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Zusammenfassung auf Deutsch

Das Rückschließen auf kausale Zusammenhänge zwischen Variablen nur auf Grundlage
von Beobachtungsdaten ist ein zentrales Problem in vielen wissenschaftlichen Bereichen.
Es wurden zahlreiche Algorithmen für diese Aufgabe entwickelt, die von verschiedenen
zugrundeliegende Annahmen Gebrauch machen. Ein prominentes Beispiel ist die An-
nahme, dass die gemeinsame Verteilung der beobachteten Variablen einem linearen nicht-
gaußschen Strukturgleichungsmodell folgt.

In dieser Arbeit zeigen wir eine Charakterisierung dieser Linearitätsannahme. Die An-
nahme ist äquivalent zu einer Rangbedingung für eine Matrix, die aus zweiten und dritten
Momenten gebildet wird, zusammen mit der Anforderung, dass der Tensor aller dritten
Momente einen bestimmten symmetrischen Rang hat. Diese beiden Rangbedingungen
liefern somit einen neuen Ansatz zur Validierung der Hypothese, dass die datenerzeu-
gende Verteilung einem linearen Strukturgleichungsmodell folgt.

Für beide Bedingungen wird untersucht, wie sie in statistische Tests umgesetzt werden
können. Um einen Test für die erste Bedingung zu implementieren, betrachten wir eine
Multiplikator-Bootstrap-Methode, die unvollständige U -Statistiken verwendet, um Mi-
noren der Matrix zu schätzen. Außerdem werden Methoden untersucht, die auf dem
asymptotischen Verhalten der Singulärwerte basieren. Für die zweite Rangbedingung, die
den Rang des symmetrischen Tensors betrifft, werden Ergebnisse aus der algebraischen
Geometrie genutzt, um den Rang des symmetrischen Tensors mit Polynomgleichungen in
den Einträgen des Tensors in Beziehung zu setzen. Zum Testen dieser Polynomgleichun-
gen wird wieder die unvollständige U -Statistik verwendet.

Die Methoden werden für die Tübingen Sammlung von Benchmark-Datensätzen aus
Ursache-Wirkungs-Paaren und für synthetische Daten illustriert.



Zusammenfassung auf Englisch

Inferring causal relationships between variables solely from observational data is a central
question in many scientific fields. Various algorithms have been developed to tackle this
problem by leveraging different types of a priori assumptions. One prominent example
is the assumption that the joint distribution of the observed variables follows a linear
non-Gaussian structural equation model.

In this thesis, we derive a characterization of this linearity assumption. Specifically, the
assumption is shown to be equivalent to a rank condition on a matrix formed from second
and third moments together with the requirement that the tensor of all third moments has
a certain symmetric rank. Testing those two rank conditions thus offers a new approach
to test the hypothesis that the data-generating distribution belongs to a linear structural
equation model.

For both conditions, we examine how to turn them into statistical tests. In order to
implement a test for the first constraint, we consider a multiplier bootstrap method that
uses incomplete U -statistics to estimate subdeterminants of the matrix. In addition,
methods that employ asymptotic approximations of the null distribution of singular val-
ues are studied. For the second constraint involving the symmetric tensor rank, results
from algebraic geometry are leveraged that relate the symmetric tensor rank to polyno-
mial equations in the entries of the tensor. For testing these polynomial equations, the
incomplete U -statistic is applied again.

The methods are illustrated for the Tübingen collection of benchmark data sets on cause-
effect pairs as well as for synthetic data.
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1 Introduction

In various scientific fields, it is of interest to answer questions regarding causation between
multiple observed attributes. The standard approach to tackle such questions is to use
controlled interventional experiments. However, in many situations, controlled experi-
ments are too expensive, unethical, or not feasible at all. Therefore, it is not surprising
that in recent years, many algorithms have been developed to infer causal relationships
from observational data.

A common way how to depict such causal relations is to use a directed graph G = (V,E)
where V is the set of nodes and E ⊆ V ×V is the set of directed edges. Before explaining
how a graph can be used to represent causal relations, some basic concepts of graph theory
are introduced. We write v → w for an edge leading v to w. Furthermore, we say that w
is a parent of v if the graph contains the edge v → w and denote the set of all parents of a
node v by PAv. A directed cycle is a sequence of nodes (v1, v2, . . . , vk) with vk = v1 such
that for each j = 1, . . . , k−1, vj and vj+1 are connected by the edge vj → vj+1. Finally, G
is called acyclic if it contains no directed cycles. From now on, for a graph with p nodes,
we use the set V = [p] := {1, · · · , p} to label the nodes.

To establish a connection with cause-effect relationships, each node of the graph is asso-
ciated with one component of a random vector. In other words, one considers a random
vector X = (Xj)j∈[p] indexed by the set of nodes. We denote the distribution of X as
PX . An edge v → w describes a direct causal effect of Xv on Xw. One then aims to
learn which graph depicts the true causal structure of the distribution. There are several
ways for formally defining direct causal effects. Many algorithms rely on a definition that
involves structural equation models. The distribution PX is said to belong to the struc-
tural equation model (SEM) associated with the graph G if each component of X can be
written as a function of its parents plus an error term. Formally, this means there are
functions fj and independent random variables εj such that each Xj can be written as

Xj = fj(PAj) + εj.

Many algorithms require the additional assumption that G is acyclic.

If one wants to learn the associated graph of a distribution, the question arises if the
graph is uniquely determined. First of all, if PX lies in the SEM of a graph G, it also
lies in the SEM of every supergraph of G. This can be easily resolved by aiming to learn
the smallest graph such that PX is contained in the associated model. So, it remains to
examine whether PX could belong to the models of two different graphs G1, G2 that are
not subgraphs of each other. It turns out that under some restrictions on the functions
and error terms this is not possible. For example, if the functions are restricted to be
linear, the error terms are assumed to follow a non-Gaussian distribution, and the graph
is assumed to be acyclic, it has been shown that it is not possible for two equations of the
form to hold at the same time [26]. This model is abbreviated as LiNGAM, which stands
for linear non-Gaussian acyclic model. Another possible restriction is the post-nonlinear
causal model where one assumes

Xj = fj,1 (fj,2(PAj) + εj)
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with fj,1 non-linear and invertible, and fj,2 non-linear for an acyclic graph G. In this case,
identifiability holds except for five specific choices of the functions and the noise terms
[32].

Various algorithms have been developed that are based on one of these identifiability
results. They generally work in a way that they initially assume the existence of some
directed acyclic graph such that PX lies in the model associated with this graph. Then
they infer the graph such that the data fits best to the respective graphical model. Con-
sequently, if the initial assumption that there is some appropriate graph is wrong, the
results of the algorithm might be misleading.

Especially, the LiNGAM assumption is quite restrictive. Nonetheless, algorithms based
on this model, as for example, ICA-LiNGAM [26], Direct LiNGAM [27], or the modified
version of Direct LiNGAM for the high dimensional setting [31], are very widely used. This
is the motivation for this thesis: to develop a test for this assumption. More specifically, a
test for the linearity assumption is created. Hence, we allow the noise term to be Gaussian.
There already exist tests specifically designed for testing the Gaussianity assumption as
can be found for instance in [25].

Outline. The outline of the thesis is as follows. In Section 2, the identifiability result
for the LiNGAM model is proven. In Section 3, the theoretical foundation for the testing
methods is laid out. More precisely, the algebraic structure of the moments of distributions
contained in a linear SEM is examined. We derive a characterization of the second and
third moments such distributions can attain. As this characterization involves the concept
of a symmetric tensor rank, results regarding this concept are presented subsequently. In
the following section, these theoretical results are leveraged to develop algorithms to test if
a distribution belongs to a linear SEM. Four different test statistics and their asymptotic
behavior are illustrated. In the last section, the practical performance of the methods is
examined using synthetic and real-world data.

Notation. In this thesis, random vectors are always denoted with bold letters, whereas
random variables are denoted with non-bold letters. PX denotes the joint distribution of
a random vector X. Furthermore, we write

(Rp)⊗k = {T = (ti1...ik)i1,...ik∈[p]}

for the k-fold tensor product of Rp and Symk(Rp) for the subspace of symmetric tensors

{T ∈ (Rp)⊗k : ti1...ik = tπ(i1)...π(ik) for all permutations π : [p]→ [p]}.
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2 Identifiability for Linear Non-Gaussian Acyclic Mod-

els

In this section, we formalize and prove the identifiability result for linear SEMs with
non-Gaussian noise. Let G = ([p], E) be a directed graph with p nodes and denote by

RE = {Λ ∈ Rp×p : (I − Λ) is invertible and λji 6= 0 only if (i, j) ∈ E}

the set of matrices whose non-zero entries correspond to the edges of G. Note that the
requirement that I − Λ is invertible is obsolete if G is acyclic. In this case, it is possible
to reorder the nodes 1, . . . , p in a way such that I −Λ is an upper triangular matrix with
ones on the diagonal. Reordering the nodes only permutes the rows and columns of I−Λ,
which is an operation that retains invertibility.

The linear structural equation model (SEM) for G is the set of all probability distributions
PX on Rp that arise as joint distributions of random vectors X = (X1, . . . , Xp) ∼ PX

that solve a linear structural equation

X = ΛTX + ε (2.1)

for a choice of Λ ∈ RE and a random vector ε with independent components. Furthermore,
the model is called linear non-Gaussian acyclic model, or abbreviated LiNGAM, if G is
acyclic, and the distribution of all components of ε is non-Gaussian. The entries of Λ
can be thought of as edge weights. The larger λji, the higher is the effect of Xi on Xj.
For the remainder of this thesis, we assume that the noise vector ε has mean zero. This
assumption makes computations easier without restricting generally since one can replace
X with its centralized version.

Theorem 2.1 (Identifiability under LiNGAM assumption, [26]). If PX belongs to the
LiNGAM associated with a directed acyclic graph G0, and G0 is minimal with this property,
then G0 is identifiable in the sense that there is no other acyclic graph with this property.

In order to get a feeling for graphical models and the concept of identifiability, the result
is proven for the case p = 2. For that purpose, the theorem of Darmois-Skitovich is used.

Theorem 2.2 (Darmois-Skitovich, [8], [28]). Assume that (Zi)i=1,...,n are independent
random variables and that it is possible to form two linear combinations∑

i

αiZi, and
∑
i

βiZi,

that are independent of each other. Then if αiβi = 0, Zi is Gaussian.

The proof of Theorem 2.1 now reads as follows.
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Proof. To obtain a contradiction, assume that there exist a distribution PX , and two
directed acyclic graphs G1, G2 such that PX lies in the LiNGAM of each of the graphs.
Furthermore, we assume that both graphs are minimal with this property. There are only
three directed acyclic graphs with 2 nodes.

1 2 1 2 1 2

If one of the graphs G1, G2 would be the empty graph, this would contradict the mini-
mality assumption. Hence, we can assume without loss of generality that G1 is the graph
with edge (1, 2) and G2 the graph with edge (2, 1). In particular, X satisfies a system
of structural equations for G1. This yields the existence of a real number α 6= 0 and
independent noise terms ε1, ε2 such that

X1 = ε1, X2 = αX1 + ε2.

At the same time, a system for G2 is fulfilled. Hence, we obtain the equations

X1 = βX2 + η1, X2 = η2

for a real number β 6= 0 and independent noise terms η1, η2. When inserting the equations
into one another, one obtains

η1 = X1 − βX2 = ε1 − β(αε1 + ε2) = (1− βα)ε1 − βε2 and η2 = X2 = αε1 + ε2.

Darmois-Skitovich then implies that ε2 is Gaussian in contradiction to the assumption.

Remark 2.3. In the case where the distribution of X has finite second and third mo-
ments, the result can also be proven more directly. Under the model assumption of G1,
one knows that

E(X2
1 ) = E(ε21),

E(X1X2) = E(ε1(αε1 + ε2)) = αE(ε21),

where the independence of the noise terms is used in the last equivalence. Similarly,

E(X3
1 ) = E(ε31),

E(X2
1X2) = E(ε21(αε1 + ε2)) = αE(ε31).

Combining all four equations yields

E(X2
1 )E(X2

1X2)− E(X1X2)E(X3
1 ) = 0.

In other words, the determinant of(
E(X2

1 ) E(X1X2)
E(X3

1 ) E(X2
1X2)

)
(2.2)
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is zero. If the distribution of X belongs to the model associated with G2, in the same
manner, one can calculate

E(X2
1 ) = E((βη2 + η1)2) = β2E(η2

2) + E(η2
1),

E(X1X2) = E((βη2 + η1)η2) = βE(η2
2),

E(X3
1 ) = E((βη2 + η1)3) = β3E(η3

2) + E(η3
1),

E(X2
1X2) = E((βη2 + η1)2η2) = β2E(η3

2).

Hence, (2.2) has determinant zero only for specific choices of η and β. More precisely,
one obtains (

E(X2
1 ) E(X1X2)

E(X3
1 ) E(X2

1X2)

)
=

(
E(η2

1) E(η2
2)

E(η3
1) βE(η3

2)

)(
1 0
β2 β

)
.

