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Zusammenfassung

Spinglédser sind ungeordnete magnetische Spinsysteme mit einem hohen Grad an Frustration. Daraus
resultiert eine komplexe Energielandschaft. Jene Modelle finden Anwendung in vielen Disziplinen, wie
zum Beispiel der Wahrscheinlichkeitstheorie, der mathematischen Biologie und der statistischen Physik.
Daher gab es in den letzten Jahrzehnten aus physikalischer und mathematischer Seite viele Bemiihungen
Spingléser besser zu verstehen. Von besonderer Bedeutung ist Giorgio Parisis Beitrag, welcher 2021
mit dem Physiknobelpreis gewiirdigt wurde. Parisi entwickelte nicht nur die Replica-Methode, um den
Grenzwert der freien Energie im Sherrington-Kirkpatrick (SK) Modell zu berechnen, sondern erkannte
die Bedeutung der Replica-Uberlappung als funktionalen Ordnungsparameter. Die Parisi-Formel, welche
eine immanente hierarchische Struktur des Gibbsmafes auf dem Produktraum multipler Replicas sichtbar
macht, und ihr rigoroser Beweis durch Arbeiten von Guerra und Talagrand konnen als Meilensteine der

klassischen Theorie der Spin-Gléser angesehen werden.

Diese Dissertation widmet sich der Untersuchung von Quanten-Spingldsern, welche der Quantennatur
von Materie Rechnung tragen. Konkret betrachten wir Hamilton-Operatoren der Bauform H = U +I'T
auf dem Hypercubus. Dabei steht U stellvertretend fiir ein Potential eines klassischen Spinglasmodells,
wie zum Beispiel des SK-Modells oder des Random Energy Model (REM) und der Term I'T" entspricht
einem transversalen Magnetfeld mit Magnetfeldstédrke I". Dabei wollen wir analysieren wie das transver-
sale Feld die thermodynamischen Eigenschaften klassischer Spinglédser beeinflusst. Das Studium von
Quanten-Spinglésern trigt nicht nur zum Versténdnis frustrierter Systeme bei, sondern ist auch von Be-
deutung bei der Bewertung adiabatischer Quantenalgorithmen, die ein vielversprechender Ansatz zur Lo-
sung von Optimierungsproblemen auf Quantencomputern darstellen. In den 1990er begannen Physiker
sich systematisch mit Quanten-Spinglidsern zu beschiftigen. Dabei werden analytisch die nicht rigorose
Replica-Methode und die statische Approximation angewandt. Diese Methoden erlaubten es Goldschmidt
den korrekten Grenzwert fiir das Quantum Random Energy Model (QREM) - dem REM mit transver-
salem Feld - zu bestimmen. Jedoch beruhen viele Arbeiten auch auf numerische Methoden und die meis-
ten Quanten-Spinglas-Modelle, wie das Quantum Sherrington-Kirkpatrick Modell (QSK), sind noch in

vielen Ziigen unverstanden.

Trotz der Bedeutung von Quanten-Spinglidsern liegen nur sehr wenige rigorose Resultate derzeit vor. Die
Publikationen auf denen diese Dissertation beruht gehoren zu den ersten Anstrengungen, einem mathema-
tisches Verstdndnis von Quanten-Spinglidsern ndher zu kommen. Insbesondere entwickelten wir Meth-
oden, um Goldschmidts Formel fiir die freie Energie im QREM zu beweisen und verfeinerten unsere
Techniken, um dariiber hinaus eine detaillierte spektrale Analysis des QREM-Hamiltonian zu bewerk-
stelligen. Dies ermdglichte uns die energetisch tiefen Eigenzustinde zu charakterisieren und die néchste

Ordnung (beziiglich der SystemgroBe) der Grundzustandsenergie und freien Energie zu berechnen. Des

vii



weiteren haben wir hierarchische Quanten-Spingléser, Verallgemeinerungen des QREM, untersucht was
zur vollstidndigen Charakterisierung verschiedener Phasendiagramme fiihrte, welche noch nicht in der
Physikliteratur beschrieben wurden. SchlieB3lich haben wir uns mit dem QSK-Modell auseinanderge-
setzt, wo es uns gelang fiir tiefe Temperaturen und ein hinreichend schwaches transversales Feld eine

Spinglasordnung nachzuweisen.



Abstract

Spin glasses form a class of highly disordered frustrated spin systems, which attained major attention
from mathematicians and physicists in the last decades. The importance of spin glass models results
from their applications to a variety of fields, e.g., probability theory, mathematical biology, and statistical
mechanics; to name a few. The physical relevance of spin glasses has lately become manifest by the award
of the Nobel Prize in Physics 2021 to Giorgio Parisi, who was the first to realize that spin glass behavior
is reflected in a functional order parameter and computed successfully the limit of the free energy of the
Sherrington-Kirkpatrick (SK) model based on a replica calculation. Parisi’s formula which encodes a
hidden hierarchical structure of the limiting Gibbs measure of multiple replicas and its rigorous mathe-
matical proof by Guerra and Talagrand can be considered as major milestones in the classical spin glass
theory.

This thesis is devoted to the study of quantum spin glasses, that is, spin glasses which incorporate quantum
effects. To be more precise, our aim is to study transverse field models with a Hamiltonian H = U +1'T,
where U represents the potential of a classical disordered system such as the SK model or the Random
Energy Model (REM), and the term I'T" describes a transversal magnetic field of strength I". Here, we
want to understand how the transversal field affects the thermodynamical properties of the underlying
model. Results on quantum spin glasses not only enhance our understanding of frustrated spin systems,
but also are of importance for the evaluation of quantum adiabatic algorithms, which form a promising
algorithm scheme which might be implemented on quantum computers. In the 90’s physicists started
to investigate these types of models analytically via the replica trick and a static approximation for the
path-integral representation and to a large extent also numerically. For instance, Goldschmidt predicted
the (correct) formula for the free energy of the REM with transversal field, the Quantum Random Energy
Model (QREM). However, most quantum spin glass models such as the Quantum Sherrington-Kirkpatrick
model (QSK) are yet not fully understood.

Despite the importance of quantum spin glasses, rigorous results are still rare and the publications, on
which this thesis is based, are among the first systematic attempts towards a mathematical understanding
of quantum spin glasses. In particular, we have managed to prove Goldschmidt’s formula for the QREM
and used this as starting point to provide a detailed spectral analysis of the QREM Hamiltonian, that is,
we give a precise description of the low energy states and compute the finite size corrections of the ground
state energy and free energy. Moreover, we discuss hierarchical quantum spin glasses - generalizations of
the QREM - where we give complete phase diagrams which were even unknown in the physics literature.
Last but not least, we contribute to the study of the QSK, where we establish a spin glass phase for low

temperatures and a weak magnetic field.
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Chapter 1

Introduction

Spin glass models were originally introduced to describe experimentally observed magnetic alloys, such
as iron (Fe) weakly diluted in gold (Au), which exhibit peculiar dynamical properties at low temperatures:
for instance slow relaxation to equilibrium after turning out an external field, a phenomenon which is re-
ferred to as aging [52]. These experimental findings highly contrast what one expects for ferromagnetic
or paramagnetic solids. While the spins in ferromagnets tend to point in the same direction, spin glasses
are governed by random interactions between the spins. That is, some pairs of spins prefer to be parallel,
while other pairs want to be anti-parallel. Hence, there is no configuration satisfying most preferences;
one speaks of a high degree of frustration. Highly frustrated systems are characterized by a complex en-
ergy landscape, for which it is even hard to find the minimal energy configuration. Thus, understanding
spin glass models is a very challenging task which has been faced by condensed matter physicists, mathe-
matical physicists and probabilists for about five decades [6,42,(70,/991135/[155{166]. Complex structures,
of course, do not only emerge in statistical physics, but in a variety of scientific disciplines. Consequently,
the study of spin glasses has a huge impact on very different fields such as combinatorial optimization,

theoretical computer science, machine learning and mathematical biology [20L[21}24,/59.(136].

In particular, mean-field spin glass models, where all particles interact with each other, have attained
considerable attention as they are more feasible than short-range models, yet equipped with a rich phys-
ical structure. This structure was discovered by Parisi in his revolutionizing work on the Sherrington-
Kirkpatrick (SK) model. He found an exact solution for the free energy of the SK model, which is based
on the ingenious idea of replica-symmetry breaking [[135,[155]]. The so-called replica overlap remains a
random quantity in the infinite-particle limit, but the overlap’s limiting distribution, the so-called Parisi
measure, governs the system and takes the role of the order parameter. Giorgio Parisi was awarded the
Nobel Prize in Physics 2021 among other scientific contributions for his breakthrough on understanding
spin glasses via the replica-symmetry breaking scheme and the underlying hierarchical organization of
multi-overlaps, which is commonly believed to be universal for mean-field spin glass models. Parisi’s
work did not only inspire physicists to extend his methods to other disordered models, but also motivated
mathematicians to understand Parisi’s solution from a rigorous point view. While for a long time only
partial results, mainly focusing on the high temperature phase, had been established, Guerra’s and Ta-
lagrand’s efforts cumulated in a proof of the Parisi formula for the free energy [991/179,[181]]. Together
with Panchenko’s result on the ultrametricity of the Gibbs measure [151]], these works can be seen as

milestones of the classical spin glass theory. Despite all the sketched progress, there are still many open
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INTRODUCTION

questions. For example, a description of the Parisi measure for low temperatures in the SK model [|16]
and an examination of the spin glass models’ dynamical properties, which characterize spin glasses in the
laboratory, are still lacking.

Classical spin glass models such as the SK model consider Hamiltonians which are random functions of
the N-particle spin configuration. Although such models are able to depict important aspects of spin glass
physics, they can only form a caricature of real metal alloys as they ignore the quantum nature of matter.
Quantum spin glass models implement the law of quantum physics by considering Hamiltonians which
are random operators with the spin—% operators as building blocks. Quantum spin glass models have been
studied in the physics literature for a long time and have recently gained more attention [23}24} 29,44,
68,78,95,96,(111,{121}|138L/158,/175]]. One research strand focuses on the question where a glass phase
is found and to which degree Parisi’s replica symmetry breaking scheme governs the physics of mean-
field quantum spin glasses [[78}/138,[188,/193]]. Due to the quantum nature however, further interesting
directions of research open up. An important example is the study of quantum phase transitions at zero
temperature, which often reflect a disruptive change of the ground state’s properties [[68L[106]. Moreover,
the possibility of quantum tunneling through energy barriers leads to new ergodic-nonergodic transitions,
which are also closely related to the degree of the eigenstates’ localization [29,(111}{124]].

Certainly, the resulting non commutative situation makes the analysis more challenging and, thus, our
understanding of quantum spin glasses is rather limited in contrast to classical spin glasses. We will
mainly consider in this thesis the simplest class of quantum spin glasses, where a classical spin glass
is enriched by an additional transverse magnetic field. The most prominent example is the Quantum
Sherrington-Kirkpatrick (QSK) model, for which most physical predictions are based on numerics or not
reliable approximations such as the static approximation. This calls for a rigorous analysis, which clarifies
our picture of quantum spin glasses. Unfortunately, there is a lack of mathematical work on quantum spin
glass models. There are few results on the QSK, which have been developed independently from this
thesis [3}/53,/126]], but the literature on simpler models such as the Quantum Random Energy Model
(QREM) is almost vacant. The main aim of this thesis is to make a first attempt to systematically study
quantum spin glasses and to encourage further research on this interesting multi-disciplinary topic, which
lies at the intersection of quantum physics, statistical mechanics, probability theory and operator theory
with various applications in condensed matter physics, mathematical biology and quantum computing.
In the following parts of the introduction, we will introduce the basic concepts of statistical mechanics
and quantum physics, and we will introduce the (quantum) spin glass models, which will be considered
in the main body of the thesis. Concurrently, we try to give some context to and intuition behind the

models.

1.1 Statistical Mechanics and Classical Spin Glasses

We start our journey by introducing classical spin glass models which we will be encountered in the rest
of this thesis. To this end, we will need to recall some concepts and notation from statistical mechanics.
1.1.1 Some Preliminaries on Statistical Mechanics

Let us first describe the general setting. Our configuration space for N particles will always be the Ham-

ming cube Q5 = {-1, 1}V, and its elements are denoted by 6 = (0y,...,0y). We think of the N
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STATISTICAL MECHANICS AND CLASSICAL SPIN GLASSES

particles to have only one degree of freedom, namely its internal spin which can only take the values +1.
In the literature one can also find models where the internal spin is more generally a vector which may
take infinitely many values [55}/154]], but we will only consider spin glass models on the Hamming cube.
Each model comes with its family of random Hamiltonians Hy : O — R, which is a random process
on the Hamming cube. As usual, H (o) models the energy of a specific configuration o. Of course,
formally the family (H y)yen 1S @ sequence of random variables on some probability space (2, &7, P),
however we will take the point of view which focuses on the random variables themselves and the un-
derlying probability space is rarely explicitly mentioned. The existence of the presented models will be
typically clear and the discussed assertions and events will not depend on the exact form of the probability
space and, thus, with a slight abuse of notation P will always denote the probability with respect to the
model’s disorder and, similarly, E denotes the expectation with respect to the disorder. In this thesis, we
assume a basic familiarity with common notions and results in probability theory as they can be found

in [[112]], but somewhat more advanced concepts will at least be recalled.

If a Hamiltonian H y is given, as usual we associate with H p the partition function

Zypy= ), PN, (1.1)
€9y
and the pressure
@y (f) =InZy(p), (1.2)

where f# > 0 denotes the inverse temperature, i.e., § = 1/T with the ordinary temperature 7. From the
point of view of statistical mechanics, we consider the canonical ensemble with fixed particle number N
at a certain inverse temperature f. The thermodynamics in the canonical ensemble is governed by the
free energy Fy(f) = —% In Z 5, (§), which in particular encodes the internal energy and entropy. Up to a
multiple factor @, and Fy agree with each other, and for convenience we mainly consider the pressure,
which is always convex and for most spin glass models positive [52,/181]]. The notions pressure and free

energy are sometimes used interchangeably.

In physical systems, the pressure is typically an extensive quantity, i.e., it scales (almost) linearly in the
particle number N if N is large enough [83,|167]. We are mostly interested in the so-called thermody-
namic limit N — oo, where one expects that the specific pressure %CI) ~ (f) converges, and we will denote
its limit (if it exists) by p(f). We stress that for disordered models the partition function and pressure are
random variables. However, it will turn out for all models we study that the specific pressure %d) N(B)is
self-averaging, i.e., %d) ~ () sharply concentrates around its mean %[E@ ~(®]. In particular, the limit
p(p) will usually be deterministic and, as we are used to in statistical mechanics, phase transitions can be
read off from a non-analytic behavior of p. We remark that E[® » (#)] is often referred to as the quenched
average in contrast to the physically less interesting annealed average In E[Z 5 (f)], where the expecta-
tion is pulled into the logarithm. However, the annealed pressure is often easier to compute and for high

temperatures it may give some physical insight.

Let us finally introduce the Gibbs measure uz on Q 5 which is defined via its weights on a configuration

67
e—PHN ()

, 13
Zn (D) (1)
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INTRODUCTION

The Gibbs measure controls the thermal fluctuations. The average of a function f: Q5 — R with
respect to u; will be denoted by (f)4. Of course, the Gibbs measure is itself random and one needs to
face two layers of randomness in spin glasses: the disorder of the Hamiltonian H 5, and the fluctuations
due to the Gibbs measure. A crucial idea in spin glass theory is to consider replicas, that is, one studies

a duplicated system. For any k¥ € N we copy the configuration space k-times and we equip Q%k with

I ...,6% of spin configurations

Qk
B
be denoted by (-)?k. The analysis of the static thermodynamics boils down to the study of the pressure

the product Gibbs measure ,u?k . The picture is that we draw k-replicas ¢
independently from each other with the probability law given by u5. The average with respect to p " will
and the Gibbs measure for large particle numbers N. More details on the thermodynamical formalism
can be found in standard textbooks such as [|36}/83,(161,/167].

1.1.2 Classical Spin Glass Models

Having introduced the mathematical objects of interest, we continue with a description of spin glass model
Hamiltonians H . In classical spin glasses, the Hamiltonian H », consists of two terms

N
Hy(@)=U@)+ ) ho,

i=1
where the second terms corresponds to an external magnetic field in vertical direction with (in general
random) weights h;. The spin glass properties are encoded in the potential U consisting of random
interactions which leads to frustration and unexpected magnetic properties. Thus, a spin glass model
is characterized by the choice of U.
The theory of spin glasses had its starting point in the seminal work by Edwards and Anderson in 1975
[70]. The so called Edwards-Anderson (EA) model is a random Ising-type model on the lattice Z¢ for
some d € N. That is, we take a finite box A; = [-L, L1*nz% N = (2L + 1)? and we label the
spin components o, with the vertices v € A;. Moreover, we associate with the box A; the canonical
undirected subgraph of Z¢ with edges E = {{x,y}|x,y € A;, |lx—y|l; = 1} with the 1-norm || - ||.

The corresponding potential is then given by

Ugal0)= ). g.,0.0, (1.4)
{x,y}€E

with a collection of independent identically distributed (i.i.d.) random variables (g, )y ;1ep With the
law of a standard normal variable. A standard Gaussian or, respectively, a standard normal variable is as

always a real random variable with probability density

1
p(x) = | e 7"
\ 2z
We recall that g, , = —1 corresponds to the famous d-dimensional Ising model, the paradigmatic example

for a ferromagnet on the lattice. Based on the intuition that spin glass behavior is a result of competing
ferromagnetic (g, , < 0) and antiferromagnetic (g, ,, > 0) interactions, the Edwards-Anderson model is a
natural choice. However, it quickly turned out that understanding the thermodynamics of next-neighbor

random models by analytic means appears to be not feasible. For instance, until today it is not completely

4
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clear if the replica-symmetry breaking picture describes the EA model since there are competing concepts
such as the droplet picture [81] and the metastate prescription [[142/143|]. Some basic rigorous results on
the EA model can be found in [52].

The complexity of the EA model motivated Sherrington and Kirkpatrick to introduce a mean-field version
of the potential U in (I.4) [166]. The Sherrington-Kirkpatrick (SK) model’s potential for N particles is
given by

Usg (6) = L Y. g,00 (1.5)

\/F 1<i<j<N

with i.i.d. standard Gaussians (g; ;);<;<j<n- Here, the term mean-field reflects the fact that all particles
interact with each other in the SK model and not only neighboring spins. As a result, the underlying
lattice geometry disappears, which typically simplifies the physics drastically. A prime example for this
approach is the Curie-Weill model,

Uow(6) = —% Y o0, =1 —Nm(o), (1.6)

the mean-field version of the canonical Ising model on the lattice. While there are no explicit formulas
for the free energy in the Ising models for dimensions d > 3, the Curie-Weil} is a solvable model and
its physics, in particular present phase transitions, is encrypted in a single real number — the average
magnetization (m); = (% Zl}il 0;) - One says that the magnetization takes the role of the order parameter
[36L/83]. The SK model can also be regarded as disordered Curie-Weifl model and, thus, one may hope
that there exists a similarly simple order parameter. Already Sherrington and Kirkpatrick realized in their

pioneering work that the so-called replica overlap,
| ¥
Ry(o.6") = < Y o0 € [-1,1]
i=1

for 6,6’ € Qy, is of central importance. Namely, the covariance of the Gaussian process Ugg may be

written in terms of Ry,

1

5

Let us pause for a moment and note that the covariance grows linearly with N. As a rule of thumb, if the

E[Usk (6)Usy (6))] = %Rw,a’)z -

potential is not too correlated, the minimal energy min U is then of order N as well. Thus, ground state
energy and pressure are then extensive as they should be in physical systems. This explains the prefactor
N~1/2 in (T.5) which is different from the deterministic situation in the Curie-WeiB model (T.6).

Sherrington and Kirkpatrick considered the thermal average of the replica overlap (R N)?z, which mea-
sures the closeness of two spin configurations that are randomly picked following the law of the Gibbs
distribution. They assumed that in presence of an external field the replica overlap concentrates around
its average E[(R N)?z] just as the magnetization in the Curie-Weifl model does. The resulting replica-
symmetric solution which can be found in Section 4.3 however, turned out to be wrong. It was Parisi’s
insight that the situation in the SK model is much more complicated: the replica overlap remains a ran-
dom quantity even in the infinite particle limit and its distribution takes the role of the order parameter.
One speaks of a functional order parameter since the system is governed by a whole distribution function,

not a mere real number. Furthermore, the situation, where the replica overlap becomes not self-averaging

5
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for low temperatures, is referred to as replica-symmetry breaking. Together with the assumption that
the multi-overlap organize in an ultrametric manner, the replica-symmetry breaking scheme leads to the
famous Parisi formula. Parisi’s original derivation is not rigorous as it invokes the replica trick. The idea

is to make use of the following elementary representation of the natural logarithm

.ox"—1
lim = Inx.
n—0 n

But instead of computing E[Z] for small numbers n, only the moments of the partition function for
integers n € N are considered. The limit n — 0 is derived via an extrapolation. The replica trick has not
found a rigorous justification hitherto, and the proof of the Parisi formula follows another route which will
be presented in Section[5.1] The SK model stems from statistical mechanics, but nevertheless it has found
application in other field. For instance, the Max-Cut problem on an Erdés-Rényi graph can be rephrased
in terms of an SK spin glass with Bernoulli weights g; ; [59,137]. Here comes universality into play: while
the SK model is defined in terms of Gaussian couplings, the limit of the specific pressure pgx (f) does
not depend on the distribution as long as g; j are i.i.d. random variables with E[g; = 0, [E[gzj] =1 and
Ellg;; 3] < oo [48]. This allows one to find asymptotic expression for the Max-Cut size on Erd6s-Rényi
graphs in terms of the SK minimal energy and, recently, an efficient algorithm for finding an approximate

maximal cut has been found [[137]].

The SK model can be generalized to the situation where not only two but p € N spins interact with each

other,

Novn 2 i
i 1

N
1
U,o) = 2 8iy...i 01y " O s (1.7)
Loeensip=
where the (gil,...,ip)lsn,...,i,,s n are again i.i.d. standard normal variables. U, gives rise to the p-spin model
and if the potential U is a linear combination of different U, one arrives at the mixed p-spin models. Note
that in contrast to the SK model, we include self-interactions in (1.7) because it leads to a convenient

formula for the covariance process,
E[U,(6)U,(6")] = NRy(s,6")

for 6,6’ € Q,. We will see in Chapter 5 that Parisi’s solution can be extended to all mixed p-spin
models. From a physical point of view, there is the broad picture that the models get less involved as
p increases. This is reflected in the Gardener transition for p > 3. While its predicted that the replica
overlap in the SK model changes from being zero to a a continuous random variable (continuous replica
symmetry breaking) at f = 1, one expects that the p-spin models undergo a 1-step replica symmetric
breaking at the critical temperature, i.e., the replica overlap’s distribution has only mass at two values.

Only for even lower temperatures continuous replica symmetry breaking should occur.

Following this intuition, Derrida considered the formal p — oo limit, leading to a Gaussian process with
covariance E[U,(6)U(6')] = N, 4 with the Kronecker delta 6, ,/, which is only 1 if 6 = ¢’ and
otherwise vanishes [61,(62]]. Derrida’s Random Energy Model (REM) can alternatively be written as

Urem(@) = VNg, (1.8)
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with 2V i.i.d standard Gaussians (g5) . The REM was introduced to the mathematical literature by

ceQ

Ruelle [[164]. Due to the lack of correlatjivons, the REM is of course only a toy model for spin glasses.
Despite its simplicity, the REM shows a glass transition and captures some features of more complicated
glass models. Due to the independence of the REM potential, it permits a precise analysis and, thus, the
REM allows a first understanding of glass behavior. That was very important when the Parisi solution
had not been established yet. We will give an overview of the equilibrium properties of the REM in

Section 211

Shortly after having put forward the REM, Derrida introduced a family of hierarchical spin glasses which
are built upon the REM and are dubbed Generalized Random Energy Models (GREM). The simplest
variant is the 2-level GREM for which one needs to divide the total spin vector 6 = 66, into two blocks

6, =(0y,...,0N]) and 65 = (O[xN741 --- - On) for some x € (0, 1). The GREM potential is then given
by
Ucrem(0) = VNa, g5 + \VNa; &5 6, (1.9)

withsome a;, a, > O satisfying a;+a, = 1 and two mutually independent Gaussian processes (g5, )g, €0,y
and (g5,5,)seq,, - In that way, (I.9) gives rise to a correlated Gaussian process but the correlation structure
is ultrametric facilitating the analysis of the GREM. In Chapter 4 we will consider more generally GREM
potentials with any number of levels n € N and even its continuous version, the CREM. The study of the
Gibbs measure in the GREM leads to Ruelle cascades which govern also the overlap distribution in mixed

p-spin models. In that sense, the GREM captures important features of the more involved SK model.

The interest in the REM and GREM goes far beyond its caricature of a spin glass. For instance, the
GREM is closely related to the study of Branching Brownian Motions (BBM). One can think of a BBM as
follows. One starts with a single Brownian motion B,, and after an exponential time 7" the path splits into
two independent Brownian motions starting at By. This process is continued for both paths independently
from each other and so on. It turns out that the extremal process of a BBM is closely related to the low
energy statistics of the CREM (see [37] and the references therein). A second example is the analysis
of the REM in the context of aging and metastability. The idea is to consider a particular Markov jump
process on Q , the Glauber dynamics. The continuous Markov time process X, on Q p is defined via the

transition rates

1,Ue i 3N =
r(e,6') = N¢ if Zi=1 ]l"i?é"i =1,

0 else,

for 6 # o/, some f > 0 and a potential U on Q. If U is chosen to be the REM potential, one can
show that the process stays at particular low energy configurations for a long time [25]26,/49,89,91].
This phenomenon has become known as aging and the REM is an important model for which that can
be rigorously established. The last application we want to discuss lies in the field of mathematical bi-
ology. Here, Urgy models a rugged fitness landscape of species, i.e., the value Urgy(6) encodes the
competitiveness of the species o [20,21,/71,/104]. If employed with a dynamics which incorporates the
biological evolution, one may analyze which species survive for large times. In this context the REM is
also called the "House of Cards" model. The analysis of the evolution is also intimately related to the

Quantum Random Energy, which will be introduced in the next section.
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The SK model, the mixed p-spin model, the REM and its generalizations the GREM and CREM form
the classical backbone for the quantum models we will study in the main body of this thesis. There are
plenty of other spin glass models of which some are discussed in [[135]] from a physical point of view and,
rigorously, in [181]]. A discussion of all these models is beyond the scope of this thesis. Nevertheless,
we would like to close this section by presenting a further spin glass model, the Hopfield model, which
in contrast to the models discussed so far did not originate in statistical mechanics. John Hopfield was
interested in modeling neural networks [[105]]. For simplicity, one assumes that a single neuron o; can
only take two states —1 ("passive") and +1 ("active"). Thus, the configuration space of N neurons is
again the Hamming cube Q,;. Each neuron may change its state depending on an input signal r;, which
in turn depends on the total configuration &. One again considers the simplest choice, where r; depends

linearly on all other neuron states, i.e.,

The additional factor o; is present to favor the current states. So far, the situation looks similar to the
SK model. The difference comes with the choice of the couplings g; ; which are chosen according to
Hebb’s rule [[102f]. The idea is that the network functions as an autoassociative memory and tries to pull
the current state to one of M states 7!, ...7™ € Q ~» Which have been saved so far. The saved states are
typically assumed to be drawn from the uniform distribution on Q y;, independently from each other. The

interactions are consequently given by

The network’s dynamics is a continuous-time Markov chain where each neuron o,(f) changes to a new
value +1 with rates proportional to exp(+pr;) for some f > 0. From the machine learning perspective,
one is mainly interested in the case where M = a N and the question of the network’s capacity arises. The
capacity «, is defined as the maximal value a for which the network remembers its saved patterns, i.e.,
if one starts close to a configuration 7% the Markov chain should be attracted by this particular state z*.
Numerical experiments suggest that «, =~ 0.14 [[105]]. Spin glass physics can enhance our understanding
on this result, as the steady state of the update rule is given by the Gibbs measure at inverse temperature
p of the corresponding Hopfield Hamiltonian

M

— k_k
Uyp(o) = — Z T, 7;0,0;.
k=11<i,j<N

Note that the special case M = 1 and 7! = (1,..., 1) correspond to the Curie-Weil model. To put it in
other words, one can think of the Hopfield model as sum of translated Curie-Weil3 potentials. Rigorous
results on the Hopfield model for small a can be found in [[181]]. A complete picture for higher values of

a is still lacking.
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1.2 Quantum Statistical Physics and Quantum Spin Glasses

1.2.1 Some Concepts from Quantum Mechanics and Quantum Statistics

Before specifying the quantum models of interest, let us first introduce the general notions from quantum
statistical physics which will be used throughout this thesis. We can only give a brief overview here and for
a comprehensive discussion of quantum mechanics and quantum statistical physics from a mathematical
point of view, we refer to standard textbooks [[159}/163}/167,/183|].

In contrast to classical statistical mechanics, the systems state is not simply a point in the configuration
space, but rather a vector y in a Hilbert space . We will often call such an y € H a wavefunction. In

our situation, the N-particle Hilbert space H y will coincide with the 2V -dimensional vector space
Hy =£*Qyp) :={w: Qy = C}, (1.10)

the vector space of complex valued functions on Q5 endowed with the scalar product

(v, @) := ) #(6)p(0) (1.11)

for y,p € £*(Q) and the canonical norm |ly|| := (y, w)!/2. As one can read off from (I.10) and
(1.11), we use the physics convention that the scalar product is antilinear in the first component and linear
in the second one. An orthonormal basis of #2(Q ) — a collection of orthogonal, norm one vectors
spanning the Hilbert space £2(Q ) — is given by the canonical basis |6) (sometimes also denoted by &),

lo)(6") = 6, -

The notation already suggests that one may think of |6') as the quantum state corresponding to the classical

spin configuration o.

The observables, the physical quantities that can be measured in a laboratory, are now given by self-
adjoint linear operators on H. A self-adjoint operator A: H — H is a densely defined, closed linear
operator with A = A*, where we denote by A* the adjoint operator. In the finite-dimensional setup we
mainly consider, one can think of a linear operator A as a Hermitian square matrix with matrix elements

A; ; = (e;, Ae;) with respect to a certain orthonormal basis (e;);<;<,-

At this point, we want to recall Dirac’s bra-ket notation which we will frequently use in the following.
One denotes for some y € H by |y) the vector y itself and (y| is a short-hand notation for the linear

functional /,, € H*,

1,(@) = (v, ).

The bra-ket notation foots on the fact that the dual space H*, the complex vector space of all linear
maps from H to C, is anti-unitarily equivalent to the original Hilbert space H by Riesz’ representation

theorem [[159]. Then, one may write
(plAly) = (o, Ay)
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for the @ — w matrix elements of the observable A. The bra-ket notation is particularly convenient to
denote the orthogonal projection |y ){y| to a (normalized) wavefunction y € H. More precisely, |y ){w|

is the self-adjoint rank-one operator

ly ) wl(@) = (v, o)y,

forp € H.

As commonly known, a self-adjoint operator on a d-dimensional space can be unitarily diagonalized by
the spectral theorem. In other words, each self-adjoint operator A = A* acting on a d-dimensional space
H possesses an orthonormal basis (y;) ;= .4 of eigenvectors, i.e., Ay; = A;y; with the real eigenvalues
(4;)j=1,...a of A. Using the bra-ket notation, the spectral decomposition can be compactly written as

d
A= Z /1j|ll/j><ll/j|-
j=1

The spectral theorem gives rise to the functional calculus, i.e., for any complex-valued function f : R —
C we may define the operator f(A) via

d
FA) = FOD I ;.
Jj=1

If our system is found in the state ¢ € H, the probability that the observable takes the simple eigenvalue
A4; is given by [y, ®)|?, equipping the spectral decomposition with a physical meaning. This corre-
spondence has become known under the name Born’s rule and reflects the intrinsic probabilistic nature
of quantum physics. In contrast, if a classical system is found at a specific point in the configuration
space, all observables take a deterministic value. In the case that the configuration space is Q, and
the corresponding Hilbert space £2(Q ), we assign to a classical observable V : Q — R a quantum
observable,

V=) V(o) lo)ol, (1.12)

which with a slight abuse of notation is denoted again by V. The correspondence (1.12)) will be mostly

used to associate to a classical spin glass potentials U a corresponding random diagonal operator.

As in classical statistical mechanics, the physics is governed by a Hamiltonian H describing the sys-
tem’s energy. As observable, the Hamiltonian is a self-adjoint operator on H and the time evolution of a

wavefunction y is described by the Schrodinger equation (in natural units)
oy, = —iHy,, (1.13)

where y, : R — H describes the state of the system at times ¢ € R. If H is time-independent, the unique
solution of (I.13) is given by y, = U,y with

. —itH
U, i=e "

10
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The family (U,),cg forms a strongly continuous group of unitaries and is reminiscent of Stone’s theorem
[159]. The eigenvectors of a Hamiltonian will often be called eigenfunctions, eigenstates or just states
and the eigenvalues are often titled as state energies or just energies. Of particular importance is the state

with the lowest energy, the ground state.

We will mostly consider random Hamiltonians H  on £2(Q ), which shall model a quantum spin glass.
One can think of H ,, as random matrix and as in the classical situation, we will mostly forget about the
underlying probability space. The time evolution of spin glasses is an interesting and challenging feat,
but the main aim of this thesis is to gain insight into the equilibrium thermodynamics of quantum spin
glasses. To this end, we need to adapt the notions for classical canonical ensembles to the quantum world.

For a Hamiltonian H y on £%(Q ), we define the partition function as

Zy(B) i=Tre Py = Z(a|e'ﬂHN|0'), (1.14)

where Tr denotes the trace of a matrix and, accordingly, we set the quantum pressure

@ (B) =1nZy(P). (1.15)

(T.14) and (I.15)) coincide with the corresponding classical definitions (I.1]) and (I.2)) if the Hamiltonian
H  is classical, i.e., diagonal in the configuration basis |6). The pressure is again a random variable for
disordered models; and it is convex and typically positive. The limit of the specific pressure will be again
denoted by p(f). If the Hamiltonian H »; depends on other parameters, say @, we often write Z  (f, @) to

make the dependence on the additional parameters present.

The thermodynamics of a model is encoded in the pressure @, and, thus, one of our main goals will be
to understand how @ 5, behaves for large N. We recall that the evaluation of the trace does not depend on

the chosen basis and, hence, if (E;);—; o~ denote the energies of H y (including multiplicities), one has

Zypy =) e ",

J

Consequently, pressure and partition function only depend on the spectrum of H », which makes the
importance of a spectral analysis apparent. However, if one wants to understand the system’s state and
thermal averages of other observables, the eigenfunctions of Hp also play a major role. The quantum
analog of the classical Gibbs measure u 5 1s the Gibbs state pg, which is a density matrix on £%(Q N)- We
recall that a density matrix p on a Hilbert space H is a self-adjoint, positive semi-definite operator with

trace one. The Gibbs state is defined as
e_ﬁ HN
Pg -

T Zypy
generalizing (T.3). The thermal average of an observable A is denoted by (A), and defined as

(A)p :=Tr (pgA).

We stress that for disordered systems the Gibbs state is a random density matrix. As for classical
spin glasses, replicas form an important concept. The product space becomes the k-fold tensor prod-
uct KZ(QN) R - ® fz(QN) equipped with the density matrix p?k =pp® - ® py

11
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1.2.2 Quantum Spin Glass Models

After these preliminaries on quantum mechanics and quantum statistical physics, we turn to the descrip-
tion of quantum spin glass models. The Hamiltonians H 5 of interest are constructed in terms of spin—%

operators. At this point, it is instructive to note that
QN =C*® - ®C? (1.16)

that is, the Hilbert space £%(Qy) is isomorphic to the N-fold tensor product of C2. To put it in other
words, we can think of the N -particle Hilbert space as consisting of N qubits, similarly as in the classical

world where we considered N classical bits. On C2, the Pauli matrices or spin-% operators are

01 0 —i 1 0
S = , SV = , S* = , (1.17)
1 0 i 0 0 -1

which are all Hermitian matrices with —1 and 1 as eigenvalues. Moreover, they satisfy the canonical

commutator relations
[S°.8“1=2i ) &,,,5"

U=x,y.z
forv, w € {x,y,z}. Here, [A, B] := AB— BA denotes the commutator of two linear operators and ¢, ,, ,
is the Levi-Civita symbol, which vanishes if v, w, u is not a permutation of x, y, z and otherwise agrees
with the sign of the permutation mapping x, y, z to v, w, u in this order. In physics, the spin—% operators
are defined as %-multiple of the Pauli matrices from (I.17)), but we defer from this convention here. We
now make use of (I.16) to define for v € {x,y,z} and j = 1,... N the corresponding spin operator SJ.”
acting on the j-th qubit,
SJ'.’ = 19U-D RS'® 1®WN=j)

with the identity operator 1.

Let us now eventually consider some concrete examples for quantum spin glass models. As we have
already discussed in the classical setting, short-range spin glasses are not feasible. Consequently, we
will only consider mean-field quantum spin glasses. To motivate the first model, we first note that the
configuration bases |6) diagonalizes all spin-z operators Sf, namely Sjtzlo') = 0,|o). This allows us to

write the classical SK potential from (I.3) (interpreted as diagonal operator) as

1
Usg = —— Z g, S7S?.

\/N 1<i<j<N

A very natural instinct is now to replace the commuting interaction terms Sisz:z by Heisenberg-type

1 2 2 1
HHSK,N = Z gi,jSi . Sj = Z 8i,j Z SIUSJI.}. (1.18)
VN 1<i<j<N VN i<i<jsN  v=xyz

The Hamiltonian in (I.18)) gives rise to the Heisenberg-Sherrington-Kirkpatrick (HSK) model. Unfortu-

interactions

nately, a rigorous analysis of the HSK model appears to be not achievable with the currently available
methods. So far, there exists not even an argument which shows the existence of the limiting specific pres-

sure. A main obstacle is that the interpolation technique, which was employed by Guerra and Toninelli

12



QUANTUM STATISTICAL PHYSICS AND QUANTUM SPIN GLASSES

to establish the limit in the SK model [[100], loses its power if applied to models with quantum interac-
tions. Another challenge — which will be also present in the transversal field models to be discussed next
— one has to face is the sparsity of the random matrix Hygk y. Indeed, the HSK Hamiltonian is vastly
different from prominent ensembles, such as the Gaussian Unitary Ensemble (GUE), intensely studied in
random matrix theory. As a result, the canonical methods of random matrix theory, for example the mo-
ment method, only reveal the properties of the bulk, consisting of eigenvalues which grow like \/ﬁ [72].
However, spin glass features can only be understood if one has got some information about the extensive
eigenvalues growing linearly in N. Even from the physical side, the HSK is not well understood and its
analysis is based on numerical computations or not reliable approximations [92,/93}162]]. The study of
quantum spin glasses which contain "real" quantum interactions might be a rewarding research area in

the future.

Our main focus are transversal field models with Hamiltonians of the form
Hy=U+IT (1.19)

with a classical spin glass potential U, e.g. the REM potential Uggy,, @ nonnegative constant I" > 0,

which can be interpreted as the strength of the transversal magnetic field, and the operator
N
— x
T := Z}Sj, (1.20)
J:

being the negative sum of the spin-x operators. The operator T' from (I.20) agrees up to a sign with the
adjacency matrix of the Hamming cube endowed with the Hamming distance d(6,6”') := % Z,]L lo,—o’]

as graph distance and its action on a wavefunction y € #%(Q ) can be alternatively written as

Tw)e)=— ), wi.

o' :d(c,6')=1

In Section[2.2] we discuss the spectral properties of 7' and we will see that T" gives rise to a probabilistic
representation of the quantum pressure in terms of Poissonian paths. The path-integral representation is
one reason why transversal field models are more approachable than quantum spin glasses with quantum
interactions. Another reason is that the randomness is restricted to the diagonal of the operator, such
that one can separate the glass behavior from the paramagnetic perturbation T" to some degree by means
of matrix analytic methods. Moreover, some classical strategies such as Gaussian interpolation can be

adapted to transversal field models.

In spite of being simpler than the HSK model, transversal field models display a rich physics which
is only partly understood. One not only expects a glass transition even for f = 0, but also ergodic behavior
for high temperatures and strong enough transversal fields. It is anticipated that ergodicity is carried by
quantum tunneling. On the other hand, quantum spin glasses in there glass phase might serve as important
models for many-body localization [175]]. Let us take as an example the arguably physically most influ-
ential quantum spin glass, the Quantum Sherrington-Kirkpatrick (QSK) model. The QSK Hamiltonian
is the random matrix H y from (I.19) with U = Ugg. While for the classical SK models one knows that
the glass transition occurs at f = 1, and also in presence of a vertical field there is an analytic prediction

for the transition in form of the de Almeida-Thouless line [57], such a closed expression for the phase
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separation line in the QSK model has not been found yet [175]]. Indeed, most prediction on the QSK are
based on numerics, which can only be performed for small particle numbers N since the dimension of
the Hilbert space grows exponentially. Also, analytic work is typically based on approximations, which
may not be valid as has been shown in [126]]. Thus, one has to be careful with the interpretation of the
results in the physics literature (in particular concerning more subtle properties such as ergodicity), and
a mathematical study of the QSK is very much required. What we know so far about the QSK is rather
limited and will be presented in Chapter 5]

In the case of the Quantum Hopfield model, one knows even less. Some physical predictions are collected
in [[175]. On the rigorous side, the only result we know about concerns the @ — 0-limit [[165]]. It has been

shown that the pressure satisfies for small & > 0,
ON(p,T, M =aN)-Dy(p,T,M =1)=0@?),

where here and in the rest of this thesis O, o stand for Landau’s O-notation, see e.g. [[144], Chapter 3.2.1].
That is, the Quantum Hopfield model resembles for small pattern number M the Curie-Weil3 model in a
transverse field.

The situation improves if one considers simpler quantum spin glasses such as the Quantum Random
Energy Model (QREM) with U = Uggy, or, more generally, hierarchical quantum spin glasses with a
GREM (or CREM) Gaussian process. The QREM has been studied actively since the 1990s [[23L95L|110,
1111/124]] and many precise prediction on the thermodynamics have been figured out. We will discuss
the literature on the QREM in more detail in Section [3.5] However, there is barely any rigorous work
and one aim of this thesis is to fill this gap. In Chapter 2 and [3|- based on our articles [128][129][132]
— we confirm Goldschmidt’s formula for the specific pressure [95] and give a precise description of the
low energy spectrum. Since the QREM is probably the simplest quantum spin glass, ergodic properties
are most likely to be formally established in the QREM. We hope to stimulate further research in this
direction. Surprisingly, more general hierarchical quantum spin glasses have not been considered yet in
the physics literature despite the popularity of Derrida’s models in the classical setting. In that sense, the
phase diagrams, that we have derived in [[130,/131] and which will be presented in Chapter@ contribute
to the physics literature. Our results show multiple phase transition and clarify the different behavior of
a transversal and a longitudinal field. We hope that these work shed some light on the nature of quantum

spin glasses.

1.2.3 Applications of Quantum Spin Glasses

We want to close this section by providing two motivating applications of quantum spin glasses. The first
example lies in the field of quantum computing and our second application is motivated by mathematical

biology, and has been already announced in the discussion of the REM.

The Quantum Adiabatic Algorithm and Spin Glasses

Quantum computers are built of qubits, i.e. spin—% particles, instead of classical 0— 1-bits and the classical
Boolean gates are replaced by unitary gates. By exploiting the fundamental quantum principles such
as superposition and entanglement, quantum computers may outperform classical devices by far. The

probably most famous quantum algorithms, which speed up their classical counterparts, are Grover’s
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and Shor’s algorithm (see [144]] and the references therein). The Grover search algorithm only needs
O (\/ﬁ ) operations to find a specific element in an unstructured array of length N. Shor’s algorithm
challenges classical cryptography as it allows to find the prime factors of an integer in polynomial time.
These exciting results made quantum computing a very active and fast developing area of research. Even
leading tech companies invest in quantum computing research since they hope that quantum devices will
turn to a profitable technology in the 21st century. However, there has not been found an efficient quantum
algorithm for NP-complete problems; and future will show if a realization of quantum computers with a
large number of qubit will eventually succeed.

We are here interested in the Quantum Adiabatic Algorithm (QAA), which might be implemented on
quantum computers in the future [24]. Suppose, we are given a complicated Hamiltonian H, on a finite-
dimensional Hilbert space H and we are interested in the ground state y and ground state energy Egg of
H,,. The basic idea of QAA is to consider first another simpler Hamiltonian H; whose ground state ¢ is
easy to prepare. We now slowly interpolate between H,, and H, that is, we consider the time-dependent

Hamiltonian
t t
H(t =<1——>H +LH
(0= (1) Hy+5Hy

for t € [0, T'] which agrees with H at the beginning and ends up at H,,. The corresponding Schrddinger

evolution is given by
d

—0,=~iH (D), (1.21)
Starting with the initial condition ¢, = @ one might hope that, if the final time T is chosen large enough
or, equivalently, the Hamiltonian H (¢) changes slowly enough, the final state ¢ under the propagation
of resembles the sought after ground state y of H. This intuition is made precise by the Quantum

Adiabatic Theorem of which several versions exist. Let us present one of them.

Theorem 1.1 (Theorem 3 and Theorem 4 in [109])

Let T > 0 and H, and H, be as above with unique ground states y and @. Let us further denote
by A(¢) the spectral gap of H(t), that is, the difference between ground state energy and first excited
energy of H(t) and we set

A= inf AQ®),
i 20

which in fact does not depend on T. Then,

c(I[Hpll + IIH, D
TA?

Korw)> > 1 - , (1.22)

with the operator norm || - || and some constant ¢ > 0.

An important application of QAA are classical NP-hard combinatorial optimization problems such as the
Travelling Salesman problem or the Max-Cut problem on a graph. These problems can be encoded in a
potential U on Q by relating each configuration o to a possible path or, respectively, cut of the graph.
U (o) agrees then with the classical objective function of the optimization problem and the goal is to find
the minimum of U. The simpler Hamiltonian H is typically chosen to be the transversal field T as it
ground state is equally delocalized over the Hamming cube. Thus, studying the performance of QAA at
solving combinatorial optimization problems coincides with the analysis of transversal field models from
(L.19). We note that in this case the ground state is unique for # # T due to the Perron-Frobenius theorem.
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Furthermore, if one wants to understand how well QAA works in general, spin glasses form a well-suited
benchmark as finding the ground state of spin glasses is a generically hard task [24].

The estimate (T.22)) tells us that level-crossing is avoided if one chooses T > A~2. Unfortunately, it is
expected that A is exponentially small in N for most spin glass models and this has been proven for the
QREM [9,/132]. Nevertheless, if one does not ask for an approximation of the ground state itself, but
only for a relative approximation of the ground state energy, a polynomial time 7" might be sufficient.
To clarify this point, one needs a good understanding of quantum spin glasses’ behavior under time
evolution [[24,/110,111,{139].

Mutation-Selection Models and Spin Glasses

We now turn to an application of quantum spin glasses in the context of mutation-selection models in
theoretical population genetics. We follow the exposition [104]. We consider an infinite population
whose individuals are described by their genotype taking a value in {1,..., M'}. Let p;(f) denote the
relative fraction of the genotype i in the total population at time ¢. Of course, Y ; p;(t) = 1. The evolution
of (p;(1));=1.... .m 1s governed by a system of ordinary differential equations (ODE)

%pio) = [R, = RO + Y lm,,0) = my p, O] (1.23)
J

R; is the Malthusian fitness of type i and can be understood as difference between birth and death rate.
The evolution (1.23) favors species of higher fitness reflecting a Darwinistic understanding of genetic
evolution. R(r) = Y, R;p;(1) is the mean fitness at time 7 and m; ; is the mutation rate from j to i. The
ODE (I.23)) can be seen as Master equation for a jump process, which is in general not Markovian due to
the time-dependent factor R(?).

The most prominent genotype space is the Hamming cube Q5 with M = 2V and the values of o, can
be interpreted as two different alleles of a biallelic multilocus model. It is then natural to assume that
only one allele mutates at the same time, that is, m, ,» # 0 only if d(6,6’) < 1. For simplicity we will
assume that the transition rates are all equal to some I' > 0 and, in particular, symmetric. However,
asymmetric models which favor a mutation towards +1 are considered in the literature as well. Note that
then m, , = —I'N for all 6 € Q. Introducing the probability vector p(¢) with components p,(7) for
6 € Qy, the ODE (1.23)) becomes

L () = ~(Hy + RO (1.24)

with the Hamiltonian Hy = —R +I'T +I'l, where R is the diagonal operator with diagonal elements
R(c). Up to the factor R(t), the dynamics is governed by a transversal field Hamiltonian. This correspon-
dence was first noted in [20]] and opens the door to an analysis of gene mutation models with methods
from statistical physics. Moreover, there is biological evidence that the fitness landscape R(c) should be
rugged, that is, it should contain several local minima. As spin glass models are characterized by rugged
energy landscapes, they form a popular and instructive model for R. Up to any identity shift, we end up
with the study of quantum spin glasses. In fact, the relation between the quantum model corresponding
to H and the gene mutation-selection process (I.24)) is even closer since physical properties of H y are

reflected in characteristics of the evolution. Let us demonstrate that idea for the normalized ground state
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y of H,. We first note that the Perron-Frobenius theorem implies that the normalized ground state y is
unique (up to a phase), and y can be chosen to be positive. Moreover, we can explicitly solve (1.23)) in

terms of the semigroup 7'(f) = e~"H~ and the start distribution p,, at time 7 = 0,

T(H)py

)=c— —
Zo',o" TO',o" (t)po"

with the matrix elements 7T;; ;, of T'. For large 7 the exponential matrix T'(¢) is governed by the ground

state of H 5 and, thus, for any start distribution

lim p(t) = v
=00 lwll o1
with the Z!-norm |ly|l,1 := Y, lw(6)|. The normalization with respect to the #'-norm (instead of the

1

7
vl
can be interpreted as equilibrium distribution as it forms a stationary solution of (1.24). We remark that

physically more common #2-norm) amounts to the fact that we consider probability distributions.

the #2-normalized physical ground state v, or more precisely its squared components y (), gives rise
to the ancestral distribution. This biological interpretation of y relies on the ODE (1.23)) underlying
probabilistic description in terms of branching processes. The ancestral distribution can be found by

studying the branching process backwards in time [[104].

1.3 Outline and Main Results of the Thesis

We close the introduction by giving an overview of the forthcoming chapters and the results discussed

therein.

1. Chapter [2] starts with the systematic study of the QREM. In a first preliminary Section [2.1} we
review the thermodynamics of the REM. This allows us to get more familiar with basic concepts
such as the pressure, self-averaging and the replica overlap in this simple setting. Section [2.2]
continues with preparatory considerations on the transversal field T'. For the reader’s convenience
we collect some simple facts on the eigenstates of T' and take the chance to introduce the path-
integral framework, which will be used in forthcoming sections several times. In Section [2.3]
the QREM Hamiltonian is considered. We present the surprisingly simple Goldschmidt formula
for the specific pressure, which tells us that the QREM behaves either as the classical REM or
as pure quantum paramagnet. We sketch our proof from Core Article I [128]] and present next
our result from Article V [129]], which draws a connection between the QREM and the quantum
p-spin models. The final Section [2.4] deals with our Article VII [88]], where we consider the large
deviations of path observables in the REM. After giving an overview on trajectory thermodynamics,
it becomes apparent that the path integral representation implies that dynamical properties of spin
glasses are in fact closely related to the static thermodynamics of quantum spin glasses. We then
focus on the REM under the all-to-all dynamics. In this situation, we have managed to determine

the rate function of the potential integrated along paths.

2. Chapter[3|continues the study of the QREM. Here, we mainly discuss the results of Article IV [[132],

where we have provided a detailed analysis of the low energy states in the glass phase I' < . and
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in the paramagnetic phase I" > f.. In Section [3.1| we begin with some heuristics. Based on second
order perturbation theory, we obtain a first idea on the (1) ground state energy shift in both phases.
In the following Sections [3.2] and [3.3] we not only confirm these predictions on the ground state
energy, but we will also see that the whole low energy spectrum is governed by a deterministic
shift of the eigenvalues of U or, respectively, I'T. Moreover, the corresponding eigenfunctions are
sharply localized in the glass phase and completely delocalized in the paramagnetic phase. This
establishes a localization-delocalization transition at the edge of the spectrum in high contrast to
the Anderson model on a finite-dimensional lattice. In Section [3.4] we determine the pressure up
to order o(1). As the corresponding proofs a rather long, we are not able to present them in their
entirety, but we still describe some key steps, so that reader gets an idea on how a variety of methods
come into play in the spectral analysis of the QREM. The final Section [3.5]puts our results into the
context of the mathematics and physics literature and discusses further reaching conjectures on
ergodicity and many-body localization in the QREM.

. Chapter 4 is devoted to the study of hierarchical quantum spin glasses. In Section 4.1} we recall

the thermodynamics of the GREM and its continuous cousin, the CREM. In particular, the known
results on the pressure, the extremal statistics and the distribution of the replica overlap are summa-
rized. The following Section @ presents our theorems from Core Article II [[130] on their quantum
version. We give an explicit expression for the pressure in the thermodynamic limit, whose rich
structure is reflected in the corresponding phase diagrams. The main tools for the proof, the peeling
principle and the by now standard Gaussian interpolation, are discussed. We are further interested
in the de Almeida-Thouless (AT) line in quantum models for which we have to consider an ad-
ditional longitudinal field. In Section4.3] we give an overview on replica-symmetry and the AT
transition in the classical SK model. Then, we are prepared to study the quantum AT line in the
QCREM in Section 4.4l We summarize our results from Core Article III [I131]] and in particular
focus on the difference between implementing the vertical field by means of standard z-spin oper-
ators and making use of a hierarchical field. We will see that the first choice causes an increasing
glass phase as the vertical field becomes stronger, whereas the later choice is more physical since

a hierarchical field destabilizes the glass phase.

. Chapter [5|focuses on the Quantum Sherrington-Kirkpatrick model. The classical SK model is the

prime example for a mean-field spin glass and the underlying structure is believed to be universal.
In Section [5.1] we describe the Parisi formula for mixed p-spin potentials. Thereafter, we show
the central ideas which lead to a rigorous proof of the Parisi formula, namely the Aizenman-Sims-
Starr scheme, Guerra’s interpolation bound and Panchenko’s ulltrametricity theorem based on the
Ghirlanda-Guerra identities. After having familiarized ourselves with the emergent hierarchical
replica structure in the SK model, we move on to the quantum SK model. We concentrate on
recently established rigorous results for the QSK: an infinite-dimensional Parisi type formula for the
specific pressure introduced in [3]], and an analysis of the high-temperature phase and the annealed
pressure carried out in [126]. The later work shows the absence of glass order for § < 1. The
complementary result that there is a glass phase for f# > 1 and a weak transversal field has been
established in our Article VI [[125]]. In Section we present the methods which have enabled us
to prove the persistence of the glass phase.



Chapter 2

The Quantum Random Energy Model:
Phase Diagram

In this chapter, we begin with a review of our results on the QREM and trajectory dynamics in the REM by
presenting the main ideas and novel theorems of Core Article I [[128]], Article V [129]] and Article VII [88]].
We will first recall the classical Random Energy Model and present the limit theorems for its pressure and
replica overlap. We close this first section with a discussion of the REM partition function’s fluctuations.
Our second section then focuses on the transversal field T. We collect some common knowledge on its
spectral properties and we further present how the partition function of transversal field models can be
reformulated in terms of path integrals. While we will not make use of the Feynman-Kac representation
in the analysis of the QREM, it is an important method widely used in the physics literature, and it will
reappear in the discussion of trajectory dynamics. The third section is largely a summary of the main
theorem in Core Article I. We discuss Goldschmidt’s formula for the QREM pressure and the resulting
phase diagram. We also give an overview of our proof method. Moreover, we incorporate the main
result of Article V, which shows that the QREM can be considered as limit of quantum p-spin models
- generalizing the well-known fact that the REM is the limit of classical p-spin interactions. The final
section introduces the concept of trajectory thermodynamics, that is, the study of trajectory observables
along a Markov dynamics. We deal with the REM potential integrated along paths and mainly study
its large deviations. We will see that analyzing trajectories of classical spin glasses is closely related to
the study of quantum spin glasses. For instance, the QREM resembles the trajectory thermodynamics of
the REM under a next neighbor random walk. The main findings in Article VII, however, focus on the
all-to-all dynamics where the paths may jump from a configuration to any different configuration with
the same probability. In this situation, we have found an explicit expression for the rate function of the
corresponding large deviation principle.

2.1 The Random Energy Model

As we have mentioned in the introduction, the REM has become important in a variety of fields. How-
ever, we will only discuss the aspects of the REM in context of spin glass theory as we will only make use
of its thermodynamical properties in the forthcoming sections and chapters. Our presentation is largely
based on Chapter 9 in [36]]. The independence of the potential Ugpy(1.8) — which we will simply denote
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by U in this chapter — simplifies the analysis of the REM compared to other spin glass models drastically;
yet the REM phase diagram is nontrivial as it exhibits a glass phase with a nonvanishing order parameter.
We start our review on the REM by discussing its extremal properties. In fact, the extremal properties
of independent processes are well known: after an appropriate rescaling the minimum converges in dis-
tribution to either a Gumbel, Fréchet or Weibull random variable [[122]]. The Gaussian distribution falls

into the Gumbel class and the needed rescaling s, follows from a direct computation,

+ In(NIn2) +In(4z)

sy(x) = —B.N o, ﬂl

The numerical constant §. := 4/21n 2 will appear frequently in the discussion of the REM and QREM as
—p, coincides with the specific ground state energy of the REM in the thermodynamic limit. A precise

characterization of the REM minimum is given by the following proposition.

Proposition 2.1 (Lemma 9.1.1 in [36])
Let U be the REM potential on Q . Then,

P | min U(e) > sy(x)| =(1 - 2~ Ngmxtoll)y _, pme™
(SN

where the o(1) estimate is uniform on any bounded interval. In particular, we have almost surely

and in mean

lim min %U(o) =—f.=—-V2In2.

N—oco0c€Qy

Typically, the analysis of spin glasses becomes more difficult for lower temperatures since replica sym-
metric breaking leads to a more involved distribution of the replica overlap with respect to the Gibbs
measure. In particular, understanding the ground state is a very challenging problem in spin glass mod-
els. Since standard extreme value theory leads to a precise description of the REM minimum, it is not
surprising that the limit of the REM pressure can be computed for all temperatures. To motivate this
classical result on the REM, we recall that the partition function Zy(f) = Yo, ¢V is just the sum
of 2V independent random variables. Hence, it is natural to guess that Z  concentrates around its mean

due to the law of large numbers, i.e.,
1m
Zn(B) ~ ELZy(B)] =2Nex N,

One would conclude that the annealed and quenched specific pressure agree asymptotically:

1 1 1
~EHeNB] ~ - In (ELZyB)]) = 5/32 +In2.

However, one quickly realizes that this calculation cannot be true for all inverse temperatures, as it would
imply an unbounded ground state energy. More precisely, the derivative of the pressure coincides up to a

sign with the internal energy,
d 1 1 ElXge, U@

1 1 .
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So, the maximal slope of the specific pressure is . in the thermodynamic limit, which tells us that an-
nealed and quenched pressure cannot agree for § > f.. The simplicity of the REM is reflected in the fact
that these simple heuristics correctly predict the limit of the specific pressure: annealed and quenched

pressure agree for f < f.; and for § > p. the pressure grows linearly with slope f,:

Theorem 2.2 ( [62,148]], Theorem 9.1.2 in [36])

The specific pressure in the REM converges in mean,

S +In2, ifp<p
B if B> B

lim E[®y(5)] = pru(P) = @

The main challenge in the proof of Theorem [2.2]is the high temperature regime, where one has to verify
that annealed and quenched pressure asymptotically agree. To that end, one may use the second moment
method - a widely used technique in spin glass theory [6,|/181]] to bound the variance of the (truncated)
partition function. The low temperature regime follows by employing convexity and the characterization
of the minimum in Proposition [2.1] [36]. From the limit (2.1)), we can read off a second-order phase
transition at the critical inverse temperature f,, where quenched and annealed pressure start to differ.
We recall that the entropy S of a probability measure u on a discrete space Q is defined as S(u) :=
2 wco —H(@) In(u(w)) > 0 and
Dy (f) = =AU )y + S(ug),

with the Gibbs measure y5(6) := e™#U® / Z () [167]. Consequently, the specific entropy of the REM
vanishes for § > f., that is, the REM undergoes a transition to a completely frozen phase where only
the minimum and a non-extensive number of excited configurations dominate the thermodynamics. That
drastic freezing of the system is very specific to the REM.

