
Lehrstuhl für Computergestützte Modellierung und Simulation
TUM School of Engineering and Design
Technical University of Munich

Implementation of an IFC file creator and
modifier using Visual Programming

Scientific work to obtain the degree

Bachelor of Science (B.Sc.)

at the TUM School of Engineering and Design
of the Technical University of Munich.

Supervised by Prof. Dr.-Ing. André Borrmann
Jonas Schlenger

Lehrstuhl für Computergestützte Modellierung und Simulation

Submitted by Samuils Rulovs (03728471)

Putzbrunner Str. 35A
D-85521 Ottobrunn
e-Mail: ge35ten@tum.de

Submitted on 28. October 2022

mailto://(null)ge35ten@tum.de

Abstract

Industry Foundation Classes (IFC) are the open international standard in the field of
Building Information Modeling (BIM). IFC were created as an interoperable format, which
allows the storage, exchange, and sharing of data between participants in the building
sector. Another possible application of the IFC file format is a reference or archive of the
content describing a model. Therefore Industry Foundation Classes play a significant role
in the field of architecture, engineering, and construction (AEC). IFC are a file format that
is constantly improved. Every several years a new version of IFC is introduced, providing
various extensions. In order to test the features provided by the updated IFC version, a
variety of example files should be created. However, software creators need considerable
time to support a new IFC version. Hence, other tools should be implemented to create
files in such data format.
This work provides a solution for implementing the IFC file modifier and creator. The goal
of creating or modifying an IFC file is typically accomplished with the aid of a text editor or
visual programming platform, such as Autodesk’s Dynamo. In the framework of this thesis,
an IFC file creator and modifier is developed using Visual Programming Language (VPL).
The main reason for the use of the VPL is a more intuitive approach to the creation of the
IFC file compared to the conventional text editors, where all semantics for IFC files are
generally updated. Visual Programming Language also reduces the probability of error
since the amount of text that should be typed is reduced due to the partial text substitute
with VPL elements.

Zusammenfassung

Industry Foundation Classes (IFC) sind der offene internationale Standard im Bereich
der Bauwerksdatenmodellierung BIM. IFC wurden als interoperables Format erstellt, das
die Speicherung, den Austausch und die gemeinsame Nutzung von Daten zwischen
Teilnehmern des Bausektors ermöglicht. Eine weitere mögliche Anwendung des IFC-
Datenformats ist die Gelegenheit, den Inhalt von Modellen zu referenzieren und zu
archivieren. Daher sind Industry Foundation Classes ein bedeutendes Datenformat im
Bereich Architektur, Ingenieur- und Bauwesen. Dennoch befindet sich dieses Dateiformat
in der Entwicklung. Alle paar Jahre wird eine neue Version von IFC eingeführt, die neue
Erweiterungen bereitstellt. Um die neuen Funktionen der neuen IFC Version zu testen,
sollten verschiedene Beispieldateien erstellt werden. Softwareentwickler benötigen jedoch
eine beträchtliche Zeit, um eine neue IFC-Version zu unterstützen. Daher sollten andere
Tools implementiert werden, um Dateien in neuem Datenformat zu erstellen.
Diese Arbeit bietet eine Lösung für die Implementierung von der Software, die für das
Modifizieren oder Erstellen von IFC-Dateien zuständig ist. Das Ziel, eine IFC-Datei zu
erstellen oder zu ändern, wird normalerweise mit Hilfe eines Texteditors oder einer vi-
suellen Programmierplattform wie Dynamo von Autodesk erreicht. Im Rahmen dieser
Bachelorarbeit wird die Erstellung von der Software diskutiert, die Dateien im IFC Daten-
format unter Verwendung von der visuellen Programmiersprache Visual Programming
Language (VPL), erstellt und modifiziert. Der Hauptgrund für die Verwendung von VPL ist
ein intuitiver Ansatz zur Erstellung von IFC Dateien im Vergleich zu konventionellen Texte-
ditoren, die üblicherweise für die Erstellung von Semantik in den IFC Dateien verwendet
werden. Visuelle Programmiersprachen reduzieren auch die Fehlerwahrscheinlichkeit, da
die einzutippende Textmenge durch das Ersetzen der Teile mit VPL Elementen verringert
wird.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 3
1.3 Objective . 3
1.4 Methodical approach . 3
1.5 Thesis Structure . 4

2 Theoretical foundations 5
2.1 Industry Foundation Classes (IFC) . 5
2.2 TUM Open Infra Platform . 7
2.3 Visual Programming Language . 7
2.4 Ryven . 8
2.5 JavaScript Object Notation . 9
2.6 Related Work . 10

2.6.1 Dynamo . 10
2.6.2 Grasshopper 3D . 11

3 Method 12
3.1 Selection of the libraries for implementation 12
3.2 Design . 13

4 Implementation 15
4.1 Converting IFC file into JSON file . 15

4.1.1 Retrieving information from IFC file 15
4.1.2 Arranging retrieved information . 17
4.1.3 Defying connections between nodes 18
4.1.4 Creating JSON file . 18

4.2 Ryven environment . 19
4.2.1 IFCNode class . 19
4.2.2 IFC node classes . 20
4.2.3 Class combine_entities . 21
4.2.4 Functionalities of the Ryven environment 22

4.3 Converting JSON file into IFC file . 24

5 Use Cases 26
5.1 Rectangle shape represented as tessellated surface 26
5.2 Two rectangle shapes represented as tessellated surfaces 27
5.3 New rectangular tessellated surface . 28
5.4 Unsupported IFC entity types . 29

III

6 Conclusion 30
6.1 Summary . 30
6.2 Evaluation . 31
6.3 Future development . 32

A Code 34

Bibliography 35

List of Figures

1.1 History of IFC versions BORRMANN et al. (2015) 2

2.1 Inheritance hierarchy (BORRMANN et al., 2015) 6
2.2 Relationship classes (BORRMANN, 2021) 6
2.3 TUM OpenInfraPlatform software architecture (THE CHAIR OF COMPUTA-

TIONAL MODELING AND SIMULATION, 2019) 7
2.4 Visual Programming script in Dynamo environment (AUTODESK, 2022) . . . 8
2.5 Ryven flow based visual scripting environment (LEON THOMM, 2022) 8
2.6 An example of the script in Dynamo environment (YANG, 2015) 10
2.7 The node diagram in the Grasshopper environment (SAILI, 2021) 11

3.1 The workflow of the IFC file creator and modifier 13

4.1 Output of textbfIfcProject node . 20
4.2 IfcUnitAssignment connected to IfcSIUnit and IfcConversionBasedUnit

through Intermediary node "combine_entities" 22
4.3 A node diagram representing an IFC file in the Ryven environment 23
4.4 A node menu in the Ryven environment . 23
4.5 IfcProject node in Ryven environment . 24

5.1 The difference in the arrangement of the IFC file 26
5.2 Tessellated item in TUM OpenInfraPlatform 27
5.3 Addition of a new tessellated item using Ryven environment 27
5.4 Two rectangle shapes represented as tessellated surfaces 28
5.5 New rectangular tessellated surface in TUM OpenInfraPlatform 29
5.6 Unsupported IFC entity type IFCSANITARYTERMINAL 29

6.1 The positioning of the nodes in the Ryven environment 31
6.2 The limitations of the node menu in the Ryven environment 32

V

List of Algorithms
2.1 Example of the JSON structure for Ryven environment 9
4.1 Accessing IFC entities using IFC ID . 15
4.2 IFC entity IfcProject from example-file . 16
4.3 The difference in values prior to and after they are overwritten 16
4.4 "input" describing the IFC ID in the IfcProject node 17
4.5 Properties containing information about IfcProject before encoding 17
4.6 init_inputs list of the IfcProject node class 20
4.7 IFC entity IfcUnitAssignment from example-file 21
5.1 IFC entities of a new tessellated item . 28

VI

Acronyms

AEC architecture, engineering, and construction
BIM Building Information Modeling
bSI builldingSMART International
CAD Computer aided design
CMS The chair of Computational Modeling and Simulation
IFC Industry Foundation Classes
IFC-SPF STEP Physical Format
IOS IfcOpenShell
ISO International Organization for Standardization
JSON JavaScript Object Notation
NIST National Institute of Standards and Technology
OFF Object File Format
OIP TUM OpenInfraPlatform
Rhino Rhinoceros
TUM Technical University of Munich
VPL Visual Programming Language

VII

Chapter 1

Introduction

Due to the high technological advancement, industries are shifting towards digitalization.
At first architecture, engineering, and construction (AEC) shifted from manual drafting to
computer-aided design (CAD). Currently, CAD is being replaced by Building Information
Modeling (BIM) since BIM brings with it a variety of new solutions and possibilities which
are not encountered in CAD. Building Information Modeling is a process of representing
construction projects through virtual models in digital form. Therefore, each participant in
the construction project can view and adjust information regarding the project through a
virtual model in the BIM viewer without having to rely on physical copies. As a result, the
productivity of teams participating in the construction is enhanced, and the chance that
some information will go missing is reduced. Thereby the probability that the project will
be ready on time grows, and the rate of issues regarding a project decreases.