The second factor is invertible. Therefore, the determinant of (2.2) vanishes only in the
special situation where first factor is non-invertible. In all other cases, the determinant
gives a possibility to distinguish between the two models. In alignment with Theorem
2.1, Gaussian distributions are one example of the exceptional situation in that identifia-
bility can not be concluded from this argument since, for Gaussian distributions, all third
moments vanish.
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3 Graphical Model associated with the Complete Graph

The objective of this section is to develop a theoretical foundation that can be used for
developing the desired tests of the linearity assumption. In the first subsection, the sec-
ond and third moments of distributions that lie in any linear structural equation model
are examined. In particular, in our analysis, we allow graphs containing cycles. We
derive a characterization of second and third moments realizable under the model as-
sumption. This characterization involves the notion of symmetric tensor rank. Therefore,
the following subsection is devoted to a more detailed study of symmetric tensors and the
symmetric tensor rank. After this, we focus on higher moments. In the last subsection,
it is investigated which constraints hold if a certain edge is not allowed to be part of the
graph.

3.1 Second and Third Moments

To slightly simplify notation, we from now on use the linear structural equation (2.1) in
its equivalent form

X = B−Tε (3.1)

with B = I − Λ. The entries of B−1 are denoted by B−1 =
(
β̃ij

)
i,j∈[p]

.

Furthermore, we denote by sij the covariance of Xi and Xj, by tijk the third moment of
Xi, Xj and Xk, and denote by S = (sij)i,j∈[p] and T = (tijk)i,j,t∈[p] the matrix of the second
moments and the tensor containing the third moments, respectively. Similarly, let Ω(2)

the matrix of second moments of ε and Ω(3) the tensor of third moments of ε. Note that
both are diagonal because the components of ε are independent and have mean zero. As
we are interested in the structure of the second and third moments, we also introduce the
so-called third-order moment model for a graph G which is defined as

M≤3 (G) = {(S, T ) : PX is realizable under a linear SEM associated with G}.

For the remainder of this section, we assume that ε has finite second and third moments.
Furthermore, unless specified otherwise, G indicates the complete graph, which is the
graph containing all edges. Note that considering the linear SEM associated with the
complete graph is the same as permitting the distribution to belong to a linear SEM
associated with any graph since the model for the complete graph contains all other
models.

The main result of this section is a characterization of this third-order moment model
for the complete graph by algebraic constraints. The first theorem states a necessary
condition.

Theorem 3.1. If (S, T ) lies in M≤3 (G), then
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a) the matrix

M =


s11 s12 · · · s1n s22 s23 · · · spp
t111 t112 · · · t11n t122 t123 · · · t1pp

...
...

. . .
...

...
...

. . .
...

t11p t12p · · · t1pp t22p t23p · · · tppp


has at most rank p.

b) Moreover, T can be written as

T = C ◦ C ◦ C =

(
p∑
i=1

γiaγibγic

)
a,b,c∈[p]

, (3.2)

for a matrix C ∈ Rp×p.

We first prove part b) of the theorem, which is rather easy to spell out. Then two
alternative proofs for part a) are presented. They reveal the structure of the moments in
two different ways: The first proof shows that the rows of M are spanned by p vectors,
while the second proof derives linear equations the rows of M fulfill. A central tool used
in all three proofs is the following lemma stating that the second and third moments of
X can be written in terms of B and the moments of ε.

Lemma 3.2 ([1, Proposition 2.1]). If (S, T ) is contained in M≤3 (G), then

S = B−TΩ(2)B−1 and T = Ω(3) •B−1 •B−1 •B−1, (3.3)

where • denotes the Tucker product which is defined as

(U •D •D •D)ijk =

p∑
a,b,c=1

uabcdaidbjdck for i, j, k ∈ [p]

for a tensor U ∈ Rp ⊗ Rp ⊗ Rp and a matrix D ∈ Rp×p.

Proof. The lemma can be proven by calculating

sab = E(XaXb)

= E
(
(B−T ε)a · (B−T ε)b

)
= E

((
p∑
i=1

β̃iaεi

)(
p∑
i=1

β̃ibεi

))

=

p∑
i=1

p∑
i=j

β̃iaβ̃jbE(εiεj)

= B−TΩ(2)B−1.

A similar calculation shows that the equation for T holds.
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The other way around, given a diagonal positive definite matrix Ω(2), and a diagonal
tensor Ω(3), there always exists a random vector ε with independent components and
these second and third moments. Consequently, all pairs of matrices and tensors of the
form given in the lemma arise as matrices of seconds and tensors of third moments of
distributions contained in the linear SEM. Taken together, we can rewrite M≤3 (G) as

M≤3 (G) ={
(
B−TΩ(2)B−T ,Ω(3) •B−T •B−T •B−T

)
: Ω(2) ∈ Rp×p positive definite

and diagonal,Ω(3) ∈ Sym3(V ) diagonal, B = I − Λ for a Λ ∈ RE}.

Part b) of the theorem is an immediate consequence of this lemma.

First proof of Theorem 3.1 b). From Lemma 3.2, we know that

T = Ω(3) •B−1 •B−1 •B−1.

As Ω(3) is diagonal,

Ω(3) •B−1 •B−1 •B−1 =

p∑
i=1

ω
(3)
iii β̃ci(β̃aiβ̃bi).

Thus, T can be expressed as in (3.2) with C defined by γia =
3

√
ω

(3)
iii β̃ai.

Now, we turn to the first proof of part a).

First proof of Theorem 3.1 a). Expanding the equations from Lemma 3.2, one obtains

sab =

p∑
i=1

ω
(2)
ii (β̃aiβ̃bi),

tabc =

p∑
i=1

ω
(3)
iii β̃ci(β̃aiβ̃bi)

for all a, b, c ∈ [p]. Hence, all rows of M are contained in

span




β̃1iβ̃1i

β̃1iβ̃2i
...

β̃piβ̃pi

 : i ∈ [p]


 .
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For the second variant of proving the theorem, we need some more notation. Let s =
(sab)a≤b the vector consisting of all distinct second moments, t = (tabc)a≤b≤c the vector
containing all distinct third moments, and t(ν) the subvector of t consisting of all tabc
where a, b or c is ν. So, t(ν)T is the (ν + 1)th row of M .

The proof is again based on the relation

S = B−TΩ(2)B−1 and T = Ω(3) •B−1 •B−1 •B−1.

The diagonality of Ω(2) and Ω(3) is used in order to derive linear equations of the form

A(2) · s = 0 and A(3) · t = 0.

in the second and third moments of X. Subsequently, we modify the equations A(3) ·t = 0
until we obtain

A(2)t(ν) = 0

for all ν ∈ [p]. Hence, for all rows aT of A(2) and all rows x of M ,

aTx = 0,

which proves the statement.

We begin with inferring the linear equations:

Lemma 3.3. With

A
(2)
ij,ab =

∑
(π1,π2) permutation

of (a,b)

βiπ1βjπ2 , i < j, a ≤ b

and

A
(3)
ijk,abc =

∑
(π1,π2,π3) permutation

of (a,b,c)

βiπ1βjπ2βkπ3 , i ≤ j ≤ k and not i = j = k, a ≤ b ≤ c

the equation systems
A(2) · s = 0 and A(3) · t = 0 (3.4)

hold true.

Proof. As the error terms εi are assumed to be independent, Ω(2) = BT ·S ·B is diagonal.
Thus,

ω
(2)
ij =

p∑
a,b=1

βiaβjbsab = 0

for all i 6= j. Similarly,

ω
(3)
ijk =

p∑
a,b,c=1

βiaβjbβkctabc = 0
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for all i, j, k such that not i = j = k. Using the symmetry of the sab and tabc, one obtains∑
a≤b

∑
(π1,π2) permutation

of (a,b)

βiπ1βjπ2sab = 0

for all i < j and ∑
a≤b≤c

∑
(π1,π2,π3) permutation

of (a,b,c)

βiπ1βjπ2βkπ3tabc = 0

for all i ≤ j ≤ k such that not i = j = k. This gives exactly the equations (3.4).

The next lemma demonstrates how one can combine the equations A(3)t = 0 to obtain
that aT t(ν) = 0 for all rows aT of A(2) and all ν ∈ [p].

Lemma 3.4. For each l ≤ m and each ν ∈ [p] there exists a y(l,m,ν) ∈ Rp such that

((y(l,m,ν))T · A(3))ijk =


a

(l,m)
jk if i = ν,

a
(l,m)
ik if j = ν,

a
(l,m)
ij if k = ν,

0 otherwise

,

where a(l,m) is the row indexed by (l,m) of A(2).

Note that ã(l,m,ν) = (y(l,m,ν))T ·A(3) is zero at all positions i, j, k not containing ν. Conse-
quently, the lemma yields a(l,m)t(ν) = ã(l,m,ν)t = 0 for all ν and all l ≤ m.

Proof of Lemma 3.4. Define y(l,m,ν) as

y
(l,m,ν)
abc =

{
β̃νk if {a, b, c} = {m, l, k} for some k ∈ [p],

0 otherwise

For better readability, the indices l,m, and ν in y(l,m,ν) are omitted in the following. We
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compute

yT · (A(3))(abc) =

p∑
i,j,k=1

yijk · A(3)
ijk,abc

=

p∑
k=1

ymlk · A(3)
mlk,abc

=

p∑
k=1

ymlk
∑

(π1,π2,π3) permutation
of (a,b,c)

βiπ1βjπ2βkπ3

=
∑

(π1,π2,π3) permutation
of (a,b,c)

βiπ1βjπ2

p∑
k=1

βkπ3ymlk

=
∑

(π1,π2,π3) permutation
of (a,b,c)

βiπ1βjπ2

p∑
k=1

βkπ3 β̃νk

=
∑

(π1,π2,π3) permutation
of (a,b,c)

βiπ1βjπ21π3=ν

=
∑

(π1,π2) permutation
of (a,b)

βiπ1βjπ2 ,

which concludes the proof.

With this in place, Theorem 3.1 can be shown:

Second Proof of Theorem 3.1. If (S, T ) lies in M≤3(G), then S is the matrix of second
moments and T the tensor of third moments of a random vector X satisfying X = B−Tε
for a B ∈ B := {B ∈ Rp×p : B = I − Λ for a Λ ∈ RE} and a random vector ε whose
components are independent of each other.

We first consider the situation where A(2) has full rank. In this case, Lemma 3.4 yields
that M has at most rank

#columns of M −#rows of A(2) =
p(p− 1)

2
+ p− p(p− 1)

2
= p.

A(2) has full rank, for example for B = I, where

A
(2)
ij,ab =

{
1 if (i, j) = (a, b),

0 otherwise.
(3.5)

This generalizes to arbitrary (S, T ) ∈ M≤3(G) by a continuity argument. Note that A(2)

only depends on B and not on ε. Moreover,

{B ∈ B : A(2) has lower rank} (3.6)
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is the intersection of the kernels of the full minors of A(2). Each of these minors is a
polynomial in the entries of B and is not the zero polynomial on B as shown by the example
(3.5) above. Furthermore, the kernels of non-zero polynomials are lower dimensional. This
result follows with induction from the fact that a non-zero polynomial in one variable has
finitely many zeros [21].

Consequently, the set (3.6) is lower dimensional. This yields the existence of a sequence
B(l) → B with all B(l) having full rank. Now let

X(l) =
(
B(l)

)−T
ε,

and M (l) be the respective matrix of moments. For M (l), we know from the first case
that it has rank at most p and consequently all its full minors are zero. Furthermore, the
moments of X(l) depend continuously on the moments of ε and the entries of B(l). Hence,
M (l) →M , which proves that also M has at most rank p.

Next, we turn to a sufficient condition for belonging to the third-order-moment model.

Theorem 3.5. If M has rank at most p, and T can be expressed as

T = C ◦ C ◦ C (3.7)

for an invertible matrix C ∈ Rp×p, then (S, T ) belongs to the third-order moment model
M≤3 (G).

Proof. First note that if T can be written as in (3.7), it follows that T can also be written
as

T = Ω(3) •B−1 •B−1 •B−1 (3.8)

for an Ω(3) ∈ Sym3(V ) diagonal and a B ∈ Rp×p with ones on the diagonal. To derive
such a tensor Ω(3) and a matrix B, we make the ansatz

ω
(3)
iii β̃aiβ̃biβ̃ci = γiaγibγic for all i = 1, . . . , p. (3.9)

A solution is given by defining B by BT = D · C−1 where D is the diagonal matrix with
the same entries as C−1 on the diagonal. If further ω

(3)
iii is chosen as ω

(3)
iii = d3

ii, (3.9) holds.

Hence, it remains to show that S can be written as S = B−TΩ(2)B−1. For inferring this
relation, we want to write s a linear combination of the lower p rows of M . Since M has
rank p, the first row is certainly a linear combination of the remaining ones as long as
there are no linear dependencies amongst the remaining rows. Denote by M2 the matrix
consisting of the lower p rows of M . Equation (3.8) yields that

tabc =

p∑
i=1

ω
(3)
iii β̃ci(β̃aiβ̃bi).
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Thus, M2 can be computed as

M2 = B−TΩ(3)


β̃11β̃11 β̃11β̃21 · · · β̃p1β̃p1
β̃12β̃12 β̃12β̃22 · · · β̃p2β̃p2

...
...

