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Abstract
Highly automated vehicle motion control is a well-matured part of driver assistance systems.
The progress towards autonomous driving and the rise of autonomous racing competitions
inspired researchers to investigate motion control algorithms at the handling limit. The
nonlinear and complex dynamics in this operating region are well-suited for model predictive
control algorithms, however, their performance depends strongly on the model accuracy and
reliability of numerical optimization algorithms.

This work investigates how these shortcomings could be overcome with the application of
robust and data-driven control techniques. Within the first stream of work, it introduces a
Tube-MPC concept based on a friction-limited point-mass model, fast low-level control loops
for the lateral and longitudinal acceleration, and a cost tuning allowing the controller to re-
optimize coarse target trajectories for minimum jerk within an admissible driving corridor.
This concept is combined with a state estimator based on a similar point-mass model. Both
do not utilize information about the tire behavior, which makes their predictive performance
independent from detailed nonlinear models in the tire saturation region. The algorithms
were applied during the Indy Autonomous Challenge, where they reached 265 km h−1 and
accelerations up to 21 m s−2 in a two-vehicle race at the Las Vegas Motor Speedway. In the
second stream of work, a safe learning algorithm is introduced to optimize trajectory planning
parameters for minimum lap-time while monitoring certain safety metrics such as the lateral
control error. Finally, a recursive uncertainty estimation algorithm consisting of a least-
squares estimator and a quantile estimator which is capable of improving the feedforward
control law of the acceleration controllers and adjusting the uncertainty assumptions of
the Tube-MPC simultaneously is presented. This algorithm is then integrated with the
presented Tube-MPC and demonstrates to reduce the uncertainty within the control system
and therefore decrease the required safety margins.

The results show that the explicit consideration of uncertainties within the control design
can lead to more cautious behavior when needed while allowing aggressive driving behav-
ior when possible, which leads to safer driving behavior overall. In addition, data-driven
strategies can improve the overall performance, however, it has to be kept in mind that they
will never perfectly match the model to the real-world behavior. This indicates that its a
promising direction to merge data-driven strategies with thorough handling of the remaining
uncertainties within a robust control framework.
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1 Introduction

1.1 Motivation
In recent years, the automotive industry has been subject to two significant transformations:
First, the shift from internal combustion engines to electric powertrains is already underway
for in-production vehicles. Their market share is increasing, and optimistic scenarios predict
electric vehicle sales to rise to more than two-thirds of the market by 2030 within Europe
[19]. Second, the transition from human-driven vehicles to autonomously operated vehicles
is a focus of research and early-stage product development teams worldwide. In contrast to
electric mobility, this area is less mature and has many challenges that have yet to be solved.

The capability levels of autonomous vehicles are commonly grouped into six autonomy
levels according to the Society of Automotive Engineers (SAE) [20]. Current in-production
vehicles show wide adaption of SAE level 2 systems, which accounts for joint automation of
the lateral and longitudinal control of the vehicle motion under consideration of the behavior
of other traffic participants in the driving scene. These are usually realized via systems like
Lane Keeping Assist (LKA) and Adaptive Cruise Control (ACC). The primary characteristic
of these systems is that they require constant supervision of the human driver, making them
essentially an assistant to the human rather than self-driving systems. In contrast, level
4 and 5 systems are (by definition) non-supervised systems that come with significantly
increased capability and safety requirements. While level 4 still allows the system to be
restricted to certain driving situations (e.g. highway operation), the system has to handle
all potential driving situations to be classified as a level 5 system. Level 3 specifies an
intermediate capability level by allowing the system to ask for human assistance as long as
this is done with sufficient time to react for the driver.

From a software perspective, the research community divides the driving task into three
main areas: Perception, planning, and control (sometimes also referred to as sense, plan,
act) [21]. While this notion is simplifying, it gives an overview of the tasks that have to be
conducted by the autonomous system: First, the system has to perceive what is happening
around the vehicle and how the current driving scenario looks. Second, it has to understand
the potential future behaviors of other traffic participants and plan its strategy according
to a long-term goal (e.g. reaching the destination). Third, this strategy has to be executed
by applying appropriate steering, throttle, and brake commands. The work in this thesis is
embedded in this last part, namely the vehicle motion control.
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1 Introduction

While control algorithms and structures have been fundamental to enable SAE level 2
automation, the focus of the research community shifted towards the perception and plan-
ning parts for SAE level 4 applications. However, as the maturity of those parts increases,
the ability to control a vehicle in rare but challenging vehicle dynamics situations gains
importance. This motivates researchers to focus on the enlargement of the so-called Op-
erational Design Domain (ODD) of autonomous vehicles from comfort-oriented assistance
systems (covering moderate accelerations up to 4 m s−2 [22]) to safety-critical motion control
systems. These will be required to execute all kinds of evasion maneuvers with the com-
plete vehicle acceleration potential (usually around 8 m s−2 to 10 m s−2). Even though these
will not occur regularly, the wide-spread deployment of autonomous vehicles will require a
thorough handling of rare situations.

Research groups have been using different strategies to work towards this goal. One
of them is the fully integrated design of motion and vehicle dynamics control systems for
drifting and evasion maneuvers [23, 24, 25, 26, 27]. Impressive real-world experiments have
been conducted by [23] with an autonomous DeLorean as well as [24] with a BMW 5 series.
Another strategy is the emergence of several autonomous racing platforms and competitions,
which have fostered innovation in recent years. Probably the smallest, but at the same time
the most widespread, are applications on scaled race-cars. The F1Tenth movement hosts
regular virtual and real-world events to provide a cost-effective way of starting education and
research projects within autonomous racing [28]. Similar platforms find wide use during lab
research projects [29, 30]. An initiative with larger cars is the Formula Student Driverless
competition [31, 32], held yearly at various racing venues within Europe. While the cars
are faster and more sophisticated, this competition is restricted to single-vehicle scenarios,
cones as track marks, and speeds of around 80 km h−1. These limitations are overcome by
the Roborace competition [3], where teams have demonstrated qualifying laps and simplified
multi-vehicle scenarios on a variety of different circuits around Europe. The vehicles are
fully electric and based on LMP2 race car chassis, with a top speed of approx. 220 km h−1.
Even faster cars have been retro-fitted by the Indy Autonomous Challenge (IAC) using an
Indy Lights chassis and an automated driving kit. The series held races at the Indianapolis
Motor Speedway (IMS) and the Las Vegas Motor Speedway (LVMS), two of the fastest oval
racetracks of the world. The vehicles reached up to 270 km h−1 and the final round included
a passing competition with two autonomous racing vehicles using only onboard sensors for
opponent detection [33].

The work presented in this thesis has been embedded in the participation of a large
research group (TUM Autonomous Motorsport) in the Roborace Championship, with DevBot
2.0 (Figure 1a and Figure 1b), as well as in the Indy Autonomous Challenge, with the
Dallara-AV21 (Figure 1c and Figure 1d). The regular application in conjunction with a
full software stack has led to the development of several well-proven and mature control
algorithms for this thesis. The major challenges in these racing applications from a motion
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1 Introduction

(a) DevBot 2.0 at Monteblanco Circuit (b) DevBot 2.0 at Modena Circuit

(c) AV-21 at Indianapolis Motor Speedway (d) AV-21 at Las Vegas Motor Speedway

Figure 1: The TUM Autonomous Motorsport racing software driving on different vehicles
and racetracks. Image credits: Roborace / Indy Autonomous Challenge

control perspective has been the presence of nonlinear and complex dynamic characteristics of
the vehicle combined with the inherent uncertainties in these models. They can be attributed
to two major sources: First, the force-generating mechanism of the tire is highly nonlinear,
it depends on the current wear of the tire and on the environmental conditions. While there
has been a lot of research (see e.g. [34]) into generating appropriate models, they usually
overfit to individual situations and fail to accompany reliably for the outside factors such
as temperature. Second, the suspension and tire dynamics tend to be too complex to fully
include into real-time capable controller designs, which leads to simplifications and therefore
uncertainty in the representation of the vehicle dynamics. This thesis investigates how data-
driven and robust controller designs can be used to to overcome these challenges with a
focus on applications under real-world circumstances. This continuous operation without
safety-drivers on various racetracks has been one of the major design decision drivers within
this work and outlines the high requirements towards reliability and performance.
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1 Introduction

1.2 Related work
The following section is going to review the state of the art in autonomous vehicle motion
control, starting with classical feedforward and feedback design strategies such as PID-control
and exact linearization, moving to Model Predictive Control (MPC) approaches covering
nominal, robust and stochastic algorithms, and finally giving an overview about data-driven
strategies in motion control. The presented work is mostly focussed on autonomous racing
or high performance motion control application to keep it relevant and concise. Readers who
are interested in learning more about the autonomous racing research community as a whole
can use the recent review article [35] covering all areas from perception, motion planning up
to control and learning based strategies.

1.2.1 Classical Motion Control
Fundamental work on longitudinal and lateral vehicle motion control has been conducted
for more than fifty years [36, 37, 38]. The longitudinal and lateral dynamics have been con-
sidered separately within these works, with a strong focus on lateral control systems. The
longitudinal dynamics have been handled via straight-forward P- or PI-control laws. The
strong influence of the current velocity onto the lateral path tracking dynamics has been
taken into account during the design of the feedback gains. The proposed control systems
target the tracking of a lateral reference, usually in the middle of the lane, and model the
road curvature as a disturbance acting upon the system. If this is known (e.g. via a vision-
based system), a feed-forward compensation can be designed. The feedback handles the
resulting double integrator dynamics from the path tracking task and the vehicle dynamics
with varying levels of detail. The systems proposed in the following years follow a similar
philosophy: Separation of longitudinal and lateral control but with advanced additions to-
wards velocity-dependent feedback gains for the lateral dynamics as well as a look-ahead
component in the control law to handle the double integrator dynamics [1, 39, 40, 41].

The next generation of motion control systems has aimed to enhance the performance by
introducing more complex models for the vehicle dynamics by using nonlinear tire models
and nonlinear representations of tire and chassis side-slip angles. They utilize effective in-
put transformations [42] or exact linearization schemes [43, 44] to handle the nonlinearities.
While these approaches showed promising results, they do not consider auxiliary control
targets such as jerk minimization of the overall vehicle dynamics. In addition, they com-
pensate for the nonlinearities within the dynamics rather than exploiting them which limits
the maximum control performance. Furthermore, the implicit model inversion can lead to
degraded control performance when uncertainties are present. A related approach is taken
by flatness-based controller designs, where the controller is designed based on a flat sys-
tem output and the corresponding target dynamics. It has been applied with success to
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autonomous vehicle control by [45, 46]. Another strategy proposed is sliding-mode control
[47, 48], where the controller tries to track a pre-defined sliding surface with a control law
dominating the remaining uncertainties. While this approach shows good robustness from a
theoretical perspective, its often prone to actuator chattering. This phenomenon describes
that the high-gain feedback amplifies the noise and requests varying actuator setpoints with
high frequency. A comparison of several different control approaches can be found in [49].
In addition to these path-tracking focused approaches, there have been controller designs
explicitly targeting unstable open-loop driving conditions in drifting situations [23, 24, 50].
However, these are limited to pre-defined drifting trajectories and have not been integrated
into a generalistic motion control system that can handle all kinds of standard cruising
scenarios, evasion maneuvers, and drifting situations.

1.2.2 Model Predictive Motion Control
In recent years, MPC gained a lot of attention from the research community and is nowadays
considered one of the most important advanced control techniques for practical applications
[51]. It promises to overcome the mentioned disadvantages and handle complex nonlin-
ear systems, multi-input/multi-output systems, and state and input constraints seamlessly.
These properties make it an ideal candidate for the field of autonomous vehicle control. In
addition, it allows incorporating secondary objectives such as ride comfort or energy effi-
ciency into the controller design. The first approaches towards the application of MPC for
trajectory tracking of autonomous vehicles have been presented in the early 2000s by [52]
and [53]. They use a nonlinear single track model and a Pacjeka tire model. Both suggest
using successive online linearization to obtain real-time feasible approximations to the orig-
inal optimization problem and demonstrate the applicability of their approach in extensive
double lane-change simulations and experiments. The results have been extended to joint
longitudinal and lateral vehicle control in [54, 55, 56]. With the advancement of available
computational power, researchers turned towards applying more complex models and a sig-
nificant interest in vehicle motion control for autonomous racing as a benchmark application
emerged. The authors of [57] propose to use a contouring control approach with a nonlinear
single track model to maximize the progress along the racetrack as well as a two-level con-
troller system approach. These ideas are similar to [58] where a lower fidelity model is used
to obtain a near time-optimal trajectory and an NMPC trajectory tracking controller com-
putes the required control signals. The former approach has been demonstrated successfully
using a real-time SQP scheme on a 1:43 scale test-bed. However, the resulting closed-loop
trajectories differ from the time-optimal line in some corners and the optimization requires
fine-tuning to operate reliably. An important modification to increase the numerical relia-
bility of MPC problems for autonomous racing is presented in [59]: The authors reformulate
the system dynamics using spatial discretization instead of time discretization. This tech-
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1 Introduction

nique has been successfully applied to several minimum lap-time optimal control problems.
It allows formulating track bounds as box constraints on the lateral deviation with respect
to a given reference path. Similar formulations have been used in [60, 61, 62]. Many more
applications of of MPC can be found in the autonomous racing community, which proves
the strenghts of the method with handling nonlinearities in the system under control [30,
63, 64].

An alternative towards the utilization of nonlinear tire models is the application of kine-
matic vehicle models as they show close-to-linear dynamics for the path tracking task. A
predictive controller based on this is presented in [65], but the authors conclude that its
application is limited to low-speed scenarios and propose to overcome the limitations by
a hierarchical control strategy similar as in [55, 58]. However, other authors demonstrate
comparable results for the use of kinematic and dynamic vehicle models [61, 66]. In [62] suc-
cessful trajectory re-planning and obstacle avoidance on the racetrack is carried out using
a point-mass model with appropriate joint lateral and longitudinal acceleration constraints.
The system dynamics show considerable similarities to the kinematic vehicle model. These
findings suggest that these simpler models might be sufficient to achieve good closed-loop
control quality. Controllers using nonlinear tire models must have accurate parameter knowl-
edge to outperform these more straightforward approaches, however, this seems challenging
to realize when the parameters depend on environmental circumstances. Another strategy
to improve the handling stability of an autonomous vehicle is the introduction of a stability
envelope (formulated as a joint constraint on yaw rate and side slip angle) based on the
vehicle and tire characteristics, which is then used as a constraint within the MPC [67].

The ability to consider constraints and the predictive nature motivates to utilize MPC
as an approach to react to suddenly occurring obstacles as well as for trajectory refinement
[55, 62, 68]. This extension of responsibilities comes with the challenge to ensure recursive
feasibility of the receding horizon optimal control problem. A short foresight horizon could
lead to an optimistic driving style neglecting corners or obstacles not yet within the horizon.
A common approach is to mitigate this by the introduction of a terminal constraint requiring
the end of the optimization horizon to coincide with a global (collision-free) path and that
the velocity has to be lower or equal to the global velocity profile [58, 62]. More involved
concepts determine appropriate terminal sets depending on a-priori knowledge about the
road ahead using game-theory [69, 70].

The real-world application of the approaches presented above faces further difficulties
created by deviations between the predicted and the actual vehicle behavior stemming from
external disturbances and parameter uncertainties [71]. These become especially important
at the limits of handling, where the tire nonlinearities have a significant impact on the vehicle
behavior and are hard to identify accurately. It is well-known that this mismatch between
predictions and actual behavior can lead to the loss of stability and recursive feasibility in
the presence of state and input constraints [72]. This usually leads to a violation of the
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constraints, which can be safety-critical, e.g. in the case of collision constraints. While there
is a significant body of theory towards robust MPC [73], the applications within autonomous
racing have been limited due to overly conservative assumptions interfering with the aim to
achieve maximum performance. A Tube-MPC approach for vehicle motion control based on
the construction of a robust positive invariant set is presented in [25]. It leads to increased
robustness of the controller in simulation and experiments compared to nominal MPC. A
similar approach can be found in [74]. A different strategy with online calculation of a
reachable set based Tube-MPC is presented in [75, 76]. In contrast to robust MPC, stochastic
MPC introduces a risk parameter allowing for a certain level of constraint violations [77, 78,
79]. The resulting controller can trade-off safety and performance. A related strategy is the
introduction of a randomized MPC formulation to approximate the fully stochastic solution
efficiently [80]. Another approach is presented based on Contingency-MPC [81], which solves
the receding horizon optimal control problem simultaneously for the nominal problem and
a backup plan to ensure that the solution to the nominal problem always allows switching
to this backup plan.

1.2.3 Data-Driven Motion Control
The inherent parameter and model uncertainties also motivate the application of data-driven
methods within autonomous racing. One of the earliest approaches was the application of
Iterative Learning Control (ILC) to the lap-based autonomous racing problem [82, 83]. The
vehicle monitored the deviation from the target path on every lap and adjusted the steer-
ing behavior successfully by using a PD-ILC and an Q-ILC. The algorithms were tested on
an Audi TTS prototype vehicle at Thunderhill Raceway. Another lap-based approach was
presented by [29, 84, 85, 86] via data-driven identification of a non-conservative terminal
set and cost function. It has been tested on a 1:10 scale autonomous RC-car with signifi-
cant improvements compared to a non-learning based strategy. The disadvantage of both
approaches lies within their restriction towards repetitive driving tasks which make them
hard to apply in public road autonomous driving applications or multi-vehicle autonomous
racing including opponent interactions.

An different approach using prior model knowledge (a nonlinear vehicle dynamics model)
and online refinement via a residual Gaussian Process Regression (GPR) is presented in
[87, 88]. While it demonstrates good performance improvements, it shows difficulties in
achieving a real-time capable implementation for larger data amounts. This is related to
the fact that GPR computational times scale with the number of data points and therefore
require a thorough data storage and update concept. A proposal to overcome this limitation
is the application of sparse spectrum GPR [89]. In contrast to those approaches starting
with an already detailed vehicle model, [90] presents a strategy which purposely utilizes
a simpler kinematic vehicle model where all parameters can easily be measured and lump
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all uncertainties within the learning of the residual GPR error model. Other authors have
used similar identification techniques using neural networks instead of gaussian processes to
model vehicle dynamics models for simulation and controller design [91, 92].

Instead of estimating a generalistic error model, other authors propose to use data-driven
techniques to identify parameters or tire characteristics directly. [93] uses an adaptive neural
network to estimate the uncertain tire parameters in the nonlinear region of the vehicle
dynamics. A wide spread target in this field is the identification of the maximum tire-road
friction potential while driving [94, 95] with effect-based methods based on Kalman Filters
or Machine Learning techniques monitoring the vehicle and wheel behavior [96, 97, 98].
An alternative approach is the careful analysis of the road with secondary sensors such as
cameras [99].

A different strategy is utilized in [100]: Instead of extending an MPC scheme with residual
models, a policy from images to target trajectories is learned with a deep-learning-based
model. This approach covers all aspects, from track detection to motion planning. However,
this end-to-end approach has difficulties generalizing between different tracks and has yet to
be proven applicable under real-world conditions. Other approaches based on reinforcement
learning have been presented in [101, 102, 103]. As this is out-of-scope for our work, the
reader is referred to the review [35] for more background and further literature on the topic.

1.3 Research Objectives and Outline
There is a large amount of research within the motion control space for autonomous vehicles
focusing on comfort-oriented driving situations. While there are recent extensions towards
the operation close to the handling limits using exact linearization and model predictive
control, the state-of-the-art requires handcrafted nonlinear models which tend to be brittle
when used in varying environmental conditions or significant parameter uncertainty. This
becomes especially challenging in the case of autonomous racing, where the tires are used
continuously in their nonlinear operating region and are subject to significant variation in
grip depending on the track characteristic and temperature. The contributions of this thesis
will answer the research questions outlined in this section.

While there has been an extensive body of research on the application of nominal nonlin-
ear model predictive control in real-world tests, research considering robust model predictive
control have so far been limited to simulation or small scale studies. The central consider-
ation behind using a well-designed robust control method is to acknowledge the fact that
there will always be uncertainty within the prediction model when operating a racing vehicle
at the handling limits. Instead of working towards increasingly complex and hard to param-
eterize models, the uncertainty can be included in the design by the utilization of an explicit
uncertainty representation which opens up the possibility for new trade-offs between model
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complexity, uncertainty representation and real-time capabilities. In addition, the introduc-
tion of fast low-level control loops seems to be a promising direction of research which has
not been well explored for the case of robust model predictive control as high-level controller.
These thoughts can be summarized as follows:

◦ Can Robust MPC help to overcome the shortcomings of Nonlinear MPC when faced
with parameter and model uncertainty?

◦ How should state estimation and low-level controllers look like to achieve maximum
robustness, real-time capability and safe operation in conjunction with a Robust MPC
on a full scale autonomous racing vehicle?

In addition, the potential of data-driven algorithms should be further investigated. While
they have become the de-facto standard in the area of autonomous vehicle perception and
traffic participant prediction, their application in high-performance motion planning and
control algorithms has been limited so far. We will investigate the applicability of model-
free and model-based learning strategies to continuous adjustment to changing environmental
conditions such as temperature with these two research tasks:

◦ Can model-free data driven methods increase the performance of a well-functioning
autonomous racing motion planning and control system by refining hyperparameters
based on continuous monitoring of the motion control performance?

◦ Can a real-time capable model-based learning method capture the vehicle dynamics
model prediction error and adjust the uncertainty assumptions reliably during op-
eration? How can this result be used within an existing motion control system for
performance improvements?

The thesis is structured into two major streams of work (see Figure 2). Chapter 2 describes
the fundamentals of vehicle dynamics, the utilized robust model predictive control methods
and the background on the machine learning approaches applied. The main part summarizes
the contributions of five publications: The papers in Section 3.1 to Section 3.3 focus on
the development of a holistic robust control system for an autonomous race car, covering
state estimation, robust model predictive control and the influence of multi-vehicle scenarios
on the controller performance. The papers in Section 4.1 and Section 4.2 demonstrate
independent contributions in the area of data-driven methods for autonomous racing. The
former presents a model-free method to achieve the handling limits while considering certain
safety indicators, the latter a method for reliable real-time quantification of non-gaussian
uncertainties to decrease the model mismatch during runtime of the system. The part is
concluded in Chapter 4.3 with a joint evaluation of the algorithms proposed in Section 3.3
and Section 4.2. The discussion of the presented work is presented in Chapter 5 andthe
conclusions drawn from the research and potential future work are presented in Chapter 6.
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2.1 Vehicle Dynamics
This section is going to introduce the basic formulas and terminology of the vehicle dynamic
models used in the subsequent papers. More details can be taken from the available textbooks
(e.g. [34, 104, 105]) on this topic by readers who are interested in an in-depth presentation
of this subject.

2.1.1 Kinematic Bicycle Model
One of the most wide-spread models for autonomous vehicle behavior is the kinematic bicycle
model [106] depicted in Figure 3. It models the vehicle motion in cartesian coordinates p1

and p2 and the orientation of the chassis ψ with respect to the p1 coordinate axis. The
vehicle velocity is denoted with v, the longitudinal force acting upon the system with Fx

and the vehicle mass with m. It lumps the left and right tires on each axle and assumes
tire side-slip to be zero which results in the tire velocity vectors to be aligned with the tire
longitudinal axis. The resulting movement can be obtained from the kinematic relations for
the center of rotation. The chassis side-slip β is a fixed relation between the front wheel
steering angle δ and the position of the center of gravity specified via the distance to the
front-axle lF and the rear-axle lR.


ṗ1

ṗ2

ψ̇

v̇

 =


v cos (ψ + β)
v sin (ψ + β)

v
lF+lR

δ
Fx

m

 ,

β = arctan
(
lR tan (δ)
lF + lR

)
.

(2.1a)

(2.1b)

This model is often used for low-speed applications as it covers the non-holonomic nature of
the vehicle motion well and shows sufficient accuracy as long as the tire side slip angles are
small. Its simplicity also promoted the utilization in the robotics community for a variety
of other vehicles, such as warehouse robots or small tractors within logistic centers. It can
also be extended to serve rear-wheel or all-wheel steering easily, to cover e.g. forklifts and
agricultural machinery.
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v
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δ

Fx

ψ̇

lR lF

p2

p1

Figure 3: Kinematic bicycle model

2.1.2 Point Mass Model
While the kinematic model is well-suited for vehicle dynamics simulation and algorithms
which require a feed-forward prediction of the future behavior, the strong nonlinearities
within the position state dynamics and the coupling of the steering angle and the chassis
side slip angle make it hard to apply linear control engineering techniques. This issue can
be overcome by a reformulation of the dynamics into a point mass model using a curvilinear
coordinate frame, aligned with a reference path parameterized via p1(s) and p2(s) or a
curvature profile κ(s), which implicitly specifies the reference path. In this framework, s
depicts the coordinate along the reference, d the orthogonal deviation from the reference
and ∆ψ the deviation of the chassis heading from the path heading. The resulting dynamics
can be written as: 

ṡ

v̇

ḋ

∆ψ̇

 =


(1 − dκ(s))−1 v cos(∆ψ + β)

Fx

m

v sin(∆ψ + β)
v
l
δ − κ(s)ṡ

 ,

β = arctan
(
lR tan (δ)
lF + lR

)
.

(2.2a)

(2.2b)

This choice of coordinates is depicted in Figure 4. The advantage is that it reveals the close
to linear structure of the trajectory tracking problem if the deviation between the vehicle
position and the path is sufficiently small. This important fact is outlined in the following
using a couple of assumptions and transformations in the remainder of this paragraph. By
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Figure 4: Point mass model in curvilinear coordinates

assuming β ≈ 0, d ≈ 0 and ∆ψ to be small, the system can be rewritten as:

ṡ

v̇

ḋ

∆ψ̇

 =


v
Fx

m

v∆ψ
v
l
δ − κ(s)v

 . (2.3)

In addition, the velocity is assumed to be constant and the state transformation ḋ = v∆ψ
with the derivative d̈ = v∆ψ̇ is applied. This results in


ṡ

v̇

ḋ

d̈

 =


v
Fx

m

ḋ
v2

l
δ − κ(s)v2

 . (2.4)

Finally, the last line of (2.4) can be rewritten by using the lateral acceleration as input
instead of the steering wheel angle ay,C = v2

l
δ. With the control law ay,C = κ(s)v2 +∆ay,C, it

becomes clear that the system can be formulated in linear form with respect to the corrective
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acceleration ∆ay,C. The model can now be written as

ṡ

v̇

ḋ

d̈

 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



s

v

d

ḋ

+


0
1
m

0
1


[
Fx

∆ay,C

]
. (2.5)

This reformulation gives important insights on the application of classical control methods
such as PID and state-space feedback for vehicle motion control. First, it shows that the
longitudinal and the lateral dynamics can be assumed decoupled for sufficiently small devi-
ations from the target trajectory and small velocity changes. Second, it shows that both are
double-integrator dynamics which is helpful information for the controller design.

2.1.3 Single Track Model
The single-track model (Figure 5) drops the fundamental assumption of the kinematic vehicle
model that the tire motion vector is rigidly aligned with the tire orientation. Instead, the tire
is allowed to move in the lateral direction and can therefore create side-slip. The resulting
angle between the longitudinal and lateral motion of the tire is named the side-slip angle α.
It was found to be the primary influence on the force-generating mechanisms in the rubber-
based component for vehicle-road interaction [34]. There is a variety of different tire models
and Section 2.1.4 will discuss the most relevant of them. This shift in the modeling strategy
leads to a significant extension of the previously presented kinematic bicycle model via the
split of the motion velocity into longitudinal vx and lateral velocity vy and the addition of
yaw rate ψ̇ dynamics:

ṗ1

ṗ2

ψ̇

v̇x

v̇y

ψ̈


=



vx cos (ψ) − vy sin (ψ)
vx sin (ψ) + vy cos (ψ)

1
m

(Fx − sin (δ)Fy,F (αF)) + vyψ̇
1
m

(cos (δ)Fy,F (αF) + Fy,R (αR)) − vxψ̇
1
J

(cos (δ)Fy,F (αF) lF − Fy,R (αR) lR)

 . (2.6)

In addition to the previously introduced variables, J denotes the moment of inertia and
Fy,F and Fy,R the lateral forces at the front and the rear axle as a function of the tire
side-slip angles αF and αR. A similar formulation in path-aligned coordinates as in (2.2) is
common [31] but will be omitted for the sake of brevity. Other variations are found in the
literature using the vehicle chassis side slip β and the absolute velocity v as state variables
instead of the longitudinal and lateral chassis velocity [6]. The transformation can be done
by straight-forward application of basic geometric relations. The relation between the tire
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Figure 5: Single track model

side-slip angles and the chassis movement can be written as

αF = δ − arctan
(
vy + lFψ̇

vx

)
,

αR = − arctan
(
vy − lRψ̇

vx

)
.

(2.7a)

(2.7b)

2.1.4 Tire Models
The main mechanism responsible for the generation of contact forces is slip [34]. There
are two different formulations, one for the longitudinal and one for the lateral slip. The
longitudinal slip is usually defined as the ratio between the speed of the tire contact patch
and the speed over ground vx,T,

λ = ωrT

vx,T
, (2.8)

with the wheelspeed ω and tire radius rT. The lateral slip is usually defined as the so-called
side slip angle of the tire

α = arctan
(
vy,T

vx,T

)
, (2.9)

with vy,T being the lateral speed over ground. The calculation of this quantity depends
on the modeling fidelity of the overall vehicle model. The corresponding equations for the
single-track model are given in (2.7). A visualization of the calculation of the lateral side
slip angle and the resulting force is depicted in Figure 6a.
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Figure 6: Tire models and definitions

The most common class of tire models for vehicle dynamics analysis and control system
designs are semi-physical models. They are defined via an empirical model using function
approximation with a hand-crafted set of well-chosen, meaningful basis functions. Full phys-
ical models are usually too complex to apply in real-time and are therefore used only for tire
development. The discussion in the remainder of this section will be limited to lateral tire
models, as the description of longitudinal tire models follows the same structural techniques.

The simplest model is the linear tire model, where the tire force is calculated using the
cornering stiffness c as a linear relation to the side slip in the following way:

Fy = cα. (2.10)

This model is accurate for low to moderate tire utilization of approx. 30 % to 50 % of the
maximum tire force [104], which corresponds to accelerations of 3 m s−2 to 5 m s−2 on the
overall vehicle level for passenger vehicles. It has found wide adoption for the analysis of
passenger vehicle dynamics in the well-known linear single-track model. It is a simplified
version of (2.6), modeling only the relation between the steering angle input and the yaw rate
and vehicle chassis side slip response and neglecting the longitudinal dynamics. Its linear
nature and validity domain makes it a good balance between complexity and accuracy for
comfort-oriented lateral vehicle motion control systems.

The extension of the validity domain to the nonlinear operating region of the tire can
be done via a four coefficient Pacejka model or the fiala brush tire model [34], but many
variants of these formulations are in use within the control engineering and vehicle dynamics
community. All of them target at accounting for the saturating effects on the forces for large
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side-slip angles, a key characteristic of the tire close to the friction limit. The four coefficient
Pacejka model can be written as:

Fy = D sin (C arctan (Bα − E (Bα− arctan (Bα)))) . (2.11)

This model depicts the cornering stiffness as c = BCD and the maximum transmittable
force via D. The remaining coefficients are referred to as shape factors. Two examples
(Pacejka 1 and Pacejka 2) and a comparison to the linear version are depicted in Figure
6b. This tire model is often used for the design of vehicle motion control systems close
to the handling limits of the vehicle [31, 43, 60], as it captures the basic dynamics in the
linear range as well as the behavior at the limit when the tire force saturates. However,
their strong nonlinear characteristic often leads to numerical challenges within the control
design process. In addition, the resulting controllers are usually quite sensitive to the exact
calibration of the parameters, which makes it challenging to apply these models when the
environmental influences are uncertain or time-varying. Even more detailed versions with
up to 50 coefficients are used for vehicle dynamics simulations [34]. They are identified via
extensive test-rig experiments and fitted via mathematical regression techniques.

When used in a motorsport context instead of passengers cars, tires are usually utilized in
the longitudinal and lateral direction at the same time, e.g., when braking while approaching
a sharp turn. This affects the tires maximum force generation capabilities as the stretching of
its road contact patch is done in two dimensions simultaneously. This effect can be accounted
for via the introduction of a relation between the maximum longitudinal and lateral tire force
[9] via the following equation: (

Fx

F̄x

)p

+
(
Fy

F̄y

)p

≤ 1. (2.12)

This equation relates the current tire forces Fx and Fy with the peak forces F̄x and F̄y and
becomes the well-known Kamm’s circle for the case p = 2 [104]. It also clarifies that (2.11)
only holds for pure lateral tire loads and has to be extended to a function of the lateral
and longitudinal slip Fy(α, λ) to truly reflect the real tire behavior. While these effects are
accounted for in complex simulation frameworks, the resulting models are often too complex
to use in a control design.

2.2 Model Predictive Control
The fundamental target of control engineering is the design of a control law which ensures
that the closed-loop dynamics of a (nonlinear) dynamic system correspond to the desired
stability and convergence properties, even when uncertainties or disturbances are present.
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For the following discussion, the open-loop dynamic system is denoted as:

ẋ = f(x, u, d),
y = h(x)

(2.13a)
(2.13b)

with the system state x, the control input u, the external disturbances d and the system
output y. The function f(x, u, d) characterizes the system dynamics and the function h(x)
the state to output relation. Most controller design strategies (e.g. linear quadratic regula-
tors, sliding mode control, exact linearization, ...) aim at obtaining a control law u = k(x)
which is given in the form of a explicit function. This makes it easy to analyze the closed-
loop properties and computationally cheap to apply the controllers on embedded hardware.
However, it is difficult to consider system and input constraints in complex systems, handle
the trade-offs between conflicting control targets at runtime or utilize knowledge about the
future target trajectory of the system. MPC promises to address these challenges by a con-
ceptual change to the controller design paradigm [107]: It reformulates the target behavior
of the system under control as a finite-horizon optimization problem based on the open-loop
system dynamics and constraints on the control and state variables. Using this optimization
problem, it defines an implicit control law u(x) via repeatedly applying the first input u
from the optimal solution. This section introduces the standard formulations for nominal
and robust MPC, which lay the basis for the controller designs in the main part of the thesis.

2.2.1 Nominal MPC
The MPC problem for the nominal case (no disturbances acting upon the system and no
uncertainties present) can be written as

min
ū

N−1∑
i=0

(
xT

i Qxi + uT
i Rui

)
+ xNPxN ,

s.t. x0 = x(k),
xi+1 = fd (xi, ui) , ∀i ∈ [0, N − 1] ,
xi ∈ X, ∀i ∈ [0, N − 1] ,
ui ∈ U, ∀i ∈ [0, N − 1] ,
xN ∈ XT,

(2.14a)

(2.14b)
(2.14c)
(2.14d)
(2.14e)
(2.14f)

with the quadratic stage cost matrices Q and R, the terminal cost matrix P , the discretized
system dynamics fd(x, u), the stage constraint sets X and U as well as the terminal constraint
set XT. The index i is preferred over the notation x(k) to refer to the prediction of the system
behavior as part of the optimization structure to clarify the difference to the actual system
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Figure 7: Visualization of the model predictive control concept. The blue predictions visualize
the optimization variables and predictions of the system behavior at time instant 0. The
orange graph depicts the actual behavior of the system observed after repeated application
of the control inputs.

behavior x(k) at the time instant k. The input sequence u0 to uN−1 is lumped to a vector ū
and serves as the set of optimization variables. The control input is now defined as the first
element of this vector obtained as the solution to the above optimization problem and can
be written as u(x) = u0.

The idea behind this optimization based concept is visualized in Figure 7. At time instant
0, the above optimization problem is solved while considering the system dynamics as well as
the constraints with a prediction horizon of 8 steps. The control inputs serve as optimization
variables and are varied such that the resulting state response minimizes the cost function.
The cost design is usually chosen such that a trade-off between fast convergence of the state
variables towards the target and the control efforts is found. The controller now applies the
first element of the optimal input sequence to the system until the next state measurement
(at time instant 1) is observed. This measurement allows the controller to take into account
deviations from the prediction model and react in a feedback loop. The controller now starts
a new optimization process, applies the first element of the new optimal sequence and waits
until state feedback is observed.

This strategy is well-suited for handling nonlinear and constrained dynamics as the op-
timization framework allows (theoretically) for arbitrary complex system models. It is a
straight-forward consequence that the control performance depends heavily on the quality of
the prediction model as well as the influence of external disturbances upon the system. The
example depicted in Fig. 7 shows the effects of such external disturbances at time instant 4
and 5. The state deviates significantly from the assumed behavior and therefore the MPC
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has to react to this by increasing the control action. If the disturbances have significant
effect on the future behavior, they can impact the overall performance heavily. Strategies to
mitigate those impacts are discussed in Section 2.2.2.

In addition to the prediction model, the horizon length is one of the most important hy-
perparameters in the MPC design process. From a theoretical perspective it is beneficial to
choose the optimization horizon N to be as large as possible to decrease the approximation
error to the infinite horizon problem. However, computational restrictions usually limit the
maximum number of optimization variables and therefore the horizon length. This trade-off
can be understood as follows: If the MPC optimization problem can not account for impor-
tant aspects of the dynamics in the future, the solution is likely to be sub-optimal in a global
sense compared to the infinite horizon solution. In addition, it can be hard to ensure that
the control law acts such that a solution to the MPC optimization problem will exist for all
future time instants if state constraints are present. The analysis of this problem is referred
to as recursive feasibility analysis within the literature [107, 108] and is of significant prac-
tical relevance, even though it is often hard to formally ensure under real-world conditions.
There are two main strategies to handle this issue: First, the design of appropriate termi-
nal cost and terminal constraints can ensure that the optimization problem shows sufficient
understanding of what happens after the end of the optimization horizon or is sufficiently
cautious towards the end of the horizon [73, 107, 109]. Second, certain cost structures in
conjunction with sufficiently long control horizons can ensure that the optimization hori-
zon is long enough to consider all relevant effects [110, 111]. From a practical perspective,
the optimization horizon is usually selected to be sufficiently long such that the prediction
converges to a steady-state equilibrium prior to reaching the end of the horizon.

Even though the formulation in form of an optimization problem is an elegant solution
from a control theoretic perspective, it comes with challenges from a numerical optimization
point of view. When the system dynamics or constraints are nonlinear, the optimization
problem has to be formulated as a nonlinear program (NLP). There are many different
strategies to approach these problems, the most common scheme in MPC applications is the
real-time iteration [112, 113]. Its a modified sequential quadratic program (SQP) strategy,
where the problem is linearized around a trajectory and a local quadratic program is solved.
In contrast to classical SQP, the real-time iteration only performs a single linearization
and a single optimization for each solution of the optimization problem. This strategy is
viable due to the special characteristics of the MPC task, where the solution in the current
timestep is often close to the previous solution. The implementation of the optimization
problems can either be done via holistic frameworks such as acados [114] or the utilization
of efficient quadratic program (QP) solvers such as HPIPM [115] or OSQP [116]. While the
former is suitable for standard problem formulations and allows rapid-prototyping of several
different system dynamics, the manual integration of the QP solvers allow more efficient
implementations and fine-tuning of the linearization strategy to the specific problem.

24



2 Methodology

2.2.2 Robust MPC
The central part of MPC is the utilization of a dynamic prediction model to reason over
the potential future behavior of the system under control. However, real-world applications
always imply model uncertainty and external disturbances. The former manifests in various
ways, from parametric uncertainty up to non-modeled dynamics and might destabilize the
closed-loop system if too large. The latter is slightly less critical, as its impact is usually
limited to performance degradation (as long as the disturbance is reasonably small). How-
ever, both types of deviation from the prediction model can break the recursive feasibility
property of the nominal MPC [109, 117] which will lead to a failure to satisfy the system
constraints and failure to generate appropriate control actions from the optimization. While
the latter can be mitigated via the introduction of slack variables [118], the former is a
significant challenge from a theoretical as well as from an engineering perspective.

The solution to address those constraint violations is the use of robust MPC methods
[73, 107]. The resulting optimization problems ensure that the closed-loop dynamics have
a certain amount of caution and leave sufficient room to counter-act external disturbances
and model uncertainties without input or state constraint violations. After initial works on
reformulations of the standard problem in (2.14) as a minimax problem to account for all
potential disturbances [72, 119], the dominant stream of research nowadays is based on Tube-
MPC approaches [108, 109, 117, 120]. The basic idea is to replace the complex optimization
over a high-dimensional disturbance set and arbitrary control policies with an optimization
over a set of uncertain predictions and a fixed pre-stabilizing control policy u = κ(x)+v with
the virtual input v. While [109] and [121] leverage a robust positive invariant set to create
a tractable optimization problem, [117] and [120] use reachable sets for the same purpose.
The second strategy is easier to apply within control engineering applications as it allows to
modify parameters during runtime and can handle less theoretical rigorous implementations
for nonlinear systems, e.g. linearization schemes along trajectories similar to the Extended
Kalman Filter [122]. In addition, it does not require to calculate a robust positive invariant
set as the method proposed by [109], which is a challenging task for nonlinear systems and
can lead to overly conservative results. Following these arguments, the reachable set strategy
by [117] has been used in this thesis and therefore the presentation in this section will be
restricted to this approach. Readers interested in details on different strategies are referred
to the literature mentioned previously.

With respect to the expression of the reachable sets, multiple strategies are used in the
literature: The computationally most efficient one is the representation using level sets [120,
123]. However, they tend to be overly conservative in case of larger numbers of states. In
contrast, polytopes are the most flexible and accurate representations, however, also the
computationally most expensive [124]. To allow suitable trade-offs, other representions are
used within the literature: [125] bases the proposed constraint tightening on ellipsoidal
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reachsets, as they can be represented with a fixed complexity representation (a matrix of
dimension Rn) and the impact of the system dynamics can be expressed analytically and
computationally efficient. Another intermediate complexity representation are zonotopes,
which provide a lot more flexibility but the required set arithmetics usually lead to an
increase in representation complexity (as the required generators need to be combined) [124,
126]. The work in this thesis will utilize ellipsoids due to its fixed representation complexity
and computationally efficient arithmetics.

It should be noted at this point, that the approaches presented in this thesis are restricted
to the application of Tube-MPC to linearized system dynamics. This simplifies the addition
of robust elements to the optimization problem and ensures that it stays computationally
tractable. It is similar to the schemes applied within state estimation within the Extended
Kalman Filter (EKF) framework. At the same time, the uncertainty framework naturally
allows to lump uncertainties stemming from the linearization process with already present
uncertainties within the model itself. The reader is referred to [76, 108, 120] for a more
in-depth discussion of recent achievements towards fully nonlinear robust MPC schemes.