However, many software creators develop their own BIM solutions. Each developed
solution may rely on various data formats that are usually incompatible with one another.
Consequently, when various parties involved in a construction project use different software
solutions, information may be lost due to the incompatible data formats supported by these
applications.

Intending to secure a successful exchange between different parties, a non-profit or-
ganization builldingSMART International (bSI) is developing a data exchange format,
which should ensure interoperability between different BIM software solutions. This data
exchange format is Industry Foundation Classes (IFC).

Industry Foundation Classes are an object-oriented data model responsible for storing and
exchanging data describing construction objects. Since the construction industry involves
many independent parties that need to rely on one another, the such data format is crucial.
Assuring the exchange of information between these parties, IFC secure a grasp of the
project status, progress, and possible problems.

Technical University of Munich (TUM) takes part in the development and support of the IFC
community. The chair of Computational Modeling and Simulation (CMS) at the Technical
University of Munich (TUM) is developing an open-source BIM visualization software
named TUM OpenInfraPlatform (OIP). OIP provides tools to read IFC files and visualize
the result.

1

1.1 Motivation

Industry Foundation Classes (IFC) are a file format that is constantly improved, and new
versions of this data format provide extensions not supported by previous versions. For
example, all IFC versions before IFC4 primarily focused on describing buildings and their
components. Figure 1.1 shows the evolution of the IFC and the history of IFC versions
up to the IFC4 version. Now with the introduction of the IFC4.3 schema, infrastructure
constructions within domains of railways, roads, ports, and waterways are introduced
and covered in the IFC (buildingSMART INTERNATIONAL, 2022a). It is also planned
to release the IFC5 version, enhancing parametric abilities and including infrastructure
domains(BIBLUS, 2022). Thus, creating new example files to test added features and
finding flaws in these feature implementations is essential for future development.

Figure 1.1: History of IFC versions BORRMANN et al. (2015)

The new IFC example files are primarily created or modified using a text editor or visual
programming platform such as Dynamo from Autodesk. Using text-based editors may
result in errors in the file since different typos can occur during the text file creation. At
the same time, it is arduous to create functioning IFC files in such a way because of the
amount of data that should be included in the file.

Another approach to creating and modifying an IFC file is a Visual Programming Language
(VPL). VPL provides graphical components, such as nodes, widgets, buttons, and symbols.
Portions of the information can be predefined using graphical components, thus reducing
the amount of information users need to write. As a result, the probability of errors is
reduced.

Moreover, Visual Programming Language is a more intuitive approach since it resembles
the logic of the Industry Foundation Classes. Both VPL nodes and IFC entities contain
a various attributes describing them. Nodes in VPL can describe relations between
other nodes, similarly to IFC entities. Therefore, using Visual Programming Language for
creating IFC files can be more appropriate than using text-based editors.

Different software creators have already worked on this issue. For example, Autodesk has
developed its VPL application, Dynamo. The main objective of the Dynamo is to customize
building information using a graphical programming interface. Thus, it is focused mainly
on the geometries of the building parts or other projects.

2

However, geometry visualization is sometimes not required for modifying IFC files. Instead,
it is necessary to modify IFC files by adjusting each entity’s semantics. It is, therefore,
necessary to develop Visual Programming language software, which will replace simple
text editors, where all semantics for IFC entities are currently updated.

1.2 Problem Statement

Today, the semantics of IFC files is mainly modified and created using text editors. Creating
an IFC file in the text editor requires writing a substantial amount of text, which may lead
to typos. In addition, some of the IFC entities defined in the created file may not be
connected to other IFC entities or contain incorrect attribute values since the text editor
does not describe the attributes of IFC entity types. For this reason, a more intuitive and
user-friendly approach should be implemented to simplify the creation and modification of
IFC files.

1.3 Objective

This bachelor thesis aims to create software that will allow the creation and modification
of Industry Foundation Classes (IFC) file using Visual Programming Language (VPL).
Upon reading the IFC file, such software retrieves every IFC entity from the file and
creates nodes containing information about retrieved entities. Newly created nodes form
a structure based on potential connections of identified IFC entities. Users can create,
alter, and delete the nodes as needed by interacting with them in the Visual Programming
Language environment. After the necessary changes to nodes are complete, nodes
are transformed back into IFC entities with updated information. Finally, IFC entities are
returned to the IFC file.

1.4 Methodical approach

In the framework of this thesis following steps should be accomplished, which should
result in the creation of the IFC file creator and modifier:

1. Review other Visual Programming Language software which has already incorpo-
rated necessary functions.

2. Decide which programming language and, consequently, which libraries should be
used for software development.

3. Create a prototype application, which will have access only to the limited number of
IFC entities but will accomplish all objectives expected from the software.

3

1.5 Thesis Structure

This thesis is structured into six chapters. Chapter 2 elaborates on the theoretical founda-
tions behind Industry Foundation Classes, Visual Programming Language, and Flow-based
visual scripting software Ryven. Chapter 2 also discusses similar solutions to the problem
presented in this thesis. Chapter 3 addresses the development method of an IFC file
creator and modifier. Subsequently, chapter 4 describes the program’s implementation
using methods addressed in chapter 3. An example-driven description of the use cases is
provided in chapter 5. Finally, in chapter 6 all findings are summarized and evaluated, and
improvements are suggested.

4

Chapter 2

Theoretical foundations

2.1 Industry Foundation Classes (IFC)

Industry Foundation Classes (IFC) are the object-oriented data model, which is currently
selected as an open international standard in the field of Building Information Modeling
(BIM) (ISO, 2018). IFC were created to store, exchange and share data of construction
objects. This information can be later shared with other participants during construction
regardless of their software applications. In year 2013 Industry Foundation Classes (IFC)
became ISO certified (buildingSMART INTERNATIONAL, 2022b).

IFC development started in 1994 by the former International Alliance of interoperability,
now known as buildingSMART International (bSI). The multinational software corporation
Autodesk formed this organization, thereby beginning the initiative. The initiative’s main
goal was to create a format independent of commercial software creators. The independent
and interoperable data format should help to overcome the data exchange problem in
case two sides of the exchange use different commercial software incompatible with one
another.

A construction project is a complex system in which every party has a different responsibility.
For this reason, each team involved in construction needs a greater understanding of the
other team’s progress and possible problems the project faces. Therefore, it is essential
that information is exchanged between these teams in order to ensure the project’s
success.

However, different teams involved in construction projects often use different software
solutions since there is no universal software solution capable of addressing all specific
construction tasks. As a result, the exchange of information between teams relies on the
compatibility of the software each party uses.

One of the motivations why it was necessary to develop an independent and open interna-
tional standard similar to IFC, was presented in the research conducted by the National
Institute of Standards and Technology (National Institute of Standards and Technology
(NIST)) in the year 2004. Based on this research, over 15,8 Billion US-Dollar were lost
in 2002 because of the "inadequate interoperability" of different software solutions in the
construction industry. (GALLAHER et al., 2004)

The IFC data schema is based on various technologies, especially the data modeling
language EXPRESS. Similarly to the EXPRESS data modeling language, the entity-
relationship model is created for IFC, which can consist of various entities and relations.

5

These entities and relationships are organized in the inheritance hierarchy, allowing child
entities to inherit all attributes from the parent entities. Figure 2.1 illustrates the IFC entity
inheritance hierarchy.

