
SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

A Comparison of Three-body Algorithms
for Molecular Dynamics Simulations

David Martin

SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

A Comparison of Three-body Algorithms for
Molecular Dynamics Simulations

Ein Vergleich von Algorithmen für
Dreikörperwechselwirkungen in der

Molekulardynamik

Author: David Martin

Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz

Advisor: Samuel Newcome, M.Sc.

Date: 15.11.2022

I confirm that this bachelor’s thesis is my own work and I have documented all sources and
material used.

Munich, 15.11.2022 David Martin

Acknowledgements

I would like to thank my family who has supported me in everything I have done over the
past years and made it possible for me to study informatics.

I would also like to thank Sam, the advisor of this thesis. He has supported me a lot
during the last months and helped me with his valuable feedback to complete this thesis.

Furthermore, I would like to thank the Chair of Scientific Computing and Professor Dr.
Hans-Joachim Bungartz for giving me the opportunity to write my thesis in this interesting
area.

vii

viii

Abstract

In Molecular Dynamics Simulations, typically the forces between pairs of particles are
calculated. However, the inclusion of three-body forces offers the possibility of obtaining
more accurate results in certain simulations. When computing the forces between all possible
triplets of particles, this is in a complexity class of O(n3), so there is interest in developing
algorithms to speed this up. To date, however, few algorithms for efficient computation of
three-body forces have been developed. This thesis gives a literature review of algorithms
already developed and describes how they work. The literature review provides an entry
point into the computation of three-body forces and is used to critically analyze the most
valuable research directions in this field. The advantages and disadvantages, as well as
possible use cases for different algorithms, are discussed. The implementation of three of
the most promising of such algorithms for distributed memory environments is presented.
All three implementations are investigated on a medium size HPC cluster for their runtime.
Furthermore, one of these implementations is examined for its hit-rate and load balance, as
well as its accuracy.

ix

x

Contents

Acknowledgements vii

Abstract ix

Contents xi

I. Introduction and Background 1

1. Introduction 2

2. Theoretical Background 3

2.1. Molecular Dynamics Simulation . 3

2.1.1. Short- and Long Range Forces . 3

2.1.2. Cutoff Distance . 4

2.1.3. Newton’s Third Law of Motion . 4

2.2. Two Body Algorithms . 5

2.2.1. Short Range Algorithms . 5

2.2.2. Long Range Algorithms . 6

2.3. Parallelization . 6

2.3.1. Domain Decomposition Techniques 7

2.3.2. Load Balance . 8

2.3.3. Scalability . 9

2.3.4. Technical Consideration . 9

II. Three Body Algorithms 10

3. Three Body Algorithms 11

3.1. Direct Approaches . 11

3.1.1. Force Cube . 11

3.1.2. Shifting Algorithms . 18

3.2. Approximate Approaches . 25

3.2.1. Multibody Multipole Methods . 25

3.2.2. Short Range Atom Decomposition 27

3.2.3. Shift Collapse Algorithm . 29

3.2.4. Cutoff Triplet Algorithm . 32

3.3. Summary . 35

xi

III. Implementation and Results 37

4. Implementation 38
4.1. Framework . 39
4.2. Algorithms . 42

4.2.1. Naive All Triplets Algorithm . 43
4.2.2. All Unique Triplets Algorithm . 46
4.2.3. Cutoff Triplet Algorithm . 48

4.3. Correctness . 52

5. Results 54
5.1. Shifting Scheme of the Direct Algorithms 55
5.2. Scalability . 56

5.2.1. Direct Algorithms . 56
5.2.2. Cutoff Algorithm . 60

5.3. Load Balance of the Cutoff Algorithm . 62
5.4. Hitrate of the Cutoff Algorithm . 66
5.5. Accuracy Comparison . 68

IV. Future Work and Conclusion 71

6. Future Work 72

7. Summary 73

V. Appendix 75
A. Code Listings . 76
B. Benchmarks . 77

List of Figures 78

List of Tables 80

List of Algorithms 81

Bibliography 82

Part I.

Introduction and Background

1

1. Introduction

Due to the increase in computational power in recent years, it is possible for scientists to
study the behavior of molecules and atoms among each other more precisely than before.
For this purpose, Molecular Dynamics (MD) Simulations are used to iteratively calculate
the forces between molecules and atoms and the resulting movement over multiple time
steps. We use the term particle in this thesis to denote one of the n molecules or atoms to
be simulated.

Since the step sizes are usually chosen very small and each simulation step is compu-
tationally intensive, it can take hours, days or months to complete the whole simulation
[LZS06c].

Usually in MD Simulations, the forces between each pair of particles are calculated, which
is in a complexity class of O(n2) for n particles. To speed this up, much research has already
been done, and efficient algorithms have been developed.

Scientists have found that, especially in fluid simulations, more accurate results can
be obtained if the interactions between each triplet of particles is included in the force
calculation [MS99]. Since the computation of all forces between triplets of n particles is in a
complexity class of O(n3), there is particular interest in developing algorithms to speed this
up. In the field of three-body interactions, however, little research has been done to develop
such efficient algorithms compared to those for pairwise force calculations.

This thesis focuses on algorithms for three-body interactions that have already been
developed. Our goal is to understand how the algorithms work, and to compare their
advantages and disadvantages in order to decide which of the research directions we want to
pursue in the future. As a part of this work, we implement some of the most promising of
these algorithms and study their behavior in practice.

The thesis is structured as follows: In Chapter 2, we give an overview of background
knowledge that will be used throughout the thesis. Chapter 3 focuses on algorithms for
three-body interactions that have already been developed. We describe how these algorithms
work, what advantages and disadvantages they have and how they can be used. In Chapter
4, we present our implementation of three selected algorithms in C++. In Chapter 5, we
investigate all three implementations in terms of their runtime. One of the algorithms is
examined for its load balance and hit-rate. Furthermore, this algorithm is investigated for
its accuracy in comparison to one of the other implementations. In Chapter 6, we provide
an outlook on how our implementations can be further improved and how we intend to
proceed.

2

2. Theoretical Background

2.1. Molecular Dynamics Simulation

One step of an MD Simulation typically works as follows: By taking the partial derivatives of
potential energy functions, the forces between particles are evaluated. Particles are moved by
calculating the new velocities and positions based on the forces using for example a Velocity
Verlet Integration [Ver67]. Then forces are reset and the next simulation step begins.

Let Q be the set of all n particles, then for multibody interactions the total force exerted
on the particle i ∈ Q from all other particles j, k ∈ Q with i 6= j 6= k can be expressed as
follows:

Fi = −∇

φ1(i) +
∑
j

φ2(i, j) +
∑
j,k

φ3(i, j, k) + . . .

 (2.1)

Where ∇ is the gradient of the sum of u-body potential functions φu [KY14]. We use u in
this thesis to specify the number of participating particles in an interaction. For pairwise
interactions u = 2, for three-body interactions u = 3.

All particles involved in the simulation are located in a space, which is called simulation
domain in the following. There are different ways to handle outflows of the domain: One
possibility is to exclude particles that leave the domain. Another possibility are periodic
boundary conditions, where particles loop to the opposite side of the simulation domain,
to simulate an infinite space. A third method is to push particles back into the simulation
domain if they reach a boundary by applying a repulsive force to them, to simulate particle
movements inside a fixed space [GSBN22].

2.1.1. Short- and Long Range Forces

Potential functions can be classified into short and long range potentials, where short range
potentials decay very fast with increasing distance between particles, while long range
potentials do not. Typically potentials that decay faster than r−D are short range, the
others are long range, where D corresponds to the dimension of the simulation domain,
typically D = 3, and r corresponds to the distance between particles [Tch20].

In pairwise interactions, for example, the Lennard Jones potential is one of the most
common potentials for short range force calculations and the Coulomb electrostatic potential
is a common one for long range interactions.

3

2. Theoretical Background

In three-body interactions, the Axilrod-Teller potential is an often used potential for short
range calculations and is used, for example, in the simulation of the vapor-liquid transition
of noble gases [MS99]. It is defined as follows:

φ3(i, j, k) = v ∗
[

1 + 3 ∗ cos(θi) ∗ cos(θj) ∗ cos(θk)

(rij ∗ rik ∗ rjk)3

]
(2.2)

Where rij is the distance between particle i and j, θi is the angle between ~ij and ~ik. The
positive coefficient v depends on the molecules being simulated and is based on the ionization
energy and the mean atomic polarizability [AT43].

2.1.2. Cutoff Distance

A cutoff distance can be used, so that only the interactions in a certain surrounding area
of a particle are calculated, which speeds up the calculation. In contrast to the pairwise
interactions in which there is only one obvious possibility, namely the distance between
particle i and j, which is checked against the cutoff distance c, in the three-body interactions
several variants can be applied, such as:

1. All distances between all particles of a triplet have to be less than c [Mar01].

2. At least a pair out of the three distances between i, j and k have to be less than c
[CW00].

3. The sum of all distances from the center of mass to each particle is less than c [L. 13].

We use c in this thesis to denote the cutoff.

2.1.3. Newton’s Third Law of Motion

Newton’s third law of motion states that a force ~FB←A acting from body A on body B also
acts in the opposite direction and with the same magnitude from B on A. Accordingly, for a
given pair of particles (i, j), in which both particles exert forces on each other, it holds:

~Fi←j = −~Fj←i (2.3)

In the context of Molecular Dynamics Simulations, this law can be used to reduce the
calculation of the forces between particles. In the case of pairwise interactions, this is trivial
and only one of the two forces needs to be calculated for a given pair of paricles (i, j).

In the case of particle triplets, we can also make use of this law according to [Mar01]:

~Fi←jk + ~Fj←ik = −~Fk←ij (2.4)

Where ~Fi←jk represents the force acting on i from j and k. We can therefore use Newton’s
third law also for particle triplets, to calculate all the forces on the individual particles
within a triplet in one step.

If we use a cutoff, we must ensure that each pairwise distance between the three particles
involved is less than the cutoff to ensure that the triplet can be formed from the viewpoint
of each particle. This is satisfied by the first and third criterion from 2.1.2 [KY14].

In the remainder of this thesis we will denote the usage of Newton’s third law as newton3.

4

2.2. Two Body Algorithms

2.2. Two Body Algorithms

In this section, we briefly introduce several methods used in pairwise interactions to speed
up the O(n2) calculation.

2.2.1. Short Range Algorithms

(a) Direct Cutoff (b) Linked Cell (c) Verlet Lists

Figure 2.1.: The red circle represents the cutoff area. In this example, the forces between
the red particle and others is calculated. Distances are calculated between the
red and all particles with blue or gray filling. Forces are calculated between the
red particle and the blue particles. For particles without filling neither distances
nor forces are calculated. Source: [GSBN22]

When using a cutoff, different data structures can be used to further reduce computation
time.

Direct Cutoff

The naive procedure calculates for one particle i the distance to all other particles in the
domain to decide whether the forces for a pair should be evaluated or not. This leads to
O(n2) distance checks [GSBN22]. See Figure 2.1a for illustration.

Linked Cell

To minimize the number of distance checks, the linked cell method can be used to divide
the simulation domain into a regular grid and assigning particles to the corresponding cells,
where the edge length of each cell is at least equal to the cutoff radius, which can be seen in
Figure 2.1b. In this way, for a given particle, only the distances in neighboring cells need to
be computed, which reduces the number of distance calculations for homogeneous particle
distributions to O(n) [GSBN22].

Verlet Lists

Another method to further reduce distance calculations can be implemented using Verlet
Lists [Ver67] as shown in Figure 2.1c. The assumption is that particles move only slightly
from simulation step ts to step ts+1. Therefore, a list is created for each particle in the
simulation domain, which stores all neighbors within a radius slightly larger than the cutoff,

5

2. Theoretical Background

which is shown as yellow circle in Figure 2.1c. The area between the cutoff in red and the
yellow circle is called Verlet Skin, and stores additional particles beyond the cutoff that
could move into the cutoff area in the next simulation step. A recalculation of the whole list
is only necessary every few simulation steps and can be done using the linked cell method.
The number of distance calculations for homogeneous particle distributions is within O(n)
[GSBN22].

2.2.2. Long Range Algorithms

In the field of long range calculations, methods are used that consider distant particle clusters
as one large particle in order to obtain an approximate result. In this area, for example,
there is the Barnes Hut algorithm [BH86], which uses a tree structure to group the particles
in the simulation domain at different granularity levels. During the calculation of the forces,
the distance D between a particle and a cluster, as well as the edge length L of the bounding
box of the cluster, is used to decide whether the calculation can be performed or the tree
structure should be considered more fine-granular. An example can be seen in Figure 2.2.

Figure 2.2.: In this example, the interaction between the red particle and the cluster high-
lighted in green is to be calculated. Based on D

L , it is decided whether all
particles within the green area can be considered as one large particle, or if the
tree structure must be considered at a lower level.
Source: [oCS13]

2.3. Parallelization

Since Molecular Dynamics Simulations are computationally intensive, in addition to the use
of the methods mentioned above, techniques are used that parallelize the problem to be
computed by breaking it down into pieces and distributing it among several computation
units. At the end of the computation, the results of all pieces are combined to obtain
the overall result. This can significantly speed up the calculation, but it requires that the
respective algorithm supports such parallelization. Since the information of other computing
units is often needed during the force calculation, communication between them must be

6

2.3. Parallelization

possible. In the remainder of this thesis, the term processor is used to denote a computational
unit working on a particular part of the overall problem, and the letter p denotes the number
of processors used.

2.3.1. Domain Decomposition Techniques

A domain decomposition partitions the particles within the simulation domain so that the
forces can be calculated in parallel by several processors. The decomposition can be either
dependent or independent of the position of the particles.

The following three techniques are related to the algorithms of S. Plimpton [Pli95] for
pairwise interactions. In the course of this thesis, we present algorithms and implementations
for triplet computations that build on these techniques.

Atom Decomposition

In this decomposition, the particles within the simulation domain are distributed evenly
among the processors, e.g., based on the ID of the particles. Each processor is responsible
for calculating the forces for the particles assigned to it and updating their positions based
on the calculated forces. Whether the particles are neighboring in the physical simulation
space or not, does not matter in this type of decomposition. Throughout the simulation,
the assigned particles remain constant for each processor. Since this method works without
relation to the actual position of the particles, it is suitable for force calculations in which
all interactions between particles are considered without cutoff distance. We call this type
of calculation direct in remainder of this thesis. In the course of a simulation step, it is
necessary that the information is exchanged between all participating processors, so that each
processor can calculate the interactions of its own particles with those of other processors.

Force Decomposition

This decomposition is a generalization of the atom decomposition [SSJ07], where each
processor is assigned a part of the particle interactions, called Force Elements, to be
computed. S. Plimpton [Pli95] uses a n×n 2D Force Matrix, which can be seen in Figure 2.3,
to form all possible combinations of particles in the simulation domain. Each combination
of two particles (i, j) in the matrix represents a Force Element to be computed. As can be
seen, the matrix contains the elements (i, j) as well as (j, i), which is why it can be used
with or without the use of newton3. In the case of using newton3, only the elements in the
upper or lower triangular matrix need to be evaluated.

After all Force Elements have been calculated, the matrix can be reduced along an axis
to sum all partial forces on the respective particles. The result is a one-dimensional vector
containing the summed forces of all particles. Before the next simulation step, and after the
particles have been updated, this one-dimensional vector is expanded back to the 2D Force
Matrix.

This matrix can either be distributed line by line to processors, which essentially corre-
sponds to the atom decomposition mentioned above. However, it can also be partitioned
block-wise, with each processor computing the Force Elements in its assigned block.

7

2. Theoretical Background

In Figure 2.3, a division into 2× 2 blocks is shown. Each processor stores the information
of the particles in xα and xβ in local copies, computes the Force Elements from its subcube
and stores the results in its local vector f . Thus, communication exchange with all processors
is not necessary, since each processor must communicate at most with the processors from its
column and row. Analogous to the atom decomposition, the actual position of the particles
does not matter, which is why this type of decomposition is also suitable for direct force
calculations.

(0,1) (0,2) (0,3) (0,4) (0,5)

(1,0) (1,2) (1,3) (1,4) (1,5)

(2,0) (2,1) (2,3) (2,4) (2,5)

(3,0) (3,1) (3,2) (3,4) (3,5)

(4,0) (4,1) (4,2) (4,3) (4,5)

(5,0) (5,1) (5,2) (5,3) (5,4)

0

0

1

1

2

2

3

3

4

4

5

5

x,f

xα

xβ

Figure 2.3.: 2D Force Matrix showing an exemplary division into 2× 2 blocks.
Adapted from: [Pli95]

Spatial Space Decomposition

In contrast to the two possibilities mentioned above, a spatial space decomposition assigns
a part of the physical simulation domain to each processor. For example, as in the linked
cell method, the domain is divided into a regular grid and each processor is assigned a
cell for whose particles it is responsible. Since the positions of the particles change in the
course of the simulation, processors must exchange particles if they move beyond the local
domain. This type of decomposition is suitable for short range potentials with a cutoff, since
communication between processors can be restricted to the (direct) neighborhood.

In the remainder of this thesis, we use the term regular grid decomposition to refer to a
spatial space decomposition that divides the simulation domain into a regular grid.

2.3.2. Load Balance

By load balance we mean how evenly or unevenly work is distributed among processors.
Ideally, each processor has the same amount of work. There are different metrics to measure
this. We use the Step Time Variation Ratio (STVR) [LZS06a] throughout this thesis. It is
calculated for each processor individually and represents the average calculation time of the
forces of each processor for one simulation step in relation to those of all other processors.
The average time required by a processor to calculate the forces for one simulation step is
denoted by Ti.

8

2.3. Parallelization

STV R =

∣∣∣∣∣Ti − (
∑p−1

j=0 Tj/p)∑p−1
j=0 Tj/p

∣∣∣∣∣ (2.5)

2.3.3. Scalability

In this thesis we distinguish between strong and weak scaling. In strong scaling, we investigate
how an algorithm behaves when we apply it to a fixed problem size with different numbers
of processors. To determine this, we use the ratio between the serial execution time of an
algorithm with one processor T1 and the parallel execution with p processors Tp. The strong
scaling speedup with p processors is calculated as:

Sp =
T1
Tp

(2.6)

Ideally, execution with p processors results in an execution time that is p times faster
compared to a single processor. In reality, this is only possible up to a certain point, since
the serial part of the software cannot be further parallelized and the communication between
the processors additionally dampens the speedup.

In weak scaling, we investigate how an algorithm behaves when we scale the number
of processors in proportion to the problem size. This has the consequence that for each
number of processors the work per processor remains constant. We measure the weak scale
efficiency by dividing the serial computation time by the computation time with p processors,
analogous to the speedup as described above. Ideally, an execution with p ≥ 1 processors
always leads to the same execution time as with a single processor. In real world applications,
this is not the case, since the additional communication between processors increases the
execution time, which dampens the efficiency.

2.3.4. Technical Consideration

To enable communication between the processors, a corresponding infrastructure must be
provided. One method is to use high performance computer clusters, such as the SuperMUC-
NG1, in which many individual computational nodes, each with its own main memory, are
connected to each other and can thus work on a problem in parallel, with communication
possible between the nodes during the calculation. This is also called distributed memory
parallelization.

