ITII DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor's Thesis in Informatics

Verification of Combinatorial Algorithms

Paul Hofmeier

π

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor's Thesis in Informatics

Verification of Combinatorial Algorithms

Verifikation von kombinatorischen Algorithmen

Author:
Supervisor:
Advisor:
Paul Hofmeier
Prof. Tobias Nipkow
Emin Karayel
Submission Date
15.09.2022

I confirm that this bachelor's thesis in informatics is my own work and I have documented all sources and material used.

Acknowledgments

First of all, I would like to thank Prof. Tobias Nipkow for allowing me to write this bachelor thesis.
Moreover, I would like to thank my advisor Emin Karayel, who was always available for questions, and provided his time for frequent meetings, which helped me a lot to not lose track and get feedback. In addition, even though it was his first time as an advisor, he gave me valuable tips and supported me in the best way I could think of, which I am very grateful for.

Abstract

Combinatorial objects have configurations which can be enumerated by algorithms, but especially for imperative programs, it is difficult to find out if they produce the correct output and don't generate duplicates. Therefore, for some of the most common combinatorial objects, namely n_{-}Sequences, n_{-}Permutations, n_{-}Subsets, Powerset, Integer_Compositions, Integer_Partitions, Weak_Integer_Compositions and Trees, this thesis formalizes efficient functional programs and verifies their correctness with help of the interactive theorem prover Isabelle. In addition, for some combinatorial structures the enumeration function is then used to show the structure's cardinality.

Contents

Acknowledgments v
Abstract vii
1 Introduction 1
2 Selection of Combinatorial Objects 3
2.1 The Twelvefold Way 3
2.2 Other Combinatorial Objects 5
2.3 Selection 5
3 Infrastructure 7
3.1 Foundation 7
3.1.1 Isabelle/HOL 7
3.1.2 Archive of Formal Proofs 7
3.2 Additionally Verified 8
3.2.1 Distinctness 8
3.2.2 Cardinality Helpers 10
3.2.3 Miscellaneous 10
3.2.4 Map Bool List 11
4 Combinatorial Algorithms 13
4.1 n_Sequences 13
4.2 n_Permutations 15
4.2.1 n_Multiset_Permutations 16
4.3 Powerset 17
4.3.1 Alternative Algorithm for all_bool_lists 17
4.4 n_Subsets 18
4.4.1 Alternative Algorithm for n _bool_lists 19
4.5 Integer_Compositions 19
4.6 Integer_Partitions 20
4.7 Weak_Integer_Compositions 21
4.8 Trees 22
5 Conclusion 25
5.1 Further Work 25
List of Figures 27
List of Tables 27
Bibliography 29

1 Introduction

In combinatorics, which is "[...] the field of mathematics concerned with problems of selection, arrangement, and operation within a finite or discrete system" [1], structures with certain properties occur. Those combinatorial objects can be enumerated by algorithms, but when implementing them it is sometimes difficult to tell if they produce the correct output and don't generate duplicates. Therefore, to be sure they work correctly, the programs need to be formally verified.
In this thesis, I will do this with the interactive theorem prover Isabelle. Since Isabelle provides a good infrastructure for ML programs, and imperative programs are a lot harder to argue about, the programs I will formalize and verify are functional. In addition, for the most part the functional programs will be efficient in the sense that they do not remove objects after they have already added them, but this of course means that proofs become more difficult, since for example, a remove duplicates function, which would enforce distinctness, or a filtration on all sequences to check whether it is a permutation, will not be applied in the enumeration function.

Aside from showing the correctness and distinctness of the combinatorial enumeration function's output, I will also use them to prove the cardinality for combinatorial objects of which the cardinality has not been shown yet.

Obviously, this is not the only use case for these programs, since different combinatorial structures occur very often in computer science. When for example looking at data structures, combinatorial enumeration functions can be used to cover all test cases.

While combinatorial algorithms cannot only be functions for enumeration, but also for example, functions to search for a combinatorial object which satisfies a certain condition [10], I will address in this thesis only combinatorial enumeration algorithms.

2 Selection of Combinatorial Objects

What we mean by combinatorial objects is very comprehensive. In this thesis we will define a combinatorial object as a structure which can only have a finite number of configurations, where a configuration is a state of an object which is different to all other states and which satisfies a certain condition. The set of structures with all possible configurations, is then what we call the combinatorial object's set and this is what we want to enumerate.

All kinds of combinatorial objects exit, they appear in different mathematical fields, ranging from number theory over order theory up to graph theory. For instance, in number theory the set of all natural numbers smaller or equal to 8 , in order theory all equivalence relations, or in graph theory all acyclic graphs. Due to the large number of possible combinatorial structures, we need to categorize them and then select some of the most common and important ones to stay in the scope of a bachelor thesis.

First, it makes sense to distinguish between combinatorial objects with different amounts of distinct configurations, because of inequality of their set cardinality. If the cardinality would be equal, we should in general be able to find bijections between those sets, which then may be able to be applied in linear time to get an algorithm for the other object. Moreover, for some combinatorial objects it is possible to combine different enumeration algorithm to get a correct result, but it may still be necessary to use separate functions if a faster algorithm can be implemented.

2.1 The Twelvefold Way

The Twelvefold Way is another scheme we can look at, that has even been formalized in Isabelle, though the existing formalization only contains results about the cardinalities and no enumeration algorithms [5]. This scheme talks about the amount of functions $f: N \rightarrow X$ where N and X are finite sets. It is split into the cases of f being injective, surjective or any function, and in the cases of whether all elements of N or all elements of X are distinguishable [11]. Those restrictions then conclude the cardinalities in Table 2.1.

