the quasi-stationary OCP curve of the electrode materials. In this way, the OCP curves
of SiC and NMC-811 at different aging states were recorded.
The shape of the recorded OCP curves was generally similar for electrode samples extracted from the
same full-cell. An exception to this is the low lithiated region of SiC during lithiation, where large
deviations between the samples are found. A probable reason for this is inhomogeneity in the silicon
distribution over the electrode sheet. Averaged OCP curves were used for the following analysis of the
change in OCP curve shape during aging, in order to reduce the influence of uncontrollable differences
in the coin-cell manufacturing process and to consider the inhomogeneity over the electrode sheet at
least to some degree.
The half-cell OCP curves at different aging states are analyzed by direct comparison as well as by
DVA and ICA. It is found that the shape of the OCP curve of SiC significantly changes during ag-
ing. The DV peaks corresponding to graphite stages shift to lower electrode SOC during aging and
a smaller fraction of the electrode capacity is accessed at high electrode potentials. These findings
are interpreted to be caused by a decrease in the electrode capacity fraction that is provided by the
silicon. It is concluded that both graphite and silicon degrade during cycling, but the rate of capacity
decrease is higher for the silicon, which leads to a change in the relative capacity contributions of both
components. The changes in the OCP curve shape are more pronounced during delithiation, which is
probably due to the hysteresis of the silicon.
No significant change in the shape of the OCP curve of NMC-811 during aging is found. Even though
there is some variation between the DV and IC of the OCP curves at different aging stages, the dif-
ferences do no exhibit a trend with aging and are probably due to uncontrollable influences of the
electrode harvesting or coin-cell preparation process.
These results are relevant for modeling lithium-ion cells with SiC anodes during aging, as well as for
physical model-based state estimation for this type of cells. In order to accurately model the change in
the full-cell OCV curve of SiC containing cells during cycle aging, not only the changes in the overall
electrode capacities and the electrode balancing, but also changes in the shape of the half-cell OCP
curve should be considered. The results of this study help to better understand the aging of SiC blend
anodes, which differs from the aging of classical graphite electrodes. The impact of the changes in the
SiC half-cell OCP curve on the full-cell OCV curve were investigated in a subsequent study that is
presented in section 4.2.
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Publication notes
The article titled Change in the half-cell open-circuit potential curves of silicon–graphite and nickel-rich
lithium nickel manganese cobalt oxide during cycle aging is presented in the following. The article was
published in the Journal of Power Sources [46]. Parts of the results have been presented as an online
presentation titled Experimental investigation of the aging invariance of electrode open circuit voltage
curves in the scope of the Advanced Battery Power conference in April 2021.
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electrode harvesting, coin-cell manufacturing and measurements on half-cell level. The experimental
data was analyzed and visualized by Julius Schmitt. Andreas Jossen supervised the related research
projects as well as the scientific work presented in the article. The manuscript was written by Julius
Schmitt and was edited by all authors. All authors discussed the data and commented on the results.
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H I G H L I G H T S

• Half-cell OCP of Si-graphite and NMC-811 is measured at different aging stages.
• Several samples per electrode enable OCP averaging and quantification of deviations.
• The shape of the Si-graphite OCP curve changes during cycle aging.
• Change in Si-graphite OCP is due to reduced contribution of Si to electrode capacity.
• The shape of the NMC-811 OCP curve stays similar during cycle aging.
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A B S T R A C T

The relationship between the degree of lithiation and open-circuit potential (OCP) of the half-cells of lithium-
ion batteries is mostly regarded to be invariant during battery aging. In electrical cell modeling, the OCP
curve of aged half-cells is therefore usually obtained by linear scaling of OCP curves measured for pristine
electrodes. In this study, the aging invariance of the shape of both half-cell OCP curves of a commercial
NMC-811/silicon–graphite cell is investigated experimentally. Full-cells are cycled until different degradation
levels are reached. Subsequently, several electrode samples are extracted and the OCP of both electrodes is
measured using coin-cells containing electrode samples as working electrode and lithium metal foil as counter
electrode. Changes in half-cell OCP are analyzed using differential voltage analysis and incremental capacity
analysis. The OCP of the NMC-811 does not change with aging, while the OCP of silicon–graphite exhibits
changes which are mainly due to a decrease in the relative capacity contribution of the silicon. The main
consequence of our findings is, that changes in the shape of the OCP curve of silicon–graphite during cycle
aging should be considered in electrical battery models which are used for full-cell aging diagnostics and state
estimation algorithms in battery management systems.

1. Introduction

Degradation processes occurring in lithium-ion batteries during op-
eration and storage result in a reduction of the available energy and
power that can be delivered by the battery [1–9]. In addition to this,
the degradation also leads to a significant change in the relationship
between open-circuit potential (OCP) and state of charge (SOC), which
has been the subject of many studies mainly motivated by two aspects:
Firstly, monitoring this change can be used as a non-destructive method
to investigate the occurrence of different degradation mechanisms [2,
7,8,10–15] and to enable more sophisticated state of health (SOH)
estimation [16]. When it is possible to assign degradation to a single
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E-mail address: julius.schmitt@tum.de (J. Schmitt).

electrode, the SOH can be defined and monitored on the electrode
level eventually enabling advanced control algorithms for optimized
cell operation [17]. Secondly, knowing the relationship between OCP
and SOC with high accuracy during the whole lifetime of a battery is a
prerequisite for many methods of state estimation [18–20]. Therefore,
a lot of research has been devoted to the development of methods for
adjusting the OCP to SOC relationship during battery aging [11,13,21–
23].

A common approach reducing the complexity in describing cell ag-
ing is to cluster individual aging mechanisms that lead to the same char-
acteristic changes in cell OCP to so called degradation modes [11,13,
14,21,24]. The most important degradation modes are loss of lithium
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inventory (LLI), loss of anode active material (LAMA) and loss of
cathode active material (LAMC) [11,24]. In a full-cell OCP model
consisting of two half-cell OCP curves, LLI results in a shift of the
relative position of the anode half-cell curve compared to the cathode
half-cell curve [11,24]. LAM is usually treated as a linear scaling of
the individual half-cell curves resembling the fact that the individual
electrodes can store less lithium but otherwise do not change their
properties. The point of the curve which is fixed during this scaling
depends on whether degradation occurs while the electrode is lithiated
or delithiated [11,24]. This general framework of describing battery
degradation via aging modes resulting in a superposition of shifting and
linear scaling of half-cell OCP curves has been used in many studies as
a tool to extract information on degradation mechanisms from full-cell
quasi-stationary OCP curves [2,7,11,13,14,21,24]. It has also be used
to simulate the change in OCP during aging [25].

In all of these studies, the shape of the half-cell OCP curves is
assumed to be invariant during aging and therefore the aged half-cell
OCP is calculated by linear scaling of the pristine half-cell OCP curve.
There are only few studies investigating this assumption experimen-
tally: Schmidt et al. showed that the predicted change in full-cell OCP
due to LLI and LAMC can be experimentally validated if these aging
modes are artificially evoked during cell preparation [26]. Later, Birkl
et al. presented an experimental validation also for the other aging
modes using electrode sample manipulation [24].

The effect of cycle aging on the shape of half-cell OCP curves has
also been investigated by cycling full-cells and characterizing electrode
samples harvested from the aged cells [10,12,27–29]. Only minor de-
viations in the shape of the OCP curve have been reported for graphite
anodes [10,12]. However, much larger alterations of the OCP curve
shape have been found for blend anodes consisting of graphite and
silicon. These alterations of the curve shape are associated with a
faster degradation of the silicon in comparison to the graphite [27–
29]. Anseán et al. recently presented a method to construct the OCP
of blended silicon–graphite (SiG) electrodes based on the OCP curves
of their components [30].

There are only few studies where a change in the shape of the
NMC OCP curve during full-cell cycling is investigated experimen-
tally [29,31–33]. Lee et al. presented an algorithm to extract the half-
cell OCP curves from full-cell low-current charging data and showed
that adapting the shape of the cathode OCP curve for aged cells leads
to an improvement in the accuracy of the full-cell OCP which they
reconstructed from the half-cell OCP curves [22].

The aim of this study is to experimentally investigate changes in
the shape of the electrode OCP curves of blended silicon–graphite
anodes and NMC-811 cathodes during cycle aging. We therefore cycle
commercial cylindrical cells containing these electrode materials and
open them at different aging stages to harvest electrode samples. By
cycling the electrodes in the full-cell configuration, we ensure that the
electrode degradation occurs in a setting similar to an application. We
finally measure the half-cell OCP of the harvested samples in coin-cell
configuration vs. lithium metal foil.

Our work is distinguished to former studies in two aspects: Firstly,
we perform electrode characterization at multiple aging stages allowing
an analysis of the change in half-cell OCP as a function of full-cell
charge throughput, i.e., number of equivalent full cycles in full-cell
configuration. Secondly, we base our results on measurements of sev-
eral electrode samples taken from one electrode. This allows us to
give an estimation of the accuracy of the method, reduces the influ-
ence of uncontrollable processes during sample extraction and coin-cell
manufacturing, and provides a possibility to take into account spatial
inhomogeneity of the electrodes [34,35].

2. Experimental

2.1. Investigated cells

In this study, commercially available cylindrical cells of the type
INR18650-MJ1 from LG Chem were investigated. The cells have a
nominal minimum capacity of 3.35 Ah according to the manufacturer.
C-rates used to operate full-cells are always given with respect to this
capacity in this work. Sturm et al. showed that the cathode of this
high-energy cells is based on nickel-rich NMC-811 while the anode is
based on a combination of graphite and silicon with a silicon fraction
of ca. 3.5 wt.% [36]. Based on the dimensions of the double-side coated
electrodes of this cell, which are 5.8 × 61.5 cm [36], the nominal areal
capacity of the electrodes corresponds to 4.7 mAh /cm2 per side. This
cell type was chosen for this study because it contains state-of the-art
electrode materials and the process for extracting electrode samples and
manufacturing coin-cells using electrode material from this cell type
has been optimized previously at our institute [36].

2.2. Cycle aging and electrochemical characterization of cylindrical full-
cells

After delivery, all cells were initially tested according to a series of
procedures, internally standardized at our institute [37–39]. This stan-
dardized initial characterization is conducted to gain information on
the long-term development of cell parameters of this type of commer-
cial cells [37]. Eight cells were randomly chosen for the experiments
which are presented in this study. They are referred to as cell #1–8.

A schematic overview of the experimental procedure excluding the
initial characterization is shown in Fig. 1(a). An HRT-M10 battery test
system from Battery Dynamics (Germany) was used for characterizing
and cycling the full-cells. The cells were kept at 25 ◦C inside an MK53
climatic chamber from BINDER (Germany) during the experiments. The
voltage limits recommended by the cell manufacturer, i.e., 𝑈min = 2.5V
and 𝑈max = 4.2V, were used for all tests. First, a capacity checkup
consisting of two CCCV cycles (𝐼dch = 0.2C, 𝐼ch = 0.5C, 𝐼cutoff = 50mA
for both charging and discharging) was conducted. Then, a low-current
CCCV cycle to determine the quasi-stationary OCP was applied. The
current for both charging and discharging was set to 0.033 C, the cut-
off current was 0.001 C and a 6 h pause followed each CV phase.
Cells #2–8 were then cycled for up to 550 cycles consisting of 1 C
CC discharge and 0.5 C CCCV charge steps with 𝐼cutoff = 0.03C. A
pause of 30 min duration followed each discharge and charge step.
The cycling was terminated after a different number of cycles for each
cell (see Table 1) in order to have cells at different aging stages for
the following characterization procedures and the subsequent electrode
sample extraction. The individual number of cycles was defined for
each cell at the beginning of the cycling period and was not influenced
by the aging progress an individual cell exhibited during the cycling
period.

After the cycling, another quasi-stationary OCP measurement and a
galvanostatic titration technique (GITT) measurement were conducted.
For cells #2, 3, and 4 there was an additional capacity checkup be-
fore the quasi-stationary OCP measurement after the cycling period,
which was not applied to the other cells. Finally, the cells were CCCV
discharged to 3V with 0.5 C and 𝐼cutoff = 0.115C and then opened.

Cell #1 was used as a reference in this study. After the initial char-
acterization described in [37], it was subject to five CC cycles and two
CCCV cycles according to the specifications presented in [37]. It was
then characterized using the same procedures as the other cells (capac-
ity checkup, quasi-stationary OCP measurement, GITT). Subsequently,
it was discharged and opened without any further cycling.

The total charge throughput until the opening of the cells 𝑄opening
is used as a measure for the aging stress applied to the cells. It is
given in equivalent full cycles (EFC) with one EFC corresponding to
a charge throughput of twice the nominal capacity, equivalent to
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Table 1
Overview of parameters of the investigated cells. Cycles corresponds to the number of
nominal cycles applied during the cycling period. For cell #1 only one quasi-stationary
OCP measurement was conducted in full-cell configuration, therefore 𝐶EOL is equal to
𝐶BOL.

Cell # Cycles 𝑄opening/EFC 𝐶BOL/Ah 𝐶EOL/Ah 𝑆𝑂𝐻EOL/%

1 0 11.2 3.4139 3.4139 100
2 50 56.0 3.4715 3.3636 96.9
3 100 103.1 3.4809 3.3218 95.4
4 200 195.4 3.4815 3.2556 93.5
5 400 363.1 3.4856 3.0704 88.1
6 450 411.4 3.4936 3.1139 89.1
7 500 445.5 3.4913 3.0602 87.7
8 550 487.5 3.4885 2.9974 85.9

charging and discharging the cell by the nominal capacity. For the
cell under investigation with a nominal capacity of 3.35 Ah, this means
that one EFC equals 6.7 Ah. The charge throughput during the standard
initial characterization is excluded for the calculation of 𝑄opening.

2.3. Cell opening and manufacturing of coin-cells

After being discharged to 3 V, the cells were opened inside an
Argon-filled glove box (M. Braun Inertgas-Systeme, Germany). The
electrodes were partially unrolled and the section between 6 cm and
18 cm measured from the beginning of the double-side coated area at
the outer end of the electrode jelly-roll was cut out. A schematic side
view and a top view of a harvested silicon–graphite electrode are shown
in Figs. 1(b) and 1(c) to illustrate the position on the jelly-roll where
the samples were extracted. The same position was chosen for sample
extraction on the cathode but with the difference that there was no
single-coated area at the outer end of the jelly-roll. The electrode sec-
tions were then fixed on a glass plate using adhesive tape as suggested
in the literature [40] with the originally inward facing side (in the
rolled up configuration) now being on top. The coating on the side now
facing the top was removed by both mechanical abrasion using a scalpel
and applying a solvent. Diethyl carbonate (DEC, 99%, Merck) was
used as solvent to remove anode coating while N-methyl-2-pyrrolidone
(NMP, 99.5%, Sigma-Aldrich) was used to remove the cathode coating.
Subsequently, six circular samples with 14 mm diameter were punched
from the middle of the electrode section.

Half-cells in the CR2032 coin-cell format with lithium metal foil
as anode were built with the SiG samples under Argon atmosphere
following the procedure presented in [36]. Inside the housing the cells
contained a stack consisting of a 0.5 mm aluminum spacer, a circular
piece of lithium metal foil (15.6 mm diameter, 250 μm thickness), two
glass fiber separators (16 mm diameter, 260 μm thickness each, VWR,
type 691) filled with 90 μl of 1 M LiPF6 in 3:7 (wt:wt) ethylene car-
bonate (EC)/ethyl methyl carbonate (EMC) electrolyte (LP57, 99.9%,
Solvionic, France), a SiG sample, a 1 mm aluminum spacer, and a
spring. A schematic of the coin-cell stack is shown in Fig. 1(d).

The cathode samples were wetted under vacuum in a pressure
chamber (Harro Höflinger Verpackungsmaschinen, Germany) within
the glove box as suggested by Sturm et al. [36] in order to properly fill
the low porous electrode with electrolyte. The pressure profile shown
in Table 2 was used for the wetting process. Afterwards, half-cells in
coin-cell format were built with the cathode samples following the same
procedure as for the anode samples with the exception that only 70 μl
of LP57 were added.

2.4. Characterization of coin-cells

The coin-cells were put into a climatic chamber at 25 ◦C and con-
nected to a CTS battery test system from Basytec (Germany). First,
the cells were kept at open-circuit conditions for 12 h to allow the
electrolyte to fully soak into the separator disks and electrode samples.

Afterwards, the quasi-stationary OCP was obtained by cycling the coin-
cells at low-current rates. First, the cells were discharged (lithiation
of the harvested electrode sample) with a current of 160 μA until
the lower cut-off voltage was reached. Afterwards, they were fully
charged (delithiation of the harvested sample) with a current of 80 μA
until the upper cut-off voltage was reached and subsequently fully
discharged with a current of 80 μA until the lower cut-off voltage was
reached again. The last two steps were repeated once to have two full
cycles in total after the initial discharge step. Based on the nominal
areal capacity and the electrode sample area of 1.54 cm2, the coin-cell
capacity is estimated to be 7.2 mAh. The current therefore corresponds
to a current rate of approximately C/90. The coin-cells containing NMC-
811 were cycled between 3.0 V and 4.3 V, the coin-cells containing SiG
between 0.01 V and 1.7 V. Due to a technical problem, the half-cell
measurements with the samples taken from cell #4 were not carried out
correctly. These measurements are therefore exclude from the analysis.

3. Results and discussion

3.1. Full-cell degradation during cycling

In Table 1 an overview on the parameters of the individual full-cells
is given including the total charge throughput 𝑄opening the cells have
experienced until they were opened. The capacity measured during
the quasi-stationary OCP measurement (CCCV discharging) conducted
at begin of life (BOL) 𝐶BOL is also listed in Table 1. 𝐶BOL of cell #1
is slightly smaller than the mean 𝐶BOL of the other cells although it
comes from the same production batch. This is probably due to two
reasons: Firstly, the cell experienced some additional cycling compared
to the other cells corresponding to 6.9 equivalent full cycles before the
characterization was conducted. Secondly, the tests with cell #1 were
conducted 205 days after the beginning of the tests with the other cells.
Therefore, there might be some additional calendar aging affecting cell
#1 even though it was stored at 4 ◦C during this time.

The capacity of cells #2 to 8 decreases during the cycling period as
depicted in Fig. 2 where the CC discharge capacity extracted during the
single cycles is plotted as a function of the charge throughput during
cycling 𝐶cycling. The rate of capacity decrease does not stay constant for
the individual cells during the whole cycling period but changes during
aging even though the experimental conditions stay the same. Despite
the fact that the cells show no significant difference in capacity at BOL
and are exposed to the same aging conditions, their capacities exhibit
an increasing spread during aging as the individual cell capacities
decrease at different rates. Production related differences inside the
cells leading to an intrinsic difference in their aging behavior are the
most probable reason for this. Production related differences in the
calendar aging rate have been reported for this cell type before [38].

The SOH of the cells determined during the quasi-stationary OCP
measurement at the end of life (EOL) just prior to the cell opening is
lower for cells that have been cycled for a larger number of cycles as
depicted in Table 1. The SOH is here defined as the ratio between the
CCCV discharge capacity during the quasi-stationary OCP measurement
after the cycling period 𝐶EOL (also shown in Table 1) and the CCCV
discharge capacity during the quasi-stationary OCP measurement be-
fore the cycling period 𝐶BOL. The only exception to this trend is cell #5
which has a lower SOH at EOL than cell #6 even though it experienced
less cycling. As discussed before, this is probably due to production
related differences in the cells leading to different individual aging
behavior. Despite these differences in individual aging behavior, the
differences in SOH after the cycling period show that the cells are
aged to different degrees at the point of cell opening. Therefore the
electrodes should also be in different aging states, thus allowing an
analysis of the influence of cycle aging on the open-circuit potential
curve of the electrodes.

4.1 Aging-induced change in the shape of half-cell open-circuit potential curves
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Fig. 1. (a) Overview on the experimental procedure. (b) Schematic side view of a harvested silicon–graphite electrode. (c) Schematic top view of a harvested silicon–graphite
electrode. (d) Schematic side view of a coin-cell stack.

Fig. 2. Development of the full-cell discharge capacity during the cycling period (1 C
CC discharging and 0.5 C CCCV charging at 25 ◦C) as function of the charge throughput
during the cycling period.

Table 2
Pressure profile used for wetting the cathode samples.
Step Pressure/mbar Duration/s

Vacuum I 12 10
Release I 60 10
Vacuum II 22 20
Release II 80 10
Vacuum III 32 10
Wetting 32 1

3.2. Reproducibility of half-cell open-circuit potential measurements using
coin-cells

The quasi-stationary OCP curves obtained from several coin-cells
built with material from the same electrode exhibit certain differences
between each other. There are probably two main reasons for these
differences. Firstly, it might be possible that the electrode is inhomoge-
neous [35] to some degree and therefore the individual samples taken
from one electrode also differ to some degree. Secondly, the manual
handling steps during sample extraction and coin-cell preparation could
introduce small differences between the individual coin-cells even if all
steps were carried out with high thoroughness.

A quantitative measure for the differences between the OCP curves
obtained from the coin-cells built from one electrode can be defined as
the mean standard deviation over the whole SOC range 𝜎OCP, which is

calculated according to

𝜎OCP = 1
𝑁step

⋅

𝑁step
∑

𝑖=1

√

√

√

√

√

1
𝑁coin − 1

𝑁coin
∑

𝑗=1
(𝑈𝑖𝑗 − 𝑈 𝑖)2 (1)

where 𝑁step is the number of equally spaced points of the SOC range
at which the measured curves are interpolated for comparison (here
𝑁step = 2800), 𝑁coin is the number of working coin-cells built from one
electrode of the full-cell, 𝑈𝑖𝑗 is the quasi-stationary OCP of the 𝑗th coin-
cell at the 𝑖th SOC interpolation point and 𝑈 𝑖 is the arithmetic mean of
the OCP at the 𝑖th SOC interpolation point of the coin-cells built from
the same electrode. In Table 3 𝜎OCP is listed for all sets of coin-cells for
the first and second low-current charging and discharging step. The sets
of coin-cells used for this analysis consist of different numbers of coin-
cells, which are also listed in Table 3, because some of the coin-cells
did not work properly and were therefore excluded.

The mean 𝜎OCP is lower for the first quasi-stationary cycle iteration
for both electrode types and current directions as indicated in Table 3.
The shape of the quasi-stationary OCP obtained during the first and
the second low-current cycle is similar for most coin-cells. We draw
the conclusion that the first cycle is better suited to analyze the change
in electrode OCP due to the following reasons: Firstly, the influence
of additional degradation in the coin-cell configuration during the
OCP measurement, which takes approximately eight days per cycle, is
minimized. Secondly, the lower mean 𝜎OCP obtained during the first
cycle indicates a higher reproducibility of the results. Therefore, we
use only the OCP curves obtained during the first low-current cycle
applied to the coin-cells for the further analysis in the scope of this
study. Besides that, we want to emphasize that the 𝜎OCP values shown
in Table 3 do not exhibit a trend during the progress of the full-cell
cycling which shows that our method is suitable to measure the half-cell
OCP of both pristine and aged cells.