. . .
...

β̃1pβ̃1p β̃1pβ̃2p · · · β̃ppβ̃pp

 .

The first two factors are invertible by their definition. To show that the last factor has
full rank as well assume that there are αi such that

α1β̃a1β̃b1 + · · ·+ αpβ̃apβ̃bp = 0 for all a ≤ b.

Setting a = 1, we derive(
α1β̃11

)
β̃b1 + · · ·+

(
αpβ̃1p

)
β̃bp = 0 for all b ∈ [p].

The linear independence of the columns of B−1 yields that for each i ∈ [p], either αi or
β̃1i is zero. Similarly, one can conclude that for each a ∈ [p] and for each i ∈ [p], αi is
zero or β̃ai is zero. Combined, we obtain for that each i ∈ [p]

αi = 0 or β̃ai = 0 for all a ∈ [p].

The second option can not occur, as it again would contradict the invertibility of B−1.
Hence, all αi are zero, which shows linear independence.

Consequently, M2 has full rank. Thus, the assumption that M has rank at most p, yields
the existence of a ζ ∈ Rp fulfilling

sab =

p∑
ν=1

ζνtabν =

p∑
ν=1

ζν

p∑
i=1

ωiiiβ̃aiβ̃biβ̃νi.

Therefore, with ω
(2)
ii =

∑
ν ωiiiβ̃νiζν ,

S = B−T · Ω(2) ·B−1

and we are done.

Overall, we have derived a necessary as well as a sufficient condition related to the model
under inspection. While similar, the conditions slightly differ. Specifically, in the first
theorem, the matrix C was arbitrary, whereas it was required to be invertible in the
second one. This prevents us from directly obtaining a characterization from the above
theorems. However, if one restricts to noise terms that have non-zero third moments, an
equivalence holds.

Corollary 3.6 (Characterization of the third-order-moment model). (S, T ) are realizable
under a linear SEM with a noise term with non-zero third moments if and only if M has
at most rank p and T can be calculated as

T = C ◦ C ◦ C (3.10)

for an invertible matrix C ∈ Rp×p.
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Proof. For the first direction, the only thing that is left to show is the invertibility of C
under the stronger assumption of non-vanishing third moments. Recall that C was chosen

as γia =
3

√
ω

(3)
iii β̃ai in the proof of Theorem 3.1. Since we assumed the third moments of

ε to be non-zero, Ω(3) is invertible. Thus, C is invertible as a product of the invertible
matrices Ω(3) and B−T .

For the other direction, note that in the proof of the previous theorem Ω(3) was defined
in a way such that all the diagonal elements are positive. This shows the statement.

3.2 Symmetric Tensor Rank

If T fulfills the condition

T = C ◦ C ◦ C (3.11)

for a C ∈ Rp×p, which appears in Theorem 3.1, we speak of T being a tensor with real
symmetric rank at most p. There is a lot of research on the inference of the symmetric
rank of a tensor [15], [3]. In this subsection we want to derive polynomial equations such
tensors fulfill in order to develop a test of this condition later on. For this aim it makes
sense to replace (3.11) by a weaker condition. As we are interested in deriving polynomial
equations, it is advantageous to work over an algebraically closed field. Therefore, we
allow C to be a complex matrix. Additionally, we consider the closure of tensors fulfilling
(3.11) instead of the set itself. Taken together we obtain the relaxed condition that T is
in the closure of all T ′ that can be expressed as

T ′ = C ◦ C ◦ C (3.12)

for a C ∈ Cp×p. This property is also called T has complex symmetric border rank at
most p. Note that a polynomial that vanishes for T fulfilling the condition (3.11) also
vanishes for all T fulfilling the weaker condition (3.12) since R ⊆ C is infinite and kernels
of polynomials are always closed.

Before turning to the actual results on the symmetric border rank, we give a short intro-
duction to basic concepts related to tensor spaces. For that we mostly follow [15]. We
start with some notation. Throughout the whole section, we work over the field C. In
particular, vector spaces are always assumed to be complex vector spaces. Let V be a
finite-dimensional vector space. Then denote by

� V ∗ the dual of V ,

� v∨ ∈ V ∗ the associated dual element of a v ∈ V ,

� Sp = {π permutation on the set [p]} the symmetric group of order p ,

� sgn(π) the sign of an element π ∈ Sp,

� End(V ) the space of endomorphisms of V .
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Up until now, we have viewed tensors simply as multidimensional arrays. To study the
symmetric border rank in more detail it is helpful to look at tensor spaces also from
a more abstract perspective. Specifically, we use an alternative definition of tensors as
multilinear forms.

Definition 3.7 (Multilinear form). Let V1, . . . , Vk be vector spaces. A map Q : V1×· · ·×
Vk → C is called multilinear if it is linear in each of its arguments.

Definition 3.8 (Tensor product). The tensor product of finite-dimensional of vector
spaces V1, · · · , Vk is defined as

V1 ⊗ · · · ⊗ Vk = {Q : V1 × · · · × Vk → C : Q is multilinear}.

The tensor product of a vector space V taken k-times with itself is abbreviated by V ⊗k.
Moreover, for vectors v1 ∈ V1, v2 ∈ V2, . . . , vk ∈ Vk, define their tensor product v1 ⊗ v2 ⊗
· · · ⊗ vk by

(v1 ⊗ v2 ⊗ · · · ⊗ vk)(w1, . . . , wk) =
k∏
i=1

v∨i (wi).

An element v1 ⊗ v2 ⊗ · · · ⊗ vk ∈ V1 ⊗ · · · ⊗ Vk is called elementary tensor.

Note that not all tensors contained in V1 ⊗ · · · ⊗ Vk are elementary tensors. However, if
Bi for i = 1, . . . , k are bases for Vi, then the set

{b1 ⊗ · · · ⊗ bk : bi ∈ Bi}

gives a basis for V1⊗ · · ·⊗Vk viewed as vector space over C. In particular, all elementary
elements span the tensor space.

After introducing this alternative definition, it makes sense to see how it aligns with the
previous notion of tensors. The space of multilinear maps Cd1×· · ·×Cdk → C is isomorphic
to the space of multidimensional arrays Cd1×···×dk by associating to Q : Cd1 × . . .Cdk → C
the array T ∈ Cd1×···×dk with entries

ti1,...ik = Q(ei1 , . . . , eik),

where ei denotes the ith standard basis vector of Cd. Conversely, for T ∈ Cd1×···×dk , the
respective multilinear map is given by

Q(ei1 , . . . , eik) = ti1,...ık .

Next, we are interested in the subspaces of symmetric and skew-symmetric tensors.

Definition 3.9 (Symmetric tensors). For v1, v2, . . . , vk ∈ Cp, denote

v1v2 · · · vk =
1

k!

∑
π∈Sk

vπ(1) ⊗ · · · ⊗ vπ(k)
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and accordingly denote vk = vv · · · v, where v is multiplied k times with itself, for v ∈ V .
Furthermore, define the map πS : (Cp)⊗k → (Cp)⊗k by

πS(v1 ⊗ v2 ⊗ · · · ⊗ vk) = v1v2 · · · vk
and extend the definition to (Cp)⊗k by linearity. The subspace of symmetric tensors is
defined as the image

Symk(Cp) = πS
(
(Cp)⊗k

)
.

Definition 3.10 (Skew-symmetric tensors). Similarly, for v1, v2, . . . , vk ∈ Cp, let

v1 ∧ v2 ∧ · · · ∧ vk =
1

k!

∑
π∈Sk

sgn(π)vπ(1) ⊗ · · · ⊗ vπ(k)

and define the map πΛ(Cp)⊗k → (Cp)⊗k by

πΛ(v1 ⊗ v2 ⊗ · · · ⊗ vk) = v1 ∧ v2 ∧ · · · ∧ vk.

The subspace of skew-symmetric tensors is given by

Λk(Cp) = πΛ

(
(Cp)⊗k

)
.

The space of symmetric tensors indeed consists of symmetric tensors in the sense that

Symk(Cp) = {T : T ◦ π = T for all π ∈ Sp}.

This also shows that the new definition of the space of symmetric tensors aligns with
the previous one. Likewise, the skew-symmetric tensors are precisely the tensors that are
invariant under permutations except for a change in the sign:

Λk(Cp) = {T : T ◦ π = sgn(π)T for all π ∈ Sp}.

An important result needed for the next theorem is that each non-zero element Ω ∈ Λp(Cp)
gives rise to an isomorphism Λk(Cp) ' Λp−k(Cp) given by

Λk(Cp)→ Λp−k(Cp)

v1 ∧ · · · ∧ vk 7→ Ω(v1, . . . , vk, ·, . . . , ·).
(3.13)

The tensor Ω is called volume form. Two special cases of this fact are relevant to us.
If one chooses Ω = e1 ∧ e2 ∧ e3, where {e1, e2, e3} denotes the standard basis of C3, one
obtains the isomorphism

Λ3(C3)→ C
v1 ∧ v2 ∧ v3 7→ Ω(v1, v2, v3) = (e1 ∧ e2 ∧ e3)(v1, v2, v3),

where the left expression turns out to be the determinant of the matrix with columns v1,
v2 and v3. The same volume form furthermore gives the isomorphism

Λ2(C3)→ C3

v1 ∧ v2 7→ Ω(v1, v2, ·) = (e1 ∧ e2 ∧ e3)(v1, v2, ·) = det ((v1 v2 ·)) .

Now, we can give a general definition of the symmetric border rank of a tensor.
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Definition 3.11 (Symmetric rank). A symmetric tensor T ∈ Symk(Cp) is said to have
rank one if it can be written as T = vd for some v ∈ Cp. Further, T has rank r if r is
minimal with the property that T can be written as the sum of r rank one tensors.

If we would replace C by R in this definition, the property (3.11) in Theorem 3.1 would
be indeed equivalent to T having symmetric rank at most p. If T is a tensor of the form
T =

∑p
i=1 v

d
i for d vectors vi ∈ Cp, then T viewed as an array takes the form

tabc =

p∑
i=1

(vi)a(vi)b(vi)c,

where (vi)j denotes the jth coordinate of vi. This proves the claim. The symmetric rank
over C is in general lower or equal than the symmetric rank over R.

Next, the symmetric border rank is introduced.

Definition 3.12 (Symmetric border rank). The symmetric border rank of a tensor T
is the smallest r such that there exists a sequence (Tl) of tensors of symmetric rank r
converging to T . We denote the set of all tensors with symmetric border rank at most r
by σ̂r,Symk(Cp).

One observes that the set of symmetric tensors with symmetric border rank bounded by
r is the closure of all symmetric tensors with rank at most r. This shows on the one hand
that the symmetric border rank is always lower or equal than the symmetric rank. On
the other hand, the closedness of the set is also the reason why it is easier to study the
symmetric border rank.

Now, we examine under which circumstances a tensor T ∈ Sym3(Cp) has symmetric
border rank at most p. We start with p = 2.

Proposition 3.13. Every symmetric tensor T ∈ Sym3(C2) has symmetric border rank
at most two.

Proof. T viewed as an array is uniquely determined by the entries t111, t112, t122, and t222

due to symmetry. Hence, T can be written as the sum of two tensors of the form v2 and
wd if and only if

t111 = (v1)3 + (w1)3,

t112 = (v1)2v2 + (w1)2w2,

t122 = v1(v2)2 + w1(w2)2,

t222 = (v2)3 + (w2)3.

This equation system has a solution for all Sym3(C2) except for a lower dimensional
subset. Consequently, the subset of tensor with symmetric rank at most two is dense in
Sym3(C2), which shows that all elements of Sym3(C2) have symmetric border rank at
most two.
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For p = 3, a polynomial equation characterizing the set of tensors with symmetric border
rank bounded by three is known.

Theorem 3.14 (Aronhold invariant, [2]). A symmetric tensor T ∈ Sym3(Cp) has sym-
metric border rank at most three if and only if the so-called Aronhold invariant

t111t222t333t123 − (t222t333t112t113 + t333t111t122t223 + t111t222t133t233)

− t123(t111t223t233 + t222t133t113 + t333t112t122) + (t111t122t
2
233 + t111t133t

2
223

+ t222t112t
2
133 + t222t233t

2
113 + t333t223t

2
112 + t333t113t

2
122)− t4123

+ 2t2123(t122t133 + t233t112 + t113t223)− 3t123(t112t223t133 + t113t122t233)

− (t2122t
2
133 + t2233t

2
112 + t2113t

2
223) + (t233t112t113t223 + t113t223t122t133

+ t122t133t233t112)

vanishes for T .

There are several proofs of this theorem. We present a version that expresses the Aronhold
invariant as a so-called Pfaffian of a matrix since a similar procedure is used in the next
result in this subsection.

More precisely, the proof is accomplished by associating a matrix AT ∈ C9×9 to T ∈
Sym3(Cp). This matrix has rank bounded by six if T has rank bounded by three. Hence,
all 8× 8-minors of AT vanish for T ∈ σ̂3,Sym3(C3). What is more, skew-symmetric matrices
with even numbers of columns and rows have the special property that their determinant
is always the square of a polynomial. This polynomial is called the Pfaffian of the matrix.
Accordingly, the principal Pfaffians of order 2m of a skew-symmetric matrix are the square
roots of the principal minors of order 2m. For AT , all those principal 8-Pfaffians coincide
up to multiplicity with a scalar and further match the Aronhold invariant up to scale.