Another alternative to the approach taken by Tube-MPC is the utilization of stochastic
models to account for the inaccuracies and disturbances [73, 127]. This results in an enlarged
design space, as it is possible to account for varying levels of probabilities and correlations
of uncertainties. However, the downside of this flexibility is the increased complexity of the
numerical techniques and computational complexity. In addition, it comes with a greater
challenge in parameterizing those uncertainties. This thesis is therefore focused on the
application of deterministic methods and will not consider stochastic methods.

The following paragraph will introduce the notation of the Tube-MPC scheme (based on
the work by [117]) applied within this thesis. The system under control can be written as

x(k + 1) = Ax(k) +Bu(k) + Ed(k), (2.15)

and the constrained linear MPC control problem could be formulated as follows

min
ū

N−1∑
i=0

(
xT

i Qxi + uT
i Rui

)
+ xNPxN ,

s.t. x0 = x(k),
xi+1 = Axi +Bui, ∀i ∈ [0, N − 1] ,
Hx,ixi ≤ gx, ∀i ∈ [0, N − 1] ,
Hu,iui ≤ gu, ∀i ∈ [0, N − 1] ,
Hx,Txi ≤ gx,T,

(2.16a)

(2.16b)
(2.16c)
(2.16d)
(2.16e)
(2.16f)

where Hx,i, Hx,i and Hx,T denote the linear inequality matrices and gx, gu and gx,T the
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corresponding upper bounds. Using a pre-stabilizing control law u = −Kx+v, the reachable
sets XR,i (for time instant i) of the closed-loop dynamics of (2.15) for a bounded disturbance
d can be calculated using ellipsoids:

E(p,M) :=
{
x ∈ Rn|(x− p)TM−1(x− p) ≤ 1

}
, (2.17)

with the center p and M the corresponding shape matrix. Using the over-approximation by
[128], the Minkowski sum of two ellipsoids can be written as

E(p1,M1) ⊕ E(p2,M2)
⊂E

(
p1 + p2,

(
1 + c−1

)
M1 + (1 + c)M2

)
,

(2.18)

with c =
√

Tr(M1)/Tr(M2) and Tr(M) the trace of the Matrix M . Together with the
following law for the affine transformation

A · E(p,M) + b = E(Ap+ b, AMAT ), (2.19)

all mathematical tools required to compute the reachable sets XR,i via consecutive applica-
tion of the set arithmetics to the system dynamics (2.15) are available. This allows to tighten
the constraints of (2.16) such that XR,i ⊂ Xi holds for all admissable nominal predictions
xi ⊂ X̄i using the approach from [125, 129]. Finally, the inequalities can be written as

Hx,i,kpi +
√
Hx,i,kMiHT

x,i,k ≤ gx,k, (2.20)

where the index k denotes the corresponding rows and vector elements of Hx,i and gx. The
reformulation for the input and terminal set inequalities can be done accordingly.

These modifications allow to formulate a new MPC problem, using the nominal inputs v
as optimization variables and the nominal state predictions p for the dynamics propagation.
The tightened constraints guarantee that this modified problem fulfills the constraints for
all potential disturbances d in the original problem:

min
v̄

N−1∑
i=0

(
pT

i Qpi + vT
i Rvi

)
+ pNPpN ,

s.t. p0 = x(k),
pi+1 = Api +Bvi, ∀i ∈ [0, N − 1] ,

Hx,ipi +
√
Hx,i,kMiHT

x,i,k ≤ gx, ∀i ∈ [0, N − 1] ,

Hu,ivi +
√
Hu,i,kKMiKTHT

u,i,k ≤ gu, ∀i ∈ [0, N − 1] ,

Hx,Tpi +
√
Hx,T,kMNHT

x,T,k ≤ gx,T.

(2.21a)

(2.21b)
(2.21c)

(2.21d)

(2.21e)

(2.21f)
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Figure 8: Visualization of the model predictive control concept for the uncertain case. The
blue predictions visualize the optimization variables and predictions of the system behavior
at time instant 0. The shaded areas depict the set-based prediction of the potential dynamic
behaviors. The orange graph depicts the actual behavior of the system observed after re-
peated application of the control inputs.

The intuition behind the above reformulation is depicted in Figure 8. The prediction of
the nominal behavior (solid lines) follows the same dynamics as in the standard MPC case.
In addition, the Tube-MPC framework assumes that bounded disturbances act in the future
which are unknown at the current time instant. These could potentially lead to the dashed
outcomes for the actual system behavior. The Tube-MPC framework calculates upper and
lower bounds for the behavior with respect to a certain state x and can therefore enhance
the nominal prediction with a robust prediction of the future system behavior. The impact
of these bounds on the optimization problem can be incorporated via the tightening of the
constraints (dashed green lines) into the nominal optimization problem. Mathematically
speaking, this tightening reflects the impact of the square root terms in the above optimiza-
tion problem. The key advantage of this method is that it does not impact the computational
requirements of the optimization problem. The only additional overhead is the calculation
of the reachable sets prior to the formulation of the optimization problem, however, the
impact can be neglected compared to the optimization when using the presented ellipsoidal
arithmetic.
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2.3 Linear Regression
Linear regression aims at the identification of a model linear in its parameters to approximate
an unknown relationship between different variables [130]. These variables are split into input
variables x and output variables y. Even though these symbols have been used for different
purposes in the previous sections, they are re-used in this section to keep consistency with the
standard literature on the topic. The following section introduces the basics of the two most
common linear regression techniques: Classical basis function regression using a quadratic
loss function and GPR. The former belongs to the class of parametric models, the latter is
a non-parametric regression technique. However, it should only serve as a brief introduction
into the topic and its notation. For a thorough and detailed explanation of the topic, the
reader is referred to the literature [130, 131, 132].

2.3.1 Parametric Models
In the parametric model case, the relation between input and output variables is modeled
via a finite set of basis functions ϕ(x). It can be written as

y = ϕ(x)Tw + ϵ, (2.22)

with the basis function weights w and the remaining model error ϵ. This model error can
either be handled in a deterministic least squares sense or in a probabilistic framework. Both
approaches lead to similar results. In the next steps, the weights which approximates the
data best in the sense of a quadratic loss function

L(x, y, w) =
N∑

i=0

(
yi − ϕ(xi)Tw

)2
, (2.23)

can be identified. In this equation, i denotes the current data point and N is the set of
the training data set. The main advantage of the quadratic loss function lies within the
availability of an analytic solution for the optimal weights wo. This can be calculated via
the pseudo-inverse

wo =
(
XTX

)−1
XTy (2.24)

of the design matrix

X =


ϕ(x0)T

...
ϕ(xN)T

 . (2.25)

More complex cases with constraints on the parameters or the outcome of the approximated
function as well as non-quadratic loss functions can be handled via the application of stan-
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dard nonlinear optimization techniques. Common loss functions include the absolute error
function, also referred to as L1-norm regression [130].

Parametric regression is usually a good choice when the modeled relation is based upon
some known characteristics which can be used to design a set of meaningful basis functions
ϕ(x). In this case, the model tends to be low dimensional and the inverse of XTX can be
computed with low computational effort. In addition, these computations can be formu-
lated in a recursive way [130] which makes them especially suited for embedded systems
which operate on long time-frames with restricted hardware. These formulations show close
connections to the Kalman Filter and are therefore well-known in the control engineering
community.

2.3.2 Non-parametric Models
In contrast to parametric regression, non-parametric models do not require the a-priori
specification of basis functions. The most prominent member of this type is GPR. Instead
of basis functions, it uses a similarity measure, the kernel function k(x, x), to construct the
prediction. Data points which are close to each other in the sense of the kernel function are
assumed to have similar output values y. The common derivation of this approach [130] is
done in a stochastic way via the joint normal probability function of training data y and
predictions y∗ [

y

y∗

]
∼ N

(
m(x),

[
k(x, x) + σ2

MI k(x, x∗)
k(x∗, x) k(x∗, x∗)

])
, (2.26)

with the mean value prior m(x), the measurement uncertainty σM, and I being the identity
matrix. The posterior prediction mean µ(x∗) and covariance σ(x∗) can then be written as

µ(x∗) = m(x) + k(x∗, x) (k(x, x) + σMI)−1 (y −m(x)) ,
σ(x∗) = k(x∗, x∗) − k(x∗, x) (k(x, x) + σMI)−1 k(x, x∗).

(2.27a)
(2.27b)

One of the key motivations to utilize GPR in the literature is the ability to infer upper and
lower confidence bounds from the posterior covariance function [125]. However, it should be
noted that the reliability of these bounds heavily depends on an accurate calibration of the
measurement uncertainty σM and the kernel parameters. As the online adaption of these
parameters is computationally heavy, they are usually determined a-priori to the systems
operation using hyperparameter optimization [130]. As (2.27b) is not dependent on the
actual data and only on the number of data points and their spread, it becomes obvious that
the posterior covariance is closer to a measure for the coverage of the data points within the
feature space rather than a true reflection of uncertainty within the trained model.

The identification of a GPR model is usually more expensive from a computational point of
view compared to parametric regression. The matrix inversion in (2.27a) and (2.27b) scales
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with the number of data points instead of the number of basis functions as in (2.24). As a
result, non-parametric regression is usually applied to problems where either little knowledge
about the shape of the estimated function is available or the data is distributed in a high-
dimensional feature space where it becomes hard to define reasonable basis functions.

2.4 Types of Uncertainty
The concept of uncertainty is used within various science and engineering disciplines. This
wide-spread adoption has led to a variety of definitions and categorizations, from where we
will present the most relevant for the upcoming work in this section.

Starting from a control engineering perspective, the main task of a feedback controller is
to minimize the influence of uncertainties on the performance of a technical system. This
minimization is mathematically formulated with two basic requirements [133]: First, the
closed-loop control system has to be stable. Second, the closed-loop system has to limit the
maximum tracking error of the target value under control within a certain range, which is
derived from the operational circumstances of the system. The thorough theoretical analysis
of these requirements has led to a more granular classification of uncertainties [133]: The first
category are external disturbances. Their key characteristic is, that their timely evolution
does not depend or correlates with the state or inputs of the system under control. In the case
of autonomous vehicle motion control, these are for example wind or inclination. The second
category are parametric uncertainties of the system under control. Within the autonomous
vehicle control domain, these could be a tire model parameter mismatch. The third category
are dynamic uncertainties of the system under control, e.g. unmodelled actuator dynamics.
There are various ways to represent those uncertainties and judge their impact on the desired
closed-loop properties. Details on these categories and consequences for the control system
design are discussed in the textbooks [133, 134, 135].

The categories above have been designed to group uncertainties according to their impact
on stability and performance analysis of the closed-loop control systems. However, there is
another way to look at uncertainty when introducing data-driven techniques: They can be
separated into aleatoric and epistemic uncertainties [136]. Aleatoric uncertainty describes
uncertainties which are inherently random and can not be explained via the model. In con-
trast, epistemic uncertainties stem from a lack of knowledge, which can be decreased via the
consideration of more data or information. Following this characterization, it becomes clear
that there are uncertainties which can be learned via data-driven techniques (epistemic un-
certainties) and others which can not be learned (aleatoric uncertainties). Even though they
characterize similar phenomenons, these categories are different from the control engineering
definitions. While there is a tendency that epistemic uncertainties uncertainties are also
parametric or dynamic uncertainties, there are counter-examples to this: There are external
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disturbances, e.g. the external torque impacting the dynamic behavior of a electrical ma-
chine, which can be identified when there is additional information about the overall system
which is powered by the machine. It is therefore also considered an epistemic uncertainty.

Taking a closer look at the aleatoric and epistemic uncertainty definitions, they show
ambiguity and are less precise than the control engineering way to look at it presented
above. One could argue, that in a world where deterministic physical laws govern the
timely evolution every uncertainty is epistemic uncertainty as it could be incorporated in
the model by thorough analysis, experimentation and validation. However, engineering
applications usually seek the trade-off between modeling accuracy, effort to build the model
and robustness in the application. Therefore, the classification as aleatoric and epistemic
unertainty is inherently dependent on the modeling process [137]. A good example for
this is the design of chassis and suspension components: While this design requires careful
analysis via large-scale FEM simulations, this modeling detail is by no means required for
the design of an autonomous vehicle motion control algorithm. In the former case, the
material parameters would be considered epistemic uncertainties as they could be identified
with careful material testing and validation of the FEM simulation. In the latter case, the
impact of chassis and suspension stiffness is usually considered a neglectable uncertainty and
not dealt with explicitly. However, they still impact the overall model behavior and therefore
belong to the class of aleatoric uncertainties. It is therefore concluded, that the classification
of uncertainty as epistemic comes with a requirement to be able to identify the uncertain
aspects with the data available and reasonable effort.

2.5 Software Architecture
A central aspect of the work in this thesis has been the embodiment of the proposed al-
gorithms into a full software stack and thorough investigation of the performance in non-
idealized scenarios. The information in this section cover the software architecture for the
IAC software, as the software stack for the Roborace competition was restricted to planning
and control algorithms. The overall architecture of this stack is depicted in Figure 9 and
follows a similar structure as many others [3, 21]. More information on the various software
modules are available in [18].

The stack is split into three main areas: The perception part handles the localization
and object detection tasks based on the environment perception sensors (LIDAR, Radar,
Cameras and GPS). It applies independent detection pipelines for each sensor modality.
The tracking algorithm matches the detected objects to the already tracked objects and
creates new tracked objects when required. The prediction module forecasts the most likely
behavior of other vehicles on track, while taking into account the interactions between those
vehicles. The trajectory planning part is responsible for the decision making and coarse
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Figure 9: Software structure of the TUM Autonomous Motorsport stack

trajectory planning. Finally, the state estimation and motion control modules refine the
planned trajectories and compute a smooth target steering angle, a target throttle position
and a target brake pressure which is sent the low-level vehicle controller.

All of the software modules run on a single computer and communicate via the open-source
middleware ROS2. The operating system is a standard Ubuntu 20.04, however, the system
configuration has been optimized to improve its real-time behavior. The average update
rates of the perception and planning software modules are designed to be 5 Hz to 10 Hz. All
of these modules run in an asynchronous fashion and account for data transport delay and
algorithm execution times. This enables a heavily concurrent execution and high utilization
of all CPU-cores. The control and state estimation module are executed with a fixed update
rate of 100 Hz.

It is important to point out, that all of the modules consistently adjust the vehicle behavior
to whats happening around it based on new information coming from the diverse sensor
setup. The positions and velocities of the tracked objects are consistently corrected based
on the outputs of the different object detection pipelines. This creates the basis for accurate
predictions of how vehicles in the considered scene are going to behave in the next couple
of seconds. The planning takes into account this prediction to generate an optimal target
trajectory for the ego vehicle. However, this plan has to be updated frequently to incorporate
novel knowledge about the behavior of other vehicles. It should be noted, that this behavior
is significantly different to situations where only static obstacles and the track bounds have
to be considered as its the case in single-vehicle racing. Those static scenarios lead to
smaller deviations of the solution between consecutive trajectory planning steps and are
therefore also easier to handle on the motion control side. The motion control finally takes
responsibility for handling and attenuating the impact of uncertainties and disturbances on
the vehicle motion to robustly execute this target behavior.
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3.1 Vehicle dynamics state estimation and localization for high
performance race cars

This paper [8] (full text in Section 7.1) explains the fundamentals behind the state estimation
strategy used within the software architecture outlined in Section 2.5 and applied during
all subsequent projects discussed in this thesis. Its scope is three-fold: First, it provides
a holistic framework to fuse several sensor information available at different rates and even
potentially asynchronous measurements. Second, it provides reliable motion state estimation
in case of single sensor failures. Third, the obtained position and motion states are robust
against measurement errors and timing inaccuracies as they are combined with a variety of
information.

This target is achieved by the utilization of an easily configurable algorithm based on the
Kalman Filter equations. It is updated in each execution step to incorporate only available
sensor data via adaption of the output matrix and utilizes a high base frequency to minimize
the effect of jitter of the incoming sensor signals. In addition, a vehicle motion dependent
configuration of the uncertainty assumptions is proposed as it is common that the motion
in the longitudinal direction is influenced much more via timing uncertainties within the
sensor data path. Furthermore, the paper demonstrates that a rather simplistic point-mass
model can outperform a more sophisticated single track model in terms of estimation bias.
It leverages the fact that the data coming from the inertial measurement unit can be used
directly as an input for the dynamic model update equations. This strategy renders the
(often highly uncertain) tire models unnecessary and can therefore demonstrate uniform
state estimation quality for the full range of driving dynamics.

The paper is concluded with the application of the proposed algorithm on the Roborace
DevBot plattform with speeds of up to 150 km h−1 and two localization pipelines based on
Global Navigation Satellite System (GNSS) and LIDAR localization. It should be noted,
that this algorithm has been used with only minor modifications during all the subsequent
publications and has therefore delivered its promise of universal applicability.
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3.2 Tube Model Predictive Control for an Autonomous Racecar
This paper [14] (full text in Section 7.2) introduces the fundamentals of the Tube-MPC
scheme used within this and the following publication. It has been developed to overcome
the limitations of classical feedback control for autonomous driving applications by improving
the control performance with knowledge about the applicable vehicle dynamics constraints
and the upcoming target trajectory for the vehicle. At the same time, its formulation as a
robust control problem helps to mitigate well-known difficulties with model predictive control
such as infeasibility of the constrained optimization problem due to the influence of external
disturbances.

The paper proposes an MPC scheme based on a friction limited point-mass model in
conjunction with a set of low-level acceleration feedback controllers. This split creates a low-
dimensional state-space model with the state-space variables lateral deviation, the derivative
of the lateral deviation and the deviation from the target velocity. The inputs are assumed
to be the accelerations with respect to those error coordinates. The resulting optimal control
problem is linearized and solved within an real-time SQP fashion with the ADMM-based
solver OSQP. The modifications to achieve robustness are done in the style of [117] via a pre-
stabilizing control law and constraint tightening based on the construction of reachable sets
with the pre-stabilizing controller. The uncertainties are specified as external accelerations
acting upon the closed-loop system.

The paper is completed with an extensive study of the influence of the pre-stabilizing
controller as well as the uncertainty assumptions on the closed-loop performance. While the
former does not tend to show a significant impact for reasonably chosen control parameters,
the latter proves to be a theoretically justified tuning parameter with explainable influence
on the robustness of the overall system. The resulting Tube-MPC outperforms a nominal
MPC scheme as well as an LQR controller (presented in [1]) significantly in terms of con-
straint satisfaction at a given lap time. The results are obtained on a Hardware-in-the-Loop
simulator utilizing a sophisticated nonlinear dual track model, actuator and sensor models
as a replacement for the vehicle behavior. It has shown to be real-time capable on a rapid
prototyping ECU from Speedgoat.
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3.3 A Tube-MPC Approach to Autonomous Multi-Vehicle Oval
Racing

This paper [16] (full text in Section 7.3) builds upon the concept proposed in the previous
publication. It adds details on the low-level acceleration controllers and the hardware in-
terfaces to run the controller on the Indy Autonomous Challenge AV-21 platform at oval
racetracks in Indianapolis and Las Vegas. In addition, it proposes a reformulation of the cost
function to enable simultaneous feedback control and fine-optimization of the target trajec-
tory. This enables the graph-based trajectory planning algorithm to operate on a coarser
grid and therefore to achieve faster update rates even in complex multi-vehicle scenarios.

The low-level acceleration controllers are split into a longitudinal and a lateral control
path. The former is a simple P-controller in conjunction with an inverse powertrain and
brake system map to calculate appropriate throttle and brake values. The latter is a PI-
like controller with a nonlinear anti-windup strategy. In addition, the concept employs a
classical PI-feedback loop for the tracking of the target steering angle to mitigate steady-
state error on the steering actuator level. The banking of up to 20◦ on the oval racetracks
require a suitable compensation of the effects on the measured accelerations. This is handled
via a transformation of the measured accelerations prior to feeding them into the low-level
acceleration controllers, which leads to a computational efficient strategy in contrast to
extending the MPC optimization problem with the nonlinear influence of the banking angle.

The second part of the paper is a simulation comparison between the proposed robust con-
trol approach based on the limited friction point-mass model and an MPC with a nonlinear
tire model. It is found, that the simplistic model in conjunction with the robustness ex-
tensions achieves better performance than the nominal MPC with the nonlinear tire model.
This is attributed to the model uncertainties which are inevitable in the nonlinear MPC
setting and are handled more structured in the Tube-MPC. In addition, the influence of
the length of the optimization horizon, the tuning of the low-level controller as well as the
performance for a-priori unknown trajectory changes are analyzed.

The paper concludes with the presentation of experimental data on the AV-21 in single-
vehicle and two-vehicle scenarios. The latter is challenging for the controller, as the trajectory
planner updates frequently to adjust the driving behavior towards the opponent. However,
the concept handles these dynamic changes in the target trajectory smoothly during real-
world tests at the Las Vegas Motor Speedway at speeds up to 265 km h−1 and accelerations
of 21 m s−2.
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4.1 A Model-Free Algorithm to Safely Approach the Handling
Limit of an Autonomous Racecar

This paper [10] (full text in Section 7.4) is motivated by the relation between the physical tire-
road friction potential and the ability of the control system to handle it. While the necessity
of a tire-road friction estimate is motivated in many papers, the required safety margin for
the tire-road friction value used for trajectory planning to allow the control system to operate
safely is often not included in the studies. This can lead to overly optimistic estimates and
unsafe behavior when operating on the racetrack. This publication proposes an estimation
strategy for the maximum utilizable tire-road friction coefficient based on safety metrics such
as tire slip and lateral control error.

This estimation strategy is realized via a safe Bayesian Optimization algorithm based on
GPR. Three safety metrics are evaluated on a per-lap basis: First, the maximum longitu-
dinal wheel slip as a measure for the tire utilization in braking and acceleration scenarios.
Second, the difference between the front and the rear side slip angle as a measure for the
tire utilization in cornering scenarios. Third, the lateral control error as a general quality
measure of the control performance. The algorithm requires the specification of an upper
bound for each of those metrics which is deemed the safety constraint. The actual behavior
of these metrics is then identified via a single Gaussian process for each of them and updated
after the observation of the metric for each lap. Based on those safety constraints, the algo-
rithm chooses a tire-road friction coefficient used for planning of the velocity profile for the
next lap. The possibility to model the exploration uncertainty within the GPR framework
allows the vehicle to start exploring the maximum utilizable tire-road friction coefficient in
a cautious manner without violating the safety metrics.

The paper demonstrates that the proposed framework is capable of handling various vehicle
conditions and adjust the maximum accelerations used by the trajectory planner to the
current closed-loop performance of the autonomous driving software. This is shown via a
simulation study with varying brake pad friction coefficients, a parameter which is usually
unknown and can only estimated on empiric data in real-world applications. Furthermore,
it often varies over time with wear and operating conditions such as temperature and is
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therefore hard to estimate reliably. Finally, the system is applied on the full-scale Roborace
prototype DevBot 2.0 and demonstrates its capabilities under real-world conditions. These
experiements are conducted with the trajectory planning proposed by [4] and the LQR
trajectory tracking controller proposed in [1].

4.2 Real-Time Learning of Non-Gaussian Uncertainty Models for
Autonomous Racing

This paper [16] (full text in Section 7.5) proposes a real-time learning algorithm to identify
a mean prediction and reliable uncertainty estimates for a static relation between input
and output variables in a standard linear regression setup. It can be applied to improve
static feedforward control laws or other static linear regression models during runtime. The
algorithm is based on a combination of a recursive least squares algorithm and a batch version
of the recursive quantile estimator presented in [138]. In contrast to other algorithms (such
as GPR) utilized for online improvements in the control community, it splits the handling of
epistemic (via the linear regression) and aleatoric uncertainty (via the quantile estimator)
in distinct steps. This allows to deliver reliable uncertainty estimates for arbitrary (e.g.
non-gaussian) uncertainty distributions in a computational efficient way.

The real-time learning algorithm is realized via a two-stage recursive algorithm: The
first stage is based on a recursive least squares approach and allows to identify a feature-
dependent mean value model to capture the general trend of the data. It is realized via a
standard gradient-descent scheme and does therefore not rely on the subsequent calculation
of a covariance matrix. This saves significant computational resources for models with a
larger number of features at the price of a non-optimal convergence behavior. The second
stage utilizes a recursive version of a sliding window approach for the estimation of an upper
or lower quantile. Its is realized via a nonlinear filter with sign dependent gains. The
paper includes a convergence analysis to a robust positive invariant set of weights and (as a
consequence) the convergence of the quantile estimators.

The proposed algorithm is evaluated in comparison to a Bayesian linear regression and a
GPR. It can be shown that all approaches deliver reliable uncertainty estimates for Gaussian
model deviations. However, only the proposed approach algorithm delivers reliable estimates
models with non-gaussian uncertainties. As this is the standard case in real-world applica-
tions, the proposed method is superior to the standard approaches when reliability of the
uncertainty estimates is key such as in safety critical applications. In addition, the algo-
rithm is benchmarked on data collected with the Roborace DevBot 2.0 to learn a residual
model for the lateral feed-forward control law and is shown to outperform its competitors.
This reinforces the findings on artificial test datasets and makes the algorithm suitable for
application of real-time critical uncertainty model learning.
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4.3 Combination of Robust Control and Data-Driven Methods
Finally, this section will discuss how the robust and data-driven workstreams proposed in
this thesis can be combined to achieve increased performance while maintaining safe driving
behavior. Even though this section is based on simulation results only, it outlines the po-
tential of the developed algorithms to handle the uncertainty within the vehicle control task
efficiently. As these results have not been published elsewhere, this section will present them
in a holistic way rather than summarizing the contributions of the corresponding paper as
in the previous sections.

The design of the combined robust and data-driven controller is based on a thorough anal-
ysis of the uncertainties which should be handled by the different components. They are
matched into to the categories used in control engineering and the uncertainty quantification
(discussed in Section 2.4) in Figure 10, to build a better understanding of the impact and
handling strategies within the control system. While the former (represented by the horizon-
tal ordering in the figure) follows clear technical characteristics, the split into epistemic and
aleatoric uncertainties depends on the chosen design assumptions. The following work will
consider effects as epistemic, if the sensor setup on the Indy Autonomous Challenge AV-21 is
capable of measuring the impact of the uncertainty (depends on the available measurement
values, their accuracy and timing resolution) and its impact is reproducible within test ses-
sions with comparable environmental conditions. Starting with the external disturbances,
there are three significant effects present in oval racing: track banking, track irregularities
and wind. The former is considered to be an epistemic uncertainty, as it is consistent for
a track and can be deduced from Inertial Measurement Unit (IMU) data with careful data
postprocessing. In contrast, track irregularities (deviations from a banked but flat track
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Figure 10: Categorization of the uncertainties present in autonomous racing
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Figure 11: Structure of data-driven Tube-MPC controller

surface) mainly impact the high frequency response of suspension and chassis components.
The AV-21 does not provide the required measurement values (e.g. damper potentiometers)
at the required rate and accuracy and therefore they are considered aleatoric. The impact
of wind on the vehicle dynamics is profound at speeds above 200 km h−1, however, even
with perfect measurements it would not be reproducible. Tire parameters and vehicle mass
and inertia are some of the most influential parameters on the overall vehicle dynamics.
However, they are also subject to significant uncertainty or slow change (depending on fuel
consumption and vehicle setup). We consider them epistemic parametric uncertainties. In
contrast, chassis compliance and vibration characteristics show similar properties as track
irregularities and are therefore considered aleatoric parametric uncertainties. Finally, the re-
sponse of the actuators is considered to be sufficiently measurable via careful comparison of
the setpoints and the acceleration response and is therefore epistemic dynamic uncertainty.
The remaining dynamic uncertainties, such as tire track contact patch response, steering
rack backlash or data transport latencies are considered to be either non-reproducible or too
small to be measured independently from each other.

Based on this analysis, we propose the overall control structure in Figure 11 and match the
responsibilities of the different components to handling specific uncertainty characteristics.
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The key components of the motion control system are the Tube-MPC in conjunction with the
low-level acceleration controllers (presented in Section 3.2) and the model-based uncertainty
learning framework proposed in Section 4.2. The learning scheme improves a feed-forward
control law with a static characteristic continuously based on the behavior observed from
the vehicle sensors, however, it does not have access to the track location. It is therefore
dedicated to handle the epistemic parametric uncertainties. The aleatoric uncertainties are
jointly handled by the acceleration controllers. Even though they might not be identifiable
from the sensor data, they can be successfully suppressed in case their influence impacts
the overall vehicle dynamics by the low-level feedback loop. The remaining epistemic un-
certainties are not considered explicitly in the controller design, however, they tend to be
constant for a track and vehicle pairing. We therefore utilize the uncertainty quantification
from Section 4.2 to measure this mismatch and adjust the amount of caution employed by
the Tube-MPC accordingly. The overall system for the upcoming simulation experiments
is completed by the state estimation presented in Section 3.1 and the trajectory planning
consisting of a simple raceline replay planning, which outputs a pre-computed target raceline
for easy evaluation of different controller designs.

The feedfoward learning employs a recursive least squares algorithm (Section 4.2) to
achieve computational efficient improvements upon the basic feedfoward control law utilized
in the standard version of the Tube-MPC. It utilizes the following model

∆δ = w0 + w1a
3
y,T (4.1)

to predict the steering offset ∆δ from the neutral-steer feedforward required to achieve
the desired lateral target acceleration. It consists of two parts: A constant offset w0 to
compensate for miscalibrations in the steering actuator or suspension and a polynomial
term w1a

3
y,T to compensate additional understeer introduced from the overall vehicle design,

the suspension setup and the aerodynamics. The training samples ∆δ are computed from
the corrective steering angles applied by the lateral acceleration feedback controller. The
model will therefore store the required feedback steering angles to improve the transient
response for the next time when a similar operating point is requested. In addition, the
features of the regression model are normalized such that both are weighted equally in the
learning process.

The second part of the employed learning framework is the recursive quantification of the
remaining uncertainty in the lateral acceleration low-level control loop (see section 4.2 for
details). The uncertainty is calculated as the deviation of the target and the actual lateral
acceleration, as this matches the Tube-MPC assumption about the input uncertainty. The
quantile estimator constantly monitors this deviation, normalizes it with respect to the
current acceleration limit and estimates the corresponding 90 %-quantile. The result is used
to adapt the disturbance estimates used for the calculation of reachable sets within the
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Figure 12: Layout of the Modena racing circuit

Tube-MPC algorithm. As a result, the Tube-MPC is more cautious when the uncertainty is
estimated to be large and more aggressive when it is estimated to be small. It can therefore
adjust its behavior to changing external conditions as well as to the improvements made by
the feedforward learning.

The evaluation scenario is the Modena racing circuit (see Figure 12), a road course in
Italy, because of its more complex structure with left and right corners at different speeds in
contrast to oval racetracks. The vehicle has been parameterized similarly to the Indy Lights
vehicle used in the IAC. In addition, a slight steering offset of 0.01 rad was added to mimic
imperfect actuator calibration. Furthermore, the front axle tire-road friction coefficient is
decreased by 30 % and increased the rear tire-road friction coefficient by 20 % to mimic that
the vehicle exhibits significant understeer. These changes are considered extreme cases and
they have been chosen to outline that the learning algorithm is capable to adjust to scenarios
where the vehicle configuration significantly deviates from the prior assumptions.

The first experiment is a simulation for 40 laps with target trajectories reflecting compet-
itive speed profiles and a usage of the vehicle dynamics potential of close top 100 %. This
setup allows to analyze the transient performance of the proposed learning scheme. The
results are depicted in Figure 13. Note, that the focus is on the lateral tracking performance
in this comparison and therefore it is always referred to acceleration rather than lateral
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Figure 13: Closed-loop results for various laps with the proposed learning algorithms for the
low-level acceleration controller within the Tube-MPC framework

acceleration for the sake of brevity. The first graph showcases the coverage of the current
estimated acceleration uncertainty based on a sliding window of 60 s. This estimate is the
core driver for the adjustment of the acceleration uncertainty depicted in the second graph.
If it is above the target of 90 %, the acceleration uncertainty is lowered and vice-versa (this
happens according to the algorithm proposed in Section 4.2). The graphs depict that the
learning algorithm is able to decrease the residual uncertainty due to parameter and model
mismatch within the low-level acceleration control loop from 11.5 % to 9 %. Consequently,
the parallel updating of the uncertainty assumption within the Tube-MPC leads to a bolder
driving style and the system exploits the admissable driving tube in form of the lateral path
deviation better, as depicted in the bottom graph. This change in performance is com-
plemented with increased steering angles to compensate for the understeer observed at the
handling limits. In addition, the laptime is reduced from 77.8 s to 76.5 s due to the decrease
in uncertainty and the resulting more aggressive driving style employed by the Tube-MPC.
These improvements are significant at the limits of handling and show that the proposed
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Figure 15: Distribution of the model errors during the learning process. The thick bars mark
the estimate of the 90 % quantile for each of the laps.

learning strategy can help to decrease the manual tuning efforts while approaching the han-
dling limit safely. However, the results also show that there is further uncertainty within the
closed-loop system which cannot be reduced via the basic feedforward learning applied here.
These can be attributed to non-modelled dynamic effects (e.g. steering actuation and yaw
dynamics) as well as the simplified choice of the regression model with only two parameters.

Overall, it takes the learning algorithm about ten laps (approximately 800 s) to complete
the majority of the learning process, the gains from lap 10 to lap 38 are marginal. The
corresponding evolution of the weights is depicted in Figure 14. It is interesting to see,
that even though the weights are still changing at this point in time, the improvements
in the overall uncertainty of the lateral acceleration control loop are minor. This behavior
can be explained via the interplay between the feedforward parts and the feedback parts
in the controller. Even though the feedforward law has not fully converged, the remaining
uncertainties are small enough to be handled with sufficient performance by the feedback
parts. The convergence speed of the algorithm is set to be slow to allow the rest of the
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control system to keep up with the improvements and to prevent failure due to an overshoot
of the learned model weights. This parameter can be tuned via the learning rate of the
recursive least squares algorithms, however, it should be treated with caution as this process
is carried out on a real vehicle and not in simulation.

Finally, Figure 15 depicts the improvements in the lateral acceleration control performance
in a model mismatch histogram. The histogram for lap 2 reflects the situation before the
learning process starts (this is triggered in lap 3) and shows that the distribution of the
model mismatch is broad and ranges from 2 % to 20 %. The bars depict the 90 % quantiles
of the corresponding distributions. With the start of the feedforward learning algorithm,
the uncertainty within the lateral acceleration control loop can be reduced until it reaches
its minimum. Even though there are still outliers, the majority of the distribution has been
shifted significantly to the left which is reflected in the reduction of the 90 % quantile and
the improved overall system performance outlined in the previous paragraphs.
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The autonomous driving community has seen a tendency to leverage increasingly complex
models in model-based motion control algorithms in recent years. Prominent examples are
the utilization of advanced nonlinear tire models for real-time control applications, either
in analytical control design approaches [23, 24, 43] or in model predictive control designs
[57, 58, 60, 63]. While these works demonstrated significant performance improvements in
simulation benchmarks and in real-world scenarios where the model is well-calibrated within
the operating region, they come with significant manual engineering and parameter tuning
effort for each demonstration run. The various real-world tests conducted with the Roborace
DevBot 2.0 and the Indy Autonomous Challenge platform during the work of this thesis have
surfaced this fact many times caused by multiple influencing factors: The most prominent
example are varying vehicle dynamics due to tire pressure and temperature, which depend
both on the outside temperature and the driving behavior. This uncertainty is extended via
the impact of the track condition and the resulting tire-road contact behavior which tends to
vary between different racetracks and sometimes even within the same track. Other causes
for significant uncertainty have been the temperature influence on brake behavior and the
impact of the autonomy sensors on aerodynamic behavior.

This thesis investigates whether robust and data-driven control methods are suitable to
overcome these challenges and to design motion control systems which are capable to op-
erate safely at the handling limit of the vehicle under the presence of uncertainties and
model-mismatch. First, a robust control system design based on a Kalman-Filter for state
estimation and a Tube-MPC in conjunction with fast low-level control loops for vehicle mo-
tion control have been proposed in Chapter 3. Second, two different strategies leveraging
model-free and model-based learning algorithms for adjusting the control system and the
vehicle dynamics model have been developed in Chapter 4. The chapter is concluded with
the integration of the model learning algorithm with the robust control system proposed
previously. The following sections are going to discuss the achievements and shortcomings
of the various approaches.

5.1 Robust State Estimation and Motion Control
This thesis presents multiple contributions towards the development of a robust motion
control system which explicitly considers uncertainties within the design. It is split into a
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state estimation algorithm (Section 3.1) based on a Kalman-Filter algorithm and a motion
controller based on Tube-MPC (Section 3.2 and Section 3.3). All model-based parts are
built on well-known and simple dynamic equations (such as Newtonian mechanics). Effects
which are not addressed by the model are tackled via the uncertainty assumptions and
the addition of low-level feedback loops. From a broader perspective, this approach can
be seen as a strategy to accept that uncertainties are present in the autonomous vehicle
motion control problem and classify them as aleatoric, and therefore irreducible, uncertainties
instead of treating them as epistemic uncertainties and trying to refine the model to the finest
detail. The topics of state estimation and motion control will be discussed individually in
the upcoming sections.

5.1.1 State Estimation
The presented state estimator (Section 3.1) based on a point-mass model leveraging basic
Newtonian mechanics has shown to have less estimation bias than an alternative implemen-
tation using a nonlinear single track model at the expense of increased estimation noise. This
trade-off is similar to the well-known bias-variance trade-off [130] in machine learning. It
outlines an important challenge with increasingly complex models: Even though they seem
to provide higher fidelity and can help to reduce estimation variance, they might introduce
significant estimation bias in case of miscalibrated parameters or structural modeling errors.
This is especially challenging when the models consider parameters which vary with environ-
mental circumstances such as the tire-road friction coefficients in the nonlinear single track
model. Control systems leveraging such biased estimates can not achieve precise tracking of
the true vehicle motion states such as speed and acceleration. This can lead to dangerous
situations, e.g. an autonomous vehicle approaching a corner too fast and failing to handle
it appropriately.

In contrast, the proposed point-mass model is built on Newtonian mechanics and its esti-
mates are unbiased under the assumption that the IMUs are calibrated correctly. However,
this approach does not come without disadvantages: First, it requires the vehicle to be
equipped with a precisely calibrated (and therefore expensive) high-update rate IMUs for
acceleration measurements and reliable localization algorithms. Second, the proposed model
assumes that the vehicle motion is planar. Therefore, deriving precise acceleration values
from the sensor data has shown to be a challenge during the application of the algorithm on
the banked oval tracks at the Indy Autonomous Challenge. The banking led to a mismatch
of the planar dynamics used within the model and the actual accelerations observed from
the sensor. While this was compensated via an offline generated banking map of the track,
it requires cumbersome fine-tuning of the track model to achieve good performance. The
impact of banking map errors on state estimation residuals is shown in Figure 16. They
serve as a proxy for a ground-truth comparison as the used high-quality GNSS system is
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Figure 16: Impact of errors in the banking map on state estimation results

assumed to be precise and therefore the predictions of the model are expected to match well
in case the model assumptions are fulfilled. The figure compares the state estimation results
for an initial guess of the banking profile at the Indianapolis Motor Speedway with a refined
version calibrated on measurement data. The mismatch of the real-world banking and the
assumed banking profile led to significant residuals in the lateral direction for the initial
guess of the banking map. This is due to a systematic error in the transformation of the
accelerations from the vehicle coordinate frame into the planar coordinate frame of the state
estimator based on the wrong banking assumption. While the manually calibrated bank-
ing map showed better results, a more sustainable strategy would be the introduction of a
true three dimensional motion model and additional calibration states to identify calibration
mismatch in the IMU itself.

The longitudinal residuals are dominated with timing effects related to the distributed
operation of the sensor data receivers and the state estimation algorithm: At top speed
(around 75 m s−1), the vehicle moves approximately 0.75 m within 10 ms. This leads to high
residuals when the data package is delayed (shown in the top plot of Figure 16), as the current
implementation does not compensate for these effects. This effect is even more pronounced
due to the utilization of ROS 2, an asynchronous messaging system, on a centralized high-

48



5 Discussion

performance compute unit. This is due to the fact, that the middleware and scheduling
strategy does not guarantee a certain order of execution for message processing and scheduled
tasks. Future implementations should be extended via a holistic handling of asynchronous
and delayed sensor data. In addition, this requires to synchronize the clocks of all sensors
via technologies like Precision Time Protocol (PTP) and pay in-depth attention to real-time
capabilities.

Finally, it was found that the estimation algorithms have to be extended with capabilities
to reliably detect faulty sensor signals. While the presented implementation had the abil-
ity to deactivate sensors which stopped sending data or provided a self-diagnosis flagging
bad quality data, it assumes sensor data to be correct in all other circumstances. However,
even high-quality measurement systems can have faults from time to time in the challeng-
ing racing environment resulting from vibrations and continuous high accelerations, leading
to dangerous situations at high speeds due to faulty localization data caused by incorrect
sensor data and therefore wrong corrective actions of the control system. A potential strat-
egy to overcome this is the application of fault detection techniques and the subsequent
utilization of these results in the sensor fusion algorithms. While the literature proposes
algorithms to approach this problem [139], it has to be further investigated in the context
of high-performance autonomous racing applications. In particular, this has to be done in
conjunction with a thorough system engineering approach considering the required reliability
targets already in the sensor selection and positioning to prevent increased cost and weight
from too many redundant sensors on the vehicle.

5.1.2 Motion Controller
The proposed control system utilizes a model predictive controller based on the Tube-MPC
scheme introduced in [117]. The prediction model is a friction limited point-mass model
within a curvilinear coordinate frame associated with the reference path. This focus on
the Newtonian mechanics allows the Tube-MPC to use the vehicles longitudinal and lateral
accelerations as control input and therefore work with a low-dimensional state space model in
contrast to more complex single-track models. The system is completed by the introduction
of fast low-level control loops to track the target values for the accelerations. The application
of this controller design during the various testing sessions and competitions of the Indy
Autonomous Challenge has shown that it is a promising concept to decrease the dependence
on accurate parameter estimates and deliver driving capabilities at the handling limits with
little knowledge of model parameters (results and comparison to an MPC with a nonlinear
tire model can be found in Section 3.3). In the presented design, only the wheelbase, the
vehicle weight and a coarse engine and brake characteristic have to be known. It does not
require details about the tire characteristic or suspension design.

