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Abstract: Treatment of drug-resistant forms of cancer requires consideration of their hallmark features,
such as abnormal cell death mechanisms or mutations in drug-responding molecular pathways. Ma-
lignant cells differ from their normal counterparts in numerous aspects, including copper metabolism.
Intracellular copper levels are elevated in various cancer types, and this phenomenon could be
employed for the development of novel oncotherapeutic approaches. Copper maintains the cell
oxidation levels, regulates the protein activity and metabolism, and is involved in inflammation.
Various copper-based compounds, such as nanoparticles or metal-based organic complexes, show
specific activity against cancer cells according to preclinical studies. Herein, we summarize the major
principles of copper metabolism in cancer cells and its potential in cancer theranostics.
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1. Introduction

Copper is a transition metal that plays several important roles crucial for maintenance
of cell homeostasis, regulation of cell growth and proliferation, and iron metabolism [1].
Various roles of copper are explained by its ability to act as either a recipient or a donor
of electrons depending on the oxidation state: Cu1+ (cuprous ion) and Cu2+ (cupric ion).
The oxidation state also affects the copper interaction with organic compounds. Thus, Cu1+

preferentially binds to the thiol group in cysteine or the thioether group in methionine, while
Cu2+ exhibits a high affinity for the secondary carboxyl group in aspartic/glutamic acid or
the imidazole nitrogen group in histidine. As a result, copper ions readily form complexes
with biomolecules containing these amino acid residues. Copper atoms are involved in a
functioning of a wide spectrum of proteins, such as copper/zinc superoxide dismutase
(Cu/Zn SOD or SOD1) [2], cytochrome c oxidase (COX) [3], lysyl oxidase (LOX) [4],
mitogen-activated protein kinase MEK1 [5], and cAMP-degrading phosphodiesterase
PDE3B [6]. In these proteins, copper ions participate in diverse biochemical reactions
(especially redox reactions) of donating or accepting of electrons and maintain specific
protein structures by coordinating with the abovementioned groups.
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Despite its important physiological role, free copper ions are able to damage DNA
and protein molecules via generation of reactive oxygen species (ROS) and interaction with
cysteine and methionine residues [7]. That is why each cell and whole organisms have
distinct mechanisms for the regulation of copper absorbance, distribution, accumulation,
and excretion. With the development and propagation of copper-based pharmaceuticals, it
is crucial to consider these metabolic and regulatory pathways to improve biocompatibility
and efficacy of such compounds. For now, only a small number of studies dedicated to the
design of novel copper-containing compounds consider underlying molecular mechanisms
of intracellular copper regulation. The present work aims to provide a holistic view
of the problem to help researchers boost their work and realize rational approaches in
drug development.

2. Copper Intake, Distribution, and Efflux in Normal and Tumor Cells

The major proteins involved in copper maintenance include: CTR1 (copper transport
protein), which is responsible for copper intake either from the intestine or blood; metal-
lochaperones and metallothioneins, including ceruloplasmin, which are responsible for
metal sequestration, distribution in organisms, and transport to various proteins; ATP7A
and ATP7B (ATP-ase copper transporter alpha) responsible for copper excretion via mem-
brane efflux or Golgi apparatus [8]. All these proteins have cysteine- or methionine-rich
domains responsible for the binding. A precise description of proteins involved in cop-
per homeostasis and a comparison of copper metabolism in normal and cancer cells are
given below.

As it has previously been mentioned, copper intracellular metabolism is precisely
regulated by specific protein machinery, which prevents the generation of free copper
ions in the cytoplasm or extracellular space and ion-mediated toxicity (Figure 1). CTR1
is a major protein responsible for copper uptake in eukaryotes. CTR1 transporter acts
as a pump that facilitates copper import without ATP consumption [9]. The rate of the
copper intracellular transport depends on the copper concentration, the presence of other
ions (Fe3+, Zn2+, Ag+) and organic compounds (e.g., ascorbate), cell type, and pH. The
structure of homotrimeric CTR1 protein contains methionine gates for selective bypass
of monovalent copper ions exclusively. However, isoelectric silver ions can compete
with copper decreasing its intracellular content [10]. As only monovalent copper can be
transported by the CTR1 protein, bivalent copper should first be restored to the monovalent
state. This process is facilitated by the reductase proteins, such as STEAP, which are also
reported to be overexpressed in several types of cancers and involved in tumorigenesis [11].
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knockout of CTR1 and DMT1 (divalent metal transporter 1) in human H1299 non-small 
cell lung cancer cells leads to pronounced cisplatin resistance. Moreover, the CTR1 loss 
decreases expression of COMMD1, XIAP, and NF-κB, which have a distinct influence on 
the intracellular homeostasis and signaling [20]. Several works of various research groups 
also proved a hypothesis about involvement of CTR1 and ATOX1 in cisplatin transport 
and sequestration [21–23]. However, another study on HEK-293T cells provided evidence 
about the modest participation of copper-binding proteins (i.e., CTR1, CTR2, ATOX1, and 
CCS) in cisplatin uptake and distribution [24]. 

At the same time, a connection between high ATOX1 expression level and survival 
rate in primary tumor biopsies has been found. Analysis of transcription profiling of 1904 
breast cancer patients on METABRIC data set suggests that overexpression of Atox1 may 
serve as a marker for breast cancer prognosis [25] but only in the hormone receptor-posi-
tive tumors. Considering copper involvement in the functioning of the LOX protein [26] 
which is responsible for cell migration, ATOX1 may facilitate the function of LOX enhanc-
ing tumor ability for metastasis [27]. Moreover, Atox1 is also involved in transcription 
regulation of several genes, as was mentioned earlier. First, upon copper binding ATOX1 
can migrate to the cell nucleus and bind the cis element of the cyclin D1 promoter, thus 
stimulating cell growth and proliferation [21]. Furthermore, a more complex interplay be-
tween ATOX1 and p53 has been found [28]. Authors observed increased copper amounts 
in cell nuclei for HCT116 p53+/+ cells compared to p53−/− cells. These facts suggest that 
Atox1 may play a significant role in cell signaling and regulation of gene expression which 
should be determined in future studies. 

