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Abstract
When the dynamics of systems are unknown, supervised machine learning techniques are com-
monly employed to infer models from data. Gaussian process (GP) regression is a particularly pop-
ular learning method for this purpose due to the existence of prediction error bounds. Moreover, GP
models can be efficiently updated online, such that event-triggered online learning strategies can
be pursued to ensure specified tracking accuracies. However, existing trigger conditions must be
able to be evaluated at arbitrary times, which cannot be achieved in practice due to non-negligible
computation times. Therefore, we first derive a delay-aware tracking error bound, which reveals
an accuracy-delay trade-off. Based on this result, we propose a novel event trigger for GP-based
online learning with computational delays, which we show to offer advantages over offline trained
GP models for sufficiently small computation times. Finally, we demonstrate the effectiveness of
the proposed event trigger for online learning in simulations.
Keywords: Gaussian process regression, learning-based control, computational delay, event trig-
gered learning, online learning

1. Introduction

The control of systems with unknown or uncertain dynamics is a challenging problem arising in
many applications such as drones (Andersson et al., 2017), underwater vehicles (Yan et al., 2019)
and robotic rehabilitation (Lu et al., 2013). In order to overcome this challenge, supervised machine
learning methods are frequently applied to learn models of the unknown components. In particular
when safety or performance guarantees are required for control, Gaussian process (GP) regression
(Williams and Rasmussen, 2006) is popular for model inference.

GP models have been employed together with a wide range of control techniques such as feed-
back linearization (Greeff and Schoellig, 2021), sliding mode control (Lima et al., 2020), control
barrier function approaches (Jagtap et al., 2020), and model predictive control (Maiworm et al.,
2021). By combining Lyapunov stability theory (Khalil, 2002) with GP prediction error bounds
(Srinivas et al., 2012; Lederer et al., 2019), data-dependent safety and performance guarantees can
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often be derived. When no data is available before system operation, GP models of the dynamics
can be efficiently learned online via iterative model updates (Nguyen-Tuong et al., 2009). While
this can be done using time-triggered model updates (Meier et al., 2016), event-triggered learning
strategies offer the beneficial property that they can ensure the satisfaction of prescribed accuracy
guarantees, such that desired tracking and safety guarantees of the controller are ensured by design
(Umlauft and Hirche, 2019; Castañeda et al., 2022). However, these guarantees crucially rely on the
capability to evaluate the triggering conditions at arbitrary times, which is generally not possible
in practice, in particular since GP model updates and predictions take non-negligible computation
time (Lederer et al., 2021). Therefore, GP models introduce a computational delay in control loops.

While the control of delayed systems is a well-understood problem in classical control theory
(Fridman, 2014), it has received little attention in the context of learning-based control. When linear
regression is employed with nonlinear features, different forms of delays such as state (Ho et al.,
2005) and input delays (Li et al., 2018) have been analyzed. However, these results do not extend
beyond linear regression, such that they are not applicable to GP models, even though computa-
tional delays can be modeled as time-varying input delay. Delays in GP models have, to the best of
our knowledge, only been considered in the context of sampled-data control, e.g., realized through
a self-triggered update of control inputs (Dhiman et al., 2021). However, these approaches do not
consider the problem of designing event-triggers for model updates. Moreover, they only take into
account the effect of zero-order hold GP predictions on their safety guarantees, but ignore their de-
layed availability due to the required computation time. Therefore, modeling learning-based control
as sampled-data system does not sufficiently address the challenges caused by computational delays.

In this work, we consider the problem of designing an event trigger for GP-based online learning
with computational delays. For this purpose, we quantitatively analyze the effect of computational
delays on tracking error bounds, which reveals a trade-off between prediction accuracy and com-
putational delay. Based on this result, a trigger condition for online model updates is designed,
such that a specified tracking error is guaranteed. Since online model updates generally increase
the computation time, we show that event-triggered learning offers advantages when no sufficiently
accurate GP model can be trained offline. Finally, numerical simulations demonstrate the practical
importance of the derived theories and the effectiveness of the proposed online learning method.

The remainder of this paper is structured as follows. Section 2 defines the problem setting. The
control performance with computational delays is analyzed in Section 3. In Section 4, the event-
triggered model update strategy is proposed. Numerical simulations are provided to illustrate the
proposed method in Section 5. Finally, Section 6 concludes this paper.

2. Problem Setting

In this paper, we consider plants described by m-th order dynamical systems in the controllable
canonical form with unknown dynamics, i.e.,

q̇1 = q2, q̇2 = q3, · · · q̇m = f(x) + u, (1)

where x = [qT1 , · · · , qTm]T ∈ X ⊂ Rmn denotes the state composed of vectors qi ∈ Rn, i =
1, · · · ,m with dimension n ∈ N+ and u ∈ Rn is the control input. This structure is found in
many practical systems, e.g., in Euler-Lagrange dynamics such as robotic manipulators, drones,
and underwater vehicles. While the structure of these systems is often known, accurate knowledge
of the function f(·) = [f1(·), . . . , fn(·)]T , fi : X → R, i = 1, . . . , n is usually not available, e.g.,
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due to a high system complexity or unknown embedded environmental uncertainties. Therefore, we
assume f(·) to be unknown, but pose the following assumption on it.