The differences of the Tube-MPC controller used in this thesis to a standard nominal

49



5 Discussion

Figure 17: Impact of cost function structure on overall optimization result

tracking MPC are visualized in Figure 17. The figure shows the optimization result for
different controller variants and the impact of the cost function design on the cost with
respect to the lateral deviation from the reference line. The input for the optimization
problem is a drivable corridor which is declared collision free by a high-level trajectory
planner. The top row shows that a nominal tracking MPC formulation would choose to stay
close to the middle of this drivable corridor to ensure proper tracking of the reference line.
The cost increases significantly already for small deviations. It should be noted, that the
cost visualization here includes the impact of the constraints as these are implemented as
soft constraints in the problems shown in this thesis.

In contrast, the re-optimization case (middle row) has near zero cost for lateral deviation
until it reaches the bounds of the drivable corridor represented as soft constraints. The
advantage of this re-optimization cost function is that it can handle rather coarse target
trajectories with smooth driving behavior and therefore achieve higher overall performance.
In the nominal tracking case, already small deviations are penalized which leads to closer
tracking of the middle of the drivable corridor. However, driving close to the constraints is
risky when the motion prediction of the controller is not exact as the vehicle might leave the
admissible driving corridor.

This challenge is overcome by the second difference to nominal tracking MPC: The pro-
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posed Tube-MPC utilizes a prediction over a set of possible trajectories (under the influence
of uncertainties) instead of a single prediction (bottom row). As a result, the controller
employs a safety distance to the constraints for long-term predictions (translating to 1.5 s
to 2.5 s for the racing application) while still exploiting the full constraints for short-term
predictions (from 0.5 s to 1 s). This behavior is achieved by the constrained tightening, which
leads to a broad and gentle increase of the cost-function for short-term predictions and more
narrow and steep increase for long-term predictions.

Even though the theoretical guarantees on recursive feasibility can not be applied directly
to the real world system, the comparison to a nominal MPC (Section 3.2) and the exten-
sive real-world testing on various racetracks have shown that this strategy to incorporate
assumptions on the external acceleration disturbances is an effective way to adjust the ag-
gressiveness of the closed-loop driving behavior. The assumed disturbance value acts as a
risk-equivalent parameter and can be used to account for various parametric uncertainties
(e.g. tire parameters), even though they have not been considered explicitly or with an
accurate physical representation within the disturbance model. This finding questions what
level of uncertainty modeling is required for successful application and motivates to focus
on the outcome of the disturbance as a prediction uncertainty rather than on the detailed
representation of their physical causes. While there is a significant amount of literature on
the theoretical analysis of Robust MPC controllers and various uncertainty representation,
a detailed comparison of their application performance should be conducted in the future.

However, the application of Tube-MPC can not eliminate all challenges associated with the
real-world application of MPC. In practical applications, the constraints of the optimization
problem are usually implemented in a soft-constraint fashion to prevent infeasibility of the
optimization problem in edge-cases close to the constraints. This is done via the introduction
of linear or quadratic penalty terms (or both) with large weights. For the case of linear cost
terms and sufficiently high weights, it can be shown that they lead to the so called exact
penalty property [118], which means that the soft-constrained optimization problem recovers
the solution of the hard-constrained problem if its feasible. The same strategy applies for
the used Tube-MPC concept: After calculating the uncertainty tube and conducting the
constraint tightening procedure, the resulting (stage-dependent) constraints are implemented
using a linear penalty function. This leads to similar challenges as in the nominal case when
the optimization problem becomes infeasible. Even though this should not happen after
careful choice of the uncertainty assumptions, its hard to prevent completely as sudden
changes in the target trajectory or in the system dynamics, e.g. resulting from an actuator
degradation, might render the chosen parameters slightly too optimistic. As a consequence,
the optimization problem becomes challenging to solve from a numerical perspective due to
the sudden increase in the cost function via the penalty term, which results in longer solver
times which might violate real-time requirements. In addition, its hard to predict and tune
how the optimal reaction to such cases looks like. The large impact on the cost function can
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Figure 18: The final overtake in the final of the Autonomous Challenge at Las Vegas Motor
Speedway and spin-out of the TUM vehicle at 250 km h−1. Image credits: Indy Autonomous
Challenge. Full video available at [33].

lead to large corrective actions in the control commands, which can further destabilize the
closed-loop dynamics as the actuators operate outside their modeling assumptions. Future
work should investigate how the careful design of the penalty terms can be done to account
for these effects and achieve the desired closed-loop behavior. A different strategy could
be, to take an H∞ interpretation to the robust MPC design problem: This would shift the
focus onto shaping the cost-function such that it directly supports the robustness targets
rather than relying only on the constraint tightening to achieve it. Furthermore, it would
be in-line with many practical control engineering approaches, where constraint satisfaction
is enforced only implicitly via sufficiently good control performance. This approach could
increase the performance of the Tube-MPC in cases where the disturbance assumptions are
slightly violated as it would only lead to slight performance degradation in contrast to the
often erratic behavior observed when the problem becomes numerically hard to solve. Since
pushing the vehicle to its maximum is a common scenario in racing, these alternative design
strategies could be of significant interest for future work.

Finally, the proposed interface between the Tube-MPC and the low-level controllers, lateral
and longitudinal acceleration, was found to perform well within stable driving situations but
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Figure 19: Vehicle dynamics data of the final overtake of the Autonomous Challege at the
Las Vegas Motor Speedway. Positive values resemble left-hand turns.

lacks the ability to counteract potentially destabilizing situations. The interface was chosen,
as it showed best performance in handling uncertainties in the self-steering behavior of the
vehicle and therefore minimized the impact of the vehicle dynamics setup on the motion
tracking performance. However, during unstable driving situation, such as the final of the
Las Vegas race, depicted in Figure 18, it showed shortcomings. The detailed vehicle dynamics
data related to this incident are shown in Figure 19.

The situation starts with the PoliMOVE vehicle (green) overtaking the TUM vehicle (blue)
on the outside of the track. After this overtake was complete, both vehicles approached the
apex of the long start-finish curve at the Las Vegas Motor Speedway (around 1426 s to
1429 s, first marker). At 1429.5 s (second marker) the perception stack of the TUM vehicle
detected a false positive in front of the vehicle and initiated a sudden evasion maneuver to
the right, followed by a strong correct to the left (starting at 1430.2 s, third marker). The
requested target acceleration in this left-hand correction overloaded the rear-axle and led to
the spin-out (starting at 1430.5 s, fourth marker, with the increase in yaw rate) and the short
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section of reverse movement (from 1433 s to 1434 s). Even though required, the controller
did not counter-steer until its too late to regain control of the vehicle. This can be attributed
to the controller only taking into account the lateral acceleration and the vehicle position.
Additional consideration of the yaw rate, which is the first measurement value to indicate the
spin-out, and the side slip angle could improve this behavior. Future research activities could
investigate how the strengths of the low-level acceleration feedback can be combined with
existing concepts based on yaw-rate and side-slip angle feedback. On top of that, it will be
necessary to design this low-level control system as a joint longitudinal and lateral dynamics
controller to handle a large variety of challenging driving scenarios. It should be kept in
mind that the performance of these systems is fundamentally limited by the response times
of the actuators. A control system which will match human driver capabilities in racecar
handling will require the same reaction speeds as human drivers have, otherwise it will have
a fundamental disadvantage. Therefore, further improvements in actuator technology are a
necessary prerequisite for advancements in vehicle dynamics control design.

5.2 Data-Driven Methods
The second part of this thesis investigated two different data-driven methods to reduce
the manual parameter and model adaptation effort required in state-of-the-art autonomous
racing algorithms. The first approach, presented in Section 4.1, targets the online adjustment
of a velocity profile scaling factor to achieve minimum laptime for a given pre-optimized
raceline. This is done via a Safe Bayesian Optimization algorithm which considers several
motion control performance indicators. The key characteristic of this algorithm is that it
does not take into account any knowledge about the vehicle behavior and can therefore be
considered a model-free learning algorithm. In contrast, the second approach, presented in
Section 4.2 is a strategy to refine the feedforward control law based on model identification
and uncertainty quantification. It leverages a recursive least mean squares algorithm in
conjunction with a recursive quantile estimator. The resulting algorithm is embedded into
the Tube-MPC motion controller presented earlier in this thesis in Section 4.3. It is used
to reduce the average acceleration tracking error and adjust the uncertainty assumptions
during operation.

The Safe Bayesian Optimization algorithm (based on the framework presented by [140])
utilizes individual Gaussian Processes to model the dependence of several safety indicators
on the optimization variables (in this case a scale factor for the velocity profile of the optimal
racing line). The relation is refined during the operation of the vehicle via measuring the
safety indicators when executing a trial with a specific velocity scale factor. The qualifying
scenario for autonomous racing allows to always pick the worst-case of a safety indicator over
the course of a full lap. As a result, the vehicle adjusts the target scale factor every lap until
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it reaches the minimum lap-time without violating a constraint on one of the safety factors.
The exploration speed is adjusted via the kernel parameters in the Gaussian Processes. The
approach has shown to be well-suited to replace conventional tire-road friction coefficient
estimation by using safety indicators which are good in revealing whether the vehicle is
close to the handling limits, such as lateral control error, longitudinal wheel slip and the
difference between front and rear axle side slip. This overcomes the disadvantage that tire-
road friction coefficient estimation does not consider the actual capabilities of the control
system driving the autonomous racing vehicle. Utilizing such a parameter based estimate
naively in a motion control system with moderate driving capabilities can be compared to
asking a novice driver to execute a raceline which was successfully driven by a professional
driver, because the vehicle is capable to do this. In contrast, the proposed algorithm considers
the safety indicators as a proxy for the joint capabilities of the motion control algorithm and
the tire-road friction coefficient and can therefore safely achieve the handling limit for the
current software configuration.

However, the downside of this approach is that it has to rely on measured and represen-
tative samples for the safety indicators. In the qualifying case, this is done via driving a full
lap on a circuit which makes the system take a while to converge as it can only update the
vehicle behavior after the completion of a full lap. In addition, the system will always pick
the worst-case situation from the full lap to adjust the speed appropriately. This might lead
to neglecting potential on certain sectors of the lap. The slow convergence over the course
of several laps and minutes and reliance of a repeatable task such as qualifying laps make
it hard to apply this approach to more complex situations such as multi-vehicle racing. In
addition, the approach can not react during the lap in case external factors (such as rain)
impact the optimization procedure. Another scenario where a change during a lap would
be required, is if the algorithm has chosen an overly optimistic target value to evaluate and
the vehicle barely completes the first turn. A human driver would adjust the driving style
already here, however, this behavior can not be naturally embedded into the proposed algo-
rithm. While there might be rule-based strategies to overcome these shortcomings, they are
likely to be very specific to a certain situation and will have difficulties to generalize.

The discussed challenges with the model-free approach have led to a focus on model error
learning strategies to enhance the capabilities of the existing Tube-MPC algorithm for the
remainder of the thesis. The most popular framework here has been the learning of a GPR
error model to cover non-modeled effects in the dynamic equations (e.g. [31, 125, 141]),
however, it suffers from significant computational complexity for cases where larger datasets
are required. In addition, the standard formulation can not deliver reliable uncertainty es-
timates for the case where the measurement uncertainty is not known exactly prior to data
collection and learning (see Section 7.5 for a detailed discussion of this issue). The Re-
cursive Uncertainty Model Identification algorithm proposed in Section 4.2 overcomes these
challenges via a two-stage algorithm. The first stage, responsible for dealing with epistemic
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uncertainty, is handled via a recursive least squares algorithm to provide a computational
efficient alternative to GPR. The second, dealing with the remaining aleatoric uncertainty, is
done via a recursive quantile estimation strategy, which can quantify prediction errors with
arbitrary distribution type. The key advantage of the proposed algorithm is that it’s fully
recursive and therefore well-suited for embedded applications with update frequencies in the
range of 100 Hz. Furthermore, this resolves the problem of adjusting the learned model to
changing environmental circumstances. In contrast to classical GPR, the recursive formu-
lation includes a forgetting mechanism. Previous proposals in the literature implemented
this with a resource intense data management strategy on top of the GPR [31] which makes
them hard to apply on embedded control units.

Another advantage of the proposed algorithm is its consistency in terms of uncertainty
estimation. Classical recursive least-squares and GPR assume the uncertainties to be known
as hyperparameters prior to identification of the mean model. Their uncertainty estimate
therefore only covers the effects of the unknown parameters within the mean value approxi-
mation (corresponding to the epistemic uncertainty within the problem) and do not adjust
to the remaining uncertainty in the observed data (corresponding to aleatoric uncertainty).
In fact, a standard GPR based uncertainty estimate will always converge to the pre-specified
measurement uncertainty as soon as a sufficient number of measurements is available. If this
parameter does not reflect the actual uncertainty within the process, the uncertainty esti-
mate, and therefore the assumptions of the Tube-MPC, can be arbitrary wrong. This makes
them a dangerous choice when using it in conjunction with a Tube-MPC algorithm as it can
lead to overly optimistic driving style. While Bayesian Linear-Regression proposes a way to
jointly estimate the mean regression model and the uncertainty parameters, it is restricted
to gaussian error distributions. The same holds for joint optimization of model parameters
and hyperparameters for the case of GPR. The recursive quantile estimation strategy over-
comes this shortcoming by using the actual coverage of the data as an identification target
which directly corresponds to a statistical quantile interpretation. However, the solution to
this problem also causes a disadvantage: The identification of a quantile from measurement
data without prior assumptions on the distribution requires a large dataset to achieve low
variance and therefore sufficient reliability. This leads to a sample size requirement in the
area of several thousand datapoints with data representative of the uncertainty which should
be covered. Despite the raw memory requirements (which can be handled on state-of-the-art
compute units), this leads to long observation time windows. Assuming a sample rate of
100 Hz this means that a low variance quantile estimation can easily take 30 s to 60 s. As
a result, the response time to changes in the uncertainty characteristic can not be reduced
arbitrarily. Even higher quality or frequency sensors would not resolve the problem as the
samples also have to be representative and rather uncorrelated.

The final part of the thesis has been Section 4.3 with a combination of the Tube-MPC
algorithm proposed in Section 3.3 and the learning algorithm proposed in Section 4.2. Even
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though the evaluation presented is only based on a simulation study, it sheds light on the
potential of the combination of these two approaches. It aims to handle the overall uncer-
tainty in the system via two different ways: First, the mean-error model learning reduces the
epistemic uncertainty via refining the feedforward control law using the data collected while
driving. Second, the uncertainty quantification algorithm measures the remaining uncer-
tainty within the system and uses this value to parameterize the uncertainty assumptions of
the Tube-MPC. It can be considered to quantify the aleatoric uncertainty and utilizing this
value to apply sufficient caution. The proposed mean-error model manages to reduce the
overall lateral acceleration uncertainty from 11.5 % to 9 %. As a result, the lap times have
been reduced from 77.8 s to 76.5 s. Even though this improvement is remarkable considered
the level of driving performance, the remaining uncertainty level indicates that the learning
approach has not fully succeeded in identifying the non-modeled dynamics. This shortcom-
ing is related to the fact that the adjusted feedforward control law could only account for
static characteristics and did not imply possibly modification of dynamic response parame-
ters or even the dynamic structure itself. While further degrees of freedom for the learning
algorithm might improve the performance when it is done with parameter identification, an
increasing number of optimized parameters makes it harder to predict the behavior of the
learned feedforward law prior to convergence. This might lead to erratic reactions or other
unwanted behavior.
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6 Conclusion
Autonomous vehicle motion control has been a topic of on-going research for several decades.
With increased maturity of driver-assistance systems, the focus of the motion control research
community shifted towards situations where the vehicle is operated at the handling limits
and the tire behavior becomes nonlinear. This was supported by the rise of multiple au-
tonomous racing competitions, where research teams from all over the world get the chance
to benchmark their algorithms on racecars of different size. The competitive nature of rac-
ing requires the motion control algorithms to operate safely close to the handling limit with
only very little tolerance for error. While there are many ways to approach this challenge,
model predictive control has shown to be one of the most promising strategies to handle
the complex dynamics, safety constraints and combined steering, throttle and brake inputs.
However, many approaches focus on the design of well-calibrated nonlinear dynamic models
with a large number of states, which leads to complex and fragile numerical optimization
strategies. This thesis aimed at reducing the dependency of the motion control algorithms
on the availability of detailed nonlinear vehicle dynamics model via the application of robust
and data-driven algorithms to the autonomous racing task.

The work was conducted in two separate streams: The first stream (focussed on robust
control) presented a state estimator which is robust against parametric uncertainties within
the vehicle model and a Tube-MPC based on a simple friction limited point-mass model in
conjunction with fast low-level acceleration PI-feedback loops. Both concepts were evaluated
under real-world conditions at speeds up to 265 km h−1 and accelerations of 21 m s−2 during
the Indy Autonomous Challenge. Even though they only utilize basic information about
the vehicle dynamic behavior, they achieve stable driving behavior at the handling limits
and outperform strategies with more complex models in cases where their parameters are
not well-calibrated. This emphasizes the strength of fast low-level feedback control, when
the remaining uncertainties are handled within a robust framework such as Tube-MPC in
the high-level controller. Another strength of the proposed concept is its re-optimization
capability: The controller could jointly apply feedback and re-optimize the target trajectory
such that smooth steering, throttle and brake actuations can be achieved. This is important
in the multi-vehicle racing task, as the trajectory planner has to solve a complex, non-convex
optimization problem due to the many available options. As a result, a coarser discretization
during the graph-based trajectory planning could be applied which led to lower execution
times and there fore faster reactions. The resulting motion control system dealt with an
extensive amount of the vehicle dynamics range of the Indy Autonomous Challenge vehicle
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on varying oval racetracks with limited information (vehicle mass, wheelbase and coarse
estimates of the brake and engine characteristics) about the dynamic system characteristics.
In particular, it did not use information about the tire characteristics which is a significant
advantage in comparison to many Nonlinear MPC approaches.

The second stream introduced two different ways of leveraging data-driven algorithms to
improve the performance of an autonomous racing vehicle: The first approach adjusted the
velocity profile scale factor of the trajectory planner to achieve minimum lap-time without
violation of safety constraints, such as tire slip or lateral control error, using a Safe Bayesian
Optimization approach. However, its strong focus on the optimization of a repeatable tasks
limited its applicability in more complex situations as multi-vehicle racing. The second
approach combined a recursive least-squares estimator with a recursive quantile estimator
to adjust a linear (in the parameters) relation between features and output variables and
estimate the residual variance. Finally, this approach was combined with the work from
the first stream and demonstrated to increase the control performance via adjusting the
feedforward control law for the lateral acceleration controller in a simulation study. Even
though the decrease in lateral acceleration tracking error was significant (from 11.5 % to
9 %), the learning algorithm was not able to eliminate the uncertainty completely.

One of the unique contributions of this thesis was that most of the algorithms were bench-
marked on a full-scale autonomous racing vehicle, starting with the DevBot 2.0 by Roborace
and followed by the AV-21 at the Indy Autonomous Challenge on various racetracks in Eu-
rope and the United States. The resulting variance in vehicle dynamics as well as tire and
track conditions posed a significant hurdle which was mainly overcome by the application of
concepts which depend only on a coarse characterization of the vehicle rather than requiring
a detailed model identification. The utilization of fast low-level acceleration feedback loops
was a key enabler for this and showed to be more influential than the utilization of either
of the learning algorithms. While these could be used successfully for certain fine-tuning
aspects, they did not show the same fundamental impact on the overall system performance.
These findings indicate that the inherent and irreducible uncertainty (aleatoric uncertainty)
dominated in the applications evaluated for this thesis in contrast to epistemic uncertainties
which could have been overcome by the application of learning algorithms. Considering all
the potential influences on the vehicle dynamics (load dependent steering actuator character-
istics, temperature dependent brake and engine characteristics, varying asphalt conditions
on the same racetrack, temperature and wear dependent tire conditions, and many more) it
seems to be a hard task to increase the model complexity of the learning schemes to an extent
which is sufficiently rich to consider the aleatoric uncertainties as epistemic uncertainties.

While one might argue that professional race drivers are capable of handling all of these
uncertainties, it remains questionable whether they do so via a long-term (on the scale of
multiple laps or situations) oriented learning scheme or if they use other techniques, such as
immediate and nuanced feedback to the vehicle behavior. Following the results of this work,
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it’s more promising to refine the combination of robust high-level MPC and fast low-level
feedback controllers. In particular, more advanced but still robust (independent from tire-
road contact characteristics) low-level feedback laws are a promising direction of research, e.g.
by taking into account a combination of yaw rate, lateral and longitudinal accelerations and
the chassis side-slip angle and potentially designing a joint lateral and longitudinal feedback
controller rather than two separate ones. In addition, improving the general capabilities of
the vehicle to respond well in such fast feedback loops is likely to be required to achieve
human performance. This includes improved sensor data quality, improved compute and
networking capabilities to reduce the overall latency from sensor data to actuation requests,
as well as reduced response times of the steering, brake and throttle actuation.

Finally, it remains to discuss the relation of the results of this work onto the development
of highly automated and autonomous vehicles for highway and urban scenarios. The general
design of the high-level MPC and the low-level acceleration feedback loops could be trans-
ferred to passenger car applications in a wide range of vehicle dynamics. The application for
commercial vehicles such as semi-haulers is likely to require extensions to the vehicle motion
model in more dynamic situations to cover for the impact of the trailer. However, one of
the challenges which need to be overcome is the compensation of inclination and banking
influence on the acceleration controllers. This could either be done similar as in the racing
case, using a high-definition map of the environment or would require enhancements to the
sensor fusion and additional information from the environment perception sensors. In addi-
tion, the significantly larger variance in road surface and weather conditions on the road is
challenging for the proposed concept. While this variance could be handled via uncertainty
assumptions, it does not make sense to handle all of these influences with a single uncertainty
or parameter setup. This would lead to overly cautious driving behavior, e.g. the vehicle
would always account for the possibility of a sudden thunderstorm during sunny weather.
The handling of these different environment conditions should be done via other strategies,
e.g. access of the motion controller to information provided by an environment perception
system and other external sources such as weather forecasts.

60



References
Own Publications

[1] A. Heilmeier, A. Wischnewski, L. Hermansdorfer, J. Betz, M. Lienkamp, and B.
Lohmann, “Minimum curvature trajectory planning and control for an autonomous
race car”, Vehicle System Dynamics, vol. 58, no. 10, pp. 1497–1527, 2019.

[2] J. Betz, A. Wischnewski, A. Heilmeier, F. Nobis, T. Stahl, L. Hermansdorfer, B.
Lohmann, and M. Lienkamp, “What can we learn from autonomous level-5 mo-
torsport?”, Proceedings of the 9th International Munich Chassis Symposium 2018,
Springer Fachmedien Wiesbaden, 2018, pp. 123–146.

[3] J. Betz, A. Wischnewski, A. Heilmeier, F. Nobis, L. Hermansdorfer, T. Stahl, T.
Herrmann, and M. Lienkamp, “A software architecture for the dynamic path planning
of an autonomous racecar at the limits of handling”, Proceedings of the 2019 IEEE
International Conference on Connected Vehicles and Expo (ICCVE), IEEE, 2019, pp.
1–8.

[4] T. Stahl, A. Wischnewski, J. Betz, and M. Lienkamp, “Multilayer graph-based trajec-
tory planning for race vehicles in dynamic scenarios”, Proceedings of the 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), IEEE, 2019, pp. 3149–3154.

[5] J. Betz, A. Wischnewski, A. Heilmeier, F. Nobis, T. Stahl, L. Hermansdorfer, and M.
Lienkamp, “A software architecture for an autonomous racecar”, Proceedings of the
2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), IEEE, 2019,
pp. 1–6.

[6] F. Christ, A. Wischnewski, A. Heilmeier, and B. Lohmann, “Time-optimal trajectory
planning for a race car considering variable tyre-road friction coefficients”, Vehicle
System Dynamics, vol. 59, no. 4, pp. 588–612, 2019.

[7] T. Stahl, A. Wischnewski, J. Betz, and M. Lienkamp, “ROS-based localization of a
race vehicle at high-speed using LIDAR”, E3S Web of Conferences, vol. 95, pp. 1–6,
2019.

[8] A. Wischnewski, T. Stahl, J. Betz, and B. Lohmann, “Vehicle dynamics state estima-
tion and localization for high performance race cars”, IFAC-PapersOnLine, vol. 52,
no. 8, pp. 154–161, 2019.

[9] J. Betz, A. Heilmeier, A. Wischnewski, T. Stahl, and M. Lienkamp, “Autonomous
driving—a crash explained in detail”, Applied Sciences, vol. 9, no. 23, pp. 1–23, 2019.

61



6 Conclusion

[10] A. Wischnewski, J. Betz, and B. Lohmann, “A model-free algorithm to safely ap-
proach the handling limit of an autonomous racecar”, Proceedings of the 2019 IEEE
International Conference on Connected Vehicles and Expo (ICCVE), IEEE, 2019, pp.
1–6.

[11] A. Wischnewski, J. Betz, and B. Lohmann, “Real-time learning of non-gaussian uncer-
tainty models for autonomous racing”, Proceedings of the 2020 59th IEEE Conference
on Decision and Control (CDC), IEEE, 2020, pp. 609–615.

[12] F. Passigato, A. Wischnewski, A. Gordner, and F. Diermeyer, “Two approaches for
the synthesis of a weave-wobble-stabilizing controller in motorcycles”, Proceedings of
the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC),
IEEE, 2021, pp. 3496–3501.

[13] T. Herrmann, A. Wischnewski, L. Hermansdorfer, J. Betz, and M. Lienkamp, “Real-
time adaptive velocity optimization for autonomous electric cars at the limits of han-
dling”, IEEE Transactions on Intelligent Vehicles, vol. 6, no. 4, pp. 665–677, 2021.

[14] A. Wischnewski, M. Euler, S. Gümüs, and B. Lohmann, “Tube model predictive
control for an autonomous race car”, Vehicle System Dynamics, vol. 60, no. 9, pp.
3151–3173, 2022.

[15] M. Rowold, A. Wischnewski, and B. Lohmann, “Constrained bayesian optimization of
a linear feed-forward controller”, IFAC-PapersOnLine, vol. 52, no. 29, pp. 1–6, 2019.

[16] A. Wischnewski, T. Herrmann, F. Werner, and B. Lohmann, “A tube-MPC approach
to autonomous multi-vehicle racing on high-speed ovals”, IEEE Transactions on
Intelligent Vehicles, 2022.

[17] A. Wischnewski et al., “Indy Autonomous Challenge - autonomous race cars at the
handling limits”, Proceedings of the 12th International Munich Chassis Symposium
2021, Springer Berlin Heidelberg, 2022, pp. 163–182.

[18] J. Betz et al., “TUM Autonomous Motorsport: An autonomous racing software for
the indy autonomous challenge”, arXiv.org, 2022.

62



6 Conclusion

Other Publications
[19] McKinsey & Company, “Why the automotive future is electric”, 2021. [Online].

Available: https://www.mckinsey.com/industries/automotive-and-assembly/
our-insights/why-the-automotive-future-is-electric.

[20] Society of Automotive Engineers (SAE), “SAE J3016:2021 (Levels of Driving Au-
tomation)”, 2021.

[21] Z. Chai, T. Nie, and J. Becker, Autonomous Driving Changes the Future. Springer
Singapore, 2021.

[22] L. Liu, Q. Zhang, R. Liu, X. Zhu, and Z. Ma, “Adaptive cruise control system evalu-
ation according to human driving behavior characteristics”, Actuators, vol. 10, no. 5,
pp. 1–14, 2021.

[23] J. Y. Goh, T. Goel, and J. C. Gerdes, “Toward automated vehicle control beyond
the stability limits: Drifting along a general path”, Journal of Dynamic Systems,
Measurement, and Control, vol. 142, no. 2, 2019.

[24] E. Wachter, M. Alirezaei, F. Bruzelius, and A. Schmeitz, “Path control in limit han-
dling and drifting conditions using state dependent riccati equation technique”, Pro-
ceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile
Engineering, vol. 234, no. 2-3, pp. 783–791, 2019.

[25] Y. Gao, A. Gray, H. E. Tseng, and F. Borrelli, “A tube-based robust nonlinear predic-
tive control approach to semiautonomous ground vehicles”, Vehicle System Dynamics,
vol. 52, no. 6, pp. 802–823, 2014.

[26] B. Yi, “Integrated planning and control for collision avoidance systems”, Ph.D.
dissertation, Karlsruhe Institute of Technology, 2018.

[27] C. Rathgeber, “Trajektorienplanung und -folgeregelung für assistiertes bis hochau-
tomatisiertes Fahren”, Ph.D. dissertation, Technische Universität Berlin, 2016.

[28] A. Agnihotri, M. O'Kelly, R. Mangharam, and H. Abbas, “Teaching autonomous
systems at 1/10th-scale”, Proceedings of the Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, ACM, 2020, pp. 657–663.

[29] U. Rosolia and F. Borrelli, “Learning how to autonomously race a car: A predictive
control approach”, IEEE Transactions on Control Systems Technology, vol. 28, no. 6,
pp. 2713–2719, 2020.

[30] E. Alcalá, V. Puig, J. Quevedo, and U. Rosolia, “Autonomous racing using linear
parameter varying-model predictive control (LPV-MPC)”, Control Engineering Prac-
tice, vol. 95, pp. 1–8, 2020.

[31] J. Kabzan et al., “AMZ driverless: The full autonomous racing system”, Journal of
Field Robotics, pp. 1267–1294, 2020.

63

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/why-the-automotive-future-is-electric
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/why-the-automotive-future-is-electric


6 Conclusion

[32] S. Nekkah et al., “The autonomous racing software stack of the KIT19d”, SAE
International Journal of Connected and Automated Vehicles, vol. 5, no. 1, pp. 73–86,
2022.

[33] Indy Autonomous Challenge, “Video of the final passing competition of the indy
autonomous challenge at las vegas motor speedway”, 2022. [Online]. Available: https:
//www.youtube.com/watch?v=df9f4Qfa0uU.

[34] H. B. Pacejka, Tire and vehicle dynamics. Amsterdam/Boston: Elsevier, 2012.
[35] J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle, M. Behl, V. Krovi, and R. Mang-

haram, “Autonomous vehicles on the edge: A survey on autonomous vehicle racing”,
IEEE Open Journal of Intelligent Transportation Systems, vol. 3, pp. 458–488, 2022.

[36] L. Segel, “Theoretical prediction and experimental substantiation of the response of
the automobile to steering control”, Proceedings of the Institution of Mechanical
Engineers: Automobile Division, vol. 10, no. 1, pp. 310–330, 1956.

[37] E. Dickmanns and A. Zapp, “Autonomous high speed road vehicle guidance by com-
puter vision”, IFAC Proceedings Volumes, vol. 20, no. 5, pp. 221–226, 1987.

[38] H. Peng and M. Tomizuka, “Vehicle lateral control for highway automation”, Pro-
ceedings of the 1990 American Control Conference, IEEE, 1990, pp. 788–794.

[39] B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion
planning and control techniques for self-driving urban vehicles”, IEEE Transactions
on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, 2016.

[40] S. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. Eng, D. Rus, and
M. Ang, “Perception, planning, control, and coordination for autonomous vehicles”,
Machines, vol. 5, no. 1, 2017.

[41] S. Thrun et al., “Stanley: The robot that won the DARPA grand challenge”, Journal
of Field Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[42] N. R. Kapania and J. C. Gerdes, “Design of a feedback-feedforward steering controller
for accurate path tracking and stability at the limits of handling”, Vehicle System
Dynamics, vol. 53, no. 12, pp. 1687–1704, 2015.

[43] M. Werling, “Ein neues Konzept für die Trajektoriengenerierung und -stabilisierung
in zeitkritischen Verkehrsszenarien”, Ph.D. dissertation, Karlsruhe Institute of Tech-
nology, 2011.

[44] L. König, “Ein virtueller Testfahrer für den querdynamischen Grenzbereich”, Ph.D.
dissertation, Renningen, 2009.

[45] S. Antonov, A. Fehn, and A. Kugi, “A new flatness-based control of lateral vehicle
dynamics”, Vehicle System Dynamics, vol. 46, no. 9, pp. 789–801, 2008.

[46] S. Fuchshumer, K. Schlacher, and T. Rittenschober, “Nonlinear vehicle dynamics
control - a flatness based approach”, Proceedings of the Proceedings of the 44th IEEE
Conference on Decision and Control, IEEE, 2005, pp. 6492–6497.

64

https://www.youtube.com/watch?v=df9f4Qfa0uU
https://www.youtube.com/watch?v=df9f4Qfa0uU


6 Conclusion

[47] R. Solea, A. Filipescu, V. Minzu, and S. Filipescu, “Sliding-mode trajectory-tracking
control for a four-wheel-steering vehicle”, Proceedings of the IEEE ICCA 2010, IEEE,
2010, pp. 382–387.

[48] M. Manceur and L. Menhour, “Higher order sliding mode controller for driving steer-
ing vehicle wheels: Tracking trajectory problem”, Proceedings of the 52nd IEEE Con-
ference on Decision and Control, IEEE, 2013, pp. 3073–3078.

[49] D. Calzolari, B. Schurmann, and M. Althoff, “Comparison of trajectory tracking
controllers for autonomous vehicles”, Proceedings of the 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC), IEEE, 2017, pp. 1–8.

[50] R. Y. Hindiyeh and J. C. Gerdes, “A controller framework for autonomous drifting:
Design, stability, and experimental validation”, Journal of Dynamic Systems, Mea-
surement, and Control, vol. 136, no. 5, 2014.

[51] L. del Re, F. Allgöwer, L. Glielmo, C. Guardiola, and I. Kolmanovsky, Automotive
Model Predictive Control. Springer London, 2010.

[52] F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, and D. Hrovat, “MPC-based approach
to active steering for autonomous vehicle systems”, International Journal of Vehicle
Autonomous Systems, vol. 3, no. 2-4, pp. 265–291, 2005.

[53] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive active
steering control for autonomous vehicle systems”, IEEE Transactions on Control
Systems Technology, vol. 15, no. 3, pp. 566–580, 2007.

[54] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “A model predictive
control approach for combined braking and steering in autonomous vehicles”, Pro-
ceedings of the 2007 Mediterranean Conference on Control & Automation, IEEE,
2007.

[55] Y. Gao, T. Lin, F. Borrelli, E. Tseng, and D. Hrovat, “Predictive control of au-
tonomous ground vehicles with obstacle avoidance on slippery roads”, Proceedings of
the Proceedings of the ASME 2010 Dynamic Systems and Control Conference, ASME
Digital Collection, 2010, pp. 265–272.

[56] A. Katriniok, J. P. Maschuw, F. Christen, L. Eckstein, and D. Abel, “Optimal vehicle
dynamics control for combined longitudinal and lateral autonomous vehicle guidance”,
Proceedings of the 2013 European Control Conference (ECC), IEEE, 2013, pp. 974–
979.

[57] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based autonomous racing of
1:43 scale RC cars”, Optimal Control Applications and Methods, vol. 36, no. 5, pp.
628–647, 2014.

[58] T. Novi, A. Liniger, R. Capitani, and C. Annicchiarico, “Real-time control for at-limit
handling driving on a predefined path”, Vehicle System Dynamics, vol. 58, no. 7, pp.
1007–1036, 2019.

65



6 Conclusion

[59] R. Verschueren, S. D. Bruyne, M. Zanon, J. V. Frasch, and M. Diehl, “Towards time-
optimal race car driving using nonlinear MPC in real-time”, Proceedings of the 53rd
IEEE Conference on Decision and Control, IEEE, 2014, pp. 2505–2510.

[60] J. L. Vazquez, M. Bruhlmeier, A. Liniger, A. Rupenyan, and J. Lygeros, “Optimization-
based hierarchical motion planning for autonomous racing”, Proceedings of the 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE,
2020, pp. 2397–2403.

[61] D. Kloeser, T. Schoels, T. Sartor, A. Zanelli, G. Prison, and M. Diehl, “NMPC for
racing using a singularity-free path-parametric model with obstacle avoidance”, IFAC-
PapersOnLine, vol. 53, no. 2, pp. 14 324–14 329, 2020.

[62] J. K. Subosits and J. C. Gerdes, “From the racetrack to the road: Real-time trajectory
replanning for autonomous driving”, IEEE Transactions on Intelligent Vehicles, vol. 4,
no. 2, pp. 309–320, 2019.

[63] A. Raji, A. Liniger, A. Giove, A. Toschi, N. Musiu, D. Morra, M. Verucchi, D. Capo-
rale, and M. Bertogna, “Motion planning and control for multi vehicle autonomous
racing at high speeds”, arXiv.org, 2022.

[64] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Aggressive
driving with model predictive path integral control”, Proceedings of the 2016 IEEE
International Conference on Robotics and Automation (ICRA), IEEE, 2016, pp.
1433–1440.

[65] G. Raffo, G. Gomes, J. Normey-Rico, C. Kelber, and L. Becker, “A predictive con-
troller for autonomous vehicle path tracking”, IEEE Transactions on Intelligent
Transportation Systems, vol. 10, no. 1, pp. 92–102, 2009.

[66] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic ve-
hicle models for autonomous driving control design”, Proceedings of the 2015 IEEE
Intelligent Vehicles Symposium (IV), IEEE, 2015, pp. 1094–1099.

[67] M. Brown, J. Funke, S. Erlien, and J. C. Gerdes, “Safe driving envelopes for path
tracking in autonomous vehicles”, Control Engineering Practice, vol. 61, pp. 307–316,
2017.

[68] J. Funke, M. Brown, S. M. Erlien, and J. C. Gerdes, “Collision avoidance and sta-
bilization for autonomous vehicles in emergency scenarios”, IEEE Transactions on
Control Systems Technology, vol. 25, no. 4, pp. 1204–1216, 2017.

[69] A. Liniger and L. V. Gool, “Safe motion planning for autonomous driving using an
adversarial road model”, Proceedings of the Robotics: Science and Systems 2020,
Robotics: Science and Systems Foundation, 2020.

[70] A. Liniger and J. Lygeros, “Real-time control for autonomous racing based on viability
theory”, IEEE Transactions on Control Systems Technology, vol. 27, no. 2, pp. 464–
478, 2019.

66



6 Conclusion

[71] A. Carvalho, S. Lefévre, G. Schildbach, J. Kong, and F. Borrelli, “Automated driving:
The role of forecasts and uncertainty—a control perspective”, European Journal of
Control, vol. 24, pp. 14–32, 2015.

[72] A. Bemporad and M. Morari, “Robust model predictive control: A survey”, Robust-
ness in identification and control. Lecture Notes in Control and Information Sciences,
pp. 207–226, 1999.

[73] D. Mayne, “Robust and stochastic MPC: Are we going in the right direction?”, IFAC-
PapersOnLine, vol. 48, no. 23, pp. 1–8, 2015.

[74] J. Yu, X. Guo, X. Pei, Z. Chen, M. Zhu, and B. Gong, “Robust model predictive
control for path tracking of autonomous vehicle”, SAE Technical Paper Series, 2019.

[75] E. Alcalá, V. Puig, J. Quevedo, and O. Sename, “Fast zonotope-tube-based LPV-
MPC for autonomous vehicles”, IET Control Theory & Applications, vol. 14, no. 20,
pp. 3676–3685, 2020.

[76] R. Soloperto, J. Kohler, F. Allguwer, and M. A. Muller, “Collision avoidance for
uncertain nonlinear systems with moving obstacles using robust model predictive
control”, Proceedings of the 2019 18th European Control Conference (ECC), IEEE,
2019, pp. 811–817.

[77] A. Carvalho, Y. Gao, S. Lefevre, and F. Borrelli, “Stochastic predictive control of au-
tonomous vehicles in uncertain environments”, Proceedings of the 12th International
Symposium on Advanced Vehicle Control, 2014.

[78] D. Lenz, T. Kessler, and A. Knoll, “Stochastic model predictive controller with chance
constraints for comfortable and safe driving behavior of autonomous vehicles”, Pro-
ceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2015, pp.
292–297.

[79] A. Liniger, X. Zhang, P. Aeschbach, A. Georghiou, and J. Lygeros, “Racing minia-
ture cars: Enhancing performance using stochastic MPC and disturbance feedback”,
Proceedings of the 2017 American Control Conference (ACC), IEEE, 2017, pp. 5642–
5647.

[80] J. V. Carrau, A. Liniger, X. Zhang, and J. Lygeros, “Efficient implementation of
randomized MPC for miniature race cars”, Proceedings of the 2016 European Control
Conference (ECC), IEEE, 2016, pp. 957–962.

[81] J. P. Alsterda, M. Brown, and J. C. Gerdes, “Contingency model predictive control for
automated vehicles”, Proceedings of the 2019 American Control Conference (ACC),
IEEE, 2019, pp. 717–722.

[82] N. R. Kapania and J. C. Gerdes, “Path tracking of highly dynamic autonomous vehicle
trajectories via iterative learning control”, Proceedings of the 2015 American Control
Conference (ACC), IEEE, 2015, pp. 2753–2758.

67



6 Conclusion

[83] N. R. Kapania and J. C. Gerdes, “Learning at the racetrack: Data-driven methods
to improve racing performance over multiple laps”, IEEE Transactions on Vehicular
Technology, vol. 69, no. 8, pp. 8232–8242, 2020.

[84] U. Rosolia, A. Carvalho, and F. Borrelli, “Autonomous racing using learning model
predictive control”, Proceedings of the 2017 American Control Conference (ACC),
2017, pp. 5115–5120.

[85] U. Rosolia and F. Borrelli, “Learning model predictive control for iterative tasks: A
computationally efficient approach for linear system”, IFAC-PapersOnLine, vol. 50,
no. 1, pp. 3142–3147, 2017, 20th IFAC World Congress.

[86] M. Brunner, U. Rosolia, J. Gonzales, and F. Borrelli, “Repetitive learning model
predictive control: An autonomous racing example”, Proceedings of the 2017 IEEE
56th Annual Conference on Decision and Control (CDC), 2017, pp. 2545–2550.

[87] J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-based model predic-
tive control for autonomous racing”, IEEE Robotics and Automation Letters, vol. 4,
no. 4, pp. 3363–3370, 2019.

[88] L. Hewing, A. Liniger, and M. N. Zeilinger, “Cautious NMPC with gaussian process
dynamics for autonomous miniature race cars”, Proceedings of the 2018 European
Control Conference (ECC), 2018, pp. 1341–1348.