In addition to the distributed memory parallelization, there is also the possibility of shared
memory parallelization, in which, several threads work on a part of the overall problem, while
sharing a single main memory. It must be ensured that at a given time only one processor
is active at a certain location of the main memory, since race conditions can arise due to
the unpredictable execution sequence of threads. However, since we are mostly focusing on
distributed memory parallelization in this thesis, this will not be explained further.

1https://doku.lrz.de/display/PUBLIC/SuperMUC-NG

9

https://doku.lrz.de/display/PUBLIC/SuperMUC-NG

Part II.

Three Body Algorithms

10

3. Three Body Algorithms

In this chapter, we discuss various algorithms that have already been developed for three-
body interactions in Molecular Dynamics Simulations. We divide them into two categories,
direct and approximate algorithms. While direct algorithms compute all interactions between
all particles, approximate algorithms use methods to reduce the number of force calculations.
This can happen either by using a cutoff, or by considering interactions between groups of
particles that are far away from each other as interactions between single particles.

3.1. Direct Approaches

3.1.1. Force Cube

i

0

5

10

15

20j

5
10

15
20

k

5

10

15

20

Figure 3.1.: 3D Force Cube only showing triplets with i < j < k.
Source: [KY14]

The Force Cube, introduced by Li et al. [LZS06c], is based on the 2D Force Matrix used by
S. Plimpton [Pli95] in the force decomposition algorithm. The 2D Force Matrix, described
in 2.3.1, is expanded into an n × n × n Force Cube. Each index along the three axes of
the Force Cube refers to a unique particle and therefore the elements in the Force Cube
represent a triplet of particles.

In the following we describe several ways to decompose the Force Cube so that we can
distribute the elements to be calculated among processors and then sum the calculated
partial forces for each particle.

Note: The algorithms can be implemented either with or without using newton3. Without
using newton3, all triplets (i, j, k) with i 6= j 6= k are evaluated. When newton3 is used,
the triplets are evaluated only in the case i < j < k. The FD-3 and CD-3 methods were
originally not introduced using newton3 in the reference. Particle triplets are evaluated only
if i 6= j < k holds, to avoid the redundant computation ~Fi←jk and ~Fi←kj . Since the methods

11

3. Three Body Algorithms

in subsection 3.1.1, which build on the Force Cube presented here, use newton3, we also
refer to the use of newton3 in this subsection so that we can better compare the variants. In
this case the Force Cube with all unique triplets can be visualized as in Figure 3.1.

Force Decomposition (FD-3)

Figure 3.2.: FD-3 method
Source: [LZS06c]

In the 3D Force Decomposition method (FD-3) [LZS06c], the Force Cube is divided into
m3 subcubes. For simplicity, we assume that m|n. Each subcube FABC contains the Force
Elements fijk with i ∈ A, j ∈ B, and k ∈ C within its local domain, as can be seen in Figure
3.2. Thus, each subcube contains (n/m)3 Force Elements.

If we look at Figure 3.1 with all Force Elements i < j < k, we can easily see, that a lot
of subcubes are not needed. So in the first step, all these subcubes are pruned out. The
remaining subcubes are assigned to processors for calculation.

Within a subcube, there can be still triplets of particles that do not fulfill the i < j < k
requirement. To avoid redundant particle triplet calculations within subcubes, only unique
triplets are calculated, where i < j < k. All other Force Elements are set to zero.

After each processor has calculated the assigned Force Elements, all partial forces are
summed. This is done by first summing along one axis of the Force Cube, for example,
along the k axis, to obtain the sum of all Force Elements with the same i and k indices. The
result is a 2D Force Matrix, which is summed again along another axis, e.g. along the j
axis, to obtain the final force vector containing all summed forces for each particle [LZS06c].

Depending on the position of the subcube FABC within the Force Cube F , different
computation loads result. So processors owning subcubes that have the same cube indices,
i.e. A = B = C, which are all subcubes along the diagonal of the Force Cube have the least
computation load, since they only calculate interactions between the same particle subset.
Processors that own subcubes with three different cube indices A 6= B 6= C have the most
load as they calculate all interactions between three different particle subsets [LZS06c].

12

3.1. Direct Approaches

Cyclic Decompositions (CD-3, BD-3 and PD-3)

Figure 3.3.: CD-3 method
Source: [LZS06c]

CD-3: The Cyclic Decomposition (CD-3) [LZS06c] divides the Force Cube into slices, as
can be seen in Figure 3.3. Slices thus correspond to a 2D Force Matrix and each of these
matrices contains Force Elements with one fixed particle k and two variable particles i and
j. Each of the n slices is cyclically assigned to processors, for computation, based on their
rank. Processors are responsible for calculating the Force Elements in their slices, as well as
updating the fixed particles of each of their slices.

Analogous to the FD-3 method, redundancies arise within each slice, since, for example,
a slice for a fixed k contains the triplets (k, i, j) and (k, j, i). To avoid this redundant
computation, only Force Elements with i < j < k are assigned for computation.

Figure 3.4.: Distribution of work among processors according to the CD-3 method, where
only triplets with i < j < k are calculated. The area of the opaque slices gives
an impression of how the number of triplets to be calculated differs for the
respective slices.
Source: [SSJ07]

The number of elements to be computed for a slice depends on the slice index, which

13

3. Three Body Algorithms

leads to load imbalance depending on the number of processors. Visually, one can illustrate
the assignment of slices to processors by slicing up the tetrahedron in Figure 3.4 along the
i-axis.

Depending on the assigned slices, processors need the particle information of other
processors. Thus, in slices that contain many Force Elements, more particle information is
needed from neighboring processors, or the calculated forces have to be sent back to the
owner processors.

BD-3: Based on the Cyclic Decomposition from section 3.1.1, the Balanced Decomposition
(BD-3) first distributes slices with odd indices cyclically to the processors, followed by slices
with even indices to achieve better load balancing [LZS06b].

PD-3: Also based on the Cyclic Decomposition from section 3.1.1, the Precise Decom-
position (PD-3) counts the number of elements to be computed within each slice and then
assigns them to processors to ensure an almost perfect load balance [LZS06b].

Force Cube Conclusion

Summarizing the Force Cube methods, we can state that the presented algorithms of Li et
al. [LZS06a, LZS06c, LZS06b] enable the parallel computation of three-body interactions by
distributing Force Elements to be computed to processors. Depending on the decomposition,
processors need the particle information held by other processors. Since the algorithms work
without relation to the position of the particles in the physical domain, they are suitable for
homogeneous, as well as for heterogeneous particle distributions.

Load Balance: Depending on the chosen type of work distribution on processors (FD-3,
CD-3, BD-3, PD-3), load imbalance occurs regardless of the distribution of particles, since
there are redundant triplets within the subcubes/slices that are excluded from the force
calculation. Thus, the FD-3 algorithm suffers most from load imbalance because, as described
above, processors with subcubes A = B = C have the least work, whereas processors with
A 6= B 6= C have the most work. The load balance tests of Li et al. with 20 processors using
the STVR show that the FD-3 algorithm has almost up to 100 percent relative deviation for
some processors, whereas The STVR for all processors with CD-3 is less than 10 percent.
All other variants BD-3 and PD-3 show only a slight improvement over the results of the
CD-3 algorithm [LZS06c, LZS06b]. A good balancing of the computational work, which is
independent of the particle distribution, can be achieved with these algorithms (PD-3), but
this has to be calculated explicitly and is not implicitly given by the algorithm.

Weak Scale Efficiency: The algorithms CD-3, BD-3 and PD-3 show an efficiency of
about 50 percent at 35 processors compared to the serial execution. The efficiency of FD-3
drops rapidly to below 50 percent and is under 40 percent at 35 processors [LZS06b]. We
assume that for the FD-3 algorithm the unfavorable distribution of work is decisive for the
rapid drop.

14

3.1. Direct Approaches

Cutoff Extension: An extension for a cutoff distance is not presented, but would be
possible in the same way as implemented by [Pli95] in its 2D Force Matrix algorithms, by
creating a neighbor list for each particle before a computation step. Since the presented
algorithm is not based on a spatial space decomposition, but Force Elements are assigned
independently of the particle positions to processors, each processor would have to check
the distances between its own particles and all other particles whether they are within the
cutoff. All-to-all communication would therefore be necessary. However, regardless of the
chosen cube decomposition, additional load imbalance occurs, as further Force Elements are
pruned out, which is likely to result in unacceptable load balancing, especially for the FD-3
algorithm.

Slice- and Volume Symmetric Transformations

i

0
5

10
15

20

j

0
5

10
15

20

k

0

5

10

15

20

Figure 3.5.: Slice Symmetric Transformation
Source: [KY14]

i

0
5

10
15

20

j

0
5

10
15

20

k

0

5

10

15

20

Figure 3.6.: Volume Symmetric Transforma-
tion
Source: [KY14]

Based on the 3D Force Cube from 3.1.1, Summanth et al. [SSJ07] introduced transfor-
mations for the Force Cube such that each processor is assigned the same number of Force
Elements without additional computational overhead like the PD-3 method. Two transfor-
mations are presented, one allowing slice decomposition, the other force decomposition with
subcubes.

Since the Force Cube contains all possible triplet combinations and only unique triplets
i < j < k need to be computed in case of using newton3, the number of elements in the
Force Cube is reduced, as can be seen in Figure 3.1.

In the case of the Slice Symmetric Transformation, one can imagine that the unique
elements from the tetrahedron in Figure 3.1 are distributed in such a way that all slices
along the k axis, or to be precise along any axis of the Force Cube, contain the same number
of elements to be computed. By equation 3.1 only certain elements in a slice are assigned
for computation and the tetrahedron from Figure 3.1 is virtually decomposed into three
tetrahedrons, as can be seen in Figure 3.5. The formula works like a 3D checkerboard
pattern, assigning a color to each unique element. Analogous to the slice based algorithms in
section 3.1.1, slices can now be distributed across processors, where each processor computes

15

3. Three Body Algorithms

the forces for one fixed particle k and two variable particles i and j, specified by the equation
3.1 [SSJ07]. In Figure 3.7a and 3.7b we can see two slices along of a Force Cube consisting
of 60 Particles.

F ′ijk =

F ′ijk, if (i > j > k) and (i+ j + k ≡ 1 mod 3)

F ′ijk, if (j > k > i) and (i+ j + k ≡ 2 mod 3)

F ′ijk, if (k > i > j) and (i+ j + k ≡ 0 mod 3)

0, otherwise.

(3.1)

(a) (b)

Figure 3.7.: Two slices of the Force Cube using the Slice Symmetric Transformation. The
transformation ensures that each slice has the same number of elements to be
evaluated. The colors symbolize the three different tetrahedrons from which the
Force Elements originate.
Source: [SSJ07]

The Volume Symmetric Transformation works essentially in the same way, but decomposes
the tetrahedron from Figure 3.1.1 not into 3, but into 6 single tetrahedrons based on the
formula 3.2. The transformed Force Cube is depicted in Figure 3.6. This transformed Force
Cube can either be decomposed into slices (atom decomposition), or into subcubes (force
decomposition) [SSJ07]. In both cases the Force Elements are evenly distributed.

F ′ijk =

F ′ijk, if (i > j > k) and (i+ j + k ≡ 0 mod 6)

F ′ijk, if (i > k > j) and (i+ j + k ≡ 1 mod 6)

F ′ijk, if (j > k > i) and (i+ j + k ≡ 2 mod 6)

F ′ijk, if (j > i > k) and (i+ j + k ≡ 3 mod 6)

F ′ijk, if (k > i > j) and (i+ j + k ≡ 4 mod 6)

F ′ijk, if (k > j > i) and (i+ j + k ≡ 5 mod 6)

0, otherwise.

(3.2)

Summary: We can state that in the Slice and Volume Symmetric Transformation, re-
gardless of the order in which slices or volumes are distributed to processors, all processors

16

3.1. Direct Approaches

receive the same number of Force Elements to be computed, if the number of Force Ele-
ments is divisible by p. However, since each slice contains each particle [KY14], all-to-all
communication is required so that all processors can update their particles.

Compared to the algorithms of Li et al. [LZS06c, LZS06a, LZS06b], however, load
balancing is implicitly given here by the transformation and does not have to be explicitly
computed as in the PD-3 algorithm, for example.

Load Balance: Summanth et al. [SSJ07] compare the CD-3 algorithm with their Slice
Symmetric Transform for 30 and 50 processors with 8000 particles using the STVR. The
results show that the CD-3 method has strong deviations especially for processors with very
low, or very high rank, which is due to the assignment of slices to processors described in
the section 3.1.1. With the help of their Slice Symmetric Transformation, the STVR can be
kept much more uniform and is no longer dependent on the processor rank.

Cutoff Extension: As with the algorithms of Li et al. [LZS06c, LZS06a, LZS06b] there
is also the possibility to implement a cutoff, which is mentioned but not implemented. As a
result of using a cutoff, the load balancing changes, since in the individual slices or subcubes
further computation elements are omitted. Furthermore, each processor would have to test
the distances between its own particle against all other particles in the domain, since no
spatial domain decomposition is used.

17

3. Three Body Algorithms

3.1.2. Shifting Algorithms

Unlike the algorithms in 3.1.1 that represent particle triplets as Force Elements and distribute
them among processors, these approaches distribute particles evenly among processors within
the simulation domain. Each processor is responsible for computing the interactions of its
own particles with those of others. Processors are arranged in such a way that in multiple
substeps within a simulation step the particle information is exchanged between processors
and thus all interactions can be calculated.

In 2014, P. Koanantakool and K. Yelick [KY14] presented a set of algorithms that allow
parallel calculation of forces between particle triplets by exploiting newton3, based on
those of [DGK+13] which were developed for particle pairs. In addition to algorithms for
computing all triplets in the simulation domain, they also present a cell-based u-body (u ≥ 2)
algorithm with cutoff distance described in section 3.2.4. The following three paragraphs
give a brief overview of how their algorithms work.

Let p be the number of processors available for the computation. For simplicity we assume
that p|n. We arrange the processors in a virtual ring like in Figure 3.8 with left and right
neighbors and assign n/p particles to each processor by dividing the set of all particles Q
into p distinct subsets {Q0, Q1, . . . , Qp−1}. Each processor is responsible for updating the
particles in its subset Qr. In this thesis we use r to refer to the rank of a processor. The
rank of a processor indicates the virtual position of a processor within all p processors. This
can be either a scalar value, as for example in ring communication, but it can also be a
vector, indicating for example a Cartesian coordinate.

The idea of these algorithms is that each processor holds three buffers b0, b1, b2 locally
in memory. At the beginning of a simulation step, each processor creates three copies of
its particles Qr and stores them in b0, b1 and b2. During a simulation step, the buffers are
shifted around the ring of processors so that each processor can form all the particle triplets
from its own and other processors’ particles. Particle triplets are formed by selecting one
particle i from b0, one particle j from b1, and one particle k from b2 with i < j < k to
compute the forces between the three participating particles in one step using newton3.

The algorithms alternate between shifting buffers to neighboring processors and calculating
the interactions between b0, b1 and b2 within a simulation step. Shifting and calculating
takes place in a synchronized manner, so that all processors simultaneously send a buffer to
a neighboring processor and receive the particles from another neighbor to then perform
the force calculations between the three buffers. After all forces between unique particle
triplets have been calculated from all unique particle subset combinations, the particles are
sent back to their original owners, who sum the computed forces across all three buffers and
then update their particles.

All algorithms presented in this section (Shifting Algorithms) refer to the ones from P.
Koanantakool and K. Yelick [KY14].

18

3.1. Direct Approaches

P0 P1 P2 P3

b0 b1 b2 b0 b1 b2 b0 b1 b2 b0 b1 b2

000

003

002

001

000

030

...

010

000

111

110

113

112

111

101

...

121

111

222

221

220

223

222

212

...

232

222

333

332

331

330

333

323

...

303

333

Figure 3.8.: Example with 4 processors, illustrating the shifting scheme of the Naive All
Triplets Algorithm

Naive All Triplets Algorithm: In the following we present the naive algorithm, which
illustrates the principle but performs redundant shifts.

Initially, each processor computes the forces between all of its own particles. In a nested
for loop, the outer loop shifts the buffer b1 exactly p times around the ring of processors,
the inner loop checks if the particle triplets for one of the 6 possible permutations from the
particle subsets in b0, b1 and b2 have already been calculated by this or another processor.
If not, all unique triplets are formed from the three buffers and calculated, then buffer b2 is
shifted. This is done exactly p times as in the outer loop. So, in total, the naive algorithm
requires p2 + p communication steps and must check for each combination of three buffers
whether they have already been computed or not.

The shifting scheme is illustrated in Figure 3.8, where the columns under each processor
symbolize the indices of the particle subsets currently in b0, b1 and b2 of the respective
processor. We call this an offset-pattern in the remainder of this thesis. It can be seen
that redundant combinations arise that must be filtered out. The implementation for this
algorithm is explained in more detail in chapter 4.

All Unique Triplets Algorithm: An improved version of the naive algorithm uses
a modified scheme to shift buffers in the ring of processors so that no redundant shifts
are performed. This scheme ensures that for a given triplet of three buffers containing
the particle subsets (Qa, Qb, Qc), only one unique permutation is formed over the entire
simulation step. Therefore, we no longer need to check whether the combination of three
buffers has already been calculated.

Just as in the naive algorithm, the new shifting scheme can be implemented with a nested
for loop, where the outer loop performs d = bp/3c rounds, the inner loop performs p− 3 ∗ e

19

3. Three Body Algorithms

iterations in round e of the outer loop. At the end of each outer loop iteration, a new buffer
out of the three buffers b0, b1 and b2 is chosen in a round-robin manner to be shifted in the
next iterations of the inner loop. We call each outer loop iteration a Phase.

Algorithm 1 illustrates the procedure, with the two loops mentioned above referring to
those in lines 4 and 5. In the first step of Phase 0, the algorithm computes the interactions
between its own particles, without shifting a buffer. In the next steps of Phase 0, b2 is shifted
s = p times in the inner loop and interactions between the three buffers are calculated.
During Phase 1 the buffer b0 is shifted s = p− 3 times. In Phase 2, b1 is shifted s = p− 6
times. Then b2 is picked again, and so on. The algorithm runs until all d Phase have been
processed. If p is not a multiple of 3, this scheme ensures that all unique, but not redundant
combinations of particle subsets are formed.

Algorithm 1: All Unique Triplets Algorithm
Adapted from: [KY14, Koa17]

Input: U: set of all processor ranks, Q: set of all particles binned into p subsets
{Q0 . . . Qp−1} using an atom decomposition

Output: All particles updated in place

1 for r ∈ U in parallel do
2 Copy Qr to b0, b1, b2
3 i← 2
4 for s← p to p%3 by −3 do
5 for j ← 0 to s - 1 do
6 if j 6= 0 or s 6= p then
7 shiftRight(bi)

8 calculateInteractions(b0, b1, b2)

9 i← (i+ 1)%3

10 if 3 | p then
11 shiftRight(bi)
12 calculateOneThirdOfInteractions(b0, b1, b2, b r

p/3c)

13 sendBackAndReceive(b0, b1, b2)
14 Qr ← sumUp(b0, b1, b2)
15 update(Qr)

20

3.1. Direct Approaches

b2

b0

b1

b2

Figure 3.9.: Shifting scheme of the All Unique Tripets Algorithm with 9 processors P0 to P8.
Each row represents a computation and shift step within a simulation step. The
three columns below P0 to P8 represent the three buffer owner whose particles
are currently located in b0, b1 and b2 respectively.
Source: [Koa17]

A special case arises when the number of processors is divisible by 3. In this case, an
additional shift and force calculation is required after the two nested loops to form all unique
combinations of particle subsets.