For the analysis of the change in the shape of the electrode OCP
curves, averaged quasi-stationary OCP curves are used in the following
sections. For the averaging, the quasi-stationary OCP curves measured
for the individual coin-cells built from one electrode are linearly inter-
polated at 2800 equally spaced SOC points and the arithmetic mean
of all curves is treated as the averaged OCP at this SOC. The aim of
this averaging is to reduce the influence of non-controllable, statistical
variations induced by the manual coin-cell manufacturing and thereby
enhancing the reproducibility of the averaged results. In addition to
that, by using averaged OCP curves, possible inhomogeneity in radial
direction of the jelly-roll is considered at least to some extent and
therefore the averaged results might resemble the actual situation in
a large size electrode better than just looking at the results obtained
from one comparably small fraction of the electrode. Contrariwise, it
has to be stated that due to the averaging, the sharpness of voltage steps
observed in the curve is reduced but which might actually resemble the
OCP curve of an inhomogeneous electrode [35].

4 Change in the shape of the open-circuit potential curve during cycle aging
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Fig. 3. First row: Mean quasi-stationary OCP vs. Li/Li+ during (a) delithiation and (b) lithiation of the silicon–graphite samples extracted from full-cells that have been cycled for
the number of equivalent full cycles indicated in the legend. Second row: Differential voltage during (c) delithiation and (d) lithiation of the silicon–graphite samples calculated
based on the averaged OCP curves. The differential voltage values are normalized by multiplying with the actual capacity during the respective (dis-)charging step 𝐶act and
smoothed using a moving average filter. Third row: Incremental capacity during (e) delithiation and (f) lithiation of the silicon–graphite samples calculated based on the averaged
OCP curves and plotted against cell voltage vs. Li/Li+. The incremental capacity values are normalized by multiplying with the inverse of the actual capacity during the respective
(dis-)charging step 𝐶act and smoothed using a moving average filter. Fourth row: Difference between mean OCP of aged silicon–graphite samples and mean OCP of pristine
silicon–graphite samples during (g) delithiation and (h) lithiation. The standard deviation between the OCP of the single samples harvested from the same electrode is shown as
shaded area.

3.3. Change in the silicon–graphite delithiation open-circuit potential curve
during cycle aging

In Figs. 3(a) and 3(b) the mean voltage curves obtained during the
first delithiation and lithiation step applied to the coin-cells containing
SiG samples from full-cells at different aging stages are displayed.
The electrode SOC plotted on the 𝑥-axis is based on the actual coin-
cell capacity at the respective aging stage. The shape of the voltage
curves and their change is analyzed using differential voltage analysis

(DVA), which is commonly used to identify phase transitions during
delithiation and lithiation of electrodes [9,12,41]. The differential volt-
age (DV) as a function of the electrode SOC is displayed in Fig. 3(c)
for delithiation and in Fig. 3(d) for lithiation of the SiG. The DV is
normalized by multiplying by the actual coin-cell capacity 𝐶act during
the (dis-)charge step.

During the (de-)lithiation of graphite, different crystallographic
phases, so-called stages, form in the graphite [42–47]. The central
peak G5 in Fig. 3(c) is located at SOC = 58.5% for cell #1 (11 EFC)
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Table 3
Mean standard deviation of the OCP of the coin-cells built from one electrode over the whole SOC range (𝜎OCP) measured during the first and
the second low-current CC charging and discharging step.
Electrode SiG NMC-811

Full-cell # 𝑁coin 𝜎OCP 1st 𝜎OCP 2nd 𝜎OCP 1st 𝜎OCP 2nd 𝑁coin 𝜎OCP 1st 𝜎OCP 2nd 𝜎OCP 1st 𝜎OCP 2nd
ch./mV ch./mV dch./mV dch./mV ch./mV ch./mV dch./mV dch./mV

1 5 2.7 2.9 3.0 3.5 6 2.3 1.7 2.8 3.0
2 6 3.1 2.5 1.7 0.8 6 2.5 5.4 4.9 9.8
3 6 3.2 2.9 4.4 3.5 6 5.7 13.8 9.4 54.5
5 4 2.5 1.9 3.4 3.0 3 4.0 13.4 9.2 52.3
6 4 1.8 3.5 0.6 3.6 4 8.7 2.5 9.1 8.6
7 6 1.9 2.7 2.7 3.3 5 2.2 2.7 7.5 9.9
8 6 2.3 3.1 3.0 3.4 6 1.1 1.0 2.2 2.0
Mean 5.3 2.5 2.8 2.7 3.0 5.1 3.8 5.8 6.4 20.0

and corresponds to graphite stage 2. This graphite stage corresponds
to a lithiation degree of the graphite of 50% [42]. The fact that the
peak is at a higher electrode SOC than 50% is due to the fact that the
silicon significantly contributes to the total electrode capacity but is not
significantly delithiated in the SOC range above peak G5. The potential
of silicon exhibits a steep increase right at the beginning of the delithi-
ation and therefore significant lithium extraction from silicon only
takes place at potentials higher than approximately 0.22 V [48,49].
The main voltage plateaus of graphite are at lower voltages [42,49]
which has the effect that mainly graphite is delithiated until the cell
potential reaches approximately 0.22 V [49]. Therefore, the charge
extracted until graphite stage 2 is reached is mainly drawn from the
graphite. Peak G5 tends to appear at lower SOC with increasing number
of full-cell cycles. This is probably due to a decrease in the relative
contribution of the silicon to the overall electrode capacity during
aging [28,48]. The peaks G1–G4 correspond to lower lithiated graphite
stages. Peak G1 corresponds to graphite stage 4 which is expected
at a graphite lithiation degree of 17% [41] while the corresponding
peak appears at a higher electrode SOC because of the contribution
of the silicon to the electrode capacity. Peak G1 corresponds to a cell
voltage of 0.211 V for the pristine anode samples. Therefore, significant
delithiation of silicon should mainly take place below this peak. All
peaks G1–G4 exhibit a shift to lower SOC for aged cells. The reason
for this shift is most probably the same as for the shift of peak G5,
i.e., a reduced contribution from the silicon to the overall electrode
capacity [28,48] which is accessed at low electrode SOC. Reduced
silicon capacity is probably also the reason for the left-shift of the steep
ascend to the left of the DV valley corresponding to the graphite voltage
plateau (stage 4-1L phase transition) [44,49] around SOC = 15–20%.
At low SOC there are local peaks corresponding to silicon phases. A
detailed analysis of the progression of these peaks during aging is not
possible because the curves shown in Fig. 3(c) appear to be blurred at
SOC < 13% for the aged cells, which is probably due to the different
delithiation behavior of the individual electrode samples in this SOC
region, which is discussed later.

In addition to the DVA, the delithiation of the SiG samples is
analyzed via incremental capacity analysis (ICA). Incremental capacity
(IC) during delithiation, normalized by multiplying with the inverse
of the actual capacity extracted during the delithiation step 𝐶act, is
plotted as a function of half-cell voltage (vs. Li/Li+) in Fig. 3(e). In this
representation, the peaks correspond to voltage plateaus which indicate
phase transitions. Peaks GI to GVI correspond to phase transitions of
the graphite [44]. In the voltage region up to 0.240 V, there are only
minor differences between the curves obtained at different aging stages.
Especially the main graphite transition peaks GI around 0.098 V, GII
around 0.138 V, and GVI around 0.225 V are approximately at the
same voltages for different aging states. This indicates that the same
graphite stages are formed during delithiation independent of electrode
degradation.

There are up to three more peaks at higher potentials (SI−SIII),
which correspond to phase transitions during the delithiation of sili-
con [27,50–52]. The main change in the IC curves is that the normal-
ized IC in the silicon-dominated voltage regime above 0.24 V generally

decreases with aging. This sign of a decrease in the relative capac-
ity contribution of the silicon underlines the results from the DVA.
The decrease in the relative contribution of silicon to the electrode
capacity is estimated by the change in the capacity fraction accessed
above 0.24 V during delithiation. A similar approach was presented
by Klett et al. [48]. In Fig. 4 the fraction of the capacity accessed
above 0.24 V during delithiation is shown for different aging stages.
0.24 V is above the highest graphite voltage plateau, therefore silicon
delithiation should dominate the capacity accessed above this voltage.
The fraction of the capacity accessed above 0.24 V decreases from
15.1% to 11.7% which is a decrease by 22.7%.

Contrary to this general trend, peaks SII and SIII, which are at 0.37 V
and 0.42 V, are more pronounced for some of the aged cells. Here, it
has to be considered that there are significant differences between the
individual coin-cells built from one electrode.

The individual SiG samples show significant differences in their
voltage curves in the SOC region below approximately 15% during
delithiation. As an example of the differences in delithiation curves,
the voltage curves of the coin-cells built from cell #7 (446 EFC) are
shown in Fig. 5(a). The voltage curves in Fig. 5(a) lie closely together
for most parts of the delithiation, proofing the high reproducibility
of the measurement. Contrary to this, in the SOC region between 5%
and 12%, there are comparably large differences between the coin-cell
voltages reaching up to 38 mV. The shown example is representative
for the finding that silicon-related features in the quasi-stationary
OCP curves during delithiation in this SOC region are pronounced to
different degrees for different samples. We interpret this as a sign of
the inhomogeneity of the SiG electrode. This inhomogeneity is also the
cause for the blurring of the DV curves in the low SOC region during
delithiation shown in Fig. 3(c).

There are also qualitative differences between the delithiation IC
curves of individual samples. The shape of the IC curve above 0.24 V
can be divided into two categories referred to as ‘type A’ and ‘type B’ for
the individual coin-cells. Representative curves are shown in Fig. 5(b).
IC curves of type A have a distinct sharp peak around 0.27 V and a very
broad peak between 0.40 V and 0.45 V. IC curves of type B exhibit three
sharp peaks at 0.27 V, 0.37 V and 0.42 V respectively. In the literature,
two IC peaks corresponding to phase transitions during delithiation of
silicon have been reported: One around 0.27 V [27,51,52] and another
one between 0.4 V and 0.5 V [27,51,52].

The fraction of coin-cells exhibiting an IC curve of type A decreases
with aging, which is shown in Fig. 5(c). Correspondingly, the fraction
of cells exhibiting IC curves of type B with sharp peaks at 0.37 V and
0.42 V increases. This results in an overall increase in height for the IC
peaks SII and SIII based on the averaged delithiation curves in Fig. 3(e).

To understand the processes occurring during the delithiation of
silicon shown in Fig. 3(e) and to give a possible explanation for the
increase of peak SIII, knowledge about the phase constitution of the
lithiated silicon at the beginning of the delithiation is crucial. Most of
the samples exhibit an IC peak below 0.05 V during the very first lithia-
tion step directly after the coin-cell assembly, preceding the delithiation
shown in Fig. 3(e). This is an indicator for the formation of crystalline c-
Li15Si4 [50]. The fraction of working coin-cells at a certain aging stage

4 Change in the shape of the open-circuit potential curve during cycle aging
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Fig. 4. Fraction of the capacity of silicon–graphite samples which is accessed above
0.24 V (vs. Li/Li+) during delithiation and above 0.22 V during lithiation based on
averaged quasi-stationary (de-)lithiation curves measured for samples harvested from
full-cells which have experienced a different total charge throughput before cell opening
𝑄opening.

exhibiting this peak is shown in Fig. 5(c). We therefore assume that
most of the samples contain crystalline c-Li15Si4 at the beginning of
the delithiation step shown in Fig. 3(e).

Following the model for the delithiation of c-Li15Si4 presented by
Jiang et al. [53], amorphous a-Li𝑥Si is formed as an intermediate phase
during the delithiation of c-Li15Si4. The fraction of a-Li𝑥Si formed
as an intermediate phase is higher if more free surface of silicon is
exposed, because the surface energy barrier of the electrochemical
amorphization of c-Li15Si4 is lower [53]. The IC peak SIII in Fig. 3(e)
can be associated with lithium extraction during the phase transition
from a-Li𝑥Si to a-Si [51]. Therefore, the overall increase of peak SIII in
Fig. 3(e) might possibly be linked to an increase in the relative amount
of a-Li𝑥Si formed during the delithiation. This increase in the formation
of a-Li𝑥Si might be caused by a morphological change of the silicon
during aging resulting in an increase in active silicon surface [53].
Further research is necessary to explain the mechanisms leading to the
change in silicon delithiation behavior.

The absolute difference between the mean delithiation OCP curve
obtained from the pristine anode samples and the mean of the aged
anode samples is shown in Fig. 3(g). The standard deviation between
the single OCP curves used to calculate the average curve is shown
as shaded areas. The decrease in OCP at SOC below approximately
15% SOC, between 18 and 40% SOC and between 52 and 65% SOC
significantly exceeds the standard deviation between the samples taken
from one electrode. The changes are probably due to the fact that
the SOC where individual phase transitions are reached shifts to lower
values due to the decrease in relative silicon capacity.

3.4. Change in the silicon–graphite lithiation open-circuit potential curve
during cycle aging

The quasi-stationary OCP during lithiation of the anode samples
is displayed in Fig. 3(b), the corresponding normalized DV is shown
in Fig. 3(d). The features of the curve in Fig. 3(d) are similar to
the features of the DV during delithiation: There are five peaks (G1–
G5) corresponding to graphite phases. Peak G5 corresponds to stage 2
while peaks G1–G4 correspond to graphite phases with lower lithiation
degree. Peaks G1-G5 shift to lower SOC as cell aging progresses, which
is probably due to the decrease in the silicon contribution to the
electrode capacity [28,48]. In comparison to the DV curves during
delithiation, the peaks exhibit a smaller left-shift for the lithiation case.
The most probable reason for this is that the OCP of silicon shows a
pronounced hysteresis and lies at lower potentials for the lithiation in

Fig. 5. (a) Voltage of silicon–graphite samples harvested from full-cell #7 (446 EFC)
vs. Li/Li+ during quasi-stationary delithiation as a function of the SOC of the individual
coin-cells. In addition to the voltage of the individual samples, the arithmetic mean
retrieved at different SOC interpolation points is indicated. The inset shows an
enlarged section of the SOC region where the curves obtained from different samples
exhibit significant differences. (b) Normalized incremental capacity vs. cell voltage (vs.
Li/Li+) during delithiation for two coin-cells containing silicon–graphite samples. The
two samples exhibit the qualitatively different incremental capacity curves ‘type A’
(extracted from full-cell #1) and ‘type B’ (extracted from full-cell #7). (c) Fraction of
silicon–graphite samples exhibiting an incremental capacity curve of type A during
the first delithiation at different aging stages and fraction of silicon–graphite samples
exhibiting an incremental capacity peak below 50 mV vs. Li/Li+ during the first
lithiation after the coin-cell assembly at different aging stages.

comparison to the delithiation [54]. So even though a major part of the
silicon capacity is lithiated at the beginning of the lithiation step [49],
there should also be a significant fraction of the silicon capacity being
lithiated in parallel with the graphite at potentials < 0.2V. Still, most of
the silicon capacity is probably accessed at potentials > 0.2V [49] and
therefore the left-shift of peaks G1-G5 can be attributed to the relative
decrease in the silicon capacity.

4.1 Aging-induced change in the shape of half-cell open-circuit potential curves
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Peaks S1 and S2 are associated with phases of silicon [8,37]. Both
peaks exhibit a shift to lower SOC during aging, which can be explained
by the decrease in relative silicon capacity. S2 is only weakly pro-
nounced. Still, these peaks appear much more clearly during lithiation
than during delithiation for all aging stages because the curves obtained
from the single samples differ less in this SOC region. The phenomenon
of large differences in silicon features between the individual samples
which is observed during delithiation is not as pronounced as during
lithiation. A possible explanation for this is that the lithiation process
might be more homogeneous than the delithiation process, possibly
because graphite and silicon are lithiated to a greater extent in parallel
than they get delithiated due to the large hysteresis of silicon [54].
There is an additional peak SC in Fig. 3(d) which is not observable
during delithiation. This peak probably corresponds to the highly lithi-
ated, crystalline phase c-Li15Si4 which is formed during lithiation at
potentials < 0.05V vs. Li/Li+ [50].

In Fig. 3(f) the phase transitions during lithiation are analyzed
via ICA. The most pronounced peaks GI–GVI can be assigned to the
graphite phase transitions, with the main graphite phase transitions oc-
curring around 0.080 V (GI), around 0.114 V (GII), and around 0.204 V
(GVI) [49]. They do not exhibit clear trends in their height and position
for the different aging stages, indicating that the graphite-related reac-
tions stay the same during aging. Peak GI exhibits comparably large
deviations between the different aging stages, but without showing a
specific trend. This is probably due to the comparably large difference
between the single samples during lithiation at SOC > 30%. There
is a small peak observable between 0.28 V and 0.29 V which can be
attributed to a silicon phase transition [50]. The silicon-induced IC peak
around 0.1 V reported by some authors [50,52] is not visible, probably
because it is superimposed with the graphite features. Around 0.026 V
there is a distinct peak SC which corresponds to the formation of
crystalline lithiated silicon c-Li15Si4 [50]. Both silicon-related peaks de-
crease in height with progressing aging which is a sign of the decrease
in the relative contribution of silicon to the overall electrode capacity.
In addition to that, the level of normalized IC of the curves above
0.22 V, where most of the lithiation of the silicon occurs [49], is lower,
indicating a reduced contribution of silicon to the electrode capacity.
The fraction of the capacity accessed at potentials above 0.22 V during
lithiation is indicated in Fig. 4 for different aging stages. As for the
delithiation case, there is a significant decrease in the fraction of the
capacity accessed at higher potentials. The fraction of the capacity
accessed above 0.22 V decreases from 8.7% to 7.2% which is a decrease
by 16.7%. Both the absolute numbers of the capacity fraction accessed
in the chosen potential window and the relative decrease during aging
are smaller than for the delithiation case. This is probably due to
the fact that the lithiation of graphite and silicon occurs to a higher
degree in parallel at lower potentials and a separation of the capacity
contributions using this method is difficult.

In Fig. 3(h) the absolute difference in the averaged lithiation OCP
curves between pristine and aged SiG samples is shown as solid lines
and the standard deviation between the coin-cells as shaded areas.
In between 5 and 30% SOC the average voltage is lower for aged
cells because the phases of graphite and silicon are reached at lower
electrode SOC due to the lower silicon capacity. Above 30% SOC
both the standard deviation increases and the absolute of the voltage
difference decreases. The trend towards lower voltages for aged cells
visible below 30% SOC is not observed at higher SOC.

Our general finding of a lower OCP vs. electrode SOC for aged SiG
anodes is consistent with the literature [29], and we conclude that the
changes are due to a predominant degradation of silicon in comparison
to graphite [28,29,48,54,55]. Possible degradation mechanisms of the
silicon are the ionic and electric isolation of silicon particles [28,48,54]
and change in the local structure, electrode morphology, and mechani-
cal properties during cycling [28,54]. This does not mean that there is
no degradation of the graphite, but the capacity provided by the silicon
decreases at a higher rate than the capacity provided by the graphite.

The individual degradation rates of graphite and silicon most probably
depend on the operating conditions used for the full-cell cycling. In
this study, the cell is discharged to the lowest voltage recommended
by the manufacturer, which probably enhances silicon utilization and
therefore silicon degradation [54,56]. Such deep cycles only rarely
occur in real-world applications. The change in anode OCP due to
selective silicon degradation might therefore be smaller in applications
compared to our results. On the other hand, the comparably high
current rate during the cycling period could lead to a reduced silicon
utilization [56] compared to the usually lower average current rates
used for example in automotive applications. However, the influence
of the current rate on selective silicon degradation is probably smaller
than the influence of the voltage window.

Besides the change in graphite to silicon capacity ratio we do not
observe the formation or disappearance of phases giving rise to a
change in the shape of the OCP curve which is consistent with the
literature [29]. The only exception are the subtle changes in silicon-
related IC features during delithiation which need to be investigated in
more detail in future studies.

3.5. Change in the cathode open-circuit potential curve during cycle aging

The average quasi-stationary OCP of the cells containing cathode
samples at different aging stages is displayed in Fig. 6(a) for charging
(delithiation of the NMC) and in Fig. 6(b) for discharging (lithiation
of the NMC). The normalized DV during delithiation is shown in
Fig. 6(c). The DV during delithiation exhibits three peaks indicating
NMC phases [36] (C1–C3). The exact position and height of the peaks
show some variation for the different aging stages but there is no
significant trend in position or height with the progress of aging. In
Fig. 6(e) the normalized IC during delithiation is shown. The IC exhibits
four peaks (CI–CIV) corresponding to phase transitions of the NMC at
3.56 V, 3.74 V, 4.01 V, and 4.18 V. No specific trend with aging can be
observed for the height and position of the IC peaks.

The normalized DV during lithiation of the cathode samples shown
in Fig. 6(d) exhibits three peaks (C1–C3) similar to the delithiation case.
Peak C1 and the valley left to it exhibit a subtle shift towards lower
SOC during aging while peak C2 does not change with aging. Peak
C3 is very broad during lithiation which makes it difficult to detect
aging-related trends. The most pronounced change during aging is the
left-shift of the steep ascend towards the end of the lithiation process
for aged cells in comparison with the less aged cells #1 and 2. Still, it
has to be noted that the SOC position of the DV ascend does not follow
an aging-related trend for cells #3–8. As for the delithiation case, the
normalized IC during lithiation shown in Fig. 3(f) has four peaks. They
are located at 3.54 V (CI), 3.73 V (CII), 4.00 V (CIII), and 4.17 V (CIV).
There are some differences between the curves of the less aged cells
#1 and 2 and the other cells. The most prominent difference is that
peak CI is distinctively pronounced only for cells #1 and 2 while it is
smeared out for the more aged cells. This feature corresponds to the
left-shifted and less sharp decrease in voltage towards the end of the
lithiation for the more aged cells shown in Fig. 6(b), which has also
been reported in the literature [33]. Additionally, both slopes of peak
CIV are slightly left-shifted for cells #3-8 in comparison to cells #1 and
2. This corresponds to the faster decrease in voltage at the beginning of
the lithiation depicted in Fig. 6(b). Apart from these subtle differences,
there is no significant change in the overall shape of the lithiation IC
curves during aging.