[89] B. van Niekerk, A. Damianou, and B. Rosman, “Online constrained model-based
reinforcement learning”, arXiv.org, 2020.

[90] A. Jain, M. O’Kelly, P. Chaudhari, and M. Morari, “Bayesrace: Learning to race
autonomously using prior experience”, Proceedings of the Proceedings of the 2020
Conference on Robot Learning, J. Kober, F. Ramos, and C. Tomlin, Eds., ser. Pro-
ceedings of Machine Learning Research, vol. 155, PMLR, 2021, pp. 1918–1929.

[91] L. Hermansdorfer, R. Trauth, J. Betz, and M. Lienkamp, “End-to-end neural net-
work for vehicle dynamics modeling”, Proceedings of the 2020 6th IEEE Congress on
Information Science and Technology (CiSt), 2020, pp. 407–412.

[92] N. A. Spielberg, M. Brown, N. R. Kapania, J. C. Kegelman, and J. C. Gerdes, “Neural
network vehicle models for high-performance automated driving”, Science Robotics,
vol. 4, no. 28, 2019.

[93] X. Ji, X. He, C. Lv, Y. Liu, and J. Wu, “Adaptive-neural-network-based robust lat-
eral motion control for autonomous vehicle at driving limits”, Control Engineering
Practice, vol. 76, pp. 41–53, 2018.

[94] L. Hermansdorfer, J. Betz, and M. Lienkamp, “A concept for estimation and predic-
tion of the tire-road friction potential for an autonomous racecar”, Proceedings of the
2019 IEEE Intelligent Transportation Systems Conference (ITSC), IEEE, 2019, pp.
1490–1495.

[95] S. Khaleghian, A. Emami, and S. Taheri, “A technical survey on tire-road friction
estimation”, Friction, vol. 5, no. 2, pp. 123–146, 2017.

68



6 Conclusion

[96] M. Wielitzka, A. Busch, M. Dagen, and T. Ortmaier, “Unscented kalman filter for
state and parameter estimation in vehicle dynamics”, in Kalman Filters, G. L. de
Oliveira Serra, Ed., Rijeka: IntechOpen, 2017, ch. 3.

[97] M. Acosta and S. Kanarachos, “Tire lateral force estimation and grip potential iden-
tification using neural networks, extended kalman filter, and recursive least squares”,
Neural Computing and Applications, vol. 30, no. 11, pp. 3445–3465, 2017.

[98] L. Chen, M. Bian, Y. Luo, and K. Li, “Real-time identification of the tyre–road friction
coefficient using an unscented kalman filter and mean-square-error-weighted fusion”,
Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile
Engineering, vol. 230, pp. 788–802, 2015.

[99] M. Nolte, N. Kister, and M. Maurer, “Assessment of deep convolutional neural net-
works for road surface classification”, Proceedings of the 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), 2018, pp. 381–386.

[100] T. Weiss and M. Behl, “DeepRacing: Parameterized trajectories for autonomous rac-
ing”, arXiv.org, 2020.

[101] A. Remonda, S. Krebs, E. Veas, G. Luzhnica, and R. Kern, “Formula RL: deep rein-
forcement learning for autonomous racing using telemetry data”, arXiv.org, 2021.

[102] F. Fuchs, Y. Song, E. Kaufmann, D. Scaramuzza, and P. Duerr, “Super-human per-
formance in Gran Turismo Sport using deep reinforcement learning”, arXiv.org, 2020.

[103] Y. Song, H. Lin, E. Kaufmann, P. Durr, and D. Scaramuzza, “Autonomous overtaking
in Gran Turismo Sport using curriculum reinforcement learning”, Proceedings of the
2021 IEEE International Conference on Robotics and Automation (ICRA), IEEE,
2021, pp. 9403–9409.

[104] W. Milliken, Race car vehicle dynamics. Warrendale: SAE International, 1995.
[105] D. Schramm, M. Hiller, and R. Bardini, “Single track models”, in Vehicle Dynamics,

Springer Berlin Heidelberg, 2014, pp. 223–253.
[106] P. Polack, F. Altche, B. d'Andrea Novel, and A. de La Fortelle, “The kinematic

bicycle model: A consistent model for planning feasible trajectories for autonomous
vehicles?”, Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), IEEE,
2017, pp. 812–818.

[107] J. Rawlings, Model predictive control : theory, computation, and design. Santa Bar-
bara, California: Nob Hill Publishing, 2020.

[108] D. Q. Mayne, “Model predictive control: Recent developments and future promise”,
Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[109] D. Mayne, M. Seron, and S. Raković, “Robust model predictive control of constrained
linear systems with bounded disturbances”, Automatica, vol. 41, no. 2, pp. 219–224,
2005.

69



6 Conclusion

[110] L. Grüne, Nonlinear model predictive control theory and algorithms. Cham: Springer,
2017.

[111] D. Limon, T. Alamo, and E. Camacho, “Stable constrained MPC without terminal
constraint”, Proceedings of the Proceedings of the 2003 American Control Conference,
2003., IEEE, pp. 4893–4898.

[112] M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme for nonlinear
optimization in optimal feedback control”, SIAM Journal on Control and Optimiza-
tion, vol. 43, no. 5, pp. 1714–1736, 2005.

[113] M. Diehl, R. Findeisen, H. Bock, F. Allgöwer, and J. Schlöder, “Nominal stability of
real-time iteration scheme for nonlinear model predictive control”, IEEE Proceedings
- Control Theory and Applications, vol. 152, no. 3, pp. 296–308, 2005.

[114] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren, A. Zanelli, B.
Novoselnik, T. Albin, R. Quirynen, and M. Diehl, “Acados—a modular open-source
framework for fast embedded optimal control”, Mathematical Programming Compu-
tation, vol. 14, no. 1, pp. 147–183, 2021.

[115] G. Frison and M. Diehl, “HPIPM: A high-performance quadratic programming frame-
work for model predictive control”, IFAC-PapersOnLine, vol. 53, no. 2, pp. 6563–6569,
2020.

[116] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: An operator
splitting solver for quadratic programs”, Mathematical Programming Computation,
vol. 12, no. 4, pp. 637–672, 2020.

[117] L. Chisci, J. Rossiter, and G. Zappa, “Systems with persistent disturbances: Predictive
control with restricted constraints”, Automatica, vol. 37, no. 7, pp. 1019–1028, 2001.

[118] E. Kerrigan and J. Maciejowski, “Soft constraints and exact penalty functions in
model predictive control”, Proceedings of the UKACC International Conference Con-
trol 2000, 2000.

[119] J. Loefberg, “Min-max approaches to robust model predictive control”, Ph.D. disser-
tation, Linköping University, 2003.

[120] J. Köhler, M. A. Müller, and F. Allgöwer, “A novel constraint tightening approach for
nonlinear robust model predictive control”, 2018 Annual American Control Confer-
ence (ACC), pp. 728–734, 2018.

[121] S. V. Raković, “Invention of prediction structures and categorization of robust MPC
syntheses”, IFAC Proceedings Volumes, vol. 45, no. 17, pp. 245–273, 2012.

[122] D. Simon, Optimal State Estimation - Kalman, H Infinity, and Nonlinear Approaches.
New York: John Wiley & Sons, 2006.

[123] F. Bayer, M. Burger, and F. Allgower, “Discrete-time incremental ISS: A framework
for robust NMPC”, Proceedings of the 2013 European Control Conference (ECC),
IEEE, 2013, pp. 2068–2073.

70



6 Conclusion

[124] M. Althoff, “Reachability analysis and its application to the safety assessment of
autonomous cars”, Ph.D. dissertation, Technische Universität München, 2010.

[125] T. Koller, F. Berkenkamp, M. Turchetta, J. Boedecker, and A. Krause, “Learning-
based model predictive control for safe exploration and reinforcement learning”, arXiv.org,
2019.

[126] M. Althof, “An introduction to CORA”, Proceedings of the Workshop on Applied
Verification for Continuous and Hybrid Systems, 2015.

[127] A. Mesbah, “Stochastic model predictive control: An overview and perspectives for
future research”, IEEE Control Systems, vol. 36, no. 6, pp. 30–44, 2016.

[128] A. Kurzhanski, “Ellipsoidal calculus for estimation and feedback control”, in Systems
and control in the twenty-first century, ser. Progress in Systems and Control Theory,
C. I. Byrnes, Ed., vol. 277, Boston: Birkhäuser, 1997, pp. 229–243.

[129] D. van Hessem and O. Bosgra, “Closed-loop stochastic dynamic process optimiza-
tion under input and state constraints”, Proceedings of the 2002 American Control
Conference, IEEE, 2002, pp. 2023–2028.

[130] K. P. Murphy, Machine learning: a probabilistic perspective. Cambridge, Mass.: MIT
Press, 2013.

[131] C. M. Bishop, Pattern Recognition and Machine Learning. Berlin, Heidelberg: Springer,
2006.

[132] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning.
Cambridge: MIT Press, 2005.

[133] O. Föllinger, Regelungstechnik: Einführung in die Methoden und ihre Anwendung,
German, Hardcover. VDE Verlag GmbH, 2016.

[134] J. C. Doyle, B. A. Francis, and A. Tannenbaum, Feedback Control Theory -. New
York: Dover, 2009.

[135] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, English, Paperback.
Pearson, 1995, p. 616.

[136] E. Hüllermeier and W. Waegeman, “Aleatoric and epistemic uncertainty in machine
learning: An introduction to concepts and methods”, Machine Learning, vol. 110,
no. 3, pp. 457–506, 2021.

[137] A. D. Kiureghian and O. Ditlevsen, “Aleatory or epistemic? does it matter?”, Struc-
tural Safety, vol. 31, no. 2, pp. 105–112, 2009.

[138] A. Yazidi and H. Hammer, “Multiplicative update methods for incremental quantile
estimation”, IEEE Transactions on Cybernetics, vol. 49, no. 3, pp. 746–756, 2019.

[139] S. X. Ding, Model-based fault diagnosis techniques: Design schemes, algorithms, and
tools. Springer, 2008.

71



6 Conclusion

[140] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller optimization for
quadrotors with gaussian processes”, Proceedings of the 2016 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2016, pp. 491–496.

[141] L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model predictive control using
gaussian process regression”, IEEE Transactions on Control Systems Technology, pp.
1–8, 2019.

72



7 Appendix

7.1 Vehicle dynamics state estimation and localization for high
performance race cars

Contributions: Alexander Wischnewski, the author of this dissertation, contributed to the
overall system architecture as well as the different estimator designs. Tim Stahl contributed
to the design of the visual localization algorithms and the network communication. Johannes
Betz and Boris Lohmann contributed equally to the conception of the research project and
revised the paper critically for important intellectual content.

Copyright notice: ©2019 International Federation of Automatic Control. First pub-
lished as: Alexander Wischnewski, Tim Stahl, Johannes Betz, Boris Lohmann, "Vehicle
Dynamics State Estimation and Localization for High Performance Race Cars”. IFAC-
PapersOnLine, 52-8, pp 154-161 (2019)

73



IFAC PapersOnLine 52-8 (2019) 154–161

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2019.08.064

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

10.1016/j.ifacol.2019.08.064 2405-8963

Vehicle Dynamics State Estimation and
Localization for High Performance Race

Cars �

Alexander Wischnewski ∗ Tim Stahl ∗∗ Johannes Betz ∗∗∗

Boris Lohmann ∗∗∗∗

∗ Chair of Automatic Control, Department of Mechanical Engineering,
Technical University of Munich, Germany (e-mail:

alexander.wischnewski@tum.de)
∗∗ Chair of Automotive Technology, Department of Mechanical
Engineering, Technical University of Munich, Germany (e-mail:

stahl@ftm.mw.tum.de)
∗∗∗ Chair of Automotive Technology, Department of Mechanical
Engineering, Technical University of Munich, Germany (e-mail:

betz@ftm.mw.tum.de)
∗∗∗∗ Chair of Automatic Control, Department of Mechanical

Engineering, Technical University of Munich, Germany (e-mail:
lohmann@tum.de)

Abstract: Autonomous driving requires accurate information about the vehicle pose and
motion state in order to achieve precise tracking of the planned trajectory. In this paper we
propose a robust architecture to localize a high performance race car and show experimental
results with speeds up to 150 kmh−1 and utilizing approximately 80% of the available friction
level. The concept has been applied using the development vehicle DevBot taking part in the
Roborace competition. To achieve robust and reliable performance, we use two independent
localization pipelines, one based on GPS and one on LIDARs. We propose to fuse them via
a Kalman Filter based on a purely kinematic model and show, that it can outperform a high
fidelity model under realistic race conditions. An outstanding property of this concept is that
it does not depend on any of the vehicles parameter and is therefore robust to varying tire
and track conditions. Further we present an adaption method for the measurement covariances
based on the track layout. This allows to combine the strengths of each localization method.
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1. INTRODUCTION

Racing has been driving the advance of automotive tech-
nology for decades. The combination of high-performance
vehicles and people’s enthusiasm allows to identify po-
tential research directions and shortcomings of already
available technology, since the vehicle’s limits are pushed
in order to minimize the achieved lap times.

A research group of the TUM is taking part in the
Roborace Competition, which aims at being the first
ever full size racing series for autonomous vehicles (Betz
et al. (2018)). All competitors use identical cars which are
equipped with several vehicle dynamics and environment
perception sensors. The experimental setup is a full-sized
race car called DevBot (see Figure 1). The computations
are carried out on a Speedgoat Mobile Target Machine
and a NVIDIA Drive PX2. Details on the vehicle can
be found in Betz et al. (2018). The TUM software stack
reached a near-human performance level, was able to drive

� Research was supported by the basic research fund of the Institute
of Automotive Technology of the Technical University of Munich.

Fig. 1. Research Plattform - DevBot

10th IFAC Symposium on Intelligent Autonomous Vehicles
Gdansk, Poland, July 3-5, 2019

Copyright © 2019 IFAC

Vehicle Dynamics State Estimation and
Localization for High Performance Race

Cars �

Alexander Wischnewski ∗ Tim Stahl ∗∗ Johannes Betz ∗∗∗

Boris Lohmann ∗∗∗∗

∗ Chair of Automatic Control, Department of Mechanical Engineering,
Technical University of Munich, Germany (e-mail:

alexander.wischnewski@tum.de)
∗∗ Chair of Automotive Technology, Department of Mechanical
Engineering, Technical University of Munich, Germany (e-mail:

stahl@ftm.mw.tum.de)
∗∗∗ Chair of Automotive Technology, Department of Mechanical
Engineering, Technical University of Munich, Germany (e-mail:

betz@ftm.mw.tum.de)
∗∗∗∗ Chair of Automatic Control, Department of Mechanical

Engineering, Technical University of Munich, Germany (e-mail:
lohmann@tum.de)

Abstract: Autonomous driving requires accurate information about the vehicle pose and
motion state in order to achieve precise tracking of the planned trajectory. In this paper we
propose a robust architecture to localize a high performance race car and show experimental
results with speeds up to 150 kmh−1 and utilizing approximately 80% of the available friction
level. The concept has been applied using the development vehicle DevBot taking part in the
Roborace competition. To achieve robust and reliable performance, we use two independent
localization pipelines, one based on GPS and one on LIDARs. We propose to fuse them via
a Kalman Filter based on a purely kinematic model and show, that it can outperform a high
fidelity model under realistic race conditions. An outstanding property of this concept is that
it does not depend on any of the vehicles parameter and is therefore robust to varying tire
and track conditions. Further we present an adaption method for the measurement covariances
based on the track layout. This allows to combine the strengths of each localization method.

Keywords: State Estimation, Sensor Fusion, Robust Performance, Autonomous Vehicles,
Kalman Filters

1. INTRODUCTION

Racing has been driving the advance of automotive tech-
nology for decades. The combination of high-performance
vehicles and people’s enthusiasm allows to identify po-
tential research directions and shortcomings of already
available technology, since the vehicle’s limits are pushed
in order to minimize the achieved lap times.

A research group of the TUM is taking part in the
Roborace Competition, which aims at being the first
ever full size racing series for autonomous vehicles (Betz
et al. (2018)). All competitors use identical cars which are
equipped with several vehicle dynamics and environment
perception sensors. The experimental setup is a full-sized
race car called DevBot (see Figure 1). The computations
are carried out on a Speedgoat Mobile Target Machine
and a NVIDIA Drive PX2. Details on the vehicle can
be found in Betz et al. (2018). The TUM software stack
reached a near-human performance level, was able to drive

� Research was supported by the basic research fund of the Institute
of Automotive Technology of the Technical University of Munich.

Fig. 1. Research Plattform - DevBot

10th IFAC Symposium on Intelligent Autonomous Vehicles
Gdansk, Poland, July 3-5, 2019

Copyright © 2019 IFAC

Vehicle Dynamics State Estimation and
Localization for High Performance Race

Cars �

Alexander Wischnewski ∗ Tim Stahl ∗∗ Johannes Betz ∗∗∗

Boris Lohmann ∗∗∗∗

∗ Chair of Automatic Control, Department of Mechanical Engineering,
Technical University of Munich, Germany (e-mail:

alexander.wischnewski@tum.de)
∗∗ Chair of Automotive Technology, Department of Mechanical
Engineering, Technical University of Munich, Germany (e-mail:

stahl@ftm.mw.tum.de)
∗∗∗ Chair of Automotive Technology, Department of Mechanical
Engineering, Technical University of Munich, Germany (e-mail:

betz@ftm.mw.tum.de)
∗∗∗∗ Chair of Automatic Control, Department of Mechanical

Engineering, Technical University of Munich, Germany (e-mail:
lohmann@tum.de)

Abstract: Autonomous driving requires accurate information about the vehicle pose and
motion state in order to achieve precise tracking of the planned trajectory. In this paper we
propose a robust architecture to localize a high performance race car and show experimental
results with speeds up to 150 kmh−1 and utilizing approximately 80% of the available friction
level. The concept has been applied using the development vehicle DevBot taking part in the
Roborace competition. To achieve robust and reliable performance, we use two independent
localization pipelines, one based on GPS and one on LIDARs. We propose to fuse them via
a Kalman Filter based on a purely kinematic model and show, that it can outperform a high
fidelity model under realistic race conditions. An outstanding property of this concept is that
it does not depend on any of the vehicles parameter and is therefore robust to varying tire
and track conditions. Further we present an adaption method for the measurement covariances
based on the track layout. This allows to combine the strengths of each localization method.

Keywords: State Estimation, Sensor Fusion, Robust Performance, Autonomous Vehicles,
Kalman Filters

1. INTRODUCTION

Racing has been driving the advance of automotive tech-
nology for decades. The combination of high-performance
vehicles and people’s enthusiasm allows to identify po-
tential research directions and shortcomings of already
available technology, since the vehicle’s limits are pushed
in order to minimize the achieved lap times.

A research group of the TUM is taking part in the
Roborace Competition, which aims at being the first
ever full size racing series for autonomous vehicles (Betz
et al. (2018)). All competitors use identical cars which are
equipped with several vehicle dynamics and environment
perception sensors. The experimental setup is a full-sized
race car called DevBot (see Figure 1). The computations
are carried out on a Speedgoat Mobile Target Machine
and a NVIDIA Drive PX2. Details on the vehicle can
be found in Betz et al. (2018). The TUM software stack
reached a near-human performance level, was able to drive

� Research was supported by the basic research fund of the Institute
of Automotive Technology of the Technical University of Munich.

Fig. 1. Research Plattform - DevBot

10th IFAC Symposium on Intelligent Autonomous Vehicles
Gdansk, Poland, July 3-5, 2019

Copyright © 2019 IFAC

Vehicle Dynamics State Estimation and
Localization for High Performance Race

Cars �

Alexander Wischnewski ∗ Tim Stahl ∗∗ Johannes Betz ∗∗∗

Boris Lohmann ∗∗∗∗

∗ Chair of Automatic Control, Department of Mechanical Engineering,
Technical University of Munich, Germany (e-mail:

alexander.wischnewski@tum.de)
∗∗ Chair of Automotive Technology, Department of Mechanical
Engineering, Technical University of Munich, Germany (e-mail:

stahl@ftm.mw.tum.de)
∗∗∗ Chair of Automotive Technology, Department of Mechanical
Engineering, Technical University of Munich, Germany (e-mail:

betz@ftm.mw.tum.de)
∗∗∗∗ Chair of Automatic Control, Department of Mechanical

Engineering, Technical University of Munich, Germany (e-mail:
lohmann@tum.de)

Abstract: Autonomous driving requires accurate information about the vehicle pose and
motion state in order to achieve precise tracking of the planned trajectory. In this paper we
propose a robust architecture to localize a high performance race car and show experimental
results with speeds up to 150 kmh−1 and utilizing approximately 80% of the available friction
level. The concept has been applied using the development vehicle DevBot taking part in the
Roborace competition. To achieve robust and reliable performance, we use two independent
localization pipelines, one based on GPS and one on LIDARs. We propose to fuse them via
a Kalman Filter based on a purely kinematic model and show, that it can outperform a high
fidelity model under realistic race conditions. An outstanding property of this concept is that
it does not depend on any of the vehicles parameter and is therefore robust to varying tire
and track conditions. Further we present an adaption method for the measurement covariances
based on the track layout. This allows to combine the strengths of each localization method.

Keywords: State Estimation, Sensor Fusion, Robust Performance, Autonomous Vehicles,
Kalman Filters

1. INTRODUCTION

Racing has been driving the advance of automotive tech-
nology for decades. The combination of high-performance
vehicles and people’s enthusiasm allows to identify po-
tential research directions and shortcomings of already
available technology, since the vehicle’s limits are pushed
in order to minimize the achieved lap times.

A research group of the TUM is taking part in the
Roborace Competition, which aims at being the first
ever full size racing series for autonomous vehicles (Betz
et al. (2018)). All competitors use identical cars which are
equipped with several vehicle dynamics and environment
perception sensors. The experimental setup is a full-sized
race car called DevBot (see Figure 1). The computations
are carried out on a Speedgoat Mobile Target Machine
and a NVIDIA Drive PX2. Details on the vehicle can
be found in Betz et al. (2018). The TUM software stack
reached a near-human performance level, was able to drive

� Research was supported by the basic research fund of the Institute
of Automotive Technology of the Technical University of Munich.

Fig. 1. Research Plattform - DevBot

10th IFAC Symposium on Intelligent Autonomous Vehicles
Gdansk, Poland, July 3-5, 2019

Copyright © 2019 IFAC

Vehicle Dynamics State Estimation and
Localization for High Performance Race

Cars �

Alexander Wischnewski ∗ Tim Stahl ∗∗ Johannes Betz ∗∗∗

Boris Lohmann ∗∗∗∗

∗ Chair of Automatic Control, Department of Mechanical Engineering,
Technical University of Munich, Germany (e-mail:

alexander.wischnewski@tum.de)
∗∗ Chair of Automotive Technology, Department of Mechanical
Engineering, Technical University of Munich, Germany (e-mail:

stahl@ftm.mw.tum.de)
∗∗∗ Chair of Automotive Technology, Department of Mechanical
Engineering, Technical University of Munich, Germany (e-mail:

betz@ftm.mw.tum.de)
∗∗∗∗ Chair of Automatic Control, Department of Mechanical

Engineering, Technical University of Munich, Germany (e-mail:
lohmann@tum.de)

Abstract: Autonomous driving requires accurate information about the vehicle pose and
motion state in order to achieve precise tracking of the planned trajectory. In this paper we
propose a robust architecture to localize a high performance race car and show experimental
results with speeds up to 150 kmh−1 and utilizing approximately 80% of the available friction
level. The concept has been applied using the development vehicle DevBot taking part in the
Roborace competition. To achieve robust and reliable performance, we use two independent
localization pipelines, one based on GPS and one on LIDARs. We propose to fuse them via
a Kalman Filter based on a purely kinematic model and show, that it can outperform a high
fidelity model under realistic race conditions. An outstanding property of this concept is that
it does not depend on any of the vehicles parameter and is therefore robust to varying tire
and track conditions. Further we present an adaption method for the measurement covariances
based on the track layout. This allows to combine the strengths of each localization method.

Keywords: State Estimation, Sensor Fusion, Robust Performance, Autonomous Vehicles,
Kalman Filters

1. INTRODUCTION

Racing has been driving the advance of automotive tech-
nology for decades. The combination of high-performance
vehicles and people’s enthusiasm allows to identify po-
tential research directions and shortcomings of already
available technology, since the vehicle’s limits are pushed
in order to minimize the achieved lap times.

A research group of the TUM is taking part in the
Roborace Competition, which aims at being the first
ever full size racing series for autonomous vehicles (Betz
et al. (2018)). All competitors use identical cars which are
equipped with several vehicle dynamics and environment
perception sensors. The experimental setup is a full-sized
race car called DevBot (see Figure 1). The computations
are carried out on a Speedgoat Mobile Target Machine
and a NVIDIA Drive PX2. Details on the vehicle can
be found in Betz et al. (2018). The TUM software stack
reached a near-human performance level, was able to drive

� Research was supported by the basic research fund of the Institute
of Automotive Technology of the Technical University of Munich.

Fig. 1. Research Plattform - DevBot

10th IFAC Symposium on Intelligent Autonomous Vehicles
Gdansk, Poland, July 3-5, 2019

Copyright © 2019 IFAC

Vehicle Dynamics State Estimation and
Localization for High Performance Race

Cars �

Alexander Wischnewski ∗ Tim Stahl ∗∗ Johannes Betz ∗∗∗

Boris Lohmann ∗∗∗∗

∗ Chair of Automatic Control, Department of Mechanical Engineering,
Technical University of Munich, Germany (e-mail:

alexander.wischnewski@tum.de)
∗∗ Chair of Automotive Technology, Department of Mechanical
Engineering, Technical University of Munich, Germany (e-mail:

stahl@ftm.mw.tum.de)
∗∗∗ Chair of Automotive Technology, Department of Mechanical
Engineering, Technical University of Munich, Germany (e-mail:

betz@ftm.mw.tum.de)
∗∗∗∗ Chair of Automatic Control, Department of Mechanical

Engineering, Technical University of Munich, Germany (e-mail:
lohmann@tum.de)

Abstract: Autonomous driving requires accurate information about the vehicle pose and
motion state in order to achieve precise tracking of the planned trajectory. In this paper we
propose a robust architecture to localize a high performance race car and show experimental
results with speeds up to 150 kmh−1 and utilizing approximately 80% of the available friction
level. The concept has been applied using the development vehicle DevBot taking part in the
Roborace competition. To achieve robust and reliable performance, we use two independent
localization pipelines, one based on GPS and one on LIDARs. We propose to fuse them via
a Kalman Filter based on a purely kinematic model and show, that it can outperform a high
fidelity model under realistic race conditions. An outstanding property of this concept is that
it does not depend on any of the vehicles parameter and is therefore robust to varying tire
and track conditions. Further we present an adaption method for the measurement covariances
based on the track layout. This allows to combine the strengths of each localization method.

Keywords: State Estimation, Sensor Fusion, Robust Performance, Autonomous Vehicles,
Kalman Filters

1. INTRODUCTION

Racing has been driving the advance of automotive tech-
nology for decades. The combination of high-performance
vehicles and people’s enthusiasm allows to identify po-
tential research directions and shortcomings of already
available technology, since the vehicle’s limits are pushed
in order to minimize the achieved lap times.

A research group of the TUM is taking part in the
Roborace Competition, which aims at being the first
ever full size racing series for autonomous vehicles (Betz
et al. (2018)). All competitors use identical cars which are
equipped with several vehicle dynamics and environment
perception sensors. The experimental setup is a full-sized
race car called DevBot (see Figure 1). The computations
are carried out on a Speedgoat Mobile Target Machine
and a NVIDIA Drive PX2. Details on the vehicle can
be found in Betz et al. (2018). The TUM software stack
reached a near-human performance level, was able to drive

� Research was supported by the basic research fund of the Institute
of Automotive Technology of the Technical University of Munich.

Fig. 1. Research Plattform - DevBot

10th IFAC Symposium on Intelligent Autonomous Vehicles
Gdansk, Poland, July 3-5, 2019

Copyright © 2019 IFAC

at 150 km h−1 and utilized the friction circle up to 80% of
the physical limit.

In this paper, we present a Kalman Filter based algorithm
to fuse the independent localization pipelines for GPS
and LIDAR with an odometry based on vehicle dynamics
sensors. The motorsports application demands that the
full range of vehicle dynamics, changing track conditions
and setup changes are covered without quality degrada-
tion. At the same time, it is crucial that the system
is robust and easy to tune since testing time is limited
and costly. In the following, we show that filter models
based purely on kinematic equations can outperform a
high fidelity vehicle model in terms of performance and
robustness. Furthermore, we apply several modifications
to the standard Kalman Filter algorithm to maximize the
performance for the given race track scenario.

The remaining paper is organized as follows: Section 2
reviews the state of the art of autonomous driving state es-
timation and localization, while Section 3 recapitulates the
theoretical fundamentals of the applied concept. Section 4
outlines the system architecture, Section 5 goes into detail
regarding the state estimation concept used and Section 6
presents experimental data from the real vehicle.

2. RELATED WORK

The state estimation applications in vehicle technology can
be roughly separated into two tasks:

• Estimation of the vehicle dynamic state (longitudinal
and lateral velocity, yaw rate)

• Localization of the vehicle (position and orientation,
also known as pose)

The former has been in the focus of research for several
decades. A comparison of the results can be found in Guo
et al. (2018). In general, one can divide the models used
into three types: detailed vehicle models with tire force
characteristics, slip-free constant velocity kinematic mod-
els and kinematic models also considering accelerations.
The most common representative of the first category is
the pure lateral single track model (Farrelly and Well-
stead (1996); Haiyan and Hong (2006)). The longitudinal
velocity is considered as a parameter but not estimated
within a joint framework. Zhao et al. (2011) use a three
degrees of freedom model to overcome this drawback.
Even more complex models were applied but they are
usually tailored to the specific use case and lack good
generalization properties. Examples are the extension to
more degrees of freedom (Wenzel et al. (2006)), use of
suspension parameter knowledge (Antonov et al. (2011))
or the addition of parameter estimations (Wielitzka et al.
(2014)). In contrast, slip-free constant velocity kinematic
models provide higher robustness with respect to param-
eter uncertainty and are easier to tune since they re-
quire only the effective front axle steering angle (Kang
et al. (2014)). They are mostly used within robotics to
improve pose accuracy (Bonnifait et al. (2001)), rather
than in vehicle dynamics related applications since they
lack accuracy under significant accelerations. The third
approach relies on the use of first principles modelling
by the use of kinematic equations (Du and Li (2014);
Farrelly and Wellstead (1996)). Instead of modelling the

kinematic relations of the vehicle based on the steering
angle, they rely on the measured lateral and longitudinal
acceleration as the system inputs. This technique is also
known as Kinematic Kalman Filter (KKF) (Jeon (2010)).
Although it does not consider potentially available detailed
knowledge about the model it is considered to be robust
to parameter variations.

Following the trend towards autonomous driving, the focus
is nowadays shifting towards the localization task and the
necessary system architectures. While automotive applica-
tions have been concentrating on GPS at first, reliability
issues posed the need for more robust localization meth-
ods. The progress already made in the robotics community
led to the applications of probabilistic methods based on
visual sensors like LIDARs and cameras. Although the
former is the most common and mature framework (Thrun
et al. (2005); Cadena et al. (2016)), algorithms which
utilize cameras are emerging recently (Usenko et al. (2015);
Mur-Artal et al. (2015)). The strengths and weaknesses of
different environment perception sensors are discussed in
Kuutti et al. (2018). The LIDAR measurements give direct
information about the environment and object distances,
which can be used for mapping and localization directly.
In contrast, camera-based methods require complex post-
processing steps to generate map data.

Several authors propose to increase localization perfor-
mance by fusing different sensor sources within a single
algorithm (Trehard et al. (2015); Suhr et al. (2017)).
However, we found that this approach leads to difficulties
during practical realization as the algorithm is a single
point of failure in the system design, and it is hard to im-
plement online diagnosis and reconfiguration possibilities.
Bresson et al. (2016) and Jang et al. (2015) propose ideas
for overcoming this limitation using a decision method to
switch between different localization algorithms. The main
drawback of this concept is that it does not combine all
available information with respect to the corresponding
characteristics under normal operating conditions.

The contribution of the paper is threefold: First, we
propose a highly modular sensor fusion framework based
on parallel localization pipelines and vehicle sensors using
a Kalman Filter. Second, we show that a simple point
mass model is sufficient and can even outperform a more
sophisticated model for the full speed and nonlinear tire
range based on data gathered with a high performance
race car. Third, we introduce a covariance adaption for
each localization pipeline based on previously available
map data.

3. METHODOLOGY

In this section, we present the vehicle dynamics models
used later for the design of the state estimator and the
theoretical fundamentals of Kalman Filter based sensor
fusion and LIDAR based localization.

3.1 Vehicle dynamics

Sensor fusion requires that the signals are related to each
other using a dynamic system model. Due to its good
trade-off between complexity and accuracy (Milliken and
Milliken (1996)), even for operating points within the
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1. INTRODUCTION

Racing has been driving the advance of automotive tech-
nology for decades. The combination of high-performance
vehicles and people’s enthusiasm allows to identify po-
tential research directions and shortcomings of already
available technology, since the vehicle’s limits are pushed
in order to minimize the achieved lap times.

A research group of the TUM is taking part in the
Roborace Competition, which aims at being the first
ever full size racing series for autonomous vehicles (Betz
et al. (2018)). All competitors use identical cars which are
equipped with several vehicle dynamics and environment
perception sensors. The experimental setup is a full-sized
race car called DevBot (see Figure 1). The computations
are carried out on a Speedgoat Mobile Target Machine
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be found in Betz et al. (2018). The TUM software stack
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at 150 km h−1 and utilized the friction circle up to 80% of
the physical limit.

In this paper, we present a Kalman Filter based algorithm
to fuse the independent localization pipelines for GPS
and LIDAR with an odometry based on vehicle dynamics
sensors. The motorsports application demands that the
full range of vehicle dynamics, changing track conditions
and setup changes are covered without quality degrada-
tion. At the same time, it is crucial that the system
is robust and easy to tune since testing time is limited
and costly. In the following, we show that filter models
based purely on kinematic equations can outperform a
high fidelity vehicle model in terms of performance and
robustness. Furthermore, we apply several modifications
to the standard Kalman Filter algorithm to maximize the
performance for the given race track scenario.

The remaining paper is organized as follows: Section 2
reviews the state of the art of autonomous driving state es-
timation and localization, while Section 3 recapitulates the
theoretical fundamentals of the applied concept. Section 4
outlines the system architecture, Section 5 goes into detail
regarding the state estimation concept used and Section 6
presents experimental data from the real vehicle.

2. RELATED WORK

The state estimation applications in vehicle technology can
be roughly separated into two tasks:

• Estimation of the vehicle dynamic state (longitudinal
and lateral velocity, yaw rate)

• Localization of the vehicle (position and orientation,
also known as pose)

The former has been in the focus of research for several
decades. A comparison of the results can be found in Guo
et al. (2018). In general, one can divide the models used
into three types: detailed vehicle models with tire force
characteristics, slip-free constant velocity kinematic mod-
els and kinematic models also considering accelerations.
The most common representative of the first category is
the pure lateral single track model (Farrelly and Well-
stead (1996); Haiyan and Hong (2006)). The longitudinal
velocity is considered as a parameter but not estimated
within a joint framework. Zhao et al. (2011) use a three
degrees of freedom model to overcome this drawback.
Even more complex models were applied but they are
usually tailored to the specific use case and lack good
generalization properties. Examples are the extension to
more degrees of freedom (Wenzel et al. (2006)), use of
suspension parameter knowledge (Antonov et al. (2011))
or the addition of parameter estimations (Wielitzka et al.
(2014)). In contrast, slip-free constant velocity kinematic
models provide higher robustness with respect to param-
eter uncertainty and are easier to tune since they re-
quire only the effective front axle steering angle (Kang
et al. (2014)). They are mostly used within robotics to
improve pose accuracy (Bonnifait et al. (2001)), rather
than in vehicle dynamics related applications since they
lack accuracy under significant accelerations. The third
approach relies on the use of first principles modelling
by the use of kinematic equations (Du and Li (2014);
Farrelly and Wellstead (1996)). Instead of modelling the

kinematic relations of the vehicle based on the steering
angle, they rely on the measured lateral and longitudinal
acceleration as the system inputs. This technique is also
known as Kinematic Kalman Filter (KKF) (Jeon (2010)).
Although it does not consider potentially available detailed
knowledge about the model it is considered to be robust
to parameter variations.

Following the trend towards autonomous driving, the focus
is nowadays shifting towards the localization task and the
necessary system architectures. While automotive applica-
tions have been concentrating on GPS at first, reliability
issues posed the need for more robust localization meth-
ods. The progress already made in the robotics community
led to the applications of probabilistic methods based on
visual sensors like LIDARs and cameras. Although the
former is the most common and mature framework (Thrun
et al. (2005); Cadena et al. (2016)), algorithms which
utilize cameras are emerging recently (Usenko et al. (2015);
Mur-Artal et al. (2015)). The strengths and weaknesses of
different environment perception sensors are discussed in
Kuutti et al. (2018). The LIDAR measurements give direct
information about the environment and object distances,
which can be used for mapping and localization directly.
In contrast, camera-based methods require complex post-
processing steps to generate map data.

Several authors propose to increase localization perfor-
mance by fusing different sensor sources within a single
algorithm (Trehard et al. (2015); Suhr et al. (2017)).
However, we found that this approach leads to difficulties
during practical realization as the algorithm is a single
point of failure in the system design, and it is hard to im-
plement online diagnosis and reconfiguration possibilities.
Bresson et al. (2016) and Jang et al. (2015) propose ideas
for overcoming this limitation using a decision method to
switch between different localization algorithms. The main
drawback of this concept is that it does not combine all
available information with respect to the corresponding
characteristics under normal operating conditions.

The contribution of the paper is threefold: First, we
propose a highly modular sensor fusion framework based
on parallel localization pipelines and vehicle sensors using
a Kalman Filter. Second, we show that a simple point
mass model is sufficient and can even outperform a more
sophisticated model for the full speed and nonlinear tire
range based on data gathered with a high performance
race car. Third, we introduce a covariance adaption for
each localization pipeline based on previously available
map data.

3. METHODOLOGY

In this section, we present the vehicle dynamics models
used later for the design of the state estimator and the
theoretical fundamentals of Kalman Filter based sensor
fusion and LIDAR based localization.

3.1 Vehicle dynamics

Sensor fusion requires that the signals are related to each
other using a dynamic system model. Due to its good
trade-off between complexity and accuracy (Milliken and
Milliken (1996)), even for operating points within the
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Fig. 2. Nonlinear single track model

nonlinear tire range, the nonlinear single track model is
widely applied for control and estimation purposes once
the vehicle operates near the handling limit.

The vehicle velocity dynamics (Figure 2) are formulated
using the state variables longitudinal vx and lateral veloc-
ity vy in vehicle coordinates and the yaw rate ψ̇. Following
first principles modelling using the vehicle mass m, the
vehicle inertia J , the longitudinal forces Fx, the lateral
forces Fy and the torques T resulting from them, the
corresponding differential equations are

v̇x =
1

m

∑
Fx + ψ̇vy , (1a)

v̇y =
1

m

∑
Fy − ψ̇vx , and (1b)

ψ̈ =
1

J

∑
T. (1c)

Using the lateral tire force characteristics for the front
Fy,F(αF) and the rear axle Fy,R(αR) depending on the
tire side slip angles αF and αR, the full nonlinear single
track model can be formulated as

v̇x =
1

m

[
Fx − Fy,F(αF) sin(δ)

]
+ ψ̇vy , (2a)

v̇y =
1

m

[
Fy,F(αF) cos(δ) + Fy,R(αR)

]
− ψ̇vx , and (2b)

ψ̈ =
1

J

[
Fy,F(αF) cos(δ)lf − Fy,R(αR)lr

]
. (2c)

Details on the derivation can be found in Milliken and
Milliken (1996). We represent the lateral tire force char-
acteristics by a basic four coefficient Pacjeka model as
described in Pacejka (2006).

The autonomous driving task requires the tracking of tra-
jectories in inertial coordinates. The relationship between
the vehicle dynamic states and the movement in global
coordinate frame can be described via

q̇1 = cos(ψ)vx − sin(ψ)vy and (3a)

q̇2 = sin(ψ)vx + cos(ψ)vy, (3b)

with the east coordinate q1, the north coordinate q2 and
the vehicle heading ψ obtained by integration of the yaw
rate ψ̇.

3.2 State estimation

In general, the stochastic framework leads to intuitive
implementations of state estimation algorithms. Its most
common form is the Kalman Filter, which can be used
to construct an estimator for linear discrete time dynamic
systems of the form

x(k + 1) = Ax(k) + Bu(k) + w(k) (4a)

y(k) = Cx(k) + v(k), (4b)

with the state vector x ∈ Rn, the input vector u ∈ Rp and
the measurement vector y ∈ Rm. The matrices A, B and

C are defined to have appropriate dimensions. The process
noise w(k) ∈ Rn and the measurement noise v(k) ∈ Rm are
assumed to have zero mean and to be normally distributed
and uncorrelated over time (white noise). Their covariance
matrices are denoted with Q for the process noise and R
for the measurement noise.

The following overview is based upon the derivations given
in Gelb et al. (1974) and Simon (2006). At the core of
the Kalman filter algorithm is the propagation of mean
and covariance of the state estimate. We will denote
the maximum likelihood estimate, which is identical to
the mean value due to the gaussian properties of the
underlying random variables, by x̂.

Prediction Based on the information up to time k we
obtain the best possible estimate for time k+1 by applying
the system model equation. We denote this by

x̂(k + 1|k) = Ax̂(k|k) + Bu(k), (5)

where (k+1|k) denotes the prediction for the time instance
k + 1 based on the information available up to the time
instance k. Accordingly, (k|k) describes the corrected state
estimate based on the information available at time k.
Using the definition of covariance and the underyling
random process (4), we obtain the covariance of the
prediction

Σxx(k + 1|k) = AΣxx(k|k)AT + Q, (6)

where Q describes the process covariance for a one-step
update.