Figure 2.1: Inheritance hierarchy (BORRMANN et al., 2015)

A crucial part of IFC entity-relationship model are relationships. The relationship in
IFC describes an interaction between different entities. Such interactions are defined
by intermediary objects, which describe all interaction details through their attributes.
This form of describing a relationship between several entities is called an objectified
relationship. Figure 2.2 displays the relationship classes of the IFC schema.

Figure 2.2: Relationship classes (BORRMANN, 2021)

On the other hand, IFC entities describe objects, processes, and further details required in
the construction project. Each entity consists of attributes describing the properties of the
construction project details. Thus, in the entity-relationship model, every object or process
during construction can be defined using entities and linked using relationships.

The IFC schema can be expressed using various data and file formats. The most
widespread data format is the ASCII format. The main advantage of the ASCII for-
mat is the ability to read and write files using this format in a simple Text editor. The
most common text format to express the IFC schema is STEP Physical Format (IFC-SPF).
This file format has compact dimensions and a data ending “.ifc” (BIBLUS, 2020). In the
framework of this thesis, IFC-SPF will be used as a primary file format for IFC.

6

2.2 TUM Open Infra Platform

The TUM Open Infra Platform (OIP) is open-source software for visualizing Building
Information Modelling models. This software is currently being developed by the chair
of Computational Modeling and Simulation (CMS) at the Technical University of Munich
(TUM). The core programming of the software is conducted using C++ programming
language. (HECHT & JAUD, 2019)

The primary data format which is used in OIP is Industry Foundation Classes (IFC). To
support IFC file format, the IFC Geometry Converter was created in the Core of TUM
Open Infra Platform. The objective of the IFC Geometry Converter is to convert various
geometric descriptions specified in IFC into a triangle mesh. Conversion of geometries
into triangle meshes allows the rendering engine to understand and visualize information
from IFC file.

Apart from IFC, Open Infra Platform supports other data formats. OFF Geometry Converter
supports Object File Format (OFF). OIP also includes the Point Cloud Processing module,
which enables the visualization of several point cloud file formats. Figure 2.3 demonstrates
the software architecture of the TUM OpenInfraPlatform including IFC Geometry Converter,
OFF Geometry Converter, and Point Cloud Processing module.

Figure 2.3: TUM OpenInfraPlatform software architecture (THE CHAIR OF COMPUTATIONAL
MODELING AND SIMULATION, 2019)

2.3 Visual Programming Language

Visual Programming Language (VPL) is a programming language that uses graphical
components such as widgets, buttons, and symbols for software development. A visual

7

programming language allows the illustration of programming code, thus allowing new-
comers and people with little technical skills in the field of programming to understand the
processes hidden behind the code. VPL allows users to use a more intuitive approach to
create the program; for example, it allows creators to use the “drag-and-drop” function and
other interface tools (PREIDEL et al., 2017). Figure 2.4 provides an example of the Visual
Programming Language in the Dynamo environment.

Figure 2.4: Visual Programming script in Dynamo environment (AUTODESK, 2022)

Unlike classical programming languages, ordinarily text-based, visual programming lan-
guage usually contains different components or nodes with specific properties. Each node
is connected to other nodes, thus creating a linked-together system. This allows VPL to
be more readable compared to text-based programming languages, such as Java or C++.

2.4 Ryven

Ryven is a flow-based visual scripting environment created by LEON THOMM (2022)
student from Swiss Federal Institute of Technology in Zurich, developed using Python
programming language. Rather than using lines of code to implement software, Ryven
software uses a more graphical or diagrammatic representation. Figure 2.5 shows the
diagrammatic representation of the process in the Ryven environment.

Figure 2.5: Ryven flow based visual scripting environment (LEON THOMM, 2022)

8

The core part of the visual scripting environment is a node. It is defined as a class in
Ryven’s node library. Each class has its own attributes describing the node’s properties,
inputs, and outputs. In addition, during node class definitions, there is an option to define
various methods and additional variables, thus describing the functionality of a particular
node.

Ryven has some built-in nodes which allow users to create various algorithms using these
nodes. However, the Ryven environment allows new node creation and specification, thus
allowing a broad scope of new program implementations using the Ryven environment.

2.5 JavaScript Object Notation

JavaScript Object Notation (JSON) is a textual format for data exchange. JSON is based
on JavaScript, however, it is an independent data format and can also be used by other
programming languages.

JSON was introduced at the beginning of the 21st century as a format for communication
between JavaScript clients and back-end servers. It gradually expanded and became the
most common human-readable format since it is helpful for data exchange between various
systems. Nowadays, JSON is used as the universal standard for data exchange.(TYSON,
2022)

JSON is structured using objects and arrays. An object is a dictionary containing different
elements, with every element having key-value pairs assigned to itself. On the other hand,
the array is an ordered list of values. However, an array can also contain a list of objects.
This means that using these two structures, JSON can model object relations, which
can vary in complexity. Algorithm 2.1 demonstrates the structure of the JSON file for the
flow-based visual scripting environment Ryven.

Algorithm 2.1: Example of the JSON structure for Ryven environment
{

" s c r i p t s " : [
{

" t i t l e " : " h e l l o wor ld " ,
" v a r i a b l e s " : { } ,
" f l ow " : {

" a lgo r i t hm mode" : " data " ,
" nodes " : [] ,
" connect ions " : [] ,
"GID" : 6 ,
" f l ow view " : {

" drawings " : [] ,
" view s ize " : [

6400.0 ,
4800.0

]

9

}
} ,
"GID" : 1

}
]

}

2.6 Related Work

This section discusses the use of visual programming languages in the construction
industry. The most common Visual Programming tools are Dynamo and Grasshopper,
based on the paper written by COLLAO et al. (2021) that analyzed the use of visual
programming tools in infrastructure projects.

2.6.1 Dynamo

Dynamo is an open-source visual programming environment developed by Autodesk,
a leading architecture, engineering, and construction (AEC) software developer. The
main objective of the software is to customize building information using a graphical
programming interface.

The process of visual programming in the Dynamo environment can be described as an
action sequence completed in the established algorithm. Such an algorithm is completed
with the assistance of textual fragments of the programming code, nodes, developed in
advance. The sequence of such nodes forms a script. fig. 2.6 demonstrates an example
of the script created in Dynamo.

Figure 2.6: An example of the script in Dynamo environment (YANG, 2015)

10

Dynamo is oriented more toward creating scripts that can manipulate various objects in
Revit since it was created as assisting tool for Revit. Thus, it is focused primarily on the
geometries of the building parts or other projects.

2.6.2 Grasshopper 3D

Grasshopper is a visual programming language and environment integrated into
Rhinoceros (Rhino) 3D modeling software. Both Rhino and Grasshopper are developed
by ROBERT MCNEEL & ASSOCIATES (2022)

Grasshopper uses VPL to manipulate different components onto a canvas. Similarly to
Dynamo, Grasshopper focuses primarily on geometries. Furthermore, it encompasses
numerical, haptic, textual, and audiovisual algorithms for the creation of parametric models
and generative artworks (SAILI, 2021). fig. 2.7 demonstrates the node diagram in the
Grasshopper environment.

Figure 2.7: The node diagram in the Grasshopper environment (SAILI, 2021)

11

Chapter 3

Method

Chapter 3 describes the decisions underlying the implementation of the IFC file creation
and modification software. Section 3.1 discusses how the Ryven flow-based visual
scripting environment was selected for use in software development. The approach used
to implement the software is described in section 3.2.

3.1 Selection of the libraries for implementation

Creating an IFC file is mainly accomplished using a text editor or visual programming
platform. Compared to text-based software, VPL relies on graphical components, such
as nodes, widgets, buttons, and symbols, thereby reducing error probability. Moreover,
VPL is a more intuitive approach since it resembles the logic of the Industry Foundation
Classes.

Therefore, Visual Programming Language was selected to create an IFC file creation and
modification software. It was decided to develop the software using a VPL library. Since
none of the other VPL libraries found were written in Python or C++ and were open-source,
libraries Chigraph and Ryven were selected as prime candidates. Chigraph is a new visual
systems programming language created by RUSSELL GREENE AND AUN-ALI ZAIDI (2017)
and compiled using LLVM . LLVM is a collection of compiler and toolchain technologies
developed by a research group from the UNIVERSITY OF ILLINOIS (2007). Both LLVM and
Chigraph are written in C++. Ryven, on the other hand, is a flow-based visual scripting
environment developed using Python by LEON THOMM (2022).