Our results show that the shape of the OCP curve of NMC-811 does
not change significantly during cycle aging, even though the material
most probably degrades. The formation of a resistive, electrochemically
inactive layer on the surface of the primary particles [32,57,58], which
leads to electrode capacity decrease [57] and severe increase in the
charge transfer resistance [32,57], as well as cracking of secondary
particles [29,32] has been reported to occur in nickel-rich NMC dur-
ing prolonged cycling. Another aging mechanism is the formation of

4 Change in the shape of the open-circuit potential curve during cycle aging
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Fig. 6. First row: Mean quasi-stationary OCP vs. Li/Li+ during (a) delithiation and (b) lithiation of the NMC samples extracted from full-cells that have been cycled for the number
of equivalent full cycles indicated in the legend. Second row: Differential voltage during (c) delithiation and (d) lithiation of the NMC samples calculated based on the averaged
OCP curves. The differential voltage values are normalized by multiplying with the actual capacity during the respective (dis-)charging step 𝐶act and smoothed using a moving
average filter. Third row: Incremental capacity during (e) delithiation and (f) lithiation of the NMC samples calculated based on the averaged OCP curves and plotted against
cell voltage vs. Li/Li+. The incremental capacity values are normalized by multiplying with the inverse of the actual capacity during the respective (dis-)charging step 𝐶act and
smoothed using a moving average filter. Fourth row: Difference between mean OCP of aged NMC samples and mean OCP of pristine NMC samples during (g) delithiation and (h)
lithiation. The standard deviation between the OCP of the single samples harvested from the same electrode is shown as shaded area.

a fatigued bulk phase, which can only be partly delithiated under
regular cycling conditions due to kinetic limitations [32,58]. While
these mechanisms probably also occur in the NMC electrodes in this
study, we want to emphasize that the shape of the OCP curve is not
significantly altered by them. This is in accordance with the literature.
Jung et al. showed that the mean discharge voltage and the shape
of the OCP curve of NMC-811 that was not exposed to ambient air
does not significantly change during cycle aging [31]. Friedrich et al.
showed that the charge-averaged mean discharge voltage of NMC-811
does not change significantly if a low current rate is used [57]. Former

studies investigating the cycle performance of commercial cells of the
same type as the ones used in this study also do not report changes in
the shape of the OCP curve of the cathode material [29,39,59]. There
are some reports of a shift in the voltage position of the IC peaks of
nickel-rich NMC during cycle aging, but the current rates used in these
studies to obtain the IC curves are significantly higher than in our
measurements [32,60], and it cannot be excluded that the shift in the
voltage position of the peaks is due to an increase in the overpotential.

The invariance of the shape of the OCP curve suggests that the
electrochemically active phases that are formed during delithiation and

4.1 Aging-induced change in the shape of half-cell open-circuit potential curves
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lithiation do not change during cycle aging. This is in accordance with
the literature as the bulk structure of NMC has been reported to stay
the same during prolonged cycling [29,57,58]. The surface layer that is
probably formed on the primary particles [57] does not affect the OCP
curve as it is electrochemically inactive. We do not detect signs of an
additional fatigued bulk phase towards the end of delithiation [32,58],
but this does not mean that this phase does not exist. It has been
reported that the fatigued phase can be almost completely delithiated
during a prolonged CV phase giving enough time for the delithiation
even though the kinetics are lower than for the pristine material [32].
As the quasi-stationary OCP is measured at a very low current rate
of approximately C/90 in our experiments, the fatigued phase can
probably be fully delithiated regardless of its low kinetics.

In Fig. 6(g) the difference between the mean quasi-stationary OCP
during the delithiation of the aged cathode samples and the pristine
cathode samples harvested from cell #1 is shown. The charge-averaged
mean voltage during delithiation does not exhibit a clear trend with
full-cell cycle aging and it is generally only slightly higher (< 14mV)
for the aged electrodes in comparison to pristine electrodes. The volt-
age difference during lithiation is presented in Fig. 6(h). The charge-
averaged mean voltage during the lithiation of the aged samples is
slightly lower (< 21mV) in comparison to the pristine samples, even
though there is no clear trend with aging. The subtle shift of the average
voltage during delithiation and lithiation is probably due to an increase
in the electrode impedance [29,32,57,61]. This increase in impedance
probably leads to higher overpotentials even at the low current rate
used for the measurement. An increase in electrode impedance is
probably also the reason for the earlier and less sharp decrease in
voltage towards the end of the lithiation [29].

Overall, we observe that there are no significant aging-induced
changes in the shape of the OCP curve of the NMC-811, even though the
material most probably degrades. For the development of model-based
algorithms for SOH estimation, it is therefore appropriate to assume
the shape of the half-cell OCP of NMC-811 to be invariant during
cycle aging. The deviations of the absolute voltage vs. electrode SOC
measured during low current (de-)lithiation are most probably due to
an increase in electrode impedance. Such changes should therefore be
considered by a change in the model elements or parameters describing
the electrode impedance in a model describing the electrical behavior
of an aged cell rather than by a change in the shape of the OCP curve.

4. Conclusion

We show that the shape of the OCP curve of silicon–graphite half-
cells significantly changes during cycle aging of a full-cell containing
these electrodes as anodes. Using DVA and ICA, we attribute these
changes to a decrease in the relative contribution of the silicon to the
electrode capacity. On the component level of this blended electrode,
we observe a change in silicon-related features in the IC delithia-
tion curve. Further research is necessary to understand the underlying
mechanisms of this finding. In contrast to the changes in the SiG
OCP curve, the shape of the OCP curve of NMC-811, which is used
as cathode in the full-cells, exhibits only minor deviations as full-cell
degradation progresses. This means that even though the NMC-811
probably degrades, it is appropriate to regard the shape of its OCP
curve to be invariant in electrical cell models during cycle aging. The
slight deviations between the quasi-stationary OCP curves of pristine
and cycle aged cathode samples we observe are probably due to an
increase in electrode impedance.

Another finding is that there are differences in the quasi-stationary
OCP curve of individual coin-cells containing samples taken from
nearby positions on the same electrode. We therefore use averaged OCP
curves from several coin-cells for our analysis. Our recommendation for
future studies using coin-cells containing harvested electrode samples
is to build and measure several coin-cells containing material from
the same electrode and use averaged measurement values in order to

reduce possible influences of the coin-cell manufacturing process and
to obtain representative results for the whole electrode. Especially for
the SiG during delithiation we find differences in the OCP curves of
individual coin-cells, which are probably caused by inhomogeneity of
the SiG electrode.

Our main conclusion is that in electrical battery models the shape of
the OCP curve of NMC-811 can be regarded as fairly invariant during
full-cell cycle aging while this does not apply to the shape of SiG
half-cells. As anodes containing significant proportions of silicon are
increasingly used in applications, it becomes more and more important
to consider these changes in battery aging diagnostics and state esti-
mation algorithms. While the results provided in this study concentrate
on the aging-related changes on the half-cell OCP, we will investigate
the impact of these changes on the full-cell OCP during aging in our
future research. We will also investigate methods that make it possible
to include the changes in half-cell OCP of blended SiG electrodes into
electrical battery models.
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In section 4.1, it is shown that there is a change in the shape of the OCP curve of SiC electrodes that
is probably due to a faster degradation of the silicon capacity in comparison to the graphite capacity.
These experimental results are expanded by two aspects in the study presented in this section.
First, the qualitative description of the change in the shape of the SiC OCP curve provided in section
4.1 is complemented by a quantitative description using a blend electrode model originally presented
by Schmidt et al. [68] (see section 2.1.2). The blend electrode model allows to simulate a SiC blend
electrode with varying capacity contributions of the individual components based on the OCP curves
of the pure electrode active materials silicon and graphite. It is shown that measured half-cell OCP
curves of SiC electrode samples at different aging states can be accurately fit by the blend electrode
model. Thereby, the capacity contribution of silicon can be quantified as 9.5% of the overall anode
capacity for the pristine samples. The relative capacity contribution of silicon is found to decrease
during cycle aging and reaches 5.6% for the samples extracted from the most cycled cell (488EFC).
Second, the impact of the change in the SiC half-cell OCP curve on the full-cell OCV curve is inves-
tigated. The mechanistic modeling approach described in section 2.2.2 is used to interpret the change
in the shape of the full-cell OCV curve during aging. The full-cell quasi-stationary OCV curves are fit
by half-cell OCP curves using three different types of OCP curves for the SiC anode: (a) the pristine
half-cell OCP curve as it is usually done in the scope of full-cell OCV curve alignment (see section
2.2.3); (b) the measured half-cell OCP curves at different aging states and (c) synthetic half-cell OCP
curves that are simulated using the blend electrode model. For the last case, the relative capacity
contribution of the silicon is determined from the full-cell OCV curve via optimization. The results
on the degradation modes are compared for the three different types of SiC half-cell curves. LAMan

and LLI are found to be the dominant degradation modes for all three types of anode half-cell curves.
Still, lower values for LAMan are determined if component-specific silicon degradation is considered
either by using measured aged SiC OCP curves or by using synthetic OCP curves simulated with the
blend electrode model. This finding is interpreted in a way that the shift of the graphite features
corresponding to the 4L to 2L graphite stages towards lower SOC is erroneously interpreted to result
solely from overall anode capacity loss if changes in the SiC half-cell OCP are neglected, while it is
actually partly caused by component specific silicon degradation. In addition, slightly higher values
for LAMcat and LLI are obtained if changes in the SiC OCP curve are considered.
It is concluded that changes in the shape of the half-cell OCP curve of SiC blend electrodes should
be considered in models that describe the full-cell OCV curve of cells containing this anode material
during cycle aging. It is also concluded that, if degradation mode analysis based on full-cell OCV
curves (see section 2.2.3) of SiC containing cells is performed, the LAMan can get overestimated while
LAMcat and LLI can get underestimated if changes in the anode half-cell OCP are neglected. Still,
the quantitative difference in the identified degradation modes is only in the order of a few percentage
points, at least for the cell type and the aging scenario investigated in this study. However, with
increasing silicon contents in anodes of lithium-ion batteries, modeling of component-specific silicon
degradation might become more important in the future and the method presented in this study could
be a valuable tool for analyzing the degradation of cells containing SiC anodes.
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H I G H L I G H T S

• Aging-induced change in SiC OCP curve is analyzed using a blend electrode model.
• Aged full-cell OCV curves are reconstructed using measured aged SiC OCP curves.
• Full-cell OCV curves are reconstructed using simulated SiC OCP curves.
• Degradation modes are estimated with higher validity avoiding misinterpretations.
• Destruction-free estimation method for component degradation in SiC is presented.

A R T I C L E I N F O

Keywords:
Lithium-ion battery
Cycle aging
Half-cell open-circuit potential
Silicon–graphite
Degradation modes

A B S T R A C T

The shape of the open-circuit potential (OCP) curve of silicon–graphite blend electrodes changes during cycle
aging due to the faster degradation of the silicon in comparison to the graphite. In this study, the impact of
these changes on the open-circuit voltage (OCV) curve of full-cells is investigated. Reconstructing the OCV
curve of aged cells by shifting and linearly scaling pristine half-cell OCP curves is an established diagnostic
method of determining the degradation modes occurring in lithium-ion cells. We reconstruct the full-cell
OCV curves of cycle-aged commercial cells with silicon–graphite anodes using both pristine and aged silicon–
graphite OCP curves. Lower estimates are obtained for the loss of anode active material and higher estimates
for the loss of both cathode active material and lithium inventory, when aging-induced changes in the shape of
the silicon–graphite OCP are considered. Aging-induced changes in the shape of silicon–graphite OCP curves
are integrated in the diagnostic method by using a blend electrode OCP model. This not only improves the
validity of the determined degradation modes, but also enables the non-destructive estimation of the anode
capacity fraction provided by silicon, based on full-cell OCV measurements.

1. Introduction

The capacity and power that can be provided by a lithium-ion cell
decreases during long-term operation [1–3] and storage [4–6]. A vast
number of degradation mechanisms have been identified as possible
causes of the decrease in cell performance during aging [7]. Most meth-
ods used to identify individual degradation mechanisms are complex
and necessitate the destruction of the cell during post-mortem analysis,
rendering them unusable for onboard application and also limiting their
applicability in research. Therefore, rather than analyzing individual
mechanisms, the degradation of lithium-ion cells is often analyzed in
terms of degradation modes. Degradation modes are clusters of various

∗ Corresponding author.
E-mail address: julius.schmitt@tum.de (J. Schmitt).

degradation mechanisms that result in the same observable changes on
the cell level [7,8].

Dubarry et al. established a model that describes aging-induced
changes in the full-cell open-circuit voltage (OCV) curve, based on
three main degradation modes: loss of active material of the anode
(LAMan), loss of active material of the cathode (LAMcat), and loss of
lithium inventory (LLI) [8]. The model enables degradation modes to
be determined based on the cell voltage during low-current charging
or discharging, by aligning the open-circuit potential (OCP) curves of
both electrodes to the full-cell OCV curve until the difference between
the OCP curves fits the measured full-cell OCV curve. Many different
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Table 1
Nominal cycles during the cycling period and full-cell charging capacity of cells at
different aging states.

Cycles 𝑄tot/EFC 𝐶full/Ah 𝛥𝐶/%

0 9 3.40 0
50 54 3.35 1.5
100 101 3.30 2.9
400 361 3.01 11.6
450 410 3.06 10.0
500 444 2.99 11.9
550 486 2.91 14.3

variants of this diagnostic method have been developed and used in re-
cent years [9–21]. The definition and number of observed degradation
modes differs between the various studies, as does the model used to
simulate the full-cell OCV curve.

The shape of the OCP curve of the individual electrodes is generally
regarded to be invariant during battery aging in the models used for an-
alyzing degradation modes based on the full-cell OCV. This means that
the OCP curve of an aged electrode can be obtained by linear scaling
of the OCP curve of a pristine electrode. Some recent studies consider
changes in the shape of the electrode OCP curves. Lee et al. propose
an algorithm for adapting the shape of the OCP curve of lithium nickel
manganese cobalt oxide (NMC) cathodes during aging [21]. Jia et al.
show that the OCV of aged cells can be reconstructed with higher
accuracy if the OCP curves of aged electrodes are used [19]. Schindler
et al. propose modeling non-uniform electrode degradation using state
of charge (SOC) dependent scaling of the half-cell curves [16].

In a recent study [22], we showed that the shape of the OCP curve
of NMC-811 does not change significantly when cycled in the full-cell
configuration. In contrast, we detected aging-induced changes in the
shape of the OCP curve of silicon–graphite. We interpret these changes
as being the result of the faster degradation of silicon than graphite
during cycling. This affects the relative capacity contribution of both
components and, in turn, the shape of the OCP curve of the blend
electrode [22]. Increased degradation of the silicon in silicon–graphite
blend electrodes in comparison to the graphite has also been reported
by other authors [23–26]. It is attributed to increased electric and
ionic contact loss of the silicon due to its pronounced expansion and
contraction during lithiation and delithiation [23] and morphological
changes during cycling [27]. The influence of such changes in the
relative capacity contribution of silicon and graphite on the full-cell
OCV curve during aging has been described using a blend electrode
model [28].

This study expands on our previous findings [22] and investigates
the influence of aging-induced changes in the shape of the silicon–
graphite OCP curve on the full-cell OCV curve. To our knowledge,
this is the first study, in which silicon–graphite half-cell OCP curves
measured for cells at a series of aging states are used to reconstruct
the full-cell OCV curve at the corresponding aging state. We analyze
how changes in the shape of the silicon–graphite OCP influence the
degradation modes determined from full-cell OCV curves and propose
an extension of the diagnostic method presented by Dubarry et al. [8]
that considers changes in the silicon–graphite OCP curve by using the
blend electrode model presented by Schmidt et al. [9]. This approach
of using a synthetic half-cell OCP curve calculated from pristine pure
silicon and graphite OCP curves for the reconstruction of measured
aged full-cell OCV curves has, to our knowledge, not been presented
in the literature before. It enables the anode capacity fraction provided
by the silicon to be estimated based on full-cell OCV curves and half-
cell OCP curves of pristine electrode components, without the need for
opening up aged cells and performing measurements on aged electrode
samples.

2. Experimental

The experimental procedure used for cycling and characterizing
commercial full-cells and harvested electrode samples was reported on
in our previous work [22]. For this reason, we only provide a summary
of the experimental procedure here. For further details, the reader is
referred to the original work [22].

This study investigates commercially available cells of the type
INR18650-MJ1 (MJ1) made by LG Chem. The cell format is 18 650 and
the nominal minimum capacity is 3.35 Ah. The anode active material
of this cell consists of a blend of graphite in the shape of ellipsoidal
flakes with an average diameter of 15 μm [29] and particles of silicon-
based compounds (SiOx where 𝑥 is equal to 0, 1, or 2, etc.) that
have the shape of sharp-edged shards with an average diameter of
3 μm [29]. Different values for the mass ratio of silicon inside the anode
material of this cell type are reported in the literature ranging from
1 wt.% to 5 wt.% [26,29–31]. NMC-811 is used for the cathode active
material [29,31]. Full-cell C-rates used in this work refer to a nominal
capacity of 3.35 Ah. One equivalent full cycle (EFC) refers to a charge
throughput of twice the nominal capacity, which is 6.7 Ah.

The cells were first characterized using a series of procedures that
are internally standardized at our institute to determine the long-term
evolution of cell characteristics of this type of commercial cell [1,32,
33]. A capacity checkup was then conducted comprising two constant
current constant voltage (CCCV) cycles. The quasi-stationary OCV of
the cells in the pristine state was then measured using low-current
CCCV discharging and subsequent CCCV charging between 2.5 V and
4.2 V. The current rate during the constant current (CC) phases was
C/30, and a cut-off current of C/1000 was used as the termination
criterion for the constant voltage (CV) phase.

The cells were subsequently cycled for up to 550 cycles using CCCV
charging and CC discharging at 25 ◦C. A current rate of C/2 was used
for charging, while 1 C was used for discharging. The number of cycles
after which the procedure was terminated differed for each cell so as
to provoke different levels of degradation (see Table 1).

After the cycling, the quasi-stationary OCV of the aged cells was
measured using the procedure described above, and the cells were
finally discharged to 3 V using CCCV discharging. The cells were then
opened up in an argon-filled glove box and samples from both elec-
trodes were extracted. One cell was not cycled but discharged directly
and opened up after characterization to measure the quasi-stationary
OCP in the pristine state. The electrode samples were weighed using
an analytical scale (Quintix 224-1S, Sartorius Mechatronics), and the
quasi-stationary OCP was determined using coin-cell measurements
with lithium metal foil as the counter electrode. A low current rate
of approximately C/90 was used for the measurement. Details of the
coin-cell measurement procedure can be found in Ref. [22].

In addition to the experiments described in Ref. [22], the quasi-
stationary OCP of graphite was also measured in this study. Round
samples with a diameter of 14 mm were punched out of a sheet
of commercially available natural graphite with a mass loading of
13.0 mg cm−2. The sheet was made up of a copper conductor with
a graphite coating on both sides. The coating was removed on one
side before the samples were obtained. Coin-cells containing a graphite
sample and a piece of lithium metal foil as a counter electrode were
subsequently constructed. The coin-cells were produced in the same
way as described in Ref. [22]. Five formation cycles were applied as
follows: CCCV lithiation with a current rate of C/10, a cut-off voltage
of 0.01 V, and a cut-off current of C/50 followed by CC delithiation
with a current rate of C/10 and a cut-off voltage of 1.7 V. There was a
one-hour rest period between each lithiation and delithiation step. The
C-rates for these coin-cells refer to a nominal capacity of 5.43 mAh.

The graphite was subsequently CCCV delithiated using a current
rate of C/10, a cut-off voltage of 1.7 V, and a cut-off current of C/100.
After a rest time of 100 s, the graphite was lithiated at a current rate of
C/100 until a cut-off voltage of 0.01 V to measure the quasi-stationary
OCP during lithiation. Both formation and OCP measurements were
conducted at 25 ◦C inside an ESPEC LU-123 climatic chamber and using
a BaSyTec CTS battery test system.

4.2 Impact on the full-cell open-circuit voltage curve
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3. Model and methodology

3.1. Full-cell open-circuit voltage model and degradation diagnosis

The model and method for quantifying degradation modes pre-
sented in the following is based on the concept presented by Dubarry
et al. [8]. The OCV of a full-cell 𝑈full at a certain full-cell SOC 𝑥full is
calculated as:

𝑈full(𝑥full) = 𝑈cat(𝑥cat) − 𝑈an(𝑥an), (1)

where 𝑈cat(𝑥cat) is the cathode OCP at this full-cell SOC and 𝑈an(𝑥an)
is the anode OCP at this full-cell SOC. The measured potential curves
for the anode 𝑈an(𝑥an) and cathode 𝑈cat(𝑥cat) are defined as functions
of the electrode SOC 𝑥an or 𝑥cat. The electrode SOC of the anode 𝑥an
is defined as the amount of lithium inserted into the anode divided by
the total amount of lithium inserted into the anode during a lithiation
from 1.7 V to 0.01 V. Its value is therefore between 0 and 1, where 1
corresponds to the lithiated state. The electrode SOC of the cathode 𝑥cat
is defined as the amount of lithium extracted from the cathode divided
by the total amount of lithium extracted from the cathode during a
delithiation from 3.0 V to 4.3 V. Its value is therefore between 0 and
1, where 1 corresponds to the delithiated state at 𝑈cat = 4.3 V.

The half-cell voltage limits are chosen as suggested in Ref. [31]
to cover at least the lithiation window in which the electrodes are
operated in the full-cell configuration throughout the aging. In prin-
ciple, wider operating limits could be chosen for the half-cells, but we
assume for the definition of electrode SOC and capacity that the half-
cells should only be operated in the respective voltage windows due
to the following considerations: Further delithiation of silicon–graphite
would not lead to a significant capacity increase, as it already reaches
a virtually fully delithiated state at 1.7 V vs. Li/Li+ [34]. Any further
lithiation would lead to a high risk of lithium plating. The NMC-811
is virtually fully lithiated at 3.0 V vs. Li/Li+ [35,36] and any further
delithiation above 4.3 V vs. Li/Li+ would lead to increased degradation
due to the formation of a surface rock-salt type layer [37].

Calculating the full-cell OCV curve requires a description of both
electrode potentials as a function of the full-cell SOC. This can be
obtained by aligning the half-cell curves with the full-cell curve as
shown in Fig. 1(a). In this figure, both normalized half-cell curves are
linearly scaled and shifted with respect to the SOC-axis in order to
fit the full-cell curve. This linear scaling and shifting of the electrode
OCP curves resembles a transformation of the electrode SOC into the
corresponding full-cell SOC. For the anode SOC, this transformation is
defined as:

𝑥full = 𝛼an ⋅ 𝑥an + 𝛽an, (2)

where 𝛼an is the factor by which the anode OCP curve is scaled to fit
the full-cell curve and 𝛽an is the value by which the anode curve is
shifted towards higher full-cell SOC to fit the full-cell curve. 𝛼an can be
interpreted as the factor by which the anode capacity is oversized in
comparison to the full-cell capacity. The cathode SOC in the coordinate
system of the full-cell is described by:

𝑥full = 𝛼cat ⋅ 𝑥cat + 𝛽cat, (3)

where 𝛼cat is the linear scaling factor and 𝛽cat is the shift of the cathode
OCP curve towards higher SOC. In this model, the point of origin for
the scaling of the half-cell OCP is always 0 % electrode SOC, which
corresponds to the delithiated state for the anode and the lithiated state
for the cathode. As both electrode curves need to have their origin at
or below 0 % full-cell SOC, 𝛽an and 𝛽cat are always negative, which
means that the curves are left-shifted in the full-cell coordinate system.
By rearranging Eqs. (2) and (3), the respective electrode SOC can be
calculated from the full-cell SOC:

𝑥an = (𝑥full − 𝛽an)∕𝛼an, (4)

Fig. 1. (a) Reconstruction of a pristine full-cell OCV curve by linear scaling and shifting
of pristine half-cell OCP curves. (b) Flowchart describing the method applied in this
study for analyzing the impact of changes in the anode half-cell OCP curve on the
determination of degradation modes. (c) Schematic representation of the definition of
the lithium inventory.