Correction The second ingredient of the algorithm is to
update the prediction based on the given measurements.
This forms the stabilizing mechanism of the estimator.
If the system is observable for the pair (C, A), it also
guarantees that it converges to the true value. Note that
this is only holds under the assumption of zero-mean
measurement noise. This fact can be of significant practical
relevance due to sensor calibration errors. Based on the
prediction step, the measurement residual

r(k + 1) = ym(k + 1) − Cx̂(k + 1|k) (7)

is calculated. We denote the actual measured value by ym.
Based on the statistical properties of the system, one can
calculate the Kalman Gain matrix

K = Σxx(k + 1|k)CT (R + CΣxx(k + 1|k)CT )−1, (8)

such that the overall estimator is optimal in terms of
minimum variance. It remains to update the predicted
state estimate

x̂(k + 1|k + 1) = x̂(k + 1|k) + Kr(k + 1). (9)

Due to the nonlinearity of the state equations (2) and
(3), the presented algorithm cannot be applied directly.
Several modifications are available in the literature (Simon
(2006)); most widely known the Extended Kalman Filter
(EKF). It relies either on analytic or numeric linearization.
The algorithm itself is conceptually similar to the alternat-
ing process between prediction and correction described in
this section. This follows from the fact that, assuming that
they are exact at the given time instant, the equations can
be rewritten using time-varying matrices. It follows, that
it is a necessary condition for stable operation that the
estimate is properly initialized and stays sufficiently close
to the real value.
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Table 1. DevBot Sensor Configuration

Sensor Type

Accelerometer McLaren Applied Technologies 3-axis

Gyroscope McLaren Applied Technologies 1-axis

Wheelspeeds McLaren Applied Technologies

Optical speed Kistler Correvit SF-II

GPS OXTS 4002

LIDAR Ibeo Scala B2

3.3 LIDAR Localization

The localization software utilizes the Adaptive Monte
Carlo Localization (AMCL) algorithm presented in Thrun
et al. (2005) for localization. It is conceptually similar to
the Kalman Filter, but it implements a Particle Filter,
which is based on a sample based representation of the
underlying stochastic distribution. Based on the point
clouds from the LIDAR sensors, the vehicle corrects its
position by comparing the measurements to the fixed map.
To increase the performance in featureless spaces, such
as long straights, a motion model is used. The algorithm
assumes the track map to be constant, which improves
robustness and computational efficiency compared to a
SLAM algorithm in a fixed environment. The map is
obtained in advance of the race during a slow manual
driving lap. Details of the applied concept are presented
in Stahl et al. (2018).

4. SYSTEM ARCHITECTURE

The sensor fusion task for the localization and vehicle
dynamics of the DevBot concentrates on the following
points:

• Providing a well-structured framework to increase
localization accuracy by combining different data
sources

• Reducing the measurement noise (especially of longi-
tudinal and lateral velocities) to improve the control
performance

• Handling the asynchronous and delayed timing char-
acteristics of the LIDAR based localization

The relevant sensors of the DevBot are listed in Table 1.
To achieve a modular design, it was important to keep
the localization pipelines itself indepenent of each other.
Each of them outputs a pose estimate which is then finally
fused with the odometry obtained from the IMU and the
optical speed sensor as depicted in Figure 3. The latter
is preferred to the wheelspeeds as they cannot measure
the slip-free velocity in an all-wheel drive powertrain. The
odometry required by the LIDAR localization is purely
based on optical speed sensor measurements and is not
prefused with any other sensor.

The components of the system are distributed onto both
available computation units. The Drive PX2 is better
suited for LIDAR data processing due to the large data
amounts and longer processing times. The real-time ca-
pabilitites of the Speedgoat allow for incorporating high-
frequency sensor updates and achieving a smooth inter-
polation between the localization updates. This improves

LIDAR
Localization

LIDAR Map

Kalman
Filter

GPS

IMU
Velocity
Sensor

NVIDIA Drive PX2 Speedgoat

Fig. 3. State estimation architecture with both process-
ing units. The communciation between these two is
implemented via UDP.

the control accuracy and enables high frequency feedback
control.

5. KALMAN FILTER DESIGN

5.1 Model Choice

Comparing the state estimation and filtering approaches
presented above, one can observe that the kinematic and
the dynamic models are both exact in terms of mean value
prediction capabilities (compare (1) and (2)). In practical
applications, the estimation performance is highly depen-
dent on the match between the physical system and the
differential equation model. This requires that all param-
eters used in the model must be known exactly or must
be estimated during operation. The latter requires precise
sensors and slows the transient response times of the esti-
mation. In contrast, the kinematic approach uses measured
acceleration values instead of any model parameter to
calculate the prediction. This is beneficial in the racing
application, since the model parameters will never be exact
on different tracks or varying weather conditions. It thus
promises a consistent and predictable system performance.

We will compare both approaches in the following, using
a nonlinear single track model (STM) and a kinematic
point-mass model with acceleration measurements (PM)
as inputs. GPS and LIDAR based localization are un-
likely to exhibit random noise but can show significant
systematic measurement error. In the case of GPS, this
can be caused by undesired reflections of the signals from
the environment. In case of LIDAR, this can be caused
by mapping errors. Since the resulting estimation errors
increase significantly with non-zero mean measurement
errors, this could have negative impact on the precision of
the velocity state estimates. To overcome these drawbacks,
additionally a modified version of the point-mass model
(MPM) is proposed. It uses a cascaded Kalman Filter
with separated velocity and position dynamics. The former
uses the IMU measurements as system inputs and (1) as
a system model, while the latter takes the fused velocities
and the yaw rate as inputs and uses (3) as the underlying
system model. This separation prevents the measurement
update triggered by the localization from affecting the
velocity estimates. However, this setup strictly requires
that the optical wheelspeed sensor is available since the
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Comparing the state estimation and filtering approaches
presented above, one can observe that the kinematic and
the dynamic models are both exact in terms of mean value
prediction capabilities (compare (1) and (2)). In practical
applications, the estimation performance is highly depen-
dent on the match between the physical system and the
differential equation model. This requires that all param-
eters used in the model must be known exactly or must
be estimated during operation. The latter requires precise
sensors and slows the transient response times of the esti-
mation. In contrast, the kinematic approach uses measured
acceleration values instead of any model parameter to
calculate the prediction. This is beneficial in the racing
application, since the model parameters will never be exact
on different tracks or varying weather conditions. It thus
promises a consistent and predictable system performance.

We will compare both approaches in the following, using
a nonlinear single track model (STM) and a kinematic
point-mass model with acceleration measurements (PM)
as inputs. GPS and LIDAR based localization are un-
likely to exhibit random noise but can show significant
systematic measurement error. In the case of GPS, this
can be caused by undesired reflections of the signals from
the environment. In case of LIDAR, this can be caused
by mapping errors. Since the resulting estimation errors
increase significantly with non-zero mean measurement
errors, this could have negative impact on the precision of
the velocity state estimates. To overcome these drawbacks,
additionally a modified version of the point-mass model
(MPM) is proposed. It uses a cascaded Kalman Filter
with separated velocity and position dynamics. The former
uses the IMU measurements as system inputs and (1) as
a system model, while the latter takes the fused velocities
and the yaw rate as inputs and uses (3) as the underlying
system model. This separation prevents the measurement
update triggered by the localization from affecting the
velocity estimates. However, this setup strictly requires
that the optical wheelspeed sensor is available since the
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LIDAR

GPS

Fig. 4. Visualization of the transformation applied to the
covariance matrices of the localization measurements.
The resulting uncertainty ellipses are oriented along
the track and depicted for three different vehicle posi-
tions. The LIDAR covariance in the lateral direction
is smaller than the GPS covariance. Therefore, the
LIDAR is weighted more strongly in lateral direction.
the GPS is weighted more strongly in longitudinal
direction.

velocity subsystem becomes otherwise unobservable. Fur-
thermore, it should be noted that both point-mass models
are not capable of filtering the yaw rate as no derivative
information can be obtained from the current sensor setup.

5.2 Covariance Adaption

Even though the GPS platform used is highly accurate
under normal conditions, its absolute performance may be
unsufficient dependending on the environment condition.
The LIDAR localization was found to be able to locate
the vehicle within 20 cm of lateral deviation. However,
it struggles to generate exact longitudinal measurements
in featureless spaces such as long straights. A small, but
important difference between the two systems is, that the
LIDARs are positioning the vehicle relative to its obstacles
while the GPS is referring to a global coordinate system.
In case there are map errors, the former is more robust
since it guarantees that the vehicle will stay within the
planned safety margin.

The Kalman Filter approach provides a well-suited tool to
incorporate the knowledge we have about the individual
sensor accuracy. We assign the task of lateral estimation
strongly to the LIDAR sensor, while the GPS is taking care
of the longitudinal position as depicted in Figure 4. The
measurement covariance matrix for each sensor is rotated
according to the track orientation ψT by

Rloc = T (ψT)

[
σlong 0

0 σlat

]
TT(ψT) (10)

with

T (α) =

[
cos(α) − sin(α)
sin(α) cos(α)

]
(11)

being the standard rotation matrix.

5.3 Incorporation of Asynchronous Measurements

The Kalman Filter is propagating mean and covariance
of its estimates for every step according to the underlying
process and measurement model. This allows time-varying
models to be easily incorporated through modification of
the corresponding equations. The fact that the localization
measurements are available asynchronously is therefore
addressed by the use of different measurement vectors.
Depending on the available measurement signals, it can
be written as:

yM =





[
xG yG ψG vx vy

]T
,

if only GPS available[
xL yL ψL vx vy

]T
,

if only LIDAR available[
xG yG ψG xL yL ψL vx vy

]T
,

if LIDAR & GPS available[
vx vy

]T
, else

(12)

5.4 Time Delay Compensation

Since the processing of LIDAR measurements takes some
time, it was found that there is a significant delay of
approximately 40 ms between the LIDAR and GPS posi-
tion signal. This can be compensated for by obtaining an
odometry estimate from the measured longitudinal and
lateral velocities and the yaw rate. It is calculated by
forward integration of (3). The correction itself is then
taken from

q1,comp(t) = q1,odom(t) − q1,odom(t − 40 ms) (13a)

q2,comp(t) = q2,odom(t) − q2,odom(t − 40 ms) (13b)

ψcomp(t) = ψodom(t) − ψodom(t − 40 ms). (13c)

In fact, the compensation values measure the difference
between the purely forward integrated vehicle poses at the
actual time and the time when the LIDAR measurement is
captured. q1,comp(t), q2,comp(t) and ψcomp(t) is an estimate
of the vehicle motion between these two points in time.

6. EXPERIMENTAL RESULTS

The filter structure proposed in this paper was tested in
the full-size race car DevBot on an airfield. The data was
collected in several runs with speeds up to 150 kmh−1

and acceleration up to 8.5 m s−2 in longitudinal and lat-
eral direction for the trajectory planning algorithm. This
corresponds roughly to 80 % of the maximum achievable
acceleration in steady state cornering. In the following we
analyze a 20 s segment, consisting of high speed driving
as well as cornering situations. The evaluation is strongly
based on the measurement residuals as no ground truth
data is available. The residuals capture the mismatch be-
tween the model-based prediction and the measured value.
A precise definition can be found in (7). The point-mass
models utilize an Extended Kalman Filter with analytic
derivatives for linearization. The STM is implemented
based on an Extended Kalman Filter with numerically
obtained derivatives since they cannot be derived trivially
as in the point-mass case. Both are discretized using an
Euler-Forward scheme with a sample rate of 4ms.
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Fig. 5. Estimates of the dynamic states of the vehi-
cle using different process models. The single track
model (STM) shows significant offset with respect
to point mass models, while the point mass model
(PM) and the modified point mass (MPM) model
exhibit stronger noise. This effect can be related to
the stronger model assumptions of the STM.
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Fig. 6. Residuals of the dynamic state measurements of
the vehicle using all available sensors. The single
track model (STM) produces non-zero mean residuals
which is an indicator for system/model mismatch.
In comparison, the point mass model (PM) and the
modified point mass model (MPM) perform better.
The yaw rate is only estimated by the (STM).
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Fig. 7. Residuals of the dynamic state measurements of the
vehicle with the optical velocity sensor not available.
Therefore the modified point mass model suffers from
a loss of observability and could not be compared.
The point-mass model significantly outperforms the
nonlinear vehicle model in this setting.

We will discuss two cases: All sensors are available in the
first case. Figure 5 shows the state estimation performance
for all measurements available of the three different struc-
tures discussed before. While the PM and the cascaded
version MPM show comparable performance, the high-
fidelity STM shows better noise rejection properties but
also a systematic estimation offset. This is undermined
by the residuals depicted in Figure 6, which are non-zero
mean for all states estimates of the STM.

In the second case, we assume the optical speed sensor to
be unavailable. This case is interesting because the optical
velocity sensor is not redundant in our current setup and
is also seldom available in other vehicle configurations.
The cascaded point mass filter could not be utilized in
this case, since the design system becomes unobservable.
Figure 7 depicts the residuals of the other models. Note
that the velocity residuals were not used for estimation
purposes, rather only for validation. In this scenario, the
point mass model significantly outperforms the nonlinear
single track model, especially for the longitudinal velocity.
This mismatch results from the fact that the drivetrain
model quality is not sufficient at high speeds. However, the
LIDAR odometry is still provided by the optical velocity
sensor in this setup. This could be replaced by an odometry
based on wheelspeed and IMU sensors to achieve at least
a descent prediction quality.

As the last evaluation step, the residuals of the GPS and
the LIDAR based position measurement are depicted in
Figure 8 for the MPM case with all sensors available.
Whereas the residuals of the GPS are small in the longitu-
dinal direction, the LIDAR localization fails to achieve suf-
ficient performance. This is related to systematic errors in
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vehicle with the optical velocity sensor not available.
Therefore the modified point mass model suffers from
a loss of observability and could not be compared.
The point-mass model significantly outperforms the
nonlinear vehicle model in this setting.

We will discuss two cases: All sensors are available in the
first case. Figure 5 shows the state estimation performance
for all measurements available of the three different struc-
tures discussed before. While the PM and the cascaded
version MPM show comparable performance, the high-
fidelity STM shows better noise rejection properties but
also a systematic estimation offset. This is undermined
by the residuals depicted in Figure 6, which are non-zero
mean for all states estimates of the STM.

In the second case, we assume the optical speed sensor to
be unavailable. This case is interesting because the optical
velocity sensor is not redundant in our current setup and
is also seldom available in other vehicle configurations.
The cascaded point mass filter could not be utilized in
this case, since the design system becomes unobservable.
Figure 7 depicts the residuals of the other models. Note
that the velocity residuals were not used for estimation
purposes, rather only for validation. In this scenario, the
point mass model significantly outperforms the nonlinear
single track model, especially for the longitudinal velocity.
This mismatch results from the fact that the drivetrain
model quality is not sufficient at high speeds. However, the
LIDAR odometry is still provided by the optical velocity
sensor in this setup. This could be replaced by an odometry
based on wheelspeed and IMU sensors to achieve at least
a descent prediction quality.

As the last evaluation step, the residuals of the GPS and
the LIDAR based position measurement are depicted in
Figure 8 for the MPM case with all sensors available.
Whereas the residuals of the GPS are small in the longitu-
dinal direction, the LIDAR localization fails to achieve suf-
ficient performance. This is related to systematic errors in

2019 IFAC IAV
Gdansk, Poland, July 3-5, 2019

159



160 Alexander Wischnewski  et al. / IFAC PapersOnLine 52-8 (2019) 154–161

−4
−2

0
2
4

L
o
n
g
it
u
d
in

a
l

re
si

d
u
a
ls

in
m

GPS LIDAR

−0.2

0

0.2

L
a
te

ra
l

re
si

d
u
a
ls

in
m

160 165 170 175 180

−4
−2

0
2
4

·10−2

Time in s

Y
a
w

re
si

d
u
a
ls

in
ra

d

Fig. 8. Residuals of GPS and LIDAR localization measure-
ments of the modified point mass Kalman Filter with
optical speed sensor available. The estimate relies
heavily on GPS in the longitudinal direction. In the
lateral direction the LIDAR measurement is weighted
more strongly. Small peaks in GPS residuals are re-
lated to a minor timing difference between multiple
computation units.

the odometry used combined with the sparse availability of
correction features in this direction. The LIDAR is favored
over the GPS in lateral direction, which can be seen from
the fact that the LIDAR residuals are much smaller than
the GPS residuals in the lateral direction. Further, Figure
9 shows the benefical effects of the delay compensation and
the covariance adaption. Whereas the former decreases
the residuals of the LIDAR position measurement in the
longitudinal direction significantly, the latter ensures that
the weighting between GPS and the LIDAR is performed
as intended. This can be seen from the fact that the GPS
longitudinal residuals increase significantly for the case
without covariance adaption (NCA). The changes for the
lateral localization precision are rather small, but there
is an increase in lateral LIDAR residuals for the NCA
case. This shows that the lateral LIDAR measurement is
weighted more strongly in the case with covariance adap-
tion and that a possible GPS outlier would not disturb the
final localization significantly.

7. CONCLUSION

In this paper, we have proposed a novel system architec-
ture for localization and state estimation of autonomous
vehicles which proved to be robust and reliable in real-
world conditions even in the nonlinear driving range. We
evaluated the usability of two purely kinematic models for
dynamic state estimation of a race car. Interestingly, they
were able to outperform a high-fidelity nonlinear single
track model. This is related to the fact that the point-
mass model is exact for the whole region of operation of
the tires and at high speeds. The main advantage is that
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Fig. 9. Residuals of GPS and LIDAR localization measure-
ments of the modified point mass Kalman Filter with
different modifications. Whereas the version without
the proposed covariance adaption (NCA) suffers from
severe GPS residuals in longitudinal direction, the
standard version (MPM) weights LIDAR and GPS
as expected. This can be seen from small GPS longi-
tudinal and small LIDAR lateral residuals. Without
delay compensation (NDC), the longitudinal residuals
for the LIDAR increase.

the estimation residuals are zero mean which is important
for the design of a high-performance tracking controller.
However, this comes at the cost of a slight increase in
estimation noise. A positive side-effect is the much lower
computational cost and improved robustness due to model
simplicity.

Future research will be devoted to automatic reconfigura-
tion of the sensor fusion system in case of sensor failures,
e.g. a GPS dropout. The presented sensor fusion imple-
mentation itself is capable of handling this already once
a failure is known, however the difficulty is the robust
detection of those occurences. Furthermore, it is desirable
to include camera localization measurements in order to
avoid depending on GPS as a secondary localization mech-
anism at all.

ACKNOWLEDGMENT AND CONTRIBUTIONS

We would like to thank Roborace for the opportunity of
evaluating our algorithms on their prototype as well as for
their support during the testing sessions and the Berlin
event. Further, we thank Madeline Wolz for her support
during implementation of the different filter variants and

2019 IFAC IAV
Gdansk, Poland, July 3-5, 2019

160

Johannes Strohm, Mikhail Pak and Leon Sievers for dis-
cussions and revision of the paper.

Alexander Wischnewski contributed to the overall system
architecture as well as the different estimator designs. Tim
Stahl contributed to the design of the visual localization al-
gorithms and the network communication. Johannes Betz
and Boris Lohmann contributed equally to the conception
of the research project and revised the paper critically for
important intellectual content.

REFERENCES

Antonov, S., Fehn, A., and Kugi, A. (2011). Unscented
Kalman filter for vehicle state estimation. Vehicle
System Dynamics, 49(9), 1497–1520.

Betz, J., Wischnewski, A., Heilmeier, A., Nobis, F., Stahl,
T., Hermansdorfer, L., Lohmann, B., and Lienkamp, M.
(2018). What can we learn from autonomous level-5
Motorsport? Proceedings of chassis.tech 2018.

Bonnifait, P., Bouron, P., Crubille, P., and Meizel, D.
(2001). Data fusion of four ABS sensors and GPS for
an enhanced localization of car-like vehicles. Proceedings
of 2001 IEEE International Conference on Robotics and
Automation, 1597–1602.

Bresson, G., Rahal, M.C., Gruyer, D., Revilloud, M., and
Alsayed, Z. (2016). A cooperative fusion architecture for
robust localization: Application to autonomous driving.
Proceedings of 2016 IEEE 19th Conference on Intelli-
gent Transportation Systems, 859–866.

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scara-
muzza, D., Reid, I., Leonard, J.J., Neira, J., Reid,
I., and Leonard, J.J. (2016). Past, Present, and Fu-
ture of Simultaneous Localization and Mapping: Toward
the Robust-Perception Age. IEEE Transactions on
Robotics, 32(6), 1309–1332.

Du, H. and Li, W. (2014). Kinematics-based parameter-
varying observer design for sideslip angle estimation.
Proceedings of 2014 International Conference on Mecha-
tronics and Control, 2042–2047.

Farrelly, J. and Wellstead, P. (1996). Estimation of
Vehicle Lateral Velocity. Proceedings of the 1996 IEEE
International Conference on Control Applications, 552–
557.

Gelb, A., Kasper, J.F., Nash, R.A., Price, C.F., and
Sutherland, A.A. (eds.) (1974). Applied Optimal Es-
timation. MIT Press, Cambridge, MA.

Guo, H., Cao, D., Chen, H., Lv, C., Wang, H., and Yang,
S. (2018). Vehicle dynamic state estimation: State of
the art schemes and perspectives. IEEE/CAA Journal
of Automatica Sinica, 5(2), 418–431.

Haiyan, Z. and Hong, C. (2006). Estimation of vehicle yaw
rate and side slip angle using moving horizon strategy.
Proceedings of 2006 6th World Congress on Intelligent
Control and Automation, 1828–1832.

Jang, S., Ahn, K., Lee, J., and Kang, Y. (2015). A study
on integration of particle filter and dead reckoning for
efficient localization of automated guided vehicles. In
2015 IEEE International Symposium on Robotics and
Intelligent Sensors (IRIS), 81–86.

Jeon, S. (2010). State Estimation Based on Kinematic
Models Considering Characteristics of Sensors. Proceed-
ings of the 2010 American Control Conference, 640–645.

Kang, C.M., Lee, S.H., and Chung, C.C. (2014). Lane
estimation using a vehicle kinematic lateral motion

model under clothoidal road constraints. Proceedings
of 17th IEEE International Conference on Intelligent
Transportation Systems, 1066–1071.

Kuutti, S., Fallah, S., Katsaros, K., Dianati, M., Mccul-
lough, F., and Mouzakitis, A. (2018). A survey of the
state-of-the-art localization techniques and their poten-
tials for autonomous vehicle applications. IEEE Internet
of Things Journal, 5(2), 829–846.

Milliken, W.F. and Milliken, D.L. (1996). Race Car Vehicle
Dynamics. Society of Automotive Engineers Inc., Great
Britain.

Mur-Artal, R., Montiel, J.M., and Tardos, J.D. (2015).
ORB-SLAM: A Versatile and Accurate Monocular
SLAM System. IEEE Transactions on Robotics, 31(5),
1147–1163.

Pacejka, H. (2006). Tire and Vehicle Dynamics. SAE
International.

Simon, D. (2006). Optimal State Estimation: Kalman, H
Infinity, and Nonlinear Approaches. Wiley-Interscience,
New York, NY, USA.

Stahl, T., Wischnewski, A., Betz, J., and Lienkamp, M.
(2018). Ros-based localization of a race vehicle at high-
speed using lidar. In 7th International Conference on
Mechatronics and Control Engineering 2018.

Suhr, J.K., Jang, J., Min, D., and Jung, H.G. (2017).
Sensor fusion-based low-cost vehicle localization system
for complex urban environments. IEEE Transactions on
Intelligent Transportation Systems, 18(5), 1078–1086.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents).
The MIT Press.

Trehard, G., Pollard, E., Bradai, B., and Nashashibi, F.
(2015). On line mapping and global positioning for
autonomous driving in urban environment based on
evidential SLAM. Proceedings of 2015 IEEE Intelligent
Vehicles Symposium, 814–819.

Usenko, V., Engel, J., Stuckler, J., and Cremers, D.
(2015). Reconstructing Street-Scenes in Real-Time from
a Driving Car. Proceedings of International Conference
on 3D Vision 2015, 607–614.

Wenzel, T., Burnham, K., Blundell, M., and Williams, R.
(2006). Dual extended Kalman filter for vehicle state
and parameter estimation. Vehicle System Dynamics,
44(2), 153–171.

Wielitzka, M., Dagen, M., and Ortmaier, T. (2014). State
Estimation of Vehicle’s Lateral Dynamics using Un-
scented Kalman Filter. Proceedings of 53rd IEEE Con-
ference on Decision and Control, 5015–5020.

Zhao, L.H., Liu, Z.Y., and Chen, H. (2011). Design of
a nonlinear observer for vehicle velocity estimation and
experiments. IEEE Transactions on Control Systems
Technology, 19(3), 664–672.

2019 IFAC IAV
Gdansk, Poland, July 3-5, 2019

161



 Alexander Wischnewski  et al. / IFAC PapersOnLine 52-8 (2019) 154–161 161

Johannes Strohm, Mikhail Pak and Leon Sievers for dis-
cussions and revision of the paper.

Alexander Wischnewski contributed to the overall system
architecture as well as the different estimator designs. Tim
Stahl contributed to the design of the visual localization al-
gorithms and the network communication. Johannes Betz
and Boris Lohmann contributed equally to the conception
of the research project and revised the paper critically for
important intellectual content.

REFERENCES

Antonov, S., Fehn, A., and Kugi, A. (2011). Unscented
Kalman filter for vehicle state estimation. Vehicle
System Dynamics, 49(9), 1497–1520.

Betz, J., Wischnewski, A., Heilmeier, A., Nobis, F., Stahl,
T., Hermansdorfer, L., Lohmann, B., and Lienkamp, M.
(2018). What can we learn from autonomous level-5
Motorsport? Proceedings of chassis.tech 2018.

Bonnifait, P., Bouron, P., Crubille, P., and Meizel, D.
(2001). Data fusion of four ABS sensors and GPS for
an enhanced localization of car-like vehicles. Proceedings
of 2001 IEEE International Conference on Robotics and
Automation, 1597–1602.

Bresson, G., Rahal, M.C., Gruyer, D., Revilloud, M., and
Alsayed, Z. (2016). A cooperative fusion architecture for
robust localization: Application to autonomous driving.
Proceedings of 2016 IEEE 19th Conference on Intelli-
gent Transportation Systems, 859–866.

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scara-
muzza, D., Reid, I., Leonard, J.J., Neira, J., Reid,
I., and Leonard, J.J. (2016). Past, Present, and Fu-
ture of Simultaneous Localization and Mapping: Toward
the Robust-Perception Age. IEEE Transactions on
Robotics, 32(6), 1309–1332.

Du, H. and Li, W. (2014). Kinematics-based parameter-
varying observer design for sideslip angle estimation.
Proceedings of 2014 International Conference on Mecha-
tronics and Control, 2042–2047.

Farrelly, J. and Wellstead, P. (1996). Estimation of
Vehicle Lateral Velocity. Proceedings of the 1996 IEEE
International Conference on Control Applications, 552–
557.

Gelb, A., Kasper, J.F., Nash, R.A., Price, C.F., and
Sutherland, A.A. (eds.) (1974). Applied Optimal Es-
timation. MIT Press, Cambridge, MA.

Guo, H., Cao, D., Chen, H., Lv, C., Wang, H., and Yang,
S. (2018). Vehicle dynamic state estimation: State of
the art schemes and perspectives. IEEE/CAA Journal
of Automatica Sinica, 5(2), 418–431.

Haiyan, Z. and Hong, C. (2006). Estimation of vehicle yaw
rate and side slip angle using moving horizon strategy.
Proceedings of 2006 6th World Congress on Intelligent
Control and Automation, 1828–1832.

Jang, S., Ahn, K., Lee, J., and Kang, Y. (2015). A study
on integration of particle filter and dead reckoning for
efficient localization of automated guided vehicles. In
2015 IEEE International Symposium on Robotics and
Intelligent Sensors (IRIS), 81–86.

Jeon, S. (2010). State Estimation Based on Kinematic
Models Considering Characteristics of Sensors. Proceed-
ings of the 2010 American Control Conference, 640–645.

Kang, C.M., Lee, S.H., and Chung, C.C. (2014). Lane
estimation using a vehicle kinematic lateral motion

model under clothoidal road constraints. Proceedings
of 17th IEEE International Conference on Intelligent
Transportation Systems, 1066–1071.

Kuutti, S., Fallah, S., Katsaros, K., Dianati, M., Mccul-
lough, F., and Mouzakitis, A. (2018). A survey of the
state-of-the-art localization techniques and their poten-
tials for autonomous vehicle applications. IEEE Internet
of Things Journal, 5(2), 829–846.

Milliken, W.F. and Milliken, D.L. (1996). Race Car Vehicle
Dynamics. Society of Automotive Engineers Inc., Great
Britain.

Mur-Artal, R., Montiel, J.M., and Tardos, J.D. (2015).
ORB-SLAM: A Versatile and Accurate Monocular
SLAM System. IEEE Transactions on Robotics, 31(5),
1147–1163.

Pacejka, H. (2006). Tire and Vehicle Dynamics. SAE
International.

Simon, D. (2006). Optimal State Estimation: Kalman, H
Infinity, and Nonlinear Approaches. Wiley-Interscience,
New York, NY, USA.

Stahl, T., Wischnewski, A., Betz, J., and Lienkamp, M.
(2018). Ros-based localization of a race vehicle at high-
speed using lidar. In 7th International Conference on
Mechatronics and Control Engineering 2018.

Suhr, J.K., Jang, J., Min, D., and Jung, H.G. (2017).
Sensor fusion-based low-cost vehicle localization system
for complex urban environments. IEEE Transactions on
Intelligent Transportation Systems, 18(5), 1078–1086.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents).
The MIT Press.

Trehard, G., Pollard, E., Bradai, B., and Nashashibi, F.
(2015). On line mapping and global positioning for
autonomous driving in urban environment based on
evidential SLAM. Proceedings of 2015 IEEE Intelligent
Vehicles Symposium, 814–819.

Usenko, V., Engel, J., Stuckler, J., and Cremers, D.
(2015). Reconstructing Street-Scenes in Real-Time from
a Driving Car. Proceedings of International Conference
on 3D Vision 2015, 607–614.

Wenzel, T., Burnham, K., Blundell, M., and Williams, R.
(2006). Dual extended Kalman filter for vehicle state
and parameter estimation. Vehicle System Dynamics,
44(2), 153–171.

Wielitzka, M., Dagen, M., and Ortmaier, T. (2014). State
Estimation of Vehicle’s Lateral Dynamics using Un-
scented Kalman Filter. Proceedings of 53rd IEEE Con-
ference on Decision and Control, 5015–5020.

Zhao, L.H., Liu, Z.Y., and Chen, H. (2011). Design of
a nonlinear observer for vehicle velocity estimation and
experiments. IEEE Transactions on Control Systems
Technology, 19(3), 664–672.

2019 IFAC IAV
Gdansk, Poland, July 3-5, 2019

161



7 Appendix

7.2 Tube Model Predictive Control for an Autonomous Racecar
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ABSTRACT
Nonlinear effects and external disturbances can severely impact the path and velocity
tracking control of an autonomous race car at the handling limits. State-of-the-art
approaches do not take information about these uncertainties explicitly into account
in the design process and are therefore prone to failure. To overcome this limitation,
we present a robust control design based on tube model predictive control (TMPC).
It is based on a simplified friction limited point-mass model and an additive distur-
bance for the lateral and longitudinal dynamics. Instead of nominal predictions, it
leverages an approximate tube of reachable sets over the prediction horizon using
an ellipsoidal set representation to guarantee constraint satisfaction. The resulting
optimisation problem can be posed in the form of a standard quadratic program by
tightening the input and state constraints of the nominal model predictive control
problem appropriately. The computational burden is therefore the same as in the
nominal case. We benchmark our controller on a Hardware-in-the-Loop testbench
with a nonlinear dual-track model and a combined Pacejka tyre model. The re-
sults demonstrate that the TMPC controller reduces the number and severeness of
constraint violations while achieving comparable lap-times in contrast to an MPC
controller and an infinite time LQR controller. It manages to apply caution when
needed while maintaining a similar level of performance and is therefore considered
to be superior in practical applications.

KEYWORDS
Robust control; Model predictive control; Tube MPC; autonomous driving; race car

1. Introduction

1.1. Motivation

In recent years, there have been significant contributions to the domain of autonomous
driving. Systems like lane-keeping assist and adaptive cruise control are nowadays
wide-spread in state-of-the-art production vehicles. However, further advances within
autonomous driving require profound and reliable vehicle control strategies to master
also the most demanding scenarios.

The application of vehicle control algorithms to race vehicles turned out to be a
perfect research challenge to advance the technology tackled by several research groups
[1–4]. Compared to urban driving, the racetrack is much more structured and allows
for several simplifications during software development. On the other hand, the vehicle
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control complexity increases, as the vehicle drives at the handling limits with complex
nonlinear dynamics. The high uncertainty of these models (e.g. due to the empirically
estimated tyre parameters) and the sensitivity to external disturbances (e.g. wind or
inclination) motivate the question whether more sophisticated design techniques from
the field of robust control can lead to a reduction of the safety margins usually applied
during operation of autonomous racing algorithms.

1.2. Scope & outline of the paper

This paper will investigate the possible performance gains from application of a robust
model predictive controller (RMPC) based on tube model predictive control (TMPC)
for autonomous racing. It is capable of tracking a target trajectory (consisting of a
path and a velocity profile) and is integrated into the autonomous racing software
framework developed by the team of the Technical University of Munich (TUM). The
latter has been successfully applied during several real-world experiments on full-scale
race cars within the Roborace competition [5], reaching lap-times close to amateur
racing drivers. The planning algorithm presented in [6] is used to generate the target
trajectories. Our key contributions are the efficient formulation of the dynamics model
such that the resulting RMPC problem is feasible in real-time on a state-of-the-art
rapid control prototyping unit and a thorough comparison of the TMPC with a nomi-
nal MPC and an LQR controller (similar to the state-feedback controller presented and
applied within the Roborace competition by [1]). We demonstrate that the additional
information about the model uncertainties leads to a controller which is cautious when
necessary but drives aggressively in other situations in detailed Hardware-in-the-Loop
simulation studies. This behaviour leads to a significant reduction in the number of
tyre and lateral error constraint violations while achieving comparable lap-times in
contrast to the LQR and the nominal MPC solution.

The rest of the paper is structured as follows: related work within the field of motion
control of autonomous vehicles and robust model predictive control is presented in the
next section. The methodology section introduces the applied TMPC concept as well as
the vehicle model and the computationally efficient formulation of the moving horizon
optimal control problem. The paper concludes with a thorough parameter study and
a discussion on the advantages and disadvantages of the TMPC in comparison to the
nominal MPC and LQR control techniques.

2. Related work

2.1. Vehicle control

Several approaches for autonomous vehicle software design split the planning and con-
trol task into three major components [1,7–11]: a global trajectory planner calculates
a trajectory from a start to an endpoint. In the case of a race vehicle, the global
trajectory is the raceline for the current track. Furthermore, a local trajectory planner
generates a detailed trajectory for the current road section by considering road limits
and (possibly dynamic) objects within the scene. Finally, a tracking controller is used
to follow the local trajectory by calculation of actuator commands such as steering,
brake, and throttle set points.

Series production vehicles widely use models based on decoupled lateral and longi-
tudinal dynamics for trajectory tracking, like adaptive cruise control and lane-keeping
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assistants. Due to the more complex dynamics, lateral control receives more attention
in research activities and will be reviewed in the following. For the lateral control, lin-
ear output feedback controllers [1,3,11,12], flatness-based control [13,14], sliding-mode
[15–18] and optimisation-based methods, like MPC, are the most common [2,19–21].
A key disadvantage of output feedback, flatness-based, and sliding-mode controllers is
that these methods do not explicitly consider state and input constraints and therefore
do not guarantee constraint satisfaction. Furthermore, Calzolari et al. [21] show that
sliding mode controllers can be aggressive and result in saturated tyre forces, whereas
flatness-based control is sensitive to model quality. In contrast, MPC controllers use
predictions of the future vehicle behaviour to calculate inputs based on the measured
state and upcoming constraints. When driving at the handling limits, this approach
is advantageous in reducing the risk of an accident caused by leaving the specified
domain of operation described by the input and state constraints. Therefore, we will
concentrate on the review of MPC-based controllers in the following.

Namely, MPC concepts predict future vehicle states based on the current state and
a system model. By demanding that the predicted states and inputs satisfy the con-
straints, it is possible to generate input sequences that achieve the desired behaviour
while maintaining optimality with respect to a (usually quadratic) cost function. Var-
ious versions of MPC controllers for autonomous vehicles have been presented in the
literature [2,7,22–27]. In their approaches, Funke et al. [23] and Brown et al. [24] show
that an MPC controller is capable of tracking a trajectory and avoiding obstacles while
respecting the vehicle dynamics limitations. Falcone et al. [7] track a trajectory on a
slippery road using a nonlinear MPC formulation. While these approaches are used
for passenger vehicles, Anderson et al. [25] and Subosits et al. [26] show that MPC is
suitable for racing vehicles. Complex nonlinear dynamics at the handling limits inspire
the use of more profound models for racing vehicles. Hence, Liniger et al. [2] show that
a nonlinear MPC can be implemented by subsequent linearisation at each sampling
step in the form of a quadratic program (QP) and successfully drives 1:43 scale race
cars. A similar vehicle dynamic model, based on nonlinear tyre characteristics, is ap-
plied for the control of a self-driving formula student vehicle in [28] and combined with
a learning-based approach in [29]. A different approach, based on repetitive learning
control and therefore exploiting the nature of circuit driving, is presented in [30]. An-
other possible direction for solving the nonlinear problem is presented by Alcala et
al. [27] by using a linear parameter varying MPC that takes a combination of linear
models to approximate a nonlinear model without calculating an explicit linearisation
for the control of a 1:10 RC car.

One drawback of the above approaches and, in general, nominal MPC is that model
errors and external disturbances lead to a deviation between the actual and predicted
behaviour. As a result, these schemes cannot guarantee recursive feasibility [31]. Us-
ing slack variables allows feasible solutions for the numerical optimisation problem
to be recovered, but the closed-loop dynamics will still violate the a priori specified
constraints when driving at or close to the limits due to the more complex dynamics.
Hence, a robust version of MPC, taking into account uncertainties and external dis-
turbances, is required to satisfy the constraints. Alsterda et al. [32] suggest a robust
control method based on contingency model predictive control. The controller tracks
a target trajectory while simultaneously calculating a feasible trajectory for emergen-
cies like driving on icy surfaces. Thus, robustness increases, and it is possible to react
appropriately to upcoming or unpredicted critical scenarios. In contrast, Gao et al.
[33] use a robust nonlinear model predictive controller for the lateral control of a ve-
hicle, which avoids obstacles and tracks the desired trajectory. A robust invariant set
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tightens the constraints and guarantees the satisfaction of state and input constraints.
Another tube model predictive control (TMPC) is presented by Sakhdari et al. [34]
for adaptive cruise control. In their work, the controller considers radar measurement
errors, aero-dynamical, and rolling drag when controlling the ego vehicle’s distance
to other road users. In the lateral direction, Rathai et al. [35] show that a TMPC
controller can stabilise a car within a lane under the influence of disturbances.

2.2. Robust model predictive control

It is well-understood that disturbances and model errors can drive the closed-loop sys-
tem to a state where the receding horizon optimal control problem becomes infeasible
when using a nominal MPC controller for a task with state constraints [31,36]. One
of the first approaches to address this problem for the design of an MPC controller
was min-max MPC, proposed by Campo and Morari in 1987 [37]. In this case, the
idea is to optimise the control problem for the worst-case disturbances. This approach
increases the robustness, but there are challenges due to computational load and high
conservativeness [38,39]. Scokaert and Mayne [40] reduce the computational load by
using a terminal set, but the conservative behaviour remains.

In recent years, the focus of the research community has shifted towards tube model
predictive control (TMPC) and stochastic model predictive control (SMPC) for con-
trolling uncertain systems [41]. Both use a pre-defined feedback control law instead of
the raw open-loop inputs for the formulation of the receding horizon optimal control
problem. This allows the construction of set-valued predictions for the optimisation
horizon. In the case of TMPC, it is required that all predictions fulfil the constraints;
in the case of SMPC only a certain percentage of the realisations have to match the
specified constraints. The numerical realisation of the problems is usually done in form
of a constraint-tightening scheme, where the nominal optimal control problem is solved
for a modified set of input and state constraints. We want to point out that both con-
cepts show strong similarity in the structure of the resulting optimisation problem
and their key difference is therefore in the determination of the required constraint
tightening. In TMPC, disturbances only need to be upper bounded, whereas SMPC
requires a full probabilistic description. In practical applications, the upper bounds can
be determined more easily than the probability distribution since they can be related
to data from the system under operation. Furthermore, there exist various ways to
construct admissible tubes around the nominal predictions for the deterministic case
[31,36,42–44]. We therefore consider TMPC to be more promising for the application
to the autonomous racing control task than SMPC.

Constraint satisfaction of the closed-loop can be guaranteed if the inputs and states
satisfy the tighter constraints within the optimisation horizon and suitable terminal
ingredients are found [31,36,42]. The tube itself is an artificial construct around the
predicted states that is used to tighten the constraints of a nominal MPC formulation.
Two major concepts exist (see Fig. 1): The first uses a sequence of reachable sets Si
to describe the tube [36,45,46]. The tube size increases over the prediction horizon,
considering the rising deviation due to cumulative model errors and disturbances. How-
ever, it stays bounded as a pre-stabilising controller is considered. The second concept
uses robust positively invariant (RPI) sets S [31] around the nominal dynamics. A set
S is stated as RPI if all (successor) states are inside S for all bounded disturbances
[47]. Besides, it is allowed to reoptimise the nominal prediction of the initial state
as long as the measured state lies within the RPI. Different set representations are
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Figure 1.: Comparison of the reachable set and RPI-based TMPC approaches with the
lateral deviation limit dmax

currently used within the control community. The most common ones are polytopes
[31,35,42,44,48,49], zonotopes [50–54], and ellipsoids [36,55]. Depending on the sys-
tem complexity and available computational power, these types pose advantages and
disadvantages in conservativeness and computational demand.

