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Abstract

Feature attribution is arguably the predominant approach for illuminating black-box
neural networks. The objective of attribution is to identify the salient input features for
the network’s output. Despite its dominion in neural network explainability research
in the past years and the multitude of proposed feature attribution approaches, the
problem remains open. We observe a significant discrepancy among the results
of different attribution methods. The phenomenon raises ambiguity regarding the
trustworthiness of these methods. Moreover, the evaluation methodologies which test
the sanity of feature attributions are also conflicting, further complicating the puzzle.
The dissertation addresses these issues by rethinking feature attribution and looking
into the problem through different lenses:

Through the lens of neural pathways: Do sparse neural pathways encode critical
features of a given input? Contrary to previous belief, the pruning objective does not
identify these critical pathways. We discuss finding critical pathways and leveraging
them for input feature attribution.

Through the lens of Information: Feature information can be used as a proxy for the
relevance of features. How can we identify input features with predictive information?
We propose an approach for identifying input features with predictive information by
leveraging informative deep features. Thus presenting a fine-grained input feature
attribution.

Through the lens of the model: How do we know if the attribution is telling the truth?
The model knows best. We leverage the model itself to generate features that impose
a desired behavior on the output of the neural network. Hence, we devise a controlled
experimental setup to evaluate whether attributions conform to axioms empirically.

The dissertation also rethinks feature attribution for the explanation of medical
imaging models. We propose alternative ways to perform the attribution that benefits
medical image analysis. Furthermore, we investigate approaches beyond attribution
and identify the concepts learned by the network to discover if neural networks learn
pathology-related features without any explicit cues.
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Zusammenfassung

Die Feature-Attribution ist zweifellos der dominierende Ansatz, um Black-Box Neurona-
le Netze zu beleuchten. Das Ziel der Attribution ist es, die markanten Input-Merkmale
für den Output des Netzes zu identifizieren. Trotz seiner Dominanz in der Forschung
zur Erklärbarkeit neuronaler Netze in den letzten Jahren und der Vielzahl der vorge-
schlagenen Ansätze zur Feature-Attribution, bleibt das Problem offen. Wir beobachten
eine signifikante Diskrepanz zwischen den Ergebnissen der verschiedenen Attribu-
tionsmethoden. Dieses Phänomen wirft Zweifel an der Vertrauenswürdigkeit dieser
Methoden auf. Darüber hinaus sind die Evaluierungsmethoden, mit denen die Richtig-
keit der Feature-Attributionen geprüft wird, ebenfalls widersprüchlich, was das Puzzle
weiter verkompliziert. Die Dissertation befasst sich mit diesen Fragen, indem sie die
Feature-Attribution neu überdenkt und das Problem aus verschiedenen Perspektiven
betrachtet:

Aus der Perspektive der neuronalen Verbindungen: Kodieren spärliche neuronale
Verbindungen kritische Merkmale eines gegebenen Inputs? Entgegen früherer Meinun-
gen werden diese kritischen Verbindungen durch das Pruning-Ziel nicht identifiziert.
Wir diskutieren die Suche nach kritischen Verbindungen und deren Nutzung für die
Feature-Attribution.

Aus der Perspektive der Information: Feature-Informationen können als Proxy für die
Relevanz von Merkmalen verwendet werden. Wie können wir Input-Features mit prä-
diktiven Informationen identifizieren? Wir schlagen einen Ansatz zur Identifizierung
von Eingangsmerkmalen mit prädiktiven Informationen vor, indem wir informative
tiefe Merkmale nutzen. Auf diese Weise wird eine detaillierte Feature-Attribution
ermöglicht.

Aus der Perspektive des Modells: Woher wissen wir, ob die Attribution der Wahrheit
entspricht? Das Modell weiß es am besten. Wir nutzen das Modell selbst, um Merkmale
zu erzeugen, die der Ausgabe des neuronalen Netzes ein gewünschtes Verhalten
aufzwingen. Daher entwickeln wir einen kontrollierten experimentellen Rahmen, um
empirisch zu bewerten, ob die Attributionen den Axiomen folgen.
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In der Dissertation wird auch die Feature-Attribution für die Erklärung von medi-
zinischen Bildgebungsmodellen neu überdacht. Wir schlagen alternative Wege zur
Attribution vor, die der medizinischen Bildanalyse zugute kommen. Außerdem un-
tersuchen wir Ansätze, die über die Attribution hinausgehen, und identifizieren die
vom Netzwerk erlernten Konzepte, um herauszufinden, ob neuronale Netzwerke
pathologiebezogene Merkmale ohne explizite Anzeichen erlernen.
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Part I

Introduction





2How Do Machines Think?

“Can machines think?” is the question that has had the stage since the dawn of modern
computing. With the staggering progress in artificial intelligence research, the time
has come to direct the spotlight on a new question, How do machines think?.

Since the rise of deep learning in the past decade, the artificial intelligence community
has designed learning systems that are capable of tasks hitherto unimaginable. We
see learning algorithms [36], [55] emerging that beat the GO champions and are
slithering into real-world problems such as protein folding. AlphaFold [102] can
accurately predict 3D models of protein structures and is expected to revolutionize
drug discovery. The same algorithm is also recently shown to break a 50-year-old
record in matrix computation efficiency. The AlphaTensor algorithm [113] can discover
the fastest existing algorithm for matrix multiplication (Strassen’s algorithm) by itself
and even further continues to find faster algorithms. Another trend of progress
is in neural architecture research. Nowadays, we see gigantic neural transformer
architectures that have revolutionized natural language processing research and show
eerie performance in natural language processing tasks [88]. In computer vision,
the architectural progress trend started with deep convolutional neural architectures
[18], [25], [32] breaking records in image classification and making quantum leaps in
many other computer vision tasks. And recently, transformer architectures [90] made
their way into computer vision, and we observe gigantic vision-language transformer
architectures that show surprising cognitive capability in understanding the visual
world [107], [110], can generate descriptions, and can generate artistic level images
from text [108], [116].

In all these examples, the complexity of learning algorithms and neural architectures
has reached a level that their working mechanism is not readily comprehensible to us,
the humans who have designed these systems. We have reached the point where we
need to analyze the learning systems after the systems are designed and trained to
understand how they function. To understand whether meaningful representations of
the world are forming in these models, whether there is causal understanding shaping
up in them, and to find out whether “thinking” is emerging within these artifacts. We
are already reaching the point where we want to know how machines think. Before
we analyze the “thinking” of machines, we need to understand better what “thinking”
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is. Let us start with an excerpt from Turing’s seminal paper, Computing Machinery,
and Intelligence [1]. Turing writes:„I propose to consider the question, ‘Can machines think?’

This should begin with definitions of the meaning of the
terms ‘machine’ and ‘think’. The definitions might be framed
so as to reflect so far as possible the normal use of the words,
but this attitude is dangerous. If the meaning of the words
‘machine’ and ‘think’ are to be found by examining how they
are commonly used, it is difficult to escape the conclusion
that the meaning and the answer to the question, ‘Can
machines think?’ is to be sought in a statistical survey such
as a Gallup poll. But this is absurd. Instead of attempting
such a definition I shall replace the question by another,
which is closely related to it and is expressed in relatively
unambiguous words.

— Alan Turing
Computing Machinery and Intelligence [1]

Turing points out that the question, ‘Can Machines Think?’ is ill-posed as one needs
to define the terms’ machine’ and ‘think’. Turing instead proceeds by replacing this
question with a behavioral test, the imitation game, aka the Turing test. Within the
imitation game, an interrogator asks several questions from the machine to judge
whether the responses are from a human or a machine and judge whether the machine
is “thinking.” It better be pointed out that here I am not referring to the imitation game
as was exactly proposed in the original paper. I want you to focus on the philosophical
notion that Turing raises. The idea of a pragmatic and operational approach for
defining ‘thinking.’ That is, a machine is thinking if it appears to think humanly as
evaluated by a human. This notion of subjectivity is particularly of interest to us in this
dissertation, as interpreting how other intelligent systems work is subjective by nature.
As we humans, the biological computing machines (if you subscribe to the monism
mind-body view) are the ones forming an understanding of another intelligent system.
One famous critique of the notion that machines can think, especially with regard to
how the imitation game defines thinking, is reflected in the following sentence [9],
[15]. “Not until a machine could write a sonnet or compose a concerto because of
thoughts and emotions felt, and not by the chance fall of symbols, could we agree
that machine equals brain—that is, not only write it but know that it had written it.”
The criticism upholds that the machines must be conscious (“not only write it but
know that it had written”) and have direct experience (“...because of thoughts and
emotions felt”). In response, in the article "Intelligent Machinery, A Heretical Theory"
[9] Turing argues that we humans unequivocally accept that other humans “think”
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without any knowledge about the subjective experience of others. He continues that
“Instead of arguing continually over this point, it is usual to have the polite convention
that everyone thinks.”

Turing infuses the notion of subjectivity for the definition of thinking; that is, if a
human (or, in a more general sense, an intelligent system) perceives that a system is
thinking, then that system is thinking. From this view, the recent algorithms and neural
networks mentioned earlier [36], [55], [107], [116] are already demonstrating some
"thinking" capabilities. There are, however, other perspectives on artificial thinking.
The computer scientist Dijkstra states [15], “The question of whether Machines Can
Think . . . is about as relevant as the question of whether Submarines Can Swim.” On
a similar note, Richard Feynman, the renowned noble laureate physicist and one of
the most curious and exotic thinkers, answers the question, ‘Can Machines Think?’ as
such: „With regard to the question of whether we can make it to

think like [human beings], my opinion is based on the
following idea: We try to make these things work as
efficiently as we can with the materials that we have.
Materials are different than nerves, and so on. If we would
like to make something that runs rapidly over the ground,
then we could watch a cheetah running, and we could try to
make a machine that runs like a cheetah. But it’s easier to
make a machine with wheels. With fast wheels or something
that flies just above the ground in the air. When we make a
bird, the airplanes don’t fly like a bird, they fly, but they don’t
fly like a bird, okay? They don’t flap their wings exactly.
...
So, there’s no question that the later machines are not going
to think like people think, in that sense.

— Richard Feynman
Idiosyncratic Thinking workshop, Computers from the

Inside Out

The “thinking” that Dijkstra and Feynman refer to here is intertwined with accomplish-
ing tasks and achieving outcomes. Feynman and Dijkstra use analogies of performing
flying or moving through the water, where we don’t need to have machines that
move like birds or swim like humans to accomplish flight and moving through water.
Through this perspective, an agent is intelligent if it achieves a specified performance
or outcome on a task that requires mental faculties. From this point of view, it’s not
important how the agent achieves the task and whether it’s solving a task similar to
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a human. This line of thought is more aligned with artificial intelligence research
in the past decades, where researchers pursue intelligent agents that act rationally.
That is, the agents use the toolset of rational thinking to reason and solve specific
tasks [15]. It is noteworthy that within this line of thinking, it only matters that
the machine accomplishes the tasks. We don’t care how and we don’t care if it’s
purely rational or whether it performs like a human. Within this perspective, the
machine can accomplish tasks with a combination of rationality and randomness. For
instance, a robotic vacuum cleaner could accomplish the task of cleaning a room with
a combination of random moves and saving the traversed trajectory or move in a
structured way of moving around the edges of the room and each time moving one
step towards the inner circumference until the room is clean. Within the task-based
perspective of intelligence, both machines are intelligent. From this perspective, we
can declare that machines can already "think".

Feynman and Dijkstra (and a good proportion of artificial intelligence researchers)
stress this “practical” rationality for formalizing intelligence and thinking. However,
“pure” rationality is another perspective and attempt to formalize thinking dating back
to Aristotle’s work on logic. This perspective grounds intelligence based on rationality.
It gained a lot of attention in the artificial intelligence community in the second half
of the 20th century, when programs were made for solving problems based on logic
[15]. Contrary to practical rationality and human thinking perspectives on thinking,
pure rationality is well-defined and formalized. And from this perspective, we can
also say that a logical program "thinks". However, rationality is not equivalent to
thinking per se, but merely a type of thinking. That is, as long as we accept humans
are thinking, we cannot say rationality is equivalent, as we know humans don’t think
and act rationally [43].

So far, to better understand what “thinking” is, we went through the human thinking
perspective, the pragmatic task-solving perspective, and pure rationality. The latter
two perspectives are more specific as they are defined by tasks and the laws of
rationality. However, “human” thinking remains ambiguous. Turing puts forward the
simple idea of mimicking human thought and the subjective evaluation of another
human. Philosophy and science have attempted to shed light on human thinking for
millennia. Though interesting, the discussion of the philosophy of mind is out of the
scope of “how machines think.” But the scientific findings regarding the human mind
are insightful regarding our question of interest, how machines think. Specifically,
psychology, cognitive sciences, and (computational) neuroscience try to answer the
same question in the domain of the human mind.

One of the starting points of the scientific study of the mind can be traced to the birth
of the field of psychology, where one of the main questions is how humans think. This
question is analogous to our research question, though instead of machines, it studies
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humans. One interesting revelation within psychology was the emergence of cognitive
psychology. The cognitive perspective considers the brain as an information-processing
machine [15]. One of the early works establishing such a concept is “The Nature of
Explanation” [4], [15], which models cognition with the following steps: An internal
representation of the input is formed, then the representation is transformed by some
cognitive processes, and then the final output (action) is returned. It is interesting
to think about how this modeling is akin to the computational process of current
neural network-based learning systems. Moreover, this modeling is relevant to the
notion of explanation, that an explanation is associated with how another cognitive
system (e.g., a brain) represents another system. The follow-up works in cognitive
psychology started to view psychological processes as information processing models
[15], [20]. Such computational modeling eventually led to the emergence of the
field of cognitive sciences, where methods from psychology and computational and
information sciences are interleaved to construct theories of the human mind.

Almost simultaneous to developments in psychology and cognitive sciences to under-
stand the human mind, neuroscience studied the connection between the biological
nervous system and cognitive abilities. It is shown that localized regions within the
brain are associated with different cognitive capabilities. Finding the correlation be-
tween a damaged (perturbed) region of the brain and a deficit (change or ablation) in
a specific cognitive function is a powerful way of studying the brain (or an intelligent
system). In the following chapters, we will see analogous methods for understanding
the behavior of artificial neural networks. For instance, many explanation methods
identify the relevance of features for the neural network’s output by removing features.
Some works also ablate neurons [69] in artificial neural networks to identify their
role. Another method to decode the concepts encoded by neurons is to study the fea-
tures that fire up the neurons. Some methods in artificial neural networks follow the
same idea [40] to decode neurons in artificial neural networks. While neuroscience
was revealing different associations between neural tissues and cognitive abilities,
another branch of research popped out by mathematically modeling the behavior
of the nervous system. The thread of computational neuroscience [10], [15], [19]
attempts to unveil the underlying processes of cognitive capabilities via mathematical
and computational models of the nervous system. If we consider the brain also as an
information-processing machine, then computational neuroscience is a mathematical
method of answering the question, "how do machines think?"

Computational neuroscience attempts to understand how the information-processing
machine in our heads, the brain, gives rise to cognitive capabilities and thinking. In
other words, using computational models, it tries to answer how biological neural
systems think. And as these neural systems are computational “machines,” then
computational neuroscience also studies the question of how machines think. However,
one could argue that the questions of how brains think, and how machines think, are
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not as simply aligned as stated. Biological neural systems, especially the human brain,
are incredibly complex and black boxes. But machines such as artificial neural systems
are not as complex and are designed by us, hence, we know their processes as we
design every connection ourselves. Therefore, the question of how artificial neural
networks think is mute. In response, first, we need to consider that simply knowing
the structure of neural connections and the learning algorithm does not mean we
know how they give rise to specific cognitive capabilities. Similarly, even for simple
biological neural systems knowing the full map of connections (such as knowing an
entire map of fruit fly connectome [96]) is not enough to understand how it gives
rise to thinking. So in this regard, both questions are aligned and necessary. And
though computational neuroscience is limited to studying existing biological neural
systems, the question of how machines think is more inclusive and involves itself
with any possible neural system and connectivity pattern imaginable. Thus it tries to
understand a broader range of machines. Moreover, recent trends in artificial neural
network system design show that the creators are merely assembling layers of neurons
on top of each other, sometimes with a certain level of “intuition,” and come up with
networks that accomplish challenging tasks and show bizarre cognitive capabilities.
This trend of stacking neurons is visible in engineering small-scale computer vision
tasks such as Pneumonia classification to larger-scale vision and NLP tasks with
gigantic models [88], [108], [116] with billions of neurons. Therefore, even though
we are designing the machines, we are not necessarily aware of how they would lead
to specific "thinking" capabilities.
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3Neural Network Explanation

What do we mean by neural network explanation? In the literature, we see the
terms "explanation" and "interpretation" are almost used interchangeably, and some
discussions have tried to delineate between them. In many works, the term explanation
is directly used to refer to feature attribution, which is only one way, among many,
to explain. However, regardless of the exact definition, one notion that readily
comes up from both interpretation and explanation is that they are both subjective.
They involve an observer (e.g., a human), which forms an interpretation of the
neural network, and provides an explanation. The interpretation/explanation is
not necessarily the objective truth representing the other system. It’s a description
or a quasi-representation of the system. I used the terms description, and quasi-
representation, as we are not talking about another representation of the system. You
can represent a system differently, but all representations directly correspond with the
system. On the other hand, a quasi-representation can be a simplified or even more
detailed description of the other system. For instance, we humans sometimes have
overly complex interpretations of the actions of people around us, and we also tend
to have overly simplified representations of people around us. In the realm of neural
networks, an example of a simplified representation of the neural network function at
a given input point is an importance ranking of features within the input, i.e., feature
attribution, which is the focus of this dissertation.

3.1 The Motivation for Explanation

Answering “How do machines think?” is not just an explanation for quenching intel-
lectual curiosity. We just went through significant aspects of studying this research
question that could be of utility by some imagination and drawing similarities between
cognitive science and computational neuroscience in studying artificial intelligence
systems. However, I want to motivate the study of this question even further. Of-
ten, the question arises in different discussions and scenarios, why do we need to
explain/interpret intelligent systems? Or in other words, why do we need to know
how machines think? As long as the system is accomplishing the tasks, everything is
fine, right? I want to answer this question by pointing out its benefits by considering
the current state of neural network research and the future of artificially intelligent
systems.
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First, a dose of reality. Let us consider a real-world medical problem, Pneumo-
nia classification. The community has introduced machine learning models with
radiologist-level classification performance [51]. We have re-implemented the model
with similar classification performance in [77], [115], and we observe that features
used by these models for classification are not aligned with pathologies in many cases.
So, for the time being, explaining these classification systems raises the following
points: Do these features generalize to new datasets? Can we rely on these features
to be relevant in every patient, case, and dataset? What are these spurious features?
are they predictive markers caused by the disease? Are they patterns inherent in the
data collection (e.g., scanning device) or data storage (e.g., intensity variations) and
have nothing to do with the pathology? Are they biological markers correlated with
the pathology (in this case, the spurious features are informative) that the clinicians
did not see before? In any case, even for diagnoses carried out by clinicians, if the
diagnosis is wrong, we blame the clinician if their diagnosis is not aligned with the ac-
cepted modern medicine. We don’t trust witch doctors or folk medicine, although their
diagnosis and treatment might work. Why should it be any different for intelligent
machines?

Trust The previous questions bear several motivations for understanding how an intel-
ligent system thinks. The questions of whether the model would generalize, whether
the features are causal, or whether the model is aligned with medical knowledge are
all associated with reliability and trustworthiness, which is one of the primary motiva-
tions for understanding the thinking of another intelligent system. Trustworthiness
is particularly relevant in mission-critical domains such as medical diagnosis. In the
current state of machine learning, with example models in [51], [77], [115], where
the machine learning model is performing as well as a radiologist in classification
metrics but not relying on relevant features, it would not be reliable in the clinical
routine. Though the system could still act as an assistant to the clinician, in which
case understanding the thinking of the system could help the clinician even further in
noticing features within the data that might have been missed. But do the thinking
of the machines need to be aligned with humans for them to be trustworthy? No.
The argument of alignment for trust loses its color for many tasks. For instance, take
the traffic sign classification task in autonomous driving. The system could also be
using predictive features that have nothing to do with how we read the signs. For
instance, the yield sign is a unique inverted triangle. It does not matter whether the
model uses the red color inside as long as it can classify the sign with its shape. In
such non-critical applications, the performance itself builds trust.

Debug Even in cases where understanding the system is not needed for trust; un-
derstanding can help debug the system. Consider the autonomous driving example,
where the improved performance consistently increases trust in the systems. In this
domain, in unfortunate failure cases, such as accidents due to misclassification or
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detection of an object, we can understand the decision-making process of the system
and debug the system for the future. Consider the Pneumania classification case
again. Assume the intelligent system achieves high accuracy on a specific dataset by
relying on dataset-specific spurious predictive features that are not associated with
pneumonia. This performance will not generalize to another Pneumonia dataset that
does not contain those spurious features. By understanding how the system works
and the fact that the model focuses on spurious features instead of Pneumonia, we
can guide the system toward learning pneumonia-related features.

Knowledge Another question within the Pneumonia classification example is whether
the features used by the models are indeed informative and predictive features that
the clinicians do not use. In this case, the features can indeed be informative and
predictive regarding the dataset. They might even be generalizable features. With
further scientific experiments, it could also be found that they are causal features.
In this case, the model has discovered knowledge. Knowledge discovery is another
motivation behind understanding how a machine thinks. In my opinion, it could be
the main motivation for interpretability in the future. When machines are reliably
and consistently outperforming humans in every task by interpreting the machines,
we are indeed the ones learning. Back to the current state of machine learning,
knowledge discovery seems to be already emerging as a motivation for interpreting
neural networks. In a new study, [101] novel mathematical intuitions for developing
new theories in knot theory and representation theory are extracted by interpreting
machine learning models trained on mathematical data.

3.2 The Means for Explanation

Earlier, we drew parallels between brains and intelligent machines and between
computational neuroscience and the study of how machines think. Computational
neuroscience [7], [10], [19] has already defined three types of analysis which I
think are interesting to be applied to the study of intelligent machines. Specifically,
the machines we discuss in this thesis are artificial neural networks which support
this analogy even further. To understand the brain, computational neuroscience
researchers have developed mechanistic, interpretive, and descriptive paradigms. We
can follow the same paradigms for the study of artificial neural networks. The majority
of the works, including the works on feature attribution, are within the category of
the descriptive paradigm. However, the following categorization can be helpful for
future explanation approaches as we move toward more complex neural networks.

Mechanistic In the mechanistic paradigm, we try to understand "how" the neurons
behave the way they do. For instance, we try to understand how V1 cells in the
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visual cortex get fired by simple patterns, such as edges in a specific orientation. We
can assign a convolution model to this behavior as they behave like a convolution
operation. The analogy in neural networks would be analyzing the trained filters of
the early layers of a CNN as in [26] and finding out that these filters have patterns like
edge detector filters and these neurons behave as edge detectors. Another analogy
is studying how different detectors combine in different layers to form detectors of
more advanced concepts [94]. For instance, the neural circuit analysis [94] shows
how a car detector is assembled from window, wheel and car body detectors.

Interpretive In the interpretive paradigm, the question is "why" the brains work the
way they do. For instance, why are some V1 cells in the visual cortex structured like
edge detectors? The researchers have adopted the efficient coding hypothesis [3] for
visual data and discovered that an efficient (with minimum filters) representation of
visual data would result in filters with primary patterns such as edge detectors [5].
I.e., the sparse code for natural images resembles simple-cell feature detectors. This
type of analysis in the artificial neural networks domain could answer questions on
architectural design. For instance, understanding why convolutional neural networks
are designed the way they are. This type of understanding demands that the new
architectures and design choices be explained. Furthermore, in the future, with
neural architecture search algorithms, the question tries to understand why these
architectures are formed.

Descriptive In the descriptive analysis, the goal is to study to "what" stimuli the brain
and the neurons respond. I.e., what information and features do they encode, and
what information can be decoded from them. Adapting this view to artificial neural
networks, the goal is to understand the features that activate neurons, which features
they encode, and how we can decode the information encoded in a trained neural
network. This view is most relevant to how we try to understand and explain neural
networks in this thesis. And this view is aligned with most of the neural network
interpretability research. We can categorize the research in this domain into methods
that identify what features within an input are relevant for a neuron output and
methods that try to decode neurons. Examples of the decoding methods can be the
feature visualization approaches [13], [30], [33], [48], [65], [94] or approaches that
look for features in the dataset that activate neurons [27], [40], [71], [104]. Although
we use these approaches for network understanding in our thesis, the main focus is
the first category. We are interested in understanding the input features relevant to
the neuron’s output. We do so by attributing the output of a neuron (or the network)
to input features and identifying the input features relevant to the neuron output.
This idea is known as feature attribution.
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4Explanation via Feature Attribution

The dominion of neural networks in Artificial Intelligence has rendered the field of
eXplainable Artificial Intelligence (XAI) equivalent to explainable neural networks.
And within explainable neural network research, feature attribution is arguably
the dominant approach. It is so commonly used in the literature that the word is
almost unanimous with explanation, and it is used interchangeably. However, feature
attribution is only one way to explain/interpret neural networks. Furthermore, after
all these years of insightful research and contrary to popular belief, the simple problem
is far from solved.

4.1 Feature Attribution is an Open Problem

The Discrepancy Problem We observe in chapters 6 and 7 that different attribution
methods are identifying different features as relevant for the network’s prediction.
The attributions under study cover multiple classes of attribution methods. From
pioneering works to axiomatically and mathematically grounded methods. The
discrepancy issue exists, and meanwhile, the machine learning community, unaware
of this issue, uses these attributions to explain different models. The community’s
oblivion regarding this issue results in reaching wrong conclusions from problematic
explanations. It raises doubts about any conclusion made from explanations so far.
Many research works use explanations to support the soundness of their methods.
Moreover, this oblivion can have a catastrophic and far-reaching impact in domains
such as medical image analysis. Wrong explanations can give a false sense of trust in
automatic medical image diagnosis. The models could be using spurious and clinically
irrelevant features, but the false explanation might be aligned with the clinician’s
insight. For instance, in a thoracic pathology classification problem, the explanation
method might highlight an area overlapping with the lungs. However, this might be
due to the explanation recovering salient image features and not what the network is
using for the prediction. We see this discrepancy in our work in [77]. The gradient of
the network highlights regions that disagree with class activation maps. The gradient
merely reflects the local sensitivity of the neural network with respect to the image. A
user (clinician) might consider the gradient as an explanation without knowing what
the gradient reflects. In this case, the visually pleasing result of the gradient might
give a false impression that the network is using the highlighted features. We see
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in our experiments in chapters 5, 6, and 7 through different evaluation perspectives
repeatedly that the gradient does not reveal contributing features. By acknowledging
the existence of the discrepancy problem, it’s time to attend to the question that arises
from this phenomenon: Which attribution method is correct?

4.2 Feature Attribution Evaluation

Methods for evaluating explanations were born simultaneously with the advent of
approaches for explaining and understanding neural networks. In the beginning,
evaluations were implicitly introduced alongside the explanations. In computer
vision, the early feature attribution methods (aka saliency methods) were validated by
their visual interpretability. For instance, the saliency maps were shown to highlight
relevant objects for a classification problem. Or they were shown to be more precise
and visually appealing in highlighting the objects [37], [44], [53], [68], [73]. Within
these early works, if the explanation made sense visually, then it was accepted as
a good saliency method. However, there is a significant problem lurking under the
hoods of these approaches. There is no guarantee that the model is using the visual
features we are using. Under this assumption and its resulting faulty evaluation, if a
saliency method recovers salient image features irrespective of the network, it would
get the stamp of approval from the visual evaluation. Indeed there are examples of
such methods [63], [93], which are described in the next section. The following
is a summary of different lenses through which we can evaluate feature attribution
methods.

Alignment

Alignment with human intuition: One way to know whether an attribution method
is identifying features relevant to the neural network’s output is to see whether it is
aligned with what we consider as relevant features. As naive as it might sound, this
approach was among the first methods for evaluation attributions in the beginning,
and it still is commonly used. Early feature attribution methods in computer vision
classification models were endorsed by their visual quality and their alignment with
salient objects in the image relevant to the classification output. The evaluation via
alignment was at first a qualitative approach [21], [26], [31], and later it formed
into a quantitative one and became an essential metric for several years [37], [44],
[53], [68], [73]. Comparing the saliency maps against ground truth bounding boxes
in terms of intersection over union is one example of quantitative visual evaluation
[37]. Another renowned visual evaluation approach is the pointing game [68], which
again compares the saliency maps with bounding boxes but instead checks whether
the highest saliency value is within the bounding box and the comparison is made
for different output classes to check how attribution changes focus. Comparison to a
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ground truth of what humans think is important has one underlying shaky assumption.
The assumption is that the model uses the same features as humans. For instance,
the model could be using spurious features to classify an image (a model can classify
ImageNet [12] classes by solely relying on non-robust features which do not resemble
the features humans use for classifying those classes [76]). In this case, if we expect
a feature attribution method to highlight the objects relevant to the class, we risk
approving a method that wrongly attributes as such while discarding a saliency method
that is rightfully attributing to the spurious features.

