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Vollständiger Abdruck der von der TUM School of Natural Sciences der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation

Vorsitz: Prof. Dr. Johannes Knolle
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Abstract

In the framework of this thesis the effects, induced by the underlying cu-
bic crystal structure and its resulting anisotropies, on the collective spin
excitations in the chiral magnet Cu2OSeO3 are investigated. The analy-
sis comprises results obtained from numerical calculations and microwave
spectroscopy experiments.

First, the resonance modes of the helical/conical, tilted conical, field
polarized, skyrmion lattice and elongated skyrmion lattice phases are calcu-
lated numerically in presence of the cubic magnetocrystalline anisotropy. In
this regard the field dependence of the resonance frequencies and the time
evolution of the spatial distribution of the dynamic magnetization are pre-
sented. These results reveal mode hybridizations with higher order modes
in the tilted conical and skyrmion lattice phase, respectively. The calculated
microwave spectra are finally compared to the experimental ones, provided
by collaborators from our group. A good agreement between these is evi-
dent.

In the second part, the mode interactions between the skyrmion lattice
resonances are studied in more detail. It could be shown that the cubic
magnetocrystalline anisotropy mediates a selection rule based on the sym-
metry and polarization of the interacting modes. In order to characterize
the hybridization strength, the minimum frequency gap between the inter-
acting resonance branches is extracted from the calculated microwave spec-
tra for two different sample shapes. The obtained gap size as a function
of cubic magnetocrystalline anisotropy strength K increases linearly and
does not depend on the sample shape. These results are finally compared
to experimental data, provided by collaborators from different groups. In
the experiments a linear dependence on the temperature is observed, the
gap size is, however, larger by a factor of around 2-3. In order to account
for this difference, the energy functional is complemented by the exchange
anisotropy. It was found that the gap size increases as a function of ex-
change anisotropy constant C in the case of C > 0 and decreases first and
subsequently increases again in the case of C < 0.

The last part comprises angle and temperature resolved microwave spec-
troscopy experiments on a cuboid and a spherical sample. The quantities to
be measured are the resonances in the field polarized phase and the critical
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transition field Hc2. The measurements reveal a dominant twofold and a
fourfold symmetry for the resonances and a fourfold symmetry for the sec-
ond quantity, Hc2. While the fourfold symmetry originates mainly from the
cubic magnetocrystalline anisotropy, the twofold symmetry is attributed to
the dipolar interactions. These are taken into account by considering the
formation of standing spin waves, instead of a uniform excitation of the
magnetization dynamics. By fitting the analytically derived equations to
the experimental data, a continuous decrease of K as a function of tem-
perature is extracted. The comparison of the extracted K values obtained
on one hand from the resonances in the field polarized phase and on the
other hand from Hc2 reveals a finite difference. This suggests that an addi-
tional fourfold symmetry contribution, such as the exchange anisotropy, is
missing in the energy functional. The exchange anisotropy constant, which
is obtained from subsequent analysis, agrees well with the one assumed in
the preceding numerical treatment in order to compensate the difference in
the hybridization gap size. It can be concluded that both the cubic magne-
tocrystalline and the exchange anisotropy are the main contributions to the
mode-mode interactions.
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Zusammenfassung

Im Rahmen dieser Arbeit werden die durch die zugrundeliegende kubische
Kristallstruktur und die daraus resultierenden Anisotropien induzierten Ef-
fekte auf die kollektiven Spinanregungen in dem chiralen Magneten
Cu2OSeO3 untersucht. Die Analyse umfasst Ergebnisse aus numerischen
Berechnungen und Mikrowellen Spektroskopie Experimenten. Zunächst wer-
den die Resonanzmoden der helikalen/konischen, gekippt konischen, feld-
polarisierten, Skyrmion-Gitter und elongierten Skyrmion-Gitter Phasen in
Gegenwart der kubischen magnetokristallinen Anisotropie numerisch berech-
net.

In diesem Zusammenhang werden die Feldabhängigkeit der Resonanzfre-
quenzen und die zeitliche Entwicklung der räumlichen Verteilung der dy-
namischen Magnetisierung dargestellt. Diese Ergebnisse offenbaren Mod-
enhybridisierungen mit Moden höherer Ordnung in der gekippt konischen
und der Skyrmion-Gitter Phase. Die berechneten Mikrowellenspektren wer-
den schließlich mit den experimentellen Spektren verglichen, die von Mi-
tarbeitern unserer Gruppe bereitgestellt wurden. Es zeigt sich eine gute
Übereinstimmung zwischen diesen.

Im zweiten Teil werden die Moden-Wechselwirkungen zwischen den Skyr-
mion-Gitterresonanzen genauer untersucht. Es konnte gezeigt werden, dass
die kubische magnetokristalline Anisotropie eine auf der Symmetrie und
Polarisation der wechselwirkenden Moden basierende Auswahlregel vermit-
telt. Zur Charakterisierung der Hybridisierungsstärke wird die minimale
Frequenzlücke zwischen den wechselwirkenden Resonanzzweigen aus den
berechneten Mikrowellenspektren für zwei verschiedene Probenformen ent-
nommen. Die erhaltene Lückengröße als Funktion der Stärke der kubischen
magnetokristallinen Anisotropie K nimmt linear zu und ist unabhängig von
der Probenform. Diese Ergebnisse werden schließlich mit experimentellen
Daten verglichen, die von Mitarbeitern verschiedener Gruppen zur Verfügung
gestellt wurden. In den Experimenten wird eine lineare Abhängigkeit von
der Temperatur beobachtet, die Frequenzlücke ist jedoch um einen Faktor
von etwa 2-3 größer. Um diesen Unterschied zu erklären, wird das Energie
Funktional durch die Austauschanisotropie ergänzt. Es wurde festgestellt,
dass die Lückengröße als Funktion der Austauschanisotropiekonstante C im
Fall von C > 0 zunimmt und im Fall von C < 0 zunächst abnimmt und
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dann wieder zunimmt.
Der letzte Teil umfasst winkel- und temperaturaufgelöste Mikrowellen

Spektroskopie Experimente an einer quaderförmigen und einer kugelförmigen
Probe. Die zu messenden Größen sind die Resonanzen in der feldpolar-
isierten Phase und das kritische Übergangsfeld Hc2. Die Messungen zeigen
eine dominante zwei- und vierfache Symmetrie für die Resonanzen und eine
vierfache Symmetrie für die zweite Größe, Hc2. Während die vierfache
Symmetrie hauptsächlich auf die kubische magnetokristalline Anisotropie
zurückzuführen ist, wird die zweifache Symmetrie auf die dipolaren Wech-
selwirkungen zurückgeführt. Diese werden berücksichtigt, indem die Bil-
dung stehender Spinwellen anstelle einer gleichmäßigen Anregung der Mag-
netisierungsdynamik in Betracht gezogen wird. Durch Anpassung der an-
alytisch hergeleiteten Gleichungen an die experimentellen Daten wird eine
kontinuierliche Abnahme von K als Funktion der Temperatur extrahiert.
Der Vergleich der extrahierten K-Werte, die zum einen aus den Resonanzen
in der feldpolarisierten Phase und zum anderen aus Hc2 gewonnen wur-
den, zeigt einen endlichen Unterschied. Dies deutet darauf hin, dass ein
zusätzlicher vierfacher Symmetriebeitrag, wie die Austauschanisotropie, im
Energie Funktional fehlt. Die Austauschanisotropiekonstante, die sich aus
der nachfolgenden Analyse ergibt, stimmt gut mit derjenigen überein, die
in der vorangegangenen numerischen Behandlung angenommen wurde, um
den Unterschied in der Größe der Hybridisierungslücke zu kompensieren.
Daraus lässt sich schließen, dass sowohl die kubische magnetokristalline als
auch die Austauschanisotropie die Hauptbeiträge zu den Moden-Moden-
Wechselwirkungen darstellen.
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Introduction

The research field of magnonics, a neologism originating from the quantized
excitations of spin waves (magnons), addresses the collective spin excita-
tions in micro- and nanostructured logic and memory devices in form of spin
waves. The foundation on which this area of research builds on are the wave
like properties of magnetization dynamics. In analogy to light and sound
waves, diffraction [Bir09; Man12; Grä20], refraction and reflection [Gie14;
Sti16; Hio20], interference [Cho06; Per08; Pir11; Ber20; Pap21] and Doppler
[Vla08; Cha14] effects are observed, just to name a few. Exploiting these
characteristics allows to manipulate and steer spin waves in a controlled
manner [Sch10; Dem11; Jam13; Gie13; Gru16; Kör17; Vog18; Zha19]. De-
spite many materials allow to study magnonic effects, the probably most
important one is the insulating ferrimagnet yttrium iron garnet Y3Fe5O12

(YIG) [Ser10]. Due to its ultra low magnetic damping α = 2.7(5) × 10−5

[Kli17], which is the up to that the day record value, long life time and
propagation distance of the magnons are observed. The insight gained into
the general wave properties can nevertheless ultimately be applied to dif-
ferent materials. The research in the field of magnonics is, besides the
interest in the fundamental physical procedures, mainly driven by the po-
tential implementation in data processing devices [Chu17; Mah20]. The
aim in this regard is to transfer, process and store information using spin
waves as respective carriers. Towards conventional electronics, the encoding
of information in angular momentum instead of electron charges enables to
circumvent Joule heating and lowers the energy costs in general [Chu14]. In
order to exploit the characteristics of spin waves for application in devices,
the respective wave lengths should be reduced to values smaller than 100 nm
[Chu15]. Since an efficient excitation of magnons by microwave antennae in
this wave length regime, however, requires their dimensions to be also on
the same length scales, the limits of feasibility are gradually reached. A
workaround to bypass these constraints is the creation of a periodic modu-
lation of the magnetization structure, for instance, by etching or depositing
nanodots in the material [Tac12; Yu16]. In analogy to photonic crystals,
these devices are referred to as magnonic crystals [Gul01]. Based on the
tremendous amount of publications in this field, a vast number of review
papers have been published in the last decade [Neu09; Kru10; Len11; Kra14;
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Introduction

Nik15; Chu17; Bar21].
An intrinsically periodic modulation of the magnetization properties in

form of spin spirals or skyrmion lattices is found in a multitude of materials.
Magnetic skyrmions are vortex-like spin swirls with particle-like character.
The nanometer sized magnetic textures [Hei11] as well as the chiral magne-
tization configuration, in general, originate from the competition between
several energy contributions [Nag13]. The ones which are responsible for the
spin twisting in the material investigated in the framework of this thesis are
the isotropic and anisotropic exchange interactions, the latter is also referred
to as Dzyaloshinsky-Moriya interaction (DMI). An important property of
skyrmions is the topological nature, which is characterized by their topolog-
ical winding number. Since a continuous deformation from one magnetiza-
tion configuration into another is prohibited in the case the respective wind-
ing numbers do not accord, skyrmions are said to be topologically protected
[Nag13]. They are therefore relatively stable and exhibit a long lifetime. The
findings of an, in general, chiral magnetic texture opened up a new, intrigu-
ing research field in physics. In the past years, different kind of skyrmions
[Bac20], nucleation and annihilation processes [Jia15; Büt17], interactions
with applied currents [Zha15a; Doh19; Yu20; Pen21] and generic magneti-
zation excitations [Gar17], in particular interactions with magnons [Moc14;
Iwa14; Lin14; Kov14; Sch14; Zha17], were subject to intensive studies, just
to name a few. Additionally, the investigations are not just limited to the
skyrmion host itself but are also extended to heterostructures [Ran21] and
also hybrid systems with topological insulators and superconductors [Sou16;
Vad18; Che19b; Div22], which promise interesting phenomena. A compre-
hensive summary of the state of the art in this research area is provided in
[Bac20]. Besides fundamental research, skyrmions also attract interest in
regard of applications in practical devices. Against the background of their
size, stability and mobility [Sch12; Yu12], skyrmions are treated as poten-
tial candidates to be implemented in devices like a race track memory as
information carriers [Fer13; Sam13; Iwa13; Mül17; Che19a; Wan19].

A specific class of these magnetic materials are the chiral magnets, which
exhibit a non-centrosymmetric cubic crystal structure with space group P213
[Sch15]. Its elements share the same rich phase diagram, which comprises
spin spirals with a perpendicular (helical) or canted alignment (conical)
of the individual spins with respect to the pitch vector, a collinear align-
ment of the magnetization (field-polarized phase) and a skyrmion lattice
[Müh09]. Regarding the electrical conductivity, all three groups, namely
metals, semiconductors and insulators are represented in this class [Sch15].
The skyrmion hosting material investigated in this thesis is the insulating
ferrimagnet copper-oxo-selenite Cu2OSeO3 (CSO). The bulk material, which
is a member of the chiral magnet family, stands out for its very low magnetic
damping of approximately α = (9.9 ± 4.1) × 10−5 at 5K [Sta17b], a value
very close to the one observed in yttrium iron garnet. In addition to that,
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with the recent observation of the tilted conical phase [Fen18] and more
importantly a second, independent skyrmion lattice phase at low tempera-
tures by Chacon et al. [Cha18] via small angle neutron scattering, further
peculiarities could be found. For this reasons, the up to that point already
extensively studied ferrimagnet attracted again a lot of attention. Compared
to its counterpart close to Tc, the low temperature skyrmion phase extends
over a wide field and temperature pocket, which leads to a lower sensitivity
against fluctuations in these parameters. Finally, the combination with the
low damping makes CSO an interesting candidate for studying the propa-
gation characteristics of spin waves in all phases [Sek16; Sek20; Oga21], the
interaction between magnons and skyrmions [Moc14; Iwa14; Lin14; Kov14;
Sch14; Zha17] and the coupling to photons [Abd19; Kha21].

The mechanism, stabilizing these additional phases at low temperatures,
is identified by numerical calculations to originate from the coupling to the
underlying cubic lattice [Cha18]. In particular, it could be shown that the
cubic magnetocrystalline anisotropy alone is sufficient to reduce the en-
ergy of the skyrmion lattice with respect to the other phases, making it
the ground state of the system. Additional anisotropy terms might also
play a non-negligible role in this regard, but their contributions can not be
uniquely determined without further input from the experimental side. In
this study only the effect on the magnetization configuration is investigated.
The induced changes in the magnetization dynamics, however, remain un-
resolved. To this end, this thesis focuses on the numerical and experimental
investigation of the collective spin excitations in the helimagnet CSO in
presence of a cubic magnetocrystalline anisotropy. The results comprise on
the one hand numerical calculations, which build on the previously estab-
lished model [Müh09; Sch15], and on the other hand broadband microwave
spectroscopy experiments, which already proved to be a novel technique to
resolve the microwave absorption spectra [Ono12; Sch15].

This thesis is divided into three parts. In the first part, Part I, funda-
mental aspects are presented. In Chap. 1 the framework of micromagnetism
is elaborated, which comprises the introduction of the relevant quantities,
namely magnetization, energy contributions and effective field. In the sec-
ond chapter Chap. 2, the equation of motion of magnetization dynamics is
covered. The experimental setup in order to excite and detect the magnetiza-
tion dynamics is introduced in Chap. 3. Here, two techniques of performing
microwave spectroscopy experiments are presented.
The second part of this thesis, Part II, addresses the main focus of this
work, namely the spin excitations in the insulating chiral magnet Cu2OSeO3.
First, a general introduction of chiral magnets is given in Chap. 4. Subse-
quently, a more detailed description of the characteristics of one of its mem-
bers, Cu2OSeO3, the material investigated in this study, will be presented
in Chap. 5. In order to account for the eigenstates and eigenvalues of the
magnetization dynamics of this particular group of magnets, the Ginzburg-
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Landau model and the Landau-Lifshitz equation of motion are employed.
The framework of the numerical model is presented in the following chap-
ter, Chap. 6. Finally, in Chap. 7 the theoretical and experimental results
are discussed. This chapter is structured as follows: Based on the findings
reported in [Cha18], the resonance modes of the helical/conical, tilted con-
ical, field polarized and skyrmion lattice phases are calculated numerically
in presence of the cubic magnetocrystalline anisotropy. The results are pre-
sented in the first section. In these calculations mode hybridizations in the
tilted conical and skyrmion lattice phase are observed. In the second sec-
tion of this chapter, these interactions will be analyzed in more detail for
the skyrmion lattice phase. The last part comprises the measurements of
the angle and temperature resolved resonance conditions. The experimental
results are accompanied by analytical and numerical calculations. Finally,
this thesis concludes with a summary of the main results, which is presented
in Chap. 8. Additional information is given in the appendix, which is the
third part, Part III.
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Chapter 1

Introduction

In this chapter a short introduction of the quantity of interest, the magne-
tization, and the important interactions, it is subject to, will be presented.
This small summary is based on the detailed description found in several
textbooks [Blu01][Coe10][A H09] which for the interested reader we are re-
ferring to. The energy landscape, the sum of the individual interaction
terms, which finally determines the physical properties of the magnetization,
strongly depends on the material investigated. It is therefore not discussed
here, but will be presented in regard of the Ginzburg-Landau model in the
corresponding chapter in great detail.

1.1 Magnetization and magnetic field

The magnetization M is defined as the magnetic moment density [A G96]

M(r, t) =
1

∆V

∑
∆V

µ, (1.1)

given in the unit volume ∆V . Despite the discrete nature of the magnetic
moments µ, which are connected to the spin of the electrons and the nu-
clei, the magnetization is assumed to be a continuous differentiable vector
field. This approximation is based on the strong exchange forces between
neighboring magnetic moments, leading to an almost parallel alignment in
a ferromagnet. Since the angle between the moments varies on length scales
significantly larger than the atomic lattice spacing, this assumption is justi-
fied and the magnetization can be treated in a classical approach.

For temperatures below the Curie temperature Tc, the absolute value of
the magnetization is assumed to be equal to the saturation magnetization,
|M(r, t)| = Ms(T ) at every position in the sample. It is defined as the state
of fully aligned magnetic moments. The critical temperature Tc strongly
depends on the material investigated. While, for instance, in the case of
ferrimagnet Y3Fe5O12 (YIG) (Tc > 550K [Ars18]) measurements can be
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Chapter 1. Introduction

conducted at room temperature, in the case of Cu2OSeO3 (CSO), the sample
has to be cooled down to at least Tc = 58K [Ono12].

In free space the relation between the two magnetic fields B and H is
given by the linear relation,

B = µ0H. (1.2)

The prefactor µ0 entering the equation is the permeability constant of the
vacuum. In the presence of a magnetic sample, its magnetization has to be
included in the equation above, yielding

B = µ0(H +M). (1.3)

Since M and H are not necessarily correlated, the magnetic fields are no
longer parallel. Assuming, however, a linear dependence on the magnetic
field H, the magnetization can be written in the form

M = χH (1.4)

with the dimensionless quantity χ, which is referred to as magnetic suscep-
tibility. Inserting this expression in Eq. 1.3, results in

B = µ0(1 + χ)H. (1.5)

It should be noted, that in the context of dipolar interactions, the fields
within and outside of the boundaries of the magnetized body, have to be
distinguished. Further information regarding the difference will be elabo-
rated in Sec. 1.2.2.

1.2 Energy contributions

1.2.1 Exchange interaction

A generic form of the interaction between two spins Si and Sj on the re-
spective lattice sites i and j is given by [Udv03]

H = SiJ i,jSj , (1.6)

with the 3×3 interaction matrix J i,j . This interaction matrix, in turn, can
be divided into an isotropic and anisotropic contribution, while the latter
consists of a symmetric and antisymmetric term.

Isotropic exchange interaction
The isotropic exchange interaction, which is mostly referred to as exchange
interaction only, in the literature, is the origin of the order of the magnetic
moments, as anticipated before. This strong but short ranging phenom-
ena is of quantum mechanical nature, originating from the interplay of the
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1.2. Energy contributions

Coulomb interaction and the Pauli principle. For simplicity, the interaction
is often limited to the next neighbor interaction and given in the established
form, denoted as Heisenberg Hamiltonian [Coe10],

H = −2
∑
i<j

Ji,jSiSj . (1.7)

Assuming the interaction to not depend on the lattice site, Ji,j , the measure
of the interaction strength, is considered to be isotropic Ji,j = J . Depending
on the sign of J , minimization of the Hamiltonian leads either to a paral-
lel (J > 0) or an anti parallel alignment (J < 0) of the magnetic moments
[Blu01] [A H09]. Based on the approximation, that the angle between neigh-
boring spins is small allows for the sum over all lattice sites to be converted
into a continuous model. The resulting energy density reads,

Fex[M ] =
A

M2
s

(
(∇Mx)

2 + (∇My)
2 + (∇Mz)

2
)

(1.8)

with exchange stiffness constant A. Deviations from a uniform alignment
are penalized by the gradient terms, leading to an increase of the energy in
the system.

Ansiotropic exchange interaction
The second exchange interaction to be considered is the antisymmetric
anisotropic exchange, which can be found in systems with a broken inversion
symmetry and strong spin orbit coupling. Due to their contributions, this
interaction is nowadays also referred to as Dzyaloshinsky-Moriya interaction
(DMI) [Dzy58; Mor60]. Its general form is given by,

H =
∑
i,j

Di,j · Si × Sj . (1.9)

In contrast to the isotropic exchange interaction, the DMI favors perpen-
dicular orientation of the neighboring spins, in order to minimize its energy
contribution. Depending on the symmetry of the system, the vector Di,j is
aligned either parallel or perpendicular to the distance vector, connecting
lattice site i and j. The two cases distinguished are the bulk DMI, emerg-
ing in bulk crystals without inversion center, and the interface DMI, arising
due to a lack of symmetry at the interfaces and surfaces. Using the same
argument above, the discrete nature of the lattice can be ignored and the
Hamiltonian is expanded in a Taylor series, resulting in the continuous form,

FDM[M ] = DM(∇×M), (1.10)

in the case of bulk DMI. The Dzyaloshinsky-Moriya interaction plays an
important role in the case of chiral magnets like Cu2OSeO3. Due to the
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Chapter 1. Introduction

competition between the isotropic and anisotropic exchange, the formation
of spin helices and skyrmions arises. The third term, anisotropic symmetric
exchange interaction, is symmetric under the exchange of both interacting
spins. Its strength depends on the spin orientation relative to the distance
vector between the lattice sites i and j. Based on its small magnitude
compared to the isotropic exchange interaction, its contribution is often
neglected [Sko05] and therefore it is not taken into account in the theoretical
model, discussed in this thesis.

1.2.2 Dipolar interaction

The energy contribution, resulting from the magnetic dipole-dipole inter-
action between two magnetic dipoles µ1 and µ2 separated by the distance
vector r = r1 − r2 reads [Blu01],

EDD =
µ0

4πr3

(
µ1 · µ2 −

3

r2
(µ1 · r)(µ2 · r)

)
. (1.11)

Compared to the previously introduced exchange energy, the dipolar in-
teraction is a rather long ranging but weak interaction. Due to the order
of magnitude of this contribution, it alone would be therefore not sufficient
enough to stabilize magnetic order in many magnetic materials [Blu01]. Seen
from a macroscopic view, the magnetic field arising from all the individual
microscopic dipoles is determined by the magnetic induction Eq. 1.3 and the
Maxwell equation ∇B = 0 and results in the representation,

∇HD = −∇M . (1.12)

This induced field is aligned anti parallel with respect to the magnetization
and is therefore referred to as demagnetizing field. The presence of HD can
be visualized in terms of magnetic charges in the volume and at the surface
of the magnetic sample. While the charges in the volume cancel each other,
the ones at the surface remain uncompensated due to the reduced symmetry
at the boundaries, leading to the finite divergence of the magnetization. The
energy density contribution arising from this effect is given by [Blu01],

FDD[M ] = −1

2
µ0HDM (1.13)

which is integrated over the samples volume. In general, for an arbitrarily
shaped sample, the calculation of the demagnetizing field is quite compli-
cated due to its complex dependence on the position. In the special case
of an ellipsoid, however, the magnetization and the resulting demagnetizing
field are homogeneous, which reduces their correlation to the linear equation

HD = NM (1.14)
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1.2. Energy contributions

with the 3 × 3 demagnetization tensor N . If the Cartesian coordinate sys-
tem (x, y, z) is aligned with respect to the principal axes of the ellipsoid, the
demagnetization tensor can even be simplified to a diagonalized representa-
tion. Note, the entries of N , the demagnetization factors, are governed by
the constraint tr(N) = 1. Since they depend on the dimension ratios of the
sample, this energy contribution is also referred to as shape anisotropy.

Due to the magnetization of the sample, the magnetic fields within and
outside the material have to be distinguished. In the presence of an external
field Hext the actual field within the solid, the internal field H int, is given
by the sum of both external and demagnetization field, reading,

H int = Hext +Hdem. (1.15)

With the linear relation given for the external field, Bext = µ0Hext, the
internal magnetic induction Bint is then written in the form,

Bint = µ0(H int +M) (1.16)

= µ0(Hdem +M) +Bext. (1.17)

1.2.3 Zeeman energy

The interaction between the magnetization and an externally applied field
Hext is described by the Zeeman term, reading [A H09]

FZ[M ] = −µ0HextM . (1.18)

This energy term is minimized by a parallel alignment of the magnetization
with respect to the applied magnetic field.

1.2.4 Magnetic anisotropies

The last energy contribution to be considered, is the anisotropy governed
by the underlying crystallographic structure. Arising from the interaction
between the electron orbit and the crystal fields, the energetically favorable
directions are related to the principal axes of the crystal lattice. As a con-
sequence, the additional energy terms must therefore obey the symmetry of
the system investigated. It should be noted that the anisotropy parameters
are strongly temperature dependent. For experiments at low temperatures
higher order terms might no longer be negligible and have to be taken into
consideration.

Cubic magnetocrystalline anisotropy
In a cubic environment, the magnetocrystalline anisotropy to the lowest
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Chapter 1. Introduction

order is written in the form [A G96]

Fc0[α] = K ′(α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1

)
(1.19)

=
K ′

2

(
1− α4

1 − α4
2 − α4

3

)
, (1.20)

with direction cosine vector α 1. The latter is defined as the projection
of the magnetization on the crystallographic axes, denoted by the indices
i = {1, 2, 3}. Assuming the principal axes of the sample to conform with
the crystallographic axes, the representation of the anisotropy term chosen
in this thesis is given by,

Fc0[M ] =
K

M4
s

(
M4

x +M4
y +M4

z

)
, (1.21)

with K = −K′

2 . Since the constant term does not have an effect on the
equilibrium position and resonance condition of the magnetization, it will be
omitted in the calculations. Depending on the sign of K, the magnetization
tends to align either along the [100] (K < 0) or [111] (K > 0) direction.

Uniaxial anisotropy
In the case of ferromagnets with one preferred axis, the energy term, also
referred to as uniaxial anisotropy is written in the form,

FU =
U

M2
s

(M · n̂U)
2 (1.22)

with the direction of the symmetry axis given by n̂U. This additional term,
exhibiting a twofold symmetry, results either in an easy axis (U > 0) or
easy plane (U < 0) anisotropy, depending on the sign of U . It should
be mentioned, that in thin magnetic films and multilayer systems, an in
plane but also out of plane uniaxial anisotropy is often added to the energy
functional, in order to take growth induced and interface effects into account
[Far98; Wol04; Liu06; Hof10; Dec18].

Exchange anisotropy
Another anisotropy term, which will be taken into consideration in the the-
oretical analysis of CSO, is the exchange anisotropy,

Fc1[M ] = C
(
(∂xMx)

2 + (∂yMy)
2 + (∂zMz)

2
)
. (1.23)

This additional energy contribution is also allowed by the symmetry of the
P213 space group and was already included in the model by Bak and Jensen

1 The components of the direction cosine vector are defined as αi = Mi/Ms. Here, index
i refers to the crystal axes.
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[Bak80]. In contrast to the cubic crystalline anisotropy, this term fixes the
direction of the pitch vector, which reflects the orientation of the spin spi-
rals. While for C < 0 the orientation along the [111] direction is energetically
more favorable, for C > 0 the pitch aligns along the [100] direction. Fur-
ther anisotropy terms following the symmetry requirements are presented in
[Eve12], but will not be discussed in the course of this thesis.

1.3 Equilibrium position

Depending on the material investigated, the energy landscape consists of the
sum of several energy contributions as listed above. Minimizing the resulting
energy functional with respect to the magnetization allows to determine the
ground state [A G96],

δM

∫
V

∑
i

Fi dV
!
= 0. (1.24)

The length of the magnetization is assumed to be constant in this approach,
leaving the direction cosines as free variables. The variation of the energy
functional leads to the so called Brown equation [Bro78; A G96; Aha01],

M ×Heff = 0, (1.25)

with the effective field defined as,

Heff = − 1

µ0

δF [M ]

δM
. (1.26)

Here, F [M ] =
∑
i
Fi, represents the sum over the respective energy contri-

butions. The equilibrium condition Eq. 1.25 is fulfilled, if the magnetization
is aligned parallel to the effective field. If the magnetization is deflected out
of its equilibrium position, a torque acts on M , leading to a precessional
motion around Heff.
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Chapter 2

Magnetization Dynamics

The investigation of the magnetization precession or dynamics, respectively,
opens up the possibility to gain insights into the materials characteristics.
Comparing the observed experimental data to the respective theoretical
model, allows to extract the parameters of the individual interaction terms,
contributing to the total energy functional. In this thesis the focus lies on
the collective as well as the local response of the magnetization to an exter-
nal driving field. Depending on the investigated regime, the experimental
methods and theoretical model have to be adapted. Before introducing the
established tools to excite and resolve its precessional motion in time and
space in the following chapter Chap. 3, the equation of motion has to be
derived.

The corresponding equation, which describes the temporal and spatial
evolution of the magnetization, is called Landau-Lifshitz-Gilbert equation
[Lan35; Gil55]. It is given by,

dM

dt
= − γµ0M ×Heff︸ ︷︷ ︸

precession

+
α

Ms
M × dM

dt︸ ︷︷ ︸
damping

(2.1)

with gyromagnetic ratio γ = ge
2me

, Landé factor g, electron charge e, elec-
tron mass me and Gilbert damping parameter α. The time evolution of
the magnetization is determined by the sum of a precession and a damping
term. Deflected once out of the equilibrium position, the torque induced by
the effective field, causes the magnetization to precess around the latter, as
illustrated in Fig. 2.1 (a). Due to the order of magnitude of the prefactor
γ = 1.88 × 1011 rad/sT (obtained for Cu2OSeO3 [Sta17b]) and the satura-
tion magnetization the resonance frequencies lie in the GHz regime for the
materials investigated in this thesis. Introducing the additional damping
term, with its strength given by the dimensionless parameter α, the mag-
netization is subject to a further torque pointing towards the equilibrium
position. The resulting trajectory is therefore described by a spiral around
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Chapter 2. Magnetization Dynamics

the effective field, indicated by the orange line in Fig. 2.1 (b). Unless not
continuously driven by an external driving field, the magnetization therefore
relaxes into the equilibrium state.

Figure 2.1: Trajectory (orange) of the magnetization vector (red) around
its equilibrium position (gray). (a) Lossless precessional motion, driven by
the precession term of Eq. 2.1 (dark blue). (b) Including the dissipative
term, the magnetization is subject to an additional torque (light blue arrow),
pointing towards the equilibrium position. The resulting magnetization tra-
jectory is a spiral motion.

A general approach in order to solve the equation of motion, is to divide
the magnetization into a homogeneous static and a dynamic part,

M = M s + δM(t) (2.2)

assuming, that the amplitude of the dynamic component is significantly
smaller than the static one, |δM | ≪ |M s|. Therefore, the change of the
magnitude of M s, caused by the precessional motion, is negligible, leaving
|M s| = |M | = Ms. For the dynamic component δM , a plane wave ansatz
is used,

δM(t) = δM ei(kr−ωt), (2.3)

exhibiting an explicit space and time dependence, characterized by the mo-
mentum vector k and resonance frequency ω, respectively. As already antici-
pated before, we investigate the collective and local magnetization dynamics.
In the first case also called macrospin approximation, the neighboring spins
are precessing with k = 0 and therefore in phase. This case is referred to
as ferromagnetic resonance (FMR). In the second case, the dynamic mag-
netization exhibits a finite wave vector, leading to a linear shift in phase
between the neighboring spins. Therefore a wave, referred to as spin wave,
propagates in the material. Both cases are illustrated in Fig. 2.2.

Depending on the orientation of magnetization, wave vector and surface
normal, the spin waves exhibit different characteristics. For thin magnetic
films a distinction is made between three main geometries: the Damon-
Eshbach, backward volume and the forward volume geometry. They are
defined as illustrated in Fig. 2.3. In the first two cases, the Damon-Eshbach
and backward volume mode, the magnetization lies in plane. While k is
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perpendicular to M s for the Damon-Eshbach geometry, the wave vector is
aligned along the magnetization direction for the backward volume mode.
For the last case, the magnetization is orientated perpendicular to the sur-
face and the wave vector lies within the plane. This geometry is referred to
as forward volume mode. Note, in the most general case, the angle between
the wave vector and the magnetization direction takes on arbitrary values
and is not just limited to these three geometries. Consequently this leads
to a spin wave manifold, as it is shown for the case of an in plane applied
magnetic field exemplary in [Bau15].

Figure 2.2: Sketch of a collective excitation for vanishing (a) and finite
momentum k (b) at a certain time t.

Figure 2.3: Sketch of the three main spin wave geometries. (a) Damon-
Eshbach, (b) Backward volume (c) Forward volume

In order to solve the equation of motion, the effective field of the system
investigated has to be calculated by means of Eq. 1.26. In this regard, the
corresponding energy terms have to be determined first. After inserting the
ansatz for the magnetization (Eq. 2.2) into the effective field, the latter is
expanded up to the first order in δM , leading to

Heff ≈ H0
eff +H1

eff. (2.4)

Here, the effective field is divided into two terms containing δM either to
zeroth or first order, respectively, as indicated by the indices. Plugging
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Chapter 2. Magnetization Dynamics

now the magnetization Eq. 2.2 and the approximation for the effective field
Eq. 2.4 into the Landau Lifshitz equation Eq. 2.1 and keeping only terms
linear in δM , yields,

dδM(t)

dt
= −γ

(
δM(t)×H0

eff +M s ×H1
eff

)
+

α

Ms
M s ×

dδM(t)

dt
. (2.5)

Using the explicit time dependence of the dynamic component given in
Eq. 2.3, the equation can then be written as, 1

−iω δM = −γ
(
δM ×H0

eff +M s ×H1
eff

)
− iω

α

Ms
M s × δM . (2.6)

Rearranging this formula, we introduce the vector W, parameterizing the
sum of all contributions,

0 = iω δM − γ
(
δM ×H0

eff +M s ×H1
eff

)
− iω

α

Ms
M s × δM︸ ︷︷ ︸

W:=

. (2.7)

Due to the linear dependence on δm, Eq. 2.7 can be simplified by the
equation system [A G96; Wai17]

0 = W ′ δM (2.8)

with matrix W ′ defined as,

W ′ :=

∂δMxWx ∂δMyWx ∂δMzWx

∂δMxWy ∂δMyWy ∂δMzWy

∂δMxWz ∂δMyWz ∂δMzWz

 . (2.9)

Since Eq. 2.8 has to be fulfilled for every δM , the determinant of W ′ has
to vanish,

Det[W ′]
!
= 0. (2.10)

Starting from the Landau Lifshitz Gilbert equation Eq. 2.1, the search
for the resonance frequencies amounted to the solution of Eq. 2.10 for ω.
Depending on the orientation of M s and δm, respectively, W ′ can even be
reduced to a 2× 2 matrix.
Keeping only terms linear in α, results in general in three solutions for ω.
Due to the dissipative contribution, these are complex numbers, divided into
real and imaginary part,

ω = Re(ω) + i Im(ω) (2.11)

From the real part of ω, Re(ω) = 2πf(k), we obtain the dispersion relation,
describing the evolution of the resonance frequency f as a function of wave

1 For simplicity, the effective field H1
eff := H1

eff/e
i(kr−ωt) was redefined.
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vector k at a fixed external field Hext.
Furthermore, the dispersion relation allows to calculate the group velocity,
given by

vgr =
∂

∂k
Re(ω) = 2π

∂f

∂k
. (2.12)

It should be mentioned, that vgr is in general not necessarily aligned with
the wave vector, but adjusts its direction, depending on the orientation of
k with respect to M s. Considering the main spin wave geometries, vgr

is aligned parallel, antiparallel and parallel to k, for the Damon-Eshbach,
backward volume and forward volume modes.
The imaginary part of ω is identified as the reciprocal relaxation time τ ,

Im(ω) =
1

τ
. (2.13)

Using additionally the expression for the group velocity, the attenuation
length can be calculated accordingly,

Latt = vgrτ =
vgr

Im(ω)
. (2.14)

Depending on the type of experiment conducted, the introduced quantities
can be extracted from the obtained data. Since, as already stated, FMR and
spin wave spectroscopy are covered in this thesis, a more detailed description
will be given in the corresponding chapters.
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Chapter 3

Experimental Techniques

3.1 Generation of a Microwave Driving Field

In order to excite magnetization dynamics continuously, the sample has to
be subject to an external oscillating field. A basic approach to generate this
alternating magnetic field in the desired frequency range is to drive a radio
frequency current through a conductive material, serving as a waveguide.
The magnetization couples to this driving field, resulting in a precessional
motion of the former. Depending on the experiment, the design of this
waveguide has to be chosen properly. A widely used approach is the shorted
coplanar wave guide (CPW) [Bai03; Vla08; Bau14; Sti16], also referred to
as antenna throughout this thesis. It consists of one signal and two ground
lines, as shown in Fig. 3.1 (a). The crucial parameters of the antenna are
the widths ws and wgr and the gap between the ground and signal line wg.
Assuming the conducting leads to be infinitely long, the generated magnetic
field can be calculated by the 2D Biot-Sarvart law [Coe10]. The resulting
alternating field for the design presented in Fig. 3.1 (a) is given in Fig. 3.1
(b) as a function of position. It consists of a symmetric in plane (red) and
asymmetric out of plane (blue) component. While the in plane component
is localized around the ground and signal lines, the out of plane driving field
reaches its maximum strength within the gap. It should be mentioned that
the calculation of the Biot-Saravat law was performed with a spatially inde-
pendent current density. Due to the skin effect, which needs to be taken into
account for an oscillating current, the current density is inhomogeneously
distributed within the the transmission lines and is required to be calculated
numerically using commercial software [Obs15; Här16]. The generated exci-
tation field consequently differs from the approximated results presented in
Fig. 3.1. The excitation efficiency strongly depends on the orientation of the
magnetization with respect to the driving field direction. Since the alternat-
ing field exerts a torque on the magnetization, its strength is maximized by a
perpendicular orientation of the latter with respect to the individual driving
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field components. This is realized by saturating the magnetization along the
antenna lines, since both in and out of plane driving field contribute to the
magnetization excitation. On the basis of their different symmetry charac-
teristics with respect to the center of the signal line, the excitation efficiency,
however, depends on the side of the antenna considered. As it is shown in
Fig. 3.1 (b), while the in plane oscillating field is symmetric in x, the out of
plane component is antisymmetric in x. It follows that due to the superpo-
sition of both driving field components, on one side the excitation efficiency
is enhanced, while it is reduced on the other side. This is know as amplitude
non-reciprocity.

An important characteristic of the driving field is the excitation effi-
ciency as a function of wave vector length |k|. Since the wave vector of the
driving field and the spin wave excited are directly correlated, the design
of the antenna has to be chosen in accordance with the wave vector range
under investigation. The distribution in momentum space is determined by
calculating the fast Fourier transformation (FFT) of the excitation field.
The normalized FFT of the in plane field is illustrated in Fig. 3.1 (c). From
the distance between the center of the ground lines, d = ws+wgr+2wg, the
peak position of the first maximum can be estimated. As the dimensions of
the antenna are likewise in the micrometer regime, it is usually fabricated
directly on top of the magnetic film samples via optical lithography. In the
case of a lamella-shaped sample, a preparation technique which is recently
frequently employed for bulk crystals like CSO, the CPW is structured on
top of a substrate and the lamella is placed on top of the antenna.

In addition to the width parameters of the antenna, introduced before,
also the periodicity of the structure influences the line shape of the excita-
tion spectrum. Increasing the repetition in a meander-like manner [Vla08]
decreases the line width in momentum space, while using only one stripe
line, leads to a broader range of the excited wave vectors. Depending on
the purpose of the experiment, either a narrow or broad excitation spectrum
might be advantageous: while for applications in the information technology
a selective excitation of spin waves might be required, the characterization
of a sample via the detection of the dispersion relation demands the full
range of wave vectors.

For a homogeneous excitation of the magnetization dynamics, a spatially
independent driving field is required. In these FMR experiments the dimen-
sions of the CPW are extended to the millimeter regime and the samples are
mounted face down on top of the wave guide. By placing the device either
on the signal line or on the gap, the excitation geometry with respect to the
magnetization direction can be chosen selectively. This results in a more
dominant in plane or out of plane excitation, as illustrated in the spatial
dependence of the driving field components shown in Fig. 3.1 (b). Since
the chiral magnet CSO exhibits various types of modes, which are excited
by both, alternating fields perpendicular and parallel to the magnetization
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direction, the excitation geometry will play an important role.

3.2 Broadband FMR Spectroscopy

In the following, the well established measurement technique, namely ab-
sorption FMR, which is used for the indirect detection of magnetization dy-
namics, will be introduced. In this approach the magnetization is brought
into resonance by sweeping either the external field or excitation frequency
while the remaining parameter is set to be constant. The precessional mo-
tion, in turn, leads to a variation of the magnetic flux and an induced voltage
in the metallic leads of the coplanar waveguide [Bil07a; Sch13; Sta16]. With
this the transmission characteristics are altered. This change of transmis-
sion, reflecting the absorbed power by the magnetic sample, is then recorded
as a function of the swept parameter. By analyzing the extracted line scans,
finally, conclusions can be drawn on the properties of the material investi-
gated. In the following two implementations, exploiting the concept of the
absorption FMR, are distinguished.

3.2.1 Frequency Domain

In the first method, the measurements are performed in the frequency do-
main, sweeping the driving frequency while the external field strength is set
to a constant value. This approach is advantageous for studying complex
magnets like helimagnets, since it allows to stay in a certain temperature
and field pocket while resolving the resonance conditions. The important
device undertaking this task is the vector network analyzer (VNA), which
simultaneously acts as a source and detector of the sinusoidal current. With
a frequency range from 45MHz to 20GHz (Agilent PNA E8362A) a wide
spectrum of the resonances of the material investigated in this thesis is cov-
ered. As illustrated in the schematic Fig. 3.2, the respective ports 1 and 2
of the VNA are connected to the device under test, which is given by the
CPW and the sample placed face down on the latter. Note, in this case
not a shorted CPW is employed. The whole assembly, which is mounted
on a sample holder within the cryostat, is subject to an uniform magnetic
field, generated by a rotatable electromagnet. Since the critical temperature
of CSO amounts to a value of around 58K, the operation at low temper-
ature and therefore of the cryostat is required. The quantity detected in
the frequency scans is the amplitude of the complex scattering parameter
S12, which is proportional to the transmitted microwave power. Here the
arrangement of the indices represents the emitting and detecting port, re-
spectively. The implementation of the VNA in the absorption FMR setup is
a already well-established technique and has been used for many years now.
We therefore will not elaborate a detailed description of the functionality of
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Figure 3.1: (a) Geometry of a shorted antenna on top of a substrate: front
and top view. (b) Normalized in and out of plane driving field as a function
of position x, drawn by red and blue lines. (c) Fast Fourier transformation
of the out of plane driving field as a function of wave vector magnitude k.

the vector network analyzer and the data acquisition, but refer to [Bil07b;
Bil07a; Neu06; Sch13; Sta16].