3. Methodology

3.1. Notation and preliminaries

Within this paper the sets of the tube are described as ellipsoids

E(p,M) :=
{
x ∈ Rn|(x− p)TM−1(x− p) ≤ 1

}
, (1)

with p the centre of the ellipsoid and M the shape matrix. The constraint sets are
formulated as polytopes of the form

X = {x ∈ Rn|Hxx ≤ hx, hx ∈ Rmx} , (2)

with mx the number of half-spaces. The Minkowski Sum for two sets A and B is defined
as

A⊕ B := {a+ b|a ∈ A, b ∈ B} . (3)

The Minkowski sum of two ellipsoids is not necessarily an ellipsoid. For this reason an
over-approximation by Kurzhanski [56] is used to calculate the Minkowski sum

E(p1,M1)⊕ E(p2,M2) ⊂ E
(
p1 + p2,

(
1 + c−1

)
M1 + (1 + c)M2

)
, (4)

with c =
√

Tr(M1)/Tr(M2) and Tr(M) the trace of the Matrix M . Additionally the
affine transformation for ellipsoids

A · E(p,M) + b = E(Ap+ b, AMAT ) (5)

is used to calculate the set dynamics.
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3.2. Tube-based MPC

We propose a TMPC controller based on the linear dynamics reachable set approach
presented by Chisci et al. [36]. We favour this approach over the RPI-based concept,
as it can be solved by a standard QP solver and does not require non-linear con-
tainment constraints for the initial state [55]. Another advantage is that the nominal
MPC problem can be easily extended to the robust control setting by tightening the
constraints according to the calculated tube geometry. We use ellipsoids to describe
the tube because the tube dynamic is straightforward to calculate and more suitable
for real-time applications than polytopes or zonotopes due to the constant complexity
of the set representation over the control horizon.

For a disturbed system the system dynamics are given to be

xk+1 = Axk +Buk +Dwk, (6)

with the state x ∈ Rn, the input u ∈ Rm and the external disturbance w ∈ Ro. The
system matrices A, B and D are of appropriate dimensions. Instead of optimising the
open-loop control input sequence uk, TMPC employs a pre-stabilising policy

uk = rk +K(xk − pk), (7)

optimises the sequence rk, and predicts the nominal system behaviour pk. The tube is
calculated as the sequence of reachable sets X for the uncertain system relative to the
nominal prediction. Using the set operations presented in the previous section gives
the following set dynamics for the reachable sets Xk = E(pk,Mk) at time-step k

p0 = xt, (8a)

pk+1 = Apk +Brk, (8b)

Mk+1 = (1 + c−1
k )(A+BK)Mk(A+BK)T + (1 + ck)DM̃DT , (8c)

ck =

√
Tr((A+BK)Mk(A+BK)T )/Tr(DM̃DT ) (8d)

with D = E(0, DM̃DT ) being the uncertainty ellipsoid covering the potential values
of Dwk based upon the maximum disturbance values assumed. Note that the shape
matrix dynamics do not depend on the initial state nor the sequence rk and can there-
fore be pre-computed ahead of the optimisation problem’s formulation by application
of Eq. (8c) and Eq. (8d).

The equations allow us to formulate the receding horizon optimal control problem
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using the nominal dynamics pk and the decision variables rk as follows:

min
r0,...,rNp−1

Np−1∑

k=0

(
pTkQpk + rTk Rrk

)
+ pTNp

PpNp
(9a)

s.t.

pk+1 = Apk +Brk (9b)

p0 = xt (9c)

[Hx]i,k pk +
√

[Hx]i,kMk [Hx]Ti,k ≤ [hx]i,k,∀i, k (9d)

[Hu]j,k rk +
√

[Hu]j,kKMkKT [Hu]Tj,k ≤ [hu]j,k ,∀j, k (9e)

i ∈ {1, ...,mx} , j ∈ {1, ...,mu} , k ∈ {1, ..., Np} , (9f)

with xt the measured system state. The cost function only takes the nominal dynamics
into account and is similar to a standard LQR problem. Therefore, the terminal weight
matrix P is chosen as the solution of the discrete time algebraic Riccati equation with
the weights Q and R. The polytopic state Xk ∈ Xk (Eq. (9d)) and input constraints
Uk ∈ Uk (Eq. (9e)) have been reformulated using the approach presented by [57]. Note
that the terminal set is implicitly included for the case k = Np in the above formulation
of the constraints. We also restrict our notation to the case of mx and mu, the number
of half-spaces in the polytopic constraints, being constant for the optimisation horizon
for the sake of brevity.

3.3. Vehicle model

One of the main trade-offs in modelling vehicle dynamics for control purposes is the
conflict between complexity and accuracy [58]. Based on the promising results in [1,
5,26], we choose a simple friction-limited point mass model (see Figure 2) for the
control design. It was shown that it is possible to achieve high-performance in racing
applications, if the relation between the driven curvature and the steering angle is
known and the tyre limits are not violated [1,5]. We formulate the resulting path and
velocity tracking problem in a curvilinear coordinate system similar to [28] and [59].
It turns out that this formulation is close to linear and therefore leads to intuitive
results when the optimal control problem is reformulated as a quadratic program.
Furthermore, we emphasize that the point-mass model is representing the motion
dynamics exactly as long as we assume the lateral and longitudinal acceleration are
perfectly tracked by the underlying low-level controllers (see Section 3.4). This is
an advantage in comparison to other vehicle models based on linear or nonlinear
tire models as they require more parameter identification work and lead to complex
numerical optimization problems. All these tire details are removed from the prediction
model in our concept and suppressed by the low-level, fast feedback control and a good
feedforward setup based on the self-steering characteristic of the vehicle. The inevitable
tracking uncertainty can be tackled by the robust MPC and its assumptions on the
disturbances.

The model has the following state variables: the progress along the path or the
path variable s, the lateral deviation d between the path and the vehicle’s centre
of gravity, the orientation error ∆ψ = ψ − ψ̄ of the vehicle’s chassis ψ towards the
path ψ̄ and the vehicle’s velocity v aligned with its longitudinal axis. The system
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inputs are the longitudinal force Fx and the actually driven curvature κ. The latter
is often expressed using the neutral steer assumption κ = δ

l , with the steering wheel
angle δ and the wheelbase l. However, this relation depends strongly on the tyre
and suspension design and is therefore suspect to significant uncertainties. The only
model parameter in the resulting dynamics is the vehicle mass m. The path curvature
enters the model description as an explicit function representation κ̄(s). The following
differential equations describe the model:




ṡ
v̇

ḋ

∆ψ̇


 =




v cos(∆ψ)

1− dκ̄(s)
Fx

m
v sin(∆ψ)
κv − κ̄(s)ṡ



. (10)

The racing vehicle’s dynamic capabilities are taken into account based on the well-
known combined lateral ay and longitudinal ax constraints (usually formulated as
gg-diagram). It combines the influence of several parameters such as tyre characteris-
tics, aerodynamic performance, or the mechanical suspension setup [1,26]. While often
approximated as an ellipsoid, high-performance driving experiments [60] suggest that
a diamond shape can lead to more realistic representations of the dynamic limits

| ax

ax,max
|+ | ay

ay,max
| ≤ 1, (11)

with ax,max and ay,max being the acceleration limits of the corresponding direction. De-
spite its more realistic representation of the vehicle capabilities, the constraint’s linear
nature is beneficial for the numerical implementation. However, it would be possible
to extend the approach presented in this paper towards more complex polytopic con-
straint shapes. Box constraints on the maximum lateral deviation dmax complete the
set of considered limitations.

3.4. Autonomous racing software architecture

The TMPC controller is integrated within the software stack presented by [5] for an
autonomous racing car. The relevant interfaces are depicted in Figure 3. Initially, the
local trajectory planner generates the target trajectory for the vehicle based on the

X

Y

x

y

ψ, ψ̇ v

d ψ
Target trajectory

s

Figure 2.: Vehicle point mass model in error coordinates
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Figure 3.: Autonomous racing software architecture including the TMPC controller

raceline. The TMPC controller then receives the specified trajectory and estimated
position, and calculates longitudinal and lateral target accelerations, considering the
current deviation from the target trajectory (desired path and velocity profile), the
acceleration constraints and the disturbance assumption. Lastly, the vehicle controller
calculates a feed-forward steering angle and a force request from those target accel-
erations. Besides, proportional feedback controllers reduce the deviation between the
requested and measured accelerations. We will not consider these low-level controllers
in the rest of this paper as the closed-loop response times from both accelerations
are, in comparison to the TMPC execution frequency, neglectable due to the high-
performance actuators used within many autonomous race cars [1].

3.5. Formulation of the TMPC controller as a quadratic program

The following section will explain how we transform the point-mass model such that
an efficient and precise approximation of the TMPC problem as a quadratic program
is possible. The key idea is to introduce the corrective accelerations as manipulated
variables, which allows us to reformulate the dynamics as a linear system.

Applying the state transformation ḋ = v sin(∆ψ) and the input transformations
Fx = max and κv2 = ay, the dynamics can be written as




ṡ
v̇

ḋ

d̈


 =




v cos(∆ψ)

1− dκ̄(s)
ax

v sin(∆ψ)
ax sin(∆ψ) + ay cos(∆ψ)− κ̄(s)ṡv cos(∆ψ)



. (12)

Even though these transformations result in more insightful dependencies from the
accelerations, the dynamic equations are still nonlinear. For this reason, we introduce
a second input transformation by formulating the equations based on accelerations
relative to the target path and velocity profile. Using the input definition

d̈ = ∆ay = ax sin(∆ψ) + ay cos(∆ψ)− κ̄(s)ṡv cos(∆ψ). (13)

the lateral dynamics become a double integrator. By expressing the longitudinal dy-
namics with respect to the reference velocity profile ∆v = v̄(s) − v, the longitudinal
dynamics input can be defined as ∆ax. We assume that it is possible to obtain a
reasonable approximation for the short-term behaviour of the prediction using the
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assumption that the target velocity profile and the path curvature can be written
as purely time-dependent expressions v(s(t)) and κ̄(s(t)). We can then neglect the
state dynamics for s and use the following disturbed linear system to approximate the
vehicle behaviour in the near future:

ẋ =




0 0 0
0 0 1
0 0 0






∆v
d

ḋ


+




1 0
0 0
0 1



[
∆ax

∆ay

]
+




1 0
0 0
0 1



[
da,x

da,y

]
. (14)

It remains to express the accelerations in terms of the states and inputs of the above
dynamic model. The longitudinal acceleration is given from the definition as

ax =
∂v̄(s)

∂s

v cos(∆ψ)

1− dκ̄(s)
− ∆ax. (15)

For the lateral acceleration, we rearrange Eq. (13) and use Eq. (15) to obtain

ay =
∆ay

cos(∆ψ)
+ κ̄

cos(∆ψ)

1− dκ̄(s)
v2 −

(∂v(s)

∂s

v cos(∆ψ)

1− dκ̄(s)
−∆ax

)
tan(∆ψ). (16)

We could now linearise the above equations concerning the states and inputs. How-
ever, to keep the approximation simple, we apply the same assumption as previously
and assume that κ̄(s) and v̄(s) do not depend on the state variables. The linearisation
trajectory is chosen as the reference path and the predicted velocity profile from the
MPC scheme’s last iteration. The latter shows significantly better approximations of
the lateral acceleration constraints as the target velocity even in case of small devia-
tions as the velocity influence is of quadratic nature. Details on this procedure can be
found in Section 7.

We are now ready to formulate the TMPC problem within the scheme presented
in Section 3.2. We calculate the (approximate) ellipsoidal reachable sets based on the
linear system Eq. (14) and neglect effects such as the implicit relationship between
the lateral and longitudinal case introduced via the state uncertainty and the influ-
ence of the nonlinear state transformations. In the following, the uncertainty model
will therefore purely act as a tuning parameter and can not be assumed to generate
reliable over-approximations of the reachable sets. A detailed study on this topic is
considered future work and neglected here for the sake of computational and algo-
rithmic complexity. The tightening of the constraints takes the uncertainty within the
lateral error d and the resulting corrective accelerations ∆ax and ∆ay into account
but neglects the influences of state uncertainty on the acceleration constraints due to
the approximate nature of the reachable sets. The terminal cost matrix P is taken
such that pTPp reflects the cost-to-go for a certain p. It can be determined from the
solution of the algebraic Riccati equation for the system dynamics and the cost ma-
trices Q and R. Furthermore, it is beneficial to add quadratic regularisation terms for
the change rate of the lateral and longitudinal accelerations to the cost function. The
resulting smoothing of the closed-loop acceleration trajectories reduces the influence of
the neglected acceleration dynamics and therefore the dynamic model matches the ac-
tual system behaviour better. For the sake of simplicity, we base the regularisation on
the sum of the linearisation scheme’s operating point accelerations and the corrective
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Figure 4.: Terminal set design by using a safe target velocity

accelerations, instead of the exact nonlinear transformations:

ãx = ax,op + ∆ax, (17a)

ãy = ay,op + ∆ay. (17b)

Besides, a terminal constraint set prevents the controller from being overly opti-
mistic due to the short optimisation horizons. For the lateral error, we choose the
same box constraints as within the optimisation horizon to be fulfilled robustly. The
lateral error derivative is required to be as small as possible (the nominal prediction
is constrained to zero) inspired by the discussion about appropriate terminal sets in
[61]. Intuitively, this enforces the vehicle to corner on a fixed radius at the end of the
optimisation horizon. The choice of the terminal set velocity is a little more involved:
based on the acceleration limits used for planning the target trajectory ax,plan and
ay,plan and the constraint tightening for the acceleration constraints from Eq. (9e), a
suitable velocity scale factor θv to obtain a safe target velocity vT = θvv̄ is determined

θ2
v max

(
|ax,plan

ax,max
|, |ay,plan

ay,max
|
)

+

√[
1

ax,max

1
ay,max

]
KMNp

KT
[

1
ax,max

1
ay,max

]T
= 1. (18)

It should be noted that this choice does not guarantee the terminal set to be robust
positive invariant but has shown to be an easy to determine and reliable heuristic
in our experiments. The above choice and the effects on the optimisation problem
are visualised in Fig. 4. While the nominal MPC algorithm sticks closely to the target
trajectory, the TMPC follows the target trajectory at the beginning of the optimisation
horizon but deviates significantly towards the end. This cautious behaviour allows for
exploitation of the vehicle capabilities as long as it is possible to keep a viable solution
in case disturbances enter the system.

Even though we apply a robust MPC formulation, a violation of the disturbance
assumptions might still lead to the infeasibility of the optimisation problem. Therefore,
the constraints are softened using slack variables ε following the idea of exact penalty
functions [62]. The one-norm for slack costs and a small regularisation term use the
two-norm guarantee to obtain the hard constrained solution in case the problem is
feasible. Note that the terminal constraints are not softened as it is always possible to
reach them by appropriate softening of the stage constraints. As an additional safety
measure, we constrain the slacks to be limited to a maximum violation of 5 % and
trigger an emergency manoeuvre in case a solution can not be achieved within this
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Figure 5.: Hardware-in-the-loop setup and corresponding Roborace DevBot 2.0 vehicle

tolerance. The final cost function with all modifications can now be written as

Np−1∑

k=0

(
pTkQpk + rTk Rrk + γxã

′2
x + γyã

′2
y

)
+ pTNp

PpNp
+ ρ1||ε||1 + ρ2||ε||2 (19)

with ã′x and ã′y being the differences between two consecutive stages for the approx-
imated lateral and longitudinal accelerations and γx and γy the corresponding cost
function weights. The slack weights are written as ρ1 and ρ2.

There are many solvers readily available to solve quadratic optimisation problems.
We chose the first-order solver OSQP [63] (based on the alternating direction method
of multipliers) due to its high performance for low to medium accuracy solutions
which are well suited for online optimisation with a limited computational budget.
The discretisation of the dynamics was done using the Euler-forward method at a
step size of 40 ms, which is also the execution frequency of the TMPC algorithm. The
prediction horizon is chosen to be 2 s long and consists of Np = 50 steps, leading to a
medium-sized problem with 400 optimisation variables (100 control variables and 300
slack variables) and 453 constraints. The QP is solved once per execution cycle and
due to the successive linearisation, the presented algorithm can be considered a real-
time SQP method. The linearisation is done with respect to a weighted combination
of the previous iteration linearisation and the previous iteration solution of the QP.
Similar to [23], we found that only using the previous iteration solution, oscillations
are likely to occur. The weighting of the previous step solution is done with a factor
of α = 0.3. The OSQP algorithm is limited to 200 iterations per execution cycle and
is warm started for better convergence. Furthermore, it turned out to be beneficial to
use a prediction of the measured vehicle state as the initial state by one time-step to
compensate for the execution time of the algorithm.

4. Results and discussion

4.1. Hardware-in-the-Loop setup and parameters

The experiments are conducted on a Hardware-in-the-Loop testbench using the same
hardware as the Roborace DevBot 2.0 vehicle (see Fig. 5). It uses a Speedgoat Mo-
bile as a rapid prototyping controller (RPC) with an i7 2.5Ghz CPU and 4GB RAM.
The physics simulation is implemented on a Speedgoat Performance and is based on
a nonlinear dual-track model with a Pacejka tyre model considering lateral as well as
longitudinal and combined tyre behaviour. The parameters are taken from the simu-
lation environment used within the Roborace competition [5] and represent a vehicle
with LMP2 chassis and road sport tyres. The simulation implements actuator and sen-
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sor models to accurately reflect response delay, low-pass characteristics and random
noise. The RPC and the simulation communicate via CAN-Bus. The remaining parts
of the software framework and the simulation environment are taken from the TUM
Roborace Software Stack described in [5] and are largely available open-source from
[64]. The trajectory planning is executed on an NVIDIA Drive PX2 and communicates
to the RCP via a UDP interface. The implementation of the control algorithms took
place in Simulink using a custom C-code interface to the QP-solver OSQP [63].

The following results have all been obtained from simulations for the Monteblanco
racetrack, depicted in Fig. 6. Its combination of tight corners with high-speed sec-
tions make this track a good choice to benchmark different controller concepts. The
controller acceleration limits are chosen to be ax,max, ay,max = 12.5 m s−2 and the max-
imum lateral deviation is set to be dmax = 1 m. The cost function matrices are chosen
to

Q =




0.05 0 0
0 20.0 0
0 0 0


 and R =

[
0.01 0

0 1

]
. (20)

The regularisation terms are set to γx = 0.2 and γy = 20 and the slack weights to
ρ1 = 1000 and ρ2 = 100. For benchmarking purposes, we will compare the presented
TMPC against a nominal MPC controller as well as the infinite time LQR solution.
It should be noted that the resulting LQR controller gains are close to the ones found
empirically for the controller presented during real-world experiments with the proto-
type [1,5]. Subsequently, we will conduct a parameter study on the TMPC controller
by comparing different choices for the pre-stabilising controller K as well as different
disturbance assumptions.

4.2. Comparison of control concepts

The following chapter compares the TMPC controller to a nominal MPC and an LQR
controller designed similar to the concept of Heilmeier et al. [1]. The disturbance set
represents the expected mismatch between the modelled dynamics and real vehicle be-
haviour. In the longitudinal direction, the main influences are driving resistances and
powertrain and brake system uncertainties, whereas, in the lateral direction, the vehi-
cle’s self-steering behaviour and yaw dynamics influence the actual acceleration most.
The disturbance bounds are chosen to be d̄a,x = 1.0 m s−2 and d̄a,y = 1.0 m s−2. We
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limit the accelerations in the trajectory planner to 12.0 m s−2. The simulated vehicle
physics are modified, such that the friction coefficient of the brake pads is decreased by
10 %. This parameter is highly temperature and material-dependent and is, therefore,
a good choice to test the controller’s robustness.

Fig. 7 shows the accelerations and lateral deviations over one flying lap for the
different controllers. The acceleration plot depicts that the controller has an increasing
amount of constraint violations with decreasing knowledge about the constraints and
uncertainties. Note that the limitation on the positive accelerations is related to the
power limit of the electric powertrain that cannot accelerate the car further. Due to
no constraint consideration, the LQR controller completes the lap with the fastest
time of 62.77 s. The lap-time is achieved by over-stressing the tyres and thus violating
the acceleration constraints. The second-fastest time is achieved by the nominal MPC
controller with 63.32 s. In addition, the MPC violates the lateral constraint in the
first turn as it brakes to late but is still constrained by the tire limits. Driving more
cautiously with the TMPC controller increases the lap-time to 64.67 s but leads to
a closed-loop behavior which respects the constraints. These rather obvious results
indicate that the TMPC sacrifices the lap-time promised by the target trajectory to
increase the closed-loop robustness and safety.

However, the risk of severe accidents makes the aspect of constraint satisfaction an
equally important performance indicator under race conditions. We, therefore, refor-
mulate the performance analysis as a trade-off between the lap-time and constraint
satisfaction for the presented control concepts for different settings of the local tra-
jectory planner (see Fig. 8). The TMPC controller achieves superior results in this
comparison as it demonstrates the lowest number of constraint violations and also the
minimum absolute constraint violation for comparable lap-times. The reason for this
is that the TMPC controller stays cautious in risky driving situations but exploits
the full potential when it deems the situation safe enough. However, it can only guar-
antee constraint satisfaction if the used model matches all underlying assumptions
which does not hold for the fastest lap-time. It shall be noted that even in this case
the TMPC has the lowest amount of constraint violations and can therefore still be
considered safer than the other concepts. In contrast, the MPC and LQR controller
only achieve a similar safety level if the accelerations limits are globally reduced which
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results in a worse overall lap-time. These results indicate that intelligent use of un-
certainty knowledge can increase the safety of the controller in autonomous vehicle
racing while keeping a competitive level of performance.

4.3. Control parameter effects

The effect of the disturbance bounds on the control performance is analysed by varying
them jointly for the longitudinal d̄a,x and lateral d̄a,y direction with a step size of
0.5 m s−2. Additionally, we will compare the effects of two pre-stabilising controllers
K for the TMPC concept. First, we use the infinite-time LQR solution for the system
with the weight matrices Q and R. Second, an optimised controller obtained from the
procedure presented in [48]. The controllers are

KLQR =

[
−2.14 0 0

0 −4.21 −2.99

]
KOpt =

[
−5.02 0 0

0 −28.13 −10.44

]
. (21)

To get a realistic impression of the control system robustness, we run a multitude
of simulations (conducted in Simulink for more efficient evaluation but with the same
models as the Hardware-in-the-Loop setup) for different brake pad friction coefficients
ranging from 80 % to 120 % of the nominal value in 5 % steps. The MPC controller
(with d̄a,x = d̄a,y = 0 m s−2) demonstrates the fastest lap-time, however, it also shows
the largest number of tyre and lateral deviation constraint violations. While the soft
constraints allow the controller to keep the vehicle on track by generating reasonable
backup controls, it violates the specified envelope of safe operation and is therefore
risky to transfer to the real car. With increasing disturbance set size, the TMPC
controller brakes earlier when approaching a corner to account for the uncertainty
within the model and therefore loses lap-time (see Fig. 9). The lateral control operation
is influenced less by the uncertainties and therefore the steering angle only differs
marginally for the three controllers.

Comparing the stabilising controllers in Fig. 10 shows that the maximum number
of violated constraints decreases slightly faster for the case of KOpt in comparison to
KLQR. However, the results indicate that the pre-stabilising controller’s choice influ-
ences the performance of the closed-loop system only marginally. This is related to
the fact that it is not actually executed and only used to construct predictions for
the uncertain system behaviour and act cautiously in state-space directions where this
might impact future constraint satisfaction. We, therefore, advise staying with the
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LQR controller due to the easy design process. The results also indicate that distur-
bance limits of 1 m s−2 reach an appropriate coverage of the model uncertainties for
the sophisticated dual-track model used within the Hardware-in-the-Loop setup.

5. Conclusion and outlook

In this paper, we presented a real-time capable Tube-MPC approach for trajectory
tracking of an autonomous race car at the handling limits. In contrast to nominal
MPC and a classic LQR concept, the consideration of additive disturbances shows to
be an efficient way to reduce the number of constraint violations while maintaining
competitive lap-times. The resulting controller tends to be cautious when it is required
but can drive aggressively as the uncertainty within the system does not lead to risky
situations. The nonlinear receding horizon optimisation problem is implemented on
a rapid-prototyping ECU using a linearised model and the QP-solver OSQP. The
results have been obtained on a Hardware-in-the-Loop test bench with a sophisticated
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nonlinear dual-track model for vehicle physics simulation as well as actuator and sensor
models. Furthermore, a parameter study demonstrates that the upper bound of the
disturbance assumption is a reasonable tuning parameter for the trade-off between
constraint violations and lap-time. The choice of the pre-stabilising controller for the
TMPC concept has not shown to significantly alter the closed-loop behaviour.

We want to emphasise that the results presented in this paper indicate that already
simple dynamic models are able to deliver high-performance driving in autonomous
racing applications when reasonable uncertainty and constraint assumptions are con-
sidered. This is especially advantageous in face of the increased computational require-
ments and numerical difficulties when complex nonlinear tyre models are employed for
model predictive control. Furthermore, these complex models are difficult to parame-
terise which makes their increased accuracy questionable in real-world applications.

In the future, we plan to use the TMPC approach on a real autonomous race car
and evaluate the proposed advantages under real-world conditions. Promising research
directions are a more thorough analysis of the constructed tubes of reachable sets and
the combination with machine learning algorithms to learn appropriate uncertainty
models while driving. These improvements would allow the controller to adjust its
speed and behaviour to the current environmental conditions. Furthermore, it might
be an interesting research direction to allow for more deviation from the planned
trajectory and allow the controller to simultaneously reoptimise the planned trajec-
tory. This strategy could lower the quality requirements for the target trajectory and
therefore improve the overall system performance in more complex racing scenarios.
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7. Appendix - Details on linearisation procedure

7.1. Longitudinal acceleration

Derivation of linearisation for Eq. (15):

ax(s, d, ḋ,∆v,∆ax) =
∂v̄(s)

∂s

(v̄(s)−∆v) cos(arcsin( ḋ
(v̄(s)−∆v)))

1− dκ̄(s)
− ∆ax. (22)

We neglect the dependency of v̄(s) and κ̄(s) on the path coordinate s, since small
modifications around the chosen linearisation trajectories are unlikely to change these
values much for reasonable target trajectories due to the short horizon of the optimal
control problem. Rewriting those terms as constants for each discretisation point we
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arrive at

ax(d, ḋ,∆v,∆ax) = āx
(v̄ −∆v) cos(arcsin( ḋ

(v̄−∆v)))

1− dκ̄ − ∆ax. (23)

The partial derivatives are

∂ax
∂d

= āxκ̄
(v̄ −∆v)

√
1− ḋ2

(v̄−∆v)2

(1− dκ̄)2 (24a)

∂ax

∂ḋ
= −āx

ḋ

(v̄ −∆v) (1− dκ̄)
√

1− ḋ2

(v̄−∆v)2

(24b)

∂ax
∂∆v

= −āx
1

(1− dκ̄)
√

1− ḋ2

(v̄−∆v)2

(24c)

∂ax
∂∆ax

= −1 (24d)

If we now choose the path (d = 0, ḋ = 0), the previous iterations velocity profile
(v = v̄ − ∆v = vp) and zero corrective longitudinal acceleration (∆ax = 0) as a
linearisation point, we can rewrite the longitudinal acceleration in linear form as

ax ≈ āxκ̄vpd− āx∆v −∆ax + āxvp (25)

7.2. Lateral acceleration

Derivation of linearisation for Eq. (16):

ay(s, d, ḋ,∆v, ax,∆ax) =
∆ay

cos(arcsin( ḋ
(v̄(s)−∆v)))

+κ̄
cos(arcsin( ḋ

(v̄(s)−∆v)))

1− dκ̄(s)
(v̄ −∆v)2

−ax
(
d, ḋ,∆v,∆ax

)
tan(arcsin(

ḋ

(v̄(s)−∆v)
))

(26)

Similar to the longitudinal acceleration we neglect the dependency of v̄(s) and κ̄(s)
and can therefore write the following

ay(d, ḋ,∆v,∆ax,∆ay) =
∆ay

cos(arcsin( ḋ
(v̄−∆v)))

+κ̄
cos(arcsin( ḋ

(v̄−∆v)))

1− dκ̄ (v̄ −∆v)2

−ax
(
d, ḋ,∆v,∆ax

)
tan(arcsin(

ḋ

(v̄ −∆v)
))

(27)
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The partial derivatives are

∂ay
∂d

= κ̄2
cos(arcsin( ḋ

(v̄−∆v)))

(1− dκ̄)2 (v̄ −∆v)2 − ∂ax
∂d

tan(arcsin(
ḋ

(v̄ −∆v)
)) (28a)

∂ay

∂ḋ
=

∆ayḋ

(v̄ −∆v)2
(

1− ḋ2

(v̄−∆v)2

)3/2

−κ̄ ḋ

(1− dκ̄)
√

1− ḋ2

(v̄−∆v)2

−∂ax
∂ḋ

(d, ḋ,∆v,∆ax) tan(arcsin(
ḋ

(v̄ −∆v)
))

−ax(d, ḋ,∆v,∆ax)


 ḋ2

(v̄ −∆v)3
(

1− ḋ2

(v̄−∆v)2

)3/2
+

1

(v̄ −∆v)
√

1− ḋ2

(v̄−∆v)2




(28b)

∂ay
∂∆v

=
∆ayḋ

2

(v̄ −∆v)3
(

1− ḋ2

(v̄−∆v)2

)3/2

κ̄

1− dκ̄


 ḋ2

(v̄ −∆v)
√

1− ḋ2

(v̄−∆v)2

− 2 (v̄ −∆v)

√
1− ḋ2

(v̄ −∆v)2




− ∂ax
∂∆v

(d, ḋ,∆v,∆ax) tan(arcsin(
ḋ

(v̄ −∆v)
))

−ax(d, ḋ,∆v,∆ax)


 ḋ

(v̄ −∆v)2

√
1− ḋ2

(v̄ −∆v)2 +
ḋ2

(v̄ −∆v)3
(

1− ḋ3

(v̄−∆v)4

)3/2




(28c)

∂ay
∂∆ax

= tan(arcsin(
ḋ

(v̄ −∆v)
)) (28d)

∂ay
∂∆ay

=
1

cos(arcsin( ḋ
(v̄−∆v)))

(28e)

If we now choose the path (d = 0, ḋ = 0), the previous iterations velocity profile (v =
v̄ −∆v = vp) and zero corrective acceleration (∆ax = 0, ∆ay = 0) as a linearisation
point, we can rewrite the longitudinal acceleration in linear form as

ay ≈ κ̄2v2
pd−

ax(d, ḋ,∆v,∆ax)

vp
ḋ− 2κ̄vp∆v + ∆ay + κ̄v2

p (29)
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7.3. Linearisation of tyre constraints

Finally we can reformulate the tyre constraints in Eq. (11)

| ax

ax,max
|+ | ay

ay,max
| ≤ 1, (30)

to be

± axay,max ± ayax,max ≤ ax,maxay,max. (31)

Using the above results, we can write this as a linear function of the inputs and the
states

± (āxκ̄vpd− āx∆v −∆ax + āxvp) ay,max

±
(
κ̄2v2

pd−
ax(d, ḋ,∆v,∆ax)

vp
ḋ− 2κ̄vp∆v + ∆ay + κ̄v2

p

)
ax,max ≤ ax,maxay,max.

(32)
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7 Appendix

7.3 A Tube-MPC Approach to Autonomous Multi-Vehicle Oval
Racing

Contributions: Alexander Wischnewski, the author of this dissertation, developed and
analyzed the proposed control concept. Thomas Herrmann and Frederik Werner contributed
to the real-time capable implementation and integration in the software stack of the TUM
Autonomous Motorsport team. In addition, all of them have been involved in running the
vehicle safely on multiple racetracks and finding the optimal setup for the competition runs.
Boris Lohmann contributed to the critical revision of the manuscript and the conception of
the research project.
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A Tube-MPC Approach to Autonomous
Multi-Vehicle Racing on High-Speed Ovals

Alexander Wischnewski, Thomas Herrmann, Frederik Werner, and Boris Lohmann

Abstract—Autonomous vehicle racing has emerged as vibrant
and innovative technology development and demonstration plat-
form in recent years. Universities and companies demonstrate
their achievements on various vehicles - from 1:10th to full-
scale prototypes. One of those platforms is the Dallara AV-21,
the spec-vehicle for the Indy Autonomous Challenge. This paper
outlines the robust model predictive control (MPC) concept used
within the software stack of the TUM Autonomous Motorsport
team. It is based on a simplified friction-limited point mass model
and a set of low-level feedback controllers. The remaining model
uncertainties are managed via introducing a constraint-tightening
approach based on a Tube-MPC approach. In contrast to classical
tracking controllers, the optimization problem is formulated
to freely optimize the trajectory while staying within certain
maximum deviations of the reference. This approach allows to
rely on a coarse output of the trajectory planning approach while
maintaining smoothness requirements in steering, throttle, and
brake actuation.

The paper highlights the advantages of the proposed robust
reoptimization concept compared to pure tracking formulations.
It showcases the performance compared to a classical LQR con-
troller and an MPC, which utilizes a vehicle model with a more
sophisticated tire model. The controller achieved a top speed of
265 kmh�1 and lateral accelerations up to 21m s�2 during a two-
vehicle competition involving dynamic overtaking maneuvers on
the Las Vegas Motor Speedway, a famous racetrack with turns
banked up to 20�.

Index Terms—MPC, robust, control, vehicle dynamics, au-
tonomous driving.

I. INTRODUCTION

CONTROLLING a vehicle safely at the limits of its
physical capabilities is a key requirement to enable full

autonomy even in the most challenging scenarios. The main
challenges from a control systems perspective are the strong
coupling of longitudinal and lateral vehicle dynamics, the
nonlinearities in the tire behavior, and the apparent uncertainty
with respect to tire-road friction, actuator dynamics, and
environmental influences. From an engineering point of view,
these are accompanied by the difficulty to recreate and test
scenarios that require a vehicle to operate at its limits. These
are usually tried to be circumvented and therefore rare.

All of those challenges can be found in autonomous racing,
which is therefore an ideal benchmark environment for control
algorithms which target these problems. A team from the
Technical University of Munich entered the Indy Autonomous

Research was supported by the basic research fund of Technical University
of Munich.

A. Wischnewski and B. Lohmann are with the Chair of Automatic Control,
School of Engineering & Design, Technische Universität München, München,
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T. Herrmann and F. Werner are with the Institute of Automotive Technology,
School of Engineering & Design, Technische Universität München, München,
Germany. email: {thomas.herrmann, frederik.werner}@tum.de

Challenge [1], a university competition aiming at advancing
the state-of-the-art in autonomous vehicle research (see Fig. 1).
This paper is focused on the motion control algorithm of the
software stack, which won the inaugural Indy Autonomous
Challenge at the Indianapolis Motor Speedway on October
23rd 2021 and placed second in the passing competition with
two vehicles at the Las Vegas Motor Speedway on January
7th 2022.

II. RELATED WORK

A. State-of-the-Art

The field of autonomous vehicle control is well established
since the successful application of multiple control strategies
during the DARPA autonomous driving challenges [2], [3] as
well as the availability of several series-level driver assistance
systems. A survey covering the key concepts used in the field
is presented in [4]. In recent years, several researchers have
turned towards the application of these algorithms in racing
scenarios [5]–[7]. These combine the unique opportunity to
benchmark algorithms close to the limit of the vehicle’s
capabilities while being inherently safe at the same time.

The vehicle dynamics near the handling limits show sig-
nificant nonlinearities in the tire behavior and strong cou-
pling between the longitudinal and lateral vehicle motion.
The concepts applied in [5] and [7] demonstrate successful
racing on a full-size prototype using a linearized system
description and adjust the linear lateral feedback controller
using a gain-scheduling strategy based on the vehicle velocity.
An enhancement to those approaches is the utilization of exact
linearization-based controller design [8] methods; however,

Fig. 1. The race vehicles driven by the autonomous software stacks of
the TUM Autonomous Motorsport and the PoliMOVE teams at the passing
competition of the Indy Autonomous Challenge at January 7th 2022 with
speeds above 260 kmh�1. Credits: Indy Autonomous Challenge.
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those perform an implicit decoupling and linearization of
the multivariable control task and can therefore not fully
exploit potential advantages of the nonlinear system dynamics.
Furthermore, they are usually prone to parametric as well
as dynamic uncertainties. A comprehensive comparison of
other nonlinear control techniques which do not require online
optimization can be found in [9]. All of them share the
common disadvantage, that they do not explicitly handle
constraint satisfaction in the controller design. This leaves the
consideration of tire and position deviation constraints to an
a-priori specified worst-case safety margin for the trajectory
planning algorithms.

In contrast to the already mentioned approaches, MPC
promises to handle the multivariable, constrained control prob-
lem via the repeated solution of a finite-horizon optimization
problem during the vehicle’s operation. The first systems of
this type dealt with the lateral and longitudinal control problem
independently [10]. However, this approach does not allow to
leverage many of the strengths of MPC concepts. The ma-
jority of the approaches therefore jointly optimize the lateral
and longitudinal vehicle dynamics at the expense of larger
optimization problems and higher computational burden. They
can be grouped according to the class of models used: Point-
mass models offer a simplistic view of the dynamics while still
capturing the major dynamics in the euclidean space. If they
are used at the handling limits of the vehicle, they are enhanced
with friction limits to account for the physical limitation of
the tires [11]. More complex models usually use single-track
models with varying fidelity of the tire model [6], [12], [13]. A
common choice are Pacejka [14] models with a coupling via a
constraint on the maximum combined tire force. The influence
of the model choice on the controller capability is analyzed
by [15]. It was found that the choice of vehicle model does not
significantly influence the optimal racing trajectory. Still, the
more complex models can consider and stabilize the transient
yaw dynamics. However, at the same time, the computational
complexity grows significantly due to the additional state
variables and constraints which have to be considered. In
addition to handling multi-input dynamics and constraints, a
key strength of MPC approaches are applications where a
reoptimization around an initial reference path is allowed and
required [6], [16], e.g., to consider sudden obstacles or to
achieve smoother input behavior. This property will also be
exploited in this paper to reduce the smoothness requirements
for the output of the motion planning algorithms. Even more
complex vehicle dynamics descriptions, e.g., including the
banking and inclination effects of racetracks, have been used
for minimum lap-time optimal control problems but have not
yet shown to be real-time capable [17].

The case of autonomous racing holds a unique position
in these approaches as it aims at minimizing the travel time
around the circuit instead of tracking a given trajectory. This
requirement can be approached using minimum-time optimiza-
tion [18], by reformulating the control objective to maximize
the progress along a given reference track [6], [19] or via a
two-level approach where an appropriate reference trajectory
generation takes care of the overall aim and a high fidelity
nonlinear MPC is applied to track this trajectory [6], [20].

A challenge for all of those approaches is to generate a
recursively feasible formulation of the finite-horizon optimiza-
tion problem. From a practical perspective, this translates into
designing the optimization problem such that it applies suffi-
cient caution to manage effects that affect the behavior after
the considered optimization horizon. A theoretically rigorous
solution to this problem would be the construction of a positive
invariant set [21]. However, this is a yet unsolved problem
in the case of arbitrary trajectory tracking with nonlinear
vehicle models. Promising directions towards this aim are
given via offline computation of a discriminating kernel for
a given track [22] and via the usage of simplified vehicle
models [23]. A way to circumvent this issue is the utilization
of sufficiently long optimization horizons and the application
of slack variables to soften the state constraints [18], [19].

Similar issues arise in reality due to the inevitable model in-
accuracies and external disturbances. From a control-theoretic
perspective, they can be resolved by thoroughly extending the
recursive feasibility analysis framework to a robust version
considering those uncertainties, either in a deterministic or
a stochastic modeling framework. Solutions for linear mod-
els are well-known [24], [25] and extensions for nonlinear
models are coming up in recent years [26]. While there
already exist several applications for autonomous driving in
general [27]–[29], the application to racing vehicles has not
found widespread adoption so far. This is likely due to
the conservative nature of thorough theoretical solutions for
high-dimensional systems. Notable exceptions have been the
approach proposed by [30], which models uncertainty in a
stochastic framework and manages to reduce the accident rate
while keeping a similar performance level, [31], which lever-
ages constraint tightening to handle the transient dynamics of
an auxiliary vehicle dynamics learning algorithm, and [32],
which uses a similar approach to introduce tuning parameters
for managing caution with respect to constraint exploitation in
a structured way.

B. Scope & Outline of the Paper
In this paper, we extend the Tube-MPC scheme presented

in [32] to match the requirements of high-speed oval racing.
First, we allow for varying acceleration limits due to the
large speed range (depending on the aerodynamic downforce)
and propose a strategy to handle the three-dimensional layout
of the race track, i.e., the effects on the vehicle dynamics
due to banked turns. Second, we propose a cost design to
smoothen coarse target trajectories to improve driving stability
while simultaneously adhering to the specified constraints.
In contrast to a classical trajectory tracking controller, this
concept can handle non-continuous curvature and longitudinal
accelerations of the target trajectory without an impact on
the driving performance. Third, we present results of a full-
scale vehicle racing in scenarios with two vehicles (including
dynamic replanning) with speeds up to 265 kmh�1 and accel-
erations of 21m s�2. Additionally, we perform a simulation
study to compare the proposed friction limited point-mass
model Tube-MPC with an MPC scheme based on a nonlinear
tire model and a classical LQR controller and elaborate on the
importance of the underlying acceleration controllers.
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Fig. 2. Visualization of the Tube-MPC concept with reoptimization capabil-
ities. The nominal prediction (dashed-orange) of the MPC is replaced with a
set-valued prediction representing the potential uncertainty within the model
(solid-orange). The controller is allowed to deviate from the middle of the
driving tube but considers the constraints for all potential future outcomes of
the system (black).

The paper is structured as follows: The following section
presents essential preliminaries and the vehicle modeling ap-
plied in this work. Section IV explains the proposed Tube-
MPC scheme. An extensive study of different algorithm con-
figurations in simulation is presented within section V. The
successful application of the proposed algorithm on a full-
scale prototype at high speeds is presented in section VI. The
conclusions drawn can be found in section VII.

III. METHODOLOGY

A. Software Architecture

The overall driving task within the autonomous racing soft-
ware stack is split into three areas: perception, planning, and
control [33]. We omit a detailed discussion for the perception
and the planning part and only cover the aspects that are im-
portant to understand the following implications for the control
system. The perception part of the software stack builds upon
multiple independent object detection pipelines using LIDAR,
Radar and Camera. These are fused via an object-tracking
algorithm based on a Kalman-Filter approach. Based on those
estimates, a prediction algorithm forecasts what the other
vehicles on track are going to do. The planning problem is
difficult to be efficiently solved due to the combinatorial nature
resulting from other vehicles on the track [6]. Intuitively, this
reflects the fact that there are multiple local minima [34], e.g.,
passing a vehicle in front either on the left or on the right
side. We dedicate the task of this high-level decision problem
to the trajectory planning algorithm and will use a graph-based
optimization framework for this (see also the discussions on
this in [6], [35]). The result of this task is an admissible driving
tube depicted in black in Fig. 2.

