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Abstract

Objectives: The quality of blood values analyzed from survey-collected dried

blood spot (DBS) samples is affected by fieldwork conditions, particularly spot

size. We offer an image-based algorithm that accurately measures the area of

field-collected DBS and we investigate the impact of spot size on the analyzed

blood marker values.

Methods: SHARE, a pan-European study, collected 24 000 DBS samples in

12 countries in its sixth wave. Our new algorithm uses photographs of the DBS

samples to calculate the number of pixels of the blood-covered area to measure

the spot sizes accurately. We ran regression models to examine the association

of spot size and seven DBS analytes. We then compared the application of our

new spot-size measures to common spot-size estimation.

Results: Using automated spot-size measurement, we found that spot size has

a significant effect on all markers. Smaller spots are associated with lower

measured levels, except for HbA1c, for which we observe a negative effect. Our

precisely measured spot sizes explain substantially more variance of DBS ana-

lytes compared to commonly used spot-size estimation.

Conclusion: The new algorithm accurately measures the size of field-collected

DBS in an automated way. This methodology can be applied to surveys even

with very large numbers of observations. The measured spot sizes improve the

accuracy of conversion formulae that translate blood marker values derived

from DBS into venous blood values. The significance of the spot-size effects on

biomarkers in DBS should also incentivize the improvement of fieldwork

training and monitoring.
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1 | INTRODUCTION

Internationally harmonized social surveys with a broad
set of social, economic, psychological, and health charac-
teristics of respondents have an important place in health
research since they put health outcomes in the context of
country-specific cultural and institutional environments,
among them the coverage and efficacy of health care sys-
tems. One example is the Survey of Health, Ageing and
Retirement in Europe (SHARE), a research infrastructure
for studying the effects of health, social, economic, and
environmental policies over the life-course of European
citizens and beyond. From 2004 until today, 530 000 in-
depth interviews with 140 000 people aged 50 years or
older from 28 European countries and Israel have been
conducted (Börsch-Supan et al., 2013; Börsch-
Supan, 2021). A recent development is to improve the
health measurement in such international social surveys
by including blood-based biomarkers in order to over-
come the subjectivity of self-assessed health measures,
which tend to generate country-specific differences
purely due to differential response behavior (Holland &
Wainer, 1993).

Blood biomarkers are measured conventionally in
serum or plasma obtained from venous blood samples
(VBS). For large-scale international surveys, however,
taking VBS is often prohibitively expensive and adminis-
tratively difficult since ethical and data protection
requirements vary greatly across countries. Hence, such
surveys rely increasingly on minimally invasive micro-
sampling methods. The collection of dried blood spots
(DBS) is the most well-known among them (Brindle
et al., 2010; Crimmins et al., 2014; McDade, 2014;
McDade et al., 2007; Weir, 2008). In its Wave 6 in 2015,
SHARE collected analyzable DBS samples with up to five
blood spots from each of the about 24 000 respondents in
12 SHARE countries at their place of residence in order
to complement self-reported with objective health data.

DBS samples enable the collection of a few drops
of whole blood from a simple finger prick in a non-
clinical environment, performed by well-trained inter-
viewers or through self-administration by the respondent
(Edelbroek et al., 2009). The blood is applied to filter
paper for drying, whereupon DBS can be shipped under
ambient conditions and can be bio-banked for storage
and retrospective analyses. A non-volumetric blood sam-
ple (a single hanging drop of blood) is applied to the filter
paper. For subsequent analyses, though, a volumetric
amount of blood can be derived from a fully saturated
portion of the DBS by punching a disc of fixed diameter,
known as a punch (Freeman et al., 2018; Hannon &
Therrell, 2014; Lim, 2018; McDade, 2014; McDade
et al., 2007).

Despite these advantages, DBS have their own
demands. The small quantities of blood collected require
highly sensitive analytical instrumentation and conver-
sion of measurement to plasma or serum values (stan-
dard equivalents). Standard procedures for DBS
collection have been originally developed for newborn
screening usually performed in clinics (Mei et al., 2010;
Li & Lee, 2014; Freeman et al., 2018). In a non-clinical
setting like a population survey, DBS are inevitably
exposed to varying fieldwork conditions such as outside
temperature, humidity, and shipping time (Adam
et al., 2011; Hannon et al., 2013; Parsons et al., 2020). In
addition, sample quality may be affected by shortened
drying times, missing humidity protection, or collection
of smaller than optimal blood volumes. In fact, of the
more than 60 000 blood spots collected in SHARE, more
than 57% had a diameter of less than 0.7 cm, which is
considered suboptimal for chemical analysis, and almost
40% below 0.6 cm. There are many reasons, why SHARE
and other surveys (e.g., Crimmins et al., 2020; Peck
et al., 2009) experienced difficulties in collecting suffi-
ciently large blood spots by the interviewers. A leading
explanation is that interviewers did not wait until a large
enough spot had formed and fallen on the filter card, but
deposited a smaller blood volume still on the finger. This
is particularly relevant for large population surveys
where data collection is outsourced to national survey
agencies, which employ lay interviewers that are trained
to take DBS but cannot be monitored perfectly in the
field.

In order to assess the influence of field conditions on
biomarker values, SHARE conducted a post-field valida-
tion experiment with a non-SHARE donor sample, simu-
lating the identified fieldwork conditions in the
laboratory, creating a data set with 3420 different out-
comes. (Börsch-Supan et al., 2021). The results of the lab-
oratory experiment showed that the environmental
factors, as well as sampling differences, influence the
quality of the DBS and the therein-measured biomarker
levels, although not all analytes suffer in the same way
from these conditions. Moreover, we found that donor
characteristics had no discernable influence on the rela-
tionship between environmental factors and biomarker
values. These results are in accordance with the findings
of the Health and Retirement Study (HRS; e.g., Crimmins
et al., 2020) and other studies (Edelbroek et al., 2009;
Freeman et al., 2018; Lim, 2018). A major finding of these
experiments was the importance of spot size. Börsch-
Supan et al. (2021) then used the validation results to
generate formulae which convert the DBS values into
venous blood values for a given set of fieldwork condi-
tions (e.g., temperature, humidity protection, spot size).
For these formulae to be applied to the survey-collected
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DBS, information on the fieldwork conditions must be
provided. SHARE had installed various monitoring
mechanisms to this effect (Börsch-Supan et al., 2020).