Since the recorded frequency traces are dominated by the transmission
characteristics of the CPW and the whole setup, in general, the signal arising
from the magnetization dynamics is not readily visible. On this account, two
techniques aiming to remove the parasitic background are applied. The first
one, the high field normalization, employs the difference between the dataset
of interest S12(B) and an additional one S12(Bref) obtained at a reference
field Bref,

∆S12(B) = S12(B)− S12(Bref). (3.1)

The latter is chosen high enough, so that in the given frequency range the
line scan does not include any magnetic signal. It should be mentioned
that, the background is often slightly field dependent and can therefore
sometimes not be removed completely. Provided that the excitation field is
homogeneous, the resulting resonance curve is expected to be of Lorentzian
shape, as predicted by the calculations of the dynamic susceptibility [Cel97;
Wol04; Kal06; Neu06; Dev13]. In reality, however, the experimental data is
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often given by the combination of a symmetric (Fs
L(f)) and antisymmetric

(Fa
L(f)) Lorentzian function [Cel97; Jos04; Wol04; Dec18],

AFMR(f) ∼ Fs
L(f) cos ϵ+ Fa

L(f) sin ϵ

∼ ∆f cos(ϵ) + (f − f0) sin(ϵ)

∆f2 + (f − f0)

(3.2)

which reflects the intermixing of the amplitude and dispersion [Jos04]. Here,
f0, ∆f and ϵ describe the resonance position, line width and the mixing
angle. This effect, which is observed for conducting but also insulating
material might arise from the change of impedance of the CPW induced by
the sample itself and should be taken into account for both experimental
methods, the one utilizing the VNA and the one employing the lock in
amplifier discussed below.

The second normalization technique, also referred to as derivative divide
[Mai18], utilizes the difference quotient of neighboring data sets on the field
axis,

δS12(B) =
S12(B +∆B)− S12(B −∆B)

S12(B)
, (3.3)

with field step ∆B. It could be shown that this data manipulation in the
field domain, in turn, results in a line shape in the frequency domain, which
is then proportional to the derivative of Eq. 3.2 [Mai18].

3.2.2 Field Domain

In the second approach, the status of the external parameters is reversed,
meaning that the excitation frequency is fixed, while the magnetic field
strength is continuously swept. Instead of the vector network analyzer, a rf
frequency generator and a Schottkey diode, which converts the transmitted
rf current into a dc voltage, are integrated into the electrical circuit in order
to generate and detect the oscillating current. For an improved signal-to-
noise ratio, the extracted voltage is further processed by a lock-in amplifier.
In order to allow the lock-in technique, the external field is superimposed
by an additional small modulation field, which oscillates in the low-Hertz
regime. As a consequences, the resulting field trace is therefore no longer
proportional to the sum of a symmetric and antisymmetric Lorentzian func-
tion (analogous to Eq. 3.2), but to the sum of their derivatives with respect
to H [Cel97; Wol04; Obs15; Dec18],

AFMR(H) ∼
−2(H −H0)∆H cos ϵ+

(
∆H2 − (H −H0)

2
)
sin ϵ

(∆H2 + (H −H0))
2 (3.4)

Here, H0, ∆H and ϵ describe the resonance position, line width and the
mixing angle. Note, this approximation only holds as long as the modulation
field is small compared to the line with.
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Figure 3.2: Schematic of the absorption FMR setup, utilizing a VNA as
radio frequency current source and detector. The ports of the VNA are
connected to the signal and ground lines of the CPW, with the sample
placed on top. The external field is provided by a rotatable electromagnet,
which allows for angle-resolved measurements.

Depending on the materials characteristics and especially the strength of
the dynamic response, it is more advantageous to conduct the experiments
with either the VNA or the lock-in amplifier. While the VNA measurements
in general require less time, the lock-in technique provides a significantly bet-
ter signal to noise ratio. If the sample under investigation exhibits a complex
phase diagram, with one of the axes given by the external field, as it is the
case for CSO, a continuous change of the magnetic field yields a likewise
change of the magnetization configuration and consequently resonance con-
dition. Therefore VNA measurements are suggested, if the detection of the
phase diagram is the main focus of the experiment. As absorption FMR is
also a well-established technique, we refer the interested reader to [Wol04;
Obs15; Här16] for a more detailed description.
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Part II

Spin excitations in the chiral
magnet Cu2OSeO3
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Chapter 4

Chiral Magnets

4.1 Overview

The competition between different kinds of magnetic interactions can lead
to a deviation from a parallel alignment of the individual spins and a for-
mation of spin helices instead. One group of magnets in which this partic-
ular magnetic order is observed are the chiral magnets, exhibiting a non-
centrosymmetric cubic crystal lattice structure with space group P213. The
interactions which are responsible for the spin twisting in these materials
are the isotropic and anisotropic exchange interactions. The latter, which
is also referred to as Dzyaloshinsky-Moriya interaction (DMI), arises from
a broken structure inversion symmetry, given by surfaces or interfaces in
general, or a non-centrosymmetric crystal structure, in combination with
the relativistic spin-orbit coupling. In chiral magnets, spin spirals represent
the energetic ground state of the magnetization at zero magnetic field up to
the magnetic transition temperature Tc. Above Tc, thermal fluctuations are
prevailing, and the magnetic order is suppressed. By adding an externally
applied magnetic field as a second dimension, chiral magnets exhibit a rich
temperature-field phase diagram. Depending on the position in this phase
space, additional phases, referred to as conical and field-polarized state,
emerge. A more detailed discussion is presented in the following section.
Next to the formation of spin spirals, these materials also host vortex like
spin structures, which are referred to as magnetic skyrmions. These three
dimensional (3D) spin configurations are axially symmetric objects remi-
niscent of tubes, assumed to extend throughout the whole thickness of the
sample [Mil13]. Nevertheless they should not be seen as rigid objects but
more like flexible strings [Bac20]. It could be shown by Lorentz transmis-
sion electron microscopy (LTEM), that for certain conditions the skyrmion
strings are no longer straight, but are twisting around another, leading to
the formation of a braid-like structure [Zhe21]. While in the past years many
publications could reproduce a two dimensional real space visualization of
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skyrmions, the simultaneous observation of the third dimension remained
an unsolved challenge. In 2021 Seki et al. [Sek21] successfully reproduced a
3D illustration of skyrmion strings, utilizing a X-ray tomography technique
[Don17; Suz18]. Apart from elongated single skyrmions, they could also
observe the emergence of structural defects, which comprises chiral bobbers
[Ryb15; Zhe18; Ran21] and the coalescence of two skyrmions [Mil13].

In general, skyrmions crystallize in lattice structures, comprising a hexag-
onal [Müh09] or square [Kha21] order and are therefore often referred to as
skyrmion crystals (SkX) in the literature. The lattice shape occurring in a
material is not necessarily limited to one of the types given above. Depend-
ing on the position in the field-temperature space, both types of arrange-
ments emerged in a robust metastable state in Co8Zn8Mn4 [Kar16]. Next
to a lattice, also isolated skyrmions could be observed [Bra19; Mey19] and,
more important, artificially nucleated [Rom13; Jia15; Woo16; Hra17].

The skyrmion phase, at that time called A-phase, was first discovered
experimentally in MnSi, a metallic chiral magnet, by small angle neutron
scattering (SANS) in 2009 by Mühlbauer et al. [Müh09]. The experiments
were supported by the numerical results from the phenomenological model
based on the Ginzburg-Landau theory approach in the mean field approxi-
mation, revealing thermal fluctuations to be the stabilization mechanism of
the skyrmion lattice. In subsequent experiments, skyrmions could also be
observed in different materials, including further members of the aforemen-
tioned space group. Some of these are Mn1−xFexGe [Shi13], Mn1−xCoxSi
[Pfl10], Fe1−xCoxSi [Mün10; Yu10], FeGe [Yu11], GaV4S8 [Ehl16] and
Cu2OSeO3 [Sek12c]. Despite their shared property of hosting spin spirals
and magnetic skyrmions, these materials exhibit very different characteris-
tics. Starting from the sample dimensions, skyrmion hosts comprise bulk
crystals but also thin film systems [Hei11; Mac18; Man20], which range from
millimeters to even a one atom layer thickness [Hei11]. A consequence of
the reduced dimensionality, is the extension of the skyrmion pocket in the
magnetic field - temperature space [Yu11]. Exhibiting a wider energetically
more favorable phase range, reduces the sensitivity to field and temperature
fluctuations. In this regard, the actual position of the skyrmion phase on
the temperature axis is of importance and desirably equal to room tem-
perature. While chiral magnets like MnSi, posses magnetic ordering only
at low temperatures, the formation of skyrmions at ambient temperatures
could be achieved in multilayer samples [Bou16; Woo16]. The latter are
very interesting candidates, since the magnetic characteristics can be tuned
in a very fine manner by the controlled growth process. Next to the tem-
perature, also the skyrmion size strongly depends on the chosen material.
The diameter might take on values between a few nanometers [Hei11] and a
few micrometers [Jia15]. Here, it should be mentioned that the significant
difference in length scales originates from the competition between different
magnetic interactions [Nag13]. Finally, regarding the electrical conductivity,
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all three groups, namely metals, semiconductors and insulators are repre-
sented [Sch15].

Behind the term skyrmion, a variety of different spin arrangements is
hidden [Eve18]. The alignment of the spins at the skyrmion edges, pointing
along the symmetry axis and of the one in the center pointing in the opposite
direction, is shared by all skyrmion types. The spin configuration in between,
however, depends on the energy terms contributing. Experimentally, Bloch
[Müh09] and Néel [Kéz15] type, but also anti skyrmions [Nay17] could be
observed. The kind of skyrmions which forms in the material investigated
in this thesis, Cu2OSeO3, is of Bloch type.

Despite resulting from a field configuration, skyrmions exhibit a particle-
like nature. As a consequence of their distinct spin texture, they are char-
acterized by a finite topological winding number W . This integer-quantized
value is defined as [Nag13],

W =
1

4π

∫
n̂ ·
(
∂xn̂× ∂yn̂

)
dx dy, (4.1)

with the normalized local magnetization direction n̂. Here, the skyrmions
are assumed to be aligned along the z direction. The winding number is a
measure of how many times the magnetization field wraps around the order
parameter space, given by the surface of a unit sphere. Unless possessing
the same winding number, magnetization configurations can not be trans-
formed into another by a continuous deformation. Therefore the topological
unwinding, the transition from topologically non-trivial (skyrmion lattice)
into topologically trivial states (helical, conical and field-polarized phase),
requires the overcome of a certain energy barrier. The skyrmion is said to
be topological protected [Müh09; Yu10; Nag13].

Apart from the generic interest in the rich field of fundamental physics,
opened up by the skyrmions, the research is driven by prospects of the
application in future magnetic storage devices. Based on the characteris-
tics, dimension and stability, skyrmions are seen as a potential candidate to
be implemented as information carriers. An application concept is the so
called race track memory [Fer13; Sam13; Iwa13; Mül17; Che19a; Wan19].
In this proposal chains of skyrmions are driven along predefined lanes within
a magnetic nanostripe and detected by a reading head measuring the mag-
netoresistance for example [Wan19]. The induced repulsive forces, which
originate from the surface twists at the edges of a crystal lacking inversion
symmetry, assure that the skyrmions are confined along the center of the
lane [Mey14] and move in the desired direction. Compared to the common
storage devices, the data is no longer encoded by the magnetization ori-
entation but by the position of the skyrmions. It follows that due to the
nanometer sized diameter, a high storage density might be achieved. An-
other advantage is the reduced energy consumption ascribed to the high
mobility of the skyrmions. The transport of the latter requires only low
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current densities [Sch12; Yu12] and is also achieved by the interaction with
spin waves [Sch14; Zha15b; Din15; Zha17]. In the second case, even Joule
heating can be avoided, due to the absence of a charge carrier flow. In order
to integrate this topological protected spin texture in future applications,
thin film materials, hosting skyrmions at room temperature, are required.

4.2 Phase Diagram

The generic temperature-field phase diagram, shared by all chiral magnets,
is given in Fig. 4.1 (a). It is divided into four magnetic ordered phases,
which are the helical, conical, field-polarized and skyrmion lattice phases.
Besides these an intermediate and paramagnetic state is illustrated in the
phase diagram. Since they are not of interest in this thesis, they will not
be considered in the further course of the discussion. For temperatures far
below Tc and fields below Hc1 the spin configuration is given by a helix with
vanishing cone angle as it is illustrated in Fig. 4.1 (b). The magnetization
is said to be in a helical configuration. The helix is determined by its pitch
vector Q, with its length exhibiting a direct dependence on the ratio be-
tween the isotropic and anisotropic exchange constants, Q ∼ D/J [Müh09;
Sch15]. Due to the sample shape and the cubic environment and therefore
the resulting anisotropies, the direction of Q aligns along the easy axes of
the crystal for zero and low external field values. Without a hysteretic field
protocol, the helical phase is consequently divided into equally populated
multi domain states, oriented along the energetically favorable directions,
provided the sample is of spherical shape. By increasing the magnetic field,
the helices are rotated out of their initial position and align along the field
direction. Reaching the first critical field value Hc1, the helical phase expe-
riences a spin-flop transition into the conical phase. The single spins deviate
from a perpendicular alignment with respect to the pitch vector, resulting in
a cone angle smaller than 90◦ as shown in Fig. 4.1 (c), which decreases with
increasing field strength. At a field value of Hc2 the spins are fully aligned
along the field direction. This phase is referred to as the field-polarized
state. The transition field into this phase is proportional to the square root
of the temperature as shown in [Sch15]. Additionally the shape of the sam-
ple, represented by the demagnetization factors, enters the derived formula
as a prefactor. In a small phase pocket, for temperatures close to Tc and
magnetic fields close to Hc1, skyrmions form and build a lattice structure, in
the plane perpendicular to the applied field. Depending on the material, the
sample thickness and the orientation of the external field with respect to the
underlying crystal structure, it extends over a wider field and temperature
range [Ada12; Sch15]. A visualization of the respective spin texture is given
in Fig. 4.1(d)-(e).
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4.2. Phase Diagram

Figure 4.1: (a) Calculated phase diagram of a chiral magnet. (b)-(c) 3D
illustration of the spin arrangement in the helical and conical phase. (d)-(e)
Visualization of a single skyrmion and a 3D skyrmion lattice, in the plane
perpendicular to the externally applied field. (a-d) Reprinted by permission
from IOP Publishing Ltd: Journal of Physics D [Gar17] Copyright (2017).
Figure (e) reproduced from [Mil13].
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Here, the orientation of the magnetization is given by the arrows, while
the colors highlight its out of plane component. A parallel and antiparallel
alignment with respect to the external field is reflected by red and green
colors. Note, the shown skyrmions are of Bloch type. Above the magnetic
transition temperature Tc thermal fluctuations prevail and suppress the for-
mation of magnetic order. It was found that under certain ambient condi-
tions, the obtained phase diagram digresses from the one presented above,
revealing additional rich features. The most important observation is the
extension of the skyrmion pocket size in field and also temperature. It could
be shown, that the skyrmion lattice, even though it might no longer be the
ground state of the system, survives to temperatures down to approximately
0K. One method which induces the above mentioned findings is applying
mechanical pressure on the samples. Materials which were investigated for
instance are MnSi [Nii15; Cha15] and [Sek17] Cu2OSeO3. Interestingly, it
was also observed that applying a high enough pressure, Tc would increase
drastically and skyrmions could even be obtained at room temperature in
the helimagnet Cu2OSeO3 [Den20]. Another method established is the con-
trolled cooling of the sample within an externally applied magnetic field,
which is referred to as field-cooling. In numerous studies it was reported
that it is sufficient enough to apply a field-cooling protocol with the mag-
netic field strength ranging between the skyrmion phase boundaries, to ex-
tend the latter to lowest temperatures in Fe1−xCoxSi [Bau16] Co8Zn8Mn4
[Kar16] and MnSi [Nak17; Oik16]. It should be mentioned that in the last
reports the metastable skyrmion state was obtained by an additional quench-
ing technique, characterized by a rapid cooling process. By means of the
method described above also the insulator Cu2OSeO3 was further studied.
In this regard a new phase, the tilted conical phase [Fen18] and most impor-
tantly a second, independent low temperature skyrmion phase [Cha18] was
observed in the chiral magnet. It could be shown that the obtained phase
diagrams are sensitive to the magnetic field direction with respect to the
crystallographic axes of the cubic structure, due to the underlying magnetic
anisotropies [Cha18; Ban19]. These results will be elaborated in more detail
in the following chapter.

4.3 Dynamics

The individual phases described above, exhibit a distinct response to an
external magnetic driving field. The investigation of the magnetization dy-
namics reveals insight into the sample characteristics, but requires an accu-
rate model to predict the resonances to be measured. A generic excitation
spectrum, comprising the resonance frequency as a function of externally
applied magnetic field, is given in Fig. 4.2 for a spherical sample. The
momentum of the excitation field is set to zero, resulting in a spatially uni-
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form precession of the magnetization. The color code of the field ranges
is matched to the phases, provided in the phase diagram Fig. 4.1 (a). It
represents the helical (H), conical (C) , field-polarized (FP) and skyrmion
lattice (S) phase and concurrently the energetically favorable state at the
field values considered. The dot size of the spectrum represents the spectral
weight of the modes, indicating the coupling efficiency to the driving field.

Figure 4.2: Calculated excitation spectrum as a function of externally
applied magnetic field for a spherical sample. The illustration comprises
the conical, Kittel and skyrmion modes. The dot size reflects the spectral
weight of the respective resonance branch. Reprinted by permission from
Springer Nature Customer Service Centre GmbH: Nature Materials [Sch15]
Copyright (2015).

In the helical and conical phase, two excitation modes exhibit a finite
spectral weight. Based on their propagation direction projected onto the
pitch vector, they are referred to as +Q (parallel) and −Q (anti-parallel)
modes. It should be noted that in this regard the designation propagation
refers to the time domain and not real space. An illustration of the equi-
librium state and the spin dynamics can be found in Fig. 4.3 (a-b). The
periodic compression (red) and decompression (green) of the spin texture
results in a screw like propagation along the pitch vector. The character
of the collective spin dynamics, which is represented by the ellipticity and
therefore the polarization, strongly depends on the demagnetization factors
Nx and Ny within the plane perpendicular to the external field. It could
be shown that for certain Nx and Ny values and field ranges, the Q modes
diverge from the perfect circular motion and result in a linear polarization
[Sta17a]. This results in a direction-dependent excitation efficiency in the
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case of a linearly polarized driving field, which could be predicted theoreti-
cally and proven by broadband spectroscopy methods [Sta17a]. Due to the
sample shape (Nx = Ny) chosen in the presented calculations, the two gy-
ration modes are degenerate at zero magnetic field. For a differently shaped
sample, the degeneracy is lifted and the modes can be distinguished. Ne-
glecting anisotropies the field dependence of the Q modes can be calculated
analytically [Kat87; Sch15].

Reaching the critical field value Hc2 the +Q mode smoothly merges into
the field-polarized mode, while the spectral weight of the −Q mode gradu-
ally decreases. This behavior is based on the helicity of the magnetization
precession of the gyrational modes and the helicity of the uniform precession
in the field-polarized phase. The spin excitation of the latter corresponds
to the generic FMR behavior and can be therefore described by the Kit-
tel formula [Kit48; Sch15]. The uniform magnetization of the +Q mode
possesses the same helicity as the Kittel mode, which are both precessing
counterclockwise around their equilibrium. In the case of the −Q mode,
the uniform magnetization precesses in the opposite manner and does not
comply to the inherent helicity in the Kittel mode [Sta17a].

Figure 4.3: 3D illustration of the magnetic helix. (a) Equilibrium state.
(b) The two conical excitation modes, propagating either along the pitch
vector (+Q) or in the opposite direction (-Q). Reprinted by permission from
Springer Nature Customer Service Centre GmbH: Nature Material [Sch15]
Copyright (2015).

The skyrmion lattice exhibits three distinct eigenmodes which efficiently
couple to the external driving field. Due to their characteristic time evolu-
tion, they are referred to as counterclockwise (CCW), clockwise (CW) and
breathing (BR) mode. While the breathing mode possesses a similar field
dependence as the ±Q modes, the resonance frequency of the counter clock-
wise and clockwise mode increases with increasing field. An import point
to be mentioned is the sensitivity of the modes to the excitation geome-

36



4.3. Dynamics

try. While the gyrational modes couple to an in plane driving field with
respect to the skyrmion plane, the breathing mode is only excited by an
out of plane ac-field. These modes can therefore be selectively addressed in
broad brand spectroscopy measurements as described in Sec. 3.1. Due to
the low intensity, the clockwise mode was barely reported in preceding res-
onance experiments [Ono12; Sch15]. A visualization of the three modes for
four time values within one period is given in Fig. 4.4. The snapshots are
composed of the in-plane (arrows) and the out-of-plane (contour plot) mag-
netization components, with respect to the skyrmion plane. The magnetic
field is applied perpendicular to the latter, pointing out the image plane.
The color code therefore indicates a parallel (red) and antiparallel (green)
alignment regarding the external field. From these illustrations the clear
rotational and breathing character of the gyrational and breathing mode,
respectively can be seen. Compared to the ±Q modes of the conical phase,
the skyrmion lattice excitations require numerical calculations. At first pre-
dicted by Mochizuki [Moc12], they were extensively studied by Schwarze et
al. [Sch15] in three different types of chiral magnets experimentally and the-
oretically. Since one part of this thesis is aiming to determine the effect of
cubic anisotropies on the resonance spectra, the model developed in [Sch15]
will be discussed in greater detail in Chap. 6. Before introducing the chiral
magnet Cu2OSeO3, it should be noted that the above presented eigenmodes
are excitations with finite spectral weight. Next to these, additional higher-
order modes with a vanishing weight exist in the conical and skyrmion phase.
While the conical modes were already observed experimentally at low tem-
peratures by broadband spin wave spectroscopy measurements [Wei17], the
higher order skyrmion modes could only be predicted [Wai17] [Gar17]. In
the course of this thesis, we will present the hybridization between the uni-
form and higher order modes theoretically and experimentally, revealing the
existence of the latter.
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Figure 4.4: Visualization of the clockwise, counterclockwise and breathing
mode of the skyrmion crystal in real space as a function of time. The
magnetic field is applied perpendicular to the skyrmion lattice, pointing
out of the image plane. The magnetization components are given by the
arrows (in-plane) and contour plot (out-of-plane). In the case of the latter,
the red colour represents a parallel and the green colour an antiparallel
alignment with respect to the external field. Reprinted by permission from
IOP Publishing Ltd: Journal of Physics D [Gar17] Copyright (2017).
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Helimagnet Cu2OSeO3

The helimagnet to be investigated in this thesis is the insulating compound
Cu2OSeO3, which is a member of the cubic chiral magnets with space group
P213. In Fig. 5.1a the crystal structure of the corresponding unit cell is
illustrated. It consists of copper, oxygen and selenium atoms, indicated by
light brown and light cyan, brown and green spheres. Here, the first two
colors are both attributed to the copper sites, since these are divided into
two groups, depending on their oxygen environments. The latter form either
a square pyramid or a trigonal bipyramid, depicted by the yellow and brown
faces, respectively. As indicated in the figure, the ratio amounts to 12 square
pyramids and 4 bipyramids per unit cell. For simplicity, the corresponding
lattice sites will be referred to as Cu(2) and Cu(1) in the following. Since
only the copper atoms are contributing to the magnetic moment, selenium
and oxygen will be excluded from the further discussion.

From high-resolution powder x-ray diffraction (XDR) [Bos08] and nu-
clear magnetic resonance (NMR) [Bel10] experiments it could be found, that
magnetic moments on the Cu(1) and Cu(2) sites are aligned anti-parallel to
each other as visualized by the arrows in Fig. 5.1b. This leads to the
emergence of ferromagnetic JFM (blue lines) and anti-ferromagnetic JAF

(red lines) coupling between the atoms. Ab initio density functional the-
ory (DFT) calculations [Jan14] reveal, that these magnetic interactions are
in turn divided into strong (S) and weak (W) couplings, with the strength
represented by the thickness of the connection lines. As a consequence, the
copper lattice sites form a spin 1 triplet tetrahedron, composed by one Cu(1)
and three Cu(2) atoms, as the ground state of the system. The resulting ef-
fective spin moments of 1, given by the arrows in Fig. 5.1c, are in total
then leading to a ferromagnetic order. However, due to the, up to now,
neglected DM interaction, which favors a twisting of the effective spin mo-
ments, the parallel alignment is impaired. This competition finally leads to
a long-ranging formation of a helical spin texture.

In Cu2OSeO3, this magnetic order persists up to a critical temperature
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Figure 5.1: (a) Crystal structure of Cu2OSeO3. The unit cell consists
of copper (light brown, light cyan), oxygen (brown) and selenium (green)
atoms. The copper and oxygen atoms build square pyramids (yellow faces)
and triangular bipyramids (brown faces). (b) Spin arrangement (arrows)
and magnetic interactions (connection lines) of the Cu lattice sites. Further
information is given in the main text. (c) Arrangement of the effective spin
1 triplets. Reprinted by permission from Springer Nature Customer Service
Centre GmbH: Nature Communications [Jan14] Copyright (2014).

Tc of around 58K [Ono12] and its respective periodicity takes values of
around 60 nm [Ada12; Sek12b]. Apart from its particular magnetic charac-
teristics, Cu2OSeO3 also exhibits a magnetic-field induced polarization and
is therefore referred to as multiferroic [Sek12a; Liu13; Ruf15]. Since only the
magnetic properties are of interest in this thesis though, the latter will not be
further elaborated. At low temperatures, magnetic resonance spectroscopy
revealed that the magnetic damping decreases significantly [Sta17b], ap-
proaching the record value of YIG [Onb14; Kli17]. This characteristic makes
CSO an interesting candidate for studying magnon-skyrmion interactions
and the realization of skyrmionics in future information devices, which, in
turn, might be readily transferable to other materials, hosting skyrmions at
room temperature. In this regard, also the large optical response, including
Kerr and Faraday rotation [Ver16; Ver19] plays an important role. These
effects are usually employed in microscopes, detecting the local magnetiza-
tion and magnetization dynamics. As a chiral magnet, CSO shares a similar
phase diagram, hosting skyr-mions only in a small temperature-field pocket
close to Tc. However, as already mentioned before, this window could be
extended on one hand to lower temperatures by thinning down the crystal
[Sek16], applying strain [Sek17] and rapid cooling [Ban19] and on the other
hand to even room temperature by applying mechanical pressure [Den20].
Here, the most relevant method in the light of future applications is the
reduction of the sample dimensions. The size of the CSO crystals, which
are grown by chemical vapor transport, is usually in the millimeter regime
[Aqe21]. Although, grinding and polishing of the material allows to reduce
the thickness to hundreds of micrometers, only by applying the cumbersome
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Figure 5.2: Phase diagrams for different field orientations parallel to the (a)
[111] and (b) [001] crystallographic direction. The phase boundaries of the
helical (H), conical (C), HTS, tilted conical (TC) and LTS are given by green,
white, orange, gray and red circles and corresponding shaded area. The field-
polarized phase is indicated by the notation FP. By applying defined cooling
and heating protocols (b)-(d), a hysteretic behavior of the skyrmion phase
can be visualized by an extension of the phase pocket, which originates from
the topological protection, amongst others. Reprinted by permission from
Springer Nature Customer Service Centre GmbH: Nature Physics [Cha18]
Copyright (2018).
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focused ion beam (FIB) etching technique dimensions down to 1-2 microm-
eter [Sek16] can be achieved. A further reduction of the thickness in turn
can cause a twisting of the crystal. The effects arising from the thin and
ultra thin film limit can therefore not be exploited, yet.

While in the publications mentioned above the extension of the high
temperature skyrmion (HTS) phase, in field and temperature, was studied,
Chacon et al. reported on the observation of an independent low tempera-
ture skyrmion (LTS) phase in a bulk CSO crystal [Cha18]. By conducting
SANS measurements for different field directions with respect to the crystal-
lographic axes of the samples, they discovered the emergence of additional
features in the extracted phase diagrams. The results are shown in the
upper row of Fig. 5.2 for the [111] (a) and [001] (b) directions. Next to
the helical (green), conical (white) and HTS (orange) phase, they observed
the tilted conical (gray), previously found by Fengjiao et al. [Fen18] and
the second, thermodynamically disconnected, skyrmion phase (red). The
latter only occurred for the case with the external field applied along the
[001] direction. These findings reveal the cubic crystal environment and the
resulting magnetic anisotropies to be the origin of this direction-dependent
behavior. In their studies, they also employed different cooling and heating
protocols, indicated by the black arrows in the diagrams, which are zero
field cooling (ZFC), field heating (FH), field cooling (FC) and high field
cooling (HFC). Considering the results obtained in the [001] configuration,
Fig. 5.2b-d, emphasizes the hysteretic behavior of the skyrmion phase, which
also originates from the intrinsic topological protection of the latter. An-
other important point to be mentioned, is the skyrmion nucleation process,
induced by a continuous up and down sweep of the magnetic field strength
within a small field range. By this field cycling technique, the intensity ob-
tained from the skyrmion lattice increases, which indicates the growth of the
skyrmion volume fraction within the sample. The details of this nucleation
process are, however, not fully understood, yet. In order to support the ex-
perimental findings, also a theoretical approach, based on the already well
established Ginzburg-Landau energy functional [Müh09; Sch15], is presented
in this study. Building upon the previously obtained results, the focus of the
current model lies on the induced changes arising from the additional cu-
bic magnetocrystalline energy term. Further anisotropies, as considered in
[Ban19], in general might also play a non-negligible role in the investigated
material, but are not necessary for a qualitative understanding of the exper-
imental data. Aiming to reproduce the emergence of the tilted conical and
low-temperature skyrmion phase, first an appropriate anisotropy strength
has to be determined. In Fig. 5.3 a, the phase diagram of the energeti-
cally favorable magnetization configuration, spanned by the dimensionless
anisotropy value K and magnetic field B, is illustrated. For the temperature
parameter, the Ginzburg-Landau coefficient r0, which will be introduced in
Chap. 6, a value of r0 = −1000 is chosen in the presented calculations.
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Here, a smaller constant r0 refers to a lower temperature, while r0 = 0 de-
notes the transition temperature Tc. It can be seen, that for approximately
K > 0.0001, the conical phase no longer represents the ground state of the
system for the whole field range, but the low-temperature skyrmion lattice
emerges. Interestingly, also a square lattice is predicted to form within a
certain K and B pocket. By increasing the anisotropy strength further, the
pitch vector of the conical phase starts to tilt away from the [100] direction,
leading to the tilted conical phase. Note, despite being the energetically
more favorable configuration compared to the helical, conical and field po-
larized states, the formation of the tilted conical phase requires higher energy
costs compared to the skyrmion lattice and is therefore only metastable.

Based on these findings the anisotropy strength is fixed to a value of
K = 0.0004 and the theoretical predicted phase diagram, now with the
dimensions temperature r0 and external field B, is illustrated in Fig. 5.3
b. It should be mentioned that, however, in reality also the anisotropy
exhibits a strong temperature dependence. Comparing these findings to the
experimental data, for instance shown in Fig. 5.2(d), it is evident that, apart
from the tilted conical phase, the theoretical model reproduces the obtained
phase diagram accurately. It therefore can be concluded that the cubic
magnetocrystalline anisotropy is the origin of the stabilization mechanism
of the second skyrmion phase at lower temperatures.

Figure 5.3: (a) Theoretically predicted phase diagram by the Ginzburg-
Landau model as a function of anisotropyK and externally applied magnetic
field B. K and B are given in dimensionless units. For certain K and
B values the emergence of the skyrmion and tilted conical phase can be
observed. Depending on the position in the phase space, the formation of a
hexagonal or square skyrmion lattice is predicted. (b) Phase diagram as a
function of temperature constant r0 and magnetic field for a fixed anisotropy
value K = 0.0004. Reprinted by permission from Springer Nature Customer
Service Centre GmbH: Nature Physics [Cha18] Copyright (2018).
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Chapter 6

Theoretical Model

Apart from influencing the magnetic texture, anisotropies also have an im-
pact on the dynamic response of the magnetization for example in magnetic
resonance experiments. In preceding studies [Sch15], cubic magnetocrys-
talline anisotropies were already taken into account in order to investigate
in the induced changes at the helical-conical phase transition. The effect
on the skyrmion resonances, however, was not elaborated since on one hand
only the HTS phase was known at that time and on the other hand the
anisotropy strength is negligible at temperatures close to Tc. With the shift
of the focus towards the low temperature limit and the subsequent observa-
tion of the tilted conical and low temperature skyrmion phase, as a result of
an increased magnetocrystalline anisotropy, the previous model is no longer
accurate enough to reproduce the new features, but requires the implemen-
tation of additional energy terms. In this chapter the theoretical framework
for calculating the magnetic texture and the resulting collective spin ex-
citations in the chiral magnet are presented, which serves to support the
experimental data obtained from broadband microwave experiments. The
theoretical model is based on the well established Ginzburg-Landau energy
functional and can be seen as a continuation of the calculations performed in
[Sch15; Wai17]. The numerical results are produced by the Wolfram Mathe-
matica code, created by Johannes Waizner during the course of his Phd
thesis [Wai17] under the supervision of Professor Markus Garst. Previous
results are published in [Sch15; Sta17b]. In order to take also anisotropies
into account the code was adapted in close collaboration with Professor
Markus Garst and extended by the magnetic cubic magnetocrystalline and
later on also by the exchange anisotropy term. Owing to the new findings
obtained from the experiments, the parameters were continuously adapted in
the course of this thesis in order to reproduce the most recently obtained re-
sults. The numerical results are therefore presented in a chronological order.
The chapter first introduces the Ginzburg-Landau energy functional, the
determination of the equilibrium configuration of the magnetization and its
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respective dynamics and closes with the actual implementation in the code.
The most important equations and derivations of the theoretical model will
be presented throughout this thesis. For a detailed understanding though,
we refer to the Phd thesis of Johannes Waizner [Wai17] and the aforemen-
tioned publications [Sch15; Sta17b].

6.1 Ginzburg-Landau Theory

The theoretical approach for chiral magnets [Bak80; Nak80; Müh09] builds
up on the framework of the phenomenological Ginzburg-Landau theory.
This model in turn is an extension of the Landau theory of second order
phase transitions, which considers a series expansion in powers of the slowly
varying order parameter of the free energy functional, assuming the latter
to be small around the phase transition. Limited to the fourth order, the
energy functional is therefore given by,

F [M ] =

∫
d3r

(
F0[M ] + r0M

2 + UM4
)
. (6.1)

Due to the imposed time reversal symmetry, only even powers exhibit finite
prefactors. The last to terms of the functional are governed by the phe-
nomenological Ginzburg-Landau coefficients r0 and U . While U has to be
greater than zero for the system to be thermodynamically stable and is in
general assumed to be constant, r0 is set to be the only temperature de-
pendent component. Expanded up to linear order, r0 ∼ T − Tc represents
an explicit measure of the distance to the critical temperature Tc. The sign
convention of r0 is chosen to be negative in the ordered phase (T < Tc) and
positive in the paramagnetic phase (T > Tc). It should be mentioned that
material parameters, for instance the exchange constant, are also tempera-
ture dependent, but are assumed to be constant throughout the theoretical
analysis. The first energy term in Eq. 6.1 represents the sum of the ex-
change interaction, DMI, demagnetization energy, Zeeman interaction and
the cubic magnetocrystalline and exchange anisotropy, given by,

F0[M ] =
1

2
J(∇M)2 +DM(∇×M) +

1

2
µ0MNM −BM

− K

M4
s

∑
i

M4
i + C

∑
i

(∂iMi)
2.

(6.2)

These contributions are characterized by their respective strengths, J , D,
K and C, the demagnetization tensor N , with tr(N) = 1 and the exter-
nally applied magnetic field B. Here, the notation (∇M)2 ≡ ∂iMj∂iMj

with Einstein’s sum convention for the coordinates i, j ∈ [x, y, z] is used.
It should be mentioned, that the prefactor convention is chosen to match

46



6.1. Ginzburg-Landau Theory

the model in [Cha18], which differs slightly compared to the original ap-
proach published in [Müh09]. In contrast to the most recent adapted energy
functional in [Cha18], we additionally extended our model by the exchange
anisotropy, which is of the same order in the spin-orbit coupling as the
cubic magneto crystalline term. While the latter might be sufficient to ex-
plain the appearance of the low temperature skyrmion phase, the exchange
anisotropy is needed to account for the hybridization strength between the
resonance branches, as will be discussed later. By including anisotropies in
the theoretical model - apart from the shape anisotropy -, the magnetization
orientation is subject to the underlying cubic environment of the crystal lat-
tice. Given by its structure, the cubic anisotropy defines an easy and hard
axis for the spontaneous magnetization and the exchange anisotropy deter-
mines a preferred orientation of the pitch vector, as stated in Chap. 1. It
therefore results in a violation of the symmetry of a combined continuous
rotation in real and spin space around the magnetic field axis. At this point,
it should be mentioned that also further anisotropies are allowed by symme-
try and might play an important role, for instance for the orientation of the
skyrmion lattice with respect to the crystallographic axis [Müh09; Eve12;
Wai17], but will not be taking into consideration in the framework of this
thesis.

The energy density is determined by a vast parameter space, which how-
ever can be reduced by rescaling the energy functional. This is achieved
by measuring the distance in units of pitch vector length Q, r̃ = Qr
(∇̃ = Q∇) and introducing the dimensionless magnetization and field quan-

tities M̃ =
(

U
JQ2

)1/2
M and B̃ = ( U

(JQ2)3
)1/2B. The equation given above

thus simplifies to,

F [M ] = κ

∫
d3r̃

1

2
(∇̃M̃)2 + M̃(∇̃ × M̃) +

1

2

µ0

JQ2
M̃NM̃ − B̃M̃

− K

M4
s U

∑
i

M̃4
i +

C

J

∑
i

(∂̃iM̃i)
2 +

r0
JQ2

M̃
2
+ M̃

4
(6.3)

with prefactor κ = J2Q
U . In the following, the tildes are omitted and the

remaining parameters are redefined. 1 The equation to be considered in the
subsequent analysis is therefore given by,

F [M ] = κ

∫
d3r

(1
2
(∇M)2 +M(∇×M) + τMNM −BM

−K
∑
i

M4
i + C

∑
i

(∂iMi)
2 + r0M

2 +M4
)
.

(6.4)

Here, τ ≈ 0.88 was already determined in [Sch15] for Cu2OSeO3. The
characteristics of the model are hence only shaped by the strengths of the

1 The parameters are redefined in the following way: τ ≡ µ0/2JQ
2, C ≡ C/J , K ≡

K/M4
s U
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remaining prefactors B, r0, K, and C. With these the equilibrium configu-
ration of the system is calculated by minimizing the energy functional with
respect to the magnetization, following

δF [M ]

δM

∣∣∣∣
Mmf

= 0. (6.5)

6.2 Magnetization Dynamics

The magnetization dynamics of a chiral magnet are calculated in a similar
approach as presented in Chap. 2. However, in the following derivation the
magnetization will not be given by a normalized vector field with constant
lengthMs, which hence does not allow the application of the previous results.
The energy functional and magnetization vector are divided both into a
static/mean-field and time dependent component,

F (r, t) = Fstat(r) + F̄ (r, t) (6.6)

M(r, t) = Mmf(r) + δM(r, t). (6.7)

The temporal evolution of these terms are assumed to be described by a
plane wave ansatz

F (r, t) = F̄ ei(kr−ωt) (6.8)

δM(r, t) = δMei(kr−ωt). (6.9)

with a linear response of the magnetization to the external stimulus, given
by an oscillating magnetic field for instance.
The magnetization dynamics are governed by the Landau-Lifshitz equation
of motion Eq. 2.1. Substituting the effective field Eq. 1.26 and neglecting
dissipative contributions, the equation to be solved is written in the form,

dM

dt
= γM × δF

δM
. (6.10)

The next steps comprise the insertion of the expressions Eq. 6.6, Eq. 6.7
with the explicit time dependences Eq. 6.8, Eq. 6.9 into the equation given
above and the subsequent expansion up to the first order in δM . Finally,
this protocol leads to a formula describing the vectorial amplitude of the
dynamic magnetization components, reading [Wai17]

δM =

[
ω − iγMmf ×

δ2Fstat

δM2

∣∣∣∣
Mmf

]−1[
iγMmf ×

δF

δM

∣∣∣∣
Mmf

]
. (6.11)

From this result, the resonance condition and maximum amplitude, respec-
tively, is achieved by a vanishing denominator. Therefore the determination
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of the resonance frequencies is reduced to the calculation of the eigensystem
and the corresponding eigenvalues of the following matrix [Wai17],

ωres = Im
[
Eigenvalues

(
γMmf × χ−1

0

)]
(6.12)

with fluctuation matrix χ−1
0 = δ2Fstat

δM2

∣∣∣
Mmf

. For a comprehensive derivation

of these results we refer to [Wai17].

6.3 Spectral Weight

Now with the previously derived equations at hand, the equilibrium con-
figuration of the magnetization and its corresponding resonance conditions
can be determined. The last quantity, which will be incorporated in the
numerical treatment, is the so called spectral weight which illustrates the
coupling efficiency to the external oscillating magnetic field. Due to its var-
ious and complex magnetic textures, the chiral magnet hosts a huge variety
of eigenmodes, which are not just limited to the well established Q modes in
the conical phase and the gyrational and breathing modes in the skyrmion
phase, but also include higher order excitations of the modes, listed above.
Since these excitations however, do not exhibit a finite macroscopic dipole
moment and consequently can not efficiently couple to the driving field,
they are hardly detectable in experiments. They are therefore referred to
as dark modes and said to have a vanishing spectral weight. By including
anisotropies in the theoretical considerations, certain resonance branches
start to hybridize with each other, leading to a redistribution of the weight
and experimentally accessible higher order modes.
In general, the coupling efficiency can be calculated by means of the dy-
namic susceptibility χ, resulting from the Landau Lifshitz Gilbert equation
Eq. 2.1. Including dissipation, the imaginary part of χ gives the amplitude
of the dynamic magnetization as a function of driving frequency, following
a Lorentzian distribution. The spectral weight is therefore determined by
the enclosed area of the Lorentzian function. Since damping is omitted in
Eq. 6.12, δM no longer converges, but exhibits a singularity approaching
the resonance condition. As a workaround, the prefactor of the Lorentzian
function, after projection onto the driving field axis, will be used as a sub-
stitution instead. The following derivation is closely related to the approach
presented in [Wai13].
The equation of motion Eq. 6.11 is first displayed in the reduced form,

δMα =
[(
ω1 −W

)−1
]αβ

Vβ. (6.13)

with W =
(
γMmf × χ−1

0

)
and V = iγMmf × δF

δM

∣∣
Mmf

. Application of the

transition matrix T ij = vij , composed by the eigenvectors, Wvi = λivi,
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allows to introduce the diagonalized matrix representation W̃ = T †WT .
The notation A† indicates the conjugate transpose of the respective matrix
A. The denominator of Eq. 6.13 is hence given by[(

ω1 −W
)−1
]αβ

=
[(

T
(
ω1 − W̃

)
T †
)−1]αβ

(6.14)

= Tαγ 1

ω − λi

(
eγi e

ϵ
i

)
T †ϵβ. (6.15)

With the unit vectors êi acting on the transformation matrices, the corre-
sponding eigenvectors are selected,[(

ω1 −W
)−1
]αβ

=
1

ω − λi
vαi (v

β
i )

∗. (6.16)

Inserting this result in the initial equation given above and projecting the
latter onto the oscillating field axis êac, yields

eαacδM
α =

1

ω − λi
eαacv

α
i (v

β
i )

∗Vβ. (6.17)

In this setup the dynamic free energy contribution is determined by the
alternating field, δF

δM

∣∣
Mmf

= µ0Hac. We therefore arrive at the expression,

eacδM =
µ0

ω − λi
|eacvi|2(vi)

∗ (Mmf×)viH. (6.18)

Finally, the spectral weight of the respective resonance condition λi is defined
as the prefactors on the right-hand side and will be implemented as the dot
size in the field-frequency spectra.