Assumption 1 The unknown function f : X → Rn is Lipschitz continuous on the compact domain
X with Lipschitz constant Lf induced by the Euclidean norm, i.e. ∥∇f(x)∥ ≤ Lf .

This assumption or even stronger versions requiring global differentiability is commonly found
since they ensure the existence of unique solutions of the differential equation (1) Khalil (2002).
The required local Lipschitz continuity is a very natural property of many physical systems which
usually evolve smoothly over time. Therefore, Assumption 1 is not restrictive in practice.

The goal is to track a continuously differentiable and bounded reference trajectory xd : R→
Rmn with the state x. In order to ensure the possibility of exact tracking, we assume reference
trajectories of the form xd=[qTd,1, . . . , q

T
d,m]T , qd,i∈Rn, i=1, . . . ,m defined by q̇d,1 = qd,2, . . .,

q̇d,m = qd,m+1. For achieving a high tracking accuracy, we employ a control law of the form

u(t) = q̇d,m(t)− f̂(t) +
m∑
i=1

Λiei(t), (2)

where ei(t) = qi(t) − qd,i(t) ∈ Rn, i = 1, 2, . . . ,m are tracking errors and Λi ∈ Rn×n, i =

1, . . . ,m are control gain matrices. The function f̂(·) : R → Rn is a compensation of unknown
function f(·). This compensation can be realized by inferring a model µ : X → Rn of f(·), which
requires the capability to generate training data as formalized in the following.

Assumption 2 Noiseless measurements of the state x(ι) = x(tι) and noisy measurements of the
highest derivative y(ι) = q̇m(tι) + w(ι) can be taken at arbitrary time instances tι with ι ∈ N0.
The observation noise w(ι) ∼ N (0,diag(σ2

o,1, · · · , σ2
o,n)) with σo,i ∈ R+, i = 1, · · · , n is assumed

Gaussian, independent and identically distributed.

This assumption requires the exact measurement of the system state, which is a common require-
ment for the design of nonlinear control laws such as feedback linearization (Khalil, 2002). More-
over, it admits Gaussian perturbed observations of the derivative q̇m, which for practical reasons
often has to be approximated, e.g., using finite differences. Therefore, this assumption is commonly
found when dealing with unknown dynamics (Koller et al., 2018; Greeff and Schoellig, 2021).

Moreover, Assumption 2 allows the generation of data during active control, such that a model
µ(·) can be learned on-line. When real-world algorithms are used for this purpose, they need a
considerable amount of time to update the model µι(·) using new data (x(ι+1),y(ι+1))1. Moreover,
the evaluation of such models at a state x often takes a non-negligible amount of time. Therefore,
we cannot employ µ(x(t)) as compensation f̂(t) in practice, but need to work with the delayed
value f̂(t) = µ(x(tκ(t))), where

tk+1 = tk +∆(tk) κ(t) = argmax
k∈N

tk+1 < t (3)

and ∆ : R → R+ denotes the overall computation time. Note that the number of training samples
ι at time t does generally not correspond to the number of previous model evaluations κ(t). In
order to be able to determine the worst-case impact of the computation time ∆(·) on the tracking
accuracy, we require the following assumption.

1. We use an index ι whenever necessary to emphasize the number of previously generated training samples.
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Assumption 3 The overall computation time ∆(t) is bounded by a finite constant ∆̄ ∈ R+ and its
induced delay only affects the compensation f̂(t).

Since a bounded computation time merely requires the termination of a learning algorithm after a
finite number of computations, this assumption is satisfied by most practically employed methods.
Moreover, the limitation of the induced delay to the compensation f̂(t) can be easily realized in
practice by implementing the learned model in a parallel, non-blocking, process. Therefore, As-
sumption 3 does not pose a severe restriction. Based on these assumptions, the controller (2) yields
the error dynamics

ė(t) = Ae(t) +B
(
f(x(t))− µ(x(tκ(t)))

)
, (4)

where e = x− xd, the matrices A ∈ Rmn×mn and B ∈ Rmn×n are defined as

A =

[
0(m−1)n×n I(m−1)n

Λ1 [Λ2, · · · ,Λm]

]
B =

[
0(m−1)n×n

In

]
. (5)

In this work, we consider the problem of ensuring an upper bound ē ∈ R+ for the tracking error
e = x−xd with high probability using a control law of the form (2) by designing an event-triggered
data selection strategy of the form

tι+1 = min
tk>tι

tk, such that ∥µ(x(tk))− f(x(tk))∥ ≥ υ∗(tk, ē, ∆̄) (6)

where υ∗(·) : R× R+ → R+ denotes the trigger threshold function.

3. Tracking Error Bounds with Delayed Gaussian Process Predictions

Since the derivation of tracking error guarantees requires model error bounds, we consider Gaussian
process regression as a machine learning method in this paper. The foundations of GP regression
are outlined together with a prediction error bound in Section 3.1. Based on this bound, tracking
accuracy guarantees for control with delayed model predictions are derived in Section 3.2.