The control algorithm generates appropriate vehicle con-
trol commands in the form of throttle, brake, and steering
setpoints. It can achieve its maximum potential when it is
allowed to freely optimize within the admissible driving tube.
In contrast to pure tracking control, this paradigm change
makes it possible to reduce the quality requirements for the
trajectory planning algorithm. Instead of delivering a fine-
tuned target trajectory, the planning algorithm aims to make
behavioral decisions that are refined within an MPC algorithm.
In addition, this allows the planner to cover longer planning
horizons at the same computational budget, which is essential
for high-speed operation.

The ability to exploit the admissible driving tube poses
challenges when trying to guarantee that the MPC algorithm
stays recursively feasible as the solutions to the optimization
problem tend to be close to the constraints when the lateral
deviation cost is omitted or very small. This issue arises from
the fact that nominal control algorithms are prone to becoming
infeasible in the presence of model uncertainties and distur-
bances [25]. This is countered by the explicit consideration of
these in the design of the controller via the design of a Tube-
MPC scheme instead of a nominal MPC. The key idea is to
replace the predicted trajectory with a prediction of a set of
possible trajectories resulting from the impact of uncertainties
and disturbances (depicted in orange in Fig. 2). This creates a
control behavior that exploits the constraints at the beginning
of the optimization horizon and stays cautious towards the end.

B. Tube-MPC

We consider the discrete, linear time-invariant dynamic
system

xpk � 1q � Axpkq �Bupkq � Edpkq, (1)

where xpkq P Rn is the state, upkq P Rp is the input and
dpkq P Rq is a bounded, additive disturbance term. The index
k refers to the current time instant. The system is subject to
safety constraints

u P U, (2a)

x P X. (2b)

The nominal linear MPC controller is defined via the
iterative solution of the following optimization problem

min
ū

N�1̧

i�0

�
xTi Qxi � uTi Rui

�
� xTNPxN (3a)

s.t. x0 � xpkq (3b)
xi�1 � Axi �Bui, @i P r0, N � 1s (3c)
xi P X, @i P r0, N � 1s (3d)
ui P U, @i P r0, N � 1s (3e)
xN P XT (3f)

where xi and ui denote the predicted state and input at the
discretization point i of the optimal control problem and the
matrices Q, R and P are weighting matrices of appropriate
dimensions. Note that the index i is used for the dynamics
on the prediction horizon, while k is the actual time index.
Stability and recursive feasibility can be ensured via the choice
of the terminal set XT and the terminal cost xTNPxN . We use
the notation ū whenever we refer to the vector formed by the
candidate input trajectory u0 to uN�1. The control law itself
is given via upxpkqq � u0.

It is well known [25] that the application of this nominal
MPC scheme (see [21] for a thorough discussion of con-
strained nominal MPC) does not guarantee recursive feasibility
of the optimization problem in the presence of the unknown
disturbance dpkq. This can be prevented by the application
of Tube-MPC, where the problem (3) is modified to ensure
that the constraints are satisfied robustly. The concept utilized
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in this work is based upon the work of [24] and will only
be introduced briefly here for the sake of brevity. First, a pre-
stabilizing feedback law u � �Kx is introduced which is then
used to predict the reachable sets XR,i at the discretization
points i for the resulting closed-loop system with respect to
the external input dpkq. These reachable sets are now utilized
to calculate tightened state and input constraints X̄i � X and
Ūi � U by applying the pontryagin set difference (see [24]),
resulting in the new optimization problem

min
ū

N�1̧

i�0

�
xTi Qxi � uTi Rui

�
� xNPxN (4a)

s.t. x0 � xpkq (4b)
xi�1 � Axi �Bui, @i P r0, N � 1s (4c)
xi P X̄i, @i P r0, N � 1s (4d)
ui P Ūi, @i P r0, N � 1s (4e)
xN P X̄T (4f)

The implementation of this tightening will be done via
calculation of the set dynamics based on ellipsoids [36] for
the linearized system dynamics. Note that this approach can
be further justified by the successful application of controllers
obtained from the linearized dynamics for real-world au-
tonomous racing [5]. The reachable sets around the nominal
trajectory p are described via ellipsoids of the form

Epp,Mq :�
 
x P Rn|px� pqTM�1px� pq ¤ 1

(
, (5)

with p being the center of the ellipsoid and M the correspond-
ing shape matrix. An over-approximation of the Minkowski
sum of two ellipsoids [37] is given by

Epp1,M1q ` Epp2,M2q

�E
�
p1 � p2,

�
1� c�1

�
M1 � p1� cqM2

�
,

(6)

with c �
a
TrpM1q{TrpM2q and TrpMq the trace of the

Matrix M . Additionally, the following definition for the affine
dynamics is used

A � Epp,Mq � b � EpAp� b, AMAT q. (7)

IV. APPLICATION TO AUTONOMOUS VEHICLE RACING

A. Controller Concept

The results obtained under real-world racing conditions for a
point-mass-based control design in [5], [11] demonstrate that
simple dynamic models enable sufficiently accurate control
as long as the tire constraints are considered in the form of
suitable acceleration constraints during the planning process.
This idea has been leveraged for the design of a Tube-MPC
control concept in [32] and has shown promising results for a
classical trajectory tracking formulation. The following section
will extend the controller presented in [32] by a detailed
discussion of the modifications and extensions required to
design a fully functional control system under real-world
conditions at one of the fastest oval racetracks in the world.

The fundamental philosophy of the concept presented is a
strict split into certain and uncertain dynamics. We consider

Trajectory
Planning

Tube-
MPC

Long. and
lateral

acceleration
controllers

Steering
controller

Vehicle
dynamics

State
estimation

Throttle
Brake

Fig. 3. Block diagram of the proposed Tube-MPC algorithm

the relation between the accelerations in the vehicle frame
and the actual movement to be exact, as they are based on
theoretically sound differential equations without parametric
uncertainties. This setting is well-suited for handling the
dynamics and acceleration constraints in an MPC scheme. In
contrast, the effect of throttle, brake pressure, and steering
requests on the actual accelerations is subject to uncertain
dynamics (such as turbocharger effects, neglected actuator
dynamics, etc.) as well as parametric uncertainties (steady-
state errors of the steering actuator due to load on the tires,
engine calibration changes compared to the setup measured
on the dynamometer, etc.). We handle this situation by in-
troducing low-level PID-feedback loops for the longitudinal
and lateral acceleration and a steering feedback loop. This
design is favorable as it reduces the remaining uncertainties
via fast and simple-to-tune control loops without increasing the
complexity of the prediction model in the MPC. The remaining
uncertainties and tracking errors are assumed to be external
disturbances and considered by extension of the MPC scheme
to a Tube-MPC scheme. The resulting controller architecture
is depicted in Fig. 3.

The interfaces to the software stack are the trajectory
planning and the state estimation. The former provides a
path with continuous position and heading and a continuous
velocity. The curvature and longitudinal acceleration do not
have to be continuous, this is an advantage of the applied
reoptimization concept (see Sec. III-A). The state estimation
provides a localization in global coordinates and velocity and
acceleration estimates. This component will be introduced
briefly in Sec. IV-E and is based on the work done in [38].

B. Formulation of the Optimization Problem

The upcoming section summarizes the detailed derivation
of the vehicle dynamics and its constraints presented in [32].
Using a model derivation procedure in curvilinear coordinates
as in [6], [19] (also see 4) and a point-mass model to describe
the behavior of the vehicle [11] we can write�
���

9s
9v
9d
:d

�
��� �

�
���

p1� dκpsqq
�1
v cosp∆ψq

Fx

m � cw
m v2

9d�
Fx

m � cw
m v2

�
sinp∆ψq � cosp∆ψq pay � κpsq 9svq

�
��� ,
(8)
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with

∆ψ � arcsin

�
9d

v

�
. (9)

The state s represents the progress along the reference path
with curvature κpsq, while d depicts the lateral deviation and
∆ψ the orientation error of the chassis towards this path. We
use the coordinate transformation 9d � v sin p∆ψq to replace
the orientation error with the derivative of the lateral error 9d.
The longitudinal dynamics are completed via the vehicle speed
v, the longitudinal force input Fx, the vehicle mass m and the
lumped drag coefficient cw. This formulation emphasizes the
interpretation of the longitudinal and lateral accelerations as
the key variables to influence the motion of the vehicle and
will be useful during the efficient realization of the embedded
optimization algorithm.

Investigations with high speed autonomous racecars have
shown that circular limits for the tire forces based on Kamm’s
circle do not necessarily transform directly into reliable accel-
eration limits on the vehicle level [39]. The actual shape of the
vehicle acceleration limits depends on several factors, such as
the tire characteristics and the mechanical vehicle setup. We
use a diamond-shaped constrained set

�1 ¤
ax
āx

�
ay
āy

¤ 1 (10a)

�1 ¤
ax
āx

�
ay
āy

¤ 1 (10b)

with the acceleration limits āx and āy in the following as
it allows to exploit the pure lateral and longitudinal vehicle
capability while being cautious in the combined cases. This
behavior delivered a good compromise between performance
and reliability, while being easy to integrate in numerical
algorithms due to its polytopic form. The limits will be
obtained based on the speed of the target trajectory for each
discretization point, similar as the curvature of the path, from
a look-up table within the trajectory planner. This table is
generated based on extensive simulations as well as real-
world vehicle tests. In addition to the acceleration constraints,
the trajectory planner generates the lateral deviation limits
dynamically from the situation. They are implemented via
simple box constraints and can be different between the left
and the right side of the driving tube.

d� ¤ d ¤ d�. (11)

v

δ

Fx

ψ̇

κ(s)

d
s

∆ψ

Fig. 4. Visualization of the curvilinear coordinate system and the dynamic
model used to describe the vehicle behavior.

The actual MPC problem is formulated with respect to the
target velocity profile vR using the state transformation ∆v �
v � vR and the input transformations

Fx � cwv
2 �m

v cospψPq

1� dκpsq

BvRpsq

Bs
�m∆ax, (12a)

ay � κpsq
v2 cospψPq

1� dκpsq
�

1

cospψPq
p∆ay � ax sinpψPqq .

(12b)

In addition, we assume the progress along the reference
line 9s and curvature values κpsq to be known a-priori to the
optimization problem and can therefore drop the state s from
the state vector and simplify the optimization problem to use
the following system dynamics:�

�∆ 9v
9d
:d

�
� �

�
�0 0 0
0 0 1
0 0 0

�
�
�
�∆vd

9d

�
��

�
�1 0
0 0
0 1

�
��

∆ax
∆ay

�
. (13)

This linear dynamic system allows us to formulate the robust
MPC problem in the form of (4). We add the constraints (10)
and (11) via linearization of (12). The uncertainty tube sets
for the constraint tightening are calculated using ellipsoids
and a pre-stabilizing controller based on a reasonable LQR
weight design [5], [32]. We assume the uncertainties to enter
the dynamics as matched disturbances, i.e., via acceleration
disturbances acting the same way as ∆ax and ∆ay . They will
serve as a tuning parameter to blend between an aggressive
driving style (small uncertainties) and a rather cautious behav-
ior (large disturbances) and are gain-scheduled based on the
vehicle speed. The linearization is done based on a velocity
profile obtained from a weighted linear combination of the
last steps solution and the target velocity profile. Incorporating
the latter allows the MPC to adjust quickly to a change in
target trajectory that frequently occurs in multi-vehicle racing
scenarios.

The system is discretized using Euler forward discretization
and a sample rate of 60ms. The horizon is chosen to be 40
steps which leads to an overall prediction time of 2.4 s. The
QP is implemented using OSQP [40], an alternating direction
method of multipliers (ADMM)-based first-order solver. The
highly constrained nature of the optimization problem suits the
properties of the solver using a projection approach to handle
constraint satisfaction [39]. Its efficient implementation allows
to execute it at an update rate of 100Hz.

The cost function design is based on the choice of the
weighting matrices Q and R. We tune the weights for the
longitudinal dynamics to reflect a very gentle tracking behavior
with low convergence rates to enable smooth vehicle inputs
while still keeping tracking of the target velocity profile. This
is important to handle situations where two vehicles closely
follow each other. The lateral dynamics weights are tuned to
minimize the lateral motion in the driving tube and therefore
only consider the lateral deviation very briefly. In addition,
we introduce a regularization term penalizing the acceleration
differences between ax,i and ax,i�1 as well as ay,i and ay,i�1

between the discretization points to further smooth the vehicle
behavior.



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. XX, NO. XX, TBD 6

C. Low Level Controllers

The lateral and longitudinal acceleration controllers serve an
important task in the proposed control concept: They ensure
that the assumptions used by the Tube-MPC are met by the
vehicle dynamics, even in the presence of model uncertainty
and external disturbances.

The lateral acceleration controller consists of three main
parts: a feedforward element based on the kinematic relations
of the vehicle, a proportional feedback, and an integral feed-
back part. The resulting control equation can be summed up
to

δ �
1

v2
payl �Kp,yãy � δiq , (14a)

9δi � Ki,yãy �

�
δi
c1āy


3

(14b)

with the controller gains Kp,y and Ki,y and the lateral
acceleration control error ãy . The second element in the inte-
grator equation above serves as a soft limiter for the integral
controller part. It prevents the controller from winding up in
case of significant understeer, which would lead to degraded
control performance on turn out. This limit depends on the
absolute acceleration limit āy as well as a tuning factor c1 to
adjust the margin where the integral part can compensate for
deviation from a neutral vehicle behavior. The above equations
are slightly modified for low-speed scenarios (close to walking
speed) to limit the resulting gain and prevent oscillations via
the introduction of a lower speed limit for the evaluation of the
equations. The steering controller is built based on a classical
PI-controller with anti-windup mechanisms. The details are
omitted for the sake of brevity. It allows to shape the behavior
of the steering actuator freely as the internal control loops are
not exposed on the available interface.

The longitudinal acceleration controller is built slightly
simpler: a feedforward element based on the vehicle mass
and drag resistance and a proportional feedback term. This
removes the necessity for an anti-windup strategy and simpli-
fies the tuning procedure. The control equation can be written
as

F � max � cwv
2 �Kp,yãx (15)

with the control gain Kp,y, the longitudinal acceleration con-
trol error ãx and the lumped drag coefficient cw. The resulting
force is converted to a corresponding throttle position or brake
pressure requests by using empirical lookup tables.

D. Banking Influence

One of the challenges for vehicle dynamics control is
the influence of the track banking on the required steering
angle and the measured accelerations. While this has been
handled in optimal control problems for laptime minimization
several times [17], it has not yet been considered during real-
time-critical implementations. As this would complicate the
resulting optimal control problem significantly, we propose to
handle these effects on the level of the acceleration controllers.
To calculate the required transformation we use the relation

Fig. 5. Forces acting upon the vehicle in a banked turn, with Rb being the
banked turn radius and Rt being the radius in the 2D-plane.

of the acting forces from Fig. 5. Using the balance of forces
in each of the two dimensions, we can write

cos pϕqFT,y � sin pϕqFz � may, (16a)
� sin pϕqFT,y � cos pϕqFz � mg, (16b)

with ϕ being the banking angle. The IMU which is used
for lateral acceleration feedback measures the specific force
acting in locally upon the vehicle which can be calculated
as aIMU �

FT,y

m . Rearranging the above equation, we can
calculate the corresponding effective acceleration in the level
plane to be

ay � aIMU pcos pϕq � tan pϕq sin pϕqq � tan pϕq g. (17)

In addition, we have to modify the feedforward portion of
the lateral acceleration controller to account for the increased
turn radius Rb in the banked plane compared to the 2D track
plane Rt. This can be done by modifying the first term of (14)
to be ayl cospϕq instead of ayl.

E. State Estimation

The proposed Tube-MPC requires the determination of the
lateral error, the lateral error derivative and the velocity error.
All of these quantities are based upon a reliable estimation of
the vehicle position and motion state in the euclidean frame.
To achieve this, we use a Kalman-Filter-based concept with
similar model assumptions as the proposed Tube-MPC. Details
on this can be found in [38]. However, as this approach is
based on a two-dimensional vehicle model and relies heavily
on the IMU signals, the banking has a significant influence on
the estimation quality. The transformations presented above
are therefore also applied to the inputs of this estimator to
compensate for these effects.

The lateral error is calculated based on a matching algorithm
of the current position with respect to the path in a two
dimensional euclidean coordinate frame. First, the closest
section of the target path is determined. Based on this, a refined
estimate is calculated from a linear projection onto this path.
The lateral error derivative is determined by simple numerical
derivation and low-pass filtering. A heading and side slip angle
based approach as proposed by [5] did not show satisfactory
results, as the side slip angle could not be estimated with
sufficient quality (sub-degree accuracy) on the used vehicle
platform.
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V. SIMULATION RESULTS

A. Simulation Setup

The following section evaluates the performance of the
presented algorithm in comparison to an LQR controller [5]
and a wide-spread MPC formulation in path coordinates using
a nonlinear Pacejka tire model (based on [19]). It further con-
ducts a parameter study to clarify the sensitivity and generate
guidelines for tuning the controller on the real vehicle.

The simulation environment is based on a nonlinear dual-
track model with vehicle parameters aligned with an ex-
emplary vehicle, including actuator and sensor models. The
model and the TMPC implementation are available at [41].
All results in this section are generated using a simplified
version of the trajectory planning algorithm and the full state
estimation and control software required for running the real-
world vehicle. The Tube-MPC is implemented according to the
details provided in Sec. IV-B and achieves runtimes of approx.
1ms to 4ms on a standard Core i7 laptop with 2.7GHz and
total control software execution rate of 100Hz. The MPC with
the nonlinear tire model is implemented using the C-Code
generation framework of the library acados [42] and achieves
runtimes of approx. 20ms to 40ms with a discretization of
40ms and, similar to the Tube-MPC, 2.4 s prediction horizon.
To account for the larger computational burden, we run this
version with an update frequency of 25Hz.

B. Evasion Maneuver

One of the main advantages of MPC is the rigorous handling
of input and state constraints in situations where feedback is
necessary to ensure that the system behaves as expected. This
becomes especially important for the proposed Tube-MPC
concept. It does not aim at perfect lateral tracking but instead
focuses on reoptimizing the target trajectory presented by the
local trajectory planner. A common challenge for the proposed
software architecture (see Fig. 3) is the frequent update and
modification of the target trajectory generated by the local
trajectory planner. Every update of the perceived opponents
and their predicted behavior may lead to a behavior change
in the local trajectory planning. e.g., aborting an overtaking
maneuver as it might not be feasible anymore or initiating
an overtaking maneuver as an obstacle was detected nearby.
These scenarios are difficult to reproduce as the ego vehicle
actions directly influence the behavior of other vehicles on the
track during multi-vehicle simulations. We therefore propose
a double-lane change maneuver to mimic the situation that a
relatively slow opponent vehicle is perceived in front of the
ego-vehicle. We compare two scenarios: In the first scenario,
the opponent vehicle is perceived at about 50m in front and an
evasion maneuver has to be initiated immediately. While this
might seem like an extreme scenario, the significant banking
of the racetrack and the low height of the vehicles make this
a realistic worst-case assumption. In the second scenario, the
opponent vehicle is perceived at about 70m in front, which
gives the controller an additional foresight horizon to react
much smoother.

The first scenario is depicted in Fig. 6 and the top plot
of Fig. 8. The target trajectory switches to the lane change

−5

0

5

·10−2

S
te
er
in
g

a
n
g
le

re
q
u
es
t
in

ra
d LQR TMPC NMPC

−10

0

10

L
a
te
ra
l

A
cc
el
er
a
ti
o
n

in
m
p
s2

250 300 350 400 450 500 550 600 650 700
−2

−1

0

1

2

s in m

L
a
te
ra
l

d
ev
ia
ti
o
n

in
m

Fig. 6. Control performance during an evasive maneuver with 50m s�1 with
no foresight on the lane change maneuver.
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Fig. 7. Control performance during an evasive maneuver with 50m s�1 with
20m foresight (equivalent to 400ms) on the lane change maneuver.
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Fig. 8. Visualization of the motion control performance during an evasive
maneuver with 50m s�1 within the cartesian coordinate frame. The top plot
shows the performance when the lane changes are not known beforehand to
the software. The bottom plot depicts the improvements in performance for
a foresight horizon of 20m roughly equivalent to 400ms.
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trajectory when the vehicle moves past the 320m mark and
it has to react immediately. The same happens at the 520m
mark. While all concepts have access to the exact curvature
of the target path, the LQR controller fails to achieve the
required control performance and to stay within the 1m
bounds of the target path even though it utilizes accelerations
of 15m s�2. The model predictive concepts (Tube-MPC and
MPC with nonlinear tire model) improve upon constraint
satisfaction. However, both of them still struggle to achieve
the required performance. Multiple points can be observed
here: First, the non-continuous curvature profile (which re-
flects the reduced quality requirements for the local trajectory
planner) can be handled much better by the optimization-
based control methods as they generate smoother steering
angle behaviors. Second, the scenario itself is challenging from
a system dynamics point of view. The delays and response
times can only be partially overcome when the change to
the trajectory is not known with sufficient foresight. Third,
the Tube-MPC shows less aggressive steering interventions
for longer durations than the MPC with a nonlinear tire
model. This is because the MPC with a nonlinear tire model
does not have an incentive to value driving stability and can
therefore create the required lateral acceleration aggressively
via the front axle. In conjunction with the inherent system
uncertainties, this leads to an overshoot in lateral acceleration.
While this might be mitigated with increased model accuracy,
cost function tuning, and higher controller update frequency,
the Tube-MPC controller achieves comparable lateral control
performance at a fraction of those tuning efforts. It should also
be noted that the Tube-MPCs incentive (stemming from the
point-mass model) to focus on steady-state cornering scenarios
exploits the vehicle stability properties and therefore increases
the practical applicability.

This scenario is probably the most extreme - in most cases,
the local trajectory planner is well aware of what’s coming
up, even though it still changes the target trajectory within
the optimization horizon. The second scenario (see Fig. 7 and
the bottom plot of Fig. 8) with an approximate foresight of
20m (roughly equivalent to 400ms foresight) is used here to
demonstrate the advantages of the Tube-MPC concept. In this
scenario, the same target path is used, but it is activated as soon
as the vehicle passes the 300m mark (the 500m respectively
for the second lane change). This foresight allows the model
predictive controllers to start the lane change much more gen-
tly and therefore reduces the maximum lateral acceleration by
approx. 25% without sacrificing control performance. Again,
the focus on steady-state cornering situations of the Tube-MPC
leads to less aggressive steering interventions and smoother
and more robust handling of the situation.

C. Importance of the Low Level Controllers

The proposed Tube-MPC concept builds around a simplified
vehicle model (in contrast to other concepts in the literature,
which tend to rely on more complex models for MPC [6], [31])
in conjunction with tight tracking of the target accelerations
by low-level PID-like controllers. While this removes the need
for sophisticated tire models, it becomes essential that the

−10

0

10

L
a
te
ra
l

A
cc
el
er
a
ti
o
n

in
m
p
s2

Low gain Medium gain High gain

460 480 500 520 540 560 580 600 620 640 660 680 700

−1

0

1

s in m

L
a
te
ra
l

d
ev
ia
ti
o
n

in
m

Fig. 9. Lateral acceleration controller influence during an evasive maneuver
with 65m s�1. The dashed lines depict target values while the solid lines
depict actual measurements.

acceleration response of the vehicle matches the expectations
of the model predictive controller. It should be noted that
this requirement is even more pronounced as the Tube-MPC
concept is heavily based on the idea of constraint satisfaction
rather than target tracking. While a model/reality mismatch
would only lead to slightly increased control values in a
classical tracking concept, the violation of the underlying
(uncertain) predictions of the vehicle motion almost certainly
leads to significant violations of the state constraints and
results in strong corrective actions by the Tube-MPC.

Fig. 9 depicts the influence of lateral acceleration control
quality on the overall control system performance. The figure
shows three different tunings from the low-level acceleration
controller, ranging from a rather gentle tuning to a high-
gain setup. The high-gain setup keeps the vehicle in the
allowed driving tube with moderate corrections and shows
better acceleration tracking. The comparison between the
target accelerations calculated by the Tube-MPC controller
between 500m and 520m shows significantly increased target
accelerations for the gentle feedback setup (15m s�2 instead
of 12m s�2). This behavior can be explained by the fact that
the vehicle approaches the lateral deviation constraint and
violates it, which asks for strong corrective actions from the
Tube-MPC. It should be noted that this is only possible as long
as the acceleration constraints permit this increased feedback
and therefore the low-level tracking becomes even more vital
when the acceleration constraints are approached.

D. Influence of the Optimization Horizon

While the number of optimization variables is limited by the
resulting computational load, the length of the optimization
horizon can be adjusted independently from this via the
discretization time. We run the optimization with an update
rate of 100Hz and vary the optimization horizon between
2.0 s and 2.8 s. The results of this experiment are depicted
in Fig. 10. As expected from a theoretical perspective, longer
horizons lead to improved control quality via a decrease of
the required lateral accelerations to move through the double
lane change maneuver. While the lateral acceleration peaks
at 10m s�2 for the 2.0 s horizon, this is reduced to 8m s�2

for the 2.8 s horizon. This improvement of 20% is significant
when driving at the handling limits of the vehicle. It should
be kept in mind that these improvements stay only valid if the
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Fig. 10. Influence of the optimization horizon during an evasive maneuver
with 65m s�1

target trajectory does not change while the vehicle is driving
the maneuver (see previous sections for a discussion of this
issue) and longer horizons increase the computation time of
the local trajectory planner. We choose 2.4 s to be a viable
comprise between those targets as it still allows to cover 180m
of foresight horizon at top speed (approx. 75m s�1)

VI. EXPERIMENTAL RESULTS

A. Vehicle Platform

The autonomous race vehicle used is a modified Dallara
Indy Lights vehicle, the Dallara AV-21. A drive-by-wire sys-
tem actuates its steering and brakes, and its powertrain and
gearbox can directly be actuated via the engine control ECU.
The vehicle is equipped with two independent GPS units by
Novatel, three LIDAR units by Luminar, three radar sensors by
Aptiv, and six cameras by Allied Vision. In addition, standard
vehicle dynamics sensors such as engine speed, wheel speeds,
and brake pressures are available. The autonomous driving
software runs on an ADLink x64 computer system based on
an Intel Xeon with eight physical CPU cores and an NVIDIA
RTX 8000 GPU.

The proposed controller requires strict real-time capability
of the underlying computer platform. To enable this on the
Ubuntu 20.04 based operating system, we allocate a dedicated
CPU core, set appropriate scheduling properties, and move all
file system interactions (e.g. data logging) from the vehicle
motion control software to external, potentially asynchronous,
software components. The rest of the software stack is in-
terfaced via the standard robotics middleware ROS2 Galactic
with Cyclone DDS as a transportation layer.

B. Single Vehicle Qualifying Competition

The following experiments have been conducted on the Las
Vegas Motor Speedway Oval circuit. The track is 2440m
long and has a maximum banking of 20�. The results of the
single-vehicle qualifying run of the passing competition on
January 7th are depicted in Fig. 11. It covered various speeds
between 45m s�1 and 70m s�1, with two of those laps shown
here. Interestingly, the lateral movement does not increase
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Fig. 11. Controller performance on the real world vehicle at various speeds.
The dashed lines indicate target accelerations, while the solid ones indicate
actual accelerations (transformed into the 2D plane).

significantly with increasing lateral accelerations as it would
be expected as a response to increasing uncertainty. In contrast,
it can be seen that the controller leverages the available lateral
movement to reduce the required control action to compensate
for inaccuracies due to the nonlinearities in the model (see
500m and 1600m). In classical tracking formulations, the
controller would have added additional lateral acceleration
when the vehicle is approaching the target of zero quickly. In
the proposed concept, it allows to actually move beyond this
target and starts to react only when it gets close to the actual
constraint. This results in less aggressive steering corrections
and therefore higher driving stability. Overall, this behavior is
much closer to how a real driver would drive those turns. They
focus on the overall task rather than strictly tracking artificial
target trajectories.

C. Two Vehicle Passing Competition

In addition to the single-vehicle runs, the concept was
proven during several experiments with two vehicles. The final
competition run on January 7th has been conducted by the
PoliMOVE and the TUM Autonomous Motorsport team (see
Fig. 12 and [43] for a video) and includes multiple overtakes
at varying speeds between 45m s�1 and 74m s�1. The ac-
celeration plot shows that the trajectory planning does not
consider jerk constraints or costs and is therefore prone to high
gradients in lateral and longitudinal acceleration (Trajectory
Target). The proposed Tube-MPC controller reduces those
significantly (MPC Target in contrast to Trajectory Target),
which results in a smooth vehicle behavior (Actual).

VII. CONCLUSIONS AND FUTURE WORK

We presented a Tube-MPC concept for operating a full-
scale autonomous racecar at speeds up to 265 kmh�1 and
lateral accelerations up to 21m s�2 in single and two-vehicle
scenarios. In contrast to classical tracking control concepts,
we leverage the advantages of optimization-based control to
allow coarse target trajectories and, therefore, increase the
software stack’s overall performance. This is made possible by
explicitly considering the uncertainties within the prediction
model, which generates a behavior that is cautious for long-
term predictions but exploits the full vehicle potential on near-
term predictions.
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Fig. 12. Controller performance on the real world vehicle during the
final competition run overtakes between PoliMOVE and TUM Autonomous
Motorsport. Accelerations have been transformed into the 2D plane.

A notable feature of this strategy is that it lumps all
uncertainties within a few uncertainty parameters and it’s
therefore sufficient to use a friction-limited point-mass model
as dynamic model. This is especially helpful in the face of
the significant banking influence on oval racetracks, as this is
harder to handle appropriately in more sophisticated models
with nonlinear tire and suspension effects. In addition, this
strategy renders the concept independent from potential setup
or parameter changes, e.g., a balance shift to make the vehicle
more understeering.

While this paper demonstrated the huge potential of rela-
tively simple dynamic models when combined with appropri-
ate low-level controllers and thorough uncertainty handling,
reaching super-human performance will likely require more
advanced control strategies. An important improvement area
is the controller’s stabilization capabilities even when far away
from the stable operating points of the state space (e.g., while
drifting with large chassis side slip angles), as the proposed
control concept relies heavily on the inherent stability of the
vehicle. Even though this could be handled via more complex
models [15], further work to include robustness properties and
make it real-time capable has to be done to apply nonlinear
tire models within an NMPC scheme for autonomous rac-
ing. Another promising direction is to leverage data-driven
methods [31], [44] to refine the uncertain parts of the model
while driving and exploit them more aggressively as soon as
the models have converged. However, these algorithms remain
challenging to implement in a real-time-capable manner and
deploy to work reasonably well along all operating conditions
of the vehicle.
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[13] E. Alcalá, V. Puig, J. Quevedo, and U. Rosolia, “Autonomous racing
using linear parameter varying-model predictive control (LPV-MPC),”
Control Engineering Practice, vol. 95, p. 104270, 2020.

[14] H. B. Pacejka, Tire and vehicle dynamics. Amsterdam: Elsevier, 2012.
[15] J. K. Subosits and J. C. Gerdes, “Impacts of model fidelity on trajectory

optimization for autonomous vehicles in extreme maneuvers,” IEEE
Transactions on Intelligent Vehicles, vol. 6, no. 3, pp. 546–558, 2021.



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. XX, NO. XX, TBD 11

[16] J. Funke, M. Brown, S. M. Erlien, and J. C. Gerdes, “Collision avoidance
and stabilization for autonomous vehicles in emergency scenarios,” IEEE
Transactions on Control Systems Technology, vol. 25, no. 4, pp. 1204–
1216, 2017.

[17] D. J. N. Limebeer and G. Perantoni, “Optimal control of a formula one
car on a three-dimensional track—part 2: Optimal control,” Journal of
Dynamic Systems, Measurement, and Control, vol. 137, no. 5, 2015.

[18] R. Verschueren, M. Zanon, R. Quirynen, and M. Diehl, “Time-optimal
race car driving using an online exact hessian based nonlinear MPC
algorithm,” in 2016 European Control Conference (ECC). IEEE, 2016.
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7.4 A Model-Free Algorithm to Safely Approach the Handling
Limit of an Autonomous Racecar
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Abstract—One of the key aspects in racing is the ability of the
driver to find the handling limits of the vehicle to minimize the
resulting lap time. Many approaches for raceline optimization
assume the tire-road friction coefficient to be known. However,
this neglects the fact that the ability of the system to realize such
a race trajectory depends on complex interdependencies between
the online trajectory planner, the control systems and the non-
modelled uncertainties. In general, a high quality control system
can approach the physical limit more reliable, as it applies less
corrective actions. We present a model-free learning method to
find the minimum achievable lap-time for a given controller using
online adaption of a scale factor for the maximum longitudinal
and lateral accelerations in the online trajectory planner. In
contrast to existing concepts, our approach can be applied as an
extension to already available planning and control algorithms
instead of replacing them. We demonstrate reliable and safe op-
eration for different vehicle setups in simulation and demonstrate
that the algorithm works successfully on a full-size racecar.

Index Terms—Autonomous Racing, Learning Control, Model-
Free

I. INTRODUCTION

Autonomous driving has received great interest recently in
both research and public discussions. A widely acknowledged
approach is the separation of the task into perception, planning
and control [1]. Recently, planning and control at the handling
limits is discussed by several authors [2, 3, 4, 5]. While the
split between planning and control is beneficial in terms of
the development and setup process, it poses challenges when
the lap time shall be minimized and the vehicle is driven at
the handling limits. We identified three main difficulties while
operating such a system:

1) The trajectory planner does not consider the additional
lateral and longitudinal accelerations applied by the
feedback-controller.

2) Deviations in the velocity tracking influence the required
lateral acceleration quadratically. Therefore, its control
performance has a severe impact on path tracking qual-
ity.

3) The trajectory planner applies a certain safety distance
to obstacles to account for tracking errors. It is not clear
a-priori how to choose this, as the tracking accuracy
might decrease significantly at the handling limits.

Research was supported by the basic research fund of TU Munich.

To solve those challenges, different concepts have been pre-
sented in the literature recently: Laurense et al. [4] described
a control strategy utilizing the longitudinal velocity which
aims at tracking a desired front axle side slip angle calculated
from a friction estimate. Due to the strong correlation of
side slip with tire utilization, they could reduce the lateral
error significantly in comparison to a classic path tracking
controller. A completely different approach is proposed in [6],
using stochastic model-predictive-control (SMPC) to account
for the system uncertainties in a combined planning and
tracking control setup. The work was extended in [7] using
a data-driven model identification method. The approach uses
constraint-tightening to guarantee that the safety constraints
hold in the presence of uncertainty observed according to the
identified system model. With increasing model accuracy, the
driving becomes less conservative and more precise. A similar
approach was combined with a Safe-MPC algorithm that can
guarantee the recursive feasibility of the planning and control
problem in [8]. Again, the vehicle becomes faster as more data
is gathered.

In contrast to the presented references, our approach is
capable of minimizing the lap time in the presence of dis-
turbances and uncertainties for a given control and planning
system with only minor modifications. Furthermore, it is not
necessary to specify or identify a vehicle dynamics model
as the algorithm works purely on the observations of safety
constraints. The mathematical background on the algorithm
applied in this paper is based on the work presented in [9].
It utilizes a Bayesian Optimization strategy with Gaussian
Processes for learning the cost-function and safety constraints.
Our work focusses on the choice of optimization variables,
safety constraints and derivation of suitable hyperparameters
for the autonomous racing application. Furthermore we present
applications of the algorithm in simulation and real-world
testing scenarios.

The mathematical background on Bayesian Optimization
and the applied algorithm is presented in Section II. The
application of the algorithm to the autonomous racing task
and its results are discussed in Section III and IV. Section
V reviews the achievements and presents further research
directions.



II. METHODOLOGY

A. Gaussian Processes

Gaussian Processes are a machine learning technique for
non-parametric function approximation. It allows one to model
a non-linear function y = f(x): Rd 7→ R using a finite
set of n observations {(x1, y1) , ... (xn, yn)}. The following
presentation of the mathematical background is based on [10].

The Gaussian Process (GP) itself is modelled as the joint
probability distribution over a finite set of Gaussian random
variables. The predictions y∗ can be drawn by conditioning the
prediction point x∗ on the observation set. The observations
are stochastically related to each other based on a kernel
function k(xi, xj) which yields the covariance between xi and
xj . This allows one to specify the joint normal probability
distribution of measurement samples and predictions as
[
Y
y∗

]
∼ N

(
m(x),

[
K(X,X) + σ2

MI K(X,x∗)
K(x∗, X) K(x∗, x∗)

])
, (1)

where Y is the vector with measurements[
y0 y1 . . . yN

]T
, m(x) the prior mean function,

K(X,X) the kernel matrix evaluating the kernel function
k(xi, xj) for every combination of the observation points and
σ2
M the measurement variance. Note, that the input domain
x might be vector valued, but the covariance function k(·)
returns a scalar. The posterior prediction mean can be written
as:

µ(x∗) =m(X)

+K(x∗, X) (K(X,X) + σMI)
−1

(Y −m(X))
(2)

and covariance

σ(x∗) =K(x∗, x∗)

−K(x∗, X) (K(X,X) + σMI)
−1
K(X,x∗)

(3)

based on the observations X and Y . In the following, we will
denote the mean of a GP which approximates a function f(x)
with µf(x) and its variance with σf(x).

One of the main reasons for the great interest in GPs
for optimization derives from the fact that they specify the
uncertainty of their predictions. This can be used to control
the exploration strategy during the optimization process.

B. Safe Bayesian Optimization

Our optimization approach utilizes the SafeOpt algorithm
[9]. In the following, we will only sketch the key steps and
discuss their implications with respect to the optimization
process and practical application. The aim of the optimization
is to solve

min
x

f(x)

subject to gi(x) ≤ bi, i = 1, . . . ,m

x ∈ X ,
(4)

where f(x) is the scalar-valued cost function, gi(x) are the
safety constraints and X is the set of admissible parameters.

In contrast to classic optimization approaches, the cost and
constraint functions are unknown before the system starts

its operation. A GP is used to model them and generate
samples for each function from the measurement data. Using
the confidence interval β, the upper (UCB)

g+i (x) = µg,i(x) + βσg,i(x) (5)

and lower confidence bounds (LCB)

g−i (x) = µg,i(x)− βσg,i(x) (6)

can be defined. They are used to derived three important sets
for the optimization. First, the set of points x which are likely
to be safe after the n-th iteration, can be defined using the
UCB as

Sn =
{
x ∈ X |g+i (x) ≤ bi, i = 1, . . . ,m

}
. (7)

Within this set, the set of potential minimizers can be formu-
lated as

Mn =

{
x ∈ Sn|f−(x) ≤ min

x′∈Sn
f+(x′)

}
. (8)

It specifies the points that have a chance to further minimize
the current, conservative best value of the cost function.
Finally, the set of potential expanders is defined as the set
of points that have the chance to enlarge the safe set. This is
formalized as follows: Let

h(xn+1) = | {x′ ∈ X \ Sn|x′ ∈ Sn+1} | (9)

be the number of points that are not in the safe set for the
available observations but that become safe after adding an
optimistic estimate for the constraints yn+1 = g−i (xn+1) to
the GPs. The set of potential expanders can now be written as

Gn = {x ∈ Sn|h(x) > 0} . (10)

It remains to specify an acquisition function for how to deter-
mine the next query point for a current set of measurements.
Berkenkamp et al. propose to use

xn+1 = argmax
x∈Mn∪Gn

σf(x), (11)

as the algorithm can be shown to converge safely to the global
safe optimal value for this choice [9].

C. Trajectory Planning and Control

The trajectory planning for the racecar is split into an online
and an offline part [11]. The offline part uses a sophisticated
track and vehicle dynamics model to generate the time-optimal
trajectory based on an optimal-control formulation. The online
phase is divided into a local path generation and a velocity
profile planning problem. This allows to incorporate dynamic
objects and readjustments of the velocity profile according to
changing acceleration limits.

The control system consists of independent lateral path
and velocity tracking controllers. The latter is a P-controller
combined with disturbance estimation and a feed-forward
term. A gain-scheduled PD-controller accompanied with a
feed-forward term is used for path tracking. More information
on the controller and overall software structure can be found
in [11, 12].



III. ALGORITHM

A. Choice of Optimization Variables

The overall aim in racing is to minimize one’s lap time
without putting the vehicle into unstable driving situations.
To achieve this, we choose to apply a scale factor θ to the
acceleration limits calculated from the friction settings. This
can be interpreted as a safety margin with respect to the
available friction level. The acceleration limits are leveraged
by the trajectory planner to adjust the velocity profile while
driving. It was decided not to readjust the raceline itself
in order to obtain reproducible results with respect to the
safety margins. One of the key advantages of this variable
choice is, that the optimization problem can be formulated to
maximize the scale factor instead of minimizing the lap-time.
It is known from the racing literature, that both targets are
equivalent [13]. This increases the applicability of the algo-
rithm for autonomous racing, as a data driven minimization
of lap time poses difficulties due to external disturbances such
as other cars or overtaking scenarios. Those would prevent
the algorithm from establishing a clear relation between the
optimization variable and the target variable. The problem
itself can be written as:

min
θ

− θ
subject to gi(θ) ≤ bi, i = 1, . . . ,m

θ ∈ O,
(12)

with the additional safety constraints gi. The overall software
architecture of the algorithm is depicted in Fig. 1.

B. Choice of Constraints

The applied safe optimization strategy interprets safety as
a set of constraints. To be safe, it has to guarantee that the
statistical assumptions made during the prediction of the GPs
are conservative, in the sense that at no time a point is pre-
dicted to be safe that is not safe with respect to the constraints.
We will discuss how to achieve this by a proper selection of
kernel parameters in the upcoming section. Furthermore, it
is required that all parameters within the actual safe set lead
to a valid execution of the task by the agent. In the case of
autonomous racing, this means that all parameters that are
predicted to be safe must lead to a completed lap without
incidents. This translates to a strict stability requirement, as
the vehicle would spin off the track otherwise. It is difficult to
guarantee this analytically, since the dynamics model is highly
nonlinear and uncertain in the racing case. While some authors
apply system identification techniques to overcome this issue
[7, 8], the aim of this paper is to set a baseline for model-
free approaches. Therefore, we apply two different heuristic
measures for vehicle stability from vehicle dynamics science
[13]:
• The difference between the front and rear axle side-slip

angle αF − αR. It relates the remaining potential of the
front axle to the potential of the rear axle, being a key
indicator for the amount of friction utilization. As the car

Online
Trajectory

Planner

Path &
Velocity

Controller
Vehicle

SafeOpt
Algorithm

Scale
Factor θ

Control
Errors

Vehicle State
Measurements

Fig. 1. Safe learning system architecture to minimize the resulting lap-
time. The optimization algorithm is driven by the control errors and vehicle
sensor data. It can influence the trajectory planner via a scale factor θ for the
maximum longitudinal and lateral accelerations.

has a tendency to understeer at the limits of friction, this
value becomes large.