This study concludes the installation of monitoring
mechanisms by establishing a new algorithm that pre-
cisely measures the blood-covered area of a spot for each
DBS in an automated way. For this approach, we took
advantage of the fact that all SHARE DBS samples
selected for analyses were photographed during the
punching process. This unique approach allows for spot-
size measurement of large amounts of DBS after collec-
tion. Previously published studies measured the applied
blood volume by weighing a punched disc or used radio-
isotopic methods (De Vries et al., 2013; Hewawasam
et al., 2018). Others estimated the diameter of the entire
spot with (electronic) calipers, photographic blood-area
determination (Denniff & Spooner, 2010; Hall et al., 2015;
Moat et al., 2020; Peck et al., 2009; Vu et al., 2011), or
divided the spots into different size categories (Crimmins
et al., 2020). Neither of these methods is suitable for the
spot-size determination of huge amounts of field-collected
DBS in large surveys like SHARE.

We investigate the impact of, and the large variations
in, spot size on the marker-value levels of different bio-
markers assayed from the DBS samples, based on the
about 24 000 field-collected SHARE DBS samples. We
show that spot size is associated with the raw biomarker
values, while controlling for other environmental and
sampling factors. We also compare the exact measures
made by the new algorithm to human-eye estimation,
guided by the preprinted circles on the collection card, by
dichotomization of the spots depending on their sizes.
Based on our findings we conclude that (i) spot size mea-
sures should be considered when working with bio-
marker data derived from fieldwork-collected, smaller
than optimal DBS samples and (ii) an exact measurement
of spot size is superior to mere size estimation.

Spot size matters because the concentration of a
marker may correlate with the size of the entire blood
spot even if the chemical analysis is based on a punch
that has a well-defined volume. One reason is that differ-
ent volumes spread differently across the paper, influenc-
ing the concentration of a marker contained in the
punch. George and Moat (2016) report that the applica-
tion of smaller volumes creates proportionally larger
spots; this results in significantly lower analyses results
for many markers. Due to chromatographic effects, some
markers do not spread evenly across the spot. In particu-
lar, red blood cells (RBC) and associated markers accu-
mulate at the periphery as has been confirmed by several
studies (Cernik, 1974; Moat et al., 2020; Parsons
et al., 2020; El-Hajjar et al., 2007; Holub et al., 2006). The
spreading of the blood is also influenced by the volume

percentage of RBCs, the hematocrit, a variable that can-
not be controlled when collecting DBS on filter paper.
Not all analytes are affected by these issues to the same
degree. Analytes associated with red cells may be less
influenced by hematocrit than are serum analytes
(O'Broin, 1993; Vu et al., 2011). Previous studies assessing
the impact of DBS size on analyte concentrations have
used venous heparin- or EDTA-treated blood, both anti-
coagulants (Moat et al., 2020). When comparing the
results of those experiments to the results based on field-
collected capillary blood, it should be considered that
clotting or other biological factors might influence the
spreading of blood components (O'Broin, 1993). More-
over, the analysis result of a particular blood marker may
vary depending on the punch site, i.e., whether the punch
was taken in the center or at the perimeter of a blood
spot (chromatographic effect). Perimeter punches tend to
have higher analysis values for some analytes (Moat
et al., 2020; Parsons et al., 2020).

2 | DATA AND METHODS

We use a dataset that includes interview data from
SHARE Wave 6, information on fieldwork conditions
and sample quality related to respondent-matched DBS
samples collected during the same wave, and biomarker
values derived from these DBS samples. Among sample
quality measures, the size of blood spots used for labora-
tory analysis plays an important role. Our new algorithm
to measure them is described in Section 2.4, followed by
a subsection on our statistical methods.

2.1 | Respondent characteristics from
interview data

We collected about 24 000 blood samples in 12 out of the
20 countries participating in SHARE Wave 6. Samples
were probability-based and representative of the popula-
tion age 50 and older. Countries were selected by ease of
ethical approval. All respondents without medical obsta-
cles were asked to participate in the blood collection.
Consent rate was 77%, ranging from 39% in Greece and
68% in Italy on the low end to 89% in Slovenia and 91%
in Sweden on the high end. This resulted in the following
country samples: Belgium (3690), Denmark (2861),
Estonia (3683), France (578), Germany (3147), Greece
(807), Israel (1073), Italy (2175), Slovenia (2242), Spain
(1827), Sweden (3013), and Switzerland (2123). Sampling
process and data cleaning steps are described in detail in
Börsch-Supan et al. (2020) and http://www.share-project.
org/data-documentation/waves-overview/wave-6.html.
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The data set includes the following respondent char-
acteristics from the SHARE Wave 6 interview data
(Börsch-Supan et al., 2013; Börsch-Supan, 2020; Malter &
Börsch-Supan, 2017): Age at the interview measured in
years; gender as a dummy for female sex; body mass
index (BMI, kg/m2) calculated as the ratio from self-
reported weight to height; education as a categorical vari-
able with levels high (aggregated ISCED 1997 levels 5–6),
middle (ISCED 1997 3–4), and low (ISCED 1997 0–2).
The respondents' health status is included as self-reported
general health, again with levels high (excellent, very
good), middle (good), and low (fair, poor). For both vari-
ables low is coded as 1, while medium and high are
coded as 2 and 3, respectively. Additionally, the dataset
includes a country indicator.