3.1. Gaussian Process Regression

Gaussian process regression is a modern machine learning technique, which can be used for the
supervised inference of unknown functions. For simplicity, we assume for the moment n = 1, such
that the unknown function f(·) in (1) is scalar. Then, a Gaussian process induces a distribution
over f(·), denoted as f(·) ∼ GP(m(·), k(·, ·)), which is completely specified by the prior mean
m : X → R and the kernel k : X × X → R0,+. The prior mean m(·) can be used to incorporate
parametric models into the regression. Since they are often not available, a zero prior m(x) = 0,
∀x ∈ X is frequently used, which we also assume in the following without loss of generality. The
kernel k(·, ·) reflects the prior covariance between evaluations of f(·) at different states x and can
encode information such as periodicity or symmetry of f(·).

When N ∈ N measurements x(ι), y(ι), ι = 1, . . . , N satisfying Assumption 2 are available,
this GP prior can be employed for regression using Bayesian principles. This merely requires the
computation of the posterior distribution by conditioning the prior on the training data, which yields
a Gaussian distribution with mean and variance

µ(x) = kT
X(K + σ2

oI)
−1y, σ2(x) = k(x,x)− kT

X(K + σ2
oI)

−1kX , (7)
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at every test point x ∈ X due to the Gaussian distribution of all involved random variables. For nota-
tional simplicity, the training targets y(ι) are concatenated here into a vector y = [y(1), · · · , y(N)]T

and the kernel gram matrix and vector are defined as K = [k(x(i),x(j))]i,j=1,...,N and kX =
[k(x(1),x), · · · , k(x(N),x)]T , respectively. The posterior mean µ(·) can be used as a model of
the unknown function f(·), while the variance σ2(·) serves as a measure of epistemic uncertainty.
In order to ensure that the epistemic uncertainty properly reflects the potential of model errors, we
require the following assumption.

Assumption 4 The unknown function f(·) is a sample of a zero-mean prior GP with stationary,
Lipschitz continuous and monotonically decreasing kernel k(·, ·).

A prior GP satisfying Assumption 4 is flexible enough to represent the unknown function with suit-
able hyperparameters. Ensuring appropriate kernel structures can often be achieved in practice, e.g.,
by choosing universal kernels such as the squared exponential covariance function, which allow to
approximate continuous functions arbitrarily well (Micchelli et al., 2006). The hyperparameters of
such kernels can be obtained in practice via suitable hyperparameter tuning methods, e.g., (Capone
et al., 2022). Therefore, Assumption 4 is not restrictive in practice.

Based on this assumption, the following prediction error bound for GP regression can be shown.

Lemma 1 (Lederer et al. (2019)) Consider an unknown function f(·) satisfying Assumptions 1
and 4. Moreover, assume that N ∈ N measurements x(ι), y(ι) are available, which satisfy Assump-
tion 2. Then, for every τ ∈ R+ and δ ∈ (0, 1) ⊂ R, the prediction error of GP regression satisfies

P (|f(x)− µ(x)| ≤ ηδ(x), ∀x ∈ X) ≥ 1− δ, ηδ(x) =
√
βδσ(x) + γδ, (8)

on a compact domain X ⊂ Rmn, where

βδ = 2

nm∑
j=1

log

(√
nm

2τ
(x̄j − xj) + 1

)
− 2 log δ, γδ =

(√
βδLσ + Lf + Lµ

)
τ, (9)

with x̄j = maxx∈X xj , xj = minx∈X xj , xj is the j-th dimension of x, and Lσ and Lµ denote the
Lipschitz constants of standard deviation σ(·) and the mean µ(·).

This lemma allows to bound the error of a learned GP model uniformly on a compact domain X. The
Lipschitz constants Lσ and Lµ required to the compute of error bound η(·) can be straightforwardly
determined as shown in (Lederer et al., 2021). Therefore, Theorem 1 provides a practically usable,
state and data dependent error bound for models learned using GP regression.

3.2. Performance Guarantees for Learning-Based Control with Delayed Predictions

In order to apply GP regression for learning a model of the unknown function f(·)=[f1(·). . .fn(·)]T
in (1) for the general case n ≥ 1, we perform GP regression for each component fi(·), i = 1, . . . , n,
independently. Afterwards, we concatenate the result in vectors µ(·) = [µ1(·) . . . µn(·)]T and
σ(·) = [σ1(·) . . . σn(·)]T , where µi(·) and σi(·) denote the mean and standard deviation of the GP
trained using measurements of fi(·). This allows us to directly employ the concatenated mean µ(·)
in the control law (2) by setting f̂(t) = µ(x(tκ(t)), where tκ(t) denotes the last model evaluation
time defined through (3). Since this allows us to bound the model error using Theorem 1, we employ
Lyapunov stability theory to analyze the tracking performance. For this purpose, we use a common
quadratic Lyapunov function V (e(t)) = eT (t)Pe(t) with a symmetric, positive definite matrix
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P ∈ Rmn×mn, which is the solution of the continuous algebraic Riccati equation ATP + PA =
−Q for a given positive definite matrix Q ∈ Rmn×mn. This common Lyapunov function allows us
to derive an tracking error bound as shown in the following theorem.