𝑥cat = (𝑥full − 𝛽cat)∕𝛼cat. (5)

Substituting Eqs. (4) and (5) into Eq. (1) yields a description of the
full-cell voltage as a function of full-cell SOC:

𝑈full(𝑥full) = 𝑈cat((𝑥full − 𝛽cat)∕𝛼cat) − 𝑈an((𝑥full − 𝛽an)∕𝛼an). (6)

This model enables full-cell OCV curves at different aging states to be
described based on measured half-cell curves by adjusting the align-
ment parameters (𝛼an, 𝛼cat, 𝛽an and 𝛽cat) until the reconstructed full-cell
curve fits the measured curve. The alignment parameters can be used
to determine the remaining capacity of the individual electrodes, the
remaining lithium inventory in the electrodes, and the cell balancing.

The degradation modes are calculated based on the best fit for the
alignment parameters. The anode capacity 𝐶an at a certain aging state
is calculated as the remaining full-cell capacity 𝐶full multiplied by the
anode scaling factor 𝛼an at this aging state. The relative LAMan at a
certain aging state is then defined as:

LAMan =
𝐶an,ini − 𝐶an

𝐶an,ini
, (7)

4 Change in the shape of the open-circuit potential curve during cycle aging
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where 𝐶an,ini is the anode capacity in the pristine state. The relative
LAMcat is defined in a similar way. The lithium inventory 𝐶lit is the
lithium available for delithiation in both electrodes [20] starting from
an arbitrary reference SOC 𝑥full,ref within the voltage limits of the
full-cell. The lithium inventory in the electrodes is calculated by:

𝐶lit = 𝐶lit,an(𝑥full,ref) + 𝐶lit,cat(𝑥full,ref), (8)

where 𝐶lit,an(𝑥full,ref) is the capacity of the available lithium in the
anode and 𝐶lit,cat(𝑥full,ref) the capacity of the available lithium in the
cathode when the full-cell is at the reference SOC 𝑥full,ref. The term
available lithium refers to the amount that can be potentially delithi-
ated until the half-cell upper cut-off voltage of the respective electrode
is reached. Regarding the capacity of the available lithium in the anode,
the following applies:

𝐶lit,an(𝑥full,ref) = 𝐶full ⋅ (𝑥full,ref − 𝛽an), (9)

as the capacity of the available lithium in the anode is 𝐶full ⋅ 𝑥full,ref
plus the portion of the anode capacity below 0 % full-cell SOC, which
is equal to 𝐶full ⋅ (−𝛽an). The negative sign is necessary, as 𝛽an is defined
as negative for a left-shifted anode curve. The capacity of the available
lithium in the cathode is given by:

𝐶lit,cat(𝑥full,ref) = 𝐶full ⋅ (𝛼cat − 𝑥full,ref + 𝛽cat), (10)

as it is the complete cathode capacity (𝐶full ⋅ 𝛼cat) minus the delithiated
part below 𝑥full,ref. The concept of this definition for 𝐶lit is shown as a
schematic in Fig. 1(c). Substituting Eqs. (9) and (10) into Eq. (8) yields:

𝐶lit = [(𝑥full,ref − 𝛽an) + (𝛼cat − 𝑥full,ref + 𝛽cat)] ⋅ 𝐶full. (11)

It should be noted that 𝑥full,ref cancels out in Eq. (11), as the lithium
inventory does not depend on the chosen reference SOC. The relative
LLI is defined as

LLI =
𝐶lit,ini − 𝐶lit

𝐶lit,ini
. (12)

The following algorithm is used for the alignment of half-cell and
full-cell curves. Both half-cell and full-cell curves are normalized,
i.e., the measured charge throughput during charging of the full-cell,
lithiation of the anode, or delithiation of the cathode, is divided by the
charge throughput at the end of the procedure. A full-cell OCV curve is
then calculated using Eq. (6) with an initial estimate of the alignment
parameters. Next, the differential voltage (DV):

𝑑𝑈
𝑑𝑄

|

|

|𝑥full
=

𝑈full(𝑥full + 𝛥𝑥) − 𝑈full(𝑥full)
𝛥𝑥

(13)

is calculated at 2001 equally spaced interpolation points between
𝑥full = 0 and 𝑥full = 1 for both the calculated and the measured full-cell
OCV curve. Interpolating at this number of points, in our case, yields
a sufficiently high resolution of the DV curve in the SOC dimension
while the optimization can be executed in an appropriate time. 𝛥𝑥 is
a small fraction (0.2 %) of the SOC range for which the OCV curve is
linearly approximated to calculate the local differential voltage. Then,
the difference between the DV of the calculated and the measured OCV
is evaluated at each interpolation point to obtain a measure of the
fitting of both curves. The lsqnonlin function using the trust-region-
reflective algorithm implemented in MATLAB® is used to minimize
the sum of squared differences between the DV curves by varying
the alignment parameters. The difference between the DV curves is
used instead of the absolute OCV difference as an objective function
for optimization, in order to align the features of the DV curves that
represent the phases and phase transitions of the active materials and
to minimize the influence of absolute offsets of the OCV curves. The
difference between the DV curves at the edges of the full-cell SOC
range (1 % at each side) is excluded to avoid the optimization being
dominated by the steep slope of the OCV curves near the edges.

The influence of aging-induced changes in the shape of the anode
OCP curve, i.e., a change in the function 𝑈an(𝑥an), is investigated
as follows: The quasi-stationary full-cell OCV, measured during low-
current charging of the cells at different aging states just before they are
opened up, is fitted with half-cell OCP curves according to the method
described above. In the case of the cathode OCP, the half-cell curve
measured with material extracted from the pristine full-cell is always
used, because the shape of the curve does not change significantly dur-
ing cycle aging [22]. Three different anode curves are used: the curve
measured for material extracted from the pristine full-cell, the curve
measured for the aged anode material extracted from the respective
cell following the full-cell OCV measurement, and a synthetic curve
calculated using a blend electrode model as described in Section 3.2.
The measured OCP curves are averaged from multiple samples [22] and
smoothed with a moving average filter before fitting.

A set of alignment parameters is thus obtained for each investigated
aging state and for all three types of anode OCP curves. Finally,
the degradation modes are calculated based on the different sets of
alignment parameters. A schematic of the approach used in this study
is shown in Fig. 1(b).

3.2. Silicon–graphite blend open-circuit potential model and determination
of component degradation

We model the OCP curve of the silicon–graphite blend electrode
using the following model, which was described by Schmidt et al.
for a generic blend electrode [9]. The fraction of the capacity that
can be inserted into a component of the silicon–graphite blend during
lithiation until a potential 𝑈 is reached is denoted as 𝑄Si(𝑈 ) for the
silicon and 𝑄G(𝑈 ) for the graphite. The fraction of the blend anode
capacity that is lithiated at this voltage is then given by:

𝑄blend(𝑈 ) = 𝛾Si ⋅𝑄Si(𝑈 ) + (1 − 𝛾Si) ⋅𝑄G(𝑈 ), (14)

where 𝛾Si is the fraction of the total anode capacity provided by the
silicon. At the lower cut-off voltage 𝑈min, both 𝑄Si(𝑈 ) and 𝑄G(𝑈 ) are
equal to one by definition, and therefore 𝑄blend(𝑈 ) is also one. 𝑄Si(𝑈 )
and 𝑄G(𝑈 ) are obtained by taking the inverse of the OCP curve of the
respective component as a function of normalized charge. The OCP of
the blend anode as a function of normalized charge or electrode SOC
𝑄blend can then be obtained from:

𝑈OCV,blend(𝑄blend) = 𝑓−1(𝑄blend(𝑈 )). (15)

The shape of 𝑈OCV,blend(𝑄blend) is affected by the value of 𝛾Si. The
blend OCP curve is similar to that of graphite for small values of 𝛾Si
and similar to that of silicon for large values of 𝛾Si. Fig. 2(a) shows
OCP curves for graphite and silicon. The graphite curve is measured as
described in the experimental section. Small local minima (<1 mV) in
the voltage curve occurring during lithiation, which are most probably
measurement artifacts, are removed to enable inversion of the curve.
The lithiation curve of pure silicon is taken from Li et al. [38].

This model is used to determine the capacity fraction of the silicon
component of a silicon–graphite anode, by constructing blend OCP
curves for various values of 𝛾Si and minimizing the difference between
the DV curves of the calculated and measured OCP curves. The opti-
mization procedure is the same as the one used for fitting the full-cell
OCV curves with half-cell OCP curves. Again, 1 % of the electrode SOC
range are excluded at both edges of the voltage window during the
optimization.

We also use synthetic OCP curves calculated with the blend elec-
trode model to reconstruct measured full-cell OCV curves. To do this, a
silicon–graphite OCP curve is first calculated using the blend electrode
model. Then, the full-cell OCV curve is reconstructed by aligning both
the synthetic anode OCP and the pristine cathode OCP. The silicon
capacity fraction 𝛾Si used to calculate the anode OCP is then optimized
along with the four alignment parameters.

4.2 Impact on the full-cell open-circuit voltage curve
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If the gravimetric specific capacities of both components are known,
an estimate for the mass fraction of the pristine anode that consists of
silicon can be calculated, based on 𝛾Si. The silicon mass fraction can be
obtained as a function of 𝛾Si by:
𝑚Si

𝑀blend
=

𝛾Si ⋅ 𝑐G
𝑐Si − 𝛾Si ⋅ (𝑐Si − 𝑐G)

, (16)

where 𝑚Si is the silicon mass, 𝑀blend the total mass of the active blend
material, 𝑐Si the gravimetric specific capacity of silicon, and 𝑐G the
gravimetric specific capacity of graphite. The derivation of Eq. (16) can
be found in the Appendix.

4. Results and discussion

As reported in our previous work [22], the investigated cells are
at different aging states following cycling periods of varying duration.
Table 1 lists the total charge throughput 𝑄tot, i.e., the number of
equivalent full-cycles applied to the cells until the quasi-stationary OCV
measurement prior to cell opening. In this study, the charge throughput
during low-current charging after cycling and prior to cell opening is
taken as the value of the remaining full-cell capacity 𝐶full. Table 1 also
lists the remaining full-cell capacities of the individual cells along with
the relative capacity losses 𝛥𝐶. In this section, we will analyze the
degradation modes occurring during cell cycling.

4.1. Changes in the silicon–graphite open-circuit potential curve

To illustrate the calculation of a silicon–graphite OCP curve using
the blend electrode model, Fig. 2(a) shows the measured and calculated
OCP curves of a pristine blend electrode using 𝛾Si = 9.52%, which
is obtained by optimization. The calculated curve fits the measured
curve well. The right-shift of the graphite features in comparison to
the pure graphite curve can be simulated particularly well with the
model. The root-mean-square error (RMSE) between the measured and
the calculated OCP curve is 6.6 mV.

In our previous work [22], we show that the shape of the OCP
curve of the silicon–graphite used in the investigated cell type changes
during cycle aging. The most prominent changes are a left-shift of
both the graphite and silicon DV peaks towards a lower electrode SOC.
This change is most probably caused by a decrease in the fraction of
the electrode capacity provided by the silicon. The blend electrode
model is capable of simulating OCP curves of electrodes with varying
capacity contributions of the components and is therefore used here
to describe the changes in the shape of the silicon–graphite OCP
curves. The silicon–graphite OCP curves measured at different aging
states are fitted using the model. As an example, the measured and
calculated OCP curves of both the pristine silicon–graphite and the
silicon–graphite cycled for 488 EFC in the full-cell configuration are
shown in Fig. 2(b). The model is able to capture the aging-induced
changes in the curve shape. The model captures the reduced charge
inserted between 0.3 V and 0.2 V due to reduced silicon capacity and
the shift of voltage slopes associated with graphite stages 4L to 2L
towards lower SOC particularly. The RMSE between the calculated and
the measured OCP curve is below 6.9 mV for all aging states, which
shows that the model is suitable for fitting OCP curves of aged cells.
This finding has two implications: First, it supports the theory that
the change in the silicon–graphite OCP is caused by a faster capacity
decrease of the silicon compared to the graphite [22]. Second, fitting
aged OCP curves of silicon–graphite with the blend electrode model
serves as a diagnostic tool for obtaining an estimate of the capacity
fraction provided by both electrode components during cell aging.

Fig. 2(c) shows the fitting results of the relative capacity contribu-
tion of silicon 𝛾Si for the different aging states. There is a clear trend
towards a lower capacity contribution of silicon as aging progresses.
Predominant degradation of the silicon in silicon–graphite has also
been reported in the literature [23–25,39]. The deviation of single data

Fig. 2. (a) Reconstruction of the measured pristine silicon–graphite OCP curve based on
the normalized lithiation curves of the electrode components using the blend electrode
model. The lithiation curve of silicon is obtained from Ref. [38]. (b) Measurement and
model calculation of a pristine and a cycle aged (488 EFC) silicon–graphite electrode.
(c) Fraction of the silicon–graphite electrode capacity provided by silicon determined by
fitting silicon–graphite half-cell curves at different aging states with the blend electrode
model.

points from this trend is probably due to intrinsic cell variations, lead-
ing to differences in the aging behavior of the individual cells [1,33].
The fraction of the electrode capacity provided by the silicon for the
electrode to which the most cycles (488 EFC) are applied is estimated
at 5.55 %, which is only about 58 % of the initial value.

Using the theoretical values of the gravimetric specific capacities
𝑐Si = 3579mAh g−1 [25,38] and 𝑐G = 372mAh g−1 [40], in Eq. (16),
the mass fraction of electrochemically active silicon as part of the
silicon–graphite blend is determined to be 1.08 %. If it is assumed

4 Change in the shape of the open-circuit potential curve during cycle aging
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that 5wt.% of the anode material is made up of binder and carbon
black, electrochemically active silicon should comprise 1.03 % of the
total anode mass for pristine electrodes of this type. The total amount
of silicon in the anode is probably higher, as higher values of the
mass fraction of silicon have been reported in the literature for this
cell type, but part of the silicon might be electrochemically inactive.
Approximately 3.5 wt.% silicon was determined by inductively coupled
plasma-optical emission spectroscopy (ICP-OES) [31], approximately
4.5 wt.% using energy-dispersive X-ray spectroscopy (EDS) [26] and
approximately 3–4 wt.% using X-ray computed tomography (CT) [29].
It should also be noted that the precise composition of this commercial
cell type has changed in recent years and the relative silicon content of
the anode is lower for cells that were produced later, due to a change
in the composition used by the manufacturer [32]. Therefore, the cells
investigated in this study probably also contain less total silicon than
those whose silicon content was reported in Refs. [26,29,31], even
though they are of the same type.

To check the plausibility of our estimate of the electrochemically
active silicon mass, we will now compare the calculated and measured
absolute capacities of the pristine coin-cell samples. The average mass
of the anode samples, including current collectors, is 35.9 mg. Subtract-
ing an estimated mass for the current collector of 15.2 mg [31] yields
an average electrode mass of 20.8 mg corresponding to a mass loading
of 13.5 mg cm−2. We assume that 5 % of the electrode mass comprises
inactive components and 3.5 % [29,31] of the electrode mass consists
of silicon, but only 1.03 % of the electrode mass is electrochemically
active silicon and the remaining part is electrochemically inactive. The
remaining 91.5 wt.% of the electrode mass is assumed to be graphite.
Using these estimates and the theoretical gravimetric specific capac-
ities, the absolute coin-cell capacity is calculated as 7.84 mAh. The
average measured capacity during lithiation of the pristine silicon–
graphite samples is 7.40 mAh. The calculated and measured capacities
thus differ by less than 6 %, which leads us to the conclusion that our
estimate of the capacity fraction provided by the silicon is plausible. If
the entire 3.5 wt.% silicon were electrochemically active, the calculated
coin-cell capacity would be 9.55 mAh, which clearly exceeds the mea-
sured value of 7.40 mAh. Our conclusion is therefore that a significant
part of the silicon in the anode is electrochemically inactive which
explains the discrepancy between our estimate regarding the silicon
mass fraction and the results for the total silicon mass fraction provided
in the literature [26,29,31]. Besides, a silicon capacity fraction of 10 %
was also reported for a commercial silicon–graphite electrode with 3–
4 wt.% silicon in Ref. [28]. The diagnostic method used to determine
the capacity fraction provided by the silicon presented in our study
might be an even better indicator of the practically usable silicon
capacity than estimations based on the measured total silicon mass
fraction, because the method only considers electrochemically active
silicon, which might only be a fraction of the present silicon and also
might change during cell aging.

4.2. Changes in the full-cell open-circuit voltage curve

Fig. 3(a) displays the quasi-stationary OCV during low-current
charging for cells that have undergone different numbers of cycles. As
a general trend, the absolute voltage at the same SOC increases with
cycling. This is probably due to LLI leading to a shift in cell balancing
such that the cathode is in a more delithiated state at the same full-
cell SOC during full-cell charging [23]. In addition, the positions of the
features of the OCV curve change, as analyzed on the basis of the DV
curves. In Fig. 3(b), the normalized DV is plotted against the SOC. The
peaks in the DV plot correspond to lithiation phases of the anode or
the cathode. The minima correspond to phase transition regimes where
two lithiation phases coexist. In Fig. 3(b), the peaks are associated with
lithiation phases based on Refs. [4,37,41].

Changes in the shape of the OCV curve are evident during cycle
aging. The peaks of the DV curve are at a lower SOC for aged cells,

which means that the lithiation phases are reached earlier on in the
charging process. There are two changes in the curve features that
can be attributed to the cathode: The broad central peak between
approximately 50 % and 60 % SOC corresponding to the monoclinic
M-phase of NMC-811 [37] shifts to the left during cycling. This peak
is not clearly visible for the pristine and mildly aged cells, as it is
superimposed with the stage 2 peak of the graphite. Due to the left-
shift, this peak becomes discernible for cells cycled for ≥361 EFC.
The peak around 80 % SOC corresponding to the hexagonal H2-phase
of NMC-811 [37] also shifts to the left during cycling. Both of these
peak shifts are probably due to a change in the balancing between
the two electrodes. As cyclable lithium is lost, the cathode becomes
more delithiated during charging of the full-cell. The cathode half-cell
curve therefore shifts to the left in comparison to the anode half-cell
curve [16]. For this cell type, the anode is always limiting at 0 % full-
cell SOC, as will be shown in Section 4.3. Therefore, this relative shift
of the cathode OCP curve results in a left-shift of the cathode peaks in
the full-cell DV curve.

In addition to the changes related to the cathode, there are also
changes that can be attributed to the anode. The peaks corresponding
to the partly lithiated graphite stages between 4L and 2L around 20 %
SOC [41] shift to a lower SOC during aging. The peaks below 10 %
SOC corresponding to silicon phases [4] are also located at a lower SOC
for the cells that have been cycled for a longer period. There are two
possible explanations for this observation: The traditional explanation,
neglecting changes in the shape of the electrode OCP, would be that
there is a higher relative loss of anode active material compared to the
loss of cathode active material. This corresponds to a compression of
the anode curve in the model. As the anode is limiting at 0 % SOC,
compression of the anode OCP curve leads to a left-shift of the anode
features in the full-cell OCV. But taking into account the results from
our analysis on the electrode level, this shift of silicon and graphite
peaks in the full-cell DV curve could also be caused by the changes in
the shape of the anode half-cell OCP curve due to silicon degradation
being faster than graphite degradation. As both effects would lead
to the same results with regard to the full-cell OCV, the left-shift of
the anode peaks in the full-cell DV can be misinterpreted as resulting
solely from an overall anode active material loss. In fact, at least some
of the left-shift of the anode peaks is most likely due to changes in
the silicon–graphite half-cell curve caused by the faster degradation of
silicon.

The central peak corresponding to stage 2 graphite exhibits some
variation and decreases in height during aging, but there is no clear
trend in its position. The decrease in the height of this peak is probably
caused by an increase in the inhomogeneity of the anode [42–44].

4.3. Reconstruction of full-cell open-circuit voltage curves

The aging-induced changes in the quasi-stationary OCV curve dur-
ing full-cell charging are analyzed quantitatively using the OCV model
and the fitting procedure described in Section 3.1. In order to inves-
tigate the influence of changes in the shape of the silicon–graphite
OCP during aging, the full-cell OCV curves are reconstructed using the
pristine anode OCP curve, the aged anode OCP curve, i.e., the anode
OCP measured at the same aging state as the full-cell OCV, and an OCP
curve calculated using the blend electrode OCP model. As an example,
the reconstruction of the OCV curve of the cell cycled for 486 EFC is
shown in Fig. 4. The different interpretations of the changes in anode
features in the full-cell OCV, depending on whether changes in anode
half-cell OCP are considered, are visible here. In Fig. 4(a), the pristine
anode half-cell curve is used to reconstruct the full-cell curve. The
anode features in the full-cell curve, in particular the voltage slope
associated with the 4L to 2L stages of graphite, are shifted to the left
with respect to the pristine full-cell OCV. To obtain this left-shift in the
reconstructed curve, the anode curve is compressed. This compression
is interpreted as a loss of anode active material. Consequently, at 100 %

4.2 Impact on the full-cell open-circuit voltage curve
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Fig. 3. (a) Quasi-stationary OCV curve of full-cells at different aging states during
low-current (C/30) charging. (b) Normalized differential voltage of cells at different
aging states during low-current charging.

full-cell SOC, the anode potential has already left the voltage plateau
corresponding to the transition between graphite stage 2 and 1, and the
anode potential is a limiting factor for reaching the upper full-cell cut-
off voltage at the end of charging. In Fig. 4(b), the same aged full-cell
OCV is reconstructed using the aged anode half-cell curve. This curve
already exhibits a left-shift of the features related to anode lithiation
phases on the half-cell level. Therefore, the anode curve is compressed
less during the reconstruction of the full-cell curve. The same applies to
the reconstruction of the full-cell curve using an anode curve simulated
with the blend electrode OCP model shown in Fig. 4(c): Here, the left-
shift of the anode features in the full-cell OCV is partly realized at the
half-cell level by reducing the capacity contribution of silicon, and less
compression of the whole anode curve is required compared to using
the pristine anode curve. If changes in the half-cell OCP are considered,
the anode is not identified as limiting at the end of charge, as the anode
potential at 100 % full-cell SOC is still within the voltage plateau.

Fig. 5 shows the RMSE between the measured and the calculated
full-cell OCV curve at different aging states for the three types of anode
OCP curves. There is a general trend of increase in the RMSE with cell
cycling. This might be due to an increase in electrode inhomogeneity
during cycle aging [43,44], which also affects the OCV curve and is not
considered in the model. Still, as the RMSE is always below 12 mV, a
good agreement between the measured and the constructed curve is
obtained for all three types of anode curves and at all aging states.
Therefore, aging-related changes in the full-cell OCV curve can be
accurately described with the model regardless of whether changes in
the anode half-cell OCP are considered. But while having a small impact
on fit accuracy, the consideration of changes in the half-cell OCP shape
influences the quantitative results for the alignment parameters and
therefore the interpretation of the changes in the full-cell OCV.

Fig. 4. Reconstruction of the quasi-stationary OCV during charging of a full-cell cycled
for 486 EFC using (a) the anode half-cell curve of the pristine material, (b) the anode
half-cell curve of the aged material, and (c) a synthetic anode OCP curve representing
the half-cell curve of aged material calculated with the blend electrode model.