2.2 | DBS sample collection, sample
quality, and fieldwork conditions

We used harmonized collection protocols and DBS collec-
tion kits, thoroughly trained our interviewers for DBS
collection, and implemented interviewer and sample
monitoring throughout the fieldwork. SHARE DBS filter
cards (Ahlstrom 226 filter paper) provided five pre-
printed circles of 1 cm in diameter for blood-droplet col-
lection. The interviewers were instructed to fill up as
many circles as possible. Respondents were not asked to
be fasted. All DBS samples were sent to the SHARE bio-
bank in Odense, Denmark, where they were visually
inspected. Number, size, and quality of the blood spots
were documented before storage in freezers at �23�C
until analyzed. The biobank also controlled for, and
reported on, missing desiccant (influencing humidity pro-
tection) and spot discoloration (indicating that a wet DBS
was packaged). Among other impacts on the samples
beyond our control were malfunctioning national postal
systems, with consequences on shipment time, and
unusually high temperatures encountered during ship-
ment. The implementation and monitoring of the DBS
collection in SHARE Wave 6 has been described in detail
in Börsch-Supan et al. (2020). The mean values, standard
deviation, and range for the fieldwork conditions that
were measured during fieldwork are shown in Table 1
followed by a description of the collection process.

Drying time (minutes): Interviewers were instructed
to let the blood sample dry until the end of the interview
but at least 15 min. This followed the protocol that was
used at that time by the HRS (Crimmins et al., 2015). As
an estimation of the drying time, we used the interview
length between the blood spot module, programmed in
computer-assisted personal interviewing (CAPI), and the
end of the interview (or the time until the end of the

interview session if the interview was conducted in more
than one session on several days).

Humidity protection during shipment: The DBS were
shipped in a plastic bag with a sachet containing molecu-
lar sieve as desiccant, which absorbs humidity faster than
Silica gel. The indicator for humidity protection consisted
of two dummy variables: one for a not tightly closed plas-
tic bag containing the DBS sample and one for a missing
desiccant inside the bag. Information on complete or
missing components was registered for each sample on
arrival at the biobank.

Shipment time (days) was measured as the time
between sample collection (date noted on card) and
arrival at the biobank, where the card with the DBS sam-
ple was stored frozen until laboratory analysis.

Outside temperature (�C) was estimated by the inter-
viewer at the time of blood collection. The estimate was
entered into the CAPI. During Wave 6 pretest, we double
checked these estimates by using long-term temperature
trackers and found no substantive deviations (Börsch-
Supan et al., 2020). Since high temperatures were particu-
larly prevalent in Israel, we added long-term temperature
trackers (WarmMark Long Run indicator 31�C up to
168 h) to all DBS collected there.

Spot size (cm2) is not presented in Table 1 as it could
not be measured during fieldwork. Instead, it was deter-
mined from images available for each spot, see Section 2.4
below. As the blood-covered area is proportional to the
volume of blood contained in a DBS, the area of the
blood spot can be used as a proxy for the blood volume.

Implausible values for drying time (234 obs.), ship-
ment time (235 obs.), and outside temperature (183 obs.)
are set to missing.

2.3 | Biomarker analysis

The SHARE DBS samples (Börsch-Supan, 2021) have
been analyzed for 17 biomarkers. Seven routine blood
biomarkers: high-density lipoprotein (HDL), total hemo-
globin (tHb), glycated hemoglobin (HbA1c), total choles-
terol (TC), triglycerides (TG), C-reactive protein (CRP),

TABLE 1 Mean values and range of fieldwork conditions in

SHARE wave 6

Mean (SD) Range

Drying time (min) 22.16 (14.19) 1–83

Shipment time (days) 5.64 (4.55) 1–30

Outside temperature (�C) 13.99 (8.22) 0–35

Open bag (yes/no) 0.11 (0.31) 0–1

Desiccant missing (yes/no) 0.02 (0.13) 0–1
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and Cystatin C (CysC) were analyzed at the Department
of Laboratory Medicine, University of Washington, Seat-
tle, USA. Ten proteins: the cyto-, chemo-, and neurokines
IL-8, IL12/23, IL-16, IL-18, MCP1, and BDNF; the growth
factors EGF and VEGF; and the apolipoproteins ApoE4
and Clusterin (APOJ) were assayed at the Statens Serum
Institut, Copenhagen, Denmark. This paper focuses on
the first seven markers. Laboratory assays were per-
formed according to published techniques as described
previously in Börsch-Supan et al. (2021).

The DBS samples were analyzed in two randomly
drawn batches: The first batch contained about 8000
observations, analyzed in 2018; the second batch with
almost 16 000 observations was analyzed in 2020/21.

For laboratory processing, small circular discs (the
punches) with a given diameter of 3.2 mm are cut out of
a blood spot area, which is completely covered and fully
soaked with blood to ensure a fixed blood volume. A
freely falling blood drop of ca. 50 μl creates a spot of
ca. 1 cm in diameter. In such a DBS, the volume con-
tained in this small cylinder of a punch is calculated to
be 3.2–3.4 μl. Based on CLSI standard, this volume is cal-
culated to be 3.42 μl at 55% hematocrit (Chace et al. 2014
in: Li & Lee, 2014). The punching of all SHARE DBS
samples was performed at Statens Serum Institut. For the
analysis of all 17 SHARE markers, five punches per DBS
sample are necessary. HDL, tHb, HbA1c (together
referred to as A-marker set) can be analyzed from the
same eluate of two punches. One additional punch is nec-
essary for TC, TG, CRP, CysC (the B-marker set). Two
further punches are needed to analyze the cytokine and
other markers (the C-marker set) in a multiplex immuno-
assay. A sample with blood of insufficient quality
(e.g., smeared or overlapping spots) still can be analyzed
for HbA1c from one punch taken from such an otherwise
unsuitable spot. HbA1c is a relative measure, the percent-
age of glycated from total hemoglobin, and should there-
fore be concentration-independent except for variations
of biomarker concentration within the blood spot as
described at the introductory section of this paper.