Cytochrome c oxidase copper chaperone (COX17) is also involved in cancer. Inhibit-
ing COX17 in acute leukemia cells results in decreased adenosylhomocysteinase activity 
leading to disruption of DNA methylation and changes in cell epigenetics [29]. The link 
between COX17 and cisplatin distribution to mitochondria has been found [30]. The in-
volvement of copper-binding proteins in cisplatin uptake and distribution is probably 
connected to the similarities in binding affinity of platinum and copper ions. Moreover, 
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After crossing the plasma membrane, copper ions are readily sequestrated by the
numerous intracellular metallothioneins, metallochaperones, albumins, glutathione, and
ceruloplasmin [12]. Some of these proteins can store the metal for further use, while
others serve for intracellular transportation of copper. For example, metallochaperones
transfer copper to the active centers of the certain proteins or buffer the metal for further
use. Copper chaperon for superoxide dismutase (CCS) delivers copper to superoxide
dismutase (SOD1) enzyme, which converts superoxide radical into hydrogen peroxide and
oxygen [13,14]. COX17 is another metallochaperone responsible for copper transportation
to COX, an important protein involved in oxidative phosphorylation [15].

Atox-1 is a transport protein that delivers copper to ATP7A and ATP7B, which are
responsible for copper release into the blood or bile, respectively [16]. Additionally, ATOX1
can migrate to the cell nucleus and act as a transcription factor facilitating cell growth,
proliferation, and migration. Another common localization of ATOX1 is in proximity to the
plasma membrane, where copper can be transferred to the membrane-associated proteins,
such as lysyl oxidase, which is involved in cell migration [16].

3. Copper Regulation in Cancer

Many proteins required for copper metabolism are known to be overexpressed or
malfunctioned in cancer cell metabolism. The most known example is participation of
these proteins in chemotherapeutic response to conventional drug cisplatin. There is
much evidence about CTR1 involvement in the transportation of cisplatin [17,18]. Meta-
analysis of gene expression in various cancer types revealed that the reduced expression
of the CTR1 gene is associated with the development of cisplatin resistance [19]. The
knockout of CTR1 and DMT1 (divalent metal transporter 1) in human H1299 non-small
cell lung cancer cells leads to pronounced cisplatin resistance. Moreover, the CTR1 loss
decreases expression of COMMD1, XIAP, and NF-κB, which have a distinct influence on
the intracellular homeostasis and signaling [20]. Several works of various research groups
also proved a hypothesis about involvement of CTR1 and ATOX1 in cisplatin transport
and sequestration [21–23]. However, another study on HEK-293T cells provided evidence
about the modest participation of copper-binding proteins (i.e., CTR1, CTR2, ATOX1, and
CCS) in cisplatin uptake and distribution [24].

At the same time, a connection between high ATOX1 expression level and survival rate
in primary tumor biopsies has been found. Analysis of transcription profiling of 1904 breast
cancer patients on METABRIC data set suggests that overexpression of Atox1 may serve
as a marker for breast cancer prognosis [25] but only in the hormone receptor-positive
tumors. Considering copper involvement in the functioning of the LOX protein [26] which
is responsible for cell migration, ATOX1 may facilitate the function of LOX enhancing tumor
ability for metastasis [27]. Moreover, Atox1 is also involved in transcription regulation of
several genes, as was mentioned earlier. First, upon copper binding ATOX1 can migrate to
the cell nucleus and bind the cis element of the cyclin D1 promoter, thus stimulating cell
growth and proliferation [21]. Furthermore, a more complex interplay between ATOX1
and p53 has been found [28]. Authors observed increased copper amounts in cell nuclei
for HCT116 p53+/+ cells compared to p53−/− cells. These facts suggest that Atox1 may
play a significant role in cell signaling and regulation of gene expression which should be
determined in future studies.

Cytochrome c oxidase copper chaperone (COX17) is also involved in cancer. Inhibit-
ing COX17 in acute leukemia cells results in decreased adenosylhomocysteinase activity
leading to disruption of DNA methylation and changes in cell epigenetics [29]. The link
between COX17 and cisplatin distribution to mitochondria has been found [30]. The in-
volvement of copper-binding proteins in cisplatin uptake and distribution is probably
connected to the similarities in binding affinity of platinum and copper ions. Moreover,
glutathione (GSH) seems to attenuate this effect. It was found that 90% of cisplatin bound
to GSH is readily transferred to COX17 [31]. This suggests probable involvement of thiol-
containing molecules and not only proteins in intracellular cisplatin distribution. It would
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be interesting to investigate the effects of combining treatment with cisplatin and thiols
or cisplatin-thiol complexes or nanostructures. COX17 was also studied as a prognostic
marker for prediction of tamoxifen resistance in breast cancer patients [32]. The authors
reported that this protein could be employed as a predictive marker for tumor recurrence
and metastasis. These features are also observed for COX5B which is a subunit of COX
itself [33]. This correlates with the prognostic value of ATOX1 which was found to possess
similar properties in the breast cancer. Another COX nuclear-encoded subunit, COX4, is
also shown to be a valuable prognostic and therapeutic marker for medullary thyroid cancer
treatment [34]. The role of the COX protein in cancer development and progression as well
as its influence on altered signaling and metabolic pathways needs to be further explored.