Figure 3.9 illustrates the resulting offset-patterns for the case p = 9. Since in this example
3|p holds, an additional step is needed to generate all unique combinations of particle subsets.
Looking at the last line, we see that processors form permutations of particle subsets in this
additional step. For example, P0 generates the same combination as P3 and P6. P1 generates
the same combination as P4 and P7, and so on. For an arbitrary number p of processors,
the processors Pi, Pi+p/3, and Pi+2p/3 each generate a permutation of an offset-pattern.

To avoid redundant computations, each of the three processors involved computes one
third of the particle interactions within this combination of particle subsets based on the

processor’s rank. This means that Pi calculates the b i
p/3c

th
third of the interactions. In this

way, load balance is ensured.

The implementation of this algorithm and division of work into thirds for the special case,
is explained in more detail in chapter 4.

Embedded All Uniue Triplets Algorithm: Another improvement of the above algo-
rithm skips the first p iterations and starts immediately with p− 3 iterations in the inner
loop. Within these first p− 3 iterations the computations of several buffer combinations are
included.

21

3. Three Body Algorithms

For this purpose, for a particle triplet (i, j, k) it must no longer necessarily hold that
i ∈ b0, j ∈ b1 and k ∈ b2. In this case, the algorithm does not copy its own particles into all
three buffers at the beginning, but loads directly the particles of neighboring processors into
two of its buffers. For example, if its own particles are in b1 at the beginning, the particles
of the two neighboring processors are loaded into b0 and b2, respectively. As buffer to be
shifted in the first Phase, we choose b0. The procedure can be seen in Algorithm 2.

Algorithm 2: Embedded All Unique Triplets Algorithm
Adapted from: [KY14, Koa17]

Input: U: set of all processor ranks, Q: set of all particles binned into p subsets
{Q0 . . . Qp−1} using an atom decomposition

Output: All particles updated in place

1 for r ∈ U in parallel do
2 Copy Qr to b1
3 Copy particles from left neighbor to b0
4 Copy particles from right neighbor to b2
5 i← 0
6 for s← p− 1 to p%3 by −3 do
7 for j ← 0 to s - 1 do
8 if j 6= 0 or s 6= p then
9 shiftRight(bi)

10 else
11 calculateInteractions(b1, b1, b1)
12 calculateInteractions(b1, b1, b2)
13 calculateInteractions(b0, b0, b2)

14 if s = p− 3 then
15 calculateInteractions(b0, b1, b1)

16 calculateInteractions(b0, b1, b2)

17 i← (i+ 1)%3

// At this point do the same as the All Unique Triplets Algorithm

In the very first step, the algorithm performs all interactions between (b1, b1, b1), i.e.,
the interactions of the own particles, all interactions between (b1, b1, b2) and finally those
between (b0, b0, b2). During the first p − 3 iteration of the inner loop, the interactions
between (b0, b1, b1) are also calculated.

Afterwards, the algorithm continues as the All Unique Triplets Algorithm described above.
The algorithm thus saves a constant factor of communication steps.

Communication Avoiding All Uniue Triplets Algorithm: To save further commu-
nication, an extension in which processors are combined into groups that work together on
a particle subset is presented.

22

3.1. Direct Approaches

A replication factor f is used to divide the n particles into p/f uniform subsets of size
f ∗ n/p. The p processors are no longer arranged in a ring, but in a 2D torus with p/f
columns and f rows, where a column within the torus represents a group of processors that
own the same particle subset.

The algorithm works essentially in the same way as the All Unique Triplets Algorithm
for p/f processors. Each column in Figure 3.9 would represent a group of processors. The
computation of lines in each column is distributed over processors within the group. Since
individual lines have a different computation load, a function predictPos determines which
lines are assigned to which processor in the group based on the computation costs for the
individual lines. For example, a line that computes all interactions between the same particle
subset has less computation load than a line that computes the interactions between three
different particle subsets.

During a simulation step, the processors exchange particles with processors from the
same row of the neighboring groups, which is a horizontal communication as in the above
algorithms. After all interactions have been calculated, a reduction is first performed inside
the group before the particles are sent back to the owner groups.

We can visualize the save in communication if we consider again Figure 3.9. In the case
of the All Unique Triplet algorithm, we use 9 processors. In the case of the Communication
Avoiding Algorithm, we could use 36 processors with f = 4 to generate the same number of
columns and rows of offset-patterns. The additional communication step in the group at
the end of each simulation step is negligible compared to the communication that the All
Unique Triplet Algorithm would require if we use 36 processors.

Performance: P. Koanantakool and K. Yelick [KY14] focus in their results section on
the communication avoiding algorithm, in which processors work together in groups. They
show how the algorithm behaves with different values for the replication factor f by running
benchmarks on a Blue Gene/Q and a Cray XC30 with varying numbers of processors and
particles. For the Cray XC30, a pure MPI implementation was used, in which one process is
spawned per core. For the Blue Gene/Q a hybrid MPI/OpenMP implementation was used
to fully utilize the 4 hardware threads.

Small scaling benchmarks were performed with 8192 particles distributed on 1024 cores
on the Blue Gene/Q, and 6144 particles distributed on 1536 cores on the Cray XC30. On
the Blue Gene/Q, replication factors 1 to 32 scaled in powers of two were used. On the Cray
XC30 from 1 to 64 scaled in powers of two.

The results show that increasing the replication factor reduces the communication time,
but after a certain point the idle time of processors increases. However, with a proper choice
of the replication factor, a reduction in communication time of up to 99.98 percent can be
achieved [KY14]. With the Blue Gene/Q this can be seen with the factor f=8, with the
Cray XC30 with f=16.

23

3. Three Body Algorithms

It can also be seen that the computation time of the forces with the hybrid implementation
for the replication factors f < 4 are higher, compared to the other replication factors, where
the computation time remains constant. This is explained by the fact that the threads in
the hybrid implementation have too little work. In the pure MPI implementation used for
the Cray XC30, a constant computation time of the forces can be seen [KY14].

Further large scaling benchmarks with more particles and processors show the essentially
same behavior as the small scaling benchmarks.

For all other algorithms no benchmarks were executed.

Summary: An advantage over the Force Cube methods FD-3, CD-3, BD-3 and PD-3
in section 3.1.1, is that they implicitly provide a nearly perfect load balance, which can be
realized by a simple atom decomposition. In the case of p|n, each processor has exactly the
same number of triplets to evaluate. But even if this does not hold, n/p or n/p+ 1 particles
are distributed among processors, which does not have a large impact on the load balance.

The Slice- and Volume Symmetric Transformations from section 3.1.1 also provide a
more optimal distribution of work, which is implicitly given, but the remaining properties
of the Force Cube are preserved, such as the complicated communication scheme. The
algorithms of P. Koanantakool and K. Yelick [KY14] offer a more intuitive and always
constant communication scheme compared to the Force Cube methods, since particle subsets
are always shifted only between the immediate neighbors.

Compared to most algorithms for three-body interactions, which compute the two-body
forces separately from the three-body interactions, they can be easily integrated in the
algorithms of P. Koanantakool and K.Yelick [KY14]. For example, in the All Unique Triplet
Algorithm, two body potentials can be calculated between buffers b0 and b2 during the first
Phase.

Since it is guaranteed that only 3 processors are working on a particle subset at a time,
we see also a great opportunity in these algorithms to implement an efficient shared memory
implementation with appropriate allocation of locks to threads.

Another advantage over the force cube methods is that this algorithm can be modified to
a cell-based algorithm with spatial space decomposition, which allows the use of a cutoff
that, unlike the force cube methods, does not necessarily have to compute all the distances
between particles in the simulation domain, but only those to particles in neighboring cells.
This algorithm is described in more detail in section 3.2.4.

24

3.2. Approximate Approaches

3.2. Approximate Approaches

3.2.1. Multibody Multipole Methods

The Multibody Multipole Methods introduced by Lee et al. [LOG12] are approximate
algorithms that consider interactions between particle clusters that are far away from each
other as interactions between single particles. They are based on the Barnes-Hut algorithm,
with the possibility of computing u-tuples as well. For this description we restrict this again
to u = 3.

[0,2) [2,5) [5,8) [8,9)

Figure 3.10.: KD-tree used by the Multibody Multipole Methods to group particles at
different levels of granularity
Source: [LOG12]

The algorithms roughly follow this scheme: In the first step, a kd-tree [Ben75] is created in
a recursive function that groups particles at different granularity levels. See Figure 3.10 for
an example. During this recursion also so-called far field moments [LOG12] are computed
for the nodes of the tree, as well as their bounding boxes. Far field moments are calculated
based on the properties of the particles within each node and are used during the force
calculation to treat all particles inside a node as one big particle.

In the force calculation step, the tree structure is traversed to form particle/cluster triplets.
This is based on the dual tree approach of [MCG+01], so that instead of a single traversal
over the tree structure to form all triplets, three traversals over the same tree structure
are performed in a recursive method, which speeds up the formation of the triplets. The
recursion aims to terminate as early as possible by using the far field moments for each node
from the first step to check whether the result of the force calculation between three nodes
is within an error tolerance specified before the simulation [LOG12]. If this is the case, the
recursion can be aborted.

Instead of an extension of the Fast Multipole Methods [GR87], Lee et al. propose a
simpler method based on a Monte Carlo approximation, which restricts the potentials to
monotonically decreasing ones [LOG12]. The reason for this is that they use the minimum
and maximum distance between the bounding boxes of the respective nodes as the basis for
the approximation.

Performance: The results of Lee et al. [LOG12] were performed on a single core of an
AMD Phenom II X6 1100T processor. They use 1000 up to 10000 particles, where the time

25

3. Three Body Algorithms

for building the kd-tree is in the range of 10−4 and 2 ∗ 10−4 seconds. For the case of 1000
particles this is even less. The time for calculating the interactions is between 0.3 and 10
seconds. The results show that the cost of creating the kd-tree is negligible compared to the
computation of the forces.

Three different particle distributions were used for the multibody computation time
measurements: Uniformly distributed particles in the 3D unit cube, Uniformly distributed
particles in the 3D unit sphere, and an annulus distribution that distributes particles as a
ring in a 3D space. In the measurements, the runtime of the algorithm described above was
compared with that of a naive algorithm that computes all interactions within the simulation
domain [LOG12].

Compared to the naive algorithm, the measurements of the Monte Carlo based approxima-
tion for the sphere distribution showed the lowest speedup of about 50 for the two uniform
distributions. The experiment with the annulus distribution performed best, achieving
a speedup of 1000. For the given values, the algorithms were run with a relative error
parameter of ε = 0.001 [LOG12].

Summary: The advantage of this algorithm compared to approximate algorithms with
cutoff is that it is more suitable for calculating forces between distant particle clusters, and
thus for heterogeneous particle distributions. Another advantage is that the error bounds
of the force calculation can be determined by the user, so that the accuracy of the result
can be adapted to the particular case. A disadvantage is that no parallelization has been
presented for this algorithm so far, everything is executed on one core.

26

3.2. Approximate Approaches

3.2.2. Short Range Atom Decomposition

The cutoff algorithm of C.F. Cornwell and L.T. Wille [CW00] is based on an atom decompo-
sition where each processor owns exactly one particle. The algorithm works without newton3
and ensures that each processor stores all particles of other processors locally, which are
necessary to calculate all forces on its own particle itself. This eliminates the need to send
forces back and sum them up after a simulation step.

The algorithm arranges p processors in a virtual ring. Before a simulation step, all
processors create two neighbor lists for its own particle by each processor sending a copy of
its own particle once around the ring of processors. In this way, each processor can calculate
the distances between its own and all other particles and store a copy of each particle that
is within the cutoff distance c in neighbor list NL1. Particles that are between c and 2c are
stored in neighbor list NL2. An example can be seen in Figure 3.11, where i is the particle
owned by a processor r.

i j

k

l

NL2

NL1

Figure 3.11.: Visualization of the two neighbor lists created by the processor that owns
particle i. NL1 contains all particles that fall into the area of the inner circle
with a solid line. NL2 contains the particles between the two circles with a
solid line.

Cutoff Criterion: The algorithm applies the cutoff distance according to the second
criterion in section 2.1.2, where at least a pair out of the three distances has to be less than
c.

Pairwise Interactions: For pairwise force calculations, all impacts on i can be calculated
by r forming all pairs consisting of i and another particle from NL1. In the example in
Figure 3.11, these are the forces ~Fi←j and ~Fi←k.

Three-body Interactions: For three-body interactions, this is not possible only with
NL1. As an example, consider the triplet (i, j, l) with central particle j in Figure 3.11. As
can be seen, it is a valid triplet according to the cutoff criterion, since i and l are both in the
cutoff region of j, which is symbolized by the dashed circle. This triplet yields also forces on
i. However, since processor r has no information about l without NL2, it cannot calculate
the force Fi←jl. By using NL2, all particles which are necessary to compute all forces acting
on i are stored locally on processor r.

27

3. Three Body Algorithms

Triplet Creation: The algorithm forms all triplets that can be generated with the own
particle i and all other particles j, k with j 6= k 6= i in NL1 and calculates Fi←jk. In addition,
it computes all forces Fi←jk with a central particle j from NL1 and a particle k from NL2
so that the cutoff criterion is satisfied.

Summary: As no use is made of newton3, three partial derivatives must be calculated
for a triplet, which are carried out by three different processors. However, this completely
eliminates communication after a simulation step to sum up forces, since each processor
calculates all impacts on its own particle itself.

The computational overhead of the second list is within O(n) [CW00] and can be incor-
porated into the construction of NL1. All other operations during the simulation step are
within O(1) [CW00].

The results of C.F. Cornwell and L.T. Wille [CW00] show that with increasing number of
particles, and thus increasing number of processors, the total wall time remains constant
using NL2. In another benchmark, the forces of all three particles involved are calculated
by one processor and the results are sent back to the owner processors after a simulation
step. In contrast to the use of NL2, a linear increase of the wall time can be seen here,
which is caused by the communication. This algorithm can therefore be useful when the
communication outweighs the computation of forces.

The idea of this algorithm can be continued by using a regular grid decomposition with
linked cells instead of the atom decomposition and let processors own more particles. Neighbor
lists can be updated using the linked cells, which accelerates this process. Furthermore, this
algorithm can be implemented in existing frameworks that already work with neighbor lists
without much additional effort.

28

3.2. Approximate Approaches

3.2.3. Shift Collapse Algorithm

In 2013, Kunaseth et al. [KKN+13] presented a parallel cell-based algorithm for the
computation of u-tuples, where u is arbitrary, using a cutoff and exploiting newton3. The
algorithm uses a regular grid decomposition to divide the simulation domain and assigns
particles in a cell to one processor. The algorithm is based on the methods shown in
Figure 3.12 to reduce the computational cost for pairwise interactions and assumes periodic
boundary conditions. In the following, we refer only to the case u = 3.

(a) Full Shell (b) Half Shell (c) Eight Shell

Figure 3.12.: Methods for the force calculation of pairwise interactions. In Figure 3.12a,
all pairwise interactions in the neighborhood covered by the cutoff radius are
calculated without using newton3, which leads to double evaluation of pairs,
but we have not to care about race conditions. In Figure 3.12b, newton3 is
used and the pairs along the black paths are calculated. The central blue cell
and the yellow cells must be protected against race conditions since particles
in the blue as well as the yellow cells are updated in this step. The Eight
Shell Pattern in 3.12c [BDS07] reduces the area to be protected against race
conditions, while still using newton3. The central blue cell and the yellow cells
must be protected against race conditions.

29

3. Three Body Algorithms

(a) (b) (c)

Figure 3.13.: 3.13a shows the Full Shell Pattern consisting of all paths along 3 cells outgoing
from the blue one within the yellow cutoff region. The two paths in 3.13b
point in opposite directions and particle triplets along these paths generate
the same forces, which is why they can be combined into one path. The Eight
Shell Pattern in 3.13c is the result after the shift and collapse steps have been
applied to the pattern from 3.13a.

For simplicity, we assume that the simulation domain is divided into a regular grid, where
the side length of the cells is chosen such that starting from a given cell we can move exactly
2 steps in each direction to neighboring cells within the cutoff distance. In Figure 3.13a this
neighborhood is shown for the central blue cell and the area that can be reached within the
cutoff radius from particles in this cell is marked in yellow. For a processor r that owns
particles of one cell, let the set of all neighboring processors covered by the cutoff radius,
including itself, be given as Wr.

Full Shell Pattern: The algorithm iteratively creates all paths h = (r0, r1, r2) starting
from a given processor r0, where r1, r2 ∈Wr0 . This creates exactly one path with r0 = r1 = r2.
The second group contains all paths with r0 = r1 6= r2, where r2 is a direct neighbor of r0.
For the remaining paths, r0 6= r1 6= r2 holds, where r1 is a direct neighbor of r0 and r2 is a
direct neighbor of r1. The set of all these paths are called Full Shell Pattern and is depicted
in Figure 3.13a.

Shift: As can be seen, numerous possible paths are created starting from the central
blue cell, which lead to redundant force calculations, as the same paths just in the opposite
direction are created from the viewpoint of other cells. For example, if we look at the orange
path in Figure 3.13a, we can easily notice that the same path, only in the opposite direction,
is also generated if we would consider the lower left cell as the central one, thus a particle
triplet (i, j, k) along the orange path would be formed in reverse order by the lower left cell.
Since we use newton3 and calculate all forces on i, j and k in one step, both orders produce
the same results. Analogous to the methods for pairwise interactions, paths can be shifted
by relaxing the owner-compute rule [KKN+13]. Thus, the orange path can be shifted to the
upper quadrant in 3.13a.

Collapse: Figure 3.13b shows the upper right section from the Full Shell pattern 3.13a.
The blue and orange paths in this Figure point in the opposite direction and particle triplets

30

3.2. Approximate Approaches

formed from cells along the two paths generate the same forces, in the case of using newton3
[KKN+13]. To avoid this redundancy, paths pointing in the opposite direction are collapsed,
which produces the black path that has no specified direction as a result.

Computation Pattern: The set of all unique paths remaining after shifting and collaps-
ing is called a computation pattern in their terminology [KKN+13] and can be computed
offline for a given cutoff and decomposition as offset vectors before the simulation.

Using the Computation Pattern: During the simulation, the computation pattern is
used for each cell to traverse neighboring cells and form triplets of particles for computing
the forces. Triplets are formed by selecting one particle from each cell referenced in the
respective path. This can be executed in parallel, so that the computation pattern for
multiple cells is executed simultaneously by multiple processors.

Performance: In their benchmarks, Kunaseth et al. [KKN+13] compare 3 different
algorithms in a distributed memory environment: FS-MD, SC-MD and Hybrid-MD, where
FS-MD uses the Full Shell Pattern, SC-MD the computation pattern from the algorithm
presented above and Hybrid-MD a combination of the Full Shell Pattern with Verlet Lists.

For the strong scale benchmarks, 7.7 ∗ 105 uniform distributed particles are used. The
result shows an almost perfect scaling behavior with 92.6% efficiency compared to the ideal
scaling for the SC-MD algorithm on an Intel Xeon cluster at 768 processors. The other two
variants, on the other hand, already show a drop in speed up from about 100 processors and
only achieve an efficiency of 24.5% (FS-MD) and 17.1% (Hybrid-MD) at 768 processors.