The amount of blood material (number and size of
the blood spots) contained in a sample restricts the num-
ber of biomarkers that can be analyzed. Not all SHARE
DBS samples contained enough blood material for five
punches and, hence, not all biomarkers could be analyzed
in all samples. We introduced a priority scheme deter-
mining the marker sets to be assayed for each number of
possible punches in a DBS sample (see Table 2). The cho-
sen priority aimed to maximize the number of biomarker
information for each of the marker sets, with a priority
for HbA1c and the biomarkers of the B-marker set.

Since A and C markers need two punches for analy-
sis, they could come from different spots. In these cases,
we used the average size of the two spots. If there was no

suitable spot available for the analysis of all A markers,
we used one punch only and restricted the analysis to
HbA1c, referring to it as A* marker. Knowledge of the
punching scheme is therefore important. For each spot,
the dates and the times of punching are stored in the file
names of the images. It allows us to establish a chrono-
logical order of punches for a sample and to match each
punch (and its size) to the respective marker set.

Mean and standard deviation of the raw DBS values
for the SHARE DBS sample are presented in Table 3.
These raw values are not comparable to standard blood
values derived from routine laboratory assays of venous
blood draws. This has several reasons. First, the raw
values have not been converted to venous standard
values according to the conversion formulae (Börsch-
Supan et al., 2021). Second, they are based on a non-
fasting state, which is particularly important for the inter-
pretation of triglyceride and total cholesterol values. For
TG (76 obs.) and CRP (52 obs.) we removed physiologi-
cally not meaningful values. The rightmost columns
show the intra- and inter-assay variability measured as
coefficient of variation (CV).

2.4 | Automated measurement of
spot size

We developed a new algorithm (AMoSS, Automated
Measurement of Spot Size) that enables us to calculate
the spot size of each DBS by an automated approach for
large sets of images. In addition, the algorithm counts the
number of punches on each spot and for each sample.
The algorithm used the punching scheme (presented in
Table 2) to link every punch uniquely, and thus the spot
and calculated spot size with the corresponding marker
set for which the punch was analyzed in the laboratory.

For the measurement of spot size, we used images
that have been taken from each spot immediately before
punching the small discs for laboratory analysis (semi-
automated robot punching system Panthera Puncher
9, Perkin Elmer, Waltham, MA, USA. The camera is an
integrated part of the puncher and is located adjacent to
the punch head. It takes photos from above at an almost
perpendicular angle; the deviation from a perfectly right
angle is so small that it can be safely ignored. We did not
control for the angle. Punching—and hence
photographing—is performed from the rear side of the
filter card as this reveals the fully soaked area of a spot.
As some samples needed to be punched from several
spots, several images for one sample may exist. This
amounted to almost 64 000 images for around 24 000
DBS samples. We used the images to establish the algo-
rithm that precisely measures the pixels of the blood-
covered area of the spots and counts the number of
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punches on the spot that are virtually marked in color
(green) by the camera of the punching machine (see
Figure 1).

AMoSS is programmed in R (R Core Team, 2020),
using “EBImage” (Pau et al., 2010) for image manipula-
tion. The procedure that was applied to AMoSS is
described in detail in Figure 1. All functions used within
the algorithm are automatically executed on the data.
AMoSS needs the path to the folder with the stored
images of the spots to use as input. The output is a data-
set with the image ID, the size of the spots, and the num-
ber of punches, both for each spot and for the sample.

In order to count the number of pixels of each spot,
we convert the images to raster objects. Raster objects
save the data in pixels rather than arrays, as is the case
for images. The size of the spots is calculated by the num-
ber of black pixels in relation to the known total number
of pixels in the image.

spot size¼ black pixels
total pixels

� image area

AMoSS provides the exact area of the DBS in the images
(in cm2).

The algorithm detects if the image area does not cover
the entire spot. This is tested before the previously

described algorithm is applied. For this, we use the
unprocessed black and white images. We apply a median
filter to remove noise outside the spot area. We then use
the fill function. If the black spot is fully surrounded by
white background, then the image area covers the entire
spot and we fill the whole spot with white color. How-
ever, if the spot touches the edge of the image, it remains
visible in its black color. We then count the objects in the
image. If the spot has been turned white, the white back-
ground remains the only object on the image. Otherwise
more than one object remains in the image. Such an
image is then cropped again with an aspect ratio that is
sufficiently large to cover the entire spot. Finally, spot
size is determined according to the larger dimensions of
the image.

To determine the number of punches in each DBS,
AMoSS uses the original images showing the punches
marked in green. As we know the diameter of one punch
and the total number of pixels in the image, we can cal-
culate that a single punch contains 600 pixels. Again, we
convert the images to raster objects. Since all pixels in the
green punching outline share the same color value, we
can determine the total number of green pixels in the
image. We divide the total number of green pixels by
600 to obtain the number of punches for each spot in the
sample.

TABLE 2 Priority scheme for DBS sample punching

Possible # punches per DBS sample Punch 1 Punch 2 Punch 3 Punch 4 Punch 5

5 (and more) C C A A B

4 C C A* B

3 A A B

2 A* B

1 B or A* (depending on spot quality)

Note: For each quantity of possible punches in a sample, punches for a fixed choice of marker sets have been made in a fixed order; A, B, C refer to the marker
sets described in the text, A* refers to a single punch derived from an otherwise unsuitable spot, which is only analyzed for HbA1c.
Abbreviation: DBS, dried blood spot.