But considering the issue within the evaluation via alignment, should we avoid
evaluating this way? Alignment with intuition is by no means a tool for reliably
assessing an attribution method. However, the evaluation is insightful if we mind
the caveats. The correct way to adopt this approach is only to get an insight to
form a hypothesis regarding how the model is behaving. Moreover, the alignment
evaluation can be applied to evaluate other aspects of the attribution methods. For
instance, the pointing game evaluation can show that some attributions attribute to
the same features when explaining different classes [93]. That is, the attribution
method generates the same saliency map for different outputs. Such an observation
reveals the class-insensitivity issue within several attribution methods. We reveal the
class-insensitivity issue in several attribution methods in our experiments in [93].
In our work in chapter 6 we leverage visual evaluation towards identifying how
fine-grained the visualization of a saliency method is. Note that we do not use visual
evaluation to check whether the attribution is reliable. However, within reliable
methods, a method that is more fine-grained is more desirable. For instance, if a
method identifies the features that are indeed contributing to the output but does so
in a visually blurry fashion, then it might not be very informative for the user. That
is, the attribution might show the regions associated with pneumonia correctly but
also include the surrounding area. Therefore it won’t show the regions relevant for
pneumonia classification precisely. In our work in chapter 6, we propose a metric to
better measure this property of attribution methods. The visual evaluation is useful
when the model passes other objective evaluations.

Alignment with synthetic ground truth: A fairly recent idea to evaluate explanations
is devising experimental setups where we know the predictive features via the means
of generating data. For instance, [87] leveraged a shape dataset generator [45] for
this purpose. We have control over the shapes we generate and their color. Therefore
for each classification label, we know the predictive cues. For instance, we can assign
a specific label, “red rectangle,” to the image that contains a red rectangle. Then
we retrain the network on the synthetically generated dataset. Now an attribution
method is expected to identify the red rectangle when classifying the corresponding
label. A beautiful idea. However, there are some issues within this experimental setup.
The issue is again that there is no guarantee that the model is using the same features
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as us to classify the image as a red rectangle. Even if we manage to control the setup
such that there is no other predictive feature, we don’t know if the model would use
the edges and the color of the object close to the edges, the entire object, or just part
of the shape to do the classification. Therefore we cannot know if an attribution is
rightfully highlighting a region. But the evaluation can still be very insightful as it can
show the wrong behavior of many attribution methods. For instance, if attribution
is always highlighting all the objects, it raises suspicion about its sanity. Or when an
attribution always highlights specific features (such as edges), then the attribution
might simply be performing edge detection. Thus alignment with synthetic ground
truth is a promising and powerful tool in our arsenal.

In our work in chapter 7, we take the idea one step further. Generating a synthetic
dataset without considering the model results in uncertainty about the features that
the model would learn from the synthetic data. We propose to use the model itself
to generate the features. We devise an experimental setup in which we know exactly
how specific features contribute to the output prediction. Using optimization on the
input space, we generate features that impose a certain behavior on the output of the
network. We then test attributions in this experimental setup and test if they behave
properly.

Removal

What does “importance” mean? Intuitively when we want to see the importance of
evidence in an outcome, we remove the outcome and see (or ask) what happens to
the outcome with the evidence removed. The removal is one way to think about
importance. From this point of view, if we want to see whether a feature contributes
to the output of a neural network, we can remove that feature and observe its effect
on the output of the network. The more the removal of a feature disrupts the output
of the network, the more important the feature is. Therefore given a relevance ranking
(saliency map) for features of an input, we can sequentially remove features from the
input based on their ranking and observe the output change. The experiment results
in a chart (change of output vs. the number of features removed). Through this
approach, we can compare various attribution methods against each other. Moreover,
we can measure if an attribution is indeed identifying important features by comparing
it with a random-ordered removal of features. If the method behaves akin to random
removal, then we need to be doubtful about its reliability. The notion of removing
features based on the relevance ranking and directly observing output change is
first proposed in [52]. Later on, another variant of the idea, Sensitivity-N [39] was
proposed. In this variant of feature removal analysis, a certain portion of features
are first removed randomly, and the output change is measured. Subsequently, the
correlation between the relevance score of these features and the output change of
these features is computed. The operation is done for various numbers of features in
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increasing order. The plot, in essence, reflects how the saliency values correlate with
output change for various attribution methods.

[39], [52] are grounded in the removal of features. But one question remains; what
do we mean by removal? I.e., what value should we replace the features with?
Intuitively we replace features with values that represent absence or missingness. The
representation of absence is heavily dependent on the data distribution. For instance,
in a data distribution of flying birds, the absence can be represented by the sky. In
this case, if we have a dataset of flying birds, a reasonable choice is to remove pixels
by values representing the color of the sky. Within computer vision applications, the
pixel value of zero is considered a good representative [57]. But this is questionable,
as replacing pixels with black values can introduce new features and also can add
out-of-distribution effects. Therefore a better choice is to consider the input data
itself when removing values. For instance, for an image, we can replace the pixel
values based on the surrounding pixels and the image semantics. A prototype of this
idea is presented in [59]. An inpainter is one way to deal with the choice of baseline
and alleviating out-of-distribution effects. The removed feature values introducing
out-of-distribution effects is a significant problem. I.e., it is not clear whether the
output change resulting from removing a feature is due to it being out of a distribution
or it being important. For instance, an adversarially selected perturbation can have a
tremendous effect on the output [23].

To address the out-of-distribution issue, [75] propose an interesting idea: Retraining.
The core idea is simple and elegant. Retrain the model on the data with the features
removed and analyze how the model generalizes. The idea has two variants: 1) retrain
the network on the input dataset with its important features removed, and 2) retrain
the network on the input dataset with its important features remaining. In both cases,
we chose a certain percentage of features to remove or keep. The removal (or keeping)
is done based on the relevance score of the attribution method under evaluation. The
two variations convey different messages and reveal complementary insights. In
the variation in which the important features are removed, if the accuracy of the
model does not drop, it means the attribution missed features that were predictive
by themselves. If the accuracy drops, by assuming that the accuracy drop is not due
to the network and training (a controversial assumption), we can infer the removed
features were indeed leveraged by the model. In the variation in which important
features are kept, if the accuracy of the model is equivalent to the original or swiftly
rises to the original, then the attribution method has identified features that are
sufficient for the model to get to the original accuracy. The retraining approach is
computationally expensive for large datasets, therefore in research papers [78], [84],
[97], [103], [109] it is usually implemented on smaller datasets [17], [22], [117].
The retraining-based evaluation is a promising approach for objectively measuring the
importance of features identified by attributions.
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Axiomatic

Defining importance (contribution) through removal is intuitive but leads to ambigu-
ous cases. Assume we have an image of a Persian cat as input to the network. Also,
assume that the network can use either “ear” or “whiskers” to classify with maximum
output score that the image is a Persian cat. If we remove any of these features
from the image (e.g., cover the cat ears), we still get the same output score from the
network. In this scenario, the definition of contribution based on removal assigns
zero contribution to each feature. However, we are confident that the network is
using at least one of these features to the output, Persian cat. What do we expect the
contribution assignment approach to do in this case? Sketching up axioms can help.
We can define contribution by any score assignment that adheres to several axioms.
For instance, using the axioms [100] of efficiency (completeness [57]), symmetry, null-
player (Dummy), and linearity we can formalize the contribution definition grounded
on the notion of removal[100]. The new axiomatic formulation is designed such
that it has desirable properties that we want the contribution assignment method to
have. For instance, for the Persian cat scenario, adherence to the null feature axiom
prohibits the assignment of zero contribution to either of the predictive features.
The aforementioned axioms have an interesting property that justifies the axiomatic
formulation even further. The property is that only one unique solution satisfies all
the axioms. The unique solution is the Shapley value [2], [46] which was developed
and formalized in the context of cooperative game theory.

Moreover, we can sketch up other axioms to impose other desirable behaviors on the
attributions. For instance, a desirable property for attribution is that if we randomly
change the parameters of a model and therefore change the prediction, the attribution
may as well change. The attribution methods can either be shown theoretically to
conform to a certain property or can be experimentally shown that they do not. For
instance, [58] proposes a set of experiments (sanity checks) that evaluate whether
attributions are sensitive to model parameter randomization. Surprisingly, many
methods are shown to be not sensitive. Another property that is desirable for an
attribution method is to satisfy class sensitivity [93], [95], [98]. The property is
specific to networks with multiple output classes. We expect an attribution method
to distinguish between the features contributing to two different outputs. In the
early days of attribution, research [63] proved theoretically that a method [26], [31]
reconstructs the input image rather than explaining the input. And the rather visually
appealing results of this attribution method are due to the image reconstruction
phenomenon. The work also proposed experiments to demonstrate this phenomenon
in practice. We continued to show that even more methods [60], [79], [84] suffer
from this issue. In [93] we hypothesize that several methods might suffer from
this issue due to their formulation and perform rigorous experiments to validate the
hypothesis.
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4.3 The Evaluation Conundrum

We just went over several approaches for feature attribution evaluation. The question
pops up, which evaluation method do we use? The short answer is that each attribution
is revealing insights from a different perspective and is informative in its own regard.
For instance, the feature removal evaluation [39], [52] considers the immediate
effect of removing a feature on the neural network output. Indeed the output change
might be due to that feature being out-of-distribution or adversarial, nonetheless,
through this perspective the feature is relevant. The retraining evaluation considers
features from another perspective: generalizability. If by keeping only certain features
within the dataset, the network still generalizes, then these features are relevant
from this perspective. The visual analysis (such as pointing game [68] and EHR
[109]) can test the visual usability of the explanations. The rest of the discussed
empirical evaluations test properties such as class-sensitivity [95], [98] and sensitivity
to parameter randomization [58] and conformity with different axioms [114].

Is Shapley Value the Holy Grail?
With regard to axioms, one interesting question arises. If we already know the
unique solution, the Shapley value [2], which satisfies [100] the axioms of efficiency,
dummy, linearity, and symmetry, why do we even need evaluations? We can strive to
compute the Shapley value or evaluate methods on a simple dataset where the Shapley
value is computable. Indeed if we take the Shapley value as the only way to define
contribution, we can consider attribution solved and close the book. However, that is
simply not the case. Even if we can compute the Shapley value (it is computationally
expensive [46], [70], [81], [103], as for N features, 2N output computations are
required), in my view, we still have not solved the attribution problem. First, one
notion that I see usually ignored in Shapley value literature is that the works seem to
miss that the Shapley value of a feature is a different notion from the Shapley value
of a group of features (by definition) [11]. For example, if we compute the Shapley
value of all pixels in an image containing a cat, the result will be different than
computing the Shapley value of various superpixels (e.g., the parts that constitute the
cat). Removing a pixel from an object can be effective in all possible coalitions with
other pixels (Shapley value of zero). However, removing an entire object (superpixel)
is a different story. The Shapley value of a superpixel is not equivalent to the sum of
Shapley values of all the pixels within it. Then in this context, it is ambiguous how
we should compute the Shapley value. If we chose superpixels, which superpixels
should we select? This discussion over this phenomenon is planned for my future
work. Another issue regarding the Shapley value as the ultimate feature attribution
solution is that it is only one among several approaches for defining relevance. The
Shapley value defines relevance through some desirable axioms. However, such an
axiomatic definition is only one way; there are other views through which we can
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identify relevance. For instance, through information [97], [109] or the activation
[37], [53] of neurons.

Another issue is the sampling (choice) of missing values [91], [99], i.e. the baseline
reference values. Remember that for computing the Shapley value (and other removal
methods), we have to "remove" features. But what does removing mean? Though in
discrete games, it is evident how to remove a player, in value-based inputs, it may not
be evidently clear what value we should replace the features with in order to consider
it removed. For instance, in an image, if an object is black itself, replacing several
pixels instead with black values is not a good choice for removing these values. We
need to consider the correlations between features in the dataset to find the right
baseline for removal. The correlation is relevant to the data distribution not the
feature interactions described in [92], which computes the second-order interaction
between features considering the model’s Hessian. An interesting [59] proposal to
consider these correlations is the use of inpainters.

Nevertheless, we still need evaluations even if we accept the Shapley value as the
holy grail. Since the value is not computable, approximate methods [46], [70], [100]
are proposed. However, these approximations can break the methods and cause
them to not conform with axioms anymore [100]. Moreover, theoretical analysis
is cumbersome and impossible due to the complexity of these proposed methods.
Therefore empirical evaluations of axioms and desirable properties can serve as sanity
checks on the final solutions. Moreover, other evaluations (removal and retraining)
reveal other issues and properties associated with these approximate methods.

Robustness of Explanations

Several works [72], [74] discuss the phenomenon that adding adversarial perturbation
to inputs can "fool" the attributions, and we should strive to make attributions robust.
By adding infinitesimal adversarial noise to an image, we can guide the saliency
method towards identifying some new features as important while the image looks
similar to the original (from our perspective) and the output is the same. For instance,
we can add noise to an image such that the gradient of the output with respect to the
input forms into a desired shape. [74] discuss this phenomenon and [72] provides an
interesting discussion about the reason. However, stating that attribution methods are
"fooled" is questionable. We have generated a new input and have introduced new
features to it. Why should we expect that the network would use the original features?
Indeed the feature attribution method is pointing to this change (perturbation). Thus
a correct attribution indeed has to change if the features relevant to the prediction
have changed.
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4.4 A Tale of Feature Attribution

In this section, we go through a series of seminal contributions to the quest for solving
feature attribution.

It all Started with the Gradient

The pioneering works on attribution can be attributed to [14], [21]. Both works
propose a linear assumption of the models and use the model’s gradient as attribution.
The term saliency map was coined in [21], and since the work uses network gradient as
attribution, many works refer to this specific method as saliency maps in the literature.
However, the term, in general, can be used to refer to any attribution (especially in the
visual domain). The gradients of the neural networks are "noisy." Therefore several
methods proposed new variations based on gradients. [56] proposed smoothGrad,
which smoothes the gradient by computing the network gradient for multiple versions
of the input image, where each sample is generated by adding Gaussian noise. Then
the resulting gradients are averaged, and the final result looks less noisy. Other works
show that less noisy saliency maps are achieved by only propagating positive gradients
in Deconvolution[26] and Guided Backpropagation, [31], and Excitation Backprop
[68]. However, the evaluations in [58], [63], [93], [98] show these methods that
propagate positive gradients to be problematic. It seems that the methods only reveal
salient image features (such as edges) instead of identifying the relevant features for
prediction. Therefore the results are less "noisy" and look visually appealing. The
gradient-based methods do not perform well in removal-based evaluations [75], [97],
[103], [109]. However, they still reflect the model behavior locally. They show the
local sensitivity of the model with respect to input, which is informative.

Backpropagating the Relevance

The aforementioned methods all leverage a version of network gradients. There is
another series of works that leverage backpropagation but are unfairly categorized
as gradient methods. Though these methods use backpropagation, their formulation
is entirely different. These methods aim to backpropagate the contribution layer by
layer. For instance, DeepLift [54] backpropagates the output difference layer by layer
towards the input. The difference is with respect to having set the previous layer to a
baseline value. Therefore this method is based on the notion of removing a feature
(setting a feature to a baseline). Another pioneering work that stays relevant to this
date is Layerwise Relevance Propagation (LRP) [28], [47]. This method provides a
generalized framework for backpropagating the contribution to an output layerwise
through the proposal of various backpropagation rules. One specific method within the
LRP formulation is the DeepTaylor [47] method that approximates the contribution to
the previous layer by Taylor decomposition.
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Feature Removal and the Gradient Join Forces

Another method that is unjustly regarded as a gradient-based method is the Integrated
Gradients [57]. The core idea behind this method is also based on removing evidence.
The method attributes the output difference to input features. The output difference
is computed with respect to a baseline input (for instance, an input of zero values).
The method satisfies the efficiency (completeness) axiom, meaning that the sum of
the attribution scores equals the output difference (with respect to the baseline input).
Integrated Gradients leverages the gradients of the network on samples ranging from
the baseline input to the original input. The path integral of gradients moving from
the baseline to the input equals the difference between the outputs of the baseline
and the output. It is later reported that integrated gradients approximates the Shapley
value in the continuous domain [100].

Why Not Just Remove Features?

There are, however, methods that are explicitly built upon the notion of feature
removal. The most basic formulation will be to remove a feature and observe the
resulting output difference. We can try the removal for all features within the input
and use the output difference values as relevance scores. For instance, in computer
vision, we can occlude the image one pixel at a time and see the effect of the removal of
each pixel from the image. The method is referred to as occlusion-1 in [39]. Naturally,
we can regard patches of pixels as features and carry out the same methodology.
Interestingly the resulting saliency maps from removing pixels and patches differ
significantly. The same observation is also reported in [86]. The issue with removing
features one by one is that it’s computationally expensive. We have to compute the
output of a neural network as many times as the number of pixels within the image.
Moreover, it’s not clear how many pixels we should occlude. Should we continue
pixel-wise or patch-wise? The search for masks can be an answer.

Searching for Masks

Since it’s unclear which group size to occlude, [42], [44], [73], [82] propose optimiz-
ing for an occlusion mask within the image. The objective of the optimization is to
find the smallest mask that keeps the output equal to the original output (naturally,
the largest mask is the input image itself). Since this optimization could result in
finding trivial masks (such as adversarial examples), several regularization terms,
such as mask smoothing, are used [44], [73] to find meaningful perturbations. In
essence, the regularization terms enforce a prior for considering groups of features.
[85] introduces an interesting regularization term. During optimization, the gradients
are not allowed to pass through neurons that were not originally active. In essence,
they are restricting the network to the originally active subnetwork. It is observed
that such a regularization alone is quite effective in sidestepping trivial solutions.
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In our work [78] we observe something similar. When we restrict the network to
critical pathways while generating an adversarial perturbation, the relevant pixels are
perturbed (relevant as evaluated by feature removal methods [75] and visually).

In Pursuit of the Shapley Value

The Shapley value [2] is unique between methods that are grounded upon removing
of features. Unique as it is the unique solution that satisfies several axioms [46],
[100]. It was first developed in cooperative game theory in the 50s, and recently it was
adapted to neural networks [46]. Shapley value accounts for removing a feature in
all possible coalitions with other features. Due to the exponential number of possible
coalitions, the Shapley value is computationally expensive, specifically in the domain
of neural networks, as each inference is expensive by itself. Therefore research is
proposing approximate and fast methods for computing the Shapley value [46], [70],
[100]. For a discussion on Shapley value, please refer to section 4.3.

Neuron Activations

Convolutional neural networks have a special property. They keep the spatial corre-
spondences. Only parts of the input that are within a neuron’s receptive field, activate
the neuron. If a neuron gets activated, we know something within the receptive field
of that neuron has caused the activation, and the other regions within the input do not
have any effect. Class Activation Maps (CAM) [37] uses this property to identify what
input regions are relevant for a neural network’s output. It is originally proposed for a
convolutional neural network that has only one linear layer after the last convolutional
feature map. In this architecture, we know the weight connecting each feature map
(activation map) to each neuron in the last layer (the network’s outputs). Therefore
we know the relevance of each activation map for each output. We can thus sum
the activation maps in the last layer weighted by their weights, and we would know
the relevance of different activation regions for the network’s output. The idea is
simple but powerful. Neuron activations in the final layer represent the activation
of high-level concepts, and since there is only one linear layer after them, we know
their relevance (as it is a linear layer). An extension of this method, GradCAM [53]
implements the idea of convolutional neural networks with more layers after the final
convolutional one. The final layers are approximated with a linear one through the
use of the network’s gradient (hence the word Grad in GradCAM). The approximation
would be detrimental as the number of layers after the final convolutional layer
increases, as the layers would not act linearly anymore. Furthermore, if we try to use
earlier convolutional layers, again, we have to approximate their following layers as
linear. Thus the network is the most sound in the original CAM scenario.
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Surrogate Linear Models
One of the most influential works in feature attribution research is [34], which not
only introduces the LIME (local interpretable model-agnostic explanations) method
but also motivates the need for explanations. The core idea behind the method is
simple, sample several data points in the vicinity of the input, compute the network’s
output for each of these inputs, and fit a linear model to these input/output pairs.
The linear model depends on the choice of the neighboring samples. In [34] the
neighboring samples are generated by masking different regions of the input. The
weights of the linear model signify the relevance scores. In essence, LIME is looking
for a local linear surrogate model that implicitly captures features the original network
uses at that point. Our work in chapter 5 can also be interpreted as a surrogate model.
The critical pathway is a subnetwork that locally (around the input) resembles the
original model and contains the critical features the original network uses at that
input point.
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Part II

Rethinking Feature Attribution





5Through the Lens of Neural
Pathways

The questions in this chapter stem from my curiosity regarding what happens to the
internal representations of networks in the presence of adversarial examples [23].
Exploring this question led to more fundamental questions regarding neural networks
and understanding them, and it branched off in this direction (explaining neural
networks) ever since. A few works [35], [66], [83] discuss this “significant” change of
values in the hidden representations when the input is slightly perturbed. They do so
in an intuitive manner and with exciting experiments. The intuitive discussion in [66]
that looks at this phenomenon through an abstract trick, critical paths, ignited my
interest in the topic; of how neural networks encode (represent) input information
within a sparse set of active neurons. What could this type of looking at a network
response tell us about the network? Moreover, in computational neuroscience, the
research in sparsity is already well-established, and it is pretty much illuminating
regarding how the brain encodes input information. Let us delve into a pathway-based
view of neural network internal representations without further ado.

It is observed that information is encoded by a sparse set of active neurons in the brain.
Several notable works in computational neuroscience discuss this phenomenon and
have compiled a collection of justifications for this behavior [6], [8]. In these works, it
is also postulated that the rectifier activation functions of neurons cause sparsity. Such
findings in computational neuroscience research inspired the introduction of rectifier
activation functions (such as ReLU) to the artificial neural network research [16].
Using rectifier activation functions, the response of a neural network also becomes
sparse, i.e., merely a subset of neurons is activated. For instance, for a VGG [25]
neural network, roughly 60% of neurons are activated on average given an input
image. An exciting line of research discusses the reason behind the sparsification
of response using rectifiers [49], [64]. These works show using rectifiers is akin to
running a simple pursuit algorithm for sparse coding. I am just scratching the surface
of the fascinating realm of sparse coding of information in neural networks. The
primary motivation behind this chapter is what insights can be learned about the
neural network’s behavior by analyzing the pathways of neurons.

Before delving into the topic, it is necessary to know what is meant by a pathway. This
work refers to a sub-network or, equivalently, a union of paths connecting an input/out

29



pair within the network as a pathway. And the definition of a path is borrowed from
Graph theory. Considering the neural network as a graph where neurons are nodes
and their connecting weights are edges, the path is a sequence of edges connecting
two neurons (or input and output). Having cleared the definition of the pathway, let
us head back to the topic of acquiring insights from studying the pathways. Since the
dawn of deep learning, several works have revealed that neurons within a trained
artificial neural network encode human-interpretable concepts. E.g., some neurons
activate by curves and others by the presence of circles within the input image [26],
[48]. These analyses are similar to the neural decoding method in computational
neuroscience [7], [19], where the goal is to identify to what patterns each neuron
responds. It can be seen that more high-level concepts are constructed from low-
level concepts as we move deeper into the neural network. For instance, circles are
assembled from curves. More recently, a study on pathways [94] reveals more human
interpretable connections on neural pathways. For instance, a combination of window
and tire detectors leads to a car detector.

Discovering such interpretable concepts along pathways is already enough reason to
study them in more depth. But there are findings from different perspectives that
make studying neural networks through the lens of pathways more interesting. For
instance, we observe that for inputs of the same/similar classes, the pathways of
active neurons in artificial neural networks overlap considerably [67]. It is also shown
that we can identify "critical" pathways associated with a given input, and we observe
that the pathways associated with inputs of different classes and adversarial inputs
differ significantly. But what are "critical" pathways? This question is the focus of the
first part of this chapter. [66] use the pruning objective, and knowledge distillation
[29] to extract highly sparse subsets (∼87% for VGG-16 [25] on ImageNet [12]) that
produce the same output for a given input. So [66] is implicitly defining the critical
pathway as a sparse pathway (a subnetwork) that produces the same output for a
given input. I.e., satisfying the pruning objective on a given input would lead to the
critical pathway.

In the first part of this chapter, we reveal that subsets that produce the same response
as the original network do not necessarily encode the critical input features. It is
intuitive that given the many numbers of neurons, it is possible to select multiple
subsets that produce the same output for the given input. Note that we are discussing
only one input sample (the pruning literature works on another question, that is,
pruning the network for the entire dataset). To show the multitude of solutions,
we propose a pathological greedy pruning algorithm that, by design, searches for
irrelevant pathways that satisfy the pruning objective. By "irrelevant" pathways, we
refer to pathways that are not encoding the input information. We demonstrate that
our greedy pruning algorithm can select pathways that were not originally active
but satisfy the pruning objective. We show the same phenomenon happening for
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the knowledge distillation [66] approach that solves the pruning objective. We also
investigate the concepts encoded by the neurons of various pathways to check whether
they encode concepts relevant to the input by using feature visualization methods
[30], [48]. Decoding what specific neurons correspond to is known as neural decoding
in computational neuroscience [7], [19]. Therefore we refer to it as such.

The question is if the pruning objective does not lead to critical pathways, how do we
identify these pathways? We hypothesize that these pathways are comprised of critical
neurons. The intuition comes from studying numerous works that have studied the
contribution and the role of individual neurons for the neural network outputs. These
works show how an individual neuron can be essential for the prediction capability of
the network for one or a subset of classes [40], [48], [62], [69]. I.e., these neurons
have high importance for the prediction of the network. This gives us the idea to
investigate a pathway of individually important neurons for each input response.
Therefore we can first identify critical/important neurons for a specific output and
extract pathways based on the neuron contributions. For instance, we can extract the
top 5% of important neurons and analyze the behavior of the selected subnetwork
(We do this by replacing the other neurons with constant values equal to their original
activation value.). But how do we identify important neurons? For this purpose,
we rely on the axiomatic definition of importance, which is the Shapley value [2],
[46], [70], [86], [100], which itself is grounded upon another intuition. A feature is
important if its removal has a high effect on the output, i.e., it has a high marginal
contribution to the output. We first analyze how the selected pathways using neuron
contributions overlap with originally active pathways. We proceed to evaluate to what
features these pathways correspond by feature visualization.

We also propose identifying corresponding input features using the critical pathways.
I.e., we propose a feature attribution approach based on critical pathways. We show
we can directly identify features within the image that correspond to the pathway. We
achieve this by discovering an exciting phenomenon. That is, the critical pathways
are locally linear subnetworks. We prove this phenomenon mathematically. The proof
is in the appendix and stands on the shoulders of works on neural network linearity
and activation patterns [24], [50], [80]. By leveraging the local linearity property,
we can use the network’s gradient with respect to the input to identify input features
that correspond to the pathway. We call this method of feature attribution Pathway
Gradient. We analyze this method rigorously via various attribution evaluation meth-
ods. We observe that this method indeed identifies important input features. Through
these feature attribution evaluation experiments, we can further validate that the
pathways of critical neurons indeed correspond to critical input features and that they
are encoding critical input features.
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Abstract

Is critical input information encoded in specific sparse
pathways within the neural network? In this work, we dis-
cuss the problem of identifying these critical pathways and
subsequently leverage them for interpreting the network’s
response to an input. The pruning objective — selecting the
smallest group of neurons for which the response remains
equivalent to the original network — has been previously
proposed for identifying critical pathways. We demonstrate
that sparse pathways derived from pruning do not neces-
sarily encode critical input information. To ensure sparse
pathways include critical fragments of the encoded input in-
formation, we propose pathway selection via neurons’ con-
tribution to the response. We proceed to explain how critical
pathways can reveal critical input features. We prove that
pathways selected via neuron contribution are locally linear
(in an `2-ball), a property that we use for proposing a fea-
ture attribution method: “pathway gradient”. We validate
our interpretation method using mainstream evaluation ex-
periments. The validation of pathway gradient interpreta-
tion method further confirms that selected pathways using
neuron contributions correspond to critical input features.
The code1 2 is publicly available.

1. Introduction
Understanding the rationale behind the response of a

neural network is of considerable significance. Such trans-
parency is required for adoption and safe deployment in
mission-critical domains. Interpreting the response also
helps in debugging and designing neural networks, and
quenches the intellectual curiosity over how neural net-
works function [15, 47, 24, 63, 10, 50].

What insights can we acquire about the underpinnings

1https://github.com/CAMP-eXplain-AI/PathwayGrad
2https://github.com/CAMP-eXplain-AI/RoarTorch

of a neural network’s response by putting the networks un-
der the microscope and analyzing neurons and pathways?
By ”pathway”, we refer to a union of paths (equivalently a
sub-network) that connect the input to the output. Discov-
ering to what patterns neurons correspond — also known as
neural decoding in computational neuroscience [6] — has
revealed human interpretable concepts encoded in neurons
of artificial neural networks, e.g. curve and circle detectors
[41, 65]. Analyzing the neural pathways has recently re-
vealed human interpretable connections between concepts
encoded within each neuron on the pathway, e.g. circles
being assembled from curves [40]. In this work we dis-
cuss pathways responsible for the network’s response given
a specific input, but how can we identify these pathways?

Deep rectified neural networks encode the input informa-
tion using a sparse set of active neurons [12], and their infer-
ence can be deemed as a pursuit algorithm for sparse coding
[43, 59]. Such sparse coding of information is akin to how
biological neurons encode information in the brain [42, 16].
Yu et al. [64] reported that the pathways of active neurons
in artificial neural networks overlap significantly for inputs
of a given class. Recently, [63] proposed using the pruning
objective and knowledge distillation [19] to show that sig-
nificantly higher levels of sparsity (∼87% for VGG-16 [54]
on ImageNet [7]) can be achieved while keeping the predic-
tion intact. These highly sparse pathways are reported as
the critical paths and are shown to be different for inputs of
different classes and adversarial inputs [45, 63, 64].