Furthermore, the runtime for a simulation step of the three variants with 576 processors on
the Intel Xeon cluster and different particle densities from 1 to 2500 particles per processor
is compared. The SC-MD algorithm has always a significantly lower runtime compared to
the FS-MD algorithm, which can be explained by the reduced import volume. Until 2095
particles per core the SC-MD algorithm is faster than the Hybrid-MD. From this point on,
however, the Hybrid-MD algorithm performs better, which can be explained as follows: The
SC algorithm reduces the import volume, which remains constant as the number of particles
within the cells increases, whereas the Hybrid-MD algorithm reduces the number of particle
triplets through the neighbor list, which has a beneficial effect on the runtime when the
particle distribution is denser [KKN+13].

Summary: Since the algorithm builds upon the methods from Figure 3.12 it can be
easily implemented in frameworks that already work with these techniques for two-body
potentials. As mentioned before, this computation pattern can be created offline for one or
more fixed u, for example u = 3, or u = 2, and a given cutoff, which allows the integration
of different u-body terms of a potential in addition to 3 body interactions. The algorithm
can be implemented in both shared and distributed memory environments. In the case
of the shared memory implementation, the Eight Shell Pattern reduces the area to be
protected against race conditions. Furthermore, by reducing the number of computation
paths, the time required to form unique cell combinations is completely eliminated, since
such a computation pattern contains only unique paths.

31

3. Three Body Algorithms

3.2.4. Cutoff Triplet Algorithm

Based on the algorithms from section 3.1.2, the extension of P. Koanantakool and K. Yelick
[KY14] mentioned above is presented here, which allows the use of a cutoff radius and
is suitable for simulations with periodic boundary conditions. It can be implemented for
arbitrary u-body interactions, but in the following we restrict this to u = 3. It is a cell-based
algorithm that subdivides the physical simulation domain into a regular grid and assigns
the particles within a cell to one processor.

-1,-1 -1,0 -1,1 -1,2 -1,-2

0,-1 0,0 0,1 0,2 0,-2

1,-1 1,0 1,1 1,2 1,-2

2,-1 2,0 2,1 2,2 2,-2

-2,-1 -2,0 -2,1 -2,2 -2,-2

(a)

-1,-1 -1,0 -1,1 -1,2 -1,-2

0,-1 0,0 0,1 0,2 0,-2

1,-1 1,0 1,1 1,2 1,-2

2,-1 2,0 2,1 2,2 2,-2

-2,-1 -2,0 -2,1 -2,2 -2,-2

(b) (c)

-1,-1 -1,0 -1,1 -1,2 -1,-2

0,-1 0,0 0,1 0,2 0,-2

1,-1 1,0 1,1 1,2 1,-2

2,-1 2,0 2,1 2,2 2,-2

-2,-1 -2,0 -2,1 -2,2 -2,-2

(d)

Figure 3.14.: Illustration of the Cutoff Triplet Algorithm using a 2D regular grid decom-
position with dimx = dimy = 7 and a cutoff that spans qx = qy = 2 cells.
Note that the x-axis is here at the vertical, the y-axis at the horizontal. The
numbers within the cells represent relative periodic differences starting from
a cell, where the first number represents the x coordinate, the second the y
coordinate.
Sources: 3.14a: [KY14]; 3.14b, 3.14c, 3.14d adapted from [KY14]

In the following, we consider the 2D domain in Figure 3.14 to describe the algorithm. In
a 3D decomposition, the algorithm is based on the same scheme.

Let the number of subdivisions of the simulation domain along each dimension be given
by dimx and dimy. The number of processors is given by p = dimx ∗ dimy and processors
are virtually arranged with Cartesian coordinates within the simulation domain.

Let qx be the number of neighboring cells along the x-dimension covered by the cutoff
radius:

qx =

⌈
c ∗ dimx

dx

⌉
(3.3)

Where dx is the physical domain size along the x-dimension. Analogously, qy can be
calculated.

In order to avoid overlapping of neighboring cells, the following restriction must hold
[Koa17]:

1 < qx <
dimx

2
(3.4)

Analogously, the same must hold for qy.

32

3.2. Approximate Approaches

Define the set of all processor ranks as:

U = {(x, y) ∈ Z2 | 0 ≤ x < dimx ∧ 0 ≤ y < dimy} (3.5)

Let r ∈ U be the rank of a given processor and the cutoff window wr be all cells that we
need to compute interactions in the given cutoff radius for rank r. In Figure 3.14a, the light
blue surrounding represents the cutoff window wr of the processor r = (1, 1). Note: The
coordinates in Figure 3.14a are relative to r = (1, 1), so the dark blue cell with (0,0) actually
corresponds to rank (1,1).

If one now computes all interactions between triplets of cells that can be formed in wr,
redundancy arises when using newton3, since other processors would generate a permutation
of cells analogously as explained in the Shift-paragraph of section 3.2.3.

To avoid this, a processor r considers only ranks in wr, that have a greater or equal
periodic difference relative to its own in lexicographic manner.

The periodic difference of two ranks a, b ∈ U in x-dimension is defined as:

ax 	 bx =

{
ax − bx, if |ax − bx| ≤ dimx

2

sgn(bx − ax) ∗ (ax ◦ bx), otherwise.
(3.6)

Where ax ◦ bx is the periodic distance in x-dimension between a and b:

ax ◦ bx =
(
min(|ax − bx|, dimx − |ax − bx|)

)
(3.7)

The periodic distance and difference in the y-dimension can be calculated analogously.

A processor rank r1 ∈ wr is now only considered if:

(rx 	 r1x > 0) ∨ (rx 	 r1x = 0 ∧ ry 	 r1y ≥ 0) (3.8)

In the following, we denote the set of all these ranks as wlr. In Figure 3.14b, this range is
shown in yellow for processor r = (1, 1). Similarly, in Figure 3.14c, the range for processor
r = (1, 2) is shown in purple. The coordinates within the cells represent the periodic
differences to the neighborhood in wr.

Algorithm 3: Cutoff Triplet Algorithm
Adapted from: [KY14, Koa17]

Input: U: set of all processor ranks, Q: set of all particles binned into p subsets
{Q0 . . . Qp−1} using a regular grid decomposition

Output: All particles updated in place

1 for r ∈ U in parallel do
2 for r1 ∈ wlr do
3 for r2 ∈ wlr ∩ wlr1 do
4 Calculate all interactions between particles from r, r1 and r2

5 Update particles of r

33

3. Three Body Algorithms

The algorithm is executed in parallel for each rank r ∈ U by a processor, as shown in
Algorithm 3.

The loop in line 2 iterates in lexicographic order over all ranks r1 ∈ wlr and imports their
particles. A rank a ∈ wlr is lexicographically less than b ∈ wlr with respect to r if:

((r 	 a)x < (r 	 b)x) ∨ ((r 	 a)x = (r 	 b)x ∧ (r 	 a)y < (r 	 b)y) (3.9)

The inner loop in line 3 iterates starting from r1 in lexicographic order over ranks r2 ∈
wlr ∩ wlr1, imports their particles and calculates all interactions between particles from r,
r1 and r2.

For example, assume that the algorithm is executed from the viewpoint of r = (1, 1) and
the loop in line 2 imported the particles from r1 = (1, 2) in this substep. Thus, the inner
loop in line 3 would iterate over all ranks r2 that are within the red highlighted area in
Figure 3.14d.

The given pseudo-algorithm represents the high-level procedure and can be implemented
in practice like the direct algorithms from section 3.1.2 with 3 buffers, where b0 always
contains the particles of the respective processor, b1 and b2 are shifted between processors
during the simulation step. At the beginning, each processor copies its own particles from
b0 to b1 and b2. The loop in line 2 of the pseudo-algorithm would shift buffer b1, the loop in
line 3 would shift b2. Since all processors arrange their neighbors in the same lexicographic
manner, a uniform scheme can be used to shift buffers. Consider again the processor with
rank r = (1, 1) and suppose it imports the particles from processor (1, 2), it would send the
current particles to processor (1, 0), which corresponds to rank (1, 2) mirrored by its own
rank (1, 1). Details of this implementation in C++ are explained in chapter 4.

Summary: The following properties can be stated for this algorithm: Since it is a
cell-based algorithm, the number of assigned particles depends on their distribution within
the simulation domain, which is reflected directly in the load balance among processors.
However, since only particles from neighboring cells covered by the cutoff radius are imported,
the number of distance checks is reduced in contrast to algorithms that distribute particles to
processors without relation to their position in the simulation domain. Thus, the computation
of distance checks can be significantly reduced compared to the algorithm from section
3.2.2, which uses an atom decomposition. The same applies analogously to the force cube
algorithms, which would have to check all distances in the case of a cutoff implementation.

Analogous to the All Unique Triplet Algorithm from section 3.1.2, no redundant shifts are
performed, since the lexicographic filtering and ordering ensures that a given combination of
particle subsets Qa, Qb, Qc is formed only once during the simulation step. Therefore, each
shift is necessary and leads to one computation step.

One advantage over the Shift Collapse algorithm is that this algorithm already provides a
scheme for exchanging particle subsets between processors, ensuring that only one processor
is working on one of the three copies of a particle subset at any given time. The Shift Collapse

34

3.3. Summary

algorithm, on the other hand, computes only the set of all cell combinations, so there is
no redundancy when using newton3. However, a scheme for processing the computation
pattern is not provided by the Shift Collapse algorithm.

Just as mentioned earlier for the direct algorithms from section 3.1.2, pairwise interactions
can be easily integrated and a distributed as well as a shared memory implementation is
possible.

3.3. Summary

In this chapter, we presented several algorithms that enable the efficient computation of
three-body potentials for Molecular Dynamics Simulations in high performance computing.
Most algorithms divide the problem to be computed into parts and distribute them across
multiple processors to speed up the computation compared the serial execution. We have
presented direct algorithms in section 3.1 that compute all triplet interactions between all
particles in the simulation domain and approximate ones in section 3.2 that either use cutoff
or treat distant particle clusters as one big particle.

In the group of the direct ones, we have presented algorithms in sections 3.1.1 that work
on the basis of the Force Cube and distribute particle triplets to be computed among several
processors. Furthermore, we have described a number of shifting algorithms in section 3.1.2,
in which particles are distributed among several processors and exchanged between the
processors during a simulation step in order to compute all interactions.

We presented an approximate algorithm in section 3.2.1 based on the Barnes Hut algorithm,
which is suitable to compute three-body interactions.

Furthermore, we have presented an algorithm in section 3.2.2 that uses two neighbor lists,
so that without using newton3 all impacts on a particle i can be calculated on the respective
processor that is responsible for particle i.

Last but not least, we presented two cell-based algorithms, where the first algorithm
in section 3.2.3 builds upon existing concepts for pairwise interactions and creates a set
of unique paths to neighboring cells to avoid redundant cell combinations and thus force
calculations. Building on the idea of the first, the second algorithm in section 3.2.4 provides
the ability to form all necessary cell combinations without computing such paths by having
all processors arrange their neighborhoods in lexicographically the same way. By shifting
particle information to neighboring processors, all necessary particle triplets can also be
formed in this way. Both algorithms make use of newton3.

Based on this literature review, we conclude that the direct and cutoff shifting algorithms
of P. Koanantakool and K. Yelick [KY14] are currently the state-of-the-art algorithms for
three-body calculations in MD simulations, since they follow an intuitive scheme and still
bring a lot of positive features compared to the other algorithms.

Compared to the Force Cube methods, the direct algorithms of P. Koanantakool and K.
Yelick [KY14] implicitly provide an ideal load balance, furthermore the summation of the

35

3. Three Body Algorithms

particles is easier to realize than in the Force Cube methods, because at the end of each
simulation step only three buffers have to be summed up.

Since their cutoff extension is cell-based, fewer distance checks are required compared to
the Short Range Atom Decomposition algorithm and the Force Cube algorithms with cutoff.

Compared to the Shift Collapse algorithm, the cutoff extension of P. Koanantakool and
K. Yelick [KY14] provides a scheme for processing neighboring cells, which is why we prefer
this algorithm.

Furthermore, the algorithms use the newton3 optimization, while still keeping communi-
cation at a minimum.

Both the direct and the cutoff algorithms offer the possibility of a communication avoiding
implementation, which stores more particles per processor by a replication factor to further
save communication.

Last but not least, we can state that the algorithms can be implemented for distributed
memory environments, shared memory environments or hybrid.

36

Part III.

Implementation and Results

37

4. Implementation

In this chapter we present the implementation of three algorithms described in chapter 3 in
C++. We have chosen the algorithms of P. Koanantakool and K. Yelick [KY14] because
they present both direct and approximate algorithms with cutoff distance based on the same
concept. In this way, we can gain insight into both methods and better compare the results
of the direct and cutoff algorithms to see the effects of introducing a cutoff. Furthermore,
these algorithms work with the newton3 optimization, while still keeping communication at
a minimum, except the Naive All Triplet Algorithm. We have chosen the cutoff algorithm of
P. Koanantakool and K. Yelick [KY14] over the Shift Collapse algorithm from [KKN+13]
because it already provides a scheme for processing the neighboring cells, with only one
processor working on one of the three copies of a particle subset at a time.

Within the presented algorithms we restrict ourselves in this thesis to the Naive All
Triplets Algorithm, the All Unique Triplets Algorithm and the Cutoff Triplet Algorithm.
The algorithms will be abbreviated as NATA, AUTA, and CTA respectively in the following.
All algorithms are implemented in SPMD fashion, where SPMD stands for Single Program
Multiple Data. The algorithm is executed on several processors in parallel. Each processor
gets exactly one piece of the problem to be computed and executes the algorithm on it. Since
particle information must be exchanged between processors in the course of a simulation
step, communication between them is required. We use the MPI (Message Passing Interface)
standard to enable communication between processors. As a concrete implementation of the
MPI standard, we use OpenMPI1. In some specific sections of the code we use the linear
algebra library Eigen2.

The execution of a simulation is essentially the same for all three algorithms and can
be visualized with the Figure 4.1. All steps marked in yellow are not directly related to
the implementation of an algorithm, but are required for its execution. The central node
in purple describes a simulation step that is executed with one of the three algorithms.
As described in section 3.1.2 and 3.2.4, all three algorithms alternate between exchanging
particles and computing interactions between three particle subsets. In the following, a force
calculation and communication step is referred to as a substep.

1https://www.open-mpi.org/
2https://eigen.tuxfamily.org/index.php?title=Main_Page/

38

https://www.open-mpi.org/
https://eigen.tuxfamily.org/index.php?title=Main_Page/

4.1. Framework

All simulation steps done
Not all simulation steps done

Distribute Particles (Domian Decomposition)

Update Particles

Execute Simulation Step With Multiple Substeps

Arrange Processors (Topology)

Update Domain Decomposition

Figure 4.1.: Overview of a simulation flow as we use it in our implementation

4.1. Framework

Before going into the implementation of the three algorithms, we first briefly present the
implementation of classes, methods, and structs that are required by all algorithms to
perform a simulation step.

Particle: A particle is represented by a C++ struct that stores ID, position, velocity,
acceleration, force and mass. An additional boolean value is used to symbolize a dummy
particle. The struct implements the Update method, which uses a Velocity Verlet Integration
to update the particle’s position, velocity, and acceleration after a simulation step. The
method GetSqrDistPeriodic calculates the periodic squared Euclidean distance within the
entire simulation domain of the particle to another particle. The periodic distance in one
dimension is defined as

distp(x, y) = min(|x− y|, d− |x− y|) (4.1)

, where d is the domain size in one specific dimension. For vectors we apply equation 4.1
component-wise and calculate the squared Euclidean 2-norm from it. We use this later in
the CTA algorithm to test against the squared cutoff distance. The method ResetForce

is called before each simulation step for all particles, so that the respective algorithm can
calculate the forces for the upcoming simulation step. The GetMPIType method returns a
MPI Datatype that describes the size and contents of the struct. To store particles, we use
a std::vector<Particle>.

39

4. Implementation

1 struct Pa r t i c l e {
2 int ID ;
3 double pX, pY, pZ ;
4 double vX, vY, vZ ;
5 double aX , aY , aZ ;
6 double fX , fY , fZ ;
7 double mass ;
8 bool isDummy ;
9

10 void Update (double dt , Eigen : : Vector3d gForce) {
11 // update p a r t i c l e po s i t i on , v e l o c i t y and a c c e l e r a t i o n with a Ve loc i ty

Ver l e t I n t e g r a t i on us ing the c a l c u l a t ed va lue s fX , fY and fZ
12 }
13 void ResetForce () { fX=fY=fZ=0;}
14 double GetSqrDis tPer iod ic (Pa r t i c l e o , Eigen : : Array3d phys ica lDomainSize) {}
15 stat ic MPI Datatype GetMPIType () {// r e tu rn s a MPI Datatype that d e s c r i b e s

a l l conta ined Data in t h i s s t r u c t }
16 }

Listing 4.1: C++ struct that describes a particle

Potential: To calculate the forces between a given particle triplet (i, j, k), we use the
Axilrod-Teller potential, as this is a common potential for short-range Molecular Dynamics
Simulations. We implement the base class Potential, which declares a virtual method
CalculateForces. The AxilrodTeller class implements the CalculateForces method
using the proposed implementation of G. Marcelli [Mar01]. It computes, for a given particle
triplet (i, j, k), all the resulting forces on i, j and k in one step using newton3. We do not
go into detail about the implementation, as this would go beyond the topic of this thesis.

Topology: To enable communication between processors, we implement the class
Topology, which uses the MPI command MPI Cart create3 to virtually arrange processors
periodically in either one, two, or three dimensions. The command returns a new MPI
communicator in which a specific rank (integer value) is assigned to each participating pro-
cessor. With the help of the method MPI Cart coords4, the virtual position of a processor
can be determined as a Cartesian coordinate on the basis of the rank. The class Topology

implements the methods GetLeftNeighbor(int dim) and GetRightNeighbor(int dim),
which return the respective processor rank of the neighboring processor in a given dimen-
sion using the MPI command MPI Cart shift5. Furthermore, the methods GetWorldSize

and GetWorldRank are implemented, which return the total number of processors and the
own rank within all processors. For this purpose the MPI commands MPI Comm rank6 and
MPI Comm size7 are used. In the following, the own rank of a processor is denoted by
worldRank, the number of all processors by worldSize.

Domain Decomposition: To distribute particles within the simulation domain among
processors before the simulation starts, we use a simple atom decomposition for the NATA
and AUTA algorithms, which assigns n

p particles to each processor based on its rank,

3https://www.open-mpi.org/doc/v4.1/man3/MPI_Cart_create.3.php
4https://www.open-mpi.org/doc/v4.1/man3/MPI_Cart_coords.3.php
5https://www.open-mpi.org/doc/v4.1/man3/MPI_Cart_shift.3.php
6https://www.open-mpi.org/doc/v4.1/man3/MPI_Comm_rank.3.php
7https://www.open-mpi.org/doc/v4.1/man3/MPI_Comm_size.3.php

40

https://www.open-mpi.org/doc/v4.1/man3/MPI_Cart_create.3.php
https://www.open-mpi.org/doc/v4.1/man3/MPI_Cart_coords.3.php
https://www.open-mpi.org/doc/v4.1/man3/MPI_Cart_shift.3.php
https://www.open-mpi.org/doc/v4.1/man3/MPI_Comm_rank.3.php
https://www.open-mpi.org/doc/v4.1/man3/MPI_Comm_size.3.php

4.1. Framework

regardless of particle positions. For the CTA algorithm, we use a regular grid decomposition
with periodic boundary conditions, which evenly divides the simulation domain into a grid
and assigns the particles of each cell to a processor based on its virtual position assigned
by the Topology. In the case of a regular grid decomposition, after each simulation step
the method RegularGrid::Update is called, which exchanges particles between neighboring
processors if they have moved beyond the local domain. We do not go into more detail
about this implementation, since it is not directly related to the algorithms, but only serves
as a tool for executing a simulation step. It is based on the spatial space decomposition
algorithm of S. Plimpton [Pli95].