Next, we want to embed the REM in the context of spin glass theory. To do so, we note that the order
parameter of the REM transition is in fact Parisi’s functional order parameter, which is omnipresent in the
study of classical spin glasses [[155}/181]]. Let u [I\J/ the measure on [—1, 1] characterizing the mean replica

overlap distribution, that is,

2 ZUG,H N (o-,o-’)e—ﬁ(U(o)+U(a’))
uy(=1.ab :=FE [”Msﬁ? ] =F [ — qu (B . 2.2)
N

The limit of ,u]{’[ can be computed explicitly in the REM:

Proposition 2.3 (Theorem 9.4.1 and Lemma 9.5.1 in [36])

The measure ,u]{’] converges weakly,

P P 50 lfﬂsﬂc
R Y i :
Lo+ (1-L)e irp>»5

with 6, being the point measure at x.
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We see that the Parisi measure undergoes a transition from a pure point measure to a sum of two point
measures at the critical inverse temperature f,, reflecting the glass nature of the REM. One speaks of
an [-step replica symmetric breaking, since the Parisi measure’s support changes from one point to two
points at .. In case of the REM, one can even determine the limit of the random distribution of the
replica overlap, that is, without taking the sample mean in (2.2). The overlap distribution then converges
weakly to a random measure yo; + (1 — y)d,, where the random variable y can be described in terms of
a Ruelle process [36,[152]]. We will discuss this point more generally for the GREM in Section [4.1]

We want to close this section by discussing the fluctuations of the pressure. Theorem [2.2]is formulated as
the convergence of the quenched expectation and it is natural to wonder if the specific pressure converges
almost surely, too. That is indeed true and it is strongly related to the fact that the fluctuations of the
specific pressure %Q) n are much smaller than its expectation and vanish in the limit - which is sometimes
stated as the pressure being self-averaging. The mathematical tool to control fluctuations in Gaussian spin

glass models is the Gaussian concentration inequality:

Theorem 2.4 (Theorem 1.3.4 in [181]))
Let F: RM — R be a Lipschitz function with Lipschitz constant L, and g, ..., g, be independent

standard Gaussian variables. Then

t2
P(F(gy,.-..8ym) —EF(gy,....gx)| = Lt) < 2exp <—Z>

To obtain the explicit constants in the above formulation of the Gaussian concentration inequality, one
employs the Gaussian interpolation method for a proof. An elegant approach, which is only based on the
orthogonal invariance of standard Gaussian variables but yields a slightly weaker estimate, can be found
in [[133}[157]. A simple application of Theorem [2.4]shows that specific pressure in the REM converges to
Prem almost surely and in r-th mean for all € [1, o0). The Gaussian concentration inequality is a very
general results, and can be used to derive useful concentration bounds even in situations where evaluating
the expectation EF(gy, ..., gj,) is not feasible.

The drawback is that Theorem [2.4] does not reveal the exact order of the fluctuations. However, in order
to obtain a full understanding of a model, a precise description of the degree of randomness is crucial. In
the case of the REM the systematic study of its fluctuations originated in [85]] and found its completion
in [41]]. To describe the results in the low temperature phase, we need to recall the definition of a Poisson
point process. A point process on a measurable space (X, &) is a measurable map from some probability
space to the space (N(X), N'(X)) of all measures taking only values in Ny U {+o0}. The sigma-algebra
N(X) is defined to be the smallest sigma-algebra such that the map v — v(B) is measurable for all
B € X. A (o-finite) Poisson process with intensity measure A on (X, &) is a point process # on (X, X)
such that [[120, Definition 3.1]

1. Ais o-finite and for every B € X the random variable #(B) is Poisson distributed with parameter
A(B)

2. For every n € N and pairwise disjoint sets B, ... B, € X the random variables n(B,), ... n(B,) are

independent.

For each o-finite measure A there exists a Poisson point process with intensity measure A and, moreover,

the distribution of the Poisson point process is uniquely determined by A. For a proof of this well-known
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theorem and more details on Poisson processes we refer the reader to [[120]. We will denote by P,
a Poisson point process on R with intensity measure A. We are ready to formulate the results on the
fluctuations in the REM.

Theorem 2.5 ( [41], Theorem 9.2.1 in [36])
The partition function of the REM has the following fluctuations:

1. If p < B./2, then

Nan2-p?) (. _ZnB)
e ln—[EZN(ﬂ) w N(QO,D).

We denote by N (m, v) the distribution of a Gaussian with mean m and variance v.

2. If p=P./2, then
e%(an—ﬂz) In Zn(P)

EZN(B)

3. If B./2 < B < P,, then with the short-hand notation a = f/f.

N(0,1/2).

N a Z 20
e;(ﬂc—ﬂ)2+5[ln(N In2)+In(4m)] In —N(ﬁ) w / eaz(pe—de(dZ) - e_ZdZ).
EZyB® — J-

o0

Here, dx corresponds to the canonical Lebesgue measure on R.

4. If p = p,, then

o3IV In2)+in(4r)] Zy(B) 1  In(NIn2)+ In(4r)
EZy(B) 2 44/ In(Q)N

0 ©
w / e (Py-xyx(dz) — e 2dz) + / e Py (d2).
- 0

o0

5. If p > P, then

1)
e—N [ﬂﬁc]+§ [In(N In2)+In(4x)] ZN(ﬂ) ﬂ / eazpe_de (a’z),

—0o0

and

(o) (o)

NP —E[@ONP)] w ln/ e"*P,4.(dz) —Eln [/

o0 -0

eV P, gy (d z)] .

Let us briefly discuss the fluctuation results of Theorem [2.5] The appearance of an exponential Poisson
point process for low temperatures § > f, may be anticipated. By Theorem we already know that
energies close to the minimum govern the partition function for § > f,, and it is a well known fact that
under mild conditions the order statistics of an independent process is Poissonian. In case of the REM

this reads as
Y, Siwey = Pevas (2.3)

oeQy
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That we have a central limit theorem (CLT) for small g, is not very surprising either, since the partition
function is the sum of 2V independent copies of the random variable e” VNg , where g denotes a standard
Gaussian. Indeed, in the regime f < f,/2 the Lindeberg condition is satisfied. However, a natural
first guess would be to expect a CLT to hold in the full non-glassy phase f§ < f.. Instead, we see an
additional transition at . /2, which is not present in the REM phase diagram. This new transition can be
understood as follows. The fluctuations are essentially ruled by the second moment of Z (). However,
E[Z ]ZV (p)] contains a term which essentially corresponds to the partition function at inverse temperature
2p. Hence, the extremal process becomes already visible at § = f./2. While the fluctuations in both
phases f,/2 < f < f. and § > p, are of Poisson nature, there is still a key difference between the two
regimes. For f,/2 < f < f, the partition function’s fluctuations are exponentially small compared to its

mean EZ » (f), whereas for § > f, the fluctuations are of the same order as Z (f) itself.

2.2 Transversal Field and Path Integral Formalism

We start this section by collecting some generally known spectral properties of T as operator on £2(Q /).

To this end, we recall from (1.20) that we may express T as the negative sum of Pauli-x-matrices,

N N
T=_ZSI_X=_Z]1®...®]1®Sx®]1®...®]1,
i=1 i=1
where S acts on the i-th spin. This representation directly implies that an orthogonal basis consisting
of eigenstates of T is given by product states formed by the eigenvectors |[+) := 1/ \/E(el +e_;)and
|-) =1/ \/E(el —e_p) of §* at each site. Here, e; and e_; form the natural z-eigenstates for one spin.
These product states coincide with the natural orthonormal basis for the Hadamard transformation, which
diagonalizes T', and may be indexed by subsets A C {1,..., N},
1
Y,(6) . =——11]o0;

J
2N jea

Note that all eigenvectors ¥, are maximally uniformly delocalized over the Hamming cube; in drastic

contrast to the eigenstates of U which sit on one site. The eigenvalue corresponding to ¥, is 2|A| — N

with the cardinality |A| of the set A. Consequently, the spectrum of T" consists of N + 1 eigenvalues,

specT ={2n—N|neNy, n< N},
with degeneracy given by the binomials ('Z) . In particular, the unique ground-state of T is ¥ with energy
—N. We stress that the norm of T and U are of the same order, in contrast to previous work concerning
the Anderson model on the Hamming cube with a normalized Laplacian [19]]. Last but not least, the

specific pressure ppar(f) of the operator T' does not depend on N and is given by
Pore(f) i= —InTre T = Lin [(Tr e—ﬁSX)N] — In2 cosh(p)
PAR\P) = 7 N .
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In particular the magnetization in x-direction,

1 TrTe T 4

My = N e = EpPAR(ﬁ) = tanh j, 2.4

grows from O to 1 as f increases.

In the second part of this section, we want to introduce the path integral representation for the partition
function of general transversal field Hamiltonians H = V' + I'T, where V' denotes an arbitrary potential
on the Hamming cube. While we will not make direct use of the path integral formalism in the analysis of
the QREM, it is the most common approach for quantum spin glasses in the physics literature [|175]] and
some rigorous work on the QSK relies on path integrals [3/126]. We will encounter the Feynman-Kac
formula again in Section [2.4] when we study the trajectory dynamics. The key observation is that all

matrix elements of —T" are nonnegative and, thus,
(cle |6’y > 0
forall A > 0 and 6,6’ € Q. We now invoke the Lie-Trotter formula [[159, Theorem VIIL.29],

e PH = lim [e_ﬂV/me_ﬂrT/'"]m.

We can then rewrite the partition functions m-th Trotter approximation,

m—1
p m—1
2 <o.|[e—ﬂV/me—ﬂFT/m]m|o_> — 2 e m Yo Ve H(o.jle—ﬂFT/mlo.j+1>

cEQ)y, 60.01,...6,_1€EQN Jj=0

with 6, = 6. After a normalization, we can interpret the factors (o le=TT/m| 6 ;4+1) as transition prob-
abilities of a Markov chain along which the potential V' is summed. In the m — oo limit the first term
should become a proper integral, the transition probabilities turn to transition rates which agree with the
off-diagonal matrix elements of T', and the Markov chain should turn into a continuous time Markov jump
process. Such a jump process can be interpreted as path on the Hamming cube. This is indeed true and
the resulting identity can be seen as a Feynman-Kac type formula. The original Feynman-Kac formula
deals with Schrodinger operators —A + V on R? and the paths are distributed according to the Wiener

measure [168]]. In our case the path measure is based on independent Poisson processes.

To formulate the Feynman-Kac representation rigorously, we need to introduce some notation. We follow
the construction in [3[]. Let E denote the space of cadlag-paths from [—1, 1]. We work with the Borel
o-algebra on E which is defined with respect to the Skorohod topology [[112]]. Moreover, let ; be N
independent Poisson point processes on [0, 1] with intensity I'fdx. These point processes allow us to
define the random spin paths ¢;,

[0.1]3 15 &0 = ()P e &,

By construction, the functions &;(¢) are cadlag paths with almost surely finitely many jumps at the times

1; which form the support of the Poisson point process 7;. Consequently, the number of jumps in any
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subinterval of length L follows a Poisson distribution with parameter fI"L. We further denote by v the

distribution of &; on 2 and introduce the measure

V(AL (1)=¢,0)

Vo(A) 1=
V(Lg1)=¢,0)
which conditions on closed paths. Finally, we write § = (&, ..., &y ) and for any initial configuration o
we consider o - £(¢) = (0,&,(?), ..., onEn (1)) the corresponding process starting at o. The path integral

representation is then given by the following theorem:

Theorem 2.6 (Corollary B.3 in [[126])
For any potential V on Q ; and positive parameters ,1" > 0 the partition function of the Hamiltonian

H =V +1IT can be reformulated in terms of the path measure v,

Tre™ = (ole|6) = (cosh pD)N /~N dvN ey Vet 2.5)
s =

O'GQN

where the path measure v is constructed as above and depends on pI.

In fact, one can use the path integral formalism to compute all matrix elements (¢ |e~?# |6’} by consider-
ing Poisson jump processes starting at 6 and terminating at ¢’. In [[126]], the path integral formula is even
stated as an operator identity.

The main advantage of the Feynman-Kac representation is that the quantum partition function becomes
a classical object. Indeed, if one interprets the term /01 V(o - £(t)) dt as energy function of a path, we
see that the path integral can be seen as the partition function of this energy functional. In particular,
one deals with commutative expressions and one can apply methods of probability theory to analyze the
path integrals. In contrast, a direct approach to e #H typically requires matrix analysis techniques as one
deals with the noncommuting operators V" and T'. However, the cadlag path space = takes over the role
of the configuration space - an infinite dimensional set compared to the much simpler Hamming cube
Q. Furthermore, if V is itself random as in the case of spin glasses, one has to deal with two probability
measures, one describing the disorder and the second one the path distribution. Perhaps, the most severe
challenge one has to face if one applies the path integral formula to quantum spin glasses, is the fact that
the partition function will typically be dominated by rare paths. That is, one has to understand the large
deviation properties of Poisson jump processes, which is a highly nontrivial task and leads to infinite
dimensional variational problems [126].

2.3 Goldschmidt’s formula and the Phase Diagram

In this section, we start our analysis of the QREM. We recall that the model Hamiltonian Hy = U +I'T
acts on the 2V dimensional Hilbert space #%(Q ) and that the REM potential U = Uggy, is understood
as diagonal operator with respect to the z-basis |6)4¢q  , thatis, Ule) = U(e)|o). We will focus here on
the thermodynamical limit of the pressure

Oy (p.T) :=In Zy(p.T) =InTrePH,
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and defer a more precise analysis of the QREM to the next chapter. Our main result in this section is

Goldschmidt’s formula for the limit of the specific pressure in the QREM:

Theorem 2.7 (Theorem 1 in [128]])

Forany T, f > 0, we have the almost sure convergence as N — oo:

]\}l_fgo %‘DN(/;, )= pQREM(ﬂa ) 1= max{prem(B), Ppar (F1)}- (2.6)

As in the REM, the QREM pressure is self-averaging. This is a direct consequence of the Gaussian
concentration inequality (Theorem [2.4). The computation is presented in [128]] as first remark after The-
orem 1. Therefore, the specific pressure %CI) ~(B,T') converges also in mean to porpm (B, ).
Goldschmidt derived the formula (2.6) using the path integral formalism, we introduced in the last section
[95]. He combined the so-called replica trick with a static approximation of the path-overlap.

As it has already been explained in the introduction, the replica trick is a common non-rigorous method in
spin glass theory. One computes the fractional moments E[Z"] for n — 0 by extrapolating results on the
integer moments. While the replica trick gives rise to correct predictions on spin glasses, a mathematical
justification is yet to be found even in the classical setting - despite numerous efforts.

The static approximation concerns the dominant paths in the path-integral formula. One assumes that the
main contribution to the partition function is due to paths 6(¢) € 2V whose overlap R N(@(0),06(t)) isin
fact a time-independent constant ¢. Then, one maximizes the resulting expression with regard to c.
While Goldschmidt’s approach ultimately leads to the correct formula for the QREM pressure, it is known
that the static approximation is not valid for more involved models such as the QSK [126]. Thus, it is
very important to develop new tools to gain insight to the physics of quantum spin glasses. Our proof of
Goldschmidt’s formula can be seen as first step in this direction, as we make no use of the path integral
representation, but instead we study the QREM Hamiltonian directly via operator theoretic methods. We
will give an overview of our proof strategy and the underlying intuition in the following subsection below.
Let us discuss here the physical consequences of Theorem [2.7] The resulting QREM phase diagram is
presented in Figure[2.3] There are three different phases: a qunatum paramagnetic phase, a classical non-
glass phase and a classical glass-phase. The phase separation line between the classical phases and the
paramagnetic phase is given by the curve prep(f) = ppar(PI) in the § —I' plane. For fixed f, one may

alternatively characterize the transition point by a critical field strength I".(f),
1
Ir.(p) := E arcosh(exp(prpm(8)))-

The critical field strength I".(f) is a monotone increasing function withI".(0) = 1,I'.(f,) = ﬂc_l arcosh(2)
and limg_, I'.(8) = .. The latter reveals a quantum phase transition at I' = .. Recalling that the
specific ground state energy of the REM is given by —f,, the ground state transition occurs at the field
strength I where the specific ground state energies of U and I'T agree.

For fixed f, the QREM is in the quantum paramagnetic phase if I" > I'.(f) and in one of REM phases
if I' < I'.(B). As for I' > I' .(f) the QREM pressure coincides with the paramagnetic one, we observe a
magnetization m, = tanh(fI") > 0 (see also (2.4)). Whereas, for I' < I',(f) the pressure does not depend
on I'" and, thus, m, = 0. In particular the magnetization m, is discontinuous at I', which reflects a first-

order magnetic phase transition. For I' < I'.(f), the QREM pressure porpm(8, I) agrees with prpy(8),
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"Unfrozen" REM Quantum Paramagnet
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Glass transition

I*! order transition at T ()
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Figure 2.1: Phase diagram of the QREM as a function of the transversal magnetic field I" and the temper-
ature f~! [95//128]]. The first-order transition occurs for fixed f at I'.(p). The freezing transition is found
at the temperature ﬂc_l , which is unchanged in the presence of a magnetic field with strength I' < I',(f).

which implies that we still find the glass transition at § = f,. The glass phase is again characterized by a
vanishing specific entropy.

To sum up the discussion, the QREM behaves as if the Hamiltonian was either just the REM potential U
or a pure paramagnet I'T. Indeed, the thermal averages N~'(T") sr and N L) s.r tend to zero in the
classical phase and, respectively, in the paramagnetic phase. That U and T appear to avoid each other,

forms our main intuition for the proof of Theorem [2.7]

2.3.1 A Glimpse of the Proof

We have seen that Goldschmidt’s formula suggests a picture of the QREM where T and U do not interact
with each other, almost as if H = T @ U. Of course, that cannot be quite true. However, this can
still be seen as guiding idea for our proof. The underlying mathematical foundation for decomposing the
QREM Hamiltonian into an almost direct sum, is the fact that the REM deep holes are typically separated
from each other. If ¢ is a configuration with energy U(6) = —a N, then the configurations ¢’ close to
o will typically have an energy U (o) = O( W ). As we have seen, the eigenstates of T' are completely
delocalized and, thus, the low energy eigenfunctions, which form an exponentially small fraction of the
set of eigenstates, cannot localize enough to detect the very isolated deep holes of the REM.

After these heuristics, we want to be more precise. We prove Theorem[2.7]by providing an asymptotically
sharp lower and upper bound. The lower bound is based on Gibbs’ variational principle, which we state
here for completeness:

28



GOLDSCHMIDT’S FORMULA AND THE PHASE DIAGRAM

Proposition 2.8 (Theorem 2.13 in [47])

Let H be a symmetric matrix on C". Then,

InTr e = sup [Tr (pH) — Tr pIn(p)],
PED,

where D, := {p € C"™" | p > 0, Tr p = 1} denotes the set of all density matrices on C". The unique

maximizer is the Gibbs state p = et /Tr el

Based on the broad picture that 7" and U do not interlace, it is natural to apply Gibbs’ variational principle
with the unperturbed trial states p;; = eV /Tre PV and p; = e 7 /Tr e 'T. Indeed, this is enough
to establish

|
11]{]11_}?0f FCDN(ﬂ, D) 2 porem(B.T)

almost surely (see Lemma 1 in [[128]]). Establishing the upper bound, is the more difficult part of the

proof. To this end, we introduce for any £ > O the large deviation set
L ={c€Qy|U)L—-eN},

and we want to show that £_ does not percolate. It is convenient to introduce the notion of gap-connectedness.

We say that 6,6’ are gap-connected if d(e,6') < 2, where d denotes the Hamming distance

N

1
d(c,0') := 5 PRLETAL
i=1

Then, we may decompose £, into maximal gap-connected components C,, that is, £, = Uc ec Ce

where C, is the collection of the maximal gap-connected sets.

We stress that £, is arandom set and, hence, C, depends on the disorder. Making use of the independence

of U and some simple combinatorics, we show that there exist some K = K(¢) such that

P <max |C.| > K> <e N
C.eC,

(3 (3

for some ¢ = c(¢) and all N large enough [128, Lemma 2]. Therefore, if we denote by €2, 5 the event
where max¢ ¢, |C,| < K holds true, we may restrict our analysis to this family of sets. The almost sure
convergence is guaranteed by the Borel-Cantelli lemma [[112, Theorem 4.18].

The next step consists in separating the large deviation set £, from the rest of the Hamming cube. To this
end, we introduce the operator A, which describes the hopping of configurations ¢ € £, and can be seen
as the restriction of T' to £, with Neumann boundary conditions. More precisely, (¢|A,|6") = (¢|T|6")
ife € L, ore’ € L, and all other matrix elements are set to zero. The definition of gap-connectedness
was designed in such a way that A, is a direct sum of operators A which correspond to the maximal

components C,. Combined with a Frobenius norm estimate, we arrive at
lAll < max V2N|C,| £ V2KN,
Ee (3
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that is an O(4/ N) upper bound for the operator norm of A, [[128, Lemma 3]. This suggests that we can
"delete" A, without changing the pressure in leading order. This can be made rigorous by invoking the

Golden-Thompson inequality, which we recall next.

Proposition 2.9 (Corollary IX.3.6 in [28]])

For any Hermitian matrices A, B on C", we have

Tr eA*B < Tr edeB.

We are now ready to put the pieces together. If we denote by U and U . the restriction of U to L, and

its complement, the Golden-Thompson inequality yields

Z(B,T) <Tr e—/}UQ@(Uag +[(T-A,)) o PTA
< T (Tr s PV + PN T ﬂ(ﬁc)e—ﬂr@_m)

< PTVIRN (o2 (0 4 oPeN oNprsni(PD))

For the first line we note that indeed after subtracting A, the operator U ;. +I'(T — A, ) only acts nontrivially
on the subspace 7 2([12 ) — which explains the direct sum. The next stepi consists of the simple inequality
Tr BD < || D||Tr B for positive matrices B, D and we use the lower bound U, > —¢N to estimate the
second term. The last line makes use of the trivial bound Tr ,2 tg)e_ﬂ Uee < ed;N (8.0) and of the fact that
all matrix elements of —fT are positive and thus the subtraction by A, decreases the trace. In total, if we

take the N — oo limit and recall that € > 0 was arbitrary, we obtain the matching upper bound

. 1
lim sup W@N('B’ ') < porem(B, D).

N—-oo

More details can be found in [128]].

2.3.2 The QREM as p-spin limit

Derrida’ s original motivation to introduce the REM stems from the following observation. The p-spin
potential U, (see also (L.7)),

1

VN 2 i %%,
isip,. i

with i.i.d standard normal variables g; ;

Up(a) =

i, forms a centered Gaussian process on the Hamming cube
with covariance matrix E[U,(6)U,(6")] = NRy(c,6’)?. In the p — oo limit, the covariance formally

converges to N6, if we ignore the little subtlety at the pairs 6/ = —6. That is of course the REM

6,0

potential since centered Gaussians are uniquely characterized by their covariance function.
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While these heuristic considerations draw a connection between the REM and p-spin models, their relation
is in fact closer. Namely, in case of the pressure one can exchange the thermodynamic limit N — oo and

the p — oo limit. Indeed, if we introduce the limiting pressure f,,

fp(B) = ]\171_1)1100 N7'E [ln Z e'ﬂUﬂ(")]
c€Qy

- which indeed exists due to Panchenko’s version of the Parisi formula for mixed p-spin models [[153]] -
we have lim,_, , f,(#) = prgm- This result is well-known in the spin glass literature [36.|181]], however
its proof is typically omitted.

For this reason, we present the short argument here. We first invoke a maximal inequality [35, The-
orem 2.5], which shows that for all Gaussian processes with bounded variance N on Q,, we have
EminaeQN U(e) = —p.N. In particular we conclude that the right derivative 6, f,(f) < f, is uni-
formly bounded by f,.. The second ingredient is that an application of the second moment method yields

that annealed and quenched pressure agree in an enlarging interval if p increases. Indeed,

fB) =58 forp < p(l-c,).

where ¢, is a sequence converging to zero as p — oo [36, Theorem 11.2.7]. A standard convexity argument
then implies lim,,_, , f,(B) = Prem-
We would like to extend this result to quantum p-spin models and the QREM. Here, we face three major

obstacles. First, the quantum analog of f,
T -1 —BU,+TT)
f(B.T) := ]\}I_I)I(IDN E [In Tr e #UrHD)]

is unfortunately not known to exist for p > 3. However, we expect that the methods presented in [3] for
the QSK can be extended to general mixed p-spin models. This would immediately imply the existence
of f,(B,I'). Secondly, even though annealed and quenched pressure agree for low temperatures in the
quantum setting [[126], the corresponding expression for the annealed pressure is involved and its limit
will depend on p. Eventually, and perhaps most importantly, Gaussian comparison fails in the quantum
setting. While for classical spin glasses, Slepian’s lemma [179, Proposition 1.3.3] shows that the pressure
is a monotone decreasing function of the potential’s correlation (if its variance remains fixed), there is no
analogous result for quantum spin glasses.

In [129]], we avoided tackling these obstacles by considering a closely related problem. Instead of ex-
changing the p - o0 and N — oo limits, we deal with a coupled limit, where p = p(NN) grows as

function of N.

Theorem 2.10 (Theorem 2.2 in [[129]])

Let p(N) be a sequence of natural numbers which satisfies a superlogarithmic growth condition, i.e.,

p(N) _
1m = o0
N—o0 ln(N)
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For any p,I" > 0, we have the almost sure convergence

li !

1 _
Nim @y (A1) = lim = In (Tr e ™) = poppy, (8, 1.

While our theorem does not justify the exchange of the p - o0 and N — oo limits in the quantum
case, it still yields a profound justification to consider the QREM as limit of quantum p-spin models.
Note that the growth assumption on p(/N) is comparatively mild. The superlogarithmic condition is a
consequence of our proof technique which is essentially an adaption of the proof of Theorem The
main new challenge is of probabilistic nature: we need to control the diameter of the large deviation set’s
components. In the QREM it was fairly easy to show that the connected components are of size O(1).
Under the superlogarithmic growth condition, we show that the size is bounded by o(N) - which is good
enough to derive Theorem Establishing the o(N) estimate for the components’ diameter requires
some geometrical and combinatorial considerations and some estimates on correlated Gaussians. The

details are executed in the proofs of Proposition 3.1 and Lemma 3.2 in [[129].

2.4 Trajectory Phase Transitions in the REM

If one seeks for an understanding of a model’s thermodynamical properties, one usually considers the
partition function or, respectively, the pressure. The pressure encodes several thermodynamical quantities
such as the internal energy, entropy and magnetization; and a study of the pressure reveals the nature of
the Gibbs measure. While an analysis of the pressure allows one to determine the static equilibrium
characteristics of a model, the pressure does not depict the dynamical thermodynamics of trajectories.
Dynamical phase transitions, however, are of relevance in the study of spin glasses as they reflect changes
in the activity of the glass and, hence, allow a dynamical characterization of glass phases [87}/134].
In [88]], we consider the trajectory dynamics of the REM. We will see shortly that studying trajectories
in classical spin glasses is closely related to the static equilibrium analysis of spin glasses in a transversal

field, providing another promising application of quantum spin glass models.

As the thermodynamics of trajectories is not as commonly studied as the static equilibrium thermody-
namics, we will briefly introduce the main concepts. We consider a continuous-time Markov chain on the
Hamming cube Q 5, with trajectories & : [0, 0) = Q. Such a Markov process is uniquely characterized
by its generator on £2(Q ) [112],

W= Y welt)el— Y rile)al,

6,7€0 N . 0£T c€Qy

with escape rates ry = Y, W,_,, and transition rates w,_,, > 0. If the trajectory & is located at some

c—T
o, the waiting time for the next time jump follows an exponential distribution with parameter r,, that is
the waiting time is a random variable with probability distribution r e™"* on [0, c0). When the waiting
time has passed, & jumps from o to T with probability w,_,, /r,. This interpretation of the jump process

is fully contained in the master equation

o/lp:) = Wlp,),
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where W is understood as an operator on #'(Q ) and |p,) describes the probability distribution of & at
time 7, i.e., p,(6) = (6|p,) > 0 and ZGEQN p, (o) = 1.

We will only consider the situation where w =w such that W is a symmetric matrix. The rates

c—T T—0

r, are typically chosen to be extensive in the particle number N. The most relevant examples for us are

the generator of the simple random walk, i.e., w,_,, = 1 if 6 and 7 are neighbors,

Wew= D, le)el=N ) lo)el=-T-N1,

0.7€0Qy.d(0,7)=1 c€Qy

and the all-to-all dynamics, where the path jumps to any other configuration with equal probability,

NQ@2N -1
Wa=2e Y Ieel- 2 Y le)el = NI - 1)

6,7€Q y 04T c€Qy

Our main aim is then to study trajectory observables, which are typically quantities integrated along the

path &. In our case, we consider the energy integrated along the curve,

t
Ul¢] Z=/0 U@E(s) ds,

fort > 0 and we want to gain insight into the distribution of U,[£] with respect to the trajectory probability
I]ﬁ’t. Here, the probability [Iﬁ’t takes only the randomness of the Markov process into account, not the
disorder arising from U. Hence, P, is a random measure if U is random. We will always assume that the
trajectories start with the uniform distribution at t = 0. In [[88]], we have focused on the situation where
U is the REM potential.

Of course, by the central limit theorem the typical value of U,[£] is close to zero. So, our main purpose
is to get good estimates for the probability of rare events of the form I]fbt(U, [£] ~ aN). That is, we study
the large deviations of trajectory observables under an unbiased dynamics - W does not depend on U'!
At first sight these trajectory dynamics appear to be related to the analysis of Glauber dynamics in the
context of aging and metastability [25,26,49.[91]]. However, we stress that the Glauber process is a biased
dynamics as it depends on U and one considers under this biased Markov chain the typical events, not

the rare ones.

Coming back to the analysis of [P, we introduce the moment generating function

M(t, 1) = / e MUEIP (dg),

which is typically denoted by Z in the physics literature, but we have chosen here a different notation to
avoid confusion. M(#, 1) takes the role of the partition function for trajectory ensembles and, similarly,

the specific pressure is substituted by the scaled cumulant generating function (SCGF),

On(t,A) = % InM(z, A).
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In order to approach the moment generating function via operator methods, we reexpress M(#, A) as matrix
element. Note that W generates a positive semigroup and, thus, a similar approach as presented in Section

2.2 yields a path-integral formula also in this case. The result is

M@, ) =27N N (ol ™) = (Pyle™ ),

0.7€0 N

with the tilted generator W, = W —AU. We note that in the case of W = W4y, the tilted generator is up to
a identity shift a rescaled QREM Hamiltonian. We see that trajectory dynamics are intimately related to
the study of quantum spin glasses. In contrast to the partition function Z however, the moment generating
function M(#, A) does not only depend on the spectrum of W), but also on the overlap of its eigenfunctions
with the flat state Wy;. This difference makes the analysis of M(#, ) comparatively more difficult, and this
is the reason why we have focused on the simpler all-to-all dynamics in [88]. In that case, we compute the
limit of 6, (¢, 1) and the limit of the specific (negative) free energy fn (T, 1) 1= % In2~NTr eW-AU/T.

Theorem 2.11 (Theorem 1 in [88])
Let U be the REM potential and W = W, the generator of the all-to-all dynamics. Then, for any
t > 0and A > 0 the SCGF converges almost surely,

lim O (, ) = (1, 4) = max (0,1~ (pry(tA) = In2) = 1),

and extends by symmetry to negative values, that is, 0(t,—1) = 0(t, A). The free energy fy also

converges almost surely,

lim fy () = £, 2) := max(~T 2, T(prey(4/T) = In2) = 1.

The dynamical and static phase diagrams resulting from Theorem [2.1T] are presented in Figure [2.4] In
both cases one observes three phases, similarly as in the QREM, but the exact form of the separation
lines is different. In that sense these findings confirm again that the trajectory thermodynamics cannot
simply be derived from the static phase diagram. We now want to have a closer look at the three emergent

dynamical phases.

Our classification is based on the dynamical activity in the phases. The dynamical activity is the average
number of jumps (J) of trajectories under the tilted generator W, [87.,/90]. To compute the activity, we
define the doubly tilted partition sum M(, 4, 5) := (¥yle’ Wis |'Yys) with the additionally tilted generator

W, = Ne ¥y} (¥yl - N(1 -27N(1 - ™)1 - AU,

N
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Figure 2.2: Static and dynamical phase diagram of the all-to-all QREM [88| Figure 1]. (a) Dynamical
phase diagram of the REM with the all-to-all dynamics in the thermodynamic limit N — oo. The x-axis
corresponds to the coupling parameter A conjugated to the time-integrated REM energy and the y-axis
corresponds to the inverse of the time . The full lines indicate first-order transitions between the active
and first and second inactive trajectory phases, whereas the double line shows the 1-step replica symmetry
breaking transition between the two inactive phases. (b) Rate function ¢(z, u) for two different values of
t. Fort7!l =1 < 2ﬁc‘2 (blue line) consists of a linear portion corresponding to the active phase (with
—pf, < u < f,) and an infinitely high jump at +§, which marks the transition to the first inactive phase. For
=10 > Zﬂc‘z the rate function describes the coexistence between the three phases (black). The linear

portion between 0 and /2t describes again the active phase. In the second inactive phase, |u| can take

values with decreasing probability between \/Z and f,. The rate function is infinite for any |u| beyond S,
indicating that this event has zero probability (under a "typical" sample of disorder). (c) Thermal phase
diagram of the all-to-all QREM, which consists of three phases, too. However, the location of the phase
transitions differs compared to the trajectory phase diagram.

where only the off-diagonal terms are deformed in order to detect the number of jumps. Indeed, if we
introduce the the off-diagonal part W and the diagonal part W42 of the generator, we may write using

the Lie-Trotter formula

M-1
t M-1 ia
Mt As)= lim Y% e 2 WRE9@) TT (6,11 + ﬁW"ffu, )6141)
i=0

6).01,....0)
. M-1 ;
€ - dia
- A}i_l}loo Z e/ @001 00 oy Limg WA H (611 + HWOE(/L 0)lo;41)
6),61,....0 )1 i=0
=/e—ﬂUr[§]e—SJ(§)|pt(d§)
where J(6(,06,,...,0,,) and J(§) denote the number of jumps of the discrete path 6,6, ...,06,, and,

respectively, of the continuous-time jump process €. These considerations immediately imply

J U @), ag)

O InME A Do = T e, g

(J).

The dynamical phase is characterized by (¢, ) = 0 and a specific activity (N#)~'(J) approaching one in
the thermodynamic limit. This active phase consists of the region | 4] < f.(2¢)~! + ﬂc_l incaser! < 2,6;2,
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and of [4] < \/Zt_—l incase ™! > 2ﬂc‘2. The active phase is related to the QREM paramagnetic phase and
is separated by a first order transition. The other phases are inactive as the specific activity (N7)~'(J)
converges there to zero. The first inactive phase is found for 1< 2M|ﬂc‘1 — 2ﬁc‘2. The trajectories
localizes at the REM’s extreme values and, hence, this regime resembles the REM glass phase. A second-
order transition occurs between the first and second inactive phase. The second inactive phase is only
found at times t~! > 2/ ﬁcz and can be seen as dynamical counterpart of the paramagnetic REM phase. In
the long-time limit, # — oo, the value A = ﬁc‘l separates the active and first inactive phase, reflecting the
transition in the largest eigenvalue of the tilted generator W, = W — AU.

Let us come back to the original quest for a description of the large deviation properties of the trajectory
observable U,[£]. We recall that a sequence of real random variables X, is said to satisfy a large deviation

principle with rate function S (and speed n) if
— inf S(u) < liminf Imp (X, €I) <limsup Imp (X, €1I)=—inf S
uel® n—oco n n—oo N uel
holds true for any Borel set I C R [60]. Via the Gértner-Ellis theorem [[60, Thm 2.3.6], the rate function
S, (u) of the large deviation principle obeyed by U, is given by t¢(t, u), where @(t, u) denotes the Legendre-

Fenchel transform

uly/2, lul < min { V21,5, }
@1, ) 1= sup (ud = 0(1, 2)) = 1+;_j, else,

0, lu| > B..

The additional multiplication by 7 is necessary since we normalized by 7 in the definition of 6(¢, ). The
dynamical phase diagram is also reflected in the behavior of ¢(¢, u). For fixed ¢, one encounters one or two
phase transitions depending on whether # > In2 or not. If > In 2, one only sees linear fluctuations and a

totally frozen phase, whereas for t < In 2 one additionally encounters a phase with Gaussian fluctuations.

The proof of Theorem[2.11]is based on the observation that the tilted generator for the all-to-all dynamics
is a rank-one perturbation of the diagonal REM potential. Therefore, any eigenvalue E is a solution of

the fractional equation

1 o 1 1
— = (YY(E+ N + AU)"|¥y) = — : 2.7
N = il ¥ 2N;E+N+/1U(o-) 7

The corresponding eigenvectors y i satisfy for all 6,7 € Q y:

(6lyg)  E+ N+ AU(z)
(tlwg) E+ N+ AU(o)

These results simplify the analysis of the all-to-all dynamics. For instance, implies that all eigen-
values of W, except the largest one are up to a shift by —N interlaced in between the REM’s energies (cf.
e.g. [9] and refs. therein for interlacing and finite-rank perturbation theory). In fact, the spectral analysis
of W, has been already pursued in [[7]], where a comprehensive study of the spectrum and eigenfunctions

is presented. Our findings can be deduced from the main results in [7].
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Considering the next neighbor random walk is more subtle, as the tilted generator agrees up to a shift and
scaling factor with the QREM Hamiltonian, which is not a simple rank-one perturbation. However, we
will see in the next chapter that we are also able to derive precise spectral characteristics of the QREM. If
one consults our proof for the all-to-all dynamics, one realizes that there is only one technical ingredient
that has not been established for the QREM, yet. One would still need to show that

lim N~ 'ln

Yyl (Horem) ¥
| <| (Pl (e p+sn) (Horem) | y) >:—1n2 (2.8)

{c €ON|U() € (E—-06,E+06N)}|

holds true for all 6 > O sufficiently small and —f.N < E < —I'N. To prove that, one also needs
to consider eigenfunctions clearly above the ground state energy in the localization regime. Despite this
technical difficulty, we believe that (2.8)) is true. Then, we could easily extend the results from this section

to the next neighbor random walk.
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Chapter 3

Spectral Analysis of the Quantum Random
Energy Model

In this chapter, we continue our study of the QREM. We will present precise results on the low energy
states and the pressure which have been published in [[132]. Our first section is an informal discussion of
the QREM, which will provide some intuition behind our spectral analysis of the QREM Hamiltonian.
The next two sections consist of a discussion about the QREM low energy spectrum in the paramagnetic
regime I' > f, and in the glass phase I' < f,. We will see that the ground state wavefunction resembles
the ground state of T' and, respectively, U in either phase. We will also determine the next-to-leading
order corrections of the ground state energy. Then, we turn to the analysis of the pressure, where we
present the finite size corrections, too. In all three sections, we will mainly discuss the results and we can
only highlight certain aspects of the proofs. The final section puts our theorems into the context of the
extensively studied Anderson model. We will then comment on several interesting physical predictions,
in particular, how our results contribute to these problems and the main mathematical challenges one has
to face in a possible future rigorous verification of the physical claims. The presentation here follows in

large parts the introduction of Article IV [[132].

3.1 Some Heuristics

To give a first impression of our ideas, we start by providing some intuition and heuristics. Let us denote
by Egg := inf spec H  the ground state energy of the QREM. We first note that Goldschmidt’s formula

(2.6) also entails an assertion on the limit of the specific ground state energy,

-p. ifI'<p,

1 .1
oo i - ifC> 4,

N—»ooN

where we made use of the simple bound —fEgg < @ (f,I") < In2—pEgg. Atleastin the thermodynamic
limit, the specific ground state energy agrees either with the REM minimum or the paramagnetic ground
state energy. This suggests that in the glass phase I" < f, the magnetic field I'T" can be treated as "small"
perturbation and, similarly, for I' > g, the REM potential U should be considered as perturbation. In

order to obtain a first guess on the the ground state energy’s next-leading order corrections, one may
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invoke second-order perturbation theory, which we briefly recall here. Suppose we have a Hamiltonian
H = H,+ AH’ on a finite-dimensional Hilbert space, where we think of A as small coupling and of
H' as perturbation of the reference Hamiltonian H,,. If we further assume that the ground state of H, is
non-degenerate, then the ground state energy Egg(4) is analytic in a sufficiently small neighborhood of

A =0/[113]]. Hence, we have a power series expansion

Egs(A) = Egs(0) + )’ a,4*
k=1
for | A| small enough and some coefficients a;, a,, .... The idea of second-order perturbation theory is to
consider only the the power series up to second order without justifying that for the considered values of A
the higher-order terms are in fact negligible and that the power series expansion is applicable at all. Thus,
second-order perturbation theory is clearly a non-rigorous approach, although it is successfully used in
physics to deduce properties of complex systems. We finally recall that the coefficients a; and a, can be
computed explicitly: if y;, and y, denote the ordered eigenvalues and eigenvectors of the unperturbed

Hamiltonian H,, we have

o = Z | | H [y |2
2= —_—.
>0 Mo~ Hk

a = <W0|H’|ll/o>’

We see that the expression of a, makes use of the ground state’s non-degeneracy. We now apply this
method to the QREM Hamiltonian:

1. ForI" < B,, second-order perturbation theory with Hy = U and H' = T starting from the almost

sure unique ground state |6 ;) with o, := argmin U, reads:

2
|<6min| T|6min>| . F2
~mnU — —.

EGS ~minU + F(O'mianlamin> + F2 Z U(...)—U(o) p
min ¢

a;éo-min

The first-order term vanishes since the diagonal elements of T" are zero. The sum in the second-
order term is restricted to the neighbors of the minimum, whose potential term typically is only of
the order O(y/ N) and, thus, can be neglected. Using U(o) = —p.N one ends up with the final

expression.

2. ForI' > B, we start second-order perturbation from the ground state Wy of T'. This yields

2
(Pyl UIY4)
Egs ~ —NT + (¥,|U|¥;) — Z% (3.1)
A0
-N -N
~—-NI'— ﬁ—Fz_NF_ZN]\%T z—NF—%.
Az 214l A7

The first correction (¥y|U |¥y) =27V ZGEQN U (o) is a normal variable with exponentially small
variance and, thus, can be neglected. For the second term, we first recall the eigenvalues and
eigenvectors of T. Then, we note that the random variables (Wy| U|¥,) form a collection of

independent Gaussians with variance N2V, so it appears reasonable to substitute the numerator
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by its expectation. Finally, we use the approximation that most of the states of T" are found near
|A| = N /2, so that we may replace the denominator by its typical value NT' and we recall that the
number of sets A # @ equals 2V — 1.

These computations go back to [[110], where the finite-size corrections in the QREM have first been
considered. In the following two sections we will not only see that the predictions concerning the ground
state energy can be established rigorously, but we also give a precise description of the ground state
wavefunction. For I' < f, the ground state is sharply localized near the lowest-energy configuration
of the REM and we will give quantitative bounds on the decay away from the minimal configuration.
On the other hand, for I' > f, the ground state is very much delocalized over the whole Hamming
cube, resembling the ground state Wy of T'. The localization-delocalization transition at extreme energies
presented here relies on the delocalization properties of T on the Hamming cube, which fundamentally
differ from the finite-dimensional Laplacian on the lattice. Consequently, our situation differs from the
extensively studied Anderson model on Z¢ as we will explain in more detail in Section In both cases,
the ground state is non degenerate and energetically separated by a gap of order (1) from the rest of the
spectrum. The ground-state gap only closes exponentially near I" = f., which was predicted firstin [[110].
While the methods in Article IV [[132] can be used to estimate the minimal spectral gap, this has already
been proven in [2]] by use of the adiabatic theorem and, thus, we will not cover its re-derivation by our

techniques in this chapter.

3.2 The Delocalization Regime

The heuristics from the last section show that for I' > f, one should expect a deterministic shift of the
ground state energy by — % The first main theorem does not only confirms this prediction, but also covers

the whole low energy spectrum below —f, N:

Theorem 3.1 (Theorem 1.3 in [132])

Forl" > f,, anyt € (0, 1) andn > 0 and for sufficiently large N - except for an event of exponentially

small probability - all eigenvalues of Hyy = I'T + U below —(f, + 2n)N are found in the union of
1

intervals of radius O(N ?) centered at

N
2n— NI+ —— 3.2
(2n ) @n—N)T (3.2)
withn € {m € Ny |2m— N)I" < —(B.+2n)N }. Moreover, the ball centered at (3.2)) contains exactly

(]Z) eigenvalues of H y; .

In order to simplify the presentation, here and in the following we refrain from specifying the excep-
tion sets with exponentially small probability and how the constants hidden in the @-notation depend on
different parameters. In [132]] we give a precise description of these technicalities.

Note that Theorem [3.1implies in particular that for §, < I" the ground state energy is given by

EGS = —FN - % + 0(1)
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with overwhelming probability. Since the energy shift with respect to the ground state of I'T" coincides
with the prediction based on naive second-order perturbation theory (3.1)), one expects that the corre-
sponding first-order perturbation theory for eigenvectors is accurate as well. Hence, one may guess that
the ground state in the paramagnetic phase is close to the fully paramagnetic state 'Wy;. This hypothesis is

confirmed by the next main theorem of this section:

Theorem 3.2 (Theorem 1.4 in [132])
In the situation of Theorem with 0 < n < (T — B,.)/4, the £?-normalized ground state w of
Hy =TT + U satisfies except for an event of exponentially small probability:

7—1
1. The ¢*-distance of w and Wy is |lw — Wyll = O(N 2).
2. The ground state y is exponentially delocalized in the maximum norm, i.e.,

lyll2, < 27N Nr(Betn/@D)+oN), (3.3)

where y . [0,1] — R denotes the binary entropy

y(x) :i==xInx — (1 — x)In(1 — x). (3.4)

Our bound on the #2-distance of the ground-state wavefunction Wy is not optimal, and we presume that
an upper bound of order N -3 holds true. Moreover, the delocalization estimate (3.3) is presumably not
sharp either. In fact, in the proof of Theorem 3.8 in [[132]] we introduce a method, which improves the
estimate (3.3]) if ' — . is small. We expect that a more elaborate version of this argument yields the sharp
exponential decay [ly||2 < 27N+2") which would stress even more the similarities between y and Wy;.
The estimate (3.4) is based on a simple path integral bound, which can be employed for all eigenstates
with energy below —p,N [132, Proposition 3.5]. Also, the first assertion in [3.2]is a rather immediate
consequence of Theorem [3.1] On the other hand, the proof of Theorem [3.1] involves several methods
from which we will present the most important ones in the following. The complete proof is carried out
in [132] Section 3].

We have already mentioned in Chapter 2] that in the our understanding of the paramagnetic regime stems
from the intuition that the completely delocalized low energy states of T find it hard to detect the REM po-
tential’s isolated large deviations. To prove Theorem[3.1] we need to convert this picture into quantitative

bounds. To this end, we define the spectral projections for € € (0, 1),
o, := H(_SN,EN)(T)’ P i=1-0,,

where Q, consists of the spectral bulk, whereas P, is formed by the spectral edges. If € is chosen not too
small, most eigenstates are found in the range of Q,. Thus, guided by our picture on the REM energy
landscape, the operator P.U P, should be small in norm. A convenient method to prove this claim is the

so-called Matrix Bernstein Inequality.

Theorem 3.3 (Theorem 1.6.2 in [187]])

Let Ay, ..., Ay, be independent, centered random matrices of dimension N X N. Further suppose
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THE DELOCALIZATION REGIME

that || A || < L holds true almost surely for k = 1, ..., M with a uniform bound L. Moreover, we

introduce the sum of the matrices Ay,

M
k=1
and the matrix variance statistics
M
o(S) = IELSS™ Il = | Y] ElA 47|l
k=1

Then, we have an upper bound on E[||S||],

E[ISI < V2In@M)u(Z) + éln(ZM),

and a tail estimate

2/2

forallt > 0.

To apply this theorem to the term P.U P,, one rewrites the operator as sum of independent matrices
P.UP, =), U(o)P.|o){c|P,.. The Matrix Bernstein inequality then implies

dim P,

E[IP.UPI| < CVN N

(3.5)

and ||P.UP,|| is concentrated around its mean. In fact, similar bounds hold true for not necessarily
Gaussian potentials such as the higher moments of U? of U [[132, Proposition 3.1 and Corollary 3.2]. We
note that a simple Chernoff bound yields

dim P‘g = Z <]Z> < 2N+l e—gzN/2 .

Consequently, the estimate (3.5]) remains exponentially small if we choose € = N (==D/2 with = € (0, 1).
At this point, we see the cause for the parameter 7 in the assertions of Theorem If we fix 7, then
with overwhelming probability we have the situation that P, H P, = I'T P, as the contribution of U is
exponentially small and

O HyQ, 20, (minU —TeN)Q,,

that is, the Q-block does not contain the lower energy states E < —(f, +#)N, in which we are interested.

These are promising premises to employ the so-called Feshbach-Schur-Krein complement formula.

Theorem 3.4 (Theorem 5.10 in [9])
Let H be a self-adjoint matrix on a finite dimensional Hilbert space H, P an orthogonal projection

and Q := 1 — P the complementary projector. Then, for any z € C \ R

P(H-27'P=|PHP-z—- PH(QHQ - 2"'HP|,',
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where the subscript P indicates that the inverse is understood on the Hilbert space PH.

The Feshbach-Schur-Krein identity can be translated into an eigenvalue equation for the QREM Hamil-
tonian. Indeed, all eigenvalues E of H strictly below —||U||,, — I'e N are given by the solutions to the

implicit equation

0 € spec (T,(E))  with T,(E) := P,(IT +

SIk

) —E+Y,(E),

Y.(E) := PUP, —

VS

N
P PEURE(E)UP£> :

R.(E) :=(Q,HxO, — EQ,)"".

If we neglect the operator Y, (E) for the moment, one obtains a fractional equation in E. Plugging in the
eigenvalues of T', one obtains the assertions of Theorem The idea is to show that || Y (E)|| = O( N TT_I)
is uniformly bounded for the considered energies E. Theorem [3.1]then follows by standard perturbation
theory. We already know that the first term of Y, (FE) is small. For the second term, one recalls that we
consider energies £ < —(f. + n)N which are separated by a distance of order O(N) from the spectrum

of O_H y O, . Therefore, one makes the ansatz

R(E)= =20, + (R(E)+ £0,) = =10, - ZR(E)Q, HNQ,.

where we used the second resolvent with the zero operator for the final identity. Using the Matrix Bern-
stein inequality for U2 — N, one sees that Pg% - %PS U?P, is exponentially small. The last term
%PEU R,(E)Q,HNQ,UP, can be estimated by using the Matrix Bernstein inequality for higher mo-
ments of U, combined with standard resolvent bounds. For the details, we refer to Section 3.2 in [132]],

in particular to the proofs of Lemma 3.3 and Theorem 3.4.

3.3 The Localized Regime

The computations in Section suggest that in the spin glass phase I' < f, the ground state energy is
shifted by a deterministic O(1)-correction. As in the last section, we will not only confirm this prediction
for the ground state, but rather consider an extensive fraction of the QREM low energy spectrum. We
recall the large deviation set £, = {6|U(c) < —eN} with € € (0, ), which already occurred in the
proof of Goldschmidt’s formula. Our goal is to relate the large deviations for € > 0 large enough with the
corresponding low energy states of the QREM.

To characterize localization properties of the eigenvectors in the canonical z-basis, we introduce

Bg(o) := (6’| d(c,6") < R}, Sg() 1= {d'| d(e,06") = R},

which stand for the Hamming ball and sphere of radius R, which are defined in terms of the Hamming

distance d(6,06") 1= % Zf\il lo; — o

Theorem 3.5 (Theorem 1.5 in [132])
ForT" < f,.and 6 > 0 small enough, the following applies for sufficiently large N with overwhelming
probability:
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1. The eigenvalues E of Hy = I'T + U below —(B, — 6)N and the low-energy configurations

U (o) are in a one-to-one correspondence such that

_ ’N “1/4
E=UG@)+ s + O,

(3.6)
In particular, the estimate O(N /%) is independent of 6 € [lﬁc_(s.

2. The ¢?*-normalized eigenvector y corresponding to E and 6 concentrates near this configu-

ration in the sense that:

(a) Close to extremum: For any K € N and for all 6' € Sk (6):

lw(e")| = O(N~X), and Z lw()|> = O(N-K+D).
6'¢Bg (o)

(b) Far from extremum: For any 0 < a < 1, there is some c,, € (0, 00) such that

Y, lw@P <eh.

¢'&B, (o)

We observe an extreme localization regime in which the eigenvectors are strongly localized — each in its
own large deviation ¢ of the REM. In essence, our localization results show that there is no tunneling
between the large deviation sites for low enough energies. Theorem [3.5]in particular covers the ground-
state of the QREM and thus extends the result [[19, Lemma 2.1] on the leading asymptotics of the ground-
state energy in the parameter regime I' = k¥ /N with ¥ > 0. A further discussion of the localization
results in context of the Anderson model will be given in the last section of this chapter. The estimates
on the decay rate of the eigenvectors close to the extremum are optimal; and far from the extremum they
are optimal up to determining the decay rate c,. From the proof of Theorem [3.5]in [132], one can read
off a (non-optimal) threshold for the value of § and also more precise error terms for the eigenvalues.

We recall that the minimum of the REM and its extremal statistics are well known, see Proposition @
and (2.3). Since Theorem [3.5]discusses the whole low energy spectrum, a similar result for the QREM is

an immediate consequence.

Corollary 3.6 (Corollary 1.5 in [132])
LetT' < f,. and let

N In(N In2) +In(4z) T1? «x

sy(x;I) :==—p.N 2 5 5

(3.7)

Then, the rescaled eigenvalue process spec H y of the QOREM Hamiltonian Hy = I'T +U converges
weakly,

Z 5s1_\]1(E’F) s Pe—x dx*
Eespec Hy

In particular, the ground state energy converges weakly

In(N In2) + In(4x) r2> X
+ —— ) > -

Fas = ("ﬂ N 25, )"
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where X is a random variable distributed according to the law of the maximum of the Poisson point

process P, ;. with intensity e~ dx on the real line .

We will now present some further results on the ground state wavefunction. In fact, the proof of Theo-
rem [3.5] already shows that the ground state can be approximated very well by the first order correction
arising from perturbation theory. More interestingly, we can even determine the #!-norm of the ground

state, which converges to an explicit constant. This reflects again the sharp localization in the glass phase.

Theorem 3.7 (Theorem 1.7 in [132])
ForT" < B, and all N large enough, there is an 6 > 0 and 6, € L _; such that the positive ¢ 2.
normalized ground state y of the QREM Hamiltonian is concentrated near 6, with overwhelming

probability in the sense that:

1. the £?-distance of v and bg, IS |y — Opzy I>=0 (% ), and. its first order correction

Z|-
(V]
N—

has the same energy as y up to order one, and ||y — &||*> = O (

2. the ¢'-norm of w converges to a bounded constant:

vl = 3 vie) = ol

and, forany 1 < p < oco: [lyl2 =) [w(@)I" = 1+ o(l).
o

Let us now comment on Theorem First, the configuration 6, on which the ground-state is asymp-
totically localized and the classical minimal configuration ,;, := argmin U do not need to agree, but
the probability P(6y # 6,,;,) < % vanishes for N — oo. Secondly, the methods on which the proofs of
Theorem andare based on allow an expansion for the ground state energy up to N K for any fixed
integer K. The correction corresponding to the order N K is determined by potential fluctuations on the
sphere of radius K + 1. A similar expansion for the ground state eigenvector holds true as well. Thirdly,
the #!-norm limit we provide here is of special interest if one treats the QREM as gen mutation model.
As we have seen in Section the #!-normalized state coincides with the equilibrium distribution of
a corresponding mutation-selection model with the REM potential U as fitness landscape.

In the following, we will give an idea of the proof of Theorem [3.5] As we have seen in the proof of
Goldschmidt’s formula, the REM low energies do not percolate. As a first step, we want to obtain stronger
results on the geometry of the large deviations sets. For our analysis it is important to guarantee that
the low energy states are not just isolated, but in fact very far from each other. Some straightforward
combinatorial and probabilistic estimates lead to the following conclusion [[131, Lemma 4.2]: for every
£ > 0 we find some @, 6 > 0 such that with overwhelming probability

|U@@")| <eN forall ¢’ € By,y(0)\{o}ande €L, ;.
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In particular, the balls B, y(6) N B, () are disjoint for two different large deviations 6 # 7 € L f—5°
which confirms that the low energies are far from each other with high probability. These considerations
suggest the following proof strategy: one first determines the ground states y,, of the QREM Hamiltonian
restricted to Hamming balls B, y(6) withe € L _;. In a second step, one "glues” these balls Hamilto-
nians together with the rest operator, and verifies that the characteristics of the ball ground states survive
this recomposition procedure.
After establishing Theorem [3.5]locally for the ball states, putting the pieces together is a rather routine
argument: one shows that the spectrum of the "remainder" operator, collecting the terms outside the balls,
is energetically separated from the regime of interest. Together with the exponential decay of the ball
ground states y,;, the Feshbach-Schur-Krein method, we have introduced in the last section, guarantees
that the low energy spectrum of H , agrees up to an exponentially small error with the collection of ball
ground state energies E;. The only subtle part is to show that the low energy eigenvectors of H »; are each
normwise close to a specific ball state y,;. To put it in other words, one needs to ensure that ball states
y,, do not mix, i.e., there is no tunneling between different balls. To this end, we invoke the so-called
spectral averaging principle —a common technique in the field of random Schrodinger operators [9] — to
establish a lower bound on the energetic separation between the ball ground state energies [132, Lemma
4.4]. This bound is exponentially small, yet for small § > 0 strong enough to prohibit mixing of the ball
states. This is carried out in the Sections 4.4 and 4.5 in [|132].
Here, we focus on the local analysis on the Hamming balls B,, 5, (), which forms the heart of the argument.
Letus fix some 6y € L _; and a > 0. We consider the restricted Hamiltonian H, y (o) on the subspace
4 2(Ba N(6o)), 1e., H n(o) = U + 1T,y with the Dirichlet restriction 7, 5, to a Hamming ball which is
defined via its matrix elements

(@I T yle') = (2ITI)

for 7,7/ € B,N(6). Since the potential is dominated by a single deep-hole at &, our ansatz is to treat
H (o) as an effective rank-one perturbation of I'T, ,; and we verify in a next step that neglecting the
fluctuations of U around o is in fact justified.

In order to invoke rank-one perturbation theory, one needs to control the Green function of T, that is,
. . -1
G,N©6,060;E) 1= (0| (T, — E) o).

Interestingly, despite being of relevance in the field of discrete mathematics, the spectral properties of
T,y are not well understood. So far, the main result in the literature concerns the minimal eigenvalue
E N (a)7

En(a) :=1infspec T,y = =24/ (1 — a)aN + o(N),

which was proven first in [[84] Proposition 8.5], and a better error bound has been given in [32]. We give
a short proof for the lower bound Ey(a) > —24/(1 —a)aN in [132, Lemma 2.1]. Due to the lack of
spectral results on T, ,;, we had to derive estimates on G, 5 (6,0(; E) from scratch. Our bounds on the

Green’s function might be of independent interest:
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Proposition 3.8 (Proposition 2.5 in [132])
Let0 < a < 1/2, and e > 0. Then, for E < Eyx(a)—€N, all6 € B,y (06() and all N large enough:

-1/2
G,n(0,0) E) < L o 9~ min{d(s;.6), dy(a)N}
N = ¢N \d(o,.0)

where 0 < ay(a) < a is the unique solution to the equation 2+/a(1 — a) = 3\/040(1 — ay). Moreover,
for any fixed K € N there is some Cy < oo such that for all N large enough:

-1/2
I foralle € Sg6y): Gun(@,60:E) <K ( N
° K\®0/- aN 190> = EN ,_NK d(o’o,o') .
2 ) G (aa-E)2<i
: aN=> 20> = 2 NK+2

6&By (o))

The proof of Proposition [3.8| exploits the radial symmetry of G,y (0, 6,; E), that is, the Green function
does only depend on d(o,6,). This observation translates into Ricatti type recursive relations which

enable us to proceed by an inductive argument. The whole proof can be found in [[132, Section 2].

Most importantly, the estimates on the Green function in Proposition 3.8 reflect the decay bounds on the
eigenstates we propose in Theorem @} This can be easily verified for the ground state y; of the ball
Hamilton H,y (o). Let E; be the ground state energy of the ball Hamiltonian. If we choose 6, €, @ such
that g, — 6 > 2I'y\/a(l — @) + ¢, then by standard rank-one perturbation theory E,, is the only eigenvalue
below —(C'y/a(I — ) + €)N. A simple Rayleigh-Ritz bound E, < (60|H,y(60)loy) = Ulsy) <
—(p. — 6)N provides a first, crude estimate on this eigenvalue. Employing again rank-one perturbation
theory with the operator H! \ (6)) = H,y(6,) — U(6))|6(){(6,|, we conclude that the £?-normalized

eigenvector y,, satisfies for all 6 € B, y(6):

—1 -1
W, (0) = —U(6¢) w,(0){o| (H(;N(O'O) — E,,O) loy) < -U(oy) (o] (FTaN — (Eq, + eN)) log)

< —U(ey) T (o] (T,n — UGe) + NI o).