Proof of Theorem 3.14. (Following [22]) Throughout the whole proof we implicitly use
the isomorphisms Λ3(C3) ' C and Λ2(C3) ' C3 as in (3.13) with the fixed volume form
Ω = e1 ∧ e2 ∧ e3.

First, it is shown that the Aronhold invariant indeed vanishes for tensors of symmetric
border rank not larger than three. As already mentioned, we want to define the matrix
AT . To do that, we proceed in several steps. The assignment T 7→ AT should be linear,
so it makes sense to give the definition first for elementary elements T = w1 ⊗w2 ⊗w3 ∈
C3 ⊗ C3 ⊗ C3.

As a first step, view w1 ⊗ w2 ⊗ w3 as a linear map C3 → C3 ⊗ C3:

y 7→ y∨(w1)w2 ⊗ w3.

Then, tensor this map with the identity IdC3 : C3 → C3 and obtain a map

C3 ⊗ C3 → C3 ⊗ C3 ⊗ C3

x⊗ y 7→ y ⊗ ((y∨(w1))w2 ⊗ w3) = y∨(w1) (x⊗ w2 ⊗ w3) .
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Finally, the two penultimate factors are skew-symmetrized to combine them into a factor
in Λ2Cp ' Cp

x⊗ y 7→ y∨(w1) ((x ∧ w2)⊗ w3) .

Thus, we end up with a map C3 ⊗ C3 → Λ2 (C3) ⊗ C3 which we define as the desired
AT . For the next steps of the proof, it is convenient to view AT as a linear map from
End(C3) to End(C3). So, we identify both, the definition and image space, with the space
End(C3), by viewing x∧w2 ∈ Λ2(C3) as an element of C3 and then using the isomorphism

C3 ⊗ C3 → End(C3)

u1 ⊗ u2 7→ φ where φ(z) = u∨1 (z)u2.

Applying the isomorphism first to the definition space yields the formula

AT (C)(v) = (CT (w1) ∧ w2)⊗ w3,

for C a matrix representing an element in End(C3). Subsequently, applying it to the
image space gives

AT (C)(v) = (CT (w1) ∧ w2 ∧ v)w3

for C a matrix representing an element in End(C3) and v ∈ C3. In the last step we used
that for the element CT (w1) ∧ w2 ∈ Λ2(C3) the dual element is given by(

CT (w1) ∧ w2

)∨
= Ω(CT (w1), w2, ·) = CT (w1) ∧ w2 ∧ ·.

To verify that AT is skew-symmetric we equip the vector space End(C3) with a scalar
product 〈· , ·〉 so that the skew-symmetricity can be verified by checking that

〈AT (C), D〉 = −〈AT (C), D〉

for all C,D ∈ End (C3). A scalar product is given by the Killing scalar product 〈C,D〉 =
tr(ABT ). With this,

tr(AT (C)DT ) =
3∑
j=1

e∧j
(
AT (C)(DT (ej))

)
=

3∑
j=1

e∧j
(
AT (C)(DT (ej))

)
=

3∑
j=1

e∧j

(∑
π∈S3

(CT (eiπ(1)) ∧ eiπ(2) ∧D
T (ej))eiπ(3)

)

=
∑
π∈S3

3∑
j=1

e∧j

(
(CT (eiπ(1)) ∧ eiπ(2) ∧D

T (ej))eiπ(3)

)
=
∑
π∈S3

(CT (eiπ(1)) ∧ eiπ(2) ∧D
T (eiπ(3)))

= −
∑
π∈S3

(DT (eiπ(1)) ∧ eiπ(2) ∧D
T (eiπ(3)))

= −tr(AT (D)CT ).
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The next step is to show that for a symmetric tensor with rank one, rank(AT ) ≤ 2. On
one hand,

tr(Aei1ei2ei3 (C)) =
3∑
j=1

e∧j
∑
π∈S3

(CT (eiπ(1)) ∧ eiπ(2) ∧ ej)eiπ(3)

=
∑
π∈S3

(CT (eiπ(1)) ∧ eiπ(2) ∧ eiπ(3)) = 0.

Hence, from linearity of T 7→ AT , tr(AT (C)) is zero for all T ∈ Sym3(C3) and all C. On
the other hand, for w3 a tensor with symmetric rank 1, the matrix Aw3 fulfills

Aw3(C)(v) = 6
(
CT (w) ∧ w ∧ v

)
w ⊆ span(w)

for every v. Overall,

Im (Aw3) ⊆ {D : Im(D) ⊆ span(w) and tr(D) = 0},

which has dimension two.

Therefore, for T a sum of three rank one tensors w3
i , one obtains

rank(AT ) = rank

(
r∑
i=1

Aw3
i

)
≤

r∑
i=1

rank
(
Aw3

i

)
≤ 3 · 2 = 6.

Due to continuity, the same bound holds for all tensors with symmetric border rank at
most 3. As a consequence, all principal Pfaffians of size eight of AT vanish.

The final step for showing the necessity of the Aronhold equation is verifying that the
Pfaffians of AT have indeed the form given in the theorem. For that, one needs to
express AT as a matrix for some choice of a basis for End(Cp). For example, for the basis
M1 = e1 ⊗ e1,M2 = e2 ⊗ e1,M3 = e3 ⊗ e1,M4 = e1 ⊗ e2, . . . ,M9 = e3 ⊗ e3, one obtains

AT =



0 t113 −t112 0 −t123 t122 0 t133 −t123

−t113 0 t111 t123 0 −t112 −t133 0 t113

t112 −t111 0 −t122 t112 0 t123 −t113 0
0 −t123 t122 0 t223 −t222 0 −t233 t223

t123 0 −t112 −t223 0 t122 t233 0 −t123

−t122 t112 0 t222 −t122 0 −t223 t123 0
0 t113 −t123 0 −t233 t223 0 t333 −t233

−t133 0 t113 t233 0 −t123 −t333 0 t133

t123 −t113 0 −t223 t123 0 t233 −t133 0


for T = (tijk). It turns out that all the principal 8-Pfaffians coincide up to multiplication
with a scalar and also match the Aronhold invariant up to scale.

To derive sufficiency, one shows that the codimension of σ̂3,Sym3(C3) is one, which means
that σ̂3,Sym3(C3) is the kernel of one polynomial. In addition, there is no polynomial with
a lower degree as the Aronhold invariant that vanishes on the set in question. This step
is for example carried out in Chapter 15 in [15].
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For higher p, no equation system characterizing σ̂p,Sym3(Cp) is known. However, there are
results about necessary equations tensors contained in this space are fulfilling. As shown
in [15, (3.10.1)], those equations can be obtained similarly to the Aronhold invariant. Let
a = bp

2
c. We again define a matrix AT first for an elementary element T = w1⊗w2⊗w3 ∈

Cp ⊗ Cp ⊗ Cp as follows: View w1 ⊗ w2 as a map Cp → Cp, and use the last factor w3 to
obtain a function Λa (Cp) → Λa+1 (Cp) by v 7→ v ∧ w3. Combining the two maps yields
the desired element AT : Cp ⊗ Λa (Cp)→ Cp ⊗ Λa+1 (Cp). Similarly as before, AT viewed
as a matrix has lower rank for T ∈ σ̂3,Sym3(Cp).

Theorem 3.15 ([15, (3.10.1)]). If T has symmetric border rank at most p, then AT ∈
Rp(pa)×p(

p
a) has at most rank

(
p−1
a

)
p.

Thus, for every p, the minors of AT vanish on σ̂p,Sym3(Cp). Moreover, for odd p, AT is
skew-symmetric, so again the Pfaffians of the corresponding size vanish.

In addition to those algebraic results, there exist various algorithms to infer the symmetric
rank of a tensor. Examples include the methods in [19], [3] and [4].

3.3 Higher Moments

Considering also higher moments, we can find even more linear dependencies. More
precisely, we obtain constraints in the cumulant tensors of X.

Definition 3.16. The k-th order cumulant tensor C(k) ∈ (Rp)⊗k is given by

C(k)
(i1,...,ik) =

∑
(A1,...,Al)

(−1)l−1(l − 1)!E

[∏
j∈A1

Xj

]
· · ·E

[∏
j∈Al

Xj

]
,

where (A1, . . . , Al) is an arbitrary partition of {i1, . . . , ik}.

Like for the second and third moments, one can establish a connection between the cu-
mulants of X and ε if X solves a linear structural equation system. For C(k) the k-th
order cumulant tensor of X, and Ω(k) the k-th order cumulant tensor of ε the following
holds.

Lemma 3.17 ([30, Lemma 2.4]). If PX belongs to the graphical model of the complete
graph G, then

C(k) = Ω(k) •B−1 • · · · •B−1,

where the factor B−1 appears k times.

The proof works similarly to the case of the second and third moments.



22 3 GRAPHICAL MODEL ASSOCIATED WITH THE COMPLETE GRAPH

From Lemma 3.17, analogous to the proof of Theorem 3.1, one can show that for each
tuple (j1, j2, . . . , jl−2) ∈ [p]l−2 the vector

cj1j2...jk−211

cj1j2...jk−212
...

cj1j2...jk−2pp

 (3.14)

where cj1j2...jk denote the entries of C(k) is contained in

span




β̃1iβ̃1i

β̃1iβ̃2i
...

β̃piβ̃pi

 : i ∈ [p]


 .

Therefore, if C(k) is rearranged into a matrix in a way that each row contains a vector of
the form (3.14), and is appended to M , the rank remains bounded by p.

3.4 Conditions for one Missing Edge

In this section, it is examined for the case p = 3 whether further equations hold if one
edge is removed from the graph.

Theorem 3.18. Let p = 3. If PX belongs to a linear SEM with a noise term with non-
zero third moments and furthermore one edge weight βj∗i∗ is zero, then all full minors of
the submatrix of M with columns indexed by (a, b) where a, b 6= i∗ are zero.

Example 3.19. For example, if β21 is zero, then all full minors of the matrix

N =


s11 s13 s33

t111 t113 t133

t211 t213 t233

t311 t313 t333


vanish.

Proof. Without loss of generality, let i∗ = 1 and j∗ = 2. If β21 = 0, the minor of B−T

obtained by eliminating the second row and the first column has determinant zero. Hence,
there is a ζ such that (

β̃11

β̃31

)
= ζ ·

(
β̃12

β̃32

)
.

From these two equations, for all (a, b) in {(1, 1), (1, 3), (3, 3)},

β̃a1β̃b1 = ζ2β̃a2β̃b2.
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To show that the last three rows ofN are linearly dependent define αν =
∑3

µ=1,µ 6=2 δµω
−1
µµµβµν ,

for δ = (1, 0,−ζ2). Then

3∑
ν=1

ανtνab =
3∑

ν=1

3∑
µ=1,µ 6=2

3∑
i=1

δµβµνω
−1
µµµωiiiβ̃aiβ̃biβ̃νi

=
3∑

µ=1,µ 6=2

δµβ̃aµβ̃bµ

= 0.

(3.15)

Additionally, from the proof of Theorem 3.6, the first row of M is a linear combination
of the other rows. This together with (3.15) proves the statement.
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4 Statistical Tests

In this section, we exploit the results of the previous section to develop a procedure for
testing the assumption that a distribution follows a linear SEM. First, some basic notions
in the field of statistics are recalled. When developing a test to assess a certain null
hypothesis H0 about a distribution PX , one is interested in controlling the size of it. The
size is the probability of rejecting the null hypothesis although it is true. More precisely,
one requires the size to be lower than a fixed level or nominal size α, which is typically
chosen to be 0.05. Furthermore, the power of the test is the likelihood of rejecting the
null hypothesis if it is indeed wrong. One aims for a power as high as possible.

Coming back to our aim of assessing the linearity assumption, the question arises which
conditions inferred in the previous section to test exactly. Recall that in the previous
section we derived

a) a necessary condition for the general third-order moment model,

b) a slightly stronger condition that characterizes the restricted third-order moment
model where only noise terms with non-zero third moments are allowed.

Thus, testing for condition b) could result in a slightly improved power compared to
testing for condition a). However, distributions following linear SEMs with noise terms
whose third moments vanish would be wrongly rejected. Therefore, we validate condition
a). Recall that condition a) consists of two parts:

� M has rank at most p, and

� T has symmetric rank at most p.

We present four options for testing the rank condition on M . There exists a vast collection
of methods for that in the literature. For example, algorithms have been developed that
are based on the QR, Cholesky, LU, or Singular Value decomposition of the matrix in
question. We refer to [24] for an overview of existing tests and their asymptotics.

Most of the existing algorithms consider the null hypothesis

H0 : rank(Π) = r vs. H1 : rank(Π) > r (4.1)

and do not take the possibility of an even lower rank into account. This is the main
motivation why we choose to consider the four approaches presented. All of them, apart
from the first one, have the advantage that they can be used to address null hypothesis

H0 : rank(Π) ≤ r vs. H1 : rank(Π) > r.