Theorem 2 Consider a system (1), where f(·) is an unknown nonlinearity consisting of scalar
functions fi(·), i = 1, . . . , n, which satisfy Assumptions 1 and 4. Assume that n GPs are trained
with N ∈ N measurements x(ι), y(ι) satisfying Assumption 2, which results in the concatenated
mean µ(·). Assume that the computation time ∆(·) of GP predictions satisfies Assumption 3, such
that the control law (2) is employed with f̂(t) = µ(x(tκ(t)) for tκ(t) defined in (3) and control
gains Λi inducing a Hurwitz matrix A in (5). Assume that the computation time bound ∆̄ satisfies
∆̄ < 1/(2Lf ), and the changing rate of the system state ∥ẋ∥ is probabilistic bounded by F ∈ R+

with probability at least (1 − δ)n. Let the system initializes at t = 0 with ∥e(0)∥ = 0. Then the
tracking error is bounded by

∥x(t)− xd(t)∥ ≤ ē = χξ
(
2LfF ∆̄ + η̄δ

)
∀t ∈ R0,+ (10)

with probability of at least 2(1 − δ)n − 1, where ξ = 2∥P ∥∥Q−1∥, χ2 = ∥P−1∥∥P ∥, χ > 0,
η̄δ = supx∈X ∥[ηδ,1(x) . . . ηδ,n(x)]

T ∥.

Proof In this work, the controlled system (4) is regarded as a switched continuous time system.
The proof follows the Lyapunov stability theory (Liberzon, 2003), where the time derivative of the
common Lyapunov function V (e(t)) = eTPe is investigated as follows

V̇ (t) =eT (t)(ATP + PA)e(t) + 2e(t)TPB
(
f(x(t))− µ(x(tκ(t)))

)
=− eT (t)Qe(t) + 2e(t)TPB

(
f(x(t))− µ(x(tκ(t)))

)
Considering the Lipschitz continuity of f(·) in Assumption 1 and the probabilistic prediction error
bound from (8) for n GPs, the time derivative V̇ (t) is bounded with probability at least (1− δ)n by

V̇ (t) ≤ −∥Q−1∥−1∥e(t)∥2 + 2∥e(t)∥∥P ∥
(
∥f(x(t))− f(x(tκ(t)))∥

+ ∥f(x(tκ(t)))− µ(x(tκ(t)))∥
)

≤ −∥Q−1∥−1∥e(t)∥2 + 2∥e(t)∥∥P ∥
(
Lf∥x(t)− x(tκ(t))∥+ ηδ(x(tκ(t)))

)
. (11)

Applying mean value theorem on ∥x(t) − x(tκ(t))∥ and probabilistic bounded state changing rate
∥ẋ∥, the inequality

V̇ (t) ≤ −∥Q−1∥−1∥e(t)∥2 + 2∥e(t)∥∥P ∥
(
LfF (t− tκ(t)) + ηδ(x(tκ(t)))

)
(12)

holds with probability at least 2(1 − δ)n − 1 using the union bound. Note that t − tκ(t) ≤ 2∆̄ due
to the bounded computation time from Assumption 3, then V̇ (t) is written as

V̇ (t) ≤ −∥Q−1∥−1∥e(t)∥2 + 2∥e(t)∥∥P ∥
(
2LfF ∆̄ + η̄δ

)
.

The negativity of V̇ (t) is guaranteed when ∥e(t)∥ > ξ
(
2LfF ∆̄ + η̄δ

)
, then the uniform tracking

error bound in Theorem 2 is obtained.

The existence of the tracking error bound depends on the finite predictable change of the states,
which is reflected by the bounded state changing rate ∥ẋ∥ in the closed-loop behaviour. The state
changing rate for controlled system (1) using the learning-based controller (2) with GP regression
is probabilistic bounded as shown in the following lemma.
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Lemma 3 Consider a system (1), where f(·) is an unknown nonlinearity consisting of scalar
functions fi(·), i = 1, . . . , n, which satisfy Assumptions 1 and 4. Assume that n GPs are trained
with N ∈ N measurements x(ι), y(ι) satisfying Assumption 2, which results in the concatenated
mean µ(·). Assume that the computation time ∆(·) of GP predictions satisfies Assumption 3, such
that the control law (2) is employed with f̂(t) = µ(x(tκ(t)) for tκ(t) defined in (3) and control
gains Λi inducing a Hurwitz matrix A in (5). Assume that the computation time bound ∆̄ satisfies
∆̄ < 1/(2Lf ), the changing rate of the system state ∥ẋ∥ is probabilistic bounded by

F =
1

1− 2Lf ∆̄

(
∥A∥ sup

x∈X
∥x∥+ ∥Λ̄∥ sup

t∈R0,+

∥xd(t)∥+ sup
t∈R0,+

∥q̇d,m(t)∥+ η̄δ

)
, (13)

for all x ∈ X with probability at least (1− δ)n.