6.4 Implementation in the Reciprocal Space

Due to the periodic nature of the helical/ conical and skyrmion lattice phase
in real space, the respective magnetization textures will be converted to
momentum space by a Fourier transformation,

M(r) =
∑
k

mke
ikr (6.19)

with momentum vectors k and the corresponding Fourier components mk.
Based on the same argument given above, the resulting momentum space
is discretized and therefore forms a reciprocal lattice, spanned by the pitch
vectors Qi. As a result, an arbitrary momentum vector can be represented
by the combination of a lattice vector Q and momentum vector q, limited
to the first Brillouin zone, reading k = Q + q. In the case of the conical
phase, the spin arrangement is given by,

M con(r) = M0Q̂+A ê′ cosQr +A ê′′ sinQr (6.20)
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with the ferromagnetic component M0 and orthonormal basis {Q̂i, ê
′
i, ê

′′
i },

Q̂i = ê′i× ê′′i . In the presence of an external magnetic field, the pitch vector
and therefore the one-dimensional reciprocal lattice aligns collinear with
the field direction, if anisotropies are neglected. The latter is illustrated in
Fig. 6.1 (a).

The magnetic texture in the case of a skyrmion lattice can be reproduced
by a superposition of three spin helices [Müh09],

M sky(r) ≈ M0 +

3∑
i=1

Ai

(
ê′i cosQir + ê′′i sinQir

)
(6.21)

with the respective amplitudes Ai. It could be shown by minimizing the
energy functional with this ansatz, that the helices exhibit the same phase,
amplitude Aj = A and pitch vector length |Qi| = |Q|. Additionally, the
momentum vectors are restricted to the plane perpendicular to the external
field, taking on an angle of 120◦ with respect to each other. The resulting re-
ciprocal lattice of the skyrmion phase is hence two-dimensional and spanned
by two pitch vectors Q1 and Q2, following the hexagonal structure of the
skyrmion lattice. A schematic is shown in Fig. 6.1(b). Regarding their dif-
ferent dimensionality, the calculations for the helical/conical/field-polarized
and the skyrmion phase will be executed separately.

For the implementation in the numerical analysis, the various Fourier
components are summarized in the vectorial representation, given by,

mcon(k) = {m0,mQ,m−Q,m2Q, ...}(q) (6.22)

for the one-dimensional lattice and by,

msky(k) = {m0,mQ1
,m−Q1

,mQ2
,m−Q2

,mQ1+Q2
,m−Q1−Q2

...}(q)
(6.23)

for the two-dimensional lattice. The individual elements consist of three
spatial components, i.e. mQ = {mx

Q,my
Q,mz

Q}, which in turn are com-
plex values, possessing a real and imaginary contribution. In general, the
momentum space extends up to infinity, but will be limited by introduc-
ing a cutoff momentum Λ, so that |Q| ≤ Λ is fulfilled. With that, only
momenta marked by red dots are included in the analysis, as sketched in
Fig. 6.1. While for the one-dimensional space Λ is just given by a multiple
of |Q|, in the case of the skyrmion lattice the cut off is defined by the radius
Λ(n,m) = |nQ1+mQ2|. The resulting rings are illustrated up to the third
order in Fig. 6.1(b). Depending on the magnitude of the cut off momentum,
the numbers of variables which must be taken into account, increases dra-
matically. Based on symmetry considerations, like the fixed angle between
the momentum vectors and the restriction to the plane perpendicular to the
external field, the number can be reduced significantly. Adding anisotropies
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Figure 6.1: Visualization of the (a) 1D reciprocal space, comprising the
helical, conical and tilted conical spin arrangement and (b) 2D reciprocal
space of the skyrmion lattice. A more detailed description will be given in
the main text.

to the theoretical model, however, breaks the aforementioned constraints,
leading to a vast number of variables and therefore computational time.

In order to perform the numerical calculations in momentum space, the
magnetization vector in the previous results, comprising energy and equa-
tion of motion, will be replaced by its converted representation Eq. 6.19.
Inserting this Fourier transform into the energy functional Eq. 6.4 results in

F [m] =
∑
k

(
1

2
(kk)(mkm−k) + im−k(k ×mk) + r0mkm−k

+
∑

k2,k3,k4

(mkmk2)(mk3mk4)δk+k2+k3+k4,0

)

+ τ

(
m0Nm0 +

∑
k ̸=0

(km−k)(kmk)

kk

)
−Bm0

−K
∑

k,k2,k3,k4

∑
i

mi
km

i
k2m

i
k3m

i
k4δk+k2+k3+k4,0

+ C
∑
k

∑
i

k2im
i
km

i
−k.

(6.24)

The notation is chosen to coincide with the one applied in [Cha18]. Com-
pared to the model presented in the mentioned publication ([Cha18]), the
functional is additionally extended by the exchange anisotropy. By min-
imizing the energy, the equilibrium configuration of the magnetization is
determined in analogy to Eq. 6.5.
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With the magnetization and the resulting effective field given in momentum
space, the Fourier transformation of the Landau-Lifshitz equation results in
an equivalent representation as provided in Eq. 6.11,

δmb
Q′′′(q, ω) =[

ωδibδQQ′′′ +
iγ

ν
(mmf×)QQ′′(χ−1

0 )lbQ′′Q′′′(q)︸ ︷︷ ︸
Wlb

QQ′′′ (q)

]−1[
iγ

ν
(mmf×)inQQ′′ξnQ′′(q, ω)

]
.

(6.25)
Here, the transformed fluctuation matrix [Müh09; Wai17] is given by,

(χ−1
0 )ij

QQ′(q)δq′,q =
∂2F

∂mi
−k∂m

j
k′

=

((
2 r20 δ

ij + k2 δij +Dij(k) + 2 i
∑
α

ϵi,j,α,, k
α
)
δQ′,Q

+ 4 δij
∑
Q′′

(mQ−Q′−Q′′mQ′′ + 2mi
Q−Q′−Q′′m

j
Q′′)

2C(ki)2 δij δQ′,Q − 12K
∑
Q′′

δijmQ−Q′−Q′′mQ′′

)
δq′,q

(6.26)
with demagnetization energy,

Dij(k) = 2τ


kikj

k2 for kL ≫ 1

δijN ij for kL ≪ 1

. (6.27)

In the limit of large wavelengths compared to the samples dimension L, the
interaction is determined by the demagnetization factors Nx, Ny and Nz,
while for large k, the microscopic nature of the dipolar interaction has to be
taken into account.
The last two elements are the matrix,

(mmf×)ij
QQ′′ ≡

∑
Q′

ϵijlmj
Q′δQ′+Q′′,Q (6.28)

and the time dependent free energy component,

ξiQ′′(q, ω) = − δF (Q′′ + q, ω)

δmi
Q′′(q)

∣∣∣∣∣
mmf

. (6.29)

As aforementioned, the latter includes the alternating magnetic field.
Likewise to the derivations in real space, also in momentum space the de-
termination of the resonance frequencies and modes are obtained by solving
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the respective eigenequation,

W ij
QQ′(q)v

j
α(Q+ q) = ωαv

i
α(Q+ q). (6.30)

Here, eigenvalues and corresponding orthonormal eigenvectors are denoted
as ωα and vα(Q+ q), with∑

j,Q

(
vjα(Q+ q)

)∗
vjβ(Q+ q) = δαβ (6.31)

Again, for a comprehensive derivation of these equations we refer to [Wai13].
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Results

As aforementioned in the previous chapter, during the course of this thesis,
several consecutive microwave spectroscopy experiments were performed.
Building up on the gathered experiences, the primary focus and therefore
the measurement protocols were constantly shifted, in order to reveal the
intrinsic characteristics of the material investigated. With this new input
from the experimental side, the theoretical model supporting these findings
was adapted respectively. The obtained results will be therefore presented
in a chronological order, to reflect the progress made.

The following chapter is divided into three parts. In the first part, the
first broad-band microwave spectroscopy experiments and the supporting
numerical calculations in the low-temperature regime, which builds upon
the knowledge obtained in [Cha18], are presented. Subsequently, in the
next section, the temperature dependence of the low-temperature skyrmion
phase was investigated, with the main focus lying on the observed hybridiza-
tion of the resonance modes. Finally, the chapter closes with an extensive
study of the angle-dependence of the resonance condition in order to re-
solve the outstanding issues regarding the energy landscape arising from the
underlying cubic lattice structure.

7.1 Microwave Spectroscopy of the
Low-Temperature Skyrmion Phase

7.1.1 Experimental Results

The measurements presented in this chapter and published in [Aqe21] are
performed on a cube-shaped, single-crystal of Cu2OSeO3 by Dr. Aisha
Aqeel. With a temperature of 5K and the external magnetic field applied
out of plane and therefore parallel to a [100] direction of the crystal lat-
tice, all the prerequisites are met in order to populate the titled conical
and low-temperature skyrmion phase in a certain field range, as observed
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in [Cha18]. In order to resolve the resonance spectra the well established
all-electrical broadband microwave spectroscopy, as described in Sec. 3.2,
is utilized. At a fixed external magnetic field, the complex scattering pa-
rameter S12(f) as a function of frequency is recorded by means of a vector
network analyzer in combination with a coplanar waveguide. In order to
remove the spurious background and improve the signal-to-noise ratio, the
high field normalization is applied, leaving ∆S12(H) the data to be analyzed.
Here, the reference field is chosen high enough, i.e. B = 0.5T, so that the
corresponding data set does not contain resonance modes in the frequency
range under consideration. In the conducted experiments, two excitation
geometries, simply by moving the sample from the center of the signal line
to the gap, are employed. As can be seen in Sec. 3.1, the sample is therefore
subject to a dominant in-plane excitation field in the first case and a domi-
nant out-of-plane excitation field in the second case. Nevertheless it should
be mentioned, that due to larger dimensions of the sample compared to the
CPW, the excitation field will be always a combination of both geometries.
If not mentioned otherwise, the sample is placed on the center of the signal
line in the following. In previous studies [Moc12; Sch15; Sta17a] it could
already be observed, that the application of the oscillating field along cer-
tain directions allows to selectively address the different resonance modes of
a chiral magnet. Based on these findings, a similar dependence is expected
also for the resonance modes in the low-temperature skyrmion phase and
will be taken into consideration for the assignment of the latter.

Before elaborating the complex excitation spectra, the measurement pro-
tocol established will be discussed in more detail. This defined routine is
required for a reproducible outcome due to the hysteretic behavior of the
material. In the first step the sample is cooled down to a temperature of 5K,
without an external field applied. This process is referred to as zero-field
cooling. Subsequently the magnetic field is ramped up to 120mT, exceed-
ing Hc2 for the sample shape investigated, with the purpose of saturating
the magnetization and ensuring a collinear alignment. From this point on,
the external field is decreased stepwise until reaching the LTS phase, which
emerges around 70mT. Here, at each field value, a frequency sweep is per-
formed. This accumulation of frequency scans will be denoted as H init in
the following. The cubic magnetocrystalline anisotropy reduces the energy
of the skyrmion lattice with respect to the topologically trivial phases, mak-
ing it the ground state of the system. However, its respective signatures
are found not to be the prevailing contributions to the microwave spectra.
These observations originate from the fact that indeed the volume fraction
covered by the skyrmion lattice is small, compared to the one assigned to
the conical texture. Its is apparent to conclude, that the system is trapped
in a local energy minimum and a certain energy barrier must be overcome
to establish the formation of topological winding and the associated charge.
To overcome this energy barrier and increase the skyrmion number, a con-
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trolled field cycling protocol is established. Starting at 70mT, the external
field is continuously decreased to 62mT and increased back to the initial
field strength. This process is defined as one field cycle, indicated by cycle
number n = 1. After the cycling protocol, frequency sweeps are carried out
either under a decreasing or increasing magnetic field, which is denoted by
Hn

decr or H
n
incr, respectively.

A generic microwave spectrum without field cycling is illustrated in
Fig. 7.1(a). Here, dark colors are reflecting a strong absorption induced by
the resonant precessional motion of the magnetization. Following the mea-
surement protocol described above, the data acquisition starts at fields, well
above Hc2. Decreasing the magnetic field leads to a likewise decrease of the
resonance position, characteristic for the Kittel mode in the field-polarized
phase. However, due to the low magnetic damping at low temperatures, ad-
ditionally standing spin waves are excited, which are assigned to the replicas
of the Kittel mode. The latter is identified by its significantly larger spec-
tral weight. The formation of these additional modes is of great interest,
especially on the background of a nonreciprocal spin wave propagation in
non-centrosymmetric helimagnets [Gar17], but they will not be further dis-
cussed in the context of this thesis. A more detailed study can be found in
[Che21]. Below the critical field value Hc2, the typically smooth transition
into the +Q mode exhibits significant discontinuities, which are attributed
to the onset of the tilted conical phase. A further reduction of the magnetic
field, in turn, displays an evolution of the resonance frequencies akin to the
rotational modes of the conical phase at high temperatures. Also in the coni-
cal phase multiple resonance branches are detected, indicating the formation
of standing spin waves. In the following, however, only the two prominent
ones will be discussed. Here, yellow circles are introduced to highlight the
field dependence of the respective resonance frequencies. In the subsequent
measurements, shown in Fig. 7.1(b)-(c), the effect of the field cycling is illus-
trated. As previously described, the resonance spectra are composed of two
different sets of frequency traces, H init and Hn

decr, separated by the dashed
green line. For a moderate cycling number, as given in Fig. 7.1(b), the data
set of H15

decr already reveals significant changes in the resonances, compared
to the results depicted in Fig. 7.1(a). While the spectral weights of the rota-
tional modes of the conical phase decrease, additional resonance branches at
lower frequencies are emerging. Further increasing the number of field cycles
to n = 140 in Fig. 7.1(c), enhances the described effect, leading to distinct
resonance modes in the low frequency regime. The similar evolution under
the applied field, compared to the counterclockwise and breathing mode of
the high temperature skyrmion phase, and the fact that the corresponding
spectral weight is increasing with the number of cycles allows to attribute
these modes to the low-temperature skyrmion phase. Cyan circles are added
to highlight the field dependence of the resonance branch, which is associated
with the counterclockwise mode. In the interest of clarity the approximate
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Figure 7.1: Evolution of the microwave spectra as a function of number
of field cycles n. The normalized microwave absorption intensity ∆S is
represented by the color gradient, with dark colors indicating a strong ab-
sorption. The first part of the spectra, the left hand side with respect to the
dashed green line, is recorded during an initial H init scan down to 70mT.
The second part is covered by a Hn

decr scan, after n preceding field cycles.
By applying the field cycling protocol, the volume fraction of the conical
and tilted conical phase decreases, while the one of the low-temperature
skyrmion phase increases. This can be observed by the decrease of the spec-
tral weight of the conical and tiled conical resonance modes (yellow open
symbols) and the emergence of low frequency modes (cyan open symbols),
which are associated with the LTS phase. Resonance positions are obtained
from Lorentzian fits applied to the individual frequency sweeps. The color
bar at the bottom indicates the individual phases. The field-polarized, tilted
conical, hexagonal skyrmion lattice and oblique skyrmion lattice phases are
reflected by white, gray, light red and red colors. Figure taken from [Aqe21].
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phase boundaries of the different magnetic phases are indicated by the color
shading of the external field at the bottom of Fig. 7.1(c). While white and
gray illustrate the field-polarized and the tilted conical phase, respectively,
the skyrmion boundaries are given by the light red and red color. The latter
is divided into two pockets, due to the potential formation of an elongated
low-temperature skyrmion (eLTS) lattice phase, which will be elaborated
later.

In order to gain more insight into the characteristics of the additional
modes appearing, the different driving field distributions arising from the
two opposed excitation geometries are exploited, as summarized in Fig. 7.2.
From previous studies [Moc12; Sch15; Sta17a] it is already known, that the
resonance modes in the field-polarized and conical phase, as well as the gy-
rational modes in the skyrmion state couple to an in-plane ac-field, while
only the breathing mode is sensitive to an out-of-plane driving field. It
stands to reason that a similar behavior is therefore also expected to be
observed in the low-temperature limit. In contrast to the results presented
in Fig. 7.1, the two spectra are in each case composed by frequency sweeps,
which are recorded under an increasing H140

incr and decreasing H140
decr external

field, both after 140 field cycles. It allows hence to study also the effect of
the field cycling on the frequency sweeps for field values above the cycling
region. In the in-plane configuration, represented by the spectrum on the
left hand side of Fig. 7.2, the most prominent excitation is the one in the
high field limit, assigned to the Kittel mode and its numerous replica of the
field-polarized phase. In the field regime of interest, inside the boundaries
of the LTS phase, the spectral weight however is distributed over a wide
frequency range due to the coexistence of the conical and skyrmion modes.
Despite its multiple features, the focus is guided to the low frequency reso-
nance branch, highlighted by the open cyan symbols. Originating from the
monotonous increase in frequency with a likewise increasing field, its field
dependence resembles the one of the counter clockwise mode of the HTS
phase. It is therefore assigned to its counterpart in the low-temperature
limit. Moving the sample towards the gap, as shown in the inset on the
right hand side, the strength of in-plane oscillating field component, act-
ing on the magnetization, is attenuated, while the one of the out-of-plane
component is enhanced. As a consequence, the total absorbed microwave
power is reduced significantly, as expected from the arguments given above.
While only weak remnants of the excitations assigned to the CCW mode
are visible, another resonance branch, which is divided into three segments,
gains more intensity. Here, orange symbols are introduced as a guide to
the eye. This mode, covering the whole field range, exhibits an increase in
resonance frequency with decreasing field, which is, up to now, only known
from the field evolution of the breathing mode. Supported by the numerical
calculations presented later, it is therefore assigned to the breathing mode
in the anisotropic case. Interestingly, its features also clearly extend down
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Figure 7.2: Microwave spectra recorded for two different excitation geome-
tries, as schematically illustrated by the insets. By centering the sample on
the signal line (a) it is subject to a dominant in-plane excitation field, while
placing it on the gap (b) the out-of-plane ac-field is prevailing and mainly
driving the magnetization dynamics. The shown results are each obtained
from the two independent measurements routines, H140

incr and H140
decr, after 140

field cycles. The excitation branches associated with the counterclockwise
and breathing mode are highlighted by the open cyan and orange symbols.
Resonance positions are obtained from Lorentzian fits applied to the individ-
ual frequency sweeps. The color bar at the bottom indicates the individual
phases. The field-polarized, tilted conical, hexagonal skyrmion lattice and
oblique skyrmion lattice phases are reflected by white, gray, light red and
red colors. Figure taken from [Aqe21].
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to zero-field. As it will be discussed in regards of the numerical results,
these resonances might originate from an oblique distortion of the skyrmion
lattice at lower fields, as predicted in [Cha18].

In order to support this anticipated assumption from the experimental
side, the respective resonance frequencies of the LTS and conical phase in
the low-field limit have to be compared. For this reason, two microwave
spectra recorded after different cooling and cycling protocols are contrasted
in Fig. 7.3. On the left hand side (Fig. 7.3(a)), the results obtained after
n = 70 cycles are illustrated, resembling the one shown in Fig. 7.1. Here,
the spectrum is mainly dominated by the skyrmion resonances in the field
range of interest. For the measurements collated in Fig. 7.3(b), the magne-
tization configuration was first reset by exceeding temperatures well above
Tc and a subsequent zero-field cooling process. Starting at 0mT, frequency
sweeps are performed under an increasing magnetic field, afterwards. With
the applied cooling protocol, the spin texture is expected to decay into a
multi domain helical/conical state at low magnetic fields, with the pitch
vectors aligning along the easy axes, predefined by the anisotropies [Sch15;
Cha18]. Enhancing the magnetic field, causes the helices to rotate out of
their preset alignment and orientate parallel with respect to the field di-
rection. Consequently, a single domain state is formed. As it is obvious
from the shown line scans, the signatures of the low-temperature skyrmion
phase, namely the low frequency resonance branches, are not present in the
excitation spectrum, given on the right hand side. It is determined only by
the resonance frequencies of the ±Q modes of the conical and tilted conical
phase and the Kittel mode of the field-polarized state. Comparing now the
resonance positions of both data sets around zero magnetic field, discloses a
distinct difference, suggesting indeed a different magnetic texture as its ori-
gin. This leads to the assumption that, due to the applied cycling and field
sweep routine in combination with the hysteretic character of the skyrmions,
the LTS phase exceeds down to low magnetic fields in a metastable, but ro-
bust state in the microwave spectra presented. More precisely, based on
the resolved jump in frequency at around µ0H = 12mT, which indicates
the transition into an oblique lattice structure according to the numerical
findings discussed later on, the resonances in the low-field limit are assigned
to the elongated skyrmion lattice phase.

7.1.2 Theoretical Results

Parts of the numerical results presented in this section are published in
[Aqe21]. The numerical treatment of our theoretical model is divided up
with regard to the dimensionality of the employed reciprocal lattices, as
elaborated in Sec. 6.4. In the first part of this section the topologically
trivial states, including helical, conical, tilted conical and field-polarized
phase, are discussed, while in the second part the analysis of the skyrmion
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Figure 7.3: Comparison of excitation spectra obtained for two different
measurement protocols. (a) Composition of a H init and H70

decr data set.
(b) Spectrum recorded for an increasing external field, after reseting the
magnetization by an initial zero-field cooling process. Emphases is put on
the different resonance conditions in the low-field limit. The color bars
at the bottom indicate the individual phases. The field-polarized, tilted
conical, helical/conical, hexagonal skyrmion lattice and oblique skyrmion
lattice phases are reflected by white, gray, light green, light red and red
colors. Figure taken from [Aqe21].

lattice phase is covered.

1D Reciprocal Space

The main focus of this work is on the unrevealed effect of cubic magnetic
anisotropies on the collective spin excitations of a chiral magnet. The latter,
however, requires first the determination of the equilibrium configuration of
the magnetization, which in interest of completeness, will be likewise pre-
sented in a comprehensive execution. The magnetic texture, minimizing
the energy functional given by Eq. 6.24 is obtained by solving equation
Eq. 6.5 for the fixed parameter set r0, τ , K, Ni and B 1. For this step, a

1 Note, as elaborated in Chap. 6, these parameters are dimensionless. In the interest of
clarity, the tilde notation is, however, omitted.
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default configuration of the magnetization, determined by an initial set of
pitch vectors and Fourier components (Sec. 6.4), is fed into the minimiza-
tion algorithm. Here it should be mentioned that, in general, these start
parameters have a significant impact on the resulting equilibrium state. In
addition to that, the result also strongly depends on the symmetries imposed
on the reciprocal lattice and the corresponding Fourier components of the
magnetization. Therefore, in order to approach the global and not just a
local minimum configuration, several different default parameters are used
for the minimization routine. The setup established for the calculations is
given in the following. The sample coordinate system is chosen to coincide
with crystallographic directions, i. e. x ∥ [100], y ∥ [010], z ∥ [001]. If
not stated otherwise, the external magnetic field is applied along the [001]
direction and the Ginzburg-Landau coefficient is set to r0 = −1000 in ac-
cordance with [Cha18]. Finally, the investigated sample shape is a sphere
with demagnetization factors Nx = Ny = Nz =

1
3 and the respective dipolar

interaction strength of τ = 0.88, obtained from previous studies [Sch15].
With this, only anisotropy value K and magnetic field strength B enter the
theoretical model as free parameters.

In the following the results inferred from the minimization routine will
be discussed. The data are presented as a function of field, determined
for various anisotropy values, which are ranging between K = 0.0003 −
0.0004. From previous studies [Cha18] these anisotropy strengths are proven
to be sufficient enough to enable the formation of the tilted conical and low-
temperature skyrmion phase.

For the characterization of the magnetization configuration, the enclosed
angles between the pitch vector of the spin helices and the crystallographic
axes will be analyzed first. In Fig. 7.4(a) - (b) the tilt angles ϕ and θ, which
result from the projection onto the [100] and [001] direction, respectively,
are illustrated. Note, by definition, the latter displays also the deviation
from the applied field direction. It is therefore instructive to start the dis-
cussion with these observations. For a given anisotropy value of K = 0.0003
the magnetization texture remains in a conical configuration with the static
magnetization component aligned collinear with the external field. The ad-
ditional energy term, appears to not have any effect on the equilibrium
position of the spin helices. When increasing K slightly, the tilt angle θ
reaches finite values for a certain field range. The pitch vector starts to
tilt, but relaxes back into its prior equilibrium position, for an increasing
external field. Exceeding a certain anisotropy strength, Q does no longer
align with the [001] direction at higher field values, but abruptly increases
its inclination. Moreover, also the first transition into the tilted state oc-
curs in the form of a discontinuity. The tilt angle ϕ, given in Fig. 7.4(a),
displays a similar field and anisotropy dependence as θ. Due to the initial
perpendicular alignment with the [100] axis, the direction of the canting is
reversed though. The angle decreases for an increasing magnetic field. With
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Figure 7.4: Calculated tilt angles of the pitch vector Q with respect to
the [100] (a) and [001] (b) crystallographic direction for various anisotropy
values K as a function of applied field B. The remaining parameters are set
to r0 = −1000, τ = 0.88 and Ni = 1/3.

the components of the pitch vector extracted from the numerical data, it fol-
lows that the deflection is confined to the [001]− [110] plane. These findings
can be easily verified by calculating the respective tilt angle ϕ′ = arccos sin θ√

2
of a unit vector restricted to this plane, by inserting the extracted angle θ.
The results obtained are given by the small black dots in Fig. 7.4(a). The
pitch vector therefore indeed cants from the easy to the hards axis of the
cubic magnetocrystalline anisotropy. It should be mentioned that the sign
of the obtained angles and with this the tilting direction are results of the
default configuration set at the beginning of the calculation. Due to the four
equivalent directions, the tilted conical phase is expected to decay into an
equally populated multiple domain state.

Besides the orientation of the pitch vector, also the respective wavenum-
ber |Q| is subject to the additional energy term. The field dependence of
the pitch length calculated for various anisotropy values is summarized in
Fig. 7.5. As it was observed in regard of the tilt angles, the anisotropy does
not affect |Q| for a given strength of K = 0.0003. Increasing K, the helix
cants towards the [111] direction and simultaneously the length of the pitch
vector decreases, until continuously relaxing back into the conical state with
|Q| = 1. At larger anisotropy constants the field dependences are divided
into two ranges, enclosed by the sudden changes, which are attributed to
the ones resolved in Fig. 7.4. The overall course is governed by a decrease
of the wavenumber under an increase of the magnetic field. The wavelength

64



7.1. Microwave Spectroscopy of the Low-Temperature Skyrmion Phase

Figure 7.5: Calculated length of the pitch vector Q for various anisotropy
values K as a function of applied field B. The remaining parameters are set
to r0 = −1000, τ = 0.88 and Ni = 1/3.

of the modulation given in real-space is therefore increasing. Note, the ob-
tained results reproduce the ones presented in [Cha18] largely, but exhibit
also considerable deviations. This discrepancy might originate from different
employed symmetries of the one-dimensional reciprocal lattice in combina-
tion with the corresponding Fourier components of the magnetization, as
discussed in Sec. 6.4.

The application of the Fourier transform, allows to visualize the mag-
netization texture in real-space for the obtained equilibrium configurations.
In Fig. 7.6 a three-dimensional representation of the individual spin helices
is illustrated for the anisotropy strength set to K = 0.0004 and B = 0,
19, 20.5 and 22. The field range is chosen to comprise all the modulated
textures associated to the one-dimensional momentum space. The direction
of the externally applied field is given by the blue arrow, on the left hand
side. In accordance with the chosen color code, a collinear alignment of the
magnetization with the magnetic field is likewise reflected by blue, while a
perpendicular orientation is indicated by white arrows. The first two con-
figurations calculated at B = 0 and B = 19 are the well established helical
and conical state, which differ by the deviation from the perpendicular align-
ment of the spins with respect to Q in the case of the latter. Traversing the
phase transition into the tilted conical state, the pitch vector deviates from
a parallel alignment with respect to the external field and tilts towards the
[111] direction. By further increasing the magnetic field strength, the energy
landscape of the chiral magnet is mainly dominated by the Zeeman inter-
action, favoring a collinear alignment between the magnetization and the
external field. With this more spins align along the field direction, resulting
in a localized winding of the magnetization and consequently a longer wave
length of the modulation, as shown in Fig. 7.6e.
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Figure 7.6: 3D visualization of the evolution of the spin helices under
increasing magnetic field. The anisotropy strength is set to K = 0.0004 and
the magnetic field to B = 0 (b), B = 19 (c) B = 20.5 (d) B = 22 (e). The
remaining parameters are set to r0 = −1000, τ = 0.88 and Ni = 1/3. The
blue arrow (a) on the left hand side displays the external field direction. The
color code of the magnetization reflects the orientation with respect to the
applied field. A collinear alignment is given by blue, while a perpendicular
alignment is indicated by white.

In real-space imaging experiments on chiral magnets the main focus is on
the resolution of the skyrmion lattice plane, perpendicular with respect to
the externally applied field. While in this configuration the magnetization
of the helical and conical state is uniform within the plane, provided the
pitch vector is aligned along the field direction, from the results presented
above a periodic structure for a finite canting angle of the pitch vector is
expected to be displayed. In Fig. 7.7(a)-(b) two dimensional maps of the
normalized z component of the static magnetization are illustrated, obtained
for the states given in Fig. 7.6(d)-(e), i.e. with the field set to B = 20.5 and
B = 22. A collinear alignment with the magnetic field is indicated by blue,
whereas red, which is not clearly represented in these plots, corresponds
to an anti-parallel orientation. In the depictions beneath, Fig. 7.7(ii)-(iv),
the individual magnetization components, resolved for the coordinates in-
dicated by the black arrows, are shown. For the comparison to the conical
phase, the distance is measured in units of 2π/Qc, with pitch vector length
Qc obtained in the conical state. In general, for a line scan oblique with
respect to the pitch vector, the periodic behavior is imposed on all magne-
tization components for the modulated states. In the case of the helical and
conical phases, it is expected to be described by a sinusoidal function. As
displayed in Fig. 7.7(ii)-(iv), this description can not be applied, indicating a
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deviation from the screw-like arrangement of the spins, in the tilted conical
states. Increasing the external field further, the Zeeman interaction enforces
the formation of ferromagnetic domains, resulting in a localized winding of
the magnetization, as anticipated before. Consequently, the wave length in
real-space increases whereas the pitch vector length decreases. Note, since
Fig. 7.7 illustrates the projected magnetization, a scaling factor, dependent
on the angle between plane and pitch vector, is required for the conversion
into the actual pitch length. In conclusion, the canting of the pitch vector is
expected to be easily observed in a perpendicular field configuration, by the
appearance of a periodic modulated magnetization. It should be mentioned
that, however, the twisting of the spins at the surface, which arises from the
DMI interaction [Mey14], might not be negligible and therefore diminish or
even mask the signatures of the tilted conical phase.

With the mean field configuration obtained from the minimization al-
gorithm, the resonance frequencies and modes are calculated by the eigen-
value equation given by Eq. 6.30. The setup is chosen in accordance with
the previous results, i.e. the sample investigated is of spherical shape and
the external magnetic field is aligned along the [001] direction of the crys-
tallographic lattice. For now, the analysis is limited to the resonances of
the topologically trivial state, comprising field-polarized, tilted conical and
conical states. Additionally, if not stated otherwise, the calculations are
performed at the Γ-point, indicating a uniform excitation of the dynamic
magnetization.

In Fig. 7.8 the field dependence of the resonance frequencies, deter-
mined for various anisotropy strengths K, is presented. The spectral weight
(Eq. 6.18), which serves as a measure for the coupling efficiency to the oscil-
lating magnetic field, is reflected by the size of the symbols. In the interest
of clarity, for this general discussion of the effect of the cubic anisotropy on
the spectra, a cut off for the spectral weight is introduced in the last two
panels. The whole spectra, which comprise a multitude of excitation modes,
will be discussed in more detail later on. As already observed in preceding
studies [Sch15], the eigenmodes are only driven by an ac-field perpendicular
with respect to the pitch vector and the static magnetic field, respectively.
Due to the canting of the pitch vector, however, the tilted conical modes
might also be sensitive to an out plane driving field. Since the efficiency
is smaller than the chosen cut off value in the numerical results presented
beneath, the corresponding resonances are excluded from the spectra. For
the illustration purpose, the field and frequency axes are normalized by the

critical transition field Bc2,0 and the critical field frequency νintc2 =
gµBµ0Hint

c2,0

2πℏ .
Here, Bc2,0 and H int

c2,0 are extracted in absence of the cubic anisotropy, as
indicated by the index 0. Note, in contrast to the experimental data, the
field axis is displayed in ascending order.

The calculations obtained in the case of K = 0, shown in Fig. 7.8(a),
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Figure 7.7: Visualization of the magnetization configuration of the tilted
conical phase within the plane perpendicular to the external field for
B = 20.5 (a) and B = 22 (b). (i) 2D maps of the z component of the
magnetization, with blue and red color indicating a parallel and anti paral-
lel alignment with respect to the magnetic field. (ii)-(iv) Line scans of the
individual components along the black arrows, given in (a) and (b). Coor-
dinate r is given in units of Qc, defined as the pitch vector length of the
conical state.
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Figure 7.8: Theoretically predicted spectral weights (symbol size) for a
spherical sample calculated for different anisotropy values K. Field and
frequency axes are normalized by Bc2,,0 and vintc2,0, respectively. Here, the
spectral weight indicates the coupling efficiency to an driving field perpen-
dicular to the external magnetic field. The remaining parameters are set to
r0 = −1000, τ = 0.88 and Ni = 1/3. The gray and dark gray shadings in
the last two panels highlight the two different tilted conical phases.
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reproduce the well-established universal excitation spectrum as expected.
In the conical phase, the two resonance branches are identified as the ±Q
modes. Due to the chosen sample shape, they are degenerate at zero mag-
netic field. Approaching the phase transition into the field-polarized state,
the +Q mode merges smoothly into the Kittel mode, while the spectral
weight of the −Q mode continuously decreases. For a value of K = 0.0003,
the magnetization configuration is still not effected by the anisotropy as al-
ready elaborated in the field dependence of the tilt angle and pitch length
given in Fig. 7.4 and Fig. 7.5. The overall appearance of the corresponding
excitation spectrum resembles therefore the results presented in Fig. 7.8(a).
The additional energy term, however, changes the slope of the rotational
modes and increases the frequency of the benchmarks ν(Bc2,K) and ν(0). In
combination with the reduced critical field Bc2,K , the spectrum appears to
be compressed with respect to the field axis. In the field-polarized state, the
anisotropy enters the Kittel mode as a field-independent contribution. The
additional energy term leads to a shift in frequencies towards higher values,
with the slope remaining unchanged.

Exceeding an anisotropy strength of K = 0.0003, leads to a finite angle
between the pitch vector and the external field direction and with this to the
formation of the tilted conical phase, as presented above. As a consequence,
the resonance branches of the conical phase do no longer decrease continu-
ously as a function of field, but exhibit several anomalies originating from
the additional phase transition. In panel Fig. 7.8(c), the excitation spec-
trum calculated with the anisotropy strength set to K = 0.00032 is shown.
From the results discussed in Fig. 7.4 it could be observed that for this K
value, the first transition from the conical phase is rather smooth, while the
second transition back into the conical phase from the tilted conical phase
is accompanied by a sudden jump with regard of the tilt angle. As can be
seen in the respective microwave spectrum, these distinct phase transitions
are also reflected in the field-dependence of the resonance frequencies. The
onset of the first phase transition is marked by the smooth change of slope
around B = 0.6Bc2,0. In this field range, indicated by the gray shading, the
resonance frequencies are changing continuously until reaching a field value
of around B = 0.65Bc2,0. At this point the resonance spectrum exhibits a
clear discontinuity, which is attributed to the abrupt change in the tilt angle.
The pitch vector is again aligned with the external field and the magnetiza-
tion dynamics correspond to the ones of the conical modes, which, in case
of the +Q mode smoothly connects to the Kittel mode of the field-polarized
phase.

Finally, in the last panel, Fig. 7.8(d), the excitation spectrum, obtained
from the calculations with the anisotropy strength fixed to a value of K =
0.0004, is visualized. Before evaluating these findings its is instructive to
recall again the results of the magnetization configuration with respect to
the tilt angle. Due to the enhanced anisotropy strength, the canting of the
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pitch vector is no longer continuous but governed by a sudden increase of
θ. In addition to that, the magnetization does not relax back into a conical
configuration, but tilts even further into the [111]-crystal direction. This
transition is also indicated by an abrupt change of the tilt angle and marks
an additional phase. Finally, the phase transition into the field-polarized
state is no longer mediated by the conical phase, but occurs directly from
the tilted conical phase. As could already be seen above, these changes in
the magnetic texture are also reflected in the field dependence of the ex-
citation frequencies. The transition into the first tilted conical phase can
be identified by the discontinuity of the +Q resonance branch, at a field
value of approximately B = 0.55Bc2,0. Its respective excitation frequencies,
which are highlighted by the gray shading, are characterized by an almost
field independent curve progression. At a field value of around B = 0.6Bc2,0

a second anomaly in the form of a sudden change of slope emerges, which
indicates the aforementioned additional canting of the pitch vector. Interest-
ingly, despite its smooth variation in the magnetization configuration, this
second region, indicated by the dark gray shading, exhibits a multitude of
discontinuities in the frequency domain accompanied by a repeated change
of the spectral weight. It should be mentioned that the field evolution of the
resonance frequencies is masked by the introduction of the spectral weight
cut off in this illustration, but will be evaluated in more detail later on.
Originating from the sudden spin-flop at the transition field, the tilted con-
ical modes do not merge smoothly into the Kittel mode anymore. A clear
frequency gap between these resonance branches is predicted to be observed.

Before resolving these kinks and discontinuities originating from the ad-
ditional energy term in an expanded view, it is instructive to return to the
universal microwave spectrum, calculated in absence of the cubic anisotropy.
In general, the presentation is limited to the well-established ±Q and the
Kittel modes, as given in Fig. 7.8(a). Besides the clockwise and counter-
clockwise modes, the conical phase however hosts a multitude of higher
order modes, which could also be experimentally resolved in [Wei17], de-
spite their small spectral weight. Due to their lack of a macroscopic dipole
moment they are also referred to as dark modes in the following. The the-
oretically predicted real-space visualization of the magnetization dynamics
for the first 16 modes, lowest in frequency, is illustrated in Fig. 7.9 for a
certain time t. As anticipated before, the cubic anisotropy is not included
in the calculations and the external field, B = 15, is chosen to arrange the
formation of a spin helix with a cone angle smaller than 90◦. The individ-
ual spin sites along one helix period, indicated by the gray symbols, are
given in a polar presentation for reasons of simplicity. The amplitude of the
respective dynamic z component of the magnetization is displayed by the
black symbols. The color code for the enclosed areas emphasizes the ori-
entation of δMz(t) with respect to the pitch vector direction, ranging from
an anti-parallel (red) to a parallel alignment (blue). Note, for illustration
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Figure 7.9: Theoretically predicted real-space visualization of the z com-
ponent of the dynamic magnetization at a certain time t for the first 16
modes. The calculations are performed in absence of the cubic anisotropy
at a magnetic field strength of B = 15, corresponding to the conical phase
for a spherical sample. The remaining parameters are set to r0 = −1000,
τ = 0.88 and Ni = 1/3. The gray symbols are attributed to the equilibrium
position of the spin sites along one helix period, which is mapped onto a
circle for reasons of simplicity. The corresponding dynamic component of
the magnetization is given by the black symbols. The color code for the
enclosed areas indicated a negative (red) or positive (blue) of Mz(t). Note,
for the illustration, the latter was multiplied by a scaling factor of 3.
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purposes, the amplitude of δMz(t) was multiplied by a scaling factor of 3.
The obtained modes are arranged in an ascending order with respect to
their resonance frequencies. Characterized by their node number, they are
divided into groups of two, comprising each an element with clockwise and
counterclockwise sense of rotation, apart from modes 3, 4 and 7, 8. While
the former group shows only an oscillating motion, the latter exhibits both
a rotational and oscillating magnetization dynamics. The first two modes
are the extensively studied ±Q resonance branches of the conical phase.
Due to their finite magnetic dipole moment compared to the others, they
likewise exhibit a finite spectral weight and are therefore very likely to be
excited in broadband microwave experiments. Interestingly, apart from this
group, the elements of the remaining ones are degenerate. They all demon-
strate the same field dependence as the clockwise mode, only shifted along
the frequency axis. This can also be observed for an anisotropically shaped
sample.

With these observations in mind, the microwave spectra obtained in the
case of K = 0.00035 and K = 0.0004 will be discussed in more detail. The
field range, normalized by the anisotropy dependent transition field Bc2,K , is
set to limit the focus mainly on the tilted conical phase, as given in Fig. 7.10.
Additionally, the frequency axis is expanded to take also higher order modes
into account. The presentation of the excitation spectra is chosen to coincide
with the ones described above. Compared to Fig. 7.8, however, the spectral
weights are extended by the contribution arising from an out-of-plane oscil-
lating field, represented by the gray symbols. Here, it should be mentioned
that the coupling efficiency to this field direction is non-zero, but rather
small. On that account, an additional scaling factor of 3 was introduced in
order to highlight the latter. Besides the spectral weights, more importantly
the general field dependence of the resonance frequencies, given by the black
dots, is displayed. This allows to visualize also the modes, exhibiting a van-
ishing spectral weight. In the conical phase, which exceeds up to a field value
of around B = 0.85Bc2,K in Fig. 7.10(a), four distinct resonance branches
are visible in the plot range, employed. While the first two are the ±Q
modes, the last ones are identified as mode number three and four in regard
of Fig. 7.9. Interestingly, the degeneracy of these is lifted, in contrast to the
results extracted from the isotropic model. Traversing the boundary of the
titled conical phase, the increase of the tilt angle and the simultaneous de-
crease of the wavenumber is accompanied by a significant change in slope for
the said modes. Excluded from this is the +Q mode, which mainly remains
constant under an increase of the magnetic field strength. Conversely, the
spectrum of the second region of the tilted conical phase, ranging between
B = (0.93− 1)Bc2,K , is subject to fundamental changes and stands out for
a high degree of complexity. The initially distinctively separated resonance
branches undergo a drastic decrease in slope, leading to an accumulation of
a multitude of higher order modes in the frequency range considered. The
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Figure 7.10: Theoretically predicted spectral weights (symbol size) for
a spherical sample calculated for different anisotropy values K. Field and
frequency axes are normalized by Bc2,,0 and νintc2,0, respectively. Here, the
spectral weight indicates the coupling efficiency to a driving field perpen-
dicular to the external magnetic field. The remaining parameters are set to
r0 = −1000, τ = 0.88 and Ni = 1/3.
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+Q mode, remaining the dominant mode, exhibits only minor changes in its
general field dependence. With increasing field the frequencies decrease but
subsequently increase again, in accordance with the reversed increase and
decrease of the tilt angle, as displayed in Fig. 7.4. This change of slope is,
however, barely noticeable. On the other hand its progression is crossed by
several higher order modes, resulting in the alternating decrease and increase
of the spectral weight at the interaction points. With specific reference to
these observations, a description in terms of anti-crossing or hybridization
is more accurate. At no time, the resonance branches are degenerate. The
hybridization mechanism is not limited to the +Q mode only, but can also
be resolved for the interaction among higher order modes. Interestingly,
the frequency gap, which serves as an indication of the interaction strength,
varies strongly, depending on the hybridization modes. This suggest that, a
certain selection rule is imposed by the underlying crystal lattice. In the case
of the second mode, which exhibits a finite spectral weight, a slight increase
of the resonance frequencies with a likewise increasing field is observed. Its
respective time evolution is characterized by a clockwise rotational motion
akin to the −Q mode of the conical phase. In contrast to the isotropic case,
however, the dynamic response of the magnetization is susceptible to an out-
of-plane driving field, as indicated by the gray symbols. The corresponding
coupling efficiency is decreasing for both cases, approaching the conical and
the field-polarized phase, respectively from the internal transition field of the
tilted conical phase at a field of around B = 0.93Bc2,K . In the bottom panel
Fig. 7.10(b) the results, obtained for an anisotropy strength of K = 0.0004,
are depicted. The most striking change in the microwave spectrum is the
shift of the field boundary of the second tilted conical region, induced by an
earlier inclination of the pitch vector regarding the field value. Comparing
the field range B = (0.93−1)Bc2,K of both plots, reveals a high resemblance
of the field dependence of the individual resonance branches. The spectrum
calculated for the larger anisotropy values therefore appears to be an exten-
sion of the results displayed in Fig. 7.10(a) towards lower field values, which
allows for further hybridizations.