Fig. 6 contains plots of the four alignment parameters obtained at
different aging states. The results are shown for all three types of anode
curves. The progression of the anode scaling factor 𝛼an is shown in
Fig. 6(a). In the pristine state, the anode capacity is approximately
4 % larger than the full-cell capacity. An almost complete use of the
anode has also been reported in the literature for this cell type [31].
Different trends for the progression of 𝛼an are found, depending on
whether changes in the anode half-cell OCP are considered. If the
pristine anode OCP is used to reconstruct the aged full-cell OCV curves,
there is a decreasing trend in 𝛼an during aging. As discussed above, the
left-shift of the anode features in the full-cell OCV curve is obtained
by compressing the anode curve when the pristine anode OCP is used.

4 Change in the shape of the open-circuit potential curve during cycle aging
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Fig. 5. Root-mean-square error for the reconstruction of the full-cell OCV at different
aging states. The RMSE is plotted for using the pristine anode OCP, the aged anode OCP
at a certain aging state, and synthetic OCP curves calculated with the blend electrode
model.

A different result is obtained when changes in the anode half-cell OCP
are considered: Regardless of whether the aged anode half-cell curves
or the OCP curves calculated with the blend electrode model are used,
𝛼an tends to increase during aging. However, this does not mean that
there is an increase in absolute anode capacity. Rather, it should be
interpreted such that less of the anode capacity is used within the
voltage limits of the full-cell due to LLI.

The results of the anode offset 𝛽an during aging are plotted in
Fig. 6(b). The anode offset is close to zero (|𝛽an| < 0.6%) throughout
aging and for all types of anode curves. This means that the anode
is always limiting the usable full-cell capacity at the lower cut-off
voltage. There are small deviations (<0.12 percentage points) between
the values of 𝛽an obtained with the different types of anode curves, but
these are probably due to the fitting and have no physical significance.

Fig. 6(c) shows plots of the progression of the cathode scaling factor
𝛼cat during aging. For the pristine cell, the cathode capacity within
the half-cell voltage limits is approximately 7 % larger than the full-
cell capacity. Similar results have previously been reported for this cell
type [31]. The cathode scaling factor increases during cycling, which
means that a smaller fraction of the cathode capacity is used with
ongoing aging, probably caused by LLI. The values of 𝛼cat obtained for
the heavily aged cells (≥361 EFC) are more than 2 percentage points
smaller if changes in the anode half-cell curve are considered in the
reconstruction process.

The cathode offset 𝛽cat at different aging states is shown in Fig. 6(d).
The cathode offset is estimated to be approximately −5% for the
pristine cell, which means that the cathode is not fully lithiated at
the lower cut-off voltage of the full-cell. During aging, 𝛽cat decreases
further, corresponding to a left-shift of the cathode OCP curve. A
relative left-shift of the cathode curve corresponds to LLI leading to
a change in the balancing between the electrodes [16]. The decrease
in 𝛽cat is found to be smaller where changes in the shape of the anode
OCP are considered.

4.4. Estimation of the silicon capacity based on full-cell open-circuit voltage
curves

In Section 4.3 the influence of changes in the shape of the silicon–
graphite OCP curve on the full-cell OCV curve during aging is analyzed
by using measured aged silicon–graphite OCP curves and synthetic
silicon–graphite OCP curves calculated with the blend electrode model
to reconstruct aged full-cell OCV curves. While the first approach allows
the impact of changes in the half-cell OCP on the degradation modes
observable in the full-cell OCV curves to be analyzed on the basis

of experimental results, the latter approach is particularly suitable as
a diagnostic method in research and applications as it requires less
experimental effort. The measurement of aged half-cell OCP curves
is not necessary with this procedure. Instead, the blend anode OCP
curve is calculated based on the OCP curves of pristine pure graphite
and pristine pure silicon. The anode capacity fraction provided by
silicon 𝛾Si is obtained by optimization, i.e., variation of 𝛾Si and the
four alignment parameters to minimize the difference between the DV
of the measured and that of the reconstructed full-cell OCV. Using
this procedure enhances the validity of the results of the degradation
modes in comparison to using the pristine silicon–graphite curve for
the reconstruction of the full-cell OCV. It also enables the capacity
fraction of the anode provided by the silicon to be estimated, without
necessitating the measurement of the half-cell OCP curves of aged cells.

The results obtained for the anode capacity fraction provided by
silicon are shown in Fig. 7. The results we obtain by reconstructing
the aged full-cell OCV curves are similar to those we obtain for the
reconstruction of the aged half-cell curves presented in Section 4.1.
Both sets of values are shown in Fig. 7. The difference between the
estimation based on full-cell curves and the one based on half-cell
curves is below 0.8 percentage points for all aging states. The results
for 𝛾Si obtained by reconstructing the full-cell curves are slightly higher
than those obtained by fitting the half-cell curves. Like the results
based on half-cell curves, 𝛾Si determined from full-cell curves tends to
decrease during aging. The anode capacity fraction provided by silicon
is estimated at 10.3 % for the pristine cell and 5.6 % for the cell cycled
for 486 EFC. Using Eq. (16) and assuming the theoretical gravimetric
specific capacities for silicon and graphite, the silicon mass fraction of
the pristine anode material is estimated at 1.1 %.

The method we propose here may be useful for determining changes
in the component balancing of composite electrodes. In addition to
being non-destructive and easy to execute, the method has further
possible advantages: Unlike methods that quantify total silicon mass
such as ICP-OES [31] or EDS [26], this method only determines the
capacity of the electrochemically active part of the silicon. In an
application context, this quantity might be even more relevant than
the total silicon mass. It also enables the degradation of the silicon to
be analyzed, which is not possible with methods that determine total
silicon mass, as the quantity does not change during aging [26], even
though the usable capacity of the silicon decreases.

4.5. Determination of degradation modes

The degradation modes occurring during the cycling are calculated
using the results of the alignment parameters for aged cells and the
changes in full-cell capacity listed in Table 1. Fig. 8(a) shows LAMan,
which displays an increasing trend during cell cycling. As discussed
above, a lower anode capacity loss is determined if the aged anode
curves or anode curves calculated with the blend electrode model
are used than when using the pristine anode curve, because the left-
shift of the anode features in the full-cell OCV curve is obtained in
part from the changes in the shape of the anode curve rather than
solely from compression of the anode curve. The values obtained for
LAMan with aged anode curves are very similar to those obtained using
synthetic curves calculated with the blend electrode model. If changes
in the silicon–graphite OCP are considered, the LAMan after 486 EFC
is estimated at 13.1 %. In contrast, the LAMan is estimated at 15.5 %
if the pristine silicon–graphite OCP is used. Regardless of whether or
not changes in the silicon–graphite OCP are considered, the LAMan
is identified as an important degradation mode for this cell type and
under these operation conditions. Significant degradation by LAMan
has also been reported by other authors [4,26,44] for this cell. Still,
the loss of anode material is probably overestimated by something in
the order of a few percentage points if no changes in the shape of the
silicon–graphite OCP are considered.

4.2 Impact on the full-cell open-circuit voltage curve
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Fig. 6. Alignment parameters obtained by reconstructing the full-cell OCV curve at different aging states using different types of anode half-cell curves: (a) anode scaling factor,
(b) anode offset, (c) cathode scaling factor, (d) cathode offset.

Fig. 7. Estimate of the fraction of anode capacity provided by the silicon at dif-
ferent aging states. Results obtained by reconstruction of half-cell OCP curves of
silicon–graphite and full-cell OCV curves are shown.

LAMcat during cycling is shown in Fig. 8(b). During the first 100
EFC, the estimated values for LAMcat are negative, which corresponds
to a slight increase in cathode capacity. The capacity increase is more
pronounced if the pristine anode half-cell curve is used. After 100
EFC, LAMcat starts to increase. Using aged anode curves yields similar
values for the more aged cells (≥361 EFC) to those obtained with
the blend electrode model. Using the pristine anode curve results in
values for the LAMcat of cells cycled for more than 361 EFC that are
approximately 3 percentage points lower. The drop in cathode capacity
might therefore be slightly underestimated, when changes in the shape
of the anode curve are neglected. Overall, the loss of cathode active
material is much lower than LAMan, which is in accordance with the
literature [29,43,44], regardless of whether changes in the silicon–
graphite OCP are considered or not. For example, if the measured aged

anode curves are used, 5.3 % LAMcat and 15.5 % LAMan are estimated
for the cell cycled for 486 EFC.

Fig. 8(c) shows the LLI for different aging states. The LLI exhibits an
increasing trend during cycling. The estimate for the LLI is very similar
to the relative capacity loss of the cells listed in Table 1. At all aging
states, the amount of available lithium in the electrodes that could be
delithiated up to the upper electrode cut-off voltage is only slightly
higher than the amount of lithium used within the voltage limits of
the full-cell. This means that there is significant LLI throughout aging.
The estimated LLI is up to 1.1 percentage points higher if changes in
the silicon–graphite OCP are considered.

Summing up the results regarding the degradation modes, the ca-
pacity loss observed for this cell type under these operating conditions
is caused by both LAMan and LLI. Considering aging-induced changes
in the shape of the anode half-cell curve leads to lower estimates for
LAMan and higher estimates for LAMcat and LLI, and improves the
validity of the estimates for the individual degradation modes.

5. Conclusion

Expanding on the results of our previous study regarding the
changes in the shape of the OCP curve of silicon–graphite during full-
cell cycling [22], we show that these changes in the OCP curve can
be described by a blend electrode model. Fitting OCP curves of cycle-
aged silicon–graphite with the model enables the capacity fraction
contributed by the individual electrode components to be estimated.
We deduce from the half-cell OCP measurements that the capacity
fraction provided by the silicon is approximately 9.5 % for a pristine
electrode decreasing to 5.5 % for an electrode cycled for 488 EFC in
the full-cell configuration. The silicon therefore degrades faster than
the graphite under the operating conditions used in our study.

An accurate reconstruction of aged full-cell OCV curves can be
obtained by shifting and scaling half-cell OCP curves regardless of
whether aging-related changes in the shape of the silicon–graphite
OCP are considered or not. Still, the validity of the degradation mode

4 Change in the shape of the open-circuit potential curve during cycle aging
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Fig. 8. (a) Loss of active material of the anode, (b) loss of active material of the
cathode, and (c) loss of lithium inventory for cells cycled for a different number
of equivalent full-cycles estimated via reconstruction of full-cell quasi-stationary OCV
curves. The results obtained using the pristine anode half-cell curve, aged anode half-
cell curves, and synthetic anode half-cell curves calculated with the blend electrode
model are shown.

estimates obtained with this diagnostic method can be improved by
considering aging-induced changes in the shape of the silicon–graphite
OCP curve. For the investigated cell, the loss of anode active material
is probably slightly overestimated, while the loss of cathode active
material and the LLI are slightly underestimated if changes in the
silicon–graphite OCP are neglected.

In addition, expanding the diagnostic method by using synthetic
anode curves calculated with a blend electrode model, as proposed
in this study, enables an estimation of the anode capacity fraction
provided by the individual electrode components. The estimates that
we obtain for the anode capacity fraction provided by the silicon

based on low-current full-cell charging curves are similar to those that
we obtain from silicon–graphite half-cell lithiation measurements. The
method proposed in this study can be used for the destruction-free
estimation of the component specific degradation of silicon–graphite.

Besides analyzing low-current charging curves measured under lab-
oratory conditions, this diagnostic method might also be applied to the
analysis of cell degradation based on measurements obtained during
typical charging phases of applications. Further research is necessary
to investigate how the proposed method performs using only partial
charging curves or charging curves obtained at higher current rates.

Table of abbreviations

CC Constant current
CCCV Constant current constant voltage
CT X-ray computed tomography
CV Constant voltage
DV Differential voltage
EDS Energy-dispersive X-ray spectroscopy
EFC Equivalent full cycle
ICP-OES Inductively coupled plasma-optical emission spectroscopy
LAMan Loss of active material of the anode
LAMcat Loss of active material of the cathode
LLI Loss of lithium inventory
MJ1 LG Chem INR18650-MJ1 (cell type)
NMC Lithium nickel manganese cobalt oxide
OCP (Half-cell) open-circuit potential
OCV (Full-cell) open-circuit voltage
RMSE Root-mean-square error
SOC State of charge
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Appendix. Derivation of formula for silicon mass fraction

Absolute silicon capacity 𝐶Si is calculated as a fraction of the total
capacity of the blend 𝐶blend:

𝐶Si = 𝛾Si ⋅ 𝐶blend. (A.1)

Silicon capacity can also be calculated as:

𝐶Si = 𝑚Si ⋅ 𝑐Si, (A.2)

4.2 Impact on the full-cell open-circuit voltage curve
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where 𝑚Si is the silicon mass and 𝑐Si the gravimetric specific capacity
of silicon. Similarly,

𝐶G = 𝑚G ⋅ 𝑐G (A.3)

applies to the graphite capacity 𝐶G, with 𝑚G being the graphite mass
and 𝑐G the gravimetric specific capacity of graphite. The total blend
capacity is defined as:

𝐶blend = 𝐶Si + 𝐶G, (A.4)

and the total mass of the active blend material 𝑀blend is given by:

𝑀blend = 𝑚Si + 𝑚G. (A.5)

Using the equality of the right-hand sides of Eqs. (A.1) and (A.2) yields:

𝛾Si ⋅ 𝐶blend = 𝑚Si ⋅ 𝑐Si, (A.6)

and substituting Eq. (A.4) leads to:

𝛾Si ⋅ (𝐶Si + 𝐶G) = 𝑚Si ⋅ 𝑐Si. (A.7)

Substituting Eqs. (A.3) and (A.2) leads to:

𝛾Si ⋅ (𝑚Si ⋅ 𝑐Si + 𝑚G ⋅ 𝑐G) = 𝑚Si ⋅ 𝑐Si. (A.8)

Solving Eq. (A.5) for 𝑚G and substituting into Eq. (A.8) results in:

𝛾Si ⋅ (𝑚Si ⋅ 𝑐Si + (𝑀blend − 𝑚Si) ⋅ 𝑐G) = 𝑚Si ⋅ 𝑐Si, (A.9)

which can be rearranged to Eq. (16).
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As elaborated on in section 2.3.1, a method for SOH estimation should ideally fulfill the following
requirements:

1. It should work without a pre-parametrized aging model or a correlation between a measurable
feature and the SOH.

2. It should be possible to measure the necessary input data frequently during regular operation.
3. It should be applicable for all relevant aging conditions.
4. It should allow capacity estimation with sufficient accuracy.

In this chapter, a method for SOH estimation that fulfills these requirements is presented. The method
is physical model-based and uses the mechanistic model presented in section 2.2.2 to describe the elec-
trical behaviour of the cell during charging. The model is parameterized at different states during
aging by fitting voltage curves measured during CC charging with linearly scaled and shifted half-cell
OCP curves (full-cell OCV curve alignment) as conceptually described in section 2.2.3. The remaining
full-cell capacity is then calculated as the capacity of the part of the reconstructed OCV curve between
the voltage limits used for full-cell operation. No prior information on battery degradation is required
as the model can be parameterized solely based on the data that is measured during the CC part of
charging phases and current pulses, which are occasionally needed to obtain an updated estimate for
the internal resistance. In this way, the first of the aforementioned requirements is fulfilled by the
algorithm.
As described in section 2.2.3, this type of model parametrization is typically performed based on com-
plete charging or discharging curves measured at low current rates, which are usually not observable
in applications under operating conditions. Although charging phases in general can be regularly ob-
served in most applications, these are typically not conducted at low current rates nor do they comprise
a complete charging of the battery from 0% to 100% SOC, which is usually the case for the input
data used for full-cell OCV curve alignment. In order to fulfill the second requirement, the method
should therefore also be applicable to partial charging phases and charging phases that are conducted
at higher current rates. The focus of the study presented in this chapter therefore lies on analyzing the
accuracy of capacity and degradation mode estimation based on partial charging curves and charging
curves measured at higher current rates.
In the study presented in this chapter, an algorithm for full-cell OCV curve alignment that is suitable
to be applied to partial charging curves and that considers overpotentials at higher current rates is de-
scribed. The accuracy of the algorithm output for different input data is then systematically analyzed
by applying it to different parts of low-current charging curves measured for cells at different aging
states and which are aged under a variety of conditions. The accuracy of the algorithm output is also
analyzed for scenarios in which complete and partial charging curves measured at higher current rates
and at different aging states are used as input. The input data used for this analysis was measured in
the scope of an experimental campaign in which commercial cells of the type INR18650-MJ1 built by
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LG Chem were aged under different conditions.
The results indicate that the degradation modes and the remaining cell capacity can be accurately
estimated based on partial low-current charging curves throughout aging, if the part of the charging
curve between 20% and 70% SOC is available. It is also shown that the remaining capacity can be
estimated with an accuracy of 2% of the nominal capacity, if partial charging curves between 10% and
80% SOC measured at approximately C/4 are used as input for the algorithm. The presented algo-
rithm therefore enables accurate SOH estimation under application-relevant conditions and without
the need for a pre-parametrized aging model or a known correlation between a measurable feature and
the remaining cell capacity. Provided that a charging curve comprising a suitable SOC window is used
as input, also the accuracy of the SOH estimation should be sufficient for most applications. If accurate
estimates for the degradation mode analysis are additionally required, charging curves measured at
current rates below C/15 should be used.
An additional finding of the experimental aging campaign presented in this chapter is that the aging
conditions only have a limited impact on the degradation modes as a function of the remaining cell
capacity. We interpret this in a way that while the different aging conditions lead to different rates of
cell degradation, the degradation modes occur in a similar ratio regardless of the aging conditions.
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A B S T R A C T

The open circuit voltage (OCV) curve of a lithium-ion cell can be described as the difference between the
half-cell open circuit potential curves of both electrodes. Fitting a reconstructed OCV curve to the OCV
curve of an aged cell allows identification of degradation modes. In this study, we show that this method
can also be applied to partial charging curves of a commercial cell with silicon–graphite and NMC-811 as
electrode materials. Both the degradation modes and the remaining cell capacity can be determined from
the reconstructed OCV curve. For the investigated cell, accurate OCV reconstruction and degradation mode
estimation can be obtained from C/30 partial charging curves if the state of charge (SOC) window between
20% and 70% is available. We show that the method is also applicable to charging curves at higher current
rates if the additional overpotential is considered by subtracting a constant voltage offset. Capacity estimation
with an accuracy of 2% of the nominal capacity is possible for current rates up to approximately C/4 if partial
charging curves between 10% and 80% SOC are used, while a maximum current rate of C/15 should be used
for accurate estimation of the degradation modes.

1. Introduction

One of the most important functions of a battery management
system (BMS) for lithium-ion batteries is monitoring the remaining
capacity of the battery over its lifetime in order to provide accurate
estimates of the available energy and power. The fraction of the initial
capacity that is still usable is often referred to as the state of health
(SOH). The methods for SOH estimation for lithium-ion batteries that
have been proposed in the literature can be categorized into three main
categories:

1. Electrical model-based: the electrical behavior of the battery is
described by a model. The model parameters are updated during
aging by minimizing the difference between an estimated and
measured model output, which is usually the terminal voltage.
The obtained model parameters either directly include the SOH
or indirectly allow its calculation [1–9].

2. Feature correlation-based: the correlation between a measurable
feature and the SOH is established via lab experiments. In the
application, the correlation is then used to calculate the SOH
whenever it is possible to measure the feature [10–21].

∗ Corresponding author.
E-mail address: julius.schmitt@tum.de (J. Schmitt).

3. Aging model-based: a pre-parameterized empirical aging model
is used to calculate the SOH based on the operation history of a
battery [22,23].

The main drawback of feature correlation-based and aging model-based
methods is the necessity for tedious and costly aging studies for model
parametrization. This is avoided by electrical model-based methods
that do not require aging experiments during algorithm development
except for validation purposes and can therefore be implemented more
quickly with less effort.

One of the major challenges for electrical model-based SOH esti-
mation is the change in the shape of the open circuit voltage (OCV)
curve, i.e., the relationship between state of charge (SOC) and the OCV,
during aging. Neglecting these changes leads to a significant decrease
in the accuracy of electrical models during aging [24,25] so that
methods to update the OCV curve are therefore needed [1]. The most
commonly used framework to describe the OCV curve during aging is
the mechanistic modeling approach introduced by Dubarry et al. [24]
which has been used by many authors over the last decade [5,7,8,26–
36]. In this framework, the OCV curve is modeled as the difference
between the open circuit potential (OCP) curves of the cathode and
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the anode. Changes in the OCV curve are traced back to degradation
modes, which are clusters of degradation mechanisms occurring at the
cell components. The most important degradation modes are the loss
of active material at the anode (LAMan), the loss of active material
at the cathode (LAMcat) and the loss of lithium inventory (LLI) [24].
In many studies, additional degradation modes such as resistance in-
crease [5,24], increase in inhomogeneity [30], and component specific
degradation of silicon in silicon–graphite blend electrodes [33] are
also considered. The degradation modes are usually quantified by
fitting reconstructed OCV curves to low-current charging or discharging
curves.

This framework can be used to develop algorithms for SOH estima-
tion that take changes in the OCV curve into account [2,3,7,8,37], and
which can be included in the class of electrical model-based methods. In
this study, we present such an algorithm for both SOH and degradation
mode estimation and systematically evaluate its performance when
applied to partial charging curves and charging curves at higher current
rates. These aspects are highly important for the practical applicability
of the algorithm because batteries are usually only partially charged
and/or charged at higher currents in applications.

There are some papers that report on the reconstruction of OCV
curves based on partial cycles: Yang et al. applied degradation mode
analysis to partial charging curves at a current rate of C/3 [37]. They
reported that the method performs well for both capacity estimation
and degradation mode analysis at this current rate, if the charging
curves at least include the range between 20–70% SOC. Lee et al.
studied the theoretical estimation uncertainty of electrode-alignment
parameters based on partial OCV curves using Cramér–Rao bounds [8].
They found that the analytical error bound of alignment parameters
decreases with increasing size of the SOC window used for the curve
alignment and that the inclusion of regions with a high voltage slope is
beneficial for an accurate alignment parameter estimation. Marongiu
et al. reported that accurate capacity estimation for a LFP/graphite
cell is possible if the length of the upper two full-cell OCV plateaus
is observable [2,3].

Methods for OCV reconstruction and degradation mode estimation
based on constant current phases at higher current rates have also
been investigated: Chen et al. showed that the degradation modes can
be determined from full and partial constant current (CC) discharging
curves at 0.3 C using incremental capacity (IC) and differential voltage
(DV) peak tracking [38]. In the work by Yang et al. the overpotential
at higher current rates is compensated by adding an ohmic resistance
term to the model used for calculating the terminal voltage and by
using the weighted sum of the mean square deviation of both OCV and
DV as a cost function for the OCV reconstruction [37]. Lu et al. in-
vestigated compensating the overpotential during charging/discharging
measurements by adding a linearly SOC-dependent resistance term but
did not achieve accurate results for OCV reconstruction using this
approach [34]. Instead, they recommended using the lowest possible
current rate for OCV and OCP measurements. Apart from this, there
are papers in which partial charging curves or charging curves at higher
current rates were used to directly estimate the remaining cell capacity
via feature-correlation based methods for which a pre-parametrized
model is needed [13,18,20,21,39,40].