Proof Substituting the control law (2) with the prediction µ(x(tκ(t))) into the system (1), then, the
closed loop dynamical system is written as

ẋ(t) =Ax(t) +B
(
−
[
Λ1 · · · Λm

]
xd(t) +

(
f(x(t))− µ(x(tκ(t)))

)
+ q̇d,m(t)

)
.

Considering the probabilistic bounded prediction error from (8) and ∥B∥ = 1, the norm of ẋ is
bounded by

∥ẋ(t)∥ ≤ ∥A∥∥x(t)∥+∥Λ̄∥∥xd(t)∥+∥q̇d,m(t)∥+Lf∥x(t)−x(tκ(t))∥+∥ηδ(x(tκ(t)))∥, (14)

with probability at least (1 − δ)n. Taking ∥ηδ(x)∥ ≤ η̄δ,∀x ∈ X and applying the mean value
theorem on ∥x(t)− x(tκ(t))∥, the supremum of ∥ẋ(t)∥ over t ∈ R0,+ is bounded by

sup
t∈R0,+

∥ẋ(t)∥ ≤ ∥A∥ sup
t∈R0,+

∥x(t)∥+ ∥Λ̄∥ sup
t∈R0,+

∥xd(t)∥+ sup
t∈R0,+

∥q̇d,m(t)∥ (15)

+ Lf sup
t∈R0,+

∥ẋ(t)∥(t− tκ(t)) + η̄δ

≤ ∥A∥ sup
x∈X

∥x(t)∥+ ∥Λ̄∥ sup
t∈R0,+

∥xd(t)∥+ sup
t∈R0,+

∥q̇d,m(t)∥+ 2Lf ∆̄ sup
t∈R0,+

∥ẋ(t)∥+ η̄δ,

with probability at least (1 − δ)n. Moving the terms related to supt∈R0,+
∥ẋ(t)∥ to the left hand

side, we have

(1− 2Lf ∆̄) sup
t∈R0,+

∥ẋ(t)∥ ≤ ∥A∥ sup
x∈X

∥x(t)∥+ ∥Λ̄∥ sup
t∈R0,+

∥xd(t)∥+ η̄δ + sup
t∈R0,+

∥q̇d,m(t)∥.

The upper bound of ∥ẋ(t)∥ exists if ∆̄ < 1/(2Lf ), and then the expression of the upper bound F
in Theorem 3 is obtained by considering supt∈R0,+

∥ẋ(t)∥ ≤ supx∈X ∥ẋ(t)∥.

Theorem 2 provides an intuitive insight into the sources of the tracking error. On the one hand,
the accuracy of the GP model directly influences the tracking error as indicated by the model error
bound η̄δ, which can be reduced using more training data. On the other hand, lower computation
time measured by ∆̄ can also decrease the tracking error bound ē. Since the computation time of
GP predictions for µ(·) depends linearly (O(N)) on the number of training samples N , these two
values are inherently coupled, such that a suitable trade-off for the training set size N must be found.

4. Event-Triggered Online Learning under Computation Delays

Since the tracking error bound (10) increases with the computational delay and thus with the data
set size in practice, data-efficiency is of crucial importance to ensure a high accuracy. Therefore,
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training samples should be carefully selected, which can be efficiently performed online by updating
the model at the times when the model uncertainty is too high to guarantee the desired tracking error
bound. This approach leads to the event-triggered online learning strategy derived in Section 4.1.
Since such an online data generation process leads to potentially infinitely growing data sets, we
analyze the effect of data deletion strategies on the derived guarantees in Section 4.2. In Section 4.3,
we finally investigate the effect of the practically increased computation time due to online model
updates to derive conditions when offline learning provides better tracking accuracy guarantees.

4.1. Event-triggered Model Update Strategy

While the training data cannot directly be determined using (6) due to the unknown dynamics f(·),
we can use the GP prediction error bound (8) as a proxy. This leads to the trigger condition

∥ηδ(x(tk))∥ ≥ υ(tk, ē, ∆̄), (16)

which can be interpreted as a conservative, but implementable version of the right side of (6). Note
that this trigger condition cannot be evaluated at arbitrary times t ∈ R0,+ as in previous approaches
(Umlauft and Hirche, 2019; Jiao et al., 2022) due to the considered non-negligible time required
for the computation of the GP variance σ2(x) and thus ∥ηδ(x(tk))∥. Instead, all computations are
started at discrete times tk, such that the trigger condition has only access to x(tk), and the new
evaluation of the GP mean µ(·) is available earliest at tk + ∆(tk). These restrictions need to be
anticipated in the design of the event trigger as shown in the following theorem.