Elements of N	Elements of X	Any f	Injective f	Surjective f
distinct	distinct	x^{n}	$(x)_{n}$	$x!\left\{\begin{array}{l}n \\ x\end{array}\right\}$
indistinct	distinct	$\binom{x}{x}$	$\binom{x}{n}$	$\left(\binom{x}{n-x}\right)$
distinct	indistinct	$\sum_{i=0}^{x}\left\{\begin{array}{l}n \\ i\end{array}\right\}$	$[n \leq x]$	$\left\{\begin{array}{l}n \\ x\end{array}\right\}$
indistinct	indistinct	$\sum_{i=0}^{x} p_{i}(n)$	$[n \leq x]$	$p_{x}(n)$

Table 2.1: The Twelvefold Way, adapted from [11].
To clarify some notations of Table 2.1:

- n is the cardinality of N and x is the cardinality of X.
- $(x)_{n}$ is a falling factorial and equal to $n!\cdot\binom{x}{n}$.
- $\left\{\begin{array}{l}n \\ x\end{array}\right\}$ is the stirling number second kind.
- $\left.\binom{x}{n}\right)$ is the multiset coefficient and equal to $\binom{x+n-1}{n}$.
- $p_{x}(n)$ is the partition function which counts how many partition of n into x non zero parts are possible.
- $[n \leq x]$ is an Iverson bracket which is 1 if the condition holds and 0 if not.

However, these notations are only used here for compactness reasons and from now on we will derive notations from our formalization in Isabelle, which will be introduced in Chapter 1.

The Twelvefold Way, can also be interpreted in a more discrete and intuitive way, by solving the problem of putting balls into urns [8]. From Table 2.2 we can then select combinatorial object.

balls per urn	unrestricted	≤ 1	≥ 1
n labeled balls, m labeled urns	n-sequences of m things	n-permutations of m things	partitions of $\{1, \ldots, n\}$ into m ordered parts
n unlabeled balls, m labeled urns	n-multisubsets of m things	n-subsets of m things	compositions of n into m parts
n labeled balls, m unlabeled urns	$\begin{aligned} & \text { partitions of }\{1, \ldots, n\} \\ & \text { into } \leq m \text { parts } \end{aligned}$	n pigeons into m holes	partitions of $\{1, \ldots, n\}$ into m parts
n unlabeled balls, m unlabeled urns	partitions of n into $\leq m$ parts	n pigeons into m holes	partitions of n into m parts

Table 2.2: The Twelvefold Way with balls and urns, adapted from [8].

2.2 Other Combinatorial Objects

Some of the most common combinatorial objects are included in the Twelvefold Way, but of course it is far away from being complete. Moreover, sometimes structures may not appear to be, but are, directly related to this classification, like the stars and bars problems [11], which are similar to n-multisubsets and compositions of n.

Nevertheless, there are also more complex structures with cardinalities different from the twelvefold way. To name a few:

Dyck words and binary trees with labeled nodes have a cardinality equal to the catalan number [8].

Lattice paths with different constraints can create specific combinatorial objects [11].

Or simply anything from graph theory, including order relations, but some of course fit into the Twelvefold Way. For example equivalence relations, are similar to n_partitions.

2.3 Selection

To make a selection of combinatorial objects, we want to verify an algorithm for, it is worth taking a look at what algorithms have already been formalized in Isabelle. The standard library contains algorithms for permutations, multset permutations and lists, additionally an algorithm for equivalence relations can be found in the AFP [7]. Though I have to admit here, that there may be more which I haven't found.

Considering enumeration algorithms that have already been verified in Isabelle, and the brief categorization from before, enumeration algorithms for

> n_Sequences, n_{-}Permutations, $n _$Subsets, Powerset, Integer_Compositions, Integer_Partitions, Weak_Integer_Compositions and Trees
were verified for this thesis.

3 Infrastructure

Since we don't want to start from scratch, we need an existing foundation to rely on in the formalization. This will also reduce the amount of work that needs to be done, and provide compatibility for other Isabelle projects. Additionally, new infrastructure for generalizing our problems and thus simplifying some proof processes, is desirable.

3.1 Foundation

3.1.1 Isabelle/HOL

As already mentioned, the verification will be done in Isabelle. It is a generic proof assistant that can especially be used for mathematical proofs and formal verification [13]. In particular, we will use Isabelle/HOL, where HOL stands for Higher Order Logic, to verify algorithms. For this, Isabelle provides us with a standard ML like syntax for functional programs, proving assistance with for example computational induction, and many libraries from which we will especially use List, Set, Multiset, Tree, Binomial and Permutations. Some noteworthy functions/definitions we will use are distinct, \subseteq and set. Of course there is a lot more to tell about Isabelle, but to keep it concise, refer to the documentation [13] for anything unclear or not mentioned here.

Code generation is another Isabelle feature which is useful in the context of this thesis. With this it is possible to convert executable Isabelle code directly to SML, OCaml, Haskell and Scala programs [13]. These programs are then formally verified, and the risk of making mistakes when manually adopting from Isabelle code, does no longer exist. In our case this would for instance mean, that we could with little effort get haskell programs for enumerating combinatorial objects.

3.1.2 Archive of Formal Proofs

While the Isabelle standard libraries contain common formalization, the Archive of Formal Proofs, or in short AFP, is another reliable place to get library files. To expand our foundation following AFP entries were used.

Catalan Numbers contains a formalization of catalan numbers, including a corresponding induction scheme [6].

Cardinality of Number Partitions as the name suggests, it contains proofs for the cardinality of number partitions [2].

The Falling Factorial of a Sum contains theorems about falling factorials [4].
Needless to say, the AFP has also theories which we don't directly use as infrastructure, but are still closely related to combinatorial objects. For instance, Derangements, Enumeration of Equivalence Relations and The Twelvefold Way [3, 7, 5].