TABLE 3 Mean values and range of biomarkers based on DBS in SHARE wave 6

Observations Mean (standard deviation) Range Intra-assay CV (%) Inter-assay CV (%)

HDL cholesterol (mg/dl) 14 719 100.11 (23.66) 15–234 7.41 11.54

Total hemoglobin (g/dl) 14 719 13.50 (2.36) 5.3–25.9 5.16 7.36

HbA1c (%) 14 090 6.59 (0.79) 4.2–16.35 1.32 2.39

Total cholesterol (mg/dl) 22 760 312.47 (78.59) 2.0–718 6.18 8.88

Triglycerides (mg/dl) 22 611 229.31 (109.12) 40–996 5.30 13.70

C-reactive protein (mg/L) 22 381 1.82 (3.64) 0–49.98 4.19 11.88

Cystatin C (mg/L) 22 760 1.08 (0.35) 0.25–4.78 3.67 7.04

Note: Raw DBS values before conversion to standard venous equivalents.
Abbreviation: DBS, dried blood spot.
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2.5 | Statistical analysis

We ran OLS-regressions using robust standard errors to
assess the influence of fieldwork conditions and sample
quality, especially spot size, on biomarker values. The
raw values of the seven biomarkers (Table 3) were used
as dependent variables. As independent variables, we

used the fieldwork conditions described in Section 2.2.
We controlled for several respondent characteristics in
order to separate biomedical effects depending on age,
sex, BMI, education, and self-reported health (see
Section 2.1). We included a country indicator to
account for unobservable country heterogeneity. Obser-
vations with missing values were excluded from our

1. Prior to applying the algorithm, all images are
cropped to the same format. In order to calculate the
exact spot size, we need to know the length of the
edges of the images. Using the known diameter of one
punch (3.2 mm), we calculate an image area of 1.4971
cm². We also know the total number of pixels in the
image is 131x131. This informa�on is necessary to be
able to determine the propor�on of area covered by
the DBS.

2. To determine the spot area, a second set of images
is generated conver�ng the colored images to black
and white. Thus, it is easier to remove noise from the
images and erase any marks from the spot area. A�er
conversion, only the outlines and number of punches
remain on the otherwise black DBS.

3. For further image manipula�on, we produce the
nega�ve image, which turns the spot white and the
surroundings black.

4. We apply a fill func�on. This func�on fills patches
in an object that are surrounded by pixels with a
certain integer value. This func�on fills all outlines on
the DBS area with white pixels.

5. We remove further noise by smoothing the image
using a median filter. The func�on scans each pixel
and replaces the pixel value by the median of
neighboring pixel values. This removes the outline of
the pre-printed circle on the black background. Any
further noise that could be present on the images is
also removed.

6. In a final step, we convert the images back to the
original color. The resul�ng images show the clean
DBS area in black pixels only and the surroundings in
white.

to applying the algorithm, all images are
to the same format. In order to calculate the
ot size, we need to know the length of the
the images. Using the known diameter of one
2mm), we calculate an image area of 1.4971
also know the total number of pixels in the
131x131. This informa�on is necessary to be
etermine the propor�on of area covered by

2. To determine the spot area, a second set o
is generated conver�ng the colored images
and white. Thus, it is easier to remove noise
images and erase any marks from the spot ar
conversion, only the outlines and number of
remain on the otherwise black DBS.

rther image manipula�on, we produce the
image, which turns the spot white and the
ings black.

4. We apply a fill func�on. This func�on fills
in an object that are surrounded by pixel
certain integer value. This func�on fills all ou
the DBS area with white pixels.

FIGURE 1 Procedure applied for image manipulation using automated measurement of spot size
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analysis. The number of observations included in each
regression varies depending on the biomarker (see
Table 3). Since the two batches of observations were
chemically analyzed in different years (see Section 2.3),
we controlled for the potential impact of storage on the
marker values by a dummy variable indicating the
batch number in all regressions. Statistical analyses
were conducted in Stata (StataCorp., 2015) and R
(R Core Team (2020).

In order to test the explanatory power of spot-size
measurement and emphasize the advantage provided by
AMoSS, we ran different regression models for each
marker. They differ by the measure of spot size. In Model
1, we used the continuous measure calculated by AMoSS.
To accommodate a non-linear relationship between the
biomarker levels and the area, the continuous area mea-
sure entered the regression by a set of cubic splines
(Burden et al., 1997). Following Harrell's (Harrell
Jr., 2001) suggestions, we used five knots placed at the
0.05, 0.275, 0.5, 0.725, and 0.95 quantiles. For Model

2, we built a dichotomized measure that distinguishes
between smaller and larger spots. Following the
approach of the HRS, where 1 cm in diameter is used as
a threshold (Crimmins et al., 2020), we use the corre-
sponding spot area (0.785 cm2) as a threshold. This
results in a share of larger spots of 41% for A markers
and 19% for B markers, respectively. While dichotomiza-
tion in the studies cited by Crimmins et al. (2020) is based
on eyesight, we based the dichotomization of our spot
sizes on the continuous measures calculated by AMoSS.
As a robustness check, we also tested eight different
threshold values roughly corresponding to the diameter
values listed in the first column of Table 5. Finally, Model
3 does not include any spot size information and serves
as baseline comparison to assess the role of spot size in
explaining marker values.

We applied three widespread methods to select the
best fitting model: adjusted R2, Akaike information crite-
rion (AIC, Akaike, 1998), and Vuong test (Vuong, 1989).
The Vuong test is based on the likelihood-ratio principle.

FIGURE 2 Spot size distribution

for the dried blood spot (DBS) collected

in SHARE Wave 6 by number of

punches. Figure shows distribution of

spot-size areas for the DBS depending

on the number of punches that could be

obtained from each spot. “Total” shows
the distribution of sizes for all spots in

the sample.