Theorem 4 Consider a system (1), where f(·) is an unknown nonlinearity consisting functions
fi(·), i = 1, . . . , n which satisfies Assumptions 1 and 4. Assume that measurements x(ι), y(ι)

satisfying Assumption 2 are used in each of the n GPs, which results the concatenated mean µ(·)
and standard deviation σ(·). Assume that the computation time ∆(·) satisfying Assumption 3 is
bounded by ∆̄ < 1/(2Lf ), such that the control law (2) is employed with f̂(t) = µ(x(tκ(t)) for
tκ(t) defined in (3) and control gains Λi inducing a Hurwitz matrix A in (5). Pick ē ≥ 2χ

(
F +Fd+

ξLfF
)
∆̄ + χξη

δ
with η

δ
= ∥[η

δ,1
, · · · , η

δ,n
]T ∥, η

δ,i
=

√
βδσo,i + γδ,i, and execute model updates

at times tι defined by the event trigger (16) with threshold

υ(tk, ē, ∆̄) = ξ−1max(∥e(tk)∥, χ−1ē)− 2
(
ξ−1(F + Fd) + LfF

)
∆̄, (17)

where Fd ≥ ∥ẋd(t)∥,∀t ∈ R0,+. Then, the tracking error is bounded by ē with probability at least
2(1− δ)n − 1, if the system initializes with ∥e(0)∥ ≤ ē.

Proof According to the definition of the uniform bound for switched system (Liberzon, 2003), we
want to prove the negativity of V̇ (t) outside the tracking error bound. The proof is separated into the
discussion of two different cases at time tκ(t), investigating the sign of V̇ (t) when ∥e(t)∥ ≥ χ−1ē.
First we consider the case with ∥e(tκ(t))∥ > 2

(
F + Fd + ξLfF

)
∆̄ + ξ∥ηδ(x(tκ(t)))∥. The time

derivative of the Lyapunov function V̇ (t) can be relaxed using the information at tκ(t) through

∥e(t)∥ ≥ ∥e(tκ(t))∥ − ∥e(t)− e(tκ(t))∥ (18)

≥ ∥e(tκ(t))∥ − (∥x(t)− x(tκ(t))∥+ ∥xd(t)− xd(tκ(t))∥)
≥ ∥e(tκ(t))∥ − (F + Fd)(t− tκ(t)) ≥ ∥e(tκ(t))∥ − 2(F + Fd)∆̄.

8
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Then the relaxed V̇ (t) is expressed as

V̇ (t) ≤ −∥Q−1∥−1∥e(t)∥
(
∥e(tκ(t))∥ − 2

(
F + Fd + ξLfF

)
∆̄− ξ∥ηδ(x(tκ(t)))∥

)
,

and the negativity is obvious in this case.
If the tracking error at tκ(t) satisfies χ−1ē ≤ ∥e(tκ(t))∥ ≤ 2

(
F+Fd+ξLfF

)
∆̄+ξ∥ηδ(x(tκ(t)))∥,

the data selection based on (16) with (17) is activated since

∥ηδ(x(tκ(t)))∥ > ξ−1∥e(tk)∥ − 2
(
ξ−1(F + Fd) + LfF

)
∆̄ = υ(tk, ē, ∆̄). (19)

Then new measurements x(κ(t)), y(κ(t)) are added into the training data, and the prediction error
bound decreases at least below η

δ,i
for each dimension i = 1, · · · , n, since

σ2
i (x) ≤ ki(0)−

k2i (0)

ki(0) + σ2
o,i

=
ki(0)

ki(0) + σ2
o,i

σ2
o,i < σ2

o,i. (20)

After the model update, the non-positive time derivative V̇ (t) is proved through

V̇ (t) ≤ −∥Q−1∥−1∥e(t)∥
(
∥e(tκ(t))∥ − 2

(
F + Fd + ξLfF

)
∆̄− ξη

δ
(x(tκ(t)))

)
.

Overall, the non-positivity of V̇ (t) is proved with the proposed event-triggered model update
strategy (16) with (17) for all t ∈ R0,+ when ∥e(t)∥ ≥ χ−1ē. In addition, the tracking error bound
in Theorem 4 is derived by considering the quadratic common Lyapunov function.

Due to the delayed impact of model updates, the trigger threshold (17) cannot guarantee arbitrarily
small tracking error bounds. Moreover, the time ∆(tk) between two potential training samples pre-
vents arbitrarily small prediction error bounds ∥ηδ(x)∥, which also influences the achievable track-
ing error bound. Despite these restrictions, the trigger threshold (17) exhibits the intuitive behavior
that smaller desired error bounds yield more frequent model updates as indicated by a smaller value
υ(tk, ē, ∆̄). Moreover, a higher computation time bound ∆̄ has a similar effect as the trigger antic-
ipates a potential future increase in the model and tracking error. Therefore, Theorem 4 provides an
effective method for ensuring a desired tracking error bound ē in a practically relevant setting.

4.2. Tracking Error Guarantees with Data Deletion

When data is generated online using the event-trigger (17), the data set size N can possibly grow
infinitely, which would imply an unbounded computation time ∆(·). Since this must be avoided in
practice, a common strategy for online learning with GPs is the deletion of previous samples, such
that the training set size N and the computation time ∆(·) remain bounded. This can be realized,
e.g., by deleting the oldest data points (Meier and Schaal, 2016) or through information-theoretic
criteria (Han and Yi, 2021). Similarly as in (Umlauft and Hirche, 2019), our guarantees for event-
triggered online learning are not affected by such deletion strategies.