3.2 Additionally Verified

We have to prove the same things for every implemented enumeration algorithm and they seem to be fairly similar, because the algorithms use list comprehension and rely on the following pattern:

$$
[f x y . x \leftarrow x s, y \leftarrow g x]
$$

where $x s$ is a list, g a function that takes elements from $x s$, and f a function that takes elements from $x s$ as well as results from g, f can also be seen as a constructor for combinatorial objects. However, for some of the algorithms g and f take less arguments and thus the verification is easier, but this is the general case.

Therefore, it is quite obvious that we can show some abstract properties to simplify further proofs. Moreover, the libraries shown before lack some theorems and concepts, we want in our formalization. Thus, in this chapter additional infrastructure will be verified.

3.2.1 Distinctness

Firstly, proofs of whether the result of a function is distinct can be made easier. For this purpose inj 2 will be introduced.

$$
\begin{aligned}
& \text { definition inj2-on :: }\left(\prime a \Rightarrow ' b \Rightarrow^{\prime} c\right) \Rightarrow \Rightarrow^{\prime} a \text { set } \Rightarrow \text { 'b set } \Rightarrow \text { bool where } \\
& \text { inj2-onf } A B \longleftrightarrow(\forall x 1 \in A . \forall x 2 \in A . \forall y 1 \in B . \forall y 2 \in B . f x 1 y 1=f x 2 \text { y2 } \longrightarrow x 1=x 2 \wedge y 1=y 2) \\
& \text { abbreviation inj2 }::\left(' a \Rightarrow ' b \Rightarrow^{\prime} c\right) \Rightarrow \text { bool where } \\
& \text { inj2 } f \equiv \text { inj2-on } \text { UNIV UNIV }
\end{aligned}
$$

It is a property for functions which take two arguments, and holds if the uncurried version is injective. This property implies injectivity of the partially applied functions. It is used for functions which construct a combinatorial object and thus abstracts our enumeration functions. In addition, the proofs become simpler, since we don't need to care about currying. In this regard, following lemma shows the equivalence:
lemma inj2-curried: inj2-on (curry f) $A B \longleftrightarrow \operatorname{inj-onf}(A \times B)$
unfolding inj2-on-def inj-on-def by auto

The first useful lemma that can be shown with $i n j 2$ is an extension of the existing distinct_map to partly applied functions.

```
lemma inj2-on-distinct-map:
    assumes inj2-onf {x} (set xs)
    shows distinct xs = distinct (map (fx)xs)
```

Considering the shape of the enumeration algorithms, we can use $i n j 2$ and come up with a general lemma, which can be proven by an induction on xs and some auxiliary lemmas including inj2-on-distinct-map.
lemma inj2-distinct-concat-map-function:
assumes $\operatorname{inj} 2 f$
shows $\llbracket \forall x \in \operatorname{set} x$ s. distinct $(g x)$; distinct $x s \rrbracket \Longrightarrow \operatorname{distinct}[f x y . x \leftarrow x s, y \leftarrow g x]$
With this theorem we consequently only need to show $\forall x \in \operatorname{set} x$ s. distinct $(g x)$, distinct $x s$ and $\operatorname{inj} 2 f$, to prove the distinctness for each algorithms. An even more general theorem that uses inj2-on instead of inj2 would also be desirable, but it wasn't needed for any of the algorithms.
To give an overview, these lemmas may be used for the following functions which satisfy the inj 2 property.

```
lemma Cons-inj2: inj2 (#)
lemma Cons-Suc-inj2: inj2 ( }\lambdax\mathrm{ ys. Suc x # ys)
lemma Node-right-inj2: inj2 ( }\lambdal\mathrm{ r. Node l e r)
lemma Node-left-inj2: inj2 ( \lambdar l. Node l er)
```

While the concept of inj2, could also be implemented as a locale in Isabelle, to generate various lemmas automatically for every inj2 function, it makes more sense to implement it as a simple assumption and only derive theorems when needed, because a locale would be a bit too much for such a small assumption, and this way it is more similar to the existing theorems with inj.

3.2.2 Cardinality Helpers

Helping lemmas can also be implemented for the purpose of proving cardinalities.
lemma length-concat-map-function-sum-list:
assumes $\wedge x . x \in \operatorname{set} x s \Longrightarrow$ length $(g x)=h x$
shows length $[f x r . x \leftarrow x s, r \leftarrow g x]=\operatorname{sum}$-list (map $h x s$)
With this we can get rid of f as well as g and introduce a counting function h, such that, for the most part, we only have to reason about a series. The next two lemmas will also be helpful in this regard.
lemma leq-sum-to-sum-list: $\left(\sum x \leq n . f x\right)=\left(\sum x \leftarrow[0 . .<\right.$ Suc $\left.n] . f x\right)$
lemma sum-list-extract-last: $\left(\sum x \leftarrow[0 . .<\right.$ Suc $\left.n] . f x\right)=\left(\sum x \leftarrow[0 . .<n] . f x\right)+f n$

3.2.3 Miscellaneous

Isabelle's list library doesn't contain many lemmas about count_list, since it is advised to use count o mset instead, but for our purposes count_list is more suited, because the combinatorial algorithms enumerate lists and no unordered structures like multisets. Moreover, the multiset library does not have to be imported if we just use count_list. These four lemmas for count_list will be used in our formalizations and they could enhance the List library.
lemma count-list-replicate: count-list (replicate $x y$) $y=x$
lemma count-list-full-elem: count-list $x s y=$ length $x s \longleftrightarrow(\forall x \in$ set $x s . x=y)$
lemma count-list-zero-not-elem: count-list $x s x=0 \longleftrightarrow x \notin$ set x s
lemma count-list-length-replicate: count-list $x s y=$ length $x s \longleftrightarrow x s=$ replicate $($ length $x s) y$