An overview of the classes is shown in the Figure 4.2. Note: This diagram is used only
to visualize the most necessary relationships between classes and their methods. Some
associations and auxiliary methods are not shown here.

Algorithm
- potential : Potential
b0 : std::vector<Particle>
b1 : std::vector<Particle>
b2 : std::vector<Particle>
+ SimulationStep()
sumUpParticles()
calculateInteractions()

Potential

+ CalculateForces()

CTA

+ SimulationStep()
- sendBackParticles()

RegularGrid

+ Update()

Simulation
- algorithm : Algorithm
- topology : Topology
- decomposition : Decomposition
+ StartSimulation(steps : int)

AtomDecomposition

+ Update()

AUTA

+ SimulationStep()
- sendBackParticles()

AxilrodTeller

+ CalculateForces()

Topology

+ GetLeftNeighbor(dim : int)
+ GetRightNeighbor(dim : int)
+ GetWorldSize()
+ GetWorldRank()

NATA

+ SimulationStep()
- calculateProcessed()

Decomposition
- myParticles : std::vector<Particle>
+ GetMyParticles()
+ Update()

Figure 4.2.: Simplified class diagram that provides a rough structure about our implementa-
tion. The classes in purple refer directly to the algorithms whose implementation
is presented in this chapter.

41

4. Implementation

4.2. Algorithms

To be able to reuse program code, we use inheritance and implement certain methods
shared by all three algorithms in the base class Algorithm. This base class implements the
methods calculateInteractions, which calculates all unique particle interactions with
three given buffers. The pseudo-algorithm is shown in Algorithm 4. Furthermore, the base
class implements sumUpParticles, a method that sums the forces of all particles from three
given buffers. A virtual method SimulationStep is implemented by the three derived classes
(NATA, AUTA and CTA), which perform a simulation step based on the respective algorithm.

Algorithm 4: The algorithm generates all unique triplets between particles from
three given buffers b0, b1 and b2. If two or three buffers have the same owner (i.e.
the same particle subsets), the index of the respective loop is adjusted so that
only different particles are used within a particle triplet to satisfy the requirement
(i < j < k). The function checkCutoff tests in the case of the CTA algorithm
whether the distances between the three particles are within the cutoff radius.

Input: Particlesubsets in b0, b1, b2 and owner ranks of b0, b1, b2
Output: calculated forces between all possible particle triplets in place

1 for i ← 0 to b1.size() - 1 do
2 if b0[i].isDummy then
3 continue

4 b1LoopIndex← 0
5 if b1Owner == b0Owner then
6 b1LoopIndex← i+ 1

7 for j ← b1LoopIndex to b1.size() - 1 do
8 if b1[j].isDummy then
9 continue

10 b2LoopIndex← 0
11 if b2Owner == b1Owner then
12 b2LoopIndex← j + 1

13 else if b2Owner == b0Owner then
14 b2LoopIndex← i+ 1

15 for k ← b2LoopIndex to b2.size() - 1 do
16 if b2[k].isDummy then
17 continue

// only relevant for the cutoff algorithm

18 if not checkCutoff(b0[i], b1[j], b2[k]) then
19 continue

20 potential.CalculateForces(b0[i], b1[j], b2[k])

42

4.2. Algorithms

4.2.1. Naive All Triplets Algorithm

The Naive All Triplets Algorithm can be implemented with a nested for loop as described
in 3.1.2. The pseudo-algorithm for NATA is shown in Algorithm 5.

Simulation Step: In the function SimulationStep, the particles in b0 are copied to b1
and b2 using the vector assignment operator8. The outer for loop in line 17 has worldSize
iterations and shifts the particles in buffer b1 to the right neighbor in each substep. The
inner loop in line 18 first checks whether the particle interactions between the three current
particle subsets in b0, b1 and b2 have already been calculated or not, calculates them if
necessary and shifts the particles in b2 to the right neighbor. Since the two loops shift
exactly worldSize times around the ring of processors, each processor ends up with its
original particles in b1 and b2, making the sendBackParticles step unnecessary. In the
final step of a simulation step, the partial forces in b1 and b2 are added to those in b0 and
the Particle::Update method is called for all particles.

calculateProcessed: Since the naive algorithm generates redundant buffer combinations
during a simulation step, each processor stores all particle subset combinations that have
already been computed in the list alreadyProcessed, which is cleared at the beginning
of each simulation step. To check whether a combination of three given particle subsets
has already been evaluated, or is computed in this substep by this or another proces-
sor, the function calculateProcessed in Algorithm 5 computes the owner ranks of the
particle subsets located in b0, b1 and b2 of processor i from the perspective of proces-
sor i, creates a Triplet struct from it and stores it in a C++ std::vector<Triplet>.
The triplet struct stores three indices and overrides the == operator which checks for
a given triplet whether it is a permutation of its own stored indices. If this combina-
tion has not yet been computed, true is returned only if i matches the own worldRank.
This prevents that more than one processor computes the same particle triplets, if in
a substep multiple processors generate a permutation of the same buffer combination.
Only the processor with the lowest rank out of all processors that have generated a per-
mutation computes the interactions. All other processors are idle during this substep.

8https://en.cppreference.com/w/cpp/container/vector/operator%3D

43

https://en.cppreference.com/w/cpp/container/vector/operator%3D

4. Implementation

Algorithm 5: Naive All Triplets Algorithm

Input: decomposition: An atom decomposition that has all particles divided
into n/p equal subsets

Output: particles of this processor updated in place

1 Function calculateProcessed(step, calculate):
2 for i ← 0 to worldSize - 1 do
3 b1Rank ← mod(i− (step/worldSize), worldSize)
4 b2Rank ← mod(i− step, worldSize)
5 t← Triplet(i, b1Rank, b2Rank)
6 if not processedContainsPermutation(t) then
7 processed.push back(t)
8 if i == worldRank then
9 calculate← true

10 Function SimulationStep():
11 b0← decomposition.getMyParticles()
12 b1← copy(b0)
13 b2← copy(b0)
14 b1Owner ← b2Owner ← worldRank;
15 alreadyProcessed.clear()
16 step← 0
17 for i ← 0 to worldSize - 1 do
18 for j ← 0 to worldSize - 1 do
19 calculate← false
20 calculateProcessed(step, calculate)
21 if calculate then
22 CalculateInteractions(b0, b1, b2, worldRank, b1Owner,

b2Owner)

23 if worldSize > 1 then
24 b2Owner ← shiftRight(b2, b2Owner)
25 step← step+ 1

26 if worldSize > 1 then
27 b1Owner ← shiftRight(b1, b1Owner)

28 sumUpParticles()

29 decomposition.setMyParticles(b0)

44

4.2. Algorithms

shiftRight: The exchange of data is implemented within the method shiftRight using
the MPI command MPI Sendrecv replace9, which sends the data in a local buffer to one
processor, receives data from another processor and stores it in the same buffer in a single
step. The implementation is shown in Code Snippet 4.2. As parameters we pass a pointer to
the respective buffer, the number of elements in it, the MPI Datatype for the particle struct,
the receiver and sender rank, as well as the communicator, which has been created by the
topology object at the beginning. To keep track of the original owner of a buffer that is
shifted around processors during the simulation step, we pass the owner rank as the MPI TAG

parameter for the sending operation and use an MPI Status, so we can return the owner of
the received buffer. The MPI instruction MPI Sendrecv replace saves us work by internally
taking care of the sequence of the send and receive operation, thus preventing deadlocks,
which we would have to solve manually. An example of how to handle this manually would
be to have all processors with even rank send first and all with odd rank receive and vice
versa. A restriction of this function is that the number of sent and received elements must be
equal, which is why in this algorithm, and also in AUTA algorithm, we use dummy particles
in the decomposition at the beginning of the simulation, so that each processor can store the
same number of particles even if p|n does not hold. However, at most one dummy particle
is used per buffer, so this does not have a large impact on runtime.

1 int s h i f tR i gh t (std : : vector<Par t i c l e>& buf , int owner)
2 {
3 MPI Status s t a tu s ;
4 MPI Sendrecv replace (buf . data () , buf . s i z e () ,
5 ∗mpiParticleType , r ightNeighbor , owner ,
6 l e f tNe ighbor , MPI ANY TAG,
7 ringTopology−>GetComm() , &s ta tu s) ;
8 return s t a tu s .MPI TAG;
9 }

Listing 4.2: Implementation of the buffer exchange using the MPI command
MPI Sendrecv replace, which internally takes care of the send and receive
sequence. We use the MPI Tag to send along the original owner of a buffer.

9https://www.open-mpi.org/doc/v4.1/man3/MPI_Sendrecv_replace.3.php

45

https://www.open-mpi.org/doc/v4.1/man3/MPI_Sendrecv_replace.3.php

4. Implementation

4.2.2. All Unique Triplets Algorithm

In this section, we present our implementation of the AUTA algorithm, which, unlike the
NATA algorithm, does not perform redundant shifts. As explained in section 3.1.2, this
algorithm also uses a double nested for loop. However, b0 is not fixed in this algorithm,
but is also shifted around the ring of processors during a simulation step. At the end of
each outer loop iteration, a new buffer is chosen to be shifted in the next Phase. The
pseudo-algorithm is shown in Algorithm 6. In our implementation, the function pickBuffer

returns a pointer to the buffer bi based on the given value i. The getOwner function returns
a reference to the respective variable b0Owner, b1Owner or b2Owner based on the parameter
i. In the first substep, no shift is performed, only a force calculation step. For each further
substep a shift is executed before the force calculation. By this shifting scheme the algorithm
generates an offset-pattern as shown for 9 processors in Figure 3.9.

Special Case: To cover the special case if 3|p holds, we implement the function
calculateOneThirdOfInteractions which, based on the rank of a processor, splits the
work of the three participating processors Pa, Pb, Pc that have formed a permutation of an
offset-pattern. The idea is that each processor first arranges its buffers in the same way
so that b0 of Pa is equal to b0 of Pb and b0 of Pc. The same applies to b1 and b2 of the
respective processors. Then, based on the thirdID, each processor is assigned a part of the
outer loop in Algorithm 4. If the number of particles in b0 cannot be divided by 3, processor
Pc is assigned the remaining part. We modify Algorithm 4 so that we can pass a starting
value and a number of steps for the loop index i.

shiftRight: To shift buffers we use the same procedure as shown in Code Snippet 4.2.

sendBackParticles: Unlike in the NATA algorithm, the processors do not necessarily
have their own buffers at the end of a simulation step, which can be seen for example in
Figure 3.9. We implement the method sendBackParticles which sends the three buffers b0,
b1, b2 to their original owners based on the values in b0Owner, b1Owner and b2Owner. We
use the non-blocking MPI commands MPI Isend10 and MPI Irecv11 for the data exchange.
First, all processors initiate up to three sends (for b0, b1 and b2). Then, we receive the
data from other processors. Since in this algorithm all buffers have the same size, as we use
dummy particles, we do not need to check for the amount of data to be received. Note: It is
important to use non-blocking instructions in this case, otherwise we provoke a deadlock
because no processor leaves the sending region until all the data has arrived at the receiver,
which would never happen because the receiver also does not leave the sending region if it
uses a blocking instruction. The corresponding Code Snippet can be found in the appendix
in section A.

10https://www.open-mpi.org/doc/v4.1/man3/MPI_Isend.3.php
11https://www.open-mpi.org/doc/v4.1/man3/MPI_Irecv.3.php

46

https://www.open-mpi.org/doc/v4.1/man3/MPI_Isend.3.php
https://www.open-mpi.org/doc/v4.1/man3/MPI_Irecv.3.php

4.2. Algorithms

Algorithm 6: All Unique Triplets Algorithm

Input: decomposition: An atom decomposition that has all particles divided
into n/p equal subsets

Output: particles of this processor updated in place

1 Function calculateOneThirdOfInteractions(thirdID):
2 bufList← [(b0, b0Owner), (b1, b1Owner), (b2, b2Owner)]
3 sortAscendingByOwner(bufList)
4 start← thirdID ∗ getBuf(bufList[0]).size()/3
5 steps← getBuf(bufList[0]).size()/3
6 if thirdID == 2 then
7 steps← getBuf(bufList[0]).size()− 2 ∗ steps
8 CalculateInteractions(

9 getBuf(bufList[0]), getBuf(bufList[1]), getBuf(bufList[2]),
10 getOwner(bufList[0]), getOwner(bufList[1]), getOwner(bufList[2]),
11 start, steps
12)

13 Function SimulationStep():
14 b0← decomposition.getMyParticles()
15 b1← copy(b0)
16 b2← copy(b0)
17 b0Owner ← b1Owner ← b2Owner ← worldRank
18 i← 2
19 bi ← pickBuffer(i)
20 for s← worldSize to mod(worldSize, 3) by −3 do
21 for j ← 0 to s - 1 do
22 if j > 0 or s 6= worldSize then
23 getOwner(i)←shiftRight(bi, getOwner(i))

24 CalculateInteractions(b0, b1, b2, b0Owner, b1Owner, b2Owner)

25 i = mod((i+ 1), 3)
26 bi ← pickBuffer(i)

27 if mod(worldSize, 3) == 0 then
28 getOwner(i)←shiftRight(bi, getOwner(i))
29 thirdID ← worldRank/(worldSize/3)
30 calculateOneThirdOfInteractions(thirdID)

31 if worldSize > 0 then
32 sendBackParticles;

33 sendBackParticles()

34 sumUpParticles()

35 decomposition.setMyParticles(b0)

47

4. Implementation

4.2.3. Cutoff Triplet Algorithm

In this section, we present our implementation of the Cutoff Triplet Algorithm (CTA) from
section 3.2.4. The implementation can be used with a 1D, 2D, as well as 3D regular grid
decomposition. In the following, we restrict ourselves to the implementation for a 2D
decomposition, since this variant is a good way to illustrate the algorithm. The variants for
the 1D and 3D decompositions are implemented analogously and are therefore not discussed
in detail. Each processor has a virtual position within the simulation domain, which can be
represented as a Cartesian coordinate and was assigned to the processor at the beginning by
the Topology. Using the MPI command MPI Cart coords we can request these coordinates
for a specific processor. In the following, these Cartesian coordinates are called the rank of
a processor. In Figure 4.3a such ranks are exemplarily shown for 49 processors in a 7× 7
decomposition.

0,0 1,0 2,0 3,0 4,0 5,0 6,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3

0,4 1,4 2,4 3,4 4,4 5,4 6,4

0,5 1,5 2,5 3,5 4,5 5,5 6,5

0,6 1,6 2,6 3,6 4,6 5,6 6,6

(a)

-1,-1 0,-1 1,-1 2,-1 -2,-1

-1, 0 0, 0 1, 0 2, 0 -2, 0

-1, 1 0, 1 1, 1 2, 1 -2, 1

-1, 2 0, 2 1, 2 2, 2 -2, 2

-1,-2 0,-2 1,-2 2,-2 -2,-2

(b)

-1,-2 0,-2 1,-2 2,-2 -2,-2

-1,-1 0,-1 1,-1 2,-1 -2,-1

-1, 0 0, 0 1, 0 2, 0 -2, 0

-1, 1 0, 1 1, 1 2, 1 -2, 1

-1, 2 0, 2 1, 2 2, 2 -2, 0

(c)

0,0 1,0 2,0 3,0 4,0 5,0 6,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3

0,4 1,4 2,4 3,4 4,4 5,4 6,4

0,5 1,5 2,5 3,5 4,5 5,5 6,5

0,6 1,6 2,6 3,6 4,6 5,6 6,6

(d)

Figure 4.3.: Illustration of the CTA Algorithm with a 2D 7× 7 regular grid decomposition.
The cutoff distance covers 2 neighboring cells in this example. 4.3a shows the
absolute coordinates (ranks) of the processors in the domain. 4.3b shows in blue
the cutoff window w(1,1) of processor (1, 1), as well as the periodic differences to
other processors relative to (1, 1) in italics. In yellow all neighboring processors
are shown whose periodic difference is lexicographically greater than or equal
to (1, 1). We denote this as wl(1,1). 4.3c shows this analogously to 4.3b for the
processor with rank (1, 3). 4.3d shows the intersected lexicographical cutoff
window wl(1,1) ∩ wl(1,3). Note: In this Figure, unlike the one in the theory
section for the CTA algorithm, the x and y coordinates are on the horizontal
and vertical axes, respectively.
adapted from: [KY14]

The entire pseudo-algorithm of our implementation is shown in Algorithm 7. We briefly
explain how a simulation step with this algorithm works in the function SimulationStep,
then we go into more detail about the individual auxiliary functions.

In the following let r be the processor from whose point of view we consider the execution
of the algorithm and wlr the cutoff window of r, which contains only the ranks that have
a greater or equal relative periodic difference to r. The periodic difference of ranks in one
dimension is defined as in equation 3.6. For details see theory section 3.2.4.

Our implementation works with a double nested for loop, where the outer loop in line 13
iterates in lexicographic order over ranks r2 starting from r to the end of wlr and imports
their particles into b1. The inner loop in line 14 calculates the forces between b0, b1, b2 and

48

4.2. Algorithms

iterates in lexicographic order over ranks r3 starting from r2 to the end of wlr and imports
their particles into b2 if r3 ∈ wlr ∩ wlr2 . See also Figure 4.3 for illustration.

To determine the number of loop iterations, the length of wlr is calculated at the beginning
of the simulation. This can be seen in line 1 of Algorithm 7.

Since the inner loop in line 13 always iterates starting from rank r2 over ranks r3 ∈
wlr ∩ wlr2 , the particles of r2 are not only imported into b1 at the end of each outer loop
iteration, but also into b2. See lines 23 to 24.