Here, we used that U > —e N on B, y(6) \ {6}, our a priori bound on E, . Moreover, we recall that T'

generates a positive semigroup, which implies that the matrix elements are (o| (H ; N(©0) — an>_l log)
monotone with respect to the potential values of U. Proposition [3.8| readily implies the claimed decay
estimates in Theorem@ It remains to derive the ball energy E; . Here, we combine the eigenvalue equa-
tion with the already established decay estimates. Namely, the eigenvalue equation at any o € S,(6):

yields
E, vy(6)) = U@y, (6) Ty, 60)-T Y. y, (¢
c’'eS (0)\{o}

= U(6)w,,(6) — Ty, (60) + O(N ).
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The O(N ') estimate follows from the priorly derived concentration close to the deep hole. The eigen-
value equation can be rewritten as Vs, (o) = —ﬁ (l//% (og) + ON ‘1)) , which we insert into the

eigenvalue equation at the deep hole o:

E, v, (60) =U©@)W,,60) =T Y 1w, (0)

oS (6y)
-1
r2 Vo, (60) + O(N")
=U(6p)¥s, (00) + — (
0 E, 662:460) 1-UG0)/E,

2 2 U
o | P

%9 %0 \o€eS|(6y) %0

The last line is a consequence of a Taylor expansion and some algebra. Note that typically | Y. S,(00) ?) =
°0
O(1) and one can show that there is a uniform bound on all Hamming balls by O(N3/*). That results in
the expansion E, = U(o,) + % + O(N~!/%), completing the local analysis.
0

3.4 The Pressure

The methods we introduced in the last two sections allow to pin down the pressure ©,; up to order one
in N in all three phases of the QREM: the glass phase (f > f, and I' < I'(f)), the classical 'unfrozen’
REM phase (f < g, and I" < I'(#)) and the quantum paramagnetic phase (I' > I'(f)).

Theorem 3.9 (Theorem 1.10in [132]) 1. IfT" > ' (p) the pressure @ (B,1") is up to order one

deterministic and one has the almost sure convergence

p

® (8,1 — (In2cosh(fT)N — e

2. If' < I',(p) and p < P,, the pressure @ (f,T) differs from the REM’s pressure © 5 (f,0) by

a deterministic f-independent shift of order one, i.e., one has the almost sure convergence

@\ (f,T) — Dy (p,0) - T2

3. IfT' < I'.(P) and f > P, the pressure @y (f,1) differs from the REM’s pressure by a deter-
ministic fi-dependent shift of order one, i.e., one has the almost sure convergence
r’p
DN (B.T) — Pn(B,0) — e

c

As in the analysis of the low energy spectrum, we observe a deterministic order (O(1)-shift in either
phase. Determining these shifts of the pressure heuristically, is not very difficult. For example, in the
paramagnetic regime we have seen that the low eigenvalues of E are shifted to E + % + o(1). Moreover,
we know that the (unperturbed) paramagnetic pressure is governed by the eigenvalues close to (I'T") 5 =
—I"tanh(pT") N, which results formally in a shift of the internal energy by m A similar approach

yields a correct prediction for the shifts in the classical regime I' < I'.(§) as well. This idea can be made
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easily rigorous in the glass phase, but for higher temperatures the dominant eigenvalues close to (I'T) 5
or, respectively, (U),; will in general be located in the middle of the spectrum. However, Theorem
and Theorem [3.5] only cover the bottom of the spectrum. That we have to consider the shift of higher
energies, is the main challenge in the proof of Theorem [3.9] We face this obstacle in the classical and
paramagnetic phase differently.

IfI' < I'.(p), we observe that %(U)ﬂ = —min{f, .} + o(1) < —TI for N large enough. Hence, the
pressure is dominated by energies which are below the paramagnetic ground state and, thus, can be labeled
to REM energies U (o). However, in contrast to the scenario of Theorem such a configuration &
does not need to be isolated, i.e., we cannot guarantee that there is no deep hole in the proximity of all
energetically relevant configurations. The second important observation is that for any energy interval
[E — 6N, E + 6N] the fraction of non-isolated configurations ¢ with U(6) € [E — 6N, E + 6N] is
exponentially small. Consequently, the contribution of non-isolated configurations to the pressure is of
order o(1), and for isolated configurations we are able to reproduce the energy formula (3.6).

The paramagnetic regime I" > I'.(f) is the more subtle phase. Namely, we have to consider parts of the
QREM spectrum where the eigenvalues originate from both, I'T" and U. Understanding the eigenstates at
energies where the spectra of U and I'T interlace, is a difficult and largely open problem. In some sense,
our main idea is to avoid an analysis of the interlaced spectrum by means of some technical tricks which
are powerful enough to establish the (9(1)-corrections of the spectrum. We truncate the REM potential
U such that its ground state lies higher than (T');-. For the Hamiltonian with the truncated potential
one can use a version of Theorem [3.1]to derive the pressure up to order o(1). A rather involved convexity
argument allows us to extend these findings to the complete QREM Hamiltonian. The argument is carried
out in [[132, Section 5].

As a consequence of Theorem[3.9] we can extend the results of Theorem [2.5]to the QREM glass regime:

Corollary 3.10 (Corollary 1.11 in [132])
IfT" < I'.(P) and p > B., we have the weak convergence:

- A _r? o
e N[ﬂﬂc]+2ﬂc [In(N In2)+In4r] e ZN(ﬁ, F) o, / ezﬂ/ﬂc PPPe—x dx(dz)~
—00

The fluctuations of the QREM’s partition function outside the spin glass phase are expected to be much
smaller — forI' < I',(f) and § < f,. most likely on a similar scale as in the REM and for the paramagnetic
regime presumably even smaller. Unfortunately, we have not managed yet to design methods which enable

us to control fluctuations on an exponentially small scale.

3.5 The QREM in the Literature

We close this chapter by presenting related work in the mathematics and physics literature. We have
already seen that the QREM emerges in several contexts such as mathematical biology and the study of
aging and metastability. While the literature on these fields is large, as far as we know an analysis of the
QREM has not been pursued and the methodology is rather different. The closest mathematical works
concern the so-called Anderson model and in the first subsection we take the chance to sketch similarities

and differences between prior works on the Anderson model and our study of the QREM. The situation
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is different for the physics literature, where the QREM is a well-established model of which many facets
have been studied. We want to give an overview of the physical studies on the QREM. We relate our

results to the physical findings and discuss which physical predictions may be addressed in the future.

3.5.1 The QREM and the Anderson Model

In 1958, Anderson suggested in a seminal paper that impurities in a metal can drastically change its
conducting properties [[12]. Anderson introduced random Schrédinger operators on the lattice Z¢ as an
effective one-body model for electrons in a metal with defects. He predicted that if the disorder is strong
enough, the electrons become localized such that there is no diffusion anymore. This phenomenon is
referred to as Anderson localization. The Anderson Hamiltonian H 4 can be defined on any (undirected)
graph G = (V, E) with vertices V" and edges E. To this end, let (W), be a collection of i.i.d. real

random variables and A denotes the graph Laplacian on £2(V),

L)) 1= ) [oW) - @),
u.u~v
where ¢ € #2(V) and u ~ v is a short-hand notation for connected vertices. As usual, the potential

(W,),ey gives rise to a diagonal operator and the random Schrddinger operator is defined as
H A= iW - AG

with A > 0 measuring the degree of disorder. For finite graphs, H, is simply a random matrix whereas
for infinite graphs one may have an unbounded self-adjoint operator only defined on a suitable domain.
On Z%, Anderson localization corresponds to the pure point spectrum while the absolutely continuous
spectrum is interpreted as being formed by conducting states [9]].

If G is the Hamming cube equipped with the Hamming distance, the graph Laplacian reads Ag =~ =
—T — N1. Thus up to an identity shift, the QREM Hamiltonian can be seen as a specific Anderson-
type random Schrodinger on the Hamming cube. This mathematical equivalence can be used to invoke
localization techniques originally developed for the Anderson model on the lattice. One example is the
spectral averaging principle we have used in the glass regime. In [[19]], a QREM-like model on the Ham-
ming cube with A replaced by %AG has been analyzed by means of the heat equation corresponding
to the Anderson Hamiltonian. One sometimes speak of the parabolic Anderson model when the semi-
group perspective is put in the foreground. While ground state energy and some localization properties
are examined in [19], the results therein are much weaker than what we have presented in Section [3.3]
Most importantly, since %AG is of lower order then U, their is no competition between localization and
delocalization, which is a characterizing feature of the QREM.

The most canonical Anderson model is the random Schrodinger operator on a finite degree infinite graph.
Despite the fact that the QREM can be formulated as Anderson Hamiltonian, we want to convince the
reader that the viewpoint has to be considered with a grain of salt. In particular, the QREM is not just
another derivative of the Anderson model on Z¢. First, since the degree of Q y increases with N, the low
energy eigenstates of T are much more delocalized than the corresponding eigenstates of the Laplacian
on a finite box in Z¢. Secondly, there are many works such as [30] concerning the localization of the

eigenstates in the bottom of the spectrum. However, the resulting localization is weaker than in the
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QREM although the transversal field is normwise "stronger" than the Laplacian on Z¢. Perhaps most
importantly, in the finite-dimensional situation the ground state can never be delocalized in high contrast
to the paramagnetic regime of the QREM. After all, we should recall that the Anderson model is an
effective one-body model whereas the QREM is a many-body model. Hence, physical differences should

not come as surprise.

3.5.2 Physical Predictions on the QREM

The physical treatment of the QREM originated in Goldschmidt’s work [95]]. We have already confirmed
his formula on the specific pressure in Chapter[2] However, it would be still of interest to give an alterna-
tive proof based on the path integral approach. While deriving the annealed pressure via the Feynman-Kac
formula is not too hard, a proof of Theorem [2.7]in this framework appears to be surprisingly difficult. On
the other hand, it should be feasible to verify that the Parisi measure in the QREM glass phase agrees with
the classical findings of Proposition [2.3] (see also Section [#.2.2). An important motivation for the study
of quantum spin glasses, and more generally transverse field models, is the appearance of quantum phase
transitions (QPT) at zero temperature. These ground state transitions may be of first order or may show a
continuous change of the relevant order parameters [68]]. QPT are unique to quantum models as they are
driven by quantum fluctuations. Hence, transverse field models allow us to enhance our understanding of
quantum physics. In the case of the QREM, Goldschmidt’s formula reveals a QPT atI' = g... For a full
understanding of a QPT, one needs to examine how the transition is reflected in a change of the ground
state wavefunction’s properties. Our result on the localization in the glass phase and the delocalization
in the paramagnetic phase show that the QPT in the QREM is accompanied by a drastic change of the
system’s behavior.

More recently, the QREM has gained considerable interest in the physics community as simple testing
ground for more involved phenomena. A prominent example is the performance of the Quantum Adi-
abatic Algorithm (QAA) applied to hard optimization tasks (see also our discussion in [I.2.3). While
QAA can be successfully used for many problems, it is known that there exists some Hamiltonians where
QAA does not do better than Grover search [76]. However, the counter examples considered in [76]
were specifically designed to make the QAA fail, and, hence, it remains open how the QAA performs
"in general". In [24], it is argued that the generic performance of QAA can be evaluated by applying
QAA to quantum spin glasses. Of course, the QREM, the arguably simplest quantum spin glass, is a
natural starting point. In view of the quantum adiabatic theorem (see Theorem [I.T]), one is tempted to
determine the minimal gap of the QREM Hamiltonian. In [[110], the authors start from second order
perturbation theory to determine the ground start energy up to order o(1). In the past few sections we
confirmed these findings. That the QREM ground state almost resembles the REM minimal energy con-
figuration |6 ;) or, respectively, the paramagnetic flat state ¥, motivated the authors in [110] to think
of the situation as an avoided level crossing. In simple terms, the picture is that both ground states always
exist and live independently from each other their own lives. They are effectively only coupled by an

interaction in form of the matrix overlap (¥4|o ;,). From here, they predict an exponentially small gap

min
A ~ 27N/2_ An exponentially small gap has been rigorously confirmed in [2], where it has been shown
that A < CN3/22-N/6 holds true with overwhelmingly high probability. This suggests, that the QAA
will only find the REM minimum after an exponentially long time, and thus, it barely outperforms Grover

search. Unfortunately, an exponentially small gap is predicted to be generic for quantum spin glasses [24]].
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For instance, in [[111]] the random 3-XORSAT in a transverse field is considered. The random c-regular
3-XORSAT potential U;_xorsar(0) = Zi\il(l - J, aai‘l’o-i;ai‘;) consists of M = ¢N /3 patterns with i.i.d.

a
k

which yield a c-regular graph. The cavity method and numerical computations provide evidence for an

Bernoulli weights J, (i.e., P(J, = +1) = %), and the indices i¢ are picked uniformly among those choices
exponentially small gap in the quantum random 3-XORSAT model [111]]. Proving an exponentially small
gap for quantum spin glass models which are more involved than the QREM, appears to be challenging
and arguably in most cases more difficult than establishing a quantum phase transition as it requires a
detailed understanding of the ground states properties.

At first glance, the expected exponentially small gap for quantum spin glasses raises doubts on the ap-
plicability of QAA to hard optimization tasks. Of course, an exponentially long procedure time would
not yield a crucial speed up compared to classical algorithms. On second thought however, one realizes
that one is not necessarily interested in the exact minimal energy configuration, but rather in a "good"
approximation. Here, a good approximation might be a spin configuration which is close to the minimum
with respect to the Hamming distance or a site with energy close to the ground state energy. Under these
less ambitious goals, a polynomial time 7' might be enough for a satisfactory result. In the QREM it is not
expected, that a polynomial time is enough even for an energetic approximation [22]. The main reason is
that the REM potential is completely unstructured and in that sense the worst-case scenario for any search
algorithm. However, for a variety of models a single spin flip will not change the energy that much. Con-
sequently, the low energy configurations form clusters in the Hamming cube. It is argued in [22] that the
performance of QAA then depends on the tunneling rate between these clusters. A significantly shorter
time may be needed to exclude tunneling, and, thus to find a configuration in the proximity of the minimal
energy site. A rigorous justification of this intuition would require a good understanding of the energy
landscape and a direct analysis of the adiabatic time evolution. Consequently, one needs to develop new
techniques in order to treat the dynamics of quantum spin glass models, an interesting research direction

for the future.
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Figure 3.1: Many-body localization and ergodicity in the QREM. [23| Figure 1]. The blue-dashed line
correspond to the static phase transitions of the QREMnin the I' — T' plane (see also Figure 2.3). The
dark-dashed line is the MBL-ergodicity transition predicted by a forward scattering analysis, the dark
green dots refer to numerical computations and the light green diamonds to exact diagonalization.
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Let us now turn to further physical phenomena which might be better understood in the realm of the
QREM: many-body localization (MBL) and ergodicity. We cannot give an exhaustive discussion of MBL
and ergodicity since the literature is vast and there are various definitions of both phenomena which are
used interchangeably, but are not identical. We refer to the reviews [[1,/140]] and the references therein
for more details. MBL and ergodicity are dynamical properties at heart and, hence, cannot be discussed
in the context of static equilibrium physics. The general setting is as follows. We consider an N-body
Hamiltonian H, and we pick a "physical" state y we shall be typical for the system at some inverse
temperature f. We are here on purpose vague because there is no general procedure on how to pick vy,
and the choice has to be justified for the concrete model. We think of y = yy, being the initial state
of our system and y, = e~"H~ to be the state at some time ¢. Consider now for some large time T the
time-averaged state p; = % fOT |y, )(w;|. The central question is: how well does the time averaged state
pr resemble the Gibbs state p;? The states pr and p; will typically be not close to each other normwise,

but one often observes thermalization, i.e., for any observable A acting on only few particles one has
Tr Apr = Tr Apy 3.8)

for large enough times 7. If (3.8) is fulfilled, one speaks of ergodic behavior. Ergodicity follows in par-
ticular from the eigenstate thermalization hypothesis (ETH). ETH refers to the situation where (most)
eigenstates y with energy E ~ (Hy ), satisfy (3-8). In contrast, MBL is characterized by eigenstates
v which are sharply localized on the Hamming cube (or more generally on the Fock space) and those
w strongly violate the thermalization property (3.8). One expects that a "generic" physical system is er-
godic and MBL only occurs in exotic systems such as strongly disordered metals. Moreover, quantum
spin glasses should give rise to an ergodic phase and an MBL phase depending on the field strength I" and
inverse temperature f and, thus, quantum spin glasses may shed some light on the microscopic mecha-
nisms which give rise to either phase [23.|121L{138L[139].

Numerical computation and analytic techniques such as perturbation theory and a forward scattering anal-
ysis have been employed, to gain insight into the localization-ergodicity transition in the QREM. While
there is no concensus on the quantitative prescription of the dynamical phase transition, the qualitative
picture appears to be as follows (see also Figure[3.T)). The glass phase should be governed by many-body
localization and the quantum paramagnetic phase is expected to be ergodic. Most interestingly, the clas-
sical paramagnetic phase is divided into an MBL part and ergodic fraction. Our localization Theorem[3.5]
and[3.7|confirm MBL in the complete glass phase and in a fraction of the non-glassy phase REM regime.
Our delocalization results in the quantum paramagnetic phase suggest ergodicity to hold true. However,
a rigorous prove of the ETH seems to require considerable effort. Nevertheless, it would be of general
interest as there no many tools at hand to prove ETH. Presumably, the most challenging part would be to
show the localization-delocalization transition in the REM regime. One would need to understand when
the REM low energy configurations start to tunnel, such that the REM deep holes away from the spectral

edges mix and spread over the Hamming cube. We hope that this problem will be addressed in the future.
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Chapter 4

Hierarchical Quantum Spin Glass Models

In this chapter, we study hierarchical quantum spin glasses, where the Generalized Random Energy Model
(GREM) or Continuous Random Energy Model (CREM) takes the role of the random potential U and in
comparison to the last two chapters we implement a more general random transversal field B. In the first
Section 4.1] we review the classical GREM and CREM. We focus on the pressure, the extremal statistics
and a description of the Gibbs measure via Ruelle cascades. The second Section[4.2] concentrates on the
quantum versions QGREM and QCREM. We present the main results of Core Article II [130], which
contains formulas for the specific pressure and a characterization of the phase diagrams showing a much
richer structure than the QREM phase diagram. We will then give a hint on the proof ideas and comment
on open problems regarding the QGREM and QCREM. In Section[4.3] we make a little excursion to the
classical Sherrington-Kirkpatrick model to motivate the question of the de Almeida-Thouless (AT) line.
Here, we familiarize ourselves with the replica symmetric solution and the interpolation method, before
studying the much more sophisticated Parisi formula in Chapter[5] We close this chapter with Section4.4]
on the quantum AT line in the QCREM, where we analyze the influence of a random longitudinal field
and a hierarchical vertical field on the phase diagram. This last section provides a summary of the results
in [131]].

4.1 Classical Hierarchical Spin Glasses

4.1.1 The n-level Generalized Random Energy Model

In this section, we want to review the classical GREM and the next subsection deals with its continuous
analog, the CREM. We will largely follow the presentation in [36, Chapter 10].

Let us give a concrete construction of the n-level Generalized Random Energy Model. First, we need
to pick a sequence of real numbers 0 = x, < x; < -+ < x, = 1, which define a partition of spin
configurations ¢ € Q, into n blocks 6 = o, ... o,. Each type o, consists of a fraction x; — x;_; of spins.

More precisely, we can write
6, € QY i= (—1 1NN e (1, n).

We further introduce a collection of independent standard Gaussian variables X, 6" X6,6,0 2 X6,6,0

and positive numbers a;, a,, ... a, > 0. For convenience, we assume that ZZ=1 a, = 1, however all
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results can be simply modified to the non-normalized case. The n-level GREM potential is then defined

as
Ue) := VN (\/a—lx,,l TN/ G \/a—nxt,lt,z,_,,,") .
The GREM is in contrast to the REM a correlated model, but with a built-in hierarchy which is reflected
in its correlation structure. To compute E[U (6)U (6')] for two configurations &, 6’ one first considers the
first blocks 0'1,0"1. If they disagree, we have a vanishing correlation E[U (6)U (6”)] = 0, otherwise one
considers the second blocks. If 6, # 0"2, we conclude that E[U(6)U(6")] = a; N, otherwise we continue
with the next block and so on. In that sense, the blocks ¢, define a hierarchy. More formally, U induces
a distance function dy;(¢,6”) := E[|U(6) — U(6")|*]'/? on the Hamming cube which is an ultrametric,
ie., dy(6,6') < max{dy(6,6"),dy(c",6')} for any 6,6’,6"” € Q. It is instructive to rewrite the

correlation function as follows:

E[U(6)U(c")] = N(alé,,l’,,rl + 0255152,6’16'2 + e+ ané,,l,,z...,,w,,/la;...,,;)
= A(gy(o,0")).
Here, we have introduced the lexicographic overlap
, 1 ife =o',
qn(o,0") := 4.1

%(min{l <i<Njo,#0/}—1) else,

and the distribution function A : [0, 1] — [0, 1] with jumps of height a, at x, for k = 1, ..., n. The term
distribution function refers to an increasing function on [0, 1] with A(0) = 0 and A(1) = 1. Consequently,
there is a one-to-one correspondence between n-level GREM potentials and distribution functions on

[0, 1], which are step functions with exactly »n jumps.

It turns out that the thermodynamics of the GREM is not governed by A itself, but rather by its concave
hull A: [0,1] - [0, 1],

A :=inf{G: [0,1] = [0, 1]| G is concave, and A(x) < G(x) for all x € [0, 1]}.

Note that A is well-defined since the set on the right-hand side is nonempty (it contains for the example
G = 1), and A is bounded from below by 0. Moreover, A is concave as infimum of concave functions and
it is not hard to see that it is again a distribution function on [0, 1]. In fact, in the case of a step function
A, the concave hull A is a piecewise affine-linear function, which agrees at a (typically proper) subset
{¥9: Y15 +--»Ym} C {x0,Xq,...,x,} with A and interpolates between y; and y,,; linearly. That is, there
exist some indices J; < J, < ... < J, = nsuchthaty, = x; and A(y,) = /i(le). At each interval
[¥;_1> ;] of length L, := y, — y,_; the concave hull increases by the increment a;, := A(y;) — A(y;_;)-
The slope is denoted by y, := a,/L,. Finally, we set the partial pressures (),

v |FPa L2 ifp< /@2y =2y,
oV(p) 1= “42)
p/@In2)a L, if f> /22y,
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of which one can think as rescaled versions of the REM pressure prpy. The specific GREM pressure

%@ ~(p) converges to the sum of the partial pressures o(p):

Theorem 4.1 ( [46], Theorem 10.1.10 in [36])
The GREM specific pressure %d) ~(B) converges almost surely and with the notation from above we

have

. 1 m
1\}1—r>noo ﬁq)N(ﬂ) = Porem(P) 1= Z{ o)

We see that if the concave hull A is supported by m+ 1 points {, ¥y, --- » ¥,, }» then the GREM undergoes

B i=14/@In2)y ",

where the /-th partial pressure switches from a quadratic growth to a linear function. If we decompose

m transitions at the inverse temperatures

6 = 6,6, 6, according to the sequence (y,);— ., this allows the following interpretation. At the
inverse temperature f, the first block 6 freezes. That s, if we write 6| = 6 --- 65, then first part of U is
givenby UV@)) 1= \/a,NX, +-+ a,NXg, ., »andfor f > p, the pressure is governed by those
6, with UD(6,) ¥ minUD. Similarly, at f, the second block 6, := & J, =+ 0, freezes at the minimal
energy configurations of U g)(&z). This blockwise freezing continues until the inverse temperature S,
where the total spin o is found at the ground state of the complete GREM potential U. In summary, the
thermodynamics of the GREM can be understood as hierarchical realization of m (not n) nested REM
models.

As in the REM, we are also able to determine the extremal statistics of the GREM. In fact, Theorem [.1]
can be seen as consequence of the results concerning the low energy statistics of the GREM. The minimal
values of the GREM are most conveniently described in terms of m-dimensional Poisson cascades, which
we introduce next. Let Y5 . Y5 5. Y5 5,..6,
some real functions on R such that the following point processes

be a collection of i.i.d random variables, and vy |, ... Uy

Zéu,\,l( wpe*"dx

Z‘Sum(,l,z WP,ysqy forallé,

ZéUNl( 5152 .6, L_U.pe‘xdx for allo']o'z...o-m

Om

converge weakly to Poisson point processes P,-x,, with intensity e”*dx. Then, the m-dimensional point

(m)
Z 6UN,1( ) Z UN, 1( "1‘72 Z 5UN 1( G169 m) E}>7)Ca-s
0

Oy

processes

converges to the m-dimensional Poisson cascade [36, Theorem 10.1.4]. In particular, it follows from
the above description that PC(Z:) can be constructed iteratively: for m = 1, PC(Z:) = P, and for m > 1

one starts with a one-dimensional Poisson point process P,-x4, on R and to each point x of this process
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plm=1)

one independently assigns a Poisson cascade P, ~ with a set of support points Q, C R™~!. The m-

dimensional cascade is then given by ), > O(x,y,) Which defines a point process on R™.

XEP,—x 4., V€O
As one might expect, in the case of the GREM the scaling functions vy ; from the above definition are
related to the function s (x) (3.7), which emerged in the discussion of the REM. This is a consequence

of the GREM being blockwise equivalent to a rescaled REM:

Theorem 4.2 (Theorem 10.1.5 in [36])
Let the GREM potential be non-degenerate, that is, we have the strict inequalities y; > y, > == > v,

m

between the slopes. Then with the notation from above

(m)
Z 5s<-1> L ue,)) Z 5S<—1> L y®6,) Z 6 (-1) L gm = Hpcas‘
Var ! 612 m "

= 5 —U_ - s —U." = (6
6, LN 6, LN\ & 6, "LmN\ G, 616,

Furthermore, if we introduce

m

NOEDY <N\/2 In24,L, — %w / 21y112(1n(2L, In2N) + 1n47:)) +x,

=1

then the minimal statistics — rescaled with S ;lN — converges weakly,

Z 55;}1\,(U(a)&/Rm 7’5('1"5)(dx1,...,a’xm)az;,,=1 VA

oc€Qy

In particular, Theorem .2 tells us that the minimum of the GREM potential is found at

minU = )" <N\/2ln2é,L, -~ %\ / 2lyr’12(1n(2L, In2N) +1n4ﬂ)> +0O(1).
=1

The final point we want to review about the GREM is its Parisi measure u% ([-1,4]) = [E[,ufis y(=LgD] =

E [(]l Ry Sq)?z]. In the REM, the Parisi measure converges weakly to either &, in the high temperature
phase or to a combination of 6, and ¢, in the glass phase, mirroring a 1-step replica symmetry breaking.

In the GREM, we have in total m-transitions which are reflected in its Parisi measure as well.

Proposition 4.3 (Theorem 10.2.7 in [36])
The Parisi measure ;4]1:] converges weakly to a point measure u® which is only supported at the points

Y0 V1s -+ V- Moreover, the limit u® is characterized by

O ) S El
Wy =4 o=
=2 ifp>p

forl=1,...,m

That is, at each critical inverse temperature f, the support of the Parisi measure u” increases by an
additional point located at y,. In total, we observe an m-level replica symmetry breaking in the GREM.

So far, we have considered the distribution of the replica overlap after taking the mean over the sampling
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disorder. In fact, one can also characterize the convergence of the random measure y(ll)is’ ~- The replica
distribution is not self-averaging and, thus, its limit ,u(ﬁs will still be a nontrivial random measure. To
present the distribution of ycﬁs, we need to introduce the Ruelle cascades W;";), which are also of relevance
in the study of the SK model. Wl(i";) is a point process on (0, 1]" with parameters f > 0 and @ € R’
Its atoms w(i) = (w,(¥), ... w,,(i)) can be described in terms of the atoms x(i) = (x;(), ..., x,,(i)) of the

m-dimensional Poisson cascade Pc(:fs),

ey

/ Pé;';)(dy)eﬁm,y) " / Pc(g)(dy)eﬂmw

(010 (1) = ( [ PGAdy)s(y, — x,()eP@ [ PLUAYS(y; — x, () - 6(y,, - xm<i>>eﬂ<“»y>>
1 9 0o m - .

The Ruelle cascades satisfy the important relation

Wit

VACTAS))

1
D
ngf'g(dwl,...,dwm)zfo wrh e @Gw,, ... dw,,dw,,,)

m

in distribution. To formulate the convergence of the replica distribution, it is convenient to introduce the

integer valued function /(f) := max{!/|f > f,} where f, := 0.

Theorem 4.4 (Theorem 10.1.14 and Theorem 10.1.15 in [36]])
The disordered Parisi measure ,uf;l.s N converges in distribution and in mean to a random mea-
sure ,u(lgs. If I(f) = 0, we have Mclz’;s = 0y and otherwise Mcli;s is a point measure with support

{0, yy, ... ,y,(ﬁ)} and random distribution function

(dwy, ..., dwyg)w g1 —wiy),

1wk (-1,y,) = / w!@
is ! ﬁ’m\/;

fori=0,...,1(f)—1and #Zs([—l, Yip)) = 1. Here, \/}_' = (\/y_, - »A/71(p)) denotes the collection
of the slope’s square roots.

4.1.2 The Continuous Random Energy Model

To define the Continuous Random Energy Model (CREM), our starting point is the representation of the
GREM covariance function in terms of the distribution function A, i.e., E[U(6)U(c¢")] = A(q(c,0")).
While the GREM requires A to be a step function, in the CREM we allow A to be any distribution
function, in particular A can be continuous. Obviously, the CREM includes the GREM as special case,
but we choose to call the finite-level case a GREM and the term CREM is reserved to describe more
involved potentials. Let us remark that the CREM is well defined, that is, for any distribution function A

there exists a unique centered Gaussian process on Q »; such that
E[U(0),U(¢")] = A(q(6,6")) forallo,6’ € Qy.

Uniqueness is clear, as a centered Gaussian vector is characterized by its covariance matrix. For the
=l
That means for fixed N the CREM potential agrees with a N-level GREM whose distribution function

Ay 1s chosen to be a step function which agrees with A at ¢ = 0, %, %, ..., 1. We see that the CREM

can be understood as a GREM with an increasing number of levels as N grows.

existence, one notes that the lexicographic overlap g only takes the N + 1 different values 0, %
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The thermodynamics depends again on the concave hull A of A. The slopes y, and increments @, are
replaced by the right derivative @(x) of A(x). Here, we recall that the right derivative exists everywhere

and is a decreasing function since A is concave [[169]. Let us further introduce the function x(f),

() = ;up{x € [0,1]]a(x) > 2In2)/p%} if {x € [0,1]]a(x) > 2In2)/f*} # @ 43)

else.

The function x(f) replaces the integer-valued function /() from the discussion of the GREM and, as we
will see shortly, can be recognized as the fraction of the spin block which is frozen. Indeed, we have the
following result for the CREM pressure:

Theorem 4.5 (Theorem 10.2.4 in [36]])
Let U be a CREM potential with distribution function A. Then, the specific pressure %d) ~(B) con-

verges almost surely

x(p) 2 )
lim 0 (8) = pegen(P) = V2In2 /0 VaG) dx-+ (0= A + (1 = x(p)n2.

The first x(f#)-fraction of the Hamming cube contributes linearly to the specific pressure, i.e., this spin
block is concentrated on the minimal configurations of the corresponding part of the CREM potential.
The remaining fraction shows a quadratic contribution which agrees with the annealed specific pressure
of the remaining potential. The glass transition occurs at the minimal inverse temperature f, for which

x(f) > 0if p > p.. An explicit expression is given by

p. = \/<2 In2)/lim atx),

which implies that . = 0 occurs if A has an infinite slope close to zero. In that case, we have a glass
phase for all positive temperatures. On the other hand, a complete freezing, that is a vanishing specific
entropy, occurs for those f where x(f) = 0. In contrast to the REM and GREM, it is possible that the
CREM never freezes completely, namely if lim,;; a(x) = 0. On the other hand, if lim,,; a(x) > 0,
for low enough temperatures the Gibbs measure is concentrated at those configurations ¢ with U(6)/N
being close to the specific ground state energy —\/m /01 \/@ dx. Describing the extremal process
of the CREM, is much more difficult than in the GREM and as far we as know has not been completely
achieved. The common approach for describing the CREM minimum is to map it to the running maximum
of a branching Brownian motion. This leads after a careful analysis to the subleading corrections of the
minimal CREM energy [74].

These observations already suggest that the CREM has a substantially richer structure than the GREM.

This is also mirrored in its Parisi measure
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Proposition 4.6 (Theorem 10.2.7 in [36]] )
In the CREM, the averaged replica overlap distribution yﬁ converges for any p to a measure u*

supported on [0, 1]. Its distribution function is given by

2In2 .
wP([0, q1) = 4 #Va if g < x(B),

1 else.

In particular, for a strictly increasing concave hull A the Parisi measure x? will contain an open interval
in its support. One speaks of continuous replica symmetry breaking to distinguish this case from the
finite-level replica symmetry appearing in the GREM.

Describing the limit of the random measure “(ﬁs, - 1s more involved compared to the GREM. Since the
limit does not contain only finitely many atoms, a direct approach via cascades and related processes
is not feasible. To understand the Gibbs measure, one derives Ghirlanda-Guerra identities, that is, one
considers the Gibbs measure of n replicas 6!, ... 6™ for which one characterizing identities in mean.
That is, instead of considering the disordered distribution of R, (e, 6”) one rather considers the mean
distribution of n replicas for general n. It turns out, that the Ghirlanda-Guerra in the CREM uniquely
characterize the distribution of ,uf;is whose marginals at finitely many points are again described by Ruelle
cascades [36, Chapter 10.2.2]. We will discuss the Ghirlanda-Guerra identities for mixed p-spin models
in Chapter 5]

4.2 Phase Diagrams of the QGREM and QCREM

We want to discuss the quantum versions of the GREM and CREM, the QGREM and QCREM. That is,
we consider a Hamiltonian of the form
Hy =U-B,

where U is an GREM or, more generally, a CREM potential and B models the transverse field, whose
strength we allow to depend on the site i — in contrast to the uniform magnetic field I'T in the last chapters.

B is now the sum of the x-Pauli matrices s; with (possibly random) weights b; € R,

N
(By)(o) := ij (s,w)(0), (s;w)(0) :=w(o),....—0j,....0N), 4.4)
j=1

To avoid confusion with truncated operators which will occur later, we write s; instead of SJ’.‘ in this
chapter. A simple computation exploiting the exponential series shows that the diagonal matrix-elements
(6|e PU=B)|g) and, consequently, the quantum partition function Tr e #U=8) only depends on the ab-

solute values (|b;]);=;, . n [130, Lemma 1.1]. This observation is helpful if one wants to make use of the

.....

fact that H 5 generates a positive semigroup,
(@le™V]o") 2 0,

if all the weights b; are non-negative. This can be assumed without loss of generality as it has no impact

on the partition function

61



HIERARCHICAL QUANTUM SPIN GLASS MODELS

We will only consider the case where the weights b; are independent copies of an absolutely integrable
random variable b and we require them to be independent of the Gaussian potential U. In this chapter,

we write for the partition function
Zn(B,b) i=Tr [e7PHN],

and the pressure is denoted by
@y (f.b) :=1In Zy(B,b).

If b = —TI" is almost surely constant, we write as in the last chapters B = —I'T and ® 5 (f,1") for the
pressure.

Our first main result concerns the pressure of the QGREM. We show that the specific pressure converges
almost surely to a deterministic limit, which can be expressed in terms of the classical partial free energies

(&.2) and the paramagnetic free energy. We stick to the notation from the previous section.

Theorem 4.7 (Theorem 1.2 in [130])
Let U be an n-level GREM with distribution function A, p > 0 and b an absolutely integrable random

variable. Then, the QGREM specific pressure converges almost surely,

k
1
Aim @ (B, B) = pogren(f. b) 1= max ;(p(l)(ﬁ)ﬂl—yk)[E[ln(Zcosh(ﬁf’))] . 45

The maximum is taken over all points {yy, ¥y, .-, ¥,y } Supporting the convex hull A of A.

As in the classical case, the concave hull A, rather than A, remains the determining function for the limit.

The second term in (4.5 is the pressure of the random quantum paramagnet given by

Ppar(BD) 1= %[E [InTr [e’®]] = E[In (2 cosh(Bb))],

which can be derived in the same way as has been shown for the constant field I'T" in Section [2.2] If

b = —T is almost surely constant, the structure of the limit in (.5])) becomes more transparent if we

introduce the critical field strengths

0]
FE’) = %arcosh (%exp <¢T§m>> , le{l,...,m}.

In this situation, we may rephrase (4.3) as follows:

Corollary 4.8 (Corollary 1.3 in [130])
In the situation of Theoremd.7\with b = =T for some constant T" > 0:

pQGREM(.B, I = Z <(p(1)(ﬂ) ]ll“<1“£l) + L;In (2 cosh(pI")) ]ll"zl“g)) . (4.6)
=1

Just like the GREM being equivalent to m nested REM model, the QGREM pressure coincides with
the sum of m weighted and rescaled QREM terms. In particular, there are as many magnetic first-order

transitions as second-order glass transitions. The glass transitions continue to occur at the (classical)
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critical inverse temperatures f; as long as I' < FEI)(ﬂ,) and disappear for field strengths I" > Fg)(ﬂ,);
see Figure The specific magnetization in x-direction

10

JI) 1= ==, T

m(f.1) 5T (8.T)
changes discontinuously at I' = rﬁ”. At zero temperature, we find quantum phase transitions at the
field strengths FIGS = lim,_, r'#) = v/(21n2)y®. The physics described by (@-6) is that if we write
o = 6, -+ 6,,, each of the blocks 6, either shows a completely classical behavior or is of paramagnetic
nature. For I' = 0, all blocks are classical and as I" increases and meets the critical field strength rff)
the block 6, switches to a paramagnetic behavior. Since ) > -« > T'™(p), the transitions follow
the reversed order of the blocks, i.e., 6, decides first to become paramagnetic, then 6,,_; and so on. For

" > 'V, all blocks are paramagnetic and the QGREM pressure then agrees with ppag (A1).

Quantum

Paramagnet

Temperature 5

2In2ya ' 2In2y2 ' 2In2y
Magnetic Field T

Figure 4.1: Phase diagram of the Quantum GREM as a function of the transversal constant magnetic
field I" and the temperature f~! [[130, Figure 1]. The figure shows an example with three second-order
glass transitions (dotted lines) and three first-order magnetic transitions (bold lines). If I" < F£3)(ﬁ,) the

free energy coincides with the classical one (I' = 0), whereas for I" > Fg)(ﬁ,) the system becomes a pure
quantum paramagnet. In between mixed quantum-classical phases appear.

Moving on to the more general CREM potentials, it is convenient to introduce truncated versions of the
CREM pressure. For any z € [0, 1], we define

min{
pcrem(B, 2) 1= \/21n2/3/
0

Pz} g )

Va(x) dx + 1, <7<A<z) — A(x(B))) + (z = x() In 2) :
4.7)

For z = 1, that agrees with the limiting CREM pressure from Theorem If A = A, then the truncated

pressure for 0 < z < 1 can be understood as the limiting specific pressure of the CREM on the subgraph

consisting of the first zN spins and ignoring the contribution of the remaining spins. As in the quantum

GREM, the free energy of the quantum CREM converges almost surely and the limit may be expressed

as a variational formula involving pcrpm(F, 2):

63



HIERARCHICAL QUANTUM SPIN GLASS MODELS

Vall} NET) \ali]

s s

S Classical Mixed Quantum S

R R @

5 =1

8 CREM Phase Paramagnet g Quantum
) 4

£ £

2 8 Paramagnet

2 nda1] +/2IuZa() /2Tn2a0]
Magnetic Field T Magnetic Field T

Figure 4.2: Both figures illustrate examples for the phase diagram of a Quantum CREM as a function
of the transversal magnetic field I" and the temperature f~! [130, Figure 2]. The first plot contains two
magnetic phase transitions (bold lines) into transversal magnetic order. The second plot shows the case of
one magnetic phase transition. The dotted line corresponds to the glass transition at . = 1/(21n2)/a(0).
If A is continuously differentiable, the magnetic transitions are of second order.

Theorem 4.9 (Theorem 1.4 in [130])

Let U be a CREM potential described in terms of its distribution function A with concave hull A and
Perem(Bs 2) as in @T). Then, for any absolute integrable random variable b the specific quantum
pressure %(D ~ (B, b) converges almost surely,

Al,i_{nm %QN(/}, b) = pocrem(B.0) 1= OSUP1 [pcrem(B 2) + (1 = 2)E [In2 cosh(pb)]] . (4.8)

As we have now stated the main convergence results of this chapter, we remind the reader that the specific
pressure in the QGREM and QCREM does not only converge almost surely, but also in mean. This is again
a consequence of Gaussian concentration inequality (Theorem[2.4). Due to the additional randomness of
the transversal field B, convergence in higher mean depends on the integrability of b. If bis an L"-random
variable for some r > 1, the pressure even converges in r-th mean.

Theorem [4.9] is the natural generalization of Theorem to the QCREM: the finite maximization is
replaced by a continuous variational formula. This is a consequence of having infinitely many types
of spins so that the fraction z of spins which behave classically is not restricted anymore to the finite
number of support points y;, but can be any number in [0, 1]. Accordingly, the partial pressures need to
be replaced by a continuous truncation which is given in form of pcrpp(f, 2). In order to characterize
the magnetic phase transitions like in the QGREM , we replace the variational formula (.8 by a more

explicit expression in the constant field case b = —T.

To simplify the analysis, we assume from now that the concave hull A is a continuously differentiable

function with a strictly increasing slope a(x). We note that x(f) is either O or 1, or by definition of x(f)
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(.3) and the continuity of a(x) we have a(x(f)) = 21“2

respect to z with derivative

GPLMU}Z) \/(2111T¢(Zﬂ ILKx(ﬂ) + <ln2 + ﬂ—a(z)> z>x(B)*

. In either case, pcrpm(f, 2) is differentiable with

The monotonicity of a clearly implies that the partial derivative % 2 [0,1] - [s(f),t(p)] is for

any f anondecreasing continuous function in z, whose range is a closed interval specified by its boundary

values
Opcrem(b. 2)

opcrem(Bs 2) |
z= 0z z=0

0z
We are ready to give an explicit formula for the QCREM pressure:

s(B) = and  #(B) =

Corollary 4.10 (Corollary 1.5 in [[130])
In the situation of Theorem let A be continuously differentiable with strictly increasing slope
and b = T almost surely. We set g(f,) : [s(f),t(f)] — [0, 1] to be the inverse of the derivative

B : .
dpcren2) 0 function of z. Then,

0z
Pcren (P 1) Ppar(PL) < s(P),
Pocrem(B-T) = perpm (B 8s(Ppar(P1))) + (1 — g5(ppar(BDPpar(PT)  s(B) < ppar(PT) < 1(P),
ppar(AL) 1(f) < ppar(PL).

We recall that ppyp(fI') = In 2 cosh(pI).

Corollary implies that there are either one or two magnetic phase transitions, depending on s(f). If
s(f) = In2 or, equivalently, @(1) = 0, we find a single magnetic phase transition at the critical magneti-

zation
F(’)(ﬂ) 5 arcosh <; ’(ﬂ)>

Otherwise, there is a second phase transition at

ropg) = 5 L arcosh (2 Sw))

We are able to compute the specific magnetization in transversal direction

) 0 Ppar(P) < s(P),
m, (B, I) = ; anQCREM(ﬁ D=41- gﬁ(PPAR(ﬁF))) tanh(fI)  s(f) < ppar(BD) < 1(P),
tanh(fI") 1(B) < ppar(AD),

which follows by taking the I"-derivative of the explicit expression in Corollary If s(f) < ppar(PT) <

1(), one recalls that 22cr (-2
o 2=g5(Ppar)

. . . 1 . .
transversal magnetic order does not vanish over the line rﬁ’)(ﬁ), but rather only at I' E, )(,B) (which is ab-

= ppar- Note that the magnetization is as result continuous. This

sent in the case a@(1) = 0). If the derivative of a(x) exists at x = 0 or x = 1, the second derivative of
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Pocrem(B, ) has a jump at the respective critical magnetic fields and we have a second-order magnetic
transition, in contrast to the observed first-order transitions in the QGREM (see also Figure .2).

In our work [[130], we also discuss the non-hierarchical GREM, which was introduced in [33]]. As it turns
out that the quantum version of the non-hierarchical GREM has got the same phase diagram as a specific
QGREM, we have not included its discussion here. It is still remarkable that for this simple model,
we also discover a hierarchical reorganization of the system. Ultrametricty is a characteristic feature of
classical spin glasses, and it is not clearly to what extent it governs quantum spin glasses. In the following
subsection, we want to present some ideas on which the proof of the Theorem [.7) and Theorem (4.9 are
based. In another subsection we discuss what we expect for the extremal statistics and the Parisi measure
in the QGREM and QCREM.

4.2.1 Peeling Principle and the Interpolation Argument

We have seen in the discussion of the QREM that if the deep holes of a energy landscape are isolated
from each other, then the specific pressure simply coincides either with the classical one or the fully
paramagnetic one in the thermodynamic limit. The idea of the peeling principle is to derive this result
in much greater generality. The general setting is as follows. We pick a parameter 0 < x < 1 and
accordingly decompose the hypercube Q , into two reduced hypercubes of spin arrays of length [x V|
and N — [xN]. We write

o= (0,,0,) €Qy, whereo| € Q(A],) i=Qwyando, € Q(]\Z/) 1= OQN_[xN]-

We consider Hamiltonians H = U — B, where U is a random potential on Q5 and B is a random

transversal field. Both, U and B, need to meet several assumptions. Let us start with the potential U.

Assumptions 4.11 (Assumption 2.1 in [130])
The random potential U on Q y takes the form

U(6) = Vy(0) + X,

with some random potential Vy which is independent of the random process X, . The random

variables X with o, € QE\II) are absolutely integrable, centered, and satisfy:
1. X, are independent and identically distributed for each fixed N € N.

2. The pushforward measures yy of the negative parts X o / N satisfy a large deviation principle
(LDP) with a lower semi-continuous rate function I : R — [0, 0], i.e., for any Borel set
ACR,

. .. 1 . 1 .
— f I(x)<l1 f—1 <1 —1 < - f I(x). 4,
xentA) o) S B N HN (A=< Msup Ny AN (A) < recios(A) ). (49

Moreover, we assume
inf  I(x)>0 (4.10)

x€(—o0,—¢]

for any € > 0.
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3. For any random weights We, which are independent from X o, and further fulfill almost surely

1
lim Y w, X, =0. (4.11)

The assumptions that U takes the form U(e) = Vi (6) + X, is chosen with the GREM in mind because
it allows us to split the GREM potential iteratively in a independent process X,; and some correlated rest
V(o). But V) can also cover longitudinal fields and this will be of importance in the discussion of de
Almeida-Thouless line.

The LDP @.9) together with (#.10) ensures that probabilities of the type P(X, < —eN) decay exponen-

tially in N for any € > 0. Assumption (.11) is a rather technical condition which is convenient for the

proof. Random variables X, which meet Assumption@.11jare e.g. X, = v/ Na¥,; with independent

standard Gaussians Y, and some a > 0, or X, = -NZ, , where Z, are independent and follow an
exponential distribution with parameter N. In these examples, the rate function is given by the negative
part of I(x) = §x211x<0 or, respectively, I(x) = |x|1, .

Let us turn to the magnetic operator B. The transversal magnetic field B = Z}.zl b;s; as in (4.4 consists
of random variables (b;) which we even allow to be not independent from each other. The transversal

field B splits into two parts B'* and B>*, which act exclusively on the respective part of the array,

[xN1 N
BY™ := Y bs. B := Y bs,.
i=1 i=[xN]+1

If x = 1, we simply set B>! = 0. Subsequently, we assume the following on the transversal field B:

Assumptions 4.12 (Assumption 2.2 in [130])
The random weights (b;) are independent of the potential U and satisfy almost surely

limsup N~!

N—o0

If the weights (b;);_, y are independent copies of an absolute integrable random variable b, then As-
sumption is satisfied [[130, Lemma A.2]. If Assumption and hold true, our main results
states that the pressure

Oy (B) :=InTr [ePU~D)]

asymptotically agrees in leading order with the maximum of the pressures of partially quantum or classical

type
SV i=InTr [#PP] and OF(p) = InTr [ 0]

The formal statement is as follows:
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Proposition 4.13 (Theorem 2.3 in [130])
Under Assumption[d.11|and for any x € (0, 1] we have the almost sure convergence

lim sup - @, (8) — max (@™ (5), B ()| = 0.

N-—-oo

Roughly speaking, the independent variables (X, ) and the accordingly restricted magnetic operator B>
only contribute separately from each other to the pressure. This peeling principle can be seen as general-
ization of Goldschmidt’s formula (2.6).

The limit formula for the QGREM pressure ({.5)) is obtained via iterative use of Proposition #.13] Let
us make the idea transparent in the case of a 2-level GREM U = \/F <\/a_1 Y, + \/ZYQ,l 62> with
loy| = xN. We first use the peeling principle with X = y/Na,Y; , and V' = \/N_alYGI. This yields

]Jiinm%'@N(ﬂ)—max{lnTre—ﬂU,lnTre"’ Nade, =Byl — g,

The second term is further simplified by invoking the peeling principle again with X = y/Na,Y; , ie.,

lim L @, () — max{InTr e PU InTr e PVNOYs, _B(Z’X), InTr ¢ PVNaYs ~BY }

=0.
N-oco N

The first term in the maximization is the pure GREM, the last term the paramagnet and the middle term a
truncated GREM in the first block and a paramagnet in the second block. For the general n-level GREM
this leads to a formula much like in Theorem.7, however, the maximization seemingly needs to be carried
out with respect to all n 4+ 1 points x;. Some technical considerations show that in fact the maximum is
attained at some y,;. The details can be found in [[130, Section 2 and 3].

Let us discuss the main concept used to extend the QGREM results to the QCREM. As in the proof of
the classical Theorem @] [40]], we make use of the Gaussian interpolation formula, which we state here
for the seek of completeness:

Proposition 4.14 (Lemma 1.3.1 in [181]])

Let F: RM — R be a two times continuously differentiable function whose second partial deriva-

tives grow at most exponentially, that is, for all i,j = 1,..., M there exists some ¢ j > 0 such
that
2
a F (x) <eci,j||x”'
0x;0x; -

Moreover, let U and V' be two RM -valued Gaussian vectors and we assume that U is independent
from V. We introduce the interpolated Gaussian vector U (t) = \/:U F \/;V and the function
0,

0@ :=E[FU))]

for 0 <t < 1. Then, for O <t < 1 we have

oo 1 B 0*F
0'() = D ([E[V,.Vj U,U,1E [ax,.aij .

i,
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To prove Theorem we use Proposition on the 2"V -dimensional Hamming cube Q  with F(U) =

Tr e #U+B) and U, V being at first two arbitrary centered Gaussian processes,

0%0(1) N 0%0(1)
oU,0U, ~ V0V,

1
1
Eyy [61) - 00)] = 7 Z/ (E[V(6)V (6")] —E[U@)U (@) Ey [ ;
+JO
0.6
where E; ;, denotes the expectation with respect to U and V/, that is, we do not take the average with
respect to B. In contrast to the classical setting, the second partial derivatives of ®(¢) are more involved,

but still can be computed via Duhamel’s formula:

PO, PO __ (el I , o [* el N ),
= — S
oU,oU,, " av,aV,, (Tr eH: )2 0 Tr e

with the abbreviation H, := —p(\/1 —-tU + \/;V — B). Now, we make use of the observation from the
beginning of this section. Namely, we may assume without loss of generality that b; > 0 such that the

matrix elements (¢ |ef’|6’) are nonnegative for any &, 6’. Moreover, we observe that

B

3 {elelo)elee) | _ 5 /1 (elelo") (o' |0 9" e) |
0

(Tr eHi)2 Tr e

6.0/ o6/

where the first equality follows by definition of the trace and for the second identity we recall that

Y. l6"){c6’| = 1. Consequently, we arrive at the bound
|Ey.y [0(1) - 00)] | < §° max |E[U(6)U(6")] — E[V (6)V (6")]|.

In the case where U and V' are CREM processes with distribution functions A;; and Ay, this leads to the
bound
|Ey.y [0(1) = 00)]] < AN Ay — Ay |-

From here, the idea is to approximate the CREM process by GREM processes and to show that Theo-
rem[4.7)in the continuous limit indeed yields Theorem .9

4.2.2 Open Problems: Extremal Statistics and the Parisi Measure

Our main results Theoremd.7]and Theorem[d.9| provide a complete characterization of the phase diagram
in the QGREM and, respectively, the QCREM. Thus, we have managed to extend the classical results on
the specific pressure in the GREM (Theorem [.1)) and CREM (Theorem [4.5) to the quantum setting.
On the other hand, we have presented in Section {.1] more detailed results on the extremal statistics of
the GREM and and a precise description of the Parisi measure in both models, the GREM and CREM.
Rigorous results on that line have not been established for the QGREM and QCREM so far. In this section,
we want to discuss what we expect to hold true for hierarchical quantum spin glasses and which methods
might be used in (hopefully) forthcoming proofs.

As we have seen in Theorem [4.2] the extremal process of the GREM is governed by Poisson cascades
which can be constructed iteratively following the block structure of the GREM. These findings generalize

the elementary Poisson convergence in the REM. We recall that for the QREM, we have a given a precise
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description of the low energy states and energies from which the extremal statistics in either phase follows,
see Theorem and Theorem It is hence natural to expect that it is feasible to provide a similar
precise analysis of the low energy spectrum in the QGREM. Of course, in the QGREM one needs to take
care about several blocks 6, which all can be either paramagnetic or localized. However, one can still start

from a naive second order perturbation theory with the reference state y = |6'(1) 6'1( ﬂ)) ® ‘P;l(ﬂ ). Here

~0 ~0
0'1 cee o'l(ﬂ)

to the "frozen" part of the Hamming cube; and similarly ‘le(ﬂ ) denotes the ground state of T restricted to

denotes the minimal configuration of the truncated GREM potential at /(#), which corresponds

the remaining Hamming cube. The predicted energy shift is in any phase a linear combination of energy
corrections, which have already appeared in the discussion of the QREM. One can convince oneself that
the predicted shifts depend on the whole distribution function A and not just A. One should compare that
to the classical subleading corrections in Theorem.2]for non-degenerate GREM processes (in the case of
degenerated GREM processes one observes differences [39]] ). We think that our methods from ChapterE]
are strong enough to confirm these energy predictions for the QGREM. As in the proof of Theorem[4.7]
one would need to consider the Hamiltonian blockwise and presumably an iterative argument would
eventually lead to a description of the low energy states and eigenvalues. However, this procedure would
require considerable additional effort. If those presumptions are correct, the extremal process would be
a combination of the Poisson cascades describing the contribution of first /(f) blocks and a deterministic
gapped process related to the eigenvalues of T in the remaining part of the Hamming cube.

In the continuous case, we can say much less. We remind the reader that already the minimal statistics
of the CREM is not well understood. We do not expect that the methods we have derived will provide
further insight into the QCREM. Understanding the low energy properties of the QCREM beyond the
leading order, appears to be a very challenging problem.

Let us turn to the Parisi measure in the QGREM, which we similarly define as ,u]f,(A) =E[(1,(Ry(o,0’ ))??],
for any Borel set A C [—1, 1] and the thermal average is understood to be with respect to the Gibbs state
on the duplicated system p; - ® ps . We conjecture that the natural extension of Proposition @ holds
true for the QGREM:

Conjecture 4.15

For any p,T" > 0 the Parisi measure ,uf] converges weakly to a measure /,15’ 1 supported on the points
{¥9>---» V). Let ,u;; be the classical limit and let | where the maximum i attained in @3), i.e., the
blocks 1, ..., 1 behave classically and the remaining ones are of paramagnetic nature. Then, except

or the critical magnetizations 'Y the Parisi measure is characterized b
8 c y

Whla. 1) ifq<y

P
Uy (g, 1]) =
- ifqg>y;

Conjecture [4.13]is very natural in view of Theorem If we write for the replica overlap

Ry(.6") = Ry " (6.6") + RY'(6.6")

1

with Ry V(6,6") = + ¥ ~(©.6") = % X.., n 0i0]. Since the blocks 6; with 1 > [

. ., . >y ., .
show a paramagnetic order, it is natural to assume that we have R Ny’ (6,0") =~ 0 as it is true for the pure

!/
i<=y;N Oi0; and R
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paramagnet which dominates the Hamiltonian for the later spin configurations. On the other hand, the

<=y n o L
N (6’6)_ N

classical distribution as the thermodynamics coincide with the GREM for the first y; N spins.

distribution of the first part of the replica overlap R > <=y,N Oi o] should agree with the
To prove Conjecture .15 one might try to adapt the classical technique which is used to derive Proposi-
tion4.3} one takes the derivative of the GREM pressure with respect to the jump heights a; of the GREM
distribution function A and realizes that the obtained relations already characterize the averaged distribu-
tion of the lexicographic g. In a second step, one shows that lexicographic overlap and the replica overlap
asymptotically agree [39,40]. If one invokes these ideas in the QGREM, one observes that 9, @ (8,1
is not that easy to compute anymore as one needs to apply Duhamel’s formula and the main challenge
is to cope with the Duhamel correlators. We have developed methods to analyze these correlators, but
unfortunately these are only available in form of private notes and have not been published yet due to lack
of time.

At first glance, it appears to be much more difficult to extend Theorem {.4] on the disordered overlap
distribution to the quantum setting. However, one might use the same trick which was used to derive
the disordered distribution in the CREM. That is, one needs to extend the Ghirlanda-Guerra relations on
multi-overlaps to the QGREM, which appears to be of comparable difficulty as a proof of Conjecture[d.15]
This would eventually show that the distribution of R, with respect to the GIbbs state is still describable
in terms of Poisson-Dirichlet processes. We also expect that the Parisi measure in the continuous case
satisfies the quantum analog of Proposition 6] It is hard to judge, if it is much more difficult to prove
results for the QCREM then for the finite-level QGREM. The technique on the classical side is essentially
the same but the analysis of the Duhamel correlator appears to be more involved than in the QGREM

situation, where one only needs to consider finitely many blocks.

4.3 A Look at the de Almeida-Thouless Line in the SK Model

One central question about spin glasses in external magnetic fields is whether the fields destabilize the
low-temperature glass phase or not. For the SK-model in a constant longitudinal field, de Almeida and
Thouless [57|] determined an equation for the critical temperature T, (4), which turns out to be decreasing
in the field strength A and is known under the name de Almeida-Thouless (AT) line. More precisely, the
AT line in the SK model separates the replica symmetric phase from the region, where replica symmetry
breaking occurs. In the following, we want to provide some insight into the classical problem of the AT
line in the SK model before discussing later the AT line in the context of hierarchical spin glasses. This
section is largely based on the presentation in [[181] Chapter 1.3-1.8, 13.2-13.3].

We consider the classical SK-Hamiltonian

Hy(o)=U(o)+ h(o) := 1 Z 8 j0i0; + h Z o;,
\/F i<j i
where the first term corresponds to the SK potential and A(6) := h ), o; is the standard implementation
of a vertical field of strength 2~ > 0. A general paradigm for classical spin glasses is that the system
is replica symmetric for high enough temperatures, i.e., the replica overlap Ry (6,6’) ~ g concentrates
around a specific value g € [0, 1] with respect to the Gibbs measure. In the REM, this holds true with

g = 0for § < B, see Proposition[2.3] Let us assume for the moment that replica symmetry holds true for
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some 3, h > 0. What can we say about the pressure and the value of ¢? The idea is if Ry (6,6”) ~ ¢, then
the SK Hamiltonian is comparable to a Gaussian random field \/5 2,1:1 z;0; whose covariance process
agrees up to a constant shift with the SK covariance for Ry (6,6’) ~ ¢. It was Guerra who realized
how to use Gaussian interpolation (Proposition[#.14)) to convert this sketched comparison into a rigorous
upper bound for the pressure [98]]. Let us present Guerra’s beautiful idea: we introduce the interpolated
Hamiltonian

v Vi

H, (o) = \/:\/E Z Z;0; + —— Z 8i,j0,0;+h Z o;

i=1 ﬁ i<j i

and the corresponding specific pressure O(t) := %[E[ln Tr e#H] for some f > 0. Now, we apply Propo-

sition .14} the resulting derivative can be compactly written as

2
L

00 =55

[<A(G’6)>t - <A(6’6,)>t] ,

where A(e,7) := E[U(6)U(r) — U'(6)U’ ()] denotes the difference between the covariance processes.