In the scope of this work, an algorithm for SOH estimation and
degradation mode estimation based on OCV reconstruction is presented
and its accuracy is systematically evaluated for partial charging curves
comprising different SOC ranges and for charging curves at different
current rates. To the best of our knowledge, a systematic evaluation of
the impact of the SOC range and the current rate of charging curves
used as input data for OCV reconstruction has yet to be presented
in the literature. We concentrate on CC charging curves as input as
this type of data can be regularly measured in many applications. The
algorithm could be applied to the analysis of field data or implemented
in a BMS for on-board battery monitoring. No parametrization of an
aging model or correlation of a feature with SOH is necessary. The

algorithm is independent of SOC estimation and the updated OCV
curve, which is obtained as an additional output, can be used for other
BMS tasks that depend on an accurate OCV curve such as model-based
SOC estimation [1,2,6,25,41].

2. Experimental

2.1. Overview

Commercially available cells of the type INR18650-MJ1 made by
LG Chem were investigated in this study. The 18 650 format cells have
a nominal minimum capacity (𝐶nom) of 3.35 Ah. C-rates used in this
study refer to this capacity. The anode active material of the cells is a
blend of silicon-based compounds and graphite. Different values for the
mass ratio of silicon in the anode material within the range of 1 wt.%
to 5 wt.% have been reported for this cell type [33,42–45]. The cathode
active material is NMC-811 [43,44]. One equivalent full cycle (EFC) is
defined as the charge throughput of twice the nominal capacity, which
is 6.7 Ah. Whenever a constant voltage (CV) phase was applied, the
cut-off current was 50 mA.

An overview of the conducted experiments is given in Fig. 1(a). The
cells were operated at 25 ◦C ambient temperature inside a temperature
chamber using a CTS battery test system from BaSyTec. An aging test
sequence consisting of a capacity test, a pulse test, an application phase,
a charging rate test and a continuous cycling phase was repeatedly
applied to ten cells of the aforementioned type. This aging test sequence
was applied up to 26 times with a total duration (𝑡tot) of 486 days or
until a temperature of 60 ◦C (𝑇max) at the cell surface was exceeded
at any point during the tests. After completion of the last iteration
of the aging test sequence, another capacity test and pulse test were
performed. 158 days after the aging test sequence was stopped, an
extended charging rate test was conducted with some of the cells.
Details on the aging test sequence and the extended charging rate
test are presented below. An overview on the experimental procedures
applied to the individual cells is provided in Table A.1 in the appendix.
The experimental data measured in the scope of this study is made
available in [46].

2.2. Aging test sequence

Capacity test. The cells were cycled two times using constant current
constant voltage (CCCV) charging at a current rate of C/2 to 4.2 V
and CCCV discharging with a current rate of C/5 to 2.5 V. The charge
extracted during the CC part of the second discharging is denoted as
𝐶C/5 dch.

Pulse test. The cells were charged to 50% SOC and current pulses
with a duration of 10 s and with current rates of C/3, 2C/3 and 1 C
were applied in both the discharging and charging directions. There
was a relaxation period of 30 min after setting the SOC and a 10 min
relaxation period between the pulses.

Application phase. The application phase was designed to simulate the
conditions in a battery electric vehicle. It contains dynamic operation
with a profile based on the worldwide harmonized light vehicles test
procedure (WLTP), CCCV charging procedures and rest times with
several hours of duration. The vehicle model presented in [47] was
used to convert the WLTP velocity profile to power requirements. The
application phase has a total duration of three days. The measurement
data recorded during the application phases is not further discussed
within this work but might be used in future studies. We publish the
measurement data recorded during the application phases at different
aging states in [46]. Additional information on the application phase
and the vehicle model is provided in Appendix B.
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Fig. 1. (a) Flowchart describing the experimental procedure. (b) Flowchart describing the algorithm for capacity estimation, OCV reconstruction and degradation mode analysis
based on partial charging curves. Inputs are highlighted in blue, outputs are highlighted in orange. (c) Example for fitting half-cell OCP curves to a partial charging curve (10–80%
SOC) with compensation of the overpotential. A C/10 charging process is shown for a new cell and the 𝑋-axis indicates charge throughput with respect to the starting point of
the partial curve used for the fitting. (d) Differential voltage of the curves shown in (c). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Charging rate test. The cells were repeatedly CC-discharged to 2.5 V
with a current rate of C/5 and then charged to 4.2 V using different
rates. The procedure was executed using CCCV charging at 1 C, C/2
and 0.264 C and for constant power constant voltage (CPCV) charging
at 3.183 W. Finally, the cells were CC discharged to 2.5 V at a current
rate of C/5 and, after a relaxation period lasting 6 h, the cells were CC
charged at a rate of C/30 until they reached a terminal voltage of 4.2 V.
After another 6 h relaxation period, the cells were CC-discharged at a
rate of C/30 until they reached a terminal voltage of 2.5 V.
The power of 3.183 W corresponds to the power at which each cell of
a hypothetical battery pack consisting of 3456 cells (96s36p configu-
ration, total nominal energy of 42 kWh) would be charged, if the total
charging power was 11 kW, a value which is typical of home-installed
AC charging stations. 0.264 C is the current rate corresponding to this
power at the nominal cell voltage.

Continuous cycling phase. Two of the cells were kept under open circuit
conditions for eight days after being CC charged at C/2 to 3.7 V. The
remaining eight cells were continuously cycled for eight days under
different conditions. Four sets of cycling conditions were used and
two of the cells were cycled under each set of conditions. All of the
cells were CCCV-charged at a rate of C/2. Different voltage limits and
discharging procedures were used. They are listed in Table 1 along with
the labels that are used to refer to the respective cells below. The cells
labeled WLTP were discharged using the same dynamic discharging
profile that was used in the application phase. The cells that were kept
under open circuit conditions during this phase are denoted as ‘‘Only
checkups’’ as they were only operated during the capacity, pulse and
charging rate tests as well as the application phases but otherwise were
only subject to calendar aging.

Table 1
Operation conditions applied during the continuous cycling phase.

Label 𝑈min 𝑈max Discharge procedure

2.5 V–4.2 V 2.5 V 4.2 V 1 C CC
2.5 V–4.0 V 2.5 V 4.0 V 1 C CC
3.6 V–4.2 V 3.6 V 4.2 V 1 C CC
WLTP 2.5 V 4.2 V WLTP profile

2.3. Extended charging rate test

Prior to the actual extended charging rate test, a capacity and
a pulse test, ten activation cycles (1 C CC discharging to 2.5 V, C/2
CCCV charging to 4.2 V) and then another capacity and pulse test
were applied. During the extended charging rate test, the cells were
CCCV charged to 4.2 V using different current rates. The current rates
during the charging phases were 0.264 C, C/6, C/8, C/10, C/12, C/15,
C/20, C/25 and C/30. Between the charging phases, the cells were
consistently CC discharged to 2.5 V at a current rate of C/5 with a
subsequent 6 h relaxation phase. The extended charging rate test was
conducted with the cells that had been aged under the conditions
‘‘3.6 V-4.2 V’’ and ‘‘Only checkups’’ as well as with two cells that had
not been cycled before.

3. Algorithm and validation method

The algorithm for SOH and degradation mode estimation presented
in this study is based on the mechanistic modeling framework in-
troduced by Dubarry et al. [24]. The main aim of this study is to
systematically evaluate its estimation accuracy for partial charging
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curves and for charging curves at higher current rates. Therefore, the al-
gorithm is implemented in such a way that it can be applied not only to
complete charging curves, as is usually the case for degradation mode
analysis, but also to partial charging curves without prior knowledge
of the start and end SOC.

A flow chart representing the working principle of the algorithm
is shown in Fig. 1(b). The main idea is to reconstruct the complete
OCV curve based on a partial OCV curve. The cell capacity can then be
estimated as the part of the reconstructed OCV curve that lies between
the upper and lower cut-off voltage. In this study, we consider the
charging curve at C/30 to be the reference for the OCV curve [38]. For
those cases where charging curves at higher current rates are analyzed,
an estimate for the additional overpotential in comparison to the C/30
charging curve is subtracted from the voltage data. The compensated
partial charging curve 𝑈OCV(𝑄) as a function of the charge throughput
measured during the partial charging 𝑄 is calculated according to

𝑈OCV(𝑄) = 𝑈meas(𝑄) − (𝐼 − 𝐼C/30) ⋅ 𝑅C/3 ch (1)

where 𝑈meas(𝑄) is the measured terminal voltage, 𝐼 is the charging
current, 𝐼C/30 is the current applied during C/30 charging and 𝑅C/3 ch
is the resistance that is calculated from the C/3, 10 s charging pulse at
50% SOC during the pulse test preceding the respective charging rate
test. 𝑅C/3 ch is calculated as

𝑅C/3 ch = 𝛥𝑈
𝛥𝐼

(2)

where 𝛥𝑈 is the difference between the voltage measured at the end of
the pulse and the voltage measured directly before the pulse. 𝛥𝐼 is the
current amplitude of the pulse.

For the reconstruction of the full-cell OCV curve, the normalized
pristine half-cell OCP curves which are functions of the electrode SOC

𝑈cat = 𝑓cat(𝑆𝑂𝐶cat) (3)
𝑈an = 𝑓an(𝑆𝑂𝐶an) (4)

need to be transformed into the coordinate system (𝑄) of the partial
full-cell curve by linear scaling with the estimated electrode capacity
(𝐶est

an , 𝐶est
cat) and linear shifting by an offset (𝛽an, 𝛽cat) [24,37]:

𝑄cat,full = 𝐶est
cat ⋅ (1 − 𝑓−1

cat(𝑈cat)) + 𝛽cat = 𝑓−1
cat,full(𝑈cat, 𝜃) (5)

𝑄an,full = 𝐶est
an ⋅ (𝑓−1

an (𝑈an)) + 𝛽an = 𝑓−1
an,full(𝑈an, 𝜃) (6)

The alignment parameters used for scaling and shifting of the OCP
curves are collectively denoted as

𝜃 = [𝐶est
an , 𝐶est

cat , 𝛽an, 𝛽cat]. (7)

𝑓cat,full(𝑄, 𝜃) and 𝑓an,full(𝑄, 𝜃) then describe the OCP of the electrodes
as a function of absolute charge in the coordinate system of the partial
charging curve. The half-cell OCP curves are taken from [48] and are
implemented as lookup tables. The full-cell OCV curve is reconstructed
as the difference between the transformed half-cell curves

𝑈est
OCV(𝑄, 𝜃) = 𝑓cat,full(𝑄, 𝜃) − 𝑓an,full(𝑄, 𝜃). (8)

The alignment parameters are obtained by minimizing the sum of
square errors (SSE) between the measured partial OCV curve and the
reconstructed OCV curve in the range between the beginning 𝑄 = 0Ah
and the end of the partial charging curve 𝑄 = 𝑄partial:

arg min
𝜃

SSE = (𝑈est
OCV([0Ah, 𝑄partial], 𝜃) − 𝑈OCV([0Ah, 𝑄partial]))2 (9)

The nonlinear programming solver fmincon using the interior-point
algorithm implemented in MATLAB® is used for the optimization.
The optimization is performed subject to the constraint that the re-
constructed OCV curve reaches at least a value of 4.2 V at the end of
charging

𝑈est
OCV(𝑄max) ≥ 4.2V, (10)

where 𝑄max is the end of the overlapping part of the transformed half-
cell curves. A similar approach is suggested in [8]. A typical result of an
OCV curve reconstruction based on a partial charging curve is shown
in Fig. 1(c). The difference between absolute voltages is used as a cost
function for the optimization in this study. The DV of the reconstructed
OCV curve also fits the DV of the measured voltage well in cases where
the fitting in the voltage domain is successful. An example of this is
shown in Fig. 1(d).

The initial values and boundaries for the alignment parameter
optimization are set according to Table 2. For the cases in which C/30
curves of aged cells from the aging test sequence are reconstructed,
the results for the alignment parameters obtained for the preceding
iteration are used as initial values [37] and the boundaries are chosen
to allow 30% of variation from this value, as long as the absolute
boundary values listed in Table 2 are not exceeded. As can be seen
in Table 2, the initial values for 𝛽an and 𝛽cat depend on an estimate for
the initial SOC of the partial charging curve. This estimated initial SOC
(𝑆𝑂𝐶est

min) is calculated as

𝑆𝑂𝐶est
min = 𝑆𝑂𝐶(𝑈OCV(0Ah)) (11)

where 𝑆𝑂𝐶(𝑈 ) is an interpolation of the pristine SOC-OCV curve and
𝑈OCV(0Ah) is the first voltage value contained in the partial charging
curve compensated by the overpotential offset. The pristine SOC-OCV
curve is calculated as the average of the normalized C/30 charging
curves measured for the individual cells during the first charging rate
test. We would like to emphasize that this estimate on the start SOC
is solely used to set the initial values for 𝛽an and 𝛽cat. The final values
for these parameters are obtained during the optimization step. A low
estimation accuracy of 𝑆𝑂𝐶est

min therefore has no significant impact on
the accuracy of the capacity and degradation mode estimation.

Based on the complete reconstructed OCV curve, the cell capacity
𝐶est

C/30 can be calculated [8] according to

𝐶est
C/30 = 𝑄est

OCV(𝑈eval,max) −𝑄est
OCV(𝑈eval,min), (12)

where 𝑄est
OCV(𝑈 ) is the inverse of the reconstructed OCV curve and

𝑈eval,min and 𝑈eval,max are the voltage limits between which the C/30
charging capacity is defined in this study. The definition of 𝐶est

C/30 is
shown diagrammatically in Fig. 1(c). 𝑈eval,max = 4.2V is the upper
cut-off voltage during charging and was chosen according to the spec-
ifications of the cell manufacturer. For 𝑈eval,min the value of 3.248 V is
chosen based on the following consideration: during the experiments,
the cells were CC discharged to 2.5 V prior to the C/30 charging
procedure but the measured charging curves do not start at this value
as the voltage relaxes towards higher values during the relaxation time
before the charging phase. The minimum voltage value of the charging
curve also generally increases with aging as the internal resistance
and therefore the overpotential at the end of the discharging phase
increases. In order to have a consistent measured reference for the cell
capacity and the OCV (C/30) curve at all aging states, we use 𝑈eval,min =
3.248V, the highest minimum value of all C/30 charging curves, as the
starting point for the capacity calculation and reconstructed OCV curve
evaluation. The reference capacity 𝐶C/30 ch is then calculated as the
charge throughput measured between 𝑈eval,min and 𝑈eval,max during the
C/30 charging phase.

The second output of the algorithm is the reconstructed OCV curve
itself, which could for example be used to update the OCV curve used
by a BMS for SOC estimation during aging. To decouple the evaluation
of the accuracy of the shape of the reconstructed OCV curve from
the accuracy of the capacity estimation, both the reference curve and
the curve calculated with the algorithm are normalized in the charge
dimension

𝑈est
OCV,eval(𝑄

′) = 𝑈est
OCV([𝑄

est
OCV(𝑈eval,min), 𝑄est

OCV(𝑈eval,max)]) (13)

𝑈OCV,eval(𝑄′) = 𝑈OCV([𝑄OCV(𝑈eval,min), 𝑄OCV(𝑈eval,max)]) (14)
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Table 2
Initial values and boundaries for the alignment parameters.

Parameter Initial value Lower boundary Upper boundary

𝐶est
an 3.45 Ah 2.21 Ah 3.67 Ah

𝐶est
cat 3.82 Ah 2.35 Ah 4.02 Ah

𝛽an (0.02 − 𝑆𝑂𝐶est
min) ⋅ 3.45 Ah −3.67 Ah 0 Ah

𝛽cat (0.13 − 𝑆𝑂𝐶est
min) ⋅ 3.82 Ah −4.02 Ah 0 Ah

where 𝑄′ is a vector of 𝑛 = 2000 equally spaced interpolation points
between 0 and 1 at which the difference between the reconstructed
and measured curve is evaluated. As a measure for the accuracy of the
reconstructed OCV curve we use the root mean square error (RMSE)
between the reconstructed OCV curve and the measured C/30 charging
curve in the voltage range between 𝑈eval,min and 𝑈eval,max, denoted as
𝜀OCV:

𝜀OCV =
√

1
𝑛
(𝑈est

OCV,eval(𝑄
′) − 𝑈OCV,eval(𝑄′))2. (15)

Finally, the accuracy of the results in respect of the electrode capacities
(𝐶est

an , 𝐶est
cat) and the lithium inventory (𝐶est

lit ) is evaluated. 𝐶est
an and 𝐶est

cat
are direct output parameters of the optimization procedure, the lithium
inventory is calculated as the difference in charge between the end
of the cathode OCP curve where the cathode is delithiated and the
beginning of the anode OCP curve where the anode is delithiated [33].

The algorithm is applied to parts of the C/30 charging curves
measured during the aging test sequence. It is also applied to the CC
charging curves at higher current rates measured during the extended
charging rate test to study the accuracy of the method at higher
charging rates. Before the charging data is processed by the algorithm,
it is resampled at equidistant 𝑄 values corresponding to a sample
frequency of 1 Hz (the original sampling was conducted in a voltage-
based manner at a voltage change of 0.5 mV) and filtered by applying a
Savitzky–Golay filter with polynomial order of five and a frame length
of 71 data points three times. A section of the charging curve is cut out
to simulate the scenario where only a part of the charging curve can
be measured in an application. The actual capacity measured during
the charging phase is used for calculating the SOCs for cutting out the
partial curves. For the extended charging rate tests, this also includes
the CV phase.

The RMSE of the algorithm output quantities (𝑋est) for all cells and
all periods of the aging test sequence (until SOH = 80%) is used as a
measure of the accuracy of the algorithm for different SOC windows. It
is calculated according to

RMSE(𝑋est) =

√

√

√

√

√

1
𝑁

𝑛cell
∑

𝑖=1

𝑛period
∑

𝑗=1
(𝑋est

𝑖,𝑗 −𝑋𝑖,𝑗 )2, (16)

where 𝑋est
𝑖,𝑗 is the estimate for the respective output quantity (𝐶est

C/30 ch,
𝐶est

an , 𝐶est
cat, 𝐶est

lit ) of the 𝑖th cell in the 𝑗th period of the aging test
sequence. 𝑋𝑖,𝑗 is the corresponding reference value, i.e., the measured
𝐶C/30 ch of the 𝑖th cell in the 𝑗th period or the respective value for 𝐶an,
𝐶cat or 𝐶lit that is obtained from the complete C/30 charging curve of
the 𝑖th cell in the 𝑗th period. 𝑛cell = 10 is the total number of cells and
𝑛period the total number of analyzed charging curves of each individual
cell until SOH = 80%. 𝑁 is the total number of analyzed charging
curves for all cells. The RMS of 𝜀OCV

RMS(𝜀OCV) =

√

√

√

√

√

1
𝑁

𝑛cell
∑

𝑖=1

𝑛period
∑

𝑗=1
(𝜀OCV,𝑖,𝑗 )2, (17)

where 𝜀OCV,𝑖,𝑗 is the RMSE of the reconstructed OCV curve of the 𝑖th
cell in the 𝑗th period of the aging test sequence, is used as a measure
of the accuracy of the OCV curve reconstruction throughout aging.

Similar measures are used to describe the accuracy of the algorithm
for different SOC windows at higher charging rates with the difference

that there are only six analyzed cells and that there is only one charg-
ing curve per cell, which is the curve obtained during the extended
charging rate test.

Using the proposed algorithm in a BMS or for the analysis of
field data would be possible by implementing the following additional
steps: first, the CC charging phases need to be detected and cut out
from the measurement data. This implies that measurement data of
current and voltage during charging phases need to be temporally
stored. Then, the current is integrated over the time of the charging
process to generate the charge throughput vector that is provided to
the algorithm along with the corresponding terminal voltage vector. A
section at the begin of the charging phase would need to be discarded as
discussed in Section 4.2. In addition, another algorithm for determining
the resistance values from dynamic operation data, such as the one
proposed by Ludwig et al. [49], would needed to be implemented. The
updated resistance value at a middle SOC as well as the relevant section
of the charging curve would then be provided to the algorithm and
processed as described in this section.

4. Results and discussion

4.1. Aging analysis based on complete low-current charging curves

In this section, the results of the aging test sequence and the algo-
rithm output for the reference case, where the complete C/30 charging
curves are used as input, are presented and discussed.

The discharging capacity measured during the capacity tests
(𝐶C/5 dch) is plotted in Fig. 2(a) as a function of total charge throughput.
The capacity decreases for all cells with significant differences in the
rate of capacity decrease depending on the operating conditions during
the continuous cycling periods. The capacity of the cells that are cycled
in a limited voltage window (2.5 V-4.0 V and 3.6 V-4.2 V) decreases
more slowly over equivalent full cycles when compared to the cells that
are cycled in the full voltage range (2.5 V-4.2 V and WLTP). Schindler
et al. also observed an extension of the cycle life upon limitation of the
upper cut-off voltage for cells of this type [50]. They also measured a
similar aging rate for cells of the same type cycled over the full voltage
range. The internal pulse resistance 𝑅C/3 ch measured during the pulse
tests is shown in Fig. 2(b) as a function of total charge throughput.
Analogously to the capacity decrease, the cells that are cycled over the
full voltage range exhibit a quicker increase in internal resistance than
the cells that are cycled within a limited voltage range.

The cells cycled over the full voltage range reach heavily degraded
states during the experiments. The end of life (EOL) of a lithium-ion
cell is usually defined as reached when the capacity-based SOH has
dropped below 80%. In this study, we define the SOH as 𝐶C/5 dch∕𝐶nom.
As shown in Fig. 2(a), the cells cycled over the full voltage range
reach this EOL definition after approximately 570 EFC. The algorithm
is only applied to cases where the SOH is above 80% in this study. In
principle, the proposed algorithm could also be applied to cells at SOH
below 80%, but for the analysis of accuracy and impact of available
SOC window and current rate, we concentrate on the case above 80%
SOH, because this represents the most important scope of application,
as heavily degraded cells at SOH below 80% would not continued to
be used in most applications. All charging curves for which the SOH
is below 80% are therefore excluded for the following analysis. The
number of charging curves above 80% SOH for the individual cells are
listed in Table A.1.

The C/30 charging capacity measured between 3.248 V and 4.2 V
(𝐶C/30 ch) is used as reference for the capacity estimation as explained
in Section 3. The results for 𝐶C/30 ch are shown in Fig. 2(c). The
absolute values are lower than for 𝐶C/5 dch because only the part of
the capacity above 3.248 V is considered but the trends of the capacity
decrease are the same as for 𝐶C/5 dch. Applying the algorithm presented
in Section 3 to the complete C/30 charging curves at different aging
states yields reconstructed OCV curves that are a good fit to the
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Fig. 2. (a) CC discharging capacity measured at C/5 during the capacity tests as part of the aging test sequence. The different symbols indicate results for the two cells tested
under each aging condition. (b) C/3 charging pulse resistance (10 s pulse duration) at 50% SOC measured during the pulse tests. (c) C/30 charging capacity between 3.248 V and
4.2 V (𝐶C/30 ch) measured during the charging rate tests until 80% SOH. (d) Correlation between measured C/30 charging capacity and C/30 charging capacity estimated with the
algorithm at different aging states for the case in which the complete C/30 charging curves are used as input.

measured curves. The RMS(𝜀OCV) for all considered charging curves is
3.6 mV and 𝜀OCV is always below 7 mV. This means that the proposed
OCV model is suitable for reproducing the shape of the OCV curve
throughout aging and for different aging conditions. In Fig. 2(d), the
correlation between the estimated and the measured C/30 charging
capacity is shown. The RMSE(𝐶est

C/30 ch) for all cells and aging states
is 0.2%𝐶nom and the capacity estimates shown in 2(d) are near to
the ideal estimation line (𝐶est

C/30 ch = 𝐶C/30 ch). This means that the
capacity can be accurately calculated with the proposed algorithm if
the complete C/30 charging curves are available.