Algorithm 7: Cutoff Triplet Algorithm

Input: nCbX, nCbY: The Number of neighboring cells inside the cutoff window
along x and y respectively, c : The cutoff distance, decomposition: A 2D
regular grid decomposition that has all particles binned into the respective
cells

Output: particles of this processor updated in place

1 numSteps← 1 + nCbY + (nCbY ∗ 2 + 1) ∗ nCbX
2 offsetV ecB1← offsetV ecB2← V ec(0)
3 cartRank ← cartRankFromIntRank(worldRank)
4 Function shiftLeft(buf, owner, src, dst, offsetVector):
5 handleOffsetVector(src, dst, offsetVector)
6 srcInt← intRankFromCartRank(src)
7 dstInt← intRankFromCartRank(dst)
8 return mpiShift(buf, owner, srcInt, dstInt)

9 Function SimulationStep():
10 b0← decomposition.getMyParticles()
11 b1← b2← copy(b0)
12 b1Owner ← b2Owner ← worldRank
13 for i2← 0 to numSteps - 1 do
14 for i3← i2 to numSteps - 1 do
15 CalculateInteractions(b0, b1, b2, worldRank, b1Owner, b2Owner, c)

16 if i3 < numSteps− 1 then
17 (src, i3)← getSrcInner(i2, i3, cartRank)
18 dst← dstFromSrc(src, cartRank)
19 b2Owner ← shiftLeft(b2, b2Owner, src, dst, offsetVecB2)

20 if i2 < numSteps− 1 then
21 srcOuter ← srcInner ← getSrcOuter(i2, cartRank)
22 dstOuter ← dstInner ← dstFromSrc(srcOuter, cartRank)
23 b1Owner ← shiftLeft(b1, b1Owner, srcOuter, dstOuter, offsetVecB1)
24 b2Owner ← shiftLeft(b2, b2Owner, srcInner, dstInner, offsetVecB2)

25 sendBackParticles()

26 sumUpParticles()

27 decomposition.setMyParticles(b0)

49

4. Implementation

getSrcOuter (loop over wlr): The function getSrcOuter in Algorithm 8 calculates,
based on a loop index i2, the relative coordinate of a processor with respect to r in wlr after
i2 steps. These relative coordinates are added to the rank of the processor r and wrapped
around the virtual grid of processors using a modulo operation, with the vector dim as
divisor, which stores the number of processors in each dimension. This way we get the rank
of the processor that owned the particle subset at the beginning of the simulation that we
want to import. The variable nCbY is the number of adjacent cells in y-direction covered by
the cutoff radius.

Algorithm 8: getSrcOuter

1 Function getSrcOuter(i2, rank):
2 cutoffLenY ← 2 * nCbY + 1
3 y ← mod((i2 + nCbY),cutoffLenY) - nCbY
4 x ← (i2 + nCbY) / cutoffLenY
5 return mod(vec(x,y) + rank, dim)

getSrcInner (Intersected Cutoff Window): In the inner loop in line 14 of Algorithm
7, that shifts b2, we use the function getSrcInner to get all the processor ranks that are in
wlr ∩ wlr2 . The idea is to determine the processor rank in wlr after i3 + 1 steps starting
from r, and at the same time calculating the rank in wlr2 when we do i3 + 1 − i2 steps
starting from r2. Since wlr and wlr2 are different, which can be seen in Figures 4.3b and
4.3c for example, the result of both views is not necessarily in the cutoff window wlr ∩ wlr2 .
Since all processors arrange their neighbors in the same way, we can increment i3 within this
function and compute ranks until both views match again. The parameter i3 is passed as a
pointer in our implementation, so the incremented value for i3 is used as index in further
iterations of the loop. Thus, starting from rank r2, we take a maximum of numSteps− i2
steps, which is from r2 to the end of wlr, but skip the ranks that are not in wlr ∩wlr2 . The
pseudo-algorithm is shown in Algorithm 9.

Algorithm 9: getSrcInner

1 Function getSrcInner(i2, i3, rank):
2 b1InitOwner ← getSrcOuter(i2, rank)
3 do
4 src← getSrcOuter(i3+1, rank)
5 srcTmp← getSrcOuter(i3+1-i2, b1InitOwner)

6 while src 6= srcTmp and i3 < numSteps and i3 = i3 + 1
7 return (src, i3)

Offset Vector: Since the buffers are shifted between processors in the course of the
simulation step, they are no longer at their original position, which we determined using the
functions mentioned above. To determine the current position of the buffer, we use the offset
vectors offsetVecB1 and offsetVecB2 for the buffers b1 and b2, on which we accumulate
the difference of the new and the last rank at each shift.

50

4.2. Algorithms

Calculate Destination from Source: Since all processors work according to the same
shifting scheme, the destination rank can be determined based on the source rank by
mirroring the source rank to its own rank. This is calculated by the function dstFromSrc.

Offset Vector Adjustment: Before the function shiftLeft executes the communication
step, the function handleOffsetVector first adds/subtracts the offset vector offsetVecB1
or offsetVecB2, depending on whether b1 or b2 is shifted, to the source/destination rank.
This function also adjusts the respective offset vector accordingly for the next substep by
adding the difference of the positions to the offset vector based on the previous value of a
loop iteration and the current value. Afterwards the actual shift is executed by the function
mpiShift. The MPI instruction MPI Cart rank12 is used to map the Cartesian coordinates
back to integer ranks.

mpiShift: The MPI shift is implemented using the non-blocking send and receive com-
mands MPI Isend and MPI Irecv. In contrast to the two direct algorithms, the number of
particles to be sent and received can differ here, since this algorithm works with a regular
grid decomposition and does not use dummy particles. The command MPI Isend initiates
the send process and returns afterwards. This is necessary so that each processor first
sends information about the data to be sent to the receiver and then waits for those of the
sender. As tag-parameter we use analogous to the shift procedure for the direct algorithms
the owner of the respective buffer, so we can track the original owner of a particle subset.
With the blocking command MPI Probe13 we wait for the data input of the source rank.
By MPI Get count14 we can request the number of elements sent and prepare the receiver
buffer. We use the function std::vector::resize, which allocates the required memory
for the buffer. Then we can use MPI Irecv to receive the data. We use the source rank as
sender and MPI ANY TAG, since the received buffer can have any original owner. The actual
tag (owner) of the received message is stored in the status and returned at the end of the
function. It is important to wait for the completion of both operations afterwards, so we
only continue when all send and receive operations are complete. The corresponding Code
Snippet can be found in the appendix in section A.

checkCutoff : In Algorithm 4, for each possible particle triplet (i, j, k) that we can form,
we check whether the distances between (i, j), (i, k), and (j, k) are within the cutoff. Only if
all distances are less than or equal to the cutoff, the forces for this triplet are calculated.

sendBackParticles: To send particles back to their owners after a simulation step, we
use the same procedure as in Code Snippet 1, except here we only send back b1 and b2,
since b0 is fixed.

12https://www.open-mpi.org/doc/v4.1/man3/MPI_Cart_rank.3.php
13https://www.open-mpi.org/doc/v4.1/man3/MPI_Probe.3.php
14https://www.open-mpi.org/doc/v4.1/man3/MPI_Get_count.3.php

51

https://www.open-mpi.org/doc/v4.1/man3/MPI_Cart_rank.3.php
https://www.open-mpi.org/doc/v4.1/man3/MPI_Probe.3.php
https://www.open-mpi.org/doc/v4.1/man3/MPI_Get_count.3.php

4. Implementation

1D and 3D Decompositions: The implementations of the 1D and 3D decompositions
follow essentially the same scheme. For 1D decomposition, the value for numSteps is
calculated as follows:

numSteps = 1 + nCbX (4.2)

So, starting from a one-dimensional rank, we shift only to the left. In the case of a 3D
decomposition, numSteps can be calculated this way:

numSteps = 1 + nCbZ + nCbY ∗ (nCbZ ∗ 2 + 1)

+ nCbX ∗ ((nCbY ∗ 2 + 1) ∗ (nCbZ ∗ 2 + 1))
(4.3)

The pseudo-algorithms for the method getSrcOuter of the 1D and 3D variants are shown
in Algorithm 10.

Algorithm 10: getSrcOuter for 1D and 3D decompositions

1 Function getSrcOuterThreeD(i2, rank):
2 cutoffLenY ← 2 ∗ nCbY + 1
3 cutoffLenZ ← 2 ∗ nCbZ + 1
4 z ← mod((i + nCbZ), cutoffLenZ)− nCbZ
5 y ← mod((((i + nCbZ) / cutoffLenZ) + nCbY), cutoffLenY)− nCbY
6 x← (i+ ((cutoffLenZ ∗ cutoffLenY)/2))/(cutoffLenZ ∗ cutoffLenY)
7 return mod(vec(x,y,z) + rank, dim)

8 Function getSrcOuterOneD(i2, rank):
9 return mod(i2 + rank, dim)

4.3. Correctness

To ensure that the algorithms work correctly, we implement unit tests using GoogleTest15. We
use an MPI listener16 for GoogleTest to allow the output of multiple processors involved. By
using MPI commands (MPI Gatherv, MPI Allreduce), the results of all involved processors
are collected and checked after the test. The following tests are performed:

• All unique buffer combinations are processed

• All unique particle triplets are calculated

• Test the operator == of triplet struct to check for permutations

• further constructor tests for particle struct

For the test that checks for all unique buffer combinations, all unique triplets of processor
ranks for a given number p are created for the direct algorithms in a 3-nested loop. For the
cutoff algorithm, we implemented the mathematical definitions from the reference [KY14],

15https://github.com/google/googletest
16https://github.com/LLNL/gtest-mpi-listener

52

https://github.com/google/googletest
https://github.com/LLNL/gtest-mpi-listener

4.3. Correctness

which, for a given number of processors p and a cutoff distance c, creates the set of all triplets
from processor-ranks that a given processor must traverse in its cutoff window according to
the lexicographic ordering. Similarly, for each processor, the triplets from processor-ranks
within the intersected cutoff windows are also computed. This set is then compared to the
actual computed buffer interactions. Our tests show that exactly the identical set of buffer
combinations is computed for both the direct and cutoff algorithms.

The number of all unique particle triplets is tested in this way only for the direct algorithms,
by again using a 3-nested loop to create all particle triplets that are possible with n particles.
Subsequently, all actually computed particle triplets from all processors are collected and
compared. Again, our tests show that exactly the same particle triplets are computed.

To verify that the cutoff algorithm computes all required particle interactions, the results
were compared to those of the direct algorithm for an appropriately large value for c, such
that all interactions are computed. To ensure that the cutoff algorithm produces the same
results with a different number of processors at constant input, the calculated forces are
compared with one processor up to 125 processors. All results show identical forces, which
leads us to conclude that the cutoff algorithm works correctly.

Overall, we conclude that the implemented algorithms work correctly and compute all
unique interactions.

53

5. Results

In this chapter we analyze the algorithms implemented in section 4. We investigate the shift-
ing scheme of the two direct algorithms in section 5.1, the scalability of all three algorithms
in section 5.2, the load balance of the CTA slgorithm with different particle distributions
in section 5.3, the hit-rate of the cutoff algorithm for different regular grid decomposition
strategies in section 5.4, as well as the deviation of the calculated forces between the CTA
algorithm and the AUTA in section 5.5.

All our measurements were performed on the Linux cluster segment CoolMUC-21 of the
Leibniz Supercomputing Center (LRZ)2. It is a medium size HPC cluster with 812 nodes
each with 28 Haswell-based 64-bit cores. An FDR14 Infiniband interconnect is used between
the nodes. For the communication between processors we use the OpenMPI implementation
version 4.1.2. All programs were compiled with gcc 9.4.0 and optimization level O3.

For the timing measurements of an entire siumlation step, we use Google Benchmark3.
To enable measurement across all processors involved, we use a custom method that collects
the times of all processors after each benchmark using a MPI Allreduce4 operation that
chooses the maximum time, since this represents the total runtime of the program.

For single function measurements, we use a self-implemented time measurement based
on the chrono library5 with the std::chrono::system clock that measures time in se-
lected methods. The results are stored using RapidJson6. Similar to the procedure we use
for time measurements with Google Benchmark, all participating processors send their time
measurements to one specific processor, which creates the output file based on these values.
For each function to be measured, the maximum time among all processors is chosen within
a substep. Afterwards, these maximum times of all substeps are accumulated, which pro-
vides the total time that has been spent within the respective function in one simulation step.

For our measurements, we use different particle distributions, which are briefly presented
here:

• Uniform: Random distributed particles using the C++
std::uniform real distribution7

• Grid: Evenly distributed particles with equal spacing in each dimension.

1https://doku.lrz.de/display/PUBLIC/CoolMUC-2
2https://www.lrz.de/
3https://github.com/google/benchmark
4https://www.open-mpi.org/doc/v3.0/man3/MPI_Allreduce.3.php
5https://en.cppreference.com/w/cpp/chrono
6https://rapidjson.org/
7https://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution

54

https://doku.lrz.de/display/PUBLIC/CoolMUC-2
https://www.lrz.de/
https://github.com/google/benchmark
https://www.open-mpi.org/doc/v3.0/man3/MPI_Allreduce.3.php
https://en.cppreference.com/w/cpp/chrono
https://rapidjson.org/
https://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution

5.1. Shifting Scheme of the Direct Algorithms

• Closest Packed: Hexagonally arranged particles, to provide the most compact homoge-
neous distribution.

• Gauss: Random distributed Particles using the C++ std::normal distribution8

with a mean and standard deviation

• Clustered Gauss: Uniformly distributed gaussian particle clouds

In all our investigations we use the Axilrod-Teller potential to calculate the three-body
interactions. We have set the coefficient for the Axilrod-Teller potential to v = 1 for the
sake of simplicity.

5.1. Shifting Scheme of the Direct Algorithms

0 200 400 600 800 1000

Number of Processors

0.0

0.5

1.0

1.5

2.0

2.5

N
u
m

b
e
r

o
f

S
h
if
ts

1e5

AUTA

NATA

Figure 5.1.: Comparison between number of
shifts of the NATA and AUTA
algorithms

1 2 3 4 5 6 7

Number of Processors

5

10

15

20

25

30

W
a
ll

Ti
m

e
 (

se
co

n
d
s)

AUTA

NATA

Figure 5.2.: Load imbalance of the NATA al-
gorithm when the number of pro-
cessors is divisible by 3. The
AUTA algorithm distributes the
load evenly

In this section, we compare the shifting scheme of the NATA and AUTA algorithms.
As mentioned in the theory section 3.1.2 and Algorithm 5, the naive algorithm performs
redundant shifts. The increase in shifts over the all unique triplet algorithm is shown in
Figure 5.1. The AUTA algorithm only performs shifts that lead to a force calculation step,
so the number of shifts is always equal to the number of calculation steps minus one.

In Figure 5.2 we see how the behavior of both algorithms affects the runtime of a simulation
step if processors form a permutation of an offset-pattern in a substep, which happens
whenever the number of processors is divisible by 3, as mentioned in theory part 3.1.2.
In the implementation of the naive algorithm, in such a case only the processor with the
lowest rank that has generated a permutation computes the particle interactions, all other
processors are idle. For details, see function 1 in the implementation part. This is directly
reflected in the runtime, as can be seen for 3 and 6 processors. The AUTA algorithm, on the
other hand, distributes the work evenly among the participating processors in such a case.

8https://en.cppreference.com/w/cpp/numeric/random/normal_distribution

55

https://en.cppreference.com/w/cpp/numeric/random/normal_distribution

5. Results

5.2. Scalability

5.2.1. Direct Algorithms

In the following, we analyze the scaling behavior of the two direct algorithms. In both
experiments, a uniform particle distribution is used. For the time measurements of the
direct algorithms, the function calculateInteractions includes both the time needed to
form the triplets and the time to calculate the forces. The time of one simulation step is
measured, which includes the force calculation of all

(
n
3

)
interactions of the particles and the

updating of their positions, velocities and accelerations.

Strong scaling

2 8 32 128 512

Number of Processors

0

100

200

300

400

500

W
a
ll

Ti
m

e
 (

se
co

n
d

s)

AUTA

NATA

Figure 5.3.: Total strong scaling wall time for
NATA and AUTA.

2 8 32 128 512

Number of Processors

0.125

0.5

2

8

32

128

512

2048

8192

S
p
e
e
d
u
p

 (
T

1
/
T
P
)

AUTA

NATA

Ideal

Figure 5.4.: Strong scaling speedup for NATA
and AUTA.

Figure 5.3 and 5.4 shows the results of the strong scaling experiment of the two direct
algorithms. 2048 particles were used and the number of processors is scaled from 1 to 1024
in powers of two.

In Figure 5.4, the speedup S is shown for a specific number of processors. As can be seen,
both algorithms scale almost perfectly up to 32 processors, which is due to the fact that the
communication between the processors is not yet a major issue here. Since the calculation
of the forces between particles is the most time-consuming part, and this work is distributed
evenly, a good scaling behavior can be achieved.

Above 64 processors we see a significant drop in the naive algorithm. We did not run
benchmarks for p > 128 for the naive algorithm as they did not terminate within a period
of eight hours.

For the AUTA algorithm, we see a drop in speedup starting at 128 processors. We are
interested first why the execution time of the NATA algorithm increases so strongly starting
from a certain point. A first consideration makes the high number of shifts, which also
include many redundant shifts, of this algorithm responsible for the speedup decrease. As
we can see in Figure 5.1 the number of shifts increases significantly compared to the AUTA
algorithm. However, it can also be seen that the AUTA algorithm does more shifts for

56

5.2. Scalability

p ≥ 512 than the NATA algorithm does for p = 128. Thus, our first consideration cannot be
the only reason. In our single measurements in Figure 5.5a, we can see a significant increase
in the calculateProcessed function of the NATA algorithm, which keeps track of already
processed buffer combinations. We can thus state that this function is responsible for the
drop in speedup and the increase in execution time of the naive algorithm.

The AUTA algorithm does not have this function, because the shifting scheme ensures
that a buffer combination is generated only once during a simulation step.

1 2 4 8 16 32 64 128

Number of Processors

100

200

300

400

500

600

Ti
m

e
 (

se
co

n
d
s)

Calculate Processed

Calculate Interactions

(a)

64 128 256 512 1024

Number of Processors

0

1

2

3

4

5

Ti
m

e
 (

se
co

n
d
s)

Total Wall Time

Calculate Interactions

(b)

Figure 5.5.: Figure 5.5a shows the sum of the maximum times among all processors of a
substep for the functions calculateProcessed and calculateInteractions,
which reflects the total time spent in a simulation step in the respective functions.
The left bars refer to the NATA algorithm, the right bars to the AUTA algo-
rithm. Only the NATA algorithm has the calculateProcessed function, which
consumes almost no time up to 32 processors, but then causes an unacceptable
runtime. The times for the calculation of the triplets are almost identical. Figure
5.5b shows the deviation of the total wall time and the calculation of the particle
triplets for the AUTA Algorithm from 64 to 1024 processors, which we trace
back to the increasing communication and idle time among processors.

In Figure 5.5b we have compared the wall time of a simulation step and the time spent in
the function calculateInteractions starting from a processor number of 64 to analyze the
drop in speedup for the AUTA algorithm. Since we could not obtain meaningful results for
the measurements of the communication time with a large number of communication steps by
our chosen method for the time measurement of individual functions, we compare the total
wall time with the calculation time of the particle interactions. Since the other measurable
times, such as summation and updating of particles, which ranged from 2.88 ∗ 10−6 to
2.61 ∗ 10−5 seconds, are negligible, we assume that the difference between the wall time and
the computation time of particle interactions is largely due to communication and idle time.

We conclude that the decrease of the speedup is mostly caused by the increasing number
of communication steps between the processors. On the other hand, the decrease in speedup
is also caused by the fact that the number of particles per processor continues to decrease
and at a certain point speedup is no longer possible. For the calculation of forces, we see

57

5. Results

that from 64 to 128 processors almost still an ideal speedup is possible, from then on this
is not achieved any longer. A good scaling behavior is possible for this experiment up to
p = 128 processors. Above 128 processors, the advantage of more resources decreases. And
from 512 processors, poor scaling behavior can be seen. We can thus state that for our
benchmark with 2048 particles, a value for p > 512 is not reasonable, and a processor should
ideally have at least 16 particles, so that an optimal speedup can be achieved with our
implementation.