In our situation, we have
A(o,0)) = %(NRN(O',O'I) —1)= NgRy(o,0").

This results in the remarkable expression

2 2
%(1 -q)° - Z[E[«RN(O-’G,) - %)+ O(1/N),

o' =
where the difficult term has a definite sign. Since ®(0) = [E[In2 cosh(f \/Ez + ph)] with a standard
Gaussian z, we obtain Guerra’s replica-symmetric bound

lim

N-oo

2
O < prsta. . = Eln2cosh(py/gz + p)l + 21 - 2

Optimizing, with respect to ¢ yields the determining equation ¢ = E[tanh?(8 \/Ez + ph)], which has
always a unique solution grg for 2 > 0 [181, Proposition 1.3.8]. If the external field vanishes A = O,
there is only the solution g = 0 for high temperatures § < 1, and prg(0, #, 0) agrees with the annealed

pressure. A second solution g > 0 emerges for low temperatures f > 1.

Let us remark that ggg is a self-consistent choice, i.e., the Gibbs measure of the comparison Hamiltonian
concentrates at Ry (6,6’) ~ qrg. For high enough temperatures, a more subtle interpolation argument
shows that (R y (6,6") — qrs)*), = O(1/N) for any ¢ € [0, 1] [181, Theorem 1.4.1], which by the above

is enough to prove
1
]\}1_{1100 W(DN(ﬂ’ h) = prs(qrs: B, h).

Sherrington and Kirkpatrick originally claimed that the replica symmetric solution should hold for any

temperature [166], but by now it is well known that this prediction must be wrong as it would lead to a
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negative entropy for low temperatures [[135]]. The numerical calculations performed by de Almeida and

Thouless suggest that the replica symmetric solution is valid if and only if

2
E b <1, (4.12)
cosh4(ﬂz, /qrs + )

and the curve in the (g, h)-plane where equality holds, is the conjectured AT line which marks the tran-
sition between a high temperature phase and a glassy phase in the SK model. Since grg is monotone in
h, the AT line is in accordance with the widely assumed hypothesis that magnetic fields destabilize the
glass phase [135]]. To obtain some intuition why the AT line is determined by {@.12), it is instructive to
compute the variance of the replica overlap in the high temperature phase (f < %) [[181} Corollary 1.8.6],

o(1)
(1= p2(1 = 2qgs + )

E[{((Ry(6,6") — g)*)] = ~

SL AL 4 . . _ A 1
with § := E[tanh™(fz4/qrs + A)]. The elementary identity 1 — 2ggq + § = E [—Cosh4(ﬂz \/Rﬂih)] then

indicates that a transition might occur exactly at the AT line. An important step towards a proof was

taken by Toninelli, who showed that if E ] > 1, then the replica symmetric solution is

Y
cosh*(Bz+/ars+5h)
false [185]]. Actually, Toninelli showed more: pgpg agrees with the limiting specific pressure if and only

if
Prs(drs, B, B) = qig,fmpl.RSB(q, q.,m, B, h)

with the so-called 1-step replica symmetry broken pressure

2
%m(q’z —¢H)+ %[E[ln E. [(cosh gY' + ph)™]1,

ﬂZ
Pirsg(@.- 4 m, B, h) :=1In2 + Z(l —q) -
where 0 < g < ¢ <land0<m < landY’ = \/52 + v/q' — qZ’ with z, z’ being two independent
standard Gaussians. Conceptually, the 1-RSB corresponds to the assumption that the overlap R, concen-
trates around the two values g, ¢’ and m corresponds to the mass of the Parisi measure at ¢’. Considering
arbitrarily high level of replica symmetry breaking, ultimately leads to the celebrated Parisi formula,

which we discuss in the next Chapter [5]

In some sense, establishing the replica symmetry below the AT line is a calculus problem due to Toninelli’s
result. But the rather complicated 1-RSB formula makes the analysis challenging and, unfortunately,
replica symmetry has not been established yet in the complete region above the predicted AT line. Nev-

ertheless, there has been some progress in the last years. In [43]], replica symmetry is shown in the region

E W\jw < 1, which forms a rather big fraction of the predicted RS phase. Their approach is
based on the TAP method, which analyzes local magnetizations (see also [4]). On the other hand, in [51]]
a brute force ansatz analyzing the Parisi functional is presented, which results in a complete confirmation
of the AT line in the case where the magnetic field 4 is not constant but each of its weights are independent

Gaussian variables.
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4.4 The Quantum de Almeida-Thouless Line in the QCREM

We have seen that a rigorous verification of the conjectured AT line in the SK model has not been achieved
so far. An analytic characterization of the AT line in the quantum SK model appears illusive at the moment

and physical predictions are based on numerical simulations [[193].

Just as the GREM and CREM were introduced by Derrida [63,/64] to qualitatively capture the thermody-
namics of more complicated glasses, we aim to shed some light on the quantum AT line by studying the
QCREM. To this end, we need to extend the QCREM Hamiltonian by an additional diagonal operator A
representing the longitudinal field,

Hy=U+h-B,

where U is now a CREM potential and B denotes the (random) transversal field. The presumably most
natural choice for 4 is the standard implantation of a longitudinal field from the last section,

N
h(e)= ) ho;, (4.13)
=1

where we allow the weights h; to be random fields. Already in the classical setting B = 0 it turns out,
that a longitudinal field as in (4.13)) causes the frozen phase of the CREM models to expand [[14}[15[38].
We will show in Section [4.4.1] that this unphysical behavior still emerges in the quantum setting.

On the other hand, Derrida and Gardner [65]] suggested a hierarchical implementation of the longitudinal
magnetic field, which then leads again to a destabilization of the frozen phase. This choice can be physi-
cally justified: one should recall that the GREM was designed as a hierarchical approximation of the more
involved SK-model. Here, the idea is to choose the CREM distribution function A such that the entropy
of likewise pair-correlated energies asymptotically coincides with the SK correlation %R n(o,6'), e,

1 <|{0' . Ry(6,69)* > 2a}|>
n

[{o © Algy(0.6%) > a)]|

for all a € (0, 1) and a fixed, but arbitrary, reference state 6. This determines the (non-normalized) SK
approximation A(x) = %}/(x)2 (see [131} Section 1.3] for a more detailed derivation). y is the inverse

function of
-1 . -1 o 1l—x 1+x
2 [0,1 0,1 = ——1In(1 —
Y [0,1] = [0,1], ¥y (%) o n( >€)+21I12

In(1 + x). (4.14)

Following this line of thought, to understand the quantum AT line one should consider the hierarchical

reorganization of the magnetic field as well. We define general hierarchical fields on Q5 as follows:

Definition 4.16 (Definition in [[131])
We call a function h: Qy — R a hierarchical field with reference state 6° € Q if there exists a
function i : [0, 1] - R such that

h(©) = Nn(qy(6.6"),

where qy is the lexicographic overlap @.1)). Furthermore, h is said to be a regular hierarchical field,

if n is a regular function on [0, 1], i.e.,  is a uniform limit of step functions.
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In Section f.4.2] we will see present a formula for the specific pressure of the QCREM with a general
regular hierarchical field. For the discussion of the quantum AT line, the case, where the choice of ¢°
and 7 corresponds to a constant external magnetic field, is of particular relevance. We note that the
constant longitudinal magnetic field of strength A can be written as h Z,]L 6; = hN Ry(6,0") with the
ferromagnetic state 6° = (+1,...,+1) which takes the role of the reference state in Definition
However, the pressure does not depend on the choice of the reference state.

To determine the appropriate overlap function #, we demand that the entropy agrees with the one of the
ordinary magnetic field, i.e., the number of (positive) energy states agree on an exponential scale:

1 < |{e : hRy(6,6°) > a})| >
n

|{o : v(gn(6.060)) > a}|

for any 0 < a < h. Comparing the asymptotics, leads to the choice

n(a) := hy(a),

where y is again the inverse function of (4.14). We refer to this choice as the hierarchical magnetic field
of strength A. We will discuss the resulting quantum AT line in Section4.4.2]

4.4.1 The QCREM with a random longitudinal field

Throughout this section we assume that the longitudinal field is of the form h(e) = Zj\jz | hjo; with
random weights h; which are independent copies of a real valued absolutely integrable random variable
f. Moreover, the weights (#;);, (b;); and the CREM process U shall be mutually independent from each
other.

The de Almeida-Thouless line is encoded in the pressure ® (8, §, ) := In Tr e ##~ . The specific pres-

sure converges almost surely:

Theorem 4.17 (Theorem 1 in [[131]])
Let U(0) be a CREM process with distribution function A and suppose that the longitudinal random
field is implemented as in @.13). For any p > 0 and any absolutely integrable random variables

9, b, the specific pressure converges almost surely,

A}im %@N(ﬁ, b, b) = sup </7~ @B, 9, x)dx + (1 — 2)E[In 2 cosh(f+/ 6% + I]Z)]> .
—> 00 0

0<z<1

The density @(p, Y, x) is given by

In2+aL +Eflncosh ph]  if f < f(x).
pla(x)f.(x) + E[htanh f.(x)B]) if B> B.(x),

o(f,h,x) :=

where f.(x) = B.(x,Y) is the unique positive solution of the self-consistency equation

a(x)

Tﬂc(x)2 = In2 + E[Incosh §.(x)§] — f.(x)E[H tanh ,.(x)h].
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Moreover, o(p. Y, x) is a decreasing function of x and strictly increasing and convex in f§, while f.(x)

is increasing in X.

In the classical case without transversal magnetic field (b = 0), Theorem generalizes the results
of [38]], who deal with the case that ) is constant, and the results of [14}|15], who consider the special
case of a REM or two-level GREM in a random magnetic field. The proof does not require new methods
but is rather technical as one has to analyze a constrained optimization problem [131], Section 3].

We briefly discuss the resulting quantum AT line. It turns out that the AT line of the general CREM has
qualitatively the same shape as the one of the REM [131]]. Hence, we restrict ourselves to the REM with
constant fields §) = a2 and b = I" for some positive constants #,I" > 0. In this situation, the limit of the

specific pressure is given by (see 131}, Corollary])

Porem (B, b, T') = max{prpyp (B, h), In2 cosh(BV h? +12)},

In2+ £ +Incosh ph if B<p.h)
p(p.(h) + htanh(f.(W)h)) if B> p.(h)

prem(B, h) =

where f,.(h) is the unique positive solution of ﬂc(h)2 = 2r(tanh(f,(h)h)) with the modified binary entropy

. 1- 1- 1+ 1+
r(x) i= = =21n == + ==X In =X ) defined on [-1, 1].
2 2 2 2
35
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5
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Figure 4.3: The left figures illustrates the freezing temperature T,.(h) = ﬁc_l(h) as a function of the
longitudinal field A [[131], Figure 1]. On the right is the T — I" phase diagram with the critical magnetic
field I'.(§,I") as well as the critical temperature evaluated at A =0, 3,7.

For fixed h > 0, the phase diagram, which is plotted in Figure is very similar to the QREM without
vertical field. The magnetic transition occurs at

2
L.(8,h) = \/ﬁ—z arcosh <% exp(Prem (B, h))) — 2.

For fixed h > 0, glass order is find in the region f > f.(h) and I' < I'.(f, h). As one already observes in
Figure[d.3] f.(h)is a decreasing and I",(f, h) is an increasing function of 4, i.e., the glass phase expands as
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the longitudinal field becomes stronger. These findings can be put on an analytic ground [[131}, Proposition
1]. An expanding glass phase is in high contrast to numerical calculations which suggest that in the
QSK the longitudinal and transversal field destabilize the glass phase (cf. [[147,/193] and [[175])). In the
next section we will see that we can overcome this problem with a hierarchical implementation of the

longitudinal field.

4.4.2 The QCREM with a hierarchical longitudinal field

In this section, we assume that the longitudinal field A is a regular hierarchical field as in Definition 4.16|
and we discuss the limit of the corresponding specific pressure %@ ~ (8.0, h).

To formulate our main result, we introduce the doubly-cut distribution function ADD : [0,z—y] = [0,1],
APA(x) := A(x +y)— A(y). with corresponding concave hull A%>? and the hull’s right derivative a*?.
We further set % : R x [0,z — y] - R,

2
eV (B,x) 1= fV(21In2) a¥D(x) 1, 005 + (%a‘y’”(x) + 1n2> Ls xoas)

with
XAy :=sup {x | a®?(x) > 2In2/p%} .

In presence of any regular hierarchical field s, we have the following generalization of Theorem [{.9}

Theorem 4.18
Let U(o) be a CREM process, B a random transversal field with i.i.d weights (b ) with the same
distribution as b and h(e) = Nn(q(c,6°)) a regular hierarchical field. Then, almost surely:

PB.B.R) = Jim @ (5.5, h)
o (4.15)
= sup [ﬂn(y) + / @O D(B, x)dx + (1 — z)E[In 2 cosh(b)]] .
0

O<y=<z<l

The proof of Theorem {.18]is based on the peeling principle and can be found in [131} Section 2]. Most
interestingly, the transversal field B and the hierarchical field / both destabilize the glass phase, albeit
quite differently. While the hierarchical field tends to shrink the glass region in its most correlated sector
first (it acts through the choice of y from the ’left’), the transversal field begins by changing the unfrozen
region and the less correlated sector (it acts through the choice of z from the 'right’).

If A= A,ie., Aisa concave function we can simplify the variational formula (.I3). Then, e is a

.1 —

just a translation of ¢ . @ and we arrive at the simpler expression

0<y<z<l1

p(B,b,h) = sup [ﬂn(y)+/ @B, x)dx + (1 —Z)[E[ln2008h(ﬁ5)]], (4.16)
y
with
ﬂZ
@(B,x) = fV/21n2) a(x) Ly + <75(x) +1n 2) Lisx(p)s

x(B) :=sup {x | a(x) > (2In2)/p*} .
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On the other hand, if A is not concave (which is always the case if A is a step function) the behavior of
@D is more subtle as one has to take into account that the slope of the concave hull’s linear segments
will change as y increases. In particular, (4.16) does not necessarily hold true. In contrast to a transversal
field, a hierarchical field might lead to a change of the determining concave hull. As discussed in [[65]],

this happens for the hierarchical caricatures p-spin glasses with p > 2.

We will now briefly discuss the quantum de Almeida-Thouless (AT) line in the situation where A = A
is continuously differentiable with derivative a, and we consider a hierarchical magnetic field n = hy
of strength 2 > 0 and a constant transversal field of strength I'. We have particularly in mind the SK

caricature A(x) = %y(x)z. A much more detailed discussion is presented in [[131} Section 1.4].

We start with the limiting case I' = 0. The supremum in (4.16)) is attained at z = 1 and y = y(f, h) €
(0, 1), which for fixed g > 0 and A > 0 is the unique solution of the equation

. (eB.y
y—k< T ) 4.17)

where k : [0, 00) — (0, 1] is the inverse function of the derivative y’ : (0, 1] — [0, co) of y. The glass
phase is here characterized by y(f, h) < x(f), which leads for fixed A to the critical inverse temperature

p.(h) :=inf {f : x(f) > k2In2/(ph)).} (4.18)

For h = 0, this reduces to §, := % The function i — f,(h) is the classical AT line of the CREM.

p.(h) is an increasing function and

o ifa(l) =0,

2In2 .o -
a0 if a(1) > 0.

lim f,(h) =

For h = 0, the choice A(x) = %}/(x)2 leads to a correct prediction of the point of the SK glass transition,

but the critical exponent for 4 ~ 0 does not coincide with the observed exponent.

Next, we consider a vanishing vertical field 2 = 0, which is basically the scenario of Theorem We

recall that the maximum is then attained at

1 p(PT) < s(B) 1= @(p, 1)
2B, 1) 1= 1 g(p(BT)  s(B) < p(BT) < 1(p) := @(p,0) (4.19)
0 1(p) = p(BI)

with the notation of Corollary #.10] For the SK approximation, we obtain a prediction of the quantum
phase transition, limﬂ_,oo I'.(,0) =4/(21In2)a(0) =21In2 =~ 1.38 ..., which does not agree with the per-
turbative or numerical prediction of approximately 1.51 in [[192}/193]]. Nor does the behavior of FC(T‘I, 0)
near T = 0 agree with the T2-scaling predicted in [[106]. Presumably, this is a defect of the hierarchical

implementation of the glass’ correlations.
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To determine the pressure p(f,I, h) in the general case of a constant transversal and longitudinal field
I', h > 0, we also need to discuss the behavior of the variational expression (4.16) at the diagonal y = z,
which corresponds to the situation without a CREM potential. In this case, the supremum is attained at

(4.20)

(BT, h) :=k <@> .

fh

This enables us, to give a more explicit solution of (@.13):

Corollary 4.19 (Corollary 2 in [131])

Suppose that A = A is continuously differentiable. For a constant transversal field of strength T > 0
and the hierarchical magnetic field h(e) = N hy(q(c,6°)) of strength h > 0 the limiting pressure is
given by

-

z(B.I)

Phy (y(B, b)) + /(ﬂ " (B, x)dx + (1 = z(,T)) ppar(BL),
b,

p(B. T, h) =3 prar(BT) < @(B, (B, h)),
Phy (c(B,T', b)) + (1 — (B, I, h)) ppar(PT),
pPAR(ﬁF) > Q(ﬂ, y(ﬂ7 h))’

L

where y(B, h), z(f,T) and o(B,T, h) are specified in @.17), @.19) and @#20) respectively.

For fixed 2 > 0 the contribution of the CREM process vanishes for I' > I'.(f, h) with
1
Fc(ﬁa h) = E arcosh <%e(/’(ﬁaJ’(ﬁ,h))> .

The critical field strength I'.(#, h) marks a second order transition, where the derivative of the transversal
magnetization m,, has a jump. The zero temperature limit § — oo leads to the ground state Quantum AT
line which is plotted in Figure 4.4]

1.5
21n2

Critical Field Strength l":(‘x,h)
o
=

0 1 2 3 4 5 6 7
Longitudinal Field h

Figure 4.4: Plot of the Quantum AT line, i.e. the dependence of the critical transversal field I'.(f, h) on
the longitudinal field & for zero temperature, f = oo [[131} Figure 2].
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A low-temperature glass phase occurs if and only if

Y(p, h) < min {x(f), z(f,1)} .
Clearly, this is only possible if two conditions are satisfied simultaneously:

1. z(B,I') > y(p, h),1i.e. for transversal fieldsI" < I',(f, h). From the monotonicity of & +— @(f, y(f, h)),
we conclude, I'.(f, h) <T'.(f,0) for any f,h > 0.

2. x(B) > y(B,h), ie. for p > p.(h) given by @.I8), which we already identified as a monotone
increasing function of 4.

We thus conclude, that the presence of the transversal field 2 > 0 shrinks the spin glass’ low-temperature
phase. Qualitatively, this behavior is in accordance with the numerical findings in case of the Quantum
SK-model [193]]. However, more precise quantitative properties such as the critical exponents differ.

Figure [4.5] plots the temperature-transversal field phase diagram for different values of /4 in case that
A= Aanda(l) =0.

25
12 2
! .
'&; 15 T (4.7) T .(4.3) L (4.0)
2
1 0.8 g
o 2 a_(0)"
5 E (pememrn e c e
D
g 06 e
g -1
ks I S
0.4
0.5 4
1.(7)
0ZF e m——
0 0
0 1 2 3 4 5 & 7 0 02 04 06 08 .1 . 12 14 16 1.8 2
Longitudinal Field h Magnetic Field I

Figure 4.5: On the left is a plot of the critical temperature §,.(h) as a function of the longitudinal field. On
the right figure is the T — I" phase diagram with the critical magnetic field I'.(8,I") as well as the critical
temperature ﬂc(h)‘1 evaluated at h = 0, 3,7 [131} Figure 3].
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Chapter 5

The Quantum Sherrington-Kirkpatrick
Model

This final chapter is devoted to the much more involved Sherrington-Kirkpatrick (SK) model. Section5.]
introduces Parisi’s sophisticated solution for the pressure in the more general setting of classical mixed
p-spin Hamiltonians. We will try to transport some intuition behind the Parisi formula by presenting
the main foundations of its proof: the cavity method and the Aizenman-Sims-Starr scheme [8]], Guerra’s
interpolation method in the realm of Ruelle cascades [99}/153]], and Ghirlanda-Guerra identities and the
resulting ultrametricity of the Gibbs measure [94,[151]]. After having familiarized ourselves with the
classical SK model, in Section[5.2] we turn to the Quantum Sherrington-Kirkpatrick (QSK) model where
we focus on the few rigorously established results, in particular the infinite-dimensional Parisi formula
introduced in [3], and the study of the high temperature phase § < 1 in [[126]]. The final Section
discusses the main result from our Article VI [125]], which shows that the QSK model exhibits glass order
in the low temperature phase § > 1 in presence of a weak transversal field. We compare our findings
with the predictions in the physics literature and describe our proof which is based on the Falk-Bruch
inequality [73]] and arguments which have been developed for the classical SK model [6,42].

5.1 The Sherrington-Kirkpatrick Model: The Parisi Formula

We consider a mixed p-spin potential U with an external longitudinal field of strength 2 > 0, i.e., the

classical Hamiltonian is given by

N N
Hy(e) :=U@)+h ) 6,= ) BU,WG)+h) o, (5.1)
] =1

i=1 p>2 i

where f8, > 0 are some nonnegative parameters which satisfy > p>2 Pp2P < 00 and U, denotes the pure

p-spin potential

N
1
U@ = yor X Bt %1y (52)
il p=
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U is then a centered Gaussian process with covariance

E[U(6)U(6")] = NE(Ry(o,067)) (5.3)
Ex) =) pax?.
p>2
ya

The classical SK model at temperature f corresponds to the case where f, = and all other g, vanish.

V2
The additional division by \/5 is due to the summation over all (i, j) tuples in (5.2)). For mixed p-spin
potentials we think of the sequence (f,), to absorb the inverse temperature.

Without further ado, let us present Parisi’s formula for the limit of the specific pressure. We follow the
exposition in [[152f], but we have replaced the Gaussian field with a constant external field. The Parisi
formula takes into account an arbitrarily high level of replica-symmetry breaking and, thus, generalizes
the RS and 1-RSB formulas from Section4.3] To describe an arbitrary point measure on [0, 1] with finite

support, let r > 1 and we introduce the two sequences

0=¢ << <{y<g=1

and,

0=¢gy<q <+<g_1<g =1

One should think of the both sequences defining a distribution function ¢ of a point measure on [0, 1]
with {(q,) = ¢, — {,,—1- We will see shortly that { determines the pressure and is thus referred to as
functional order parameter or Parisi’s order parameter. Let (z,,)| <<, be 1.i.d standard Gaussians. We

define recursively the random variables

X, = ln2cosh< Z z,,(&'(q,,) — ér(qm_l))l/z + h) 7

1<m<r

1
XI=Z[1n[El+1[eXp(§le+1)] f0r1=0,...,r—1.

Here [E; denotes the expectation with respect to z; and ¢ is the function from (3.3). In particular X, is
just a real number in the sense that it is not random, but of course X, is still a rather involved function of
¢, & and h. We are ready to define the Parisi functional

1
Pen@) = Xo=5 ¥ 5u(0@1) - 6(,)) (5.4)
0<m<r-1
with the abbreviation 8(x) := x&'(x) — &(x) = ), Pzz(p - l)ﬁgxl’ . Probably, the deepest result in the field
of spin glass theory is the following theorem which relates the Parisi functional (5.4) to the limit of the
specific pressure of mixed p-spin Hamiltonians (5.1):
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Theorem 5.1 ( [153,155,/179,/181]] Theorem 3.1 in [152]])
Let H y be the mixed p-spin Hamiltonian from (5.1)). Then, the pressure converges almost surely and

with the notation from above the limit is given by

. 1 .
]\}I—I}-éo FQN((ﬂp)pZZ’ h) = pParisi((ﬂp)pZZ’ h') = ll’éf yg,h(g)’ (55)

where the infimum is taken over all distribution functions { corresponding to a probability measure

on [0, 1] with finitely many atoms.

A few comments are in order:

1. After Sherrington and Kirpatrick had introduced their model and the replica-symmetric solution,
it was Parisi who had the ingenious insight that the thermodynamics is not governed by a few real
parameters, but by a distribution function describing the nontrivial distribution of the replica over-
lap [155]. To arrive at the formula (5.3)), Parisi used the so-called replica trick and he assumed
anticipately that the limiting Gibbs measure exhibits a hierarchical nature. That is, the Gibbs mea-
sure resembles the structure we have seen in the GREM and CREM, see e.g. Theorem {.4 It
is widely believed, that the structure underlying the Parisi formula should be generic for classical
mean field spin glasses. Although there exist similar variational formulas for related models such as
the Crisanti-Sommer formula for the spherical p-spin model [55]] (rigorously established in [[180]),
for a huge class of spin glass models such as the Hopfield model or the diluted SK model a similar

expression describing the thermodynamics for all temperatures is lacking [181].

2. From the mathematical side, the Parisi formula had remained mysterious for a long time. There
was no hope that the replica trick can be made rigorous, so new techniques needed to be invented.
But also heuristically, Parisi’s formula challenged our mathematical understanding of correlated
systems. In particular, in view of Gibbs’ variational principle (see Proposition [2.§) it is not very
intuitive that the pressure is governed by a minimization instead of a maximization. For a long time,
mathematicians only managed to establish partial results, concentrating on the high-temperature
phase and qualitative assertions, see e.g. [6]. It was Guerra’s work which opened the door towards
an understanding of Parisi’s formula via interpolating to simpler models. Together with Toninelli,
he proved the existence of the limit for convex & [[100,/101]], which had been an open problem till
then. Later, he further showed that the Parisi functional &7, ,({) forms a rigorous upper bound [99].
Based on these discoveries, Talagrand managed to prove the Parisi formula for even p by estimating
the remainder term in Guerra’s interpolating scheme [[179]. Meanwhile, Aizenman, Sims and Starr
introduced the so-called random overlap structures which translates Guerra interpolation method
into the framework of the cavity method [[8]]. From this perspective, the main ingredient missing to
prove Parisi’s formula is to show that the limiting Gibbs measure is indeed of hierarchical nature.
This was referred to as Parisi ultrametricity conjecture and was solved by Panchenko [[151] who

used ultrametricity to prove the Parisi formula in the generality of Theorem [5.1][153]).

3. We have presented in (5.4) the most explicit representation of the Parisi functional & ,({) for

distribution functions ¢ consisting of finitely many jumps. As has already been noted by Guerra

83



THE QUANTUM SHERRINGTON-KIRKPATRICK MODEL

[99], the Parisi functional &7 ,({) is Lipschitz-continuous with respect to {. More precisely we

have

1
| P n(§1) = Pep(E)] < 5”(1)/0 1$1(1) — & ()] dr.

This allows us to extend the Parisi functional to arbitrary {, which is important if one wants to
address the question of existence and uniqueness of the minimizer in (5.5). However, this line of
thought does not reveal an explicit representation of &7, ,(¢) for continuous distribution functions
¢. Fortunately, there exists an alternative description of the Parisi functional in terms of the so-
called Parisi PDE. Namely, the Parisi functional r@ah(é’ ) = Y(0, h) agrees with the solution Y (0, &)

of the hyperbolic PDE
£"@)
2

with boundary condition Y(1,x) = Incoshx. The Parisi PDE has got a unique solution for any

0,Y = (02Y + (D0, Y)),

distribution function ¢; and one can show via the Cole-Hopf transformation that the solution agrees
with (5.4)) for a step-function ¢ [152]].

4. Yet another expression for the Parisi functional was discovered in [16]. Its description requires
some knowledge of stochastic analysis, for which we refer to [112]]. Let B, be a Brownian motion,
., its canonical filtration and & := {(u,)o<,<;| 4, adapted to .%,, |u,| < 1} be the set of adapted
processes uniformly bounded by 1. The solution of the Parisi PDE is then given by

1 1 1
Y(0,x) = max {[E [ln cosh <x + / ()¢ (s)u,ds + / \VE(s) dBS>] - % / " ()¢ ()E[u?] ds} )
uey 0 0 0

This solution enables one to prove that the Parisi functional is strictly convex in ¢ and, thus, has a

unique maximizer ¢* [16]. The corresponding measure is the so-called Parisi measure u”.

One expects that the Parisi measure u” describes the limiting Gibbs distribution such as in Proposition
That holds true for generic mixed p-spin models. Here, we call a model generic if D = span{x”| f, #
0}, the linear space of all monomials x? corresponding to a non-vanishing contribution of the p-spin
potentials, is dense in the space C[—1, 1] of all continuous function with respect to the uniform norm

I Moo
Theorem 5.2 (Theorem 3.7 and Corollary 3.4 in [[152])

Let Hy be a generic mixed p-spin Hamiltonian. Then, the mean Gibbs distribution ;4]1\’, P A =

E[{1,(Ry(o,0"))) ¢.n] converges weakly to the Parisi measure /4? e the unique minimizer of the
Parisi functional. Moreover, the pressure is differentiable with respect to f§, and the partial deriva-

tives characterize the moments of ,ué) W ie.,

apParisi((ﬂ ) ZZ’h) !
5, =,,p<1_/0 qu”ﬁh)

A similar result for non-generic mixed p-spin models is still missing. One should note that %, ™ yé’ .\

cannot hold true for the standard SK model, as the overlap distribution will also have support on [—1, 0)

by symmetry. At least one has to consider a slightly perturbed model to avoid this problem. It seems to
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be very hard to further characterize the Parisi measure ,ug , atlow temperatures. Most importantly, physi-
cists believe that the Parisi measure should have continuous support at low temperatures, i.e., continuous
replica-symmetry breaking should occur just like in the CREM [[135]]. This conjecture is of practical
relevance since Montanari’s efficient algorithm for finding approximate ground states in the SK model
relies on this expected property of the Parisi measure. However, the best we know in this direction right
now is that for low enough temperatures the number of the Parisi measures’ support points will exceed

any finite number K [18]].

After having presented and discussed the Parisi formula, our main goal in the rest of this section is to

illustrate the underlying mathematics which ultimately has lead to the proof of Theorem [5.1]

5.1.1 The Aizenman-Sims-Starr Scheme

A very influential idea in the realm of spin glass theory is the so-called cavity method [[135]]181]]. Here,
one compares the N-particle system with the Hamiltonian consisting of N + M spins, where we think
of N being large and M a comparatively small number. The ansatz is that on one hand adding a few
spins should not effect the Gibbs measure too much. On the other hand, by comparing the pressures
Dy — Py = Mp, we still gain information about the limit of the specific pressure p. Let us now
discuss this idea in the context of mixed p-spin models. We denote by 6 = (@,6) the N + M spin

configuration and we consider the pure p-spin potential for different particle numbers

N+M

1
Up,N+M(0') = —(N+ M)PD/2 Z lgil,...,;pG;I oy
ijyeeni,=

M
N P12 X .
= <N+M> U,n(a@)+ an,j,aaj + R,(6,a).

j=1
The first term consists of all contributions which are purely due to the first block e, which gives rise to the
N \@-D/2

N+M
terms which contain 6; and otherwise just a-terms. The remaining contributions with at least two 6;, 6;
are put together in R,(6,a@). A direct calculation shows that E[R,(6, a)’] = O(M?/N) and, thus, for

M < N the contribution of this term is o(1) by standard interpolation, see Proposition In a further

(r—-1)/2
step, we note that the covariance process of U, y (@) dominates that of <N+LM>

pure p-potential of N particles rescaled by ( . In the "random field" term #,, ; , we collect all

v, ~ (@) and with
some additional independent Gaussian process k,, we may write

N (r—-D/2
Upn@ = (5 — ) U@+ VM,

the factor /M is chosen such that the process k, , does (almost) not depend on M. Indeed, 7, ; , and

k, o form independent Gaussian processes with covariances

En, oMy jrar] = 8 PRy (@, @'y, (5.6)
ElK,qKpa] ® (p = DRy (@, @) (5.7)
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Both relations follow from a straighforward Taylor expansion. With these preparatory considerations let

us now compare the pressure @y, ,, with @, for a general mixed p-spin model. One computes

eHllv (“)ezp By Z:/]‘il (1p,ja+h)8;

ZN+M] ~Elmn Za,&

[Onim Nl [ ¥ HN@ VM Y, Bk,
a

N

M N
Y (o +h)G;
as Pa€™’

=[E . =: A,,. 5.8
¥, wgeV v " oY

H | (a) contains the common terms of Hy and Hy, , i.e., the external field on @ and the rescaled p-

(»-1/2
potential 3, <N+LM>

random weights @, with Y, @, = 1. Moreover, we have set 17, , = ¥, B, ; o and K, = 3 B,k 4. The

relations (5.6) and (5.7) yield

U, n(@). The resulting contribution can clearly be expressed in form of

Eln; ot o] = (Sj’j/f’(RN(a,a')), 5.9
[E[Kp,aKp,a’] ~ H(RN(as a,))’ (510)

giving a first hint towards the Parisi formula. These cavity computations motivate the following definition:

Definition 5.3 (Definition 1 in [8]])
A random overlap structure (ROSt) consists of a collection of random weights w, and a random

kernel R, o such that almost surely
1 Y, 0,=1
2. R, o defines a positive quadratic form with R, , = 1 for all a .

We accordingly define for any realization of R, o independent Gaussian processes 1); o and kg which
satisfy (5.9) and (5.10)) as (strict) identities with Ry replaced by R, ,. Moreover, we set Ay as in

33).

The main observation is that the specific pressure can be characterized in terms of ROSts:

Theorem 5.4 (Theorem 1 in [8]])
Suppose & is a convex function on [—1,1] and h > 0 We demote by p(&, h) the limit of specific
pressure of the corresponding mixed p-spin Hamiltonian. Then, we have

.1 .
p& h) = lim M o, RlnfR o5, A6 1 @y Ry o) (5.11)

The so-called Aizenman-Sims-Starr scheme provides a variational characterization of the pressure. By

the motivational computations from above, the bound

p(§9 h’) Z llj\r/?jllop wa,RiE/i:ROSI AM(ga h’? a)a’ Ra’a’)

follows quite easily by choosing the ROSt as in [5.8] which gives a sharp approximation of the actual

difference E[®p, 5y — @ ]. The corresponding upper bound is reminiscent of Guerra’s broken replica
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symmetry bound [99], but its proof is much more transparent in the ROSt picture. The idea is again a

smart interpolation: consider a ROSt w,, R, 4, the family of Hamiltonians

aa’

M
Hy(@.8,0) 1= V1= 1Uy6) + VM) + Vi Y 1,8
j=1

and a parameterized version of A,,,

. w.eHn@sn
Ay () =E ln< a2
Y, gV M

where we have A,,(0) = ®,, and A,,(1) = A,,;. Using Gaussian interpolation in form of Proposi-
tion and the convexity of ¢ it follows that %A m = 0 from which the other bound follows.

5.1.2 Parisi’s Formula via Ruelle Cascades

In view of the Aizenman-Sims-Starr scheme, we need to crystallize the ROSt which leads to the Parisi
functional (5.4). It turns out that the Ruelle cascades, we encountered in the context of the GREM (see
Theorem.4)), do the job. However, a slightly different description of those processes is more convenient
in the context of the SK model — instead of an exponential density we require the underlying Poisson
processes to have a fractional density. These "fractional” Ruelle cascades result from the "exponential"
Ruelle cascades by a change of density. However, for the reader’s convenience and to set the notation, let
us briefly describe the construction from scratch.

For a parameter £ € (0, 1) we denote by I1, the Poisson point process on (0, oo) with intensity ¢ x~ I+ x.

Let (u,),en be the decreasing enumeration of points in I, and we set the normalized weights

. un
a =

" Zkuk‘

One readily checks that despite having an infinite expectation value, ), u, is almost surely finite and the

process (w,),>; is well defined and called the Poisson-Dirichlet process P D({). The Poisson-Dirichlet
process occurs naturally in the context of random partitions and the description of large prime factors
[67,116]. The processes (4,),>1, (®,),>; €njoy numerous beautiful properties. In the context of Parisi’s
formula, the identity

E [ln 2 uan] =E [ln Z un] + %m E[X¢) (5.12)
is of particular relevance. (X,,),en consists of i.i.d. copies of a positive random variable X with E[X ¢ <
oo and (X,),en shall be independent from the appearing Poisson process.

We now turn to the construction of the r-level Ruelle cascades for some integer » > 1. The process is
indexed by N’. Ruelle cascades are inherently hierarchic and it is very useful to think of &/ = N UN U
--- U N as rooted tree with root {@#} and leaves consisting of the sequences of interest in N". Very much
like in the construction of the Parisi functional, we consider sequences 0 < {, < ¢§; < (.1 < ¢. =1
and 0 = ¢g) < ¢q; < --- < g, = 1. For each interior vertex @ € </ \ N" we set a Poisson process I, = HCW

where |a| denotes the number of entries of @. All processes shall be mutually independent and consist of
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points u,; > u,, > ---. Note that the indices @k can again be interpreted as vertices of .7'. For each leave

a € N" we introduce the process v, and the normalized weights @,,

Ua
u. u e U a, = —— (513)

Ua = a tajay ap...a,’ a Z v .
acN" “a

As the notation suggests, w,, are the weights we want to use in the desired ROSt. It remains to prescribe

the overlap kernel R An instructive observation is that defining R, ,» = (hg, hy) with the help of

aa
some vectors A, guarantees positivity of the overlap matrix. To this end, let { be an infinite dimensional

Hilbert space and (e, ), a collection of orthonormal vectors in H. We set

r

he = Y, €.l = )%, (5.14)

k=1
and R, . = (hy, hy ). The overlap structure is ultrametric as the overlap only depends on the shared
vertices in the paths from the root to @ and @’. We have completed the construction of the needed ROSt.

An iterative use of (5.12) now implies the following representation of the Parisi functional:

Proposition 5.5 (Lemma 3.1 in [[152])
Let { be a distribution function of a measure with finite support and @,, R, o the corresponding

ROSt from above. Then, the Parisi functional can be written as

P:.p(§)=E [ln <2 Z Wy coshna>] -E [ln ( Z Wy EXP Ka)] . (5.15)
acN’ aeN"

Comparing the right-hand side of (5.15) with (5.8), shows that &, ,({) = A (£, h, @y, Ry o) With the

notation from the last section. The seemingly obscure iterative construction of 3”5, »(&) becomes natural

within the cavity method, using Ruelle cascades as ansatz for the limiting Gibbs measure. Let us re-
mark that by copying the Ruelle cascades M times, we can relate &7, ,({) to A, and in particular from
Theorern it follows that p(£, h) < P, ;,({). This establishes the easier half of the Parisi formula.

5.1.3 Ghirlanda-Guerra Identities and Ultrametricity

We have already seen how the Parisi functional arises as an upper bound for the pressure. In this section,
we close the discussion of the Parisi formula by explaining what ideas are used to show that inf , &; ()
agrees with the specific pressure in the thermodynamic limit. To this end, we recall that in our discussion
of the Aizenman-Starr-Sims scheme, it turned out that the ROSt saturating (5.11)) corresponds to the
Gibbs measure of the p-spin Hamiltonian for high particle number N. To put it in other words, one needs
to show that the limiting Gibbs distribution of Ry (6,6”) can be well approximated by Ruelle cascades
because exactly those ROSt give rise to the Parisi functional. As we will see, the originally by Parisi
proclaimed hierarchical reorganization of the replicas plays major role.

The foundation of the following argument lies in Ghirlanda-Guerra relations, which were originally dis-
covered in the SK model [94]] and relate expression of n 4+ 1 multioverlaps to the distribution of just n

replicas. Let us consider the Ghirlanda-Guerra relations in a general framework:
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Definition 5.6 ( [94], [152])

Let G be a random measure on a separable Hilbert space H and (h;), an i.i.d. sample of vectors
distributed according to G. Let us denote by {-) the average with respect to the infinite product
measure G®* and by O,y = (hy, hy) the overlaps. We say that G satisfies the Ghirlanda-Guerra
identities if for any n > 1 and any bounded measurable functions f = f((Q;y)zr<,) and g : R —

R, we have

EL(£8(Q1)] = EL(AELE(Q1 0 + - Y E/2(@1 )] (5.16)
1=2

As mentioned before, the power of Ghirlanda-Guerra identities lies in relating a function of n+ 1 overlaps
to just n overlaps. This restrictive property (5.16) will be only satisfied by very few random measures. The
prime example are the Ruelle cascades from the section before: with the weights w, from (5.13)) and the
vectors h, from (5.14) we set G({h,}) = w,. A rather long computation, making use of the underlying
Poissonian structure, shows that measure G satisfies the Ghirlanda-Guerra identities [|[152, Theorem 2.10].

An important consequence is that we obtain all moments of the overlaps in this setting,

EQT ) = ) 48— Cnmt):
m=1

which justifies to think of ¢ as the distribution of the overlap.

Obviously, the Ghirlanda-Guerra identities are stable under weak convergence. In particular, if we take
a sequence of discrete distribution functions such that {, — ¢ converges weakly, then the distribution of
the multioverlaps (Q, /) converges weakly, too, and the limiting distribution can be generated by random
measure G on a Hilbert space. This follows from the Dovbysh-Sudakov representation theorem [[152,
Theorem 1.10]. One can think of this measure as a continuous Ruelle cascade, where the single overlap
0, , follows the distribution determined by ¢. We remark that after embedding the CREM replica overlap
into a Hilbert space, the resulting limiting Gibbs measure is exactly of this type.

Surprisingly, we have already presented all random measures which satisfy Ghirlanda-Guerra identities:

Theorem 5.7 ( [151], Theorem 2.13 in [[152])
If a measure G satisfies the Ghirlanda-Guerra identities, the distribution of the whole overlap array

(Qy.11)1.1>1 is uniquely determined by the distribution of Q| , under EG®?. Moreover, the overlap

0, , takes almost surely no negative values.

We stress that Theorem [5.7] says that the averaged (!) distribution of two replicas already determines the
complete disordered distribution of arbitrarily many overlaps. This is a very far reaching result as it tells us
that the continuous Ruelle cascades are the only random measures which possibly can satisfy Ghirlanda-
Guerra identities. That the overlap Q, , only takes positive value under Ghirlanda-Guerra relations, is
known as Talagrand’s positivity principle. Note that if we establish Ghirlanda-Guerra identities, the pos-
itivity allows us to relax the convexity condition on & from the previous discussion (e.g. in Theorem [5.4))
to only hold on [0, o0), which covers the odd p-powers as well.

The proof of Theorem relies on a very deep fact, namely that the Ghirlanda-Guerra identities imply
an ultrametric overlap structure. This was known as Parisi’s ultrametricity conjecture and its proof by

Panchenko confirmed Parisi’s intuition on the hierarchical reorganization of the overlaps.
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Theorem 5.8 ( [151]], Theorem 2.14 in [152]])
Suppose that the random measure G satisfies the Ghirlanda-Guerra identities. Then, the overlap

array (Q, ;1) > s ultrametric, i.e.,

El(1o,,>minf0,,.0,,)] = 1-

Ultrametricity is a very restrictive property and combining it again with the Ghirlanda-Guerra identities,
it allows one to determine iteratively the whole distribution of the overlap array Q, ;. Panchenko’s proof
of Theorem relies on an involved argument making use of invariance properties resulting from the

Ghirlanda-Guerra identities.

Let us comment on how the Ghirlanda-Guerra identities appear in the context of mixed p-spin Hamil-
tonians. One can show that for generic models the Ghirlanda-Guerra identities hold true in the ther-
modynamic limit [152] Corollary 3.2]. Unfortunately, this is not always true and the SK model forms a
counterexample: the 6 — —o6 symmetry is in conflict with the positivity of the overlap following from the
Ghirlanda-Guerra identities. The idea is to perturb the original Hamiltonian by an independent generic
one to enforce the validity of the Ghirlanda-Guerra identities. The perturbation should be weak enough
such that the specific pressure is not effected in the thermodynamic limit. So, let H »; be the mixed p-spin
Hamiltonian of interest and let us consider for x, € [0,3] and s, > O the perturbed Hamiltonian

H],V,(xp)p,sN(o-) ‘=Hy(0o)+ sy Z 27Px,U (o).
p>2

Let (6');5, bei.i.d. replicas sampled with respect to the Gibbs measure of H;V and R, := Ry (6!, o) be

the corresponding replica overlaps. Let us further introduce, for n,m > 1 and a function f of the replica
overlaps (R 1), y<p» the function A(f, n, m),

Afmm) = [ELS R, ) = ~ELCELRI,) - - S ESRY
=2

measuring the validity of the Ghirlanda-Guerra identities. The mixed p-spin Hamiltonian satisfies the

Ghirlanda-Guerra identities at least in average:

Theorem 5.9 ( [94]],Theorem 3.2 in [152])
Let s)y = NY with —1/4 < y < 0. Then, the limit of the specific pressure agrees for H  and H le

and we have for any natural numbers n, m and any measurable overlap function f @ (R, ), <, = R

Jim E,[A(f,n,m)] =0,

where the expectation E is understood with respect to the uniform choice x, € [0, 3].

This weaker form of the Ghirlanda-Guerra identities is enough to establish the Parisi formula. After hav-
ing demonstrated the main concepts in the realm of the classical SK model, we now turn to the Quantum
SK (QSK) model.
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5.2 The Quantum Sherrington-Kirkpatrick Model

Just like the SK model has been a prime example for mean-field spin glasses, one expects that the analysis
of the QSK model reveals the universal structure underlying transversal field spin glass models. We recall
that the QSK Hamiltonian is given by

Hy=U+IT

with the SK potential U from (I.3). Not surprisingly, the QSK model has received much attention in
the physics literature. Its investigation started in the 1980s using numerical methods and non-rigorous
replica computations [781(96,/139}/189,/192,193]] and is still ongoing due to its importance in the context
of quantum adiabatic algorithms [10}22,24}/45,(68,77,/117] and in the study of ergodicity in disordered
quantum models [23}/121}/138}/158}172]. Despite numerous efforts, the physics of the QSK is not well
understood and in fact there exist contradicting predictions in the literature, in particular when it comes
to numerical values of transition points. The numerics is very challenging and exact diagonalization can
only be applied up to N =~ 20. Analytic methods on the other hand start typically from oversimplifying
assumptions such as the static approximation in the path integral framework, which by now is known to be
wrong even in the high-temperature region [[126]. Therefore, one has to be careful with the interpretation
of the physical results. Nevertheless, it appears to be consensus that there exists a glass phase for g > 1
and I" small enough and glass order vanishes for stronger magnetic fields or higher temperatures (see also
Figure[5.1). In particular, a quantum phase transition for the ground state f = oo is expected. However, an
understanding of the model which is comparable to Parisi’s picture in the classical SK model is currently
not available, even on a heuristic level. Subsequent question which are caused by the quantum nature

such as localization properties of eigenstates seem to be inaccessible with the existing methods.

The discussed limitations of the physical treatment call for a rigorous mathematical study which reveals
the underlying structure of the QSK and eventually leads to clear picture of quantum spin glasses. Unfor-
tunately, the QSK is a challenging model and so far only very few results have been established from the
mathematical side. Quantum spin glasses have been approached via random matrix methods, e.g. in [[72].
This bulk analysis reveals interesting phase transitions for the density of states. However, one should re-
call that most eigenvalues are of order (O( \/F ) and, thus, those methods do not allow any conclusion on
the states of extensive energies governing the thermodynamics. As far as we know, the first study of the
QSK pressure goes back to Crawford [[53[]. Here, in the first part the problem of universality is addressed.
It is shown, by extending the argument of Carmona and Hu for the classical SK model [48]], that the
pressure @ is on leading order not affected if the Gaussians couplings g; ; defining the SK potential are
replaced by i.i.d. random variables z; ; with [E[z,-,j] =0, [E[zij] = 1and [E[|zl~,j|3] < 00. In the second
part, Crawford claims to prove the existence of the limit ]\171_1)110o %d) ~ by modifying the classical argument
of Guerra and Toninelli [100,(101]], however the proof contains an error which is apparently not easy to
fix.

More recently, there have been two works which make an important step towards a better understanding of
the QSK [3/[126]. We will present their main results in the following two subsections. Then, Section[5.3]
deals with our article [[125]] which establishes the existence of a glass phase in the QSK.
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5.2.1 An Infinite-Dimensional Parisi Formula

Adhikari and Brennecke prove a Parisi-type formula for the specific pressure in the QSK model [3]],
building up on Panchenko’s general result on vector spin glasses [[154]]. We will see similarities with the
classical Parisi formula for mixed p-spin formulas but the resulting variational expression is even more
involved. To present the result, we need to introduce some notation. We first recall the path integral

representation from (2.3),

dvNe’ Jo UG-e)dr
N

Zn(p,T) =Tre ™ = (cosh pO)N )’

c€Qy

m\=

with the notation from Theorem [2.6|and the SK potential U. We embed the the space of cadlag paths 2
into L2([0, 1]) and v, has only support on the paths & with ||£]|, = 1 (¢ denotes here paths and should not
be confused with the function & from Section[5.1)). To lighten notation, we write 6(f) := & - &() in the

following. The role of the replica overlap is now taken by the path overlap
| b
0(.6")(1.1) 1= = 3 oy(o](t). (5.17)
i=1

which measures the replica overlap of two path configurations at times 7 and #'. Writing Zfil al-(t)cri’ ) =
Zf\il lo;){c]|(z,"), the path overlap (5.17) can be understood as kernel of an operator-valued map from
L2([0, 11N x [0, 1]V) to the set of trace-class operators J; on L%([0, 1]). We note that the covariance
process of the path-integrated potential

1 1
E [ / U(o(r)) dt / U(a'(t’))dt’] = N||Q@.6")%g (5.18)
0 0

is governed by the Hilbert-Schmidt-norm of Q and, thus, the path overlap is indeed the analog of the
replica overlap in the classical SK model. In contrast to the classical setting where Ry (6,0) = 1, the
so-called self-overlap

R(o)(t, 1) := O(o,0)(t,1)

is not fixed, which is a major difference which already arises in the study of finite-dimensional spin

glasses. R(6)(t,1") gives similarly rise to an operator-valued map whose range is contained in the set
I'={pedil0<p<1}

with the standard partial order for self-adjoint operators. The main idea behind Panchenko’s result on
vector spin glasses is that one should first fix the self-overlap and then the constrained pressure is again
given by a Parisi-type functional. In the setting of paths, we fix a self overlap p and consider the set
of discrete monotone paths { € 11, with £(0) = 0 and {(1) = p. That is, there exist times 0 = m <
mg < -+ < m,_; <m, =1andoperators 0 = {; < {; < -+ < {, = psuch that {(r) = ¢ for

m,_; <t<mand k =1,...,r. Such a discrete path is equipped with independent centered Gaussian

92



THE QUANTUM SHERRINGTON-KIRKPATRICK MODEL

processes X, = (X (1))g<;<; With covariance E[X, ()X, ()] = (§, — &)@, ') for k = 1,...,r. Let

further A € L be a bounded self-adjoint operator and we define the random variables Y) inductively via

r 1

Yr:In/ dvoexp<2/ ﬂf(t)Xj(t)+Tr/1|§)(§|>
= j=1 0
Y, szk InE;[exp(m Y )]

where E; . is the expectation with respect to the randomness of X ;. Here A can be understood as

Lagrange parameter, which fixes the self-overlap to be p. The Parisi functional is then given by

2 1
P(p.§ 4 B.T) =Yy + % < /0 ISl d — ||p||%ls> —Tr dp.

A straight-forward interpolation argument shows that the Parisi functional &(p, ¢, 4, §,I') is Lipschitz-
continuous in ¢ and, thus, can be extended to continuous paths ¢ [3, Lemma A.1]. We note the dependence
on I" which is hidden in the path measure v,,. To make use of the Parisi formula for vector spin glasses,
one considers the d-dimensional subspace V,, of L?([0, 1]) generated by the first d elements of the Fourier
basis e, withe; = 1, ey, = \/5 sin(2rkt) and e, (t) = \/Ecos(2nkt). With the orthogonal projector
P, onto V,, one sets

r‘:.=pre, r‘:=pr,;LrPp,

and the action of P, is understood element wise. We are now ready to state the Parisi formula

Theorem 5.10 (Theorem 2.1 in [3]])
For any f,I" > 0, we have the Parisi-type formula for the quenched pressure @ 5 (f,I')

.1 . .
]yinoo FIE[(DN(ﬂ’ )] = In(2 cosh(BI)) + dlggo I)S:Ig LE nl:,lfeg ’ P(p, &, 4, B, F)] . (5.19)

The proof in [3] implicitly shows the existence of the limit on the right-hand side of (5.19) and, thus, in
particular the existence of the limit of the specific pressure in the QSK model. Of course, by Gaussian
concentration, see Proposition [2.4] the specific pressure converges also almost surely. Most likely, the
right-hand side of (5.19) can be replaced by sup e [inf cen, jec, P(p, ¢, A, F)]. The appearance of the
d — oo limit is due to the proof technique which heavily relies on Panchenko’s result for finite dimen-
sional vector spin glasses [154]. The main new insight is that since the Poisson process typically does
not jump too many times, it can be approximated very well by a few Fourier basis elements. To make
this idea precise, the interpolation machinery is used, which requires considerable work. Evidently, the
formula (5.19) is very involved. Future will tell if one can deduce physical properties of the QSK from
Theorem 5. 101

5.2.2 The High Temperature Phase: Annealed Pressure and Absence of Glass Order

The paper [[126] mainly studies the QSK model in the high-temperature phase § < 1. We recall that in the
classical setting (I" = 0) the high temperature phase of the SK model is characterized by an asymptotic
equality of the specific quenched pressure [E% In Z ;(§) and annealed pressure % InEZ 5 (f). This moti-
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vates the analysis of the annealed pressure in the QSK. In contrast to the SK model, where the annealed
2

pressure is simply given by ﬂT, in the QSK there is no such elementary expression. Nevertheless, one

may give a variational formula for the annealed pressure. Using again the path-integral framework, we

note that

2 1 1
E[Z y(B,1)] = (2 cosh(BT)N / dv) exp(% (N / / Qz(f,f)(t,t’)dtdt’—1>>, (5.20)
=N 0 0

where we used that every initial spin 6 € Q, contributes the same in expectation and the term in the
exponential follows by the known exponential moment of a Gaussian random variable and the covariance
(3.18). To further analyze (5.20), one needs to understand the probability distribution of the path overlap
Q(&, &)(t,1') under the Poissonian path measure vé\’ . To this end, large deviation theory is a convenient
tool. For #,I" > 0 and y € L?([0, 1]%) we introduce the cumulant generating function

1 1
Agr(y) :=In </ dv exp </ / w(t, t’)f(t)i(t’)dtdt’)) 5.21)
E 0 Jo

Note that & in (5.21)) consists only of one component. The function Ay r(y) probes the probability of
the overlap QO being close to y. The functional A enjoys numerous useful properties: it is a 1-Lipschitz

function and convex in y and its functional derivative A’(y) is also 1-Lipschitz and given by

1 1
Ay ()(s, s") = e hor®) / dvy E(s)E(s") exp < /0 /0 w(t,t’)é(t)é(t’)dtdt’>,

ie., %Aﬂ’r(u/ +a@)|,—o = (A;’F(w), @) [126, Lemma 4.1]. The rate function of the path overlap is then
governed by the Legendre transform A™* : L%*([0,1]%) » RU {0},

Apr(@) i= sup (v, @) — Ay)).
yeL?(0.11)

One observes that if A;’ (@) < oo, then |p| < 1 and (1, 9) > 0. An infinite-dimensional version of the
well-known Varadhan lemma yields [60]:

Theorem 5.11 (Theorem 3.1 and Theorem 4.3 in [126]])

For any f,1" > 0, the specific annealed pressure converges and we have the formula

lim — In(E[Zy(8, D) = In2cosh(F) +  sup  (Ayr(w) — 2wy} (5.22)
b= B weL2([0,112)

2
=1In(2cosh(fT)) +  sup <%(¢,¢)—A;’F(q))>. (5.23)
@eL?([0,11%)

Both suprema in (5.22) are attained at some y and @ and a maximizing y satisfies the Euler-
2
Lagrange equation y = % A’ﬂ r(w).
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Unfortunately, the maximizer in (5.22)) is not known. However, in the weak disorder limit, i.e., if AT is

2
kept constant and § — 0, the maximizer y resembles the function %//I(I, t") with

cosh(AT'(1 = 2|t — 1'|))
- cosh(pT)

)

pu(t, 1) =

which is simply the path overlap one obtains for the pure paramagnetic Hamiltonian fI". This allows one to
compute the second-order Taylor expansion in § for weak disorder [126, Theorem 5.3]. Most interestingly,
one concludes from these computations that the among physicists popular static approximation [[177,[189,
192]], where on assumes that the maximizer y = c agrees with a constant c, is wrong even in the high
temperature phase.

Let us briefly mention how Theorem is related to the Parisi-type result (5.19). The following deriva-
tion is not intended to be a formal argument, but a rigorous proof should not be too difficult either. To
this end, we consider the Parisi functional & (p, ¢, 4, ,T) for the path {rg(#) = p1(;,(#). This path may
be interpreted as "replica-symmetric" situation since the path-overlap takes with probability 1 the value

of the self-overlap p. We obtain with a Hilbert-Schmidt Lagrange multiplier A the simpler expression

‘@(/”CRSJ’ﬁ’F)ﬂﬂ(/ dVoeXP< //p(tt)é(t)af(t)dtdt+/ / A(tt)é(t)cf(t)dtdr))
Lol - / / 20,000, )t

= AGBp/2+ 2) = (p.A) - %m o).

We have used that Y|, is up to the translation by A simply the exponential moment of the Gaussian X

with covariance p. Now, we note that if we take the infimum with respect to A(t,¢) € L? we obtain

| N
/llélsz L@(p’g}{s, A’ﬂ’r)_ Aﬁ,r‘(p)+ 4 <p’p>

Taking the supremum with respect to p, we end up with the variational expression (5.23). This should
answer the question risen in [[126] on how these both formulae relate to each other. In some sense, the
annealed pressure optimizes solely the self-overlap and is not affected by replica symmetry breaking. This
resembiles the classical situation. Conceptually, if annealed and quenched pressure agree, we should have
no replica symmetry breaking. On the other hand, the optimizer in (5.19) can be of replica-symmetric
nature, while quenched and annealed pressure do not coincide. The reason for that is that the optimal
self-overlap from Theorem[5.11T|might lead to a broken solution in (5.19) while the whole system chooses
another self-overlap whose minimizing Parisi (overlap) measure is trivial. This explains why in [126,
Theorem 2.4] a difference between annealed and quenched pressure is observed for low temperatures and
strong magnetic fields although for these parameters no spin glass order is expected.

The second main result in [[126] is that annealed and quenched pressure agree for f < 1, just like in the
classical SK model.
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Theorem 5.12 (Theorem 6.3 in [126]])

For p < 1 and any " > 0, annealed and quenched pressure agree, i.e.,

.1 .1
132{130 Fln E[Zy(B,1)] = ]égnoo F[E[ln Zn(B, D]

Theorem [5.12]is derived by adapting the corresponding proof for the classical model [6]]. The main idea
is to apply the so-called second moment method. Suppose one has shown that E[Z 12\/] < cE[Zy]? for
some absolute constant ¢ > 0. The idea is then to invoke the Payley-Zygmund inequality [112]]

P(Zy > xE[Zy]) > (1 - x)Z[E[ZN]2 N L L2l
E[Z3 ] ¢

for 0 < x < 1, which guarantees that Z, is of the same order as E[Z ;] with a nonvanishing prob-
ability. Recalling that by Gaussian concentration % In Z; concentrates around its mean, by the above
%[E[ln Zy]l = % InE[Z]. That is, to prove Theoremit is enough to show [E[ZIZV] < c[E[ZN]Z.
To arrive at such a bound, one notes that Z ]2V coincides with the partition function of a a duplicated sys-
tem. Making use of the path-integral framework and Gaussian linearization the claim follows after a little
computation [[126, Lemma 6.1].

In the classical SK model there is no glass order for § < 1, i.e., the distribution of the replica overlap Ry
under the Gibbs measure concentrates around 0. To establish the absence of glass order in the quantum
setting, one similarly needs to show that distribution of under the (duplicated) Gibbs density matrix p%z,
with ppp 1= ePH | Z (B, T) is trivial. Theorem— or to be more precise the computation leading to

the second moment estimate [E[ZJZ\,] <cE[Z N]2 — has the following important consequence:

Corollary 5.13 (Corollary 6.3 in [[126])
For p <1 and anyT" > 0, we have

o ®2 p2 / _
lim E [Tr (pﬂ’rRN(o,a ))] —0. (5.24)

Of course, (5.24) implies that the replica overlap concentrates around 0 in the thermodynamical limit.
The complementary problem, namely establishing glass order for lower temperatures, is the main topic
of the next section.