We first investigate, whether these highly sparse path-
ways derived from the pruning objective indeed encode crit-
ical input features. We show that the pruning objective has
solutions that are not critical pathways, even though they
have the same response as the original network. To illus-
trate how the pruning objective can result in such pathways,
we construct a pathological greedy pruning algorithm that
by design searches for irrelevant pathways while satisfying
the pruning objective. Furthermore, we analyze the path-
ways selected by distillation guided routing [63] and ob-



serve a similar phenomenon. We also use feature visual-
ization [41, 30] to decode and semantically analyze the
pathways. If these pathways do not encode critical input
features, how can we find such pathways? Numerous works
have studied the importance of individual neurons for the
neural response, and how each neuron encodes information
specific to one or a subset of classes [69, 4, 36, 41]. It
is therefore intuitive that selected sparse pathways should
encompass important/critical neurons for the correspond-
ing response. We thus investigate selecting pathways based
on neuron contributions as opposed to the pruning objec-
tive. In order to compute the importance of neurons, we
use notions of marginal contribution and the Shapley value
[51, 29, 2, 60, 70]. The first section of the work is devoted
to the discussion of critical pathways.

We proceed to answer how critical pathways can help
us interpret the response of the network. We prove that
in rectified neural networks, pathways selected by neuron
contributions are locally linear. We leverage this property
and propose an input feature attribution methodology
which we refer to as ”pathway gradient”. We evaluate
our attribution methodology with input degradation [48],
sanity checks [1], and Remove-and-Retrain (ROAR) [20]
on Cifar10 [25], Bridsnap [5], and ImageNet [7] datasets.
By validating our attribution methodology, we also validate
that selected pathways using neuron contributions indeed
correspond to critical input features. In summary, the main
contributions of the paper are:

• We show that the pruning objective does not neces-
sarily extract critical pathways. We illustrate how the
pruning can fail by proposing a pathological greedy
algorithm that by design searches for irrelevant pathways.
Subsequently, we propose selecting pathways based on
neuron contributions instead.
• We prove that critical pathways selected by neuron con-
tributions are locally linear (`2-ball) in rectified networks.
Using local linearity, we propose a feature attribution
approach, ”pathway gradient”, that reveals input features
associated with features encoded in the critical pathways.
• We empirically show that computing contribution (ap-
proximated Shapley value) of neurons rather than input
pixels, improves input feature attribution.

2. Background and related work
Feature visualization / Neural decoding: This task

identifies which input patterns activate a neuron. One
family of solutions searches for image patches within the
dataset that maximize the activations of neurons [67, 65, 4].
Another series of works generates images that maximize
certain neuron activations [38, 41, 8, 53, 30].

Feature attribution: Here, the problem is to find what
features in the input are important for the response of a neu-

ron. The notion of importance/contribution is grounded in
the effect of removal of a feature on the response. The
amount of output change after removing the feature is
marginal contribution, and the average of marginal con-
tributions of a feature in all possible coalitions with other
features in the input is the Shapley value [51]. Due to com-
putational complexity, several works such as integrated gra-
dients (IntGrad) [61] and DeepSHAP [29] approximate the
Shapley value. Recently it has been shown that many ap-
proximations break the axioms [60], leaving integrated gra-
dients as a promising candidate.

A principal class of feature attribution methods use net-
work gradients. [53, 3] propose the input gradient it-
self as attribution. Guided backpropagation (GBP) [57],
LRP [34], and DeepLIFT [52] modify gradients during
back-propagation. Class Activation Maps (CAM) [68] and
GradCAM [50] perform a weighted sum of the last con-
volutional feature maps. Grounded in marginal contribu-
tion, other approaches (perturbation methods) mask the in-
put [10, 9, 44, 62] or neurons [9, 49] and observe the output
(or information flow [49]).

Evaluation of feature attribution methods: Early eval-
uation of interpretability relied on human perception, e.g.
evaluation by localization accuracy [68] or pointing game
[66]. However, the model could be using features outside
the human annotation or even non-robust features as in [21],
and such localization-based evaluations penalize the correct
attribution method. Moreover, [39, 23, 55] show/prove that
several methods with human interpretable attributions gen-
erate the same attribution even after the network’s weights
are randomized. These methods are GBP [57], Deconvo-
lution [65], DeepTaylor(=LRP-α1β0)[34] and Excitation
BackProp [66]. To evaluate such sensitivity to model pa-
rameter randomization, sanity checks [1] have been pro-
posed. Recently, input degradation [48] and ROAR [20]
experiments have been introduced for evaluating feature im-
portance. Each of these evaluations measure a different per-
spective which we explain in section 4.2.

3. Selection of critical pathways

3.1. Setup and notation

Consider a neural network ΦΘ(x) : RD → R with
ReLU activation functions, parameters Θ = {θ1, ..., θL},
and L hidden layers withNi neurons in layer i ∈ {1, ..., L}.
The total number of neurons is N =

∑L
i=1Ni. We use

zi ∈ RNi to represent pre-activation vector at layer i, and
ai ∈ RNi for representing the corresponding activation vec-
tor, where ai = ReLU(zi), zi = θiai−1 + bi, and a0 = x.
Note, our definition of Φθ(x) has a single real valued out-
put. The reason is that we are considering the neural path-
way to one neuron, and this neuron could in fact be a hidden
neuron in a larger network. Thus the response is defined by



Φθ(x) = θL+1aL + bL+1. Each individual neuron in layer
i is specified by index j ∈ {1, ..., Ni}, thus denoted by zij
and aij . The vectors zi and ai are specifically associated
with input x. The vector containing activations of all N
neurons is denoted by a = [aij ]

N (same notation for vectors
of other entities related to neurons). {aij}Nij=1 denotes the
set of neurons in layer Ni, and {0, 1}N denotes a set of size
N containing 0s and 1s.

3.2. Selection by pruning objective

We first describe the pruning objective [28] and discuss
how a solution satisfying this objective does not necessitate
it being critical. Let m = {0, 1}N be a mask that represents
the neurons to be kept and pruned. The pruning objective
given an input x is then defined as:

arg min
m
L (Φθ(x),Φθ(x;m� a)) s.t. ‖m‖0 ≤ κ, (1)

where � and L denote the Hadamard product and the loss
respectively. κ controls the sparsity. Equation (1) is a com-
binatorial optimization problem and a plethora of solutions
exist [26, 18, 17, 33, 28].

Does the pruning objective result in sparse pathways
that encode the input? Rectified neural networks have
sparse positive activations [12, 42, 43, 59], and encode the
input in a sparse set of active neurons [42, 12]. Thus, the
network represents discriminative and infrequent features
(i.e. features with high information) by sparse/infrequent
activation values. In this regime, positive activations are
detectors of features [4, 8, 67, 41, 65] and encode features
that exist in the input. Zero activations represent missing-
ness of features. Therefore, if a neuron is dead (zero), its
corresponding features do not exist in the input. We also
posit that a dead neuron does not contribute to the output
(considering zero activation as a baseline for missingness):

Lemma 1 (Dead Neurons) Considering ai as the input at
layer i to the following layers of the network defined by
function Φ>iθ (.) : RNi → R, the Shapley value of a neu-
ron aij defined by

∑
C⊆{aij}

Ni
j=1\aij

|C|!(Ni−|C|−1)!
Ni

(Φ>iθ (C∪
aij)− Φ>iθ (C)) is zero if the neuron is dead (aij = 0).

Lemma 1 (proofs for lemmas and propositions are provided
in the appendix) shows that dead neurons have a Shapley
value of zero, thus do not contribute to the response. We

Algorithm 1: Pathological greedy pruning

initialize mi
j = 1 ∀ i, j

while ‖m‖0 ≥ κ do
sij ← |aij∇aij

Φθ(x)|
if sij ≤ sκ ∧ sij 6= 0 then mi

j ← 0 ;

Figure 1. Dead Neuron Selection of Pruning Objective. The
percentage of originally dead neurons in the selected pathways
of different methods reported for sparsity of 90% (see appendix
for more sparsity values). Evaluation on pathways extracted from
VGG-16 on 1k ImageNet images. All pathways selected by prun-
ing objective contain originally dead (now active) neurons. The
observation that when selecting the top 10% of critical neurons,
pruning methods select neurons from the dead regions of the net-
work (which after pruning become active) points to the fact that
they are selecting pathways unrelated to the input. Our proposal is
to use neuron contributions (our NeuronIntGrad, NeuronMCT).

proceed to explain how the pruning objective can select
originally dead neurons as critical neurons. Removing an
active neuron results in a change in inputs to next layer’s
neurons and thus may change their activation value, and this
can result in activating an originally dead neuron. We con-
sider a sparse selected pathway undesirable if it contains
neurons that were originally dead, but have become active
due to the pruning of other neurons. Such a selected path-
way is an artificial construct, which does not reflect the orig-
inal sparse encoding of the input.

Pathological greedy pruning: We construct a greedy
algorithm that by design searches for irrelevant pathways
while solving the pruning objective (Eq. (1)). The algorithm
illustrates how originally dead neurons turn active and be-
come part of the highly sparse selected pathway that pro-
duces the same network response. Our greedy approach
(Alg. 1) first ranks all neurons based on their relevance
score for the response. The relevance is determined by the
effect of removing a neuron, approximated by Taylor ex-
pansion similar to [33, 37]. The relevance score sij is then:

sij = |Φθ(x)− Φθ(x;aij ← 0)| = |aij∇aij
Φθ(x)| . (2)

Next we remove the neuron(s) with the lowest rank, and al-
ternate between rank computation and removal. However,
we tweak the algorithm to find pathways that contain orig-
inally dead neurons. At each removal step, we remove the
lowest contributing neuron that is not dead (without this
crucial step, dead neurons will be pruned before others as
their relevance score is zero). By removing a non-zero neu-
ron, the activation pattern can change and some originally



Figure 2. Pathway Analysis. Overlap between pathways of methods: a) in entire network. b) layer-wise overlap between pathways of all
methods and NeuronIntGrad. Among the pruning-based methods, only DGR(init=1) does not diverge far from originally active pathways.

dead neurons can activate and become included in the path-
way. Our algorithm illustrates that solving for the pruning
objective can result in undesirable pathways.

Distillation Guided Routing: DGR [63] relaxes the
pruning objective (Eq. (1)) by replacing m = {0, 1}N with
continuous valued gates 0 ≤ λij ∈ R. To induce sparsity,
the objective is regularized with an `1 norm, i.e.

∥∥λij
∥∥

1
:

min
Λ
L(Φθ(x),Φθ(x; Λ� a)) + γ

N∑

k=1

∥∥λij
∥∥

1
s.t. λij ≥ 0 ,

(3)

where Λ = [λij ]
N is the vector of all λij . In our experiments

we find that the initial value of Λ plays a significant role.
Wang et al. [63] use λij = 1 ∀i, j without discussing its role.
We denote different initilizations with DGR(init=value).

3.3. Selection by neuron contribution

Individual neuron ablation [69] and network dissec-
tion [4] reveal that specific neurons are critical for cer-
tain classes. It is therefore intuitive that critical pathways
contain important neurons. The effect of removing a unit,
|Φθ(x) − Φθ(x;aij ← 0)|, is called the marginal contri-
bution. Computing the exact value for the marginal con-
tribution of all neurons is computationally expensive. As
we have to ablate each neuron (total N ) in the network
and observe its effect after inference. Therefore we use a
Taylor approximation similar to Eq. (2), cij = |Φθ(x) −
Φθ(x;aij ← 0)| = |aij∇aij

Φθ(x)|, where cij denotes
the contribution of neuron aij . Pathways selected by this
method are hereon referred to as NeuronMCT, where MCT
stands for Marginal Contribution Taylor.

The Shapley value is the unique definition that satis-
fies desirable axioms of feature attribution [29]. It is de-
fined as the average of marginal contributions of a fea-
ture in all possible coalitions with other features in the in-
put. For each neuron, its coalitions with neurons of the
same layer are considered. This results in 2Ni−1 possible
coalitions. Considering all layers, the total required infer-
ence steps becomes

∑L
i=1 2Ni−1, which is computationally

expensive. Thus we use an approximation method. The
IntGrad [61] method with baseline 0 is equivalent to the
Aumann-Shapley value, which is an extension of the Shap-
ley value to continuous setting [60].

The contribution cij using IntGrad with baseline 0 is:

cij = aij

∫ 1

α=0

∂Φθ(αa
i
j ;x)

∂aij
dα (4)

Henceforth, the contributions assigned as such are referred
to as NeuronIntGrad.

Remark 2 NeuronMCT and NeuronIntGrad assign cij = 0

to a neuron with aij = 0 (dead neuron).

We denote a pathway by e = [eij ]
N , where eij ∈ {0, 1}

are indicator variables for each neuron indicating whether
neuron belongs to pathway e. Having computed the con-
tributions cij , in order to select a pathway e = [eij ]

N , with
sparsity value κ, we select neurons with cij ≥ cκ where cκ
is the contribution value of the corresponding sparsity κ in
a sorted list of contributions, i.e. if cij ≥ cκ then eij = 1,
else eij = 0.

Selecting the values higher than cκ is average-case
O(n). Thus the computational burden of selecting a path-
way depends on the contribution assignment procedure.
NeuronMCT requires one inference, and for NeuronIntGrad
we use 50 inference steps in the experiments. For both
methods, the ranking of the aij are performed network-wise,
and not layer-wise. We directly compare the contribution of
neurons from different layers. This is possible because in-
tegrated gradients satisfies completeness, and for each layer
i,
∑Ni
j=1 c

i
j = Φθ(x)− Φθ(a

i ← 0), making the scores di-
rectly comparable. For marginal contribution, by definition
the contribution is the change in the output, so the contribu-
tions are inherently comparable.

3.4. Pathway selection experiments

Pathway analysis To corroborate the claim that the prun-
ing objective results in undesirable pathways, we evaluate
the pathways extracted by the discussed methods from a



Figure 3. Pathway Decoding. a) Generating an input that maximizes the network response while restricting the network to a specific
pathway selected by different methods. For the original network, the generated input contains class-specific (related to ”fig” class) features.
When restricted to active neurons (Active Subnet), an input similar to the original input is reconstructed. The reconstructed input for our
contribution-based methods (NeuronIntGrad, NeuronMCT) contains only the critical input features (the figs) of the original image. The
reconstructed images for pruning-based pathways (except DGR(init=1)) do not show any input related information. b) Feature visualization
of the top selected neuron of the final convolutional layer in each pathway (this experiment is only relevant for pathway selection methods).
The top neuron in NeuronIntGrad and NeuronMCT pathways encodes features related to the bird’s eye, which is highly relevant to the
input image. The top neurons in pruning-based pathways are associated with features not related to the input.

Figure 4. Feature Attribution via Pathway Gradient. The gradients of the locally linear critical pathways at different sparsity levels.
The pathway is selected using NeuronIntGrad. The pathways are locally linear and their gradient reflects the critical input features. As we
select sparser critical pathways, feature attribution reveals input features that are more critical. More examples in the supplementary.

VGG-16 [54] network for 1k ImageNet [7] images. We re-
port results for the pathways of 90% sparsity (more values
in appendix). Fig. 1 shows the percentage of previously
dead neurons in the selected pathways of all methods. We
observe that all pruning based methods converge to select-
ing undesirable pathways. ∼69% of neurons in the top 10%
selected neurons of GreedyPruning are originally dead neu-
rons. Another noteworthy observation is the effect of the
initial value of gates in the DGR method. When gates are
initialized to 1, the pathways do not drift away from the
original active pathway as much as they do with random
(uniform [0, 1]) initialization (DGR(init=r)). Nevertheless,
still ∼8% of neurons in the top 10% of DGR(init=1) are
originally dead neurons. We analyze the overlap of the se-
lected pathways using the Jaccard similarity between path-
way indicators e in Fig. 2a. Note the similarity between
NeuronIntGrad and DGR(init=1) compared to DGR(init=r).
This suggests that when initializing DGR with 1, the se-
lected pathways do not drift significantly to undesired path-
ways, and they still roughly contain the critical neurons, ex-
plaining why [63] observed meaningful pathways. We also
perform a layer-wise similarity analysis between pathways
in Fig. 2b. We observe that the overlap between pathways
of NeuronIntGrad and NeuronMCT increases as we move

towards final layers, implying that the overall difference be-
tween their pathways is due to differences in earlier layers.

Pathway decoding Feature visualization estimates the in-
put that maximizes a neuron’s response. In order to gener-
ate an image xG that maximizes the response, the network’s
weights are frozen and optimization by gradient descent is
done on the input, i.e. arg maxxGΦθ(xG). Such optimiza-
tion without any regularization or priors is prone to generat-
ing adversarial artifacts [14, 41]. Hence, we optimize with
preconditioning and transformation robustness techniques
as in [41] to generated natural looking images. The question
we are interested in here is what the pathway corresponding
to the input can tell us about that input. This allows us to
semantically evaluate the pathways derived from different
pathway selection methods. In Fig. 3a, we generate inputs
that maximize the network response while the network is
restricted to different pathways. When considering the orig-
inal network, features related to the predicted (”Fig”) class
are visualized. When we restrict the network to the active
pathway (Active Subnet), optimization attempts to recon-
struct the image. At 98% sparsity we observe that, critical
features relevant to the predicted class are reconstructed for
contribution-based methods. This signifies that the selected



sparse pathway has indeed encoded features relevant to the
prediction. However, for pathways selected by the pruning
objective (except DGR(init=1)), the reconstructions resem-
ble noise. In Fig. 3b, we perform feature visualization (us-
ing entire network) of the selected top neuron in the final
convolutional layer of each pathway. We observe that the
selected top neuron by NeuronMCT and NeuronIntGrad is
semantically highly relevant to the input, as the neuron is re-
sponsible for the bird’s eye. The top neuron of DGR(init=1)
is also relevant as it relates to feathers. While for the other
methods, the top selected neuron is semantically irrelevant,
further confirming that the selected pathways are not encod-
ing the input.

4. Interpreting response via critical pathways
In Section 4.1 we show that sparse pathways selected by

NeuronIntGrad and NeuronMCT are locally linear. The lo-
cal linearity is later used in Section 4.2 for input feature
attribution via ”pathway gradients” and understanding to
which features in the input the pathways correspond.

4.1. Local linearity of pathways of critical neurons

Networks with piecewise linear activation functions are
piecewise linear in their output domain [35], and thus are
linear at a specific point x, and ∀i, j:
Φθ(x) = (∇xΦθ(x))>x + bL+1 ; zij = (∇xz

i
j)
>x + bij

(5)
Although the network degenrates into a linear function at a
given point, it does not mean it is locally linear. Indeed both
the value [13] and the gradient [11] are unstable around a
point. To discuss the local linearity of the rectified network,
we need to define activation pattern [46, 27]:

Definition 3 (Activation Pattern(AP)) AP is a set of in-
dicators for neurons denoted by AP = {1(aij)}N where
1(aij) = 1 if aij > 0 and 1(aij) = 0 if aij ≤ 0.

The feasible set S(x) of an AP is the input regions where
the AP is constant and thus the function is linear. Let
B(x)ε,2 = {x̄ ∈ RD : ||x̄ − x||2 ≤ ε} denote the `2-
ball around x with radius ε, and let ε̂x,2 denote the largest
`2-ball around x where the AP is fixed, i.e.

ε̂x,2
.
= max
ε≥0:Bε,2(x)⊆S(x)

ε (6)

ε̂x,2 is the minimum `2 distance between x and the cor-
responding hyperplanes of all neurons zij [27]. The hy-
perplane defined by neuron zij at point x is {x̄ ∈ RD :

(∇xz
i
j)
>x̄ + b = 0} or {x̄ ∈ RD : (∇xz

i
j)
>x̄ + (zij −

(∇xz
i
j)
>x) = 0}. If ∇xz

i
j 6= 0 then the distance between

x and zij is

|(∇xz
i
j)
>x+(zij−(∇xz

i
j)
>x)|/||∇xz

i
j ||2 = |zij |/||∇xz

i
j ||2
(7)

For a neuron zij , if ∇xz
i
j = 0, then zij = bij . In order for

the activation of this neuron to change, the ∇xz
i
j and con-

sequently the AP has to change. Therefore the distance is
goverened by neurons for which∇xz

i
j 6= 0. [27] prove that

ε̂x,2 = min
i,j
|zij |/||∇xz

i
j ||2. Since ∇xz

i
j 6= 0, the existence

of a linear region ε̂x,2 depends on |zij | not being zero.
Locally linear network approximation: In order to ap-

proximate the original model Φθ(x) with a selected path-
way e, we replace each neuron aij which is not in the path-
way, i.e. eij = 0 with a constant value equal to the initial
value (aij) of that neuron. Note the new constant is not a
neuron anymore and thus does not propagate gradient. Re-
placing the neuron with its initial value keepsAP , and neu-
rons zij unchanged. We denote such an approximate model
by Φ̂θ(x; e). Proofs are provided in the appendix.

Proposition 4 In a ReLU neural network Φθ(x) : RD →
R, for a pathway defined by [eij ]

N , if aij > 0 ∀ eij = 1, then
there exists a linear region ε̂x,2 > 0 for Φ̂θ(x; e) at x.

Proposition 5 Using NeuronIntGrad and NeuronMCT, if
cκ > 0, then Φ̂θ(x; e) at x is locally linear.

4.2. Input feature attribution via critical pathways

The gradient of a linear model represents the contribu-
tions of each corresponding input feature[32, 3, 53]. There-
fore several works perform a first-order Taylor approxima-
tion of the network [3, 53]. However, the gradients of net-
works are unstable and drastically change around an input.
To capture the true direction of change, SmoothGrad [56]
averages gradients and LIME [32] fits a linear model to the
input neighborhood. However, for a locally linear network,
the gradients are already stable (constant within a region)
in the linear region neighborhood. The gradient reflects the
contributions of features in that neighborhood. Based on
Proposition 5, the approximate model Φ̂θ(x; e) is locally
linear for NeuronMCT and NeuronIntGrad. Thus, we can
derive linear approximations for the model using the critical
pathways of the model and use their gradient as attribution
maps. We refer to this method as “pathway gradient”. We
use different levels of sparsity and observe the most crit-
ical input features for the response (Fig. 4). The attribu-
tion methodology is visually compared with other attribu-
tion methods in Fig. 5. For pathways selected via pruning,
as their pathways do not contain critical input information,
it would be senseless to use them for feature attribution.
There is no guarantee for their linearity as Proposition 4
requires all neurons within the pathway to be active.

Computing contribution of neurons vs. input pixels:
Computing the Shapley value [51] for pixels does not ac-
count for correlations between pixels3. Ideally, one should

3Correlation and interaction are different. The latter is related to effect
of features in different coalitions which is accounted for by Shapley value



Figure 5. Comparison with Attribution Methods. Results for our method ”pathway gradient” are shown on the right (for pathways
selected by NeuronMCT and NeuronIntGrad). Our method provides pixel-level explanations as opposed to GradCAM [50]. GBP [57] is
visually pleasing, but it is merely reconstructing image (Sec. 2). Note the improvement of IntGrad (integrated gradients [61]) on the neurons
(NeuronIntGrad) over IntGrad on input (InputIntGrad). Also note the improvement of marginal contribution on neurons (NeuronMCT)
over direct implementation on input (InputMCT = input×gradient [52]). More examples for VGG-16 / ResNet-50 in the appendix.

Figure 6. Randomization-Sensitivity Sanity Check. [1] Similarity of attributions before and after network (ResNet-50, ImageNet) pa-
rameter randomization. High similarity after randomization suggests that the attribution method is not explaining the network.

know which pixels are correlated (e.g. belong to the same
object), and compute a single Shapley value for this group.
The Shapley value for a group is known as the General-
ized Shapley value [31]. There is an exponential number of
groups of pixels. We thus aim to compute the Shapley value
only for groups of correlated pixels e.g. an object (more in
the appendix). Within the pathway gradient framework, we
compute the Shapley value for neurons instead. Neurons in-
herently correspond to correlated groups of pixels. Thus we
are indirectly computing the Shapley value (contribution) of
those correlated groups of pixels. In our experiments, using
MCT and IntGrad on neurons (denoted by NeuronMCT and
NeuronIntGrad) results in considerably better attributions
compared to applying them only to input pixels (denoted by
InputMCT and InputIntGrad).

Baseline choice: The baseline in feature attribution rep-
resents the absence of a feature. In the image domain,
[65, 61] consider the zero (black image) as baseline. How-
ever, zero pixel values do not necessarily reflect the absence
of a feature [58, 22]. As explained in Sec. 3.2, zero neurons
represent missingness in sparse rectifier networks. The zero
baseline is therefore, more justified for neurons than for the
input space, and has been also used in [2, 52].

4.3. Feature attribution evaluation experiments

Grounding attribution in theoretical notions such as
Shapley value is desired [29, 60] (GradCAM, GBP, and
Gradients are not based on this notion). However, ex-
periments can point to specific shortcomings in methods,
e.g. the approximate Shapley value (IntGrad[61]) for pix-
els does not perform well in experiments, which may be

due to disregarding correlations between input pixels. Each
of our experiments examines the methods from a differ-
ent perspective. As explained in Sec. 2, visual evaluation
can be unreliable. Network parameter randomization san-
ity checks [1] evaluate whether the method is explaining
model behavior. Input degradation [48] and Remove-and-
Retrain (ROAR) [20] evaluate whether the attribution maps
are showing important features in the input (refer to ap-
pendix for details). We use TorchRay [9] for implemen-
tation of other attribution methods.

Network parameter randomization sanity checks [1]:
Several attribution methods, such as LRP−α1β0 [34], Ex-
citation Backprop [66], and (GBP)[57] generate the same
result after the network is randomly initialized, thus they
are not explaining the network [1, 55]. In this experiment,
parameters of the network are successively replaced by ran-
dom weights, from the last layer to the first layer. At each
step, the similarity between the attributions from the orig-
inal and randomized network are reported (Fig. 6) for 1k
ImageNet images (ResNet-50). It is noteworthy that Grad-
CAM seems sensitive here, but the experiment is unfair to
it due to the low dimensionality of its maps [1]. Our attri-
butions confidently pass this sanity check.

Input degradation - LeRF [48]: Pixels are removed
based on their attribution score and the output change is
measured. We remove least relevant features first (LeRF).
LeRF evaluates methods based on sufficiency of the fea-
tures for classification and how well methods avoid assign-
ing scores to unimportant features. Results are reported for
ResNet-50 on ImageNet, Birdsnap, and Cifar. We observe
(Fig. 7(a,b,c)) considerable improvement of NeuronIntGrad



Figure 7. Feature Importance. a,b,c) Input degradation-LeRF: Removes input pixels based on their importance (least relevant features
first) and measures output change. Represents how well the method avoids attributing the response to unimportant features (Bridsnap, and
ImageNet). d,e) Remove and retrain (ROAR): Removes top 10/30/50/70/90 percent of important pixels and retrains on the modified
inputs (Birdsnap, Cifar10). If the accuracy does not drop, the attribution method is not highlighting important features.

and NeuronMCT over InputIntGrad and InputMCT.

Remove and retrain (ROAR) [20]: In input degrada-
tion experiments, the change in output might be a result of
the network not having seen such artifacts during training.
Therefore the ROAR benchmark retrains the network on the
modified images. If the accuracy does not drop, the attribu-
tion method is not highlighting important features. The ex-
periment is performed for different percentiles of removed
pixels. Due to the large number (105) of retraining sessions
required, we exclude ImageNet and use Cifar10 (ResNet-
8) and Bridsnap (ResNet-50) datasets. Gradients, GBP, In-
putMCT and InputIntGrad are not revealing features that
the model learns to use during training. We observe that
NeuronIntGrad and NeuronMCT immensely improve their
input counterparts (Fig. 7d,e). NeuronIntGrad and Neuron-
MCT are performing equally to GradCAM. GradCAM ben-
efits from interpolation and has smooth heatmaps, which
seem to help with ROAR performance. We see that smooth-
ing (by morphological opening) on our methods (referred to
by * in Fig. 7), performs best.

In summary, the attribution experiments show that attri-
bution via critical pathways is a valid methodology with
fine-grained attributions. Fine-grained (pixel-level) attri-
butions convey more accurately which features are impor-
tant to users (Fig. 5). The results support that computing
marginal contribution and the Shapley value for neurons im-
proves attribution over directly computing them for input
pixels. We posit that (Sec. 4.2) this can be due to the Shap-
ley value for pixels not accounting for correlations between
them. Whereas, computing the Shapley value of neurons

implicitly considers correlations between pixels. The fea-
ture attribution experiments also validate that selected path-
ways using neuron contributions indeed correspond to crit-
ical input features.

5. Conclusion

We demonstrate that solving the pruning objective does
not necessarily yield pathways that encode critical input
features. We propose finding critical pathways based on
the neurons contributions to the response, and show how
these sparse pathways can be leveraged for interpreting the
neural response by proposing the “pathway gradient” fea-
ture attribution method. Our findings on critical pathways
and pruning imply that we may need to revisit the reliabil-
ity of pruned networks, and point to the direction of pruning
via attribution. Moreover, considering critical pathways can
be of value to other interpretation approaches, e.g. restrict-
ing the network to critical pathways can serve as a possible
remedy to the vulnerability of perturbation-based attribu-
tion methods to adversarial solutions.

Acknowledgments

The authors acknowledge the support of the Munich
Center for Machine Learning (MCML) and partial support
of Siemens Healthineers. C. Rupprecht is supported by In-
novate UK (project 71653) on behalf of UK Research and
Innovation (UKRI) and by the European Research Council
(ERC) IDIU-638009. A. Khakzar and S.T. Kim are corre-
sponding authors.