TABLE 4 Mean values and range of spot size in SHARE wave 6

Diameter (cm) Area (cm2)

N Mean (SD) Median Range Mean (SD) Median Range

All spots 61.446 0.71 (0.24) 0.66 0.19–1.63 0.44 (0.31) 0.34 0.03–2.08

A markers 15.059 0.90 (0.28) 0.89 0.32–1.63 0.70 (0.41) 0.63 0.08–2.08

A* markers 6.906 0.52 (0.19) 0.48 0.19–1.22 0.24 (0.19) 0.18 0.03–1.17

B markers 23.086 0.77 (0.27) 0.70 0.31–1.63 0.52 (0.38) 0.39 0.07–2.08

C markers 15.573 0.90 (0.28) 0.91 0.34–1.63 0.70 (0.40) 0.65 0.09–2.08
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It compares two competing models to find the one that is
closest to the true distribution of the data. We can attri-
bute all differences between our models to the spot-size
measures because they are otherwise identical.

3 | RESULTS

Figure 2 shows the distribution of the spot area that was
calculated using AMoSS per each number of punches

FIGURE 3 Effects of spot size on biomarker analytes with 95% confidence interval
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that could be obtained from one DBS. The larger the
spots, the more punches could be collected. For most
DBS spots, only one punch could be taken. We observe
the smallest spots for DBS that yielded only one punch.
The distribution of spot sizes across all spots (“Total” in
Figure 2) is right skewed, which is mainly driven by the
spots with only one punch.

Table 4 provides the mean values, standard deviation
(SD), and range of the spot areas that have been mea-
sured using AMoSS for all markers and separately for A,
A*, B, and C markers, resp. The selection process based
on the punching scheme (Table 2) leads to systematically
lower spot sizes for B markers as compared to A and C
markers, while A* markers are particularly small by
definition.

In Figure 3, we show the effects of the spot size on
the respective biomarker levels as measured by the cubic
splines in Model 1.

The effect of spot size is highly significant for all ana-
lytes and shows non-linear relationships. For HDL and
tHb, we see that larger areas are monotonously associ-
ated with a higher biomarker level. Towards the ends of
the larger area values, the confidence intervals get wider
due to the lower number of observations in this area.
This is true for all markers but to a different extent. The

relationship between spot size and analyte value is
reversed for HbA1c; we see a significant and monotonous
negative association.

The effects show a different pattern for the B-marker
set. We do not find monotonicity but rather oscillations
depending on the spot's size. For small areas up to 0.2–
0.3 cm2, we observe a significantly negative association
for TC, TG, CRP, and CysC. For area values larger than
0.3 cm2, the association is significantly positive. For TG
and CysC, we find a negative association for areas larger
than 1 cm2. However, we again observe wider confidence
intervals for these area values.

Since spot size may have a more intuitive meaning
when measured as a diameter rather than an area or vol-
ume, Table 5 presents the percentage effect of spot size
on analyte values relative to a spot diameter of 1 cm. This
translation is based on the assumption of a perfect circle,
hence area = π=4*diameter squared.

Analyte values are seriously underestimated for small
spot diameters (0.7 cm or less, which encompasses 57.1%
of the DBS collected in SHARE) except for HbA1c, where
analyte values from small spot sizes are overestimated
relative to 1-cm spots. These underestimates are statisti-
cally significant. They are also substantially larger than
the intra-assay variation (Table 3) except for HbA1c. For

TABLE 5 Effect of spot size on analyte values relative to a spot diameter of 1 cm, based on Model 1

Diameter HDL tHb HbA1c TC TG CRP CysC

1.3 2.04%*** 5.63%*** �0.75%*** 1.97%*** 0.29% 4.48% 0.00%

1.2 0.33% 4.23%*** �0.29%* 1.67%*** 0.62% 2.88% 0.44%

1.1 �0.28% 2.46%*** �0.08% 1.11%*** 0.62% 1.34% 0.53%

1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.9 �1.18%*** �3.17%*** 0.09% �2.09%*** �1.74%** 0.62% �1.57%***

0.8 �5.45%*** �6.69%*** 0.46%*** �4.93%*** �4.42%*** 1.44% �4.11%***

0.7 �11.13%*** �10.56%*** 1.19%*** �8.82%*** �7.61%*** 6.28%* �7.43%***

0.6 �14.54%*** �15.14%*** 2.03%*** �12.11%*** �9.57%*** 14.82%*** �10.14%***

0.5 �15.59%*** �19.72%*** 2.84%*** �11.81%*** �8.14%*** 15.44%*** �8.92%***

Note: Asterisks measure whether the marker value of a given diameter differs significantly from the marker value obtained in a blood spot with a diameter
of 1 cm.

*p < .1. **p < .05. ***p < .01.

TABLE 6 Effect of small spot size on analyte values, based on dichotomous measurement of spot size (Model 2)

Thres-hold HDL tHb HbA1c TC TG CRP CysC

<1 cm 10.76*** 2.071*** �0.116*** 33.81*** 17.31*** 0.222*** 0.0773***

(0.363) (0.0337) (0.00936) (1.195) (1.737) (0.0630) (0.00543)

<0.8 cm 13.56*** 2.249*** �0.139*** 32.38*** 16.29*** 0.252*** 0.0808***

(0.338) (0.0332) (0.00946) (0.920) (1.463) (0.0516) (0.00437)

Note: Asterisks measure significance of the dichotomous spot-size indictor. *p < .1, **p < .05, ***p < .01.
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spot diameters less than 0.6 cm, which encompasses
39.3% of the DBS collected in SHARE, they are also larger
than the inter-assay variation except for HbA1c and TG.

Model 2 uses a dummy variable for spot-size informa-
tion (spot size smaller than 1.0 cm based on Crimmins
et al. (2020) and 0.8 cm as a robustness check). The effect
of spot size is highly significant in both threshold specifi-
cations of this model. Except from HbA1c, we find positive
associations between size and analyte values (Table 6).