As anticipated before, in absence of the cubic anisotropy, the eigenvec-
tors of the conical state exhibiting the same number of nodes are degenerate,
except for the ±Q modes. By introducing the additional energy term, how-
ever, the rotational symmetry is broken, which, in turn, leads to different
resonance frequencies of the individual excitation modes. As a consequence
the degeneracy is lifted. For illustration purposes, the resulting frequency
difference ∆ν between the modes of the individual groups is depicted for
a field range covering the conical and the first region of the tilted conical
phase in Fig. 7.11(a). Due to the multitude of modes and hybridizations, a
precise allocation of the resonance branches can not be ensured, which sub-
stantiates the exclusion of the second area of the tilted conical phase in this
discussion. The results display the field dependence of ∆ν between modes
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with node number n = 2, 4, 6, 10 and 24, obtained for K = 0.0004. Here,
n = 2, given by the red symbols, corresponds to the well-established ±Q
modes. Independent of the anisotropy, the latter exhibit a finite frequency
difference, which increases with increasing external field. The illustrated
slope within the conical phase, ranging up to a field value of approximately
B = 0.8Bc2, is therefore not significantly affected by the cubic anisotropy.
Passing through the transition field into the tilted conical phase, the slope
of the −Q mode experiences a sudden decrease, while the +Q mode re-
mains constant, as shown in the excitation spectrum in Fig. 7.10(b). This
observation is reflected in the respective increase of the frequency differ-
ence in Fig. 7.11(a). The eigenvalues of the first higher order modes, given
by the light red symbols, on the other hand are susceptible to the cubic
environment of the crystal structure and the resulting anisotropy contribu-
tion. Commencing at zero-field, the frequency difference between the n = 4
modes displays a large value of around ν = 0.6 νintc2,0, which even surpasses
the maximum value obtained for the ±Q modes. With increasing field, the
gap between the branches is first decreasing until the transition field, only to
rise again in the regime of the tilted conical phase, similar to the ±Q modes,
as observed before. In the case of the remaining higher order modes, the
effect of the additional energy term on the resonance positions in the coni-
cal state is extremely small. Only for a finite tilt angle of the pitch vector
with respect to the external field, the frequency difference can be quanti-
fied, revealing a linear increase as a function of magnetic field strength. In
accordance with the excitation spectrum, presented above, the slope of ∆ν
increases for an increasing node number n.

The significantly different response of the first higher order modes with
m = 3, 4 originates from their unique time evolution of the dynamic mag-
netization. As elaborated before, in contrast to the remaining modes, the
excitation of the dynamic magnetization component projected onto the pitch
vector is not determined by a rotational, but an oscillating motion, mainly
limited to certain axes. From the real-space visualizations in Fig. 7.9, it is
obvious that these axes do not coincide for the modes discussed, but are
shifted by π/4. It consequently stands to reason that the magnetization ex-
periences a different energy landscape in the respective cases, which results
in a finite frequency difference. In order to approach this argument, the
dynamic anisotropy contribution,

EK

(
δM(t)

)
=
〈(

δMx(t)
)4

+
(
δMy(t)

)4
+
(
δMz(t)

)4〉
(7.1)

will be evaluated for eigenstates with equal number of nodes. Here, the
bracket notation indicates the average along a helix period. In this discus-
sion the first four modes of the conical phase (B = 15), concerning their
frequencies, will be taken into consideration. It should be mentioned that
these eigenstates are obtained from calculations performed in absence of the
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magnetocrystalline anisotropy. In Fig. 7.11(b) the extracted time evolution
of EK

(
δM(t)

)
for the said modes within one period T is displayed. For

the ±Q modes, assigned to the numbers m = 1 (blue) and 2 (light blue),
the graphs show both a sinusoidal time dependence, which are determined
by the rotational motion in combination with the fourfold symmetry of the
cubic anisotropy. The mean values, around which the curves are oscillating,
are slightly different which in turn leads to a small discrepancy in the res-
onance frequencies. In the case of mode numbers m = 3 (light red) and 4
(red) the effect of the cubic environment on the resonance modes is no longer
negligible. While the time delay between these modes is not of importance
for the discussion, the amplitudes of EK

(
δM(t)

)
are playing the decisive

role with regard to the resonance position in the frequency domain. As an-
ticipated before, the dynamics of the magnetization are best described in
terms of an oscillating rather than a rotational motion. The time evolution
of EK

(
δM(t)

)
is therefore not expected to display a fourfold symmetry as

obtained for the ±Q modes. From the real-space representation it can be
seen, that the individual components of δM(t) oscillate dominantly along
the [100]- and [110]-directions, for mode numbers m = 3 and 4, respectively.
Since the [100] directions reflect the easy axes of the system, the absolute
value of the energy contribution is higher and with this also the resonance
frequencies of mode number 4.
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Figure 7.11: (a) Theoretically predicted frequency difference between
modes with the same number of nodes (n) for a spherical sample calcu-
lated for an anisotropy value of K = 0.0004. Field and frequency axes are
normalized by Bc2,K and νintc2,0, respectively. In the interest of simplicity, the
conical and first region of the tilted conical phase is displayed. (b) Time
evolution of the dynamic anisotropy contribution. The remaining parame-
ters are set to r0 = −1000, τ = 0.88, B = 15 and Ni = 1/3.
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2D Reciprocal Space

In order to evaluate the effect of an underlying cubic lattice structure on
the magnetization texture in the topologically nontrivial state and its corre-
sponding dynamic response to an external driving field, the same protocol as
described above will be employed. In the first step, the magnetization con-
figuration is calculated by minimizing the energy functional with respect to
the two pitch vectors and Fourier components of the individual lattice sites.
The number of parameters entering the numerical treatment is determined
beforehand by the cutoff introduced in the two dimensional reciprocal lat-
tice. For the calculations presented here, the momentum space is restricted
to five rings (c.f. Sec. 6.4), if not stated otherwise, which results in a total
number of 2 · 3 · 91 + 3 · 2 = 552 variables. With the magnetization repre-
senting a physical and therefore real quantity, it follows that m−Q = mQ

∗

and consequently instead only 2 · 3 · 46 + 3 · 2 = 282 parameters are taken
into consideration. In contrast to the analysis in the high temperature limit
[Wai17], this number can not be further reduced by means of symmetry
arguments, since the magnetocrystalline anisotropy explicitly breaks the ro-
tational symmetry. This results in cumbersome calculations with high com-
putation times on the one hand and an increase in sensitivity concerning the
start parameters on the other hand. In this regard, the adjustment of only a
few parameters might lead to the convergence of the minimization algorithm
and consequently relaxation into an equilibrium configuration, which might
not necessarily correspond to the global, but a local minimum. It follows
that the implementation of various start parameters is required. As default
configuration a superposition of three spin helices, reproducing a skyrmion
lattice, is chosen. By rotating the individual components around the field
axis with certain angles and adding noise on top, a set of starting parame-
ters is generated. Note that the orientation of the pitch vectors with respect
to the crystallographic axes will play an important role in the case of an
oblique lattice, due to the reduced symmetry. Another method comprises
the usage of previously obtained results, calculated with the same exter-
nal parameters, but slightly different magnetic field value as starting point.
With this restriction, the performance of the minimization for an increas-
ing or decreasing magnetic field with a small step size mimics the employed
measurement protocol, described above, and additionally leads to a smooth
change of the magnetization configuration as a function of field.

Besides the external magnetic field value, only the strength of the cubic
magnetocrystalline anisotropy enters the energy functional as a free param-
eter, in accordance with the setup introduced before. As a reminder, the
remaining constants are set to r0 = −1000, Ni = 1/3 and τ = 0.88 and
the field is aligned along the [001] or z axis, respectively. Consequently,
the skyrmion lattice, in real and reciprocal space, forms in the x− y plane,
perpendicular to the predefined external field direction.
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In the following, the field dependence of the magnetization configuration,
calculated for various anisotropy values will be discussed. Compared to the
one-dimensionally modulated states, even small K values induce significant
changes in the magnetic texture. The results presented below cover therefore
an extended parameter range of K = 0 − 0.0004. The quantities which
display the characteristics of the skyrmion lattice are the pitch vector lengths
and the orientation with respect to each other, represented by the enclosed
angle ϕ.

In Fig. 7.12, first the wavenumbers of the lattice vectors Q1 and Q2 are
given as a function of the external field. The corresponding results are indi-
cated by closed and open symbols. Since for wide field ranges these values
coincide, colored lines are added as a guide to the eye. It is instructive to
begin the discussion with the isotropic case, K = 0, depicted by the dashed
black line and the dark blue symbols. Here, we distinguish between two
cases, which arise from the different restrictions on the pitch vector param-
eters: in the first case (dashed black line) the calculations are performed
for a hexagonal lattice configuration, i.e. |Q1| = |Q2| and ϕ1,2 = 120◦ de-
noting the enclosed angle between both vectors, while in the second case
(blue dots) no restrictions are applied, leaving both pitch vectors indepen-
dent of one another. Starting in the high field limit, the data sets show the
same slight increase of the wavenumbers under a decreasing external field.
At approximately B = 29 the slope exhibits a sudden change indicating an
increase of |Q1| and |Q2| and therefore an increase of the skymrion den-
sity. In general, in the vicinity of Bc2,0, the energy functional is minimized
by either spin helices with small cone angles (B < Bc2,0) or by a collinear
alignment of the spins with the given field direction (B ≥ Bc2,0). Due to the
construction of a two dimensional reciprocal lattice within the plane perpen-
dicular to the z axis, and a skyrmion lattice serving as default configuration,
the minimization algorithm however is not likely to relax into a nonmodu-
lated or one-dimensionally modulated state. As a consequence, at external
field values even higher than the critical transition field the formation of
a skyrmion lattice is still the result of the minimization routine. In order
to approach the energetically more favorable field-polarized state, however,
the pitch vector length is rather small and with this the distance between
the skyrmions rather larger. The magnetization configuration is therefore
mainly given by a fully aligned state. Traversing now the aforementioned
discontinuity at around B = 29 the skyrmion density starts to increase sig-
nificantly, while the volume fraction of the field-polarized state is decreasing.
It is evident that a parallel alignment of the magnetization with the external
field is now associated with higher energy costs, in contrast to the modulated
spin texture. Finally, for field values in the vicinity of B = 15 ≈ 0.5Bc2, the
wavenumbers stabilize and reach a value close to one. A further decrease of
the field strength below B = 6 reveals that the imposed restrictions on Q1

and Q2 lead to two different lattice structures. While in the first case, the
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Figure 7.12: Calculated pitch vector lengths |Q1| (closed symbols) and
|Q2| (open symbols) for various anisotropy values K as a function of applied
field B. Colored lines are given as a guide to the eye. The dashed black line
illustrates the results obtained in the isotropic case with the lattice fixed to a
hexagonal configuration. The remaining parameters are set to r0 = −1000,
τ = 0.88 and Ni = 1/3.

wavenumbers are decreasing continuously, the curve progressions of |Q1| and
|Q2| no longer coincide in the second case. This indicates that the deviation
from a hexagonal lattice structure is energetically more favorable. As a con-
sequence, the calculations result in an oblique distortion of the lattice and
finally in an elongation of the skyrmions, which are referred to as elongated
skyrmions. Interestingly, this deformation can be observed despite the lack
of the anisotropic crystal environment. Nevertheless, emphasis should be
put on the fact that the calculations are performed in the low-temperature
regime, far below the critical temperature Tc. Without the cubic mange-
tocrystalline anisotropy, the stabilization mechanism of the LTS phase, the
skyrmion lattice does not form the ground state of the system and is not
predicted to be resolved. For finite K values, a similar field dependence as
in the isotropic case is displayed. An increase of the anisotropy strength
leads on one hand to an extension of the eLTS phase and a shift of the
sudden change of the wavenumbers towards lower field values on the other
hand. The latter accompanies the decrease of the critical transition field
Bc2 for higher anisotropy strength as shown in Fig. 7.5. Note that, due to
the additional direction-dependent energy contribution, no restrictions are
applied to the pitch vector components in these calculations.

The second quantity, which characterizes the skyrmion lattice, is the
orientation of the pitch vectors with respect to each other and the crystallo-
graphic axes. In the following, the corresponding angles are denoted by ϕ1,2

and ϕi, with index i = {1, 2}. Here, angle ϕi relates to the x-axis and [100]
direction. The extracted field dependencies are illustrated in Fig. 7.13. The
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Figure 7.13: Calculated tilt angles ϕi of the pitch vectors Q1 (blue) and
Q2 (red) with respect to the [100] crystallographic direction as a function of
applied field B. The angle enclosed by both vectors ϕ1,2 is indicated by the
orange symbols. The remaining parameters are set to r0 = −1000, τ = 0.88,
Ni = 1/3 and K = 0.0004

blue, red and orange symbols are assigned to the parameters ϕ1, ϕ2 and ϕ1,2

respectively. Note, in the interest of clarity the discussion is limited to the
data obtained for an anisotropy strength of K = 0.0004. Starting again in
the high field limit, it is evident that the skyrmion lattice is of hexagonal
shape, since the enclosed angle amounts to ϕ1,2 = 120◦ and both vectors
show the same length, as elaborated before. Over the wide range down to
B = 9, ϕ1,2 exhibits a field-independent behavior. The same observation
holds for the orientation of the individual lattice vectors. Given the hexag-
onal configuration, the actual directions of the pitch vectors with respect to
the crystal structure are, however, not predefined by the energy terms taken
into account. As a consequence, the orientation of the skyrmion lattice is
degenerate and only depends on the default parameters of the initial mag-
netization configuration, fed into the minimization algorithm. For a fixed
direction of the skyrmion lattice a higher-order energy potential, which for
instance displays a sixfold symmetry, is required [Müh09; Eve12].

For the chosen anisotropy strength, the magnetization undergoes a phase
transition into the elongated skyrmion phase at a field value of B = 9, as
already elaborated in Fig. 7.12. The sudden change of the wavenumbers is
additionally accompanied by a reorientation of the individual pitch vectors
and a slight decrease of the angle enclosed by them. By diverging from
the rotationally symmetric configuration, the skyrmions are now subject to
the underlying crystal structure. Due to the extension of the skyrmions
along one direction, the in-plane component of the magnetization parallel
to this axis is increased. In order to reduce the arising energy costs, the
elongated skyrmions align along the crystallographic axes. This results in
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four energetically equal directions for a non-zero anisotropy strength K.
With the results obtained from the minimization protocol and the ap-

plication of the Fourier transform, the magnetic texture can be visualized
in real-space, in analogy to Fig. 7.6. In the following, 3D representations
of the skyrmion lattice, calculated at a moderate anisotropy strength of
K = 0.0002 and two different field values, are illustrated. Note that, due
to the symmetry along the field direction, the illustrations are limited to
the plane perpendicular to the latter, for reasons of simplicity. The visu-
alizations are comprised by a vectorial representation of the magnetization
configuration, indicated by arrows and a color gradient, which highlights
the corresponding out-of-plane component of the magnetization. The color
gradient, ranging from blue to red, represents a parallel and anti-parallel
alignment with respect to the external field direction. A vanishing z com-
ponent is encoded by a white color. With the magnetic field set to a value
of B = 15, the chiral magnet hosts the well-established hexagonal skyrmion
lattice, as given in Fig. 7.14. The localized windings, which are of Bloch
type due to the bulk DMI in Cu2OSeO3, are embedded in a ferromagnetic
background aligned along the external field. In contrast, the center spin of
each skyrmion is pointing in the opposite direction, as highlighted by the
red color.
A decrease of the field strength below a certain value, in this case B = 8,
leads to a finite difference in length of the pitch vectors and a slight distortion
of the enclosed angle, as anticipated before. This imbalance, which mainly
originates from the abrupt reduction of one wavenumber, is conversely re-
sulting in an increase of the helix period in real-space. The implication on
the magnetization configuration is depicted in Fig. 7.15, representing the
results obtained with the external field set to B = 5. Instead of a circu-
larly and rotationally symmetric arrangement of the spins, the lattice in
real-space is characterized by an elongation of the skyrmions along one of
the crystallographic easy axis of the system. Here, the orientation in the
illustration depends on the default parameters of the magnetization con-
figuration. In order to distinguish this specific phase from the hexagonal
lattice, it is also referred to as elongated low-temperature skyrmion phase,
as introduced before. In the limit of a vanishing pitch vector length, the
eLTS texture resembles a spin helix, aligned perpendicular with respect to
the external field.

In order to account for the excitation frequencies of the two dimension-
ally modulated states, the eigenvalue equation Eq. 6.30 with the mean field
configuration substituted by the previously determined results from the min-
imization protocol, will be evaluated. Since the main focus of this section
lies on the effects, which the cubic magnetocrystalline anisotropy imposes on
the resonance spectra of the topologically nontrivial states, only the respec-
tive anisotropy strength K and the external magnetic field remain the free
parameters of the theoretical model. The Ginzburg-Landau parameter, the
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Figure 7.14: 3D visualization of the skyrmion lattice, forming in the plane
perpendicular to the external field. The magnetization direction is repre-
sented by the arrows, while the color coding is highlighting the out-of-plane
component of the magnetization. Blue and red indicate a parallel and anti-
parallel alignment with respect to the magnetic field.

Figure 7.15: 3D visualization of the elongated skyrmion lattice, forming in
the plane perpendicular to the external field. The magnetization direction
is represented by the arrows, while the color coding is highlighting the out-
of-plane component of the magnetization. Blue and red indicate a parallel
and anti-parallel alignment with respect to the magnetic field.
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dipolar interaction strength and the demagnetization factors on the other
hand read r0 = −1000, τ = 0.88 and Ni = 1/3. Additionally, in accor-
dance with the measurement setup introduced before, the magnetization is
assumed to be subject to a spatially homogeneous driving field, if not stated
otherwise.

The field dependence of the resonance frequencies, shown in Fig. 7.16,
summarizes the results obtained from calculations with the anisotropy con-
stant set to K = 0, 0.0002 and 0.0004. The illustrations are composed in a
similar manner as in the 1D case by the generic microwave spectrum, given
by the gray symbols, and the spectral weight, which is encoded in the symbol
size, in order to highlight the modes accessible in a broad-band microwave
experiment. The direction-dependent coupling efficiency in regard of the
magnetic driving field, is highlighted by the employed color code. While
an out-of-plane sensitivity is depicted by blue symbols, an in-plane driving
field is indicated by the red colors. Here, the separation into red and dark
red allows to differentiate between the x and y component of the oscillating
field. For the frequency and field axis again νc2,0 and Bc2,,0, respectively,
are chosen as reference, with the transition field inferred from previous re-
sults in the one-dimensional reciprocal space. Note, the excitation spectra,
presented in the following, are illustrated for the whole field range covered
in the previous discussion. The area, in which the skyrmion lattice actually
minimizes the energy functional, however, is rather limited. In the interest
of clarity, the corresponding phase boundaries are therefore highlighted by
the gray shading.

In the top panel of Fig. 7.16, the field dependence of the excitation
frequencies, calculated in absence of the cubic anisotropy, is displayed. It
should be mentioned that, in this specific case a hexagonal lattice, i.e. |Q1| =
|Q2| and ϕ1,2 = 120◦, is preconditioned in order to emphasize the difference
between the high- and low-temperature skyrmion phase. In reminiscence
of previous results [Sch15], the microwave spectrum is dominated by three
resonance branches. Based on their distinct progression under an increasing
field and the additional sensitivity to the excitation geometry, these modes
are identified as the CCW, breathing and CW mode, sorted in an ascending
order regarding the respective frequency. Note, due to its small coupling
efficiency on one side and the finite symbol size of the excitation spectrum on
the other side, the clockwise mode is barely recognizable in this illustration.
Besides these prevailing modes, the skyrmion lattice hosts a multitude of
further resonance branches which do not couple to the driving field, based on
the lack of a dynamic macroscopic dipole moment. They are not expected to
be observed in broad-band microwave experiments and are therefore referred
to as dark modes, as mentioned above. Without the additional energy term,
at no time the skyrmion lattice does form the ground state of the system in
the low-temperature limit [Cha18]. The corresponding field range of energy
stability, indicated by the gray shading, is thus not present in the spectrum
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displayed.
Increasing the anisotropy strength to K = 0.0002 and lifting the re-

striction of the pitch vector parameters induces fundamental changes in the
resonance spectrum, as illustrated in Fig. 7.16(b). Originating from the
transition into an oblique lattice, indicated by the discontinuities at a field
value of around B = 0.25Bc2,,0, the microwave spectrum is clearly divided
into two distinct parts. In the high-field range, the field dependencies of
the resonance frequencies resemble the ones obtained in the isotropic case,
K = 0, to a great extent. While the resonance frequencies of the modes sen-
sitive to an in-plane driving field are increasing with field, the mode, which
is efficiently coupling to an out-of-plane ac-field, exhibits a negative slope.
With specific reference to the intersection point between the breathing and
the corresponding darker mode, however, the respective resonance branches
no longer cross each other, but reveal an anti-crossing or hybridization in-
stead, combined with a shift of the spectral weight towards the resonances
of the dark mode. The same effect, but less pronounced, can also be ob-
served for the clockwise and counterclockwise modes at B = 0.3Bc2,,0 and
B = 0.7Bc2,,0, respectively. The hybridization counterparts of these differ
from the one, interacting with the breathing mode. Interestingly, not every
mode crossing leads to repulsion of the resonance branches, which can be
seen, for instance, in the case of the counterclockwise and breathing mode.
It stands to reason that the mode-mode interaction is subject to a selection
rule mediated by the cubic anisotropy.

The second part of the spectrum, attributed to the elongated skyrmion
lattice phase, is also determined by three dominant resonance branches,
based on their finite spectral weight. The one lowest in frequency mono-
tonically decreases with decreasing field and is susceptible to an in-plane
ac-field, akin to the character of the counterclockwise mode of the hexago-
nal lattice. Besides a small offset in frequency, it continues the progression
of the latter. The spectral weight, however, decreases remarkably. The sec-
ond mode, on the contrary, reveals a finite response of the magnetization
dynamics to an out-of-plane driving field. Taking also the slight increase in
frequency under a decreasing field into account, it stands to reason that it
can be identified as the counterpart of the breathing mode in the oblique
lattice. Compared to the CCW mode, the transition into the eLTS phase
can be identified by the significant shift in frequency instead of a drop in
the coupling efficiency. Even though the third mode displays a similar field
dependence as the breathing mode, they, nevertheless, differ in the sensitiv-
ity with respect to the excitation geometry. The last mode namely is again
driven by an in-plane ac-field, which agrees with the character of the clock-
wise mode. Interestingly, due to the reduced symmetry of the elongated
skyrmions, the orientation of the oscillating field with respect to skyrmion
lattice plays an important role, regarding the coupling efficiency of the gy-
rational modes. While the first mode is mainly driven by an oscillating field
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along the y direction, the third mode is dominating under an oscillating
field along the x direction. Here, these axes correspond approximately to
the long and short axes of the skyrmions. A more detailed description will
be elaborated later on.

The most striking effect of an enhanced anisotropy strength (Fig. 7.16(c))
on the excitation spectrum is the increased hybridization gap size, most
clearly visible in the case of the breathing mode. Here, increasing K by a
factor of two likewise doubles the frequency difference between these two
interacting branches. This dependence conversely suggests that, by detect-
ing the hybridization gap experimentally, conclusions can be drawn on the
anisotropy strength. A detailed study, building up on these findings is pre-
sented in the subsequent chapter. In this, the evolution of the hybridization
gap as a function of temperature and with this anisotropy constant, is ad-
dressed from the experimental and theoretical side. Besides the interaction
strength, the spectrum reveals further minor changes. On the one hand,
with increasing K and consequently decreasing transition field Bc2,K the
general field range of the low-temperature skyrmion phase moves to lower
field values. On the other hand the boundary between the hexagonal and
oblique lattice, shifts slightly towards higher field values, which in turn ex-
tends the stable range of the eLTS phase. In addition to that, a change in the
anisotropy strength leads to an overall shift of the energies and excitations
frequencies, respectively of the resonance branches. Since this effect differs
between the individual modes, the counterclockwise mode approaches the
breathing mode, while the frequency difference with respect to the clockwise
mode increases. Finally, the emerging change of slope of the breathing mode
at a field value of around B = 0.65Bc2,,0, forms a local minimum in the case
of K = 0.0004.

As anticipated before in regard of the experimental data, the resonance
frequencies in the low-field limit were assigned to the breathing mode branch
of the eLTS phase instead of the helical/conical modes, based on the sen-
sitivity to an out-of-plane driving field and the number of cycling routines.
Interestingly, a skyrmion lattice does not form the ground state of the sys-
tem in this regime though. Add to that the fact that in the anisotropy
strength range considered the transition into an oblique lattice structure is
at no time energetically more favorable than the one-dimensionally modu-
lated states, as indicated by the gray shading in Fig. 7.16(b)-(c). This leads
to the assumption that based on the topological protection and the associ-
ated energy cost of the unwinding process the elongated skyrmion phase can
survive even in the low-field limit, but in a metastable configuration only.

Apart from the shift along the frequency axis, it stands to reason that
the cubic magnetocrystalline anisotropy also affects the general mode struc-
ture, as already indicated by the emergence of a mode-mode interaction. In
order to quantify this assumption, the time evolution of the dynamic mag-
netization, calculated for a fixed anisotropy strength K and field value B,
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Figure 7.16: Theoretically predicted field dependence of the resonance
frequencies for a spherical sample calculated for different anisotropy values
K. Field and frequency axes are normalized by Bc2,,0 and vintc2,0, respectively.
The spectral weight, which indicates the coupling efficiency to the driving
field, is represented by the symbol size. The corresponding colors reflect
an in-plane and out-of-plane driving field by red and blue. Additionally, a
distinction is made between the x (red) and y (dark red) component of the
oscillating field. The range in which the skyrmion lattice forms the ground
state is highlighted by the gray shading. The remaining parameters are set
to r0 = −1000, τ = 0.88 and Ni = 1/3.
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will be evaluated. Note, in the interest of simplicity the discussion is limited
to the dynamic out-of-plane component δMz(t), only. For the illustration of
the induced changes, first the time development of the spatial distribution
of δMz(t) is visualized for the isotropic case, K = 0. With the field set to
B = 0.4Bc2,0 the skyrmions are arranged in a hexagonal lattice structure.
The results, presented in Fig. 7.17, comprise the visualization of the counter-
clockwise, breathing and clockwise mode, and their respective hybridization
counterparts, similar to the ones shown in [Wai17]. In this reference a de-
tailed classification regarding their spatial structure of the first 16 skyrmion
lattice excitations can be found. The resonance modes discussed here are
arranged in an descending order regarding their excitation frequency. Here,
T corresponds to the respective time period. The color gradient is chosen
to match the previously employed setup, indicating a collinear alignment
by blue and an anti-parallel orientation with respect to the external field
by red. The color white reflects a vanishing out-of-plane component of the
dynamic magnetization. From the presented images it is evident that the
additional modes exhibit a similar nodal-like structure, characterized by a
alternating deviation out of the equilibrium position. Based on the number
of nodes, they are denoted as sextupole (6), octupole (8) and dectupole (10)
modes in the following. Concerning their evolution under time, all of the
modes discussed reveal a clockwise sense of rotation.

Introducing now the anisotropy term (K = 0.0002) in the energy func-
tional, imposes significant changes of the spatial distribution of δMz(t) as
collated in Fig. 7.18. Due to the hybridization mechanism, the presented
modes appear to be a superposition of the interacting modes, exhibiting
additionally the features of the hybridizing counterpart. This effect is most
clearly seen in the case of the breathing mode. In the isotropic case, at
certain times t = 0 and t = 2T/4 the structure of the dynamic z component
is given by a radial symmetric profile. The deviation from the equilibrium
position reaches its maximum values, visualized by the dark blue and red
color. Taking now also the anisotropy term into account in the theoretical
model, this symmetry is broken. The spatial distribution of δMz(t) reveals
an imprinted nodal structure akin to the pattern of the octupole mode. The
merging of the two modes is most evident at times t = T/4 and t = 3T/4.
While the breathing mode, in absence of the anisotropy, experiences a zero-
crossing at these times, the hybridization manifests itself in the appearance
of the nodal structure of the octupole mode in the snapshots, calculated
for a finite K value. A similar effect can also be observed in the remaining
illustrations.

Finally, in addition to the excitations of the hexagonal lattice presented
above, the character of the three dominant modes in the oblique skyrmion
lattice will be discussed. The visualization of the respective time evolution of
δMz(t), obtained for K = 0.0002 and B = 0.1Bc2,0, is displayed in Fig. 7.19.
Here, the modes are arranged in a descending order, concerning their reso-
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Figure 7.17: Calculated real-space images of the time evolution of the three
uniform skyrmion modes and their respective hybridization counterparts for
K = 0 and B = 0.4Bc2,0. The remaining parameters are set to r0 = −1000,
τ = 0.88 and Ni = 1/3. From top to bottom, the modes are identified
as the dectupole, clockwise (CW), octupole, breathing, counterclockwise
(CCW) and sextupole mode. T is the corresponding time period. The
quantity presented in this illustration is the z component of the dynamic
magnetization. A parallel alignment with respect to the external field is
indicated by blue, while an antiparallel orientation is given by red. Here,
the applied field is pointing out of the image plane.
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Figure 7.18: Calculated real-space images of the time evolution of the three
uniform skyrmion modes and their respective hybridization counterparts for
K = 0.0002 and B = 0.4Bc2,0. The remaining parameters are set to r0 =
−1000, τ = 0.88 andNi = 1/3. From top to bottom, the modes are identified
as the dectupole, clockwise (CW), octupole, breathing, counterclockwise
(CCW) and sextupole mode. T is the corresponding time period. The
quantity presented in this illustration is the z component of the dynamic
magnetization. A parallel alignment with respect to the external field is
indicated by blue, while an antiparallel orientation is given by red. Here,
the applied field is pointing out of the image plane.
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nance frequency. For reasons of clarity, besides the dynamic magnetization
component, also the skyrmion edges, inferred from the static magnetization
configuration, are depicted. They are given by the dashed black lines in the
individual snapshots. The first mode illustrated is the one exhibiting similar
characteristics, regarding the field dependence and sensitivity with respect
to the driving field direction, as the clockwise mode of the hexagonal lattice.
In addition to that, from the real-space images also a similar profile of the
spatial distribution of δMz(t) is visible. As depicted in Fig. 7.17 and already
discussed in [Wai17], the clockwise mode structure is divided into two rings
of opposite sign, which rotate around the center. Similar features can also be
observed in the case of elongated skyrmions in the top panel of Fig. 7.19 at
times t = 0 and t = 2T/4. A homogeneous excitation is, however, disturbed
by several nodes along the skyrmion edge. Taking also the remaining images,
calculated at times t = T/4 and t = 3T/4 into account, the sense of rotation
appears to be clockwise. This resonance branch is therefore identified as the
counterpart of the CW mode and referred to as CWeLTS in the following.
Comparing the time evolution of the spatial profile of the second mode with
the ones present in the hexagonal lattice, it is evident that it resembles the
one of the breathing mode. While at time t = 0, δMz(t) points mainly along
the external field direction, it reverses its sign at t = 2T/4, leading to an
alternating shrinking and expanding of the skyrmion core. Interestingly, at
times t = T/4 and t = 3T/4 also a nodal structure, as it could be observed
in the hybridizing breathing mode in Fig. 7.18, forms in center. In this case,
however, not an octupole but quadrupol structure is visible. A similar ob-
servation can be made between the individual skyrmions. The last mode,
which exhibits a finite spectral weight, is the one lowest in frequency shown
in the bottom panel of Fig. 7.19. Its resonant motion is highly reminiscent
of the CCW mode in the high-temperature skyrmion lattice, which is char-
acterized by only one ringlike structure. From the sequence of snapshots a
counterclockwise sense of rotation can be identified.

A more simplified insight into the mode characteristics is given by the
time dependence of the homogeneous magnetization δM0(t), extracted from
the respective eigenvector δM(t). In Fig. 7.20 the change of δM0(t) is il-
lustrated for the three modes discussed above. Here, the individual compo-
nents, x, y and z are depicted by red, green and blue colors. In the case of
the CWeLTS mode of the oblique skyrmion lattice, which is shown in the top
panel, it is evident that δM0(t) oscillates within the x− y plane in a clock-
wise manner, as could also be observed from the real-space illustration of the
excitation in Fig. 7.19. Due to the vanishing x component, the rotational
motion is, however, strongly elliptical. As a consequence the CWeLTS mode
is therefore almost linearly polarized along the y direction. In contrast to
that, the in-plane components of δM0(t) in the case of the CCWeLTS mode
(bottom panel) are almost equal in amplitude. The resonant excitation is
only slightly diverging from a circular motion and with this from a circular
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Figure 7.19: Calculated real-space images of the time evolution of the
three dominant skyrmion modes of the oblique lattice for K = 0.0002 and
B = 0.1Bc2,0. The remaining parameters are set to r0 = −1000, τ =
0.88 and Ni = 1/3. From top to bottom, the modes are referred to as
CWeLTS, BreathingeLTS, CCWeLTS mode based on their resonant motion. T
is the corresponding time period. The quantity presented in this illustration
is the z component of the dynamic magnetization. A parallel alignment
with respect to the external field is indicated by blue, while an antiparallel
orientation is given by red. Here, the applied field is pointing out of the
image plane.

polarization. As can be inferred from the signs of the individual compo-
nents, the sense of rotation is counterclockwise. The time evolution shown
for the second mode, the one with a breathing like character, is limited to
the z or out-of-plane direction only. In accordance with the counterpart in
the high-temperature skyrmion phase it oscillates along the external field
direction and is consequently linearly polarized. Interestingly, besides these
three dominant modes, also higher order modes in the elongated skyrmion
lattice show a finite change of the homogeneous magnetization in contrast
to the ones in the hexagonal lattice [Wai17]. This finite macroscopic mag-
netic dipole moment is required for the resonance modes to be accessible in
microwave experiments. They are therefore more likely to be excited and
subsequently detected.

The consequence of these distinct oscillating motions is a different sen-
sitivity of the coupling efficiency in regard to the driving field direction
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Figure 7.20: Time evolution of the homogeneous magnetization δM0(t) of
the three dominant skyrmion modes of the oblique lattice forK = 0.0002 and
B = 0.1Bc2,0. The remaining parameters are set to r0 = −1000, τ = 0.88
and Ni = 1/3. The modes are arranged in an descending order, concerning
their resonance frequency. T is the corresponding time period.

[Gar17]. For the individual modes its is maximized if the ac-field concurs
with the respective polarization direction, i.e. out-of-plane excitation ge-
ometry in the case of the breathing mode and in-plane excitation geometry
for the gyrational modes. Note, a linearly polarized ac-field is given by the
superposition of a left- and right-circularly polarized driving field. Therefore
both the clockwise and counterclockwise modes are excited simultaneously
by a linearly polarized in-plane field, in the triangular skyrmion lattice. In
previous studies [Sta17a], however, it could be experimentally and theoret-
ically observed that the coupling efficiency changes also by a reorientation
of the sample with respect to the CPW and ac-field direction, respectively.
The requirement for these findings is a finite difference in demagnetization
factors, which are assigned to the axes perpendicular to the external field.
This imbalance leads to a different ellipticity of the CW and CCW modes
and consequently different spectral weight, compared to the uniform case
Nx = Ny. It should be mentioned that these findings are not just limited
to the skyrmion modes, but can also be observed in the ±Q modes of the
helical/conical phase as reported in the given reference. The peculiarity of
the additional modes in the oblique skyrmion lattice is the emergence of
elliptically polarized magnetic moment, despite a uniform sample shape, as
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shown above. In Fig. 7.21(a) the resulting angle dependence of the cou-
pling efficiency of the two modes, susceptible to an in-plane driving field is
displayed. The presented results are obtained for an anisotropy strength of
K = 0.0002 and a field value of approximately B = 0.1Bc2,0. Here, ϕ is
defined as the angle, which is enclosed by the x axis, which coincides with
the [100]-direction, and the driving field direction. The values of the spec-
tral weight are ranging between 0 and 1 and reflect either no or a maximum
excitation of the respective mode. Note that, for illustration purpose, the
maximum value of the clockwise mode is chosen as reference. Compared to
the Kittel mode, the coupling to the ac-field is only half as efficient. For the
high-frequency mode, given by the red symbols, a strong correlation between
the coupling efficiency and the field orientation is clearly visible. While with
the ac-field applied approximately along the x direction the spectral weight
vanishes, a maximum excitation of this mode is achieved by rotating the
driving field by around 90◦, which corresponds roughly to the y axis. This
behavior originates from the almost linearly polarized oscillating motion of
the homogeneous magnetization in the case of the CWeLTS mode. In the case
of the low-frequency mode, displayed by the dark red symbols, the maximum
response of the magnetization dynamics is significantly smaller. In contrast
to the first mode, however, the amplitude does not vary as strongly under
the evolution of the rotation angle but remains finite. The excitation of this
mode is therefore predicted to be observed in the experiments independent
of the orientation of the driving field, due to the almost circular motion of
δM0(t), as shown in Fig. 7.20. Compared to the clockwise mode, the max-
imum amplitude is achieved in this case by the application of the ac-field
along the x and no longer the y axis. In order to relate the orientation of
the elongated skyrmions to the coordinate system, the real-space visualiza-
tion of the respective static magnetization configuration is illustrated on the
right hand side, in Fig. 7.21(b). Given by the established color gradient is
the z component of the magnetization. The x and y directions are indicated
by the black arrows, the large axis of the polarization ellipses P cw and P ccw

by the cyan and yellow arrows, and the ac-field hac direction is depicted by
the green one. It should be mentioned that the directions of maximum am-
plitude in both cases do not exactly concur with the individual polarization
directions or crystallographic [100] and [010] axes, which might arise from
the slightly asymmetric shape and arrangement of the skyrmions. Since
the angle mismatch is, however, rather small, the easy axes of the crystal
structure and with this the orientation of the elongated skyrmions might be
identified. In conclusion, while the coupling efficiency of the low-frequency
mode does not exhibit a strong angle-dependence, the high-frequency mode
can be selectively addressed by applying the driving field in certain direc-
tions. Reversely it follows that from an angle-dependent measurement of
the spectral weight, the orientation of the elongated skyrmion lattice might
be determined, as long as further anisotropy terms do not play an impor-
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tant role. It should be mentioned that, however, the standard broadband
microwave spectroscopy technique as described in Chap. 3 is not suitable
for these experiments since the sample is usually attached to the coplanar
waveguide. Consequently, the requirement of a decoupled crystallographic
and driving field direction is not met and a different measurement technique
has to be employed. One option might be to structure multiple CPWs on
top of the sample, which are rotated with respect to each other and therefore
the crystal axes. Nevertheless, in this case it has to be considered that due
to the finite size of the antenna the sample is subject to an inhomogeneous
driving field, exciting spin waves rather than the FMR mode.

In order to summarize the observations obtained from the experiments
and the numerical model, the respective excitation spectra are collated in
Fig. 7.22. The compilation comprises the data shown on the one hand in
Fig. 7.1 and Fig. 7.8(d) and in Fig. 7.2 and Fig. 7.16 on the other hand.
Note, in accordance with [Cha18] an anisotropy value of K = 0.0004 is
chosen for the numerical results. The field axes are normalized by the crit-
ical field strength Hc2 and the frequency axes by the corresponding value
fc2 = f(Hc2). Despite the additional energy contribution in form of the
cubic magnetocrystalline anisotropy, the spectra given in Fig. 7.22(a) - (b)
display strong similarities to previous results in the high-temperature regime
[Sch15]. Originating from the abrupt distortion from the preceding collinear
alignment with the external field and with this the formation of the tilted
conical phase, both spectra, however, exhibit a change of slope and discon-
tinuities just below Hc2. As suggested by the numerical results, the latter
are attributed to the appearance of anti-crossings with higher-order reso-
nance branches in the one-dimensionally modulated state. The formation
of standing spin waves, due to the low magnetic damping, does not allow a
precise extraction of the resonance positions though, leaving the hybridiza-
tions unresolved and therefore unconfirmed. Approaching the low magnetic
field regime, the difference in frequency between the resonance branches is
predicted to decrease, resulting in a degeneracy at B = 0mT in the case
of Ni = 1/3. The finite gap in the experimental data reveals, however, a
deviation from the initially assumed cube or spherical shape of the sample
investigated. It should be mentioned that the spectral weight, as displayed
in Fig. 7.22(b), is obtained from the projection onto an in-plane oscillating
magnetic field. Even though the tilted conical modes might also couple to
an out-of-plane ac-field, the corresponding data are omitted based on the
low excitation efficiency.

In contrast, the establishment of different excitation geometries allows to
selectively address the resonance modes of the skyrmion lattice, as indicated
in the last two panels, Fig. 7.22(c) - (d), by the differently colored symbols.
With the driving field aligned within the skyrmion plane, the dynamic re-
sponse of the magnetization is attributed to the gyrational clockwise and
counterclockwise modes. Due to lack of spectral weight of the former, the
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Figure 7.21: (a) Spectral weight of the CWeLTS (red) and CCWeLTS (dark
red) modes as a function of driving field direction ϕ. (b) Visualization
of the z component of the static magnetization, aligned parallel (blue) or
antiparallel (red) with respect to the external field. The arrows given by
the black, cyan and green colors indicate the x and y, polarization and
driving field direction hac. The parameters are set to r0 = −1000, τ = 0.88,
Ni = 1/3, K = 0.0002 and B = Bc2,0.

discussion, however, focuses on the CCW (cyan symbols) mode only. In
both, experimental and theoretical data, the field dependence of the CCW
mode is highly reminiscent of the isotropic case in the HTS phase. In accor-
dance to the latter, the resonance frequencies continuously decrease with a
likewise decreasing magnetic field. Conversely, the resonances of the breath-
ing mode (orange symbols), dominant under an out-of-plane driving field,
are demonstrated to steadily increase as a function of applied field in the
high-temperature skyrmion lattice. Subject to the effect of the magnetic
anisotropy in the low-temperature limit, the progression of the breathing
mode is predicted to deviate from the described field dependence though,
disclosing several anomalies. Just below Hc2 a local minimum is observed,
followed by two discrete gaps at H = 0.6Hc2 and H = 0.4Hc2 in regard of
the calculated spectrum. The first one arises from an anti-crossing with a
dark octupole mode, while the second one at lower magnetic field indicates
a distortion of the hexagonal lattice into an energetically more favorable
elongated configuration. A visualization of the magnetic texture for the
described states is given in the insets Fig. 7.22(i)-(ii). In the recorded mi-
crowave spectra also three distinct resonance branches are resolved, which
bear a high level of resemblance to the ones calculated numerically. While
the two in the high-field limit are unambiguously ascribed to the breath-
ing mode, the resonance branch at lower fields might also originate from
the helical/conical modes, which are expected to form the ground state in
this field range. For this reason further experiments are employed, which
however confirmed that the observed signatures cannot be attributed to the
dynamic response of the spin spirals. These findings therefore suggest that,
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at low magnetic fields, the unwinding into a topologically trivial state is not
realized, but indeed the survival of a metastable skyrmion phase with an
elongated lattice structure. Note, the shift of the CCW and breathing mode
with respect to each other might arise from the discrepancy between the
sample shapes, investigated in the experiments and calculations, and from
the anisotropy strength chosen in the theoretical model.
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Figure 7.22: Comparison between the experimentally (a), (c) and the-
oretically (b), (d) obtained microwave spectra. Field and frequency axes
are normalized by their corresponding values obtained at the critical transi-
tion field Hc2. Gray symbols indicate the resonances modes in the field-
polarized (closed) and conical and tilted conical phase (open). In the
skyrmion lattice phase two excitation branches are extracted, which are
attributed to the counterclockwise (cyan symbols) and breathing (orange
symbols) modes. (i),(ii) Visualization of the calculated magnetization con-
figuration, displaying the triangular and elongated skyrmion lattice. The
color shading indicates the individual phases. The field-polarized, tilted
conical, helical/conical, hexagonal skyrmion lattice and oblique skyrmion
lattice phases are reflected by white, gray, light green, light red and red
colors. Figure taken from [Aqe21].
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7.2 Investigation of the Skyrmion Resonance Mode
Hybridization

The results presented above reveal that, besides mediating the stabilization
mechanism for skyrmions at lowest temperatures [Cha18], the cubic lattice
environment induces also significant changes in the respective magnetiza-
tion dynamics. The most prominent one, is the anomaly in the breathing
mode, which originates from the hybridization with a dark octupole mode.
Since the previous measurements are, however, only obtained at one temper-
ature, the evolution of these additional features as a function of anisotropy
strength remains unresolved. Conversely, the questions arise if the obtained
mode interactions, characterized by the frequency gap size, allow to draw
conclusions on the anisotropy strength and if further anisotropy terms are
also contributing and are required to be taken into consideration. In the
following section these open questions are addressed from the experimental
and theoretical side, by means of microwave spectroscopy experiments and
numerical calculation of the excitation spectra, as established before. Parts
of the numerical results presented in this section are published in [Tak21;
Lee21].