References
[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Good-

fellow, Moritz Hardt, and Been Kim. Sanity checks for
saliency maps. In Advances in Neural Information Process-
ing Systems, 2018. 2, 7
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6Through the Lens of Information

In this chapter, we look into feature attribution from the information perspective. The
objective of feature attribution is to identify the relevance of features (for the output).
What do we mean by relevance? In the previous chapter, we formulated the relevance
based on the Shapley value [2], [46] concept. The Shapley value is borrowed from
cooperative game theory and identifies the contribution of players to a game. The
Shapley value is formulated based on the effect of removing a player (feature). Since
Shapley value is the unique solution that satisfies several axioms [100], it is becoming
the holy grail of feature attribution and being considered by many the ultimate way to
assign relevance. Thus many works are following up on solving the issues surrounding
Shapley value, such as the choice of baseline [91], [99] and computational complexity
[46], [70]. And many classical works (see section 4.4) can be associated with Shapley
value as they define contribution based on the removal of features.

But we should not forget that the removal of features and Shapley value are just one
way to assign relevance. One ready example is assigning relevance based on attention.
Class Activation Maps [37] assign relevance based on the network’s activation values
(i.e. attention). It does not have the properties of methods inspired by Shapley value
and, in many cases, does not conform to certain axioms. But it does not mean it is the
wrong way to assign relevance. It is merely a different perspective of showing how the
network works and what is relevant for the prediction. It better be reiterated, as it is
very important to beware of the perspective. Shapley value and other removal-based
concepts of assigning relevance do so based on the effect of removing (or perturbing)
features on the output. Alternatively, methods such as class activation maps assign
relevance based on the activation values of the network. The higher the activation
values (and the weights connecting the activation to the output), the higher the
relevance. These two perspectives tell different stories regarding how the network is
reaching its prediction.

Recently another perspective based on the feature’s predictive information is intro-
duced [97]. The predictive information of features can also be used as a proxy for
identifying the relevance of those features for the neural network’s prediction. The
idea is first to insert an information bottleneck [38] somewhere in the network. Then
find the bottleneck that restricts the passed information as much as possible while
keeping the output prediction. Specifically, the bottleneck limits the mutual infor-
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mation between the features right before and after the bottleneck while maximizing
the mutual information between features after the bottleneck and the output of the
neural network. The idea identifies which features are predictive at the location
where the bottleneck is inserted. Therefore, we need to find a way to map these
predictive features to input if we want to find the informative input features. There is
a simple solution if we use a convolutional neural network and apply the bottleneck
in convolutional layers. Since there is a spatial correspondence between convolutional
features (neurons/activations) with the input, we can simply rescale the values to the
input dimension. The rescaled values provide a (heat)map that shows which regions
have high information for the output. One problem that we can spot easily is that
the rescaling results in a low-resolution map. And thus introduces an approximation.
More approximations are inherent in this approach which are discussed in our paper in
this chapter. Most importantly, the information bottleneck approach is more accurate
when applied in deeper layers. However, the deeper we get, the lower the resolution.
Therefore we face a trade-off. This chapter introduces our idea to alleviate this issue
and find the features with predictive information directly in the input space.

Our idea is to search for a bottleneck on the input that induces the optimal bottleneck
in the deep layers. Remember that the information bottleneck optimization on the
input causes approximation errors, and the error reduces as we move toward deeper
layers. Then first, finding the optimal bottleneck on a deep layer sounds like a
reasonable move. We can then search for an input bottleneck that induces the optimal
bottleneck on the input. Finally, we can further refine the input bottleneck by an
information bottleneck optimization on the input while using the result of the previous
step as a prior. The final input bottleneck represents the input features having high
predictive information. Since the optimization is done in input space, the bottleneck
has the exact resolution as the input. E.g., it directly corresponds to image pixels or
text tokens. The fine-grained attribution resulting from input information bottleneck
is not only visually favorable but also performs well in various feature importance
metrics [39], [52], [75].

The idea of information bottleneck attribution is tightly associated with feature
masking. In fact, the information bottleneck optimization, as proposed in [97],
essentially translates to a masking optimization scheme. The optimization tries to
add gaussian noise to the features (at a selected layer) while keeping the output
prediction consistent with the original prediction. The masking scheme for attribution
is already investigated in several works [42], [44], [73]. The masking methods
are directly accomplished in the input space. But if this method already achieves
results in the input space, doesn’t it make our methodology for input information
bottleneck attribution irrelevant? No, the masking optimization on the input is not
straightforward. The space of solutions that satisfy the masking optimization scheme
is vast. Some of these solutions are of adversarial nature. I.e., we can find random and
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noisy-looking masks that change the output significantly. To avoid these solutions, the
masking methods add priors to the optimization. For instance, they add a smoothness
prior to identifying smooth and consistent to limit the search within “natural” looking
masks. These operations reduce the fine-graininess of the masks. Fine graininess is
one property that gives our method a competitive edge.

But more importantly, our experiments in the previous chapter led us to form an
intuition that constraining the search space using the deep features sidesteps irrelevant
solutions. In the last chapter, we observed that the gradient of a pathway consisting
of critical neurons is aligned with critical input features. Our auxiliary experiments
reported in [78] show that performing an adversarial perturbation on the input while
constraining the pathways to critical neurons leads to perturbing critical input features.
One justification for this phenomenon is that deep features (neurons) encode the
correlations and interactions between input features (e.g., certain pixels belonging
to an object). Thus leveraging these deep features while searching for input features
indirectly considers these input feature correlations. In essence, I consider the main
contribution of this chapter to the feature attribution research, guiding the search for
critical input features by critical deep features.
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Abstract

One principal approach for illuminating a black-box neural network is feature attri-
bution, i.e. identifying the importance of input features for the network’s prediction.
The predictive information of features is recently proposed as a proxy for the
measure of their importance. So far, the predictive information is only identified for
latent features by placing an information bottleneck within the network. We pro-
pose a method to identify features with predictive information in the input domain.
The method results in fine-grained identification of input features’ information and
is agnostic to network architecture. The core idea of our method is leveraging a
bottleneck on the input that only lets input features associated with predictive latent
features pass through. We compare our method with several feature attribution
methods using mainstream feature attribution evaluation experiments. The code 1

is publicly available.

1 Introduction

Feature attribution – identifying the contribution of input features to the output of the neural network
function – is one principal approach for explaining the predictions of black-box neural networks.
In recent years, a plethora of feature attribution methods is proposed. The solutions range from
axiomatic methods [1, 2, 3] derived from game theory [4] to contribution backpropagation methods
[5, 6, 7, 8, 9]. However, given a specific neural network and an input-output pair, existing feature
attribution methods show dissimilar results. In order to evaluate which method correctly explains
the prediction, the literature proposes several attribution evaluation experiments [10, 11, 12, 9]. The
attribution evaluation experiments reveal that methods that look visually interpretable to humans
or even methods with solid theoretical grounding are not identifying contributing input features
[13, 12, 14]. The divergent results of different attribution methods and the insights from evaluation
experiments show that the feature attribution problem remains unsolved. Though there is no silver
bullet for feature attribution, each method is revealing a new aspect of model behavior and provides
insights or new tools for getting closer to solving the problem of attribution.

∗denotes equal contribution ⋄Department of Dermatology and Allergology †corresponding author
1https://github.com/CAMP-eXplain-AI/InputIBA
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Recently a promising solution – Information Bottleneck Attribution (IBA) [15] – grounded on
information theory is proposed. The method explains the prediction via measuring the predictive
information of latent features. This is achieved by placing an information bottleneck on the latent
features. The predictive information of input features is then approximated via interpolation and
averaging of latent features’ information. The interpolated information values are considered as
the importance of input features for the prediction. One shortcoming with this approach is the
variational approximation inherent in the method, leads to an overestimation of information of
features when applied to earlier layers. Another problem is that the interpolation to input dimension
and the averaging across channels only approximates the predictive information of input features
and is only valid in convolutional neural networks (CNNs) where the feature maps keep the spatial
correspondences.

In this work, we propose InputIBA to measure the predictive information of input features. To this
end, we first search for a bottleneck on the input that only passes input features that correspond to
predictive deep features. The correspondence is established via a generative model, i.e. by finding a
bottleneck variable that induces the same distribution of latent features as a bottleneck on the latent
features. Subsequently, we use this bottleneck as a prior for finding an input bottleneck that keeps the
mutual information with the output. Our methodology measures the information of input features with
the same resolution as the input dimension. Therefore, the attributions are fine-grained. Moreover, our
method does not assume any architecture-specific restrictions. The core idea – input bottleneck/mask
estimation using deep layers – is the main contribution of this work to feature attribution research
(input masking itself is already an established idea [16, 17], the novelty is leveraging information of
deep features for finding the input mask).

We comprehensively evaluate InputIBA against other methods from different schools of thought.
We compare with DeepSHAP [1] and Integrated Gradients [2, 3] from the school of Shapley value
methods, Guided Backpropagation [5] (from backpropagation methods), Extremal perturbations
[17] (from perturbation methods), GradCAM [18] (an attention-based method), and the background
method, IBA [19]. We evaluate the method on visual (ImageNet classification) and natural language
processing (IMDB sentiment analysis) tasks and from different perspectives. Sensitivity to parameter
randomization is evaluated by Sanity Checks [12]. Evaluating the importance of features is done
using Sensitivity-N [9], Remove-and-Retrain (ROAR) [10], and Insertion-Deletion [11]. To quantify
the degree of being fine-grained in visual tasks we propose a localization-based metric, Effective
Heat Ratios (EHR).

2 Related Work

2.1 Explaining Predictions via Feature Attribution

We focus on explaining the models for single inputs and their local neighborhood, i.e. local explana-
tion [20]. We categorize attribution methods within the local explanation paradigm. Some methods
can belong to more than one category such as IBA which leverages perturbation and latent features.

Backpropagation-based: [21, 22] linearly approximate the network and propose the gradient as
attribution. Deconvolution [23], Guided Backpropagation [5], LRP [7], Excitation Backprop [8],
DeepLIFT[6] use modified backpropagation rules.

Shapley value: Considering the network’s function as a score function, and input features as players,
we can assign contributions to features by computing the Shapley value. Due to complexity, many
approximations such as DeepSHAP [1], Integrated Gradients [2, 3] are proposed.

Perturbation-based: These methods perturb the input and observe its effect on the output value [16,
17, 24]. E.g. Extremal Perturbations[17] searches for the largest smooth mask on the input such that
the remaining features keep the target prediction. LIME [25] linearly approximates the model around
local input perturbations.

Latent Features: CAM/GradCAM [26, 18] use the activation values of final convolutional layers.
IBA [19] measures the predictive information of latent features. Pathway Gradient [27] leverages
critical pathways.
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Figure 1: Effect of P (Z) Approximation (IBA [19] vs InputIBA (Λ∗)): We see the result of applying
IBA on different layers of a VGG16 network (from conv4_1 to conv1_1). The approximations
(averaging across channels) in IBA result in the assignment of information to irrelevant areas of the
image (the trashcan and areas around the image). As we move towards earlier layers (conv1_1), the
information is distributed equally between features, and less information is assigned to the most
relevant feature (the broom), due to the overestimation of mutual information I[R,Z] in IBA. Using
our approximation of P (Z) the resulting mask Λ∗ is representing only the relevant information
(the broom) at input resolution. λG represents the prior knowledge we use for P (Z). IBA uses the
Gaussian distribution (Q(Z) ∼ N (µR, σR)) to approximate P (Z).

2.2 Do Explanations Really Explain?

The story starts with Nie et al. [13] demonstrating that Deconvolution [23] and Guided Backpropaga-
tion [5] are reconstructing image features rather than explaining the prediction. Later Adebayo et
al. [12] propose sanity check experiments to provide further evidence. They show some methods
generate the same attribution when the weights of the model are randomized.

Sixt et al. [14] and Khakzar et al. [28, 29] provide further proofs and experiments, and add
other attribution methods to the circle. It is noteworthy that all these methods generate visually
interpretable results. In parallel, several feature importance evaluations are proposed to evaluate
whether the features recognized as important, are indeed contributing to the prediction. All these
experiments are grounded on the intuition that, removing (perturbing) an important feature should
affect the output function relatively more than other features. These methods are Remove-and-Retrain
[10], Sensitivity-N [9], Insertion/Deletion [11], which are introduced in Section 4. Interestingly,
such evaluations reveal that axiomatic and theoretically iron-clad methods such as Shapley value
approximation methods (e.g. Integrated Gradients [2, 3] and DeepSHAP [1]) score relatively low in
these feature evaluation methods.

3 Methodology

We first introduce the background method, IBA [15] in Section 3.1. We proceed in Section 3.2 with
explaining IBA’s shortcomings and proposing our solution. In Section 3.3 and Section 3.4 we explain
details of our solution.

3.1 Background - Information Bottleneck Attribution (IBA) [15]

This method places a bottleneck Z on features R of an intermediate layer by injecting noise to R
in order to restrict the flow of information. The bottleneck variable is Z = λR + (1− λ)ϵ, where
ϵ denotes the noise and λ controls the injection of the noise. λ has the same dimension as R and
its elements are in [0, 1]. Given a specific input I and its corresponding feature map R (R = f(I),
function f represents the neural network up to the hidden layer of R), the method aims to remove
as many features in R as possible by adding noise to them (via optimizing on λ), while keeping the
target output. Therefore, only features with predictive information will pass through the bottleneck
(parameterized by the mask λ). The bottleneck is thus optimized such that the mutual information
between the features R and noise-injected features Z is reduced while the mutual information between
the noise-injected features Z and the target output Y is maximized, i.e.

max
λ

I[Y,Z]− βI[R,Z] (1)

where,
I[R,Z] = ER[DKL[P (Z|R)||P (Z)]] (2)



3.2 Approximating the Distribution of Bottleneck P(Z)

The main challenge with computing I[R,Z] is that the distribution P (Z) is not tractable as we
need to integrate over all possible values of R (since P (Z) =

∫
P (Z|R)P (R)dR). Therefore IBA

methodology resorts to variational approximation Q(Z) ∼ N (µR, σR). The assumption is reasonable
for deeper layers of the network [19]. However, as we move toward the input, the assumption leads
to an over-estimation of mutual information I[R,Z] [19]. The result of using such an approximation
(Q(Z) ∼ N (µR, σR)) is presented in Fig. 1 for various layers of a VGG-16 neural network. As
the over-estimation of I[R,Z] increases by moving towards the earlier layers, the optimization in
Eq. (1) removes more features with noise. We can see that the predictive feature (the broom) in Fig. 1
disappears as we move IBA towards the early layers (to conv1_1). The approximation of P (Z) is
most accurate when IBA is applied on the deepest hidden layer.

In order to accomplish feature attribution for the input features, IBA method limits itself to convo-
lutional architectures. First, it finds the informative features of a hidden layer by solving Eq. (1).
Let λ∗ denote the result of this optimization. IBA interpolates these values to the input dimension
(similar to CAM [26]) and averages λ∗ across channel dimension. Such interpolation is reasonable
only for convolutional architectures as they keep spatial information. The interpolation and averaging
introduce a further approximation into computing predictive information of input features. From this
perspective, it is desirable to apply IBA to early layers to mitigate the effect of interpolation. At the
same time, early layers impose an overestimation of I[R,Z]. Therefore, there is a trade-off between
mitigating the adverse effect of interpolation/averaging and the Q(Z) ∼ N (µR, σR) approximation.

We aim to come up with a more reasonable choice for Q(Z) such that it is applicable for the input I .
This alleviates architecture dependency to CNNs, as the mutual information is directly computed
on the input space and avoids the approximation error which results from interpolation to input
dimension and the summation across channels. We take advantage of Q(Z) ∼ N (µR, σR) being
reasonable for deep layers. Thus we first find a bottleneck variable Z∗ parameterized by the optimal
result λ∗ (Z∗ = λ∗R + (1 − λ∗)ϵ ) by solving Eq. (1). The bottleneck Z∗ restricts the flow of
information through the network and keeps deep features with predictive information. Then, we
search for a bottleneck variable on input, ZG, that corresponds to Z∗ in the sense that applying ZG

on input inflicts Z∗ on the deep layer. This translates to finding a mask on input features that admits
input features which correspond to informative deep features. Thus, the goal is to find ZG such that
P (f(ZG)) = P (Z∗), where function f is the neural network function up to feature map R:

min
λG

D[P (f(ZG))||P (Z∗)] (3)

where ZG = λGI + (1 − λG)ϵG, and D represents the distance similarity metric. For details of
Eq. (3) refer to Section 3.3.

The resulting Z∗
G (and its corresponding λ∗

G) from Eq. (3) is a bottleneck variable on input I that
keeps input features associated with predictive deep features. The final goal is keeping only predictive
features of input (Eq. (1)), therefore, ZG can be used as prior knowledge for the distribution of input
bottleneck P (ZI). To incorporate this prior, we condition P (ZI) on ZG, i.e. ZI = ΛZG + (1− Λ)ϵ
with a learnable parameter Λ as the input mask. We then proceed and solve Eq. (1) again, but this time
for ZI . The resulting mask from this optimization is denoted by Λ∗. We refer to this methodology
resulting in Λ∗ as InputIBA.

Remark 1 P (ZI) ∼ N (λGΛI + (1− λGΛ)µI , (1− λGΛ)
2σ2

I )

Remark 2 P (ZI |I) ∼ N (ΛI + (1− Λ)µI , (1− Λ)2σ2
I )

We can explicitly compute DKL[P (ZI |I)||P (ZI)] in order to compute mutual information I[ZI , I],
the assumptions and detailed derivation are provided in the Appendix A.

Proposition 3 For each element k of input I we have DKL[P (ZI,k|Ik)||P (ZI,k)] = log
1−λG,kΛk

1−Λk
+

(1−Λk)
2

2(1−λG,kΛk)2
+

(Ik−µI,k)
2(Λk−λG,kΛk)

2

2(1−λG,kΛk)2σ2
I,k

− 1
2

3.3 Estimating the Input Bottleneck ZG

The objective is to find a bottleneck variable ZG at the input level that inflicts the distribution
P (Z∗) on the latent layer where Z∗ is computed. In other words, we search for λG that minimizes
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Figure 2: Qualitative Comparison (ImageNet): We observe that the results of different attribution
methods are substantially dissimilar for the same prediction. This is a caveat for the community that
the attribution problem is far from solved. There is a consensus between GradCAM, IBA, and our
method (InputIBA) that the ears and the snout are important for the prediction. Feature importance
evaluations show that these methods reveal important features. InputIBA, DeepSHAP and Integrated
Gradients are fine-grained. However, we observe in feature importance experiments that only the
InputIBA is attributing to important features among fine-grained methods.

D[P (f(ZG))||P (Z∗)], where function f is the neural network function before bottleneck Z∗, and D
is the similarity metric. We employ a generative adversarial optimization scheme to minimize the
distance. Specifically, the generative adversarial model we use tries to fit the two distribution with
respect to Wasserstein Distance (D) [30]. In this work we focus on local explanation, i.e. given a
sample input, we aim to find an explanation that is valid for the neighbouring area of sample input
(Bϵ(R) := {x ∈ Rn : d(x,R) < ϵ}). We refer to this set, as the local explanation set. To generate
f(ZG), we sample I from the local explanation set of the input. Variable ZG = λGI + (1− λG)ϵG
is constructed from λG, µG and, σG. These are the learnable parameters of our generative model.
We apply the reparametrization trick during sampling learnable noise ϵG (parameterized by mean
µG and standard deviation σG), so that the gradient can be backpropagated to random variable
ϵG. Once we have the sampled values (I , µG and σG) we get ZG = λGI + (1 − λG)ϵG, we pass
this variable through the neural network to get a sample of f(ZG). The target distribution that the
generator is approximating is the P (Z∗). We construct the target dataset by sampling from P (Z∗).
The generative adversarial model also leverages a discriminator which is learned concurrently with
the generator. The discriminator serves to discriminate samples from P (f(ZG)) and P (Z∗), thus its
architecture can be determined based on the actual data type of the attribution sample.

3.4 Optimizing I[Y,Z]

Minimizing cross-entropy loss (LCE) is equivalent to maximizing the lower bound of the mutual
information I[Y, Z] [31]. Thus, in this work and in [19], instead of optimizing Eq. (1) we optimize:

min
λ
LCE + βI[R,Z] (4)

In this paper, we provide more support for using cross-entropy instead of I[Y,Z]. Given the network
with parameter set θ denoted as Φθ, we derive the exact representation of I[Y,Z] instead of the upper
bound of I[Y,Z], Full derivation can be found in Appendix B.

Proposition 4 Denoting the neural network function with Φθ, we have:
I[Y, Z] =

∫
p(Y,Z) log Φθ(Y |Z)

p(Y ) dY dZ + EZ∼p(Z)[DKL[p(Y |Z)||Φθ(Y |Z)]]

We prove that the minimizer of the cross-entropy loss is the maximizer of the mutual information
I[Y, Z] in the local explanation setting (exact assumption and proof provided in the Appendix C).

Theorem 5 For local explanation (local neighborhood around the input),
argmax

∫
p(Y,Z) log Φθ(Y |Z)

p(Y ) dY dZ = argmax I[Y, Z]

4 Experiments and Results

Over the course of this section, first we provide the experimental setup in Section 4.1. Then,
we present qualitative results in Section 4.2, and check the InputIBA’s sensitivity to parameter
randomization in Section 4.3. We proceed with evaluation of the attribution methods in terms of
human-agnostic feature importance metrics (Sensitivity-N [9] in Section 4.4.1, Insertion/Deletion
[11], and ROAR [10]). Finally, we evaluate the methods in terms of localization Section 4.5 using



Method Text (Tokens Divided by Space)

InputIBA this is easily and clearly the best . it features loads of cameos by big named
comedic stars of the age , a solid script , and some great disneyesque songs , and
blends them together in a culmination of the best display of henson ’ s talent .

IBA this is easily and clearly the best . it features loads of cameos by big named
comedic stars of the age , a solid script , and some great disneyesque songs , and
blends them together in a culmination of the best display of henson ’ s talent .

LIME this is easily and clearly the best . it features loads of cameos by big named
comedic stars of the age , a solid script , and some great disneyesque songs , and
blends them together in a culmination of the best display of henson ’ s talent .

Integrated
Gradients

this is easily and clearly the best . it features loads of cameos by big named
comedic stars of the age , a solid script , and some great disneyesque songs , and
blends them together in a culmination of the best display of henson ’ s talent .

Table 1: Qualitative Comparison (IMDB): We compare with IBA and methods that are widely used
for NLP model interpretaion. To visualize the attribution, we highlight words that have attribution
values from 0.33 to 0.66 with orange, and words that have attribution values from 0.66 to 1 with red
(attribution value ranges from 0 to 1). We see that IBA does not translate to RNN architectures when
attributing to input tokens. IBA can only identify latent important features. We observe that InputIBA
and LIME, and IG attribute to relevant tokens.

our proposed EHR metric. To demonstrate the model-agnostic capability and show that our model
is revealing the predictive information, we evaluate our method in both vision and NLP domains.
We choose ImageNet [32] image classification for evaluation on vision domain. Apart from image
classification tasks on ImageNet/VGG-16, we also apply InputIBA on a sentiment classification task
(IMDB) and an RNN architecture.

4.1 Experimental Setup

In our experiments on ImageNet, we insert the information bottleneck at layer conv4_1 of
VGG16 [33] pre-trained by Torchvision [34]. We use βfeat = 10 for IBA. We adopt Adam [35]
as the optimizer with learning rate of 1.0, and optimize the feature bottleneck for 10 optimization
steps. We optimize the generative adversary model for 20 epochs with RMSProp [36] optimizer,
setting the learning rate to 5 × 10−5. For optimizing Λ, we use βinput = 20 and run 60 iterations.
The choice of hyper-parmeters of attribution methods affects their correctness [37]. For more details
on the hyper-parameters please refer to Appendix D.

In the NLP experiment, we investigate the sentiment analysis task. A 4-layer LSTM model is
trained on IMDB dataset [38] which consists of 50000 movie reviews labeled as either "positive" or
"negative". After the model is trained, we generate attributions at embedding space. We compare
InputIBA with 4 baselines: Integrated Gradients, LIME [20], IBA [15] and random attribution. In
order to generate attribution using IBA, we insert IBA at a hidden layer and consider the hidden
attribution as valid for the embedding space, since RNN does not change the size and dimension of
input tensor.

We train our model on a single NVIDIA RTX3090 24GB GPU. For VGG16 [33], it takes 24 seconds
to obtain the attribution map of one image with resolution 224× 224.

4.2 Qualitative Comparison

ImageNet Fig. 2 presents the attribution resulting from various methods. IBA and GradCAM
are interpolated into input space, thus they are blurry. Guided Backpropagation is reconstructing
image features [13], thus looks interpretable. Extremal Perturbation has lost the shape information of
the target object as it applies a smooth mask, moreover it has converged to a region (dog’s snout)
that is sufficient for the prediction. DeepSHAP and Integrated Gradients generate fine-grained
attributions, however, the negative/positive (blue/red) assignment seems random. Moreover, feature
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Figure 3: Parameter Randomization Sanity Check [12]: The experiments evaluate whether the
attribution changes after randomizing the parameters of neural networks. The randomization starts
from FC3 layer and moves towards the image (a) Correlation between original attribution and
the attribution after randomization (results averaged for ImageNet subset). We observe that the
correlation rapidly moves to 0. The error bars denote ±1 standard deviation; (b) Attribution map
before randomization (label “original”) and after randomization the parameters up the specified
layer. We observe that attribution is also randomized after parameters are randomized (as opposed to
methods such as Guided Backpropagation and LRP (Deep Taylor variant) [12, 14]).

importance experiments (Section 4.4) show the highlighted features are not important for the model.
Our proposed method is fine-grained and visually interpretable while highlighting important features
(Section 4.4). More qualitative examples (randomly selected) are provided in Appendix E.

IMDB Table 1 presents attribution on a text sample from IMDB. We see that IBA fails to generate
a reasonable explanation by assigning high attribution to all words. The observation also shows that
IBA is not a model-agnostic method, since IBA assumes the spatial dependency between input and
hidden space, which doesn’t hold for recurrent neural networks.

4.3 Parameter Randomization Sanity Check [12]

The purpose of this experiment is to check whether the attribution changes if model parameters are
randomized. If the attribution remains unchanged, then the attribution method is not explaining
model behavior. The experiment progressively randomizes the layers starting from the last layer, and
generating an attribution at each randomization step. The generated attribution is compared in terms
of similarity with the original attribution.

The similarity is measured in terms of structural similarity index metric (SSIM) [39]. In this
experiment, we randomly select 1000 samples, and compute the average of the SSIM for all the
samples. Fig. 3a, Fig. 3b demonstrate the SSIM error bars and an example for visual inspection
respectively. We observe that the InputIBA is sensitive to this randomization (Fig. 3b).

4.4 Feature Importance Evaluation

The following experiments evaluate whether the features identified as important by each attribution
method are indeed important for the model.

4.4.1 Sensitivity-N [9]

The experiment randomly masks n pixels and observes the change in the prediction. Subsequently,
it measures the correlation between this output change and the sum of attribution values inside the
mask. The correlation is computed using Pearson Correlation Coefficient (PCC). The experiment is
repeated for various values of n. For each value n we average the result from several samples. For
ImageNet, we run this experiment on 1000 images. We randomly sample 200 index sets for each n.
In the IMDB dataset, texts have different lengths, thus we cannot perturb a fixed number of words
across samples. We address this issue by slightly changing the method to perturb a fixed percentage
of words in a text. On ImageNet (Fig. 4) the InputIBA outperforms all baseline methods when we
perturb more than 102 pixels. When evaluating on IMDB dataset, the InputIBA exhibits a higher
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Figure 4: Feature Importance - Sensitivity-N: (a) ImageNet dataset: InputIBA, IBA and GradCAM
show high scores in this feature importance metric. We observe that fine-grained (and also axiomatic)
methods such as DeepSHAP and Integrated Gradients achieve relatively low scores. (b) IMDB
dataset: Both LIME and InputIBA identify important features according to this metric.

correlation under 50% text perturbation rate, which implies the InputIBA is performing better in not
assigning attribution to irrelevant tokens.

4.4.2 Insertion/Deletion [11]

Deletion, successively deletes input elements (pixels/tokens) by replacing them with a baseline value
(zero for pixels, <unk> for tokens) according to their attribution score. Insertion, inserts pixels/tokens
gradually into a baseline input (image/text). In both experiments we start inserting or deleting the
pixel/token with highest attribution. For each image, at each step of Insertion/Deletion we compute
the output of the network, and then compute the area under the curve (AUC) value of the output for
all steps on a single input. Then we average the AUCs for all inputs (On ImageNet, we average the
AUC of 2000 images). For Insertion experiment, higher AUC means that important elements are
inserted first. For Deletion experiment, lower AUC means important elements were deleted first.
The results are presented in Fig. 5. For the vision task (ImageNet) InputIBA outperforms the rest.
Note that the axiomatic methods DeepSHAP and Integrated Gradients achieve low scores in both
Deletion/Insertion on ImageNet.

4.4.3 Remove-and-Retrain (ROAR) [10]

One underlying issue with Sensitivity-N and Insertion/Deletion experiments is that the output change
may be the result of model not having seen the data during the training. Therefore, ROAR [10]
retrains the model on the perturbed dataset. The more the accuracy drops the more important the
perturbed features are. For each attribution method, the perturbation of the dataset is done from
the most important elements (according to attribution values) to the least important element. As
retraining the model is required for each attribution method at each perturbation step, the experiment is
computationally expensive. Therefore, we run this experiment on CIFAR10. The results are presented
in Fig. 6. We can observe two groups of methods. For the first group (DeepSHAP, Integrated
Gradients and Guided Backpropagation) the accuracy does not drop until 70% perturbation, meaning
if 70% of pixels are removed, the model can still have the original performance. For the rest of
the methods, we see that the features are indeed important. GradCAM and Extremal perturbations
are performing slightly better than IBA and InputIBA. We suspect that this is due to their smooth
attribution maps. We test this hypothesis by applying smoothing on InputIBA (InputIBA*) and we
observe that the performance becomes similar to the other two. The key observation is that these four
methods are all successful in identifying important features.