3.2.4 Map Bool List

Now we take a look at concept which we will later use for bijections, in the algorithms of $n _$subsets and powerset. It is the filtering of lists with other lists that contain boolean values. Another interpretation would be the application of a bitmap. In this sense the boolean lists can be seen as binary numbers. There are many ways to implement map_bool_list, we chose the following, since it provides a convenient computational induction scheme.

```
fun map-bool-list :: bool list \(\Rightarrow\) ' \(a\) list \(\Rightarrow\) 'a list where
    map-bool-list [] - = []
| map-bool-list - [] = []
\(\mid\) map-bool-list \((x \# x s)(y \# y s)=(\) if \(x\) then \(y \#(\) map-bool-list xs ys) else \((\) map-bool-list xs ys))
```

Another way to implement this is with the nth function, of which the equivalence can be shown.

lemma map-bool-list-set-nth:

set (map-bool-list xs ys) $=\{y s!n \mid n . x s!n \wedge n<$ length $x s \wedge n<$ length $y s\}$
For the verification we then need theorems about map_bool_list, some of which are:

lemma map-bool-list-elem:

$x \in$ set (map-bool-list $y s x s) \Longrightarrow x \in$ set $x s$
lemma map-bool-list-card:
\llbracket distinct $x s$; length $x s=$ length $y s \rrbracket \Longrightarrow \operatorname{card}($ set $($ map-bool-list $y s x s))=$ count-list $y s$ True
lemma map-bool-list-distinct:
distinct $x s \Longrightarrow$ distinct (map-bool-list ys $x s$)
lemma map-bool-list-inj:
distinct $x s \Longrightarrow$ inj-on (λ ys. map-bool-list ys $x s$) $\{$ ys. length $y s=$ length $x s\}$

4 Combinatorial Algorithms

Finally, we will start formalizing combinatorial enumeration algorithms. The functions will operate on lists, because lists are ordered, which makes it easier to use them for programs. If we then need a set for the verification, it will be substituted with set x s and distinct $x s$ where $x s$ is a list. For every combinatorial object the following will be provided.

- The object's formalized definition.
- An example for illustration.
- The actual enumeration function(s).
- A proof the show correctness, in the manner, that the set of what the enumeration function generates is equal to the object definition.
- Distinctness proof(s) where necessary, since our function(s) only operate on lists and the set conversion removes duplicates.
- A verification of the combinatorial object's set cardinality, which in some cases can be directly deduced from the infrastructure and in other cases will be shown by using the enumeration function.

Even though, in Isabelle there is no difference between lemmas and theorems, we will use lemma for auxiliary claims and theorem for the main statements, which were just mentioned. This notation should make the structure of the verification more visible.

4.1 n_Sequences

The probably most simple combinatorial object we are going to formalize is $n _$sequences, also called n_tuples, and since it is the first one we will do it in more detail and omit non interesting parts for further objects. n_sequences are defined as all lists of length n, which contains only elements from a given set A. In Isabelle it looks as follows.
definition n-sequences :: 'a set \Rightarrow nat \Rightarrow 'a list set where
n-sequences $A n=\{x$ s. set $x s \subseteq A \wedge$ length $x s=n\}$
One example would be:

$$
\text { n_sequence }\{0,1,2\} 2=\{[0,0],[0,1],[0,2],[1,0],[1,1],[1,2],[2,0],[2,1],[2,2]\}
$$

The list library from Isabelle HOL already contains a function to generate those lists, which has already been verified for correctness.

```
primrec \(n\)-lists :: nat \(\Rightarrow\) 'a list \(\Rightarrow\) 'a list list where
\(n\)-lists \(0 x s=[[]] \mid\)
\(n\)-lists \((\) Suc \(n) x s=\operatorname{concat}(\operatorname{map}(\lambda y s . \operatorname{map}(\lambda y . y \# y s) x s)(n\)-lists \(n x s))\)
lemma set-n-lists: set \((\) List. \(n\)-lists \(n x s)=\{y s\). length \(y s=n \wedge\) set \(y s \subseteq\) set \(x s\}\)
```

But to exemplify what we need to do for every enumeration function, it is worth taking a look at another one which has a similar shape to enumeration algorithms from the other combinatorial objects.

```
fun \(n\)-sequence-enum :: 'a list \(\Rightarrow\) nat \(\Rightarrow\) 'a list list where
    \(n\)-sequence-enum xs \(0=[[]]\)
\(\mid n\)-sequence-enum \(x s(\) Suc \(n)=[x \# r . x \leftarrow x s, r \leftarrow n\)-sequence-enum \(x s n]\)
```

This function produces the same n_{-}sequences as n_{-}lists, which can be shown by induction on n.
lemma set $(n$-sequence-enum x s $n)=\operatorname{set}($ List. n-lists $n x s)$
Though n _sequences_enum is probably slower then n _lists, since it doesn't reuse the same n_sequence_enum call for each element of x s. A concept to make it more efficient is structural sharing. With this, previous parts get reused and don't consume additional memory for each version [9]. It can not only be used for $n _$sequences, but also for some of the other objects, whenever the combinatorial object's configurations build up on one another, like it is the case for trees.

For the correctness we need to proof that it only produces lists which are n_sequences and that the result contains all of them. Therefore, we need a proof by exhaustion, in the sense, that we have to show the subset relation in both directions. The proofs work in this case again straightforward with an induction on n.

```
theorem n-sequence-enum-correct:
    set (n-sequence-enum xs n)=n-sequences(set xs)n
proof standard
    show set (n-sequence-enum xs n)\subseteqn-sequences (set xs) n
next
    show n-sequences (set xs) n\subseteq set ( }n\mathrm{ -sequence-enum xs n)
qed
```

In distinctness proof, we can now use a lemma which follows from 3.2.1, where the inj 2 function is just the Cons constructor of lists.

```
theorem n-sequence-enum-distinct: distinct xs \Longrightarrowdistinct (n-sequence-enum xs n)
    by (induct n) (auto simp: Cons-distinct-concat-map)
```