The first test we introduce is used as a sub-procedure in the second algorithm presented.
The test on its own can only handle the null hypothesis (4.1). Both algorithms utilize
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the singular value decomposition of M . The other two methods are procedures to test
polynomial constraints. Thus, for our objective, they can be used by validating if all full
minors of M are zero.

For testing the rank condition regarding T , again the two tests assessing polynomial
constraints can be used by applying them with the necessary equations for the symmetric
border rank of a tensor obtained in section 3.2.

Throughout the whole section, n denotes the sample size, and X =
(
X(1), . . . ,X(n)

)
is an independent and identically distributed sample drawn from PX . Furthermore, we
write vec(A) for the column vectorization of a matrix A, so for A = (aij),

vec(A) =



a11

a21
...
ak1

a12
...
akl


.

4.1 Singular Value Based Approaches

Before the exact procedures of the tests are explained, we shortly recall the singular value
decomposition. Let Π ∈ Rk×m. To simplify notation we assume without loss of generality
that k ≤ m. The singular value decomposition of Π is defined as a decomposition of the
form

Π = UΣV T

where U ∈ Rk×k and V ∈ Rm×m are required to be orthogonal, and Σ ∈ Rk×m takes the
form

Σ =


σ1 0 · · · 0 0 · · · 0
0 σ2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · σk 0 · · · 0

 ,

where the diagonal entries satisfy σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0. The σi are called singular
values of Π. Note that U and V are in general not uniquely determined, whereas Σ
is uniquely determined. As, both, U and V are invertible, Π has rank r if and only if
precisely the last k − r singular values are zero.
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4.1.1 Kleibergen-Paap Test

The first method we introduce is the rank test by Kleibergen and Paap [13]. The setup
is as follows: One considers the null hypothesis

H0 : rank(Π) = r vs. H1 : rank(Π) > r,

where Π ∈ Rk×m is an arbitrary matrix of parameters of a distribution. Furthermore, the
existence of a consistent estimator Π̂ of Π satisfying

√
n
(

vec(Π)− vec(Π̂)
)

d−−→ N (0,W ) (4.2)

for some covariance matrix W is required. The test is based on the above-mentioned
equivalence of Π having rank r and the smallest k− r singular values of Π being zero. Let

Π = UΣV T

be the singular value decomposition of Π. As we are interested in the last k − r singular
values, we consider the block decomposition(

U11 U12

U21 U22

)(
Σ1 0
0 Σ2

)(
V T

11 V T
21

V T
12 V T

22

)
=

(
U11

U21

)
Σ1

(
V T

11 V T
21

)
+

(
U12

U22

)
Σ2

(
V T

12 V T
22

)
with U11 ∈ Rr×r, U12 ∈ Rr×k−r, U21 ∈ Rk−r×r, U22 ∈ Rk−r×k−r, V11 ∈ Rr×r, V12 ∈
Rr×m−r, V21 ∈ Rm−r×r, and V22 ∈ Rm−r×m−r.

Further, we denote U1 =

(
U11

U21

)
, V1 =

(
V11

V21

)
, U2 =

(
U12

U22

)
, and V2 =

(
V12

V22

)
.

We want to base a test statistic on the matrix Σ̂2 of the last singular values of Π̂. Hence,
we need to find out the limiting distribution of the matrix. As singular values are by
definition non-negative, the limiting distribution of Σ̂2 is certainly not normal. Therefore,
we do not want to use Σ̂2 directly as a test statistic but, first, transform it to obtain a
statistic with a normal limiting distribution.

The transformation is carried out as follows: One aims at finding matrices A ∈ Rk×r, B ∈
Rr×m, Ξ ∈ Rm−r×k−r, A⊥ ∈ Rk×k−r, and B⊥ ∈ Rm−r×m such that

U1Σ1V
T

1 = AB and U2Σ2V
T

2 = A⊥ΞB⊥.

At the same time, the matrices are required to fulfill

� ATA⊥ = 0 and B⊥B
T = 0,

� AT⊥A⊥ = I and B⊥B
T
⊥ = I,

� A and B have full rank.

With this ansatz the following three properties are fulfilled:
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Proposition 4.1. For Ξ obtained as described above the following holds.

a) Ξ can be obtained from Σ2 by pre- and post-multiplying with orthogonal matrices,

b) Ξ is zero if and only if Σ2 is zero, and

c) Ξ can be derived from Π by calculating Ξ = AT⊥ΠBT
⊥.

Proof. To show a) first note that

Ξ = AT⊥U2Σ2V
T

2 B
T
⊥.

Moreover, AT⊥U2 is orthogonal because
(
AT⊥U2

)T
AT⊥U2 = U2A⊥A

T
⊥U2 = U2U2. Similarly,(

V T
2 B

T
⊥
)

is orthogonal, which concludes the proof.

To derive the equivalence b) first assume that Π has rank r. In this case,

AT⊥ΞBT
⊥ = U2Σ2

(
V T

12 V T
22

)
= 0.

As A⊥ and B⊥ are left and right invertible, respectively, it follows that Ξ is zero. If the
other way around Ξ = 0, then Π = AB. But AB has rank r as A and B have full rank.

Property c) follows since

AT⊥ΠBT
⊥ = AT⊥ (AB + A⊥ΞB⊥)BT

⊥

= AT⊥ABB⊥ + AT⊥A⊥ΞB⊥B
T
⊥

= Ξ.

from the assumptions made on A, A⊥, B, B⊥ and Ξ.

The crucial point is to choose a specific orthogonal transformation such that the resulting
limiting distribution of Ξ is normal. Note that this is not the case for all potential choices
of A⊥ and B⊥. It is for example possible to define A⊥ as U2 and B⊥ as V2. Then Ξ would
be Σ2 which does not have a normal limiting distribution.

To illustrate how one can obtain a choice that leads to a normal limiting distribution first
consider the special case of testing for a normal matrix Π ∈ Rk×k if rank(Π) = k − 1. As
Π is normal, it has an eigendecomposition

Π = ODOT

with D diagonal and O orthogonal. The singular value decomposition is closely related
to the eigendecomposition. Namely, the singular values are the absolute values of the
eigenvalues. Like the columns of O, the columns of U and V are the eigenvectors of Π.
The only difference is that exactly for the negative eigenvalues, ui needs to be −vi. This
aligns with fact that Σ consists of the absolute values of the entries in D. Thus, if one
defines

Ξ = sign(ukk)σksign(vkk)
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one reverses taking the absolute value so that the formula yields exactly the smallest
eigenvalue of Π. Contrary to the absolute value, the function that assigns to a matrix
its smallest eigenvalue is locally differentiable [18]. Consequently, the delta theorem and
the fact that Π has a normal limiting distribution ensure that Ξ has a normal limiting
distribution.

This idea can be generalized by defining A⊥ and B⊥ as

A⊥ = U2U
−1
22

(
U22U

T
22

) 1
2 , (4.3)

B⊥ =
(
V22V

T
22

) 1
2 V −T22 V2. (4.4)

With this choice of A⊥ and B⊥, Ξ takes the form

Ξ =
(
U22U

T
22

)− 1
2 U22Σ2

(
V22V

T
22

)− 1
2 V22.

After laying out the theoretical background, we turn to the definition of the actual test
statistic. In the same way as Ξ is calculated from Π we obtain Ξ̂ from Π̂ by first calculating
the singular value decomposition of Π̂, calculate ÂT⊥ and B̂T

⊥ according to (4.3) and then
define Ξ̂ as

Ξ̂ = ÂT⊥Π̂B̂T
⊥.

For the exact same reason as for Π, Ξ̂ is zero if and only if Π̂ has rank r. In order to
obtain a test procedure, it remains to find the limiting distribution of Ξ. For that, denote

ξ̂ = vec(Ξ̂)

and

Wr =
(
B⊥ ⊗ AT⊥

)
W
(
B⊥ ⊗ AT⊥

)
.

Then the limiting distribution is given by the subsequent formula.

Theorem 4.2 ([13, Theorem 1]). If Wr is non-singular and H0 holds true, then

√
nξ̂

d−−→ N (0,Wr). (4.5)

Hence, the test statistic can be defined as

rk = nξ̂TW−1
r ξ̂.

As a direct consequence of (4.5), one obtains

rk
d−−→ χ2((k − r)(m− r)).

Thus, for a given nominal level α we reject if

rk ≥ cα,

where cα is the (1− α)th quantile of χ2((k − r)(m− r)).
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Fulfilment of assumptions For the purpose of testing the rank of the matrix M the
requirement (4.2) can be easily fulfilled. The matrix M consists of sample moments.
Hence, the central limit theorem yields

√
n (vec(M)− vec(M))

d−−→ N (0,W )

for the matrix

W =


Cov(X2

1 , X
2
1 ) Cov(X2

1 , X
3
1 ) · · · Cov(X2

1 , X
3
n)

Cov(X3
1 , X

2
1 ) Cov(X3

1 , X
3
1 ) · · · Cov(X3

1 , X
3
n)

...
...

. . .
...

Cov(X3
n, X

2
1 ) Cov(X3

n, X
3
1 ) · · · Cov(X3

n, X
3
n)

 ,

which can be estimated for example using sample covariances.

4.1.2 Bootstrap Statistic

An alternative way to handle the non-standard limiting distribution of the singular values
is to use bootstrap as proposed by Chen [6]. Bootstrap is a resampling method developed
by Bradley Efron in 1979 [10]. The principal idea behind the methodology is to use the
sample itself to obtain an estimate of the limiting distribution of the test statistic under
H0 instead of only leveraging theoretical knowledge about the limiting distribution.

For the aim of testing the rank of a matrix Π ∈ Rk×m, one can make use of the bootstrap
method as follows. We require the existence of a consistent estimator Π̂ of Π such that
the distribution of the difference converges to some random matrix W :

√
n(Π̂n − Π)

d−−→W . (4.6)

In contrast to the previous method, W does not necessarily need to have a normal dis-
tribution. We assume again k ≤ m. Leveraging the same relation of the rank and the
singular values as for the Kleibergen-Paap statistic, one might use

φr = n

k∑
j=r+1

σ2
j

(
Π̂n

)
as a test statistic. To be able to calculate the critical value, one needs to approximate
the limiting distribution under the null hypothesis. For that, we first look at the limiting
distribution the statistic has in theory.

Theorem 4.3 ([6, Theorem 3.1]). Under H0 : rank(Π) ≤ r,

φr
d−−→

k−r∑
j=r−r0+1

σ2
j

(
UT

2 WV2

)
,

where r0 indicates the true rank of Π.
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The theorem can be proven by invoking a generalization of the delta method. The test
statistic φr is not differentiable in the classical sense. Consequently, the delta method can
not be applied. Instead, we use a generalization of the delta method that is based on a
relaxed notion of differentiability, namely the Hadamard directional derivative.

Definition 4.4. Let φ : Rk×m → R. Then φ is Hadamard directionally differentiable in
A ∈ Rk×m if there is a function φ′A : Rk×m → R such that

lim
l→∞

φ(A+ hlCl)− φ(A)

hl
= φ′A(C)

for all sequences Cl converging to some C ∈ Rk×m and all positive sequences hl → 0. In
this case, φ′A is called the Hadamard directional derivative of φ in A. If additionally there
exists a function φ′′A : Rm×k → R such that

lim
l→∞

φ(A+ hlCl)− φ(A)− hlφ′A(Al)

h2
l

= φ′′A(C)

for all sequences Al → A and all positive sequences hl → 0, φ is second-order Hadamard
directionally differentiable in A.

With this weaker notion of differentiability, the test statistic φr becomes differentiable.

Lemma 4.5. φr is Hadamard directionally differentiable on Rk×m with

φ′r,Π(C) = min
U∈Ψ(Π)

2tr
(
UC(UΠ)T

)
,

where Ψ(Π) = arg minU∈S(k−r)×k‖UΠ‖2 and S = {U : UTU = I}.

In the case where φr(Π) = 0, the function is additionally second-order Hadamard direc-
tionally differentiable, and the derivative is given by

φ′′r(Π)(C) =

k−r0∑
j=r−r0+1

σ2
j (U

T
2 CV2).

The reason why we are also interested in the second-order derivative is that φ′r,Π is zero
for matrices Π that fulfill the null hypothesis. If rank(Π) = 0, then

UT
2 Π = UT

2 (UΣV T ) = UT
2 U1ΣV T + UT

2 U2ΣV T = 0

since U is orthogonal and the last k−r singular values are zero. Thus, minU∈S(k−r)×k ‖UΠ‖2 =
0 and φ′r(Π) ≡ 0. Due to this, the delta method would give

√
nφr(Π̂)

d−−→ 0.

Instead, we turn to the second-order delta method. This method can be generalized for
Hadamard directionally differentiable functions as shown by [7]:
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Theorem 4.6 (Second-order delta method, [7, Theorem 2.1]). Let (a(l)) a sequence of real

numbers, (X(l)) a sequence of random vectors, and b ∈ R. If a(l) →∞, a(l)(X(l)− b) d−−→
Z, and g : Rk×m → R is Hadamard directionally differentiable in b, then(

a(l)
)2

(g(X(l))− g(b)− g′b(X(l) − b)) d−−→ g′′b (Z).