4.5 Quantitative Visual Evaluation via Effective Heat Ratios (EHR)

We quantify the visual alignment between attribution maps and ground truth bounding boxes (on
ImageNet [32]). This serves as a metric for visual/human interpretability, and is a measure of
fine-grainedness. Previously [19], the proportion of top-n scored pixels located within the bounding
box was computed. We argue that this method only considers the ranks of the pixels, but ignores
the distribution of attribution outside the bounding box. We illustrate the limitation of the previous
metric with synthetic examples in Appendix F. Instead, we suggest to vary the value of n to consider
the distribution of the attribution. To this end, we propose EHR, where we consider multiple quantile
thresholds from 0.0 to 1.0. At each quantile threshold, we compute the sum of attribution within
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Figure 5: Feature Importance - Insertion/Deletion: The closer the method is to the top-left the better
(a) ImageNet dataset: InputIBA, IBA, Extremal Perturbations and GradCAM all reveal important
features according to this metric. DeepSHAP and Integrated Gradients to do not idenfity important
features. (b) IMDB dataset: InputIBA reveals important features according this metric. The results
are consistent with Sensitivity-N.

Method EHR
InputIBA 0.476 ± 0.007

IBA 0.356 ± 0.005
GradCAM 0.283 ± 0.005
Guided BP 0.421 ± 0.005

Extremal Perturbation 0.421 ± 0.007
DeepSHAP 0.183 ± 0.002

Integrated Gradients 0.155 ± 0.002

Table 2: Quantitative Visual Evaluation -
EHR: This metric evaluates how precisely the
attributions localize the features by comparing
them with ground truth bounding boxes. In-
putIBA, extremal perturbations, and Guided
Backpropagation score highest. IBA and Grad-
CAM also perform well, but due to their lower
resolution maps, they receive lower scores.
Standard error is also presented in the table.
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Figure 6: Feature Importance - ROAR: Inte-
grated Gradients, DeepSHAP, and Guided Back-
propagation are not identifying contributing fea-
tures. On the other hand, InputIBA, IBA, Ex-
tremal Perturbations, and GradCAM point to
important features. The latter two methods are
performing slightly better, which is due to their
attributions being smooth (covering more areas).
We apply smoothing to InputIBA (InputIBA*)
and achieve the same result.

the bounding box divided by the total number of pixels above this threshold, which is defined as
the effective heat ratio. Finally, we compute the AUC of the ratios over the quantiles. We assess
InputIBA along with other baselines on 1000 images with bounding box covering less than 33% of
the whole image. Table 2 illustrates the results.

4.6 Discussion

Societal Impact Although our work is a step towards solving the attribution problem, the problem
remains open. Therefore the interpretation tools (attribution methods) must be used with caution. The
machine learning community is using these tools to interpret their results and is deriving conclusions.
It is not clear if the findings would also show up with another interpretation tool. Wrong interpretations
of results arising from the attribution tools can have a destructive effect in mission-critical applications
such as medical imaging.

The community must be aware of the shortcomings of each interpretation tool. For example, [13, 14]
prove several methods are not explaining the behavior. In our work, we also observe that two Shapley
value-based methods with solid mathematical and axiomatic grounding, are not identifying important
features on computer vision datasets according to all three feature importance evaluations (this also
verified for Integrated Gradients in [10]). The Shapley value is hailed as the ultimate solution by many
research works, our observation is telling another story. Therefore, our proposed method (and IBA
[19]) should also be used with caution, even though they are grounded on theory and are performing
well in current metrics.

Limitations Although our core idea – finding a bottleneck on input that corresponds to predictive
deep features (described in Section 3.3 ) – is simple, the entire methodology for computing the



predictive information of input features is relatively complex (compared to a method such as CAM
[26, 18]). This may be an impediment to the method’s adoption by the community (however, we
provide a simple interface in our code).

Another issue is that our idea adds an additional optimization term (Eq. (3)) to IBA, which increases
the time complexity. Therefore, our method is introducing a trade-off between improved performance
and speed. Nonetheless, for many interpretation applications, speed may not be an issue.

5 Conclusion

In this work, we propose a methodology to identify the input features with high predictive information
for the neural network. The method is agnostic to network architecture and enables fine-grained
attribution as the mutual information is directly computed in the input domain. The improved
interpretation technique benefits the general machine learning community. Furthermore, it introduces
a new idea – input bottleneck/mask estimation using deep layers – to the attribution research
community to build upon and move one step closer to solving the attribution problem.
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7
Through the Lens of the Model

This chapter deals with the problem of evaluating feature attribution methods. How
do we claim that a feature attribution method attributes to the features relevant to
the prediction? We need to first clarify what the relevance of features means. It is
a repeated theme in this dissertation that the effect of the removal of features on
the prediction is an intuitive way (and not the only way) to define relevance. If
removing a feature affects the prediction, it is relevant for the prediction. As a matter
of fact, several evaluation methodologies are formulated based on this notion. The
method introduced in [52] removes features sequentially based on the relevance
score assigned by the attribution method under evaluation. Therefore we can observe
the neural network’s output change during the process of removing features and
can relatively evaluate attribution methodologies against each other and against a
random removal of features. The removal analysis can also take other forms, such as
sensitivity-N [39], which is explained in previous sections.

A hidden issue lurking within such an analysis is that the output change resulting
from removing a feature (or a set of features) might be due to the newly generated
input being out of distribution. Thus [75] proposes a similar analysis but involving
retraining. After removing features based on their relevance scores, we retrain the
neural network from scratch on the new perturbed dataset. E.g., we can remove the
top twenty percent of the important pixels (as identified by the feature attribution
method) in all images in the training dataset. The retraining solution is proposed to
alleviate the out-of-distribution problem. However, the new evaluation scheme will
not show the feature’s immediate effect on the network’s output. In my view, this
removal and retraining perturbation schemes are, in essence, evaluating different
aspects, although being ground upon the same concept. Simply stated, the former is
assessing how significant the effect of the absence of a feature is on the output, being
relevant, out of distribution, or adversarial. The evaluation still gives us information in
any of these cases, specifically if the effect differs from a random removal of features.
The latter (retraining) gives a different perspective. It shows if a neural network can
generalize or not, using a set of relevant (as identified by the attribution method)
features kept or removed from the dataset. In short, [39], [52], [75] evaluate different
aspects: effect on output and generalizability of selected features.
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There are other perspectives through which we can evaluate feature attribution
methods. Specific properties are (un)desirable for feature attributions. Assume we
have an image input with two classes, and the neural network predicts the two
classes correctly. This observation raises suspicion if the feature attribution method
generates the same saliency maps for these two output classes. It is more probable
that the network is using different features to predict two different classes. This
behavior is observed in several feature attribution methods [31], [60], [79], [84]. It
is interesting that [63] hypothesized this phenomenon would exist for one of the most
popular attribution methods of the time, and they confirmed the observation through
experiments. Subsequently, [95], [98] proposed more systematic experiments to
quantitatively assess the class-sensitivity property of attribution. We also hypothesized
that this behavior exists among several state-of-the-art attribution methods of the time
and demonstrated that these attributions generate the same attributions for different
classes [93]. Some methods, in fact, generate the same saliency for all output classes.
Evaluation by looking for a desirable property got significant attention after the sanity
checks proposed in [58]. The sanity checks evaluate if the feature attribution is
sensitive to network parameter randomization. The experiment investigates whether
the feature attribution changes when we replace the network weights with random
values. If the attribution method generates the same saliency map after randomization,
then it is probably not taking the network into account. Specifically, if the attribution is
generating a saliency map visually similar to the image before and after randomization,
then it is probably using the input itself to generate the saliency [63].

The desirable properties for feature attribution methods can also be formulated by
axioms. For instance (based on a feature removal perspective of relevance), if a
feature’s removal does not affect the output of the neural network in any combination
with other input features, then that feature does not contribute. An attribution method
is therefore expected to not assign any relevance to this feature. This axiom is known
as the null-player or dummy axiom [100]. We may be able to show mathematically
that a feature attribution method is (not) conforming with an axiom. However, due
to the proposed methods’ complexity and the approximations involved within their
implementations, it is not trivial to prove that an attribution conforms with an axiom.
For instance, recent work [100] shows that many attributions proposed to approximate
the Shapley value break the axioms. And the desirability of the Shapley value is due
to the fact that it is the unique method that satisfies several axioms [46], [100].

This chapter proposes an experimental setup for evaluating feature attribution meth-
ods against axioms. Our experimental design, in principle, does not prove if an
attribution method satisfies an axiom but can reveal examples of methods breaking ax-
ioms. The core idea behind our evaluation strategy is that we generate input features
with the neural network in the loop, such that we know the effect on the network’s
output. For instance, we can create an image feature such that it is a null feature
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for the neural network’s output. We generate input features through optimization in
the input space by adopting tools provided in feature visualization literature [41],
[48], [65]. We add other optimization terms to impose the desired behaviors (e.g., a
feature being null) on the generated features. To balance the optimization terms, we
use dynamic task prioritization for multitask learning [61]. Note that we are using the
neural network itself in the loop; otherwise, we cannot guarantee that a feature would
have the behavior for the network. For instance, one may argue that we can add
random value pixels to an image, and since they are random values, they will have
no information for the neural network, and we can check if an attribution method is
pointing at them. But the random value pixels added to the image might change the
neural network’s output (e.g., due to out-of-distribution effects). Therefore there is no
guarantee that they are null features (their removal/addition can change the output).
We are generating features using the model and can guarantee through optimization
terms that they have the desired property. We use this controlled environment to test
attribution methods against different axioms.

Though the idea is incarnated as an experimental setup for testing models against
axioms, the core idea is: How do we know if an explanation is explaining the model?
The model itself knows best. The main idea is to extract the knowledge within the
model, then compare explanations to the extracted knowledge.
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Abstract

It is a mystery which input features contribute to a neu-
ral network’s output. Various explanation (feature attribu-
tion) methods are proposed in the literature to shed light
on the problem. One peculiar observation is that these ex-
planations (attributions) point to different features as being
important. The phenomenon raises the question, which ex-
planation to trust? We propose a framework for evaluating
the explanations using the neural network model itself. The
framework leverages the network to generate input features
that impose a particular behavior on the output. Using the
generated features, we devise controlled experimental se-
tups to evaluate whether an explanation method conforms
to an axiom. Thus we propose an empirical framework for
axiomatic evaluation of explanation methods. We evaluate
well-known and promising explanation solutions using the
proposed framework. The framework provides a toolset to
reveal properties and drawbacks within existing and future
explanation solutions.1

1. Introduction
Considering a neural network function, how do we

know which features (patterns) within the input are im-
portant for its output? The problem is called feature at-
tribution [16, 35], and the solutions are commonly known
as explanation, attribution, or saliency methods. There is
an extensive list of explanation methods in the literature
[8,9,13,15,16,19,26,27,29,32,33,35,39,41]. One peculiar
observation is that these solutions point to different features
as being important. Though they are solutions to the same
problem, feature attribution, the resulting explanations are
curiously dissimilar. The phenomenon raises the question,
which explanation is correct? Or are the explanations cor-
rect but revealing the problem in a different light?

*denotes equal contribution
1https : / / github . com / CAMP - eXplain - AI / Do -

Explanations-Explain

One approach is to compare the explanations against
ground truth (e.g., bounding box) annotations on the dataset
[27,38,41]. But how do we know what is important for a hu-
man is also important for the model? There is no guarantee
(or reason) that the model would use the same features as
humans. To resolve this issue, we need to take a step back
and ask what it means for a feature to be “important” for
an output. The intuitive approach is to remove the feature
and observe the output behavior [8, 11, 25]. Such removal
of evidence is indeed the foundation of many explanation
approaches [8, 9, 16, 26, 35]. However, such a conception
could lead to ambiguities. Consider the scenario of hav-
ing equivalent features (e.g., repeated features), where the
existence of each feature alone suffices for a specific out-
put value. Add to the scenario that the removal of any of
these features does not affect the output value. In this case,
the conception based on removal assigns zero importance
to each feature. However, a desirable property, in this case,
could be assigning equal importance to each feature.

The concept of importance can thus be further chiseled
by specifying desirable properties that an importance as-
signment method ought to satisfy. Such desirable proper-
ties are formalized via axioms [16, 34, 35]. The axiomatic
view provides a complementary framework for evaluating
feature attribution solutions. Explanation methods can be
evaluated whether they conform to an axiom. The axiomatic
view has the advantage that the methods can be mathemat-
ically proven to comply with a particular axiom. For in-
stance, solutions such as the Shapley value [16, 28] and in-
tegrated gradients [34, 35] are proven to conform with par-
ticular axioms. However, proofs can be broken in practi-
cal implementations. For instance, [34] show that inherent
assumptions within methods that approximate the Shapley
value result in methods not conforming with the axioms.
Moreover, certain conditions might be overlooked in proofs.
Thus experiments are required to test whether final solu-
tions comply with the axioms. Even if methods are accom-
panied by elegant and solid mathematical derivations and
proofs, they must comply with the axioms in observations



in designed experiments. If they do not comply with ax-
ioms in experiments, we may revisit our assumptions and
methodologies. Such is the way of the scientific method.

This work lays out an experimental framework for eval-
uating attribution solutions axiomatically. We set up each
experiment such that the solution can be tested whether it
complies with a specific axiom. We generate input fea-
tures that impose a particular behavior on the network’s
input/output relationship. Features are generated via opti-
mization on the input space while the network parameters
are kept constant. Using optimization, we can impose the
desired relationship between the generated input and the
output. We can thus engineer setups to evaluate axioms. For
instance, one axiom that attribution methods are required to
conform to is the Null-player axiom. The null-player axiom
requires the following; If removal of a feature in all pos-
sible coalitions with other features does not affect the out-
put, it should be assigned zero importance. With our pro-
posed framework, we can generate a null player feature for
the neural network function. Subsequently, we can test dif-
ferent feature attributions solutions and check whether they
assign importance to the null player feature. Thus we can
test whether a solution conforms to the Null-player axiom.
We also devise experiments to evaluate the explanations in
terms of other desirable properties; The class-sensitivity and
the feature-saturation. With our framework, we evaluate
well-known and recently introduced promising solutions.
With our experiments, we intend to reveal properties and
drawbacks within existing explanations.

2. Background and Related Work
2.1. Background

We first introduce the feature attribution literature as our
framework is designed to evaluate these methods. Then we
introduce feature visualization/generation methods since
they can be used within our framework.

2.1.1 Explaining Predictions via Feature Attribution

The feature attribution problem is concerned with identify-
ing the input features that contribute to the output value.
The solutions can be roughly categorized as follows (some
solutions belong to multiple categories).

Backpropagation [4, 30] linearly approximate the net-
work and propose the gradient as attribution. Deconvolu-
tion [37], GuidedBackProp [32] backpropagate a modified
gradient. Integrated Gradients [35] distributes the change in
output with respect to a baseline input by integrating gradi-
ents between the two input states. LRP [19], DeepLIFT [29]
bacpropagate contribution layer-wise. The contribution no-
tion in LRP and DeepLIFT is also grounded on removal.

Perturbation/Removal Methods in this category are ex-
plicitly grounded on the removal of features. They
mask/perturb input features and observe the output change
[8, 9, 18, 23]. E.g., Extremal Perturbations [8] searches for
the smallest region in the input such that the keep the re-
gion preserves the target prediction. [37] propose occluding
pixels or a patch of pixels and measure the output change.
IBA [26] inserts an information bottleneck by removing
hidden features (via replacing them with noise) and keeps
the smallest region that preserves the predictive informa-
tion. InputIBA [39, 40] enables inserting the information
bottleneck on the input.

Latent Features CAM/GradCAM [27, 41] leverage acti-
vation values (aka network’s attention) of convolutional lay-
ers. GradCAM++ uses different summation rules on layers
and is applicable to all layers. IBA [26] also utilizes latent
features. FullGrad leverages the activation, gradient and,
bias values from all layers. PathwayGrad [13] leverages
critical pathways (pathway important neurons).

Game Theory The attribution problem can be considered
as credit assignment in cooperative game theory. This is
achieved by presuming the network’s function is a score
function, and input features are players. A solution to this
problem that satisfies several axioms is the Shapley Value.
This notion is also grounded upon the removal of players
and the effect of removal on score function. Shapley Value
considers the removal of a player in all possible coalitions.
Due to computational complexity, several approximations
are proposed for neural networks. DeepSHAP [16] back-
propagates SHAP values via DeepLift [29] framework. It is
recently shown [34] that Integrated Gradients [35] approxi-
mates Shapley value in continuous setting.

2.1.2 Generating Features that Activate a Neuron

These works identify what input patterns/features activate a
neuron and are commonly referred to as feature visualiza-
tion. In essence, the methods generate images that maxi-
mize certain neuron activations [7, 17, 20, 22, 30, 36]. This
can be achieved by performing the optimization on the im-
age while freezing networks parameters. We can use any of
these solutions within our framework. We opt for deep im-
age prior [36] (refer to Sec. 3.5). Another method that we
utilize within our framework is the adversarial patch [5].

2.2. Related Work

This section introduces the works that evaluate explana-
tions. Our framework belongs to both ”ground truth” and
”axiomatic” categories. We discuss the differences to exist-
ing works in each section separately (more in appendix).



Do Explanations Explain? An early work [21] demon-
strates that Deconvolution [37] and Guided Backpropaga-
tion [32] are reconstructing image features rather than ex-
plaining the prediction. Thus an explanation can be visually
interpretable but not really be an explanation. The works
in this section investigate whether an explanation method
is indeed explaining the prediction and whether it can be
trusted. Each work evaluates an explanation from a differ-
ent vantage point. We categorize the works as follows:

Perturbation/Removal The objective of these works is
to evaluate whether features identified as salient by attri-
bution methods are indeed contributing to the output. The
intuition behind them is that if the identified features are im-
portant, perturbing (removing) them changes the output rel-
atively more. Sensitivity-N [2] and [25] use various pertur-
bation schemes on the input and observe the output change.
Remove-and-Retrain [11] perturbs the input, then retrains
the model and measures the accuracy drop.

Ground Truth These works compare the explanations
with a ground truth of features that are important. Pointing
game [38] and classic localization-based metrics [27] use
annotations on natural images done by humans. However,
here there is an underlying assumption that the model is us-
ing the same features as humans, which is a crude assump-
tion. To solve this issue, CLEVR XAI [3] proposes gener-
ating a synthetic dataset using CLEVR [12]. The model is
then trained on the generated dataset, and then explanations
are compared with the ground truth. The approach adds par-
tial control. However, there is no guarantee that the model
picks up the intended features in the generated dataset. In
our framework we can control what features contribute or
do not contribute to the model’s output.

Axiomatic Axiomatic approaches check whether the
model complies with particularly desirable properties.
Evaluation can be either theoretical, where the method
is proven to satisfy an axiom (or a desirable property),
[16, 31, 34, 35], or experimental. Sanity checks [1] ex-
perimentally check whether randomizing network param-
eters change the explanation. Another desirable property
is class sensitivity, i.e., the explanation should not be the
same for different outputs (classes) if their contributing fea-
tures differ. [14] provides a reasoning on why several meth-
ods are insensitive to parameter randomization and differ-
ent classes. [21, 24] propose experiments to evaluate class-
sensitivity on natural image datasets. However, on natural
images, there is no guarantee that the model uses different
features for different classes. Our framework provides a
controlled setup as features are generated.

3. Methodology

The objective is to have a controlled experimental en-
vironment in which we control what features contribute or
do not contribute to the output of the neural network func-
tion. In this environment, we can devise scenarios to test
the explanations against axioms. To this end, we leverage
the model itself and run an optimization on the input, thus
controlling how features contribute to the output.

Importance or contribution is understood only with re-
spect to a reference/baseline state (”removal” is setting fea-
ture values to a reference value). In our setup, we com-
pute the contribution of a feature with respect to a reference
of normal random noise. X denotes the reference input.
We refer to a group of pixels and their specific values as
a ”feature”. In this work, we select a patch of pixels to
form the feature. We denote the patch/feature by f and a
baseline input that has a feature f added to it by X{f} and
the neural network function for a target output t by Φt(.).
To generate the feature f that corresponds to a target t we
generate a patch on the baseline input X that activates the
target t. Since the added feature changes the output value
(by design), according to sensitivity axiom [35] it is guar-
anteed that it contributes to the output. The optimization
is performed only on patch f (not on other areas of input
X). The optimization loss for generating feature f corre-
sponding to target t is denoted by Lt

f . Depending on the
scenario, Lt

f can be associated with either of the following.
We can either generate a patch that maximizes the target
value, minf −Φt(X{f}) or generate a patch that achieves
a constant target value c, minf LCE(Φt(X{f}), c) where
LCE denotes cross-entropy loss.

3.1. Null Feature

The objective in this section is to devise a setup for test-
ing the null feature axiom. A null feature is one that does
not contribute to the output score. If a feature is a null
feature, it is a desirable property for the explanation not
to assign any contribution to that feature. based on co-
operative game theory and attribution literature, null fea-
ture can be formally defined as follows. Having a group
of features (players), a feature is a null feature if its ab-
sence does not affect the output score function in all possi-
ble coalitions of features. I.e. if we have a set of n fea-
tures {f1, ..., fn}, a feature fi is null for output Φt(.) if
Φt(X{fi∪S}) = Φt(X{S}), where S denotes all subsets of
features excluding fi, i.e. S ⊂ {f1, ..., fn} \ {fi}. Note
that are 2N−1 possible coalitions.

In our experimental setup, we add two features to the
baseline input X (one can add more features and devise
more complex or creative experiments). We add feature fa
that corresponds to output Φa(.) and add another feature
fnull that corresponds to an output Φb(.) but is a null feature



for output Φa(.). In order for the fnull to be a null feature,
its absence in all possible coalitions with fa should have
no effect on output Φa(.). The are two possible coalitions,
which are the subsets of fa, namely fa and . Therefore,
the output Φa(.) must stay constant when fnull is removed
when fa exists in baseline input X . The output Φa(.) must
also stay constant when fnull is added to the baseline X .
Therefore, the optimization problem is defined as the fol-
lowing two concurrent optimizations,

min
fa
La
fa (1)

min
fnull

Lb
fnull

+ (Φa(X{fa,fnull})− Φa(X{fa}))
2

+(Φa(X{fnull})− Φa(X{}))
2

(2)

where La
fa

generates feature fa corresponding to output
Φa(.). In Eq. (2) Lb

fnull
generates a feature fnull corre-

sponding to output Φb(.). The second and third term in
Eq. (2) try to make fnull be a null feature for Φa(.) by re-
moving it in possible coalitions with fa. The result of the
optimization is X{fa,fnull}, which is a baseline noise image
X that contains patches/features fa and fnull. In this setup,
we aim to test whether an explanation method attributes the
output Φa(X{fa,fnull}) to the null feature. The proposed
metric for evaluation is provided in Sec. 3.4

3.2. Class Sensitivity

Another property that is expected from an explanation
method is class sensitivity, i.e. output sensitivity. Consid-
ering two outputs Φa(.) and Φb(.) of a neural network, if
the contributing input features to the these outputs differ,
the explanations for the outputs should also be different. To
test such property we devise two scenarios:

3.2.1 Single Feature Scenario

In our first proposed setup, we only add one feature fa to
the reference input X . The feature is generated such that
it corresponds to the output Φa(.) but is a null feature for
another output Φa(.). Therefore,

min
fa
La
fa + (Φb(X{fa})− Φb(X{}))

2 (3)

where the first term La
fa

generates the patch fa on reference
input X , and the second term makes sure it is a null feature
for output Φb(.). I.e. the removal of feature fa should not
affect the output Φb(.).

In this setup, the explanations for the two outputs Φa(.)
and Φb(.) are compared. It is expected that the first explana-
tion (for Φa(.)) attributes the output (partly) to fa. Whereas,
the second expalanation (for Φb(.)) should not attribute the
prediction of Φb(.) to the the feature fa. Our proposed met-
ric for evaluating this effect is provided in Sec. 3.4.

3.2.2 Double Feature Scenario

In this setup we add two features fa and fb to the reference
input X , each corresponding to the different outputs Φa(.)
and Φb(.) respectively. In this setup the dominantly con-
tributing feature to Φa(.) is feature fa and the dominantly
contributing feature to Φb(.) is fb. Therefore we perform
two concurrent optimizations. The first one,

min
fa
La
fa + (Φb(X{fa,fb})− Φb(X{fb}))

2 (4)

generates fa which contributes to output Φa(.) but its re-
moval in the presence of feature fb does not affect output
Φb(.). The second optimization,

min
fb
Lb
fb

+ (Φa(X{fa,fb})− Φa(X{fa}))
2 (5)

generates fb which contributes to output Φb(.) but its re-
moval in the presence of feature fa does not affect output
Φa(.). Thus the dominantly contributing feature for Φa(.)
is fa and for Φb(.) is fb.

In this scenario we expect the explanations to switch
from feature fa to fb when the output to be explained is
changed from Φa(.) to Φb(.). Our proposed metric for cap-
turing this metric is provided in section Sec. 3.4.

3.3. Feature Saturation

In this section, we devise a scenario where features satu-
rate the output. Such that the features fa1 and fa2 together
(i.e. X{fa1,fa2}) result in the same output value as when
the features are added to reference input X individually. To
achieve this, we solve two optimizations concurrently,

min
fa1

La
fa1

+ (Φa(X{fa1,fa2})− Φa(X{fa2}))
2 (6)

where the first term generates fa1 such that the output is
equal to a constant value c. The second term makes sure
that feature fa1 removal from input does not affect the out-
put when fa2 is present. The second optimization does this
procedure on the second feature fa2,

min
fa2

La
fa2

+ (Φa(X{fa1,fa2})− Φa(X{fa1}))
2 (7)

In this setup, the existence of one of the features is sufficient
for the prediction. As they contribute equally to the output,
an explanation solution is expected to attribute the output
equally to both features. Our proposed metric for evaluating
this property is provided in Sec. 3.4.

3.4. Metrics

In this section, we introduce our metrics for evaluating
the properties in each of the generated setups. We denote
an explanation generated for target output Φt(.) by St.



Null Feature Metric Defined as contributions assigned to
null feature relative to total assigned contributions:

∑
fa

Sa∑
Sa

Sa
(8)

The sum operator
∑

f St runs over all corresponding pixels
in St that are in patch f .

Class Sensitivity Metric In the Double Feature Scenario,
we measure the class sensitivity by:

∑
fa∪fb

min(Sa, Sb)∑
fa

Sa +
∑

fb
Sb

(9)

where the min(Sa, Sb) is the pixel-wise minimum of Sa

and Sb. In an extreme case, for the explanation method
being indifferent towards the target class, the min(Sa, Sb)
would be equal to Sa and Sb. Therefore, the metric eval-
uates to one. In the other extreme, where attributions shift
from fa to fb, the min(Sa, Sb) and the metric is zero.

For the Single Feature Scenario, the class sensitivity is:

corr(
Sa − Sa\fa

Sa\fa
,
Sb − Sb\fa

Sb\fa
) (10)

The term St−St\f
St\f

determines the average amount of contri-
bution score inside patch f , devided by the average outside
the patch. The higher correlation implies the method is at-
tributing to the same feature for both outputs Φa and Φb.

Feature Saturation Metric To evaluate how the attribu-
tion is distributed between the features, we evaluate the cor-
relation between attributions assigned to feature fa1 and fa1

corr(
∑

fa1

Sa,
∑

fa2

Sa) (11)

A method that assigns the attribution to only one feature
receives a lower score.

3.5. Implementation Details

Reference/Baseline Input: Importance is understood
with respect to a reference state. The reference is chosen
such that it represents the missingness of features. In the
vision domain, it is customary to use zero value [29, 35], or
noise [26]. In any case, our framework is not dependent on
the reference. We do not make any assumptions about what
features are in the reference. We ensure that a feature is null
with respect to the reference, and our metric only considers
the generated features and not the background (we use attri-
butions in background only for scaling).
Deep Prior Network: If we perform the optimization on

the patches without any regularization, it is easy to get
trapped in local solutions. In this case, we may not achieve a
satisfactory optimization solution for Eq. 1-7. In our work,
we leverage ”deep image prior” [36] to limit the space of
solutions and avoid trivial local solutions. Using deep im-
age prior methodology, we add a decoder network with ran-
dom weights and a random seed input behind the gener-
ated patch. In other words, the patch is parameterized by
the prior network. The optimizations are thus done on the
parameters of the prior network instead of the patch. In
[36] it is also demonstrated that the untrained network does
capture some of the low-level statistics of natural images.
Therefore the generated patches also look interpretable to
us. Visual interpretability is not required within this frame-
work, though it can make the experiments more intuitive.
The Model: The choice of the model does not affect the
framework as long as the optimizations are solvable. The
network is pre-trained on ImageNet [6]. However, the pro-
posed framework does not depend on the network being
trained. For a random network the generated features would
not ”look” interpretable.
Optimization During optimization steps, we place the
patch in different locations to ensure that the results do not
depend on the patch’s location. Moreover, in order to bal-
ance the terms in Eq. 1-7 we use focal loss [10] (appendix).

4. Results and Discussion
The objective of our proposed framework is to reveal

insights and shortcomings regarding explanation methods.
We evaluate various explanation methods from different
categories. DeepSHAP and IntegratedGradient are theo-
retically axiomatic methods. GradCAM and GradCAM++
are two popular methods that leverage network attention.
We also evaluate the recently introduced FullGrad from this
family. In addition, we evaluate two recent promising solu-
tions, IBA and Extremal Perturbations.