Since the Chigraph programing language was written using C++, it could be a more
suitable choice. For example, relying on C++ programming language allows Chigraph to
incorporate an early binding generator from TUM Open Infra Platform, which is required
to represent each entity in the IFC schema as a corresponding class in the programming
language. By applying functionalities of the early binding generator in the IFC file creator
and modifier, all entities from the IFC schema would be included in the solution. In addition,
based on the screenshots on GitHub, the Chigraph programming language contains all
tools necessary for developing the software.

However, various issues with Chigraph software were revealed during the installation
process. Many components required by Chigraph were missing or outdated, and usually,
some components conflicted with each other. At the same time, the Chigraph build usually
fails on the Windows operating system.

12

The Ryven environment, on the other hand, was installed without any issues. Instead of
relying on the external compiler and libraries conflicting with one another, it uses a small
number of external libraries, all incorporated into Python. Thus Ryven is a preferable
library for developing the IFC file creation and modification software. Although it cannot
incorporate an early binding generator from TUM Open Infra Platform, thus including all
entities from the IFC schema, it has the option to use a library IfcOpenShell (IOS) for
Python that operates with the IFC schemas (IFCOPENSHELL, 2022).

In the end, it was decided to use Ryven flow-based visual scripting environment due to the
absence of issues during the installation and compiling of the software.

3.2 Design

The design of the IFC file creator and modifier implementation using Ryven can be divided
into several steps that will lead to the complete cycle of the software use. Figure 3.1
illustrates the workflow of the IFC file creator and modifier.

Figure 3.1: The workflow of the IFC file creator and modifier

Initially, an IFC file is opened with the IFC file creator and modifier. IFC files are expressed
via STEP Physical Format (IFC-SPF). The Ryven environment, on the other hand, accepts
only files with JSON extension. For this reason, IFC files should be converted from STEP
format into JSON file format.

The conversion process into JSON starts with retrieving information from the IFC file and
its arrangement into dictionaries. It was chosen to save data describing IFC entities into
dictionaries since every IFC entity consists of different attributes, thus preventing storing
information in lists. Following this, the information in the dictionaries must be encoded in
binary format due to Ryven’s requirements, which accept only binary information. Once
the information is encoded, dictionaries are combined into a nested structure similar to a
JSON file, thus preparing information for export. Finally, the resulting structure is saved

13

into the JSON file. However, the conversion process into JSON is skipped if a new IFC file
is created from scratch.

After converting an IFC file into JSON, the newly created file is opened in the Ryven
environment. As mentioned in section 2.4, the core part of the Ryven is a node. Therefore
every IFC entity is presented as a node containing every attribute and the IFC ID of
the IFC entity it describes. IFC ID is a STEP numerical identifier unique for every IFC
instance in the file. As the only way to distinguish IFC entities, it is an essential component
of the IFC file. As a result, IFC ID was included as the first parameter in each node’s
properties.

Representing IFC entity types with corresponding nodes allows users to interact with
information from the IFC file. For example, users may adjust the attribute values of the
IFC entity by interacting with the node, which contains information about the entity. Ryven
also allows the definition of new IFC entities of the IFC file or the removal of unnecessary
ones via adding or removing corresponding nodes.

However, to interact with nodes, each node describing an IFC entity type should be
incorporated into the Ryven node library. Otherwise, a file containing undefined node
descriptions will not be opened by the Ryven environment. Therefore, the Ryven node
library is composed of node classes, each describing the functionality and properties of
the node it represents.

Once the IFC file has been modified through interaction with Ryven nodes, the changes
are saved to the JSON file. However, receiving changes in the initial format is mandatory
for the further use of the created file. Thus, the JSON file should be converted back to the
IFC file expressed in STEP Physical Format (IFC-SPF). Similarly to conversion from IFC
to JSON file format, the conversion process starts with retrieving information from the file
and its arrangement into dictionaries. Following this, the information in the dictionaries is
decoded back to the text format since STEP Physical Format is text-based. After decoding,
information is written into the new IFC file based on the IFC-SPF requirements, thus
completing all operations.

14

Chapter 4

Implementation

Chapter 4 describes an IFC file creation and modification software implementation using
Visual Programming Language. The implementation of the program fromIFCtoJSON for
converting an IFC file into an JSON file is discussed in section 4.1. A description of the
Ryven flow-based visual scripting environment, its functionalities, and the node classes
incorporated into this environment is presented in section 4.2. Lastly, section 4.3 indicates
how the fromJSONtoIFC program performs the conversion from JSON into the IFC file
format.

4.1 Converting IFC file into JSON file

For an IFC file to be opened in a Ryven environment, it must be converted into the specific
structure of the JSON file format required by Ryven. For this reason, a program should be
created to convert IFC files into JSON file format per requirements. This section describes
the program’s implementation responsible for the conversion process from IFC file format
into JSON.

For illustration purposes, all processes described in this section will be accompanied by
examples from the IFC example file "tessellated-item.ifc". This example file was selected
as a foundation of the IFC file creator and modifier prototype due to the small number of
IFC entities it owned and the variety of IFC entities simultaneously.

4.1.1 Retrieving information from IFC file

Upon launching a program, the IFC file is opened using IfcOpenShell (IOS). IfcOpenShell
is an open-source software library that operates with the STEP Physical File (IFCOPEN-
SHELL, 2022). It provides a basis for retrieving, modifying, and creating IFC data models.
Within the framework of this program, IOS is used only to retrieve IFC data models from
the IFC file.

After opening the IFC file with IfcOpenShell, all entities contained in the IFC file are
counted. It allows it to iterate through all IFC entities without relying on string access to
the entities. Normally all entity type names must be known and predefined by the user.
However, this is avoided by accessing IFC entities using their IFC IDs instead of their
type names. IFC ID is a STEP numerical identifier unique for every IFC instance in
the file. A simplified example how IFC entity is accessed using IFC ID is illustrated in
Algorithm 4.1. The result is visible in Algorithm 4.2.

15

Algorithm 4.1: Accessing IFC entities using IFC ID
impor t i f c o p e n s h e l l

i f c = i f c o p e n s h e l l . open (" t e s s e l l a t e d − i tem . i f c ")
e n t i t y = i f c . by_id (1)
pr in t (e n t i t y)

All essential information is retrieved from every IFC entity during the iteration procedure. A
description of processes assisting the retrieval of information will be given using the IFC
entity IfcProject as an example.

Iteration starts with the selection of an IFC entity filtered by IFC ID. IfcProject has an
IFC ID of #1. For this reason, it is selected first. Algorithm 4.2 shows a selected IFC
entity.

Algorithm 4.2: IFC entity IfcProject from example-file
#1= I f c P r o j e c t (’ 0 xScRe4drECQ4DMSqUjd6d ’ , #2 ,
’ proxy w i th t e s s e l l a t i o n ’ , $,$,$,$, (#3) ,#4)

Upon selecting the IFC entity, all information about a particular entity is parsed into the
dictionary using IOS function get_info(). This function returns a dictionary of the entity
instance’s properties and values. However get_info() function returns property values
in the altered form. As a result, the Ryven environment would receive values different
from the ones it should receive from IFC file. In order to avoid this, all values in the
newly created dictionary are overwritten using attribute values from the IFC entity in the
string format, thus preventing alterations to the values later. The difference between a
dictionary with altered values and a dictionary after values were overwritten back is shown
in Algorithm 4.3.