The degradation modes occurring during aging of the individual
cells are calculated from the results for the electrode capacities and the
lithium inventory as

LAMan =
𝐶an,ini − 𝐶an

𝐶an,ini
(18)

LAMcat =
𝐶cat,ini − 𝐶cat

𝐶cat,ini
(19)

LLI =
𝐶lit,ini − 𝐶lit

𝐶lit,ini
, (20)

where the subscript ‘‘ini’’ refers to the value obtained for the C/30
charging curve in the initial state. The results for LAMan are shown
in Fig. 3(a). The change in LAMan as a function of charge throughput
differs for the different aging conditions while the two cells aged under
the same conditions show comparably similar results. The same applies
to the LAMcat shown in Fig. 3(c) and the LLI shown in Fig. 3(e). LAMan
and LLI are higher than LAMcat for all aging conditions, which means
that cell degradation is primarily driven by these two degradation
modes. Similar results have previously been found for this cell type [33,
45,51,52].

The shape of the half-cell OCP curves is considered invariant dur-
ing aging in the algorithm presented in this study, even though it
has been shown that this assumption is only approximately valid for
silicon–graphite blend anodes [48]. The LAMan is therefore probably
overestimated by the order of a few percentage points while LAMcat

and LLI are probably underestimated by the order of a few percentage
points [33]. The change in shape of the silicon–graphite OCP curve
could theoretically be considered in the algorithm by using a blend
electrode model and adding another optimization parameter describing
the remaining anode capacity ratio provided by the silicon [33]. This is
not done here, because adding another optimization parameter results
in lower robustness of the fitting algorithm if partial charging curves
are used as input, which would be a challenge in applications.

In Figs. 3(b), 3(d) and 3(f) the degradation modes are plotted with
respect to the remaining cell capacity 𝐶C/5 dch. This representation
shows that the difference between the degradation modes for cells
at the same SOH is always below 4 percentage points even though
they are aged under different conditions. We interpret this finding in
such a way that the different degradation modes are triggered in an
approximately fixed ratio that is only slightly influenced by the applied
aging conditions. Further research is needed to obtain quantitative
results on this topic and to investigate whether this result can be
generalized to other aging conditions and cells.

4.2. Accuracy of the method for partial charging curves

In this section, the accuracy of the estimated remaining cell capac-
ity, OCV reconstruction and estimated degradation modes is analyzed
for the case in which only parts of the C/30 charging curves measured
during the aging test sequence are used as input for the algorithm.

Fig. 4(a) shows the RMSE(𝐶est
C/30 ch) for all cells and aging states

for different SOC windows used for the OCV reconstruction. In this
representation, each field of the matrix corresponds to a certain SOC
window defined by the SOC at which the partial curve begins (SOCmin,
indicated on the X-axis) and the SOC at which the partial curve ends
(SOCmax, indicated on the Y-axis). The numeric value for the RMSE of
the capacity estimation obtained from the OCV reconstruction based
on a certain SOC window is indicated in the corresponding field of
the matrix. The estimation accuracy is also visualized by a color code,
where blue corresponds to high accuracy and yellow to low accuracy.
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Fig. 3. Reference values for the degradation modes obtained from complete C/30 charging curves. The different symbols represent results for the two cells aged under the same
conditions. (a) LAMan as a function of total charge throughput. (b) LAMan as a function of the remaining C/5 discharging capacity. (c) LAMcat as a function of total charge
throughput. (d) LAMcat as a function of the remaining C/5 discharging capacity. (e) LLI as a function of total charge throughput. (f) LLI as a function of the remaining C/5
discharging capacity.

As visible in Fig. 4(a), the accuracy of the capacity estimation strongly
depends on the SOC window of the partial charging curve provided
to the algorithm. The position of the bluish area in Fig. 4(a) reveals
that SOCmin needs to be less than or equal to 20% in order to obtain
capacity estimates with high accuracy (RMSE(𝐶est

C/30 ch) ≤ 2.0%). We
assume that the reason for the algorithm failing at SOCmin above 20%
is that the information on the position of the stage 2L graphite phase is
necessary to obtain an accurate estimate for the anode capacity, which
is also limiting for the full-cell capacity at low cell voltages. This can
be seen in Fig. 4(c) where the DV of a pristine cell is shown and the
peaks are associated with phases of the electrode materials [51,53,54].
If partial charging curves with SOCmin greater than 20% are used, the
anode capacity, and as a consequence also the cell capacity, are heavily
overestimated. Similar results were obtained by Yang et al. [37]. Also
Marongiu et al. [2,3] reported that the length and position of voltage
plateaus corresponding to the 2L-2 and 2–1 phase transitions of the
graphite need to be observable in order to obtain accurate capacity
estimation based on the reconstruction of partial charging curves.

In addition to starting at a low SOCmin, the partial charging curves
should comprise at least 30% of the actual cell capacity to provide
enough information for accurate capacity estimation. For cases where
SOCmin is between 5% and 20%, the accuracy of the capacity estimation
increases with an increase in the width of the SOC window used

until SOCmax of approximately 60%. The proposed algorithm should
therefore preferably be applied to charging curves comprising at least
the window between 20% and 60% SOC to enable accurate capacity
estimation throughout aging. As an example of the capacity estimation
for cells aged under different conditions and at different aging stages,
the correlation between estimated and measured capacity is shown in
4(d) for the case where partial charging curves in the SOC window
between 15% and 75% are used. It can be seen that the deviation from
the ideal estimation is smaller than 2%𝐶nom in most cases.

In Fig. 4(b), the RMS(𝜀OCV) for all cells and aging states is shown as
a measure of the accuracy of the reconstruction of the shape of the aged
OCV curve from partial charging curves with different SOC windows.
Analogous to the accuracy of the capacity estimation, the obtained
accuracy of the reconstructed OCV curve shape strongly depends on
the SOC window used. Reconstructed complete OCV curves with high
accuracy (RMS(𝜀OCV) ≤ 6.2mV) can be obtained if a window extending
between 20% SOC and 70% SOC at least is used. As for the capacity
estimation, the necessity for a SOCmin ≤ 20% arises form the need
to have at least a part of the 2L graphite stage inside the analyzed
part of the charging curve in order to obtain accurate estimates on the
anode capacity. The necessity of an SOCmax ≥ 70% for accurate OCV
construction differs from the requirements for the capacity estimation,
where accurate estimates can also be obtained with a lower SOCmax.

5 State of health estimation based on partial charging processes
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Fig. 4. (a) RMSE of the C/30 charging capacity estimates for all cells and aging states for partial curves with different SOC windows. (b) RMS of the RMSE of the reconstructed
OCV curves (𝜀OCV) for all cells and aging states for partial curves with different SOC windows. (c) Measured and reconstructed DV of a pristine cell. The peaks of the DV are
associated with phases of the electrode materials: Graphite stages 4L, 2L and 2 [53], a silicon phase S [51] and NMC-811 phases H1, M and H2 [54]. (d) Correlation between
measured C/30 charging capacity and C/30 charging capacity estimated using the algorithm based on partial C/30 charging curves between 15% and 75% SOC at different aging
states. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The RMSE of the estimated anode capacity, cathode capacity and
lithium inventory based on partial charging curves with different SOC
windows is shown in Figs. 5(a)–5(c). The estimation accuracy results
are presented as a percentage of the respective mean value obtained
for the complete charging curves in the pristine state (𝐶an,ini,mean,
𝐶cat,ini,mean, 𝐶lit,ini,mean). As for the reconstruction of the OCV curve, ac-
curate estimates for the anode capacity (RMSE (𝐶est

an ) ≤ 2.2%𝐶an,ini,mean)
are obtained for SOCmin ≤ 20% and SOCmax ≥ 70%. Estimation of the
cathode capacity with high accuracy (RMSE (𝐶est

cat) ≤ 1.0%𝐶cat,ini,mean)
is also only possible for cases where SOCmax ≥ 70% but comparably
accurate results on the cathode capacity can also be obtained if only
the upper part of the SOC range, for example between 60% and 90% is
available. Accurate estimation of the lithium inventory (RMSE (𝐶est

lit ) ≤
2.1%𝐶lit,ini,mean) can be obtained if SOCmin is not greater than 20% and
if the width of the used SOC window is at least 25% of the actual cell
capacity.

Accurate OCV reconstruction and electrode capacity estimation is
only possible if SOCmax ≥ 70%. This means that even though accurate
capacity estimates can be obtained for SOCmax ≤ 70%, the reconstruc-
tion of the complete curve is only performed correctly if the middle
SOC range, where the graphite stage 2 and the NMC-811 M phase are
located (see Fig. 4(c)), is included in the analyzed partial charging
curve. If this is not the case, the cathode capacity is increasingly
underestimated and the anode capacity is increasingly overestimated
during aging. Nevertheless, the estimation of the lithium inventory is
comparably accurate as can be seen in Fig. 5(c). This is because the
cathode is identified as limiting the cell capacity at 100% SOC with
cathode capacity reserves below 0% SOC and the anode is identified as
limiting the cell capacity at 0% SOC with anode capacity reserves above
100% SOC as shown in Fig. 5(d). Neither the overestimated part of the
anode capacity nor the underestimated part of the cathode capacity
contribute to the cell capacity or the lithium inventory, therefore an

erroneous estimation of these quantities does not lead to a huge error
in the full-cell capacity estimation.

Another phenomenon that can be observed is that in some cases the
estimation accuracy of the cell capacity and the electrode capacities, as
well as the OCV reconstruction accuracy is slightly reduced if the SOC
range between 5% and 15% is included in the algorithm input. This
results from an underestimation of both anode and cathode capacity
for aged cells if this SOC range is included. A possible reason for this
phenomenon is that the OCV model that is used by the algorithm might
be less accurate for aged silicon–graphite at low lithiation because the
probable increase in inhomogeneous lithiation [30] and a change in
the capacity contribution of silicon [33,48] are not considered in the
model. The algorithm still tries to align the measured and simulated
full-cell OCV curves in this SOC region, which leads to a reduced overall
estimation accuracy. Reduced estimation accuracy is not observed if the
begin of charge is also included in the algorithm input, as the fitting
is dominated by the steep increase of the OCV curve at the begin of
charge in this case.

Summing up the results concerning the accuracy of OCV recon-
struction based on partial C/30 CC charging curves, it can be stated
that for the investigated cell type, accurate capacity estimation and
estimation of the lithium inventory is possible throughout aging if the
charging curve starts at or below 20% SOC and lasts for at least 30%
of the actual cell capacity. Accurate reconstruction of the OCV curve
and estimation of the electrode capacities is only possible under the
additional condition that the cell is charged up to an SOC of at least
70%. Similar results were reported by Yang et al. who used a similar
algorithm and found that SOH estimation with a relative error of ±2.5%
is possible as long as the partial charging curve contains the SOC range
from 20% to 70% [37]. It should be noted that in real applications,
a partial charging curve is not obtained as a segment of a complete
charging curve but measured during an actual partial charging process,
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Fig. 5. (a) RMSE of the estimated anode capacity for all cells and aging states based on partial C/30 charging curves with different SOC windows as input. (b) RMSE of the
estimated cathode capacity for all cells and aging states based on partial C/30 charging curves with different SOC windows as input. (c) RMSE of the estimated lithium inventory
for all cells and aging states based on partial C/30 charging curves with different SOC windows as input. (d) Result for fitting a charging curve between 15% and 55% SOC of
an aged cell (cycled between 3.6 V-4.2 V up to 82.9% SOH).

in which the overpotential builds up at the start of the charging.
Findings have demonstrated that the section of the charging curve
in which the overpotential builds up, should be discarded from the
input for OCV reconstruction [21,37]. Consequently, a lower SOCmin
than indicated by our results is probably needed in applications to
compensate for the discarded section.

In this study, we investigate charging phases where the cells have
been at rest at the begin of charge. In principle, the algorithm should
also be applicable to charging phases where the cell had not been at rest
at the begin of charge. In this case, the section at the begin of charge in
which the terminal voltage is significantly influenced by overpotentials
resulting from the operation prior to the charging phase has to be
excluded from the algorithm input.

4.3. Accuracy of the method at higher charging rates

In this section, the accuracy of the capacity estimation, OCV recon-
struction and degradation mode estimation is evaluated for the case,
where charging rates higher than C/30 from the extended charging rate
test are used as input. There are two general problems for applying
OCV reconstruction to charging curves at higher rates: first, the over-
potential that builds up during the charging process is higher than for
the low-current case and can therefore not be neglected. In this study
we consider this overpotential by subtracting a constant voltage offset
from the charging curves as described in Section 3. Using this simple
electrical model for overpotential compensation has the advantage of
simple parametrization. In our case, it is sufficient to extract a pulse
resistance at a middle SOC from time to time to update the scalar value
of 𝑅C/3 ch, which we consider to be feasible in most applications. The
determination of an SOC-dependent resistance would be significantly
more complex. Another advantage of using an SOC-independent re-
sistance value for polarization compensation is that the shape of the

measured charging curve is not affected by the compensation. Using
an SOC-dependent resistance could introduce additional features to the
compensated charging curve that are not contained in the measured
curve. Contrary to this, using an SOC-dependent resistance value could
possibly improve the accuracy of the overpotential compensation in
SOC regions where the resistance significantly differs from the value
at 50% SOC. For the investigated cell type, this would mainly apply to
the region below 20% SOC [55].

The second main problem is that the lithiation/delithiation of the
electrodes is increasingly inhomogeneous at higher charging rates
which hinders the determination of the electrode capacities. The DV
of the CC charging procedures at different rates as part of the extended
charging rate test performed on a pristine cell is shown in Fig. 6(a).
The inhomogeneous lithiation of the anode at higher charging rates
results in a broadening of the anode DV peaks as can be seen in
Fig. 6(a). The central anode DV peak corresponding to the graphite
stage 2 is not visible if the cells are charged at 0.264 C. Similarly,
Marongiu et al. reported that the graphite phase transitions are not
clearly distinguishable from charging curves measured at current rates
above 0.3 C [3].

In Fig. 6(b) the results for 𝐶est
C/30 ch estimated from complete CC

charging curves with different rates are shown for three sample cells at
different SOH and with different aging history. The estimated capacities
differ increasingly from the measured reference if higher charging rates
are used. A capacity estimation with an error of less than 2%𝐶nom is
obtained for current rates up to C/6 for the pristine cell. For the cell
cycled until an SOH of 84.2%, this accuracy is only obtained for current
rates up to C/15. The negative influence of higher current rates on the
accuracy of the method therefore increases with cell aging. Detailed
results for the capacity estimation accuracy obtained for all cells that
were subject to the extended charging rate test are listed in Table 3.
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Fig. 6. (a) DV of CC charging curves at different current rates for a pristine cell. (b) Capacities of three sample cells at different aging states estimated using the algorithm
including overpotential compensation based on complete charging curves at different current rates. The measured reference values for 𝐶C/30 ch are indicated as dashed horizontal
lines. The shaded areas indicate the 2%𝐶nom error range. (c) RMSE of the reconstructed OCV curves, (d) anode capacities, (e) cathode capacities and (f) lithium inventory of the
three sample cells estimated using the algorithm including overpotential compensation based on complete charging curves at different current rates. The reference values obtained
from the complete C/30 charging curves are indicated as dashed horizontal lines in (d-f) and error ranges corresponding to 2% of 𝐶an,ini,mean∕𝐶cat,ini,mean∕𝐶lit,ini,mean are shown as
shaded areas.

Fig. 7. (a) RMSE of the capacity estimates for six cells (two each at approx. 97%, 90% and 83% SOH) calculated from partial charging curves at C/10 with different SOC windows
using overpotential compensation. (b) RMS of the RMSE of the reconstructed OCV curves for the six cells calculated from partial charging curves at C/10 with different SOC
windows using overpotential compensation.
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Fig. 8. (a) Capacities of three sample cells at different aging states estimated with the proposed algorithm including overpotential compensation based on partial charging curves
(10–80% SOC) at different current rates. The measured values for 𝐶C/30 ch which are used as reference are indicated as dashed horizontal lines. The shaded areas indicate the
2%𝐶nom error range. (b) Anode capacities of the three cells at different aging states estimated with the algorithm including overpotential compensation based on partial charging
curves (10–80% SOC) at different current rates. The anode capacities values obtained from the complete C/30 charging curves which are used as reference are indicated as dashed
horizontal lines. The shaded areas indicate the 2%𝐶an,ini,mean error range.

Table 3
Capacity estimation error based on complete charging curves at different current rates measured during the extended charging
rate test. The results are obtained using overpotential compensation.

Charging rate/C 1/30 1/25 1/20 1/15 1/12 1/10 1/8 1/6 0.264

Cell SOH/% Capacity estimation error/% 𝐶nom

Pristine #1 97.5 0.2 0.2 0.1 0.0 0.2 0.4 0.8 1.4 3.3
Pristine #2 97.5 0.1 0.1 0.1 0.0 0.2 0.4 0.7 1.3 3.3
Only checkups #1 90.1 0.1 0.0 0.2 0.6 1.0 1.4 2.0 3.1 5.6
Only checkups #2 90.4 0.1 0.0 0.2 0.6 1.0 1.3 2.0 3.0 5.5
3.6 V–4.2 V #1 82.5 0.1 0.4 0.8 1.6 2.4 3.2 4.3 5.9 7.7
3.6 V–4.2 V #2 84.2 0.1 0.4 0.7 1.4 2.1 2.8 3.8 5.5 7.2

Table 4
Capacity estimation error based on partial charging curves (10–80% SOC) at different current rates measured during the
extended charging rate test. The results are obtained using overpotential compensation.

Charging rate/C 1/30 1/25 1/20 1/15 1/12 1/10 1/8 1/6 0.264

Cell SOH/% Capacity estimation error/% 𝐶nom

Pristine #1 97.5 0.6 0.7 0.7 0.7 0.7 0.7 0.6 0.6 1.1
Pristine #2 97.5 0.6 0.7 0.7 0.7 0.7 0.7 0.6 0.7 1.2
Only checkups #1 90.1 0.3 0.3 0.2 0.1 0.0 0.2 0.5 1.0 0.2
Only checkups #2 90.4 0.3 0.3 0.3 0.2 0.0 0.1 0.4 0.8 0.1
3.6 V–4.2 V #1 82.5 0.3 0.3 0.2 0.8 0.1 0.1 0.4 0.9 2.0
3.6 V–4.2 V #2 84.2 0.3 0.3 0.3 0.8 0.2 1.4 1.8 0.8 1.5

The accuracy of the OCV estimation 𝜀OCV is shown in Fig. 6(c).
Again, the accuracy decreases both with the increase in current rate and
cell degradation, but highly accurate OCV reconstruction (𝜀OCV ≤ 6mV)
is possible for the C/6 charging curve of the pristine cell.

As already mentioned, a probable reason for the reduced accuracy
of the algorithm results at higher current rates is the increasingly
inhomogeneous lithiation of the anode, which hinders the detection
of the graphite stages (see Fig. 6(a)) and thus the estimation of the
anode capacity. Another reason might be that for higher current rates,
the curve alignment gets dominated by a comparably steep voltage
increase at the end of charging, which is erroneously interpreted as
complete lithiation of the anode but is probably at least partly due to
overpotentials that are not correctly compensated by the model. The
second aspect can be avoided by leaving out the SOC range above 85%
as discussed below.

As visible in Figs. 6(d)–6(f), the accuracy of the estimation of
electrode capacities and lithium inventory is also lower at higher
current rates, especially for aged cells. The results suggest that accurate
anode capacity estimation (|𝐶est

an − 𝐶an| ≤ 2%𝐶an,ini,mean) is possible for
charging rates up to C/8 for the pristine cell but only for charging
rates up to C/20 for the aged cell. The estimation of the cathode

capacity is less sensitive to increased current rates and an accuracy of
|𝐶est

cat − 𝐶cat| ≤ 2%𝐶cat,ini,mean can be obtained even at 0.264 C for the
pristine cell and for current rates up to C/10 for the cell at 84.2% SOH.
Similar results are obtained for the accuracy of the estimation of 𝐶lit,
where |𝐶est

lit − 𝐶lit| ≤ 2%𝐶lit,ini,mean is reached for current rates up to
0.264 C for the pristine cell and for current rates up to C/8 for the cell at
84.2% SOH. The systematic underestimation of the electrode capacities
at higher current rates in comparison to the reference obtained at
C/30 might be due to a limited rate capability of the electrodes which
also increases with aging [36]. Typical results for one of the cells for
each aging history are shown in Figs. 6(b)–6(f) as the results for the
respective second cell with the same aging history are similar to the
examples shown.

The requirements on the current rate for both capacity estimation
and degradation mode analysis are probably different for other cell
types. With a nominal volumetric energy density of approximately
696 Whl−1, the investigated cells are optimized towards high energy
and have therefore comparably thick electrode coatings (anode ≈
85 μm, cathode ≈ 72 μm [43]). This probably results in a comparably
inhomogeneous lithiation/delithiation of the electrodes which hinders
the OCV reconstruction even at moderate charging rates. Thus, the
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charging rate limits might be higher for cell types that are more
optimized towards high power.

A comparison between the algorithm results obtained with and
without using the overpotential compensation is provided in Fig. C.1 in
the appendix. This comparison shows that using the proposed overpo-
tential compensation increases the accuracy of the capacity estimation,
the OCV reconstruction and the estimation of 𝐶est

lit in most cases, while
it reduces the accuracy of the electrode capacity estimation in most
cases.

The combined influence of using both a limited part of the charging
curve and a higher current rate is shown in Fig. 7(a). The RMSE
(𝐶est

C/30 ch) calculated based on the C/10 charging curves of the six cells
that underwent the extended charging rate test is shown here as a
function of the SOC window used. These results indicate that accurate
capacity estimation (RMSE (𝐶est

C/30 ch) ≤ 2%𝐶nom) can be obtained if
SOCmin is not higher than 10% and the width of the SOC window is
greater than 20%. In addition to this, the capacity estimation accuracy
is higher, if the upper 10% of the SOC window is excluded for the curve
alignment. In this SOC region near the end of charging, the measured
curves exhibit a steep increase, which is erroneously interpreted to
be a feature of the anode OCP but is most probably caused by the
overpotential due to the higher current.