4.1. Null Feature

The null feature experiment checks whether an explana-
tion attributes the output to a null feature. I.e., it checks
whether the explanation method identifies the null feature
as important. The framework guarantees that the null fea-
ture is not contributing. Using the framework, we generate
1000 inputs. For each input sample, the feature is generated
for a random output. We then proceed and compute the null
feature metric on each generated inputs and report the aver-
age in Tab. 1. An example generated input is in Fig. 1.

FullGrad, DeepSHAP, Gradient, and GuidedBackProp
perform the worst in this experiment. This performance
may point to the fact that these methods identify all features
within the input as important. It is previously shown [21]
that GuidedBackProp reconstructs image features rather
than explaining the prediction, and our results are aligned



Image GradCAM GradCAM++ Gradient FullGrad GuidedBackProp
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Figure 1. Null Feature Experiment: The image on the left represents the generated features on the reference (noise) input. The features
are generated using the model itself. Within the image, the lower feature (patch) is generated such that it is a null feature for the output.
The rest of the images represent different explanations. As the second feature is a null feature, an explanation method should not assign
importance to it. We observe that GradCAM, IBA, and Extremal Perturbation perform best in avoiding the null feature.

Class Sensitivity

Method Null Double Feature Single Feature Feature
Feature Scenario Scenario Saturation

GradCAM 0.135 0.176 0.050 0.243
GradCAM++ 0.452 0.469 0.845 -0.571

Gradient 0.835 0.469 0.684 0.310
FullGrad 1.00 0.931 0.951 -0.130

GuidedBackProp 0.704 0.555 0.979 0.703
IntegretedGradient 0.534 0.344 0.759 0.212

DeepSHAP 1.03 0.507 0.934 0.221
IBA 0.211 0.191 0.295 -0.223

ExtermalPerturbation 0.047 0.039 0.759 -0.680

Table 1. Evaluation of Explanations with the Framework: 1) Null Feature: Null feature experiment evaluates the extent to which each
explanation attributes the output to a null feature. In this metric, the less the value, the better. Extremal Perturbation [], GradCAM, and
IBA are the favorable methods from this null feature perspective. 2) Class Sensitivity: For both experiments, the lower the value, the better
1) Double Feature Scenario: In the case where two features corresponding to two different classes are present, Extremal Perturbation,
IBA, and GradCAM attribute to the correct feature when applied to the two outputs. 2) Single Feature Scenario: In the case where only
feature is present, explanations for two different outputs are similar to all methods except GradCAM and, to some extent, IBA. 3) Feature
Saturation: the experiment evaluates how explanations distribute the importance between saturated features. In this metric, the higher the
value, the better. The notable observation is Extremal Perturbation, as it identifies only one of the features as important.

with the finding. It can also be inferred that gradient is also
sensitive to all features in the input. DeepSHAP is widely
known as a solid method as it involves SHAP. However, it
also has a backpropagation mechanism (as it is engineered
on DeepLift). It seems the backpropagation is the culprit, as
other gradient methods also fail this experiment. FullGrad
does a weighted sum of gradients and biases of all layers.
The gradients in the early layers can be the culprit in this
case. We observe that GradCAM rarely assigns attribution
to the null feature. And the assigned values may be due to
CAM’s low resolution. IBA and extremal perturbation are
both grounded on the removal of features. We see that they
also avoid attributing to the null feature.

We also evaluate IBA and GradCAM++ on different lay-
ers of a ResNet network. Among the advantages of these
methods is that they can be applied to early layers to pro-
duce higher resolution maps. However, we observe in Fig. 2
and Tab. 2 that as we move towards early layers, the meth-
ods attribute to the null feature.

4.2. Class Sensitivity

Double Feature Scenario The objective is to observe
how the explanations for two different outputs differ when
both outputs have corresponding features present. The met-
ric results are presented in Tab. 1, and visual examples are
presented in Fig. 3. We observe that GradCAM, IBA, and
Extremal Perturbation attribute the corresponding features
when explaining the different outputs. FullGrad produces
the same explanation when applied to the two outputs. We
observe that Gradient, GuidedBackProp, DeepSHAP, and
IntegratedGradient slightly switch explanations. We also
perform layerwise experiments for IBA and GradCAM++.
We observe that the explanations become less class sensi-
tive in earlier layers.

Single Feature Scenario In this setting, we evaluate class
sensitivity in the case where only one contributing feature
is available. Suppose the explanation for the output of the



IBA GradCAM++

Metric layer 1 layer 2 layer 3 layer 4 layer 1 layer 2 layer 3 layer 4

Null Feature 0.315 0.311 0.201 0.211 0.827 0.906 0.815 0.453
Double Feature Scenario 0.327 0.337 0.207 0.191 0.977 0.948 0.899 0.469
Single Feature Scenario 0.219 0.237 0.158 0.295 0.979 0.823 0.761 0.845

Table 2. Evaluations of IBA and GradCAM++ explanations for various layers of ResNet: IBA and GradCAM++ are applicable to different
layers of convolutional networks. However, we observe that as we move towards earlier layers (toward the input), more attribution is
assigned to the null feature. We also observe the same trend with class sensitivity. The results significantly deteriorate for GradCAM++ (in
both experiments, the lower the value, the better). It is thus advisable to apply these explanations to deep layers.

GradCAM++

layer 1 layer 2 layer 3 layer 4
IBA

layer 1 layer 2 layer 3 layer 4

Figure 2. Null Feature Experiment for IBA and GradCAM++ on
different layers of a network. The second (lower) feature is a null
feature. We observe that as we move toward earlier layers, the
explanations attribute to the null feature for both methods.

corresponding feature is similar to the explanation for an
output to which the feature does not contribute. In that case,
the explanation is not sensitive to the output. A visual ex-
ample for this case is provided in Fig. 4. The results for
the associated metric are provided in Tab. 1. In this sce-
nario, more explanation methods are prone to attribute the
output to the single feature within the image. Interestingly
the only method that is sensitive to output, in this case, is
GradCAM. Even IBA and Extremal perturbation that per-
formed well in double feature scenario identify the same
feature for the two outputs. This might be the property for
all perturbation/removal-based methods, that they converge
to the only predictive feature within the input, even if the
feature is predictive for another class.

4.3. Feature Saturation

This experiment aims to check how an attribution
method behaves in case there are saturated features present
in the input. The desirable property, in this case, is to at-
tribute to both features. The results of the metric are pro-
vided in Tab. 1. A visual example is presented in the ap-

pendix (Fig. 5). The two features (patches) in the input
contribute equally to the output, and the presence of only
one is enough for the exact output prediction. We expect
to observe that a method such as Extremal Perturbation at-
tributing to only one of the features. The method searches
for the smallest region that keeping it would keep the output
prediction. In the case of saturated features, this translates
to keeping only one feature. The metric in Tab. 1 shows
that statistically, the method converges to one of the fea-
tures. The other methods are mostly attributing to both fea-
tures, but considering the results from the Null player ex-
periment and the Class Sensitivity experiment, the obser-
vation better be interpreted with caution. Several methods
might be attributing to both features because they attribute
to all features for other reasons. For instance, we observed
with GuidedBackprop that the method is attributing to null
feature and is attributing to both features when explaining
different outputs. A method that is attributing to both fea-
tures, but does that in null feature case as well, is not doing
the attribution for fair distribution, but for other reasons.

4.4. Discussion on the Framework

Is the optimization feasible? To practically guarantee
that the setups (Eq. 1-7) are realized, we set stopping cri-
teria and continue the optimization until the desired setup
is achieved. The stopping criteria checks if the properties
(e.g., one feature being null) are satisfied within a certain
threshold. The setups are variations of removing patches;
we thus check the effect of removing patches on output in
all setups after each epoch. We report the output change ra-
tio (output-change / output) when removing patches in dif-
ferent setups (null, class-sensitivity, saturation) for an aver-
age of 1K samples. For the Null Feature, Feature Satura-
tion, and Class-Sensitivity (double), the ratio is 0.0712. For
Class-sensitivity (single) ratio is 0.0649.

Is the framework sensitive to how the samples are
generated? By definition, given a function, for any in-
put/output, the attribution method ought to identify the con-
tribution of features to the output. The definition is for any
input and is regardless of the generated input’s properties
(e.g. being out of distribution). The framework makes sure
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Figure 3. Class Sensitivity - Double Feature Scenario: The image on the left represents the generated features on the reference input.
The features are generated such that each corresponds to a different output. The lower feature (patch) corresponds to the first output (first
row), and the other patch corresponds to the second output (second row). It is expected that explanations for the two outputs differ and
attribute to the corresponding feature of each output. GradCAM, IBA, and Extremal Perturbation manifest this property.
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Figure 4. Class Sensitivity - Single Feature Scenario: The feature is generated such that it contributes to one output and is null for
another output. The first output is presented in the first row. The output to which the feature is null is presented below. The explanations
are presented for both outputs. It is expected that the explanations for the two outputs differ. Moreover, the explanations should not attribute
to the feature for the null output (second row.). The only method that attributes correctly, in this case, is GradCAM.

that the feature has a specific behavior, e.g., having zero
contribution to the output.

Novel insights from the framework in a nutshell: We
reveal FullGrad, GradCAM++, Integrated Gradients and
Gradient are attributing to null feature. We practically af-
firm DeepSHAP breaks axioms (theory in [34]). We show
CAM, Extremal Perturbations (Exp), and IBA as trustwor-
thy in terms of null and class-sensitivity axiom (though
when only one feature is present, only CAM prevails). We
reveal saturation properties within ExP and IBA. We reveal
GradCAM++, FullGrad, Gradient, IG, DeepSHAP can be
class-insensitive. We show (Tab. 2) IBA and GradCAM++
break axioms in early layers (though they were proposed to
work on other layers than the deepest).

5. Conclusion
This work proposes an experimental framework for

axiomatic evaluation of explanation methods using the
model. Within the framework, the explanations are checked
whether they comply with an axiom or satisfy a property.
The experimental setup is realized through generating fea-
tures using the model. Through feature generation, several

scenarios for evaluating axioms are introduced. The frame-
work reveals that many explanation methods identify a null
feature as salient, even though the framework guarantees
the feature to have no contribution. Moreover, the frame-
work shows many explanations are not class sensitive and
generate roughly equivalent explanations for different out-
puts. The only methods that do not attribute to null features
and are class sensitive are GradCAM, IBA, and Extremal
Perturbations. We further analyze IBA and GradCAM++
on various layers of a neural network and reveal that the ax-
ioms are complied with only if they are applied to the final
layer. Our proposed framework can be used to evaluate up-
coming explanation methods. Furthermore, researchers can
add more creative experiments to the proposed framework
to assess explanations from other perspectives.
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Part III

Rethinking Feature Attribution in Medical
Image Analysis





8Through Inverting the Game

In this chapter, we delve into explaining thoracic pathology models through feature
attribution. The thoracic diagnosis models are of specific interest in the medical
imaging community. First and foremost, at the time of the project, the world was hit
with the Covid-19 pandemic. Second, the chest x-ray datasets are among the largest
available to the public in the medical image analysis domain. The neural network
models in this domain have long shown impressive performance in diagnosis [51].
However, the question remains whether these models use features relevant to the
pathologies. Therefore we adopt one of the most potent tools in our arsenal, the
information bottleneck for attribution.

Through information bottleneck attribution, we investigate which input features have
predictive information for Covid-19 and thoracic pathology diagnosis. Moreover,
we raise the point that the formulation of information bottleneck attribution (IBA)
[97] leads to identifying features sufficient for the prediction. If there are other
predictive features within the input, the methodology resorts to retrieving the features
that are sufficient for prediction and ignores the rest. We discuss that this is due to
the formulation of the method being a preservation game. In a preservation game,
the objective is to preserve as few features as possible while keeping the output of
the neural network unchanged. However, within a deletion game, the objective is
to remove as few features as possible until there the output of the neural network
flips. I.e., there are no more features left within the input to classify the input as the
original label. We tweak the information bottleneck attribution such that it follows the
deletion game principle. The new formulation, InverseIBA, identifies any predictive
input feature. A property that benefits medical image analysis, as any predictive
marker helps clinicians with diagnosis.

In addition to introducing InverseIBA, we further extend the methodology towards
feature attribution for regression models. As discussed in chapter 6, the bottleneck
attribution is most sound when applied to deep layers, resulting in attributions with
low resolution (resolution equal to the deep feature maps). In this chapter, we also
propose a trick for this issue for CNNs. The trick seems to work empirically. However, it
is not as theoretically grounded as our solution in chapter 6. The main contribution of
this chapter is the introduction of the inverse methodology for identifying all predictive
features. Moreover, we analyze the alignment of the salient features with annotations
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from experts to investigate the degree to which the models use pathologically relevant
features.
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Explaining COVID-19 and Thoracic Pathology
Model Predictions by Identifying Informative

Input Features
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Abstract. Neural networks have demonstrated remarkable performance
in classification and regression tasks on chest X-rays. In order to establish
trust in the clinical routine, the networks’ prediction mechanism needs to
be interpretable. One principal approach to interpretation is feature at-
tribution. Feature attribution methods identify the importance of input
features for the output prediction. Building on Information Bottleneck
Attribution (IBA) method, for each prediction we identify the chest X-
ray regions that have high mutual information with the network’s output.
Original IBA identifies input regions that have sufficient predictive in-
formation. We propose Inverse IBA to identify all informative regions.
Thus all predictive cues for pathologies are highlighted on the X-rays, a
desirable property for chest X-ray diagnosis. Moreover, we propose Re-
gression IBA for explaining regression models. Using Regression IBA we
observe that a model trained on cumulative severity score labels implic-
itly learns the severity of different X-ray regions. Finally, we propose
Multi-layer IBA to generate higher resolution and more detailed attribu-
tion/saliency maps. We evaluate our methods using both human-centric
(ground-truth-based) interpretability metrics, and human-agnostic fea-
ture importance metrics on NIH Chest X-ray8 and BrixIA datasets. The
code1 is publicly available.

Keywords: Explainable AI · Feature Attribution · Chest X-rays · Covid

1 Introduction

Deep Neural Network models are the de facto standard in solving classification
and regression problems in medical imaging research. Their prominence is specif-
ically more pronounced in chest X-ray diagnosis problems, due to the availability
of large public chest X-ray datasets [30, 6, 19, 7]. Chest X-ray is an economical,

? denotes joint first author, and ∗ S. T. Kim and N. Navab shared senior authorship.
† denotes corresponding author (st.kim@khu.ac.kr)

1 https://github.com/CAMP-eXplain-AI/CheXplain-IBA



fast, portable, and accessible diagnostic modality. A modality with the aforemen-
tioned properties is specifically advantageous in worldwide pandemic situations
such as COVID-19 where access to other modalities such as Computed Tomogra-
phy (CT) is limited [23, 16, 18]. Therefore, diagnostic chest X-ray neural network
models can be of great value in large-scale screening of patients worldwide.

However, the black-box nature of these models is of concern. It is crucial for
their adoption to know whether the model is relying on features relevant to the
medical condition. In pursuit of interpretability of chest X-ray models, a class of
works focuses on instilling interpretability into the models during optimization
[29, 9, 26], another class pursues optimization semi-supervised with localization
[13], and another class of works provides post-hoc explanations [30, 19, 8]. Post-
hoc explanations have the advantage that they can be applied to any model
without changing the objective function.

One principal method for post-hoc explanation is feature attribution (aka
saliency methods), i.e. identifying the importance/relevance of input features for
the output prediction [25, 28, 11, 4, 22, 21]. Feature attribution problem remains
largely open to this date, however, many branches of solutions are proposed.
The question is which attribution solution to use. Attributions are evaluated
from several perspectives, and one crucial and necessary aspect is to evaluate
whether the attributed features are indeed important for model prediction, which
is done by feature importance metrics [20, 3, 17]. One desirable property is human
interpretability of the results, i.e. if the attribution is interpretable for the user.
For example, Class Activation Maps (CAM, GradCAM) [32, 22] being a solid
method that is adopted by many chest X-ray model interpretation works, satisfies
feature importance metrics. However, it generates attributions that are of low
resolution, and while accurately highlighting the important features, they do not
highlight these regions with precision. Such precision is of more importance in
chest X-rays where features are subtle. On the other hand, some other methods
(e.g. Guided BackPropagation [27], α1β0 [4], Excitation Backprop [31]) have
pixel-level resolution and are human-interpretable, but do not satisfy feature
important metrics and some do not explain model behavior [1, 5, 12, 10, 15].

Information Bottleneck Attribution (IBA) [21] is a recent method proposed
in neural networks literature that satisfies feature importance metrics, is more
human-interpretable than established methods such as CAMs [32], and is of
solid theoretical grounding. The method also visualizes the amount of informa-
tion each image region provides for the output in terms of bits/pixels, thus its
attribution maps (saliency maps) of different inputs are comparable in terms of
quantity of the information (bits/pixels). Such properties make IBA a promising
candidate for chest X-ray model interpretation.

In this work, we build upon IBA and propose extended methodologies that
benefit chest X-ray model interpretations.

1.1 Contribution Statement

Inverse IBA: The original IBA method finds input regions that have sufficient
predictive information. The presence of these features is sufficient for the target



prediction. However, if sufficient features are removed, some other features can
have predictive information. We propose Inverse IBA to find any region that can
have predictive information.
Regression IBA: IBA (and many other methods such as CAMs) is only pro-
posed for classification. We propose Regression IBA and by using it we observe
that a model trained on cumulative severity score labels implicitly learns the
severity of different X-ray regions.
Multi-layer IBA: We investigate approaches to use the information in layers
of all resolutions, to generate high-resolution saliency maps that precisely high-
light informative regions. Using Multi-layer IBA, for instance, we can precisely
highlight subtle regions such as Mass, or we observe that the model is using
corner regions to classify Cardiomegaly.
Effect of balanced training: We also observe that considering data imbalance
during training results in learned features being aligned with the pathologies.

2 Methodology

Information Bottleneck for Attribution (IBA) [21] inserts a bottleneck
into an existing network to restrict the flow of information during inference given
an input. The bottleneck is constructed by adding noise into the feature maps
(activations) of a layer. Let F denote the feature maps at layer l, the bottleneck
is represented by Z = λF + (1 − λ)ε, where ε is the noise, the mask λ has the
same dimension as F and controls the amount of noise added to the signal. Each
element in the mask λi ∈ [0, 1]. Since the goal is post-hoc explanation for an
input X, the model weights are fixed and the mask λ is optimized such that
mutual information between the noise-injected activation maps Z and the input
X is minimized, while the mutual information between Z and the target Y is
maximized:

max
λ

I(Y,Z)− βI(X,Z) (1)

The term I(X,Z) is intractable, thus it is (variationally) approximated by

I(X,Z) ≈ LI = EF [DKL(P (Z|F )||Q(Z))] (2)

where Q(Z) ∼ N (µF , σF ) (µF and σF are the estimated mean and variance of
hidden feature F from a batch of data samples). In [21], the mutual information
I(Y,Z) is replaced by cross entropy loss LCE . It is proven −LCE is a lower
bound for I(Y,Z) [2]. Minimizing LCE corresponds to maximizing −LCE and
thus maximizing the lower bound of I(Y,Z). The objective becomes:

L = βLI + LCE (3)

2.1 Inverse IBA

In IBA formulation (Eq. 3), the first term tries to remove as many features as
possible (by setting λ = 0) and while the second term tries to keep features (by



setting λ = 1) such that mutual information with target Y is kept. Therefore,
if only a small region can keep the second term (LCE) minimized (keep the
mutual information with target Y ), the rest of the features are removed (their
λ = 0). The identified regions (λ = 1) have sufficient predictive information, as
their existence is sufficient for the prediction. However, there might exist other
regions that have predictive information in the absence of these sufficient regions.
From another perspective, IBA is playing a preservation game, which results in
preserving features that keep the output close to the target.

To find all regions that have predictive information we change the formulation
of IBA such that the optimization changes to a deletion game. I.e. deleting the
smallest fraction of features such that there is no predictive information for the
output anymore after deletion. In order to change IBA optimization to a deletion
game we make two changes: 1) for the second term (LCE) in Eq. 3 we use an
inverse mask: Zinv = λε+ (1− λ)F , and denote the new term with LinvCE . 2) we
maximize the LinvCE in order for the optimization to remove predictive features.
Thus, the objective is:

Linv = βLI − LinvCE (4)

Minimizing LI corresponds to the feature map becoming noise (similar to
IBA) and pushes λ to 0. Minimizing LinvCE (maximizing LinvCE) in Eq. 4 corresponds
to removing all predictive information. In the LinvCE term, we use Zinv, thus
removing features corresponds to pushing the λ to 1 (if we instead use Z instead
of Zinv, λ moves to 0, and as LI also pushes λ to 0, we get 0 everywhere).
Therefore, λ is pushed to 1 for any predictive feature, and to 0 for the rest. As
such, Inverse IBA identifies any predictive feature in the image and not just the
sufficiently predictive features (examples in Fig. 1).

2.2 Regression IBA

Original IBA is proposed for classification setting. In this section, we discuss
several variations of IBA for the regression case. We discuss three different re-
gression objectives: 1) MSE Loss defined as LMSE = (Φ(Z) − y)2. MSE loss
has the property that if the target score is small, it identifies regions with small
brixIA score as informative. Because in this case, the objective is trying to find
regions that have information for output to be zero. 2) Regression Maximization
(RM) Loss is simply defined as LRM = Φ(Z)2. This loss has the property that
it favors regions with high scores as informative. 3) Deviation loss defined as
LDV = (Φ(Z) −X)2. We subtract the score of the noisy feature map from the
score of the original image. Similar to IBA for classification, this formulation
identifies regions with sufficient information for the prediction. We also apply
Inverse IBA to regression (see Fig. 1) to identify all preditive features.

2.3 Multi-layer IBA

For original IBA, the bottleneck is inserted in one of the later convolutional lay-
ers. As we move towards earlier layers, the variational approximation becomes



less accurate. Thus the optimization in Eq. 3 highlights extra regions that do
not have predictive information in addition to highlighting the sufficient regions.
However, as the resolution of feature maps in earlier layers are higher, the high-
lighted regions are crisper and more interpretable. In order to derive regions that
are crips and have high predictive information we compute IBA for several layers
and combine their results, thus introducing Multi-layer IBA:

T (IBAL1) ∩ T (IBAL2)... ∩ T (IBALL
) (5)

where T denotes a thresholding operation to binarize the IBA maps.

2.4 Chest X-ray Models

Classification model: We denote a neural network function by ΦΘ(x) :
RH×W → RC where C is the number of output classes. For a dataset X =
{x(1), ...,x(N)}, and their labels Y = {y(1), ...,y(N)}, where y = [yj ]

C , and
yj ∈ {0, 1}. Chest X-rays can have multiple pathologies. We use Binary Cross
Entropy (BCE) loss on each output for multilabel prediction.

LBCE = (ŷ,y) = −
∑

j

βyj log(ŷj) + (1− yj) log(1− ŷj) (6)

where β is a weighting factor to balance the positive labels.

Regression model: Consider a neural network fΘ(x) : RH×W → R and a
dataset X = {x(1), ...,x(N)} of N X-ray images, and their corresponding labels
Y = {y(1), ...,y(N)}, where yj ∈ 0, ..., 18 is the cumulative severity score on each
image. We model the regression problem with a MSE loss:

LMSE =
1

N

∑
(ΦΘ(x)(n) − y(n))2 (7)

3 Experiments and Results

Implementation Details We use three models: 1) NIH ChestX-ray8 classi-
fication: Network with 8 outputs for the 8 pathologies. 2) BrixIA regression:
Network with one output and predicts the total severity score (sum of severity
scores of 6 regions) 3) BrixIA classifier: 3 outputs detecting whether a severity
score of 3, 2, and 0/1 exists in the X-rays. We use Densenet 121, and insert the
IBA bottleneck on the output of DenseBlock 3. For Multi-layer IBA we insert it
on the outputs of DenseBlock 1,2 and 3.

3.1 Feature Importance (Human-Agnostic) Evaluations

Experiments in this section evaluate whether an attribution method is identify-
ing important features for the model prediction.



Fig. 1. Inverse IBA: Inverse IBA compared with IBA on a sample from the NIH
Chest X-ray8 (left) and a sample from BrixIA (right). NIH Chest X-ray8 (left):
Inverse IBA is identifying both sides of Cardiomegaly as informative. The bounding
box denotes the expert’s annotation. BrixIA (Right): IBA is identifying two regions
with a severity score of 3 as sufficient for predicting the score of 3, however, Inverse
IBA is identifying all regions with a severity score of 3, and the region with a score of 1.
The horizontal lines denote the 6 regions within the lungs, and the numbers represent
the sevirity score of each region.

Fig. 2. Insertion/Deletion metric: Comparison of different attribution methods in
terms of feature importance. Method with high Insertion AUC and low Deletion AUC
is the best (top left corner is the best).

Insertion/Deletion [20, 17] Insertion: given a baseline image (we use the
blurred image) features of the original image are added to the baseline image
starting from the most important feature and the output is observed. If the at-
tribution method is correct, after inserting a few features the prediction changes
significantly, thus the AUC of output is high. Deletion: deleting important fea-
tures first. The lower the AUC the better. Results are presented in Fig. 2.
Sensitivity-N [3] We adapt this metric to regression case (not trivial with
Insertion/Deletion) and use it to evaluate Regression-IBA. In Sensitivity-n we
mask the input randomly and observe the correlation between the output change
and the values of attribution map overlapping with the mask. The higher the
correlation the more accurate the attribution map. Results in Fig. 3b.



Fig. 3. Regression IBA: a) Regression IBA (with LDV ) applied on a regression model
that predicts the total severity score. Using Regression IBA we see that the model has
identified the severity scores of different regions implicitly. b) Sensitivity N metric for
evaluating feature importance of different Regression IBA losses

Table 1. Mean IOU on NIH ChestX-ray8 (all pathologies) for various methods

GradCAM[22] InteGrad[28] LRP[14] Gradients[25] IBA Inverse IBA Multi-layer IBA

0.077 0.076 0.025 0.114 0.114 0.088 0.189

3.2 Ground Truth based (Human-centric) Evaluations

Experiments in this section evaluate the attribution maps in terms of the hu-
man notion of interpretability, i.e. the alignment between what we understand
and the map. Moreover, they measure how fine-grained the attribution maps are.

Localization For NIH ChestX-ray8 dataset the bounding boxes are available.
To generate boxes for BrixIA score regions, similar to [24] we use a lung seg-
mentation network with the same architecture in [24]. We divide each lung into
3 regions. We threshold the attribution maps and compute their IoU with these
divided regions (over dataset).
Correlation Analysis (Regression Models) For the BrixIA dataset, we eval-
uate the performance of regression models by measuring the correlation between
the attribution scores and the severity scores. For each image, we first assign
each pixel with its severity score, obtaining a severity score map. We then flat-
ten both the attribution and severity score maps and compute their Pearson
correlation coefficient (PCC). The PCC results are as follows: for LMSE , 0.4766,
for LRM , 0.4766, for LMSE , 0.4404, and for random heatmaps, 0.0004.

4 Discussion

Inverse IBA: We observe that (Fig. 1) Inverse IBA highlights all regions with
predictive information. On BrixIA sample, IBA only identifies two regions with
a score of 3 as being predictive, while Inverse IBA identifies all regions with a
score of 3. On NIH sample, if we remove the highlighted areas of both methods
(equally remove) from the image, the output change caused by the removal of



Table 2. Mean IOU on BrixIA for each detector and for various attribution methods

GradCAM InteGrad LRP Gradients IBA Inverse IBA Multi-layer IBA

Detector 0/1 0.11 0.176 0.0 0.04 0.145 0.194 0.171

Detector 2 0.0 0.13 0.0 0.019 0.13 0.245 0.257

Detector 3 0.011 0.14 0.0 0.052 0.222 0.243 0.257

Table 3. Mean IOU on NIH ChestX-ray8 dataset for BCE and Weighted BCE models,
reported for all the pathologies in NIH Chest X-ray8 using Inverse IBA

Atelec. Cardio. Effusion Infiltrate. Mass Nodule Pneumo. Pn. thorax Mean

BCE 0.016 0.071 0.004 0.001 0.102 0.011 0.0 0.003 0.024
W. BCE 0.073 0.131 0.032 0.058 0.097 0.02 0.066 0.016 0.065

Fig. 4. Multi-layer IBA: Multi-layer IBA generates more fine-grained maps com-
pared to IBA. (Left): Multi-layer IBA precisely highlights subtle features such as Mass
(Right) Using Multi-layer we observe that for Cardiomegaly in this X-ray the corner
regions of Cardiomegaly are used. IBA highlights the entire region.

Inverse IBA regions is higher. This is also quantitatively validated across dataset
in the Deletion experiment (Fig. 2).
Regression IBA: Using Regression IBA we observe that (Fig. 3) a regression
model which only predicts one cumulative severity score (0-18) for each X-ray
implicitly identifies the severity scores of different regions.
Multi-layer IBA: We use Multi-layer IBA for obtaining fine-grained attribu-
tions. In Fig. 4 we see that such fine-grained attributions allow for identifying
subtle features such as Mass. Moreover, Multi-layer IBA also uncovers some hid-
den insights regarding what features the model is using for the Cardiomegaly
example. While IBA highlights the entire region, Multi-layer IBA shows precisely
the regions to which IBA is pointing.
Imbalanced loss: We observe in Tab. 3 that using weighted BCE results in an
increased IoU with the pathologies. This signifies that the contributing features
of the weighted BCE model are more aligned with the pathology annotations.
The observation is more significant when we consider the AUC of ROC and
the Average Precision (AP) of these models. The AUCs (BCE=0.790, Weighted
BCE=0.788) and APs (BCE=0.243, Weighted BCE=0.236) are approximately
equivalent. The BCE even archives marginally higher scores in terms of AUC of
ROC and AP but its learned features are less relevant to the pathologies.