The effects of fieldwork conditions other than spot
size and the effects of respondent characteristics on the
biomarker levels are presented in Table 7. Since the
effects for the fieldwork conditions and respondent char-
acteristics remain similar regardless which spot-size
information is used in the regression model, Table 7 only
displays the results from Model 1.

We find significant associations for the other field-
work conditions. However, they differ across analytes.
The respondent characteristics show expected and
explainable values.

Tables 8 and 9 depict adjusted R2, AIC, and Vuong
tests to indicate the explanatory power, the goodness of
fit and the statistical difference between the three models.
The adjusted R2 from Model 1 using continuous spot size
with spline interpolation always explains more variance
of the analyte values than the other models. However,
the magnitude of the difference between the models var-
ies by marker. For tHb, we observe the largest difference
between the adjusted R2-value for Model 1 and Models
2 and 3, respectively. The smallest difference can be
found for CRP. Further, Model 1 always has the lowest
AIC values for all markers. This suggests that the

TABLE 7 Effects of fieldwork conditions and respondent characteristics on the biomarker levels in Model 1

Variables HDL tHb HbA1c TC TG CRP CysC

Female 6.691*** �0.988*** �0.0271*** 16.41*** 0.572 0.0475 �0.0186***

(0.338) (0.032) (0.009) (0.845) (1.434) (0.0493) (0.004)

Age �0.171*** �0.0201*** 0.00601*** �0.702*** �0.362*** 0.0174*** 0.0130***

(0.0182) (0.0017) (0.0005) (0.0458) (0.0766) (0.00270) (0.0002)

Education level (Middle) 0.951** �0.000264 �0.0295** 1.754 3.352* �0.101 �0.0158***

(0.433) (0.040) (0.012) (1.083) (1.846) (0.0647) (0.006)

Education level (High) 2.489*** �0.0128 �0.0517*** 3.564*** �2.388 �0.163** �0.0244***

(0.484) (0.044) (0.013) (1.193) (1.976) (0.0712) (0.006)

BMI score �0.792*** 0.0328*** 0.0218*** �1.106*** 3.363*** 0.0931*** 0.00909***

(0.038) (0.003) (0.001) (0.090) (0.156) (0.00669) (0.001)

Drying time 0.0454*** 0.0011 0.000383 0.0392 0.138*** �0.000668 0.000299**

(0.0118) (0.0011) (0.0003) (0.0299) (0.0530) (0.00183) (0.0002)

Outside temperature �0.00582 �0.0237*** 0.00231*** 0.201*** 0.0373 �0.00442 �0.000645**

(0.0249) (0.0022) (0.0007) (0.0608) (0.105) (0.00351) (0.0003)

Open bag �2.349*** �0.036 0.0206 �3.914*** 0.469 �0.0869 �0.0240***

(0.589) (0.054) (0.017) (1.463) (2.599) (0.0747) (0.007)

Desiccant missing �7.758*** 0.218* �0.149*** �14.08*** 7.534 0.189 �0.00211

(1.297) (0.120) (0.036) (3.055) (5.603) (0.228) (0.016)

Shipment time �0.557*** �0.0485*** 0.0290*** �1.106*** �0.0697 �0.0103* �0.00616***

(0.0475) (0.0042) (0.0029) (0.1080) (0.174) (0.00616) (0.0005)

Health (Medium) 1.206*** 0.144*** �0.0630*** 4.848*** 2.970* �0.568*** �0.0803***

(0.414) (0.038) (0.012) (1.032) (1.755) (0.0611) (0.005)

Health (Good) 2.720*** 0.253*** �0.107*** 11.39*** �4.056* �0.730*** �0.104***

(0.498) (0.045) (0.014) (1.217) (2.098) (0.0695) (0.006)

Observations 14 719 14 719 14 090 22 760 22 611 22 381 22 760

Variables 0.271 0.388 0.539 0.363 0.067 0.030 0.234

Note: Robust standard errors in parentheses.

*p < .1. **p < .05. ***p < .01.
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predictive accuracy can be increased using the continu-
ous spot size.

The Vuong test statistic indicates which model is
closer to the true distribution of the data. We find signifi-
cant differences between Model 1 and Model 2 for all
markers except CRP. Furthermore, Table 9 documents
significant differences between Model 1 and Model 3 for
all markers except CRP. When comparing Model 2 and
Model 3, we find significant differences for all markers
except CRP.

4 | DISCUSSION

We developed a new algorithm (AMoSS, Automated
Measurement of Spot Size) that enables us to calculate
the exact spot size of each DBS in an automated way for
large sets of DBS images. Using the results of this auto-
mated spot-size measurement, we found that spot size
has a significant non-linear relationship with all markers.
Some markers, however, are more sensitive to spot size
than others. Further, our model comparisons show that
more variance of the raw marker values can be explained
using the exact measured spot sizes provided by AMoSS
and included in the model as splines. CRP is the only
marker for which we do not find significant differences
between Model 1 and both Models 2 and 3.

An important lesson learned is the non-linear rela-
tionship between spot size and biomarkers. Using the
new spot size measure that we calculated with AMoSS
and using cubic spline interpolation, we are able to
account for this non-linearity. This is obviously not possi-
ble when only the dichotomized information about spot
size is available. Nonetheless, Table 9 shows that it is
always better to include any spot-size information rather
than none at all, except for CRP. This can be seen when
comparing the adjusted R2, AIC values, and Vuong test
for Models 2 and 3.

Spot size can be substantially influenced by the inter-
viewer's ability to collect the blood samples as trained.
The interviewers had been instructed, but could not be
monitored, to wait until a sufficiently large blood drop
has formed and fallen on the filter paper filling the pre-
printed circle. As a robustness check, we controlled for
the unobservable heterogeneity among interviewers by
adding interviewer fixed effects to Models 1–3. We still
find the same effects for the variables in the regression
models and the same significant differences between the
models that differ by spot-size information.