Corollary 5 Under the assumptions of Theorem 4, if model updates are executed at times tι defined
through the event trigger (16) with threshold (17) after an arbitrary deletion strategy has been used
for removing a data sample from the training set, then, the tracking error is bounded by ē for all
∥e(0)∥ ≤ ē with probability at least 2(1− δ)n − 1.

Proof This follows the definition of η, which considers in the worst case only the newly updated
data sample is used for prediction Any additional data samples benefit the prediction accuracy by

9
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strictly decreasing the posterior variance under positive noise variance σ2
o,i, i= 1,· · ·, n (Vivarelli,

1998).

This corollary ensures that we can ensure Assumption 3 in practice by limiting the admissible data
set size. While it allows the application of arbitrary deletion strategies without changes to the track-
ing error bound, the specific choice can still have a significant impact on the behavior of the control
system. For example, poor deletion strategies, such as the deletion of all existing data, can signif-
icantly increase the number of triggered model updates. If the induced switching is excessive and
the discrete steps in the control law become too large, real-world actuator can fail to follow the con-
trol signal with negative effects on the tracking accuracy. Therefore, a suitable method such as the
established approach of deleting the oldest data point (Meier and Schaal, 2016) should be employed.

4.3. Comparison between Offline Training and Online Model Updates

While we abstractly assume the existence of computation time bounds ∆̄ both for offline training in
Theorem 2 and for online updates in Theorem 4, the actual values of this bound significantly differ
between these two scenarios in practice. The reason for this is the requirement of the additional
evaluation of the GP variance σ2(·) and the model update for event-triggered learning, which cause
a quadratic complexity O(N2). This leads to generally higher computation times ∆(·) for online
learning in comparison to offline training, for which only mean evaluations (O(N)) have to be
computed online. Therefore, online learning cannot always be ensured to provide a benefit.

Corollary 6 Consider a system (1), where f(·) is an unknown nonlinearity consisting of scalar
functions fi(·), i = 1, . . . , n, which satisfy Assumptions 1 and 4. Assume that the following two GP
models can be employed in the control law (2) with f̂(t) = µ(x(tκ(t)) for tκ(t) defined in (3) and
control gains Λi inducing a Hurwitz matrix A in (5):

1. an offline GP model trained with N ∈ N arbitrary measurements x(ι), y(ι) satisfying As-
sumption 2, such that its computation time ∆(·) for predictions is bounded by ∆̄1 and its
prediction error satisfies ∥ηδ(x)∥ ≤ η̄δ,∀x ∈ X, which ensures a tracking error bound ē1;

2. an online learning GP model updated with measurements x(ι), y(ι) satisfying Assumption 2
and defined through the event trigger (16) with threshold (17) and ē2 = 2χ

(
F + Fd +

ξLfF
)
∆̄ + χξη

δ
, such that its overall computation time ∆(·) is bounded by ∆̄2.

Assume that it holds that ∆̄1 ≤ ∆̄2 < 1/(2Lf ) and

∆̄2 ≥
ξη̃δ

2(F + Fd)
∨ ∆̃ ≥ ξη̃δ − 2(F + Fd)∆̄1

2(ξLfF + F + Fd)
, (21)

where ∆̃ = ∆̄2− ∆̄1 and η̃δ = η̄δ−η
δ
. Then, the guaranteed tracking error bound using the offline

learning GP model 1 is lower than for the online learning GP model 2, i.e., ē1 ≤ ē2.

Proof The proof is through the comparison of the size of tracking error bounds with and without
online model update, which is written as

ē1 − ē2 = ξη̃δ − 2ξLfF ∆̃− 2(F + Fd)∆̄1.

The result in Theorem 6 is directly obtained by considering ē1 − ē2 ≤ 0.

10
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Figure 2: Tracking errors without online learning under different computational delays (left). De-
pendency of the maximum tracking error on the computational delay (right).

Since ē2 in Theorem 6 is the best guaranteeable tracking error bound using Theorem 4, this theo-
rem implies that online learning does not offer a certifiable advantage over offline trained models
if condition (21) holds. This condition crucially relies on the variable η̃δ, which measures the im-
provement in terms of the GP prediction error bound ∥ηδ∥ due to event-triggered model updates.
When the offline trained GP model is already highly accurate, event-triggered online learning can
only provide a marginal improvement η̃δ. If the negative impact due to a computation time increase
∆̃ exceeds this improvement as formalized on the right side of (21), online learning can potentially
yield worse tracking errors than offline trained models. Therefore, Theorem 6 reflects the intuitive
result that online learning is only meaningful if we do not have access to accurate offline models.