CCS, a protein involved in copper delivery to SOD1, is also involved in tumorigenesis.
SOD1 could serve as a prognostic marker which contributes to worsened prognosis and
higher risk of gastric [35] and prostate [36] cancer. Another study indicates SOD1 involve-
ment in cell proliferation and metastasis in non-small cell lung cancer [37]. At the same time,
knockdown of CCS leads to decreased cell proliferation and migration of MDA-MB-231
cells but does not affect the MCF-7 cell line [38]. In addition, the MAPK/ERK pathway
was inhibited upon loss of CCS activity in MDA-MB-231 cells which also correlated to the
increased ROS formation. Inhibition of CCS and Atox1 with specifically designed small
molecules is a promising treatment strategy with reduced side effects [39]. The expression
of CCS was found to be decreased in human hepatocellular carcinoma (HCC) which is
distinct from breast cancer [40]. Despite a statistical significance not being achieved, the
study concluded that a low expression level of CCS is a negative prognostic marker for
HCC patients. Presumably, copper trafficking in various tissues could be different, as well
as the involvement of copper-binding proteins in cancer development, progression, and
metastasis. This provides a foundation for further investigation on a wide panel of cancer
cell lines.

Copper efflux proteins, ATP7A and ATP7B, are also involved in cancer progression.
ATP7A correlates with a poor survival rate and is overexpressed in several tumor types,
such as breast, lung, prostate, ovarian, and colon cancer [41]. Another study shows that
ATP7A is associated with cisplatin resistance in ovarian cancer and influence effectiveness
of treatment with tetrathiomolybdate, which inhibits ATP7A activity [42]. Decreased
sequestration of platinum leads to its accumulation in the cell nucleus with subsequent
DNA damage. Moreover, the application of tetrathiomolybdate can also result in Ctr1 high
expression increasing cisplatin uptake that may be used as a solution for treatment of drug
resistance tumors [43]. Another study suggests a greater impact from inhibiting ATP7B
compared to ATP7A [44]. A detailed analysis of the ATP7A and ATP7B roles in ovarian
cancer are discussed in the review [45]. A study in the breast cancer model reveals the
opposite effects of ATP7A and ATP7B in contribution to the cisplatin resistance [46]. ATP7A
seems to be more involved in this process, whereas the analysis of ATP7B did not reach
statistical significance. To summarize, the above-mentioned ATP7A and ATP7B influence
the cisplatin efflux leading to decreased effectiveness of this drug; however, the precise role
of each protein should be determined for distinct types of cancer.

Copper takes an active part in the proangiogenic pathways via several mechanisms.
First, copper stimulates endothelial cells proliferation and migration. Next, copper is in-
volved in the expression of certain proangiogenic factors (for example, vascular endothelial
growth factor VEGF) [47], particularly as a response to hypoxia-inducible factor (HIF-1)
signaling [48]. When elevated, copper becomes toxic and may induce side effects leading
to genetic disorders (e.g., Wilson’s disease) and various types of oncological diseases. How-
ever, the exact molecular mechanisms underlying the connection between excessive copper
levels and malignant cells are still unknown. It can only be hypothesized, particularly
in the early stages, after considering the role copper plays in tumor angiogenesis. Malig-
nant tissues have higher Cu accumulation levels, thus increasing the expression of human
copper transporter (hCTR1). hCTR1 regulates the activation of cell-signaling pathways in
embryogenesis, which leads to the development and progression of cancers [49].
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The above-mentioned impact of copper ions and copper-binding proteins on cell
growth, migration, and metabolism suggests that cancer cells require high copper levels
to facilitate cell survival and disease progression. Indeed, tumor tissues are enriched
with copper suggesting that this metal is one of the diagnostic tools for various onco-
logical disorders [50]. Moreover, copper or copper-binding proteins are essential for the
function of important signaling pathways, such as BRAF [51], NF-kB [52], MAPK [53],
and EGFR/Src/VEGF [54]. Hence, the significant role of copper in cancer appearance
and progression is starting to emerge in front of researchers. The accumulated data un-
cover the possibility to improve the efficiency of diagnostic approaches and increase
treatment efficacy.

4. Therapeutic Effects of Copper-Based Compounds and Nanocarriers

The disparity in tumor cell and normal cell responses to copper have paved the way for
copper complexes to evolve as anticancer agents. Copper-based compounds nowadays are
receiving attention due to their target-specific therapeutic properties. Copper compounds
influence the activities of several crucial cell organelles, such as the mitochondria and
endoplasmic reticulum, leading to the loss of their functions and eventually resulting in
cell death (Figure 2).
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Nowadays, the increasing number of metal-based compounds and nanoparticles are
being investigated due to their promising potential in theranostics, and various iron, zinc,
copper-based and other agents are under development and testing for these purposes. For
example, superparamagnetic iron oxide nanoparticles (SPIONs) are being actively used as
a contrast agent for MRI procedures and in therapy. Currently, there are several running
translational studies which explore SPIONs’ toxicity and biomedical applications, and
ferumoxytol was FDA-approved for clinics [55]. Copper is also attracting the attention
of researchers as a possible component for nanocompounds for theranostics and drug
delivery. For example, copper is used in PET scanning as a radiotracer agent in cancer
diagnostics, and 64CuCl2 has successfully passed clinical studies demonstrating its diag-
nostic potential [56]. Several studies successfully implemented copper for efficient bone
regeneration [57] and anti-inflammatory therapy [58]. Copper-based nanoparticles also
found their place in chemodynamic [59] and photothermal therapy [60].