5.3 Existence of the Glass Phase

In order to be consistent with the work [[125]], in this section we write for the QSK Hamiltonian acting on
£2Qp)
Hy :=JU+bT

with parameters J > 0,5 > 0 and U = Ug is the SK potential. Of course, the additional parameter J
does not reveal any new physics as its always equivalent to a model with J = 1 and a different temperature
and field strength. As usual, the thermal average of some observable A with respect to Hp at some

temperature # > 0 will be denoted by (A) 4, 5, := Tr Ae™PH |Tr e=PH _If A acts on two replicas, (-)?Jzﬂb
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is understood as average with respect to independently drawn copies of the original system. We will

measure spin-glass order with the help of the Edwards-Anderson parameter gg,,

2 2
Gpp = ———— (STS s = (R 2)®? -7 (5.25)
N(N - 1) 15]§g1v J BJ.p BJ.pb -1

where the second identity is immediate from the operator identity Ry := N~! ZJ]L S jz ®S jz We already
know that for §J < 1 the Edward-Anderson parameter gz, — O vanishes almost surely for any 6 > 0
as N — oo. We have show in [[125]] that liminf 5, . E[gga] > O for fJ > 1 and b > 0 small enough,
confirming a glass transition also in presence of a transversal field. We stress that the results in [[1235]]

form the first prove of glass order in the field of quantum spin glasses.

The main strategy is to establish a lower bound on E[gg,] and to conclude from the lower bound the
positivity of the Edwards-Anderson parameter in a second step. To formulate the lower bound, we need

to introduce the function A : [0, oo] — [0, 1], implicitly defined via
A(rtanh(r)) = r~! tanh(r) (5.26)

A is monotone-decreasing, convex, satisfies A(0) = 1, and it can be estimated from below according to
A@) > 711 —e™) > max{0, 1 —¢/2} [69]. Then, we have the following estimate:

Theorem 5.14 (Theorem 1 in [[125])

The mean of the spin-glass order parameter (5.25)) has a lower bound according to

[E[qEA]zA(zﬂb[E[<S;‘>ﬂJ,ﬂb]> 57 N [E[( )Wb] (5.27)

It is valid forany f >0, J >0, b >0, and all N > 2.

We will comment later on the proof of Theorem [5.14] Instead, let us first discuss how we use to
show that E[gg 4] does not vanish for §J > 1 and b small enough. To this end, we estimate the right-hand
side of (5.27). To estimate (.S) 4, s»» one may use the trivial bound (S7); 5, < 1. In[125]], we show that
a differential inequality results in the slightly better bound (S7)4; g, < tanh(fb). To bound E[(U ) ],
one may make use of the limiting specific ground state energy ¥ := — hm % minU. Its existence is
guaranteed by Parisi’s formula and numerical computations suggest k z O 763 [54]]. We arrive at the

explicit lower bound

G(pJ. pb) :=lim inf E[gga] = A(26btanh(pb)) - 2K (5.28)

pJ’
The maximal magnetic field strength b for which the right-hand side of (5.28) is positive grows with f
and in particular it allows to prove a glass phase in the zero temperature limit § — oo up to a magnetic
field strength b = J/(4x) ~ 0.328 J. However, a main drawback of the simple ground state bound is
that even for b = 0 it only shows glassiness for fJ > 2k, which does not agree with the known classical
transition point fJ = 1. To establish the persistence of spin-glass order in the regime 1 < fJ < 2«
for a sufficiently small field strength b, our main idea is that E[{U ), 5,] should be close to its classical

value (b = 0) if b is small enough. This intuition can be made precise by invoking the convexity of the
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pressure. While this argument works in the whole parameter region fJ > 1, it only proves glass order

for very small b > 0.
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Figure 5.1: In the temperature-field plane the (red) cross-shaded regime indicates where we prove the
existence of spin-glass order in the QSK model. The (red) dashed line is a cartoon of the critical line
between the spin-glass and the paramagnetic phases as obtained by approximate arguments and/or nu-
merical methods [78.96,/139,(189,(192}{193]]. The (blue) line-shaded regime for §J < 1 indicates where
the spin-glass order parameter is rigorously known to vanish (Corollary [126]). [125, Figure 1]

Our analytic results and the numerical predictions on the glass phase [[78},961139,189(192|{193]] are shown

in Figure[5.1] The rigorously established glass regime is significantly smaller than what physicists pre-

dict. For instance, for f — oo our methods only confirm glass order up to b ~ 0.328 J, but the numerics
suggests that the critical field strength is found at b =~ 1.51J or b ~ 1.6J [[78L|1891[192}{193]]. The precise

location and nature of the true quantum critical point remains an important problem, in particular in the

context of adiabatic algorithms. However, at the moment it appears illusive to find an exact characteri-

zation of the separation line. Future work might focus on qualitative questions which are still open. For

instance, it would be of interest to show that glass order indeed vanishes for fJ > 1 and b large enough.

One might also turn to the question of replica symmetry breaking by establishing that gz, does not con-

centrate around one specific value in (a part of) the glass phase. This would probably allow to show
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replica-symmetric breaking in presence of a longitudinal field. We remark that extending our results to

p-spin models is however rather straightforward. One may prove the similar bound

E[(RY)EE,,] > (1+ o NDA(pBBE[(ST)pr ] ) + ﬂ%%[E [(U)ps ps] +0o(N)

which similarly leads to a nonvanishing Edwards-Anderson parameter [[125, Theorem 2]. More funda-
mentally, it would be of high relevance to analyze how decisive the replica overlap is in the context
of quantum models. Classically, we have seen that (Theorem [5.1)) the overlap distribution determines
the pressure, which is reflected in the Parisi formula. Such conclusion might not hold true for quan-
tum glasses, but the replica overlap could still help understanding certain aspects of the glass phase. A
similarly deep question is if there exists a quantum analog of the ultrametricity observed in the classical

models (see Theorem [5.8)) and what role if any is played by the Ruelle cascades.

The rest of this section is devoted to the proof of Theorem [5.14] Here, we extend a key observation of
Bray and Moore [42], and of Aizenman, Lebowitz, and Ruelle [6], to the present quantum case b > 0: the
mean order parameter E[gg, ] is related to the mean internal energy E [(U) B, ﬁb] of the SK Hamiltonian.

In a first step, we use the spin-index symmetry to obtain

N(N -1
E[U)psp) = —= Z Elg; k(S S8 ps.pp] = #

1
VN 1<j<k<N

Now, we invoke Gaussian integration by parts [152, Lemma 1.2 ],

Elgy (ST S5)7.pp]-

Elg12(S7S5)ps 6] = E [a<SiZSQZ>ﬂJ,ﬂb/ag12]'
Computing this derivative, leads to the important identity

2 Z QZ Z QZ Z QZ
- ﬁ[ERU)ﬂJ,ﬁb] =pJ [E[<S1 S5 18 S2>ﬁJ’ﬂb - <Sl Szﬁﬂ,ﬁb] (5.29)

where we have introduced the Duhamel-Kubo-Bogolyubov scalar product or Duhamel correlator [69,

119]. (A|A) can be defined for any observable A, Hamiltonian H and inverse temperature # > 0 as

1
(A]A), :=/dt<e’ﬁHA*e_’ﬁHA>ﬂ.
0

The Duhamel scalar product appears naturally as derivative of the exponential matrix in the noncommu-

tative setting. If A = A*, one has the a priori bounds
0 < (A)] < (AlA); < (A7),

where the first inequality is trivial, for the second inequality one can use the representation (A|A); =

o H+(s+DA and invoke convexity and the last inequality is essentially a convexity estimate, too [167,
Theorem IV.7.2]. We are of course interested in the case where A = SfSé’" and H = H,, is the QSK
Hamiltonian. Then, (STS7|S7S7) s 55 < 1. In the classical commutative case (b = 0), we in fact have

the equality (STS7|.STS5) s, p=0 = 1, which significantly simplifies the analysis of (5.29).
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For nonvanishing magnetic fields b > 0, the main challenge is to find a lower bound on the Duhamel

scalar product (S7S5|S7.S5) s, gp» Which improves on (S7S3) Fortunately, the by now classical

2
BJ.pb°
Falk-Bruch inequality is sharp enough:

Proposition 5.15 ( [73],Theorem IV.7.5)
Let H be an Hamiltonian on a finite dimensional Hilbert space, A a self-adjoint bounded operator
and A as in (5.26). Then, we have

.

(A1) = (A A7
s

([A.18H, A]]) ﬁ) : (5.30)

The expression in the argument of A in (5.30) equals the scalar product ([ﬂH , Al | [BH, A] ) s and is hence
positive for a general self-adjoint observable A. In the present case, A = S7.S7 commutes with the SK
potential U, so the double commutator is independent of J and one may compute

[S2SZ,[BH, Al| = BbI.S?SZ,[ST + S3, SZS2] = fb ([S7SZ,[-2iS7SZ - 2iS7S2]])

= 4pb(S} + 57).
Using again the spin symmetry, we arrive at

E[(STS31STS) 00| 2 E [A<2ﬁb<5f>w,ﬂb>] 2 A<2ﬂb[E[<Sf>ﬂJ,ﬂb] )

where we used Jensen’s inequality for the convex function A.
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Phase diagram of the quantum random energy model

Chokri Manai and Simone Warzel

The Quantum Random Energy Model (QREM) is probably the simplest quantum spin glass model as it
consists of the uncorrelated REM potential in a transversal field. Nevertheless, the QREM is of huge
relevance, not only as a treatable toy model for disordered quantum mean field systems, but also due to
its applications in quantum computing and mathematical biology [21H23}/110}]175]]. In Core Article I, we
present the first rigorous analysis of the QREM. We focus on the specific pressure in the thermodynamic

limit. This work has been the basis for the study of more involved models [[130,/131]]

Main Results

Our main theorem establishes Goldschmidt’s prediction on the limit of the specific pressure in the QREM
[95]] as an almost sure convergence. As a consequence, we determine the complete phase diagram of the
QREM. The phase diagram consists of a classical phase, where the QREM thermodynamics agrees with
the REM thermodynamics, and a pure paramagnetic phase where the REM potential does not contribute
to the specific pressure in the thermodynamic limit. We confirm a first order magnetic transition, a second
order glass transitions for a weak magnetic field, and a quantum phase transition for the ground state. We
give explicit expressions for all phase lines.

The proof relies on asymptotically matching lower and upper bounds. The lower bound is derived via
Gibbs’ variational principle. The upper bound is based on the rough geometry of the REM energy land-
scape and standard methods from matrix analysis, in particular the Golden-Thompson inequality. More-

over, we discuss the concentration properties of the pressure, which turns out to be self-averaging.

Individual Contribution

I am the principal of the author of this article. I was involved in all stages of the work and contributed
to the draft. The topic was suggested by my advisor Simone Warzel. After several attempts to prove
Goldschmidt’s formula via a path-integral approach - which ultimately only lead to partial results - Simone
Warzel had the insights that operator theoretic methods could be used instead. We then figured out the
details together. I contributed significantly to the proofs of Lemma 1, Lemma 2 and Lemma 3.
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Abstract

We prove Goldschmidt’s formula (Goldschmidt in Phys Rev B 47:4858-4861, 1990) for
the free energy of the quantum random energy model. In particular, we verify the location
of the first order and the freezing transition in the phase diagram. The proof is based on a
combination of variational methods on the one hand, and bounds on the size of percolation
clusters of large-deviation configurations in combination with simple spectral bounds on the
hypercube’s adjacency matrix on the other hand.

Keywords Disordered systems - Quantum spin glass - Phase transition

Mathematics Subject Classification 82D30 - 82B44

1 Introduction

The quantum random energy model (QREM) draws its motivation from various directions.
In mathematical biology, it has been put forward as a simple model for the expression of
genotypes under mutation in a random fitness landscape [4,14]. More recently, it gained atten-
tion as a basic testing ground of quantum annealing algorithms for searches in unstructured
energy landscapes (cf. [6,18] and references therein) as well as in the context of many-body
localization [5,9,15,19,25]. Its original motivation stems from the quest of understanding
quantum effects in mean-field spin glasses [10,13,17,22,26].

The classical backbone, the random energy model (REM) was put forward by Derrida
[11,12] in the early 1980s as the limiting and solvable case of a class of mean-field spin
glasses. The space of N-bit strings Qy = {—1, 1}V serves as the configuration space of the
REM. The energy associated with 0 = (o1, ..., 0xn) € Qp is a rescaled Gaussian random
variable
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U(o) :== /N g(0)

with g(o) forming an independent and identically distributed (i.i.d.) process with standard
normal law. Q y may be interpreted as the state space of a system of N spin— 5 quantum objects
recorded, e.g., in the z-basis. The corresponding Hilbert space is given by the Nfold tensor
product ®§.V:1 C? which is unitarily equivalent to £2(Qy). Effects of a transversal (e.g. in the
negative x-direction) constant magnetic field of strength I > 0 on the spins are taken into
account through the componentwise flip operators Fjo := (o1, ..., —0j,...,0oy), which
are implemented on ¢ € 2(Qy) as

N
(TY) (0) ==Y _Y(Fjo).

This operator coincides with the negative sum of x-components of the Pauli matrices. The
energy of the QREM is then given by an Anderson-type random matrix

H=IT+U (1)

where U acts as a multiplication operator on 22(0n).
The process U (o) is the limiting case p — oo of the Gaussian family of p-spin models
characterized by its mean and covariance function,

p

E[U(o)] =0, [U(O’)U(O’) IZO'] =: N§, (o, o). 2)

The case p = 2 corresponds to the famous Sherrington—Kirkpatrick model. The simplifying
feature of the limit p — o0 is the lack of correlations. The quantum p-spin generalisation
of the QREM is then given by the random matrix (1) in which U is a multiplication operator
by the correlated field.

1.1 Main Result

In this paper, we will be interested in thermodynamic properties of the QREM which are
encoded in its partition function

Z(B, ) :=2"NTre PH
at inverse temperature S € [0, 00), or, equivalently, its pressure

pn(B, 1) :=N""1InZz(B,I). 3)

Up to a factor of —B ™!, the latter coincides with the specific free energy.
In the thermodynamic limit N — oo the pressure of the REM converges almost surely
[7,11,12],

if B < g,
+ (B —=Bc)Be if B> B.

It exhibits a freezing transition into a low-temperature phase characterized by the vanishing
of the specific entropy above

Jim py (B, 0) = pREM(B) = { 1 4)

Be :=~21In2.

@ Springer



656 C. Manai, S. Warzel
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Fig. 1 Phase diagram of the QREM as a function of the transversal magnetic field I" and the temperature /8_1 .

The first-order transition occurs at fixed g and I'+(8). The freezing transition is found at temperature S, l,
which is unchanged in the presence of small magnetic field

Under the influence of the transversal field, the spin-glass phase of the REM disappears
for large I > 0 and a first-order phase transition into a quantum paramagnetic phase char-
acterised by

pPAR(ﬂF) :=Incosh (BI")

is expected to occur. The precise location of this first-order transition and the shape of the
phase diagram of the QREM has been predicted by Goldschmidt [17] in the 1990s on the basis
of arguments using the replica trick and the so-called static approximation in the associated
path integral. His calculations have been repeated and refined in various papers—all still
based on the replica trick and further approximations [13,22] (see also [26] and references).
As a main result of this paper, we give a rigorous proof of this result.

Theorem 1 Forany I', B > 0 almost surely:

Jim py (B, ) = max{p"™M(p). pR(BI)).

As will become clear from the proof, which is found in Sect. 2 below, the special structure
of the pressure as a maximum of competing extremal cases is mainly caused by the fact that
the REM’s energy landscape is steep and rough due to the lack of correlations. This renders
the model solvable. Before diving into the details of the proof, let us add some comments
(see also Fig. 1):

1. As in the classical case, the pressure py (8, I') is self-averaging, i.e. in the thermody-
namic limit it coincides with its probabilistic average, the so-called quenched pressure
E[pn(B, I')]. For the QREM, this follows immediately from the Gaussian concentra-
tion inequality for Lipschitz functions. The Lipschitz constant of the pressure’s variations
with respect to the 1.1.d. standard Gaussian variables g(o) is bounded by
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opn (D) p gy, 2 B
2 <W) T N22NZ(B, I)? Xa:«fle o) = -

oceQnN

Here and in the following we use bracket notation for matrix elements. Consequently,
we have the Gaussian tail estimate

P(”’N(,Ba Iy —Elpn(B, )]l > f/—ﬂﬁ) < C exp (—ct?) S

forall + > 0 and all N € N with some constants ¢, C € (0, 00). In fact, self-averaging
for more general quantum p-spin models has already been established in [10].
2. For fixed B a first-order phase transition is found at

I.(B):= ,8_1 arcosh (exp (pREM(,B))) .

In particular, I.(0) = 1 and I.(B:) = B, 1 arcosh(2). In the low-temperature limit,
limg_, oo I':(B) = PBe, the first-order transition connects to the known location of the
quantum phase transition of the ground state [18]. In this context, it is useful to recall
that the REM’s extreme energies are almost surely found at |U||oc = B:N + o(N), cf.
[7,Ch.9]. For I' < B, the energetically separated ground state is sharply localized near
the lowest-energy configuration of the REM. For I' > B, the energetically separated
ground state resembles the maximally delocalized state given by the ground state of 7.
Near I = f., the ground-state gap closes exponentially [1].
3. For I' > I'.(B), the magnetization in the x-direction is strictly positive,

a
pt — p™R(BI') = tanh(BI") > 0.
or
4. For all I' < I;(B) the line of the freezing transition transition remains unchanged at
B = Bc. In the frozen regime, the QREM has zero specific entropy.

1.2 Comments and Open Problems

We close the introduction with some further comments and open problems:

1. For the quantum p-spin model it is conjectured that the structure of the phase diagram in

Fig. 1 only changes smoothly in 1/p at low temperatures (see e.g. [13] ). Non-rigorous
1/ p expansions in a replica analysis have been the basis of these assertions. (A tiny step
towards a proof of the continuity of the pressure at p = oo has been undertaken recently
on the basis of the methods presented here in [21].)
Such expansion-based arguments have been extended in [22] to cover the case of ferro-
magnetic bias, in which the Gaussian spin- p couplings are tilted towards a ferromagnetic
interaction. The paper [22] argues that the spin glass phase will also disappear in favour
of a ferromagnetic phase for sufficiently large tilting.

2. Asinthe classical case, the quenched pressure [E [ py (8, I')] is generally smaller than the
annealed pressure N ThE[Z( B, I')]. However, in the high-temperature phase, 8 < f.,
asymptotic equality holds—even in the quantum case as is not hard to show by performing
the annealed average in the path-integral representation. The fluctuation properties of the
partition function are well studied in classical cases (see e.g. [3,8] and [7, Ch. 9-10] for
further references). We leave it to a future work to extend these results to the quantum
case.
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3. For a large class of mean-field spin glasses, the pressure in the thermodynamic limit is
known to be universal in that it does not depend on the details of the randomness (cf.
[28] and references therein). Such universality results have been extended to the quantum
case in [10].

4. Most recently, there has been some progress in understanding the free energy of the
quantum Sherrington—Kirkpatrick model. The absence of a spin-glass phase for high
temperatures was addressed in [20]. In particular, it is shown that in the high-temperature
phase the quenched pressure asymptotically coincides with the annealed pressure thereby
generalising some of the results in [3]. The paper [2] identified the thermodynamic limit
of the quenched pressure with a certain limit of a variational principle involving classical
vector-spin glasses.

2 Proof

The proof of Theorem 1 consists of a pair of asymptotically coinciding upper and lower
bounds.

Proof of Theorem 1 The assertion is a consequence of Lemma 1 and Corollary 1 below. O

The following two subsections contain the details of the argument.

2.1 Lower Bound

Not surprisingly, our lower bound is more robust and will hold for more general p-spin
models also. Let us first recall that if U (o) is a Gaussian random field of the form (2) with
p € [1, o], then its pressure

pU(p):= lim N~'In2~N 3 U@ ©

oceQn

is known to converge almost surely to a non-random expression, which is in fact given
by the famous Parisi formula [23,24,27,28]. In the special case p = oo this reduces to

pY(B) = pR*M(B).

Lemma 1 Consider the quantum p-spin model, i.e. H = I' T + U with U diagonal and
Gaussian of the form (2) with p € [1, oo]. For any I', B > 0 and almost surely

lim inf py (8. I') > max{p"(B), p"*R(BI)}. (7)

Proof We use the Gibbs variational principle,
InTre ## = —inf [8Tr (Ho) + Tr (01no)] (8)
0
in which the infimum is taken over all density matrices, o > 0, Tro = 1, on 62(Q ~). There
are two natural choices:
1. We may pick 0 = e PY /Tre PV In this case, the right-hand side is lower bounded by

InTre PV — BI'Tr (T o) =InTre PY.
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The last step follows from the fact that the diagonal matrix elements of 7' vanish. Con-
sequently, we arrive at the bound,

1 1 -
pn(B, T) = Nln w Z e BUO@ |

ceEQN

which together with the known convergence (6) yields the first part of the claim.
2. We may also pick o = e #T'T /TrePI'T  In this case, the right-hand side in (8) reduces
to

InTre T — BTr (Uo) = Nln(2cosh(BI)) — 2% GXQ: U(o),

where we used (ole #T'T|o) = cosh(BI")" for the diagonal matrix element of the
semigroup generated by —7'. Consequently, we arrive at the bound,

B
PN (B, D) = pPRBN) = o5 ) U@).

ceQN

The last term converges to zero almost surely by the strong law of large numbers. More
precisely, for any ¢ > 0, an exponential Chebychev bound yields

1 ) g
NN Z U@o)>e¢e| <eVN?E exp SN Z U(o)

ceQN o€QN

2
_ ,—Ne&2)2 e /
=e exp PN E Né&y(o,07)
0,0/

< o~ Ne*/4

The same bound also applies to — ) U(o). Since the right-hand side is summable in
N, a Borel-Cantelli argument ensures the claimed almost-sure convergence.

O

2.2 Upper Bound

Typical values of the REM U (o) fluctuate on order O(V/N). Our upper bound rests on the
observation that configurations on which large negative deviations occur,

Le:={0€Qn|U(o) < —eN}, 9)

form gap-connected clusters whose maximal size remains bounded uniformly in N even for
¢ > 0 arbitrarily small. For the precise formulation of this result, it is useful to recall that the
Hamming distance

N

d(@,0") =Y 1|0; £}

j=1

renders Qp (through the nearest-neighbour relation) into a graph called the Hamming cube,
in which each vertex has exactly N neighbours. For future purposes, we also introduce the
Hamming ball of radius r € [0, N] centered at o € Qy,
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B, (o) := {a’ € Oy |d(o, o) < r}.

Its volume | B, | is known to be bounded by exp (Ny (r/N)) for all r < N /2 in terms of the
binary entropy, y(§) := —&In& — (1 — &) In(1 — &). Here, a simpler bound is sufficient:

|Br|=Z(N)sZN¥5eN’. (10

|

Definition 1 Let Oy be the supergraph of the Hamming cube Qp, which one obtains by
adding the edges {o, o'}, where o, o’ are two vertices with d(o, 0’') = 2. We callC, C L. a
gap-connected component, if C is connected as a subset of On. A gap-connected component
C. 1s maximal if there is no other vertex o € £.\C; such that C; U {o'} forms a gap-connected
component.

For each realisation of the randomness the large-deviation set then naturally decomposes
into a finite (edge-)disjoint union of maximally gap-connected components,

L.=|Jc®.
o

On any gap-connected component C, for every vertex o € C. there is some o’ € C:\{o}
with d(o, o) € {1, 2} — not necessarily d(o, o’) = 1. By construction, we thus have for all

a # o
d (c,§“>, cgf”) — min {d(a, o) |o eC® Ao e c:g“”} > 2. (11)

The next lemma controls with good probability the size of each subset Céa), which is just the

number of its vertices and denoted by |C§“) |

Lemma2 Foralle > 0and N € N there is some subset §2. y of realizations such that:

1. for some c; > 0, which is independent of N, and all N large enough:

P(2en) > 1—e N,

(@) 4In2
2. on §2; y: max }Cs ‘ < K, = 7 |-
o &

Proof We start by noting that the event

2env = [ {|Br0)NLe| < K.} (12)

0cQnN

with r; := 4K, implies the second assertion in the lemma. This follows from the fact that in
the event §2; v, in which there are at most K, — 1 large deviation sites in the ball of radius r,
around any fixed o € L, the gap-connected component to which o belongs, must be strictly
contained in a ball of radius at most 2(K, — 1) < r, — 2, i.e. it cannot gap-connect to other
vertices outside the ball B,, (o) and hence consists of at most K, vertices.

It therefore remains to estimate the probability of the event complementary to §2,. . Using
the union bound we obtain:
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Pl {[B.@)nLe| =K} | =D P(IB(0)NLe| = Ke)

0c QN 0eQn
|Br5|
<) D P(BLncL=))
oeQy j=K;
|Br5| (,¢] ]
<2N Z |Brg| e—j52N/2<2N |Brg| e—jszN/Z
T J B J!
j=Kg¢ k=K,
Ke
S 2N |Brg| e—KSSZN/z CXp (|Br€|e—82N/2)
B, |k
< el kN o (1B, le=N72). (13

Here the third line relies on the fact that the number of subsets of a given size equals the
binomial coefficient. Moreover, specifying the large-deviation sites in B,, (o) allows one
to compute the probability of the event using the independence of the random field U (o).
To estimate this probability, we use the elementary estimate on the complementary error
function,

—eVN o dx 2
_ —x22 4r 2N j2
P(o e L) /;oo N <e , (14)
as well as the trivial bound on the probability of the complementary elementary event. The last
inequality in the second line of (13) results from a simple bound on the binomial coefficient.
The forth line is the standard estimate of the remainder of the exponential series. Finally,
the last line follows by definition of K. Since the volume of the ball |B,,| grows only
polynomially in N by (10), the right-hand side of (13) is exponentially bounded for large
enough N. This completes the proof. O

Our main idea behind an upper bound on the partition function Z (8, I") is to decompose
H into the multiplication operator U restricted to vertices in £, and the QREM H restricted to
the complementary set £ plus a remainder term Az, . For this purpose, we write 02(Qn) =
(L) ® 02 (£%) and set U, the multiplication operator by the REM values on 2(L,). On
the orthogonal complement 02 (L), we define the natural restriction of (1). Note that —7 is
the adjacency matrix on the Hamming cube. In the restriction Hye, we simply restrict the
adjacency matrix to the subgraph associated with £¢. We then define A, through:

H=:Ug, ® Hee — T'Ag, . (15)
Clearly, the matrix elements of the remainder term are related to all edges reaching L, :
1 ifoel "€ Leand d(o,0") =1,
(U|A58|0/) _ ifo e OT O cand d(o,0") (16)
0 else.

The following lemma contains an estimate on the operator norm of the remainder. In case
the components in the decompositions are of small size, this estimate is not so wasteful.

Lemma3 Let L. = |, Cg(“) stand for a finite (edge-)disjoint union of maximally gap-
connected components of the large deviation set (9). Then

< [2N max|C§a)‘. (17)
o
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Proof Since the components are edge-disjoint in the sense that (11) holds, we have

[Az, | =max]Aqe].

where the operators in the right-hand side satisfy (16) with £, substituted by Céa). Conse-
quently, their operator norms are bounded by a Frobenius estimate

[Agol < |3 )<a|AC§a>|o'>\2.

o,0’

Since the double sum is restricted to o € Céa) oro’ € Cé“) and, in each of the two cases, the
other sum has at most N terms, the assertion follows. O

The fact that the operator norm in the preceding lemma does not scale with N might sound
remarkable at first sight. However, we remind the reader that even the full adjacency matrix
—TBy ) restricted to a Hamming ball of radius Np with p € (0, 1/2), is known [16] to be

bounded by H Tsy, ” <2N./p(l = p)+o(N).
We are now ready to conclude our asymptotically sharp upper bound.

Corollary 1 For any I', B > 0 almost surely:

lim sup py (B, I') < max {pREM(ﬁ), pPAR(,BF)} .

N—o0

Proof We pick ¢ > 0 arbitrarily small and start from the decomposition (15) of the Hamil-
tonian. The Golden—Thompson inequality yields

Z(B, T) <2 N Tre PUe®Herg o=l AL,
st (Tr eucoe PVl + T eZ(ﬁg)e_ﬂHﬁg) .

The first term in the bracket on the right-hand side is trivially estimated in terms of the
partition function of the REM:
2_N Tr 52(£8)€_’3U‘c£ < Z(IB, 0) = €NPN('B’O).

For the second term we use the fact that the adjacency matrix —Tc has non-negative matrix
elements and hence generates a positivity preserving semigroup on £2 (L£¢). Since the diagonal
values of its perturbation are bounded from below by —& N by assumption on L{, we conclude

=N Ty 52(cg>€_ﬂH£g < PENYN Ty ez(ﬁg)e—ﬂrTﬁg

< eﬁSNz—N Tl’e_ﬂFT = exp (N (,38 + pPAR(ﬁF))) .

Here, the last inequality follows from the monotonicity of e PITet with respect to £, which
is in turn a consequence of the non-negativity of the matrix elements of the adjacency matrix.
To summarize, we thus obtain

pn(B, ') <max {pn(B,0), Be + p™R(BM)) + & (BT Azl +1n2).  (18)

According to Lemma 2 there is some §2, y whose complementary probability is exponentially
small in N and on which Lemma 3 guarantees that for all N large enough:

pN (B, T) < max {pn(B, 0), pPR(BIM)} + 28 .

@ Springer
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Since the probabilities of the complementary event are summable in N, a Borel-Cantelli
argument together with the known almost sure convergence (4) of the REM thus finishes the
proof. |
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Generalized random energy models in a transversal magnetic field: free energy

and phase diagrams

Chokri Manai and Simone Warzel

A few years after introducing the REM [61,62]], Derrida considered a natural generalization of the random
energy model, the so called GREM [63,[64]. The GREM potential consists of finitely many REM type
random variables acting on sub-blocks of the total Hamming cube, which results in a correlated, yet
hierarchical energy landscape. The built-in hierarchical structure simplifies the analysis of the GREM
crucially in comparison to the SK-model with a hidden hierarchy. However, the GREM still comprises a
rich mathematical structure which turned out to be very similar to the behavior of the order parameter in
the more involved SK model [39,40l152l/153]]. Thus, it is natural to consider it is quantum counterpart, the
QGREM, to shed some light on the nature of quantum spin glasses. Core Article II provides a complete
picture of the phase diagram in the QGREM.

Main Results

In this publication we determine the almost sure limit of the pressure in the k-level QGREM, even with
a random transversal field, based on an inductive technique which we dubbed peeling principle. Our
results reveal an instructive physical picture of the QGREM, namely the hierarchical erasure of spin glass
order. More precisely, the phase diagram shows multiple magnetic phase transitions as the magnetic
field strength increases. Starting from a purely classical GREM phase, the determining blocks of the
GREM undergo consecutively a transition from a fully classical order to a fully paramagnetic order.
These findings were apparently not known before, even in the physics literature. We further extend our
results on the QGREM in two ways. First, we consider the so called non-hierarchical GREM citeBK06
in a transversal field, where we also compute the limit of pressure. As in the classical case, a hierarchical
structure emerges as Parisi-type formula for the pressure. On the other hand, we deal with the CREM, that
is, the continuous limit of the GREM consisting of infinitely many levels. Using interpolation methods,
we again determine the pressure in the thermodynamic limit. The corresponding phase diagrams are of
independent interest as the multiple phase transition of the GREM merge to one or two second order

transitions for appropriate choices of the model’s parameter.

Individual Contribution

I am the principal author of this article. It was my idea to consider the QGREM after we had finished
our first work on the QREM [128]]. I developed the first proof idea on how to determine the pressure
in the QGREM and QCREM. The final publication -the presentation of the results, the structure of the
proof section and the derivation of various technical lemmas - is a result of a close collaboration with my

advisor Simone Warzel.
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GENERALIZED RANDOM ENERGY MODELS IN
A TRANSVERSAL MAGNETIC FIELD:
FREE ENERGY AND PHASE DIAGRAMS

CHOKRI MANAI AND SIMONE WARZEL

We determine explicit variational expressions for the quantum free energy of mean-field spin glasses in
a transversal magnetic field, whose glass interaction is given by a hierarchical Gaussian potential as in
Derrida’s generalized random energy model (GREM), its continuous version (CREM), or the nonhierarchical
GREM. The corresponding phase diagrams, which generally include glass transitions as well as transitions
to quantum paramagnetic and mixed quantum-classical phases, are discussed. In the glass phase, the free
energy is generally determined by both the parameters of the classical model and the transversal field.

1. Introduction

Studying the fate of spin glass physics with respect to quantum effects induced by a transversal field
has been a topic of continuing interest in the physics community. In the past 10 years this subject
received an additional boost due to its relevance as a testing ground for quantum adiabatic algorithms
and for many-body localized systems [1; 6; 13; 23]. Ever since exact solutions of the free energy
of mean-field spin glasses became available, Parisi’s famous replica calculations [29; 33] have been
extended to approximations of the quantum free energy. Notwithstanding numerous works (see, e.g.,
[12; 20; 30; 21; 37; 41]), an ultimate consensus on various aspects of quantum spin glasses such as the
quantum Sherrington—Kirkpatrick (SK) model seems to be lacking even from the physics point of view.
From the point of view of disordered many-body systems the field offers toy models for exotic behavior
of many-body wave functions on Fock space. A hint to the existence of partially nonergodic states is
provided by the results of this work.

Although the theory classical mean-field spin glasses became an established branch of probability
[8; 22; 31; 39; 40], efforts of mathematicians in the area of quantum glasses are so far rather limited.
Crawford [15] laid the foundations for the quantum SK model. For this model, by generalizing classical
arguments from [3], the absence of replica symmetry breaking in the high-temperature regime was proved
in [25], and, more recently, the existence of spin-glass order at low temperatures and transversal field
could also be established [24]. Adhikari and Brennecke [2] used a path-integral approach and Parisi’s
formula for vector-spin models to rewrite the free energy of the quantum SK model as a rather involved
variational problem in terms of infinite-dimensional path overlaps.

MSC2020: 82B44, 82D30.
Keywords: quantum spin glass, phase transition, free energy.
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The main aim of this work is to derive reasonably explicit variational expressions, which allow us
to determine the structure of the phase diagram, for the quantum versions of three classic hierarchical
and related mean-field spin glasses: (i) Derrida’s generalized random energy model (GREM) [18],
(11) its continuous version (CREM), and (ii1) the nonhierarchical GREM by Bolthausen and Kistler [7].
These models were invented so as to incorporate the effects of correlations of energy levels into the
oversimplified random energy model (REM) [16; 17]. The GREM’s and CREM’s built-in ultra-metric
structure constitutes the backbone of Parisi’s solution of the SK mean-field spin glass—a fact which
received its mathematical blessing through Talagrand’s proof [38] and further analysis of the Gibbs
measure [31].

Although the built-in ultra-metric structure and the prearrangement of types in the GREM or CREM
are somewhat artificial as long as one does not clarify the role of ultrametricity in quantum glasses,
it is nevertheless surprising that no physics prediction exists for the quantum version of these classic
hierarchical mean-field spin glasses. All the more so since in 1990, Goldschmidt presented his formula for
the free energy of the quantum REM [21], which was recently confirmed through a mathematical analysis
[26]. This gap is closed with the present paper. We find formulae which express the principle that the types
decide within the groups whether to collectively follow the transversal field or stay in their classical order.
The free energy is then computed as a minimum over all group decompositions. We call this principle
hierarchical peeling. It is based purely on a combination of a probabilistic-geometric decomposition of
the spin-configuration space and operator-theoretic techniques, which are further developments of ideas
in [26; 27]. In passing, we also generalize basic interpolation techniques to the quantum set-up. These
main new technical tools are presented in Section 2.

We start the paper with a short introduction to classical hierarchical models. The quantum free energy is
then presented in Section 1B. The introduction closes with a discussion of the nonhierarchical GREM and
its quantum Parisi-type formula. The proofs of the novel quantum formulae are postponed to Section 3.

1A. Classical GREM and CREM. The GREM and CREM potential U is a centered Gaussian process
on the Hamming cube Qy := {—1, 1}V, whose covariance matrix is given by

E[U(a)U(0")] = NA(q(o,0")), (1-1)

where A :=[0, 1] — [0, 1] is a nondecreasing, right-continuous, and normalized function, i.e., A(1) =1,
which does not depend on N. Moreover, g denotes the normalized lexicographic overlap of spin configu-
rations o, 0’ € Qy, i.e.,

ifo =0/,

1 . . . / (1-2)
y(min{l <i <N;o; #0;} —1) else.

g(o,o’) =

The induced metric ds (o, ') = E[|U () — U(c")|?]'/? on the Hamming cube is an ultrametric.

In the GREM one further assumes that the distribution function A is a step function with n € N jumps
of height a; at the values 0 = xp < x; < x» < --- < x, = 1. The Gaussian potential U can then be
expressed in terms of independent standard Gaussian variables. To this end, one decomposes o € Qy
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into n blocks (“types”), o0 = (o, ...,0,), each of which is represented by a spin vector on a reduced
Hamming cube,

or € QW = (=1, PPN I=PNT e g1 n), (1-3)
Introducing independent standard Gaussian variables X4, X5 ,4,, ..., Xo,0,.-0, On€ then rewrites

U(0) =vN(Jar1Xe, + Va2 Xo,6,+ -+ /@n X5109-0,) (1-4)

in the sense of distributional equality. The pressure or negative free energy

1
Dy (B) = N InZy(B)

is given in terms of the partition function Zy(8) := > e PU©@) and converges for any distribution

oc

function A almost surely [14]. The limit depends on the cQoNncave hull A of A, i.e., the smallest concave
function which is greater than or equal to A. In the GREM, the concave hull A is a piecewise linear function
determined by the values {yo, y1, ..., ym} C {x0, X1, ..., x,} where A and A agree. The increments of
the concave hull a; := A(y;) — A(y;—1), the interval lengths L; := y; — y;_1, and the slopes y; :=a;/L;

determine the limit of the pressure, which is given by [19; 14]

Jim ey (B)=oB)=3 ¢ (p) (1-5)

=1

with the partial pressures

2O (B) i 182+ L2 if g <./(2In2)y, " = B, e

BV RIn2)aL; ifB>,/2In2)y "

(For future reference, we note that this formula still holds if the weights (a;) do not add up to 1.) The
glass transition in the GREM occurs in steps with the components of the systems’ spins corresponding to
[ freezing at B;. Since B, > - -- > f» > 1, the highest freezing temperature is found at B, = f;.

The CREM includes distribution functions A which are not step functions. Since they can be represented
as a (uniform) limit of step functions, it is not surprising that the corresponding limit of the pressure @ (8)
turns into an integral. The increments a; are replaced by the right derivative a(x) of A(x) which exists
everywhere as a consequence of the convexity of A. This allows one to give an explicit expression for the
limiting pressure [11; 8]

x(B) 2 _
<I>(ﬁ)=v21n2ﬁ/ \/El(X)dx+%(1—A(X(ﬁ)))+(1—X(ﬂ))ln2 (1-7)
0

with the function
x(B) :=sup{x | a(x) > 2In2)/B%}. (1-8)

The glass transition in the CREM occurs at g, = \/ (2In2)/lim, g a(x).
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1B. Quantum GREM and CREM and a Parisi formula. 1f a transversal magnetic field in the x-direction
is turned on, the total Hamiltonian acting on the Hilbert space £2(Qy), which is unitarily equivalent to
the tensor product ®§.V:1([32, is

Hy=U — B, (1-9)

where B is the sum of the x-Pauli matrices s; with (possibly random) weights b; € R,

N
(BY)(0) := ) _bj (s;¥)(0), (sjy)(0) =¥ (o1,..., =0j,...,0N), (1-10)

j=1

and U acts as a random potential. Before further specifying U and B, we record a simple observation:
the quantum partition function Tre #Y—=8) and the diagonal matrix-elements of e #(U=58) in terms of
the standard orthonormal z-basis, {|o) | 0 € Qn} for which (o |Y) = ¥ (o), only depend on the absolute
values (|b;|). Here and in the following we use Dirac’s bra-ket notation for matrix elements and scalar
products.

Lemma 1.1. Let U be an arbitrary potential on Qn and B, B’ two transversal field with weights b; and
bj’. which only differ by a sign, i.e., |b;| = |bj’.|f0r all j. Then, forall o € Qy:

(0lePUPla) = (ale PV q). (1-11)
Proof. Expanding the exponential, we write (o |e #(U=8)|g) as a convergent series of terms of the form
(0|Ay1 - Aklo) (1-12)

where each A; is either —U or some b;s;. As s; flips the sign of the j-th coordinate o}, the term (1-12)
vanishes unless each operator s; occurs n; times, where n; is an even number. We conclude that
(o|le"PU=B)|g) only depends on the squares bf which proves (1-11). O

If all the weights b; > 0 are nonnegative, the Trotter product formula shows that Hy generates a
positive semigroup, i.e., for any t > 0 and o, 0’ € Qy,

(ole " V|o’) > 0.

This is in general not true for an arbitrary transversal magnetic field B, but due to Lemma 1.1 we can
assume without loss of generality that the weights (b;) are indeed nonnegative if we are only interested
in properties which can be derived from diagonal matrix elements such as the quantum partition function.

In the remaining part of this section, we restrict ourselves to the case where the weights (b;) are
independent copies of an absolutely integrable random variable b and they shall be independent of the
Gaussian potentials U. We are mainly interested in the thermodynamic properties of the hierarchical
quantum spin glasses which are encoded in the quantum partition function

Zn(B, b) :=Tr[e PHN]
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or, equivalently, in the pressure (or negative free energy)

1
dyN(B,b) = Nln Zn(B,b).

In the special case that the weights b = I" are (almost surely) constant, we will sometimes write B =T"T
and denote the pressure by &y (8, I').

Our first main result concerns the free energy of the QGREM. We show that the free energy converges
almost surely to a nonrandom limit, for which we derive an explicit expression in terms of the classical
partial free energies (1-6) and the paramagnetic free energy. With the notation of Section 1A, we have the
following:

Theorem 1.2. For the GREM specified by U as in (1-4) in terms of its distribution function A, any > 0,
and an absolutely integrable random variable b, the quantum free energy converges almost surely:

ax
<k<m

k
Jim @y (B,b)=(B,b) := m [Zw(l)(ﬁ)Jr(l—yk)[E[ln(Zcosh(ﬂb))]} (1-13)
=1

The maximum is taken over all points {yo, Vi, ..., Ym} supporting the convex hull A of A.

The proof of this theorem is found in Section 3A. We stress that as in the classical case the concave
hull A, rather than A, remains the determining function for the limit. The second term in (1-13) is the
pressure of the random quantum paramagnet given by

1 I 1
p(Bb) := N[E[lnTr [eﬂB]] = N[E [lnjl:[lTr [eﬂbf j]]

1

2|

N
> " E[In(2cosh(Bb;))] = E [In(2 cosh(Bb))]. (1-14)
j=1

If b =T > 0 is constant, the structure of the limit in (1-13) becomes more transparent if we introduce the

0)
Fgl) = %arcosh(% exp((p L('B))), lef{l,...,m}
l

In this situation, we may rephrase (1-13) as follows:

critical field strengths

Corollary 1.3. In the situation of Theorem 1.2 with b =T > 0,

m

®(B,T) = Z(<p<”(,3) 11 _po + Lin2cosh(BT))1 o). (1-15)

=1
The proof is again found in Section 3A. The free energy coincides with the sum of m weighted and
rescaled QREM terms; see [21; 27]. In particular, there are as many magnetic first-order transitions as
second-order glass transitions. The glass transitions continue to occur at the (classical) critical inverse
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Figure 1. Phase diagram of the quantum GREM as a function of the transversal constant
magnetic field I' and the temperature $~!. The figure shows an example with three
second-order glass transitions (dotted lines) and three first-order magnetic transitions
(bold lines). If ' < I 6(.3) (B1), the free energy coincides with the classical one (I' = 0),
whereas, for I" > Fgl) (B1), the system becomes a pure quantum paramagnet. In between
mixed quantum-classical phases appear.

temperatures f; = +/ (21n 2))/1_l aslongas I' < 1“5’) (B1) and disappear for field strengths I' > Fgl)(,Bl);
see Figure 1. The specific magnetization in the x-direction

my(p, 1) := %%Wﬁ, )

changes discontinuously at I' = ré”. The physics described by (1-15) is that of the block or types of spins
corresponding to [ flipping into transversal order at [’ = ré’). At temperatures below ,Bl_l, the transition
is from spin-glass order to a quantum paramagnet in that block. At zero-temperature we find quantum
phase transitions at I' = limg_, rY = ./2m2)y?. Itis an interesting question to determine the fate
of Parisi’s order parameter as well as the structure of the eigenvectors in the different low-temperature
regimes. The picture suggested by our results on the free energy would point to functions which violate
ergodicity partially in a mixed low-temperature phase in that they will be extended on a fraction of the
Hamming cube only. The rigorous classical analysis of Parisi’s order parameter for the GREM, which
partially captures the geometric structure of the Gibbs measure, can be found in [10]. An extension of
this analysis will be the subject of a future work.
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Moving on to the more general CREM potentials, it is convenient to introduce truncated versions of
the free energy in (1-7). For any z € [0, 1], we define

min{x(B),z}

2
P(B,z):==+2In ﬁf vax) dX+1z>x(ﬁ)(%(A(Z)—A(X(ﬂ)))Jr(Z—X(ﬂ))an)- (1-16)

As in the quantum GREM, the free energy of the quantum CREM converges almost surely and the limit
may be expressed as a variational formula involving ® (8, z):

Theorem 1.4. For the CREM specified by U as in (1-1) in terms of its distribution function A, let A be
the concave hull of A, a the right-derivative of A, ®(B, z) as in (1-16) and b an absolutely integrable
random variable. Then, the quantum pressure ® (B, b) converges almost surely,

Jim ®y(B. ) = P(B.b) 1= sup [®(B.2)+ (1~ 2)E[In2cosh(BD)]]. (1-17)

0<z<1

The proof is found in Section 3A.

The free energy @ (8, b) does not only converge almost surely, but also in mean. This is a consequence
of the usual Gaussian concentration of measure estimate, i.e., a special case of Proposition 2.9. If b is
even an L"-random variable for some r > 1, the pressure even converges in r-th mean.

In order to determine the order of occurring magnetic phase transitions, we will replace the variational
formula (1-17) in the case b = I" by a more explicit expression. To this end, we assume from now that the
concave hull A is a continuously differentiable function different from the identity (in order to exclude the
QREM situation). Since a(x(B)) =21In2/8%, ®(B, z) is differentiable with respect to z with derivative

aq)('B 2 \/m )BLlxp + (ln2 + IB_a(Z)) zzx(B)-

We note that aq)(ﬂ ) . [0, 1] — [s(B), t(B)] is a nondecreasing continuous function with values in the
closed interval spec1ﬁed by its boundary values

0D (B, 2)

and 1(B):= M
0z

z=1 07

s(B) =

z=0 ‘

Corollary 1.5. Let g(B,-) : [s(B), t(B)] — [0, 1] be a (generalized) inverse of the derivative _a@g;zs,z) as a
function of z. Then,

(B, 1), p(BT) =s(B),
DB, I') = 1 @(B, 8s(p(BI)) + (1 —gg(p(BT)))p(B), s(B) < p(BT) <t(B), (1-18)
p(BI), 1(B) < p(BI),

with the paramagnetic pressure p(BI') = In2 cosh(BI").

Corollary 1.5 implies that there are either one or two magnetic phase transitions, depending on s(8).
If s(B) = In2 or, equivalently, a(1) = 0, we find a single magnetic phase transition at the critical
magnetization

reg) = arcosh(2 t(ﬁ)).
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Figure 2. Both figures illustrate examples for the phase diagram of the quantum CREM
as a function of the transversal magnetic field I'" and the temperature 8~!. The first plot
contains two magnetic phase transitions (bold lines) into transversal magnetic order. The
second plot shows the case of one magnetic phase transition. The dotted line corresponds

to the glass transition at ., = 4/(21In2)/a(0). If A is continuously differentiable, the
magnetic transitions are second order.

Otherwise, there is a second phase transition at
1 1
rd@p) =- arcosh(—es(ﬁ)>.
D= .

An explicit computation using (1-18) shows that the specific magnetization in the transversal direction

w 0, p(BT) <s(B),
my (B, F)=§ﬁq’(ﬁ’ I') =1 —gg(p(Bl'))) tanh(Bl'), s(B) < p(BI') <t(B),
tanh(B8T), t(B) < p(BT)

is continuous. This transversal magnetic order does not vanish over the line Fgr)(ﬁ) but rather only at
Fél) (B) (which is absent in the case a(1) = 0). If the derivative of a(x) exists at x =0 or x = 1, the second
derivative of ® (8, I') has a jump at the respective critical magnetic fields and we have a second-order
magnetic transition and not first order as in the quantum GREM; see Figure 2. In the classical model, the
low-temperature glass phase is described by a random probability measure which captures the distribution
of the spin overlaps [8; 11]. As with the GREM, it is an interesting question, which will be postponed to
a future work, to study the influence of the transversal field on these quantities as well as on the nature of
the eigenstates.

1C. Quantum Parisi formula for the nonhierarchical GREM. The nonhierarchical GREM was intro-
duced in [7] to illustrate Parisi’s ultrametricity conjecture in an explicitly solvable model. We study the
nonhierarchical GREM with a transverse field, since this is a basic test of whether our results in Section 2
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are only strictly valid for hierarchical models or if one might hope that they still hold true to a certain
extent for more complicated models. Indeed, we are again able to explicitly determine the free energy.

As in the GREM we write 0 =0 ---0, with o} € QX,() and Ly = x; — xx— are the corresponding
interval lengths. We denote by P the power set of {1, ..., n}. To each subset J = {ji, ..., ju} € P we
assign the spin vector

0)=0j-0;j

m

and a nonnegative number a; > 0 with ag := 0. We further assume that the numbers a; add up to 1,
Y jepay = 1. For each J € P we denote by X gj independent standard Gaussian variables, which are
also independent from each other for different superscripts J; # J,. The total Gaussian process U of the
nonhierarchical GREM on Qy is then given by

U(o) := \/NZ \/EJX({J.
JeP

The GREM is the special case where a; #Oonly if J ={1,...,k}forke{l,...,n}.

In contrast to the GREM the induced metric E[|U (¢) — U(¢”")|*]'/? does in general not satisfy ultra-
metricity. The hierarchical structure only emerges in the limit. For the formulation of the limiting free
energy, we recall from [7] that a chain § = {Ag, A1, A2, ..., A,} C P consists of nested sets A;, i.e.,

G=AgCA  CAyC---CA,,

with cardinality |A;| = i. To each chain § = {A;, A,, ..., A,} we assign a hierarchical GREM with

weights
a,f = E ap,
DCAy, DZ Ay

which satisfy )/ _, a,f = 1 for any chain $ by construction, and endpoints
S.
JEAL

The corresponding hierarchical GREM'’s pressure converges and we denote the limit by ® (8, ). In [7],
Bolthausen and Kistler showed that the limit of the pressure in the nonhierarchical GREM converges to a
minimum of such GREMs,

1
lim NlnTre_ﬂV =r§1€igq>(5, S), (1-19)

N—o0

where the minimum is taken over the set C of all chains.
After these preparations, we are able to consider the nonhierarchical GREM with a transverse magnetic
field whose weights are independent copies of some random variable b. We define the pressure as before,

1
Oy (B, b) = ~ InTre P8,

The general theory developed in Section 2 also applies to the nonhierarchical GREM and yields:



224 CHOKRI MANAI AND SIMONE WARZEL

Theorem 1.6. Let 8 > 0 and b an absolutely integrable random variable. Then, the pressure ® (B, b)
converges almost surely and the limit is given by

®(p.b) == lim @y (B, b) =max min [@D(ﬁ, S)+ Z L; E[In2 cosh(ﬂb)]}. (1-20)
keD¢
Here, CP denotes the set of chains which end at D, i.e., S = {Ag, A1, ..., An} € cb if and only if
G=AyCA C---CA,=D
and |A;| =i forany 1 <i <m. Moreover, ®p(B, S) is the pressure of the corresponding GREM on the
reduced hypercube associated to D.

The proof of this theorem is found in Section 3B.

The max-min structure of the limit in (1-20) seems to be quite universal as it also appears in the Parisi’s
formula for vector spin glasses [32]. This formula was used in [2] to obtain an expression for the limit in
the quantum SK-model. However, there the maximum is essentially taken over the infinite-dimensional
path overlap, which makes it hard to analyze. One might hope to find a less involved parametrization of
the overlap distribution which is easier to access.

In fact, (1-20) can be further simplified, since the limit does only depend on a single chain.

Corollary 1.7. There exists a chain S € C such that for any > 0 and any absolutely integrable variable b,
O(B,b) =0(B,b,9). (1-21)
Here ®(B, b, S) denotes the pressure of quantum GREM assigned to S; see (1-13).

Corollary 1.7, whose proof is also found in Section 3B, shows that the nonhierarchical GREM in a
transversal field is at least on a thermodynamical level equivalent to an ordinary quantum GREM.

2. Hierarchical peeling

In this section, we present the general principle, which we dubbed hierarchical peeling, from which the
main results presented in the previous section will follow. We first describe the core of this idea in the
binary setup.

2A. Peeling principle. We start by describing the general setting. Picking a parameter 0 < x < 1, we will
decompose the hypercube Qp into two reduced hypercubes of spin arrays of length [x N] and N — [xN].
Accordingly, we write

1 2
0=(01,07)€Qy, whereo; e Qg\,) =0Q9nnN and o € QE\,) = ON_[xN]-

We consider Hamiltonians H = U — B, where U is a random potential on Qx and B is a random
transversal field, which satisfy several assumptions. We start with U':

Assumption 2.1 (assumptions on U). The random potential U on Q) takes the form

U(o) =Vn(0)+ Xq, (2-1)



GENERALIZED RANDOM ENERGY MODELS IN A TRANSVERSAL MAGNETIC FIELD 225
with some random potential Vy which is independent of the random process X4 ,. The random variables
. 1 . .
Xo, witho| € Qg\,) are absolutely integrable, centered, and satisfy:

(1) X4, are independent and identically distributed for each fixed N € N.

(2) The pushforward measures uy of the negative parts X, /N satisfy a large deviation principle (LDP)
with a lower semicontinuous rate function /: R — [0, oc], i.e., for any Borel set A C R,

1 1
— inf [ < liminf —1 < 1i —1 < — inf I(x). 2-2
xe}rrllt(.A) (%) = }an)loré N n v (A = ljzn_,sllopN n v (A = xecllgs(A) 2 2-2)
Moreover, we assume
inf I(x)>0 (2-3)

xe(—o00,—¢]

for any ¢ > 0.

(3) For any random weights w,, which are independent from X, and further fulfill almost surely

wg, >0, E we, =1,

1
0'1€Q5V)

a generalized strong law holds true almost surely,

1

Jim Y we, Xg, =0. (2-4)

alegﬁj’

As will be discussed in the next subsection, we are mostly interested in hierarchical Vi as in the
GREM or CREM, but our results also apply to the more general situation. An important example where
Vi 1s not of CREM type is the case of a nonvanishing longitudinal magnetic field. The addition of a pure
longitudinal field to a classical hierarchical glass technically remains in the realm of probability theory
and has been studied in [4; 5; 9]. As is further discussed in [28], which deals with the application of the
peeling principle for a study of the combined effects of transversal and longitudinal fields, the two choices
of field direction not only differ in the mathematics involved, but also cause different physical behavior.

The LDP (2-2) with (2-3) ensure that probabilities of the type P(Xs, < —eN) decay exponentially in N
for any ¢ > 0. The assumption (2-4) is a technical condition needed for our proof of Theorem 2.3. The
following examples of random variables X, meet Assumption 2.1, which can be seen by the sufficient
criterion Lemma A.1 that we present in the Appendix:

(1) Xo, = v NaY,, with independent standard Gaussian Y,, and some a > 0. The rate function of the
negative part is 7 (x) = %x21x<0.

(2) Another example is X,;, = —NY,,, where Y, are independent and follow an exponential distribution
with parameter N. The rate function of the negative part is I (x) = |x |1, ¢.

(3) More generally, let Y < 0 be a random variable with a decay of the form exp(—Ct“) for some
o, C >0, 1.e.,

— lim r*InP(Y <1)=C.
— 00
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Then, we define X5, = N!=1/%Y, , where Y, are independent copies of Y. The corresponding rate
function is given by I (x) = C|x|%1, <.

We consider a not necessarily constant transversal magnetic field B = Z?’Zl bjs; as in (1-10) with
random variables (b;) which do not need to be independent from each other. The transversal field B splits
into two parts B and B2, which act exclusively on the respective part of the array,

[xN]

N
Bl’x = Z biSl', BZ,x = Z b,‘Sl‘.
i=1

i=[xN1+1
If x = 1, we simply set B>! = 0. Subsequently, we assume the following on the transversal field B:
Assumption 2.2 (assumptions on B). The random weights (b;) are independent of the potential U and

satisfy almost surely

limsup N !

N—o0

(2-5)

Let us discuss some sufficient conditions on (b;) which ensure the validity of Assumption 2.2:

(1) Assumption 2.2 obviously covers the constant field case b; =T" > 0.

(2) If the weights are almost surely dominated by /N, that is,
limsup N™2 max |b;| =0, (2-6)
N—oo I<j<N
then (2-5) holds true.
(3) In view of the framework in Section 1, we are mostly interested in weights (b;) forming independent
copies of an absolute integrable random variable b. Then, (2-5) is satisfied and this result is presented

as Lemma A.2 in the Appendix. If we additionally assume that E[|b|"] is finite for some r > 1,
Assumption 2.2 is easily verified. Namely if r € (1, 2], then

N N 1/r
D o Ibir = N7 (N—1 > |b,-|’> :
i=1 i=1

The term in the bracket converges almost surely to a constant by the strong law of large numbers. So
(2-5) is fulfilled.

If Assumptions 2.1 and 2.2 hold true, our main results state that the pressure
Dy (B) = % InTr[e PU—B)]
asymptotically agrees with the maximum of the pressures of partially quantum or classical type

DYV (B)i= L InTr[e PV P] and B (B) i= - InTr[e PV H)]

even if CIDE\(,Im) (B) and CI>§§1) (B) do not converge:
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Theorem 2.3. Under Assumptions 2.1 and 2.2, for any x € (0, 1] we have the almost sure convergence

lim sup |® (8) — max{®™ (B), " (8)}] = 0. 2-7)
N—o0
Roughly speaking, the Gaussian variables (X,,) and the partial magnetic term B'* only contribute
separately from each other to the free energy. This result may be regarded as a generalization of the limit
theorem for the QREM in [27]. If the almost-sure limits

O () := lim &YV (F) and ()= lim B (p)
N—o0 N> oo
exist for any 8 > 0, we immediately obtain
lim @y (B) = max{®™ (B), &V ()}, (2-8)
N—o00

For a proof of Theorem 2.3 the methods in [27] are robust enough to be extended. We briefly recall
some notation and results necessary for doing so. For ¢ > 0 we denote the large deviation set of X4, by

Le:={0, €0 |X,, <—¢eN}. (2-9)

The operator B}j‘ is the Dirichlet restriction of B:* to the complement L, that is, B}:’Cx = PEgBl’x Pre
with the natural orthogonal projection Prc induced by the complement of the set £, on the first component
H = Zz(Qg\})) of the tensor-product Hilbert space 02(Qn) = H' @ H? with H? = EZ(QE\%)). We further
introduce

Ag, = AILE ® 10 := B — Bé’cx,

where Akg only acts on H! and A, is its trivial extension to the full Hilbert space. More precisely, the
matrix elements of Akg are given by

[xN]
(011AL10)) = Lo, o) in2er01 D b Sso1.0 (2-10)
j=1
where in a slight abuse of notation we extend the operators s; to configurations by setting sjo :=
(01,02,...,—0j,...,0n). Moreover, é.. denotes Kronecker’s delta, so that the sum in the right side
of (2-10) reduces to one term only.
We will need the following generalization of Lemma 2 and Lemma 3 in [27]:

Proposition 2.4. Under Assumptions 2.1 and 2.2, for any € > 0 and x € (0, 1] the operator norm of A,
satisfies almost surely:
limsup N~ Az, || =0. (2-11)

N—o0

The proof of Proposition 2.4 is based on an estimate for the maximal size of the so-called gap-connected
components of L., which are defined as follows:

Definition 2.5. Let ég\}) be the supergraph of the Hamming cube Qg\}), which one obtains by adding
all edges {01, 0}, where o1, 0] are any two vertices at distance d(o,07) =2. We call C; C L; a
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gap-connected component if C, is connected as a subset of ég\}) A gap-connected component C; is
maximal if there is no other vertex o1 € £.\C, such that C, U {o |} forms a gap-connected component.
We denote by (CY),, the collection of maximal gap-connected components of L,.

We claim that the maximum of the cardinality, max, |C{|, is almost surely of order one:

Lemma 2.6. Under Assumption 2.1, for any € > 0 and x € (0, 1] there is K > 0 such that

limsupmax |C;| < K (2-12)

N—o0

holds almost surely.

Proof. We follow the lines of the proof of Lemma 2 in [27]. We fix K € N and introduce the event

Qexvi= () {IBax(0)NLe| < K}.