Algorithm 4.3: The difference in values prior to and after they are overwritten
o ld i n f o

{ ’ id ’ : 1 , ’ type ’ : ’ I f c P r o j e c t ’ ,
’ Global Id ’ : ’0xScRe4drECQ4DMSqUjd6d ’ ,
’ OwnerHistory ’ : #2= I fcOwnerHis tory (#6 ,#7 ,$, .ADDED. ,1320688800 ,$,$

,1320688800) ,
’Name ’ : ’ proxy wi th t e s s e l l a t i o n ’ , ’ Descr ip t ion ’ : None ,
’ ObjectType ’ : None , ’LongName ’ : None , ’ Phase ’ : None ,
’ Representat ionContexts ’ : (#3= I fcGeometr icRepresenta t ionContext ($, ’

Model ’ , 3 , 1 . 0E−05 ,#8 ,$) ,) ,
’ Un i ts InContext ’ : #4= I fcUn i tAss ignment ((#10 ,#11)) }

new i n f o
{ ’ id ’ : 1 , ’ type ’ : ’ I f c P r o j e c t ’ ,
’ Global Id ’ : " ’ 0xScRe4drECQ4DMSqUjd6d ’ " ,
’ OwnerHistory ’ : ’ #2 ’ ,
’Name ’ : " ’ proxy wi th t e s s e l l a t i o n ’ " , ’ Descr ip t ion ’ : ’$ ’ ,
’ ObjectType ’ : ’$ ’ , ’LongName ’ : ’$ ’ , ’ Phase ’ : ’$ ’ ,

16

’ Representat ionContexts ’ : ’ (# 3) ’ ,
’ Un i ts InContext ’ : ’ #4 ’ }

4.1.2 Arranging retrieved information

With the creation of the dictionary containing all information about IFC entity and its
attributes, the dictionary is passed to the initialized object class IFC_Entity. Class
IFC_Entity contains methods responsible for arranging information in a way required by
Ryven.

Instead of IFC entities, JSON file required for Ryven environment has an object ”nodes”,
which contains an array of nodes. Each node corresponds to the entity from the IFC file.
Every IFC entity’s IFC ID and all its attributes are stored in the node’s array named
”inputs”. Each ”input” contains a description of an IFC ID or attribute regarding its
type, data type, and widget data. Algorithm 4.4 shows a structure of the ”input” of the
IFC ID in the IfcProject node.

Algorithm 4.4: "input" describing the IFC ID in the IfcProject node
{

" type " : " data " ,
" l a b e l " : "OwnIFCID " ,
"GID " : 8 ,
" va l " : "gASVBgAAAAAAAACMAiMxlC4=" ,
" dtype " : "DType . S t r i n g " ,
" dtype s ta te " :

" gASVPAAAAAAAAAB9lCiMB2RlZmF1bHSUjAEjlIwDdmFslIwCIzGUjANkb2OUj
ACUjAZib3VuZHOUTowEc2l6ZZSMAW2UdS4=" ,

" has widget " : t rue ,
" widget data " : "gASVEAAAAAAAAAB9lIwEdGV4dJSMAiMxlHMu"

}

Properties ”val”, ”dtype state” and ”widget data” from the example contain details about
IfcProject entity’s IFC ID encoded using Base64 library. Base64 is a binary-to-text
encoding library which translates an ASCII string format into a radix-64 representation
(DOCS, 2022). Algorithm 4.5 illustrates what each property looked before being encoded.

Algorithm 4.5: Properties containing information about IfcProject before encoding
{

" va l " : ’#1 ’
" dtype s ta te " : { ’ de fau l t ’ : ’ # ’ , ’ va l ’ : ’ #1 ’ , ’ doc ’ : ’ ’ ,
’ bounds ’ : None , ’ s ize ’ : ’m’ }
" widget data " : { ’ t ex t ’ : ’ #1 ’ }

}

Algorithm 4.5 shows that information regarding IFC ID of IfcProject was arranged in a
specific order for each property type. Therefore, each property required a different method

17

from the IFC_Entity class to arrange information in a specific order. Upon arranging
information and storing it in certain variables object of the type IFC_Entity is saved in the
list nodes.

4.1.3 Defying connections between nodes

After creating a list nodes describing IFC entities, the next step is to define connections
between nodes. As a rule of thumb, a connection between two entity nodes is defined
if a relationship exists between two entities. For example, the relationship between two
entities in the IFC-SPF file is displayed in the following manner: If one of the IFC entity
attributes contains the IFC ID of another IFC entity, both entities should be connected.

For example entity IfcProject in Algorithm 4.2 contains IFC IDs #2, (#3), and #4. This
means that the entity IfcProject should be connected to the entity IfcOwnerHistory (#2),
IfcGeometricRepresentationContext ((#3)), and IfcUnitAssignment (#4).

There may be two variants of connections in the Ryven. Either attribute receives a piece of
information from one entity it has a relation to, or it may contain a list of entities connected
to this attribute. For example, IfcProject can contain only one IfcOwnerHistory but can
have several entities of a type IfcGeometricRepresentationContext. It differentiates
based on the presence of brackets. In other words, if an IFC ID finds itself in the brackets,
it is a part of the entity list.

In order to incorporate both variants into solutions, two classes were implemented in the
fromIFCtoJSON program: combine_entities and connections. Class combine_entities
is responsible for searching all entities which should be included in the list and creating
a new node, which will act as an intermediary. Class connections defines connections
between all nodes, both intermediary and IFC entity nodes and stores them into the list
node_connections.

The objectives of nodes defined by class combine_entities and connections defined by
class connections are discussed in the section 4.2.3

4.1.4 Creating JSON file

Under the requirements of the Ryven environment, the JSON file has a nested struc-
ture. On the first level of its hierarchy JSON file has three properties: ”generalinfo”,
”requiredpackages”, and ”scripts”. All properties except ”scripts” have predefined val-
ues since every project uses the same packages to visualize nodes and the same Ryven
version.

Property ”scripts” contains an array of objects which describe scripts created in spaces
of the Ryven environment. In the framework of this thesis, an array of ”scripts” has only
one object since all IFC file modification processes are completed in one space of the

18

Ryven environment. This object has several properties, the main one being ”flow”. In the
property ”flow” is stored all information regarding nodes and node_connections.

Creating the flow dictionary initiates the process of creating the dictionary, which will later
be converted into a JSON file. The dictionary flow receives information by appending lists
nodes and node_connections to the corresponding keys.

Additionally, each node receives an indication of the location in the Ryven environment’s
space where it should be placed. Positions of the nodes are arranged based on the
IFC ID of the entities they represent, starting with the first node in the top right corner of
the Ryven environment workspace. Other nodes are placed on the plane from right to left
and top to bottom, with a constant spacing between nodes. This ensures that each node
is appropriately positioned.

Once the dictionary flow has been filled with the necessary information, it is added to the
dictionary script, part of the list scripts. By appending the list to the key ”scripts” and
adding information for properties ”generalinfo” and ”requiredpackages”, the dictionary
for the JSON file is completed. The resulting dictionary is converted into the JSON file
using the function dumps() from the JSON library.

4.2 Ryven environment

After entity conversion from the IFC file into JSON file format, the JSON file is loaded
in the Ryven environment. In Ryven, every node defined in the JSON file is visualized
depending on the data JSON file contains about each node in the ”nodes” array. The
same occurs with the ”connections” array: every connection is defined based on the node
indexes and indexes of their attributes, which should be connected.

However, to create nodes and connections, Ryven should have all nodes defined as
classes, describing each node’s properties and functionalities. IFC entity IfcProject will
be used as an example to demonstrate the structure of Ryven nodes.

4.2.1 IFCNode class

IFCNode class is a parent class for every IFC entity node class. It describes all methods
inherited by its subclasses and used to modify the imported JSON file in the Ryven
environment. This class describes how information from one entity node can be passed to
another node and contains methods that support information transfer. Via these methods,
information of output value is defined based on the first input value of the node, which
coincides with IFC ID of the entity, therefore allowing to pass IFC ID to the other node
using predefined methods.

For example, in the IFC file, IfcProject has an IFC ID of #1. Thus by creating an
IfcProject node and defining its first input as #1, IfcProject node will return output value
#1. Figure 4.1 shows the IfcProject and its output value.

19

Figure 4.1: Output of textbfIfcProject node

4.2.2 IFC node classes

In order to create a node in the Ryven environment, for every IFC entity type, which
should be visualized in Ryven, a IFC node class should be created. IFC node classes
are subclasses of the IFCNode class. Thus they inherit all functionality from their parent
class. The core difference between each node class is the number of inputs each node
contains. It varies based on the number of attributes each IFC entity type consists of.
Another difference between every node is the labeling of the inputs. Labeling of every
input except the first input (OwnIFCID) must coincide with an attribute name of the entity
type.

For example IfcProject consist of 9 attributes: ’GlobalId’, ’OwnerHistory’, ’Name’, ’De-
scription’, ’ObjectType’, ’LongName’, ’Phase’, ’RepresentationContexts’, ’UnitsInContext’.
Algorithm 4.6 demonstrates the input list of the IfcProject node class.