• The maximum wheel slip λ at one of the four wheels
(denoted by the indices FL, FR, RL and RR). It indicates
the tendency to lock or spin the wheel and that the vehicle
operates near the friction limit.

It is usually difficult to judge how close the vehicle is to the
limit or instability only based on data. While these criteria
provide good indicators, they might fail to give a reliable
estimate. This significantly depends on the vehicle dynamics
design. Passenger cars are designed to have a broad transition
region until the tire nonlinearity becomes relevant. In contrast,
racecars are usually setup for maximum lateral acceleration
instead of providing a cautious transition from stable to
unstable regions of vehicle dynamics. We therefore have to
rely on an underlying vehicle stability control system to handle
these cases and prevent that the vehicle spins of the raceline
at the cost of increased tracking error in these situations.
In addition, we have to enforce a performance constraint on
the absolute lateral tracking error e. It must stay within the
safety margin specified by the planning algorithm, otherwise
the vehicle will crash into the track boundaries.

All safety constraints must be fulfilled during the complete
lap. The set of measurement points that belong to the lap with
number i is denoted via Li. To decrease noise sensitivity, a
moving average filter with a time window of 50 ms is applied
to the sample time series before calculating the corresponding
safety value. The time constant must be kept as small as possi-
ble, since too aggressive filtering could lead to violations of the
safety specifications. The constraints can now be formalized:

g1(θi) = max
k∈Li

|αF(k)− αR(k)| (13a)

g2(θi) = max
k∈Li

max
j∈{FL,FR,RL,RR}

|λj(k)| (13b)

g3(θi) = max
k∈Li

|e(k)| (13c)

While the safety threshold for the last constraint is given by
the specification of the trajectory planner, suitable thresholds
for the heuristic stability criteria will be derived below.



C. Choice of Priors, Kernel Functions and Hyperparameters

The failure probability of the algorithm depends essentially
on the accuracy of the statistical representation of the GP
functions [14]. There are three main influence factors for
this: The prior mean function m(x) of the GP, the kernel
k(xi, xj) and the hyperparameters associated with the kernel
function. While the algorithm provides a theoretical safety
guarantee, this requires the knowledge of an upper bound
of the norm of the final function in the Reproducing Kernel
Hilbert Space (RKHS) in advance. This can be interpreted
as a measure of function complexity [10]. As this is usually
unknown in a practical setting, choosing the hyperparameters
in a conservative manner is advised [14].

Following the arguments in [14], we apply a Matèrn Kernel
with ν = 3/2 so that the predictions are likely to have
continuous first derivatives [10]. In contrast to the squared
exponential kernel, it is less smooth, which is beneficial for
the approximation of the uncertain safety constraints. This
can be interpreted as a conservative choice. The variances are
chosen to reflect the actual uncertainty about the outcome of
the experiments based on previous test runs and are scaled
to the physical units of the respective measurement variable.
Finally, the kernel length scale parameter is chosen so that the
GPs can generalize for a range of approximately 0.02-0.04.
This resembles cautious steps near the friction limit based on
past experience.

The priors’ main effect is that they speed up the exploration
process as they encode domain specific knowledge about the
safe set and the cost function. At the same time, this can cause
risk in case of misspecification. We choose to be conservative
and use exponential functions that tend to have large values
for an increase of the friction scale factor. In general, we
know from manual driving experiments that realistic maximum
scale factors range around 1.0. This leads to the conclusion,
that factors below 1.0 are not safety critical. We therefore
design the exponentials to cross the safety threshold at that
value. At the same time, we know that scale factors above
1.2 are not realistic. We encode this in the priors so that they
have roughly three times the value of the safety threshold at
1.2. The resulting priors are depicted in Table I. Note, that
the cost function holds a different prior. This is due to the
unusual construction of the optimization problem. In fact, it
is not required to model this function as a GP at all, however,
this is done to formulate the problem easily in the software
framework at hand.

TABLE I
GP SETUP

Function Prior Variance Length Scale Unit
Cost −θ 1e−4 0.15

Understeer b1e5.5(θ−1) 1e−5 0.04 radians
Wheelslips b2e5.5(θ−1) 1 0.04 percent

Control Error b3e5.5(θ−1) 1e−2 0.04 meter

D. Choice of measurement uncertainty and safety thresholds

The standard GP framework allows one to model mea-
surement uncertainty through the introduction of an additive
measurement covariance matrix σ2

MI to the upper left block
of the covariance matrix in (1). In this setting, the variance of
the posterior distribution will become small once the number
of samples in a specific region of the input domain becomes
large. Eventually, it will converge to zero if the number of
samples goes to infinity.

This is problematic for the application in a racing scenario.
The controllers’ main purpose is to mitigate external distur-
bances and uncertainties. While the latter will be comparable
from lap to lap, the former can vary significantly. This could
be caused e.g. by wind or dirt on the track surface. We will
refer to this phenomenon as the repetition uncertainty uR with
variance σ2

R, specified similar to the measurement uncertainty
in the form of a Gaussian random variable. The GP framework
would allow one to account for this using a white noise kernel,
which adds uncertainty to the posterior that cannot be removed
by conditioning it on the measurement data. However, this
leads to difficulties in the application of the SafeOpt algorithm.
They are caused by the fact that the potential minimizer set is
calculated based on an optimistic prediction. If the uncertainty
about the process does not converge to zero, this set will
fail to shrink to size one. This results in a random choice
of parameters within this set as also the acquisition function
will converge to the same values for every sample.

Instead, we show that its possible to handle the repetition
uncertainty by a conservative choice of the safety thresholds
bi. The actual constraint can be written as:

gi(x) + uR ≤ b̄i. (14)

This shall hold with a probability of at least 1 − δ, where δ
is the tolerated failure probability. Assuming that the SafeOpt
algorithm can guarantee that gi(x) ≤ bi holds with the same
probability, we can guarantee that the above holds if we set
bi = b̄i − pσR. The safety factor p is obtained from the
Gaussian normal distribution such that it covers 1 − δ of the
probability distribution.

Proof: The combined variance σ2
F of gi(x) + uR is

equal to σ2
g,i(x) + σ2

R, since both are Gaussian and un-
correlated. It follows that Pr

(
gi(x) + uR ≤ b̄i

)
≥ 1 − δ if

E [gi(x) + uR] + pσF ≤ b̄i. Since σF =
√
σ2
g,i(x) + σ2

R ≤
σg,i(x) + σR for σR, σg,i(x) > 0 and E [uR] = 0, we
can approximate the previous inequality conservatively as
µg,i(x)+p (σg,i(x) + σR) ≤ b̄i. After algebraic modifications,
we have µg,i(x)+pσg,i(x) ≤ b̄i−pσR. Setting bi = b̄i−pσR,
we have shown the required result. �

Note that the approximation approaches equality if the GP
variance σ2

g,i(x) becomes small. This means the approach is
conservative for the beginning of the experiment, however, it
eventually converges to the exact result. The final thresholds
bi are set based on simulation and track data to b1 = 0.06,
b2 = 10 and b3 = 0.7.
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Fig. 2. The plots show the learned control error GP for the standard setup
(top) and a miscalibrated brake actuator (bottom) using mean values and three
sigma confidence intervals. The dots resemble measurement samples for a
single lap. As the lateral error is the limiting constraint in this case, the other
constraints are not visualized.

The actual choice of the measurement variance σ2
M for

each GP remains to be discussed. In contrast to the repetition
uncertainty σ2

R, it reflects the uncertainty within the measure-
ment, which can be reduced by consecutive measurements for
the same sample points. Its proportion to the prior variance
determines how strong the samples are weighted with respect
to the priors. The variances are set to σ2

M,g,1 = 1e−6,
σ2

M,g,2 = 4e−2 and σ2
M,g,3 = 1e−3, which resembles a strong

emphasis on the measurements.

IV. RESULTS

The algorithm is first applied to a detailed vehicle dynamics
simulation. It is equipped with sensor and actuator models and
a nonlinear single-track model with a Pacejka Tire Model.
Since the trajectory planner, the SafeOpt algorithm and the
vehicle physics run in separate processes, the outcome of
the simulation is not deterministic. However, this reflects the
behaviour of the car, as we cannot guarantee the timing of the
trajectory planner as it is not implemented as a hard real-time
application.

We use a standard simulation parametrization as a baseline
and discuss the performance of the algorithm for a miscali-
brated brake controller as a benchmark. It is set to a 30 % error
in the brake requests and will therefore lead to a degraded
velocity tracking. Fig. 2 depicts the learned GP for the peak
control error function, which limits the exploration in both
scenarios.

As pointed out before, the behaviour of the algorithm can
not be considered deterministic, due to timing differences and
different initial conditions for the sensor noise. The results of
10 experiments with 50 laps for each scenario are depicted in
Fig. 3. The median is a scale factor of 0.90 for the misspecified
brake actuator setting, which is below the final value of 0.94
in the standard setting. Two things should be noticed: First,
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Fig. 3. The algorithm has been simulated ten times for both scenarios to
analyse the variance between different runs. The uncertainty is introduced to
the non-deterministic timing of many of the trajectory planner and the sensor
models. The plots show the median value as bold line for each scenario. The
shaded area reflects the maximum and minimum value via all iterations.

the algorithm converges very slowly once it is near the friction
limit, which is due to its conservative parametrization. Second,
outliers in the constraints tend to force the algorithm to go
back to a more conservative value for a few iterations even if
it is near its final result. Again, this reflects the conservative
nature of the algorithm, being focussed more on safety than
on pure performance maximization.

Finally, the algorithm is applied to a full-size racecar called
DevBot 2.0. It has a two-wheel electric drivetrain, steer-
and brake-by-wire systems and is used within the Roborace
Championship for autonomous vehicles. Details on the vehicle
setup can be found in [15, 11]. The trials took place at the
Monteblanco Circuit, Spain. The algorithm converged to an
acceleration limit scale factor of 0.83, which was slightly
below the factor found during manual setup of the autonomous
driving system, which was 0.9. This deviation can be attributed
to the conservative wheelspeed constraint value, where 10 %
seems too low for the actual vehicle setup since there has not
been any sign of instability noted by the safety driver or within
the measurement data. The limiting constraint GP is depicted
in Fig. 4.

V. CONCLUSIONS AND OUTLOOK

We have presented an algorithm that is capable of mitigating
the limitations of the vehicle in the sense, that it scales the
allowed accelerations in trajectory planning so that the vehicle
does not violate the safety constraints. It has been proven to
come reasonably close to the result achieved by manual tuning
of the scale factor. It does not depend on detail knowledge
about the underlying tracking controller. This facilitates easy
integration in already available software stacks. Furthermore,
it has been shown to be robust with respect to moderate
constraint prior misspecification, which is an important feature
for algorithms applied within real-world scenarios.
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Fig. 4. At the Monteblanco Racetrack the vehicle was stopped from further
minimizing the lap time by a conservative setting of the wheelslip constraint.
Only the limiting constraint is depicted for a run of 14 laps. Non-safe samples
were drawn due to a mismatch of the prior function and the real-world
behaviour of the system. The high wheelslip sample for scale factor 0.5 is
related to starting to drive from standstill. Since the prior specifies other values
to be safe, this does not stop the algorithm from exploring.

One drawback of the algorithm is that the vehicle is not
capable of adjusting its accelerations limitations to different
circumstances on different areas on the track. Furthermore, it
could leverage this information to learn faster than on a per lap
basis. The difficulty with this lies in the fact that the control
error depends significantly on the initial conditions present
at the entry of a subsection of the lap. While this is already
a problem for the algorithm running on a per lap basis, lap
switching usually takes place at the start-straight where the
control errors are rather low and therefore neglectable. Another
difficulty lies in the fact that it is conservative with respect to
outliers that exceed the constraint values. Since the algorithm
does not actively retry them, they might block the exploration
in case the GP length scales are set rather small, which is
usually desirable to ensure safe exploration at the limits.

Future work will be dedicated to the utilization of infor-
mation on a finer grid rather than a per lap basis and will
leverage additional model information in the learning process.
The latter promises to result in more robust guarantees in terms
of control system stability and could decrease the dependence
upon heuristic vehicle stability criteria.
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7 Appendix

7.5 Real-Time Learning of Non-Gaussian Uncertainty Models for
Autonomous Racing
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Real-Time Learning of Non-Gaussian Uncertainty Models for
Autonomous Racing

Alexander Wischnewski, Johannes Betz and Boris Lohmann

Abstract— Performance and robustness targets have been
considered for controller design for decades. However, robust
controllers usually suffer from performance limitations due to
conservative uncertainty assumptions made a priori to system
operation. The increased number of systems (e.g. autonomous
vehicles) which require high-performance operation in safety-
critical environments is motivating research in novel design
methods. Recently, machine learning methods have emerged
as a promising way to reduce conservatism, based on data
gathered during system operation. We propose a combination
of a recursive least squares estimator with a recursive quantile
estimator to identify feature-dependent upper and lower uncer-
tainty bounds. We give conditions under which the estimator
converges to a robust invariant set, such that the resulting
bounds cover a target proportion of the samples up to small
error. In contrast to widely applied Gaussian process regression
or Bayesian linear regression approaches, we do not imply any
assumptions about the probability distribution of the samples.
We demonstrate that the estimated bounds achieve the desired
data coverage in contrast to state-of-the-art approaches on
academic examples, as well as a motion control example for
an autonomous race car. Furthermore, the approach exhibits
very low computational requirements and is therefore suitable
for application on embedded systems.

I. INTRODUCTION

A. Motivation & Outline

The conflict between stability, robustness, and perfor-
mance in controller design is well known and analyzed
within the control community [1]. An important aspect is
that of robust performance, especially in constrained, safety-
critical systems such as chemical plants or autonomous ve-
hicles. One difficulty with achieving acceptable performance
while maintaining the robustness requirements is that the
uncertainty model often has to be chosen conservatively
due to unknown and complex operating conditions. The
combination of learning methods with robust control [2], [3]
is a promising way of overcoming this problem. We research
such methods by application to an autonomous race car with
the aim of achieving human-like performance under a wide
range of environmental conditions [4], [5]. A key challenge
for learning robust control based on Tube-MPC [6] is their
computational complexity. To mitigate this, we present an
uncertainty learning method with low computational require-
ments capable of handling non-Gaussian uncertainty.
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The algorithm is based on a novel combination of the
well-known normalized least mean squares filter [7] and a
quantile estimation method inspired by [8]. Stability and
performance of the algorithm are analyzed within a purely
deterministic setting, using a robustness definition based
on Lyapunov functions and set theory. In particular, we
reformulate the above algorithms in batch form, which allows
us to drop probabilistic assumptions about the data such
as being Gaussian-distributed or uncorrelated over time.
These are usually not satisfied when learning a possibly
state-dependent uncertainty model. We demonstrate supe-
rior performance compared to state-of-the-art approaches
for academic examples, as well as an autonomous race
car motion controller. The algorithms recursive nature and
small computational requirements enable the application in
conjunction with an computationally-intense robust control
scheme, such as Tube-MPC [9].

The paper is structured as follows: The remainder of
this section presents related work on uncertainty model
identification. Section II analyzes the proposed approach,
while Section III presents a benchmark of the algorithm on
academic examples and a dataset obtained from a motion
controller simulation of an autonomous race car. Section IV
concludes the paper and points out future research directions.

B. Related Work

Robust control design requires the uncertainties in the
dynamics and external disturbances to be specified. While
these were mainly determined by expert knowledge in the
past, a variety of control design methods utilizing a learned
additive uncertainty representation (possibly state dependent)
have been recently proposed [2], [3], [6], [10]–[12]. Robust
constraint satisfaction is ensured by learning upper and lower
uncertainty bounds which can be used to determine reachset
predictions. In contrast to the above methods, the reachset
conformant synthesis algorithm proposed by [13] adjusts
the uncertainty model such that the resulting reachsets are
conformant to the data for a given set of training trajectories.
While this allows the exploitation of the potential correlation
of the uncertainties over time, it requires a large set of
trajectories to form a reliable dataset. This makes it difficult
to use in online methods. We will therefore focus our further
presentation on algorithms of the first type.

A common approach for identifying a suitable uncertainty
model is to apply Gaussian process regression (GPR) [10],
[11], [14]. The interest of the control community in this
method is motivated by excellent performance in applications
as well as the availability of a sound theoretical background.



The key idea behind its prediction mechanism is to utilize the
similarity of the prediction points to the training samples via
a kernel function [15]. The fully Gaussian framework permits
the derivation of a confidence interval for the posterior
distribution as an estimate of the upper and lower bounds of
the uncertainty. The high computational complexity has been
tackled by various sparse approaches, e.g., by restricting the
training to a subset of well-distributed, relevant samples [6],
[16] or only utilizing samples from the neighborhood of the
prediction space [17], [18]. Besides the high computational
requirements, the accuracy of the posterior distribution de-
pends on the assumption of Gaussian noise and the correct
choice of hyperparameters [15]. This becomes evident if the
model should also capture the aleatoric uncertainty of the
model under control. A realistic model, therefore, requires
online hyperparameter optimization, which further increases
the computational requirements. On the downside, this also
leads to difficulties in modeling the epistemic uncertainty at
the beginning of the identification process and breaks the
corresponding theoretical bounds used to guarantee cautious
exploration [19]. Another nonparametric regression tech-
nique is Kinky-Inference [20], a concept exploiting Lipschitz
properties of the identified function. Its downside is a disad-
vantage of all nonparametric approaches: Their predictions
are inferred from the data points, which makes it challenging
to implement a computationally efficient adaption mecha-
nism for slowly time-varying uncertainties [29].

An alternative to GPR is Bayesian linear regression (BLR)
[21], [22]. It is usually implemented in a recursive manner
using Monte-Carlo techniques and deliver a joint estimate
of the posterior mean and variance. A compelling special
case of BLR using fixed basis functions and noise variance
estimation is applied to the uncertainty learning problem in
[12] following an approach presented in [23]. It differs from
the previously discussed approaches in the fact that it adjusts
to the actual variance observed in the data and therefore
learns the aleatoric uncertainty in the samples. Furthermore,
it can be implemented by the use of simple matrix operations
and shows to outperform standard GPR in terms of posterior
accuracy. However, the key assumption of this algorithm,
independent, identically distributed (i.i.d.) Gaussian noise,
does not hold in many applications.

The assumption of Gaussian noise could be removed by
the calculation of the full posterior over the parameters of
Bayesian neural networks. Since this task is computationally
intractable for nearly all models, approximations based on
gradient descent have been proposed [24]. Another approach
capable of dealing with non-gaussian uncertainty is condi-
tional quantile regression [25]. It generalizes the concept of
a quantile to a feature-dependent function, splitting the data
into given percentiles. A similar idea is the identification
of an Interval Predictor Model [26]. It constructs feature-
dependent upper and lower bounds for a given dataset
and derives probabilistic precision guarantees based on the
number of training samples. Both approaches require the
solution of a computationally-intense optimization problem
which makes them unsuitable for real-time control.

II. METHODOLOGY

A. Problem Formulation

We consider the discrete-time system

x(k + 1) = f(x(k), u(k)) + Ed(x(k), u(k), k), (1)

where x(k) ∈ Rn is the state, u(k) ∈ Rp the control input
and f(x(k), u(k)) the system dynamics. The uncertainty is
modeled as an additive signal d(x(k), u(k), k) ∈ R. The
approach can be extended to incorporate dependencies on
external signals, however, we omit this for the sake of
brevity. We also drop the explicit dependency on the time
k in the following and restrict our analysis to the scalar
case by requiring that E has rank one. This allows suitable
estimates to be generated for the uncertainty if the state and
the control signal are available. If the disturbance is vector
valued but its components are independent of each other,
the extension to the multi-dimensional case can be done by
multiple application of the algorithm presented below. The
case of dependent disturbances appears to be more difficult
due to the non-defined ordering for vector-valued signals and
is considered future work.

We aim to identify upper and lower bounds such that

d−(x, u) ≤ d(x, u, k) ≤ d+(x, u) (2)

holds for Nq sample, where N represents the number of
samples which form a batch and q the target coverage of the
data. This aim is reformulated such that

d(x, u, k) ≤ d+(x, u) (3a)
d(x, u, k) ≤ d−(x, u) (3b)

hold for Nq+ respectively Nq− samples and q+ and q− are
the proportions of the data to be covered. This can be seen
as a deterministic equivalent to the stochastic interpretation
of an upper and lower quantile. The values q+ and q− are
usually chosen to cover a large range of the data, e.g. to
be q+ = 0.99 and q− = 0.01. The target coverage can be
calculated to be q = q+ − q−.

Given the above description, sets that are likely to in-
clude the closed-loop system state can be predicted for
(1) using set-theoretic methods [27]. They can be used for
guaranteeing the satisfaction of state and input constraints
in robust control schemes such as Tube-MPC [9]. However,
our interest lies in the real-time identification of accurate and
tight uncertainty bounds, to enable non-conservative, robust
control and we will therefore not discuss the construction of
the reachable sets.

B. Recursive Uncertainty Model Identification (RUMI)

We propose to solve the above problem by combination of
a batch-version of the recursive Least Mean Squares (LMS)
algorithm presented in [7] with a batch version of a recursive
quantile estimation (QE) algorithm inspired by [8]. This
allows us to model the feature dependency of the mean value;
however, the uncertainty itself is assumed to be independent
of these features. The general structure of the resulting RUMI
algorithm is depicted in Fig. 1. We assume throughout the
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Fig. 1. Uncertainty model identification with RUMI. The explicit depen-
dency on the time-step k is dropped in the scheme.

paper that a suitable method for measuring or estimating the
additive uncertainty acting upon the system, e.g. full state
knowledge and solving (1) for d, is available. The presented
method is applicable independently from this choice.

The LMS algorithm delivers an L2-optimal estimate ŵ ∈
Rf for the weights of the linear regression model [23]

d(x, u, k) = vT (k)ŵ(k) + r(k), (4)

vT (k) =
[
φ1(x(k), u(k)) ... φf (x(k), u(k))

]
, (5)

where v(k) ∈ Rf is the vector of basis functions φ(·)
and r(k) the remaining unstructured uncertainty. The basis
functions are allowed to depend on the states as well as
the inputs. This decomposition is applicable to all bounded
uncertainties described in (1). However, the basis functions
should be chosen (e.g. by domain knowledge) such that r(k)
is small to reduce conservatism.

The unstructured uncertainty r(k) = d(x, u, k) −
vT (k)ŵ(k) is used to estimate the upper and lower bounds
r̂+(k) and r̂−(k). Combining these with the result of the
LMS algorithm, the bounds can be written as

d̂+(v(k)) = vT (k)ŵ(k) + r̂+(k) (6a)

d̂−(v(k)) = vT (k)ŵ(k) + r̂−(k). (6b)

This concept allows to construct a reliable uncertainty model
and to ensure robust convergence with only deterministic
assumptions. The key change in contrast to the available
algorithms is that we conduct the analysis in a lifted time
setting utilizing batches of data for updating the estimates.
This permits us to bound the effects of correlated data and
noise over the time-horizon spanned by the batch, instead of
imposing probabilistic assumptions. All computations can be
implemented recursively in every time step and the resulting
computational load is independent of the batch size.

C. Preliminaries

The analysis will be conducted in a set-theoretic setting
based on Lyapunov theory. This section outlines the required
definitions and theorems following the presentation in [27].

Lyapunov function outside a set (based on Definition
2.40 [27]): The continuous, positive definite function V (x)
is said to be a Lyapunov function outside the set N ={
x ∈ Rn|V (x) < ν2

}
if there exists a ν > 0 such that for all

x 6∈ N the Lyapunov difference ∆V (x) can be bounded from

above by ∆V (x) ≤ −Φ(‖x‖) for some class K-function Φ
and N is a robust positive invariant set.

Robust convergence to a set (based on Theorem 2.42 and
Definition 2.20 [27]): Assume the system admits a Lyapunov
function V (x) outside the set N . Then it is uniformly
ultimately bounded in the robust invariant set N . The latter
implies that for all δ > 0 there exists T (δ) > 0 such that
for every ‖x‖ ≤ δ it holds that x(k) ∈ N for all k > T (δ)
under all uncertainties.

Robust exponential convergence (based on Theorem 2.27
and Theorem 2.46 [27]): Assume that the previous statement
holds for some class K-function −Φ(‖x‖) ≤ −βV (x) with
V (x) = xTx and 0 < β < 1. Then we say that the system
converges exponentially to the robust invariant set N and it
holds that

‖x(k)‖2 ≤ max
{

(1− β)
k ‖x(0)‖2, ν2

}
∀k. (7)

D. Least Mean Squares Algorithm (Main Result I)

There are two widely known algorithms solving the lin-
ear least squares regression problem recursively. The first,
Recursive Least Squares with forgetting factor (RLS), is
derived from an H2-optimal solution for a regularized least
squares optimization problem for every single time-step [7].
The Least Mean Squares (LMS) algorithm is based on a
stochastic-gradient method. It proved to be an H∞-optimal
solution to the parameter identification problem [7] and is
computationally cheaper since it does not have to keep track
of the estimation-error covariance matrix.

We will now show, that a modified version of the nor-
malized LMS-update rule [7] for the estimate ŵ(k + N) =
∆ŵ(k) + ŵ(k) using batch updates every N steps

∆ŵ(k) = γ
k+N−1∑

i=k

µv(i)

1 + µvT (i)v(i)

(
d(i)− vT (i)ŵ(k)

)

(8)
converges to the correct estimate. The parameter γ > 0
depicts the learning rate and the parameter µ > 0 is used
to mitigate ill-posedness of the problem.

To establish the required guarantees on the upper and
lower uncertainty bounds, we need to bound the absolute
value of the model error |vT (k)w̃(k)| with the parameter
error w̃(k) = wo(k) − ŵ(k) robustly for all realizations
d(k). We define wo(k) as the weighted least-squares ap-
proximations for the model (4) in the time interval k to
k+N − 1, which can be obtained via the weighted pseudo-
inverse [28] by wo(k) =

(
VkMkV

T
k

)−1
VkMkDk, where

each column of Vk ∈ Rf×N corresponds to a sample v(k) to
v(k+N−1), Mk ∈ RN×N is a matrix with entries obtained
from the scalar factors in the sum of (8) on its diagonal and
Dk ∈ RN holds the corresponding measurement samples
d(k). Introducing this change of variables and rewriting (8)
the batch difference for the parameter error becomes

∆w̃(k) = ∆wo(k)− γVkMk(Rk + V Tk wo(k)− V Tk ŵ(k)),
(9)

where ∆wo(k) is the batch difference between the optimal
solutions and Rk is the column vector holding the residuals



with respect to the model vT (k)wo. By the definition of wo,
it follows that Rk is orthogonal to V Tk wo and lies within the
nullspace of VkMk. Therefore the influence of the residual
vector Rk vanishes:

∆w̃(k) = ∆wo(k)− γVkMkV
T
k w̃(k). (10)

We will denote VkMkV
T
k by the symmetric positive semi-

definite matrix Pk and rewrite it as a sum

Pk =
k+N−1∑

i=k

µv(i)vT (i)

1 + µvT (i)v(i)
(11)

with minimum and maximum singular values σ−k and σ+
k

respectively. By taking the maximum and the minimum over
all k, it is ensured that

σ−‖w̃‖2 ≤ wTPkw ≤ σ+‖w̃‖2 ∀k (12)

holds. If σ− > 0, Pk is positive definite and the equation
is similar to the persistent excitation condition in [7]. Defin-
ing the Lyapunov function V (w̃) = w̃T w̃, the difference
∆V (w̃(k)) = V (w̃(k +N))− V (w̃(k)) for (10) is

∆V =w̃T
(
γ2P 2

k − 2Pkγ
)
w̃ + ∆wTo ∆wo

+ 2∆wTo (I − γPk) w̃.
(13)

Rewriting Pk with the orthonormal basis Qk we have:

∆V =− w̃TQk
(
2γΣk − γ2Σ2

k

)
QTk w̃ + ∆wTo ∆wo

+ 2∆wTo Qk (I − γΣk)QTk w̃.
(14)

If we choose γ such that γ < 1
σ+ (a reasonable upper bound

on σ+ could be obtained e.g. from extensive simulations as
it only depends on the features v) it follows from 2a − a2
being strictly monotone on [0, 1] that the minimum singular
value of

(
2γΣk − γ2Σ2

k

)
is 2γσ−k − γ2σ−k

2
. We can then

apply (12) and the Cauchy-Schwarz inequality to obtain

∆V ≤−
(

2γσ− − γ2σ−2
)
‖w̃‖2 + ‖∆wo‖2

+ 2
(
1− γσ−

)
‖∆wo‖‖w̃‖.

(15)

The first term is always negative for 0 < γ < 1
σ+ which

allows us to define the positive root of the polynomial
∆V +(‖w̃‖) on the right-hand-side by ‖w̃R‖ and the set
N =

{
w̃ ∈ Rn|V (w̃) ≤ ν2 = α2‖w̃R‖2

}
where α > 1.

It follows from comparison with ∆V +(‖w̃‖) that −βV (w̃)
bounds the Lyapunov difference from above outside N for

β ≤ −∆V +(ν)

ν2
. (16)

It remains to show that N is a robust invariant set. By
using the fact that all coefficients of the polynomial

V (w̃(k + 1)) ≤ ‖w̃‖2 −
(

2γσ− − γ2σ−2
)
‖w̃‖2

+ 2
(
1− γσ−

)
‖∆wo‖‖w̃‖+ ‖∆wo‖2

(17)

are positive, the right hand side is strictly monotonic in-
creasing for ‖w̃‖ > 0. Together with ∆V +(ν) < 0, it
follows that the right hand side is bounded from above by
ν2. This completes the set of conditions required for robust
exponential convergence of the update rule (8) according to
the theorem presented in section II-C.

E. Recursive Quantile Estimation (Main Result II)

In the next step, we will show how to determine the
estimate r̂+ reflecting that a certain proportion q+ of the
residuals r are smaller than or equal to this value. The
results hold equally for r̂−. A naive approach would be to
store all data points and order them, however, this is not
suitable for continuous data streams, due to limited memory
and computation power. Our approach is based on a batch
version of the recursive algorithm presented in [8].

We define the empiric estimator

α̂(r̂+, k) =
1

N

k+N−1∑

i=k

1
(
r(i) ≤ r̂+

)
(18)

for the proportion of the data which is smaller than or equal
to the current quantile estimate and 1 (r(i) ≤ r̂+) is equal to
one if the condition in brackets is true, and zero otherwise.
Rewriting the algorithm of [8] in batch form, we obtain the
following update equation

r̂+(k +N) = r̂+(k) + λq+
(
1− α̂(r̂+(k), k)

)

− λ(1− q+)α̂(r̂+(k), k),
(19)

where λ > 0 denotes the adaption speed. Note, that we
dropped the multiplicative dependence of the update equation
on the estimate r̂+(k) compared to [8] to ensure that the
convergence properties are independent of the final value.
Reformulating α̃(r̂+, k) = α̂(r̂+, k)− q+, (19) reduces to

r̂+(k +N) = r̂+(k)− λα̃(r̂+(k), k). (20)

Due to the data-induced variation of (18), the best result
achievable is to show that the batch estimator (20) converges
to (and stays within) a ball S in R centered around r+c
and radius ρ > 0. We will show these properties using the
Lyapunov function V (r̃) = r̃2 with the deviation r̃ = r̂+ −
r+c . Dropping the explicit time dependency, the Lyapunov
difference ∆V (r̃(k)) = V (r̃(k+N))−V (r̃(k)) is given by

∆V = ∆r̃ (∆r̃ + 2r̃) , (21)

where ∆r̃ = r̃(k + N) − r̃(k). If we show that ∆V <
−η2 holds outside S for some positive constant η > 0, the
existence of a class K-function Φ bounding ∆V from above
outside of S follows directly. This holds under the following
conditions

−2r̃ + η < ∆r̃ < −η ∀r̃ > ρ (22a)
η < ∆r̃ < −2r̃ − η ∀r̃ < −ρ (22b)

If we can further show that

−r̃ − ρ ≤ ∆r̃ ≤ −r̃ + ρ ∀|r̃| ≤ ρ (23)

holds, the set S is robust positively invariant, and therefore
the estimate converges robustly to S according to the the-
orem presented in section II-C. If the left-hand side holds
additionally for r̃ ≥ ρ, it converges without overshooting,
which leads to desirable conservative behavior. By inserting
(20) into the definition of ∆r̃, we get

∆r̃(k) = ∆r+c (k)− λα̃(r+c (k) + r̃(k), k). (24)
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The constant η is neglected as it can be chosen arbitrary small.

To establish the desired properties, it is required that the
variation of the empiric estimator (18) is bounded. This can
be ensured if time-invariant upper and lower bounds

α̂l(r+c (k) + r̃) ≤ α̂(r̂+, k) ≤ α̂u(r+c (k) + r̃). (25)

exist and are solely shifted by the (possibly time-dependent)
center of the invariant set r+c . This can be interpreted such
that the shape-variation of α̂(r̂+, k) is limited over time.
Analyzing the convergence requirements for the general case
is a difficult task, due to the data-dependent nature of the
estimator α̃(r̂+(k), k). We will therefore restrict our analysis
to parametrizations of upper and lower bounds in the form

α̂u/l(r̂+(k)) = sat
(
m
(
r̂+(k)− ru/ls

))
, (26)

where sat is the saturation function limiting between 0 and
1, m the linear gain and r

u/l
s the corresponding shift of

bounds. It is always possible to find such a parametrization,
although less conservative results might be obtained with
other choices. A natural choice for the center r̂+c of the
set S is the center between the upper and lower bounds at
the target value q+. Fig. 2 visualizes (24) as well as the
convergence conditions (22) and (23). It shows samples of
−λα̃ for different batches drawn from a uniform random
probability distribution. The size ρ of the robust invariant
set is bounded from below by the variation of α̃(r̃) and the
time-variation of the invariant set center ∆r+c .

F. Interconnection of LMS and QE (Main Result III)

The previous section demonstrated that the quantile esti-
mation algorithm converges towards a robust invariant set
around r+c for an arbitrary input signal r(k) as long as the
upper and lower bounds as in (25) exist. Taking a closer look
onto the signal r(k), it can be decomposed into the residual
ro(k) with respect to the local L2 optimal solution wo and

the model error as in (9):

r(k) = ro(k) + vT (k)w̃(k). (27)

The latter term in this equation can be interpreted as an ad-
ditional uncertainty with respect to the quantile identification
of ro(k). However, it converges to the robust invariant set N
in finite time according to the result established in section
II-D. In this set, it is possible to bound the influence by

−‖v‖+ν ≤ vT (k)w̃(k) ≤ ‖v‖+ν (28)

if the norm of the feature vector remains bounded by
‖v‖+. If the LMS algorithm is tuned such that ν is small,
the influence of the LMS term on the quantile estimation
becomes small and can be incorporated into the bounds
(25). The convergence result obtained in the previous section
is therefore not affected by the LMS algorithm as soon
as the invariant set N is reached. Due to the exponential
convergence of the LMS algorithm, the quantile estimator
adaption speed can be chosen slow enough such that it does
not reach the relevant value region as long as the LMS did
not converge to the invariant set. Faster convergence results
might be achieved without violating the desired properties
and will be investigated in future work.

It remains to show that the correct coverage is obtained for
the disturbance d(k) and the upper bound estimate d̂+(v(k)).
Using (18) and the definition of r(k) we obtain

α̂(r̂+, k) =
1

N

k+N−1∑

i=k

1
(
d(i)− vT (i)ŵ(k) ≤ r̂+

)
. (29)

From the definition of α̃ we can deduce that α̂(r̂+, k)
converges to q+ despite a small error. Using this and (6)
we obtain

q+ ≈ 1

N

k+N−1∑

i=k

1
(
d(i) ≤ d̂+(v(i))

)
, (30)

which demonstrates the desired property and completes the
analysis of the algorithm. The same result holds for d− and
q− and therefore the joint consideration of d+ and d− leads
to a data coverage of q = q+ − q−.

III. LEARNING BENCHMARKS

The following section compares the proposed algorithm to
the GPR and BLR approaches, since they are widely used
in learning control engineering applications [11], [12], [29].
The source code is available online [30].

A. Academic Examples

We will use a datastream generated from a benchmark
model with radial basis functions

d(k) = vT (k)w + ε(k), (31)

where ε is generated to be zero mean, white and Gaussian.
The benchmark BLR implementation is similar to [23] and
[12]. The benchmark GPR uses the standard implementation
of scikit-learn with hyperparameter training based on [15]
and random sampling of the training samples. Both generate
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Fig. 3. Comparison of the uncertainty models obtained via GPR, BLR
and RUMI on 20 datasets with Gaussian (top) and non-Gaussian (bottom)
noise. The graphs depict the maximum and minimum proportion of the
data covered by the upper and lower bounds. The target coverage was set
to 80 %. In the Gaussian case, all estimators identified correct bounds. In
the non-Gaussian case, only RUMI succeeded in identifying correct bounds.

the upper and lower bounds using multiples of posterior
standard deviations to cover the desired proportion of data.
The results, rendered in the upper section of Fig. 3, indicate
that all estimators converge to bounds covering the desired
proportion of data. The situation is different for non-Gaussian
noise (modeled via two shifted Gaussian distributions). The
bottom plot in Fig. 3 shows that RUMI still converges to
correct bounds, but that the other approaches fail to do so.
It should be noted, that depending on the actual distribution,
this can lead to under- as well as overestimation. These
findings indicate, that RUMI is more robust, as probabilistic
assumptions can often not be met in application. This holds
especially if the uncertainty is state dependent and occurs
from modeling error. The major disadvantage of RUMI is its
potentially slow transient response.

B. Vehicle Motion Control Example

This research was motivated by the requirement to es-
timate a reliable uncertainty model on an embedded real-
time system for an autonomous race car. We benchmark the
algorithms on the path-tracking controller from the TUM
Roborace Team [4]. The dataset used was gathered from
a sophisticated vehicle-dynamics simulation. From domain
knowledge and data analysis, we deduce that the most signif-
icant influence on the uncertainty is the lateral acceleration
target set by the controller. This can be explained via the
uncertainty of the steady-state gain between the steering
angle and the resulting lateral acceleration in the nonlinear
operating region of the tire. We choose a single linear basis
function depending on this feature. The uncertainty da,y
enters the error dynamics as follows

[
ė
ë

]
=

[
0 1
−ω2

0 −2Dω0

] [
e
ė

]
+

[
0
1

]
da,y, (32)

ω0 and D are control parameters. The results for the dataset
are depicted in Fig. 4 and demonstrate that the presented al-

−20 −10 0 10 20

−5

0

5

Lateral acceleration target in m s−2

D
is

tu
rb

an
ce

in
m

s−
2

GPR BLR RUMI

−5

0

5

U
nc

er
ta

in
ty

bo
un

ds
in

m
s−

2

GPR BLR RUMI

0 10 20 30 40 50

94
96
98

100

Samples in 103

D
at

a
co

ve
re

d
in

% GPR BLR RUMI

Fig. 4. Comparison of the uncertainty models obtained via GPR, BLR
and RUMI on a vehicle motion controller dataset. The plots depict upper
and lower bounds, the unstructured uncertainty and the proportion of the
data covered by the model. The target coverage was set to 98 %. Only the
RUMI approach succeeds in identifying an uncertainty model covering the
desired proportion of the data. It is notable, that the uncertainty bounds
differ significantly while the data coverage shows only minor differences.

TABLE I
AVERAGE COMPUTATION TIMES PER BATCH

GPR BLR RUMI

1349.6 ms 14.0 ms 8.9 ms

gorithm is capable of identifying appropriate bounds without
exact knowledge about the structure of the underlying data
generation process.

C. Qualitative Comparison of the Approaches

The key difficulty with the GPR approach is, that the
posterior variance does not reflect the actual data variance
for fixed hyperparameters. Although this problem can be
solved via the application of hyperparameter optimization,
this leads to a loss of the ability to tune the transient response
and is computational intense. In contrast, BLR and RUMI
obtain reliable variance estimates and their transient response
is tunable (see Fig. 4). The drawback of both is that they
require an a priori choice of basis functions. While this is an
opportunity to incorporate domain knowledge, uncertainties
might be difficult to predict. GPR can adapt more flexibly to
the data and therefore model a wider range of functions.

From a computational point of view, the main difference
is that the GPR estimator is a lazy learning algorithm in
contrast to the eager learning algorithms BLR and RUMI. It
stores all samples to generate the predictions, and therefore
needs retraining every time the dataset is modified which



requires the inversion of an RNs×Ns matrix. In contrast,
BLR requires only an inversion of a matrix of size Rf×f .
As the number of features f is usually much smaller than
the number of samples Ns, BLR has lower computational
requirements compared to GPR. RUMI does not require any
matrix inversion and the computational load of (8) and (18)
is small. A comparison of the average computation times
(taken from one dataset of the academic example on an
i7-CPU) per data batch processed is depicted in Table I.
Furthermore, neither BLR nor RUMI require a policy to add
and remove points from a training dataset, which can be a
computationally demanding task itself [29].

We wish to point out that RUMI shows similarities to
BLR, which was shown to outperform GPR in [12]. In
contrast, RUMI does not rely on any uncertainty assump-
tions, despite the existence of upper and lower bounds and
sufficiently rich data. In broad terms, RUMI drops the fully
Bayesian framework of the BLR, so as to achieve correct
estimates in the presence of more general uncertainty.

IV. CONCLUSION AND FUTURE WORK

We have proposed an approach for the identification of
feature-dependent uncertainty models based on the concate-
nation of a recursive Least-Mean-Squares algorithm and a
recursive quantile estimation algorithm. In contrast to other
approaches, it does not rely on probabilistic assumptions and
is derived in a deterministic setting. This enables correct
estimation of the bounds even for the case of non-Gaussian
uncertainty. A comparison to state-of-the-art approaches in
learning control applications demonstrates, that they tend to
over- or underestimate the bounds in this case. The algorithm
relies solely on low-dimensional vector operations which
favor the application on real-time systems. Future work will
be the integration of into a Tube-MPC scheme and evaluation
on an autonomous race car.
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