With this, the result about the asymptotic distribution of the test statistic can be proven.

Proof of Theorem 4.3. Assumption (4.6) ensures that

√
n(Π̂n − Π)

d−−→W

for some matrix W . Besides that, under H0, φr(Π) is zero. Consequently, from Lemma
(4.5), φr is second-order Hadamard directionally differentiable and the second-order delta
method can be applied:

n(φr(Π̂n)− φr(Π)− φ′r,Π(Π̂n − Π)
d−−→ φ′′r,Π(W) =

k−r∑
j=r−r0+1

σ2
1

(
UT

2 WV2

)
.

φr(Π), as well as the function φ′r,Π are zero. Thus, the statement follows.

However, W is not known in practice. Here the bootstrap idea comes into place. We
randomly sample E so-called bootstrap samples X ∗1, . . . ,X ∗E from X with replacement.
Each bootstrap sample has the same sample size as X . These samples are now used
to estimate the distribution of W . For that, obtain an estimate of Π from each of the
bootstrap samples and denote them by

Π̂ (X ∗1) , . . . , Π̂ (X ∗E) .

With this, obtain E estimates

W∗e =
√
n
(

Π̂ (X ∗e)− Π̂n

)
, e = 1, . . . , E,

of W . Hence, the empirical distribution

F̂ (t) =
1

E

E∑
e=1

1W∗
e≤t

approximates the distribution of W . Now, let ĉn,1−α be the (1 − α)th quantile of the
values

σ2
1

(
UT

2 W∗1V2

)
, . . . , σ2

1

(
UT

2 W∗EV2

)
and reject H0 if

nσ2
r+1

(
Π̂n

)
> ĉn,1−α.
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Lower Rank If we want to test for the null hypothesis

H0 : rank(Π) ≤ r,

instead of examining if the rank is equal to r, we have to find a way how to deal with
the appearance of r0 in the formula of the limiting distribution. There are several options
for tackling this. The proof of Theorem 4.3 shows that the limiting distribution of the
test statistic can alternatively be written as φ′′r,Π(W). So, one possibility to estimate the
limiting distribution is to numerically approximate the derivative φ′′r,Π by computing

φ̂′′r,Π̂(C) =
φ(Π̂ + hnC)− φ(Π̂)

h2
n

for some sequence hn ↓ 0. However, in practice, it is quite difficult to choose the sequence
hn.

An alternative method is to replace r0 with a consistent estimator r̂0. For example, one
can iteratively apply the Kleibergen and Paap test to obtain r̂0. The exact algorithm
then reads as

1. Compute the singular value decomposition of Π̂.

2. Sequentially apply the Kleibergen-Paap algorithm for each r′ = 0, . . . , r with level
β = α/10.

3. Define r̂0 as the smallest r′ for that the Kleibergen-Paap test accepted. If it accepted
in none of the iterations, reject the null hypothesis.

4. Compute E bootstrap samples W∗e of W .

5. Based on that compute E estimates

k−r∑
j=r−r̂0+1

σ2
j

(
UT

2 W∗1V2

)
, . . . ,

k−r∑
j=r−r̂0+1

σ2
j

(
UT

2 W∗EV2

)
(4.7)

of the limiting distribution.

6. Let ĉ1−α+β be the (1− α + β)th quantile of the values in (4.7).

7. Reject if n
∑k

j=r+1 σ
2
j

(
Π̂n

)
> ĉ1−α+β.

The motivation behind using β and α − β in steps 2. and 7. is that the test procedure
should have level α in total. Choosing level β in step 2., and α − β in the last step,
should lead to a rejection rate of approximately β in step 2. and α − β in the last step.
Taken together, we should obtain the desired size. A formal proof that the size is indeed
bounded by α can be found in [6, Theorem 3.3].
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4.2 Tests Using Minors

4.2.1 Incomplete U-Statistic

The second approach is to assess whether all full minors of M are zero. Hence, one
needs to test for several polynomials in the moments of X if they vanish. For that,
the incomplete U -statistic by Sturma, Drton, and Leung [29] is used. The statistic is a
method to test polynomial inequalities in parameters of a multivariate distribution X.
Here, it is presented how the statistic works for polynomial equality constraints regarding
the moments of the distribution since this is the situation relevant for this thesis.

To illustrate the idea behind the incomplete U -statistic, first an example is examined.
Consider a two-dimensional random variable X = (X1, X2) ∈ R2 and the polynomial

f(E(X1),E(X2)) = E(X1)E(X2).

If one wants to test whether f is zero one can use the sample mean of X and define the
plug-in statistic

Tn(X) = X1 ·X2 =
1

n2

n∑
i,j=1

X
(i)
1 X

(j)
2 .

However, this statistic is biased as

E

(
1

n2

n∑
i,j=1

X
(i)
1 X

(j)
2

)
=

1

n2

n∑
i,j=1

E
(
X

(i)
1 X

(j)
2

)
=

1

n2

n∑
i,j=1,i 6=j

E(X
(i)
1 )E(X

(j)
2 ) +

1

n2

n∑
i=1

E
(
X

(i)
1 X

(i)
2

)
=
n2 − n
n2

E(X
(1)
1 )E(X

(1)
2 ) +

n

n2
E
(
X

(i)
1 X

(i)
2

)
,

which is in general not equal to E(X
(1)
1 )E(X

(1)
2 ). To obtain an unbiased estimator, one

can instead use

Un(X) =
1

n2 − n

n∑
i,j=1,i 6=j

X
(i)
1 X

(j)
2 . (4.8)

This is the so-called U -statistic, on which the incomplete U -statistic builds on. The ”U”
in its name stands for unbiased. To give the definition of the U -statistic for general
polynomials, some notation is introduced. Let

� Mη be the set of all moments with order at most η of X(1),

� f = a0 +
∑deg(f)

r=1

∑
µ1,...,µr∈Mη a(µ1,...,µr)µ1 · · ·µr be an arbitrary polynomial in the

moments of X(1),
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� X(l,...,m) the subsample of
(
X(1), . . . ,X(n)

)
consisting of

(
X(l), . . . ,X(m)

)
,

� µ̂i(X
(l,...m)) be the sample moment of µi obtained from the subsample X(l,...m).

Likewise as for the example (4.8) above we want to define the general U -statistic as a
mean of several unbiased estimators of f that are only based on a part of the sample.
More precisely, we use the estimator h̆

h̆(X(1,...,d)) = a0 +
d∑
r=1

∑
µ1,...,µr∈Mη

aµ1,...,µr µ̂1(X(1))µ̂2(X(2)) · · · µ̂r(X(r)),

with d = deg(f), as a basic building block for the statistic. h̆ is an unbiased estimator of
f since to estimate the factors of the monomials appearing in f independent parts of the
sample are used and the sample moments µ̂i(X(l,...d)) are unbiased estimators.

To obtain an estimator h that is additionally symmetric in the sense that it does not
depend on the order of the samples (X(1), . . . ,X(n)) the average over all permutations is
taken:

h(X(1,...,d)) =
1

d!

∑
π∈Sd

h̆j(X
(π(1),...,π(d)).

For the example from above, h takes the form

h(X(1,2)) =
1

2

(
X

(1)
1 ·X

(2)
2 +X

(2)
1 ·X

(1)
2

)
.

Finally, the U -statistic is given by

Un,N =
1

N

∑
ι∈In,d

h(X(ι)), (4.9)

where

In,d = {(i1, . . . , id) : 1 ≤ i1 < · · · < id ≤ n}

is the set containing all ordered subset of size d of [n]. This statistic is quite com-
monly used to test polynomial constraints. However, it possesses two drawbacks. First,
|In,d| grows exponentially in d and linear in the number of polynomials. For the pur-

pose of testing all full minors of M we need to consider
( 1

2
p(p−1)+p
p+1

)
polynomials of de-

gree p so that the U -statistic becomes far too costly for higher p. Secondly, there is no
known method how to estimate the limiting distribution of the statistic in the case where
Varx∼X(2)(E(h(x,X(1), . . . ,X(d))) = 0, which might happen in our case. For example, if
one tests for the determinant of M for p = 2 and M has rank even lower than two, then

h̆
(
X(1),X(2),X(3)

)
= ŝ11(X(1))t̂112(X(2))t̂222(X(3))− ŝ11(X(1))t̂122(X(2))t̂122(X(3))

− ŝ12(X(1))t̂111(X(2))t̂222(X(3)) + ŝ12(X(1))t̂122(X(2))t̂112(X(3))

+ ŝ22(X(1))t̂111(X(2))t̂122(X(3))− ŝ22(X(1))t̂112(X(2))t̂112(X(3)).
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Consequently,

E(h(x,X(2),X(3))) =
1

3

(
ŝ11 (x)

(
t112t222 − t2122

)
+ ŝ12 (x) (t122t112 − t111t222)

+ ŝ22 (x) (t111t122 − t2112)

+ t̂111 (x) (s12t222 − s22t122)

+ t̂112 (x) (s11t222 − s22t121 + s12t212 − s22t112)

+ t̂122 (x) (s11t122 − s12t121 + s11t212 − s22t111)

+ t̂222 (x) (s11t112 − s12t111)
)

= 0

since all 2 × 2-minor of M are zero. Likewise, for testing the full minors of a general
matrices A consisting of moments of the distribution, E(h(x,X(2), . . . ,X(d)) is zero if the
minors of one order lower vanish.

These obstacles can be circumvented by randomly choosing a subset of the summands in
(4.9) which then gives the incomplete U -statistic. For the formal definition, let N ≤

(
n
d

)
and define Zι : ι ∈ In,d as Bernoulli random variables with success probability N/

(
n
d

)
.

Then the incomplete U -statistic is given by

U ′n,N =
1

N̂

∑
ι∈In,d

Zιh(X(ι)),

where N̂ =
∑

ι∈In,d Zι is the number of successes.

As derived in [29], for this modified U -statistic, the limiting distribution can be obtained
without needing to make assumptions on the variance Varx∼X(2)(E(h(x,X(1), . . . ,X(d))).
Additionally, the lower N is chosen, the lower the computational effort.

For the choice N =
(
n
d

)
the success probability is 1, the incomplete U -statistic is the same

as the U -statistic.

To now test several polynomials f1, . . . , fq at once, so, to test the null hypothesis,

H0 : fi(X) = 0 for all i = 1, . . . , q,

the maximum of the studentized incomplete U -statistics

T = max
1≤j≤q

√
nU ′n,N,j/σ̂j,

where σ̂j is an estimate of the variance of U ′n,N,j, should be used as the test statistic. Thus,
we need to know how to derive the estimates σ̂j and how to obtain the critical values for
the statistic.

First, we look at the limiting distribution of Un,N,j. For that, we need to impose some

conditions on the functions hj and gj, which is defined as gj(x) = E
(
hj(x,X

(2,...,m))
)

, as
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well as on the distribution PX . Two of them include the so-called sub-Weibull property.
A random variable X is called sub-Weibull of order γ if

‖X‖ψγ = inf{t > 0 : E
(
ψγ

(
|X|
t

))
≤ 1} <∞},

where the function ψγ is given by ψγ = exp(xγ)− 1 on R>0. Note that inf ∅ =∞.

The conditions read as follows. There need to exist a Dn ≥ 1, and a γ ∈ (0, 1] such that
for all hj the following holds:

E
(
|hj(X(1,...,d))− µj|2+l

)
≤ σ2

h,jD
l
n for l = 1, 2, (C1)

‖hj(X(1,...,d) − µj)‖ψγ ≤ Dn, (C2)

σ2
h,j > 0. (C3)

As already mentioned, contrary to the complete U -statistic, the variances of the gj are
allowed to vanish. Instead, it suffices that for each j = 1, . . . , q one of the following bounds
hold. Either

σ2
g,j > 0, (C4)

or,

there exist a κj such that ‖gj(X(1))− µj‖ψγ ≤ n−κjDn (C5)

needs to be true. Further, all gj need to satisfy

E
(
|gj(X(1))− µj|2+l

)
≤ σ2

g,jD
l
n for all j = 1, . . . , q and l = 1, 2. (C6)

Finally, as the last requirement we impose

N = O(n). (C7)

This last assumption can be violated if the variances of all the gj are bounded away from
zero. Under these assumptions the following theorem about the limiting distribution of
the statistic holds true.

Theorem 4.7. If the conditions (C1) − (C7) are fulfilled, then there exist a C ∈ R and
a κ ∈ (0, 1), both only depending on m, q and the constants γ, κj, σ

2
h,j, σ

2
g,j appearing in

conditions (C1)− (C7), such that

sup
R∈Rqre

|P
(√

n(U ′n,N − µ) ∈ R
)
− P (Y ∈ R) | ≤ CDnn

−κ,

where Rq
re = {Πq

j=1[aj, bj] : aj, bj ∈ R∪{−∞,∞}} is the set of all hyperrectangles and Y ∼
Nq(0, d2Wg + αnWh), with αn = n/N , Wh = Cov(h(X(1,...,d))), and Wg = Cov(g(X(1))).
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The theorem follows from Theorem 3.1. and Proposition 3.3. in [29]. Using it, we can
approximate the limiting distribution of the test statistic T under the null hypothesis.
We know that under the null hypothesis all fj vanish. Hence,

T = max
1≤j≤q

√
n(U ′n,N,j − fj(θ))/σ̂j.