7.2.1 Experimental Results

The experimental findings presented in this section are collated from two
independent microwave spectroscopy experiments. The first contribution,
published in [Lee21], comprises the results from measurements, which are
performed on two bulk crystals of Cu2OSeO3 by Oscar Lee and Christian
Back. Here, two sample shapes, namely a cuboid and a platelet, are investi-
gated. In both cases the sample dimensions range in the millimeter regime,
with a size of 1.6 × 1.6 × 1.0 mm3 and 1.9 × 1.4 × 0.3 mm3, respectively.
In addition to that, the crystals are cut such that the surface normals coin-
cide with the corresponding [001]-directions. In order to populate the low-
temperature skyrmion phase the magnetic field is applied out of plane, i.e.
along the thickness direction during the frequency sweeps. In accordance
with the previous experiments, the samples are placed face-down on the
coplanar waveguide. Since its dimensions are similar to the ones of the sam-
ples and therefore also in the millimeter regime, the generated driving field,
acting on the magnetization, is assumed to be homogeneous. In the second
experiment, microwave spectroscopy is conducted by Rina Takagi ([Tak21])
on a lamella shaped sample, which is cut out of a Cu2OSeO3 crystal, by
focused ion beam etching (FIB). This process allows, in general, to reduce
the sample dimensions to the micrometer regime, but more importantly to
thin down the sample and therefore reduce the dimension ratios significantly.
Here, for the lamella investigated, the thickness amounts to 1 µm, which is
one to two orders of magnitude smaller than its length and width. Also

100



7.2. Investigation of the Skyrmion Resonance Mode Hybridization

in this experiment the static field is applied along the thickness direction,
which corresponds to a [001]-direction of the crystal lattice, as the remain-
ing surface normals. In contrast to the measurements on the bulk crystals,
the lamella shaped sample is placed on two microwave antennae, which are
structured on a silicon substrate. Due to the micrometer sized signal and
ground lines, the main excitation of these lies at a finite wave number. As a
consequence, the magnetization is no longer driven homogeneously, leading
to the excitation of spin waves instead.

It is important to mention that, technically speaking, in these two exper-
iments two different skyrmion phases are investigated. While for the bulk
crystals at low temperatures the second, independent skyrmion phase is
populated, in the case of the lamella sample the high-temperature skyrmion
lattice is extended down to lowest temperatures by a rapid cooling process.
Despite the different routes through the phase diagram, the effects which
the cubic magnetocrystalline anisotropy induces on the dynamic response
of the magnetization however remain the same. It allows therefore to di-
rectly compare the obtained experimental results and additionally to draw
conclusions on the effects arising from the demagnetization energy.

In both experiments a VNA-based spectroscopy setup, as introduced in
Sec. 3.2 is employed. Since the measurement routines, but also the data pro-
cessing accord, only the ones of the first experiment on the bulk samples are
presented in the following. For a detailed description of the measurement
procedure on the lamella sample we refer to [Tak21] and previous publica-
tions [Sek16; Sek17; Sek20]. The investigation of the bulk crystals builds
upon the findings of the broadband microwave spectroscopy experiments
on the low-temperature skyrmion phase, presented in the preceding section.
For the detection of the dynamic response of the skyrmion lattice it was
shown that first the respective volume fraction is required to be increased
by the established field-cycling protocol. In order to execute this step, the
external field, which is ramped up to the reference field B = 0.3T before
each measurement procedure, is reduced to a value, which corresponds to
the skyrmion pocket. Within the respective field range, the external field is
then increased and decreased continuously n times. If not stated otherwise,
the number of field-cycles, performed during the measurements, amounts to
n = 400. From this point on, the scattering parameter Sij , with i, j = {1, 2},
is recorded as a function of frequency, either under an increasing or decreas-
ing field, which is again referred to as Hn

incr or H
n
decr. Finally, both scans are

combined to generate a complete excitation spectrum. Note that in order to
reduce the spurious background arising from the setup itself, the individual
frequency sweeps are normalized with respect to the data set recorded at
the reference field. The application of the normalization technique is indi-
cated by the absolute values notation |S11| and |S21| in the following. Since
both crystals are significantly larger than the signal line of the CPW, the
magnetization dynamics are simultaneous driven by the in- and out-of-plane
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component of the oscillating magnetic field. Consequently, the combination
of the two excitation geometries allows to excite and detect both the gyra-
tional and breathing modes. The adjustment of the sample position with
respect to the CPW during the experiment is therefore not required.

In order to elaborate now, how an enhanced anisotropy strength affects
the magnetization dynamics, the measurement protocol described before
is executed for a wide temperature range. The microwave spectra obtained
for both sample shapes (platelet(a) and cuboid(b)) are contrasted in the top
panel of Fig. 7.23. The employed color gradient, ranging from white to black,
indicates no or a high microwave absorption due to the resonant motion of
the magnetization within the resonance modes. As aforementioned, the
quantity visualized here is the normalized scattering parameter |S(f)|.

Focusing first on the results obtained at 4K in the case of the platelet
sample, reveals similar signatures as displayed in Fig. 7.2. At high mag-
netic fields, which corresponds to the field-polarized phase, the magneti-
zation dynamics are determined by the Kittel mode, characterized by the
linear decrease of the resonance frequencies under a likewise decreasing field
strength. Due to the formation of standing spin waves mediated through
the low magnetic damping, several replica of the Kittel modes are resolved
additionally. Here, the resonance positions of the branch with the highest
amplitude, which are obtained from Lorentzian fits, are highlighted by the
open gray symbols for illustration purposes. Since, however, the main fo-
cus of this study lies on the excitation modes of the skyrmion lattice phase,
these resonance branches are not further investigated. For a wide field range,
slightly below the transition field Hc2, the excitation modes reminiscent of
the LTS lattice emerge. The most evident signature is the repulsion of the
breathing and octupole mode, which is visualized by the open red symbols.
Besides these, also the counterclockwise mode, depicted by the open pur-
ple symbols, but also a faint indication of the clockwise mode, is evident.
Note, also in the skyrmion lattice the resonance branches are accompanied
by replica based on the excitation of standing spin waves. Reducing the
magnetic field further leads to an unwinding of the topologically non-trivial
texture and the formation of the conical spin spirals. Its individual reso-
nance branches are, however, hidden by the overall blurry absorption signal,
but are identified by the distinct evolution as a function of field strength.

Despite the increase of the temperature and thereby consequent decrease
of the anisotropy strength the overall appearance of the microwave spectra
remains unaffected. Until a temperature of 20K, besides the resonant ex-
citations of the field-polarized and conical phase, also the signatures of the
gyrational modes and the hybridization between the breathing and octupole
modes are still clearly visible. Add to that the fact that also the respective
phase boundaries and frequencies appear to be barely affected. In contrast
to these findings, it is however obvious that the hybridization gap is decreas-
ing significantly when increasing the temperature. At a value of 22K a faint
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Figure 7.23: Evolution of microwave spectra as a function of temperature
obtained for a (a) platelet and (b) cuboid sample shape. The color gradient
represents the normalized microwave absorption intensity |S11| and |S21|, re-
spectively. For the population of the low-temperature skyrmion phase during
these measurements the external field is applied along the crystallographic
[001]-direction. In order to highlight the field-dependence of the breathing
and CCW mode, the respective resonance frequencies are extracted from
Lorentzian fits and depicted by open red and purple symbols, respectively.
(c) Phase boundaries of the low-temperature skyrmion pocket for both sam-
ple shapes, extracted from the excitation spectra. Figure taken from [Lee21]
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signal from the clockwise and counterclockwise modes is still detectable,
while the breathing mode is masked by the prevailing conical modes. The
features of the mode-mode interaction are no longer visible. Finally, at
around 24K the signature arising from the LTS phase vanishes suddenly
and the microwave spectra exhibit only the Kittel and conical modes. Here,
the small discontinuity at around 100mT is attributed to the onset of the
tilted conical phase.

On the right hand side of Fig. 7.23, the measurement results obtained
on the cuboid sample are illustrated. The main difference, apart from the
overall smaller signal-to-noise ratio, which might arise due to a rougher sam-
ple surface, is the position of the resonance branches of the skyrmion lattice
with respect to the field and frequency axes. Compared to the platelet,
first the hybridization range of the breathing and octupole mode is shifted
towards smaller field values. It is no longer masked by the conical modes
and can be therefore clearly distinguished from these. In addition to that,
the intersection point of the breathing and counterclockwise mode can also
be found at lower magnetic fields. It is evident that despite the crossing of
their respective resonance branches, these modes do not interact with each
other, i.e. a hybridization cannot be observed. Interestingly, in the case of
the cuboid sample, the metastable skyrmion lattice phase can be extended
to significantly higher temperature values. Even at 40K faint remnants of
the skyrmion excitations can still be detected. Finally at a temperature
of 45K these features disappear and the field dependence of the resonance
frequencies is given by the universal spectrum of a chiral magnet.

By means of the presented microwave spectra, the evolution of the phase
boundaries of the LTS phase of both samples is extracted as a function of
temperature. They are displayed in Fig. 7.23(c). Here, the black shading
corresponds to the platelet-shaped sample and the blue one is obtained for
the cuboid. It can be seen that the width of the respective field range
amounts approximately to the same value, but is shifted to higher values
in the case of the platelet sample. In contrast, as discussed above, the
temperature range in which the skyrmion lattice survives is larger for a
cuboid-shaped sample. The extracted ratio between the two samples is
given by a factor of approximately 1.5.

Despite the significant difference in the dimension ratios the microwave
spectroscopy experiments on the quenched skyrmion lattice state in the
lamella sample result in similar excitation spectra. We therefore refrain
from a renewed description of the general appearance of these but guide the
focus to an additional anomaly, not resolved in the previous frequency scans.
With specific reference to the evolution of the CCWmode as a function of the
external field a discontinuity is observed in the microwave spectra recorded
on the lamella sample. In the numerical results given in Fig. 7.16 such an
anomaly in the CCW resonances was already observed and identified to orig-
inate from the hybridization with a sextupol mode. For the assumed sample
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shape in these calculations, Ni = 1/3, it is predicted to emerge very close to
the transition field Hc2, though. As a consequence, this additional feature is
masked by the prevailing excitation of the tilted conical and field-polarized
modes in the experiments. By reducing the thickness and therefore increas-
ing the contribution from the demagnetizing energy this crossing is shifted
towards lower field values, as will be illustrated below, and therefore allowed
to be detected. In Fig. 7.24 an expanded view around both hybridization
regions of the microwave spectrum performed at 20K is shown. While on
the left hand side, Fig. 7.24(a), the interaction between the breathing and
octupole mode is depicted, the right hand side, Fig. 7.24(b), highlights the
crossing of the counterclockwise and sextupole mode. For illustration pur-
pose, a different color code is chose in the spectra, with the corresponding
dark colors indicating a strong absorption, induced by the dynamic response
of the excited modes. The black triangular symbols, added to the graphs,
are the extracted resonance positions from Lorentzian fits of the individual
frequency sweeps as shown in Fig. 7.24(c)-(d). Here, the data are displayed
by the black open circles, with the corresponding fits given by the solid lines.
The field dependence of the resonance frequencies, obtained in the case of
the breathing-octupole hybridization, agrees well with the results presented
above. A clear bending of the breathing mode branch is resolved with a gap
size of several hundreds of MHz. Conversely, the interaction between the
CCW and sextupole modes is considerably less pronounced, as predicted by
the numerical results. Instead of two distinct peaks, the hybridization with
a second mode is revealed by an emerging shoulder in the Lorentzian profile
of the frequency scans. A gap between the two resonance branches is barely
apparent. Nevertheless, these features serve as an indication of the existence
of a second dark skyrmion lattice mode, which is, without the hybridization
mechanism mediated by the cubic anisotropy, not accessible in microwave
spectroscopy experiments.

The quantity to be used for the characterization of the mode interaction
strength is the minimum gap size between the respective resonance branches.
By applying Lorentzian fits as shown in Fig. 7.24(c), the frequency difference
as a function of external field B, ∆f(B) = f1(B)− f2(B), with mode index
1 and 2 is extracted. From this, the minimum gap size is obtained by g
= min{∆f(B)}. This step is performed for all samples and temperatures
and finally provides a temperature evolution of g. The collated results are
discussed, in combination with the numerical determined gap size, later on.

7.2.2 Theoretical Results

In order to support the experimental findings from the theoretical side, we
draw on the Ginzburg-Landau model, including first only the magnetocrys-
talline anisotropy as additional energy term, if not stated otherwise. By
construction of the parameters, only r0 is assumed to be temperature de-
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Figure 7.24: Expanded view of the (a) breathing-octupole and (b) CCW-
sextupole mode hybridization regions of the microwave spectrum obtained
at 20K on the lamella sample. The color gradients represent the normal-
ized microwave absorption intensity |∆S11|. For the population of the low-
temperature skyrmion phase during these measurements the external field
is applied along the crystallographic [001] direction. In order to highlight
the field dependence of the resonance branches, the respective excitation
frequencies are depicted by triangular symbols. They are extracted from
Lorentzian fits of the individual frequency sweeps, as illustrated in (c) and
(d). Here, the data are given by open symbols, while the fitting curves are
shown by the solid lines. Figure taken from [Tak21]

106



7.2. Investigation of the Skyrmion Resonance Mode Hybridization

pendent, at the beginning. However, taking also the anisotropy into account,
which likewise exhibits a strong temperature dependence, this assumption
no longer holds. This results in a two-dimensional parameter space, regard-
ing the temperature, which requires a workaround to limit the analysis to
only one variable. By minimizing the energy functional, we obtain that
the saturation magnetization Ms is directly proportional to the coefficient
r0. Additionally, Ms can be connected to the internal critical field by the
internal susceptibility χint

con in the conical phase by,

Ms = H int
c2,0χ

int
con, (7.2)

with χint
con ≈ 1.76 and H int

c2,0 given in absence of the cubic anisotropy [Sch15].
In the limit of small K, the contribution of the anisotropy to the internal
critical field can be neglected and hence the approximation H int

c2,K ≈ H int
c2,0 is

justified. With this, Eq. 7.2 is assumed to be valid also for finite K values.
By choosing now the normalization protocol for the resonance frequencies,
as already anticipated,

νintc2,0 =
gµ0µB

2πℏ
H int

c2,0 (7.3)

one obtains an estimate for the physical units, by extracting g, Ms andH int
c2,0,

respectively, from the measurements. The coefficient r0 is therefore reduced
to a scaling factor and the temperature dependence can quantitatively be
reproduced by only adapting the anisotropy strength K. In the following
r0 = −1000 is chosen to match the previously obtained results.

For the translation between experiments and numerics, a conversion fac-
tor for the anisotropy still has to be determined. From the theoretical anal-
ysis in [Cha18] it could be observed, that K̃th

c ≈ 0.0001 marks the thresh-
old for the stabilization of a low-temperature skyrmion lattice. It should
be noted, that in order to avoid confusion the tilde notation was reintro-
duced for dimensionless variables. On the other hand, experimental findings
[Cha18] suggest that this value corresponds to,

K̃exp
c =

Kσ,c

µ0H int
c2,0Ms

≈ 0.07 (7.4)

with anisotropy constant Kσ,c given in units of energy density. In combina-
tion with the results obtained in [Hal18], which comprises the temperature
dependence of K, our numerical data are therefore expected to provide an
appropriate estimate of the resonance spectra for the investigated temper-
atures. In order to determine the hybridization gap from the theoretical
side, we calculate the microwave excitation spectra for a wide anisotropy
range, in analogy to Fig. 7.16. Since the discussion is limited only to the
skyrmion resonances, the effect on the topologically trivial states will not be
taken into consideration in this discussion. Anticipated by the experimental
data, the sample shape and with this the demagnetizing energy, is playing
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a non-negligible role in regard to the position of the mode branches with
respect to each other and potentially also the interaction strength between
those. Therefore, the analysis comprises two cases, including a spherical
and lamella geometry, with the respective demagnetization factors given by
Ni = 1/3 and Nx = 0.06, Ny = 0.03, Nz = 0.91.

In Fig. 7.25 we compare the microwave spectra of both systems (sphere:
(a), lamella (b)), calculated at a moderate anisotropy strength ofK = 0.0002
and dipolar strength of τ = 0.88. As already introduced before, the spec-
tra comprise the general field dependence of the resonance frequencies (gray
dots) and the respective coupling efficiency to the oscillating magnetic field,
implemented by the dot size. For the normalization of the field axes the re-
spective critical field values Bc2,K are chosen. The discussion focuses mainly
on the well-established gyrational and breathing modes, but will also in-
clude higher order modes on account of the hybridization mechanism. It
should be mentioned, that like the breathing and clockwise mode also the
CW mode exhibits a finite spectral weight, which however is comparatively
small and therefore masked by the chosen dot size of the spectrum. The
color code, representing the direction of the driving field, is defined in the
following. While blue is attributed to a parallel alignment along the surface
normal, red corresponds to a driving field orientated within the skyrmion
lattice plane. For reasons of clarity, orange circles are introduced to high-
light the weak CW - dectupole and CCW - sextupole mode interactions.
As expected from previous results [Sch15], both data sets bear a high level
of resemblance. The contribution from the demagnetizing energy obviously
does also not effect the generic appearance of the universal spectrum at low
temperatures. A clear difference, however, is the larger spacing in frequency
between the breathing and counterclockwise modes. The calculations reveal
that, the thinner the sample, the higher and the lower the positions of the
breathing and counterclockwise mode, respectively, in the frequency domain.
We therefore observe that the intersection point between those branches is
moving towards the critical transition field Bc2,K and consequently out of
the energetically stable field range, in accordance with the measurements
presented in Fig. 7.23. In contrast, the shift of the counterclockwise mode
to lower frequencies, leads to a likewise shift of the hybridization region
with the sextupole mode to lower magnetic field strengths. This allows to
detect the said anti-crossing in the case of the lamella sample, as observed
in Fig. 7.24.

Interestingly, as can be seen from the spectra, not every mode crossing
leads to a repulsion induced by the magnetocrystalline anisotropy. This sug-
gests that the latter imposes a symmetry selection rule for the hybridization
mechanism. In order to ascertain the allowed mode interactions, we cal-
culate the inner product ⟨vα, vβ⟩ of the normalized eigenvectors, given by
the eigenvalue equation Eq. 6.30. This quantity describes the projection
of the eigenvectors onto each other and consequently the degree of linear
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7.2. Investigation of the Skyrmion Resonance Mode Hybridization

Figure 7.25: Theoretically calculated excitation spectra as a function of
B||[001] for a spherical (a) and lamella (b) shaped sample (gray symbols).
The coupling efficiency to the oscillating magnetic field is reflected by the
size of the colored symbols. Here, blue corresponds to the out-of-plane and
red to the in-plane component of the latter. Due to their small interaction
strength, orange circles were added to highlight the CW - dectupol and
CCW - sextupol mode anti-crossing. The magnetocrystalline anisotropy
strength is fixed to a value of K = 0.0002. The remaining parameters are
set to r0 = −1000 and τ = 0.88. For the normalization of the field axes the
respective transition fields Bc2,K are chosen.
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dependence. A finite value of the inner product is therefore an indication
of the lifting of the initial orthogonality of the eigenvectors and a corre-
sponding mode interaction. In Fig. 7.26 the inner product of the clockwise
(orange), counterclockwise (red) and breathing (blue) mode, calculated from
the data presented in Fig. 7.25(b) is illustrated. It is evident by comparing
both figures that all curves reach a maximum value in the given field range,
which corresponds to the position of the minimum gap size in the excitation
spectrum of the lamella. Conversely, the amplitudes of the inner products
appear not to be connected to the size of the gaps.

For a more comprehensive analysis, the determination of the inner prod-
uct is extended to cover the range of modes given in the spectrum. With
the selection rule presumably explained by symmetry arguments, the real-
space configuration of the dynamic magnetization, shown in Fig. 7.17, will
be first characterized regarding its number of symmetry axes m, similar to
[Wai17]. In the interest of completeness, for the additional four modes we
refer to [Wai17]. In the following, the modes are numbered in an ascend-
ing order, i.e. mode number 1 corresponds to the one lowest in frequency.
Here, the reference point is chosen to be at B/Bc2,K = 0.4 in Fig. 7.25(a).
Deducing the number of symmetry axes is straightforward for the resonance
modes with the indicators 1, 2, 3, 4, 7, and 10 which is correlated to the
number of nodes. Due to its rotational symmetry, the breathing mode (5)
is a special case. In this context, m is assigned to infinity. The remain-
ing modes 6, 8 and 9 stand out based on their more complex appearance.
Conversely, they are divided into two ringlike structures, which do not nec-
essarily exhibit the same pattern of motion. The number of symmetry axes
might therefore be dependent on time and the rings need to be character-
ized individually. Since for those modes, the inner and outer rings have the
same symmetry properties, only one indicator m is attributed to them. A
summary of this categorization is given in Table 7.1. In addition to that,
the polarization of the change of the homogeneous magnetization δM0 is
extracted for the individual modes in absence of the cubic anisotropy. In
the case of the well studied gyrational and breathing modes, δM0 rotates
in the plane perpendicular with respect to the external field and oscillates
along the external field direction, respectively. For the higher-order excita-
tions, the polarization is determined by the symmetry of the mode profile
and does not necessarily concur with the overall rotational sense. Due to
a symmetric real-space distribution of δM(t), the respective modes do not
exhibit a rotating dipole moment. The polarization is therefore oscillating
along the z direction, which is given by the static field.

The inner product obtained for the considered modes at again a field
value of B/Bc2,K = 0.4 is now presented in Table 7.2. It should be men-
tioned, that only a distinction between a finite and zero inner product is
made, indicated by 1 and 0, respectively. Despite its clear dependence, the
depicted results remain unchanged under increasing or decreasing the exter-
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Figure 7.26: Calculated inner product ⟨vα, vβ⟩ of the interacting resonance
branches, as a function of field. The eigenmodes are extracted from the
resonance spectrum Fig. 7.25(b), obtained for the lamella sample. The data
points display the CCW - sextupole (red), CW - dectupole (orange) and BR
- octupole (blue) mode hybridization.

Table 7.1: Number of symmetry axis m, polarization and character of the
time evolution of the respective resonance modes.

Mode Symmetry axes m Polarization Character

1 2 linear-oop quadrupole cw

2 3 elliptical-ip sextupole cw

3 1 elliptical-ip CCW

4 4 linear-oop octupole cw

5 ∞ linear-oop BR

6 1 elliptical-ip CW

7 5 elliptical-ip dectupole cw

8 4 linear-oop quadrupole cw∗
9 3 elliptical-ip sextupole cw/ccw

10 4 linear-oop quadrupole ccw
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nal field. From this table it is evident that the breathing mode, even though
it is crossing the CW, dectupole, CCW and sextupole branches, does not
hybridize with the listed modes. The same observation holds for the CW
and octupole mode. In general, it can be concluded that from the symmetry
arguments the magnetocrystalline anisotropy imposes a selection rule, which
allows hybridizations between states with either only odd or only even m
and additionally with rotational symmetry (m = ∞) and even m. From the
point of view of the polarization, which is connected to the symmetry of
the mode structure, only modes which are polarized in the same plane, are
allowed to interact with each other.

As already mentioned in regard of the experiments, we exploit the hy-
bridization gap as a characteristic of the interaction strength. Applying the
same definition introduced before, the gap size g is collected for all three
hybridizations from the numerically calculated spectra. The results, given
in units of νintc2,0 are summarized in Fig. 7.27 as a function of anisotropy
strength K. The red and orange symbols represent the gap size of the
CCW-sextupole and CW-dectupole coupling, whereas blue symbols indi-
cate the one observed for the breathing-octupole hybridization. Here, open
symbols correspond to the platelet, while closed symbols are extracted from
the excitation spectra obtained for a spherical sample. From these curves,
we observe that on the one hand the interaction strength strongly depends
on the modes hybridizing and scales linearly with the anisotropy strength.
In order to serve as a guide to the eye, linear fits to the results of the sphere,
illustrated by the solid lines, are added to the data. On the other hand
it is evident that the demagnetization provides only a minor contribution,
suggesting the anisotropy to be the main cause for the anti-crossing.

For a comprehensive analysis of the temperature evolution, the gap size
is extracted from the various microwave spectra obtained in both experi-
ments and summarized in Fig. 7.28. The data points displayed in red (open
symbols: platelet, closed symbols: cube) correspond to the bulk crystals,
whereas the orange symbols represent the results from the lamella sample.
The additional dashed red line serves as a guide to the eye. It should be men-
tioned that the intersection point with the abscissa is set to coincide with the
observations reported in [Hal18]. There, the anisotropy is observed to vanish
at a value of around 40K. Due to the vanishing coupling strength, the hy-
bridizations of the clockwise and counterclockwise modes are not taken into
consideration in this discussion. Despite originating from differently shaped
samples, the obtained data sets reveal a very similar temperature depen-
dence. In all three cases, the gap size increases with decreasing temperature
stemming from the growth of the anisotropy strength. Additionally, also
the finite momentum of the excited magnetization in the case of the lamella
experiment, which results from the spatial distribution of the driving field,
appears to have no significant effect on these results. For the comparison
with the theoretically estimated gap size, the extracted values of Fig. 7.27
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Table 7.2: Scalar product of the eigenvectors δM of the first ten excitation
modes of the skyrmion lattice. For simplicity a finite value is given by 1 while
a vanishing scalar product is indicated by 0.

Mode 1 2 3 (CCW) 4 5 (BR) 6 (CW) 7 8 9 10

1 1 0 0 1 1 0 0 1 0 1

2 0 1 1 0 0 1 1 0 1 0

3 (CCW) 0 1 1 0 0 1 1 0 1 0

4 1 0 0 1 1 0 0 1 0 1

5 (BR) 1 0 0 1 1 0 0 1 0 1

6 (CW) 0 1 1 0 0 1 1 0 1 0

7 0 1 1 0 0 1 1 0 1 0

8 1 0 0 1 1 0 0 1 0 1

9 0 1 1 0 0 1 1 0 1 0

10 1 0 0 1 1 0 0 1 0 1

are converted to physical units as described above. Note, a strong anisotropy
is associated with a low temperature value. For simplicity, the maximum
value of the experimentally determined Ms is substituted, leaving the linear
dependence as shown in Fig. 7.27 unchanged. The results are illustrated
by the dashed blue line, reminiscent of the course provided by experimental
data. The theoretically predicted gap size, nevertheless, deviates by a factor
of around 2-3. Since the error arising from the unit conversion is assumed to
be small compared to the one stated above, this result suggests that further
energy terms might have to be included in the discussion. For this rea-
son, the effect of the exchange anisotropy, which was already introduced in
Eq. 6.4, on the magnetization dynamics will be investigated in the following.

Before arriving at the point of evaluating the gap size, it is necessary first
to perform again the minimization routine of the energy density, now with
the additional energy contribution included. By adding this further tem-
perature dependent variable, however, the dimension of the free parameter
space is increased by one. This requires, in principle a systematic approach of
calculating the mean-field configuration for all various constellations of these
parameters. Given that they ultimately can not be uniquely determined by
the experiment though, we drawn upon the preceding results in order to
simplify the analysis in the following. From the previous measurement it
was concluded that the cubic magnetocrystalline anisotropy is identified as
the main stabilization mechanism of the low-temperature skyrmion phase.
In addition to that, in combination with the microwave spectroscopy data,
presented above, the numerical treatment reveals it to be also the main
contribution to the observed hybridization mechanism. Based on these find-
ings, we invoke the measurements of K in [Hal18], which also provide an
estimate of the anisotropy strength required in the theoretical model, and
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Figure 7.27: Theoretically predicted hybridization gap sizes as a func-
tion of anisotropy strength K in units of νintc2,0. The data points are ex-
tracted from microwave spectra calculated in the case of a spherical (closed
symbols) and lamella (open symbols) shaped sample. Illustrated are the
breathing-octupole mode (blue), clockwise-dectupole mode (orange) and
counterclockwise-sextupole mode (red) hybridization gaps. Colored lines are
added as guides to the eyes. The remaining parameters are set to r0 = −1000
and τ = 0.88.

fix the parameter therefore to a moderate value of K = 0.0002. With also
the Ginzburg-Landau parameter, the dipolar strength and the demagneti-
zation factors set to r0 = −1000, τ = 0.88 and Ni = 1/3 only the external
field B and exchange anisotropy strength C enter the model as variables. In
analogy to the previous numerical treatment, the mean-field configuration
is determined as a function of the external field for various C values. Note,
since the sign of the exchange anisotropy constant is not predefined, this
step is executed for both, positive and negative values. Finally, by means of
substituting this newly obtained magnetization configuration, the resonance
frequencies are calculated by evaluating the eigenvalue equation Eq. 6.30 for
the given range of parameters B and C.

In Fig. 7.29 two microwave spectra, determined in presence of the ex-
change anisotropy term, are depicted. In order to highlight the importance
of the sign of C, the chosen amplitude of the constant is kept the same while
the sign is reversed: in the top panel (a) the exchange anisotropy constant is
set to C = 0.2, whereas the results presented in the bottom panel (b) are cal-
culated for C = −0.2. In both cases the cubic magnetocrystalline anisotropy
parameter is fixed to K = 0.0002, as motivated above. For illustration pur-
poses of the changes induced by the additional anisotropy term, the spectra
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Figure 7.28: Comparison between the experimentally and numerically ex-
tracted gap sizes g of the breathing-octupole mode hybridization as a func-
tion of temperature. The results obtained from the experiments on the bulk
and lamella samples are given by the red (cube: closed, platelet: open) and
orange circles, respectively. The dashed red line serves as a guide to the
eye. The dashed blue line represents the values obtained from the theoreti-
cal model, converted to physical units. Note that, the intersection point of
both lines with the abscissa is chosen to be consistent with the observations
reported in [Hal18].

should be compared to the data shown Fig. 7.25(a). The color code and the
symbol size convention is chosen in regard with the above mentioned exci-
tation spectrum. Additionally, for the normalization of the external field
again the respective critical field values Bc2,K,C are chosen. Note that also
the latter are affected by the additional energy contribution as indicated by
the extended index. The most striking difference between these two exci-
tation spectra for this amplitude of C is the sign dependent enlargement
or reduction of the breathing-octupole mode hybridization gap size, with
respect to the case, calculated in absence of the exchange anisotropy. While
in the top panel, the gap size reaches a value which is almost double the
one obtained in Fig. 7.25(a) and therefore equal to the one observed in the
experiments, in the bottom panel the anti-crossing in principle does not oc-
cur. Only the small discontinuity in the spectral weight of the breathing
mode at the intersection point, reveals a potential interaction with the oc-
tupole mode. Besides these findings, also deviations of the CW - dectupol
mode interaction strength in both spectra can be observed. In contrast to
the spectrum determined in the C = 0 case, here, the gap size increases
strongly, independently of the sign of the exchange anisotropy. For reasons
of clarity, orange circles are introduced to highlight the CW - dectupol mode
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interaction. While in the top panel an increase of a factor of approximately
5 is extracted, in the bottom panel g is enhanced by a factor of around 4.5.
Due to the vanishing spectral weight, however, this mode interaction is pre-
dicted not to be accessible in microwave spectroscopy experiments. Another
interesting observation is the fact that, at least in the frequency range of in-
terest, no further hybridizations are induced by the additional energy term,
but only the ones mediated by the cubic magnetocrystalline anisotropy get
more or less pronounced.

A continuous increase or decrease of the gap size as a function of |C| in
the case of a positive or negative sign, as the results above might indicate, is
actually not observed after evaluating the remaining spectra. In Fig. 7.30 the
respective amplitude dependence of the extracted gap sizes are contrasted.
It should be mentioned that, here, the discussion is limited to the hybridiza-
tion gap between the breathing and octupole mode only. In the interest of
clarity, the results, which are obtained without the additional contribution
from the exchange anisotropy are also added to the graph. They are illus-
trated by the blue symbols and given as a function of K, with the bottom
x axis, representing the corresponding scale. The red (C > 0) and orange
(C < 0) data points are obtained from the microwave spectra, which are
calculated for a fixed cubic magnetocrystalline anisotropy constant set to
K = 0.0002, but various exchange anisotropy strengths. They are depicted
as a function of |C| with the respective x axis given by the top one. Due
to the finite K value in these calculations, the gap sizes at |C| = 0 coincide
with the last data point of the data set given in blue, as indicated by the
dashed black line. Interestingly, independent of the sign of C, after exceed-
ing certain exchange anisotropy strengths the gap sizes amount to a value
2-3 times larger than the one obtained for only one additional energy term.
However, the curve progressions taken for reaching this value differ signifi-
cantly. While for a positive sign of C the linear increase of g continues, the
competition between both anisotropies leads first to a decrease of the gap
size, in the case of C < 0. Reaching a value of around C = −0.2 the ex-
change anisotropy prevails, which finally causes an continuous increase of the
gap size again. These observations originate from the fact that depending
on the sign of C either the [100] or [111] crystal lattice directions minimize
the energy contribution arising from the exchange anisotropy, as elaborated
above. Considering the linear increase of g in the experiments, it stands to
reason that, provided the exchange anisotropy is indeed strong enough to
influence the gap size, the sign of the respective prefactor C is suggested to
be positive. While a negative constant C would first lead to a decrease of
g, a sudden sign change would result in a discontinuity in the temperature
evolution. Both features are not resolved in the experimentally determined
gap size collated in Fig. 7.28. To summarize, the inclusion of only the mag-
netocrystalline anisotropy is not sufficient to reproduce the magnitude of
the gap size obtained from the experiments. By means of implementing
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Figure 7.29: Theoretically calculated excitation spectra as a function
of B||[001] for a spherically shaped sample, with the magnetocrystalline
anisotropy set to K = 0.0002 and exchange anisotropy to C = 0.2 (a) and
C = −0.2 (b) (gray symbols). The coupling efficiency to the oscillating
magnetic field is reflected by the size of the colored symbols. Here, blue
corresponds to the out-of-plane and red to the in-plane component of the
latter. The remaining parameters are set to r0 = −1000 and τ = 0.88. For
the normalization of the field axes the respective transition fields Bc2,K,C are
chosen.
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the exchange anisotropy in the numerical model, the discrepancy between
measurements and theory allows to be reduced, but the emergence and the
respective strength of C remains to be verified. In addition to that, further
anisotropy terms arise due to the cubic environment of the crystal lattice
and might need to be taken into account for a comprehensive analysis.

Figure 7.30: Theoretically predicted hybridization gap size of the
breathing-octupole mode interaction as a function of anisotropy strength
K and C, respectively, in units of νintc2,0. The data points are extracted from
microwave spectra calculated in the case of a spherically shaped sample,
with the remaining parameters set to r0 = −1000 and τ = 0.88. Note,
two case are distinguished in the following. Given by the blue symbols are
the previously discussed results (Fig. 7.27), which are obtained in absence
of the exchange anisotropy. Here, g is shown as a function of K with the
respective x axis given at the bottom. In the case of the remaining two
data sets, depicted by red (C > 0) and orange (C < 0) symbols, the cubic
magnetocrystalline anisotropy strength is fixed to K = 0.0002 in the calcu-
lations and g is displayed as a function of exchange anisotropy strength C.
The respective x axis is given at the top. Colored lines are added as guide
to the eyes.
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7.3 Angle-Resolved Microwave Broadband Spec-
troscopy

A well-established technique for verifying the existence of anisotropy con-
tributions and quantifying the corresponding strengths, comprises the sam-
pling of the energy landscape in terms of the orientation-dependent reso-
nance condition. In these experiments the magnetization is excited using
an ac-magnetic field, while the direction of the static magnetic field is ro-
tated in a controlled manner around predefined with respect to the reference
frame. These are usually chosen to coincide with the lattice structure, in or-
der to simplify the subsequent analytic treatment. As a consequence of the
reorientation of the external field, the effective field and the resulting equi-
librium configuration of the magnetization are varied. It therefore precesses
at different resonance frequencies, reflecting the angle-dependence of the un-
derlying anisotropic energy landscape. Conclusions are finally drawn on the
individual energy terms, by comparing the obtained results to the theoreti-
cally predicted resonance frequencies, which in certain cases can be derived
analytically. This measurement protocol can also be utilized for studying he-
limagnets, like the bulk crystal Cu2OSeO3, provided the magnetic field and
temperature parameters are chosen to match the non-modulated spin state,
e.g. field-polarized phase. The aim of the following chapter is to elaborate
remaining open questions from preceding studies in regard of undetermined
anisotropy contributions present in the chiral magnet Cu2OSeO3. In the first
part, the focus lies on the investigation of the field-polarized phase. With
the magnetization fully aligned, however, anisotropy terms given by a gradi-
ent representation like the previously discussed exchange anisotropy, vanish
and consequently do no contribute to the angle-dependence of the resonance
position. Since anisotropies are known to determine also the transition field
from the conical into the field-polarized phase [Sch15], the second part of
this chapter comprises the study of the critical field value Bc2 as a function
of angle and temperature. In the interest of clarity, first the theoretical
treatment of these quantities will be presented. It comprises the analytical
derivation of the respective equations and the subsequent comparison to the
numerically obtained results. These derived equations are finally applied to
the excitation spectra resolved in the microwave spectroscopy experiments,
in the second part.

7.3.1 Derivation of the angle-dependent FMR condition

In order to support the experimental and numerical findings, the dependence
of the resonance frequencies on the magnetic field direction with respect
to the sample and crystallographic axis will be derived analytically. The
calculations to be performed will follow the protocol of solving the lossless
Landau-Lifshitz equation of motion Eq. 2.1 given in Chap. 2. Assuming the
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magnetization to form ferromagnetic order aligned parallel to the externally
applied magnetic field and Ms to be constant, the energy density functional
is determined by

F = τMT (ϕD, 0)NT −1(ϕD, 0)M −K
∑
i

M4
i −BM (7.5)

only, with demagnetization energy, cubic magnetocrystalline anisotropy and
Zeeman interaction. As anticipated before, gradient terms are not included
in the discussion due to the spatially uniform alignment of the magnetiza-
tion. The prefactors of the individual energy terms are chosen to match
the dimensionless units notation, introduced in Chap. 6. For the compar-
ison to the experimental data, the equations will be finally converted to
physical dimensions. The direction dependence of the resonance condition
originates from the orientation of the magnetization with respect to the
crystallographic axes on the one hand and the principle axes of the sample
on the other hand. Here, the [100]-axes of the lattice are aligned with the
laboratory coordinate system given by the êx, êy êz unit vectors, while the
principle axes of the sample are rotated around the [001] or z direction by
means of the rotation matrix T ,

T (ϕ, θ) =

cosϕ cos θ −sinϕ cosϕ sin θ
sinϕ cos θ cosϕ sinϕ sin θ
−sin θ 0 cos θ

 (7.6)

and angle ϕD. Here, the notation −1 indicates the inverse of the rotation
matrix T . In general, anisotropic energy contributions counteract a parallel
alignment of the magnetization with the external field, provided the latter
is not applied along one of the corresponding easy axes. Since, however, the
actual deviation from the collinear alignment with the magnetic field and
the resulting frequency difference is negligible, as discussed in the appendix
Appendix B, the assumptions made are justified.

By taking the derivative of the free energy, the effective field is calculated
by Beff = − δF

δM . Inserting the ansatz for the time-dependent magnetization
vector, M = M s+ δM , and expanding up to the first order in the dynamic
magnetization component results in the following effective fields,

B0
eff =

−Bx − 4KM3
x

−By − 4KM3
y

−Bz − 4KM3
z


+

τ(Mx(N
+ +N− cos 2ϕD) +MyN

− sin 2ϕD)
τ(My(N

+ −N− cos 2ϕD) +MxN
− sin 2ϕD)

2τMzNz

 ,

(7.7)
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B1
eff =

−12KM2
xδMx + τ ((N+ +N− cos 2ϕD) δMx +N−δMy sin 2ϕD)

−12KM2
y δMy + τ ((N+ −N− cos 2ϕD) δMy +N−δMx sin 2ϕD)

−12KM2
z δMz + 2τNzδMz


(7.8)

with indices 0 and 1 indicating the order of the dynamic magnetization com-
ponent δM and notation N+ = Nx +Ny, N

− = Nx −Ny. The integration
of these in the reduced Landau-Lifshitz equation given in Eq. 2.7 leads to
the matrix,

W ′ = (W ′
1,W ′

2,W ′
3) (7.9)

which is composed by the three column vectors,

W ′
1 =

 iω + τMzN
− sin 2ϕD

−Bz + 4K
(
3M2

xMz −M3
z

)
− τMz (N

+ − 2Nz +N− cos 2ϕD)
By − 4K

(
3M2

xMy −M3
y

)
+ 2τN− (My cos 2ϕD −Mx sin 2ϕD)


(7.10)

W ′
2 =

 Bz − 4K
(
3M2

yMz −M3
z

)
+ τMz (N

+ − 2Nz −N− cos 2ϕD)

iω − τMzN
− sin 2ϕD

−Bx + 4K
(
3MxM

2
y −M3

x

)
+ 2τN− (Mx cos 2ϕD + 2My sin 2ϕD)


(7.11)

W ′
3 =

−By + 4K
(
3MyM

2
z −M3

y

)
Bx − 4K

(
3MxM

2
z −M3

x

)
iω


+

 τ (My (N
+ − 2Nz −N− cos 2ϕD) +MxN

− sin 2ϕD)
−τ (Mx (N

− − 2Nz +N− cos 2ϕD) +MyN
− sin 2ϕD)

0

. (7.12)

The resonance frequencies are calculated by the determinant of W ′, which
equates to zero, as derived in Eq. 2.10.

In order to obtain the angle-dependence of the resonance condition, the
magnetization- and field-components are transformed into a spherical coor-
dinate representation, reading

M = Ms (sin θ cosϕ, sin θ sinϕ, cos θ)
T (7.13)

B = B0 (sin θ cosϕ, sin θ sinϕ, cos θ)
T, (7.14)

with polar and azimuthal angles θ and ϕ. In the interest of clarity, the
corresponding coordinate system is illustrated in Fig. 7.31. As anticipated
before, the lab frame axes coincide with the crystallographic directions, i.e.
êx||[100], êy||[010] and êz||[001], which are given by the black arrows. The
direction of the magnetization, characterized now by θ and ϕ, is indicated
by the orange arrow. Based on the assumption that both magnetization and
external field are collinear, the latter is omitted in the illustration. In the
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following, the focus of the analysis is limited to a rotation of the magnetic
field within the plane spanned by either the [100]- and [010]-directions or
[001]- and [110]-directions. Since the former is aligned parallel to the CPW
in the experiments described beneath, a rotation within this plane will be
referred to as ”in-plane”, while a rotation within the [001]-[110] plane will be
referred to as ”out-of-plane” rotation. The corresponding sense of rotation
is highlighted by the dashed red and dashed blue line.