Algorithm 4.6: init_inputs list of the IfcProject node class
i n i t _ i n p u t s = [

NodeInputBP (dtype=dtypes . S t r i n g (d e f a u l t = " # " , s i ze= ’m ’) , l a b e l = ’
OwnIFCID ’) ,

NodeInputBP (dtype=dtypes . S t r i n g (d e f a u l t =”$” , s i ze= ’ l ’) , l a b e l = ’
G loba l Id ’) ,

NodeInputBP (dtype=dtypes . S t r i n g (d e f a u l t =”$” , s i ze= ’ l ’) , l a b e l = ’
OwnerHistory ’) ,

NodeInputBP (dtype=dtypes . S t r i n g (d e f a u l t =”$” , s i ze= ’ l ’) , l a b e l = ’
Name ’) ,

NodeInputBP (dtype=dtypes . S t r i n g (d e f a u l t =”$” , s i ze= ’ l ’) , l a b e l = ’
Desc r i p t i on ’) ,

NodeInputBP (dtype=dtypes . S t r i n g (d e f a u l t =”$” , s i ze= ’ l ’) , l a b e l = ’
ObjectType ’) ,

NodeInputBP (dtype=dtypes . S t r i n g (d e f a u l t =”$” , s i ze= ’ l ’) , l a b e l = ’
LongName ’) ,

NodeInputBP (dtype=dtypes . S t r i n g (d e f a u l t =”$” , s i ze= ’ l ’) , l a b e l = ’
Phase ’) ,

20

NodeInputBP (dtype=dtypes . S t r i n g (d e f a u l t =”$” , s i ze= ’ l ’) , l a b e l = ’
Representat ionContexts ’) ,

NodeInputBP (dtype=dtypes . S t r i n g (d e f a u l t =”$” , s i ze= ’ l ’) , l a b e l = ’
Un i ts InContex t ’)

]

IFC Shema has multiple IFC entity types, which had to be included in the software.
Therefore an IFC binding generator had to be incorporated into the solution to create nodes
for all IFC entity types. However, the primary objective was to create a prototype program
that would allow IFC file creation and modification. Thus, nodes were implemented
manually and only for the IFC entity types residing in the file "tessellated-item.ifc".

4.2.3 Class combine_entities

As mentioned in subsection section 4.1.3, class combine_entities creates a node, which
connects several entity nodes and combines IFC ID of every connected node into a list.
After IFC IDs of entity nodes are combined into a list, this class passes it to the other
node, which requires a combination of entity nodes.

To better illustrate the objectives combine_entities class, the functionality of this class is
discussed based on the IFC entity IfcUnitAssignment, which is illustrated in Algorithm 4.7.

Algorithm 4.7: IFC entity IfcUnitAssignment from example-file
#4= I fcUn i tAss ignment ((#10 ,#11))

IfcUnitAssignment has only one attribute, ”Units”. It is a list containing two IFCIDs,
#10 and #11. This means that the attribute ”Units” should be simultaneously connected
to the entity nodes IfcSIUnit (#10) and IfcConversionBasedUnit (#11). However, the
Ryven environment does not allow connections to both nodes simultaneously. Thus an
intermediary node combine_entities should be introduced.

The intermediary node combine_entities has several inputs. The number of inputs
depends on the number of nodes it should combine. For example, in the case of IfcU-
nitAssignment, node combine_entities has two inputs since attribute ”Units” should
be simultaneously connected to two other entity nodes. Therefore, each node is now
connected to its own input from the combine_entities node. By connecting to the nodes,
combine_entities receive an IFC ID from every node. Therefore combine_entities can
now append every IFC ID to the list and return the list as an output. Connecting itself to
the attribute ”Units” of the node IfcUnitAssignment, combine_entities node passes
the output to the attribute. As a result, ”Units” receives a list with required IFC IDs and
is considered connected to both nodes through an intermediary node. Figure 4.2 should
provide some insight into the abovementioned processes.

Class combine_entities differs from other node classes since it uses actions for its
adjustments. Node actions are commands specified in the node class. Upon usage of

21

Figure 4.2: IfcUnitAssignment connected to IfcSIUnit and IfcConversionBasedUnit through
Intermediary node "combine_entities"

these commands, the structure of the node changes. Node class combine_entities have
only two actions: "add input" and "remove input i", where i is an index of the input.

Upon initialization,combine_entities node class has only one input parameter. By select-
ing "add input" action add_operand_input method is initialized. add_operand_input cre-
ates a new input parameter and an option to remove it using the method remove_operand_input,
if it is no longer needed.

4.2.4 Functionalities of the Ryven environment

All modifications are carried out within the Ryven environment. This subsection describes
how the IFC file can be modified in the Ryven environment and the functionalities respon-
sible for it.

As soon as the Ryven environment is launched, a user is presented with two options:
either open a JSON file, which represents an IFC file that needs to be updated, or start a
new project to create a new IFC file from scratch. Upon selecting either of these options,
the Ryven environment is opened. In case of opening a JSON file, the Ryven environment
creates a node diagram representing an IFC file. Figure 4.3 illustrates the opened JSON
file in the Ryven environment.

22

Figure 4.3: A node diagram representing an IFC file in the Ryven environment

Ryven environment has several options for modifying the IFC file. The first option is to
create a new node. It is accomplished by "drag-and-dropping" a node from the "NODES"
window in Ryven. Figure 4.4 shows a node menu in the Ryven environment.

Figure 4.4: A node menu in the Ryven environment

A second method of modifying an IFC file is to remove unnecessary nodes by selecting
them in the Ryven space and deleting them. It is also possible to modify every node by
changing its attributes. As an example, fig. 4.5 shows the node for the IFC entity type
IfcProject with all its attributes, that can be changed.

In the same way that IFC entities are connected, nodes in the Ryven environment should
also be linked. However, there are strict rules in the Ryven environment regarding
connections between nodes. For example, a node’s output can be connected to several

23

Figure 4.5: IfcProject node in Ryven environment

other nodes’ inputs. On the contrary, each node input can receive a value only from
one node. When several nodes representing IFC entities should be connected to the
other node’s input, a combine_entities intermediary node should be created. The node
combine_entities and its functionalities are described in the section 4.2.3.

4.3 Converting JSON file into IFC file

After an IFC file converted into JSON is modified using the Ryven environment, all changes
are saved in the new JSON file. However, a created file cannot be opened by most software,
and it is mandatory to receive conducted changes in the initial format. Thus JSON file
should be translated back into the IFC file format. The following section describes an
implementation developed to accomplish this task.

Following the program’s launch, the JSON file is opened using the JSON library for python,
and all data are stored in the variable as a dictionary. Since only a fraction of the dictionary
contains information required for the following procedures, the program searches through
the dictionary to find the needed section. As a result, an application receives a list of
nodes, where each node is an additional dictionary with information regarding either the
IFC entity or a supporting class combine_entities.

While iterating through the list of nodes, the program searches for the nodes describing
IFC entities. If IFC node is found, data from the node is saved in the object of a type
IFCNode. IFCNode is a class consisting of methods for converting node data into STEP
Physical File format. Since the data in the node’s dictionary were encoded using the
Base64 library, it is necessary to decode the information back to the ASCII format. After
the encoding process, data describing the IFC ID and attribute values of the IFC entity
is stored in a separate dictionary.

24

Since nodes have been created unsystematically during modification processes in Ryven,
IFC entities stored in a newly created dictionary also lack any arrangement. Therefore, to
secure the legibility of the created IFC file, entities in the dictionary are sorted based on
their IFC ID, thus ensuring an ascending order of the IFC entities in the file.

After IFC entities are arranged, the program launches a function responsible for writing a
new IFC file. Since IFC entities are arranged in ascending order in the newly created file,
such an arrangement might differ from the initial file. Nevertheless, IFC file will work as
expected since the order in which entities are listed has no impact on the file’s content.

25

Chapter 5

Use Cases

This chapter describes the practical application of the implemented part of the IFC file
creator and modifier prototype. The first example discussed in section 5.1 demonstrates
the opening of file ”tessellated � item.ifc” since this IFC example file was used as a
foundation, and every IFC entity type included in the example file was implemented
manually as a IFC node class in Ryven. After that, IFC file creator and modifier limits are
tested through examples created from ”tessellated � item.ifc” entities. In section 5.4,
an example file containing IFC entities not implemented as node classes is loaded to
demonstrate the prototype’s limitations.