While we could directly use the card_lists_length_eq lemma which already verifies the cardinality, it is also possible to use our algorithm now, to get an intuition of how it could be done for every other combinatorial object.
lemma n-sequence-enum-length: length $(n$-sequence-enum x s $n)=($ length $x s) \wedge n$
theorem n-sequences-card:
assumes finite A
shows card $(n$-sequences $A n)=\operatorname{card} A^{\wedge} n$

4.2 n_Permutations

A n_permutation is like a n _sequence with the additional restriction, that the list must be distinct. It is a permutation with a constrained length.
definition n-permutations :: 'a set \Rightarrow nat \Rightarrow 'a list set where
n-permutations $A n=\{x s$. set $x s \subseteq A \wedge$ distinct $x s \wedge$ length $x s=n\}$
An example: n _permutation $\{0,1,2\} 2=\{[0,1],[0,2],[1,0],[1,2],[2,0],[2,1]\}$

The function works similar to the one from the Multiset Permutations library, but has an additional parameter n to limit the length. The set is here again passed as list, like we previously discussed.
fun n-permutation-enum :: 'a list \Rightarrow nat \Rightarrow 'a list list where
n-permutation-enum xs $0=[[]]$
$\mid n$-permutation-enum $x s($ Suc $n)=[x \# r . x \leftarrow x s, r \leftarrow n$-permutation-enum (remove1 $x \times s) n]$
For the correctness, we essentially need those four auxiliary lemmas.
lemma n-permutation-enum-subset: $y s \in \operatorname{set}(n$-permutation-enum $x s n) \Longrightarrow$ set $y s \subseteq$ set $x s$
lemma n-permutation-enum-length: ys $\in \operatorname{set}(n$-permutation-enum $x s n) \Longrightarrow$ length $y s=n$
lemma n-permutation-enum-elem-distinct:
distinct $x s \Longrightarrow y s \in \operatorname{set}(n$-permutation-enum $x s n) \Longrightarrow d i s t i n c t ~ y s$
lemma n-permutation-enum-correct2:
$y s \in n$-permutations (set $x s$) $n \Longrightarrow y s \in \operatorname{set}(n$-permutation-enum $x s n$)
To finally show the following, where the list $x s$ is assumed to be distinct, since it is meant to represents a set.
theorem n-permutation-enum-correct:
distinct $x s \Longrightarrow$ set (n-permutation-enum x s n) $=n$-permutations (set $x s$) n
To verify, that no duplicates are generated inj2_distinct_concat_map_function is used again, but here the function g, which has to produce distinct results for an input $x \in$ set $x s$, is n_{-}permutation_enum (remove $1 x x s$) n, though this can be shown in the induction step, to then get:
theorem n-permutation-distinct: distinct $x s \Longrightarrow \operatorname{distinct}$ (n-permutation-enum $x s n$)
For this object the cardinality has already been proven, in the Falling Factorial Sum library with the card_lists_distinct_length_eq lemma [4]. Therefore, we only need to adopt it to our definition, which gets us the following, where $f f a c t$ is the failing factorial function.
theorem finite $A \Longrightarrow$ card (n-permutations $A n)=$ ffact $n(\operatorname{card} A)$

4.2.1 n_Multiset_Permutations

It is also worth saying, that the function we just verified cannot only be used to enumerate n_permutation, but also to enumerate $n _$multiset_permutations, if we apply a remove duplicates function.
fun n-multiset-permutation-enum $::$ 'a list \Rightarrow nat \Rightarrow 'a list list where
n-multiset-permutation-enum xs $n=$ remdups (n-permutation-enum xs n)
This is how n_multiset_permutations are defined:
definition n-multiset-permutations $::$ 'a multiset \Rightarrow nat \Rightarrow ' a list set where
n-multiset-permutations $A n=\{x$ s. mset $x s \subseteq \# A \wedge$ length $x s=n\}$
Example: $n _$multiset_permutation $\{\# 0,0,1 \#\} 3=\{\#[0,0,1],[0,1,0],[1,0,0] \#\}$
The correctness proof is simple, since there are some lemmas which can be reused, and the distinctness follows directly from the application of remdups.
lemma n-multiset-permutation-enum-correct:
set (n-multiset-permutation-enum xs n) $=n$-multiset-permutations (mset $x \mathrm{~s}$) n
lemma distinct (n-multiset-permutation-enum xs n)
However, because of remdups, this algorithm is not very efficient. A more efficient version could use remdups in every iteration, or somehow don't generate duplicates, by for example remembering already generated permutations, but this we didn't formalize.

4.3 Powerset

Next we will enumerate powersets, which are already defined in the Isabelle library.
definition Pow :: 'a set \Rightarrow 'a set set
where Pow-def: Pow $A=\{B . B \subseteq A\}$
Example: Pow $\{0,1\}=\{\{ \},\{0\},\{1\},\{0,1\}\}$
To illustrate similarities to binary numbers and to define an alternative enumeration function, the algorithm doesn't directly enumerate the powerset, but instead uses boolean lists.
fun all-bool-lists :: nat \Rightarrow bool list list where
all-bool-lists $0=[]]$
\mid all-bool-lists $($ Suc $x)=$ concat $[[F a l s e \# x s$, True\#xs].$x s \leftarrow$ all-bool-lists $x]$
fun powerset-enum where
powerset-enum $x s=[($ map-bool-list $x x s) . x \leftarrow$ all-bool-lists (length $x s)]$
Here the map bool list infrastructure finds its uses. To utilize it, first those two lemmas are needed.
lemma distinct-all-bool-lists : distinct (all-bool-lists x)
lemma all-bool-lists-correct: set (all-bool-lists x) $=\{x$ s. length $x s=x\}$
And now the correctness and distinctness can be shown.
theorem powerset-enum-correct: set (map set (powerset-enum xs)) = Pow (set xs)
theorem powerset-enum-distinct: distinct $x s \Longrightarrow$ distinct (powerset-enum xs)
However, an additional lemma has to be verified, since for correctness the elements were mapped to sets.
theorem powerset-enum-distinct-elem: distinct $x s \Longrightarrow y s \in$ set (powerset-enum $x s$) \Longrightarrow distinct $y s$
A cardinality proof for powersets does also already exist in the library.
lemma card-Pow: finite $A \Longrightarrow \operatorname{card}($ Pow $A)=2 \wedge \operatorname{card} A$