The radiotracer biodistribution has shown that the liver has the highest uptake, fol-
lowed by the intestine and pancreas, with urinary excretion being insignificant. It is the
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first biodistribution and radiation dosimetry trial with healthy volunteers. The estimated
absorbance and effective doses were higher than the ones from another report with partic-
ipants suffering from prostate cancer. The measurement methodology and assumptions
used in dose calculation as well as the difference between the biodistribution in cancer
patients and healthy volunteers are the main reasons for that disparity [61]. An interesting
combination of SPIONs and Cu (II) ions were used as a cell labeling MRI/PET agent.
Contrast agents showed good cellular uptake and cell-labeling ability [62]. Furthermore,
gold nanoparticles alloyed with copper-64 demonstrate higher sensitivity and stability
compared to non-modified gold nanoparticles [63]. Thus, copper presence could improve
the effectiveness of the iron or gold nanoparticles, which opened new opportunities for
further research in the field of cancer imaging. However, the major limitation and risk
factor for wide implication of copper is toxicity of copper ions for cells [64].

Extrinsic and mitochondrial pathways of apoptosis are important in the control of
tumor development and could be exploited for therapy [65]. The anticancer properties
of Schiff base copper (II) complexes are well-studied and known in the scientific commu-
nity. For instance, [Cu(sal-5-met-L-glu)(H2O)].H2O, [Cu(ethanol)2(imidazole)4][Cu2(sal-D,
L-glu)2(imidazole)2] and [Cu(sal-D,L-glu)(2-methylimidazole)] complexes activate the in-
trinsic pathway, while [Cu2(sal-D, L-glu)2(isoquinoline)2]·2C2H5OH initiates the extrinsic
pathway in human HT-29 colon carcinoma cells, respectively. All these complexes also
induce a cytotoxic effect on the HT-20 cell line, and as a result, prove that they might
become potential anticancer agents [66]. Structural formulas of the complexes can be
found in recent publications [67–69]. Another study shows that accumulation of copper
ions inside the cells leads to oxidative stress and apoptosis [70]. Moreover, the usage of
2,2′-dithiodipyridine strongly enhances this effect which is bound to its ability to transport
copper through the plasma membrane.

Topoisomerases play an essential role in DNA replication and are relevant in cancer
research as a target for novel therapies. There are currently several drugs approved by the
FDA targeting topoisomerases (e.g., irinotecan, etoposide, etc.). Thiosemicarbazones are a
group of complexes proved to have anticancer activity. “Triapine” (thiosemicarbazone) has
been successfully tested for uterine cervix and vaginal cancers in clinical trials phase I and II
and is presently under clinical trials phase III [71]. Thiosemicarbazones copper (II) complex
[Cu(PyCT4BrPh)Cl] was investigated and demonstrated a cytotoxic effect on a leukemia
cell line (THP-1) and human breast cancer cell line (MCF-7). It had stronger topoisomerase
inhibitor activity and generally more impact on these cell lines than its analogue without
copper, which proves how transition metals can increase the effectiveness of the known
compound [72].

Copper complexes are shown to influence the endoplasmic reticulum leading to
immunogenic cell death in breast cancer stem cells [73–75]. In a recent study, cuprous
oxide nanoparticles affect calcium transport leading to its accumulation in intracellular
space resulting in oxidative stress, activation of caspases, and apoptosis. Copper complexes
are also able to inhibit proteasome function [76]. Other structures allow G-quadruplex
telomeric DNA reduction [77]. These effects lead to disturbances in cell cycle, activation of
apoptotic pathways, and cancer cell death. One article reports copper complexes are able to
accumulate inside mitochondria leading to cytotoxicity by damaging mtDNA [78]. A great
variety of induced effects allows copper compounds to be used for various applications in
a precisely determined manner of action.

5. Copper Nanoparticles for Cancer Imaging and Drug Delivery

Due to the recent developments in imaging technologies and biology, molecular imag-
ing provides not only the possibility to visualize the tumor, but also to assess the expression
and activity of specific molecules (e.g., protein kinases, enzymes, proteases, etc.) and
various processes (including metastasis, tumor cell apoptotic death, angiogenesis, etc.)
involved in cancer progression, response to therapy, and recurrence [79]. Furthermore,
molecular imaging based on CuS NPs enables repetitive assessment of particles biodis-
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tribution and biokinetic properties employing positron emission tomography (PET) and
photoacoustic imaging (PAI) [80,81].