As a consequence of the theorem, the distribution of the left-hand side can be approxi-
mated by

max
1≤j≤q

Yj/σj

with σj indicating the true covariance of Un,N,j.

In practice, the covariance of Y , and consequently also its distribution, are unknown.
Therefore, again bootstrap is used. It is first explained how to approximate the covariance
matrices Wh and Wg. Those approximations are then used to obtain an estimate of the
approximation of Y with bootstrap.

For retrieving an estimate of Wh, as in the previous case, one could create E bootstrap
copies of the sample X by sampling from X with replacement and then compute E copies

of estimates of hj

(
X(1,··· ,m)

)
to obtain an estimate of Wh. However, in the computation

of the incomplete U -statistic we already evaluated h at different subsamples of the whole
sample X . It turns out that we can reuse these estimates of h to perform the bootstrap
and save a lot of computational cost. The exact procedure is to approximate Wh as

Ŵh ≈
1

N̂

∑
ι∈In,m

Zι

(
h(X(ι))− U ′n,N

)(
h(X(ι))− U ′n,N

)T
.

Now, we turn to Wg. Recall that gj was defined as gj(x) = E
(
hj(x,X

(2,...,m))
)

. Estimates

of g are not already computed for obtaining U ′n,N . So, to first of all obtain E1 ≤ n
estimates of gj we choose E1 different indices i∗e ∈ {1, . . . , n}. For each of the indices i∗e,
the remaining set {1, . . . , n} \ {i∗e} is split into disjunct subsets {ιe,1, . . . , ιe,b(n−1)/(m−1)c}
where each set is of the size m− 1. Then, we obtain E1 estimates of g by computing

ĝe =

b(n−1)/(m−1)c∑
k=1

h
(
X(i∗e),X(ιe,k)

)
for each i∗. Those are then used to derive the empirical covariance matrix

Ŵg =
1

E1

E1∑
e=1

(ĝe − g)(ĝe − g)T ,

where g denotes the mean of all the ge. These two estimates can be used to derive σ̂j as
follows. The diagonal elements of Wh and Wg can be used to estimate σ2

h,j and σ2
g,j

σ̂2
h,j =

1

N̂

∑
ι∈In,m

Zι

(
hj(X

(ι))− U ′n,N,j
)2

σ̂2
g,j =

1

E1

E1∑
e=1

((ĝe)j − gj)2.
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Then the variance of Un,N,j can be approximated by

σ̂2
j = m2σ̂2

g,j +
n

N
σ̂2
h,j.

What is still missing now, is to obtain E2 estimates of Y that together form an estimate
for its distribution. We utilize the fact that a normally distributed random variable with
arbitrary mean and covariance can be obtained as a linear combination of standard normal
variables. Specifically, if ζι, ι ∈ In,m are normally distributed, and we define

Ŷ
∗
h =

1

N̂

∑
ι∈In,m

ζι
√
Zι

(
h(X(ι))− U ′n,N

)
,

then Ŷ
∗
h has a standard normal distribution with mean zero and covariance matrix Ŵh. In

the same way, for ζe1 , e1 = 1, . . . , E independent normally distributed random variables,

Ŷ
∗
g =

1

E1

E1∑
e1

ζe1(ĝe1 − g)

gives an estimate of Y g. Hence, Y can be approximated by

Ŷ
∗

= m2Ŷ
∗
g + αnŶ

∗
h.

To obtain multiple estimates of Y , the procedure is repeated E2 times. So, E2 times, we
sample sets of independent standard normal random variables {ζι : ι ∈ In,m} ∪ {ζe1 : e1 ∈
{1, . . . , E1}}, and with these samples we compute E2 bootstrap approximations Ŷ

∗
e2

of
Y .

Finally, we define ĉ1−α as the (1 − α)th quantile of the Ŷ
∗
e2
, e2 ∈ {1, . . . , E2} and reject

H0 if T > ĉ1−α.

As a last point regarding the incomplete U -statistic, we look at what the requirements
mean for our specific setup. As pointed out in Remark 2.4 in [29], in practice, usually
all the conditions (C1)− (C6) except condition (C2) that the hj need to be Sub-Weibull
of order γ for some γ ∈ (0, 1] are satisfied. According to Lemma C.3 in [29], condition
(C2) is fulfilled if all the estimators µ̂i appearing in h are Sub-Weibull. For our case, this
breaks then further down to the distributions of the noise terms satisfying the Sub-Weibull
requirement. To see that, note that each µ̂i takes either the form

X
(1)
i X

(1)
j or X

(1)
i X

(1)
j X

(1)
k .

Moreover,

X(1) = E−Tε.

Hence, each µ̂i consists of a product of a linear combination of components of ε. But, both,
linear combinations as well as products, preserve the Sub-Weibull property according to
Lemma C.1 in [29] and Proposition D.2 in [14].
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4.2.2 Independent Test

While the incomplete U -statistic is already much faster than its complete counterpart,
the computational effort is still quite high and may be too high if p or the sample size is
large. An alternative method that in principle builds on the same idea is the independent
statistic. As the incomplete U -statistic can be thought of as a way to trade some power
for a lower computational effort compared to the complete U -statistic, the independent
statistic goes even one step further in that direction.

Again, a subset of the summands of the U -statistic is chosen. The only difference is that
instead of randomly choosing a subset of the indices, the sample is split into several parts
of size d to that the estimator h is applied. Then, the average of all evaluations of h forms
the independent statistic.

I(X) =
d

N

∑
ι∈{(1,...,d),(d+1,...,2d),(n−d+1,...,n)}

h(X(ι)).

As fewer summands are taken into account, the computational effort is lower. On the
other hand, the variance of the statistic is higher and therefore power is lower.

The test statistic is then again defined as the studentized maximum of I

T = max
1≤j≤q

√
nU ′n,N,j/σ̂j,

where the sample variance is calculated as

σ̂j =
d

N

∑
ι∈{(1,...,d),(d+1,...,2d),(n−d+1,...,n)}

(
h(X(ι))− I(X)j

)2

.

For the independent statistic, the limiting distribution is

√
n
(
U ′n,N − f(θ)

) d−−→ N
(

0,Cov(h(X(1,...,m)
)
.

So, with Ŵh defined in a similar manner as for the incomplete U -statistic, specifically as,

Ŵh =
d

N

∑
ι∈{(1,...,d),(d+1,...,2d),(n−d+1,...,n)}

(
h(X(ι))− I(X)

)(
h(X(ι))− I(X)

)T
,

an approximation of the limiting distribution of T can be obtained.
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5 Numerical Experiments

In this section, the performance of the four proposed methods is examined with simulated
as well as real-world data.1 First, the results obtained using simulated data are presented.
We look at the distribution of the p-values, the empirical size, and the empirical power
of the four algorithms. Recall that the result of a test always depends on the choice
of the level α. The p-value is defined as the smallest level α at that a test rejects for
the present sample. Observing the p-value has the advantage that one can assess the
behavior of a test without needing to fix a level. Under the null hypothesis, the p-values
ideally should be uniformly distributed. If the p-values tend to be low, the test rejects
quite often. Hence, the size is not controlled. If they tend to be high, the method is too
conservative in the sense that it accepts too often. Moreover, the empirical size as well
as the empirical power is the ratio of rejections obtained when repeatedly applying the
test. The difference is that one speaks of empirical size when the data is generated in a
way that the null hypothesis is fulfilled, while for calculating the empirical power data
under an alternative is sampled. We always perform 1000 simulations, for obtaining a
distribution of p-values, as well as for obtaining empirical sizes and powers.

We start with the behavior under the null hypothesis in the non-degenerate case that M
has rank precisely p. Then, experiments for the degenerate case are executed. Afterwards
alternatives are considered.

The last part of the section is devoted to the results that are obtained for the Tübingen
benchmark data set.

5.1 Synthetical Data

5.1.1 Null Hypothesis Setup Non-Degenerate Case

For examining the properties of the four algorithms under the null hypotheses in the non-
degenerate case we sample data from a distribution following the linear SEM associated
with the complete graph with two and three nodes, respectively. Specifically, the sample
X is obtained by

X = B−Tε, (5.1)

where B is a matrix with ones on the diagonal and off-diagonal entries uniformly chosen
from the interval [−1, 1]. For ε, we consider three choices. It is sampled as

� Beta(α, β) with α ∈ [0.5, 2], β ∈ [2, 10],

� Gamma(α, β) with α ∈ [1, 3], β ∈ [1, 5], and

1The code with an implementation in R of all the proposed tests and code to repro-
duce all the results of the experiments can be found at https://github.com/DanielaSchkoda/

test-linear-SEM-assumption.

https://github.com/DanielaSchkoda/test-linear-SEM-assumption
https://github.com/DanielaSchkoda/test-linear-SEM-assumption
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� an overlapping Gaussian distribution, which means that half of the data is sampled
as N (−µ, σ1) and the other half as N (µ, σ2) with σ1 ∈ [0.5, 1], σ2 ∈ [1, 3] and
µ ∈ [1.5, 2].

(a) Gamma (b) Beta (c) Overlapping Gaussian

Figure 1: Distributions of the noise terms.

Those three distributions are chosen as they have third moments bounded away from zero
so that they yield data for the non-degenerate situation.

Note that all choices satisfy the Sub-Weibull condition required for the incomplete U -
statistic. Gamma distributions are Sub-Weibull for example with γ = 1. If X ∼
Gamma(α, β), then for t = 1

cβ
,

E
(

exp

(
|X|
t

))
=

∫ ∞
0

e
x
t
βα

W (α)
xα−1e−βxdx

=

∫ ∞
0

e
x
t
βα

Γ(α)
xα−1e−βxdx

=
βα

Γ(α)

∫ ∞
0

e
x
t
−βxxα−1dx

=
βα

Γ(α)

∫ ∞
0

e
x
t
−βxxα−1dx

=
βα

Γ(α)

∫ ∞
0

e−(1−c)βxxα−1dx

=
βα

Γ(α)
· Γ(α)

((1− c)β)α
= (1− c)α

for c ≤ 1. For c close enough to one, the last expression is certainly smaller than two.
Hence, the distribution is Sub-Weibull.

Similarly, one can show for Gaussian distributions that they fulfill the requirement. This
generalizes directly to overlapping Gaussian distributions.

For the beta distribution, note that the distribution is supported in [0, 1]. Hence, for
arbitrary γ

E
(

exp

((
|X|
t

)γ))
≤ exp

(
1

t
· γ
)
,
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which is smaller than two for t chosen sufficiently large.

We start with examining the distributions of the p-values for p = 2 and the noise terms
gamma-distributed. As one can see in figure 2, already for the sample size n = 250, the
p-values are rather uniformly distributed. The KP statistic, as well as the Bootstrap SVD
statistic, tend to overreject slightly, while the other two statistics are undersized.

(a) KP statistic (b) Bootstrap SVD statistic

(c) Independent statistic (d) Incomplete U -statistic

Figure 2: p-value distributions for p = 2 and n = 250.

In order to see more clearly how the sizes of the four different procedures compare, the
empirical sizes are plotted against the nominal sizes for all four tests in one plot.

Figure 3: Empirical sizes for p = 2 and n = 250.
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For the higher sample size of 1000, the p-value are more uniformly distributed. However,
the tendency of the first two tests to be oversized, and the tendency of the other two tests
to be undersized still remain.

(a) KP statistic (b) Bootstrap SVD statistic

(c) Independent statistic (d) Incomplete U -statistic

Figure 4: p-value distributions for p = 2 and n = 1000.

Figure 5: Empirical sizes for p = 2 and n = 1000.

Next, the beta and the overlapping gaussian distribution are considered for sampling the
noise term. In the size plot for n = 1000, one can see that the tests hold the size and that
it does not make a huge difference which distribution is used to generate the noise terms.
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We note that likewise for the remaining experiments that were executed, the choice of the
noise term did not affect the results too much. Therefore, from now on, only the results
for the gamma distribution setup are presented.

Figure 6: Empirical sizes for beta distribution

Figure 7: Empirical sizes for Overlapping Gaussian distribution

Three nodes. The next experiment aims at analyzing the performance of the algorithms
for the graphical model with three nodes. In this case, the computation time of the incom-
plete U -statistic is too high. Therefore, only the three other tests are considered. Recall
that for p = 3, under the linear SEM assumption, M has lower rank and additionally
the Aronhold invariant for the tensor of third moments vanishes. To compare whether it
makes a difference in practice if one only tests for the rank of M or also takes the Aron-
hold invariant into account the independent statistic is applied in two variants. Once we
test if all minors of M are zero. In a second experiment, we examine if all minors are zero
and at the same time, the Aronhold invariant vanishes.
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Figure 8: Empirical sizes for p = 3 and n = 250.