4.3.1 Alternative Algorithm for all_bool_lists

For an alternative algorithm, n _sequence_епит can be used to generate boolean lists.

```
fun all-bool-lists2 :: nat }=>\mathrm{ bool list list where
    all-bool-lists2 n=n-sequence-enum [True, False] n
```

We already have verified n_sequence_enит, therefore the proofs for correctness and distinctness can be concluded directly, and with them we could replace all_bool_lists with all_bool_lists2.
lemma all-bool-lists2-distinct: distinct (all-bool-lists2 n)
lemma all-bool-lists2-correct: set (all-bool-lists n) $=$ set (all-bool-lists2 n)

4.4 n_Subsets

$n _s u b s e t s$ are subsets that contain exactly n elements. They are like the powerset, with an additional restriction of the cardinality being n.

```
definition n-subsets :: 'a set }=>\mathrm{ nat }=>\mathrm{ ' ' set set where
n-subsets }An={B.B\subseteqA\wedge\operatorname{card}B=n
    Example: n_subsets {0,1,2} 2={{0,1},{0,2},{1,2}}
```

For the algorithm, we will do the same we did with n_sequence_enum. Therefore, n_bool_lists does enumerate boolean lists, that contain exactly n True elements.

```
fun \(n\)-bool-lists :: nat \(\Rightarrow\) nat \(\Rightarrow\) bool list list where
    n-bool-lists n \(0=(\) if \(n>0\) then [] else [[]])
\(\mid n\)-bool-lists \(n\) (Suc \(x)=(\) if \(n=0\) then [replicate (Suc \(x\) ) False]
    else if \(n=\) Suc \(x\) then [replicate (Suc \(x\) ) True]
    else if \(n>x\) then []
    else [False\#xs . xs \(\leftarrow n\)-bool-lists \(n x] @[\) True\#xs.\(x s \leftarrow n\)-bool-lists \((n-1) x]\) )
fun \(n\)-subset-enum :: 'a list \(\Rightarrow\) nat \(\Rightarrow\) 'a list list where
    \(n\)-subset-enum xs \(n=[(\) map-bool-list \(x \times s) . x \leftarrow(n\)-bool-lists \(n(l e n g t h x s))]\)
```

n_bool_lists is a little bit more complicated than it needs to be, but replicating True or False when the rest only contains True or False, may make it more efficient, however with this the proofs become more difficult. Considering this, the following two lemmas need to be shown, and here some lemmas about count_list, we verified for the infrastructure, are applied.
lemma n-bool-lists-distinct: distinct (n-bool-lists $n x$)
lemma n-bool-lists-correct: set $(n$-bool-lists $n x)=\{x$ s. length $x s=x \wedge$ count-list x strue $=n\}$

Then we can infer the correctness and distinctness of $n _$subsets, with the same additional distinctness, discussed preversly for powerset_enит.
theorem n-subset-enum-correct:
distinct $x s \Longrightarrow \operatorname{set}($ map set $(n$-subset-enum $x s n))=n$-subsets (set $x s) n$
theorem n-subset-enum-distinct-elem: distinct $x s \Longrightarrow y s \in \operatorname{set}(n$-subset-enum x s $n) \Longrightarrow$ distinct $y s$
theorem n-subset-enum-distinct: distinct $x s \Longrightarrow d i s t i n c t(n$-subset-enum xs n)
The cardinality has here again already been shown. It is located in the Binomial standard library, where choose is the the binomial coefficient.

```
theorem n-subsets:
    assumes finite A
    shows card {B.B\subseteqA\wedge card B=k}=card A choose k
```


4.4.1 Alternative Algorithm for n_{-}bool_lists

 which has an enumeration algorithm in HOL-Combinatorics.Multiset_Permutations, but due to the fact, that it uses permutations_of_multiset, n_{-}bool_lists 2 is properly less efficient.

```
fun n-bool-lists2 :: nat }=>\mathrm{ nat }=>\mathrm{ bool list set where
    n-bool-lists2 n x = (if n>x then {} else
    permutations-of-multiset (mset (replicate n True @ replicate ( }x-n\mathrm{ n) False)))
```

 distinctness lemma, since this algorithm, as an exception, indirectly operates on sets.
lemma n-bool-lists2-correct: set (n-bool-lists $n x)=n$-bool-lists2 $n x$

4.5 Integer_Compositions

Until now, we had only formalized combinatorial objects, which depend on a provided set, but the next objects will only take numbers. In this sense, we will define integer_compositions. It can be understood as the ways of how a natural number can be split into non zero summands, where the order matters. Due to this, the definition uses lists. If we would additionally restrict the list's length, integer_compositions should be equal to the stars and bars problem of first kind.
definition integer-compositions :: nat \Rightarrow nat list set where integer-compositions $i=\{x s$. sum-list $x s=i \wedge 0 \notin$ set $x s\}$