Photoacoustic (PA) imaging, developed rapidly in the recent decade, represents a
noninvasive biomedical imaging method which can be employed for visualization of
deeply located tissues tumors, analysis of vasculature [82], or evaluation of neoangio-
genesis [83]. Upon the in vivo absorbance of a short-pulse laser by various molecules
(e.g., water, melanin, RNA, DNA, hemoglobin, cytochromes, lipids, etc.) ultrasonic signals
are generated via the mechanism of photothermal conversion [84–86]. Up-to-date gold
nanostructures (GNPs) were widely applied as contrast agents for photoacoustic imag-
ing [87]. However, GNPs were reported to have several limitations as contrast agents,
including dependence of optical properties on shape, geometry, and size of particles as well
as their susceptibility to tumor microenvironmental factors. On the contrary, compared
to the maximum absorption between 560 and 840 nm of GNPs, the absorption of copper
nanoparticles could be tuned to peak at wavelengths greater than 900 nm, thus providing
the improved sensitivity in the NIR region (i.e., stronger PA signal, higher signal-to-noise
ratio, greater field-of-view) [88]. Indeed, in the study by Zhou [89] et al., it was shown
that polyethylene glycol (PEG)-coated copper(II) sulfide nanoparticles (PEG-CuS NPs)
(peak absorption of 1064 nm) could be successfully employed both as a contrast agent for
in vivo imaging of 4T1 breast tumor vasculature and as a mediator for photothermolysis
of cancer cells. However, due to the intrinsic dipole–dipole interactions among Cu-based
particles, synthesis of size-tunable, biocompatible, and colloidally stable suspension of
particles remains a challenge. To overcome this problem Ding [90] et al. proposed the
aqueous synthesis of PEGylated copper sulfide particles with controllable size between
3 and 7 nm. Subsequent preclinical studies demonstrated that particles, particularly of
less than 5 nm, had a higher tumor-imaging potential. Another approach could be based
on application of tumor microenvironment-sensitive nanoparticles as was proposed in
the work of Wang et al. [91]. The authors developed iron-copper co-doped polyaniline
nanoparticles (Fe-Cu@PANI) which upon glutathione (GSH) redox reaction could shift in
the absorption spectrum from the visible to the NIR. The etching of Fe-Cu@PANI resulted
both in photoacoustic imaging of tumors and efficient photothermal therapy. In recent re-
search by Bindra [92] et al., the authors synthesized a self-assembled nanosystem (SCP-CS)
which consisted of a semiconducting polymer (SCP) and encapsulated ultrasmall CuS (CS)
nanoparticles. This nanosystem demonstrated not only an improved PA-imaging ability
but also significant tumor growth inhibition due to the enhanced production of ROS.

In PET apart from traditionally employed positron emitters [64Cu]-based NPs were
also shown as an efficient radiotracer for tumor diagnostics [93,94]. Thus, Zhou [94] et al. in
the U87 human glioblastoma xenograft model demonstrated that a novel class of chelator-
free [64Cu]CuS nanoparticles (NPs) (PEG-[64Cu]CuS NPs) could effectively target the
tumor cells providing a potential for image-guided PTA therapy. In a more recent study,
more complex indium- and copper-based metal-phenolic nanoparticles (MPNs) (labeled
with 111In and 64Cu) were proposed for in vivo multimodal PET/SPECT/CT imaging [95].

Among other applications of Cu-based NPs is their use as a chemotherapeutic drug de-
livery system. Recently, Zhang [96] et al. proposed hybrid hollow mesoporous organosilica
nanoparticles (HMONs) that consisted of ultrasmall photothermal CuS particles and disul-
firam (DSF). Upon near-infrared (NIR) irradiation, released Cu2+ ions from nanoparticles
converted the nontoxic DSF into a highly cytotoxic diethyldithiocarbamate (DTC)-copper
complex that inhibited tumor growth. In another study, thermo-responsive copper sulfide
(CuS) was employed to deliver CRISPR-Cas9 ribonucleoprotein (RNP) and doxorubicin for
tumor combination therapy consisting of chemotherapy, gene therapy, and photothermal
therapy [97].

6. Clinical Application of Copper-Based Nanoparticles in Oncology

Although some breakthroughs have been made in the treatment of malignant tu-
mors [98,99], therapies, such as chemotherapy and radiotherapy, have become the most
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commonly used clinical treatments for tumors. However, the recurrence rate, drug resis-
tance, quality of life, and other issues of cancer patients are still a global challenge [100]. In
recent years, nanomaterials can effectively deliver drugs to specific targets, protect blood
circulation drugs from endogenous enzymes, extend the half-life of drugs, and have shown
great potential in tumor treatment [101,102].

Breast cancer (BC) is the second most common female cancer in the world, second
only to lung cancer [99]. Studies have shown that copper-based nanomaterials have broad
application prospects in the treatment of BC. For example, Ahamed et al. [103] found that
copper ferrite (CuFe2O4) nanoparticles (NPs) added to the culture of human breast cancer
MCF-7 cells can cause intracellular oxidation stress response, exerting anti-cancer effects,
specifically manifested in the production of ROS and the consumption of glutathione (GSH)
(Figure 3). Furthermore, Rajagopal et al. [104] found that copper nanoparticles (Wt-CuNPs)
have obvious cytotoxic effects on MCF-7 cells. The specific mechanism is mainly due to the
release of copper ions from the nanoparticles and the binding of copper ions to tumor cell
DNA, causing DNA damage and the resulting apoptotic cell death.
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Figure 3. Copper ferrite NP-induced oxidative stress in MCF-7. Cells were exposed to copper ferrite
NPs at the dosages of 0, 5, 25, and 100 g/mL for 24 h. At the end of exposure, ROS and GSH
levels were determined, as described in materials and methods. (A) Percentage change in ROS
level. (B) Fluorescence microscopy image of ROS generation. (C) GSH level. Data represented
are mean ± SD of three identical experiments made in three replicates. * Significant difference as
compared to control (p < 0.05).

Copper-based nanomaterials have also achieved good results in the treatment of
esophageal cancer. Wang et al. [105] covered the silica coating on the Cu9S5 nanoparticles to
form Cu9S5@MS core-shell nanostructures and added Cu9S5@MS core-shell nanostructures
to human esophageal squamous carcinoma Eca109 and TE8 cells. After co-cultivation and
treatment with NIR, it was found that Cu9S5@MS + NIR performs active anticancer activity
against the EC109 and TE8 cancer cell lines by cell cycle arrest (Figure 4).