1
0'1€Q5V)

We note that for v € Q, x v we always have max, |C{| < K, as any gap-connected component with
K vertices 1s contained in some ball B4g (01) C Qg\}) of radius 4K, which is centered at some o ;. We
estimate the probability of the complement €2 ,  using the union bound:

X B
P g )< Y. P(Bik(o)NL| > K) 52““(' I‘;’(') P(Xy, < —eN)K.
Ulng\l,)

The second inequality follows from independence of the random variables X, and an estimate on the
number of subsets of a given size in terms of the binomial coefficients. The rate function I of X4, /N
satisfies inf_oo,<_¢ I (z) = 8, > 0, from which we conclude

K
P(QE,K,N) < H[xN1 %e—KN(ﬁg—H)(l)).

Since | B4k | <eN*K, we may choose K = K (¢) large enough such that this probability decays exponentially
fast. A Borel-Cantelli argument then yields the almost-sure bound

limsupmax [Cy| < K. O
N—ooo ¢

Proposition 2.4 is now a simple consequence of Assumption 2.2 and Lemma 2.6:

Proof of Proposition 2.4. The operator A, exhibits a natural decomposition as the direct sum
Ac, =P At ® L3,
o

where A(lja denotes the restriction of A,l@ to the subspace of vertices with nonempty intersection with the
maximal gap-connected component CY. Estimating the operator norm on every block in terms of the
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Frobenius norm using (2-10), we conclude

[xN]
2 bidsais
j=1

2 N
1 2 1 2 2
|Age|? <max Y |(o1]Aglop)? <max ) <2max|C| ) 1b; I,

01,0 01,0/€Q\): j=1
{o1,00}NC #2
which together with Assumption 2.2 and Lemma 2.6 completes the proof. [

We finally spell out the proof of Theorem 2.3:

Proof of Theorem 2.3. We separately establish an asymptotically sharp lower and upper bound.

Lower bound: The lower bound rests on a twofold application of Gibbs’ variational principle [34; 35].
First, let pl(gqm) be the Gibbs state of H9™ = Vy — B. An application of the Gibbs variational principle

with p = péqm) and H = H9 4+ X vyields

Oy (B)=N""sup[—BTr(Hp) — Tr (pInp)] = & (B) — BN 'Y Xo, s,
P o1

The weights wy, := Zaz (o 102|,0f(3qm) |o102) are nonnegative, add up to 1, and are independent of Xg,.

By Assumption 2.1 we conclude that almost surely
lim inf(®y (8) — DY (B)) > 0.
N—o0

Next, the eigenstates |1/) € £2(Qy) of HD =U — B>* take the form of tensor products |¥) = |61 ) ®|¢)
with a certain |¢) € H> As the matrix elements (| B!*|y) vanish for these eigenstates, the Gibbs state
pl(gd) = ¢ PH I Tr e=PH qatisfies

Tr B pi? =0. (2-13)
The Gibbs variational principle with p = ,oéd) and H = HY — B1* then yields

Dy (B) = 0 (B). (2-14)

Combining both lower bounds, we obtain almost surely
lim inf(®y (8) — max{®)™ (B). D (B))) = 0.

Upper bound: Let ¢ > 0 be arbitrary and consider the direct-sum decomposition of the Hilbert space
2(Qn) = (L2(L) @ H?) @ (£2(LE) ® H?). The only term in H connecting the two subspaces is A,. The
Golden—-Thompson inequality (see [35, Corollary 1.4.13]) together with the positivity of e” for H = H*
and trivial norm estimates thus yield

_ _plx_p2x _ _ 1,{6_ 2,x
Tre PU—B) < Ty BAce o PUTBL=B") _ BlAc Ty o PU—BL =B

_B(U—B2x —B(Vy—BL—B2x
Seﬁ”Aﬁ‘?”(Ter(Ls)@/HZe pU-B )+€’38NTI'|52([,§)®H2€ PN Le ) .
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In the last term we additionally used the fact that X,, > —¢N for all 01 € £5. The first term is bounded by

Tr |52(£8)®H2€_ﬂ(U_BZYX) < Tr e_ﬁ(U_Bzyx).

The second term is estimated using the nonnegativity of the diagonal matrix elements of the semigroups
generated by B and the Golden—Thompson inequality again:

~B(Vn—Bj; —B>* —B(Vy—BLY B> _ _
Trjpagmee |0 ) < Tre PV TET) < pPlAcl Ty oAV -B)

Since ¢ > 0 was arbitrary and ||A., || = o(N) by Proposition 2.4, we conclude the almost-sure inequality

lim sup(® (8) — max{®™ (), " (B)}) <0. 0

N—o0

2B. Application to QGREM and QCREM. Since we are free in the choice of Vi in Theorem 2.3, we
obtain the following corollary for GREM type potentials:

Corollary 2.7. Let X = Ja1Xs, + V@2 X6,6, + - + VW X5 ,6,.-5, be a Gaussian vector as in (1-4).
Then, we have the almost sure convergence

lim sup L inTre PONYX=B) _ max L inTre PVNV@Xo, 4 aXo0,-0)= B0 | _ (2-15)

N—o0 O0<k<n
Proof. We apply Theorem 2.3 iteratively backwards. We start with peeling off \/a, X¢,6,...5, (Which takes
the role of X4, in Theorem 2.3) setting Vy = V]f,”) =+ Na1Xe,+v/NazXe,6,+ - +VNan-1Xs,65-6, ;-
The peeling principle (2-7) yields
lim sup 1 |ln Tr e_ﬁ(“/NX_B) — max{In Tr e BWNtXo 05 0y +V1(V”)), InTr e—,s(v,(v")—B) } | =0.
N—o0 N

As a next step, we write V]an) =: Vlg,"_l) ++vNa,-1Xs,6,.-5, , and again apply Theorem 2.3 to the second
expression in the maximum. Thus,

(n) () _ p2x, gy =D _
lim sup l}ln Tre Py =B _ max{InTre #Vs -5 D InTre Py B)}| =0.
N—o0 N

Proceeding like this, we arrive after n steps at (2-15). 0

Theorem 1.2 and Corollary 2.7 look alike. However, in Theorem 1.2 we further evaluate the trace and
claim that the maximum in (2-15) is attained at some endpoint y; of the concave hull A. We postpone
this remaining part of the proof of Theorem 1.2 to Section 3A.

Now, instead, we will extend Corollary 2.7 to CREM type potentials. To this end, we introduce a
useful shorthand notation. If X is a centered Gaussian vector with hierarchical distribution function A,
we define for 0 < z < 1 the centered Gaussian vector X @ with hierarchical distribution function given by

A(x) 1ifx <g,

AD(x) =
(x) {A(z) else.

We are now ready to formulate the following theorem:



GENERALIZED RANDOM ENERGY MODELS IN A TRANSVERSAL MAGNETIC FIELD 231

Theorem 2.8. Let X be a centered Gaussian vector of CREM-type with distribution function A. Then, we
have almost sure convergence

lim sup 1 InTre PYNX+VN=B) _ sup 1 InTre PWNXOHV =B _ (2-16)
N—o0 0<z<l1
Our proof of Theorem 2.8 relies on an interpolation argument. We first adapt the classical arguments
to our quantum setting with a transversal magnetic field. We fix some inverse temperature S and random
field B. Let X, Y be two independent centered Gaussian processes on Qy, which are independent of Vy
as well. For ¢ € [0, 1] we set the interpolated pressure W,

9

W) =1 In[Tr e‘ﬁ(WXh/WHVN—B]
N

where by Lemma 1.1 we may assume without loss of generality that 5; > 0 for all j. By standard Gaussian
interpolation (see, e.g., [39, Lemma 1.3.1]), we obtain

32U (1) N 32w (1) }d

Exy[W(1)—W(0)]= /([E[Y(a)Y(a )= [X(G)X(a’)])[Ex,y[aX % T av. v

where [ x y denotes the expectation with respect to X and Y. In general, E x y[W ()] is still a random
variable due to the randomness of Vy and B. The second partial derivatives of W (¢) differ from their
classical expression but can still be computed using the Duhamel formula:

ds

%W (1) 32w (1) B 2(G|€H’|O’>(0'/|eH’|O' iy / (aleHi|a") (o' |e1—H: o)
0X,0X, 0Y,0Yy (Tretl)? TreH:

with the abbreviation H; := —B(V/tNX + /(1 —t)NY + Vy — B). Since we assumed without loss of
generality that b; > 0, the matrix elements (o lef!'|¢”) are nonnegative for any o, 6’. Moreover, we know

that
H,; 11, H; sH; /1 ,(1—s)H;
ole|o)(o’|e" o’ ole’t|o’) e o
5~ lelel oo e o) I—Zf ale'’lo’) (o'l ha)
(Tretl)? Trth

0,0’

Consequently, we arrive at the bound
Exy[W(1)—W(O)] < max IE[X (0)X (6)]—E[Y(0)Y (a)]I.
In case X and Y are of CREM-type with distribution functions Ay and Ay, respectively, we thus conclude
Ex.y[W(1)—W(O)]| < BlAx — Aylloo- (2-17)
Analogously, we get
%\[E x.y[InTre PYNXTHVN=BD 1y o= BWNYEHVn=B29]) < g2 Ay — Ay |lo (2-18)

for any z € [0, 1]. The bounds (2-17) and (2-18) are our first main ingredients for the proof of Theorem 2.8.
We observe, however, that an interpolation argument only controls the expectation value with respect to
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the Gaussian variables. The following Gaussian concentration inequality is a convenient method to lift
the convergence of expectation values to almost sure statements and vice versa.

Proposition 2.9. Let X be a Gaussian vector of CREM-type, Vi a random potential, and B a random
transversal field, all independent from each other. The corresponding pressure

Dy (B) = lnTre ~B(/NX+Vy—B)

exhibits a Gaussian concentration estimate with respect to probability measure of X, i.e., for any t > 0
and N € N,

2
Py (|<I>N<ﬁ> _Ex[®n(B)]] > %) <2 exp(—%). (2-19)

The same bounds hold true for CD%) B) = % InTr e AWNXO+Vy—B9)

Proof. Since the lexicographic overlap (1-2) can only take values k/N with k =0, 1, ..., N for every
fixed N € N, the CREM-type Gaussian vector X may be represented as a GREM-type distribution:

X(0) = \/ale + \/aZX(T]O'z +---+ \/anXa]az---an

with independent standard Gaussian variables X4, ..., X4,6,-.0, and some n = n(N). We calculate the
free energy’s variation with respect to the i.i.d Gaussian variables X,

don(p) Z
8X01 ..... o «/_Tre—ﬂ(x-l'VN—B)

“BXAVN=B) | .

- O00kle “O|O).

Here, 0 is an abbreviation for the remaining entries of the element o € Q. Consequently, the square of
the pressure’s Lipschitz constant is bounded by

0PxN(B) B>
>3 (Gel) <5

where we used that the weights a; add up to 1. If we condition on Vyy and B, the Gaussian concentration
inequality for Lipschitz functions (see [39, Theorem 1.3.4]) yields

2
Px (ICDN(ﬁ, B) —Ex[Pn(B)]l > j/—%) <2 exp(-%)-

A similar argument using the fact that the sum of the weights a(Z) add up to at most 1, shows that we
have the same concentration inequality for CID%) (B). [

Let us remark that a Gaussian concentration estimate still holds true if the weights (ax) do not add up
to 1. Only the multiplicative constant in front of the exponential term changes. We move on to the proof
of Theorem 2.8:

Proof of Theorem 2.8. We pick some ¢ > 0 and an independent Gaussian vector ¥ of GREM-type with
distribution (step-)function A such that

A — Ao <e.
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This is possible since A is an increasing, right-continuous function and therefore a uniform limit of
increasing step functions. We denote by 0 = xo < x| < x» < - - - x, = 1 the points supporting A.

We now exploit the estimates in (2-17), (2-18) and Proposition 2.9 in order to obtain the almost sure
bounds

lim sup %|ln Tre PVNXHVW=B) _1n Ty e_ﬁ(*/ﬁYJFVN_B)‘ < B%e

N—o0
and, since we also have ||A®) — A® loo <e,

. _ () _R2z _ (2) _R2z
limsup sup l|1nT1re BWNXEHVN=B>) _ |y Tp o= B(VNY O Vy =B
N—oo z€[0,1]

< B2,

The expressions depending on Y do not necessarily converge. Nevertheless, we have almost surely

lim sup —B(/NY @4 Vy—B2)

N—o00

sup InTre
0=<z<I

%‘ln Tr e_ﬂ(*FNYJFVN_B) —

= lim sup 1 InTre PYNYHVN=B) _ pax  InTre BVNYW+Vv=B%) _
Nooo N k=0,1...,n

For the first equality we recall that for any x; < z < x;41 the processes agree, i.e., Y& = Y%,
Consequently, the Gibbs’ variational principle with H = H' —(B*>* —B?*%) and H' =/ NY ") 4+ Vy — B%*
and an argument similar to (2-13)—(2-14) show that the maximum is attained at some x;. The second
equality follows from Corollary 2.7. Combining all these estimates, we arrive at

lim sup 1 |ln Tre PYNX+VN=B) _ sup InTr ¢ BWNXO+Vy—B2) <2p%.
Nosoo N 0=<z<1
As ¢ > 0 is arbitrary, the proof of (2-16) is completed. [

3. Proofs of the main results

3A. The Quantum GREM and CREM. We first aim to prove Theorem 1.2, i.e.,

!
Nli_r)nc><> % InTre PVNX=B) _ Jmax [; o (B)+ (1 —y)E[In2 cosh(ﬁb)]]
for a GREM type variable X and transversal field B consisting of independent weights (b;) with the
same distribution as b. We recall that xy, ..., x,, denote the jump points of the function A, the points
Y1, - - - Ym, over which the above maximum is taken, are the endpoints of the concave hull’s A linear
segments and ¢/)(B) are the partial free energies from (1-6). For the remainder of this subsection and
since we are interested in the limit N — oo, we also assume without loss of generality that x; N € N for
all k € {0, ..., n}.
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Our starting point is Corollary 2.7 which for any GREM-type vector X yields

% InTre PYNX+B) — may L inTr e PWNXM0-B>%) +o(1)

0<k<n

N
= 1 —B/Nx@w | 1 |
= org/?é(n[N InTrg, ve + N {E X anCosh(,Bb,):| +o(1),
1=| Xk

since
X = faiXe, + /@ Xo 0, + V@Ko 10,

only acts nontrivially on the configurations o - - - ox and B>* on ¢4 - - - &, so that the total trace is
simply the product of the partition functions of X**) and B>* on the corresponding reduced Hilbert
space; see (1-14). The limit N — oo of the bracket on the right side exists for any k € {0, ..., n}.
More precisely, the strong law of large numbers implies that the second term almost surely tends to
(1 — x;)E[In 2 cosh(Bb)]. Moreover, the first term converges since X %) is still a GREM-type Gaussian
vector on Q,, y. The only difference is that the weights ay, .. ., ax do not add up to 1. This minor obstacle
can be easily done away with by rescaling the inverse temperature 8. In particular, if x; coincides with
an endpoint y; of the concave hull’s segments,

l
1 N )
lim —InTrjo, e YN =3 o0 p),
j=1

N—o0

where the partial free energies ¢ (8) remain unchanged, i.e., they are still given by (1-6). This follows
from the observation that X and X" have the same concave hull up to the point y;.

Since the limit N — oo exists for each k, we may exchange the limit with the maximum. In order to
prove Theorem 1.2, it therefore suffices to check that in

]\/li_r)nOO%InTre_ﬁ(“/NX“LB) =k£%axn[ Nninoo%mTugwe—WX““ +(1 —xk>[E[1n2cosh<ﬁb>]], (3-1)

.....

the maximum of the limit is always attained at some y;. This is the content of the next lemma:

Lemma 3.1. If X is a Gaussian vector of GREM type, we have

max [ lim %lnTmQXkNe_ﬁ‘mx(xk)+(1—xk)[E[ln2cosh(/3b)]]

N—o0

— max [ lim +InTr g, e #YVX" 4 (1 y)E [1n2cosh(,3b)]]. (3-2)
mL N—oo !
Proof. If {xo, ..., x,} ={y0, ..., ym}, the statement is trivial. We thus consider one of the terms on the
left side of (3-2) corresponding to x; with y; < x; < y;11. We recall that the distribution function A+
of X is given by

A(xy) else,
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and introduce the Gaussian processes Y and Z of GREM type with the distribution functions

A(x) ifx <y, A(x) if x <y,
Ay(x):=1A0) ify<x<x, Az(x):=1A0) if yj <x <xg,
Alxe)  ifx = x, Ay + yfkl y’y, (A(yig1) —AQ))  if x > xg,

respectively. Slepian’s lemma [8, Lemma 10.2.1] states that the less correlated a classical system is, the
higher is the pressure, which yields the first inequality in

_ (xg)
BVNXH

—ﬁ\/ﬁY _ﬁ«/ﬁz' (3_3)

lim N InTr g, ve

lim — lnTr
N—oo N lekN

< lim — ln Tr
N—o0 N lQX"N

N—o0

For the second inequality, we recall that A is majorized by its concave hull A and agrees with A at y;
and y;41, 1.€.,

Xk — VI
Alxr) < A(yr) + ———— (A1) — A()).
Yi+1 — )V

Since the classical pressure is an increasing function of the jump heights, we arrive at the second bound
in (3-3). As for (1-5), the classical free energy of Z is given in terms of the partial pressure (1-6)
corresponding to the concave hull of A, which agrees with A up to x,

k— I
1=

lim NlnTr|QlkN Zgﬁm(ﬁ)—l- eTV(B).

N—o0
j=1
Plugging this into (3-3), we obtain

Jim % InTr g, ye PY¥X™ 4 (1 — xp)EIn 2 cosh(8b)]
l

<> o (B)+ (1 — y)E [In2cosh(Bb)] +

Xk — VI
Yi+1 — )i

(@ (B) — (yi41 — y)E [In 2 cosh(Bb)]).

Depending on the sign of the term in the last bracket we then arrive at

l
lim %lnTr@_XkNe_ﬁWX(xk) +(1 —x)E[In2cosh(B0)] < Y 9 (B) + (1 — y)E [In2 cosh(Bb)]

N—o0

in case of a negative sign, or in case of a positive sign because of xy — y; < y;+1 — y, at

I+1

Jim - InTr g, e VMY 1 (1= x)E In2cosh(B6)] = Y ¢ (B) + (1= yi4)E [In 2 cosh(BB)].
j=1

Consequently, the term corresponding to any x; on the left side of (3-2) is bounded by one of the terms
on its right side. O]

The following observation is useful for the proof of Corollary 1.3:
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Lemma 3.2. Let ¢/ (B) be the partial pressures from (1-6) and L j =Y — yj—1 the interval lengths.
Then, the discrete concavity estimate
eD(B) 9P (B) 9" (B)
> > ..

- >
Ly L, Ly,

(3-4)

holds for any inverse temperature > 0.

Proof. We call go(j )(B) “frozen” if B > Bj,1.e., oY (B) is given by the linear expression in (1-6). Otherwise
we say ¢/)(B) is “unfrozen”. By construction of the concave hull A, we know that the slopes Yi=a;/L;
are strictly decreasing in j. The inequalities in (3-4), where two consecutive partial free energies are
either both frozen or both unfrozen, are thus obvious. It remains to consider the case where ¢/ (8) is
frozen, but go(j +1(B) is unfrozen. By (1-6) we then have

(+1) 2
®) _ g /Gy, and w:%mﬁmz.
j J+l

ga(j)
L

Moreover, as ¢/)(B) is frozen and ¢ (B) is unfrozen, the inverse temperatures satisfy

Bi=vQ22y ' <p<vVQ2In2)y | =B

We thus conclude that

) 2 2 G+1)
¢7B) P onasamas 2t f m2=tm2+by,, =P O
Ly B B 2 Ljsi

Remark. If f denotes the function on [0, 1] which linearly interpolates between the restricted classical
free energies limy_, % InTr o, e P VNX™ “then Lemmas 3.1 and 3.2 in particular show that F, the
convex hull of the graph of f, is a polygon with the extreme points (y;, f(y;)). On the other hand, if this
fact is assumed to be known, the assertion of Lemma 3.1 can be derived as follows. Consider the function
glx,y):=(x,y+a(l —x)) with some a > 0. It is then easy to show that the set of extreme points of
g(F) coincides with g(ext(F)). Since the maximum in (3-1) is attained at an extreme point of g(K), the
claim follows.

Proof of Theorem 1.2 and Corollary 1.3. Theorem 1.2 is an immediate consequence of (3-1) and
Lemma 3.1.
It remains to show Corollary 1.3. To this end, let us introduce the energy differences

AV (B, T) := (yj — yj—1) In2cosh(BT) — o (B).
In view of Lemma 3.2, we conclude:
(1) If AY(B,T) <0 for some j > 1, then AD (B, T) <0forall0 <i < j.
(2) If AV (B, T) >0 for some j > 1, then AD(B,T)>0forall j <i <m.

Consequently, the maximum in (1-13) is attained at m if all energy differences AV) are negative for
0 < j <m and, otherwise at the minimal integer k < m such that A®TD > 0. We may thus rewrite the
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pressure as
m

(. T) =) (¢”(B)Lav<o+ LiIn2cosh(BT)1x0-).
=1

We note that the condition A® > 0 is equivalent to I' > Fél) (B). This concludes the proof of (1-15). UJ

Our next goal is to prove Theorem 1.4 and Corollary 1.5. It is convenient to use Theorem 1.2 and
the interpolation estimate (2-17) rather than the general Theorem 2.8. To do so, we first establish some
continuity properties of the functions

min{x(8),z} ), ~
(B, A7) :=2In2p fo Va@) dx + Lo (B (A0 - A () +1n2(z — x(B) )

with respect to the distribution function A. Therefore, we emphasize here the dependence on A in notation.

Lemma 3.3. Let A and (A,)neN be distribution functions on [0, 1] such that A, converges uniformly to
A asn — oo. Then:

(1) The concave hulls A, converge uniformly to A as n — oo, i.e.,
lim ||A — Al =0O.
n—oo
(2) The right derivatives a,(x) converge to a(x) at any x where a is continuous.

(3) For any B > 0, the functions ® (B, A,, z) converge uniformly to ® (8, A, z) as a function of z, i.e.,

Proof. (1) The function A + ||A — A, ||« is a concave function which majorizes A,; that is, A, <
A+ ||A — A,|lc. Similarly, one shows that A < A, + ||A — A,|lsc. The first assertion is a direct
consequence of these bounds.

(2) Since A, is a sequence of concave functions converging uniformly to A, the second claim follows
from standard convex analysis (see, e.g., [36]).

(3) We first recall that x (8, A) =sup{x |a(x) >21n2/p?}. Since a is a decreasing function, @ is continuous
except for an at most countable set. The second statement implies then that x (8, A,) converges to x (8, A).
Next, we rewrite

d(B,A,2) =/ (B, A, x)dx
0

with the function

2
QD(IB, A, x) = ,B (2 In 2)51(x)1x<x(ﬁ7A) + (%d(x) +1n 2) 1x2x(/3)-

Therefore, it suffices to show

1
lim | |o(B, A, x) —@(B, Ap, x)|dx =0.
0

n—oo
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Due to our previous considerations, we know that ¢ (8, A, x) converges almost everywhere (with respect
to the Lebesgue measure and x) to ¢(8, A, x). Moreover, the functions ¢ (8, A,, -) are uniformly
bounded at [§, 1] for any § > 0, since ¢(f, A,, x) is decreasing in x. By dominated convergence we then
obtain

1
lim f |()0(18’A’x)_§0(185An’x)|dx:O
n—oo 8

for any 6 > 0. On the other hand,

) ) 2
/ 0B, A, %) — 9(B, An, x)] dx 5/ 0(B, A, X)+ (B, An, x)dx < %(Awwﬁn(a))wa In2.
0 0

Since A is continuous, A(0) = 0 and the sequence A, converges uniformly, the third assertion follows
as § — 0. 0

We are now ready to show Theorem 1.4 and Corollary 1.5.

Proof of Theorem 1.4 and Corollary 1.5 . We pick a sequence of step functions A,, which are also
distribution functions and converge uniformly to the distribution function A. By Theorem 2.8, the
expression for @ (B, b, A,)) may be rewritten as

®(B, b, A,) = sup [®(B, A, 2) + (1 —2)E[In2cosh(Bb)]].

0=<z=l
By the interpolation estimate (2-17), the left side converges to the corresponding limit of the quantum
CREM’s pressure @ (B, b, A), whereas the right side converges to
lim sup [®(B, Ay, 2) + (1 —2)E[In2cosh(Bb)]] = sup [P(B, A, z) + (1 —2)E [In2 cosh(Bb)]]

=0 n<,<] 0<z<1

by Lemma 3.3. This completes the proof of Theorem 1.4.

In the case where A is continuously differentiable and b = T, the convex function [0, 1] 3 z
D(B,A,z)+ (1 —z)In(2cosh(BI')) possesses a maximum in the interior of its domain if and only if
there exists a solution z € (0, 1) of

0d(B, A, 2)
0z

Otherwise the maximum is attained at z = 0 or z = 1. A straightforward calculation then leads to the

—1In2cosh(BI') =0.

formula in Corollary 1.5. O
3B. The nonhierarchical GREM in a transversal field. We start with the proof of Theorem 1.6. In the
following we will use the notation introduced in Section 1.3.

Proof of Theorem 1.6. Our strategy is to adapt the proof of Corollary 2.7. To be more precise, we introduce
for any subset J € P the restriction B of B to the subgraph spanned by the spins o ;,

B’ :=) B®, B®.=p"%_ph,
keJ
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and set B := 0. For any two subsets I, J € P and any potential Vy independent of X (I,I, we have

. _B(/ I _p’ _al /Nl _pJ\
hmsup%ﬂnTre P(YNarXe +Vn—B )—max{lnTre_ﬁ(VN_BJ),lnTre BWNarXs +Vn=B }|:O. (3-5)

N—o00
We note that B can be represented as a transversal magnetic field whose weights corresponding to the
complement J¢ are set zero. Thus, (3-5) follows from Theorem 2.3 after possibly rearranging the spin
components. Using (3-5) successively for each subset J € P (where the remaining potential Vy might
change from step to step), we finally arrive at

limsupl}lnTre_ﬂ(U_B) — max lnTre_ﬂ(ZFef*/‘”TNxfp_BD” =0

N—00 N FCP,DeP,DNF=2

where D¢ N F = & is understood elementwise, that is, DN F = & for any F € F. We note that the
convexity of the exponential and the variables X ({J being centered Gaussians, implies (e.g., by (3-5)) for
any D°NF =g,

liminf L (InTr ¢ # (Crero) VarNXe, =B”) _ gy o= (Lres VarNXs, =87)) >

N—o0

)

where P (D) is the power set of D. On the other hand, the limit of the left term exists almost surely and
is given by

lim — InTre #(Xrero VarNXs, =B%) _ min @ ,(8, §)+ 3 Ly E[In2cosh(Bb)],
N—soco N secP ke D¢

where we used the strong law of large numbers for the expression involving B and the known conver-
gence [7] of the classical nonhierarchical GREM. We in fact need a slightly more generalized version
of [7] which is also applicable to the reduced model on the subgraph generated by o pc. However, this
can be proved in the exactly same manner as the result on the whole graph Qy. Combining our findings,
we arrive at the claim (1-20). ]

It remains to show Corollary 1.7. To this end, we need the corresponding result in the case b = 0 for
the classical nonhierarchical GREM, which is a simple consequence of the derivation in [7] (see Remark 7
in that paper). For completeness, we spell out this classical result as Lemma A.3 in the Appendix.

Proof of Corollary 1.7. Let Sy be the minimizing chain of the classical problem as spelled out in
Lemma A.3. After relabelling the components of o, we may assume that

So=1{a, {1}, {1, 2}, ..., {1,...,n}}. (3-6)

We will show that

max[min DB, S)+ Z L, E [1n2cosh(,3[a)]i| = ®(B8, b, Sp)
beP]sec? ke D¢

by establishing two inequalities. First, abbreviating

Dy:=11,... k)
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with Dy := &, we have

max[min (B, S)+ Z LiE [ln2cosh(ﬁb)]]

DeP D
SeC ke De

> max | min ®(8, S) + Z Ly E[ ln2cosh(ﬁb)]]
0<k=n| SecPx keD

= max | q>(,3 SD")—|—k§L Ly E[In2cosh(8b)] ] — (B8, b, Sy).

Here Sé) denotes the chain which coincides with Sy but ends at D. The last line follows from Lemma A.3
as it implies that even in the constrained setting the cut versions of Sy are indeed minimizing chains.

For the reverse inequality, let I, ..., I,, be the sets associated to the concave hull Ag, and let go(l) (B)
be the partial pressure corresponding to the GREM assigned to the chain Sp; see (1-6). Moreover, for any
D € P we define the ordered-restriction chain SOD ,

S()D = {{@}, {jl}v {jlv j2}7 SR {jlv CIRIEIES jkD}}’

where j1 < jo <---jk, € D and {j1, ..., jk,} = D. Then for any D € P,

;mn ®(B.S)+ > LjE[In2cosh(Bb)] < ®(B,S)+ Y L; E[ln2cosh(Bb)]
jeDe jeDe

- Z(p(l) (B)+ Y L;E[In2cosh(Bb)]< Z Lennn Lk s (B)+ > L;E[In2cosh(Bb)].

jeDe Zkell jeDe
. . . . . s
The last inequality, follows from three observations. Flrst we recall that the weights a,” assigned to

the chain § D are less than or equal to the weights a o of the chain (3-6). Secondly, we note that the
increments A;A sp on the segments DN I; # & can be bounded,
AZAS(? - AIA So
> kennp Lk T Dker L

since otherwise we may construct a chain S’ violating Lemma A.3 using the first observation. Thirdly, an

application of Slepian’s lemma as in the proof of Lemma 3.1 extends the summation to m and yields the
claimed inequality. We thus obtain

Z[Zkennp Ly (l)(ﬁ)‘f‘ Z L;E[In2cosh(Bb)] j|
I=1

Zke][ jeDen

05, (B)
< Z Y L max{ S [ln2cosh(,8b)]} = ®(B, b, Sy),

I=1 kel Zké’/

where the last equality is based on the concavity, Lemma 3.2 and the explicit expression (1-13) for the
pressure of the quantum GREM. This completes the proof as D was chosen arbitrarily. [
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Appendix: Supplementary results

Sufficient condition for Assumption 2.1. We want to present a quite general condition on the distribution
of X4, which implies the third point in Assumption 2.1:

Lemma A.1. Let X4, be independent and identically distributed centered random variables which satisfy
an LDP with good rate function 1, i.e., the sets {x | I (x) < a} are compact for any a > 0. Moreover, the
rate function shall satisfy

inf I(x)>0

|x|>¢

for any ¢ > 0. Then, (Xq,) fulfills the conditions (1), (2) and (3) in Assumption 2.1.

Proof. The points (1) and (2) are clear and it remains to check (3). Let w,, be random weights which are
independent of X, and satisfy almost surely wy, > 0 and ), ws, = 1. We introduce the sets

Ay :={01€ Q) |ws, > 1/N?)

and show separately

1
Jim Y we, Xg, =0 (A-1)
0'1€AN
and
1
Jim > we, Xe, =0. (A-2)
gAY,

Proof of (A-1). We apply the trivial bound

‘% Z Wo, Xoy

0'1€AN

1
= N sup |X0'1|a

o1€AN

and note that the cardinality of Ay is bounded by N2 The independence of w,, and X, then implies,
for any 6 > 0,

P( sup |Xq,| = 8N) < N> P(|Xq4,| = 8N) < N2 @ToIN  with  ¢5 = inf I(x) > 0.

o1€Ay |x[=8
Therefore, the bound on the probability is summable in N for any § > 0 and a Borel-Cantelli argument

finishes the proof of (A-1). L]

Proof of (A-2). As I is a good rate function, we find a constant C > 0 such that

inf I(x)>2In2,
[x|=C

and hence

P( sup |Xq,| = CN) <2Ve  Cn2HoIN = (3 4 o(1))~ V.

1
0’1€Q§V)
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By a Borel-Cantelli argument we may assume without loss of generality that |Xs,| < CN holds true
for all sufficiently large N with probability one. Conditioning on wg,, the independence of X4, and
E[Xs,] =0 implies

1 Sl c c
R o B o T K

[ C [ C
g1eAy g1EAYy g€Ay g1€Ay

In the second and third inequalities, we use | X4, | < CN and wg, < N —2foro; € A%, . The Borel-Cantelli
lemma again completes the proof. [

Assumption 2.2 for independent L' weights. The aim of this section is to verify that Assumption 2.2 is
satisfied for independent copies (b;) of an absolutely integrable variable b:

Lemma A.2. If the weights b; are independent copies of an absolutely integrable variable b, we almost
surely have

limsup N~ (A-3)

N—o00

Proof. Our proof relies on a thinning and truncation argument and is similar to the proof of the strong law
of large numbers in the L'-case.

Let us abbreviate the partial sums Sy := vaz 1 1bi 2. We pick some ¢ > 0 and introduce the sequence
N,, :=2". Suppose we have already shown the almost sure convergence

lim (N,,) " 2Sy, =0. (A-4)

Since Sy is an increasing sequence we conclude that

S S
lim sup —A; < lim sup év’” =4 lim sup Lé” =0.
N—00 m— 00 Nm—l m— 00 Nm

So it suffices to show (A-4). To this end, let K,, be a nonnegative sequence which we will fix later and
Sy, Sy, be the truncated sums given by

Nﬂ'[
< ._ § : 12 > >
SNm «.— |bl| 1|bl|§Km and SNm .— SNm SN, .
i=1

For any ¢ > 0, a Markov-type estimate yields

E[61°1p)<k,,]

P(Sy, > eN?) < N
m

We also have
P(S5, #0) < Ny P(1b] > Ko).
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The assertion follows by a Borel-Cantelli argument if we can choose K, such that

[e%e] 2
E[1b 1 <K (0e)

We claim that this can be accomplished by setting N,, = K,,,. To this end, we note that the second sum is
finite as b is absolutely integrable. Moreover,

o E06PLp<n,] _ o 3
3 A= <2 S TNZP(1 2 Nu) YNy <4 NuP(Ib] = Ny) < 0,

N,
mn m=1 k>m m=1

m=1
where the first inequality is a consequence of the layer-cake representation and the last bound is again a

consequence of b being absolutely integrable. [

The pressure of the classical nonhierarchical GREM. The following lemma is contained in the analysis
of [7]. We provide a proof for the convenience of the reader.

Lemma A.3. Let X be a Gaussian vector of nonhierarchical GREM type. Then, there exists a chain Sy
such that for any chain S the pointwise estimate

As(x) < Agy(x) (A-5)

holds true, where Ag and A s, are the concave hulls of the ordinary GREM vectors assigned to S and Sy,
respectively. Moreover, we have, for any 8 > 0,

o(B) = mln @ (B, S) = P(B, So)- (A-6)
Proof. For any @ # J C {1, ..., n} we define the corresponding slope y;;
Yy = ar _ Xicsdr
- Ly Zke] Ly
We now construct a (possibly incomplete) chain J1 C Jo C --- J,, = {1, ..., n} as follows. We first pick a
subset J; with maximal slope y,,. If J1 = {1, ..., n}, we are done. Otherwise we pick a subset J, such
that
V= 1c{1,??1)}(1¢11 ar-
One easily checks that y;, < y;,us,, SO we may assume that J; C J,. We stop if J, ={1,...,n} and

continue the procedure otherwise. After at most n steps we arrive at a (possibly incomplete) chain as
claimed. We set Sy to be a completion of Ji, ..., J,, that is, Sy is a chain which contains Jy, ..., J,.
Clearly, Sp does not depend on S.

Both assertions follow now easily. We see that the concave hull ASO assigned to Sg is the unique
piecewise linear function satisfying Ag, (L) = d,, for any k. By construction, Ag, is pointwise maximal
as we iteratively pick the subset J; leading to the maximal mean slope. On the other hand, the bound
As, > Ag for any chain S, by Slepian’s lemma, yields ®(8, Sp) < ®(B, S) from which the second
statement follows. [
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The de Almeida-Thouless Line in Hierarchical Quantum Spin Glasses

Chokri Manai and Simone Warzel

It has been a longstanding problem to understand the influence of a longitudinal magnetic field on the spin
glass order. Indeed, de Almeida and Thouless considered the stability of the SK model in a vertical field
already in 1978 [57]]. In this work, the authors predicted a curve, the so-called AT line, which separates
the glass phase from the non-glass phase. So far, it has been only established that there exists spin glass
order for temperatures below the AT line [[185]]. Despite numerous efforts and recent progress [4,43]51]]
the vanishing spin glass order has only been established in a subdomain above the AT line. Determining
the exact quantum AT line in the QSK model appears elusive and, therefore, it is illuminating to consider
models, where such an rigorous analytic treatment is feasible. Core Article III deals with the quantum
AT line in the QGREM and QCREM.

Main Results

This article builds up on our work [[130]. Indeed, we consider the QGREM and QCREM with an addi-
tional (random) longitudinal field. There are at least two choices on how to implement the magnetic field
in z-direction: as a sum of weighted 2 = }’; h;c7 operators or as hierarchical reorganization of the poten-
tial arising from 4. Our main theorems determine the limit of the pressure in the QCREM and QGREM
in both scenarios. In the first case, our main theorem is even with vanishing transversal field partially new
and extends the prior work on the 2-level GREM [[14}15/[38]]. We demonstrate that the corresponding AT
line is unphysical as the spin glass enlarges if the magnetic fields becomes stronger. We thus argue that a
hierarchical implementation of z-field, following the original construction of Derrida and Gardner [[64]],
is physically more relevant. Indeed, here the spin glass phase shrinks with increasing field strengths.
We also discuss the corresponding quantum AT line and compare it to the numerical predictions for the
QSK [193]].

Individual Contribution

I am the principal author of this article. It was my idea to implement an additional longitudinal field in
the QGREM. I created a first draft of the paper which contained a sketch of the proof. Many discussions
with Simone Warzel helped to clarify that a hierarchical longitudinal field yields physically more relevant
results. It was Simone Warzel’s idea to compare our findings with the expected quantum AT-line in the
QSK. The final publication -the presentation of the results, the structure of the different section and the
derivation of various technical lemmas - is a result of a close collaboration with my advisor Simone
Warzel.
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Abstract

We determine explicitly and discuss in detail the effects of the joint presence of a longitudinal
and a transversal (random) magnetic field on the phases of the Random Energy Model and its
hierarchical generalization, the GREM. Our results extent known results both in the classical
case of vanishing transversal field and in the quantum case for vanishing longitudinal field.
Following Derrida and Gardner, we argue that the longitudinal field has to be implemented
hierarchically also in the Quantum GREM. We show that this ensures the shrinking of the
spin glass phase in the presence of the magnetic fields as is also expected for the Quantum
Sherrington—Kirkpatrick model.

Keywords Disordered systems - Quantum spin glass - Phase transition - Free energy

Mathematics Subject Classification 82D30 - 82B44

1 Introduction and Main Results

Mean-field spin glasses such as the Sherrington—Kirkpatrick (SK) model have long served as
an inspiration to both physicists and mathematicians [23,25,30]. For these classical glasses,
Parisi’s replica ansatz for the free energy presents one of the rare gems of an exactly solvable
case, whose solution covers extremely complex behavior—notably the occurrence of a frozen
glass phase below a certain critical temperature 7,.. Since spins are intrinsically quantum-
mechanical objects, physicists have started early on to investigate the quantum effects caused
by the inclusion of a transversal magnetic field. Unfortunately, unlike the inclusion of a
longitudinal magnetic field in the SK-model, the transversal field seems to crash all attempts of
an explicit Parisi solution. One either has to resort to approximations or numerical calculations
for the full phase diagram [17,24,28,32—34] or bounds [18,19] or more qualitative results [1,9]
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for the Quantum SK-model. It is therefore rather remarkable that the associated hierarchical
caricature, the generalized random energy model (GREM), still admits an explicit solution
of Parisi type even in the presence of a transversal field [15,20,22]. The GREM was initially
invented by Derrida [12,13] to qualitatively capture the behavior of the free energy of more
complicated glasses. It was mathematically reformulated in [27] and its significance for
Parisi’s ansatz was later clarified in [3,16,29].

One central question for spin glasses in external magnetic fields is whether the fields
destabilize the low-temperature glass phase or not. For the SK-model in a constant longitudi-
nal field, de Almeida and Thouless [10] determined an equation for the critical temperature
T.(h), which turns out to be decreasing in the field strength /# and is known under the name
de Almeida—Thouless (AT) line. Below T, (/) the replica symmetry has been proven to be
broken [31]. Rigorous results above 7, (h) are still incomplete (see e.g. [2] and refs. therein).
Unlike for the SK-model, implementing the longitudinal field naively in GREM models
causes the frozen phase to expand [4,5,7]. Derrida and Gardner [14] therefore suggested a
hierarchical implementation of the longitudinal magnetic field, which then leads again to a
destabilization of the frozen phase.

The present paper now investigates the question of the stability of the low-temperature
phase in general GREM models under the joint presence of a longitudinal and transversal
field. We will present explicit formulas for the free energy of such Q(uantum)GREMs for
both cases: a naive implementation of the longitudinal magnetic field and a hierarchical
implementation. We will discuss the stability of the glass phase and calculate associated
critical exponents.

1.1 The Quantum GREM with a Random Longitudinal Field

The QGREM with a (random) external transversal and longitudinal magnetic field is a Hamil-
tonian on ¢ € £2(Qy) of the form

(Hyy)(@) = U@)y (o) — h(o)y (o) — (BY)(o). ey

The first term represents the GREM energy landscape on the Hamming cube Qy:={—1, 1}V
and is given by a centered Gaussian process U (o) with covariance function

E[U(e)U(e")] = NA(gn(o,0")), (2)

where A: [0, 1] — [0, 1] is a fixed non-decreasing, right-continuous, and normalized func-
tion, A(1) = 1, which does not depend on N. Moreover, gy denotes the normalized
lexicographic overlap of spin configurations o, 6’ € Qp:

ifo =0/,

1
CIN(G,G’)Z={ | 3)

v (min{l <i <N:o;#0/}—1) else.

GREM processes distinguish themselves through their choice of A, which may be a contin-
uous distribution function. In the latter case, these processes are also called CREM, which
is short for continuous REM. Other examples correspond to distribution functions A with a
finite number n of atoms, which is referred to as an n-level GREM. The simplest case is one
atomatx = 1,1.e. A(x) = O0forx < 1and A(1) = 1, which corresponds to the REM, i.e. the
case of independent and identically distributed centered Gaussian variables U (6),0 € Qy,
with variance N.
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A straightforward implementation of a (random) longitudinal magnetic field is achieved
through setting

N
/’l(O‘)ZZthj. 4)
j=1

Interpreting the configuration basis o as the z-components of N quantum spin-1/2, a (random)
transversal field B in x-direction is given by the sum of the Pauli x-matrices s ; with weights
b; e R:

J

N
(BY)(©) =Y bj (s;¥)©).  (s;)(0) = ¥ (Fjo), 5
j=1

Fijo :=(0y,...,—0j,...,0N).

We will assume throughout that the variables (U (6)), (1) and (b ;) are mutually independent
and that the field variables % ; and b; are independent copies of absolutely integrable random
variables b and b, respectively.

Occurring phase transitions, in particular the AT line, are encoded in the limit of the
pressure (or the negative free energy times the inverse temperature f)

DN (B, b, b)::% InTre PHN (6)

as the number of spins N goes to infinity. Our first main theorem is an explicit formula for
this limit in terms of the concave hull A of A and the right derivative a of A.

Theorem 1 Let U (o) be a GREM with distribution function A and suppose that the longi-
tudinal random field is implemented as in (4). For any > 0 and any absolutely integrable
random variables ), b, the pressure converges almost surely,

Jim @y (B.b.b) = sup </ ¢(B, b, x)dx + (1 — 2)E [In2 cosh(B+v/b + hz)]> (1)

0=<z=<1\JO

The density ¢ (B, b, x) is given by

_ /3_2 . .
o(B. . x):= ln%—i—a(x) 5 + E[Incosh gh] %f B < Bc(x), )
pa(x)Be(x) + E[btanh Bc(x)b]) if B> Be(x),
where B.(x) = B.(x, ) is the unique positive solution of the self-consistency equation
é(2X) Be(x)* = In2 + E[In cosh B (x)h] — Bc(x)E [ tanh B (x)]. )

Moreover, (B, b, x) is a decreasing function of x and strictly increasing and convex in B,
while B.(x) is increasing in x.

Theorem 1, whose proof will be spelled out in Sect. 3, is a generalization of Theorem 1.4
in [22], which addresses the case without a longitudinal field, h = 0. In the classical case
without transversal magnetic field, b = 0, it generalizes the results of [7], which covers the
case that f is constant, and of [4,5], which treats the special case of a REM or two-level
GREM in a random magnetic field.
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1.2 Stability of the Glass Phase in the QGREM with Longitudinal Field

Glass behavior occurs if the inverse temperature f§ > B.(x) for at least one x € [0, 1].
From (8) and the monotonicity of ¢ (8, b, x) and B.(x), it is evident that the location of the
glass transition predicted by (7) coincides with B.(x = 0) and, thus, is completely determined
by ¢(B, b, 0) which agrees with a rescaled REM pressure [4]. In order to understand the
qualitative behavior of the phase diagram and in particular the question of the stability of
the glass phase in the QGREM with longitudinal field (4), it is thus convenient to restrict
the discussion to the REM with constant fields, i.e., h = h and b = I' for some positive
constants 4, I" > 0. In fact, even quantitative properties such as the dependence of the critical
temperature 7.(h) = B.(0, h)~1 on the longitudinal field 4 coincide for the general GREM
with the REM except for some numerical factors which depend on a(0). We therefore state
the application of Theorem 1 to the QREM as our next corollary.

Corollary 1 Consider a REM process U (a) and constant longitudinal and transversal fields
of strength h, I' > 0. Then, almost surely

Jim @y (B, h, ) = max{®REM(B, h), In2 cosh(Bv/h2 + I'2).}, (10)

where, DREM(B. ) denotes the function

q)REM(IB’h):{ln2+ﬂ72—|—lncosh,3h if B < Beh) -
B(Bc(h) + htanh(Bc(h)h)) if B > Bc(h)
and B¢ (h) is the unique positive solution of
Be(h)? = 2r(tanh(B.(h)h)) (12)
with the modified binary entropy r: [—1,1] = R,
r(x)::—<1;x1n1;x+lgxlnl—;x). (13)

The short proof of Corollary 1 can be found in Appendix A.
For fixed & > 0 the phase diagram, which is plotted in Fig. 1, resembles that of the QREM
without longitudinal field [15,20]. The model undergoes a magnetic transition at

2
I.(B, h)::\v/,B_2 arcosh (% exp(PREM (g, h))) — h2, (14)

where the magnetization in x-direction jumps. At fixed & > 0, this line separates the quantum
paramagnet characterized by a positive magnetization in x-direction, from the classical spin
glass.

The unique positive solution B.(h) € (0, +/21n2) of the self-consistency equation (12)
marks the inverse freezing temperature at longitudinal field 27 > 0. For fixed 4 > 0 this
line separates the high-temperature regime of the classical paramagnet at I' < [,(B, h)
from the spin glass phase. In comparison to the case 4 = 0, the longitudinal field causes
an extensive magnetization M (o) = Z,N: 1 0i in z-direction under the Gibbs average. The
specific magnetization in z-direction is a self-averaging quantity which converges as N — 0o
to

(B h)—la_Q(ﬁ h) = tanh(min{B, B.(h)}h), I' < I'.(B,h),
TR o T T | i wnh (VIR TR, T > LB,
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3.5

Temperature '

Temperature '

0 1 2 3 4 5 6 7 8 o : 2
Magnetic Field h Magnetic Field [

Fig. 1 The left figures illustrates the freezing temperature 7. (h) = B, : (h) as a function of the longitudinal
field h. On the right is the 7 — I" phase diagram with the critical magnetic field I (B8, I") as well as the critical
temperature evaluated at h =0, 3,7

The kink in its dependence on 8 for I < I.(B, h) reflects the second-order freezing transition
at B.(h).

The following proposition summarizes some basic properties of the critical inverse tem-
perature B.(h) and the critical transversal field I, (8, k) as functions of A.

Proposition 1 The critical inverse temperature B.(h) and the critical magnetic field strength
I'.(B, h) have the following properties:

1. Bc(h) is a strictly decreasing function. Moreover, B.(h) = +~/2In2 (1 — h? /2) + O(h*)
for small h and as ] i hbeh)
ymptotically limp_, o0 =75~ = 1.
2. The high temperature limit (0, h):=limg_.o I':(B, h) = 1 does not depend on h, and

the low temperature limit

Jim T8 1) = /(B ) + tanh B (h)h)h)? — B2

resembles the ground-state phase transition.
3. For any B > O the critical field strength I'.(B, -) is a strictly increasing function. In
addition, we asymptotically have limj,_, o LEh

VhBhy

The proof of Proposition 1 is based on multiple elementary, but quite lengthy, computa-
tions, which we spelled out in Appendix A for the convenience of the reader.

Let us put these findings in a general context. In classical SK-type models, the freezing
temperature T.(h) = B.(h)~! decreases as h becomes larger, i.e. the glass phase shrinks
[10,31]. Numerical calculations support the conjecture that in the Quantum SK-model, the
longitudinal and transversal field destabilize the glass phase as well (cf. [24,34] and [28]). In
contrast, the REM and the QREM exhibit an expanding frozen phase for 4 > 0. This concerns
not only the critical temperature 7, (k) but also the critical transversal magnetic field strength
I'.(B, h), which also increases with /; see Fig. 1. In this sense the QREM, although the limit
p — oo of p-spin models (cf. [21]), features nonphysical characteristics in presence of a
longitudinal field. As we will argue next, this is a consequence of the unrealistic lack of
correlations.
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1.3 The QGREM with a Hierarchical Longitudinal Field

That a longitudinal field stabilizes the frozen phase in the QREM and QGREM, can be
regarded as a quite nonphysical behavior. We will bypass this problem by following Derrida
and Gardner’s approach to incorporate the magnetic field in z-direction as a hierarchical
operator [14]. This choice can be physically justified: one should recall that the GREM was
designed as a hierarchical approximation of the more involved SK-model, whose energy
correlations are given by E [U (0)U(o’ )] = Nry(o,0')? in terms of the spin overlap
ry(@,6’) = N1 Z;V:l. In fact, requiring that the entropy of likewise pair-correlated ener-
gies asymptotically coincides in the SK-model and the GREM, i.e.

1 o :rn(0,6%)% > al g
[{o : A(gn(0.09) > a}| )

forall a € (0, 1) and a fixed, but arbitrary, reference state o, determines the choice Alx) =
¥ (x)2, where y is the inverse function of
r(a) 1—x 14+ x

-1 —1
10,1 1 =1 = In(1 —
14 [07 ] - [09 ]’ Y (a) In2 21n2 n( -x) + 2?2

In(1 + x) (15)
with the binary entropy r from (13). This follows from the known asymptotics
‘{0‘ : rN(O‘,aO) > a/h}‘ ~ 2N2—NV’1(a/h)

and |{o : gn(0,0°) > a}| ~2N274N,

If we want to understand the SK-model with a longitudinal field, itis reasonable to consider
the hierarchical reorganization of the magnetic field as well. We start by introducing the notion
of a general hierarchical field on the Hamming cube Q.

Definition 1 Wecall afunction/: Qn — Rahierarchical field with reference statea? € Q N
if there exists a function 7n: [0, 1] — R such that

h(@) = Nn(gn(o,a")), (16)

where ¢ is the lexicographic overlap (3). Furthermore, % is said to be a regular hierarchical
field, if n is a regular function on [0, 1], i.e. n is a uniform limit of step functions.

Our second main result in this paper deals with general regular hierarchical fields. Nev-
ertheless, let us in particular discuss the choice of 6 and 7 that corresponds to a constant
external magnetic field. To do so, we rewrite the original constant longitudinal magnetic field
as follows

N
hY o; =hNry(o.,a"), (17)
i=1
where 6% = (41, ..., +1) is the ferromagnetic state. In the hierarchical case one may also

think of a¥ being the ferromagnetic state, but the free energy in fact does not depend on this
reference state.

Determining the “correct” overlap function is a little more subtle. One might be tempted
to pick n(q) = hg which yields the analogous relation between the field and the respective
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overlap as in (17). Similarly as discussed above, it is more reasonable though to demand that
the entropy agrees, i.e. the number of (positive) energy states agree on an exponential scales

1 ( o : hry(o,06°) > a} )
In

{o 1 v(gn(0,09) > a}|

for any 0 < a < h. Comparing asymptotics leads to the choice

n(a):=hy(a, (18)

where again y is the inverse function of (15). Let us record this as a definition:

Definition2 We call h(o) = Nn(gn (o, o)) with reference state 6 = (+1, ..., +1) and
overlap function n given by (18) the hierarchical magnetic field of strength A.

Our aim in the following is to determine the limit of the pressure @ (B, b, i) of a Quantum
GREM (1) where U is a GREM-type random process characterized by A in (2), 4 is aregular
hierarchical field in the sense of Definition 1, and B is a random transversal field whose
weights b; are independent copies of an absolutely integrable variable b (see (5)).

To formulate our main result, we need to introduce doubly-cut GREM processes U -2 for
0 <y <z < I on the reduced Hamming cube Q[(,y)n7 with the (not normalized) distribu-
tion function A®-?: [0, z — vyl — [0, 1], AOD (x):=A(x + y) — A(y). The corresponding
concave hull and its right derivative are denoted by A©>? and a©-%.

We further set 9?9 : R x [0,z — y] = R,

- B2 _
oD (B, x):=B (2In2) a¥I (X)L, _y00(g) + (7“% (@) +102 | Lz r0.05)- (19)
with
X049 (B):=sup {x 1299 (x) > 21n 2/,32} . (20)

With these preparations we recall from Theorem 1.4 and Theorem 2.8 in [22] that almost
surely

Nlim ®n(B,b,0) = sup |:/Z O VB, x)dx + (1 — )E [ln2cosh(ﬁb)]:|
) 0

0=<z<l

= sup |:/Z<p(0’2)(;3,x)dx+(1—z)E[ancosh(ﬂb)]]. (21)

0<z=<1LJO
In the presence of any regular hierarchical field 4 (not necessarily with n given by (18)), this

result generalizes as follows.

Theorem2 Let U(o) be of GREM and B a random transversal field with independent
weights ~ (b;)  sharing  the  same  distribution  as b. Further, let
h(c) = Nn(q(o, oY) be a regular hierarchical field. Then, almost surely:

®(B,b,h):= Nh—r>noo PN (B, b, h)

z—y
= sup |:ﬂ17(y) +/ <p(”) (B, x)dx + (1 —2)E [ln2¢osh(,3[))]] 22)
0

O<y=<z<l

=y
= sup [ﬂn<y>+ f w(y’”(ﬁ,x)der(l—Z)E[IHZCosh(ﬁb)]]-
0

O<y=z=l
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That the two last equations in (22) agree, is a priori not clear, as the additional cutat z < 1
might change the concave hull A©»? in the interval of interest. In other words, Theorem 2
in particular says that the maximizing z in (22) can only be a point, where A®>D = A0-D
and consequently the z-cut has no effect on the concave hull.

Remarkably, the transversal field B and the hierarchical field % affect the glass phase quite
differently. While the hierarchical field tends to shrink the glass region in its most correlated
sector first (it acts through the choice of y from the ’left’), the transversal field begins by
changing the unfrozen region and the less correlated sector (it acts through the choice of
z from the ’right’). We will further discuss the consequences of our second main result,
Theorem 2, in the next subsection and spell out its proof only in Sect. 2.

1.4 Instability of the Glass Phase in the QGREM with Longitudinal Hierarchical Field

If A= A,ie. Aisa concave function, 9 is a just a translation of (> =: ¢ such that

Z

O(B.6.h) = sup [ﬂn(y) + /

oB,x)dx + (1 —2E [ln2c0sh(ﬂb)]] ,  (23)
0<y=<z<l y

with

2
e(B,x) =B/ (2In2) a(x)Ly<xp) + (%51(36) +1In 2) Ly>x(8)
x(B)=sup {x | a(x) > (2In2)/*}.

On the other hand, if A is not concave (which is always the case if A is a step function) the
behavior of -1 is more subtle as one has to take into account that the slope of the concave
hull’s linear segments will change as y increases. In particular, (23) does not necessarily
hold true. In contrast to a transversal field, a hierarchical field might lead to a change of the
determining concave hull. As discussed in [14] this would happen for a hierarchical caricature
of a p-spin glass with p > 2.

For an explicit prediction on the AT line we will now focus on the case that A = A is
continuously differentiable with derivative a. Then for any hierarchical field with an overlap
function n(-) = hv(-) with 2 > 0 and v > 0 an increasing function, the supremum in (23)
is attained for fixed B > 0 at some y(f, h) which is an increasing function of 4. Since the
critical temperature T, = . 1 only depends on a(y(B, h)), it is thus a decreasing function
of h and not increasing as in the QREM.

To be more specific, let us focus on the case of the hierarchical magnetic field n = hy of
strength 4 > 0. We will proceed step by step, first discussing the limiting cases.

1.4.1 Vanishing Transversal Field b = 0

In this case, a straightforward differentiation shows that the supremum in (23) is attained at
z=1land y = y(B,h) € (0, 1), which for fixed § > 0 and & > 0 is the unique solution of
the equation

(e By
(242

@ Springer



The de Almeida—Thouless Line in Hierarchical Quantum Spin Glasses Page9of32 14

where k : [0, 00) — (0, 1] is the inverse function of the derivative ¥’ : (0, 1] — [0, co) of
y. The uniqueness of the solution is most easily seen using the explicit form

1, x =0,
k(x) = { In2 1

1 In2
;tanhT — mlnCOSh B X > O,

from which we conclude the fact that k is continuous and monotone decreasing. More pre-
cisely, since y +— (B, y) is continuous and monotone decreasing as well with limiting
values ¢(8,0) > ¢(B, 1) = B%a(1)/2 +1n2 > 0, the solution to (24) exists and is unique.
A low-temperature glass phase occurs in this case if and only if y(8, h) < x(B). Clearly,
this is only possible in case x(8) > 0, i.e. for temperatures below the critical temperature at

h = 0, whose inverse is given by
B, = 2In2
TV ao

Since [B., 00) > B — x(B) is monotone increasing and right-continuous and ¢ (8, x(8)) =
2 1n 2, the inverse critical temperature at 2 > 0 is then well defined through the requirement

Be(h):=inf (B : x(B) > k (2In2/(Bh))}. (25)

The function h +— B (h) is referred to as the AT line. We record some elementary properties
of the AT line and also of the solution of (24) for future purposes in the following proposition.
Of particular interest is the critical exponent of the AT line 7. (h) = B, (h)! near h = 0. It
is determined by the asymptotic behavior of a(x) near x = 0. To facilitate notation, we write
x(t) o y(t) (t = tp) if and only if lim;_, ’% € (0, o) exists. For the determination of
the critical exponent, we add the following assumption, which may be satisfied or not.

Assumption1 Fora > 0: a(0) —a(x) ocx¥ (x | 0).

E.g. in the SK-caricature case A = yz, we have a(0) = 21In2, which yields the correct
critical temperature B, = 1 of the SK-model, and « = 1. As is spelled out in (26), this leads
to the critical exponent 2 of the AT-line for small transversal fields. This differs from the
known asymptotics T, — T.(h) « h%3 (h 4 0) of the AT-line in the original SK-model as
already noted in [14].

Proposition 2 Suppose that A = A is continuously differentiable with derivative a.

1. The inverse critical temperature B.(h) is monotone increasing in h. Its limiting values are
limp, 0 Bc(h) = Bc and

lim B.(h) oo ifa(l) =0,

im =

hosoo' © % ifa(l) > 0.

In the situation of Assumption 1 the critical temperature satisfies:

T. — T.(h) < h** (h | 0). (26)

2. Forany B € (0,00) and h > 0 the unique solution y(B, h) of (24) enjoys the following
properties:
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(a) Forfixed B € (0, 00) the function (0, 00) > h +— y(B, h) is continuous and increasing
in h for any B > 0 with limiting values limy, o y(B8, h) = 0 and limj,_, oo y(B, h) = 1.
Moreover,

2
Y(B.h) = O(h%) + h* x Tz (L +B2/BD 77 B <pe

I 27)
32> B > Bc

for small h.
(b) The function (0,00) > h — ¢ (B, y(B, h)) is continuous and decreasing. Moreover,

at any B > 0 its limiting values is limp, o ¢ (B, y(B, h)) = ¢ (B, 0).
The proof of this proposition consists again of multiple lengthy, but elementary compu-
tations, which are sketched in Appendix B.