Example: integer_compositions $3=\{[3],[2,1],[1,2],[1,1,1]\}{ }^{\prime \prime}$
The algorithm follows the patter we have seen previously, but this time the recursive call depends on two arguments, n and m.
fun integer-composition-enum :: nat \Rightarrow nat list list where
integer-composition-enum $0=[[]]$
| integer-composition-enum (Suc n) =
$[$ Suc $m \# x s . m \leftarrow[0 . .<$ Suc $n], x s \leftarrow$ integer-composition-enum $(n-m)]$
Showing the correctness in this case is a bit more difficult, since the recursive call takes any nat smaller to the previous one. However, with the right induction and some auxiliary lemmas the correctness follows.
theorem integer-composition-enum-correct: set (integer-composition-enum n) $=$ integer-compositions n
For the distinctness inj2_distinct_concat_map_function can be used. The inj2 function is in this case not just Cons, but ($\lambda x x$ s. Cons (Suc $x) x$ s).
theorem integer-composition-enum-distinct: distinct (integer-composition-enum n)
The length_concat_map_function_sum_list lemma from our cardinality helper infrastructure will be used now, so that we essentially only have to show the equivalence of a series, to verify the cardinality.
lemma sum-list-two-pow: Suc $\left(\sum x \leftarrow[0 . .<n] .2 \wedge(n-S u c x)\right)=2 \wedge n$
lemma integer-composition-enum-length: length (integer-composition-enum $n)=2 \wedge(n-1)$
theorem integer-compositions-card: card (integer-compositions $n)=2 \wedge(n-1)$

4.6 Integer_Partitions

integer_partitions are like integer_compositions, with the only difference that their elements aren't ordered. Therefore, they are represented by multisets. They are equal to Young diagrams [12].
definition integer-partitions :: nat \Rightarrow nat multiset set where
integer-partitions $i=\{x s$. sum-mset $x s=i \wedge 0 \notin \# x s\}$
Example: integer_partitions $4=\{\{4\},\{3,1\},\{2,2\}\{2,1,1\},\{1,1,1,1\}\}$

The enumeration function uses an auxiliary function, which carries a parameter m to limit how big the split integers can be. Therefore, each produced integer partition is sorted in descending order.

```
fun integer-partitions-enum-aux :: nat \(\Rightarrow\) nat \(\Rightarrow\) nat list list where
    integer-partitions-enum-aux \(0 m=[[]]\)
| integer-partitions-enum-aux \(n m=\)
    \([h \# r . h \leftarrow[1 . .<\operatorname{Suc}(\min n m)], r \leftarrow\) integer-partitions-enum-aux \((n-h) h]\)
```

fun integer-partitions-enum :: nat \Rightarrow nat list list where
integer-partitions-enum $n=$ integer-partitions-enum-aux $n n$
By showing what we expect from integer_partitions_enum_aux we can then prove the correctness of integer_partitions_enum.
lemma integer-partitions-enum-aux-max:
$x s \in$ set (integer-partitions-enum-aux $n m) \Longrightarrow x \in$ set $x s \Longrightarrow x \leq m$
theorem integer-partitions-enum-correct:
set (map mset (integer-partitions-enum n)) $=$ integer-partitions n
The proof for distinctness isn't very interesting, since it doesn't involve anything new.
theorem integer-partitions-enum-distinct: distinct (integer-partitions-enum n)
For the cardinality we can rely on the Cardinality of Number Partitions library. However, we need one additional lemma, that surprisingly doesn't already exist. It can be shown by applying a bijection with the count function for multisets. If it isn't already clear Partition is the partition function. It can be found in the library.
lemma card-partitions-number-partition: card $\{p . p$ partitions $n\}=\operatorname{card}\{N$. number-partition $n N\}$
theorem integer-partitions-cardinality: card (integer-partitions $n)=\operatorname{Partition}(2 * n) n$

4.7 Weak_Integer_Compositions

Another combinatorial object is weak_integer_compositions. They are integer_compositions, which are weak in the sense that they can contain zeros. In addition, the length is fixed, since otherwise infinitely many configurations would be possible. weak_integer_compositions are also equal to stars and bars of second kind.
definition weak-integer-compositions :: nat \Rightarrow nat \Rightarrow nat list set where
weak-integer-compositions il$=\{x$ s. length $x s=l \wedge$ sum-list $x s=i\}$

Example: weak_integer_compositions $22=\{[2,0],[1,1],[0,2]\}$
The algorithm is quite simple, but the base cases may not seem to be obvious.

```
fun weak-integer-composition-enum :: nat }=>\mathrm{ nat }=>\mathrm{ nat list list where
    weak-integer-composition-enum i 0=(ifi=0 then [[]] else [])
| weak-integer-composition-enum i (Suc 0) = [i]]
| weak-integer-composition-enum il =
    [h#r .h\leftarrow[0..< Suc i],r\leftarrowweak-integer-composition-enum (i-h)(l-1)]
```

The proofs for correctness and distinctness are here again not very interesting.

theorem weak-integer-composition-enum-correct:

set $($ weak-integer-composition-enum il) $=$ weak-integer-compositions il
theorem weak-integer-composition-enum-distinct: distinct (weak-integer-composition-enum il)
For the cardinality however, we need to show something more exciting. We are verifying it by again arguing about a series. Moreover, multichoose will be defined as the multiset coefficient.
definition multichoose:: nat \Rightarrow nat \Rightarrow nat (infixl multichoose 65) where
n multichoose $k=(n+k-1)$ choose k
lemma a-choose-equivalence: Suc $\left(\sum x \leftarrow[0 . .<k] . n+(k-x)\right.$ choose $\left.(k-x)\right)=\operatorname{Suc}(n+k)$ choose k
lemma composition-enum-length: length (weak-integer-composition-enum in) $=n$ multichoose i
theorem weak-integer-compositions-cardinality: card (weak-integer-compositions $n k$) $=k$ multichoose n

4.8 Trees

The last structure we will formalize an algorithm for is trees. My supervisor, Prof. Tobias Nipkow has already provided the definition, an algorithm, the cardinality proof, and the basis of the distinctness lemma. We are only interested in the structure of the tree and don't care about what it stores. Therefore, all Nodes will be the Unity (). The trees we enumerate are also called binary labeled trees, since the two child nodes have an order.

```
definition trees :: nat \(\Rightarrow\) unit tree set where
    trees \(n=\{\). size \(t=n\}\)
fun tree-enum :: nat \(\Rightarrow\) unit tree list where
    tree-enum \(0=[\) Leaf \(]\)
\(\mid\) tree-enum \((\) Suc \(n)=[\) Node \(t 1() t 2 . i \leftarrow[0 . .<\) Suc \(n], t 1 \leftarrow\) tree-enum \(i, t 2 \leftarrow \operatorname{tree-enum~}(n-i)]\)
```