Furthermore, Xu et al. [106] optimized the concentration of disulfiram and Cu2+ ion
for inhibiting esophageal cancer cells and loaded them in hyaluronic acid (HA)/polyethy-
leneimine (PEI) nanoparticles with specific scales to obtain NP-HPDCu2+ nanoparticles to
improve the effectiveness and targeting of the drug. In vitro experiments proved that NP-
HPDCu2+ nanomaterials can significantly promote the occurrence of Eca109 cell apoptosis
and inhibit the migration and invasion of Eca109 (Figure 5). At the same time, the nude
mouse tumor model proves that NP-HPDCu2+ nanomaterials can reduce the tumor volume
and keep the weight of nude mice stable. The results of tumor tissue immunohistochem-
istry, immunofluorescence staining, and western blotting also showed that NP-HPDCu2+
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nanomaterials can promote apoptosis and inhibit proliferation of esophageal squamous
cell carcinoma.
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Figure 5. (A) Western blot of CD44 expressed on the Het-1A, L929, Eca109, and TE1 (mean ± SD,
n = 3); (B) Fluorescence images of Het-1A, L929, Eca109, and TE1 stained with FITC-labeled NP-
HPDCu2+ (FITC-NP, green color), PI (apoptosis marker, red color) and DAPI (nucleus marker, blue
color); (C) mechanism diagram of targeted killing tumor cells by NP-HPDCu2+ nanoparticle.
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Lung cancer is the malignant tumor with the highest mortality rate in the world,
and non-small cell lung cancer is the most common pathological type in clinic [107,108].
Some researchers have found that copper-based nanomaterials have shown great potential
in the treatment of NSCLC. Naatz et al. [109] constructed a new type of nanomaterial,
Fe-doped CuO nanomaterial, which can use doped Fe to control the dissolution kinetics
of copper-based nanomaterials. Using mouse lung squamous cell KLN-205 to construct a
tumor-bearing nude mouse model by regulating the release of Cu2+, the local long-term
drug concentration can be maintained, and the occurrence of drug resistance can be reduced.
Additionally, these particles can also trigger a systemic anti-cancer immune response,
promote the generation of ROS, and increase the rate of tumor cell death, which shows that
CuO nanomaterials also have broad prospects for anti-cancer applications (Figure 6). In
addition, Kalaiarasi et al. [110] reported that in A549 cells, the anti-cancer effect of CuO
copper-based nanomaterials is related to the inhibition of histone deacetylase (HDACs)
expression. Specifically, CuO copper-based nanomaterials have a strong inhibitory effect on
different types of HDACs, can down-regulate the expression of oncogenes and up-regulate
the expression of tumor suppressor genes, and induce apoptosis of cancer cells by activating
the caspase cascade pathway to exert anti-cancer effects.
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In recent years, with the continuous in-depth research of nanomaterials compared with
traditional antitumor treatments, nanomaterials have been used in more and more clinical
anticancer applications, showing great development potential [111]. For example, in our
previous research, we found that some nanoparticles, such as superparamagnetic iron oxide
nanoparticles (SPIONs), high-Z gold nanoparticles following intratumoral injection can
provide a high local concentration of the agent, reduction of the particle clearance (i.e., renal
or hepatic clearance) that increases the bioavailability of nanoparticles and has the effect of
radiosensitizer in cancer radiotherapy, which can be used for long-term local anti-tumor
therapy [112,113]. As an ideal anti-tumor drug candidate, copper-based nanomaterials
have the following advantages: (i) compared with other metals, copper is cheap and rich
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in content [114], (ii) copper can induce reactive oxygen species (ROS)-mediated oxida-
tive stress and promote tumor cell apoptosis [115–117], (iii) it has good biocompatibility,
biodegradability, antibacterial properties, and selective cytotoxicity to cancer cells [118],
and (iv) copper-based nanomaterials have less toxic effects on normal cells, fewer side
effects, and are safer and more reliable [119]. Thus, copper-based nanomaterials have
attracted more and more attention and have become the current research hotspot. At
the same time, the emergence of copper-based nanomaterials has brought dawn to the
treatment of various tumors [120].

However, copper-based nanomaterials also have limitations. For example, the produc-
tion process of copper-based nanomaterials uses physical and chemical methods that are
harmful to the environment and the human body [121]. Additionally, the instability and
susceptibility to oxidation of copper-based nanomaterials under physiological conditions
may also hinder its anti-tumor effect and reliability [122]. Furthermore, the biological safety
of copper-based nanomaterials still requires further cell and molecular studies to avoid any
impact on health, since Fahmy et al. [123] found that copper/copper oxide nanoparticles
showed cytotoxicity to normal human lung WI-38 cells, resulting in the production of
reactive oxygen species and DNA damage and inhibiting the growth and proliferation
of WI-38 cells. The stability of copper nanoparticles is also one of the major concerns as
copper tends to aggregate to the proteins, specifically cysteine and methionine residues.
One work also found a dependency between stability and pH value [124]. However, using
green synthesis, the authors successfully designed NPs which are mostly stable at various
pH levels.

In short, copper-based nanomaterials are currently ideal anti-tumor drug candidates.
With the continuous development of nanomaterials research, it will help provide better
cancer treatment strategies in the future.

7. The Combination of Nanoparticles with Other Treatment Modalities

Based on the biological effects of copper and the physical and chemical properties of
copper nanoparticles, their applications in the biomedical field mainly include externally
triggered nanotherapies (photothermal therapy), drug delivery, antimicrobial applications,
tissue regeneration, bioimaging, and bioeffects/biosafety. Therefore, it is reasonable to
be expected that the construction of Cu-based biomaterials will have a unique integrated
diagnosis and treatment function in clinical medicine. However, due to the complexity
of tumors, such as the specific microenvironment and tumor metastasis, it is difficult to
eradicate tumors completely through monotherapy alone. Therefore, the development of
unique treatment modalities with multiple synergistic therapeutic performance has high
prospects for improving therapeutic efficacy. Therefore, rational design of optimal drug
combinations is important to achieve optimal synergistic therapeutic effects. Based on this,
several unique multifunctional nanosystems involving copper have been constructed to
jointly generate multiple nanotherapeutics [125].