Note: We have performed further tests with 8192 particles for the AUTA algorithm, that
showed a good scaling behavior up to 512 processors, which is due to the fact that each
processor has at least 16 particles and thus a good scaling behavior can be achieved. The
results can be seen in the appendix section B.

Weak scaling

For the weak scaling benchmarks, the number of processors is scaled in proportion to the
number of particle interactions. For one processor, 2048 particles are used, which results in(
2048
3

)
interactions. To keep the number of interactions per processor constant, we use the

following equation, which we solve for n:

(
n

3

)
=

(
2048

3

)
∗ p (5.1)

In this way, we ensure that each processor has
(
2048
3

)
interactions to compute.

2 8 32 128 512

Number of Processors

300

400

500

600

700

800

W
a
ll

Ti
m

e
 (

se
co

n
d
s)

AUTA

NATA

Figure 5.6.: Total weak scaling wall time for
NATA and AUTA

2 8 32 128 512

Number of Processors

0.4

0.5

0.6

0.7

0.8

0.9

1

 (
T

1
/
T
P
)

AUTA

NATA

IdealE
ffi

ci
e
n
cy

Figure 5.7.: Weak scaling efficiency for NATA
and AUTA

58

5.2. Scalability

32 64 128 256 512 1024
Number of Processors

0

50

100

150

200

250

300

350
Ti

m
e

(s
ec

on
ds

)

Total Wall Time
Calculate Interactions

Figure 5.8.: The deviation of the total wall time and the calculation of the particle triplets
for the AUTA Algorithm from 32 to 1024 processors. We attribute the growing
gap to the increasing communication overhead and idle time of the processors.

The results of the weak scaling experiment in Figure 5.6 and 5.7 show the same phenomenon
for the NATA algorithm as described above. The method calculateProcessed causes an
increase in the wall time, which leads to a drop in efficiency. For the AUTA algorithm the
effect of the increasing communication is a bit more noticeable here. A drop in efficiency
can already be seen beginning with 64 processors and with 1024 processors AUTA needs
about 111 percent of the time needed for 1 processor.

In Figure 5.8 we see the comparison between the total wall time and computation time
of the particle triplets for the AUTA algorithm from 32 to 1024 processors. As with the
strong scaling benchmarks, other individual measurements were taken in addition to the
calculateInteractions function, but compared to the evaluation of the triplets, they were
so marginal that they are not shown in the Figure. We conclude that most of the difference
between the wall time and the computation time of the particle triplets can be attributed to
the increasing communication or idle time of processors. As can be seen, the computation
time of the particle triplets remains constant for different numbers of processors, as expected.

In summary, we can state that the nearly ideal distribution of work mentioned in the
theory section 3.1.2 is reflected in practice in the almost constant computation time in
Figure 5.8. As the number of processors increases, the number of communication steps
also increases, and with it the time required for communication. We can also state that for
this algorithm the number of processors should be in proportion to the number of particles,
because in this case the decrease of the speedup can only be attributed to the communication,
but not to the calculation of the interactions, as in the strong scaling experiment.

59

5. Results

5.2.2. Cutoff Algorithm

For the CTA Algorithm, the results of the weak scaling measurements are discussed in the
following. For the following experiment, the domain size is scaled directly in proportion to
the number of processors along the x-axis. It is equal to (5 ∗ p)× 10× 10. In the same way,
the number of particles within this domain is scaled. It is equal to 2048 ∗ p, using a uniform
distribution. This ensures that the density of particles remains constant and each processor
has approximately the same amount of work. The domain decomposition strategy chosen is
the naive one, which splits the simulation domain along the x-axis into uniform slices and
assigns particles within them to individual processors. For the cutoff distance, c = 2.4 is
used. Starting from one processor, the number of processors is increased in powers of two up
to 1024. One simulation step each is executed, which contains the calculation of all forces,
update of the particle positions and update of the domain decomposition.

2 8 32 128 512

Number of Processors

10

20

30

40

50

60

70

W
a
ll

Ti
m

e
 (

se
co

n
d
s)

CTA

Figure 5.9.: Weak scaling wall time for the
CTA algorithm.

2 8 32 128 512

Number of Processors

0.2

0.4

0.6

0.8

1

T
1

/
T
P
)

CTA

Ideal

E
ffi

ci
e
n
cy

Figure 5.10.: Weak scaling efficiency for CTA
algorithm.

In Figures 5.9 and 5.10 we can observe a significant increase in wall time and a drop in
efficiency between the transition from one to two and from two to four processors. As the
number of processors increases further, a slight increase in wall time or drop in efficiency
can be seen. To examine this result in more detail, we perform more fine-grained time
measurements with the same input data and look at the times that occur within individual
methods. In contrast to the single measurements for the direct algorithms, the measurement
for the function calculateInteractions is separated here into the time needed to form
particle triplets, which in the cutoff algorithm also includes the distance calculations to
check whether the forces for a triplet should be calculated, and into the time needed to
calculate the forces.

60

5.2. Scalability

1 2 4 8 16 32 64 128 256 512 1024
Number of Processors

0

10

20

30

40

50

60

70

Ti
m

e
 (

se
co

n
d

s)

Calculate Interactions

Calculate Forces

Idle

Figure 5.11.: Time breakdown for CTA algorithm. The increasing time in
calculateInteractions is due to the increasing number of distance checks
that need to be performed.

In Figure 5.11 we see the individual times of the methods calculateInteractions and
CalculateForces. The function calculateInteractions is responsible for forming unique
particle triplets from the three buffers b0, b1 and b2 and calculating distances within the
triplet to decide if a particle triplet should be computed or not. Using our implementation
of the Axilrod-Teller potential, the method CalculateForces calculates the forces for a
given particle triplet (i, j, k).

We can see a significant increase in the CalculateInteractions function from one to
two and from two to four processors as well. This can be explained as follows: In the case of
one processor, only the distances between its own particles are evaluated. This corresponds
to offset-pattern 000 for the three buffers and the distances between all the

(
2048
3

)
particle

triplets are calculated. When moving to two processors, the distances between the own
particles and those of the respective neighbor must also be computed. The processors
calculate the following offset-patterns: 000 and 001. Since each processor has about 2048
particles, the distances between

(
2048
3

)
+
(
2048
2

)
∗ 2048 particle triplets have to be evaluated,

which are interactions between own particles and interactions between two own particles and
one from the neighboring processor. Analogously, the same happens in the transition from 2
to 4 processors. Each processor computes the offset-patterns 000, 001 and 011, which is a
work of

(
2048
3

)
+ (
(
2048
2

)
∗ 2048) ∗ 2. For higher numbers of processors only the interactions

between these three offset-patterns must be computed, since only communication with the
direct neighbor is necessary for the chosen cutoff. Note: The case p = 2 is an edge case, in
which the computation is only performed for the offset-patterns 000 and 001, since otherwise
redundant computations would result.

A second bar shows the increasing idle time within all processors. The idle time corresponds

61

5. Results

to the time that a processor must wait after a calculation step until all other processors are
ready for the communication step. We have intentionally shown these measurements as a sec-
ond bar because the idle time is also included within the times of CalculateInteractions
and CalculateForces. An increase can be seen as the number of processors increases, but
flattens out. This increase is also reflected in the measurements of CalculateInteractions
and CalculateForces. The rise can be explained as follows: With only one processor, no
communication is needed. With two processors, exactly one communication step is required
(shift of b2). With 4 processors and more, 2 communication steps are always required,
namely the shift of b2 and then of b1. Since the communication takes place synchronously,
the idle time increases when several processors are involved.

Note: As described for the direct algorithms, our method of measuring the time for individual
methods made it difficult to determine the time for MPI instructions, which led to large
deviations when the number of communication steps is high. The measurements of the idle
time here are more exact, since only 2 communication steps are measured, however, they
are also not completely exact, why they should give only an impression, why the wall time
with increasing number of processors slightly increases.

In summary, we can say: The significant increase in wall time in Figure 5.9 or decrease in
efficiency in Figure 5.10 is due to the increasing number of distances to be evaluated between
buffers. The further slight increase is due to idle time during communication between
processors. As expected, the computation time of the forces remains relatively constant.

Note: further individual measurements of other methods such as sendBackParticles,
sumUpParticles and mpiShift were performed, but the values were so small that they
could not be seen in Figure 5.11 and are therefore not shown. The sum of the total times
spent within a simulation step in these methods ranged from 1.11 ∗ 10−4 to 1.32 ∗ 10−2

seconds.

5.3. Load Balance of the Cutoff Algorithm

In the following, we analyze the load balance of the CTA algorithm for different particle
distributions.

For this purpose, we use the Step Time Variation Ratio, which is explained in more detail
in the theoretical background 2.3.2. Depending on the distribution of particles within the
physical simulation domain, different computation loads arise for each processor because
the allocation of particles to processors depends on the positions of particles in the physical
simulation domain. The following particle distributions are used within a 10 × 10 × 10
domain.

• 8000 uniformly distributed particles.

• 8000 particles with a fixed spacing of 0.526 in each dimension resulting in 20 Particles
in each dimension.

• 8118 closest packed particles with a spacing of 0.575 in each dimension.

• 8000 particles divided into 25 uniformly distributed Gaussian particle clouds with 320
particles each, a mean of µ = 0 and a variance of σ2 = 0.2 in each dimension.

62

5.3. Load Balance of the Cutoff Algorithm

• A Gaussian particle cloud consisting of 8000 particles with a mean of µ = 5 and a
variance of σ2 = 1.5 in each dimension centered in the domain.

Note: For the closest packed particles, we could not generate exactly 8000 particles because
our particle generator uses a single spacing value for all dimensions, as well as a box size
that limits the number of particles in each dimension. The 8118 particles was the closest
possible number to 8000 that we could generate.

0 1 2

0
1

2

z = 1

(a) Uniform

0 1 2

0
1

2

z = 1

(b) Grid

0 1 2

0
1

2

z = 1

(c) Closest Packed

0 1 2

0
1

2

z = 1

(d) Clustered Gauss

z = 1
0.01 %

0.43 %

23.82 %
0 1 2

0
1

2

(e) Gauss

Figure 5.12.: Step Time Variation Ratio (STVR) for different particle distributions using
the CTA Algorithm. The cutoff radius is constant at c = 2.0 and 27 processors
each are used, arranged in a 3× 3× 3 regular grid decomposition. The middle
slice with respect to the z-axis of the 3 × 3 × 3 decomposition is shown for
each particle distribution. On the horizontal and vertical axis are respectively
the x- and y-positions of the processors within the 3× 3× 3 decomposition.
The minimum and maximum value of the STVR is the global minimum and
maximum over all 5 results, so that the different distributions can be compared.
The color values are displayed using a logarithmic scale.

63

5. Results

Number of particles Number of interactions

min max median min max median

uniform 248 332 294 680913 1161060 851974

grid 252 343 294 474984 1851794 897205

closest packed 270 336 294 767936 1272499 976122

clustered gauss 0 883 327 0 47777633 5903286

gauss 2 4356 42 41 1068030394 151873

Table 5.1.: The number of particles assigned to processors for different particle distributions
and the resulting number of calculated interactions

uniform grid c_packed c_gauss gauss
Particle Distribution

0

200

400

600

800

To
ta

l
W

a
ll

Ti
m

e
 (

se
co

n
d

s)

CTA

AUTA

Figure 5.13.: Comparison between the total wall time of the CTA and AUTA algorithms
for different particle distributions. We use the labels c packed and c gauss for
closest packed and clustered gauss respectively.

The results from Figure 5.12 are as we expected, since the assignment of particles to
processors is related to their position in the physical simulation domain. Thus, for the
uniform distribution in Figure 5.12a and the closest packed distribution in Figure 5.12c, we
see a smooth distribution of load across processors, while a larger imbalance is observed for
distributions where the number of assigned particles varies more.

The number of minimum and maximum particle counts and the resulting force calculations,
as well as the median across all 27 processors, can be seen in Table 5.1.

We have compared the computation times of an entire simulation step with all five particle
distributions and the use of the CTA algorithm with those of the AUTA algorithm, when
using the same distributions. Figure 5.13 shows the results in seconds respectively. Note:

64

5.3. Load Balance of the Cutoff Algorithm

Since 8118 particles were used for the closest packed particle distribution, the calculation time
here for the AUTA algorithm deviates somewhat more compared to the other distributions.

It can be seen that the computation times for the given cutoff of c = 2.0 are significantly
lower than those of the direct algorithm for all distributions except the Gaussian distribution,
due to the smaller number of particle triplets to be evaluated.

For the Gaussian distribution, we see that the computation time of the direct algorithm
is below that of the cutoff algorithm. This is because for the CTA algorithm, more than 50
percent of the particles, 4356 to be exact, are assigned to the processor in the middle. In
comparison, 296(+1) particles are assigned to each processor of the direct algorithm, which
results in an almost perfect load distribution.

We can state in conclusion that execution time can be significantly reduced with the CTA
algorithm compared to the direct computation of all interactions. There are certain edge
cases where direct computation can be advantageous. For example, this may be the case for
highly heterogeneous particle distributions when regular grid decomposition is used, as we
do, which divides the domain into uniform cells. Or when the number of particles is very
small, so that computing the distance checks takes more time than computing the forces.
However, by adapted decomposition strategies, such as a dynamic cell size for heterogeneous
particle distributions, the load balance could also be optimized for the CTA algorithm, so
that a faster runtime would presumably be possible compared to the direct calculation.

65

5. Results

5.4. Hitrate of the Cutoff Algorithm

Since we have implemented the cutoff algorithm with the possibility of working with a 1D,
2D or 3D regular grid decomposition, we are interested in how the different decomposition
strategies affect the hit-rate and the runtime of a simulation step.

We compare 2 different regular grid decomposition strategies. The first divides the physical
simulation domain evenly into slices along the x-axis and assigns them to processors. This
decomposition is called naive in the following and corresponds to a 1D decomposition.

The second strategy creates either a 1D, 2D, or 3D regular grid decomposition based
on a given number of processors. Our assumption is that a decomposition in which the
individual cells of the 3 dimensional physical domain take the shape of a cube will provide a
better hit-rate and hence runtime. This is because the cutoff radius can be represented by
a sphere and the bounding box of a sphere corresponds to a cube. This decomposition is
called dynamic in the following and works according to this scheme:

1. Decompose the number of processors into prime factors

2. Form all decompositions into all possible partitions from the prime factors

3. Keep the decompositions that have the prime factors divided into either 1, 2 or 3
partitions

4. Calculate the products of the factors within the partitions of these decompositions.
Each of these decompositions represents a way in which the domain can be partitioned
into either 1, 2, or 3 dimensions with a given number of processors. However, keep
only those that have at least 3 cells in each dimension, which is necessary to satisfy
the cutoff restriction of the algorithm. An exception is the 1D decomposition, in which
also only one or 2 cells may occur.

5. Choose from these partitions the one that is best balanced. So the shape is closest
to a cube. This is done by calculating the best line of fit for the products within the
decompositions. The decomposition with the lowest slope is chosen, preferably a 3D,
then a 2D and only as a last possibility a 1D decomposition.

As can be seen, for a prime number no other decomposition can be found than the naive 1D
decomposition. With p = 64, for example, a decomposition can be found that corresponds
to a cube: (4, 4, 4) with the balancing value 0.

We define the hit-rate as:

h =
interacta
interactp

(5.2)

Where interacta corresponds to the actually calculated particle triplets in a simulation step,
interactp to all possible particle triplets that can be calculated within the imported neighbor
cells. The final result is the average value of all hit-rates from the individual processors.

66

5.4. Hitrate of the Cutoff Algorithm

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

H
it

ra
te

 (
%

)

dynamic

naive

10 15 20 25 30 35 40 45 50 55 60
Number of Processors

5

10

15

20

25

30

35

40

Ti
m

e
 (

se
co

n
d

s)

Figure 5.14.: Hitrate and total wall times of one simulation step using the naive and dynamic
decomposition strategies from 9 to 64 processors. We compare the two variants
only above a number of 9 processors, since for p < 9 no decomposition other
than the naive one is possible. For this experiment, we use 8118 closest packed
particles within a 10× 10× 10 domain. The reason for this choice is that we
want the hit-rate to depend on the decomposition strategy rather than the
distribution of particles and since the best balancing was achieved in our load
balance test with closest packed particles, we decided to use this. As cutoff
distance we use c = 2.4

As we can see in Figure 5.14 the hit-rate is in most cases also reflected in the execution
time, especially with few processors strong differences are noticeable. An improved hit-rate
can be achieved for the dynamic decomposition in some cases. For example, with 32 or
64 processors, the execution time can be reduced compared to the naive strategy. For 32

67

5. Results

processors, (8, 4) decomposition was used, and for 64 processors, (4, 4, 4) decomposition was
used.

However, some naive decompositions also yield a higher hit-rate than dynamic decomposi-
tions, as can be seen, for example, at p = 15, p = 25, and p = 45. This can be explained by
the fact that, despite the more cubic division of the domain in the dynamic decomposition,
a larger volume is created overall for each processor in which distances have to be checked.

In some cases, however, a lower execution time can be seen despite a lower hit-rate, such
as with p = 60. After evaluating the data of individual processors, it turned out that this is
due to the load balance. Thus, the number of particles allocated or triplets evaluated for the
naive strategy differs greatly for 60 processors, since a slice has a width of only 1/6. In this
case, dynamic decomposition is advantageous, since the work is distributed more evenly.

In conclusion, we can state that our assumption regarding the dynamic decomposition,
although true in many cases, cannot be used in general and still has a certain naivety, since
many factors, such as particle distribution, cutoff distance or number of processors, are
decisive for the hit rate.

5.5. Accuracy Comparison

In the following, we investigate the deviation between the results of the CTA algorithm and
those of the AUTA algorithm, using the direct algorithm as a basis. The idea is to get an
overview of how much the calculated forces with different cutoff distances deviate from those
of the direct method and how this affects the calculation time of a simulation step.

We use the mean squared error to calculate the average deviation of the calculated forces
with the CTA algorithm compared to those of the AUTA algorithm. The mean squared
error is defined as follows:

MSE =
1

n

n∑
i=1

(Fi − F̂i)2 (5.3)

Where F̂i is the force vector of the ith particle out of n particles calculated by AUTA
algorithm, analogously Fi is the force vector of the ith particle calculated by CTA algorithm.

For this test, 1024 uniformly distributed particles in a 10× 10× 10 domain are used. Both
algorithms were executed with 1 and 16 processors. The decomposition strategy chosen
is the naive method, which splits the domain along the x-axis to grant the same type of
decomposition for each number of processors. Of course, the deviation also depends on the
particle distribution. However, investigations with different distributions were not performed
in this work.

68

5.5. Accuracy Comparison

0 10 20 30 40
Execution Time (seconds)

10 2

10 1

100

101

102

103

c=8

c=7

c=6

c=5

c=4

c=3

c=2

c=1 p = 1.0

p = 16.0

p = 1.0

p = 16.0
M

e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Figure 5.15.: The mean squared error of the CTA algorithm relative to the AUTA algorithm
is shown on the y-axis. The x-axis shows the execution time for one simulation
step. The vertical lines represent the execution time of the AUTA algorithm
with a respective number of processors. The individual points in the Figure
represent a combination of a cutoff and a number of processors executed with
the CTA algorithm. The values with p = 1 and p = 16 are identical for c = 1
to c = 4. For c > 4 we can only calculate results with one processor, otherwise
the cutoff restriction, as mentioned in section 3.2.4, would be violated.