For θ = π
2 and consequently a rotation confined to the [100]-[010] plane

the predicted resonance frequencies are given by,

ν = γ
√
B1 +B2 +B3 (7.15)

with the individual components

B1 = B2
0 + 3B0KM3

0 + 4
(
KM3

0

)2 −B0τM0

(
N+ − 2Nz

)
+ 2τ2M2

0

(
N−)2

B2 = −τM0N
− (12KM3

0 + 3B0 − 2τM0

(
N+ − 2Nz

))
cos 2ϕ cos 2ϕD

+
(
3B0 − 2M0

(
N+ − 2Nz

)
τ
)
sin 2ϕ sin 2ϕD

B3 = KM3
0

(
12KM3

0 + 5B0 − 4τM0

(
N+ − 2Nz

))
cos 4ϕ.

(7.16)
This result represents a superposition of a twofold and fourfold symmetry,
originating from the demagnetization and anisotropy energy, respectively.
In the limit of a vanishing anisotropy strength, K = 0, the above given field
components are reduced to,

B1 = (B0 + 2τM0(Ny −Nx))(B0 + 2τM0(Nz −Nx))

B2 = −τM0 (Nx −Ny) (3B0 − 2M0 (Nx +Ny − 2Nz) τ) (cos 2 (ϕ− ϕD)− 1)

B3 = 0.
(7.17)

Furthermore, in the case of a parallel alignment of the external field and one
of the principal axes of the sample, for instance the x axis, i.e. ϕ = ϕD = 0,
the above equations reduce to the representation of the well-known Kittel
formula [Kit48],

ν = γ

√(
B0 + 2τM0(Ny −Nx)

)(
B0 + 2τM0(Nz −Nx)

)
(7.18)

On the other hand, assuming the sample to be of a symmetric shape with
respect to the rotation plane, Nx = Ny holds and the spatial dependence,
arising from the demagnetization energy vanishes. Its contribution is re-
duced to a frequency offset, given by the difference Nx −Nz. The obtained
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Figure 7.31: Schematic of the coordinate system. The laboratory coordi-
nate system spanned by the unit vectors êx, êy and êz is aligned with the
crystallographic axes [100], [010] and [001], which are indicated by the black
arrows. Given by the orange arrow, is the magnetization direction, defined
by the angles θ and ϕ. The rotation of the external field will be limited to
the planes spanned by the [100]- and [010]- directions and the [001]- and
[110]-directions in the analytical model. The respective sense of rotation is
visualized by the dashed red and blue lines.

resonance condition is therefore composed by,

B1 =
(
B0 + 4KM3

0

)2
B2 = −2M0(Nx −Nz)τ(B0 + 4KM3

0 cos 4ϕ)

B3 = +KM3
0

(
12KM3

0 + 5B0

)
(cos 4ϕ− 1)

(7.19)

and only governed by a four fold symmetry. For a spherical or also cube-like
sample, Nx = Nz, the second component B2 = 0 vanishes.

In order to visualize the derived equations, the resonance frequency given
as a function of angle is illustrated in Fig. 7.32(a), (c) for the two cases of
a spherical (Ni = 1/3) and cuboid (Nx = 0.25, Ny = 0.35, Nz = 0.4) shaped
sample. As specified before, the polar angle is set to θ = π

2 , which confines
the rotation to the [100]-[010] plane. The figures are both composed of the
numerical results, generated by the Mathematica code as described above
and the analytic results obtained from the derived equations. The individual
contributions are indicated by the symbols and dashed lines, respectively.
The calculations are performed for a fixed temperature and field value, set
to r0 = −1000 and B = 2Bc2

2 and various anisotropy strengths K. The

2 The used critical field value Bc2 complies with the one obtained for a spherical sample.
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values used for the calculations are K = 0, K = 0.00005 and K = 0.0002,
reflected by the cyan, light and dark blue coloring. Note, the case K = 0 is
omitted in Fig. 7.32(a), since the resonance frequency does not exhibit an
angle-dependence and remains constant. As predicted by equation Eq. 7.19,
for a spherical sample and therefore in absence of the demagnetization con-
tribution, the angle-dependence of the resonance frequencies is determined
by a fourfold symmetry only, with offset and amplitude of the oscillations in-
creasing with increasingK value. Diverging from a symmetric sample shape,
the resonance condition is given by a superposition of a two- and fourfold
symmetry, as illustrated in Fig. 7.32(c). In both figures it is evident that the
analytical model diverges from the numerical results for certain field con-
figurations. These discrepancies arise from the fact that the magnetization
orientation deviates from a parallel alignment with respect to the external
field, as anticipated before. A more elaborate description is presented in
Appendix B. Since the frequency mismatch is, however, rather small, the
assumptions made hold and the derived equation is applicable.

In the limit of small K, a series expansion of equation Eq. 7.15 up to
first order in K results in

ν = γ

(√
B1 +B2 +

B3

2
√
B1 +B2

)
(7.20)

with

B1 = (B0 + 2τM0(Ny −Nx))(B0 + 2τM0(Nz −Nx))

B2 = −τM0 (Nx −Ny) (3B0 − 2M0 (Nx +Ny − 2Nz) τ) (cos 2 (ϕ− ϕD)− 1)

B3 = KM3
0 (3(B0 − 4M0(Nx −Ny)τ cos 2ϕ cos 2ϕD)

+ (5B0 − 4M0(Nx +Ny − 2Nz)τ) cos 4ϕ).
(7.21)

Applying again the external field along one of the [100]-directions, ϕ = π/2,
and assuming the principal axes of the sample to coincide, ϕD = 0, the
resonance condition is written in the form

ν =γ

( √
(B0 + 2τM0(Nx −Ny))(B0 + 2τM0(Nz −Ny))

+4KM3
0

(B0 + τM0(Nx +Nz − 2Ny))√
(B0 + 2τM0(Nx −Ny))(B0 + 2τM0(Nz −Ny))

). (7.22)

As presented in Appendix C, this expression can be simplified to

ν = γ

(√
(B0 + 2τM0(Nx −Ny))(B0 + 2τM0(Nz −Ny)) + 4KM3

0

)
,

(7.23)
which reflects the sum of the Kittel mode and a term linear inK, weighted by
the saturation magnetization M0. This equation and the results, extracted
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from the numerical calculations for the sample shapes discussed above, are
plotted in Fig. 7.32(b),(d) as a function of K. It can be seen that both the
analytical model and the numerical data are in a good agreement.

For the analysis of the experimental data, the dimensionless parameters
given by the equations derived above need to be converted into physical
units. Following the notation introduced in Chap. 6, the corresponding
resonance condition reads

ω = µ0γ
√
H1 +H2 +H3 (7.24)

with the individual components defined as

H1 = H2
0 + 3H0

K

µ0Ms
+ 4

(
K

µ0Ms

)2

− 1

2
H0Ms

(
N+ − 2Nz

)
+

1

2
M2

s

(
N−)2

H2 = −1

2
MsN

−
(
12

K

µ0Ms
+ 3H0 −Ms

(
N+ − 2Nz

))
cos 2ϕ cos 2ϕD

+
(
3H0 −Ms

(
N+ − 2Nz

))
sin 2ϕ sin 2ϕD

H3 =
K

µ0Ms

(
12

K

µ0Ms
+ 5H0 − 2Ms

(
N+ − 2Nz

))
cos 4ϕ.

(7.25)

7.3.2 Derivation of Bc2 (I)

For the determination of the field boundary between the conical and field-
polarized phase, the free energy Eq. 6.4 is minimized with respect to the
magnetization configuration similar to the approach given in [Wai17]. As-
suming the spin texture to form a single domain helix in the mean-field limit,
the ansatz used in the following calculations is parameterized by

M(r) = M0ê3 +A cos(Q · r)ê1 +A sin(Q · r)ê2 (7.26)

with the pitch vector Q = Q (sin θ cosϕ, sin θ sinϕ, cos θ)T, (Q||ê3), and the
orthonormal right-handed basis ê1 × ê2 = ê3. In addition to that, in order
to derive Bc2 analytically, the pitch vector is assumed to be parallel to
the external field, Q||B, and distortions of the helix configuration arising
from the cubic anisotropy to be negligible. It should be mentioned that
due to its explicit spatial dependence, the magnetocrystalline anisotropy
contribution is evaluated over one helix period 2π/Q. In contrast to that,
only the static magnetization componentM0 is taken into account in the case
of the demagnetizing energy, since local dipole fields average out [Wai17].
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Figure 7.32: (a)-(c) Resonance frequency ν as a function of external field
direction ϕ in the case of a spherical (top panel) and cuboid (bottom panel)
sample shape, normalized with respect to νintc2,0. Given by the symbols are
the numerical data, obtained for anisotropy values set to K = 0 (cyan)
K = 0.00005 (light blue) and K = 0.0002 (dark blue). The corresponding
analytical results, following Eq. 7.15, are illustrated by the dashed black
lines. (b)-(d) Resonance frequency ν as a function of anisotropy strength
K with the external field applied along the x direction, normalized with
respect to νintc2,0. While the numerical data is represented by the symbols,
the analytical approximation Eq. 7.23 is given by the dashed black lines.
The dipolar strength, Ginzburg-Landau parameter and field strength are
set to τ = 0.88, r0 = −1000 and B = 2Bc2 = 76.

In-plane rotation
Inserting the magnetization configuration Eq. 7.26 into Eq. 6.4 and mini-
mizing with respect to the pitch vector length Q and modulation amplitude
A yields

Q → 1 (7.27)

A → (2
√
8M2

0 − 3KM2
0 (1− cos 4ϕ) + 4t+ 2)√

3K(7 + cos 4ϕ)− 32
. (7.28)

In the last step the results of Eq. 7.27 is already substituted. Note that, in
accordance with [Eve12; Wai17] the notation t = r0/(JQ

2)−1 is introduced.
In the limit of A = 0, which marks the transition into the field-polarized
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state, the uniform magnetization component is given by

M0 →
√
2
√
−1− 2t√

8− 3K(1− cos 4ϕ)
. (7.29)

Minimizing the energy functional with respect to M0 and solving this equa-
tion for the external field strength B with the results obtained above, leads
to

Bc2 =

√
−1

2
− t

(
B1 +B2 +B3 −B4

)
√
8− 3K(1− cos 4ϕ)

3 , (7.30)

which is composed by

B1 = 4(3Kt+ 4)− 2(3K − 8)(Nx +Ny)τ

B2 = (16− 3K)(Nx −Ny)τ cos 2ϕ

B3 = 2K(8 + 10t+ 3(Nx +Ny)τ) cos 4ϕ

B4 = 3K(Nx −Ny) τ cos 6ϕ

. (7.31)

In absence of the magnetocrystalline anisotropy, the transition field is re-
duced to the following expression

Bc2 =
1

2

√
−1− 2t

(
1 + (Nx +Ny)τ − (Nx −Ny)τ cos 2ϕ

)
. (7.32)

Applying the field along one of the principal axes of the sample, here ϕ = 0
(x axis), yields

Bc2 = ξ(1 +Nxχ) (7.33)

with τ = χ/2 and ξ = 1
2

√
−1− 2t, which corresponds to homogeneous mag-

netization component in the limit of negligible K. This equation recovers
the results from previous publications [Sch15; Wai17]. It should be men-
tioned that M0 deviates slightly from the preceding studies on account of
a different prefactor convention in the energy functional. Taking also the
cubic anisotropy into consideration in the given field configuration, ϕ = 0,
Bc2 is written in the form

Bc2 =
1

2

√
−1− 2t

(
1 + 2Nxτ +K(1 + 2t)

)
=

1

2

√
−1− 2t

(
1 + 2Nxτ − 4K(

1

2

√
−1− 2t)2

)
= ξ(1 +Nxχ)− 4Kξ3,

(7.34)

which represents Eq. 7.33 extended by a term linear in K.
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Out-of-plane rotation
In the case of a rotation within the [001]-[110] plane, ϕ = π/4, the helix
amplitude reads

A →
2
√
32M2

0 − 3KM2
0

(
7− 4cos 2θ − 3 cos 4θ

)
+ 16t+ 8√

3K
(
25 + 4 cos 2θ) + 3 cos 4θ

)
− 128

. (7.35)

Since the pitch vector length Q is only determined by the interplay between
the exchange and DMI energy and their respective prefactors, the result of
Eq. 7.27 is used. At the phase transition A is set to zero and the uniform
magnetization component is given by

M0 →
2
√
2
√
−1− 2t√

32− 3K
(
7− 4 cos 2θ − 3 cos 4θ

) . (7.36)

Performing the minimization protocol as described above, the critical field
strength yields

Bc2 =

√
−1

2
− t

(
B1 +B2 +B3 +B4

)
√

32− 3K
(
7− 4 cos 2θ − 3 cos 4θ

)3 , (7.37)

with the individual field components

B1 = 64
(
2 + (Nx +Ny + 2Nz)τ

)
− 6K

(
16 + 4t+ 9(Nx +Ny)τ + 10Nzτ

)
B2 =

(
32K(4 + 5t) + (57K − 64)(Nx +Ny)τ + 2(64− 9K)Nzτ

)
cos 2θ

B3 = 6K
(
16 + 20t+ (Nx +Ny + 10Nz)τ

)
cos 4θ

B4 = −9K(Nx +Ny − 2Nz)τ cos 6θ.
(7.38)

In the limit of vanishing K, equation Eq. 7.37 simplifies to

Bc2 =
1

2

√
−1− 2t

(
1 +

1

2
(Nx +Ny + 2Nz)τ − 1

2
(Nx +Ny − 2Nz)τ cos 2θ

)
(7.39)

If the external field is applied along the [111] direction, θ = arccos 1/
√
3,

the transition field is determined by

Bc2 =
1

2

√
−1− 2t

(
3− 5K − 4Kt+ 2(1−K)(Nx +Ny +Nz)τ

)
3
√
K − 1

3

= ξ

(
3− 3K + 8Kξ2 + (1−K)χ

)
3
√
1−K

3

≈ ξ

(
1 +

1

3
χ

)
+K

ξ

6

(
3 + 16ξ2 + χ

)
(7.40)
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Note, in the second step the identity Nx+Ny +Nz = 1 is used, while in the
third step the expression is expanded up to the linear order in K.

For the examination of the validity of the analytic approach, the de-
rived equations are compared to the results calculated numerically. In
Fig. 7.33(a)-(b) the angle-dependence of Bc2 for a rotation in the planes
spanned by the [100]- and [010]-directions and the [001]- and [110]-directions
is illustrated. The numerical data, given by the symbols, are obtained from
several minimization routines with different magnetization start parameters,
in order to approach the global minimum for each angle configuration. The
analytic model in form of equations Eq. 7.30 and Eq. 7.37 is represented by
the solid lines. Each plot combines several data sets, calculated for different
anisotropy strengths, which range from low to high values as indicated by
the color gradient. The remaining parameters are again set to r0 = −1000,
τ = 0.88 and Ni = 1/3, which limits the focus of the discussion to the
changes of Bc2 arising from the cubic magnetocrystalline anisotropy only.
As visualized in the top figure, the distinct energy landscape of the lat-
ter is imprinted directly on the phase boundary between the conical and
field-polarized state. In both, analytical and numerical results, the angle-
dependence of Bc2 exhibits a fourfold symmetry. In this configuration the
minimum value for the transition field is obtained, if the external field is
applied along the easy axes. For anisotropy values up to K = 0.0002, the
analytical model is in a good agreement with the numerically obtained re-
sults. Exceeding, however, this threshold, it is evident that the numerical
data only change slightly with increasing K, apart from the hard axes in
this plane at ϕ = 45◦, 135◦. They therefore can no longer be described by a
sinusoidal function, as it is predicted by the analytic model. Similar findings
are also observed in the case of an out-of-plane rotation, which is illustrated
in the bottom figure. In the limit of small K, the angle-dependence of
Bc2 is characterized by the combination of a two and fourfold symmetry.
Compared to the in-plane rotation of the magnetic field, however, the dis-
crepancy between the analytical and numerical model is significantly smaller
even for larger K values. Interestingly, for the field angle set to approxi-
mately θ ≈ 57.4◦, which corresponds to the hard axis of the system, and
θ ≈ 67.5◦ , both analytic and numerical results are in a good agreement for
all anisotropy values chosen.

The deviation between the analytical model and the numerical data arise
from the simplified ansatz only to consider the A → 0 limit in the derivation
of Bc2, instead of taking the actual field-dependence of M0 into account.
In general, minimizing the energy functional Eq. 6.4 with respect to M0

and substituting A by Eq. 7.28 leads to three solutions for the uniform
magnetization component. The one representing the correct solution of M0
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Figure 7.33: Angle-dependence of transition field Bc2 in the (a) in-
plane and (b) out-of-plane configuration calculated for various anisotropy
strengths K and a spherical sample shape. The figures are composed by
the results obtained numerically and analytically, illustrated by the symbols
and lines, respectively. The remaining parameters are set to r0 = −1000
and τ = 0.88.
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for an in-plane rotation in the small ϕ case is given by

M0 =
(1− i

√
3)M II

0

22/3
(
M I

0 +

√
108M II

0
3
M III

0
3
+M I

0
2
)1/3

−
(1− i

√
3)

(
M I

0 +

√
108M II

0
3
M III

0
3
+M I

0
2
)1/3

621/3M III
0

(7.41)

with the individual components

M I
0 = 27BK2(3 + 5 cos 4ϕ)2(28− 15K + 3K cos 4ϕ)2

· (−32 + 21K + 3K cos 4ϕ)

M II
0 = 1/2(−64 + 60K + 36Kt+ 2(−32 + 21K)(Nx +Ny)τ

+ (−64 + 45K)(Nx −Ny)τ cos 2ϕ+ 6K(6 + 10t+ (Nx +Ny)τ) cos 4ϕ

+ 3K(Nx −Ny)τ cos 6ϕ)

M III
0 = K(3 + 5 cos 4ϕ)(28− 15K + 3K cos 4ϕ)

(7.42)
and represents a complex number. The respective field-dependence of the
real (Re[M0]) and imaginary (Im[M0]) part of the uniform magnetization
is illustrated in Fig. 7.34 by the solid lines for the case ϕ = 0. The dipo-
lar interaction strength, demagnetization factors and the Ginzburg-Landau
parameter are set to τ = 0.88, Ni = 1/3 and r0 = −1000 in accordance
with the numerical data presented in Fig. 7.34. From the derived equation,
Bc2 is in general obtained by the intersection point of M0(B) and M0 in
the limit of A → 0 (Eq. 7.29), which is indicated by the horizontal dashed
red line. As a physical quantity, however, M0 is requested to be only com-
posed by a real component. In the configuration discussed this requirement
is only fulfilled for anisotropy values up to K = 0.00015, coinciding with
the K-range in which the analytical model reproduces the numerical results
in Fig. 7.34. Increasing the anisotropy strength further reveals that, M0(B)
becomes complex before reaching M0(A → 0). As a consequence M0(B) in-
creases continuously as long as the imaginary part is zero and subsequently
jumps to M0(A → 0) the moment Im[M0] exhibits finite values. These ob-
servations are reflected also in the numerical data, given by the symbols.
Note, for K = 0.00035 (red symbols) the cubic anisotropy is strong enough
to induce a tilting of the pitch vector away from the magnetic field direction
and therefore the formation of the likewise called tilted conical phase. Since
in the analytical model a misalignment between pitch vector and external
field is excluded, this feature is not resolved in the corresponding graph.

The determination of Bc2 by equating Eq. 7.41 and Eq. 7.29 is highly
nontrivial and will obviously not results in a solution in the large-K limit,
as elaborated above. The transition field can however be extracted, by
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exploiting the fact that the sudden change into a complex number of Eq. 7.41
originates from a change of sign of the expression 108M II

0
3
M III

0
3
+ M I

0
2
,

under the square root. Setting this term to zero and solving for B, leads to

Bc2 =
2

3

√
2√
3

√
(−2− 4Nxτ + 3K(1 + t+Nxτ))3

(4− 3K)2K(3K − 7)
. (7.43)

The obtainedBc2 values are represented by the dashed black lines in Fig. 7.34.
It should be mentioned that the applicability of this procedure of finding
the transition field strongly depends on parameters like the field angle ϕ.
Due to its complexity, Bc2 can not always be determined analytically.

7.3.3 Derivation of Bc2 (II)

In the second approach of calculating Bc2, the assumption is made that
the magnetization amplitude is set to be constant, M(r) = Msn̂(r), and
consequently the physical properties only depend on the orientation of M ,
given by the unit vector n̂(r). With the reduced degrees of freedom, there
is no need to stabilize the energy functional by the implementation of the
higher order Ginzburg-Landau terms, which simplifies Eq. 6.2 to

F =
ρs
2

[
(∇in̂j)

2 + 2Qn̂(∇× n̂)
]
+

µ0

2
M2

s n̂T (ϕD, 0)NT −1(ϕD, 0)n̂

− µ0Msn̂Ĥ
ext
0 −K

∑
i

n̂4
i + CM2

s

∑
i

(∂in̂i)
2,

(7.44)

with exchange stiffness constant ρs = 2JM2
s and pitch vector length Q =

D/J . The obtained equations can hence directly be applied to the exper-
imental data. For the illustration of the effect, the exchange anisotropy
induces on the transition field, it is also introduced in the energy functional
above. Note, the prefactor convention is chosen in accordance with [Wai17].
Analogous to Sec. 7.3.2, in the further course, the magnetization configura-
tion is assumed to be given by a helix representation,

n̂ = cos(θc)ê3 + sin(θc) cos(Q · r)ê1 + sin(θc) sin(Q · r)ê2 (7.45)

with the modulation amplitude parameterized by the cone angle θc. In
addition to that, the direction of the uniform magnetization component
and pitch vector Q is set collinear to the external field orientation and a
distortion of the spin helix is neglected.
Inserting the helix ansatz Eq. 7.45 into the energy functional Eq. 7.44 and
evaluating the spatially dependent energy contributions by integration along
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Figure 7.34: Field-dependence of the real and imaginary part of M0 for
various anisotropy values K. The figure illustrates the results derived in
equation Eq. 7.41 (solid lines), with the magnetic field direction set to an
angle of ϕ = 0. The remaining parameters are set to r0 = −1000, τ = 0.88
and Ni = 1/3. For the comparison, the numerical data, which correspond
to the previously discussed findings in Fig. 7.33(a), are added to the graph
(symbols). The critical transition field, derived analytically in Eq. 7.43, is
drawn by dashed black line. At this field value, M0 is given by Eq. 7.29, as
indicated by the dashed red line. A more detailed description is provided in
the main text.
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the pitch direction and over one helix period, yields

F =

− µ0MsH0 cos θc −
1

2
Q2ρs sin
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+
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2
s

4
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32
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2 θ.

(7.46)
Minimizing with respect to the cone angle and subsequently setting θc to
zero, allows to solve the resulting equation for H0. In this limit it reflects
the critical transition field Hc2, which reads,

Hc2 =
1

2
Ms(sin

2 θ(Nx +Ny + (Nx −Ny) cos 2(ϕD − ϕ)) + 2Nz cos
2 θ)

+
Q2ρs
µ0Ms

− K

16µ0Ms
(9 + 20 cos 2θ + 35 cos 4θ + 40 cos 4ϕ sin4 θ)

− CM2
s Q

2

32µ0Ms
(11− 4 cos 2θ − 7 cos 4θ − 8 cos 4ϕ sin4 θ)

(7.47)
In the following, analogous to the preceding derivations, rotations of the
static field within the planes spanned by the [100]- and [010]-directions and
the [001]- and [110]-directions will be discussed. For the in-plane rotation,
θ = π/2, the described minimization routine leads to

Hc2 =
1

2
Ms ((Nx +Ny) + (Nx −Ny) cos(2(ϕD − ϕ))) +

ρsQ
2

µ0Ms

− K

2µ0Ms
(3 + 5 cos(4ϕ))− 2CM2

s Q
2

µ0Ms
cos2 ϕ sin2 ϕ.

(7.48)

If the external field is applied along one of the principal axis of the sample,
i.e. ϕ = 0 and if assuming ϕD = 0, the above equation simplifies to

Hc2 = MsNx +
ρsQ

2

µ0Ms
− 4K

µ0Ms
. (7.49)

Additionally, in the absence of the cubic anisotropy, K = 0, the critical field
values reads

Hc2 = MsNx +
ρsQ

2

µ0Ms
, (7.50)
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which reproduces the already established result [Gar17; Wai17]. Rotating
the magnetic field within the plane determined by [001]- and [110]-directions,
i.e. ϕ = π/4, the phase transition between the conical and field-polarized
state occurs at a value of

Hc2 =

1

2
Ms

(
((Nx +Ny) + (Nx −Ny) sin(2ϕD)) sin(θ)

2 + 2Nz cos(θ)
2
)
+

ρsQ
2

µ0Ms

+
K

8µ0Ms
(3− 20 cos(2θ)− 15 cos(4θ))− CM2

s Q
2

4µ0Ms
sin2 θ(5 + 3 cos 2θ).

(7.51)
Finally, in the special case of a parallel alignment of the static field with
respect to the [111] direction, which is given by θ = arccos(1/

√
3), the

equation reduces to

Hc2 =
1

3
Ms +

ρsQ
2

µ0Ms
+

8K

3µ0Ms
− 2CM2

s Q
2

3µ0Ms
. (7.52)

For the illustration of the obtained results, equations Eq. 7.48 and Eq. 7.51
are plotted in Fig. 7.35 as a function of the external field direction, de-
termined by the angles ϕ and θ, respectively. Since the angle-dependence
of Hc2 is governed by all three anisotropy terms taken into account, the
transition field will be visualized for several parameter sets, in order to
highlight the individual contributions. The variables set to be constant in

the following are the susceptibility χint
con = µ0M2

ρsQ2 = 1.76 [Sch15], saturation

magnetization µ0Ms = 0.13T [Sta17b] and sample frame orientation, given
by ϕD = 0. While the susceptibility is almost temperature independent
[Bau10; Wai17], the magnetization amplitude is extracted at a temperature
of around 5K. As a reference, Hc2 calculated for a spherical sample and
in absence of the additional anisotropies, is added to the figures (dashed
black line). In the top panel the interplay between the magnetocrystalline
anisotropy and demagnetization energy is visualized first. For the anisotropy
strength a value of around K = 600 J/m3 is assumed, which corresponds
to the specified temperature of 5K [Sta17b]. It should be mentioned that
for the latter a different sign convention was chosen with respect to the
cited publication. Regarding the shape anisotropy, two cases are contrasted:
on one hand a spherical (Ni = 1/3, (a)) and on the other hand a cuboid
(Nx = 0.25, Ny = 0.35, Nz = 0.4, (b)) shaped sample. In the left figure,
which corresponds to the isotropic case concerning the shape contribution,
the previously obtained results from the Ginzburg-Landau model Fig. 7.33
are reproduced quantitatively. Comparing the relative difference between
the maximum and minimum field values, suggest a dimensionless anisotropy
constant of approximately K = 0.00016, which is in a good agreement with
the findings reported in [Hal18]. Provided the sample shape deviates from
a uniform appearance, the demagnetization energy does not only add to a
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constant offset of Hc2, but also induces a additional spatial dependence of
the latter in the form of a two fold symmetry, as indicated by the dashed
lines (K = 0). The resulting superposition of both anisotropies is given by
the solid lines. In the bottom panel of Fig. 7.35 additionally the exchange
anisotropy is taken into consideration. In the interest of simplicity, the sam-
ple shape investigated is chosen to coincide with a sphere, which reduces
the discussion to the comparison between the exchange and cubic magne-
tocrystalline anisotropy. On the left hand side, the angle-dependencies of
the individual energy terms are highlighted by setting the parameter of the
respective counterpart to zero. The data, illustrated by the dashed lines,
are obtained in the absence of the exchange anisotropy and reflect the re-
sults, already presented in Fig. 7.35(a). Given by the solid lines, is the
angle-dependence of the transition field calculated for a pitch vector length
Q = 2π/60nm [Ada12; Ono12; Sch15] and exchange anisotropy constant of
C = 0.17×10−12 J/m, which corresponds to 5 % of the exchange constant J
at 30K [Sek16]. It should be mentioned that this value was not experimen-
tally determined, but chosen for illustration purposes only. From this figure
it is evident that both energy contributions modulate the transition field in
a similar manner. The fundamental difference is, however, the constant shift
of the field range to smaller values induced by the cubic magnetocrystalline
anisotropy. In the right figure, finally the effect on Hc2 of both energy terms
combined is presented, comparing the cases of a positive (solid lines) and
negative (dashed lines) sign of C. Due to the similar curve progression,
the combination results either in a decrease or increase of the modulation
amplitude. At first glance, an additional energy term like the exchange
anisotropy might be masked in the angle-dependence of the transition field
by a prevailing cubic magnetocrystalline anisotropy. Since, however, on the
one hand the offset in Hc2 and on the other hand the modulation amplitude
are characteristic for a certain anisotropy strength, hidden anisotropy con-
tributions are suggested to be easily resolved, when properly analyzing the
experimental data.

7.3.4 Experimental Results

In order to sample the energy landscape induced by the underlying cubic
lattice structure, angle-resolved broad-band microwave spectroscopy exper-
iments are performed on two Cu2OSeO3 crystals for a wide temperature
range. As motivated in the theoretical discussion above, the focus is placed
on the resonance frequencies of the Kittel mode, but also on the field value
of the phase transition between the conical and field-polarized state. The
detection of these quantities as a function of the field direction allows to
visualize the contributing energies and to extract the respective parameters.
To distinguish the observed effects from the ones which arise from the shape
anisotropy, two sample geometries, a cuboid and a sphere, are compared.
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Figure 7.35: Angle-dependence of transition field µ0Hc2 for various pa-
rameter sets. Each figure is composed of the results obtained for an in- (ϕ)
and out-of-plane (θ) rotation, according to equations Eq. 7.48 and Eq. 7.51.
While in the top panel the contribution induced by the magnetocrystalline
and shape anisotropy are illustrated, in the bottom panel the magnetocrys-
talline and exchange anisotropy are compared. For this purpose a spherical
(a),(c),(d) and cuboid (b) sample are collated. The dashed black line in-
dicates the transition field of a spherical sample in absence of additional
anisotropies. A more detailed description is given in the main text.

137



Chapter 7. Results

Cuboid Sample

The first sample to be investigated is a crystal of cuboid shape with lat-
eral dimensions of 1.65× 1.65× 1.8mm3 and the surface normals orientated
along the [100] directions of the crystal lattice. The demagnetization factors,
which correspond to these dimension ratios are approximately Nx,y = 0.343
and Nz = 0.314 [Aha98]. For the excitation and detection of the magnetiza-
tion dynamics, the sample is placed on a coplanar waveguide, with the long
axis oriented perpendicular with respect to the CPW plane. In the mea-
surement setup utilized, this plane corresponds also to the one in which the
magnetic field is applied. It follows that, in this configuration the contribu-
tion arising from the shape anisotropy is expected to be suppressed and the
rotation of the external field is restricted to the plane spanned by the [100]-
and [010]- directions. The angle-dependence of the resonance condition is
therefore predicted to be only determined by the symmetries of the underly-
ing crystal lattice and its induced anisotropies. In order to avoid a vanishing
coupling efficiency between the driving field and the magnetization, due to a
parallel alignment of these quantities, the sample is placed on one of the gaps
Sec. 3.1. With this, the magnetization is, nevertheless, mainly subject to
the in-plane component of the ac-field, but it also driven by the out-of-plane
component, which is at any angle configuration perpendicular with respect
to it. The measurement principle employed in the case of the cuboid sample
is the broadband microwave spectroscopy technique utilizing the vector net-
work analyzer, which is described in Sec. 3.2. At a fixed temperature, field
direction and field strength the complex scattering parameter Sij is recorded
as a function of frequency in steps of 800 kHz. In order to reduce the back-
ground contribution and enhance the signal-to-noise ratio, two normalization
techniques are established. Depending on the varying background, either
the derivative technique, δS12 = (S12(H +∆H)− S12(H −∆H)) /S12(H)
[Mai18] or the high-field normalization ∆S12 = S12(H) − S12(Href) is ap-
plied. For several data sets it is additionally required to remove the re-
maining background by a linear fit. Since the focus of this study lies on
the angle-dependence of both the resonance condition in the field-polarized
phase, but also the critical transition field Hc2, the range of the external
field is chosen to cover all magnetic phases.

A visualization of several microwave spectra, recorded at 50K, is given
in Fig. 7.36. The data represent the field dependence of the resonance fre-
quencies obtained at four different field directions, with the respective angles
set to ϕ = 0◦, 30◦, 60◦ and 90◦. It should be mentioned that angle ϕ refers to
the lab frame. Here, for the illustration of the results, the high-field normal-
ization technique is applied. The amplitude of the microwave absorption,
denoted as A in the following, is reflected by the color gradient. While
a vanishing intensity is given by dark blue, a high absorption is indicated
by lighter colors. Note that, each spectrum is normalized with reference
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Figure 7.36: Microwave absorption spectra recorded at a temperature
of 50K for various field configurations. The external field is set to ϕ =
0◦, 30◦, 60◦ and 90◦. The background color, which is characterized by the
color gradient, reflects the absorption intensity A. Note, every spectrum is
normalized with respect to its minimum value. Resonance frequencies and
respective peak amplitudes are extracted by Lorentzian fits, applied to the
individual frequency scans. The obtained quantities are illustrated by the
white symbols and the corresponding symbol size.

to its minimum value. The data are complemented by the resonance con-
ditions, which are obtained from Lorentzian fits, applied to the individual
line-scans. The extracted frequencies are indicated by the white symbols.
In addition to that, the respective peak amplitude is implemented by the
symbol size, in order to highlight the coupling efficiency of the individual
modes to the driving field. The overall appearance of the microwave spectra
at this temperature is determined by the well-established universal spec-
trum of a chiral magnet, comprising the helical/conical and field-polarized
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states with their characteristic resonance branches. A clear difference be-
tween these is, however, observed in the low-field limit. Despite the dif-
ferent field-configuration, the two spectra in the top panel bear a strong
similarity, regarding the field-dependence of the excitation modes. A slight
shift towards higher frequencies is found in Fig. 7.36(b) though in the field
region above 70mT. Interestingly, the two conical modes are clearly non-
degenerate at zero magnetic field in both spectra, despite the same lateral
dimensions of the crystal within the plane of rotation. The approximation
of an ellipsoidal sample shape, as it is assumed in the treatment of the de-
magnetization contribution, does obviously not hold in this case. Rotating
the magnetic field further, leads to a wider frequency spacing between the
two conical modes and a shift of spectral weight from the +Q to the −Q
mode, as shown in Fig. 7.36(c)-(d). As a consequence the +Q mode appears
to vanish in the small field limit. It should be mentioned, that in this field
region a clear distinction between one or two peaks can no longer be made.
The actual resonance position might therefore not be reproduced correctly
by the added fit results. This change in spectral weight originates from the
field and also demagnetization factor dependent polarization of the conical
modes [Sta17a]. By adjusting the external field angle, the polarization di-
rection can be tuned such that it does not match the one of the driving field
anymore, leading to a reduction of the excitation efficiency, as it is case for
the −Q mode in Fig. 7.36(a)-(b). Apart from the obvious changes, these few
data sets already reveal a clear contradiction. For the given sample shape
and the set temperature, at which the cubic magnetocrystalline anisotropy
should be absent, neither the excitation frequencies of the Kittel mode nor
the transition field Hc2 are predicted to demonstrate any angle-dependence.
While Hc2 only varies slightly in the shown spectra, which agrees with the
given argument, the resonance branch in the field-polarized phase is how-
ever continuously shifted towards higher values. This significant increase
and the resulting disentanglement of both quantities contradicts the the-
oretical model. A more detailed discussion will be given in the regard of
the respective angle and temperature evolutions, later on. Note that the
field-independent wave-like signatures, which are visible in all four spectra,
are artefacts induced by the normalization technique.

Before arriving at the point of analyzing these dependencies, all recorded
microwave spectra are required to be evaluated, by extracting the corre-
sponding resonances from the individual frequency scans. Depending on the
chosen normalization technique, different fit functions have to be applied.
By subtracting a reference trace, measured at a high field value, the general
Lorentzian profile remains unchanged. For these data sets equation Eq. 3.4
is utilized. Applying, however, the difference technique, as it is introduced
in [Mai18], the manipulated frequency sweeps are given by the derivative of
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the Lorentzian function. Therefore,
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)
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with peak amplitude A, resonance position f0 and linewidth ∆f , is used
for fitting the obtained line-scans. In Fig. 7.37(a) a processed microwave
absorption trace as a function of frequency is displayed. The experiment is
conducted at a temperature of 55K and a magnetic field strength set to B
= 175mT, which corresponds to the phase parameters of the field-polarized
state. Here, for the subtraction of the background contributions the differ-
ence technique is applied. In addition to that, the data are normalized to a
maximum amplitude of one. The figure comprises the measurement results,
which are indicated by the blue line, and the respective fit, given by the
red lines. The fitting curve, in turn, is composed by the sum of two single
peak fits, which are illustrated by the dashed black lines. Due to the chosen
normalization, they are determined by the profile of the derivative of the
Lorentzian function, as elaborated above. Interestingly, even at this high
temperature, at which the multiple replica of the Kittel mode, originating
from standing spin waves, are expected to be suppressed due to the higher
magnetic damping, more than one peak is required for reproducing the data
correctly. In the high-temperature limit, the number of peaks can be easily
estimated from the profile of the frequency sweeps. Decreasing the sample
temperature, however, leads to a significant increase of this number due to
the aforementioned arguments. The microwave spectra therefore stand out
for a high degree of complexity, as illustrated exemplarily in Fig. 7.37(b)
by the blue line. Here, the line-scan is performed at a temperature of 6K
and an external field set to B = 175mT. The data might be reproduced by
adding further Lorentzian functions to the fitting algorithm, an overfitting is
nevertheless very likely. As a consequence, the obtained resonance positions
would not accord with the physical ones. In order to still get an estimate
of the angle-dependence of the resonances and the critical field value, we
refrain from the cumbersome multi peak fitting routine and introduce the
amplitude-weighted frequencies fR,

fR =

∑
|A(fi)| · fi∑
|A(fi)|

(7.54)

which will be focused on in the following. Here, fi denotes the excitation
frequency while A(fi) indicates the respective amplitude of the dynamic re-
sponse of the magnetization. These quantities are illustrated in Fig. 7.37(b)
by a red color. Assuming the Kittel mode and its replica to evolve in the
same manner as a function of the field direction, this averaged value is only
shifted along the frequency-axis with respect to the uniform mode.
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Figure 7.37: (a) Signal amplitude A as a function of excitation frequency f
recorded at a temperature of 55K and external field strength of 175mT. The
figure comprises the raw data given by the blue line and the respective two-
peak Lorentzian fit illustrated by the red lines. The individual Lorentzian
functions are given by the dashed black lines. (b) Absorption A as a function
of excitation frequency f recorded at a temperature of 6K and external field
strength of 175mT.

The first part of the analysis comprises the study of the evolution of
the Kittel mode as a function of the external field direction. For this pur-
pose the frequency sweeps, which are recorded in the field-polarized phase,
are collated for each spectrum. The background contribution, which is at-
tributed to the microwave absorption due to the whole microwave cable
assembly of the setup, is removed afterwards by applying the derivative
technique, as described above. Finally from the normalized data sets, the
line-scans measured at the same field and temperature value are grouped,
which leads to a microwave spectrum, characterized by the excitation fre-
quency and the magnetic field direction. In Fig. 7.38, two spectra obtained
at the same field strength of B = 175mT but different temperature are
contrasted. On the left hand side, Fig. 7.38(a), the angle-dependence of
the resonance frequencies at a temperature of 55K is shown. The signal
amplitude of the microwave traces, here in the derivative representation, is
given by the background color, indicating positive values by red and nega-
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tive ones by a blue color. A vanishing amplitude is given by white. It should
be mentioned that each individual line-scan is normalized with respect to
the maximum absolute value of its signal amplitude. In addition to that,
in the interest of clarity, the color gradient is rescaled with respect to the
maximum and minimum value of the whole spectrum. In order to highlight
the curve progression of the resonances, they are extracted by fitting and
the amplitude-weighted resonance method from each frequency sweep and
added on top of the processed data. The corresponding results are visual-
ized by the white and gray symbols, respectively. In this compilation, the
angle-dependent change in frequency, already emerging in the microwave
spectra discussed in Fig. 7.36, is clearly visible. Emphasis should be placed
on the fact that the cubic magnetocrystalline anisotropy, which is expected
to be zero at this temperature [Hal18], can be indeed excluded as its main
origin. The respective angle-dependence would be of a fourfold symmetry
instead of a twofold symmetry, as it is evident in the shown spectrum. The
energy contribution complying with the resolved angle-dependence is the
shape anisotropy, arising from the demagnetization field. Since the edge
lengths of the crystal in the plane in which the magnetic field is rotated, are
the same, the resulting effect in the ellipsoid approximation is predicted to
vanish though. The origin therefore remains concealed. Note, a variation of
the field strength at the sample position, induced by rotating the magnet,
could be ruled out due to a preceding field calibration. The measured dis-
crepancy amounts to a maximum value of ±0.06mT, which has a negligible
effect on the resonance position. On the right hand side, Fig. 7.38(b), the
measurement results obtained at a temperature of 20K are depicted. Apart
from the, in general, more complex appearance of the individual line-scans,
due to the formation of standing spin waves, the spectrum exhibits now a
distinct change in the angle dependent profile. While the oscillation am-
plitude around the mean value is increased, another local maximum at the
prior minimum occurs. The angle-dependence appears to be determined
by a superposition of a two- and fourfold symmetry. The last contribution
is expected to arise from the cubic magnetocrystalline anisotropy, which
at this temperature possesses a finite strength. Interestingly, despite the
alignment of the crystal lattice and the principal axes of the sample, the
spectrum appears to be slightly asymmetric due to a angular shift between
these contributions.

In order to quantify the parameters of the respective energy terms, the
amplitude-weighted resonance position is extracted for each field and tem-
perature value, as described above. A compilation of the angle-dependencies
of the resonance frequencies in the field-polarized phase, resolved at a mag-
netic field strength of B = 161mT, is illustrated in Fig. 7.39 (symbols). Each
data set corresponds to one temperature, as indicated by the color gradient
on the right hand side. While blue colors reflect low temperatures, red colors
represent the measurements at high-temperatures. It should be mentioned
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Figure 7.38: Angle-dependence of the normalized microwave excitation
spectra in the frequency-domain for the cuboid-shaped sample. The figure
illustrates the results obtained at (a) 55K and (b) 20K and a magnetic
field strength of B = 175mT. In addition to that the resonance frequencies
extracted by Lorentzian fits and the amplitude-weighted resonance method
are given by the white and gray symbols, respectively.

that, for illustration purposes, a frequency offset of 0.3GHz (i - 1) is added
to the traces. Here, integer i denotes the trace index, which is set to i = 1
for the measurements conducted at 55K. These data sets are then subse-
quently fitted by applying equation Eq. 7.24 and its components given by
Eq. 7.25. The parameters, entering the fit formula as variables, are reduced
to the anisotropy strength K, demagnetization factors Nx and Ny and the
orientation of the sample coordinate system ϕD with respect to the one of
the crystal lattice. In addition to that, an additional angle, ϕoff, is required
to be introduced in order to compensate the shift between the crystal coor-
dinate system and the lab frame. It nevertheless does not hold any physical
meaning. The remaining parameters are set to be constant in the respective
fitting procedure, since the external field value H0 is recorded during the
measurement, saturation magnetization Ms of the sample is determined by
a superconducting quantum interference device (SQUID) in Appendix E and
the gyromagnetic ratio γ = 1.88× 1011 rad/sT is taken from [Sta17b]. Note
that, the third demagnetization factor is substituted by Nz = 1−Nx −Ny.
The fitting curves obtained for the field set to B = 161mT are drawn in
Fig. 7.39 by the respective colored lines. Finally, employing a least square
fit, allows to simultaneously analyze all data sets recorded at the same tem-
perature value, despite their different field strengths. This allows to increase
the precision of the obtained fit parameters.