1.4.2 Vanishing Hierarchical Longitudinal Field h = 0

It was shown in Corollary 1.5 of [22] that in case 4 = 0 and a constant transversal field
b = I" of strength I" > O the supremum in (23) is attainedat y = Oand z = z(B, I') € [0, 1]
given by

1 p(BI) =s(B) =9, 1)
2B, ") == 1 8p(p(BI") s(B) < p(BI') < 1(B) :=¢(B,0) (28)
0 t(B) = p(BI').

Here g(B, ) : [s(B), t(B)] — [0, 1] is the generalized inverse of ¢(f, -), which maximizes
z(B, I') and

p(BI') :=1In2cosh(BI),

is the pressure of a pure quantum paramagnet. As a consequence, the pressure @ (8, I, 0)
has a magnetic transition at

I.(B,0) := % arcosh (%e’(ﬂ))
and possibly a second magnetic transition at Fc(l)(,B) = % arcosh (%es (/3)) depending on
whether a(1) > 0 or equivalently s(8) > In2 or not. In the regime I" < I.(8, 0) a glass
transition occurs at fixed inverse temperature .
In case of the SK-caricature for which a(1) = 0, neither the value of the location of the
quantum phase transition at zero temperature, limg_, o I (B8, 0) = /(2In2)a(0) =2In2 ~
1.38 ... agrees with the perturbative or numerical prediction of approximately 1.511in [33,34],

nor does the behavior of I'.(7T !, 0) near T = 0 agree with the T?-scaling predicted in [17].
Presumably, this is a defect of the hierarchical implementation of the glass’ correlations.

1.4.3 Constant Longitudinal and Transversal Field

To determine the pressure @ (8, I, h) in the general case of a constant transversal and longi-
tudinal field I", 1 > 0, we also need to discuss the behavior of the variational expression (23)
at the diagonal y = z, which corresponds to the situation without a GREM. In this case, the
supremum is attained at

(29)

o(B. T h) =k <p(ﬁr)>.

Bh
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Note that the condition p(B8I") < @(B, y(B, h)) ensures y(B,h) < z(B, h) by the strict
monotonicity of gg. These findings then yield to the following explicit expression for the
pressure in the general case.

Corollary 2 Suppose that A = A is continuously differentiable. For the constant transversal
field of strength I' > 0 and the hierarchical magnetic field h(c) = Nhy(q(c,a?)) of
strength h > 0 the pressure is almost surely

z2(B.1)

Bhy (y(B, ) + / .,y PV (=261 p(BT),
yp,

OB, I', h) =3 p(BI') < (B, y(B, h)),
Bhy (o (B, ", h)) + (1 —o(B,I",h)) p(BI),
p(BI') = (B, y(B, h)),

where y(B, h), z(B, I') and o (B, I', h) are specified in (24), (28) and (29) respectively.

Let us now discuss the physical significance of this formula. In case 2 > 0 the pressure
in Corollary 2 changes its nature at (B, z(B8, I")) = p(BI') = ¢(B, y(B, h)), i.e. at

1
(B, h) = 5 arcosh (%eg"(ﬂ’Y(ﬂ’h))) .

By strict monotonicity of p, the condition I' < [I.(B,h) is equivalent to p(BI") <

@(B, y(B, h)) and hence y(B, h) < z(B, I').
The magnetization in the transversal direction

1 0
my(B, I, h) := EB—FCD(,B, I, h)
_ {(1 —z(B. M) anh I, p(BT) < 9(B, y(B. h)),

(I—o(B, I",h))tanh BI",  p(BI") = (B, y(B, h)),

changes continuously through the transition line I" = I'.(B, h). Only its second derivative
is generally discontinuous. Note that the magnetization in x-direction neither attains its
maximum value tanh(S1") of the pure quantum paramagnetic phase in the regime I" >
I'.(B, h) nor does it vanish for I' < I'.(B, h). Similarly as in the case 4 = 0 covered in
[22], the transversal magnetization vanishes only at FC(U(,B), which is equal to zero in case
a(1) = 0. The critical magnetic field is continuous in 4, and one recovers the limiting value
limy o I:(B, h) = I.(B, 0) forany B € (0, 00). A straightforward Taylor expansion and (27)
imply that in the situation of Assumption 1:

T(B,0) = Te(B, h) ~ 1> (h ] 0). (30)

In fact, this even holds in the zero temperature limit § — o0, i.e for the so called Quantum
AT line which is plotted in Fig. 2.
A low-temperature glass phase occurs if and only if

y(B, h) < min{x(B),z(B, I')}.
Clearly, this is only possible if two conditions are satisfied simultaneously:
1. z(B, I') > y(B, h), i.e. for transversal fields I" < I.(B, h). From the monotonicity of
h+— @(B, y(B, h)), we conclude, I'.(B,h) < I'.(B,0) forany 8, h > 0.
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Fig. 2 Plot of the Quantum AT line, i.e. the dependence of the critical transversal field I-(8, h) on the
longitudinal field 4 for zero temperature, 8 = co
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Fig.3 On the left is a plot of the critical temperature 8. (/) as a function of the longitudinal field. On the right
figure is the 7 — I" phase diagram with the critical magnetic field I'- (8, I") as well as the critical temperature
Be(h)~ ! evaluated at h = 0, 3, 7

2. x(B) > y(B,h), 1e. for B > PB.(h) given by (25), which we already identified as a
monotone increasing function of 4.

We thus conclude, that the presence of the transversal field 4 > 0 shrinks the spin glass’ low-
temperature phase. Qualitatively this behavior is in accordance with the numerical findings
in case of the Quantum SK-model [34]. However, as already noted in [14] in the classical
case I' = 0, the critical exponents do not agree. Figure 3 plots the temperature-transversal
field phase diagram for different values of /4 in case A = A and a(1) = 0.

We finally close this section by pointing out that the expression for the pressure in case
p(BI') > (B, y(B, h)) agrees with that of the hierarchical field / plus a constant transversal
field I". It should be compared to the exact solution p(B8+/h? + I'?) without the hierarchical
implementation of the longitudinal field and agrees qualitatively.
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The magnetization in the longitudinal direction is given by

m g I = Lo iy = | OB p(BI) < g(B.y(B.h)),
poh y (@B, T, h)), pBL) = ¢, y(B,h)),

and varies continuously through both the glass and the magnetic transitions.

2 Proof of Theorem 2

Let us first remark that the last equality in (22) already follows from results in [22]. Indeed,
fix any y € [0, 1) and consider the Hamiltonian

HO .— gD _ gy

on the reduced Hilbert space €2(Q(1—y)n7), where UV is the cut GREM corresponding
to AC»D and B denotes the cut transversal field acting only on spins in Qr(1—y)NT

N
B®V:= 3" bis;, (31)
i=[yN]+1

and we set B("Y):=B — B Then, Theorem 2.8 in [22] implies

1 ) Ty
lim — InTre AHY = sup |:/ eI (x)dx 4+ (1 — )E [ln2cosh(/3b)]:| ,
0

whereas an application of Theorem 1.4 in [22] yields

1 -y
lim ﬁlnTre_ﬁH(y) = sup [/ w(y’l)(x)dx—l—(l—Z)E[ancosh(,Bb)]].

N—0o0 y<z<l 0

In both cases, the supremum is taken over z € [y, 1] at fixed y, which proves the second
equality in (22). We now spell out the proof of the first equality in (22).

Proof of Theorem 2: We will proceed in three steps.

Step 1: Reduction to step functions
We claim that it is enough to show Theorem 2 for step functions 5. This follows if we can
prove that the left and right side of (22) are continuous with respect to 7 in the uniform norm.
This is, however, trivial for the right side, and a simple operator norm bound implies for two
hierarchical fields &, h’ with overlap functions n, 7/,

~B(U~h—B) —BU~H~B)

1

~ InTre —InTre < Bln—1llo-

From now on, we will therefore only consider step functions 7, i.e. we assume that there
exist points 0 = gp < q1 < ---qm = 1 and real numbers 71, ..., n, such that n(x) = ni
for gx—1 < x < g and n(1) = n,. The points g, define blocks of spin vectors o} €
QrgiN1—[qx—1N1» and we will write ¢ = 0102 - - - 6. Moreover, it is convenient to introduce

for k = 1, ...m the projections Py and py:

Po = Pbo16,---0,,:=01---0p, PkO = PO 1072 -+ -0, =0.
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Moreover, we set Ppo = poo:=1. Finally, we note that due to the fact that n only takes
finitely many values, we may restrict the variational expression (22) to the maximum over

points y = gx:

sup [ﬁn(y) + /Z_ygo(y’l)(x)dx + (1 -27FE [ln2cosh(,3[1)]]
0

O<y=z<l

z2—q
= 0max sup |:,377k+1 + / ‘ (p(y,l)(x) dx + ({1 —2E [anCosh(,Bb)]] .
0

Step 2: Lower bound
Our lower bound on the pressure is based on Gibbs’ variational principle [26]. We pick some
k € {1, ..., m} and consider on the subspace 20 N—[q:N7) the Hamiltonian:

H® =y® —gCaw — y®gy...0,) :=U(P6")ori1---0m).  (32)

We denote by pi g the corresponding Gibbs state at inverse temperature 8. The density
matrix p g has the extension p g := |P.o®)(Po®| ® Pk,p to the full space ?(Qn) =
EZ(Q[qk ND ® EZ(QN_[qk ~71) and its matrix elements are given by

(Oks1 - Omlprplof, o), if o = Pe® = Po’
0 else .

<0'|/0k,,8|0’/>:={

By Gibbs’ variational principle, we have

l InTre PU—h=B)
N

b (1.g1) 5 (k) ! _gH®
> NTT [,Ok”B(B +h+U - U)] + N lnTI'|£2(QN_’_qu.‘)€ ,

with the canonical extension U® of U® to the Hilbert space 2(Qn), ie.,
P61 -0k0ks100):=UR (0141 -0m).

Since the trial density matrix pg g is diagonal with respect to o' - - -0 and fixes the first
variables to Pro?, we have

Tr [pe, g B = 0 = Tr [ o s (U — U)].

Thus, it remains to show the almost sure identities

. 1
lim NTI‘ Lok, ph] = Nk+1, (33)

N—o0

and

1
lim N InTr |(2 —BH:

N> 00 (QN—[qu])e

—ar (34)
= sup [/ ga(y")(x)dx—l—(l—z)E[ancosh(ﬂb)]].
0

gr<z<1
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Step 2.1: Proof of (33): Using h(o) = Nn(gn (o, %)) we compute the trace in the z-basis:

m—1

1
ST lpephl =) | > (loxplo) | + (0’1o plo®)
=0 0:P0%=P0,P 1 169£P 10
m—1
=Y | mu > (lorplo) | + nmic®low pla”),
I=k 0:Po%=Po,P169£P 0

where the second equality is due to the construction of o g. Since pi g has unit trace,
=Y (olpplo), (35)
o:Po'=Po

and is non-negative, we may estimate both from above and below:

<l Y.  (Olorplo).

UZPk+1O'O:Pk+1O’

1
—Tr h] —
N [0k, p1] — Nict1

We further deduce from the spin-flip covariance of H® that for any o, with Pro =
Pio’ = Po 0.
El{olpr.plo)] =Elo'| ok plo’)].

Consequently, using the normalization (35) and counting the number of configurations, we
have

2N (1=qi+1) N
— — 2~ N@kr1—aqr)
E Y. ©laplo) | = Sy =2 V@

G:Pk+1o’0=Pk+1a'

By a Borel-Cantelli argument, we thus arrive at the almost sure convergence

1
li —T h] — =0.
N1—r>noo'N ok, ph] — Nt

Step 2.2: Proof of (34): We may rewrite the restricted process (in distributional sense)
U((Po”)osq1 - 0m) = U'(@s1---0m) +VNAG) Y,

where U/ (6441 - -0,,) isa GREM process on Qy rqx N1 With (non-normalized) distribution
function A1 and Y is a standard Gaussian variable which is independent of U’. This distri-
butional equality relies on the fact that centered Gaussian processes are uniquely determined
by their covariance function. Of course, Y does not contribute to the limit of the pressure,
—BH®

. 1 _ 1
ngnoo N In Tr |52(QN7quN])e = N]]_I)‘noo N In Tr |ZZ(QN*Fqu1)e

—,B(U/—B(Z’qk))

provided that the limit on the right side exists. This is warranted by Theorem 1.4 in [22],
which almost surely yields

—B(U'—B@4k))

. 1
lim N InTr |€2(QN—[qu])e

N—o0

—ai (36)
= sup [/ ga(y")(x)dx—l—(l—z)E[ancosh(ﬂb)]].
0

gr<z<1
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Step 3: Upper bound
The method is similar in spirit to the application of the peeling principle presented in [22].
However, we need to cut the transversal field B in a different manner which suits the hierar-
chical field A.
Step 3.1: Truncating the transversal field B
We define the partial fields

[qiN
By:=Ba-0 _ p(lhao) — Z b;s;
i=[qr—1N1+1

where we set B(1:90) = (0. Hence By only acts on o ;. We also define the restriction B,’( of By,
to the complement of ( pkao):

B~ B :=1® Z bj (|pk(FjUO))<Pk0'O| + kaO'O)(pk(Fjao)D R 1.
[qk—1N1<j=<[qiNT

Here, the first identity acts on | - - - 6x_1,the last identity on 64y - - -6, and F; denotes
the jth flip operator (see (5)). We denote by B’ the total truncated transversal field,

m
B =B
k=1

By the triangle inequality and a Frobenius norm estimate we have

m N
IB—B'| <> B —Bill <m |2 |bj|> = o(N).

Note that the L!-property of the random variable b and Lemma A.2 in [22] ensure that the
right side is indeed of order o(N).
Step 3.2: Finishing the proof: Using a trivial norm bound, we estimate

¢~ BIB=B'| Ty ,=BU~h=B) _ Ty ,~BU~h-B)

3
L

— e~ BNkt Z (0‘|e_’3(U_B/)|O')

O’:PkO'OZPko’,Pk+10'0;éPk+1o‘

=~
Il
o

+ e BN1m (0'0 |e—,3(U—B/) |0'0)

X

1
_BN —BU® _g'2.ar)
e PNmst N oy ome okt ... Om)
0 O’:PkO'OZPkO‘,Pk+IUO;éPk+1o‘
e

m
k
4 BN y=BUG°).

The first identity follows by an inclusion-exclusion type of summation over all spin config-
urations 0 € Qy together with the fact that the hierarchical field 2 commutes with B’ (and
clearly with U) and is constant on the respective spin configurations in the sum. The third line
is a consequence of the fact that on the subspace generated by the elements P,a® = Pio, the
magnetic field B’ operates only on the remaining spins x| - - - 0, and evaluates the poten-
tial at U, see (32). We now recall from Lemma 1 in [22] that the diagonal matrix elements
(o|le PU—B)|q) only depend on the square of the variables b;, so that in the estimation of the
trace we may always assume without loss of generality that b; > 0 and hence B as well as
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B’ have positive matrix elements in the spin configuration basis, which for b; > 0 dominate
each other and in particular

_Bw® _pap
0<(Okr1---omle PV B Doy ) om)

_ (k) _ p2.qx)
< (Oktt .- Omle PUT B Doy 1 om).

This allows us to expand the summation over all matrix elements with Piro® = Pio, which
leads to the upper bound

m—1
—B|IB—B’ —B(U—h—B —BN —BUN —B2ap)
o~ BIB=B'll Ty o= B( <Y e NI g e )
k=0
+ e_ﬁNnm e_ﬂU(UO).

Together with (36) this finishes the proof of Theorem 2. O

3 Proof of Theorem 1

Based on the already established results and methods in [4,5,20,22], the proof of Theorem 1
is straightforward but quite lengthy. Before we move on to the details, we outline our proof
strategy which consists of three main steps:

1. First, we need to generalize the results in [4,5] on the REM and two-level GREM with
a random magnetic field to the general n-level GREM (see Theorem 3). Following [4,
5] closely, the argument is based on a large-deviation principle for the entropy which
transforms the computation of the limit to a linear optimization problem with non-linear
constraints.

2. Secondly, we extend the limit theorem for the classical GREM to the QGREM with a
random longitudinal field (see Proposition 4). Using the peeling principle from [22], the
proof is quite easy. The only subtle point is to ensure that the structure of the concave hull
in the variational principle is preserved. Here we use an argument which is very similar
to the proof of [22, Lemma 3.1].

3. Finally, we use an interpolation and continuity argument to the lift the n-level QGREM
result to the more general QGREM setting. We refer to the interpolation and concentration
estimates in [22] which are applicable here.

3.1 The GREM with a Random Magnetic Field

The main aim of this subsection to prove the following Theorem 3, which extends the discus-
sion of the two-level GREM in [5] to the general n-level GREM. To this end, we will need to
introduce some notation. Let 0 = xo < x; < x2 < --- < x, = | be some points ay, ..., a,
some nonnegative weights (we do not assume here that these weights add up to one). As in
the proof of Theorem 2, we decompose the spin vector into blocks = o1 - - - 6, according
to the partition formed by the points (x;x). The GREM process can be written as

U(O-) — alNXo'l + vV azNXglo'z + e + \ anNXo'10'2...gn, (37)

where the appearing random variables X4, Xg,05, - - - » Xo,0,--0, are independent standard
Gaussian variables. Note that U (o) coincides with the GREM process with (non-normalized)
distribution function A,
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n
AX) =Y arlpy 1(x).
k=1

The limit depends on the concave hull A of A consisting of linear segments which are
supported on a subset of points 0 = yg < y; < --- < y,» = 1 where A and A agree. It is
convenient to further introduce the following quantities: the increments of the concave hull
a;:=A(y;) — A(y;—1), the interval lengths L;:=y; — y;—1 and the slopes y;:=a;/L;.

As our main result in this section, we show that the limit of the classical pressure
DN (B, h) = Py (B, b, 0) can then be expressed in terms of the partial pressures

4p% 4+ LiE[In2coshph]  if B=<p,
B@p + LiE[htanh 0] if B> Y

0 _ g
C - c

0B, b):= (38)

where the critical temperatures S
self-consistency equation

1 2
% D7 = In2 + E[Incosh BPh] — BPE [h tanh L b]. (39)

The following generalizes results in [4,5], which in turn is build on [7,8].

(h) are each the unique positive solution of the

Theorem 3 Let U(o) be a GREM process as in (37), B > 0 and b an absolutely integrable
random variable. Then, almost surely

Jim oy (B.b) = ¢V (B.1). (40)
=1

We stress that a random field does only change the partial pressures ¢*) but not the number
of terms in the right side. In particular, the limit remains to be a function of the concave hull
A and not A itself.

Our proof of Theorem 3 follows the large-deviation approach in [4,5]. We first need to
understand the energy statistics of the random field. To this end, it is convenient to decompose
the field /(o) into blocks

hi(og):= > hjoj.
[Xk— 1 NT+1=<j<[xk N

We first study the occupation numbers
N(y):= okl hilor) = —Ny}l.

With respect to the uniform distribution on spin configurations o, the random variables
hi(ok)/Ni with N := (xx — xx—1)N have a finite logarithmic-moment generating function
given by

1 1
An(t) = Fk In (sz Ze’hk("")) = Nk_1 Z In cosh(th )
o

[xp—1 NT+I<j<[xx N1
=: E[Incosh(th)] + Sy (1),

where Sy (¢) is a random variable. For any fixed ¢ € R by the strong law of large numbers
the latter converges to zero as N — oo. In fact, we can find a set of full probability (with
respect to the distribution of the iid variables (/4;)) such that the almost-sure convergence

Nlim An (1) = E[In cosh(th)]
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holds true for all # € R simultaneously. This follows from an 3¢-argument by considering a
countable dense set first and extending this assertion by noticing that both sides are contin-
uously differentiable in ¢ (see the proof of Lemma 5 in [4]). The Giértner Ellis theorem (cf.
[11]) then ensures that

1(z):=sup{zt — E[Incoshh]} 41)
teR

is a rate function for N, Yhie(op) for any k. As a Legendre transform / : R — R U {oo}
is lower semicontinuous. It is straightforward to check that I is symmetric, I (—z) = 1(z),
equal to +oo for |z| > E[|h]], continuously differentiable on (—E[|h]], E[|H[]), where it is
bounded by In 2, and continuous and monotone on [0, E [|h]]).

The Girtner Ellis theorem also allows to determine the asymptotic behavior of occupation
numbers N (y¢), which we can rewrite as 2"V times the probability that

hi/Ne < —yi/(xk — xk—1) =: () =: &k
More precisely, we almost surely have

1
In2 — inf I(z) <liminf — In N (yx) (42)
N—oo Ny

z<—&

1
<limsup—InN(yx) <In2— inf I(z) =In2 — I(&).
N— 00 Ny 25—

By the aforementioned continuity of 1, we thus obtain for & € (—E[|h|], E[|h]]) the almost-

sure convergence

1
Iim —InN =In2—-1 , 43
Jim N G (&) (43)
which describes the energy statistics of the magnetic field. As a next step, we analyze the
energy statistics of the total Hamiltonian. We start by extending our definition of occupation
numbers and introduce:

N(E7y) = N(El,---»En,YI,---,yn)
=|{o € On| @Xalmak = _\/NE/(
and hi(oy) < —Nyg forallk =1,...,n}|. (44)

Our next goal is to obtain the asmptotics for N (E, y). To this end, we introduce the entropy

S(E,y):=In2—)" (gf + () —xj- DI (ym) (45)
j=t N7
as well as the constraints
K E?
C:=|(E.y) e RLy xRy | 3 Sh G =201 ) < xin2
j=1"

forallk = 1, n} (46)
Note that (E,y) € C guarantees that /(§;) < oo for all k. By continuity of the involved

functions on the domain, where they are finite, we conclude that C is an open setand & (y;) €
(—E[I511, E[|p]]) for any j in case (E,y) € C.
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The following lemma on the asymptotics of N (E, y) is anatural generalization of Theorem
1.2 in [5]. We remark that % In N(E,y) is shown to converge almost surely, but not in
expectation. As the event {N(E,y) = 0} has a small, but nonvanishing, probability, we in
fact have E[In N(E, y)] = —o0.

Lemma 1 Let X be an n-level GREM vector as in (37) and (h;) independent copies of an
absolutely integrable random variable Y. Then, if (E,y) € C, we almost surely have

lim %lnN(E,y):S(E,y). 47)

N—00

On the other hand, if (E,y) ¢ C, the topological closure of C, almost surely and for all, but
finitely many N:

N(E,y) =0. (48)

Proof Let us start with the case (E, y) ¢ C. One then finds some k € N and € > 0 such that
K E?

Yol = x0T/ = xj-1) = xIn2 4 €. (49)

2a;
j=1""

We condition on the weights (/;) and compute the probability that a reduced spin vector
o1 - - -0 meets the first k energy requirements

P(/a;Xg,.a; < —~NEjandhj(e;) < —Nyj forall j =1,...,k|(h;))

k
= [1P(Va@;Xe,c, < —NE)P(hj(0,) < —Ny; |(h) 0

j=1
k 2
< [ "5/ 11n (0 ,) < —Ny;1.
j=1

The first equality is due to the independence of the variables X¢,...o; for different j. The
bound on the first probability follows from the standard Gaussian estimate. This may be
inserted into the following union bound

P(N(E.y) = 1|(h)) < ) P(/ajNXg .o, < —NE;

U]"’O’k
andhj(orj) < —Nyjforall j =1,...,k|(h;))
k g2k
<exp( =N —’) N,
<exp (=835 ) [T vow
j=1 j=1
where the last inequality is the previous estimate.
We now distinguish two cases. If
y € Gri={y € R’éol I1(&j(yj)) <ooforall j =1,..., k},

we may further estimate the right side using (49) and the upper bound in (42) to conclude
that for all, but finitely many N and almost surely with respect to the variables (4;):

P(N(E,y) > 1|(h;)) < e N¢/2,

A Borel-Cantelli argument then shows that N (E, y) converges almost surely to zero.
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Incasey ¢ Gy thereexistaninteger j € {1,...k}suchthatI(§;(y;)) = oo.Consequently,
(42) implies the almost-sure convergence lim supy_, NLJ In N(y;) = —o0. Since N(y;) €

No, this implies that almost surely N(y;) = O for all, but finitely many N. We conclude
P(N(E,y) > 1|(h;)) = 0 for all, but finitely many N and hence the claim (48) in this case.

It thus remains to show (47) for (E,y) € C. This proof will be based on Proposition 3.
For its application, we introduce the following sequences of numbers

1
Fk(N)::Nln {o1- -0kl VaiXe,.o; < —V/NE; and
hj@j)<—Ny;forall i=1,....k—1; j=1,... k}
1
Gr(N)i=--Inl{o1 - 0% VaiXs,..0; < —'NE; and

hj(cj) < —Nyjforalli=1,...,k; j=1,...,k},
Gy :=0.

The definition of these sets are motivated by inclusion-exclusion. If we suppose that G (N)
converges as N — 00, the almost-sure convergence (43), for which we recall that (E, y) € C
implies max; |§;]| < E[[b]], yields

lim Fip1(N) = (k41 — x0) In2 — (g1 — x1) L Gg+1) + lim Gr(N).
N—o0 N—oo
Moreover, Proposition 3 further implies
lim Giy1(N) = —Qagy1) ™ Efyy + lim Fipy(N),
N—o0 N—o0

provided that the right side is positive. By definition of the constraint, this is always the case
if (E,y) € C such that

N—0o0

.1 - " ([ E;
lim NlnN(E,y)zNh_r)nooGn(N):ln2—Z S+ (g —xnl (&)
j=1 \7
= S(E,y)
almost surely. O

The second part of the proof of Lemma 1 relied on the following claim, whose proof
follows that of Proposition 6 in [4].

Proposition 3 Let (Dy)nen be a family of finite sets, (X)sep, independent standard Gaus-
sian variables and (Y;)sep, a random vector, which is independent of X and whose entries
only take the values 0 and 1. Further, suppose that almost surely

1
lim —1 Dn|Ys =0} = 0.
Ngnooan{se NI Y =q >

Then the number of large deviations
N(E):=|{s € Dy|Y; = 0and \JaX; < —Ev/'N}|,

with a > 0 almost sure obeys
lim 1 InN(E)=q — (2a)"'E?
N—oo N

provided that ¢ > (2a)~ ' E>.
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Proof We apply the second moment method to N (E) and the conditional expectation con-
ditioned on the event Z:={s € Dy|Yy = 0}. A standard calculation similar to (50) using
elementary bounds on the Gaussian distribution function shows that

E[N(E)|Z] = Z exp(—((2a) "' E? + o(1))N).
By explicit computation we determine the second moment of N (E) conditioned on Z:
E[N(E)*|Z] - E[N(E)|Z]
- > P (JEXS < —E/N andaX, < —EW>
5,8 Y=Y =0

_P (ﬁxs < —Edﬁ) P(ﬁxs/ < —Eﬁ)
-y P(ﬁxs < —Eﬁ) _P (ﬁxs < —E/N)z < E[N(E)|Z].

5:Ys=0
Thus, the Chebyshev inequality implies for any € > O:
P(IN(E) = E[N(E)|Z]| > e E[N(E)|Z1|Z) < e > E[N(E)|Z]".

We note that E [N (E)|Z] is almost surely exponentially large; in fact, by assumption In Z =
N(g +o(1)) withg > (2a)~'E2. Thus, a Borel-Cantelli argument yields almost surely
. 1 N(E)
limsup | —In ———| =0,
N—oo [N E[N(E)|Z]
which completes proof using the expression for E [N (E)|Z]. O

Based on Lemma 1, we may now establish a variational expression for the limiting pressure
of the n-level GREM in a random magnetic field.

Lemma2 For any B > 0 and any absolutely integrable random variable b the pressure
DN (B, h) converges almost surely and its limit is given by

lim &n(B,h) = sup (BE1+--+E,+y1+-+y)+SE,y). (6D
N—o0 (E,y)eC

Proof By elementary estimates it follows that
exp(NPn (B, h) = exp(BN(E1 + -+ Ep +y1+ -+ y2))N(E, y)
for any (E, y), which in view of Lemma 1 implies almost surely

liminf ®y(B8,h) = sup B(E1+-- -+ E,+y1+---+yo) + SE,y).
N—o0 (E,y)eC

To obtain an asymptotic upper bound we use a discretization argument. We set:=max; =1,
a; and define the compact box

Fi=[-(V2aIn2+1),V2aIn2 + 11" x [-E[[h]] — 1, E[|6]] + 17"

One easily sees that almost surely no configuration (E, y) outside of F contributes to the
limit (51) of the pressure. To simplify the notation, we assume in the following that this holds
true for any N. Thus, it suffices to consider configurations in F on which we set the grid

k; l
Fi:= {(E,y) €eF|Ej= EJ(«/2a1n2+ D), yj = E’(E[hH b,

kilj=—-K,—-K+1,....,K, j=1,...,n}
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with K € N. We pick € > 0 arbitrary and choose K = K, such that max{[E [H]+1, ~/2c In 2+
1} < € K¢. Then, the e-neighborhoods of the grid points in Fx cover the box F and therefore

eNON D) < Z N(E, y) ePNE1++Eutyi+ oty +2ne)
(E.y)eFk

Let us now observe three points. First, if E; or y; is negative for some j we may replace
this value by 0 without changing the number N (E, y) on an exponential scale. This is just a
consequence of symmetry and the LDP satisfied by / ; and the Gaussian vectors X. Secondly,
without loss of generality we may assume that there are no grid points on the boundary of C.
Moreover, if (E, y) ¢ C, the corresponding term gives no contribution to the limit of @y by
(48). Thirdly, the entropy factor corresponding to the summation over the grid points does
not depend on N and is thus irrelevant after taking the limit. Summarizing these points, we
conclude almost surely

limsup@n(B,h) <2Bne+ sup B(E1+---+E,+y1+---+yn)+ S(E,y),
N—o0 (E,y)eC

which completes the proof as € > 0 was chosen arbitrarily. O

It remains to solve the variational problem (51) which is the last part in the proof of
Theorem 3. Note that one may replace the sup on C by a maximum on C as the involved
expressions possess continuous extensions to C.

Proof of Theorem 3 We proceed via induction on m, the number of linear segments of the
concave hull A. If m = 1, the variational problem consists of 2n independent optimization
problems which can be easily solved. This leads to

E; = ,Baj and yj = (Xj —xj_l)IE[btanh(,Bh)] j=1,...,n.

To obtain the expression for y;, it is helpful to note that the rate function / is the Legendre
transform of [ [In cosh(Bh)]. The maximum is attained when &;(y;) = y;/(x; — x;—1)
equals the derivative of [E [In cosh(86)] with respect to 8. We see that if § is small enough,
all constraints are fulfilled and the maximum is given by

2 n
(D(,B,h)zan—i—% > "aj | + E[Incosh(Bh)].

j=1

Since in the unconstrained variational problem the optimal value E; is unbounded as g
increases, the above considerations will hold true up to some critical value 8., where the first
constraining inequality is not satisfied, i.e., the maximum is located at the boundary of C.
Due to the structure of the optimal (E, y) in the unconstrained setting, this needs to be the
inequality corresponding to the highest slope (aj + - - - 4 ax)/x; which is attained at k = n
since m = 1. If we denote the optimal configuration of the unconstrained problem at 8. by
(E€, y°) we thus have

S(E€,y) = 0.
From there, one obtains after some algebra the self-consistency equation for 8.:

Zjaj

> ,802 = 1In2 + E [Incosh B.h] — B.E [h tanh B.b].
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Furthermore,

max _Be(Ey+---+E,+y1+---+y)+SE,y)
(E,y)eC

= max Be(Ey+---+E;+y1+--+ ),
(E,y)eC

which is clearly still a valid identity for 8 > B.. We conclude that @ becomes a linear
function of B for B > B, and the slope agrees with the derivative of @ at S, i.e.

n

®(B,h) =B | B Y_a;+E[htanh ]

j=1

This is exactly the statement of Theorem 3 in the case m = 1.

Now, suppose that the assertions are true for some m, and we want to show that it is still the
case form + 1. Let us write E _,,,, E~,,, y<;y and y~,,, where the vectors denote the energy
configurations corresponding to the first m segments and the last segment, respectively.
Similarly, we set C,, the set of the constraints related to the first m segments. If we only
demand that the energy configuration (E _,,, y —,,,) satisfy the constraints C,,, then using the
induction hypothesis and the analysis of the case m = 1, we end up with the expression

m 2
S el 0+ -2+ Y 4 |+ a - B incoshign)

=1 J€Inm+1

for the limit of the pressure, where 1,11 denotes the last segment. This is indeed a solu-

tion if g < ,BC(m), since the remaining constraints are also verified by the m-level solution
(E -, ¥y <m) and the unconstrained solution (E-,,;, ¥~,,) due to the concave-hull structure.

We note that for § > ,Bc(m) , we only need to consider the n-th inequality (for the same reason
as in the case m = 1) which then may be rewritten as

Ot =y 2> > Qap =+ (j — xj-DIE 7).

J€Int1

Thus, the situation is analogous to the case m = 1 and the same arguments lead to the

m+1) (m+1) O
c .

expression for ,BC( and the pressure @ if 8 > f

3.2 From GREM to QGREM: Application of the Peeling Principle

We now consider the QGREM with a random magnetic field in z-direction as in Theorem 1.
Theorem 4 Let U(o) be a GREM process as in (37), p > 0 and b, b absolutely integrable

random variables. Then, almost surely

k
Nlim Ddn(B, b, b) = Oglka<x (Z oV (B,5) + (1 — y)E [In2 cosh(y/b2 + 52)]) . (52)
=EE D

Here, the empty sum is interpreted to be zero.

Proof We recall the definition of the cut GREM U %) := U ©-*0) which may be represented
as

U(xk)(UIGZ ° 'Gk) = \/aIXg'l + \/a2X0'10'2 + e + A/ anXUlffZ"'Gk'
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The peeling principle [22, Theorem 2.3] implies that for any O < k < m either the Gaussians
Xo 0,0, Or the partial magnetic field B1:%) contribute to the specific pressure (for a detailed
discussion see Sect. 2 in [22, Theorem 2.3]). An iterative application of the peeling principle
yields

1 x X
lim sup @y (B, b, b) — max NlnTre_ﬂ(U( W—h(@)=B2)| _ o
<n

N—o0 0<k

see also the proof of [22, Corollary 2.7] for a more precise execution of this method. The
cut-magnetic field B>*¢) was defined in (31). We naturally split the longitudinal field,

[xk N1
he)=h"" (e 00 +h*(opp1-0,); W@ 0p):= Y hioi
i=l1

and apply Theorem 3 to the Hamiltonian H 0 :={ %) — (1% Together with the strong
law of large numbers for h(z’xk)(0k+1 --+0y,) + B@*) Thus we arrive at

Jim @y (B, b, b) = max (¢<Xk><ﬂ, b)+(1—xk)E[lnzcosh<¢bz+r;2>]), (53)

where @ %) (B, ) denotes the limit of the pressure of the Hamiltonian H®%) restricted to
the Hilbert space of subgraph Qr,, n7 spanned by o1 - - - 0. (Note that for H %) on the total
graph Qy the resulting pressure is @ ) (8, h) + (1 — xx) In2.)

If the cut point coincides with and endpoint of the concave hull. i.e. x; = y; for some j,
we have

J
oD (B, h) =9 (B.b).

=1

Thus, it only remains to show that the maximum in (53) is attained at some y;. We follow
the comparison argument presented in the proof of [22, Lemma 3.1]. If {xq, ..., x,} =
{yo, ..., ym}, the assertion is trivial. So, let y; < x; < y;41. We recall that distribution
function A®%) associated with U %) is given by

AG0) _ Alx) ifx < xg,
A(xp) else. '

We introduce the Gaussian processes Y and Z of GREM type with the distribution functions

Alx) ifx <y,
Ay(x):= A ify <x <x,
Alxp)  ifx = xg,

A(x) if x <y,
Az(x):={ A(w) ify < x < x.
A + 22 (A — AGD). ifx > x.

which shall be independent of the weights (4;) After conditioning on the random weights
(hi), Slepian’s lemma (cf. [6]) and the independence of (4;) and the GREM processes imply:
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.1 _B(U) —p ) .1 _B(JNY —h (L)
lim NlnTrwz(QXkN)e B )S lim NlnTrlez(kaN)e ’B(f )

N—o00 N—o0

I .
< Tim —InTr g e POV (sa

~ N—oo

For the second inequality, we recall that A is majorized by its concave hull A and agrees with
A at y; and yj41:

Xk — VI
Alxp) < A + ———— (AQi+1) — AQn)) .
Yi+1 — Vi

Since the pressure is an increasing function of the jump heights (cf. (38)), we hence arrive
at the second bound in (54). The resulting pressure is computed easily in terms of the partial
pressures (38) corresponding to A:

[
) 1 _ () ; Xk =V (i
lim —InTr B(NZ—-h)) _ () , e T DT (41) h).
N—oco N Qv € j§=1:§0 (B, ) + " (B, h)

Using the abbreviation p(B, b, b):=E [In 2 cosh(8/b2 + h2)] we thus conclude

.1 — B k) —p (50
lim NlnTrlﬁz(kaN)e PUTE=IED (1 — x)p(B. b, b)

N—o0

l
<Y ¢V, 5+ (1 —y)p(B. b, b)

j:l
+ 2 (608, 0) — it — 30, , b))
Yi+1 — I

Depending on the sign of the term in the last bracket, we have

N—o00

. 1 _ xp) _y(xg)
lim N InTr |€2(kaN)e ﬁ(\/ﬁX( -y ) + (1 — xk)p(ﬁ’ h’ b)

[
<> ¢V(B. 1)+ (1= y)p(B. b, b)
j=1

or the sum on the right side runs to / 4 1 and y; is replaced by y; 1.
Consequently, the maximal pressure is indeed attained at some Yy;. O

3.3 Finishing the Proof: The Interpolation Argument

Finally, we will lift Theorem 4 to the case of a general QGREM. The idea is to show that the
left and right side of (7) are continuous with respect to the distribution function A and the
uniform norm. We start with the continuity of the right side, i.e., spelling out explicitly the
A-dependence of quantities for the moment, we need to show that

@(B,h,b,A) = sup (fz¢(ﬁ, h, A, x)dx + (1 —2)E [ln2¢osh(ﬁ\/bz+f)2)]>,
0

0=<z<l

is continuous in A. We recall that the density is given by

In2 +a(x) £ + E[Incosh Bb] if B <Be(A,x)

( b ’A’ )::
P D A {ﬁ(é(X)ﬁc(A,x)+E[htanhﬁc(A,X)h]) it B> Be(Ax)
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where the critical temperature 8. (A, x) is the unique positive solution of the self-consistency

equation
a(x) P
TﬁC(A9 X) = hl 2 + E [ln COSh ﬁC(Aa X)b] - IBC(Aa )C)E [h tanh ﬂC(Aa x)h]

Lemma3 Let B > 0 and b, be absolutely integrable random variables. Moreover, let
(Ap)nen, A be distribution functions on [0, 1] such that A,, converges uniformly to A. Then,

lim (B, b, b, A4,) = B(B,b, b, A). (55)

Proof Tt suffices to show that

1
nlngo 0 |(p(:8’h’A’x)_(p(lB’haAn’x)ldx:0'

We first prove that the integrand converges almost everywhere (with respect to the Lebesgue
measure and x) to zero. One easily sees that the concave hulls A,, converge uniformly to A
and the right derivatives a, (x) converge to a(x) at any x, where a(x) is continuous (cf. the
proof of Lemma 3.3 in [22]). Since A is concave, this ensures that a, (x) converge almost
everywhere to a(x). Next, we observe that B.(x, A) is a continuous function of a(x) by the
implicit function theorem and, thus, B.(x, A,) converges almost everywhere to B.(x, A).
This implies that ¢ (8, b, A,, x) converges almost everywhere. Now we pick some § > 0 and
note that the sequence ¢ (8, h, A,, x) is uniformly bounded due to the general bound

2
0<¢(B,h Ay, x) <In2 +én(x)% + E [Incosh Bh]

and the monotonicity of the derivatives a, (x). We conclude that for any § > 0,

1
lim / |(/)(,3,h,A,x)—(/)(,3,f], An,X)|d.x:0,
n— oo 5
Using the above bound on [0, §], we obtain

) 2
/ 0(B.b, A, x) — (B, b, Aw, ¥)|dx < 52102 + (An(5) + A(é))% 4 2E [In cosh Bb]),
0

which vanishes if we take the limit n — oo and then § — 0. O

We turn to the interpolation argument for the left side in (7). Let U, U’ be two GREM
processes with distribution functions A, A" and pressures @ (8, b, b, A), (B, h, b, A’). From
[22, Equation (2.16)] we conclude

[E[@(B,5,b,A) — B(B, b, b, A)]| < B7|A — A, (56)

The Gaussian concentration inequality (cf. [22, Proposition 2.9]) guarantees the almost-sure
convergence

limsup |[E[®(B,h,b, A)] —P(B,h,b,A)| =0.

N—0o0

We are ready to finish the proof of Theorem 1:

Proof of Theorem 1 We fix B > 0 and absolutely integrable random variables b, ) and use
the shorthand notations @ (A):=® (8, h, b, A). Let U be a GREM process with distribution
function A. We pick some € > 0 and an finite-level GREM U’ with distribution function A’
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such that [|[A — A’|| < € and |®(A) = ®(A’)| < €. This is possible thanks to Lemma 3.
We then obtain
lim sup|®y (A) — & (A)]|

N—00

<limsup |®n(A) — @y (A)| + [PN(A") — @ (A)| + [P (A) — @ (A)]

N—00
< (B*+ De.

The final line follows from our preparatory estimate (56) and Theorem 4, which coincides
with Theorem 1 for an n-level GREM. Since € > 0 is arbitrary, this proves (7).

The remaining assertions now follow easily: ¢ (B, b, x) is clearly an increasing function
of a(X) which in turn is decreasing in x. Thus, ¢(f, b, x) is a decreasing function of x.
Similarly, the critical inverse temperature B.(x) is increasing as it is a decreasing function
of a(x). Finally, the fact that ¢ (B, b, x) is increasing and convex in g directly follows from
(8). O

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Proof of Corollary 1 and Proposition 1

We start with the straightforward proof of Corollary 1:

Proof of Corollary 1 To apply Theorem 1, we note that in the case of the QREM we have
(B, h,x) = @REM (B, h) for any x. So, we directly obtain (10). It remains to show that the
self-consistency equation

1
5,33 =In2 + Incosh Bch — Bch tanh Bch,

which get from Theorem 1 is equivalent to (12), 1.e. . (h)? = 2r(tanh( Bc(h)h)). This follows
from the elementary computation

r(tanh(x)) =In2 — % ((1 — tanh(x)) In(1 — tanh(x)) + (1 + tanh(x)) In(1 + tanh(x)))

1
=In2 + Incoshx — 3 ((1 — tanh(x)) In(cosh x — sinh x) 4+ (1 + tanh(x)) In(cosh x + sinh x))
=1In2 + Incosh x — x tanh x

for any x € R. O

The proof of Proposition 1 is based on multiple elementary, but quite lengthy, computa-
tions.
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Proof of Proposition 1 1. The defining equation (12) immediately implies that B.(h) is a
strictly decreasing function. The Taylor expansions r(y) = In2 — y?/2 + O(y*)) and
tanh(y) =y + O(yz) yield for small 2z > 0

2
CO i,

1 2
=Bc(h)” =In2 —
2
which in turn leads to the Taylor expansion of B.(4) in the small field limit.
By inspection of (12) as & — oo, the critical inverse temperature S.(h) tends to zero, but
we still have that 28, (h) — o0. Moreover, we recall that tanh(y) = 1 — 207X +O(e™ )
for large y and r (1 — x) = %x In(1/x) 4+ O(x) for small x. After some algebra, we arrive

at the asymptotic equation 2, (h)he*PeWh = 8p2 4+ O(h). In particular,

2B:(h)h . Be(W)h
im = lim =1
h—oo W (8]12) h—oo Inh

9

where W denotes Lambert W-function.
2. We first consider the high temperature limit. For small 8 > 0 a Taylor expansion yields

arcosh (% exp(@REM (B, h))) — arcosh (1 + %52(1 +h?) + 0(54))

= V1I+hp+ O,

from which we conclude I3(0,h) = 1. As the term arcosh (% exp(®@REM(B, 1)) /B
converges to the absolute value of the ground state energy as B — oo, we obtain the
claim concerning the low temperature limit.

3. Letus fix some 8 > 0. We show that

1 2
g(h) = arcosh (5 exp(@REM(, h))) — B%i?
is strictly increasing which is equivalent to the monotonicity of I'.(8, h). We compute the
derivative for 4 > 0
le(DREM(Ig»h) 8¢REM(/3’ h) B
\/%62¢REM(,B:h) _ 1 8h

tanh(min{B, B.(h)}h) B ,Bh)
tanh(arcosh(1/2 exp(@REM (8, h))))

|

28%h

¢’ (h) = 2 arcosh (% exp(PREM (B, h)))

=28 (arcosh (% exp(@REM (g, h»)

We first note that y/ tanh(y) is an increasing function. In the case 8 < B.(h) we further
use that 1/2exp(@REM(B, 1)) > cosh(Bh). Hence g’(h) > 0 is an easy consequence of
these observations for 8 < .. On the other hand, if 8 > B, we use the convexity of

arcosh(e”)
n(y):= :
tanh(arcosh(e?))
from which we obtain
arcosh (3 exp(PREM(B, h)) Bh

tanh(arcosh(1/2 exp(@REM (B, 1)))) ~ tanh(B. (h)h)

as the left half side is a convex function of 8 and the inequality holds true for g = B.(h).
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Finally, we want to show the asymptotic formula for I'. (8, k). Since B.(h) tends to zero,
we only need to consider the “frozen” expression for ®REM (B ). Neglecting terms of
subleading order, we may write after some manipulations

2
B2 arcosh (% exp(@REM (B, h))) — h? ~ 2h*(tanh(B. (h)h) — 1) + 2B.h.

We recall that 1 — tanh(B.(h)h) =~ 2e~2fc(Mh — 2/325% ~ ’23—;[, where the last equal-

ity follows from the proof of part 1. Combining these asymptotic formulas, we arrive at
limy, 00 b = 1. O

Appendix B: Proof of Proposition 2 and Corollary 2

In this section, we sketch the computations which lead to the results in Proposition 2 and
Corollary 2.

Proof of Proposition2 1. Let us first recall that a(x) is a continuous decreasing function
from which it follows that x(8) = sup{x|a(x) > (2In2)/ ,82} is well defined for
B > B(0) = \/2In2/a(0) and increasing in B. Since k is a decreasing function, we
see that B.(h) defined in (25) is an increasing function.
To discuss the limiting value 7 — 0, we observe that lim; 0 k(2In2/(B.(h)h)) = 0.
Since a is continuous, limg_, g, x(B) = 0 from which we conclude limj,_,¢ B:(h) =
B(0). Using Assumption 1 we see that

x(B) o (B — BV
A direct calculation shows k(x) o x~2 for large x. We thus arrive at B.(h) — B.(0) o
h**, and T, — T, (h) oc h?.
For the limit 7 — oo, we first consider the case a(1) > 0. Then, x(8) approaches 1 as

B — Be(00):=+/21In2/a(l) and
hlim k(2In2/(B.(h)h)) = 0.

Consequently, limy,_, 5 B.(h) = B.(00). Similarly, if a(1) = 0, x(B) approaches 1 as
B — oo and we have limy,_, «, B.(h) = o0.

2.a The continuity of y(8, h) follows from the fact that it is a solution of a continuous
implicit equation. Moreover, as ¢ (8, y) is decreasing in y and k is a decreasing func-
tion,too, it follows from (24) that y(8, k) is increasing in h. As in part 1., one easily
sees that

}}iir%)k@p(ﬁ, y(B,h)/(Bh)) =0 and hlin;ok(w(ﬁ, y(B,h)/(Bh)) =1,
which in turn implies limy,_,o y(8, &) = 0 and lim;,,»c y(B8, h) = 1.

For the Taylor expansion, we use the fact that

k(1/x) = %ﬁ +0(xh.

Consequently, we have

(B h)—¥<—ﬁh )2+(’)(h4)—%< ph )2+O(h4)
=57\ 0By (B ) ~ 2 (9.0 '
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Recalling that

2
o) — mapr TIn2 B < fe.
IBC 18 —:86‘7

we arrive at (27).
2.b Both assertions follow immediately from part 2a) and the fact that ¢ (8, x) is continuous
and decreasing in x. O

Finally, we present the proof of Corollary 2:

Proof of Corollary 2 The limit of the pressure is given by

z=y

®(B,b,h) = sup [ﬁhy(y) + / V(B x)dx + (1 = 2)p(B, F)] :
0<y=<z<l 0

It follows that if y(8, h) < z(B, I"), then y(B, h) and z(B, I") remain the maximizer for this

more general problem. We see that this holds true if and only if p(B81") < ¢(B, y(B, h)) and

the pressure is then given by

Z(ﬁsr)

OB, . h) = Bhy (y(B. h)) + / 1y, PO+ =BT P
y(p,

Otherwise we have y(B,h) > z(B, I') and, consequently, the corresponding maximizer
satisfy y* = z*, i.e.

DB, I", h) = e [Bhy (») + (1 = y)p(BI)].
<y=<

Differentiating with respect to y yields the maximizer

x p(BI")
= I h)=k
y'=0(p ) ( Bh
since k was defined to be the inverse of y’. This completes the proof. |
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Spectral Analysis of the Quantum Random Energy Model

Chokri Manai and Simone Warzel

While our Core Article I [[128]] proves Goldschmidt’s formula for the pressure and discusses the phase
diagram in the thermodynamic limit, the spectral properties of the QREM Hamiltonian for finite N are
not considered in more detail. However, a precise picture of the eigenvalues and eigenfunctions are
crucial for a better physical understanding. For instance, in the context of quantum annealing, finite size
corrections and the spectral gap are of particular interest [[110,/111]]. It also worth mentioning that the
predicted transition between an ergodic phase and many body localization requires a thorough description
of the eigenfunctions for all energies [23]]. Article IV provides a comprehensive study of the QREM’s
low energy characteristics.

Main Results

A main theme of this article is the dichotomy between localization in the glass phase and delocalization in
the paramagnetic phase. Indeed, we show that in the glass phase all low energy states are concentrated on
one single site, namely the classical configuration with low energy. The rapid decay of the eigenfunctions
close to the extremum and the exponential decay at larger distances allows us to compute the O(1) energy
corrections and all /”-norms of the ground state. Our proof consists of three main ingredients: estimates
on the Green functions of T restricted to Hamming balls, probabilistic considerations on the geometry
of the REM energy landscape and the fluctuations nearby a deep hole, and a solution to the rank-one
perturbation of the operator T' by one deep hole. In the paramagnetic phase, the low energy states are
in contrast exponentially delocalized and resemble the eigenstates of the transversal field T'. Also in this
phase, we determine the energetic O(1) corrections. Here, our method relies on the Feshbach-Schur-Krein
decomposition and random matrix techniques. We then extend our ideas to study the spectrum far away
from the ground state in order to compute the pressure in all phases up to order o(1). In the glass phase
we are also able to describe the fluctuations of the pressure.

I have included the arxiv version since the published version is less comprehensive.

Individual Contribution

I am the principal of the author of this article. This work originated from a draft by Simone Warzel, where
she mainly considered the Green function and delocalization estimates, which were the basis for Section
3 and also partially Section 2. The starting point of our approach to the localization regime and the free
energy were my personal notes with proof ideas. These ideas have eventually become part of Section 2,
4 and 5. We refined our first drafts to complete proofs in several discussions and we both contributed

strongly to the presentation and structure of the final submission.
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Spectral Analysis of the
Quantum Random Energy Model

Chokri Manai and Simone Warzel

Abstract

The Quantum Random Energy Model (QREM) is a random matrix of Anderson-type which describes
effects of a transversal magnetic field on Derrida’s spin glass. The model exhibits a glass phase as well
as a classical and a quantum paramagnetic phase. We analyze in detail the low-energy spectrum and
establish a localization-delocalization transition for the corresponding eigenvectors of the QREM.
Based on a combination of random matrix and operator techniques as well as insights in the random
geometry, we derive next-to-leading order asymptotics for the ground-state energy and eigenvectors
in all regimes of the parameter space. Based on this, we also deduce the next-to-leading order of the
free energy, which turns out to be deterministic and on order one in the system size in all phases of
the QREM. As a result, we determine the nature of the fluctuations of the free energy in the spin
glass regime.
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1. Introduction and main results

1.1. Quantum random energy model

In the theory of disordered systems the random energy model (REM) is a simple, yet ubiquitous
toy model. It assigns to every N-bit or Ising string o = (01,...,0n5) € {—1,1}¥ = Qx a rescaled
Gaussian random variable

U(o) := VN w(o)

with (w(e)) forming 2%V canonically realized independent and identically distributed (i.i.d.) random
variables with standard normal law P. The Hamming cube Qp is rendered a graph by declaring
two bit strings connected by an edge if they differ by a single bit flip: introducing the flip operators
Fjo := (01,...,—0j,...,0n) on components j € {1,..., N}, the edges of the Hamming cube are
formed by all pairs of the form (o, Fjo). The graph’s negative adjacency matrix

N

(TY) (0) == = ) $(Fjo)

=1

is defined on v € £2(Qy), the 2V-dimensional Hilbert space of complex-valued functions on N-bit
strings. Since every vertex in Qn has a constant degree N, the negative graph Laplacian, T+ N1,
just differs by N times the identity matrix. We study the quantum random energy model (QREM)
which is the random matrix

H:=TT+U, (1.1)

where I' > 0 is a parameter, and U is diagonal in the canonical configuration basis (J,) of £2(Qx),
ie, Udy = U(0)ds and ¥(0) = (dg|t)). As usual in mathematical physics, we choose the scalar
product (-|-) on £2(Qy) to be linear in its second component.

The QREM is a random matrix of Anderson type — albeit on a quite unconventional graph whose
connectivity grows to infinity with the system size N, and with a scaling of the random potential
U which enforces the operator norm of both, 7" and U, to be of the same order N (cf. (1.4) and
(1.9)). It is thus natural to investigate the localization properties of its eigenfunctions. The interest
in the QREM is however many-faceted. In mathematical biology, the model has received attention
under the name REM House-of-Cards model [62] as an element of a simplistic probabilistic model of
population genetics, in which Qy is the space of gene types and U encodes their fitness [7, 8, 39, 41].
In this interpretation, the operator T implements mutations of the gene type, and one is interested
in the long-time limit of the semigroup generated by H (cf. [6], in which the parameter regime
I' = k/N with fixed k > 0 corresponding to the normalized Laplacian is considered).



The Anderson-perspective has also attracted attention in discussions of many-body or Fock-space
localization, where the QREM occasionally serves as an analytically more approachable toy to test
ideas about more realistic disordered spin systems [9, 14, 48, 63]. We will comment on some of
the conjectures in the physics literature concerning the localization properties of the eigenfunctions
after presenting our results on this topic.

In statistical mechanics, the QREM was introduced [38] as a simplified model to investigate the
quantum effects caused by a transversal magnetic field on classical mean-field spin-glass models [21,
32, 60, 67, 73]. In this context, the Hilbert space £2(Qyy) is unitarily identified with the tensor-product
Hilbert space ®§V:1(D2 of N spin—% quantum objects. A corresponding unitary maps the canonical
basis (0s) to the tensor-product basis in which the Pauli-z-matrix is diagonal on each tensor
component. For completeness, we recall the form of the Pauli matrices in this basis:

0 1 0 —2 1 0
T __ Yy o z __
e V) B () B R

The Pauli matrices are naturally lifted to ®§-V:1®2 by their action on the jth tensor component,
af =1® ---® ¢ ®---®1. Upon the above unitary equivalence, T' corresponds to — Z;V:1 Uf, ie.,
a constant field in the negative z-direction exerted on all N spin-1 (cf. [53]). In this interpretation,
the random potential U is the energy operator of the spin—%—objects, which interact disorderly
only through their z-components. Derrida [27, 28] originally invented the classical REM U as a
simplification to other mean-field spin glasses such as the Sherrington-Kirkpatrick model.

The phenomenon common to such classical spin glass models is a glass freezing transition into
a low temperature phase which, due to lack of translation invariance, is described by an order
parameter (due to Parisi) more complicated than a global magnetization [55, 58, 59, 69]. In the
absence of external fields the latter typically vanishes. These thermodynamic properties are encoded
in the (normalized) partition function

Z(B,T):=2"NTre P
at inverse temperature § € [0, 00), or, equivalently, its pressure
N (B, T) :=InZ(B,T). (1.2)

Up to a factor of —371, the latter coincides with the free energy. In the thermodynamic limit
N — o0, the specific pressure of the REM converges almost surely [17, 27, 28, 56],

25 if 8< 8.,
%62 + (/8 - ﬁc)ﬁc if B> pe.

It exhibits a freezing transition into a low-temperature phase characterized by the vanishing of the

specific entropy above
Be:=v2In2.

N~'en(8,0) = p(5) :{ (1.3)

In the presence of the transversal field, the spin-glass phase of the REM disappears for large I' > 0
and a first-order phase transition into a quantum paramagnetic phase described by

pPAR(BT) := In cosh (AT)
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Figure 1: Phase diagram of the QREM as a function of the transversal magnetic field I' and the
temperature 3~ [38, 51]. The first-order transition occurs at fixed 8 and I'.(3). The
freezing transition is found at temperature 5. !, which is unchanged in the presence of a
small magnetic field.

occurs at the critical magnetic field strength

I'.(8) := ~ arcosh (exp (pREM(B))) )

In particular, T.(0) = 1 and T.(8.) = B 'arcosh(2). The precise location of this first-order
transition and the shape of the phase diagram of the QREM, which we sketch in Figure 1, had
been predicted by Goldschmidt [38] in the 1990s and was rigorously established in [51].

Proposition 1.1 ([51]). For any ', 3 > 0 we have the almost sure convergence as N — oo:

N~'on(B,T) — max{p"*M(B),p" R (5T)}.

1.2. Low energy states

Through the low-temperature limit 5 — oo, Proposition 1.1 contains also information on the ground
state energy of the QREM,

—B. T <p,,

N~ linfspec H — ]
- ifI'> g..

The critical coupling for this quantum phase transition is at the endpoint limg_,o, I'e(8) = B of
the first order phase transition. As will be demonstrated below, this ground-state phase transition
at I' = (. is manifested by a change of the nature of the corresponding eigenvector from sharply
localized to (almost) uniformly delocalized. To provide some heuristics, it is useful to compare the
ground-state energy and eigenvectors of the two operators entering H =I'T + U:



1. The spectrum of T consists of N + 1 eigenvalues,
specT ={2n— N|n € Ny, n < N}, (1.4)

with degeneracy given by the binomials (]X ) The corresponding ¢2-normalized eigenvectors
are the natural orthonormal basis for the Hadamard transformation, which diagonalizes T
They are indexed by subsets A C {1,...,N}:

D4(0) : H o;. (1.5)
]EA

The eigenvalue to ® 4 is 2|A| — N with |A| the cardinality of the set. In particular, the unique
ground-state of I'T" is ®y with energy —NI'. All eigenvectors ®4 are maximally uniformly
delocalized over the Hamming cube.

2. In contrast, all eigenvectors d5 of U are maximally localized. The REM’s minimum energy,
min U, is roughly at —N .. For n > 0 the event that ||U||« = maxseo, |U(0)| > (B +1n)N
has exponentially small probability, i.e,

QR = {||U]loo < (Be +n)N}, (1.6)

(QREM) > 1N+l =38 N — 1 _ 9 e—N(Wﬂché),

where the inequality follows from the union bound and a Markov-Chernoff estimate. A more
precise description of the extremal value statistics of minU is [17, 44]

P (minU > sy(z)) = (1 - 2—Ne—z+0<1>)2N (1.7)

for any x in terms of the function sy given by
In(NIn2)+In(4dr) =
20 Be

By symmetry of the distribution, a similar expression applies to the maximum.

sy(x) == —fB.N (1.8)

These limiting cases suggest the following heuristic, perturbative description of the ground-state
of H =TT + U in the regimes of small and large I. To our knowledge, it goes back to [46]:

1. For small I, second-order perturbation theory starting from the vector d4_. , which is localized

at omin = argmin U, reads:

min’

(0| Too)” r?
o) — U(0) ~—-NfG. — E. (1.9)

inf spec H & minU + T (5, | T00,5) + T2 Y U

o‘#a‘min

The first-order term vanishes. The sum in the second-order term is restricted to the neighbors
of the minimum, whose potential term typically is only of the order v/ IV.



2. For large I', second-order perturbation theory starting from the ground state ®y of 1" reads:

- ~ (o] UP4)|*
inf spec H ~ —NT + (®p|UDy) — Z AT
yor)
(®g| U®y) 1
NT - 20220 o NT - (1.10)

The next-to-leading term, (®y|U®q) =27V 3" oy U(0), vanishes by the law of large numbers.
In the order I'"!-term, one uses the approximation that most of the states of T are found
near |A| =~ N/2. As will be explained in more detail in Section 3, one crucial point is that
U is exponentially small when restricted to the eigenspace of T outside an interval around
|A| &~ N/2. By a decomposition of unity one is therefore left with (®gy| U?®y) ~ N, again by
the law of large numbers.