5. Numerical Simulation

To illustrate the effect of the computation delay on the control performance, we evaluate the pro-
posed event-triggered model update strategy in a numerical simulation using the system dynamics
ẋ1 = x2, ẋ2 = f(x) + u = sin(x1) + 0.5

(
1 + exp(x2/10)

)−1
+ u, where x = [x1, x2]

T ∈ X =
[−1.5, 1.5] × [−1.5, 1.5] ⊂ R2. The desired trajectory is set to xd,1(t) = sin(t), xd,2(t) = cos(t)
satisfying Assumption 3. The control gains Λi in (2) is chosen as Λ1 = Λ2 = −2, and the

−1 0 1

−1

0

1

x1

x
2

initial data set

desired trajectory

Figure 1: Distribution of data
set and desired tra-
jectory are shown.

symmetric positive definite matrix is selected as Q = I2. For learn-
ing, we use Gaussian processes with squared exponential kernel
k(x,x′) = σ2

f exp
(
− 0.5l−2(x − x′)T (x − x′)

)
, where σf = 1

and l = 0.2. All training samples y(i) are perturbed by Gaussian
noise with standard deviation σo = 0.01. The simulation time is
set to 20 and every simulation is repeated 100 times to account for
the randomness in training data. Unless stated otherwise, all sim-
ulations are started with an initial data set containing N0 = 100
samples evenly distributed in X as exemplarily shown in Fig. 1.

Based on these data sets, we first illustrate the effect of com-
putation delays on the tracking error and investigate the necessary
trade-off between model accuracy and computation time in Sec-
tion 5.1. In Section 5.2, the proposed event-triggered model update
strategy is demonstrated.

11



EVENT-TRIGGERED LEARNING WITH COMPUTATIONAL DELAYS

5.1. Influence of Delay on Tracking Errors

In order to investigate the effect of the computation delay ∆(t) = ∆̄ on the control performance,
we first consider GP models for fixed data sets, i.e., without model updates. The resulting tracking
errors for different delays ∆̄ are depicted on the left of Fig. 2. For large values such as ∆̄ = 2
and ∆̄ = 0.5, the performance is strongly affected by the computation delay and can even ex-
ceed that of a controller without any GP model, i.e., f̂(t) = 0, ∀t ∈ R0,+. In contrast, a de-
crease of the delay below ∆̄ = 10−1 has only a marginal effect on the tracking error. This ef-
fect is in line with Theorem 2, which guarantees a linear dependency of the tracking error bound

0 50 100 150

0.2

0.4

0.6

Minimum

N
m
ax

t∈
R

0
,+

∥e
∥ average

variance

Figure 3: Accuracy-delay trade-off due to a joint
dependence on the training set size N .

ē on both the prediction error bound η̄δ and the
delay ∆̄. When η̄δ is kept constant, this implies
the observed vanishing impact of a delay reduc-
tion. As illustrated on the right side of Fig. 2,
we can even see the linear growth of the max-
imum error for sufficiently large delays, which
is guaranteed for the error bound ē in (10).

In addition to this linear dependency of the
error on the delay bound ∆̄, we can also directly
observe the accuracy-delay trade-off discussed
in Section 3. For this purpose, we employ the knowledge of the linear GP prediction complexity to
model the computational delay as ∆̄ = cN , where we exemplarily choose c = 0.05. The resulting
dependency of the maximum tracking error on the number of training samples is depicted in Fig. 3.
It can clearly be seen that the error reduces at first due to the improved accuracy. After N ≈ 90 data
points have been reached, the negative effect of the delay becomes dominant, such that the error
starts to increase. This leads to a clearly visible minimum, at which the GP accuracy and the caused
computational delay are optimally balanced.

5.2. Control Performance with Event-triggered Update

We demonstrate the effectiveness of the proposed online learning strategy by choosing the minimal,
admissible error bound ē=2χ

(
F+Fd+ξLfF

)
∆̄+χξη

δ
in the trigger threshold (17). Due to the

quadratic complexity of GP updates, we model the computation time as ∆(t)=cN2(t), where N(t)
denotes the number of training samples at time t. In order to ensure a bounded computation time,
we delete the oldest data point once the data set reaches the threshold N̄ =200, yielding ∆̄= cN̄2.
Examples of the tracking errors resulting from different values of c are depicted on the left side of
Fig. 4. It can be clearly seen that larger delay bounds ∆̄ result in higher errors. When comparing
to an offline trained GP model with computational delay ∆̄ = 0.01, we can even observe that the
growth in computation time due to online learning can increase the error, which is guaranteed to
happen for the tracking error bound due to Theorem 6. In fact, this effect consistently occurs with
increasing difference ∆̃ between computation times for the considered random initial data sets, as
shown on the right side of Fig. 4. This is due to the linear growth of the error with event-triggered
learning, which corresponds to the behavior of the tracking error bound guaranteed by Theorem 4.
Therefore, all effects derived for the tracking error bounds can be observed in the actual tracking
errors, which demonstrates the practical importance of the derived theoretical guarantees.
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Figure 4: Tracking errors with event-triggered online learning under different computational delays
(left). Dependency of the maximum tracking error on the additional delay ∆̃ caused by
model updates in comparison to offline trained GPs with fixed computation time (right).

6. Conclusions

In this paper, the effect of computational delay caused by GP models on the control performance
is analyzed, which reveals a trade-off between prediction accuracy and computational delay. An
event-triggered online model update strategy under computational delays is proposed, and we show
that it can offer advantages over offline trained GP models. Finally, simulations demonstrate the
effectiveness of the derived theories and the event-triggered online learning strategy.
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