The data points, visualized in Fig. 7.40, are therefore a result of fitting
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Figure 7.39: Angle-dependence of the amplitude-weighted resonance posi-
tion for various temperature values. The extracted results from this method
are visualized by the symbols. The color gradient on the right hand side,
represents the set temperature. It ranges from low to high values, which is
indicated by blue and red colors. The fitting curves obtained from the first
fitting routine are drawn by the solid lines. Note, for illustration purposes,
a frequency offset of 0.3GHz (i - 1) is added to the traces. Here, integer
i denotes the trace index, which is set to i = 1 for the measurements con-
ducted at 55K.

several data sets for different magnetic fields. Note that in all figures the
extracted error bars are masked by the chosen symbol size. In the follow-
ing, the focus is placed on the temperature evolution of the demagnetization
factors and the anisotropy strength. The discussion is first limited to the
results, shown in Fig. 7.40(a),(c). In the top panel, the extracted demag-
netization factors Nx and Ny are given for temperatures ranging between
4 and 55K, by orange and red symbols. From this, it can be seen that
the parameters vary slightly, the difference between them, however, remains
nearly constant. A certain trend as a function of temperature is not evident.
The increase of the oscillation amplitude in the angle-dependencies, which
is observed for a decreasing temperature value, arises therefore dominantly
from the increase of the saturation magnetization. This behavior is in gen-
eral in a good agreement with the expected results. The obtained values
however by far do not match the actual sample shape. With an average
of Nx = 0.06, Ny = 0.28 and consequently Nz = 0.66 the resolved shape
corresponds to a rod, with its long axis aligned parallel to the x axis. By
considering the amplitude-weighted resonance positions instead of the exci-
tation frequencies of the Kittel mode, the individual traces, as a function
of field-direction, might be shifted along the frequency-axis, as mentioned
above. In order to compensate this artificial offset the fitting algorithm fi-
nally adapts Nz and outputs a larger or smaller value with respect to the
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actual one. The resolved increase of a factor of approximately two is hence
not surprising. The huge difference between the remaining demagnetization
factors on the other hand cannot be explained. It is evident that this twofold
symmetry contribution is not correctly described in regard of the demagne-
tization energy and originates from another effect. In the bottom panel,
the anisotropy strength K is illustrated as a function of temperature by the
closed blue symbols. Starting from a value of approximately K = 600 kJ/m3

in the low-temperature limit, K continuously decreases under an increasing
temperature until reaching a value of around 40K. Above this threshold,
the anisotropy strength appears to converge and finally approaches a value
slightly below zero. The inferred trend agrees well with the results presented
in [Hal18]. Interestingly, also in this publication a change of sign is observed
in the range of 30-40K. It, however, is not unambiguously confirmed due
to the accuracy of the estimates taken in the analysis. If indeed the change
of sign detected in the microwave experiments is of a physical origin, can
also not uniquely be determined. On the one hand, the consideration of
the amplitude-weighted resonances, instead of the actual resonance frequen-
cies, in the fitting procedure might induce an increase or decrease of the
anisotropy strength. On the other hand, if the unidentified spatial contribu-
tion is not correctly reproduced by a twofold symmetry, but also comprises
higher order terms or asymmetries, the values of K might also be affected.
It can be concluded that, the angle-dependent measurements provide a good
estimate of the cubic magnetocrystalline anisotropy in the low-temperature
limit, the unexpected twofold symmetry can, however, not be explained by
the shape anisotropy term.

In order to evaluate to what extent the fitting results of the cubic
anisotropy depend on the model employed, the energy functional is com-
plemented by two uniaxial anisotropy terms, resulting in

F =
1

2
µ0MT (ϕD, 0)NT −1(ϕD, 0)M − µ0MH0 −

K

M4
s

∑
i

M4
i

− U1

M2
s

(M · k1)
2 − U2

M2
s

(M · k2)
2 .

(7.55)

Here, the corresponding constants are denoted as U1 and U2 and the direc-
tion of the symmetry axes are given by

k1 = (cosϕU1 , sinϕU1 , 0)

k2 = (0, 0, 1),
(7.56)

with angle ϕU1 indicating the deviation from the [100]-crystal lattice direc-
tion. In addition to that, the demagnetization factors are fixed to the values
calculated for the given sample shape. The respective energy contribution
therefore provides no longer an angle-dependent term, since Nx = Ny, but
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Figure 7.40: Visualization of the extracted fit parameters. (a) Tem-
perature evolution of the demagnetization factors Nx, Ny. (b) Uniaxial
anisotropy strengths U1 and U2 as a function of temperature. (c) Temper-
ature dependence of the cubic magnetocrystalline anisotropy constant K.
The results corresponding to the first fit routine are given by the closed
symbols, while the ones obtained from the second one are illustrated by
the open symbols. It should be mentioned that the obtained anisotropy
strengths are equivalent and therefore the open symbols are hidden by the
closed ones.
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induces mainly a constant shift along the frequency-axis. Due to the cho-
sen symmetry axes, it finally allows to disentangle the twofold symmetry
from the frequency offset. It should be mentioned that the implementation
of both anisotropies is a phenomenological approach to compensate these
unpredicted effects.

Following the steps of solving the Landau-Lifshitz equation of motion,
presented in Sec. 7.3.1, leads to the general resonance condition Eq. B.6 for
the adapted energy functional. Applying the restriction for the demagneti-
zation factors and setting ϕD = 0 reduces this expression to,
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(7.57)
By means of this equation, the fitting routine, elaborated above, is repeated.
In this analysis, besides the magnetocrystalline anisotropy strength K, the
uniaxial anisotropy constants U1 and U2 and the direction of the correspond-
ing symmetry axis, in terms of ϕU1 , enter the fit formula as variables. The
remaining parameters are again set to be constant. In Fig. 7.40(b) the deter-
mined temperature evolution of U1 and U2 is depicted. While the data points
of the in-plane anisotropy term, the one inducing the twofold symmetry, are
given by the orange symbols, the ones of the out-of-plane contribution are
indicated by red. In case of anisotropy strength U1, the absolute value of
the amplitude is continuously increasing with decreasing temperature. A
more detailed analysis reveals, that the temperature dependence is actually
determined by M2

s . For this reason the respective term in the resonance
conditions in turn scales linearly with the saturation magnetization, which
agrees with the behavior of the one resulting from the demagnetization en-
ergy. Regarding the constant U2, a similar trend is recorded, except for the
last three data points. In contrast to the in-plane anisotropy, a clear depen-
dence on Ms or higher orders, however, cannot be identified. The fact that
it appears to vanish at the critical temperature of around 58K, reveals that
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it is correlated to the saturation magnetization though. It should be kept in
mind that the amplitude of U2 arises mainly from the frequency offset with
respect to the FMR mode, but also covers for the shifts from the in-plane
anisotropy and also the demagnetization term, as can be seen from Eq. 7.57.
An actual out-of-plane anisotropy might also be existent, but can not be dis-
tinguished from these contributions. In Fig. 7.40(c) the anisotropy strength
K, inferred from the fitting procedure, is visualized by open symbols. Since
the obtained results are equivalent to the ones extracted before, they are
hidden by the blue symbols. It follows that, despite the different energy
terms, both fit equations reproduce the data appropriately and account for
the frequency shift and the cos 2ϕ contribution in the same manner.

The second quantity to be investigated is the critical field value Hc2 as
a function of the magnetic field direction and temperature. Identical to the
routine above, first the resonance positions are determined for all frequency
scans by the weighted amplitude method. Note, in order to determine Hc2

from the individual spectra, the field range chosen in the analysis covers
the onset of the conical/tilted conical phase and the field-polarized state.
From these data sets the field value, which corresponds to the minimum
frequency, is then attributed to Hc2. Finally, the values inferred from the
measurements at the same temperature are collated. The resulting angle-
dependence of Hc2 is illustrated in Fig. 7.41. Here, the data points are
indicated by the symbols. The color gradient on the right hand side indi-
cates the set temperature, ranging from low to high values, given by blue
and red colors. The measurements at 50K demonstrate that the transition
field varies only slightly with the external field direction. The correspond-
ing angle-dependence appears to exhibit a twofold symmetry, the obvious
distortion, however, might hint at further contributions. Decreasing the
temperature leads to the formation of a clear fourfold symmetry pattern.
Its respective oscillation amplitude and mean value are increasing under a
decreasing temperature. Finally, in the low-temperature limit it dominates
the overall appearance of the angle-dependence. In contrast to the results
observed in the field-polarized phase, the behavior of the critical transition
field is no longer dominated by the unexpected twofold symmetry, but fol-
lows mostly the theoretical model. In accordance with equation Eq. 7.48,
the contribution to the angle-dependence arising from the shape anisotropy
is predicted to be negligible, due to the symmetric sample shape. The only
energy term remaining, which shapes the profile of Hc2, is the cubic magne-
tocrystalline anisotropy, which is evident from the measurements results.

As motivated in the beginning, the comparison of the angle-resolved crit-
ical field value with the theoretical model, also allows to draw conclusion on
the energy landscape of the investigated material. The advantage over the
analysis of the Kittel mode, however, is the access to the gradient terms,
which in the case of a collinear alignment and homogeneous excitation of
the magnetization do not contribute to the dynamic response. In the fol-
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Figure 7.41: Angle-dependence of the critical transition field Hc2 for vari-
ous temperature values. The measurement results extracted from the fitting
procedures are visualized by the symbols. The color gradient on the right
hand side represents the set temperature. It ranges from low to high values,
which is indicated by blue and red colors, respectively. The fitting curves
obtained from the first fitting routine are drawn by the solid lines.

lowing, two different approaches, in analogy to the preceding discussion, are
presented. The first one is based on the energy functional given in Eq. 7.44,
whose spatial dependence is determined by the cubic magnetocrystalline and
shape anisotropy. The corresponding equation for the critical transition field
is presented in Eq. 7.48. In the second model, the demagnetization energy
is again complemented by two uniaxial anisotropies, as demonstrated in
Eq. D.1. Following the same steps as elaborated above, leads to an expres-
sion for Hc2 which is given in Eq. D.5. The equation, which finally will be
used for the fitting routine is reduced to

Hc2 = MsNx +
ρsQ

2

µ0Ms
+

K(3 + 5 cos 4ϕ)

2µ0Ms
− U1 (2 + 6 cos (2 (ϕ− ϕU1)))

4µ0Ms
.

(7.58)
Note, due to the symmetric shape, i.e. Nx = Ny, the demagnetization field
does not affect the spatial dependence of Hc2. It provides nevertheless a
constant offset, as can be seen by the first term in the equation above. In
addition to that, also the out-of-plane uniaxial anisotropy and the exchange
stiffness term only enter the equation as constants. Since the individual
contributions can not be unambiguously assigned, the additional anisotropy
is therefore neglected in the following.

In the first model, the fitting parameters are the demagnetization factors
Nx, Ny and the orientation of the principal axis with respect to the crystal
axis ϕD, the cubic magnetocrystalline anisotropy strength K and the ex-
change stiffness constant ρs. In the second approach, the demagnetization
factor is fixed to Nx = 0.343 and the variables are extended by the uniaxial
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anisotropy strength U1 and the respective direction of the symmetry axis
given by ϕU1 . For the remaining parameters, the saturation magnetization
and the pitch vector length, we refer again to the results of the SQUID
measurements from Appendix E and to the findings, Q = 2π/60nm, from
previous publications [Ada12; Ono12; Sch15]. In Fig. 7.42 the obtained fit
parameters are illustrated. First, the focus is placed on the results of the
model, including only the shape anisotropy. The respective demagnetization
factors Nx and Ny are given by red and orange symbols in the top panel,
Fig. 7.42(a). For the wide temperature range between 4 and 40K, the two
factors are nearly constant and amount to almost the same value. The con-
tribution to the angle-dependence of Hc2 is therefore obviously negligible.
At 50K, the values of both Nx and Ny decrease significantly, while the differ-
ence between them increases. This finite difference is required to reproduce
the slight two fold symmetry at this temperature. The absolute values of
the demagnetization factors are, however, not uniquely determined, since
the sum of them contributes only to the field offset. The variation from the
real values, will then be compensated by adapting ρs in the fitting algorithm.
The extracted exchange stiffness constant is visualized in Fig. 7.42(b) by the
orange symbols. With increasing temperature ρs decreases monotonously.
From a more detailed analysis it is observed that it actually scales with
M2

s . This trend agrees with the finding that the internal conical susceptibil-
ity χint

con = µ0M
2
s /ρsQ

2 is nearly temperature independent [Bau10]. In the
bottom panel, Fig. 7.42(c), the temperature evolution of the cubic magne-
tocrystalline anisotropy strength is depicted. Here, the data points assigned
to the first model are given by the blue symbols. The curve progression is
determined by a monotonous decrease of K under an increasing tempera-
ture. Emphasis is placed on the fact that the anisotropy strength remains
positive over the whole temperature range and finite up to a value of 40K.
At 50K it finally reaches zero. Apart from the high-temperature limit, the
obtained results agree with the ones obtained in the field-polarized phase,
presented above. Nevertheless, a significant difference between these results
is evident for the whole temperature range.

In the second fit procedure the twofold symmetry is accounted for by
the in-plane uniaxial anisotropy. Its respective strength is visualized in
Fig. 7.42(a) by the open symbols. Similar to the demagnetization factors
discussed above, U1 does not vary much as a function of temperature. Only
at higher temperatures it appears to slightly decrease. Due to the simul-
taneous decrease of Ms the effect on the oscillation amplitude is however
smaller than the one in the case of the demagnetization energy. For the
values of the exchange stiffness constant a significant discrepancy between
the two models is evident in Fig. 7.42(b). The data of the second set, given
here by the open symbols, are approximately 1.5 times larger than the one
of the first fit routine. Also the slope in general appears to be different, but
is demonstrated to scale also with M2

s as a function of temperature. This
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observation originates from the fact that, the in-plane uniaxial anisotropy
influences the angle-dependence ofHc2, but also provides a finite offset. This
additional contribution, which reduces Hc2 due to the positive sign of its re-
spective strength U1, is finally compensated by an increase of ρs. The last
parameter extracted is the anisotropy strength K, illustrated in Fig. 7.42(c)
by the open symbols. Apart from small deviations, its obtained curve pro-
gression is highly reminiscent of the one of its counterpart in the first fit
model. Also here, K decreases continuously as a function of temperature,
until reaching approximately zero at 50K.

Figure 7.42: Visualization of the fit parameters extracted from the mea-
surements of the critical field in the case of the cuboid sample. (a) Demag-
netization factors Nx, Ny and uniaxial anisotropy strength U1 as a function
of temperature. (b) Temperature dependence of the exchange stiffness con-
stant ρs. (c) Temperature evolution of cubic magnetocrystalline anisotropy
K. The results corresponding to the first fit routine are given by the closed
symbols, while the ones obtained from the second one are illustrated by the
open symbols.
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Finally, comparing the extracted fit parameters of these two quanti-
ties, the resonance frequencies in the field-polarized phase on one hand
and the critical transition field on the other hand, confirms the observa-
tions, which emerged already in the compilation of the microwave spectra
in Fig. 7.36. While the angle-dependence of the phase transition between
the conical/tilted conical and field-polarized state can be ascribed to the
shape and cubic magnetocrystalline anisotropy and therefore agrees with
the theoretical model, the evolution of the resonances of the Kittel mode
reveals an unexpected dominant twofold symmetry, which no longer can be
explained in terms of the demagnetization energy. As a workaround, an
additional uniaxial anisotropy term is required to be implemented in the
energy functional in order to account for this dependence on the magnetic
field direction. The parameters extracted from the two fit models can, how-
ever, not be compared, due to this additional contribution. From these
observations it can be concluded that only the dynamic response of the
magnetization is subject to the additional contribution, the magnetization
configuration itself, however, remains unaffected. It follows also that the
energy functional is in principle sufficient to describe the physical proper-
ties, the ellipsoidal approximation of the cuboid sample is valid and in this
regard the magnetization does not decay into various domains and edge ef-
fects are of minor importance, despite the finite sample size. Regarding the
anisotropy strength K, similar temperature dependences are observed. The
values extracted in the field-polarized phase are, however, smaller and also
change sign in the high-temperature limit. This discrepancy might hint at
additional gradient energy terms, like the exchange anisotropy, which only
contribute to the critical transition field, as elaborated above. Since the
undefined contribution to the angle-dependence, which on first glance ap-
pears to be of a twofold symmetry, might also comprise higher order and
also asymmetric terms, the fit results are likely to be impaired. It therefore
does not allow to draw conclusions in this regard.

The fact that the measurements regarding the magnetization configura-
tion agree well with the theoretically predicted results, but the ones of the
dynamic response do not, suggests that the assumptions made in the respec-
tive approach are insufficient. A property of the magnetization dynamics,
which is not considered in the calculations up to now is the explicit spatial
dependence characterized by the wave vector k. As spin waves are evidently
excited in the microwave experiments though, the effect of a finite momen-
tum on the dispersion will be elaborated in the following. In Fig. 7.43 the
resonance frequencies of the field-polarized phase are plotted as a function
of the field direction ϕ for a wide wave vector range. In accordance with the
calculations presented above the magnetic field is rotated in the x-y plane,
the field strength is fixed to B = 2Bc2,0 = 76 and the remaining parame-
ters are set to r0 = −1000, τ = 0.88 and Ni = 1/3. Regarding the wave
vectors, two cases are differentiated. The data points given by the closed
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symbols are calculated for a wave vector parallel to the x axis. The results
indicated by the open symbols are obtained for a parallel alignment of k
with the z direction. In the interest of completeness, also the uniform mode
(k = 0), drawn by the dashed black line, is added to the figure. In the top
panel, Fig. 7.43(a), the angle-dependence extracted for the isotropic case
(K = 0) is illustrated. For spin waves propagating along the z direction,
which is perpendicular to the one of the external field, the dispersion does
not dependent on the field orientation ϕ and is therefore constant. The
corresponding frequencies in this configuration decrease under a decreasing
wave vector amplitude and approach the one of the uniform mode. Con-
versely, if the wave vector is parallel to the x axis and hence in the plane of
the magnetic field, the frequency is no longer constant, but strongly depends
on the orientation between k and B. For a better understanding of the pre-
sented calculations we refer to the analytically derived dispersion relation in
[Gar17],

ℏω(k) = 2DQkz

+

√
(Dk2 + gµBµ0Hint)

(
Dk2 + gµBµ0Hint + gµBµ0Ms

k2⊥
k2

)
,

(7.59)
with k⊥ = (kx, ky), spin wave stiffness constant D = gµBρs/Ms and the
magnetic field applied along the z direction. Note, the prefactor convention
is adapted here to the one chosen in Sec. 7.3.3. For very large wavenumbers,
the resonance frequencies are mainly determined by the first term, which is
induced by the DMI. Due to the linear dependence on kz, a finite compo-
nent in the z direction leads to a different resonance condition depending
on the sign. This can be seen in the case of k = Q, where the minimum
and maximum values are given at ϕ = 0◦ and ϕ = 180◦, respectively. In the
limit of a small wavenumbers, it is evident that the additional term, but also
the ones proportional to k2 vanish and the angle-dependence is governed by
the last term only, which is proportional to cos 2ϕ. If the cubic magne-
tocrystalline anisotropy takes on finite values (K = 0.0002), as it is shown
in Fig. 7.43(b), its corresponding angle-dependence shapes the dispersion
relation accordingly. In the case of perpendicular spin waves, the prior con-
stant curve progression exhibits now a fourfold symmetry as a function of ϕ.
For a finite in-plane wave vector, the additional contribution superimposes
the one from the dipolar interactions, which results, in the small-k limit,
in a two- and fourfold symmetry. Nevertheless, the effect originating from
the dipolar interactions still dominates the overall appearance, even at low
temperatures. Comparing now the calculated angle-dependencies with the
measurement results, reveals a high level of resemblance. The overall appear-
ance suggests that instead of the uniform mode, in-plane spin waves with
small wave vectors are excited, which in turn causes the detected twofold
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symmetry. Additionally the fact that the respective amplitude in the mea-
surements scales with Ms agrees with the equation given above. Note, the
small shift, which is observed in the measurements between both contribu-
tions, might arise from a slight misalignment of the sample edges with the
coplanar waveguide. Since the surface normals are aligned with the crystal-
lographic axes, this likewise leads to a distortion between the lattice and the
driving field direction and therefore a phase shift, as resolved. Rotating the
sample in a controlled manner with respect to the CPW in further experi-
ments is expected to result in a continuous shift of this phase, which would
support the arguments given above.

Figure 7.43: Angle-dependence of the resonance frequencies in the field-
polarized phase for various wave vectors. The figure contrasts the results
calculated for a cubic magnetocrystalline anisotropy constant of (a) K = 0
and (b) K = 0.0002. Here, the magnetic field is rotated in the x-y plane,
while the spin waves are propagating either along the x or z direction, in-
dicated by closed and open symbols, respectively. The uniform mode is
illustrated by the dashed black line. The remaining parameters are set to
r0 = −1000, B = 76, τ = 0.88 and Ni = 1/3.

Besides revealing the material characteristics, the analysis of the Kittel
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mode and Hc2 also allows in general to finally convert the cubic magne-
tocrystalline anisotropy strength from physical to dimensionless units. Since
the twofold symmetry dominates the angle-dependence of the resonances
in the field-polarized phase, the extracted conversion factor might be im-
paired. Therefore, in the following the discussion is limited to the critical
transition field only. For moderate anisotropy strengths, the in-plane angle-
dependence of the critical transition field in the Ginzburg-Landau model is
given by Eq. 7.30 with its components Eq. 7.31. From this equation the
relative oscillation amplitude, defined as

A(K) =
Bc2(K, 45◦)−Bc2(K, 0◦)

1
2 (Bc2(K, 45◦) +Bc2(K, 0◦))

, (7.60)

in the case of a disk or spherical sample shape, is extracted. Here, Bc2(K, 45◦)
and Bc2(K, 0◦) correspond to the maximum and minimum values of Hc2, as
illustrated in Fig. 7.33. This expression therefore represents the peak-to-
peak value, which is normalized by the mean value of Hc2. The same pro-
cedure is established for the experimental side. By the fit routines, utilizing
equation Eq. 7.58, first the different contributions are disentangled. Since
for this analysis only the effect of the cubic magnetocrystalline anisotropy
has to be considered, the angle-dependent term of the uniaxial anisotropy is
neglected 3. Finally, the maximum and minimum, but also the mean value
of the critical transition field is extracted from the adapted fitting curves.
The relative oscillation amplitudes, collected from the experimental and the-
oretical treatment, are visualized in Fig. 7.44(a). The results inferred from
the measurements are indicated by the red symbols and given as a function
of temperature. Based on its almost linear dependence on K, the curve pro-
gression of the amplitude A resembles the one of the anisotropy strength,
presented in Fig. 7.42(c). The theoretically predicted amplitude, here vi-
sualized by the orange line, is plotted in dependence on the dimensionless
anisotropy constant K̃. Note, in the interest of clarity, the tilde notation
is reintroduced for the dimensionless variable. From this compilation it is
evident that for anisotropy values up to approximately K = 0.00022 in the
theoretical model, the whole temperature range is covered in the experi-
ments. Furthermore, it reveals that the assumed strength of K = 0.0002 in
the low-temperature limit in the previous chapter is justified. In previous
publications [Cha18], an estimate of the conversion factor between physical
and dimensionless units was derived by comparing the anisotropy strengths,
which are required for stabilizing the low-temperature skyrmion phase in the
experiments and the calculations, respectively. Since, for the stabilization
of the LTS phase and consequently the detection of its signatures, a pre-
ceding cycling routine has to be performed, this comparison provides only

3 It should be mentioned that for this analysis the amplitude of the fourfold symmetry
contribution is assumed to originate only from the cubic magnetocrystalline anisotropy.
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a rough estimate. The analysis of the critical transition field on the other
hand, allows directly to calculate the dimensionless anisotropy constant K̃,
by solving Eq. 7.60 numerically for the amplitude value, attributed to a cer-
tain strength K. The results obtained for the extracted anisotropy values
are depicted in Fig. 7.44(b).

Figure 7.44: (a) Relative oscillation amplitude A of Hc2. The figure con-
trasts the results obtained from the experiments (red symbols) and the
Ginzburg-Landau model (orange line). In the first case A is given as a
function of temperature (bottom axis), while in the second case it is illus-
trated as a function of anisotropy strength K̃ (top axis). In the interest
of clarity, the tilde notation is introduced for the dimensionless constant.
(b) Calculated anisotropy strength K̃ for the extracted K values from the
fitting procedures.
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Spherical Sample

In order to verify that the resolved effect does not arise from the sample ge-
ometry, similar microwave spectroscopy experiments as presented above are
performed now on a Cu2OSeO3 crystal of spherical shape. The sample with
a diameter of approximately 2mm is placed on the same coplanar waveg-
uide as utilized before for the cuboid sample. Since the coupling efficiency
between the magnetization and the driving field depends on their orienta-
tion with respect to each other Sec. 3.1, the crystal is placed on the gap to
guarantee a perpendicular alignment throughout the whole measurements.
The magnetization is therefore subject to an in- and out-of-plane ac-field.
Furthermore, the sample orientation is chosen such that one [001]-crystal
direction is pointing out of plane and therefore parallel to the CPW surface
normal, by using X-ray crystallography. This finally allows to rotate the
external magnetic field in the plane spanned by the [100]- and [010]- direc-
tions. It should be mentioned that due to the small contact surface, a thick
layer of glue was required to attach the sample to the coplanar waveguide.
As a consequence the heat dissipation might be decreased so that during the
measurements the sample temperature is slightly larger than the one of the
cuboid sample, despite the same set heater temperature. In addition to that,
the increased distance to the CPW leads to a lower ac-field strength at the
sample position. It follows that the limited output power of the VNA on the
one hand and its lower sensitivity on the other hand, is not sufficient enough
to resolve the magnetization dynamics of the crystal in this configuration.
For that reason microwave spectroscopy based on the lock-in technique, as
described in Sec. 3.2, is employed. In the following, a similar experimental
protocol as for the cuboid sample is established. For a fixed temperature
and external field direction, an absorption trace is recorded. Since with this
technique the measurements are performed in the field-domain, the exci-
tation frequency of the rf-generator is set to be constant while the field is
swept. The detected line-scan is then predicted to be given by the derivative
of a Lorentzian profile, as it is shown in Eq. 3.4. The focus of this study is
placed on the angle-dependence of the resonance modes in the field-polarized
state. As for this a fine resolution in the frequency-domain is not required,
the applied excitation frequencies are limited to 6, 8 and 12GHz.

In Fig. 7.45(a) an absorption FMR trace as a function of the magnetic
field strength is visualized. The measurement results, shown here by the
blue line, are obtained at an excitation frequency of 6GHz and a tempera-
ture value of 55K. Note, in the interest of simplicity, the signal is normalized
with respect to its maximum absolute amplitude. In addition to the data,
the fitting curve, drawn by the red line, is added to the figure. As already
observed in the VNA based experiments, more than one resonance mode is
resolved in the field-polarized phase. The fit equation is therefore a result
of the sum of derivatives of two Lorentzian functions, which individual con-
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tributions are visualized by the dashed black lines. In the low-temperature
limit, the number of additional resonances increases significantly again, as
can be seen in the bottom panel, Fig. 7.45(b). The shown field sweep is
recorded also at an excitation frequency of 6GHz, but the temperature is
set to 6K in this case. Due to its complexity, a comprehensive fitting routine
to account for all resonance frequencies has proven to be too cumbersome.
By focusing the analysis, however, on the low-field limit of each spectrum,
adding several Lorentzian functions to the fit curve allows to reproduce the
data in this field range. From these results, the resonance mode lowest
in field can uniquely be extracted, and will be therefore employed for the
analysis regarding its field direction and temperature dependence in the fol-
lowing. In addition to that, the amplitude-weighted resonance position in
the field-domain is introduced, in analogy to the definition given in Eq. 7.54.
For illustration purpose, the respective quantities are shown in Fig. 7.45(b)
by a red color. This value will also be determined for each field-sweep and
finally compared to the resonance field, which is extracted from the actual
fitting routine.

For the analysis of the angle dependencies, first the absorption spectra
recorded at the same frequencies and temperatures are collated. By way of
illustration, two of these absorption spectra, which are measured at 6GHz
are given in Fig. 7.46. Here, the axis are given by the external field strength
B and its respective direction ϕ. The signal amplitude is encoded in the
background color, which indicates a positive amplitude by a red and a neg-
ative amplitude by blue. For the illustration, the individual line-scans are
normalized with respect to their maximum absolute amplitude. Further-
more, the color gradient is rescaled, such that the maximum and minimum
value of the whole spectrum set the boundaries of its range. The individual
field-traces of each group are analyzed, regarding their resonance modes, as
described above. Here, both methods applying Lorentzian fits to obtain the
mode lowest in field and the weighted-amplitude protocol are employed. The
extracted resonance positions are given by the symbols. The results inferred
from the actual fitting procedure are given by the white symbols, while the
ones obtained from the average method are indicated by the gray symbols.
On the left hand side, Fig. 7.46(a), the absorption spectrum recorded at
55K is visualized. As anticipated before, already at this temperature at
least two resonance modes are observed. By means of this figure, the dif-
ference between the two approaches of extracting the resonance position is
visible. Provided all modes would exhibit the same angle-dependence, the
amplitude-weighted resonance field would only yield a higher value than the
one lowest in field. Since, however, this is obviously not the case, the first
method picks off the additionally emerging features, as can be seen by the
corresponding gray symbols. The more interesting part is, however, the dis-
tinct angle-dependence of these. While the mode with the smaller resonance
field in Fig. 7.46(a) varies only slightly with ϕ, the second one demonstrates
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Figure 7.45: (a) Absorption A as a function of magnetic field strength B
recorded at a temperature of 55K and an excitation frequency of 6GHz.
The figure comprises the raw data given by the blue line and the respective
two-peak Lorentzian fit according to Sec. 3.2 illustrated by the red line.
The individual Lorentzian functions are given by the dashed black lines.
(b) Absorption A as a function of magnetic field strength B recorded at a
temperature of 6K and excitation frequency of 6GHz.

a clear angle-dependence, which appears to be of a twofold symmetry. Con-
versely, the two modes detected in the cuboid sample at this temperature,
depicted in Fig. 7.38(a), show both the same curve progression. Comparing
these findings to the numerical calculations in Fig. 7.43, might indicate that
both in- and out-of-plane standing spin waves, attributed to the alternating
and almost constant resonances, are simultaneously excited by the driving
field. In the figure on the right hand side, Fig. 7.46(b), the absorption spec-
trum recorded at 20K is depicted. Compared to the results discussed before
in this temperature regime the cubic magnetocrystalline anisotropy strength
is no longer zero but takes on finite values. As a consequence, its distinct
spatial dependence dictates the one of the resonance fields. Interestingly,
the division into two groups regarding the angle-dependence is also evident
at this temperature. In the field-range of approximately B =160 - 200mT,
the profile of the resonance modes are all following the one indicated by
the fit results. For higher field values, a signal signature is mainly found at
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field-angles, which correspond to the maxima of the second mode at 55K.
Based on this unequal distribution of the absorption signal, the trace of the
amplitude-weighted resonance position deviates from the one extracted by
the Lorentzian fits.

Figure 7.46: Angle-dependence of the normalized absorption spectra in
the field-domain for a spherical sample. The figure illustrates the results
obtained at (a) 55K and (b) 20K and an excitation frequency of 6GHz. In
addition to that the resonance frequencies extracted by Lorentzian fits and
the amplitude-weighted resonance method are given by the white and gray
symbols, respectively.

In the interest of completeness, again both models introduced before
are employed for the fitting procedure of the angle-dependence of the reso-
nance fields. In the first approach the energy functional is given by equation
Eq. 7.5. Here, the spatial dependence originates from the shape and the
cubic magnetocrystalline anisotropy. In the second model, the demagneti-
zation factors are set to Ni = 1/3, which complies with the ones of a sphere.
Consequently, this term does no longer contribute to the resonance condi-
tion and is hence substituted in the energy functional by the two uniaxial
anisotropies, as shown in Eq. 7.55. Since the measurements on the spherical
sample are performed in the field-domain, the previously derived resonance
conditions have to be rearranged in order to calculate the resonance field
in dependence of the excitation frequency. The resulting equation, which
is obtained from the general resonance condition Eq. A.7, is presented in
Eq. A.8 in the appendix. Depending on the model discussed, the respective
parameters will be adapted accordingly. In the first fitting procedure, the
demagnetization factors Nx, Ny, the respective orientation of the principal
axes ϕD, the cubic magnetocrystalline anisotropy strength K and the an-
gle offset ϕoff enter the resonance condition as variables. The remaining
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parameters are set to be constant. The gyromagnetic ratio is fixed to a
value of γ = 1.88 × 1011 rad/sT [Sta17b], the excitation frequency ω is
given by the rf-source and for the saturation magnetization Ms the results
inferred from the SQUID measurements on the cuboid sample are taken.
The uniaxial anisotropies are not considered in this model and consequently
the respective constants U1, U2 are set to zero. One of the data sets to be
analyzed is presented in Fig. 7.47. The figure illustrates the evolution of the
resonance fields as a function of magnetic field direction for various temper-
atures. Here, the resonance positions, shown by the symbols, are obtained
from the Lorentzian fits to the field sweeps measured at 6GHz. In addition
to that, the fitting curves according to the model discussed are drawn by
the solid lines. The temperature values at which the experiments are con-
ducted, are indicated by the color bar on the right hand side. While a low
temperature is reflected by blue, a high temperature is given by red. Note,
for the results extracted by the amplitude-weighted resonance method, we
refer to Appendix F.

Figure 7.47: Angle-dependence of the resonance fields for various temper-
atures. The results, given by the symbols, represent the resonance positions
inferred from Lorentzian fits to the data set at 6GHz. The respective tem-
perature value is indicated by the color gradient on the right hand side. The
fitting curves according to Eq. A.8 in the appendix are drawn by the solid
lines.

In the following discussion, the fit results of both data sets are analyzed.
To differentiate between them, open symbols are chosen for the parameters
assigned to the Lorentzian fit data set and closed symbols for the ones of
the amplitude-weighted resonance method. In Fig. 7.48(a) the tempera-
ture evolution of the extracted parameters Nx and Ny is depicted. In the
low-temperature limit, the demagnetization factors of the first data set are
almost equal and amount to a value of approximately 0.2, which except
for the absolute values agrees with the symmetry of the spherical sample.
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By increasing the temperature, both values slightly increase, whereby the
slope in the case of Ny is larger. As a consequence the discrepancy between
them likewise increases. Provided that the small twofold symmetry in the
angle-dependence indeed arises from the demagnetization energy contribu-
tion, this observation might indicate that the number of peaks in the fit
routine for high temperatures is too small, which leads to a spurious shift of
the obtained resonance position. From the fit results a value for Nz is ob-
tained, which is almost three times as large as Nx and Ny. This observation
would imply that the diameter of the sample in that direction is smaller by a
factor of approximately 3 [Aha98], which does not match the actual sample
dimensions. It follows that, either an additional energy term, which induces
a shift of the spectrum along the field axes is missing, or the resonance
mode lowest in frequency cannot be attributed to the FMR mode. In the
case of the second data set, the demagnetization factors exhibit a significant
difference over the whole temperature range, which also slightly increases
under an increasing temperature. Compared to the previous results, a clear
trend is nevertheless not observed. Since the weighted-amplitude method
averages over all resonance modes, the obvious twofold symmetry, which is
obtained for the ones at higher fields, is imprinted on the resulting angle-
dependence. Consequently the fitting algorithm adapts the demagnetization
factors which belong to the only energy term exhibiting such a spatial evo-
lution. The large discrepancy between Nx and Ny is therefore expected.
An important finding is that Nz in this case only slightly varies from 1/3.
The resonance field hence appears to be close to the one predicted for the
uniform mode. Since in both data sets the difference between Nx and Ny

does not vary strongly, the increase of the amplitude of the cos 2ϕ term arises
mainly from the increase of Ms under a decreasing temperature. The second
quantity to be extracted from the fit routines is the anisotropy strength K.
Its corresponding temperature evolution is illustrated in the bottom panel,
Fig. 7.48(c). For both data sets, K demonstrates a continuous decrease in
strength under increasing temperature, until reaching approximately 40K.
For temperature values above this threshold, the anisotropy constant ap-
pears no longer to be finite. In the low-temperature limit, the fit results
obtained for the average over all resonance modes are larger than the one
of the other data set. This discrepancy originates mainly from the larger
difference between the demagnetization factors, which on the other hand
reduces the oscillation amplitude of the fourfold symmetry term, as can be
seen from equation Eq. A.8. In order to compensate this reduction, the
extracted K value is enhanced.

In the second fit routine, while the demagnetization factors are fixed to
Ni = 1/3, the prefactors of the uniaxial anisotropy terms U1 and U2 are
no longer set to zero. In addition to the orientation of the direction of the
symmetry axis ϕU1 , they enter the fit equation as variables in the following.
The extracted temperature evolution of the anisotropy strengths is visual-
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ized in Fig. 7.48(b). From the fitting results of the first data set, no clear
dependence of U1 on the temperature is evident. The obtained values for
this energy contribution only slightly deviate from zero, which agrees with
the finding that the angle-dependence of the resonance mode lowest in field
is mainly determined by a fourfold symmetry. The constant U2 on the other
hand, exhibits a clear increase in amplitude as a function of temperature. As

Figure 7.48: Visualization of the extracted fit parameters in the case of
the spherical sample. (a) Temperature evolution of demagnetization fac-
tors Nx, Ny. (b) Uniaxial anisotropy strengths U1 and U2 as a function
of temperature. (c) Temperature dependence of the cubic magnetocrys-
talline anisotropy constant K. The results corresponding to the amplitude-
weighted resonance method (aw) are given by the closed symbols, while the
ones obtained from the actual fitting procedure (lf) are illustrated by the
open symbols. Note, the results of the anisotropy strength K are comple-
mented by the ones, extracted from the critical transition field (Fig. 7.42).
The data points, shown by the orange symbols, correspond to the mean
value of both fit routines.
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argued above, the out-of-plane uniaxial anisotropy is primary required to ac-
count for the offset between the obtained resonance position and the actual
resonance field of the uniform mode. If further energy terms, which are not
identified, are also contributing, cannot be determined from this analysis.
Compared to the counterpart in the first fit model, the corresponding term
does not scale with Ms, but demonstrates a different temperature evolution.
For the results received by means of the amplitude-weighted resonances, a
continuous decrease of anisotropy strength U1 under an increasing temper-
ature is observed. By a more detailed analysis it demonstrates to scale with
M2

s and therefore contributes in a similar manner to the angle-dependence
as the demagnetization term. In the case of the parameter U2, no clear trend
is evident. While for high and low temperatures it approaches nearly zero,
for intermediate temperatures it takes on finite values. The curve progres-
sion agrees with the one already resolved for the demagnetization factors,
and arises mainly by the field discrepancy to the uniform mode. Regarding
the cubic magnetocrystalline anisotropy strength K, shown in Fig. 7.48(c),
the exact same values as before are obtained from the fits. Since they are
hidden by the previous results, a general notation of the respective labels is
presented in the plot. A distinction is made only between the different data
sets.

The comparison of the measurement results demonstrates a substantial
difference between the two crystals, despite their similar shape according to
the theoretical treatment of the demagnetization energy. In both samples
an unexpected twofold symmetry in the angle-dependence of the resonance
conditions is observed, whose amplitude scales linearly with Ms as a func-
tion of temperature. While in the case of the cuboid sample this contri-
bution dominates the overall appearance of the angle-dependencies and is
resolved for all modes, it is less pronounced in the spherical sample and
does not affect all resonances. Contrasting the results obtained from the
field-polarized phase and the critical transition field Hc2 reveals that this
effect is only resolved in the magnetization dynamics. It stands to reason
that the theoretical treatment of only the uniform mode is not sufficient
to reproduce the data, but requires the consideration of finite wave vectors
and therefore spin waves. From the comparison with the numerical results,
presented above, it follows that in the cuboid sample in-plane standing spin
waves are excited, whereas in the spherical sample both in- and out-of-plane
standing spin waves are formed. In order to account for this additional
contribution to the angle-dependence, two different models are applied as a
workaround to analyze the data and finally extract the cubic magnetocrys-
talline anisotropy strength K. Contrasting the results obtained from the
resonances of the Kittel mode and its replica on the one hand and the ones
from the critical transition field on the other hand demonstrates a clear
discrepancy especially in the high-temperature limit, which might hint at
additional anisotropy terms of a gradient like representation. Since the tem-
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perature evolution of K extracted from the Hc2 fitting procedure agrees
well with the one obtained from the spherical sample, this difference might
also just arise due to the prevailing contribution from the standing spin
waves. In Fig. 7.48(c) the parameters extracted from the spherical sample
are complemented by the temperature dependence of K, inferred from the
critical transition field (orange symbols). Here, the shown data points are
the average of both fitting procedures, given in Fig. 7.42. From this com-
parison it is evident that both data sets exhibit a very similar trend. The
values obtained from the fitting routine of the Kittel mode are slightly lower
though, which was already observed for the cuboid sample. The origin for
the smaller strengths in the case of the spherical sample might be a slightly
higher sample temperature, due to a thicker layer of glue, as mentioned be-
fore. A temperature discrepancy of approximately 5K, as suggested by the
shown results, might be reasonable. Since, however, a clear ferromagnetic
signal is resolved in the spherical sample at 55K this discrepancy can not
be greater than 3K, which corresponds to the maximum offset with respect
to the critical temperature Tc = 58K. More important, the fact that the
anisotropy strengths extracted from the resonances in the collinear state in
both cases, cuboid and sphere, are smaller than the one resolved from the
critical transition field, hints at a different origin. Another reason might be
the presence of additional anisotropy terms, like the exchange anisotropy,
which exhibit also a fourfold symmetry. Against the background of the ex-
citation of spin waves instead of the uniform mode, both the resonances in
the field-polarized phase and Hc2 should be in principle subject to this ad-
ditional angle-dependent contribution. Since however its respective term in
the resonance conditions is scaling with k2, the exchange anisotropy does not
affect the magnetization dynamics in the small wave vector limit, but only
its configuration. As a consequence, a finite difference in the amplitudes of
the cos 4ϕ term, which in the fitting procedures can only be assigned to the
cubic magnetocrystalline anisotropy, should be resolved for both quantities.
An assumption, which, in turn, agrees well with the experimental results,
presented in Fig. 7.48(c). In order to get an estimate for the exchange
anisotropy strength C, it is calculated from the induced amplitude differ-
ence of the fourfold symmetry term according to Eq. 7.48. In the interest
of simplicity, the pitch vector length Q = 2π/60 nm is set to be constant in
these calculations. The obtained results are illustrated in Fig. 7.49 by the
orange symbols. Note, due to the different set temperatures during the mea-
surements, the data sets are interpolated in the low-temperature limit. The
shown results do not demonstrate a clear dependence on the temperature.
While under a decreasing temperature down to 20K C increases, it suddenly
decreases in amplitude at lower temperatures. The obtained values are of
the same order of magnitude as reported for Zn-substituted Cu2OSeO3 in
[Moo21]. In contrast to these results, however, an opposite sign of constant
C is observed. Finally, in order to translate these findings to the numerical
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model a similar approach, as discussed in Eq. 7.60, is employed. By solving
the amplitude difference,

Bc2(K, 0, 45◦)−Bc2(K, 0, 0◦)
!
= Bc2(K

′, C, 45◦)−Bc2(K
′, C, 0◦) (7.61)

C is determined numerically. Note, for this purpose Eq. 7.30 is extended
by the exchange anisotropy term. The parameters are set to r0 = −1000,
τ = 0.88, Ni = 1/3, K = 0.0002 and K ′ = 1.14K. Here, the factor of
1.14 is extracted from the anisotropy ratio KHc2/Ksphere, which is depicted
in Fig. 7.49 as a function of temperature by the blue symbols. It reflects
the average over the data points from 6 to 30K. From this calculation it
follows that a dimensionless exchange anisotropy strength of approximately
C̃ = 0.15 4 is required to compensate the difference in the cubic magne-
tocrystalline anisotropy strengths.