Copper chalcogenides (Cu2−xE, E:S, Se, Te, 0 ≤ x ≤ 1) have been widely explored
in photon-triggered disease therapy, such as photoacoustic imaging and photothermal
hyperthermia. With stoichiometric ratios (Cu2−xS), deficient cuprous sulfide exhibits
stoichiometric-dependent localized surface plasmon resonance (LSPR) absorption in the
near-infrared range and photothermal conversion [126]. The integration of magnetic Fe3O4
nanoparticles exerted a magnetic targeting function to enhance tumor accumulation. Im-
portantly, the photonic response of these Fe3O4@CuS composite nanoparticles in the second
NIR biological window (1064 nm) achieves higher tissue penetration ability compared to
the laser activation of the first NIR biological window. Thus, a higher tumor suppression
rate was achieved with no further recurrence (808 nm). In addition to the photothermal
conversion efficiency (25.7%) of hydrophilic plate-like Cu9S5 nanocrystals at 980 nm [127],
the CuS superstructure was exemplified to respond to external 980 nm laser activation for
photothermal conversion and subsequent cancer ablation [128]. The cysteine-coated CuS
nanoparticles were also irradiated with a 980 nm laser with a high photothermal conversion
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efficiency of 38.0%, efficiently inhibiting tumor growth [129]. Furthermore, encapsulation
of CuS nanoparticles into zeolite imidazole framework 8 (ZIF-8) resulted in NIR-induced
dissociation of ZIF-8 to release loaded chemotherapeutics, aiming to achieve synergistic
photothermal ablation and NIR-triggered chemotherapy [130]. Doping iron (Fe3+) can tune
the vacancies of Cu2−xSe nanoparticles to control NIR absorption, which also enables these
semiconductors to have MR-imaging properties [131].

To improve the photothermal conversion efficiency, Cu2−xS and Ag2S were integrated
into one system by producing Cu-Ag2S/PVP nanoparticles with a high photothermal
conversion efficiency of 58.2% under 808 nm laser irradiation, which is much higher than
that of Cu2−xS/PVP nanoparticles (27.1%) [132]. The rational integration of plasmonic
Au nanoparticles and plasmonic Cu2−xS semiconductors into one matrix can enhance the
photothermal properties of Au or Cu2−xS components. The coupled LSPR properties of
Au and Cu2−xS can be maximized by designing Au@Cu2−xS core/shell nanoparticles to
enhance the PTT efficacy. Ji et al. synthesized Au@CuS nanoparticles and performed the
following cation exchange between Cu+ and CdS shells, resulting in Au@Cu2−xS nanos-
tructures [133], which can be formed as nanoparticles or nanorods. The corresponding
photothermal conversion efficiencies are calculated to be 59% at 808 nm and 43% at 1064
nm, which rapidly increases the ambient temperature of the Au@Cu2−xS nanorod aqueous
solution. In particular, the design of core/shell Au@Cu2−xS is more favorable compared
to the simple mixture of Au nanorods and Cu2−xS nanoparticles for photothermal con-
version. This core/shell design with improved photothermal performance also induced
more HeLa cell death compared to the same concentration of Cu2−xS. The Au-Cu9S5 plas-
monic hybrid nanosystem was established, which enhanced the LSPR of Cu9S5 through
the coupling effect of LSPR based on the collective vibration of electrons and holes [134].
This Au-Cu9S5 hybrid nanosystem exhibits an absorption cross-section enhancement of
1.3 × 108 m−1 cm−1 and a high photothermal conduction efficiency of 37% for photother-
mal ablation of tumor tissue. According to the plasmonic coupling effect between core
and shell, spherical Au@Cu2−xS, Au@Cu2−xS, and rod-shaped Au@Cu2-xS superparticles
were synthesized for photothermal ablation of tumors (4T1 tumor model). It has X-ray-
computed, tomography-imaging capabilities because of the presence of Au composition
with a large atomic number and an X-ray attenuation coefficient (5.16 cm−2 kg−1) [135].

Photothermal therapy exposes materials with the photothermal conversion ability to
near-infrared light. These materials can convert the absorbed light energy into thermal
energy to kill tumors, showing excellent local tumor treatment effects, but they are less
effective for metastatic tumors. The combination of photothermal therapy and radiotherapy
in tumor treatment can achieve a synergistic effect. Thus, Zhou et al. [89] synthesized PEG-
[64Cu]CuS NPs based on a single radioactive copper sulfide nanoparticle. The study
demonstrated that inhibition of tumor growth was significantly high when both methods,
radiotherapy and hyperthermia, were employed.

Photothermal therapy (PTT) mainly uses photothermal materials accumulated at the
tumor site, which can convert the absorbed light energy into heat energy (above 45 ◦C) un-
der near-infrared irradiation. Combining tumor photothermal therapy and immunotherapy
could further improve the therapeutic potency of PTT [136]. Another approach could be
based on the combination of PTT with chemotherapy. Thus, Wu et al. [137] demonstrated
that encapsulation of CuS nanoparticles into the zeolite imidazole framework 8 (ZIF-8)
resulted in NIR-induced dissociation of ZIF-8 to release loaded chemotherapeutics, which
in turn provided synergistic photothermal ablation and NIR-triggered chemotherapy.