Our robustness checks also show that the commonly
used threshold of 1 cm to distinguish small and large
spots is not necessarily the most suitable dichotomiza-
tion. Using the same model selection methods as before
to test different thresholds, we were able to demonstrate

TABLE 9 Vuong test to evaluate

the advantage of continuous spot size
Model 1 vs. model 2 Model 1 vs. model 3 Model 2 vs. model 3

HDL 0.000*** 0.000*** 0.000***

tHb 0.000*** 0.000*** 0.000***

HbA1c 0.000*** 0.000*** 0.000***

TC 0.000*** 0.000*** 0.000***

TG 0.002*** 0.000*** 0.000***

CRP 0.200 0.450 0.710

CysC 0.000*** 0.000*** 0.000***

TABLE 8 Model selection

measures (adj. R2 and AIC) to evaluate

the advantage of continuous spot size

Model 1 Model 2 Model 3

Adj. R2 AIC Adj. R2 AIC Adj. R2 AIC

HDL 0.269 130 315 0.227 131 134 0.180 132 018

tHb 0.387 59 845 0.292 61 975 0.113 65 286

HbA1c 0.538 22 317 0.533 22 474 0.528 22 622

TC 0.363 253 039 0.343 253 728 0.315 254 662

TG 0.066 274 858 0.063 274 922 0.059 275 011

CRP 0.029 120 726 0.028 120 739 0.028 120 750

CysC 0.233 10 566 0.225 10 807 0.217 11 020

Note: Model 1 uses continuous spot size and is compared to models using dichotomized spot size (Model 2)

or no spot-size information at all (Model 3).

12 of 16 GROH ET AL.



that 0.8 cm (0.503 cm2 in area) instead of 1 cm signifi-
cantly improved the measures of goodness of fit. This is
consistent with Moat et al. (2020), who found that spots
with less than 0.8 cm in diameter created a bias in the
analytical test results. In general, we suggest that dichoto-
mization should not be conducted in a data-driven man-
ner, but ideally prior to analysis and based on theoretical
considerations.

We tested the same models (Model 1–Model 3) using
non-linear (quadratic) specifications for the continuous
covariates. We find the same effects for spot size and the
same significant differences between the models.

Despite these improvements, our methods cannot
eliminate yet other uncertainties linked to spot size:
Paper properties, which are beyond user control, can
cause changes of spot size and punch volume. Inhomoge-
neity in the paper may influence the lateral spreading
and cause uneven distribution of the blood or irregulari-
ties in thickness change the assumed blood volume in the
punch (Mei et al., 2001; Hall et al., 2015; Moat
et al., 2020; Ren et al., 2010). Lateral spreading is also
influenced by the viscosity of the blood determined
through the proportion of blood cells in a sample, the
hematocrit, which is a donor characteristic. As men-
tioned earlier, when collecting drops of blood on filter
paper, the hematocrit cannot be measured. Denniff and
Spooner (2010) evaluate the relationship between hemat-
ocrit and DBS area; the bias is within acceptable limits
(<10%) for normal adult hematocrit values (36%–50%),
when comparing the area to blood samples of 45% hemat-
ocrit. Li (Li & Lee, 2014) consider the impact of hemato-
crit as negligible when measured quality-control sample
concentrations vary within ±15% of the normal values.

Many SHARE DBS sample punches were taken close
to the perimeter of the spot, not always keeping a distance
of 1–2 mm from the periphery. Biomarker concentration
there may differ slightly from that in the center. This,
together with unobserved hematocrit may have influ-
enced the assay results of the markers HbA1c and tHb,
which are associated with red blood cells. In order to eval-
uate the influence of the punch location on the marker
values in field-collected DBS samples, a further algorithm
could be written, which measures the shortest distance
between the outline of the punch and the perimeter of
the blood spot. This is subject of our future research.

5 | CONCLUSIONS

This study examined how field conditions and sample
quality, in particular spot size, influence the marker
values measured from filter-paper based DBS samples
collected in a survey. Börsch-Supan et al. (2021) have

demonstrated in a validation experiment that correcting
for these factors substantially improves the accuracy of
biomarker data collected under difficult field conditions.
Conversion formulae such as developed in that paper
allow us to infer values that we would have obtained
under optimal field conditions.

This study shows the necessity to carefully adjust for
one particularly important fieldwork condition, namely
the size of the blood spot on the filter paper if spot sizes
vary as considerably as they tend to do in large-scale pop-
ulation studies. In these cases, it is important to measure
it accurately. Our new algorithm presented here provides
precise post-collection spot-size measurement by exploit-
ing the images that are generated during the punching
process of DBS.

The new spot-size information improves the accuracy
of conversion formulae that translate blood-marker
values analyzed from SHARE DBS into standard blood
equivalents. This increases the quality of marker values
gained from field-collected DBS and makes the data more
reliable and user-friendly. Therefore, the data dissemina-
tion of DBS biomarkers should include a measure of spot
size if one suspects that fieldwork conditions were less
than optimal. For large-scale surveys, taking images from
the DBS during the punching process is a feasible method
to conduct spot-size measurement. Refinements of the
image analyses—such as the location of punches within
the spot—can improve conversion formulae even further.

However, it is of course better to minimize the large
variance in the data that is generated by suboptimal field-
work conditions by thorough measures of ex-ante preven-
tion instead of applying statistical methods of ex-post
correction. Concerning spot size, it is important to con-
duct extensive interviewer training and ascertain quality
control during fieldwork because average spot size can be
influenced considerably by interviewers. In particular,
measures should be taken to ensure that interviewers will
collect sufficiently large blood spots that entirely fill the
pre-printed circle. Training and monitoring measures are
needed to enforce a greater homogeneity across inter-
viewers and to reduce the variance of spot size that has
been observed in large population studies. These efforts,
though costly and possibly not perfect, will improve the
raw data collected at baseline such that ex-post adjust-
ments are needed to a lesser extent.
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