The investigation of the angle-resolved FMR was motivated by the out-
standing issues of the previous section Sec. 7.2. Including only the cubic
magnetocrystalline anisotropy in the energy functional leads to a breathing-
octupole mode hybridization gap, which is only half as large as the one
extracted from the microwave experiments. In order to account for this dis-
crepancy, the numerical model was complemented by the exchange anisotropy
term. It could be shown in Fig. 7.30 that depending on the sign of the
anisotropy strength either a value of approximately C̃ = 0.2 or C̃ = −0.5
is required. However, a concrete indication regarding the actual sign and
amplitude of C̃ was up to that point not accessible. By performing the
presented theoretical and experimental analysis, finally an estimate of the
exchange anisotropy strength is provided, which agrees well with the one as-
sumed in the previous section. This indeed suggests the additional exchange
anisotropy energy to be the main origin of the increased hybridization gap
size of the breathing-octupole mode interaction.

4 Note, in the interest of clarity the tilde notation for dimensionless parameters is rein-
troduced.
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Figure 7.49: Temperature evolution of anisotropy ratio KHc2/Ksphere and
exchange anisotropy constant C, given by blue and orange symbols, respec-
tively. While the anisotropy ratio is extracted from the results shown in
Fig. 7.48(c), C is calculated from the difference between KHc2 and Ksphere

according to Eq. 7.48. More details are given in the main text.
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Chapter 8

Summary

In the framework of this thesis we investigated the effect of anisotropies,
arising from the underlying cubic lattice structure, on the collective spin
excitations in the insulating helimagnet Cu2OSeO3. The focus on the addi-
tional energy terms is motivated by the identification of the cubic magne-
tocrystalline anisotropy as stabilization mechanism of the recently discov-
ered second, independent skyrmion phase [Cha18] in the low-temperature
regime. The results presented in this work are composed by the input from
the theoretical and experimental side. The theoretical contribution, in turn,
is divided into two parts. The first part comprises numerical calculations,
which are performed by means of the Wolfram Mathematica code developed
by Johannes Waizner during the course of his Phd thesis under the super-
vision of Professor Markus Garst. Previous results are published in [Sch15;
Sta17b]. In order to take also anisotropies into account the code was ex-
tended by the cubic magnetocrystalline anisotropy and later on also by the
exchange anisotropy in close collaboration with Professor Markus Garst. In
the second part the angle-dependence of the resonance modes in the field-
polarized phase and of the critical transition field Hc2 is derived analytically,
which is finally employed for the fitting procedure to extract the material
parameters from the experimental data. These results in turn are recorded
in terms of angle-resolved microwave spectroscopy experiments.

In the first chapter of this thesis the effect of the cubic magnetocrys-
talline anisotropy on the dynamic response of the magnetization dynamics
is numerically investigated. The chapter is divided, regarding the dimen-
sions of the momentum space of the magnetization configuration, into two
parts. First, the results obtained for the topologically trivial states, which
comprise the conical, tilted conical and field-polarized phase, are discussed.
As observed already in [Cha18], for anisotropy strengths up to K = 0.0003
in the dimensionless unit notation, the pitch vector is aligned along the
magnetic field direction. As a consequence, the microwave spectra resemble
the one calculated in absence of K. For larger anisotropy values, the titled
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conical phase forms, whose boundaries are marked by discontinuities in the
field-dependence of the resonance frequencies. In addition to that, further
discontinuities are observed within the field range attributed to the tilted
conical phase, which arise from the occurrence of anti crossings with higher
order modes in the low-frequency range. These additional modes are, due to
their vanishing dynamic macroscopic dipole moment, usually not accessible
in microwave experiments. In the second part of this chapter, the analy-
sis is extended to the topologically non trivial state, the skyrmion lattice
phase. Here, the focus is placed first on the results obtained for a hexagonal
skyrmion lattice. For this magnetic texture three modes, which exhibit a
finite spectral weight, are obtained. These modes are highly reminiscent of
their counterparts in the isotropic case, regarding their spatial distribution
of the dynamic magnetization, their field dependence and their sensitivity
to the driving field direction. A peculiarity, which originates from the cou-
pling to the underlying cubic lattice, is the occurrence of hybridizations with
clockwise modes of higher order. From the respective spatial distribution of
the magnetization dynamics, they are identified as sextupole, octupole and
dectupole modes, which interact with the counterclockwise, breathing and
clockwise modes. In the low-field limit, the hexagonal lattice gets distorted
and metastable elongated skyrmions are formed. Also in this configuration,
three dominant modes, akin to the ones discussed above are observed. In-
terestingly, the mode, which demonstrates a clockwise character, is linearly
polarized and its polarization axis corresponds approximately to the long
axis of the skyrmions. By detecting the spectral weight as a function of the
driving-field direction, the orientation of the elongated skyrmions is there-
fore suggested to be determined experimentally. The numerical findings are
complemented by microwave spectroscopy experiments provided from col-
laborators of our group. The recorded excitation spectra agree well with the
numerically obtained results and furthermore hint at the existence of the
metastable elongated skyrmion phase at low magnetic fields.

In the second part of this study, the hybridization of the resonance
branches in the skyrmion lattice is elaborated in more detail. The numerical
calculations are performed for two sample shapes, which comprise a sphere
and platelet, in order to determine the effect of the demagnetization contri-
bution. Although several resonance branches are crossing each other, not in
every case a mode interaction is observed in the spectra. These findings are
confirmed by examining the orthogonality between the eigenvectors. It fol-
lows that the cubic magnetocrystalline anisotropy imposes a selection rule.
From the analysis of the eigenvectors it can be concluded that an interaction
is only allowed if both modes exhibit either only an odd or even number of
symmetry axes m or additionally a rotational symmetry and even m. In
regard of the mode polarization, which is connected to the symmetry of
the mode structure, a hybridization only occurs between modes which are
polarized in the same plane. The quantity employed for the characteriza-
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tion of the interaction strength is the gap size g, defined as the minimum
frequency difference between the hybridizing resonance branches. It is ex-
tracted from the microwave spectra obtained from both sample geometries
and for the three hybridizations of the uniform modes. It is observed that all
three gap sizes scale linearly with K and that the contribution originating
from the sample shape is negligible. These results are finally compared to
microwave spectroscopy data, which are provided from collaborators from
different groups. Despite the significantly different shapes of the investigated
samples, the evolution of the gap size reveals a high level of resemblance.
In contrast to the theoretical predicted values of g, however, the resolved
data are larger by a factor of approximately 2-3. Against this background,
the effect of the exchange anisotropy, which was already considered in previ-
ous studies [Bak80; Ban19], on the magnetization dynamics in the skyrmion
lattice is investigated. From the numerical calculations it can be observed
that, despite this additional energy term, the overall appearance of the mi-
crowave spectra remains the same. The hybridization gap of the breathing
and octupole mode interaction, however, varies strongly as a function of ex-
change anisotropy strength C. While in the case of a positive C the gap size
increases linearly, the competition between both anisotropies results first in
a decrease and then in a subsequent increase of g, for negative C. In both
cases, by exceeding a certain amplitude of C the gap size takes on values
twice as large as the one obtained in absence of the exchange anisotropy,
which finally corresponds to the ones obtained in the experiments. It should
be mentioned that besides the breathing-octupole mode hybridization, also
the counterclockwise-sextupole mode interaction is resolved in the lamella
sample, as predicted by the numerical calculations.

In the last part the angle- and temperature-dependence of the resonance
conditions is investigated. The aim of this study is to resolve the outstand-
ing issues regarding the energy landscape arising from the underlying cubic
lattice environment. For this purpose, microwave spectroscopy experiments
on two Cu2OSeO3 crystals of a cuboid and spherical shape are performed
and subsequently compared to the respective analytical and numerical cal-
culations. In the first experiments on the cuboid sample, the quantities
to be investigated are the resonances in the field-polarized phase and the
critical transition field Hc2. By comparing the obtained results, it could be
observed that besides the fourfold symmetry arising from the cubic mag-
netocrystalline anisotropy, the angle-dependence of the resonances in the
collinear state is determined by a dominating twofold symmetry, which in
turn is not found in the one of Hc2. It follows that only the dynamic re-
sponse of the magnetization is affected and not its configuration. From
the comparison with numerical calculations it can be concluded that the
restriction of the theoretical model to the uniform mode is not sufficient
to describe the measurement results. Instead, it stands to reason that the
observed effect originates from the dipolar interactions which have to be
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taken into account due to the formation of, in this case in-plane, standing
spin waves. In the experiments on the spherical sample, which are limited
to the resonance modes of the field-polarized phase, two different resonance
groups, regarding their evolution as a function of angle are detected. Again,
comparing these findings to the numerical calculations, suggests that in this
case both in- and out-of-plane standing spin waves are excited. Finally,
in order to extract the material parameters, despite the additional contri-
bution to the angle-dependence, two different models are employed for the
analysis of the resonance traces. It could be shown that the obtained tem-
perature evolutions of the cubic magnetocrystalline anisotropy strength K
in the case of the cuboid sample differ from each other, in particular in the
high-temperature limit, which might be attributed to the dominant dipo-
lar contribution. The trend of the temperature dependence resolved for
the spherical sample, on the other hand, agrees well with the one obtained
from the critical transition field. A finite difference in the absolute values
is, however, evident. This suggests a gradient-like anisotropy term, which
exhibits a fourfold symmetry, like the exchange anisotropy, to be present.
The extracted exchange anisotropy values agree with the ones reported in
[Moo21], the sign is however reversed. The resolved difference in K also
allows to give an estimate for the dimensionless exchange anisotropy con-
stant. The obtained value of C̃ = 0.15 agrees well with the one which is
required to reproduce the experimentally determined hybridization gap of
the breathing-octupole mode anti-crossing in the previous section. This sug-
gests that, indeed, both cubic magnetocrystalline anisotropy and exchange
anisotropy are the main contributions to the hybridization mechanism. Fi-
nally, besides extracting the cubic magnetocrystalline anisotropy constants,
the analysis of Hc2 also allows to directly convert anisotropy strength K
from physical to dimensionless units.
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Appendix A

Derivation of the
angle-dependent FMR
Condition (I)

The calculation of the resonance conditions follows the protocol elaborated
in Chap. 2 and Sec. 7.3.1, which is based on solving the lossless Landau-
Lifshitz equation of motion. The energy functional considered,

F = τMT (ϕD, 0)NT −1(ϕD, 0)M −K
∑
i

M4
i −BM

− U1 (M · k1)
2 − U2 (M · k2)

2 ,

(A.1)

comprises the demagnetization contribution, the cubic magnetocrystalline
anisotropy, the Zeeman energy and the two uniaxial anisotropies Here, the
corresponding constants are the dipolar strength τ , demagnetization tensor
N , cubic magnetocrystalline anisotropy strength K, external field B and
uniaxial anisotropy constants U1 and U2. For a finite angle between the
principal axes of the sample and the crystal lattice, the demagnetization
tensor is rotated via a rotation matrix T around the z axis by ϕD. The
directions of the symmetry axes are denoted by k1 and k1 and are given by,

k1 = (cosϕU1 , sinϕU1 , 0)

k2 = (0, 0, 1).
(A.2)

Here the angle ϕU1 represents the deviation from the [100]-crystal lattice
direction. In the first step the effective field is determined by Beff = − δF

δM .
Then, in this expression the ansatz for the time-dependent magnetization
vector, M = M s + δM is inserted and finally the equation is expanded up
to linear order in the dynamic magnetization components δM . This results
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in the following effective fields,

B0
eff =

−Bx − 4KM3
x − 2U1 cosϕU1(Mx cosϕU1 +My sinϕU1)

−By − 4KM3
y − 2U1 sinϕU1(Mx cosϕU1 +My sinϕU1)

−Bz − 4KM3
z − 2U2Mz


+

τ(Mx(N
+ +N− cos 2ϕD) +MyN

− sin 2ϕD)
τ(My(N

+ −N− cos 2ϕD) +MxN
− sin 2ϕD)

2τMzNz

 ,

(A.3)

B1
eff =

−12KM2
xδMx + τ ((N+ +N− cos 2ϕD) δMx +N−δMy sin 2ϕD)

−12KM2
y δMy + τ ((N+ −N− cos 2ϕD) δMy +N−δMx sin 2ϕD)

−12KM2
z δMz + 2τNzδMz


+

δMx(−2U1 cos
2 ϕU1)− U1δMy sin 2ϕU1

δMy(−2U1 sin
2 ϕU1)− U1δMx sin 2ϕU1

−2δMzU2

 .

(A.4)
Note, indices 0 and 1 indicate the order of the dynamic magnetization com-
ponents. Additionally, the notations N+ = Nx + Ny and N− = Nx − Ny

are introduced in the interest of clarity. In the next step, the effective fields
are inserted into the reduced Landau-Lifshitz equation Eq. 2.7, which is de-
noted as a matrix W. The resonance frequencies are then finally calculated
by solving the equation Det[W ′] = 0, with W ′

ij = δMjWi introduced in
Eq. 2.9. In order to obtain the resonance condition as a function of the field
direction, the magnetization and field components are transformed into a
spherical coordinate representation, reading

M = M0 (sin θM cosϕM , sin θM sinϕM , cos θM )T (A.5)

B = B0 (sin θB cosϕB, sin θB sinϕB, cos θB)
T, (A.6)

with polar and azimuthal angles θM , θB and ϕM , ϕB. Assuming the external
field to be applied in-plane, θB = π/2, and the magnetization to be parallel
to it, i.e. θM = θB and ϕM = ϕB, leads to the following resonance condition,
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ν2 = γ2

[
B2

0 +B0M0

(
3KM2

0 + U1 − 2U2 − τ(N+ − 2Nz)
)
+ 2M2

0

(
2K2M4

0

+ U2
1 + τ2(N−)2

)
+KM3

0

(
5B0 + 4M0

(
3KM2

0 + U1 − 2U2 − (N+ − 2Nz)τ
))

cos 4ϕB

−M0

[
τN−

(
3B0 − 2M0

(
− 3KM2

0 − U1 + 2U2 + τ(N+ − 2Nz)
))

· cos 2(ϕB − ϕD) + 6KM3
0N

−τ cos 2(ϕB + ϕD)

]
+M0U1

[(
3B0 + 2M0

(
3KM2

0 + U1 − 2U2 − τ(N+ − 2Nz)
))

· cos 2(ϕB − ϕU1)

]
−M0U1

[
4τM0N

− cos 2(ϕD − ϕU1)− 6KM3
0 cos 2(ϕ+ ϕU1)

]]
.

(A.7)
In order to obtain the resonance field as a function of the excitation fre-
quency ν, Eq. A.7 has to be solved for B0. This results in the expression,

B0 =− M0

2

[
3KM2

0 + U1 − 2U2 − τ(N+ − 2Nz) + 5KM2
0 cos 4ϕB

− 3τN− cos 2(ϕ− ϕD) + 3U1 cos 2(ϕB − ϕU1)

]

+
1

2γ2

[
M2

0γ
4
(
3KM2

0 + U1 − 2U2 − τ(N+ − 2Nz) + 5KM2
0 cos 4ϕB

− 3τN− cos 2(ϕB − ϕD) + 3U1 cos 2(ϕB − ϕU1)
)2

− 4γ2
[
− ν + 2M2

0γ
2
(
2K2M4

0 + U2
1 + τ2(N−)2

)
+ 4KM4

0γ
2
(
3KM2

0

+ U1 − 2U2 − τ(N+ − 2Nz)
)
cos 4ϕB

+ 2M2
0N

−γ2τ
(
− 3KM2

0 − U1 + 2U2 + τ(N+ − 2Nz)
)
cos 2(ϕ− ϕD)

− 2M2
0γ

2
(
3KM2

0 τN
− cos 2(ϕB + ϕD)

)
+ 2M2

0γ
2U1

( (
3KM2

0 + U1 − 2U2 − τ(N+ − 2Nz)
)
cos 2(ϕB − ϕU1)

− 2τN− cos 2(ϕD − ϕU1) + 3KM2
0 cos 2(ϕB + ϕU1)

)]]1/2
.

(A.8)
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Appendix A. Derivation of the angle-dependent FMR Condition (I)

Finally, for the conversion from dimensionless to physical units we refer to
the notation introduced in Chap. 6,

B0 → µ0H0 M0 → Ms

τ → 1/2µ0 K → K/M4
s

U1 → U1/M
2
s U2 → U2/M

2
s

(A.9)
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Appendix B

Derivation of the
angle-dependent FMR
Condition (II)

In this section the origin of the discrepancy between the numerical data
and the analytical model in regard of the resonance frequencies will be elab-
orated. As anticipated before, the implementation of anisotropic energy
terms into the energy functional leads to a canting of the magnetization
with respect to the external field, in the case it is not applied along one of
the easy axes of the system. As a consequence, the direction of the effective
field around, which the magnetization precesses, changes slightly and results
likewise in a shift in frequency. The following derivation is divided into two
parts. First, the actual equilibrium configuration of the magnetization for
certain magnetic field directions will be determined. Finally, with these re-
sults, the adapted excitation frequencies will be calculated and compared to
the numerical results, presented in Fig. 7.32.

The energy density to be considered,

F = τMNM −K
∑
i

M4
i −BM , (B.1)

comprises the demagnetization energy, the cubic magneotcrystalline aniso-
tropy and the Zeeman interaction, represented by the respective demagne-
tization tensor N , anisotropy strength K and external magnetic field B.
Here, for simplicity, the principal axes of the sample and the crystal lattice
are assumed to coincide with the laboratory coordinate system. Inserting
the spherical coordinates representation of the magnetization, Eq. A.5, and
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the external field, Eq. A.6, into the energy functional leads to,

F [ϕ, θ] =−B0M0

(
sin θM sin θB cos(ϕM − ϕB) + cos θM cos θB

)
+ τM2

0

(
sin2 θM

(
Nx cos

2 ϕM +Ny sin
2 ϕM

)
+Nz cos

2 θM

)
−KM4

0

(
1

4
sin4 θM (3 + cos 4ϕM ) + cos4 θM

)
.

(B.2)
For the determination of the equilibrium configuration of M , the energy
functional is minimized with respect to the free parameters, which requires
solving the equations,

dF [ϕM , θM ]

dϕM
= 0,

dF [ϕM , θM ]

dθM
= 0. (B.3)

In the following, the discussion will be limited to an in-plane rotation of the
external field, i.e. θB = π

2 . The minimization routine for the polar angle
leads to the equation,

dF [ϕM , θM ]

dθM
= − cos θM

(
B0M0 cos(ϕM − ϕB)

− 2τM2
0 sin θM

(
Nx cos

2 ϕM +Ny sin
2 ϕM −Nz

)
−KM4

0

(
4 cos2 θM sin θM − sin3 θM (3 + cos 4ϕM )

) )
!
= 0

(B.4)
which is fulfilled for θM = π

2 . With both θB and θM set to 90 degrees, the
energy functional hence reduces to,

F [ϕM ] =−B0M0 cos(ϕM − ϕB) + τM2
0 (Nx cos

2 ϕM +Ny sin
2 ϕM )

− 1

4
M4

0 (3 + cos 4ϕM ).
(B.5)

Despite this simplified form, the search for the azimuthal angle, minimiz-
ing the energy, remains challenging and highly nontrivial. It is therefore
performed numerically during the further discussion. In order to compare
the numerical and semi-analytical model, the respective angle mismatch
∆ϕ = ϕM − ϕB as a function of magnetic field orientation is illustrated in
Fig. B.1(a). Given by the symbols are the numerical data, which correspond
to the results previously discussed in Sec. 7.3.1. Here, the dipolar strength,
Ginzburg-Landau parameter, demagnetization factors and field strength are
set to τ = 0.88, r0 = −1000, Nx = 0.25, Ny = 0.35, Nz = 0.4 and B0 = 76,
while the anisotropy value ranges between K = 0 − 0.0004. Note that the
chosen field strength complies with twice the transition field of a spherical
sample. The resulting ∆ϕ, obtained by minimizing Eq. B.5, is depicted
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by the dashed black lines. The excellent agreement between both models,
confirms the competition between the external field on one side and the
anisotropic energy terms on the other side to be the origin of the orientation
discrepancy.

For the determination of the resonance frequencies in the case of a dif-
ferent field and magnetization orientation, a similar procedure of solving the
Landau-Lifshitz equation of motion as presented in Appendix A is applied.
In order to account for the angle mismatch between these quantities, how-
ever, two sets of polar and azimuthal angles (θM , ϕM and θB, ϕB) enter the
calculations. Utilizing the results from the minimization routine described
above, the respective resonance condition reads,

ν2 =B2
0 + 4

(
KM3

0

)2
+ 2M2

0

(
N−)2 τ2 +B0M0 cos(ϕB − ϕM )

(
3KM2

0

− (N+ − 2Nz)τ
)

+ 2M2
0N

−τ
(
6KM2

0 − (N+ − 2Nz)τ
)
cos 2ϕM

+ 4KM4
0

(
3KM2

0 − (N+ − 2Nz)τ
)
cos 4ϕM

+ 3B0M0N
−τ cos(ϕB + ϕM ) + 5B0KM3

0 cos(ϕB + 3ϕM ).
(B.6)

In the limit of ϕM = ϕB, this equation recovers the results given in Eq. 7.15.
Finally, in Fig. B.1(b) both models are contrasted again. While the nu-
merical data are given by the symbols, equation Eq. B.6 is visualized by
the dashed black lines. From the likewise excellent agreement, it is evident
that the deviations in Fig. 7.32 arise from the assumption made that the
magnetization is collinear with the external field. Since the discrepancy in
frequency is rather small this assumption is justified and allows therefore to
apply the model directly to the experimental data.
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Figure B.1: (a) Angle mismatch ∆ϕ as a function of the magnetic field
orientation ϕ, for different anisotropy strengths. The numerically deter-
mined magnetization configuration is given by the symbols, while the semi-
analytical results, according to Eq. B.5, are shown by the dashed black lines.
(b) Angle-dependence of the resonance frequencies for various K values.
The numerically determined excitation frequencies are given by the sym-
bols, while the semi-analytical results, according to Eq. B.5 and Eq. B.6,
are shown by the dashed black lines. Note, the anisotropy strength is in-
dicated by the color gradient, which reflects small and large values by blue
and red colors. The remaining parameters are set to r0 = −1000, τ = 0.88,
Nx = 0.25, Ny = 0.35, Nz = 0.4 and B = 76.
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Appendix C

Small K Approximation

In order to demonstrate that the term linear in K of the resonance condition
given in Eq. 7.23,

ν =γ

( √
(B0 + 2τM0(Nx −Ny))(B0 + 2τM0(Nz −Ny))

+4KM3
0

(B0 + τM0(Nx +Nz − 2Ny))√
(B0 + 2τM0(Nx −Ny))(B0 + 2τM0(Nz −Ny))

), (C.1)

indeed scales with a factor of 4M3
0 , it will be shown in the following that

despite maximizing

ζ ≡ (B0 + τM0(Nx +Nz − 2Ny))√
(B0 + 2τM0(Nx −Ny))(B0 + 2τM0(Nz −Ny))

, (C.2)

ζ − 1 converges to zero. In the density plot Fig. C.1(a) ζ − 1 is given as
a function of demagnetization factors Nx and Ny. Based on the identity
Nx + Ny + Nz = 1, Nz is substituted in the calculations accordingly. The
parameters remaining are set to τ = 0.88, r0 = −1000 and B0 = 2Bc2 = 76.
Note that the value of the transition field corresponds to the one extracted
for a spherical sample. It is evident that ζ reaches its maximum in the case
of a thin film sample, with the surface normal orientated either along the
y or z direction. Since a maximum deviation of around 2% is still rather
small, ζ = 1 is a reasonable approximation. On the contrary, if the surface
normal of the thin film is aligned along the x axis or the sample shape is
given by a sphere, ζ − 1 reaches its minimum value, which exactly equates
to zero. Besides the demagnetization factors, also the external field enters
the calculations as a tunable parameter. On that account, in Fig. C.1(b),
ζ − 1 is illustrated as a function of field for a thin film (Ny = 1, Nx,z = 0,
red) and cuboid (Nx = 0.25, Ny = 0.35, Nz = 0.4, blue) sample. It can be
shown that, by increasing the magnetic field strength, its contribution to ζ
gets more and more dominant and with this ζ-1 starts to decrease.
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Figure C.1: (a) Prefactor ζ−1 as a function of demagnetization factors Nx

andNy, with the external field set to B0 = 76. The amplitude of ζ−1 is given
by the background color, which indicates small and large values by blue and
red colors, respectively. (b) Prefactor ζ − 1 as a function of magnetic field
for a thin film (Nx = 0, Ny = 1, Nz = 0) and cuboid (Nx = 0.25, Ny = 0.35,
Nz = 0.4) sample. The remaining parameters are set to r0 = −1000 and
τ = 0.88
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Appendix D

Derivation of Bc2

For the calculation of the critical transition field between the conical and the
field-polarized phase in presence of the two additional uniaxial anisotropies,
the same derivations as presented in Sec. 7.3.3 are executed. The energy
functional to be considered reads,

F =
ρs
2

[
(∇in̂j)

2 + 2Qn̂(∇× n̂)
]
+

µ0

2
M2

s n̂T (ϕD, 0)NT −1(ϕD, 0)n̂

− µ0Msn̂Ĥ
ext
0 −K

∑
i

n̂4
i + CM2

s

∑
i

(∂in̂i)
2

− U1

M2
s

(M · k1)
2 − U2

M2
s

(M · k2)
2 .

(D.1)
Here, ρs = 2JM2

s is denoted as the exchange stiffness constant and the pitch
vector length is given by Q = D/J . In this approach the magnetization
amplitude is assumed to be constant, which reduces its configuration to
M(r) = Msn̂(r). The energy functional is therefore determined only by
the orientation of M , which is given by the unit vector n̂(r). For the
magnetization configuration, a helix representation, defined as

n̂ = cos(θc)ê3 + sin(θc) cos(Q · r)ê1 + sin(θc) sin(Q · r)ê2, (D.2)

is assumed. Here, the canting of the spins is characterized by the cone angle
θc. Furthermore, for an analytical treatment, the uniform magnetization
and the pitch vector Q are assumed to be aligned parallel to the external
field direction and a distortion of the helical texture to be negligible. In the
first step the helix ansatz is inserted into the energy functional presented
above. Note, in case of the spatially dependent energy contributions, addi-
tionally the integration along the pitch direction and over one helix period
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is performed. The energy functional is therefore given by,

F =

− µ0MsH0 cos θc −
1

2
Q2ρs sin

2 θc

+
µ0M

2
s

4
cos2 θc

(
2Nz cos

2 θ + (Nx +Ny + (Nx −Ny) cos 2(ϕD − ϕ)) sin2 θ
)

− 1

32
K
(
cos4 θc(21 + 4 cos 2θ + 7 cos 4θ + 8 cos 4ϕ sin4 θ)

+
3

8
sin4 θc

(
53 + 4 cos 2θ + 7 cos 4θ + 8 cos 4ϕ sin4 θ

)
+ 12 sin2 θ cos2 θc sin

2 θc
(
9 + 7 cos 2θ − 2 cos 4ϕ sin2 θ

) )
+

1

32
CM2

s Q
2
(
18 + 14 cos 2θ + cos 2(θ − 2ϕ)

− 2 cos 4ϕ+ cos 2(θ + 2ϕ)
)
sin2 θc sin

2 θ

+
1

16
U1

(
− 5 + cos 2θc + cos 2θ + 3 cos 2θc cos 2θ − 2(1 + 3 cos 2θc)

× cos 2(ϕ− ϕU1) sin θ
2
)

− 1

8
U2

(
3 + cos 2θ + cos 2θc(1 + 3 cos 2θ)

)
,

(D.3)
with polar and azimuthal angles of the external field indicated by θ and
ϕ, respectively. Minimizing this equation with respect to the cone angle
and subsequently solving the resulting equation for H0, allows to derive an
expression for the external field. Setting θc to zero, which marks the onset
of the field-polarized phase, leads to the general equation for the critical
transition field Hc2 given by,

Hc2 =
1

2
Ms(sin

2 θ(Nx +Ny + (Nx −Ny) cos 2(ϕD − ϕ)) + 2Nz cos
2 θ)

+
Q2ρs
µ0Ms

− K

16µ0Ms
(9 + 20 cos 2θ + 35 cos 4θ + 40 cos 4ϕ sin4 θ)

− CM2
s Q

2

32µ0Ms
(11− 4 cos 2θ − 7 cos 4θ − 8 cos 4ϕ sin4 θ)

+
U1

4µ0Ms

(
1 + 3 cos 2θ − 6 cos 2(ϕ− ϕU1) sin

2 θ
)

− U2

2µ0Ms
(1 + 3 cos 2θ).

(D.4)
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If the external magnetic field is applied in plane, θ = π/2, as it is the case
for the microwave experiments presented above, this expression reduces to,

Hc2 =
1

2
Ms ((Nx +Ny) + (Nx −Ny) cos(2(ϕD − ϕ))) +

ρsQ
2

µ0Ms

− K

2µ0Ms
(3 + 5 cos(4ϕ))− 2CM2

s Q
2

µ0Ms
cos2 ϕ sin2 ϕ

− U1(1 + 3 cos 2(ϕ− ϕU1))

2µ0Ms
+

U2

µ0Ms
.

(D.5)

From this equation it is evident that the spatial dependence of the critical
transition field is given by the demagnetization energy, the cubic magne-
tocrystalline anisotropy, the exchange anisotropy and the in-plane uniaxial
anisotropy. The out-of-plane uniaxial anisotropy as well as the exchange
stiffness term contribute only to a constant shift to Hc2.
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Appendix E

SQUID Measurements

In order to reduce the number of free parameters in the fit equations of the
angle-resolved resonance condition and critical transition field, the satura-
tion magnetization of the cuboid-shaped crystal is measured, employing a
commercial superconducting quantum interference device (SQUID) magne-
tometer. In Fig. E.1 the extracted evolution of the saturation magnetization
as a function of temperature is illustrated. The measurements are performed
following the field-cooled protocol, i.e. the magnetic field is applied during
the cooling process. For the experiments a field strength of B = 100mT is
chosen. It should be mentioned that the orientation of the crystal lattice
with respect to the external field is not determined in the experiments. In
addition to the data, the fitting curve (red line), which is given by [Živ12],

µ(T ) = µ(0)

(
1−

(
T

Tc

)α)β

(E.1)

is added to the figure. Assuming α = 2 [Mai11; Živ12] in the fitting pro-
cedure, gives µ(0) = 0.434, Tc = 58.236 and β = 0.3234. By measuring
the mass, m = 0.021 g, and the sample dimensions, 1.65 × 1.65 × 1.8mm3

(density: ρ = 4.29 g
cm3 ), the saturation magnetization is finally converted

into units of Tesla.
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Figure E.1: Saturation magnetization of the cuboid-shaped crystal as a
function of temperature with the external field strength set to B = 100mT.
The fitting curve according to Eq. E.1 is drawn by the red line.
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Appendix F

Supplementary Fit Results

For the analysis of the angle-dependence of the resonance modes in the spher-
ically shaped crystal, the respective resonance fields are first required to be
extracted from the individual line scans. As described above, two meth-
ods, which are the application of Lorentzian fits on the one hand and the
amplitude-weighted resonance condition on the other hand, are employed.
Since the results of the fitting procedure are already presented in the main
text (Fig. 7.47), the ones of the averaging routine are now discussed here
in the interest of completeness. In Fig. F.1 the evolution of the resonance
fields as a function of the field direction is illustrated for various tempera-
tures. The figure comprises the results (symbols) obtained at an excitation
frequency of 6, 8 and 12GHz, which are labeled accordingly. The set tem-
perature is indicated by the color bar on the right hand side, reflecting low
and high values by blue and red colors, respectively. As it was observed in
the spectrum measured at 55K in Fig. 7.46, two modes, exhibiting a differ-
ent angle-dependence are excited. While the one lowest in field is almost
constant, the second mode demonstrates a twofold symmetry as a function
of the angle. Based on the comparison with the numerical calculations,
these are attributed to out-of-plane and in-plane standing spin waves. Since
the amplitude-weighted resonance condition represents an average over all
modes, this results in a combination of both signatures, as it is resolved in
the visualized data sets.

In order to determine the strengths and constants of the energy terms
the two fit models introduced in Sec. 7.3.4 are applied. In the first approach,
demagnetization factors Nx and Ny, the orientation of the principal axes of
the sample with respect to the crystal lattice and the cubic magnetocrys-
talline anisotropy strength K enter the fit equation as variables. In the
second model, the demagnetization factors are fixed to Ni = 1/3 and the fit
parameters are extended by the uniaxial anisotropy constants U1, U2 and
the direction of the symmetry axis ϕU1 . The remaining quantities, which are
the excitation frequency, gyromagnetic ratio γ and saturation magnetization
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Figure F.1: Angle-dependence of the resonance fields at 6, 8 and 12GHz
and for various temperatures. The results, given by the symbols, repre-
sent the resonance positions inferred by the amplitude-weighted resonance
method. The respective temperature value is indicated by the color gradient
on the right hand side. The fitting curves according to Eq. A.8 are drawn
by the solid lines.

Ms, are set to be constant, as described in the main text. The fitting curves
obtained, according to Eq. A.8, are drawn in Fig. F.1 by solid lines. The ex-
tracted temperature evolution of the fit results is depicted in Fig. F.2. Here,
orange, red and blue symbols are assigned to the results obtained for the
driving frequency set to 6, 8 and 12GHz. In the top panel Fig. F.2(a), the
curve progressions of the demagnetization factors Nx and Ny are presented.
It can be seen that for all three cases a similar behavior is resolved: both
Nx and Ny first decrease and subsequently increase again under an increas-
ing temperature. A clear dependence on the temperature is therefore not
observed. The significant difference between the demagnetization factors of
the individual data sets, which contradicts the actual sample shape, is a
result of the twofold symmetry of the high-field modes. Since the demagne-
tization term is the only one complying to this symmetry and the amplitude
of its spatial contribution is proportional to Nx − Ny, the parameters are
adapted accordingly. Interestingly, the discrepancy between the parameters
varies only slightly. This implies that the amplitude of the cos 2ϕ contribu-
tion obviously scales with the saturation magnetization, as it is the case for
the dipolar interactions, shown in Eq. 7.59. Against the background that
these findings cannot be explained in terms of the demagnetization energy,
this supports the assumption that the resolved modes are more likely to be
attributed to spin waves. The visualized trend of Nx and Ny arises from the
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fact that the extracted resonance fields do not correspond to the one of the
uniform mode, but are shifted by a constant offset. In order to compensate
for this effect in the fitting algorithm, the remaining demagnetization factor
Nz, which is determined by the sum of Nx and Ny and mainly induces a
likewise shift of the resonance field, is increased or decreased. In the bottom
panel Fig. F.2(b), the uniaxial anisotropy strengths U1 and U2 are plotted
as a function of temperature. Apart from minor deviations, a similar contin-
uous decrease of U1 under an increasing temperature is evident for all three
data sets. In a more detailed analysis this trend reveals to scale with M2

s .
The resulting contribution to the angle-dependence of the resonance fields is
therefore linear in Ms, as discussed above. The second anisotropy strength
U2 exhibits a similar temperature dependence as the demagnetization fac-
tors. These findings originate from the fact that the out-of-plane unaxial
anisotropy mainly induces a shift of the resonance conditions. It therefore
compensates the field offset due to the applied weighted-amplitude method,
in the same manner as the demagnetization energy term.

Figure F.2: Visualization of the extracted fit parameters in the case of the
spherical sample. (a) Temperature evolution of demagnetization factors Nx,
Ny. (b) Uniaxial anisotropy strengths U1 and U2 as a function of tempera-
ture. The results are obtained from the measurements at 6, 8 and 12GHz,
which are reflected by orange, red and blue colors.
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[Kéz15] I. Kézsmárki et al. “Néel-type skyrmion lattice with confined
orientation in the polar magnetic semiconductor GaV4S8”. In:
Nat. Mater. 14.11 (2015), pp. 1116–1122. issn: 1476-4660. doi:
10.1038/nmat4402.

[Kha21] S. Khan et al. “Coupling microwave photons to topological spin
textures in Cu2OSeO3”. In: Phys. Rev. B 104 (10 Sept. 2021),
p. L100402. doi: 10.1103/PhysRevB.104.L100402.

[Kit48] C. Kittel. “On the Theory of Ferromagnetic Resonance Absorp-
tion”. In: Phys. Rev. 73 (2 Jan. 1948), pp. 155–161. doi: 10.
1103/PhysRev.73.155.

[Kli17] S. Klingler et al. “Gilbert damping of magnetostatic modes in a
yttrium iron garnet sphere”. In: Appl. Phys. Lett. 110.9 (2017),
p. 092409. doi: 10.1063/1.4977423.

[Kör17] H. S. Körner, J. Stigloher, and C. H. Back. “Excitation and
tailoring of diffractive spin-wave beams in NiFe using nonuni-
form microwave antennas”. In: Phys. Rev. B 96 (10 Sept. 2017),
p. 100401. doi: 10.1103/PhysRevB.96.100401.

201

https://doi.org/10.1038/srep03160
https://doi.org/10.1038/ncomms6376
https://doi.org/10.1126/science.aaa1442
https://doi.org/10.1126/science.aaa1442
https://doi.org/https://doi.org/10.1016/j.jmr.2004.03.018
https://doi.org/https://doi.org/10.1016/j.jmr.2004.03.018
https://doi.org/10.1063/1.2197087
https://doi.org/10.1038/nmat4752
https://doi.org/10.1143/JPSJ.56.3635
https://doi.org/10.1038/nmat4402
https://doi.org/10.1103/PhysRevB.104.L100402
https://doi.org/10.1103/PhysRev.73.155
https://doi.org/10.1103/PhysRev.73.155
https://doi.org/10.1063/1.4977423
https://doi.org/10.1103/PhysRevB.96.100401


Bibliography

[Kov14] A. A. Kovalev. “Skyrmionic spin Seebeck effect via dissipative
thermomagnonic torques”. In: Phys. Rev. B 89 (24 June 2014),
p. 241101. doi: 10.1103/PhysRevB.89.241101.

[Kra14] M. Krawczyk and D. Grundler. “Review and prospects of
magnonic crystalsÂ and devices with reprogrammable band
structure”. In: J. Phys. Condens. Matter 26.12 (Mar. 2014),
p. 123202. doi: 10.1088/0953-8984/26/12/123202.

[Kru10] V. V. Kruglyak, S. O. Demokritov, and D. Grundler. “Magnon-
ics”. In: J. Phys. D. Appl. Physi. 43.26 (June 2010), p. 264001.
doi: 10.1088/0022-3727/43/26/264001.

[Lan35] L. Landau and E. Lifshitz. “On the theory of the dispersion
of magnetic permeability in ferromagnetic bodies”. In: Phys. Z.
Sowjet. 8, 153 (1935). Ed. by L.P. PITAEVSKI, pp. 51–65. doi:
https://doi.org/10.1016/B978-0-08-036364-6.50008-9.

[Lee21] O. Lee et al. “Tunable gigahertz dynamics of low-temperature
skyrmion lattice in a chiral magnet”. In: J. Phys. Condens. Mat-
ter (2021). issn: 0953-8984.

[Len11] B. Lenk et al. “The building blocks of magnonics”. In: Phys.
Rep. 507.4 (2011), pp. 107–136. issn: 0370-1573. doi: https:
//doi.org/10.1016/j.physrep.2011.06.003.

[Lin14] S. Z. Lin et al. “ac Current Generation in Chiral Magnetic In-
sulators and Skyrmion Motion induced by the Spin Seebeck Ef-
fect”. In: Phys. Rev. Lett. 112 (18 May 2014), p. 187203. doi:
10.1103/PhysRevLett.112.187203.

[Liu06] X. Liu and J. K. Furdyna. “Ferromagnetic resonance in
Ga1−xMnxAs dilute magnetic semiconductors”. In: J. Phys.
Condens. Matter 18.13 (Mar. 2006), R245–R279. doi:
10.1088/0953-8984/18/13/r02.

[Liu13] Y. H. Liu, Y. Q. Li, and J. H. Han. “Skyrmion dynamics in
multiferroic insulators”. In: Phys. Rev. B 87 (10 Mar. 2013),
p. 100402. doi: 10.1103/PhysRevB.87.100402.

[Mac18] D. Maccariello et al. “Electrical detection of single magnetic
skyrmions in metallic multilayers at room temperature”. In: Nat.
Nanotechnol. 13.3 (2018), pp. 233–237. issn: 1748-3395. doi: 10.
1038/s41565-017-0044-4.

[Mah20] A. Mahmoud et al. “Introduction to spin wave computing”. In: J.
Appl. Phys. 128.16 (2020), p. 161101. doi: 10.1063/5.0019328.

[Mai11] A. Maisuradze et al. “µSR investigation of magnetism and mag-
netoelectric coupling in Cu2OSeO3”. In: Phys. Rev. B 84 (6 Aug.
2011), p. 064433. doi: 10.1103/PhysRevB.84.064433.

202

https://doi.org/10.1103/PhysRevB.89.241101
https://doi.org/10.1088/0953-8984/26/12/123202
https://doi.org/10.1088/0022-3727/43/26/264001
https://doi.org/https://doi.org/10.1016/B978-0-08-036364-6.50008-9
https://doi.org/https://doi.org/10.1016/j.physrep.2011.06.003
https://doi.org/https://doi.org/10.1016/j.physrep.2011.06.003
https://doi.org/10.1103/PhysRevLett.112.187203
https://doi.org/10.1088/0953-8984/18/13/r02
https://doi.org/10.1103/PhysRevB.87.100402
https://doi.org/10.1038/s41565-017-0044-4
https://doi.org/10.1038/s41565-017-0044-4
https://doi.org/10.1063/5.0019328
https://doi.org/10.1103/PhysRevB.84.064433


Bibliography

[Mai18] H. Maier-Flaig et al. “Note: Derivative divide, a method for the
analysis of broadband ferromagnetic resonance in the frequency
domain”. In: Rev. Sci. Instrum. 89.7 (2018), p. 076101. doi: 10.
1063/1.5045135.

[Man12] S. Mansfeld et al. “Spin Wave Diffraction and Perfect Imaging
of a Grating”. In: Phys. Rev. Lett. 108 (4 Jan. 2012), p. 047204.
doi: 10.1103/PhysRevLett.108.047204.

[Man20] A.O. Mandru et al. “Coexistence of distinct skyrmion phases
observed in hybrid ferromagnetic/ferrimagnetic multilayers”. In:
Nat. Commun. 11.1 (2020), p. 6365. issn: 2041-1723. doi: 10.
1038/s41467-020-20025-2.

[Mey14] S. A. Meynell et al. “Surface twist instabilities and skyrmion
states in chiral ferromagnets”. In: Phys. Rev. B 90 (1 July 2014),
p. 014406. doi: 10.1103/PhysRevB.90.014406.

[Mey19] S. Meyer et al. “Isolated zero field sub-10 nm skyrmions in ul-
trathin Co films”. In: Nat. Commun. 10.1 (2019), p. 3823. issn:
2041-1723. doi: 10.1038/s41467-019-11831-4.

[Mil13] P. Milde et al. “Unwinding of a Skyrmion Lattice by Magnetic
Monopoles”. In: Science 340.6136 (May 2013), pp. 1076–1080.
doi: 10.1126/science.1234657.

[Moc12] M. Mochizuki. “Spin-Wave Modes and Their Intense Excitation
Effects in Skyrmion Crystals”. In: Phys. Rev. Lett. 108 (1 Jan.
2012), p. 017601. doi: 10.1103/PhysRevLett.108.017601.

[Moc14] M. Mochizuki et al. “Thermally driven ratchet motion of a
skyrmion microcrystal and topological magnon Hall effect”. In:
Nat. Mater. 13.3 (2014), pp. 241–246. issn: 1476-4660. doi:
10.1038/nmat3862.

[Moo21] S. H. Moody et al. “Experimental evidence of a change of
exchange anisotropy sign with temperature in Zn-substituted
Cu2OSeO3”. In: Phys. Rev. Res. 3 (4 Dec. 2021), p. 043149.
doi: 10.1103/PhysRevResearch.3.043149.

[Mor60] T. Moriya. “New Mechanism of Anisotropic Superexchange In-
teraction”. In: Phys. Rev. Lett. 4 (5 Mar. 1960), pp. 228–230.
doi: 10.1103/PhysRevLett.4.228.
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