The tumor microenvironment is usually characterized by low pH [138], altered redox
states [139], hypoxia [140], and expression of particular enzymes that could be employed
for the development of stimuli-responsive nanoparticles. Based on the fact that the hy-
drogen sulfide (H2S)-producing enzyme of cystathionine-β-synthase (CBS) is upregulated
in colon cancer, H2S concentrations in tumors reach approximately 0.3 to 3.4 mmol·L−1.
Therefore, using this overexpressed endogenous H2S to convert cuprous oxide (Cu2O) to
copper sulfide in situ can activate PA imaging and photothermal tumor ablation [141]. It is
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exemplified that the use of S-adenosyl-1-methionine (SAM) as an allosteric CBS activator
accelerates the in situ reaction between H2S and Cu2O, resulting in significantly enhanced
PA-imaging signal and photothermal effect. In contrast, the use of aminooxyacetic acid
(AOAA) as a CBS inhibitor reduced the production of H2S and subsequently the conversion
of Cu2O to copper sulfide, showing no significant PA signal and negligible temperature
change in tumors. However, the photothermal conversion efficiency after high-dose cop-
per sulfide conversion is low, and the ideal photon therapy effect cannot be obtained.
To address this critical issue, based on the LSPR-coupling effect between noble metals
and plasmonic semiconductors, Tao et al. constructed Au@Cu2O plasmonic hybrids to
enhance in situ H2S-triggered post-conversion photothermal performance [142]. Similar
to the conversion of Cu2O to Cu9S8, tumor-accumulated Au@Cu2O nanoparticles were
also converted into Au@Cu9S8 nanoagents to achieve PA-enhanced contrast agents and
photothermal tumor ablation by increasing tumor temperature. The LSPR-coupling effect
induces nearly 2.1-fold stronger NIR absorption and 1.2-fold higher photothermal conver-
sion efficiency, enabling the utilization of low nanoparticle doses with desirable therapeutic
properties. These two paradigms provide another strategy for realizing photothermal
hyperthermia involving copper-based nanoagents by in situ generation of copper-based
nanoagents with unique photothermal properties. Cheng Y. et al. [143] took advantage of
the ordered large-pore structure and easily chemically modified the property of DLMSNs,
the copper sulfide (CuS) nanoparticles with high photothermal conversion efficiency. A
homogenous cancer cell membrane was coated on the surfaces of these DLMSNs, followed
by conjugation with the anti-PD-1 peptide. The thus-obtained AM@DLMSN@CuS/R848
was applied to holistically treat metastatic TNBC in vitro and in vivo. The data showed
that AM@DLMSN@CuS/R848 had a high TNBC-targeting ability and induced efficient
photothermal ablation on primary TNBC tumors under 980 nm laser irradiation. Tumor
antigens thus generated and increasingly released R848 by response to the photothermal
effect, combined with AUNP-12 detached from AM@DLMSN@CuS/R848 in the weakly
acidic tumor microenvironment and synergistically exerted an anti-tumor effect, thus
preventing TNBC recurrence and metastasis.

Table 1 summarizes the above information presenting major classes of therapeutics
and some examples for detail consideration. The unique features of copper allow to create
a wide spectrum of various nanostructures with great diversity of their applications.

Table 1. Copper-based compounds and nanoparticles with various applications and mechanisms
of action.

Copper-Based Compound Mechanism of Action

Diagnostic
tool

64-CuCl2 [64]
Contrast agent in PET/MRI scanningCombination of SPIONs and Cu(II) [62]

Gold-copper alloyed NPs [63]

Therapeutic
agent

Schiff base copper (II) complexes [66] Activation of extrinsic or intrinsic
apoptotic pathways

Copper-based nanoparticles [96,103] Copper ions release, oxidative stress,
DNA damage

Thiosemicarbazones copper (II)
complex [72] Topoisomerase inhibition

Polypyridyl-Schiff-base copper
complex [74]

Targets endoplasmic reticulum leading
to immunogenic cell death

G-quadruplex-targeting copper
complex [77]

Rapid reduction of telomeres in
cancer cells

Ferrocenyl terpyridine copper
complexes [78]

Targets mitochondria, causes
mtDNA damage
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Table 1. Cont.

Copper-Based Compound Mechanism of Action

Combined
approach

Copper chalcogenides [126] Photothermal ablation and
NIR-triggered chemotherapyAlloyed CuAg or CuAu NPs [132,133]

PEG-[64Cu]CuS NPs [94]
Combined radiotherapy and

hyperthermia against metastatic
tumor cells

Copper-doped iron NPs [109,131] Magnetic guidance and copper release
with subsequent oxidative stress

8. Conclusions

Copper is an essential trace element in cell metabolism with distinct features. Participa-
tion of copper in oxidation–reduction reactions has an important impact on cell metabolism,
survival, and growth. Free copper ions could exert a cytotoxic effect; however, most of the
copper is bound to the enzymes, metallochaperones, and metallothioneins. These proteins,
despite their direct function, could influence functionality of other proteins affecting cell sig-
naling and gene expression, interfering in the anti-cancer chemotherapies. Recent studies
demonstrate that copper-based nanocarriers due to their unique physio-chemical properties
could be efficiently employed for tumor theranostics as a monotherapeutic approach or in
combination with other treatment modalities. Constant development and modification of
existing systems have great potential in clinic. Some limitations, which include ROS gener-
ation and free ion emergence, should be considered. However, an understanding of the
underlying molecular regulation of copper intracellular distribution and metabolism will
help to improve the current development of copper-based therapeutics and nanostructures
for further efficient clinical application.
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aqua (N-salicylidene-methylester-L-glutamato) Cu (II) monohydrate. Z. Kristallogr. Cryst. Mater. 2004, 219, 112–116. [CrossRef]

68. Nakao, Y.; Sakurai, K.I.; Nakahara, A. Copper (II) chelates of Schiff bases derived from salicylaldehyde and various α-amino
acids. Bull. Chem. Soc. Jpn. 1967, 40, 1536–1538. [CrossRef]
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