Unlike in a finite-dimensional situation, higher orders in this naive perturbation theory turn out to
be of lower order with N ! the relevant parameter. One result of this paper is that these predictions
can be confirmed: for I' < (. the ground state is sharply localized near a lowest-energy configuration
of the REM. In contrast, for I' > . the ground state resembles the maximally delocalized state
given by the ground state of 7. In both cases, the ground state is energetically separated and
the ground-state gap only closes exponentially near I' = f., see also [1]. In fact, we do not only
restrict attention to the ground state but characterize a macroscopic window of the entire low-energy
spectrum in the different parameter regimes.

Before delving into the details, let us emphasize that the localization-delocalization transition
at extreme energies presented here relies on the delocalization properties of T on Qp, which
fundamentally differ from the finite-dimensional situation. The eigenfunctions of T can only form
localized states from linear combinations in the center of its spectrum. This is given a precise
mathematical formulation in the form of novel estimates on the spectral shift and Green function
of Dirichlet restrictions of T" to Hamming balls in Section 2, and random matrix estimates on
projections of multiplication operators in Section 3. A separation of the localized versus delocalized
parts of the spectrum beyond the extremal energies, on which the subsequent results concerning
the finite-size corrections of the free energy rest, is facilitated by a novel detailed description of the
geometry of extremal fluctuations the REM in Section 5.

Aside from Theorem 1.10, our results pertain to fixed, but arbitrarily large N on the product
probability space Qn corresponding to 2V i.i.d. standard normal random variables whose product
measure we denote by P. We suppress its dependence on N. In this setting, the results apply
to all realizations w, aside from exceptional events whose probability will be estimated and goes
(exponentially) to zero as N — oo. This strong concentration enables the use of Borel-Cantelli
arguments in Theorem 1.10, which then apply to the product space [[3_; @~ (which is also the
set-up in Proposition 1.1). To present our results and estimates in a precise, yet reader-friendly,
manner, we will make use of an ”indexed” version of Landau’s O-notation.

Definition 1.2. Let © = (01,...,0;) be a tuple of parameters, (an)nen a real and (by)nen a
positive sequence. We then write

an = Oe(by) if limsupm <C(©), (1.11)
Nooo bN



for some positive constant C(0©), which may depend on ©. Analogously, we write
an =o0e(bn) i |an| < cen(O)[bn], (1.12)
where cn(©) denotes a sequence which tends to zero.

In particular, the appearing constant C(©) or, respectively sequence ¢y (©), does not depend
on any other parameters in question not included in ©. That is, if ay is a random sequence and
the realization w of the randomness is not included in the list © of parameters, the estimates are
understood to hold uniformly on the event of interest.

1.2.1. Paramagnetic regime I' > 3,

Our first main result shows that in the paramagnetic regime the addition of the REM shifts the
eigenvalues (1.4) of T" at energies below the minimum of U deterministically.

Theorem 1.3. ForI' > . and any 7 € (0,1) there are events Q}])\?l; with probability

P(OR) > 1 — e NC

T

and C € (0,00) a universal constant such that for all sufficiently large N and any n > 0 on
QE’\?E N Q%]%M (cf. (1.6)) all eigenvalues of H =TT + U below — (5. + 2n)N are found in the union

of intervals of radius Or,n(NTT_l) centered at
__N
2n— N)T

with n € {m € No |(2m — N)I' < —(B. + 2n)N}. Moreover, the interval centered at (1.13) contains
ezxactly (]T\Z) etgenvalues of H .

(2n — N)T + (1.13)

For the ground-state in the regime I' > ., Theorem 1.3 implies that with overwhelming probability
1
infspec H = —I'N — T +or(1). (1.14)

The energy shift with respect to the ground state of I'T" is as predicted by naive second-order
perturbation theory (1.10). Second-order perturbation theory for the eigenvalues corresponds to
first-order perturbation theory for the eigenvectors: the eigenvectors are well approximated by their
first order corrections. In particular, the ground state in the paramagnetic phase is close to the fully
paramagnetic state ®3. This is made more precise in our next main result, whose proof alongside
that of Theorem 1.3 can be found in Section 3.

Theorem 1.4. In the situation of Theorem 1.8 on the event QX" N Q%E]M with 0 <n < (I'—f.)/4
the £2-normalized ground state ¢ of H =TT + U satisfies:

1. The (-distance of 1 and By is |1y — Dy = Op(N=).
2. The ground state v is exponentially delocalized in the maximum norm, i.e.
), < 2NN ((Betn)/@D)+or(N) (1.15)
where v: [0,1] — R denotes the binary entropy
v(x) = —zlnz — (1 —2)In(l — z). (1.16)



The true ¢2-distance of the ground-state function to the fully delocalized state ®; is presumably

of order N~2 up to a logarithmic correction in N. The norm estimate (1.15) is not expected to be
sharp: we conjecture a delocalization bound of the form [|¢||2, < 27N*+°(V) Section 3, in which
the proofs of Theorems 1.3 and 1.4 can be found, also contains (non-optimal) ¢*°-delocalization
estimates for all eigenvalues strictly below the threshold —8.N in the paramagnetic regime. The
optimal decay rates for excited states are not known. In Section 3.4 we record a method, which
improves the estimate (1.15) if T' — (. is small. A similar, but more elaborate, argument might
result in better estimates for all field strengths I' > ..

1.2.2. Spin glass regime I' < 5,
In the spin glass phase the low-energy configurations of the REM, which occur on the extremal sites
L. = {o|U(c) < —eN} withe € (0,8.), (1.17)

are also shifted by a deterministic, order-one correction by the transverse field as predicted by
second-order perturbation theory. To characterize localization properties of the corresponding
eigenvectors in the canonical z-basis, i.e., the configuration basis (65) of £2(Qy), we let

Bgr(o) = {0'|d(0,0") < R}, Sgr(o) = {d’'|d(c,0') = R}

stand for the Hamming ball and sphere of radius R, which are defined in terms of the Hamming
distance

1 N
de.a") =5 loi =]
i=1

of two configurations o,0’ € Qy.

Theorem 1.5. For I' < 5. and 6 > 0 small enough there are events Qk)f,cr,a with probability

P(QRT,s) 21— N

loc

for some ¢ = ¢(T',0) such that the following applies for sufficiently large N on QN5

1. The eigenvalues E of H =TT 4+ U below —(S. — 6)N and low-energy configurations U(o) are
i a one-to-one correspondence such that

2
LN +Ops(N~14). (1.18)

EZU(J)+W ,

In particular, the estimate Op,g(N’I/‘l) is independent of 0 € Lg,_s.

2. The (>-normalized eigenvector ) corresponding to E and & concentrates near this configuration
in the sense that:

a) Close to extremum: For any K € N and for all 6’ € Sk (0):

[(a')| = Orsx(N%), and Z ()% = O . (N~EFD),
o/¢Bk (o)



b) Far from extremum: For any 0 < o < 1, there is c¢q € (0,00) such that

> )P < el (1.19)

o"éBaN(a)

This theorem covers states in the extreme localization regime in which the eigenvectors are sharply
localized — each in its own extremal site of the potential. In this regime, the estimates on the
decay rate of the eigenvectors close to the extremum are optimal and far from the extremum they
are optimal up to determining the decay rate c,. Concrete, non-optimized values of the energy
threshold —N (8. — §) as well as more precise values of the error terms can be found in the proof of
Theorem 1.5 in Section 4. In essence, the localization analysis in Section 4 proves that resonances
and tunneling among different large deviation sites does not play a role in this energy regime. An
upper bound for our technique to fail is at § = 3./2. The energy threshold at which eigenvectors
are believed [9, 14] to occupy a positive fraction of Qy is strictly larger than —Nf./2 and for small
fields yet smaller than —NT.

The precise low energy statistics of the REM U beyond the location of the minimum (1.7) is well
known. Utilizing the rescaling (1.8) around its minimal value, the point process

Y bty — PPP(e ™ do) (1.20)
oclN

converges weakly to the Poisson point process with intensity measure e *dx on R (i.e, when
integrating the random measure against a continuous compactly supported function, the resulting
random variables converge weakly, see e.g. [17, Thm 9.2.2] or [44]). Theorem 1.5 implies a similar
result for the low energy statistics in the QREM.

Corollary 1.6. Let I' < 8. and let
In(NIn2) +In(4r) TI? =

sy(z;T) = —B.N + - ——. 1.21
() 25, 5 B 20
Then the rescaled eigenvalue process spec H of the QREM H = T'T + U converges weakly
Y Soi(mr) — PPP(e" da). (1.22)
Eespec H
In particular, the ground state energy converges weakly
In(NIn2) 4 In(4 I? X
infspec H — <—50N+ ( n;; n(4m) _ ﬁ> - (1.23)

where X is a random variable distributed according to the law of the mazimum of a Poisson point
process PPP(e™* dx) with intensity e™* dx on the real line.

Proof. Corollary 1.6 is a straightforward consequence of Theorem 1.5 combined with (1.20). O

Theorem 1.5 in particular covers the ground-state of the QREM and thus extends the result [6,
Lemma 2.1] on the leading asymptotics of the ground-state energy in the parameter regime I' = k/N
with £ > 0. The proof already contains more information on the ¢2-properties of the ground-state
eigenvector, which we record next. More can be said in on its ¢!-localization properties. The latter
is of interest in the context of the interpretation of the QREM in population genetics [7, 8, 39].



Theorem 1.7. For I' < . there are events Qlj\o& with probability
(Qloc)>1_e cN

for some ¢ = ¢(I') such that on QIOC for all N large enough there is § > 0 and g € Lg,_s such that
Be—

the positive £2-normalized ground state ¥ of the QREM Hamiltonian is concentrated near aq in the
sense that:

1. the (*-distance of ¢ and 8q, is || — 84, ||> = Or (%), and its first order correction

I“Q
£i=4/1 ﬁQN(SaO ﬁcN%s:lé (1.24)

has the same energy as 1 up to order one, and ||¢) — &||?> = Or (ﬁ)

2. the £'-norm of 1 converges to a bounded constant:

]l = 21/1(0 +0r(1) (1.25)

and, for any 1 <p <oc: |¢[) = Z [Y(0)|P =1+ orp(l).
[}

It is natural to assume that the configuration oy on which the ground-state is asymptotically
localized and the classical minimal configuration o, = argmin U agree. While this is true with
high probability, it does not hold almost surely. In the situation of Theorem 1.7 one may show that
there are two constants C' > ¢ > 0 such that for N large enough:

c C
— < n) < —. .
NS P(oo # Omin) < I (1.26)

The reason for this is found in the following description of low-energy eigenvalues,

Ey =U(o) — — 7 BQNZ +OR(NTY), Zo = 5 > Ul
O”GSl(O‘)

which is proved in Lemma 4.3 below and which takes into account the next leading term in
comparison to (1.18). The random variables Z, are standard normal distributed and independent of
the large deviations U () with ¢ € Lg,_s and § > 0 small enough. Since the extremal energies form
a Poisson process with mean density of order one, the normal fluctuations in the energy-correction of
order O(1/N) are able to cause the event (1.26). More generally, the method presented in this paper
allows for a systematic control of subleading corrections in an expansion of the energy eigenvalues.
As we will see, they are determined by potential fluctuations on increasing spheres around the
extremal sites.
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1.2.3. Critical case I' = 3.

We complete the picture on the ground state by describing the situation in the critical case I' = 3.,
where the quantum phase transition occurs. Adapting techniques, one may also prove that typically
one observes a paramagnetic behavior at criticality.

Proposition 1.8. Let I' = .. On an event of probability 1 — O(N~/2) the ground state is at
infspecH = —I'N —T'"! 4+ (’)(N_l/4) and the eigenvector 1 s paramagnetic in the sense that
|1p — ®gll = O(N~4). On an event of probability O(N~/?) the ground state is at inf spec H =
minU — T + O(N~Y4), and the eigenvector 1 is localized in the sense that || — dg, || = O(N~—4).

The heuristics explanation for this is the following. For I' = (. the ground state energy of I'T is
given by —fB.N, whereas the classical minimal energy is given by minU = —f.N + C'In(N) 4+ O(1)
with C > 0. The logarithmic correction in this expression ensures that the paramagnetic behavior
is dominant. This argument also suggests that the phase transition should be observed at the
N-dependent field strength I'y, where the energy predictions of Theorem 1.3 and Theorem 1.5
agree,

1 2N
—TNyN — — =minU + X
N I'n i +minU

which leads to
min U 1 N min U

'y =— — —

N N N <min U N
Indeed, in an o(N _1) neighborhood of Iy one can observe a sign of critical behavior, the exponential
vanishing gap of the Hamiltonian.

) +o(N7h. (1.27)

Proposition 1.9. Let Ax(T') > 0 denote the energy gap of the QREM Hamiltonian. Then, for
some ¢ > 0 and N large enough

3 < —cN .
?ggAN(F) <e (1.28)

except for a exponentially small event. The minimum is attained at some I'y, satisfying (1.27).

The proof of both Proposition 1.8 and 1.9 are found in the appendix. It relies on a spectral
analysis of H and is completely different from the derivation in [1].

1.3. Free energy and partition function

The spectral techniques presented here also allow to pin down the pressure ® and its fluctuations
up to order one in N in all three phases of the QREM: the spin-glass phase as well as the classical
("unfrozen REM’) and quantum paramagnetic phase, cf. Figure 1.

Theorem 1.10. 1. IfT' > T'.(pB) the pressure ®n(B,T) is up to order one deterministic and one
has the almost sure convergence

B

ON(8,T) — (Incosh(fT))N — T tanh (3T)

(1.29)

2. If T' < T.(B) and B < B, the pressure ®n(B,T) differs from the REM’s pressure ® x(3,0) by
a deterministic B-independent shift of order one, i.e., one has the almost sure convergence

Oy (B,T) — ®n(53,0) — T2 (1.30)
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3. If T' < Te(B) and B > B¢, the pressure ®n(B8,T) differs from the REM’s pressure by a
deterministic B-dependent shift of order one, i.e., one has the almost sure convergence

28
Be

The proof of the almost-sure convergence, for which the probability space is the product [[x_; Qn
of independently redrawn variables for every single N, is based on a Borel-Cantelli argument and
contained in Section 5.

At all values of 8 > 0, the fluctuations of the REM’s pressure ®x(/,0) below its deterministic
leading term NpREM(3) have been determined in [18] (see also [17, Thm. 9.2.1]). Their nature
and scale changes from normal fluctuations on the scale exp (—%(1112 — 62)) for < B./2 into a
more interesting form of exponentially small fluctuations in the regime § € (5./2,5.). In the spin
glass phase 8 > f3., the fluctuations are on order one [34] and asymptotically described by Ruelle’s
partition function of the REM [61]. More precisely, one has the weak convergence [18, Thm. 1.6]:

PN (B,T) — 2n(B,0) = (1.31)

3 o0
efN[,Bﬂ’Cfln 2]+ﬁ[ln(N1n 2)+In 47] Zy (,8, 0) N / exﬁ/ﬂc PPP(e—x dl‘). (1'32)
—00

As a consequence of Theorem 1.10, we thus obtain the analogous result for the QREM.

Corollary 1.11. IfT' < T.(8) and 8 > B., we have the weak convergence:
~ N[BBe—In2]+ -2 [In(N In2)+1n 4rx]— B > 288 _
e ¢ 26c Be Zn(B,T) — e*P/Pe PPP(e”* dx).
—00

Proof. By the continuity of the exponential function, this follows immediately from (1.31) and (1.32).
O

The fluctuations of the QREM’s partition function outside the spin glass phase are expected to
be much smaller — for T' < T'.(f8) and 8 < . most likely on a similar scale as in the REM and
for the paramagnetic regime presumably even smaller. The methods in this paper do not allow to
determine fluctuations on an exponential scale.

1.4. Comments

We close this introduction by putting our main results into the broader context of related questions
discussed in the physics and mathematics literature.

In the past years, the QREM has attained interest in the physics community as basic testing
ground for quantum annealing algorithms [46, 47] and, somewhat related, physicist have started
to investigate many-body localization in the QREM [9, 14, 22, 31, 48]. Based on numerical
computations and non-rigorous methods such as the forward-scattering approximation and the
replica trick, they predict a dynamical phase transition between ergodic and localized behavior in
the parameter region I' < I'.(5), 5 < .. This transition is expected to be reflected in a change in the
spread of eigenfunctions at the correspond energies, which in the ergodic regime is neither uniform
nor localized. It is an interesting mathematical challenge to investigate this. As this requires a good
understanding of the eigenfunctions far away from the spectral edges, the methods presented in this
paper are not yet sharp enough to tackle those problems.
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In simplified models of Rosenzweig-Porter type such non-ergodic delocalization regimes have been
predicted [42, 66] and confirmed by a rigorous analysis [72]. In an even more simplified model in
which one replaces T' by the orthogonal projection onto its ground-state —|®y)(®Py| a fully detailed
description of the localization-delocalization transition has been worked out in [4].

Focusing on the physics of spin glasses, the independence of the REM is an oversimplification.
This was the main motivation for Derrida to introduce the Generalized Random Energy Model
(GREM) [29, 30], in which the basic random variables are correlated, but still with a prescribed
hierarchical structure. The free energy of the GREM has been studied extensively [19, 20, 23, 61].
On the quantum side, the specific free energy of the QGREM has been determined in [53]; and in
[54] the effects of an additional longitudinal field have been considered. We expect that our methods
can be adapted to the case of a finite-level QGREM to derive analogous results as in Theorems 1.3,
1.5 and 1.10. More precisely, we conjecture that the multiple phase transitions in the QGREM are
reflected in the behavior of the ground state wavefunction, i.e., at the critical field strengths I'x
the wavefunction undergoes a transition from being localized in the block oy to a delocalized states
in the respective part of the spin components. The infinite-level case might require substantially
new ideas, as standard interpolation techniques do not reveal order-one corrections. Our methods,
however, are strong enough to cover non-Gaussian REM type models, i.e., i.i.d. a centered square
integrable random process, whose distribution satisfies a large deviation principle (see also [53,
Assumption 2.1]). Clearly, explicit expressions in analogous versions of Theorem 1.3, 1.5 and 1.10
will depend on the distribution of the process as already the parameter B, is specific to Gaussians.

Among spin glass models with a transversal field, the Quantum Sherrington-Kirkpatrick (QSK)
model, in which one substitutes in (1.1) for U the classical SK potential, is of particular interest [67].
In contrast to the classical SK model, which is solved by Parisi’s celebrated formula, such an
explicit expression for the free energy of the QSK is lacking, and its analysis remains a physical
and mathematical challenge. So far, the universality of the limit of the free energy has been settled
in [25], and in [2] the limit of the free energy was expressed as a limit of Parisi-type formulas for
high-dimensional vector spin glass models. Unfortunately, despite the knowledge of a Parisi-type
formula, the qualitative features of the phase transition in the QSK could only be analyzed by other
means, adapting the methods of [3, 21]. In terms of the glass behavior, the analysis in [50] shows
that the glass parameter vanishes uniformly in I" for all 8 < 1. This is complemented by [49], where
the existence of a glass phase has been established for 8 > 1 and weak magnetic fields T.

The localization-delocalization transition for the QREM differs drastically from related results on
a finite-dimensional graph such as Z¢ (see e.g. [5, 43] and references). Unlike on Z?, all low-energy
eigenvectors on Qu are delocalized in a regime of large I' (a regime, which is also absent if one
takes I' = k/N as in [6]). The localized states appear only for small I'. Although the norm of
the adjacency matrix 7' is on the same scale N as the random potential U, which is not the case
for the any of the variety of unbounded distributions studied on subsets of Z¢, the localization of
eigenvectors for extremal energies is even stronger on Q. For the Gaussian distribution studied
here, the mass of the eigenvectors sharply concentrates not only for a finite number of eigenvalues
in one of the extremal sites of U, but rather for all eigenvalues below a threshold (cp. [37] with
Theorem 1.5). In the finite-dimensional setting, the ground state and the first few excited states
concentrate on a small, but growing subdomain of Z¢ and, hence, a finite ¢'-norm for the ground
state is specific to the QREM. This seemingly contradictory strong localization property compared
to Z? can be traced to the adjacencies matrix’s T' bad localization properties to balls, on which we
elaborate in Section 2: the spectral shift due to localization on a ball of radius K is order of order
N and not K2 as on Z%. This together with the sparseness of the potential’s extremal sites does
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not allow for resonances (cf. Lemma 4.4). In this sense, our proof is in fact somewhat simpler (and
hence also stronger) than existing proofs of localization in the extremal sites of a random potential
on Z¢. E.g. most recently and notably, in [15] the statistics of a finite number of eigenvalues above
the ground state and the localization properties of their eigenvectors were studied for single-site
distributions with doubly exponential tails (see also [43] for more references). While the degree
of localization in the I' < f phase is significantly stronger than in the models studied in [15], we
observe a similar exponential decay of the localized states for larger distances and in both cases the
extremal statistics is governed by a Poisson process. In the study of the parabolic Anderson model,
an interesting question is how the shape of the localized eigenstates and the speed of convergence
depend on the underlying distribution of the random potential [43]. For the sake of concreteness,
we only study the most prominent case of a Gaussian distribution. Although several quantities such
as the constant . depend crucially on the Gaussian nature, we expect the qualitative aspects of
the localization-delocalization transition to be persistent even with other unbounded distributions
(e.g. those which meet [53, Ass 2.1]).

The operator T' coincides up to a diagonal shift N with the Laplacian, i.e., the generator of a
simple clock process on Q. This correspondence gives rise to yet another link with the parabolic
Anderson model on Z¢. The dynamics of the Anderson model is a vast research topic and its study
has revealed many interesting phenomena such as ageing. The spin glass nature is believed to be
reflected in non-equilibrium properties and a slow relaxation to equilibrium. However, aging in
spin glasses is typically not studied under an unbiased random walk, but rather under the Glauber
dynamics for which the transition rates depend on the sites’ energies. In the case of the REM, the
related Glauber dynamics has drawn considerable interest as a well treatable case for metastability
and aging [10, 11, 24, 35, 36]. Our spectral methods might provide some further insights into the
dynamics of REM-type clock processes.

2. Adjacency matrix on Hamming balls

This section collects results on the spectral properties of the restriction of T' to Hamming balls.
We focus on the analysis of the Green’s function, which by rank-one perturbation theory, is closely
related to the ground state for potentials corresponding to a narrow deep hole - a situation typically
encountered in potentials of REM type. Most of the spectral analysis in the literature related to
T is motivated by the theory of error corrections (see e.g. [16, 26, 33] and references therein). The
methods we use are rather different and neither rely on elaborate combinatorics nor a Hadamard
transformation, which is applicable on a full Hamming cube only.

2.1. Norm estimates

In the following, we fix g € Qn and 0 < K < N € N. The restriction Tx of T to the Hamming ball
B (00) is defined through its matrix elements in the canonical orthonormal basis on £2(Bx(ay)),
which is naturally embedded in ¢?(Qy):

(05|T0:) if 0,0 € Bg(00)

. (2.1)
0 otherwise.

(06| Tk b61) = {
We start with two known results on Tx. The first part of the following lemma has been already

proved in [33] in case K = pN. The second part is just a special case of the spectral symmetry of
any bipartite graph’s adjacency matrix (cf. [26]).
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Proposition 2.1 (cf. [33]). For the restriction Tk to balls B (0¢) of radius K < N/2:

1. The operator norm is bounded according to

ITx|l < 2K (N — K + 1), (2.2)

and for any radius oN with 0 < o < 1/2:

En(o) :==infspecTyn = —||Ton|| = —2v/0(1 — 0) N + 0,(N). (2.3)

2. If @ is an eigenvector of Tk, then ¢ given by ¢(o) = (—=1)479)p(a) is also an eigenvector

of Tk with (P|Tkp) = —(p|Tke). Consequently, the spectrum is symmetric, spec(Tx) =
—spec(Tk).

Proof. 1. The operator Tr —Tx_1, when naturally defined on the full Hilbert space £2(Q), describes
the hopping between the Rth and R — 1th Hamming sphere. Thus, Tp — Tr—1 and Tr—o — Tr—4
act on non overlapping parts of the configuration space. This allows us to write

Tx = P Tr-Tra|+ P Trh-Tr|. (2.4)
R<K, R even R<K, R odd

Consequently, it is enough to consider the operators T — Tgr_1 on £2(Qy). As all matrix elements
of Tp — Tr—1 are nonnegative, the Perron-Frobenius Theorem implies that its eigenvector g
corresponding to the maximal eigenvalue, which coincides with ||Tr — Tr—1]|, is positive. Moreover,
g is radial by symmetry and supported on Sg(o) U Sg+1(0), ie., Yr = Spt1 Za/esRH(a) 0g +
SR Za’eSR(o) /- By an explicit calculation one thus has (Tg — Tgr_1)?¢Yr = R(N — R+ 1)y =
|Tr — Tr_1]|*vr and, hence using (2.4):

< —Thr_ —Thr_
HTK” - R<II(1,1%{Xeven||TR TR 1” +R§%a}§<odd HTR TR 1”

< — 1l = — .
< 2max||Tr — Tpal| = 2V KN = K + 1)

A complementing variational bound for a proof of (2.3) is in [33, Appendix C].
2. The second assertion follows from a direct computation. O

If K is of order one as a function of N, we have ||Tk| = Ox(v/N). This drastic shift of the
operator norm due to confinement should be compared to the finite-dimensional situation where
this shift for a ball of radius K is propartional to K ~2.

In the remaining part of this section, we will analyze Tk and its Green function in the two extreme
cases in relation to N: 1) fixed-size balls in Subsection 2.2, and 2) growing balls with radius K = oN
with some 0 < p < 1/2 in Subsection 2.3.

2.2. Green function for balls of fixed size

The Green’s function of the operator Tk on £2(Bx(ag)) is defined by
Gk(0,00;E) = (0| (~Tx — E) '0g,) . (2.5)

Before we derive decay estimates in case E & [—||Tk ||, || Tk||], we recall some general facts:
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1. By radial symmetry, Gx(0,00; F) only depends on the distance d(o,00).

2. All £2-normalized eigenvectors (p;) of Tk with eigenvalues (E;) can chosen to be real, and we
have

Gr(0,00; E Z@J %(Uo :Z(il)d(a,ao)%
‘ j

j

- (_ )d(a760)+1GK(0'700; _E)>

where the second equality follows from the symmetry of the spectrum stated in Lemma 2.1.
Thus, it is sufficient to derive decay estimates for £ < —||Tk]||.

3. The Green function at £ < —||T|| is related to the ground-state ¢ of the rank-one perturbation
HE) = Ty — a5, ) (05, (2.6)

on ?(Bg (o). More precisely, by rank-one perturbation theory a(®) := Gy (0¢,00; E)~" is
the unique value at which H®) has a ground-state at E < —||Tk||, and

1 (o)
alB) (o)’

cf. [5, Theorem 5.3]. By the Perron-Frobenius theorem, ¢ and hence the Green function is
strictly positive on Bg(0¢). A decay estimate for G (-,00; E) translates to a bound on the
ground state ¢ of H®) and vice versa. Our proof of the localization results in Section 4 will
make use of this relation.

Gi(o,00; F) = (2.7)

In order to establish decay estimates, we employ the radial symmetry and write the Green function

as a telescopic product
dist(o,00)

Grlo,00,E) = ][] Tx(dE) (2.8)

with factors I'x (0; E) :== Gk (00,00; E) and

Gkl(o,00; F)

I'k(d; E) = —GK(J’,UO; By’

if1 < d = dist(o,00) = dist(o’,00) — 1.
The choice of o € Sy(0¢) and o’ € Sy_1(00) in the last definition is irrelevant due to the radial
Symmetry.

The fundamental equation (—Tx — E)Gk(-,00; E) = 0.4, yields for a configuration & with 1 <
d = dist(o,00) < K

0=[(Tx — E)Gx(-, ao;E)]( )

d-1 d+1
:_dHFK(j;E EHFKJ, (N —d) HFKJ E)
j=0 Jj=0

d . ;
_ <w —E+ (N —d)g(d+1; E)) jl:[oFK(J; E),
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where we use the convention I'r (K + 1; E) := 0. In the case d = 0, we have 1 = (-NT'g(1; E) —
E)'k(0; E). That translates to the following recursive relation of Riccati type:

FK<d;E) = Md}E(FK(d+1;E)), 0<d<K. (2.9)
with the fractional linear transformation acting on C:

max{d, 1}
—E—(N—-d) T’

We now analyze the behavior of solutions of the recursive relation in the various regimes of interest.

My () = (2.10)

Proposition 2.2. For any K € N there is some Cg < oo such that for any N > 2K and E <

—||Tk|| we have
_ d(o,00)
Cre ( N >1/2 VN
Gy(o,00,E) < — & Y . 2.11
x(2:00:E) < i \deo, o0) B (211)

Proof. In case E < =2 KN < —||Tk]|| (cf. Lemma 2.1), we use the recursive relations (2.9) with
initial condition I'g (K; E) = —% to prove that for 1 <d < K — 1:

(N —dTg(d+LE) _ 1
<1+ ’2 )22.

This can be established directly in case d = K — 1. For 1 < d < K — 2 we proceed by induction.
Indeed, we have

L+ (N—-d)'g(d+1;E) 1 max{d+ 1,1}
E N —FE—(N—d-1)T'g(d+1;E)
2max{d+ 1,1} _ 1
E———E R
E? -2
where we used the recursive relation (2.9), the induction hypothesis and the upper bound on E.
This inductive argument also yields

>1

2d
Fi(d; E) <
|E|
Utilising the abbreviation d := dist(e,0¢) and (2.8) together with the trivial bound ' (0; E) <
|E + || Tk ||| ", this in turn implies:
d
244 2K VK] <N> ~/2 <\/N>

Gk(0,00;E) < — Tk(0; E) < —
|E|? |E+ || Tkl \ d |E|

for F < —-2vKN andany 1 <d < K.

which agrees with the claim in case F < —2v/KN. In case E € (—2vV KN, —||Tk||), we recall that
1

G ) ,E2§ T _E72 Sia
2. Ontoron B < T =B < e

and the fact that Gi(-,00; F) is a radially symmetric function. Consequently,

1 N —1/2
Gig(o,00;F) < ———— )
<009 < i (o)
and the claim follows with an appropriate choice for the constant Ck. UJ

17



2.3. Green function for growing balls

We now turn to the behavior of the Green’s function on balls, which grow with V. This will require
a more detailed analysis of the recursion relation (2.9). To see what to expect, we first derive an
estimate on the Green’s function of the full Hamming cube.

Lemma 2.3. For any N € N, E < —N = —||T|| and 0,00 € QOn:

GrlowowB) < [y <|g|>d (d(«ivao))_l' 212

Proof. The Neumann series formula readily implies the operator identity

b Nxkyxe

—x T-x (2.13)

for any operator with || X|| < 1. Setting d = d(o,0¢), we thus obtain

Td
= 5 T—155>

since terms in (2.13) corresponding to k < d vanish. Radial symmetry of the Green function yields

(8ol = B) ) = {5l T/B) ) = 117 (3

<5,,}(T—E)15,,0>:<Z>_1 > (6T - E)d6y)

acS4(00)
-1 N -1 d
< N V2 <(I>@|Td 1 500> _ N ﬂ 1 ’
d Ed T-F d |E| |E| — N

where ®y(o) = 27 /2 denotes the lowest energy eigenfunction of T', and we applied the eigenfunction
equation, T®; = —N®yp, in the last step. O

A main difference between the small versus large ball behavior of the Green’s function is in the
factor (v/N/|E|)¢ in (2.11) versus (N/|E|)? in (2.12). In the case of interest where |E| is of order
N, we arrive at a decay of the order N~%?2 versus e~

There are at least two strategies to derive upper bounds on the Green function G,n(o,00; E) for
E < En(0) = -2y 0o(1 —0)N +0(N) and 0 < p < 1/2, cf. (2.3). The first strategy is to apply the
arguments, which led to (2.12) and which yield

, 1 En(0)\? Tylo0) (N7
GQN(O',O'U,E) S EN(,Q)—E ( E > \IJQ(O') (d) s (2.14)

with U, € £2(B,n(00)) the £>-normalized, positive eigenfunction corresponding to En (o). It then
remains to establish a bound on the ratio ¥,(0¢)/V,(c). We, however, will instead proceed by an
analysis of the factors I' )y defined in (2.8).
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Proposition 2.4. Let 0 < 0 < 1/2, and € > 0. Then for E < Ex(0) — €N, all o € B,n(00) and
all N large enough:

1 N 2 —min{d(e0,0), po(0) N}
G oo0F) < 2~ 0,0),po(@)N 2.1
QN( » 00, ) = €.Nr ( l( 0, )> ( 5)

where 0 < po(0) < o is the unique solution of the equation 2+/0(1 — 0) = 3y/00(1 — 00). Moreover,
for any fixred K € N there is some Cg < oo such that for all N large enough:

1 Cg N e
1. for allo € Sk(00): Gen(o,00;E) < eN /NK (d(ao,a)> '
Ck

0¢Bx(00)

. . . . —1/2
Proof. It is convenient to separate the combinatorial factor ( d( N ) / and study

00,0)
. N 1/2 d(@.00)
G s B) = G s B = T, n(d; E). 2.16
00 B (yon ) Covtron = ] Fantir) (2.16)
By direct inspection of (2.16) one obtains the relation T'py(d; E) = N=d T on(d; B) for d > 1,
which in turn implies the recursive relation
. 1
Uon(d; E) = —% - for 1 <d < oN (2.17)
v — m(d)Ton (d; B)
(d+1)(N —d)

with  V(d) == \/d(N —d), m(d) = d(N —d+1)

and T,n(oN 4+ 1,E) =0, T,n(0;E) =T,n(0; E) = Gon(00,00; E).

We will now analyze the solution of these recursive relations.
We first claim that for all IV large enough:

T,n(d; E) <1 for all d € [goN, oN]. (2.18)

This is proven by induction on d starting from d = oN+1, where it trivially holds. For the induction
step from d + 1 to d, we recall that En(0) = —2/0(1 — 0) + 0,(N) from (2.3). The monotonicity
of V(d) and m(d) then implies that for all ooN <d § oN and all N large enough:

Bl Sy = 1+1/(eoN)
Vid) = 2y/e(1-0) 1—-1/(eN)

Inserting these estimates into the recursion relation (2.17), the claimed inequality (2.18) follows.
We now control the recursion relation in the regime 1 < d < ggN. To this end, note that the

definition of gy implies that for any d < pN and N large enough: |E|/V(d) > 3 +¢/(2y/p(1 — p)).

Using T'yn (00N + 1; E) < 1 one readily establishes T',y(d; E) < 3 inductively as long as m(d) < 2.

m(d) < m(oN) = =14+ 0,(NY).
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The monotonicity m(d) < m(1) = v/2 (1 + O(N~!)) implies that this is true for any d > 1 at
sufficiently large N. The proof of the claimed exponential decay (2.15) is then completed using the
trivial norm bound

r . 1
Ion(0; E) = Gyn (00,00, FE) < H(TQN - E)le = dlst(E,spec(TQN)) < N

Let us finally consider the case of fixed integers K. Note that for any K > 1 we know by the
above I',ny (K + 1; E) < 1/2. The recursion relation (2.17) then yields for any 1 <d < K

dx

vN

with some constants dx = d(p). This completes the proof of the first item. For the second item
we organize the summation into sums over spheres of radius greater or equal to K + 1:

> Gonlo,00;E)
o¢Bk(a0)
K

H N(d; B)? Z HFQNdE Z HFQNdE

d=0 D=K+1d=K+1 D=goN d=K+1

The product in the prefactor is estimated by Cx /(2 N¥+2) using the first item. The second product
is dominated by 45~ such that the summation over D > K + 1 is bounded by a geometric series.
The last product is bounded by 452 guch that the sum is bounded trivially by this exponential
factor times o/N. This completes the proof. O

The decay established in Proposition 2.4 for fixed distance K to the center of the ball agrees in
its dependence on N with the result of Proposition 2.2. Moreover, the rough decay estimate (2.15)
is ’qualitatively correct’ in the sense that we expect an estimate of the form

G N(U o E) < L N e e*L(E,g,d(ao,o))N
N7 ~ eN\d(og,0)

with some positive function L(E, o, d(6¢,0)). However, it is clear from the proof of Proposition 2.4
that we did not attempt to derive a sharp bound for L as it requires a more elaborate analysis of

the factors f‘gN(d; E).
3. Delocalization regime

3.1. Spectral concentration

The analysis of the low-energy spectrum in the paramagnetic phase is based on the Schur complement
method [5, Theorem 5.10] for which we define the spectral projections for ¢ € (0, 1)

Qe = ]l(—sN,sN)(T) P.:=1-Q, (3.1)

which separate eigenstates of T" with energies at the center of its spectrum from the edges. Here and
in the following, 1(-) stands for the indicator function. A Chernoff bound shows that the dimension
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of the range of P. is only an exponential fraction of the total dimension of Hilbert space:

dimP.= Y (éj) < oNH1=e*N/2 (3.2)

N N
lk—51>%5

The exact asymptotics of dim P- is in fact well-known, Indim P. = (v(35%) + o(1))N, in terms of
the binary entropy ~y defined in (1.16).

The following spectral concentration bound expresses the exponential smallness of the projection
of symmetric random multiplication operators to the above subspace. It will be our main working
horse in the paramagnetic phase.

Proposition 3.1. Lete > 0 and W (o), 0 € Qn, be independent and identically distributed random
variables such that

i. the mean is zero, E[W(o)] =0,
ii. the variance of W (o) is bounded by one, i.e. E [W(0)?] <1, and
iii. W is bounded , i.e. |W|lw < My with some My < oo, and M&N dim P./2N < 1.

Then there are (universal) constants ¢,C € (0,00) such for any A > 0:

dim P, e
P<||P5WP5||—]EH|P5WP5|H > A oN 6) < Ce )\2- (3-3)
Moreover, we have the following bound:
dim P,
E[|P-WP.]]] < CVN R =, (3.4)

Proof. The first statement follows from Talagrand’s concentration inequality [68] (see also [70, Thm.
2.1.13]) by considering F : RY¥ — R given by F(W) := |P.-WP.|. We need to show that F is
Lipschitz continuous and convex. Convexity, i.e., F(aW + (1 — a)W') < aF(W) + (1 — a)F(W')
for all a € [0, 1], is evident from the triangle inequality. To establish the Lipschitz continuity, let
W, W' € RN and ¢ € P-L2(Qy) with ¢ = 1 be such that |P.(W — W/)P.| = (&, (W — W)ih).
Then one has

|[F(W) = F(W')| < (&, (W = W')) =) [o(0)*(W(e) — W'(o))
< AW =W lllf < IIW = W2l < max /(G| Peda) [W = W2

The first estimate is the triangle inequality. The next two estimates are special cases of Holder’s

inequality, in which we also use [[¢|| = 1. The last estimate results from the Cauchy-Schwarz

inequality applied to ||¢]|cc = maxe |[(P:de|t)| and the fact that ||P.dg| = \/|(P:0s|ds)|. Since by

symmetry for any ¢ € Qn:

dim P.
2N

<60'|P560'> - (35)

we conclude that F' is Lipschitz with constant 2=/2 \/dim P.. This finishes the proof of (3.3).
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The second statement is derived from the matrix Bernstein inequality [57, 71]. For its application,
we note that the matrix under consideration is a sum of independent random matrices,

P.WP. =% S(0),  with S(0) := 95 W(o) [¢(0)) (¥(0)],

where |1(0))(1¢(0)| denotes the rank-one projection onto the vector ¢ (o) := \/ﬁNpg P64, which

in view of (3.5) is normalised. By assumption the matrices S(o) are centred, E[S(o)] = 0, and

bounded
dim P. dim P.
<M < .
ISl < My = <[40

The mean variance matrix of P.W P is

S E[s@)] = (Tt ) SEWE] o)) < 5

The last inequality follows from the assumption, E [W(O’)Q] < 1, as well as the fact that (0,) form
an orthonormal basis. Consequently, [71, Thm. 6.6.1] together with the trivial bound, dim P. < 2V,
on the dimension of the matrices implies

In 2N+l dim P,
E[||P.WP.|] < [ V2In2N+1 <
i) < (Vemev 4 B2 ) SO

which completes the proof. O

Alternatively to Talagrand’s concentration inequality, the concentration of measure part of the
matrix Bernstein inequality [71, Thm. 6.6.1] would also have been sufficient for proving a slightly
less sharp upper bound on the upper tail of the large-deviation probability (3.3).

As an application, we state the following straightforward corollary. Its assumptions are tailored
to fit in particular the case of the REM.

Corollary 3.2. Suppose that W (o), o0 € QN are i.i.d. random variables which are

i. mean zero with variance wy :=E [W(0)?] < N and obey a moment bound E [W (0)%] < ¢ N*
for some ¢ < 0.

ii. linearly bounded in the sense that there is some ¢ < oo such that [|[Wllse < ¢N.

Then, there is some C € (0,00) such that for any T € (0,1) there are events Qn » with
P(Qy,) >1— e NC (3.6)

such that for all sufficiently large N and at € = N7

|P-WP.| < CNe N/, (3.7)
|Po(W?2 —wy)P.|| < CN2e N/, (3.8)
|P.WPP.| < CN% forallp € [1,4]. (3.9)
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Proof. The proof of these inequalities follows by three applications of Proposition 3.1 with different
T—1

W' always at the same A = v N. We note that our choice ¢ = N2 implies by (3.2) dim P. <

oN+1e=N"/2 This in turn yields for any polynomial My and N large enough M]%,N dim P. /2N <1,

which indeed checks one of the assumptions of Proposition 3.1. We then construct three events Q%?T
with j € {1,2,3} each with probability ]P’(Q%)T) > 1—3"1e~N/C with some (universal) C' < oo and
all N large enough. Their intersection Qy , = Q%)T N QS\QI)T N QS\?)T then defines the required events.

More specifically, for a proof of (3.7), we take W’(a) = W (a)/v/N. The event Q%)T on which (3.7)

then satisfies the required probability estimate.
The proof of (3.8) follows again from Proposition 3.1 with W'(a) = ¢~ /4 (W (6)? —wy)/N and the

prefactor ensuring E [W/(¢)?] < 1. In this way, we construct 95\27)7
By Jensen’s inequality (v, WP)4/P < (b, W) for any p € [1,4], it suffices to establish (3.9) for
p = 4. We choose W'(o) = ¢~ 1/2 (W (o)* — E [W(0)%])/N? to define Qg\?)T. O

3.2. Proof of Theorem 1.3

We now use the estimates of the preceding subsection in our Schur’s complement analysis for the
proofs of Theorem 1.3 and 1.4. These results will actually follow from a slightly more general
theorem on operators H = I'T' + W of QREM-type. As a preparation and motivation of the
following lemma, we collect some basic facts about these operators. The kinetic part of the block
component Q- HQ. =TTQ. + Q-WQ. is estimated by

ITQ:|| < eN, (3.10)
which implies
—[Wlleo —Te N < infspec Q- HQ: . (3.11)

For any z € C with Re z < ||[W||s —'e N, the operator Q-HQ. — z is hence invertible on Q.£*(Qx)
with inverse denoted by R.(z) := (Q:HQ. — 2Q.)~!. The latter features in Schur’s complement
formula for the resolvent of H projected onto the subspace P-?(Qy):

P.(H — 2)7'P. = (P.(H — 2)P. — P.WQ-R-(2)Q.WP.)™". (3.12)

Our main observation is that Schur’s complement is approximated by an operator proportional to
the identity.

Lemma 3.3. Consider the operator H := I'T + W on (?(Qy) with W satisfying the assumptions
in Corollary 3.2 and let Qn , with T € (0,1) be the events constructed there. Then on QN and at

e= N7 for all N large enough:

for all z € C such that min{|z|, dist(spec Q:HQ:, 2)} > d N with d € (0,1].

P€WR€(z)WP5+P€w7NH < max{1,r}d% N, R(2) = (Q.HQ. — 2Q.)"Y,  (3.13)

Proof. We use the resolvent equation to write
WN 1
P (WR()W + “X) P. = —P. (wy = WQW + WR(2)Q-HQW) P

_ %Pg(wN CWQ.W)P. + %PE (WR.(2)Q.HQ.)W) P., (3.14)
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and estimate both terms in the second line separately. For the first expression we rewrite
P.(wy — WQ.W)P. = P.(wy — W?)P. + P.WP.WP.. (3.15)

According to (3.7) and (3.8), the norm of the two terms in the right side is negligible in comparison

to N5 for all N large enough. It hence remains to estimate the norm of the second term in the
right side of (3.14). To do so, we split the terms as follows

1 1 1
;PEWRE(Z)QEHQEWPE = ;PEI/VRE(,Z)QEFTQEI/VP\E + ;PEWRE(Z)QEWQEWPE

and use (3.10) together with ||R.(2)| < (dN)~! (since dist(spec Q- HQ:,2) > dN ) and ||P-W|* =
|P-W?2P.|| < CN by (3.8). On Qu, for all N large enough, we thus conclude:

_ C C
|2 ! | P-W R (2)TTQ:W Pz|| < 1TQ:| < ﬁN el (3.16)

— d’N

Similarly, we estimate

2T I P-WRA(2)QW QWP < |27 |[PW | [|Re(2) || [[WQW Pl
C
S aNen VIIP-WQW2Q WP (3.17)

In order to estimate the norm in the right side with the help of (3.9), we rewrite
P.WQW?QWP. = PW*P. - PW3P.WP. — PWP.W3P. + PWP.W?P.WP.. (3.18)

On Q. the norm of this operator is bounded by C' N2 for all N large enough by (3.9). This
concludes the proof. O

These preparations enable us to proof the following general result.

Theorem 3.4. Consider the operator H =TT + W on (2(Qy) with W satisfying the assumptions
in Corollary 3.2 and let Q. with 7 € (0,1) arbitrary be the events constructed there. Then on
Qn,- and for all N large enough the eigenvalues of H below —||W||oo —nN with n > 0 are found in

the union of intervals of radius OFW(NTTA) centered at

wWN

(2n — N)I' + (@n— NJT

(3.19)

with n € {m € No|(2m — N)[' < —||[W/|loc — nN}. Moreover, the ball centered at (3.19) contains
exactly (]Z) eigenvalues of H if T' > n+ ||W||e/N.

Proof. We write H using the block decomposition of ¢?(Qy) induced by P. and employ the Schur
complement method. Since the Q. block is lower bounded according to (3.11), all eigenvalues E of
H strictly below —||W{|s — I'e N can be read from the equation
. N
0 € spec (T.(E)) with T.(E):= P. (rT n E) _E+Y.(E), (3.20)

N
Y.(E) = P.WP. — (PEE + PEWRE(E)WPE> .
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Lemma 3.3 combined with (3.11) and (3.7) implies that for any 7 > 0 at e = N("=1/2 and on the
event Q0 - in Corollary 3.2

sup  ||Ya(E)| € Cmax{1,T} p 2 Nz, (3.21)
E<~|[Wlloo—nN

for all N large enough. As a consequence of standard perturbation theory [13, Corollary 3.2.6] and
using the explicit values (1.4) of the spectrum of 7', within this energy region the solution of (3.20)
are found within the union of intervals of radius at most C'max{1,'}~2N(~1/2 from the solutions
to the equation

2n— N)T+ X =0
z

with integers 2n < N(I" — ||W||loc — n)/I'. This leads to

2n— N
2

__WN
(2n — N)I'

2= P~ /520~ N)2? fwy = (20— N)T + +Op (N7Y),
which completes the proof of (3.19). The assertion concerning the range of the spectral projections
on the small intervals around the above points follows from the monotonicity of T.(E) and the fact

that the eigenvalue 2n — NV of T" has multiplicity (]X ) O
Theorem 1.3 now immediately follows.

Proof of Theorem 1.3. On Q%]i]% the REM’s extremal values are bounded by ||Ul|cc < N(Bc + 1).

Moreover, E [U(0)?] = N and E [U(0)®] = 105 N*, so that U satisfies all requirements on W in
Corollary 3.2. The claim is thus a straightforward consequence of Theorem 3.4 with W = U. O

3.3. Proof of Theorem 1.4

The proof of our second main result, Theorem 1.4, is based on delocalization properties of the
eigenprojection of T', which will be derived using the semigroup properties of T. More generally,
let B C Qn be any subset of the Hamming cube and T'(B) the corresponding restriction, i.e,
the operator with matrix elements (0 | T(B) do’) = —14(g,6)=115(0)1p(a’). For Hamming balls
Bk (00) the operator T'(Bg (o)) was studied in Section 2 and abbreviated there by Tx. As all
matrix elements are zero or negative, a stochastic representation is at hand: for any 0,0’ €
B and 8 > 0 there is a measure up on the space of cadlag-paths Q(o,0’) on the hypercube
with w(0) = ¢ and w(1) = ¢’ such that for any V : B — R we have (§y |e PTBE+V)5 ) =
fQ( o.0") e=flo Viw(s))ds ;5 [dw]. Such a representation can be derived via the Suzuki-Trotter-formula
(see e.g. [50, Appendix B]). If B = Qu the path measure is described in terms of independent
Poisson jump processes, whereas for general B one has to take into account that the process is
not allowed to leave the set B. Here, we do not use the stochastic representation but the related
positivity of matrix elements for any 8 > 0:

0 < (0 | e PTBIHV)5 ) < e min BV (5,1 e=FT(B)g, ). (3.22)

Since —T'(B) and —T have nonnegative matrix elements and (0g | (—=T'(B)) d5') < (dg | (—T') d5) for
any a,0’, we also conclude

(0 | €T B)65)) < (36| € 54r) = (cosh B)N (tanh )@, (3.23)
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where the last equality is by explicit calculation using the Hadamard transformation, i.e., the
representation of 7" in terms of Pauli matrices.

Proposition 3.5. Let B C Qn and V : B — R a potential with V> —vN for some 0 < v < 1.
Then the eigenprojection Pg := 1(_o, g)(T(B)+V) onto eigenvalues E € [~N(1+v), —vN] satisfies:

max(d, | Ppdy) < 27V exp (N»y (HVQ(E))» (3.24)
o
with the binary entropy ~ from (1.16) and v(E) := % + v. Moreover, for all normalised states
Y € (3(B):
1 E
IPevt <2 Ve (v (2022 (3.25)

Proof. The spectral theorem combined with an exponential Markov inequality implies for any 5 > 0:
(00 | L(—oo.)(T(B) + V) 85) < €7F(d5 | e PTBEITV) 5,) < PN (cosh B)N.

The last inequality is a combination of (3.22) and (3.23). It remains to minimize the function
f(B) == Pr(E) +Incosh 5 on [0,00). The minimum is attained at f* = artanh(—v(E)). To further

simplify the result, we recall the elementary identities artanh(z) = % In 2 and cosh(artanh(z)) =
2 11—z

\/11_7 for € (—1,1), which after some algebra lead to f(5*) = —In2 + v((1 + v(F))/2) and

hence (3.24). The second assertion (3.25) is a direct consequence of (3.24). O

We are now ready to complete the proofs of the main results in the paramagnetic regime.

Proof of Theorem 1.4. We pick 7 € (0,1) and 0 < n < (I'—f.)/4 arbitrary and restrict our attention
to the event Q?\ﬁi N Q%EIM on which the assertions of Corollary 3.2 for W = U and Theorem 1.3 are
valid.

For a proof of the first assertion, we apply Schur’s complement formula to the ground state

Y =11 +1hy of H =TT + U. We split ¢ into 91 € P-£?(Qn) and 15 € Q-£*(Qy) such that:
(PrHP. — E— P.HR.(E)HP:) 1 =0
¢2 = _Ra(E)QeHPa¢17
where F¥ = infspec H = —I'N — % + OF(N%) is the ground-state energy according to Theorem 1.3

since PN — [|U||so > 3(I'= B:)N > nN on Q]P\‘,EYM by the choice for 7). Sticking to the notation (3.20),
from the proof of Theorem 1.3 we conclude that the first equation can be rewritten in terms of

P.HP. — E — P.HR.(E)HP. = P.TTP. + (NE™' — E)P. + Y.(E),

with ||[Yz(E)| < OF(NT%). Since T  has an energy gap 2 above its unique ground state @y (cf. (1.4)),
we thus conclude

12— [%0) (@D ]| < Or (N77").

To further estimate the norm of 1 = —R.(E)Q.Ut, we recall that ||R-(E)|| < S and ||Uyy|]? <
|P-U?P.|| < O(N) by Corollary 3.2. Hence, |v2]|?> < Or (%) We thus arrive at

l4) — g||> = Op (N771). (3.26)
For the second part, we recall the bound (1.7), and write H = I'(T' + U/T"). The claim now follows
directly from Proposition 3.5. 0
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3.4. Improved delocalization estimates

The delocalization estimates on low-energy eigenfunctions established in Proposition 3.5 are not
optimal. In particular, they become trivial in case the minimum of the potential v is close to one
and F is close to —N. The latter corresponds to the critical case addressed in Proposition 1.8.
In the following, we record an improved delocalization estimate, which involves the QREM with
truncated potential on £2(Qy):

Hs =TT + Us, Us = Ul|<(.-)N

with truncation parameter § > 0, which will be allowed to be arbitrarily small. In that scenario we
have the following non-optimal estimate:

Proposition 3.6. There are ¢,C > 0 such that for any 6 € (0,1'/25) there is some n > 0 and
a sequence of events Qn s with P(Qns) > 1 — e~ N on which for all N large enough at for all
I'>p.—6/4:
max (Jg | L(— oo, (r—nn) (Hs) 65) < €N, (3.27)
ocQyN

Moreover, on Q5 all eigenvalues of Hs below E < —(I'=6/4)N < —(8.—9/2)N are still described
by (1.13) with an error (’)p,(;(N_%).

The proof of Proposition 3.6 is spelled at the end of this subsection.
As a preparation, we need the following probabilistic control on the frequency of large deviation
sites in a ball of radius a/N.

Lemma 3.7. Let e,a > 0 be such that €2 > 2v(a). Then there is K = K(e,a) € N and ¢ =
c(e,a) > 0 such that the sequence of events

QN’&Q = {VO’ € Oy : |BaN(0'O) ﬁ£5| < K}
has a probability bounded by P(Qn o) > 1 — e N for all sufficiently large N.

Proof. For any fixed 0 € Qx we estimate using the independence of the basic random variables and
the standard Gaussian tail bound

P(Bav(o) 1 £ 2 £) < (P )bz < oxp (58 (2 - 2@ - 0a(1) )

The last estimate inserted the asymptotics In |Byn| = N(y(a) + 04(1)) of the size of a Hamming
ball in terms of the binary entropy. The union bound implies P(30 : |By,n(0) N L] > K) <
2NP(|Ban () N Le| > K), which is exponentially small for all K large enough. O

Proposition 3.6 is based on a random-walk expansion for eigenvectors, which facilitates control of
spherical means away from their maxima. Random walk techniques have been used in the theory of
localization under the name ’locator’ of 'Feenberg’ expansions. We do not aim to extract optimal
information from this technique, which would require much more work. Rather we highlight the
usefulness dealing with the critical case. We will see another more refined use of spherical averaging
techniques in Section 4.5.

27



As another preparation, we collect some basic properties of a simple random walk (Z)ren on
Oy, which starts at Zy := g9 € Qn and chooses in each unit time step one of the N neighboring
vertices with equal probability 1/N. Let

pr(0,00) = Prob(Zx = a|Zy = 00)

stand for the probability to arrive at o after K steps. Moreover, for a subset W C Qp let

K
Myg(W) = 1[Z, € W]
k=0
be the number of visits of the random walk in W up to time K. We will only need the following

crude bounds, whose proofs we spell here for the reader’s convenience. For further results on random
walks on the Hamming cube, see e.g. [45] and references therein.

Lemma 3.8. For allo,00 € Qn, all a € (0,3/16), and all N large enough:
pan(0,00) < max{e V(@/8INFON) o—aN/8) (3.28)

For any finite subset W C Qp, all t € (0,«a] and all N large enough:

tN
Prob (Man(W) > tN) < exp (tN In (W)) . (3.29)
Proof. If d = d(o,00) > aN/8, we have by spherical symmetry and the asymptotics of the binomial
coefficient
N L AN L -
pan(0,00) = (d) Z paN(O'/,Uo) < <d) <e v(a/8)N+o(N)

a’'€Sq(00)

To complete the proof (3.28), we discuss the case d(o,00) < aN/8. A simple random walk, which
at step k is at distance d = d(Zy,09)) € [1,aN] to the starting point, has N —d possibilities to move
further away and only d < aN to decrease the distance to a¢ by one. Hence, Prob(d(Zy1,00) <
d(Zy,00)) < a for any 0 < k < aN. However, to end after alN steps at some o € B,n/3(00), the
walk (Zg)ken has at least %aN steps, where it gets back closer to the center. Since the random
variables Yy = 1[d(Zk41,00) < d(Zk,00)] are distributed as conditionally independent Bernoulli
variables with success probability at most «, we thus arrive at

aN
Pan(0,00) < Prob((Z Y, > 3QN/8) < e~oN/8,
k=1

by a standard Chernoff-bound for Bernoulli variables. This establishes (3.28).
For a proof of (3.29) we note that as |W N Sy(o)| < |W| for any o € Bon(00)

PI‘Ob(Zk_H eWw ‘ Zy = 0’) < %

The claim thus follows again by a standard Chernoff bound, since M, (W) is a sum of conditionally
independent Bernoulli-type random variables with success probability smaller than |[W|/N. 0
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Proof of Proposition 3.6. One easily sees that Us meets the requirements of Theorem 3.4 with
variance wy = E[Us(0)? = N(1 — (’)(6_%(5(3_5)2]\7)). Consequently, for any 7 € (0,1) there is
some sequence Qy 5 with P(Qy-5) > 1 — e~ YN and we arrive at the description of eigenvalues
in (1.13) for all E < —(B. — §/2)N. This also implies that for n € (0,d/2) and all N large enough:

N/ (ar)
Tr (oo~ r—nyw) (Hs) < Tl (coo o) (FT) = D (n) < MO/ED ) T (3.30)

n=0

again by the known asymptotics of the binomial coefficients.

For a proof of the exponential delocalization estimate (3.27), we assume throughout the validity
of Qn s with some 7 € (0,1) and the event Qn. o, of Lemma 3.7 with ¢ := I'/100 and some
fixed ap > 0 small enough such that 2y(ag) < 2. The intersection of these two events still has a
probability, which is exponentially bounded from below independent of § as required.

Let 1 be an ¢?-normalized eigenfunction of I'T + Us with eigenvalue E < —(8. — §/2)N and
suppose that ay, € Q is a configuration, where 1) takes its maximum absolute value. To make the
main idea transparent, we proceed in two steps.

Step 1: We first assume that Bq,n(0y)NL: = (0. The eigenvalue equation for ¢ at any o € By, n (o)
together with the bound U > —cN implies

e D DI ol DI
o'eS1 (o) 0'eSi(o) (3.31)

r
CF(E,&) = W

We start at o, and use this estimate iteratively a/NV times for some o < o to arrive at

[W(ey) < Cr(B,e)*N >~ pan(o,0y)[(0)| (3.32)
UGBQN(U¢)
1/2
SCF(E,e)“N( > paN(0,0¢)2> < Cr(E,e)™Y max Pan(o,04)"?
0€BuN(oy) o€Ban(oy)

where p,n(0,0y) is the probability of a simple random walk on Qy starting at o, to arrive at o
after aN steps. Here we have the Cauchy-Schwarz inequality and the normalization of ¢ as well
as pon. Since |E| > (I' = 6/4)N > I'N(1 — 1/100) we see that for N large enough: Cr(E,e) <

alN
(ﬁ) < e*N/*9 Together with the probability bound (3.28) our main estimate (3.32) yields

1W(0y) 2 < max{e(3 (/BTN N o—gmaNy — p=caN/2, (3.33)

Due to the bound (3.30) on the number of eigenvalues, which allows us to pick n > 0 arbitrarily small
not to spoil any exponential decay of the eigenfunctions, the proof of the exponential bound (3.27)
in case of Step 1 is completed if we choose a € (0,p) such that v(a/8) > 2%. This is always
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possible since v has an infinite slope at zero.
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Step 2: We now turn to general case, in which the intersection W := By n(0) N L, is nonempty,
but finite of size at most K. For o € W the spherical mean estimate (3.31) turns into

o) <« ELZD 5~y

N
o'eSi(o)

as we still have U(o) > —(8. — §)N. For a random walk (Z})ren, which starts again at Zg := oy,
let M,n(W) stand for the number of visits of sites in W. We way modify our prior estimate
by distinguishing between the random walks with a high visit number M,n(W) > tN and low
visit number M,n(W) < tN . Indeed, abbreviating by pan (6,04 Moy (W) < tN) the transition
probability of the random walk to reach o after aN steps and spending only less than t/N steps in
W, we have for any t > 0

(o) < Cr(E, ) INCr(B, Be = )N Y pan(0,0y|Man(W) 