In Figure 5.15, we can see that the computation time for the AUTA algorithm with one
processor is faster than the cutoff algorithm with one processor and c = 8. This is because
the CTA algorithm has to check additionally for all possible triplets whether they should
be evaluated or not. In this extreme case it may make sense to use the AUTA algorithm
instead of the cutoff algorithm.

For smaller cutoff distances we see an increasing deviation in accuracy from the calculations
of the AUTA algorithm. It can be stated that relatively small deviations occur in changes of
the cutoff range between c = 5 and c = 8, in which the volume of the cutoff-sphere differs
strongly. In the transitions between small cutoff radii, such as c = 1 and c = 2, in which the
volume of the cutoff-sphere differs less, strong deviations can be observed. So we can state
that for larger radii the results are more stable.

Since the cutoff radius represents a sphere in 3D space, only a relatively small increase
in execution time is seen for the transitions between smaller radii, since the volume of the
sphere changes less. For the transitions at larger radii, a higher increase can be seen.

69

5. Results

Another property that can be observed in this Figure is that the cutoff algorithm cannot
calculate all possible cutoff distances for a given number of processors. This is due to the
property of the algorithm that restricts the number of neighboring cells. See theory section
3.2.4 for details.

70

Part IV.

Future Work and Conclusion

71

6. Future Work

Since in this work we first got an overview of algorithms for the computation of three-body
interactions, as well as provided basic implementations, we want to focus now in more detail
on improving our implementations. We are especially interested in improvements to the
Cutoff Triplet Algorithm, since the computation time for most particle distributions can be
reduced from O(n3) to O(n).

As we can see from the results in chapter 5, a big bottleneck for the Cutoff Triplet Algorithm
at the moment is the distance computation as many particles in the cells fall beyond the cutoff.
To reduce this, we want to integrate Verlet Lists. In pairwise calculations, it was shown that
in theory the hit-rate can be significantly increased by using Verlet Lists compared to Linked
Cells. For example, with a skin radius of s = c ∗ 1.2, the hit-rate can be increased from 16
percent for Linked Cells to almost 58 percent [GST+19]. As can be seen in the investigation
of the hit-rate in section 5.4, despite a 3D regular grid decomposition, in which the cell size
was chosen only slightly larger than the cutoff for 64 processors, the hit-rate is still signifi-
cantly lower compared to the values mentioned above for pairwise calculations, therefore
special attention should be paid to the hit-rate in three-body interactions. We see currently a
great opportunity in the use of Velet Lists to reduce the number of redundant distance checks.

At the moment, our shifting scheme for the CTA algorithm works based on an offset
vector. Another possibility is to shift only to direct neighbors and no longer necessarily
keep the lexicographic order, but still process all necessary buffers of processors within the
yellow marked area in Figure 4.3b. Such a scheme might look like this for the example in
Figure 4.3b: (1, 1), (1, 2), (1, 3), (2, 3), (2, 2), (2, 1), (2, 0), (2, 6), (3, 6), etc. Where the given
ranks refer to the absolute positions in Figure 4.3a. Such a scheme was not implemented in
the context of this work, since a correct working of the algorithms was in the foreground
and accordingly a simpler but more intuitive scheme on basis of the lexicographic order was
used. However, building on the current implementation, such an optimized scheme can be
implemented. One advantage is that this makes many auxiliary methods that we use in the
current implementation obsolete and thus the program code can be made clearer.

Since the virtual position of the processors is fixed over the course of the simulation,
another possibility is to calculate all offset-patterns and their processing order only once at
the beginning of the simulation. This would keep the more intuitive lexicographic scheme,
but the calculation of the source and destination ranks would no longer be required in each
step, which could have a positive effect on the runtime.

Finally, the Cutoff Triplet Algorithm can be implemented for shared memory environ-
ments. Since only three computation units (e.g. threads) are working on a particle subset at
a time, we currently see a great opportunity to develop an efficient implementation using a
suitable scheme for assigning locks to threads.

72

7. Summary

The goal of this thesis was to provide an overview of existing algorithms for computing
three-body interactions in Molecular Dynamics Simulations, to understand how they work,
and to determine their properties. We presented already existing algorithms for direct
computation of all interactions in the simulation domain, as well as approximate ones. We
concluded that the algorithms of P. Koanantakool and K. Yelick [KY14], are the most
promising for us, since they implicitly bring some positive properties compared to the other
algorithms. As part of this work, three algorithms of P. Koanantakool and K. Yelick [KY14]
were implemented and analyzed in more detail.

We have implemented and studied two direct algorithms and a cutoff algorithm intro-
duced by P. Koanantakool and K. Yelick [KY14]. The algorithms were implemented for
distributed memory environments. To ensure that our implementation forms all unique
particle triplets and calculates their forces, unit tests were implemented. Based on the
results of the tests, we were able to verify that the algorithms work correctly. In order to
be able to execute a simulation step with test input, a rudimentary test framework was
implemented.

For the direct algorithms, it turned out that the Naive All Triplets Algorithm no longer works
efficiently with many participating processors. Nevertheless, we consider the implementation
as an important foundation, since we were able to better understand the principle of these
algorithms and could implement alternative algorithms based on this.

For the All Unique Triplets algorithm, we observed that a good scaling behavior can
be achieved with a suitable ratio of particle number and processors.

For the Cutoff Triplet Algorithm it turned out that in our implementation the distance
calculation is a big bottleneck, since many triplets in the cells are beyond the cutoff value.

It was observed that the cutoff triplet algorithm has a significantly better runtime compared
to the direct methods for most particle distributions, but has a high load imbalance for
heterogeneous distributions, such as a Gaussian particle cloud.

Our investigation of the Cutoff Triplet Algorithm further showed that an appropriate
decomposition strategy can help to reduce the computation time, but this should be chosen
depending on the simulation and is related to many factors, such as the particle distribution,
or the chosen cutoff.

We also analyzed the accuracy of the Cutoff Triplet Algorithm by comparing the results
against the All Unique Triplets Algorithm using the Axilrod-Teller potential in order to

73

7. Summary

get a first impression for future work on how much the results deviate when using different
cutoff distances.

Finally, we have provided a brief outlook on future research directions in this field, with a
particular focus on the methods of P. Koanantakool and K. Yelick [KY14].

74

Part V.

Appendix

75

A. Code Listings

1 void s endBackPart i c l e s ()
2 {
3 MPI Request requestSend0 , requestSend1 , requestSend2 ;
4 MPI Request requestRecv0 , requestRecv1 , requestRecv2 ;
5
6 bool b0Sent = false , b1Sent = false , b2Sent = fa l se ;
7
8 i f (b0Owner != worldRank) {
9 MPI Isend (b0 . data () , b0 . s i z e () , ∗mpiParticleType , b0Owner , 0 ,

10 ringTopology−>GetComm() , &requestSend0) ;
11 b0Sent = true ;
12 }
13 // do the same f o r b1 and b2
14
15 // a l l b u f f e r s have the same s i z e
16 int numRecv = b0 . s i z e () ;
17
18 i f (b0Owner != worldRank) {
19 b0Tmp. r e s i z e (numRecv) ;
20
21 MPI Irecv (b0Tmp. data () , numRecv , ∗mpiParticleType , MPI ANY SOURCE, 0 ,

ringTopology−>GetComm() ,
22 &requestRecv0) ;
23 }
24 // do the same f o r b1 and b2
25
26 i f (b0Sent) {
27 MPI Wait(&requestSend0 , MPI STATUS IGNORE) ;
28 MPI Wait(&requestRecv0 , MPI STATUS IGNORE) ;
29 }
30 // do the same f o r b1 and b2
31
32 i f (b0Sent) {
33 b0 = b0Tmp;
34 b0Tmp. c l e a r () ;
35 }
36 // do the same f o r b1 and b2
37
38 b0Owner = worldRank ;
39 // do the same f o r b1 and b2
40 }

Listing 1: Procedure that we use to send particles in a buffer to their original owner after
a simulation step. We use non-blocking communication to avoid deadlocks. A
temporary buffer is used so that we can send and receive simultaneously without
overwriting data.

76

B. Benchmarks

1 int mpiShi f t (std : : vector<Par t i c l e>& buf , int owner , int src , int dst)
2 {
3 tmpRecv . c l e a r () ;
4
5 int numRecv ;
6 MPI Status s t a tu s ;
7 MPI Request requestSend , requestRecv ;
8
9 MPI Isend (buf . data () , buf . s i z e () , ∗mpiParticleType , dst , owner ,

cartTopology−>GetComm() , &requestSend) ;
10
11 MPI Probe (src , MPI ANY TAG, cartTopology−>GetComm() , &s ta tu s) ;
12 MPI Get count(&status , ∗ s imulat ion−>GetMPIParticleType () , &numRecv) ;
13
14 tmpRecv . r e s i z e (numRecv) ;
15
16 MPI Irecv (tmpRecv . data () , numRecv , ∗mpiParticleType , src , s t a tu s .MPI TAG,

cartTopology−>GetComm() ,
17 &requestRecv) ;
18
19 MPI Wait(&requestSend , MPI STATUS IGNORE) ;
20 MPI Wait(&requestRecv , MPI STATUS IGNORE) ;
21
22 buf = tmpRecv ;
23
24 return s t a tu s .MPI TAG;
25 }

Listing 2: Function to exchange buffers for the CTA algorithm. We use non-blocking send
and receive commands to avoid deadlocks. With the MPI commands MPI Probe

and MPI Get count we can request the amount of data to receive from the sender.

B. Benchmarks

0 200 400 600 800 1000
Number Of Processors

64

256

1024

4096

16384

W
al

l T
im

e
(s

ec
on

ds
)

One Simulation Step Wall Time
AUTA

(a)

2 8 32 128 512
Number Of Processors

0.125

0.5

2

8

32

128

512

2048

8192

Sp
ee

du
p

(T
1 /

 T
P)

Strong Scale: Speedup
AUTA
Ideal

(b)

Figure .1.: Strong scale benchmark of the AUTA Algorithm with 8192 uniform particles
from 1 to 1024 processors. We can see an almost perfect speedup, since each
processor has at least 16 particles up to 512 processors.

77

List of Figures

2.1. Data Structures for Two Body Algorithms 5

2.2. Barnes Hut Algorithm . 6

2.3. 2D Force Matrix . 8

3.1. 3D Force Cube . 11

3.2. FD-3 Method . 12

3.3. CD-3 Method . 13

3.4. Distribution of Slices for CD-3 . 13

3.5. Slice Symmetric Transformation . 15

3.6. Volume Symmetric Transformation . 15

3.7. Slices of the Slice Symmetric Transformation 16

3.8. Shiftig Scheme of the Naive All Triplets Algorithm 19

3.9. Offset Pattern for the All Unique Triplet Algorithm 21

3.10. KD-Tree . 25

3.11. Two Neighbor Lists . 27

3.12. Pairwise Cell Methods . 29

3.13. Computation Pattern for the Shift Collapse Algorithm 30

3.14. Cutoff Triplet Algorithm . 32

4.1. Simulation Flow Chart . 39

4.2. Class Diagram of the Implementation . 41

4.3. CTA 2D Domain . 48

5.1. Number of Shifts for NATA and AUTA . 55

5.2. Shifting Scheme of NATA and AUTA . 55

5.3. Wall Time NATA AUTA 2048 (Strong Scaling) 56

5.4. Speedup NATA AUTA 2048 (Strong Scaling) 56

5.5. Time Breakdown for NATA and AUTA (Strong Scaling) 57

5.6. Wall Time NATA AUTA (Weak Scaling) . 58

5.7. Efficiency NATA AUTA (Weak Scaling) . 58

5.8. Time Breakdown AUTA (Weak Scaling) . 59

5.9. Wall Time CTA (Weak Scaling) . 60

5.10. Weak Scaling Efficiency CTA . 60

5.11. Time Breakdown CTA (Weak Scaling) . 61

5.12. STVR of CTA . 63

5.13. Execution Times STVR . 64

5.14. Hitrate of CTA . 67

5.15. Accuracy between AUTA and CTA . 69

78

LIST OF FIGURES

.1. Wall Time / Speedup AUTA 8192 (Strong Scale) 77

79

List of Tables

5.1. Particle Distribution STVR . 64

80

List of Algorithms

1. All Unique Triplets Algorithm . 20
2. Embedded All Unique Triplets Algorithm . 22
3. Cutoff Triplet Algorithm . 33

4. Calculate Interactions . 42
5. NATA Implementation . 44
6. AUTA Implementation . 47
7. CTA Implementation . 49
8. Get Source Outer . 50
9. Get Source Inner . 50
10. Get Source Outer 1D 3D . 52

81

Bibliography

[AT43] BM Axilrod and Ei Teller. Interaction of the van der waals type between three
atoms. The Journal of Chemical Physics, 11(6):299–300, 1943.

[BDS07] Kevin J Bowers, Ron O Dror, and David E Shaw. Zonal methods for the parallel
execution of range-limited n-body simulations. Journal of Computational Physics,
221(1):303–329, 2007.

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[BH86] J. H. Barnes and Piet Hut. A hierarchical o(n log n) force-calculation algorithm.
Nature, 324:446–449, 1986.

[CW00] C.F. Cornwell and L.T. Wille. Parallel molecular dynamics simulations for
short-ranged many-body potentials. Computer Physics Communications, 128(1-
2):477–491, June 2000.

[DGK+13] Michael Driscoll, Evangelos Georganas, Penporn Koanantakool, Edgar Solomonik,
and Katherine Yelick. A Communication-Optimal N-Body Algorithm for Direct
Interactions. In 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing, pages 1075–1084, Cambridge, MA, USA, May 2013.
IEEE.

[GR87] Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations.
Journal of computational physics, 73(2):325–348, 1987.

[GSBN22] Fabio Alexander Gratl, Steffen Seckler, Hans-Joachim Bungartz, and Philipp Neu-
mann. N ways to simulate short-range particle systems: Automated algorithm
selection with the node-level library AutoPas. Computer Physics Communica-
tions, 273:108262, April 2022.

[GST+19] Fabio Alexander Gratl, Steffen Seckler, Nikola Tchipev, Hans-Joachim Bungartz,
and Philipp Neumann. Autopas: Auto-tuning for particle simulations. In 2019
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 748–757, 2019.

[KKN+13] Manaschai Kunaseth, Rajiv K. Kalia, Aiichiro Nakano, Ken-ichi Nomura, and
Priya Vashishta. A scalable parallel algorithm for dynamic range-limited n -tuple
computation in many-body molecular dynamics simulation. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, pages 1–12, Denver Colorado, November 2013. ACM.

82

BIBLIOGRAPHY

[Koa17] Penporn Koanantakool. Communication Avoidance for Algorithms with Sparse
All-to-all Interactions. PhD thesis, University of California, Berkeley, 2017.

[KY14] Penporn Koanantakool and Katherine Yelick. A Computation- and
Communication-Optimal Parallel Direct 3-Body Algorithm. In SC14: Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis, pages 363–374, New Orleans, LA, USA, November 2014. IEEE.

[L. 13] L. D. O’Suilleabhain. Three body approximation to the condensed phase of
water. Master’s thesis, University of California, Berkeley, Berkeley, CA, 2013.

[LOG12] Dongryeol Lee, Arkadas Ozakin, and Alexander G Gray. Multibody multipole
methods. Journal of Computational Physics, 231(20):6827–6845, 2012.

[LZS06a] Jianhui Li, Zhongwu Zhou, and Richard. J. Sadus. A Cyclic Force Decomposi-
tion Algorithm for Parallelising Three-Body Interactions in Molecular Dynamics
Simulations. In First International Multi-Symposiums on Computer and Com-
putational Sciences (IMSCCS’06), pages 338–343, Hangzhou, Zhejiang, China,
June 2006. IEEE.

[LZS06b] Jianhui Li, Zhongwu Zhou, and Richard J. Sadus. Modified force decomposi-
tion algorithms for calculating three-body interactions via molecular dynamics.
Computer Physics Communications, 175(11):683–691, 2006.

[LZS06c] Jianhui Li, Zhongwu Zhou, and Richard J Sadus. Parallelization algorithms
for three-body interactions in molecular dynamics simulation. In International
Symposium on Parallel and Distributed Processing and Applications, pages 374–
382. Springer, 2006.

[Mar01] Gianluca Marcelli. The role of three-body interactions on the equilibrium and
non-equilibrium properties of fluids from molecular simulation. PhD thesis,
University of Kent (United Kingdom), 2001.

[MCG+01] Andrew W Moore, Andy J Connolly, Chris Genovese, Alex Gray, Larry Grone,
Nick Kanidoris II, Robert C Nichol, Jeff Schneider, Alex S Szalay, Istvan Szapudi,
et al. Fast algorithms and efficient statistics: N-point correlation functions. In
Mining the Sky, pages 71–82. Springer, 2001.

[MS99] Gianluca Marcelli and Richard J. Sadus. Molecular simulation of the phase
behavior of noble gases using accurate two-body and three-body intermolecular
potentials. The Journal of Chemical Physics, 111(4):1533–1540, July 1999.

[oCS13] CMU School of Computer Science. The Barnes-Hut Algorithm. http://15418.
courses.cs.cmu.edu/spring2013/article/18, 2013. accessed November 1,
2022.

[Pli95] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics.
Journal of computational physics, 117(1):1–19, 1995.

83

http://15418.courses.cs.cmu.edu/spring2013/article/18
http://15418.courses.cs.cmu.edu/spring2013/article/18

BIBLIOGRAPHY

[SSJ07] J. V. Sumanth, David R. Swanson, and Hong Jiang. A symmetric transformation
for 3-body potential molecular dynamics using force-decomposition in a hetero-
geneous distributed environment. In Proceedings of the 21st annual international
conference on Supercomputing - ICS ’07, page 105, Seattle, Washington, 2007.
ACM Press.

[Tch20] Nikola Plamenov Tchipev. Algorithmic and Implementational Optimizations of
Molecular Dynamics Simulations for Process Engineering. PhD thesis, Technische
Universität München, 2020.

[Ver67] Loup Verlet. Computer ”experiments” on classical fluids. i. thermodynamical
properties of lennard-jones molecules. Physical review, 159(1):98, 1967.

84

	Acknowledgements
	Abstract
	Contents
	Introduction and Background
	Introduction
	Theoretical Background
	Molecular Dynamics Simulation
	Short- and Long Range Forces
	Cutoff Distance
	Newton's Third Law of Motion

	Two Body Algorithms
	Short Range Algorithms
	Long Range Algorithms

	Parallelization
	Domain Decomposition Techniques
	Load Balance
	Scalability
	Technical Consideration

	Three Body Algorithms
	Three Body Algorithms
	Direct Approaches
	Force Cube
	Shifting Algorithms

	Approximate Approaches
	Multibody Multipole Methods
	Short Range Atom Decomposition
	Shift Collapse Algorithm
	Cutoff Triplet Algorithm

	Summary

	Implementation and Results
	Implementation
	Framework
	Algorithms
	Naive All Triplets Algorithm
	All Unique Triplets Algorithm
	Cutoff Triplet Algorithm

	Correctness

	Results
	Shifting Scheme of the Direct Algorithms
	Scalability
	Direct Algorithms
	Cutoff Algorithm

	Load Balance of the Cutoff Algorithm
	Hitrate of the Cutoff Algorithm
	Accuracy Comparison

	Future Work and Conclusion
	Future Work
	Summary

	Appendix
	Code Listings
	Benchmarks
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