5 Conclusion

In this work, we build on IBA feature attribution method and come up with
different approaches for identifying input regions that have predictive informa-
tion. Contrary to IBA, our Inverse IBA method identifies all regions that can
have predictive information. Thus all predictive cues from the pathologies in the
X-rays are highlighted. Moreover, we propose Regression IBA for attribution
on regression models. In addition, we propose Multi-layer IBA, an approach for
obtaining fine-grained attributions which can identify subtle features.
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3. Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding
of gradient-based attribution methods for deep neural networks. arXiv preprint
arXiv:1711.06104 (2017)

4. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PloS one 10(7), e0130140 (2015)

5. Hooker, S., Erhan, D., Kindermans, P.J., Kim, B.: A benchmark for in-
terpretability methods in deep neural networks. In: Advances in Neural
Information Processing Systems. vol. 32. Curran Associates, Inc. (2019),
https://proceedings.neurips.cc/paper/2019/file/fe4b8556000d0f0cae99daa5c5c5a410-
Paper.pdf

6. Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., Marklund, H.,
Haghgoo, B., Ball, R., Shpanskaya, K., et al.: Chexpert: A large chest radiograph
dataset with uncertainty labels and expert comparison. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 33, pp. 590–597 (2019)

7. Johnson, A.E., Pollard, T.J., Greenbaum, N.R., Lungren, M.P., Deng, C.y., Peng,
Y., Lu, Z., Mark, R.G., Berkowitz, S.J., Horng, S.: Mimic-cxr-jpg, a large publicly
available database of labeled chest radiographs. arXiv preprint arXiv:1901.07042
(2019)

8. Karim, M., Döhmen, T., Rebholz-Schuhmann, D., Decker, S., Cochez, M., Beyan,
O., et al.: Deepcovidexplainer: Explainable covid-19 predictions based on chest
x-ray images. arXiv preprint arXiv:2004.04582 (2020)

9. Khakzar, A., Albarqouni, S., Navab, N.: Learning interpretable features via ad-
versarially robust optimization. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. pp. 793–800. Springer (2019)



10. Khakzar, A., Baselizadeh, S., Khanduja, S., Kim, S.T., Navab, N.: Explain-
ing neural networks via perturbing important learned features. arXiv preprint
arXiv:1911.11081 (2019)

11. Khakzar, A., Baselizadeh, S., Khanduja, S., Rupprecht, C., Kim, S.T., Navab, N.:
Neural response interpretation through the lens of critical pathways. Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)

12. Khakzar, A., Baselizadeh, S., Navab, N.: Rethinking positive aggregation and
propagation of gradients in gradient-based saliency methods. arXiv preprint
arXiv:2012.00362 (2020)

13. Li, Z., Wang, C., Han, M., Xue, Y., Wei, W., Li, L.J., Fei-Fei, L.: Thoracic disease
identification and localization with limited supervision. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 8290–8299 (2018)

14. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining
nonlinear classification decisions with deep taylor decomposition. Pattern Recog-
nition 65, 211–222 (2017)

15. Nie, W., Zhang, Y., Patel, A.: A theoretical explanation for perplexing behaviors
of backpropagation-based visualizations. In: International Conference on Machine
Learning. pp. 3809–3818. PMLR (2018)

16. Oh, Y., Park, S., Ye, J.C.: Deep learning covid-19 features on cxr using limited
training data sets. IEEE Transactions on Medical Imaging 39(8), 2688–2700 (2020)

17. Petsiuk, V., Das, A., Saenko, K.: Rise: Randomized input sampling for explanation
of black-box models. arXiv preprint arXiv:1806.07421 (2018)

18. Punn, N.S., Agarwal, S.: Automated diagnosis of covid-19 with limited posteroante-
rior chest x-ray images using fine-tuned deep neural networks. Applied Intelligence
pp. 1–14 (2020)

19. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul,
A., Langlotz, C., Shpanskaya, K., et al.: Chexnet: Radiologist-level pneumonia de-
tection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)

20. Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R.: Evaluating
the visualization of what a deep neural network has learned. IEEE transactions on
neural networks and learning systems 28(11), 2660–2673 (2016)

21. Schulz, K., Sixt, L., Tombari, F., Landgraf, T.: Restricting the flow: Information
bottlenecks for attribution. arXiv preprint arXiv:2001.00396 (2020)

22. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
Proceedings of the IEEE international conference on computer vision. pp. 618–626
(2017)

23. Signoroni, A., Savardi, M., Benini, S., Adami, N., Leonardi, R., Gibellini, P.,
Vaccher, F., Ravanelli, M., Borghesi, A., Maroldi, R., et al.: End-to-end learn-
ing for semiquantitative rating of covid-19 severity on chest x-rays. arXiv preprint
arXiv:2006.04603 (2020)

24. Signoroni, A., Savardi, M., Benini, S., Adami, N., Leonardi, R., Gibellini, P., Vac-
cher, F., Ravanelli, M., Borghesi, A., Maroldi, R., et al.: Bs-net: Learning covid-19
pneumonia severity on a large chest x-ray dataset. Medical Image Analysis 71,
102046 (2021)

25. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional net-
works: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034 (2013)

26. Singh, R.K., Pandey, R., Babu, R.N.: Covidscreen: Explainable deep learning
framework for differential diagnosis of covid-19 using chest x-rays. Neural Com-
puting and Applications pp. 1–22 (2021)



27. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplic-
ity: The all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

28. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In:
International Conference on Machine Learning. pp. 3319–3328. PMLR (2017)

29. Taghanaki, S.A., Havaei, M., Berthier, T., Dutil, F., Di Jorio, L., Hamarneh, G.,
Bengio, Y.: Infomask: Masked variational latent representation to localize chest
disease. In: International Conference on Medical Image Computing and Computer-
Assisted Intervention. pp. 739–747. Springer (2019)

30. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8:
Hospital-scale chest x-ray database and benchmarks on weakly-supervised classi-
fication and localization of common thorax diseases. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 2097–2106 (2017)

31. Zhang, J., Bargal, S.A., Lin, Z., Brandt, J., Shen, X., Sclaroff, S.: Top-down neu-
ral attention by excitation backprop. International Journal of Computer Vision
126(10), 1084–1102 (2018)

32. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features
for discriminative localization. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 2921–2929 (2016)



9Through the Lens of Concepts

Feature attribution, though still open for exploration, is merely one way to explain
neural networks. In this chapter, we move beyond feature attribution and explore
concepts encoded by neurons in the neural network. This can be achieved by analyzing
the activation patterns of neurons. Network dissection [40] is a simple and elegant
method that observes the activations of individual neurons throughout a dataset.
We can analyze the neurons and understand if there is a correlation between the
activation of a neuron and certain concepts. Thus, we can identify whether a neuron is
associated with these concepts. We refer to a neuron that is associated with a concept
as a concept detector. We explore this methodology for analyzing and interpreting
thoracic pathology and Covid-19 diagnosis models. This chapter investigates the
following questions:

If we train a regression neural network on a chest x-ray dataset labeled with Covid-
19 severity scores, would the network implicitly learn concepts associated with the
pathologies? We monitor the emergence of concept detectors during training and
observe that the number of concept detectors increases. Moreover, we observe a
variety of concept detectors appearing within the trained neural network.

If we train a classification neural network on a chest x-ray dataset labeled with
binary labels, healthy/unhealthy, would the network implicitly learn pathology-related
concepts? We observe that concept detectors indeed emerge within the network.
Moreover, considering class imbalance within the dataset affects the number of
concept detectors.

The results presented in this chapter are intriguing as they show that without any
explicit cues regarding pathologies, concept detectors associated with pathologies
emerge within the neural networks. The results help establish trust in using neural
networks in medical image analysis. We further explore the methodology in our
consequent work [112] for vertebrae fracture detection and ask radiologists to evaluate
the detectors. We also identify the existence of clinically relevant concepts in networks
trained on fracture detection [112].
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Abstract. Convolutional neural networks are showing promise in the
automatic diagnosis of thoracic pathologies on chest x-rays. Their black-
box nature has sparked many recent works to explain the prediction
via input feature attribution methods (aka saliency methods). However,
input feature attribution methods merely identify the importance of in-
put regions for the prediction and lack semantic interpretation of model
behavior. In this work, we first identify the semantics associated with
internal units (feature maps) of the network. We proceed to investigate
the following questions; Does a regression model that is only trained with
COVID-19 severity scores implicitly learn visual patterns associated with
thoracic pathologies? Does a network that is trained on weakly labeled
data (e.g. healthy, unhealthy) implicitly learn pathologies? Moreover, we
investigate the effect of pretraining and data imbalance on the inter-
pretability of learned features. In addition to the analysis, we propose
semantic attribution to semantically explain each prediction. We present
our findings using publicly available chest pathologies (CheXpert [5], NIH
ChestX-ray8 [25]) and COVID-19 datasets (BrixIA [20], and COVID-19
chest X-ray segmentation dataset [4]). The Code1 is publicly available.

Keywords: Interpretability · COVID-19 · Chest X-rays.

1 Introduction

Convolutional neural networks (CNN) have demonstrated outstanding perfor-
mance in automatic diagnosis on Chest X-rays [25, 12, 6, 5]. There are reports
of CNNs outperforming radiologists in chest x-ray pathology classification [17].
These diagnostic models can aid the clinicians and expedite the diagnosis result-
ing in more patients receiving the care they need. Such models can be especially
beneficial in pandemic circumstances as the shortage of expert clinicians be-
comes an issue [20, 14, 16]. Despite their performance, neural networks lack of

? denotes corresponding author (st.kim@khu.ac.kr), ∗ S. T. Kim and N. Navab shared
senior authorship.

1 https://github.com/CAMP-eXplain-AI/CheXplain-Dissection



interpretability undermines their reliability. It is essential to understand the ba-
sis of the network predictions, and the networks’ learned features to establish
trust in the clinical domain. Therefore there have been efforts in explicitly mak-
ing the models more interpretable during training [24, 8], or interpreting neural
network models after they are trained [25, 17, 10, 7]. In this work, we investigate
the latter case in order to see if these performant models trained without an
infusion of interpretability, are learning human-interpretable concepts.

For post-hoc explanation of chest X-ray models, many works opt for feature
attribution methodologies [21, 23, 1, 18, 9, 25]. These works use feature attribu-
tion methods, such as Class Activation Maps (CAM) [25, 18] to reveal which
input regions are contributing to the output prediction. Albeit being insightful,
the aforementioned methodology lacks semantic interpretation of the models
and their predictions. Network Dissection [2] is a methodology for identifying
the corresponding concept of internal units (feature maps) of the network.

Contributions - In this work, we first use Network Dissection [2] to quantify the
interpretability of chest X-ray classification models. Then we proceed to investi-
gate the following; Does a neural network regression model that is only trained on
COVID-19 severity scores (on BrixIA) implicitly learn visual patterns associated
with thoracic pathologies? We also study the effect of pretraining on CheXpert
and ImageNet datasets, and the effect of considering data imbalance on the se-
mantics of internal units. Does a network trained on a weakly labeled dataset
(healthy/unhealthy labels) implicitly learn distinct pathologies? We combine
NIH ChestX-ray8, CheXpert, and BrixIA datasets to generate a massive but
weakly labeled (’healthy’,’unhealthy’) dataset. In this case, we study the effect
of considering data imbalance on the semantics of internal units. Moreover, for
both cases, we observe the formation of semantic units during training. In all
experiments, we use bounding boxes in the NIH ChestX-ray8 [25], and segmen-
tation masks in COVID-19 chest X-ray segmentation dataset [4] for identifying
the semantics of units. In addition to the analysis, we propose semantic attri-
bution by combining feature attribution and network dissection to semantically
explain the prediction for each chest x-ray.

Related Work - Interpreting internal units: There are two principal cate-
gories of methods for this purpose; Methods that generate images that maximally
activate neurons/units [13, 15, 21], and methods that search over the dataset to
find which images (also image regions) activates neurons/units [27, 2]. Methods
in the first category are prone to subjective interpretation as the generated im-
ages are ambiguous. Network Dissection [2] is a prominent method of the sec-
ond category, that does quantitative analysis of the semantics of units. Though
we use the same method (albeit on the different domain of chest x-rays rather
than natural images), our experiments and insights differ. Effect of pretraining,
imbalanced datasets, studying regression models and trained models on weakly-
labeled datasets are exclusive to our work. We also propose semantic attribution.
DeepMiner [26] is a methodology inspired by network dissection and applied



to mammograms. The methodology differs from Network Dissection and our
work. In DeepMiner, instead of automatic annotation, the most important units
are annotated by experts. DeepMiner thus differs in methodology, discusses a
different domain (mammograms), and does not address our research questions.

2 Methodology

2.1 Setup: Chest X-ray Models:

Classification model: Each chest X-ray can contain multiple pathologies.
Therefore we model the problem as a multi-label classification problem. For
C pathologies, the network function is defined as fΘ(x) : RH×W → RC . The
predicted probability for each category is ŷ = sigmoid(fΘ(x)). We use Binary
Cross Entropy (BCE) loss on each output. Thus the loss is defined as:

LBCE = (ŷ,y) = −
∑

c

βyc log(ŷc) + (1− yc) log(1− ŷc) (1)

where β is a weighting factor to balance the positive labels, and defined as the
ratio of the number of negative labels to the number of positive labels in a batch.

Regression model: We consider two regression modelings on BrixIA dataset.
1) For each input j the label is one global sevirity score y(j) ∈ {0, ..., 18}. For
this case the neural network function is fΘ(x) : RH×W → R. We use a weighted
Mean Square Error (MSE) loss for a batch of size N:

LMSE =
1

N

∑
β(fΘ(x)(n) − y(n))2 (2)

2) In BrixIA dataset for each X-ray, the lung is divided into 6 regions, and a
severity score ∈ {0, 1, 2, 3} is assigned to each region. Thus the network is defined
by fΘ(x) : RH×W → R6. Similar to [20] we use a mixed regression/classification
loss by using Sparse Categorical Cross Entropy (SCCE) and diffentiable Mean
Absolue Error (MAEd), and for each sample and its corresponding network
output ŷ = [ŷc]

6 it is defined as LSCCE + LMAEd :

LSCCE = − 1

C

∑

c

yclog(ŷc) (3)

LMAEd =
1

C

∥∥∥∥∥y −
∑

c

eŷc

∑
c e

ŷc
c

∥∥∥∥∥ (4)

2.2 Background: Network Dissection [2]

Network Dissection annotates individual units (feature maps) of neural networks
with semantic concepts. We refer to a feature map that is associated with an



Fig. 1. Network Dissection on chest X-rays: To identify the corresponding concept
of a unit in the network, the unit’s activation for each input is compared with the ground
truth mask/bounding-box of the concept in that input. For one unit the procedure is
repeated for all inputs within the annotation datasets and average IoU with concepts
in the dataset measures whether the unit is detecting a concept.

individual concept (e.g. consolidation) as an individual concept detector / a
semantic unit. The method requires a dataset(s) where concepts are annotated
with bounding box or segmentation masks. For each unit under investigation,
the unit’s feature map is computed for every image and is compared against
the ground truth annotations (bounding boxes or segmentation masks) of the
concepts in that image. The method compares the unit’s feature map and the
annotation in terms of their intersection over union. See Fig. 1 for a schematic
overview. The activation map is first transformed in to a binary segmentation
mask Sk(x) via thresholding. For each unit k and its feature map Fk(x), the
threshold Tk is chosen such that P (fk > Tk) = 0.005 [2] for every fk given
all images in the dataset. As the resolution of ground truth labels Lc for each
concept c is different from Sk, bilinear interpolation is first applied to generate
S′k(x). The binary segmentation mask is then derived by Mk(x)

.
= S′k(x) ≥ Tk.

For each unit k and concept c pair, the intersection and the union between mask
Mk(x) derived from unit k and the label mask Lc(x) is computed for all images
containing concept c, and data-set-wide IoUk,c is defined as:

IoUk,c =

∑ |Mk(x) ∩ Lc(x)|∑ |Mk(x) ∪ Lc(x)| (5)

the sum is carried out over all the images with concept c, and |.| denotes the
cardinality of this set. The IoUk,c measures whether unit k detects concept c.
We use a threshold of 0.04 similar to [2] for considering a unit as a detector.
The threshold affects the number of concept detectors within a network, what is
of interest is comparing the number of concept detectors between models (e.g.
comparing trained and initial model). See Fig. 3 for units of different IoUk,c.



Network Dissection for Chest X-ray Models: We use the NIH ChestX-
ray8 [25] and COVID-19 chest X-ray segmentation [4] (Covid-CXR) dataset for
annotating the chest X-ray models. NIH ChestX-ray8 contains bounding boxes
for 8 pathologies, and we consider each pathology as a concept c in the Network
Dissection framework. Covid-CXR contains segmentations for pathologies, lung
components (e.g. right lung), and apparatus. we consider each one as a concept.
The dataset contains 14 distinct concepts in total. For each model that we dis-
cuss in the paper, we use both NIH ChestX-ray8 and Covid-CXR datasets for
annotating the models’ internal units.

Fig. 2. The number/type of individual concept detectors: For all models under
discussion, the number of concept detectors and the types of the detectors are pre-
sented. We can observe that pretraining on CheXpert is increasing the number and
the variety of detectors. Moreover, considering data imbalance by using a weighted loss
function also increases the number and variety of semantic detectors.

2.3 Semantic Attribution

For each prediction fΘ(x) on each input x, we compute the importance of internal
units ALk for the prediction. ALk denotes kth feature map at layer L.

We follow a method, Integrated Gradients [23], that approximates the Aumann-
Shapley value [22]. Shapley value [19] is the unique axiomatic definition of a fea-
ture’s contribution to a final outcome. We first compute the individual neurons’
importance aik (activation i at channel k):

sik = aik

∫ 1

α=0

∂fθ(αaik)

∂aik
dα (6)

We use
∑
i |sik| as the contribution of the unit k. The absolute value is for

considering both positive and negative contributions by taking the magnitude.



Fig. 3. Individual concept detectors: For CheXpert classification model (top) and
BrixIA regression model (bottom) we visualize a Consolidation detector unit and an
Infiltration detector unit for 4 different X-rays. The displayed IoU is not the IoU
between the ground truth sample and the detector, it is the average from Eq. 5.

Fig. 4. Evolution of concepts: Number/Type of semantic detectors in two regression
models at different epochs. (left): BrixIA (ImageNet), MAE+SCCE (middle): BrixIA
(CheXpert), MAE+SCCE, (right) total number of semantic detectors for both mod-
els. We observe that the number of concept detectors is higher for trained models at
different epochs compared to the initial model.

We then select the top contributing unit(s) and use their annotations (if it exists)
for semantic explanation. We visualize sik of all neurons of ALk to highlight each
semantic unit’s most contributing areas to the output.

3 Results and Discussion

In all our experiments and for all models in Fig. 2, the network is a DenseNet121
[3]. All models are trained using Adam [11] optimizer without weight decay. If
the loss function is a weighted one, it is indicated by ”Weight”. For BrixIA
models, the model is trained on a pre-trained model on either ImageNet or
CheXpert. The name in parentheses shows this. When the last part of the name
shows the loss function. ”MAE+SCCE” indicates using the 6 region prediction
as in the original BrixIA paper. The weakly labeled models are binary classifiers,
trained on the combination of NIH, CheXpert, and BrixIA datasets, deciding if
the input is healthy or not. While NIH dataset has a healthy label for inputs,
for CheXpert, the input was considered healthy when no pathology existed. For
BriXIA, an input was considered healthy when all 6 regions were zero.



3.1 Semantics of Thoracic Classification Models

In this section, we analyze the semantics of detectors in classification models
trained on CheXpert. Although these models are trained directly on the pathol-
ogy labels, this does not imply that the individual detectors within the network
are detecting features relevant to these pathologies. The models are denoted by
CheXpert BCE, and CheXpert Weight. BCE on Fig. 2.

Balanced Training Effect We see that the model trained with weighted BCE
has a significantly higher number of concept detectors (100 vs 65). The num-
ber of detectors relevant to Pneumonia increases significantly in the weighted
model. Pneumonia has a few positive instances in the dataset (0.027%), using a
weighted loss causes the emergence of Pneumonia detectors. Consolidation is also
imbalanced (0.066%), and we observe that the number of detectors is tripled. In
addition, the weighted model shows more variety in terms of concepts than the
unweighted version. This is particularly significant as we do not observe any im-
provement in terms of classification AUC, and also the F1 score. But the model
interpretability increases with the weighted loss.

3.2 Semantics of COVID-19 Regression Models

In this section, we examine MSE and MAE SCCE segmentation losses for models
trained on the BrixIA dataset. In addition, we investigate the effect of considering
imbalance in the data in the MSE loss models. As the number of images in BrixIA
is limited, we also investigate the effect of pretraining on the CheXpert dataset.
The first observation in Fig. 2 is that training the model on 6 region regression
loss (SCCE), results in a higher number of semantic detectors compared to global
regression loss. The model has stronger supervision in the former case, and we
observe that it also becomes more interpretable.

Pretraining Effect For all training losses, we observe in Fig. 2 that pretrain-
ing the model on the CheXpert dataset is significantly increasing the number of
individual concept detectors. This increase in the number of detectors is more
pronounced in models trained with the global regression score labels. This im-
plies that with weaker supervision with one global regression score, the model
struggles in learning individual concepts, and pretraining becomes necessary.

Balanced Training Effect We observe (Fig. 2) that using weighted MSE loss
on regression models pre-trained on CheXpert datasets increases the number
of unique concept detectors, specifically an increase in the number of detectors
associated with Consolidation. For models that are not pretrained on CheXpert,
the model struggles in both weighted and unweighted scenarios to learn concepts.

3.3 Semantics of Models Trained on Weakly Labeled Datasets

In this section we discuss models trained on a dataset of healthy / unhealthy
labels. The dataset is comprised of CheXpert, NIH ChestX-ray8 and BrixIA.



Fig. 5. Semantic attribution: X-rays with severe Covid condition from BrixIA. All
have a unit with corresponding semantic annotation of Consolidation as their top con-
tributing unit to the severity score. The contribution of corresponding unit is visualized.

Balanced Training Effect We observe in Fig. 2 that the model that does
not use a weighted loss, learns few semantic concepts. Moreover, the majority of
individual detectors are related to Cardiomegaly and Cardiomediastinum, and
the rest of the concepts are not learned. This implies that Cardiomegaly is an
easy signal for the model to pick up during training. However, when we train
the model with a weighted loss, we observe that the diversity of the semantic
detectors and their numbers increases significantly. Specifically, there were not
Consolidation, Pneumonia, Atelectasis detectors in the former case, but they
emerge in high numbers in the weighted case. We also observe that the concept
detectors indeed emerge in models trained on healthy/unhealthy labels, although
it is relatively less than full supervision.

3.4 Evolution of Semantics

In this section, we observe the number/type of individual unit detectors for differ-
ent epochs. We analyze the BrixIA regression models trained with MAE+SCCE.
We observe (Fig. 4) an increase in the number of important concepts for COVID-
19 during training (e.g. Consolidation and Ground Glass Opacity) and a decrease
in less important concepts (e.g. left lung). The relative increase in the number
of concepts of trained model vs. initial model points to the fact that the models
are indeed learning patterns associated with pathologies.

3.5 Semantic Attribution

We observe that Consolidation is the most related concept to severe Covid scores
as in Fig. 5 on BrixIA dataset. The results in Fig. 5 are for the last conv layer of
the model described in Fig. 2 as BrixIA (CheXpert), Weight, MSE. To visualize,
the final integrated gradients map of unit k is divided by the maximum sik of
its neurons to normalize and then upsampled to the input image size. Note
the methodology here is different from using crude activation maps since we
aim to discover the most contributing feature maps to the prediction. Highly
activated maps do not necessarily correspond to contribution. Hence, we employ
an axiomatic approach as explained in Sec. 2.3. Although this is a first step in
this direction, more annotations can boost the recognition of other important
concepts, and more semantic units for each prediction can be visualized.



4 Conclusion

In this work, we analyze the semantics of internal units of classification and
regression models on chest X-rays. We observe that pretraining and considering
data imbalance affect the number of semantic detectors. We observe how training
on severity score regression labels results in the emergence of pathology-related
detectors within the networks. We observe the same phenomenon when the model
is trained on weakly labeled datasets. We also propose a semantic attribution
method to semantically explain individual predictions.
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Part IV

Conclusion





10Conclusion and Outlook

The dissertation puts forth the idea that feature attribution remains unsolved, and we
need to rethink and revisit existing solutions. If we as a community still do not have a
fully reliable tool to explain our neural network models, then our conclusions from
the current explanations are questionable. Thus we need to continue our quest for
solving the attribution problem.

The dissertation first discusses a multi-faceted approach to viewing feature attribution.
It reminds us that thinking about attribution only from the perspective of removing ev-
idence and the Shapley value is short-sighted. Approaches that leverage the network’s
attention or information flow also show the relevance of features for the output, albeit
from a different perspective than that of methods that are based on removing features
(such as Shapley). Since the axioms of attribution are also mostly erected based
on the idea of removing features, they would favor attributions that are grounded
on removing features. The multi-faceted view is also aimed at the evaluation of
attributions. The dissertations emphasize the importance of attribution evaluations
(that’s why we see them before feature attribution literature in the introduction of
this dissertation). Each evaluation views the attributions from a different perspective
and has its own unique insights. We are required to evaluate attributions from all
perspectives and beware of their pitfalls. We need to know what the evaluations tell us
about the attributions. And we need to know the properties of each of the attributions
to interpret them reliably.

We put the neural networks under the microscope and follow neural pathways and
rethink how critical pathways are defined. We see that solving the pruning objective
for identifying sparse pathways does not necessarily lead to pathways that encode
critical input features. We see simple pruning algorithms can satisfy the pruning
objective and deliberately choose irrelevant pathways. The critical pathways are
thus hypothesized to be pathways that include critical neurons. The pathways of
critical neurons show to have interesting properties. The gradient of the pathways and
adversarial perturbations on them correspond to critical input features. Thus critical
pathways are leveraged for input feature attribution. We observe that leveraging
neurons for attribution plays a significant role in finding critical input features. The
hypothesis is that neurons encode interactions and dependencies between input
features; therefore, by leveraging neurons, we can implicitly consider them in feature
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attribution. Another view is that by considering neurons, we can consider feature
groups within attribution. Further work must be done to establish the significance
of feature groups in feature attribution, and the findings within our work lay the
groundwork.

By considering the predictive information of features as a proxy for their relevance, we
look into feature attribution through the lens of information. Again, our intuition that
deep features can have a key role in feature attribution comes to play. We first identify
deep features with high predictive information and then find their corresponding
input features. This is achieved by searching for an input information bottleneck
that induces an optimal deep bottleneck. The optimal deep bottleneck refers to one
that has the least mutual information with the features and has the highest mutual
information with the predicted output. The attribution strategy achieves state-of-the-
art results in all empirical evaluation strategies discussed in this dissertation. The
strategy is not limited to specific architectures, thus, can be explored for upcoming
neural network architectures. Furthermore, the core idea of using deep predictive
features to guide the search for predictive input features can be transferred to other
attribution strategies.

The dissertation also rethinks the evaluation of feature attribution methods by looking
at them through the model’s lens. Using the model, we can generate input features,
and we can enforce their relevance through generation. Thus, we can have a con-
trolled experimental setup for testing feature attributions. This dissertation proposes
the design of setups that test attribution against several axioms and properties: 1)
We devise a setup to test whether attributions satisfy the null-feature (dummy) ax-
iom. That is, we check if they attribute to a feature that is guaranteed to be a null
feature. 2) We devise a setup that checks whether attributions are class sensitive by
generating two features associated with two different classes. 3) We devise feature
saturation scenarios and observe how attributions work in these cases. The work
can be extended to evaluate other axioms and properties. Some challenges remain
for further extension of this work. The optimization of multiple objective functions
is not trivial. This dissertation resorts to multi-task learning approaches to balance
the optimization terms. More advanced axioms (e.g., completeness) require more
complicated optimization objectives. Future work can explore addressing optimization
issues. A worthwhile effort due to the simplicity and soundness of the core idea,
generating features in tandem with the model.

The dissertation also rethinks attribution for medical image analysis models. The
relevance of features can be viewed from different perspectives. We discuss two com-
plementary perspectives: whether the attribution identifies features that are sufficient
for a neural network prediction or identifies any feature with predictive information.
We discuss how formulating attribution methodologies around deletion/preservation
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strategies affects the final outcome. In medical attributions, identifying all predictive
features can be beneficial, and the dissertation shows how this can be achieved via
formulating the attribution based on the deletion game.

In the last chapter, the works rethink the use of attribution in medical image analysis
by moving beyond feature attribution. Feature attribution is merely one way to explain
neural networks. In the final chapter, we check neuron activations and identify their
corresponding concepts (thoracic pathologies). Through this lens, we explore the
following questions: Do neural networks trained as regression models on Covid-19
severity scores learn pathologies without any explicit cues? We observe that concept
detectors indeed emerge inside networks during training. Do neural networks trained
on binary datasets labeled as healthy/unhealthy learn pathologies? We again observe
that concept detectors emerge during training and considering data imbalance during
training significantly affects the number of concept detectors within the network.
Analyzing the concepts encoded by the network can be extended to other medical
applications (as we did for vertebrae fracture diagnosis [112]). The chapter offers a
glimpse of moving beyond attribution toward analysis of concepts.

The dissertation rethinks feature attribution and looks at the problem through different
lenses. However, the attribution problem remains open for exploration. Nevertheless,
the ideas proposed in the dissertation move us one step closer to solving the feature
attribution problem and neural network explanation.
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A. Proofs
A.1. Proof of Lemma 1

Lemma 1 (Dead Neurons) Considering ai as the input at
layer i to the following layers of the network defined by
function Φ>iθ (.) : RNi → R, the Shapley value of a neu-
ron aij defined by

∑
C⊆{aij}

Ni
j=1\aij

|C|!(Ni−|C|−1)!
Ni

(Φ>iθ (C∪
aij)− Φ>iθ (C)) is zero if the neuron is dead (aij = 0).