Figure 4.1: Example: trees 3

The cardinality was proven with an induction scheme from catalan numbers, which can be found in the Catalan Numbers library.

```
theorem length (tree-enum n) = catalan n
```

By using the computational induction scheme of tree_enum, the correctness can be verified.
theorem tree-enum-correct: $\operatorname{set}($ (tree-enum $n)=$ trees n
However, showing that no duplicates will be produced is more complex, since this algorithm has two recursive calls and is different from the pattern we have seen so far. Nevertheless, we can still make use of our infrastructure for distinctness, where (λl r.Node $l() r)$ and ($\lambda r l$. Node $l() r)$ satisfy $i n j 2$. With this we can show the following three auxiliary lemmas, to finally get the distinctness.
lemma tree-enum-elem-injective2:
$x \in$ set $($ tree-епит $n) \Longrightarrow y \in$ set $($ tree-епит $m) \Longrightarrow x=y \Longrightarrow n=m$
lemma tree-enum-distinct-aux-outer:
assumes $\forall i \leq n$. distinct (tree-enum i)
and distinct x s
and $\forall i \in \operatorname{set} x s . i<n$
and sorted-wrt $(<) x s$
shows distinct (map $(\lambda i$. $[$ Node $l() r . l \leftarrow$ tree-enum $i, r \leftarrow \operatorname{tree-enum~}(n-i)]) x s)$
lemma tree-enum-distinct-aux-left:
$\forall i<n . \operatorname{distinct}($ tree-enum $i) \Longrightarrow \operatorname{distinct}([\operatorname{Node} l() r . i \leftarrow[0 . .<n], l \leftarrow$ tree-enum $i])$
theorem tree-enum-distinct: distinct(tree-епит n)

5 Conclusion

The formalization did work well with Isabelle, and I successfully formalized enumeration algorithms for eight combinatorial objects, if $n _$multiset_permutations and the boolean lists aren't counted separately. It took about 2000 lines of code, and not only the resulting theorems, but also some of the infrastructure may be useful for further projects. In this regard, it is planned to make an AFP entry out of this thesis, so that other people can use it. However, there are still many things which can or should be done.

5.1 Further Work

Firstly, fitting combinatorial objects should become properly connected to the Twelvefold Way AFP entry. Also, for the objects discussed in this thesis, it is desirable to have more different enumeration algorithms, for example for powersets and n_subsets, algorithms which don't use boolean lists.

Moreover, a lot more combinatorial objects exist. Some were discussed in Chapter 2 , and way more can be found. For every of those combinatorial objects enumeration algorithms could be formally formalized.

List of Figures

4.1 Trees Example 23

List of Tables

2.1 The Twelvefold Way, adapted from [11] 4
2.2 The Twelvefold Way with balls and urns, adapted from [8]. 4

Bibliography

[1] R. C. Bose and B. Grünbaum. "combinatorics." In: Encyclopedia Britannica (Aug. 2022). https://www.britannica.com/science/combinatorics, [Online; accessed 22. Aug. 2022].
[2] L. Bulwahn. "Cardinality of Number Partitions." In: Archive of Formal Proofs (Jan. 2016). https://isa-afp.org/entries/Card_Number_Partitions.html, Formal proof development. IssN: 2150-914x.
[3] L. Bulwahn. "Derangements Formula." In: Archive of Formal Proofs (June 2015). https://isa-afp.org/entries/Derangements.html, Formal proof development. ISsN: 2150-914x.
[4] L. Bulwahn. "The Falling Factorial of a Sum." In: Archive of Formal Proofs (Dec. 2017). https:/ /isa-afp.org/entries / Falling_Factorial_Sum.html, Formal proof development. Issn: 2150-914x.
[5] L. Bulwahn. "The Twelvefold Way." In: Archive of Formal Proofs (Dec. 2016). https: / /isa-afp.org/entries/Twelvefold_Way.html, Formal proof development. Issn: 2150-914x.
[6] M. Eberl. "Catalan Numbers." In: Archive of Formal Proofs (June 2016). https: //isa-afp.org/entries/Catalan_Numbers.html, Formal proof development. Issn: 2150-914x.
[7] E. Karayel. "Enumeration of Equivalence Relations." In: Archive of Formal Proofs (Feb. 2022). https://isa-afp.org/entries/Equivalence_Relation_Enumeration.html, Formal proof development. Issn: 2150-914x.
[8] D. E. Knuth. The Art of Computer Programming. Volume 4A. Combinatorial Algorithms. Part 1. Addison-Wesley Professional. Isbn: 978-0-13439457-2.
[9] D. Larchey-Wendling, D. Méry, and D. Galmiche. "STRIP: Structural Sharing for Efficient Proof-Search." In: Automated Reasoning. Ed. by R. Goré, A. Leitsch, and T. Nipkow. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 696-700. IsBN: 978-3-540-45744-2.
[10] A. Nijenhuis, H. Wilf, and W. Rheinboldt. Combinatorial Algorithms: For Computers and Calculators. Computer science and applied mathematics. Elsevier Science. IsBN: 9781483273457.
[11] R. Stanley. Enumerative Combinatorics: Volume 1. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2011. ISBN: 9781139505369.
[12] D. Stanton and D. White. Constructive Combinatorics. New York, NY, USA: Springer. ISBN: 978-1-4612-4968-9.
[13] L. P. Tobias Nipkow. Isabelle Webpage. https:/ /isabelle.in.tum.de/index.html, [Online; accessed 31. Aug. 2022]. Dec. 2021.