In Fig. 7(b) the RMS(𝜀OCV) for the six cells at different aging states
is shown for different SOC windows. These results suggest that for
accurate OCV reconstruction (RMS(𝜀OCV) ≤ 6mV), SOCmin needs to be
≤ 10%, and 70% ≤ SOCmax ≤ 85%. For SOCmin = 0%, accurate OCV
reconstruction is possible for 45% ≤ SOCmax ≤ 85%. In comparison
with the capacity estimation, the requirements on the SOC window are
therefore stricter if OCV reconstruction and degradation mode analysis
is additionally intended. This discrepancy arises from the same source
as was found for the partial charging rates at C/30: if SOCmax <
70%, the electrode capacity estimation is erroneous but neither the
underestimated part of the cathode capacity nor the overestimated part
of the anode capacity contribute towards the lithium inventory and the
cell capacity and therefore these two quantities are still estimated with
reasonable accuracy (see Fig. 5(d)).

The sensitivity analysis shows that the window between 10% and
80% SOC is a suitable window for applying the proposed algorithm.
In the following, results that can be obtained from charging curves of
this example suitable window are discussed. In Fig. 8(a), the results for
the capacity estimation based on this SOC window are shown for one
example cell of each aging history and for different current rates. If
this SOC window is used, accurate capacity estimation with less than
2%𝐶nom deviation from the reference is achieved for current rates up
to 0.264 C even for the aged cell at 84.2% SOH. Similar results are
obtained for the other cells with the same aging history. Detailed results
for the capacity estimation accuracy based on charging curves between
10–80% SOC at different charging rates are listed in Table 4.

In Fig. 8(b), 𝐶est
an calculated from partial charging curves between

10% SOC and 80% SOC is shown for different current rates for the
sample cells. For the aged cell at 84.2% SOH, the estimated values differ
by more than 2%𝐶an,ini,mean for current rates above C/15. At 0.264 C,
the anode capacity cannot be accurately estimated even for the pristine
cell. This is probably due to the lack of information on the anode phases
in the charging curve at this current rate (see Fig. 6(a)).

The restrictions on the applicability of the proposed algorithm are
therefore higher if not only the remaining cell capacity but also the
degradation modes are to be extracted from partial charging curves at
higher charging rates. The accuracy of the algorithm could probably
be improved by using a more complex model to consider the overpo-
tential [24,56], but our results show that even with a very simple and
easily implementable electrical model, accurate results can be achieved
under realistic charging conditions at least in respect of the capacity
estimation.

5. Conclusion

We have presented an algorithm for capacity, OCV curve and degra-
dation mode estimation based on CC charging curves that uses the
concept of reconstructing OCV curves by fitting pristine half-cell OCP
curves to charging curves. The algorithm is easily implemented and
no parametrization of an aging model or a correlation between an
observable feature and the capacity is necessary. The proposed al-
gorithm is also independent of SOC estimation. We have evaluated
the applicability of the algorithm to both partial charging curves and
charging curves at higher current rates. For the investigated cell type,
the algorithm yields accurate results when applied to partial low-
current (C/30) charging curves if the used SOC window comprises at
least the range between 20% and 70% SOC.

For the OCV reconstruction based on CC charging curves at higher
current rates, the overpotential is compensated by subtracting a con-
stant voltage offset. The accuracy for capacity and degradation mode
estimation decreases both with the increase in current rate and with
cell degradation. Nevertheless, the algorithm presented in this study
yields accurate capacity estimates based on charging curves at current
rates up to approximately C/4 even for aged cells if a suitable part of
the charging curve (10–80% SOC) is used as input. For an accurate
estimation of the degradation modes, charging curves at lower current
rates (≤C/15) are necessary for the investigated cell type. The results
show that accurate SOH estimation based on partial charging phases
at application-relevant current rates is possible with the presented
algorithm for cells at different aging states and which are aged under
different conditions. The influence of the charging current amplitude on
estimation accuracy probably depends on the cell design which should
be further investigated in the future.

Furthermore, we show that for the investigated cell, the aging
conditions only have a limited impact on the degradation modes as a
function of remaining cell capacity. The different aging conditions lead
to different rates of cell degradation but the degradation modes occur
in a similar ratio for all investigated aging conditions. Further research
is required to investigate whether this finding can be generalized to
other aging conditions and cell types.
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Appendix A. Experimental procedures applied to individual cells

See Table A.1.

Table A.1
Experimental procedures applied to the individual cells. 𝑛total is the number of iterations the aging test sequence was applied to an individual cell. 𝑛period is the number of charging
rate tests at which the SOH is above 80% and that are analyzed in the scope of this study.

Cell 𝑛total 𝑛period Aging test sequence (applied repeatedly) Extended charging rate test

Test type Capacity test Pulse test Application phase Charging rate test Continuous cycling phase

2.5 V–4.2 V #1 19 11 Yes Yes Yes Yes Yes (2.5 V–4.2 V) No
2.5 V–4.2 V #2 22 13 Yes Yes Yes Yes Yes (2.5 V–4.2 V) No
2.5 V–4.0 V #1 26 26 Yes Yes Yes Yes Yes (2.5 V–4.0 V) No
2.5 V–4.0 V #2 26 26 Yes Yes Yes Yes Yes (2.5 V–4.0 V) No
3.6 V–4.2 V #1 26 26 Yes Yes Yes Yes Yes (3.6 V–4.2 V) Yes
3.6 V–4.2 V #2 24 24 Yes Yes Yes Yes Yes (3.6 V–4.2 V) Yes
WLTP #1 26 17 Yes Yes Yes Yes Yes (WLTP) No
WLTP #2 24 17 Yes Yes Yes Yes Yes (WLTP) No
Only checkups #1 26 26 Yes Yes Yes Yes No (storage) Yes
Only checkups #2 23 23 Yes Yes Yes Yes No (storage) Yes
Pristine #1 0 0 No No No No No Yes
Pristine #2 0 0 No No No No No Yes

Appendix B. Description of the application phase and the vehicle model

The application phase is designed to simulate typical conditions of battery usage in a battery electric vehicle. The measurement data obtained
during the application phase is not discussed in the scope of this study but could for example be used for testing methods for SOC and SOH
estimation with dynamic data recorded for cells at different aging states and aged under different conditions.

In each application phase test, the cells were initially fully charged using CCCV charging to 4.2 V with a cut-off current of 50 mA. Afterwards, the
application phase with a total duration of three days was started. The application phase contains sections with three types of operating conditions:
extended rest times under open-circuit conditions simulating times in which the vehicle is not used (‘‘Rest’’); dynamic operation according to a
power profile that simulates conditions during driving and regenerative breaking based on one of the WLTP phases (‘‘Low’’, ‘‘Medium’’, ‘‘High’’
and ‘‘Extra high’’); CCCV charging at C/2 to 4.2 V with a cut-off current of 50 mA simulating charging of the vehicle. The sequence in which
these sections are combined in the application phase is described in Table B.1. The idea behind this sequence is to have several discharging phases
with different depth and SOC window, charging phases with different SOC window and rest times with realistic duration at different SOC level
combined in one measurement sequence. An example of the current and voltage measurements obtained during an application phase of a pristine
cell is shown in Fig. B.1. Dynamic operation accounts for approximately 12% of the duration of the application phase, while charging accounts for
approximately 7% and resting for approximately 81% of the duration.

Fig. B.1. Exemplary measurement values obtained during the application phase applied to a pristine cell: (a) applied current, (b) terminal voltage.

The vehicle model that is used to convert the velocity profile of the world harmonized light duty test cycle (WLTC) into a power profile is
described in [47, p. 77 ff.]. The implementation of the model used for this study is based on [57]. The parameters used for the vehicle model are
described in Table B.2.

5 State of health estimation based on partial charging processes

112



Journal of Energy Storage 59 (2023) 106517

14

J. Schmitt et al.

Table B.1
Sequence of sections contained in the application phase.

Day Section Duration

1 Rest 1 h
Low 590 s
Medium 432 s
Rest 8.5 h
High 455 s
Extra high 323 s
Rest 40 min
Low 590 s
Medium 432 s
High 455 s
Extra high 323 s
Rest 5 min
Charging approx. 44 min
Rest Until a total duration of 24 h is reached

2 Low 590 s
Medium 432 s
High 455 s
Extra high 323 s
Rest 1 h
Low 590 s
Medium 432 s
High 455 s
Extra high 323 s
Rest 1 h
Low 590 s
Medium 432 s
High 455 s
Extra high 323 s
Rest 5 min
Charging approx. 1 h
Rest 5 min
Low 590 s
Medium 432 s
High 455 s
Rest 1 h
Extra high 323 s
Low 590 s
Medium 432 s
Rest 1 h
High 455 s
Extra high 323 s
Low 590 s
Rest 1 h
Medium 432 s
High 455 s
Extra high 323 s
Rest 5 min
Charging approx. 1 h
Rest Until a total duration of 48 h is reached

3 Low, Medium, High, Extra high Repeatedly applied until 2.5 V is reached
Rest 5 min
Charging approx. 2.5 h
Rest Until a total duration of 72 h is reached

Table B.2
Parameters of the vehicle model used to generate power profiles based on the WLTP velocity profiles.

Parameter Value

Gravitation 9.81 ms−2

Density of air 1.184 kg m−3

Vehicle mass including battery 1345 kg
Additional mass 100 kg
Air drag coefficient 0.29
Vehicle front area 2.38 m2

Tire roll resistance factor 0.015
Rotational mass factor 1.05
Additional consumption 1000 W
Motor efficiency 91%
Inverter efficiency 96%

(continued on next page)
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Table B.2 (continued).
Parameter Value

Efficiency factor transmission 90%
Recuperation efficiency 70%
Maximum motor power 125 kW
Maximum recuperation power 50 kW
Number of cells 3456

Fig. C.1. (a) Capacities of three sample cells at different aging states estimated using the algorithm with and without overpotential (IR) compensation based on complete charging
curves at different current rates. The measured reference values for 𝐶C/30 ch are indicated as dashed horizontal lines. The shaded areas indicate the 2%𝐶nom error range. (b) RMSE
of the reconstructed OCV curves. The data points outside the plotted range are at 0.26C/52 mV (‘3.6 V–4.2 V cycling without IR comp.’) and 0.26C/18.7 mV (‘Pristine without IR
comp.’). (c) Anode capacities, (d) cathode capacities and (e) lithium inventory of the three sample cells estimated using the algorithm with and without overpotential compensation
based on complete charging curves at different current rates. The reference values obtained from the complete C/30 charging curves are indicated as dashed horizontal lines in
(c-e) and error ranges corresponding to 2% of 𝐶an,ini,mean∕𝐶cat,ini,mean∕𝐶lit,ini,mean are shown as shaded areas.

Appendix C. Comparison of algorithm results with and without overpotential compensation

See Fig. C.1.
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Discussion The studies presented in the scope of this thesis are novel contributions to two related
fields of research: the results presented in chapter 4 contribute to the field of understanding and mod-
eling of battery degradation while the results presented in chapters 3 and 5 mainly contribute to the
field of methods for the quantification of degradation effects during operation, also known as SOH esti-
mation. Many methods for SOH estimation have been described in the literature [22–24]. As discussed
in section 2.3.1, they can be categorized into the three main categories of aging model-based, feature
correlation-based and physical model-based methods. Both a feature correlation-based method and a
physical model-based method have been developed in the scope of this thesis.

In chapter 3, a novel method for SOH estimation based on measurements of the internal gas pressure
inside prismatic lithium-ion cells is presented. The method is feature correlation-based and uses the
approximately linear correlation between the increase in internal gas pressure and the decrease in cell
capacity during cycle aging. This correlation was empirically observed during long-term cycling ex-
periments using large-format prismatic NMC-111/graphite cells that were equipped with a sensor for
measuring the gas pressure inside the cell case. In addition to the increase in pressure during aging,
the dependence of the internal gas pressure on SOC and temperature was also investigated in this
study. It was found that the pressure exhibits a non-linear, non-monotonic dependence on SOC that is
caused by the non-linear expansion and contraction of the electrodes upon lithiation and delithiation.
The pressure also increases non-linearly with temperature. In an application, the gas pressure could
be measured during rest phases. Then, the influence of a difference in SOC and temperature could
be compensated using the determined SOC and temperature dependencies. Finally, the empirically
determined correlation between pressure increase and capacity fade could be used to estimate the re-
maining cell capacity and thus the SOH.
The results presented in chapter 3 represent the proof-of-concept for internal gas pressure-based SOH
estimation. While an approximately linear correlation between pressure increase and capacity fade is
observed for all investigated cells, the proportionality factor of this correlation differs for the individual
cells. It is likely, that this difference between the individual cells arises from the fact that the cells were
manually manufactured prototypes with higher cell-to-cell variations than would be expected for cells
produced with a higher degree of automation. A high cell-to-cell variation of the proportionality be-
tween pressure increase and capacity fade, as observed in this experimental study, would be a problem
for applying the proposed SOH estimation algorithm. In this case, the correlation between pressure
increase and capacity faded needed to be determined individually for every cell, which is not feasible.
Apart from this, it has to be stated that in the study presented in chapter 3, only a limited number
of degradation scenarios could be tested. Before the algorithm for SOH estimation could be applied,
the correlation between pressure rise and impedance fade needed to be investigated for all relevant
operation conditions, in order to investigate whether there is an influence of the operating conditions
on the correlation.
There are also some drawbacks of the proposed method that need to be considered: as all feature
correlation-based methods, a pre-parameterized correlation between feature and SOH is needed. Ap-
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plying the method to a new cell type is thus connected with considerable effort as the correlation
needs to be parameterized for this new cell type via laboratory experiments. Another problem might
be that the correlation between pressure increase and capacity fade is only reasonably linear after
approximately 100 cycles. A last aspect to be considered is that the integration of an additional sensor
for pressure measurement leads to additional effort and costs.
Still, SOH estimation based on gas pressure measurements could be applied in addition to voltage and
current measurement-based methods in critical systems, in order to provide redundancy. Apart from
this, measuring the internal gas pressure could be used for the detection of safety critical states as has
been presented in [273]. Finally, additional value of the study presented in chapter 3 should be seen in
the systematic investigation of the influence of SOC, temperature and aging on the gas pressure inside
prismatic lithium-ion cells. To the author’s knowledge, this has been the first study in which all of
these three aspects have been investigated for a large-size prismatic cell. The obtained insights on the
mechanical behavior of lithium-ion cells might be useful in the context of cell and battery system design.

The second method for SOH estimation developed in the scope of this thesis, presented in chapter 5, is
a physical model-based method. A problem for models describing the electrical behavior of lithium-ion
cells is that the shape of the OCV curve needs to be adapted during aging [77; 206]. In the method
proposed in this chapter, this is solved by parametrizing a model describing the full-cell OCV curve by
minimizing the error between measured and simulated partial charging curves. The mechanistic cell
model [25], which provides a physics-based interpretation for the change in the full-cell OCV curve and
links the change in the curve shape to the degradation modes LAMan, LAMcat and LLI, is used for
this purpose. The remaining cell capacity and estimates for the degradation modes can be calculated
based on the determined model parameters.
The main contribution of the study presented in chapter 5 is the expansion of the scope of application
of the diagnostic method of full-cell OCV curve alignment (see section 2.2.3) to application realistic
input data, i.e., partial charging processes at higher current rates that could be observable in an ap-
plication. Using a systematic investigation of the capacity and degradation mode estimation accuracy
obtained for partial charging curves of different SOC windows as algorithm input, it was found that
accurate estimates for the remaining capacity (RMSE ≤ 2%) can be obtained from low-current (C/30)
partial charging curves as long as the SOC range in between 20% and 70% SOC is contained in the
input data. The investigation of the performance of the method for charging data measured at higher
current rates revealed that a capacity estimation with RMSE ≤ 2% can be obtained even for charging
at approximately C/4 if a suitable SOC window, e.g. 10-80% SOC, is chosen as input data. These
results implicate that full-cell OCV curve alignment as a method for remaining capacity estimation can
be applied to charging phases frequently observed in applications as the charging process neither needs
to contain the complete SOC range nor does it need to be recorded at a very low current. An example
application are BEV charging processes which are carried out using a typical 11 kW home-installed
AC charging station, where current rates below C/4 can be expected. In the scope of the study, the
method is comprehensively validated with measurement data obtained for cells aged under different
conditions and thus the universal applicability at different aging conditions is shown.
A direct comparison between different methods for SOH estimation is difficult as the requirements
on SOH estimation are always application-specific and the performance of different methods usually
also depends on the cell type they are applied to (see section 2.3.1). Still, it can be stated that the
method presented in chapter 5 of this work combines a number of advantages, many methods that can
be found in the literature are missing: as a physical model-based method, it does not require a pre-
parameterized aging model or correlation between a feature and the SOH, which makes it comparably
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easy to be implemented with limited parametrization effort. The change in the full-cell OCV curve
shape is explicitly considered, which allows the estimation of degradation modes, providing a deeper
insight into battery degradation beyond a scalar capacity-based SOH. In addition, the updated OCV
curve that is obtained during aging can be used for other tasks such as model-based SOC estimation
[77]. Another advantage is that the method is independent of accurate SOC estimation. Furthermore,
the situations in which the algorithm can be applied, i.e., partial charging processes, are likely to
occur frequently in many applications [274] and the performance of the algorithm has been validated
for a variety of aging conditions. The transferability of the method to other cell types is in principle
possible. Due to these reasons, this algorithm is advantageous in many aspects and thus comprises a
useful addition to the methods for SOH estimation described in the literature.

The topics of battery aging, battery modeling and SOH estimation are closely interlinked, at least for
physical model-based SOH estimation methods. Due to this, also more fundamental topics indirectly
connected with SOH estimation have been investigated in this work. The shape of the half-cell OCP
curves, which is an important parameter of electrical cell models, is mainly assumed to be invariant
during battery degradation [25; 26; 86]. In the study, presented in section 4.1, this assumption is con-
firmed for NMC-811 but significant changes in the half-cell OCP curve shape of SiC are observed. This
change in the OCP curve shape is probably due the comparably fast degradation of the Silicon leading
to a reduction of the relative capacity contribution of the Silicon in comparison to the graphite. This
result is in accordance with the existing literature [41; 50; 91; 275; 276] but to the author’s knowledge
it represents the first experimental study showing this effect for commercial cells cycled in full-cell
configuration. The change in the half-cell OCP curve shape can be modeled by the blend electrode
model proposed by Schmidt et al. [68], which is shown in the study presented in section 4.2.
Apart from this, in this second study it is also investigated how the aging-induced change in the half-
cell OCP curve of SiC influences the results on degradation modes obtained from full-cell OCV curve
alignment. It is shown that neglecting the change in the SiC OCP curve shape can lead to a misin-
terpretation of the change in the full-cell OCV curve shape. For the investigated cell type, neglecting
the SiC half-cell OCP curve change leads to an overestimation of the LAMan and an underestimation
of the LAMcat and the LLI. The errors on the degradation mode estimates induced by this effect are
in the order of a few percentage points. It is further shown that the change in the relative capacity
contribution of the silicon can be considered by replacing the aging-invariant SiC OCP curve with
an OCP curve that is simulated using the blend electrode model. The relative capacity contribution
of silicon becomes an additional optimization parameter for the curve alignment process in this case.
This approach improves the accuracy of the degradation mode estimates and additionally allows an
online estimation of the remaining component capacities of silicon and graphite. Modeling the change
in the OCP curve of SiC during aging had been proposed before [70], but to the author’s knowledge
the study presented in section 4.2 represents the first report of applying this model approach for SiC
in a diagnostic context, i.e., to determine the remaining silicon capacity based on experimental charg-
ing/discharging curves. It thus comprises a useful addition to the non-invasive diagnostic methods
available for analyzing the degradation of lithium-ion batteries.

During the research on SOH estimation based on partial charging curves at higher currents that re-
sulted in the study presented in chapter 5, it was observed that the aforementioned method for the
estimation of the remaining silicon capacity contribution can not directly be applied to partial charging
curves. Especially in cases in which the low SOC region is not contained in the input charging curves,
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no reasonable separation of the anode component capacities is possible. This might be due to the fact
that the silicon is primarily active in this SOC region. The applicability of the proposed method for
the estimation of the individual capacity of silicon and graphite in its present form is thus restricted
to complete, low-current charging curves obtained in the scope of laboratory test. The model exten-
sion to the component level is thus not applied in the SOH estimation method presented in chapter
5 and changes in the shape of the OCP curve of SiC are neglected in this study. The algorithms
still yields accurate results for the capacity estimation which means that extending the OCV model
to the component level is not necessary for the investigated cell type and scenario, in order to obtain
accurate capacity estimates with this algorithm. Modeling of component-specific silicon degradation
might probably become more important in the future, as cells with even higher silicon ratios in the
anode might be commercialized.

Conclusion The main goal of this work was the development of two novel methods for SOH estima-
tion for lithium-ion batteries. Following the discussion of the presented results, the main conclusions
of this thesis are: the SOH, i.e., the remaining capacity, can be estimated with sufficient accuracy
from partial charging curves at application-relevant currents with the method presented in chapter
5, if charging curves of a suitable SOC window are available. The main advantages of the proposed
method are that no pre-parameterized aging model or feature correlation is needed and that the shape
of the full-cell OCV curve can be updated during aging.
The method is based on the mechanistic cell model that links changes in the shape of the full-cell
OCV curve to degradation modes. The shape of the half-cell OCP curves is usually regarded to be
aging-invariant in this type of models. In this work it is shown that this assumption does not hold
true for SiC anodes as the silicon degrades faster than the graphite resulting in a change of the half-
cell OCP curve. Still, for the investigated cell type with approximately 10% of the anode capacity
provided by silicon, SOH estimation with sufficient accuracy can be obtained by fitting the full-cell
OCV model to partial charging curves even if the changes on the half-cell level are neglected. Incorpo-
rating component-specific silicon degradation in models used for SOH estimation might become more
important in the future as the silicon content used in anodes for lithium-ion batteries is expected to
increase.
In addition to this, it was found that the internal gas pressure inside prismatic lithium-ion cells can
in principle be used as a feature for SOH estimation, but due to the discussed advantages, physical
model-based methods such as the one presented in chapter 5 should be preferred.

Outlook There are several future research objectives expanding on the results obtained in the scope
of this thesis. One of these objectives could be the applicability of physical model-based estimation
methods to the analysis of field data. Especially algorithms such as the one presented in chapter 5 of
this work that additionally allow the estimation of degradation modes have the potential to extract
new insights on battery degradation from large sets of field data. In this way, for example empirical
aging models on the degradation model level (see section 2.2.2) could possibly be parameterized. Such
models could then be used for the optimization of the operation strategy for battery systems.
A possible next step for the further improvement of the method for SOH estimation based on charging
curves could be an investigation of the impact of changes in temperature on the estimation accuracy,
and, if necessary, the development of compensation strategies. Another aspect could be expanding
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the method by using a more complex model describing the overpotential during charging. In order to
expand the scope of application of the method, it should also be investigated, whether the method can
be applied to constant-power charging, fast charging profiles or dynamic discharging.
Another, more general aspect that was found to be insufficiently covered in the scientific literature is
the standardization of the validation methods for SOH estimation algorithms. Direct comparison of
the performance of different methods presented in the literature is difficult, which could be improved
by introducing standardized validation methods.
The diagnostic method for the estimation of the remaining active silicon capacity could be applied for
a systematic investigation of the silicon degradation depending on the operation conditions. The blend
electrode model and the associated diagnostic method could also be further improved by considering
component specific overpotentials.
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