The plot shows that the KP statistic overrejects. Also, the empirical sizes of the Bootstrap
SVD statistic tends to be too low but not as much as for the KP statistic. Furthermore,
the results of the independent statistic do not vary to much between the two different
setups. In both cases the tests are undersized for a small nominal size, and oversized for
a higher nominal size.

5.1.2 Null Hypothesis Setup Degenerate Case

An especially critical point is how the tests perform under the degenerate case that M
has even lower rank than p or is close to having even lower rank. Recall that under
a linear SEM the rank can be strictly smaller than p only if the ε has at least one
component with vanishing third moment. Nonetheless, also for noise terms with non-zero
third moments, the distribution of X can be close to the degenerate case. For instance,
if p = 2 and X2 equals X1 plus a very small error term, then both components of X
are highly correlated and have very similar marginal distributions. Consequently, all the
second moments almost coincide with each other. The same holds for the third moments.
Thus, all columns of M almost coincide with each other.

We execute experiments for both setups. First, it is tested how the algorithms perform if
ε is drawn from a normal distribution, and apart from that X is sampled as in the above
setup (5.1). For analyzing the behavior in the case where all components have a similar
distribution and are highly correlated, we obtain a sample of X by defining

X1 = ε1 and X2 = X1 + 0.001ε2

where ε is sampled from a gamma distribution with the same parameters as for the non-
degenerate setup.
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For the Gaussian setup, all four tests hold the size. Only the independent statistic ex-
hibits modest overrejection. Interestingly, even the empirical size of the Kleibergen-Paap
statistic is very close to the nominal size even though its theoretical foundation does not
take the possibility of a rank strictly lower than p into account and it was shown by [6]
that in some degenerate situations the statistic fails to control the size.

Figure 9: Empirical sizes with Gaussian noise terms for p = 2 and n = 1000.

The experiment where X2 is the samples as X1 plus a small disturbance, is the first ex-
periment with a huge difference between the Kleibergen-Paap statistic and the bootstrap
SVD based statistic. The former one is significantly undersized, whereas the latter one is
only slightly undersized. The sizes of the incomplete U -statistic match the nominal sizes
quite well and the sizes of independent statistic tend to be a bit too high.

Figure 10: Empirical sizes under high correlation for p = 2 and n = 1000.
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5.1.3 Power Analysis

For the alternative hypothesis, we look at the behaviour of the tests for the data sampled
as

X = cos(B−T ε).

Additionally, we consider the setup

X1 = ε1 X2 = δ (X1 − 1)2 +X1 + ε2

for the parameter δ approaching zero, to analyze the properties of the algorithms under
local alternatives. The edge weights B and the noise term ε are sampled in the same way
as for the null hypothesis setting.

For the first setup and sample size n = 250, the empirical power at level α = 0.05 obtained
of the KP statistic and the bootstrap statistic is 0.84. For the incomplete U -statistic it is
0.34 and for the independent statistic 0.29.

(a) KP statistic (b) Bootstrap SVD statistic

(c) Independent statistic (d) Incomplete U -statistic

Figure 11: p-value distributions for p = 2 and n = 250.

For higher sample size, the power improves for all of the tests: For both singular value
based tests the power at level α = 0.05 is 0.95. For the incomplete U -statistic it improves
to 0.75, and for the independent statistic it reaches 0.6.
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(a) KP statistic (b) Bootstrap SVD statistic

(c) Independent statistic (d) Incomplete U -statistic

Figure 12: p-value distributions for p = 2 and n = 1000.

(a) KP statistic (b) Bootstrap SVD statistic

(c) Independent statistic
only minors

(d) Independent statistic
including Rank Polynomial

Figure 13: p-value distributions for p = 3 and n = 250.
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Three nodes. For the case of three nodes, again the singular value based tests, and the
independent test are considered. The last-mentioned test is applied once to validate if all
minors vanish and once to test if all minors and the Aronhold invariant vanish. As can be
seen in figure 13, for n = 250, the singular value based tests have already decent power.
It is visible that the power of the KP, as well as the SVD based bootstrap statistic are
quite high. The independent statistic only testing for the minors yields by far the lowest
power. Including the Aronhold invariant leads to a significant increase in the power. This
procedure has power even higher than the singular value based procedures.

Local Alternatives. For the second alternative, we are interested in the power when
the parameter δ moves away from zero. The higher δ is, the further away the data is
from fulfilling the null hypothesis. Thus, the power should improve for increasing δ. For
δ ∈ [0, 1], p = 2, n = 250, and a fixed level α = 0.05, we obtain the following results.

Figure 14: Empirical powers for p = 2 and n = 250.

In this setting the performance of the singular value tests is much more favorable compared
to the minor based test. For both singular value tests, the power increases quite rapidly
for δ approaching one. The power of the other two tests barely improves for higher δ.
This is likely caused by the low sample size. For a higher sample size, the power of the
minor based tests increases. For instance, for n = 1000, the power for δ = 1 is 0.15 for
the independent and 0.21 for the incomplete U -statistic.

5.2 Tübingen Dataset

In this section, the performance of the proposed tests is examined with real-world data.
Specifically, we are using the Tübingen cause-effect-pair data sets [20]. The data is often
used as a benchmark data set to assess the performance of causal inference algorithms
including algorithms relying on the LiNGAM assumption [16].
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The collection contains 108 data sets, each containing a cause-effect pair for which the
ground truth is known. The data stems from different domains including meteorology,
biology, engineering, and economy. For example, one pair consists of the day of the year
and the mean daily temperature of Furtwangen in Germany for the years 1979 until 2004.
Another pair contains the monthly income compared to the age from a study conducted
in 1994 and 1995 in the U.S.. It is known that the day of the year has a causal effect on
temperature, and the age on the income, but not vice versa.

The sample sizes vary between 72 and 16382. The distributions also take diverse forms.
There are data sets with a rather normal distribution, as well as sets that are not normally
distributed.

Figure 15: Distributions of the components of pair 12.

For nine data sets, the pair consists of two multivariate samples. We omit those pairs.
For the remaining pairs, we apply each of the tests and present if it accepted or rejected
the null hypothesis. For that, we fix the level to α = 0.05.

As depicted in figure 16, the Kleibergen-Paap test rejects 50 of the pairs. While for many
of the rejected pairs, the scatter plots suggest a non-linear relationship, it stands out that
five pairs are rejected whose scatter plots seem to point to a linear relationship. Those
cause-effect-pairs are 43, 44, 45, 46, and 84. All those pairs exhibit a high correlation and
additionally both variables have a very similar distribution. Thus, a potential reason for
the rejection could be that we are close to the degenerate case where the Kleibergen-Paap
might give wrong results. However, in the simulation studies with synthetical data the
Kleibergen-Paap statistic exhibited precisely the opposite behavior: It was undersized in
the experiment presented for the situation of a high correlation and similar distributions of
the components. Another potential explanation is that the scatter plot the distributions
looks rather linear, while the distributions are actually not well-described by a linear SEM.
This is for example the case if both components ofX are mostly effected by an unobserved
third variable X3. Such a hidden variable is also called confounder or latent variable. More
precisely, consider a random vector X ∈ R3 solving the system of structural equations

X1 = X3 + ε1,

X2 = X3 + ε2,

X3 = ε3,
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Figure 16: Results for the KP test. The pairs colored in red are rejected the green ones
are accepted.

with εi independent random variables, for the following graph:

1 2

3

If ε1 and ε2 are small compared to ε3, then the points of scatter plot of a sample drawn
from the joint distribution of (X1, X2) will be accumulated close to the diagonal as for
the scatter plots of the pairs 43, 44, 45, 46, and 84. However, the distribution of such
random variables (X1, X2) in general does not belong to a linear SEM with two nodes.
Thus, the rejection would be correct. According to [20], for these five pairs it is indeed
likely that the components are confounded by a third variable.

For the SVD bootstrap test, additionally to the result for each pair, it is indicated what
the estimated true rank r0 computed in step 3. of the algorithm is.
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Figure 17: Results for the SVD bootstrap test. For all red pairs, the test rejected, for all
green pairs, it was accepted. Light green means that the estimated true rank computed
in step 3. is 1, dark green that it is 2.

49 of the pairs were rejected. Amongst them, 38 were rejected in step 3. and the rest in
the last step. Again, the null hypothesis is rejected for the data sets 43, 44, 45, 46, and
84.

The independent statistic and the incomplete U -statistic are applied in two variants.
First, the proposed test procedure is used to validate how well the data fits the graphical
model for the complete graph.

As already mentioned, the LiNGAM algorithm does specifically assume that the distri-
bution belongs to a graphical model related to an acyclic graph. For p = 2 there are,
apart from the empty graph, only two acyclic graphs. If PX lies in the graphical model
belonging to the acyclic graph 1→ 2, it is known that the matrixs11 s12

t111 t112

t112 t122
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has rank 1, similarly for the graph 2 → 1 [1]. So, a distribution belonging to one of the
acyclic models necessarily has to fulfill one of the two equations systems. We apply both
tests once with the equation system for the model 1 → 2 and once with the equation
system belonging to the graph 2 → 1. The maximum of both p-values is then used as a
p-value for the hypothesis

H0 : PX belongs to an acyclic model

The following results are obtained:

Figure 18: Results for the independent statistic: The red pairs are rejected by both
variants of the test, the oranges one only by the test for the acyclic model, the yellow
ones only by the test related to the complete graph, and all green pairs are accepted.
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Figure 19: Results for the incomplete U -statistic: The red pairs are rejected by both
variants of the test, the oranges one only by the test for the acyclic model, and all green
pairs are accepted.

With both algorithms the null hypothesis that the underlying distribution lies in the
model associated with the complete graph is rejected in rather few cases, specifically only
nine times for the independent, and 13 times for the incomplete U -statistic. That aligns
with the findings obtained with the synthetical data that the minor based statistics reject
less often compared to the singular value based tests.
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6 Conclusion and Outlook

In this thesis, we aimed at developing a test for assessing the validity of the assumption
that a distribution belongs to a linear structural equation model. For that, we first exam-
ined the algebraic structure of the moments of such distributions. As a main theoretical
result, we showed a characterization of the set of second and third moments realizable
under the linearity assumption. Namely, the set is described by two conditions: that a
matrix formed of second and third moments does not have full rank and at the same
time the tensor of third moments has symmetric tensor rank not higher than the num-
ber of nodes p. For the second condition, we furthermore derived necessary polynomial
equations. In the case of three nodes there exists only one polynomial equation, which is
known as Aronhold invariant. Subsequently, we proved that also the higher moments of
distributions contained in a linear SEM obey a certain structure. Further equations for
the case where a fixed edge is not contained in the underlying causal graph were given for
the case p = 3.

After laying out this theoretical basis, we turned to illustrate the design of different
methodologies for testing the rank conditions and their asymptotic behavior under the
null hypothesis. Namely, we presented the Kleibergen-Paap test and the bootstrap test
by Chen, which both make use of the singular value decomposition. Then the incomplete
U -statistic and the independent statistic for testing polynomial constraints were described.

In the last part, we compared the performance of all proposed methods with synthetical
data as well as with the Tübingen cause-effect pairs. In the non-degenerate case, we
saw that for all four tests the empirical sizes align well with the nominals sizes under
the null hypothesis. The same is true for the degenerate case apart from one exception:
The Kleibergen-Paap statistic is significantly undersized in the experiment where the
components are highly correlated. In the power analysis in most of the experiments for
two nodes, the singular value based tests outperform the other two methods. That is
especially the case for rather low sample sizes. In contrast to this, for the case of three
nodes, the independent statistic yields the most favorable result. The crucial point here
is that the power is substantially better when testing for the rank of M as well as for the
Aronhold invariant, which is only possible with the tests for polynomial constraints. For
the Tuebingen pairs, both of the singular value based tests reject almost half of the pairs.
The minor based tests reject rather few times. An especially outstanding observation
was the rejection of some pairs with a seemingly linear relationship. Here more detailed
investigations would be interesting to see if the conjecture that both pairs are mostly
influenced by a latent variable, and are therefore correctly rejected, is true.

Further research could for example go in the direction of finding out more equations that
hold if one restricts to specific graphs, as was done in this thesis for the case p = 3 and
one missing edge. While there already exist results for equations for directed graphs [1],
there is rather few knowledge concerning cyclic graphs.

Regarding the purpose of assessing the linearity assumption for the complete graph, it
would be interesting to study the case of higher p more detailed. A challenge is how to
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deal with the high computational effort of the independent statistic and the incomplete
U -statistic. While for testing the rank condition on M one can use the computational
more efficient Kleibergen-Paap test or the rank test proposed by Chen instead, this is not
possible for the polynomial equations resulting from the rank condition on the tensor of
third moments.

Furthermore, one could examine if it is possible to derive polynomial inequalities that hold
for tensors with real symmetric border rank at most p. While we noted that there can
not exist polynomials that vanish for tensors with real symmetric border rank bounded
by p but not for tensors with complex symmetric border rank bounded by p, there can
exist polynomial inequalities distinguishing the real and complex symmetric border rank.
As we saw in the simulation studies for three nodes, testing for the Aronhold invariant
immensely improved the power. Thus, including more even conditions resulting from the
symmetric tensor rank constraint might again lead to an increased power.
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