5.1 Rectangle shape represented as tessellated surface

The first example demonstrates changes to the IFC file upon opening it with IFC file creator
and modifier prototype and saving it as a new file. During the first test, no alterations were
conducted to the content of the IFC file. Therefore, no changes were made to the IFC
entity attributes, and no entities were added or removed. However, the structure of the
IFC file was changed due to the rearrangement of IFC entities because of the processes
within fromIFCtoJSON and fromJSONtoIFC. The changes to the IFC file are visible in
Figure 5.1.

Figure 5.1: The difference in the arrangement of the IFC file

Nevertheless, the IFC file is not impacted by the order in which entities are listed. Thus,
the file ”tessellated� item.ifc” is open correctly by the TUM OpenInfraPlatform as it is
visible in Figure 5.2.

26

Figure 5.2: Tessellated item in TUM OpenInfraPlatform

5.2 Two rectangle shapes represented as tessellated surfaces

The second example shows how new geometries can be added to the initial file using the
same entity node. For example, two new nodes are added in the Ryven environment to
the file to add a new rectangular shape: IFCTRIANGULATEDFACET and IFCCARTESIAN-
POINTLIST3D. IFCTRIANGULATEDFACET node is connected to the combine_entities
node, thus appending itself to the list, which is passed to the IFCSHAPEREPRESENTA-
TION. Figure 5.3 illustrates how the IFCTRIANGULATEDFACET node is passed to the
IFCSHAPEREPRESENTATION as a part of the list.

Figure 5.3: Addition of a new tessellated item using Ryven environment

Upon adding IFCTRIANGULATEDFACET and IFCCARTESIANPOINTLIST3D to the IFC
file in the Ryven environment, the file is saved in JSON. Following that JSON file is

27

converted to the IFC, and as a result, two new IFC entities are a part of the IFC file.
Algorithm 5.1 demonstrates new entities IFCTRIANGULATEDFACET and IFCCARTE-
SIANPOINTLIST3D as a part of the IFC file.

Algorithm 5.1: IFC entities of a new tessellated item
#29= IFCCARTESIANPOINT ((1 0 0 0 . , 0 . , 0 .)) ;
#40= IFCTRIANGULATEDFACESET(#50 ,$, . T . , ((1 , 6 , 5) , (1 ,2 ,6) , (6 ,2 ,7) , (7 ,2 ,3)

, (7 ,8 ,6) , (6 ,8 ,5) , (5 ,8 ,1) , (1 ,8 ,4) , (4 ,2 ,1) , (2 ,4 ,3) , (4 ,8 ,7) , (7 ,3 ,4)) ,$
) ;

#50= IFCCARTESIANPOINTLIST3D(((−2500 . , −500 . ,0 .) , (−1500. , −500. ,0 .)
, (−1500 . ,500 . ,0 .) , (−2500 . ,500 . ,0 .) , (−2500. , −500. ,2000.)
, (−1500. , −500. ,2000.) , (−1500. ,500. ,2000.) , (−2500. ,500. ,2000.)) ,$) ;

ENDSEC;

Figure 5.4 shows a newly created IFC file that has been opened by the TUM OpenIn-
fraPlatform.

Figure 5.4: Two rectangle shapes represented as tessellated surfaces

5.3 New rectangular tessellated surface

The third example demonstrates the creation of a new IFC file using IFC file creator and
modifier programs. The new file is created within the Ryven environment by selecting the
previously defined nodes for entities from ”tessellated� item.ifc” and connecting them,
thereby developing a structure that describes a new IFC file in the Ryven. It is saved as an
JSON file and afterwards converted into the IFC format using fromJSONtoIFC program.
Figure 5.5 illustrates the results of creating the new IFC file.

28

Figure 5.5: New rectangular tessellated surface in TUM OpenInfraPlatform

5.4 Unsupported IFC entity types

Forth example demonstrates the limits of the IFC file creator and modifier programs. Node
classes describing IFC entity types are created manually and, therefore, have not been
created for every node. As a result, most example files cannot be opened. For example,
Figure 5.6 illustrates an error message from Ryven stating that nodes for IFC entity type
IFCSANITARYTERMINAL cannot be created since no node class exists for this entity type.

Figure 5.6: Unsupported IFC entity type IFCSANITARYTERMINAL

29

Chapter 6

Conclusion

6.1 Summary

This bachelor thesis aimed to create a more user-friendly approach for creating and editing
IFC format files. It is usually accomplished using text editors. However, such a method
is less intuitive and can cause typos in the created file, which are not easy to identify
afterward. Instead, in the framework of this thesis was suggested to develop software
using Visual Programming Language technology, thus implementing a more convenient
approach for creating and modifying IFC files.

The Ryven flow-based visual scripting environment was selected as a Visual Programming
Language library to avoid creating a software Visual Programming environment from
scratch and focus on incorporating tools for IFC file modification. However, Ryven accepts
only files with JSON extension. Thus it was necessary to implement a converter that would
translate an IFC file format into the format required by the Ryven environment.

After converting an IFC file into JSON and opening it with Ryven, IFC entities can be
created and adjusted. It is accomplished via nodes representing any variable or function
in the Ryven environment. Therefore, to successfully modify the IFC file, each IFC entity
type of this file was defined as a node class, describing how the IFC entity’s attributes
and IFC ID should be incorporated into the node. Ideally, for every existing IFC entity
type, a separate node class had to be created. It could be accomplished by incorporating
an IFC binding generator and creating the required classes for every IFC entity type.
However, since the software was created as a prototype and was required to modify only
the IFC example file "tessellated-item.ifc", node classes were implemented manually for
IFC entities from this file.

Upon completing the modification of the IFC file via the Ryven environment, all modifica-
tions were stored in the newly created JSON file. However, it was necessary to return
its initial representation format to the file. Thus, a converter was also implemented to
translate a JSON file format back to the IFC format.

As a result, tools were created that translate IFC files into JSON files, modify them using
the Ryven environment, and convert results back into IFC files. Thus a method of creating
and modifying IFC files using Visual Programming Language was created.

30

6.2 Evaluation

The developed tools complete all steps required for modifying an IFC file using the Ryven
flow-based visual scripting environment. However, the developed solution has certain
limitations.

First and foremost, tools in the actual state can only convert IFC files consisting of IFC
entities for which node classes in the Ryven node library were defined. Currently, a node
class should be created manually for every entity type that is not a part of the example file
"tessellated-item.ifc" to launch other IFC files. Otherwise, the tools can only be used with
IFC files that contain only entity types presented in the "tessellated-item.ifc" example file.

In addition, the current software tools are separated into three parts, launched indepen-
dently of one another. For example, an IFC file is opened by the program fromIFCtoJSON,
which converts it into JSON file format and stores it as a JSON file. Afterward, the Ryven
environment is launched separately, and the JSON file received from the program fromIFC-
toJSON is manually accessed. Each change made using Ryven is saved as a JSON file.
Lastly, fromJSONtoIFC opens the saved JSON file and, after translating it into STEP
Physical Format, saves it as an IFC. Completing this sequence of steps is inconvenient for
the user and can also lead to failure due to the possibility of loading a false file.

Figure 6.1: The positioning of the nodes in the Ryven environment

Figure 6.1 demonstrates another limitation of the software. It is related to the quantity of
the IFC entities that the Ryven software can open and their placement. Currently, during
the creation of the JSON file, the program fromIFCtoJSON defines a default position for
every node representing an IFC entity. Positions of the nodes are arranged based on the
IFC ID of the entities they represent, starting with the first node in the top right corner
of the Ryven environment workspace. Other nodes are placed on the plane from right to
left and top to bottom, with a constant spacing between nodes. Thus, the number of IFC
entities that the Ryven environment can open is limited by the dimensions of the Ryven

31

environment workspace and the width of the spacing between nodes. At the same time,
such a way of placing nodes in the Ryven environment workspace ignores the connections
between nodes, thus decreasing the clearness of this approach.

Furthermore, the user interface of the Ryven environment probably was not developed
for the use of nodes with long titles like IFC entities have. Figure 6.2 demonstrates the
limitations of the Ryven user interface.