For any layer i, the Shapley value (with baseline zero) of
a neuron aij is defined as:

∑

C⊆{aij}
Ni
j=1\aij

|C|!(Ni − |C| − 1)!

Ni
(Φ>iθ (C∪aij)−Φ>iθ (C)) ,

(8)
where Φ>iθ denotes the neural function after layer i. The

input to Φ>iθ is the activation vector ai. We need to show
that for all aij and all possible coalitions C ⊆ {aij}Nij=1 \aij :

Φθ(C ∪ aij ;x) = Φθ(C;x) . (9)

We know for any ai the outputs of neurons in the next
layer are:

zi+1 =i+1 ai + bi+1 . (10)

As the baseline is considered zero, ablating a neuron aij
is done by aij = 0. Thus zi+1 does not change by ablation
of aij for any coalitionC. As zi+1 does not change, Φθ does
not change, thus we get Φθ(C ∪ aij ;x) = Φθ(C;x).

A.2. Proof of Proposition 4

Proposition 4 In a ReLU rectified neural network with
Φ(x) : RD → R, for a path defined by [eij ]

N , if aij >
0 ∀ eij = 1, then there exists a linear region ε̂x,2 > 0 for
Φ̂(x; e) at x.

The linear region, ε̂x,2 is the largest `2-ball around x
where the AP is fixed, i.e.

ε̂x,2
.
= max
ε≥0:Bε,2(x)⊆S(x)

ε (11)

ε̂x,2 is the minimum `2 distance between x and the corre-
sponding hyperplanes of all neurons zij [28]. In Section 4.1
we discuss that the distance is goverened by neurons for
which ∇xz

i
j 6= 0. We have [28] ε̂x,2 = min

i,j
|zij |/||∇xz

i
j ||2.

Thus, the existence of a linear region ε̂x,2 depends on |zij |
not being equal to zero. We are selecting a path [eij ]

N where
for each neuron aij > 0 and thus we have zij > 0. If we re-
place every neuron not on the path with a constant value
equivalent to the original value of the activation of that neu-
ron, the activation pattern AP remains constant, and thus
we get a new approximate neural network Φ̂(x; e) at x,
where all neurons zij > 0. Therefore ε̂x,2 6= 0 and there
exists a linear region.

A.3. Proof of Proposition 5

Proposition 5 Using NeuronIntGrad and NeuronMCT, if
cκ > 0, then Φ̂(x; e) at x is locally linear.

For NeuronMCT and NeuronIntGrad the contributions
are assigned by:

cij = |Φ(x)− Φ(x;aij0)| = |aij∇aij
Φθ(x)| (12)

and

cij = aij

∫ 1

α=0

∂Φ(αaij ;x)

∂aij
dα (13)

respectively. It is evident that if cij 6= 0 then aij 6= 0. There-
fore a path selected by |cij | > 0 we have all aij > 0. Hence
according to Prop. 4 the selected paths and the approximate
Φ̂(x; e) is locally linear.

A.4. Proofs for axioms of marginal contribution

Defining marginal contribution of neuron aij at layer i as:

cij = Φ>i({aij}Nij=1)− Φ>i({aij}Nij=1 \ aij) (14)

A.4.1 Null player

The null player axiom asserts that if a neuron is a null
player, i.e.

Φ>i(S ∪ aij) = Φ>i(S) , (15)

for all S ⊆ {aij}Nij=1 \ aij , then cij must be zero.
Eq. 15 is assumed for all S, therefore by substituting

S = {aij}Nij=1 \ aij , in Eq. 15 we get:

Φ>i({aij}Nij=1) = Φ>i({aij}Nij=1 \ aij) , (16)

which results in cij = 0.

A.4.2 Symmetry

The symmetry axiom asserts for all S ⊆ {aij}Nij=1\{aij ,aik}
if

Φ>i(S ∪ aij) = Φ>i(S ∪ aik) (17)

holds, then cik = cij .
Eq. 17 is assumed for all S, therefore by substituting

S = {aij}Nij=1 \ {aij ,aik}, in Eq. 15 we have:

Φ>i({aij}Nij=1 \ aij) = Φ>i({aij}Nij=1 \ aik) . (18)

By substituting into Eq. 14, we obtain cik = cij .



B. Further Discussions
B.1. Computing contribution of neurons vs. pixels

If we compute the marginal contribution or Shapley
value for a single feature of the input, e.g. a pixel, the dis-
tributional interdependencies, and correlations between the
pixels are not considered. This is not to be confused with the
interdependency that the Shapley value considers by taking
different coalitions into account. For instance, ablating a
single pixel from an object in an image does not affect the
score of an Oracle classifier, in any coalition. One must
consider that all the pixels are related and exist in one ob-
ject when computing the marginal contribution and Shap-
ley value for the object (all pixels considered as one fea-
ture). Shapley value of a set of features is known as gener-
alized Shapley value [32]. We can observe a consequence
of this phenomenon, in the different results obtained by
[2] when removing single pixels (occlusion-1) or removing
patches, where the latter results in more semantic attribution
maps. Several works implicitly consider such correlations
by masking a group of pixels. The question is what mask
should we look for, as the prior information about the de-
pendency of pixels is not available. There are 2N possible
masks that one can select. Moreover, a larger mask contain-
ing a feature might get the same or higher contribution score
as the mask of the feature. Therefore in [11, 10] priors such
as the size of the mask are used. These methods look for the
smallest masks with the highest contribution. In the regime
of neural networks, we encounter more problems with mask
selection. If we do not enforce any prior, we can get adver-
sarial masks [11, 15]. Therefore, several works[11, 10] en-
force priors such as smoothness of the masks. On the other
hand, if we use the prior encoded in the network (which is
learned from the distribution of the data), we implicitly con-
sider the group of pixels that are correlated with each other.
Thus by computing the contribution of individual neurons,
we are considering a complex group of pixels and their dis-
tributional relationships.

C. Implementation details
The sparsity level of ResNet-50 is 70% and VGG-16 is

90% in the experiments, unless stated otherwise.

C.1. Network parameter randomization sanity
check [1]

All attribution methods are run on ResNet50 (PyTorch
pretrained) and on 1k ImageNet images. The acquired at-
tribution maps from all methods are normalized to [-1 1]
as stated by [1]. The layers are randomized from a normal
distribution with mean=0 and variance=0.01 in a cascading
manner from the last to the first. After the randomization
of each layer, the similarity metrics (SSIM and Spearman
Rank Correlation) are calculated between the map from the

new randomized model and the original pretrained network.
Methods that are not sensitive to network parameters (like
GBP) would hence lead to high levels of similarity between
maps from normalized networks and the original map.

C.2. Input degradation - LeRF [49]

We report results on CIFAR using a custom ResNet8
(three residual blocks), Birdsnap using ResNet-50, and Im-
ageNet (validation set) using ResNet-50. We show the ab-
solute fractional change of the output as we remove the least
important pixels. Lower curves mean higher specificity of
the methods. Note that, for NeuronMCT and NeuronInt-
Grad, the pixel perturbation process is performed on the
original model not on the critical paths selected by these
methods. The critical paths are only used to obtain the attri-
bution maps and not after.

C.3. Remove and Retrain (ROAR) [21]

We perform the experiments with top 30; 50; 70; 90 of
pixels perturbed. The model is retrained for each attribu-
tion method (8 methods) on each percentile (5 percentiles)
3 times. Due to the large number of retraining sessions re-
quired, we cannot report this benchmark on other datasets.
We evaluate this benchmark on CIFAR-10 (60k images,
32x32) with a ResNet-8 (three residual blocks).



D. Supplementary results

Figure 8. Dead Neuron Selection of Pruning Objective (Spar-
sity %80). The percentage of originally dead neurons in the se-
lected paths of different methods reported for sparsity of 80%. All
paths selected by pruning objective contain originally dead (now
active) neurons

Figure 9. Dead Neuron Selection of Pruning Objective (Spar-
sity %99). The percentage of originally dead neurons in the se-
lected paths of different methods reported for sparsity of 99%. All
paths selected by pruning objective contain originally dead (now
active) neurons



Table 1. ROAR: AUCs reported for each attribution method. The lower the AUC the better.

GRADIENT GBP GRADCAM INPUTMCT INPUTINTGRAD NEURONMCT NEURONINTGRAD NEURONINTGRAD*
CIFAR-10 0.728 0.702 0.584 0.723 0.741 0.580 0.574 0.524
BIRDSNAP 0.269 0.243 0.096 0.242 0.242 0.117 0.099 0.090

Table 2. Input degredation (LeRF): AUCs reported for each attribution method. The lower the AUC the better.

GRADIENT GBP GRADCAM INPUTMCT INPUTINTGRAD NEURONMCT NEURONINTGRAD NEURONINTGRAD*
CIFAR-10 0.037 0.028 0.010 0.019 0.019 0.009 0.009 0.007
BIRDSNAP 0.090 0.085 0.012 0.090 0.090 0.010 0.010 0.008
IMAGENET 0.046 0.044 0.009 0.043 0.041 0.010 0.010 0.009

Figure 10. Path Analysis - Entire Network (Sparsity 80 & 99). Overlap between paths from different methods in entire network. Among
the pruning-based methods, only the path selected by DGR(init=1) overlaps with contribution-based methods.

Figure 11. Path Analysis - Layerwise (Sparsity 80 & 99). Overlap between paths from different methods in different layers of VGG-16.
Among the pruning-based methods, only the path selected by DGR(init=1) overlaps with NeuronIntGrad.



Figure 12. Feature Attribution. The gradients of the locally linear critical paths at different sparsity levels for NeuronIntGrad (top) and
NeuronMCT (bottom).



Figure 13. Comparison with Feature Attribution Methods. Comparison between attribution maps dervied our proposed methods (right)
vs. gradient-based attribution methods on ResNet-50. Note the improvement of integrated gradients on the neurons (NeuronIntGrad) over
integrated gradients on input (InputIntGrad).



Figure 14. Comparison with Feature Attribution Methods. Comparison between attribution maps dervied our proposed methods (right)
vs. gradient-based attribution methods on VGG-16. Note the improvement of integrated gradients on the neurons (NeuronIntGrad) over
integrated gradients on input (InputIntGrad).
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A Computing Mutual Information I[ZI , I]

For two random variables ZI and I , where ZI is dependent on I , we can calculate the mutual
information via KL-divergence:

I(ZI , I) = DKL(P (ZI |I)||P (ZI)) (5)

KL-divergence is defined as

DKL(P,Q) = −
∫

x

P (x) log
Q(x)

P (x)
dx (6)

which means for calculating KL-divergence we need to integrate over the entire probability space.
However, Given two random variables P ∼ N (µ1, σ1) and Q ∼ N (µ2, σ2) that are Gaussian
distributed, the KL-divergence between this two random variables can be calculated in closed form:

DKL(P,Q) = log
σ2

σ1
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
(7)

The bottleneck is constructed by masking the input ZI = ΛI +(1−Λ)ϵI , where ϵI is the input noise
and ϵI ∼ N (µI , σI). The distribution of ZI given input I , P (ZI |I), is thus (Remark 2):

P (ZI |I) ∼ N (ΛI + (1− Λ)µI , (1− Λ)2σ2
I ) (8)

As explained in Section 3.2, ZI is conditioned on ZG by using ZI = ΛZG + (1 − Λ)ϵ , and
ZG = λGI + (1− λG)ϵG, by substitution we have:

P (ZI) ∼ N (λGΛI + (1− λGΛ)µI , (1− λGΛ)
2σ2

I ) (9)

We are implicitly introducing an independence assumption for the random variable P (ZI) through our
Gaussian masking (ZI = ΛZG+(1−Λ)ϵ) formulation of P (ZI). Where each elements of P (ZI) are
constructed by an independent Gaussian masking. A better approximation would not impose such an
independence assumption. Please note that in original IBA [19] the same independence assumption
exists for P (Z). Since KL-divergence is additive for independent distributions (DKL(P ||Q) =∑

k DKL(Pk||Qk)), we can calculate the KL-divergence of P (ZI |I) and P (Z) by summing over
the KL-Divergence of there elements. Therefore (proposition 3):

DKL[P (ZI,k|Ik)||P (ZI,k)]

= log
(1− λG,kΛk)σI,k

(1− Λk)σI,k
+

(1− Λk)
2σ2

I,k

2(1− λG,kΛk)2σ2
I,k

+
((ΛkIk + (1− Λk)µI,k)− (λG,kΛkIk + (1− λG,kΛk)µI,k))

2

2(1− λG,kΛk)2σ2
I,k

− 1

2

= log
1− λG,kΛk

1− Λk
+

(1− Λk)
2

2(1− λG,kΛk)2

+
(ΛkIk + µI,k − ΛkµI,k − λG,kΛkIk − µI,k + λG,kΛkµI,k)

2

2(1− λG,kΛk)2σ2
I,k

− 1

2

= log
1− λG,kΛk

1− Λk
+

(1− Λk)
2

2(1− λG,kΛk)2
+

(ΛkIk − ΛkµI,k − λG,kΛkIk + λG,kΛkµI,k)
2

2(1− λG,kΛk)2σ2
I,k

− 1

2

= log
1− λG,kΛk

1− Λk
+

(1− Λk)
2

2(1− λG,kΛk)2
+

(Ik − µI,k)
2(Λk − λG,kΛk)

2

2(1− λG,kΛk)2σ2
I,k

− 1

2
(10)

B Derivation of Proposition 4

The derivation is inspired by [40]. Contrary to [40], in this work we derive the exact representation of
I(Z, Y ) instead of a lower bound. Given X as input, Y as output, Z as bottleneck (masked input), we



assume Y ↔ X ↔ Z, this means that Y and Z are independent given X. This assumption is fulfilled
by masking scheme and data generation process: for Z we have Z = m(X, ϵ, λ) (where function m
represents the masking scheme), thus Z depends on X given sampled noise and mask; for Y we have
Y = g(X), where function g represents the data generation process for the task. Therefore:

p(x, y, z) = p(y|x, z)p(z|x)p(x) = p(y|x)p(z|x)p(x) (11)

Thus we can also calculate p(y|z) by:

p(y|z) = p(z, y)

p(z)
=

∫
p(y|x)p(z|x)p(x)

p(z)
dx (12)

And mutual information between Z and Y:

I(Z, Y ) =

∫
p(y, z) log

p(y, z)

p(y)p(z)
dydz

=

∫
p(y, z) log

p(y|z)
p(y)

dydz

(13)

However, calculating p(y|z) requires integral over x, which is intractable. We then apply the
variational idea to approximate p(y|z) by qθ(y|z) instead. qθ(y|z) represents the neural network part
after bottleneck, θ indicates parameter of the neural network part.

I(Z, Y ) =

∫
p(y, z) log

p(y|z)
p(y)

qθ(y|z)
qθ(y|z)

dydz

=

∫
p(y, z) log

qθ(y|z)
p(y)

dydz +

∫
p(y, z) log

p(y|z)
qθ(y|z)

dydz

=

∫
p(y, z) log

qθ(y|z)
p(y)

dydz +

∫
p(z)(

∫
p(y|z)DKL[p(y|z)||qθ(y|z)]dy)dz

=

∫
p(y, z) log

qθ(y|z)
p(y)

dydz +

∫
p(z)DKL[p(y|z)||qθ(y|z)]dz

=

∫
p(y, z) log

qθ(y|z)
p(y)

dydz + Ez∼p(z)[DKL[p(y|z)||qθ(y|z)]]

(14)

C Derivation of Theorem 5

Proof: Here we want to prove that for per-sample Information Bottleneck under classification task,
optimizer of cross entropy loss is also the optimal value for mutual information I[Y, Z]. Previous
work concludes that the optimizer of minEϵ∼p(ϵ)[− log qθ(ysample|z)] is a lower bound of I(Y, Z)
[40]. To ease the effort of readers searching across literatures, we summarize the proof in [40] in
Appendix G. We now prove this optimizer is not only the lower bound of I(Y,Z), but also the
optimizer for I(Y, Z) under per-sample setting (local explanation setting). Now we consider the
second term in Eq. (14) which we neglected during mutual information calculation:

Ez∼p(z)[DKL[p(y|z)||qθ(y|z)]] (15)

This term equals to zero if p(y|z) ≡ qθ(y|z). The local explainable set contains a batch of neighbours
of Xsample. We make two assumptions on the data points in the local explainable set. One is all
data points in the local explainable set have the same label distribution (for an Oracle classifier),
as data points are only slightly perturbed from Xsample. Another one is that distribution of Z can
be considered as equivalent inside local explainable set, i.e. the latent features are equivalent for
samples that are in the local explanation set of X (we know this is not true for adversarial samples,
however for many samples in the neighborhood which have the same label with X this is true). Now



we approximate p(y|z) by:

p(y|z) = 1

N

N∑

n=1

p(y|xn)p(z|xn)

p(z)
(local set of sample)

=
1

N

N∑

n=1

p(y|xsample + ϵ)p(z|xsample + ϵ)

p(z)

=
p(y|xsample)p(z|xsample)

p(z)
(use two assumptions above)

= p(y|xsample)

(16)

p(z|xsample) ≡ p(z) because we consider a local dataset, and use the second assumption that Z is
equivalent given data in a local set:

p(z) =

∫
p(z|x)p(x)dx ≈ 1

N

N∑

n=1

p(z|xn) =
1

N

N∑

n=1

p(z|xsample + ϵ) = p(z|xsample) (17)

Now p(y|z) ≡ qθ(y|z) can be easily proved, for p(y|z):

p(y|z) = p(y|xsample) =

{
1, if y = ysample

0, otherwise
(18)

For qθ(y|z), the optimizer maximize Eϵ[log(qθ(ysample|z))]. Then we have:

qθ(y|z) =
{
1, if y = ysample

0, otherwise
(19)

Thus they are equivalent, and the KL divergence is zero. As a result, we can remove the inequality in
variational step under assumption that we are generating attribution per sample, and assuming local
explanation.

D Details and Hyper-parameters of Experiment Setup

D.1 Hyper-parameters and Implementation of Attribution Methods

Most hyper-parameters used for ImageNet experiments are presented in the body of the text. We
would like to supplement the setting of generative model. The generative adversarial model for
estimating ZG uses a discriminator with 3 CNN layers followed by 2 fully connected layers, and
contains 200 samples in target dataset. During training, we update the discriminator’s parameter after
every 5 generator updates. To attribute the 4-layer LSTM model trained on IMDB dataset, we insert a
bottleneck after the last LSTM layer, the parameter β at this bottleneck is 15. The learning rate for
this bottleneck at hidden layer is 5 × 10−5. The generative adversarial model uses a single Layer
RNN as discriminator. For the input bottleneck at embedding space, we use βin = 30, lr = 0.5, and
optimization step = 30.

For Extremal Perturbations, size of the perturbation mask is a hyper-parameter. We set the mask size
to be 10% of the image size for EHR experiment, as all images for EHR have bounding box covering
less than 33% of the image. For the rest of evaluations of Extremal Perturbation, we use default mask
size implemented in public code framework.

Regarding the parameters of Integrated Gradients (IG), we use the default values (proposed in the
original paper [2]). The number of integrated points is 50 and the baseline value is 0. We will add
the details in the appendix. These values are commonly used and we observe that the method with
default parameters performs well in the quantitative experiment (Fig. 5b) as explained.

D.2 Hyper-parameters of InputIBA

In Fig. 7 we observe the effect of β in InputIBA optimization. Similar to IBA [19] it controls
the ammount of information passing through the bottleneck. Fig. 8 shows the effect of number of
optimization steps in InputIBA. Fig. 9 shows how the attribution map varies while the number of
optimizations steps of the generative adversarial model changes.



Input : 1 : 10 : 20 : 50 : 100

Figure 7: Influence of β of the InputIBA.

Input steps: 30 steps: 60 steps: 90 steps: 120 steps: 150

Figure 8: Influence of optimization steps of the InputIBA.

Input steps: 50 steps: 100 steps: 200 steps: 500 steps: 1000

Figure 9: Influence of optimization steps of the generative adversarial model.

Method Insertion AUC Deletion AUC
InputIBA 0.710± 0.005 0.045± 0.001

IBA 0.713± 0.004 0.090± 0.002
GradCAM 0.703± 0.005 0.133± 0.003
Guided BP 0.529± 0.004 0.132± 0.002

Extremal Perturbation 0.676± 0.004 0.135± 0.003
DeepSHAP 0.430± 0.004 0.196± 0.003

Integrated Gradients 0.358± 0.004 0.210± 0.003

Table 3: Mean and the standard error of insertion/deletion AUC for ImageNet dataset. We show the
statistical information with standard error in the table.

D.3 Insertion/Deletion

Instead of inserting or deleting one single pixel/token and report the model prediction on modified
input at each step, we apply batch-wise pixel/token insertion and deletion. One advantage of batch-
wise modification is that the evaluation is accelerated by leveraging the batch processing ability of
existing deep learning framework. Also batch-wise modification on input stabilizes the output, as
perturb only one pixel or token cannot change the overall information of the input effectively, thus
introduces strong deviation on model prediction. On both ImageNet and IMDB dataset, we set the
batch size to be 10. For images in ImageNet, we delete pixel by replacing it with black pixel. In
insertion test, we insert pixel on a blurred image rather than a black canvas, since insert pixel on black
canvas generates stronger adversarial effect than in deletion test. We generate the blurred image by
applying Gaussian blur with kernel size equal to 29, standard deviation for Gaussian kernel is 15.
For texts in IMDB dataset, both insertion and deletion are performed by replacing the token in text
with <unk> token. Insertion/Deletion results on ImageNet dataset and their corresponding standard
deviation are presented in Table 3.



D.4 Remove-and-Retrain (ROAR)

In Remove-and-Retrain (ROAR), we divide CIFAR10 dataset into train set, validation set and test
set. In training phase, a classifier is trained on the train set with 30 training epochs. After training is
complete, we apply the attribution method on trained model for all images in 3 subsets. In retrain
phase, for each attribution method, we perturb all 3 subsets based on attribution maps. As a result,
we generate 9 perturbed dataset using different perturbation rate (ranging from 10% to 90%, with
10% step). A model is trained from scratch on perturbed train set with 30 training epochs, and we
report the final performance of this model on perturbed test set.

E Qualitative Results of Attribution Methods

Image IBA GradCAM Guided BP Extremal Perturbation DeepSHAP Integrated Gradients InputIBA

Figure 10: Qualitative Comparison (ImageNet): We conduct qualitative comparision between
attribution methods on more sample images form ImageNet validation set.

F The case for EHR (vs. BBox metric in IBA [15])

Here we explain the limitations of bbox evaluation metric used in the [15] with three synthetic
examples. As illustrated in Fig. 11, we assume an object covers 25% area of an image. We also
assume three attribution methods and their attribution maps. As illustrated in Fig. 11a, method (a)



bbox: 1.0
EHR:1.0

(a)

bbox: 1.0
EHR:0.4

(b)

bbox: 1.0
EHR:0.2

(c)

Figure 11: Synthetic Examples: We synthesize three attribution maps of an imaginary image. The
object is surrounded by a bounding box, which is annotated with a blue box. Values of the bbox
metric and EHR are also shown on the top of each figure. (a): Attribution scores within the bounding
box are 1.0 (the maximal value), outside the bounding box are 0 (the minimal value). (b): Attribution
scores within the bounding box are 1.0, outside the bounding box are 0.25. (c) Attribution scores
within the bounding box are 0.25, outside the bounding box are 0.

only highlights the pixels within the bounding boxes. In this case, both the bbox metric and EHR are
1.0. In Fig. 11b, method (b) additionally highlights the region outside the bounding box, the scores
outside the bounding box is lower than that within the bounding box. Thus, the bbox metric remains
1.0. However, method (b) is sub-optimal to method (a) as it erroneously highlights the non-object
pixels. In Fig. 11c, method (c) only highlights the pixels within the bounding box, but with lower
scores. Thus, method (c) is also considered to be sub-optimal to method (a). The bbox metric in [15]
cannot distinguish these three cases, while EHR can: the EHR of method (b) and (c) are substantially
lower than that of method (a).

G Optimization of I[Y, Z][40]

For easier reference, we provide a summary of derivation of the lower bound of the mutual information
I(Z, Y ) as done in [40]:

I(Z, Y ) ≥
∫

p(y, z) log
qθ(y|z)
p(y)

dydz

=

∫
p(y, z) log qθ(y|z)dydz +H(Y )

(20)

The second term H(Y ) is a constant and has no effect when optimize over mask. We can now further
construct our optimization objective as

max
λ

OE(Z, Y ) (21)

To get the final result, we first expand p(y, z) as
∫
p(x, y, z)dx, and reformulate p(x, y, z) based on

Eq. (11), then we construct an empirical data distribution

p(x, y) =
1

N

N∑

n=1

σxn
(x)σyn

(y) (22)

Lastly, we use reparameterization trick since Z = f(x, ϵ), and x is not a random variable.

p(z|x)dz = p(ϵ)dϵ (23)



Combine all tricks together:

OE(Z, Y ) =

∫
p(y, z) log qθ(y|z)dydz

=

∫
p(y|x)p(z|x)p(x) log qθ(y|z)dxdydz

=
1

N

N∑

n=1

∫
p(z|xn) log qθ(yn|z)dz

=
1

N

N∑

n=1

∫
p(ϵ) log qθ(yn|z)dϵ

=
1

N

N∑

n=1

Eϵ∼p(ϵ)[log qθ(yn|z)]

= Eϵ∼p(ϵ)[log qθ(ysample|z)]

(24)

Summation is removed in the last derivation step, because we assume only one attribution sample.
We can write the optimization problem as minimizing a loss function, then the loss function is [40]:

L = Eϵ∼p(ϵ)[− log qθ(ysample|z)] (25)

L is the cross entropy loss function for a single sample xsample.



CThrough the Lens of the Model
(Appendix)

129



6. Appendix
6.1. Null Feature Experiment

More visual examples for the null feature experiment are
provided in Fig. 6.

6.2. Feature Saturation Experiment

The visual example for feature saturation is provided in
Fig. 5.

6.3. Optimization (Focal Loss) Details

The optimization problems in the framework have mul-
tiple losses. Therefore it is a challenge to balance the op-
timization between the losses. We use the focal loss [10]
method to balance the optimization. The following terms
each indicate the keys used during optimization phase as
focal loss entries.

κL = σt(Φt(X))

κ{fa} = tanh(
|Φt(X{fa})− Φt(X{})|

min(|Φt(X{fa})|, |Φt(X{})|)
)

κ{fa, fb} = tanh(
|Φt(X{fa, fb})− Φt(X{fa})|

min(|Φt(X{fa, fb})|, |Φt(X{fa})|)
)

(12)
where σt(.) designates softmax function corresponding

to the target t. The weighted average of the term κL is em-
ploied in each of the loss terms as the multiplicand of the
first term. The weighted average of other two are used in
their corresponding scenarios as the multipicand of the lat-
ter terms. The weighted average through each iteration is
calculated in the following manner:

κ̂t+1 = ακt + (1− α)κ̂t (13)

During all the experiments, the α is set to 0.1, and the inti-
tial value for κ is 0.5. To further faciliate the optimization
phase, we initially optmize the features to maximize Φt(X)
fo their designated target class.

6.3.1 Comparison to Existing Evaluations

Each evaluation in Sec. 2.2 evaluates explanations from a
different perspective. [16, 34, 35] discuss the axioms theo-
retically. Proofs are broken in practice. E.g. our framework
identifies issues with DeepSHAP (as also shown in [34]).
Our framework is the practical incarnation for the axioms
in [16, 34, 35]. [31] provides a class-sensitivity evaluation.
Our results complement them. The metric in [31] considers
the correlation between maps of different classes, thus iden-
tifies gradient as class sensitive. But the low correlation is
due to a mere shift in noise, which our method avoids. The
pointing game [38] assumes the model uses features that we

humans use. We remedy this by having control over gener-
ated features (Sec 2.2). GBP, IG get high scores in [25], but
we reveal they attribute to null-feature and are class insen-
sitive. [11] aims to evaluate another aspect, feature impor-
tance (Sec 2.2 for limitations). A method such as FullGrad
and GradCAM++ can highlight important features, but we
show they attribute to Null and are class-insensitive. In
cases where there is only one highly activating region in
the input, these methods will reveal them ( [14]).



Image GradCAM GradCAM++ Gradient FullGrad GuidedBackProp
Integrated
Gradients DeepSHAP IBA

Extremal
Perturbation

Figure 5. Feature Saturation Experiment: Each row is a sample from the feature saturation experiment. In this experiment, the features
(patches) each saturate the output. In other terms, each individually generates the same output as their combination. A desired property for
the attribution method is to distribute the contribution equally between the features. We observe that Extremal Perturbation and IBA can
lean toward attributing the output to only one of the features. The formulation of these two method is based on keeping a region that keeps
the output prediction. Thus, it is expected that they lean toward one feature.

Image GradCAM GradCAM++ Gradient FullGrad GuidedBackProp
Integrated
Gradients DeepSHAP IBA

Extremal
Perturbation

Figure 6. Null Feature Experiment: Each row represents a sample from the null feature experiment. In each row, the image on the left
represents the generated features on the reference (noise) input. The features are generated using the model itself. Within the image, the
lower feature (patch) is generated such that it is a null feature for the output. The rest of the images represent different explanations. As the
second feature is a null feature, an explanation method should not assign importance to it. We observe that GradCAM, IBA, and Extremal
Perturbation perform best in avoiding the null feature.
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