Figure 6.2: The limitations of the node menu in the Ryven environment

The node menu has insufficient dimensions to display IFC entity types completely. There-
fore, it worsens the user experience while using this program and increases the chance of
failure since nodes representing wrong IFC entity types can be selected.

Therefore, despite being able to modify and create IFC files using the Visual Programming
Language, this software lacks features VPL was supposed to address. Instead, temporary
software for IFC file creation and modification is not intuitive and user-friendly.

6.3 Future development

The prototype software demonstrates promising results in creating and modifying IFC files
using the Visual Programming Language. Users can create and adjust IFC files containing
IFC entities from the example "tessellated-item.ifc". However, being only a prototype, this
solution contains some limitations described in section 6.2.

Therefore there is a variety of improvements that can be completed, thus improving the
usability of the software. For example, an IFC binding generator from TUM OpenInfraPlat-
form should be incorporated into the solution to create and modify IFC files regardless of
the IFC entities they contain. One of the possible solutions how to accomplish this is by
applying the pybind11 library. pybind11 is a header-only library that allows the creation
of Python bindings of existing C++ code (JAKOB, 2022).

32

Another essential improvement is implementing more appropriate placement for IFC entity
nodes in the Ryven environment. It can be accomplished by placing a node that is
branching out in the middle and arranging its branches around this node. At the same
time, a placement hierarchy can be defined by the relationships between entities these
nodes represent. For example, the starting node is placed at the top, and all its branches
are beneath it.

This can be accomplished only by solving another placement issue described in section 6.2,
the Ryven environment workspace limits. The workspace limits should be adjusted based
on the number of nodes an IFC file contains and the area nodes occupy.

Therefore the solution provided in this thesis can be enhanced and, as a result, be more
suitable for the objectives it was designed for.

33

Appendix A

Code

The code created for the IFC file creator and modifier prototype can be found on GitHub:
https://github.com/SamuilsRulovs/Bachelor_thesis

The Ryven environment can be found on GitHub in the repository from LEON THOMM

(2022): https://github.com/leon-thomm/Ryven

34

https://github.com/SamuilsRulovs/Bachelor_thesis
https://github.com/leon-thomm/Ryven

Bibliography

AUTODESK. (2022). What is visual programming? [Accessed: 14.10.2022]. https://primer.
dynamobim.org/01_Introduction/1-1_what_is_visual_programming.html

BIBLUS. (2020). Ifc format and open bim, all you need to know. https://biblus.accasoftware.
com/en/ifc-format-and-open-bim-all-you-need-to-know/

BIBLUS. (2022). What is ifc 5? https://biblus.accasoftware.com/en/what-is-ifc-5/
BORRMANN, A. (2021). Bau- und umweltinformatik ergänzungsmodul vorlesung teil 7:

Grundlagen ifc datenmodell.
BORRMANN, A., KÖNIG, M., KOCH, C., & BEETZ, J. (2015). Building information modeling:

Technologische grundlagen und industrielle praxis.
buildingSMART INTERNATIONAL. (2022a). Ifc release notes [Accessed: 13.10.2022]. https:

//technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/ifc-release-
notes/

buildingSMART INTERNATIONAL. (2022b). Industry foundation classes (ifc) [Accessed:
23.09.2022]. https://www.buildingsmart.org/standards/bsi-standards/industry-
foundation-classes

COLLAO, J., LOZANO-GALANT, F., LOZANO-GALANT, J. A., & TURMO, J. (2021). Bim visual
programming tools applications in infrastructure projects: A state-of-the-art review.
https://doi.org/10.3390/app11188343

DOCS, M. W. (2022). Base64. https://developer.mozilla.org/en-US/docs/Glossary/Base64
GALLAHER, M. P., O’CONNOR, A. C., DETTBARN, JR., J. L., & GILDAY, L. T. (2004).

Cost analysis of inadequate interoperability in the u.s. capital facilities industry.
https://nvlpubs.nist.gov/nistpubs/gcr/2004/nist.gcr.04-867.pdf

HECHT, H., & JAUD, Š. (2019). Tum openinfraplatform: The open-source bim visualisation
software.

IFCOPENSHELL. (2022). Ifcopenshell github repository [Accessed: 23.10.2022]. https:
//github.com/IfcOpenShell/IfcOpenShell

ISO. (2018). Industry foundation classes (ifc) for data sharing in the construction and
facility [Accessed: 23.09.2022]. https://www.iso.org/standard/70303.html

JAKOB, W. (2022). Pybind11 - seamless operability between c++11 and python [Accessed:
26.10.2022]. https://github.com/pybind/pybind11

LEON THOMM. (2022). Ryven - flow-based visual scripting for python [Accessed:
23.10.2022]. https://ryven.org/

PREIDEL, C., DAUM, S., & BORRMANN, A. (2017). Data retrieval from building information
models based on visual programming. https://link.springer.com/content/pdf/10.
1186/s40327-017-0055-0.pdf.

ROBERT MCNEEL & ASSOCIATES. (2022). Grasshopper—new in rhino 6 [Accessed:
24.10.2022]. https://www.rhino3d.com/6/new/grasshopper

RUSSELL GREENE AND AUN-ALI ZAIDI. (2017). Chigraph github repository [Accessed:
23.10.2022]. https://github.com/chigraph/chigraph

35

https://primer.dynamobim.org/01_Introduction/1-1_what_is_visual_programming.html
https://primer.dynamobim.org/01_Introduction/1-1_what_is_visual_programming.html
https://biblus.accasoftware.com/en/ifc-format-and-open-bim-all-you-need-to-know/
https://biblus.accasoftware.com/en/ifc-format-and-open-bim-all-you-need-to-know/
https://biblus.accasoftware.com/en/what-is-ifc-5/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/ifc-release-notes/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/ifc-release-notes/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/ifc-release-notes/
https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes
https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes
https://doi.org/10.3390/app11188343
https://developer.mozilla.org/en-US/docs/Glossary/Base64
https://nvlpubs.nist.gov/nistpubs/gcr/2004/nist.gcr.04-867.pdf
https://github.com/IfcOpenShell/IfcOpenShell
https://github.com/IfcOpenShell/IfcOpenShell
https://www.iso.org/standard/70303.html
https://github.com/pybind/pybind11
https://ryven.org/
https://link.springer.com/content/pdf/10.1186/s40327-017-0055-0.pdf
https://link.springer.com/content/pdf/10.1186/s40327-017-0055-0.pdf
https://www.rhino3d.com/6/new/grasshopper
https://github.com/chigraph/chigraph

SAILI, S. (2021). Grasshopper 3d: A modeling software redefining the design process.
https : / / parametric - architecture .com/grasshopper - 3d - a - modeling - software -
redefining-the-design-process/

THE CHAIR OF COMPUTATIONAL MODELING AND SIMULATION. (2019). Tum open infra
platform github repository [Accessed: 23.09.2022]. https://github.com/tumcms/
Open-Infra-Platform/

TYSON, M. (2022). What is json? the universal data format. https://www.infoworld.com/
article/3222851/what-is-json-a-better-format-for-data-exchange.html

UNIVERSITY OF ILLINOIS. (2007). The llvm compiler infrastructure project [Accessed:
23.10.2022]. https://llvm.org/

YANG, S. (2015). Dynamo and computational bim - part 1: Introduction and resources.
https://the360view.typepad.com/blog/2015/02/dynamo-and-computational-bim-
part-1-introduction-and-resources.html

36

https://parametric-architecture.com/grasshopper-3d-a-modeling-software-redefining-the-design-process/
https://parametric-architecture.com/grasshopper-3d-a-modeling-software-redefining-the-design-process/
https://github.com/tumcms/Open-Infra-Platform/
https://github.com/tumcms/Open-Infra-Platform/
https://www.infoworld.com/article/3222851/what-is-json-a-better-format-for-data-exchange.html
https://www.infoworld.com/article/3222851/what-is-json-a-better-format-for-data-exchange.html
https://llvm.org/
https://the360view.typepad.com/blog/2015/02/dynamo-and-computational-bim-part-1-introduction-and-resources.html
https://the360view.typepad.com/blog/2015/02/dynamo-and-computational-bim-part-1-introduction-and-resources.html

Declaration

I hereby affirm that I have independently written the thesis submitted by me and have not
used any sources or aids other than those indicated.

Location, Date, Signature

