TUTl

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics

Verification of Combinatorial Algorithms

Paul Hofmeier

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics

Verification of Combinatorial Algorithms

Verifikation von kombinatorischen

Algorithmen
Author: Paul Hofmeier
Supervisor: Prof. Tobias Nipkow
Advisor: Emin Karayel

Submission Date: 15.09.2022

D

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 15.09.2022 Paul Hofmeier

Acknowledgments

First of all, I would like to thank Prof. Tobias Nipkow for allowing me to write this
bachelor thesis.

Moreover, I would like to thank my advisor Emin Karayel, who was always available
for questions, and provided his time for frequent meetings, which helped me a lot to not
lose track and get feedback. In addition, even though it was his first time as an advisor,
he gave me valuable tips and supported me in the best way I could think of, which I am
very grateful for.

Abstract

Combinatorial objects have configurations which can be enumerated by algorithms,
but especially for imperative programes, it is difficult to find out if they produce the
correct output and don’t generate duplicates. Therefore, for some of the most com-
mon combinatorial objects, namely n_Sequences, n_Permutations, n_Subsets, Powerset,
Integer_Compositions, Integer_Partitions, Weak_Integer_Compositions and Trees, this
thesis formalizes efficient functional programs and verifies their correctness with help of
the interactive theorem prover Isabelle. In addition, for some combinatorial structures
the enumeration function is then used to show the structure’s cardinality.

vii

Contents

Acknowledgments

Abstract

1

2

Introduction

Selection of Combinatorial Objects

21 The Twelvefold Way

2.2 Other Combinatorial Objects

2.3 Selection e

Infrastructure

3.1 Foundation.
3.1.1 Isabelle/HOL e
3.1.2 Archive of Formal Proofs

3.2 Additionally Verified o oo Lo
3.21 Distinctness e e
3.2.2 Cardinality Helpers
323 Miscellaneous
324 MapBoolList

Combinatorial Algorithms

41 n_Sequences
42 n_Permutations
421 n_Multiset Permutations
4.3 Powerset e e e e e
43.1 Alternative Algorithm for all_bool_lists
44 n_Subsets. e
441 Alternative Algorithm for n_bool_lists
45 Integer_Compositions
4.6 Integer Partitions
47 Weak_Integer_Compositions
4.8 Trees e e e e
Conclusion
5.1 Further Work e

vii

13
13
15
16
17
17
18
19
19
20
21
22

25
25

X

Contents

List of Figures
List of Tables

Bibliography

27

27

29

1 Introduction

In combinatorics, which is "[...] the field of mathematics concerned with problems of
selection, arrangement, and operation within a finite or discrete system" [1], structures
with certain properties occur. Those combinatorial objects can be enumerated by
algorithms, but when implementing them it is sometimes difficult to tell if they produce
the correct output and don’t generate duplicates. Therefore, to be sure they work
correctly, the programs need to be formally verified.

In this thesis, I will do this with the interactive theorem prover Isabelle. Since Isabelle
provides a good infrastructure for ML programs, and imperative programs are a lot
harder to argue about, the programs I will formalize and verify are functional. In
addition, for the most part the functional programs will be efficient in the sense that
they do not remove objects after they have already added them, but this of course means
that proofs become more difficult, since for example, a remove duplicates function,
which would enforce distinctness, or a filtration on all sequences to check whether it is
a permutation, will not be applied in the enumeration function.

Aside from showing the correctness and distinctness of the combinatorial enumeration
function’s output, I will also use them to prove the cardinality for combinatorial objects
of which the cardinality has not been shown yet.

Obviously, this is not the only use case for these programs, since different combinato-
rial structures occur very often in computer science. When for example looking at data
structures, combinatorial enumeration functions can be used to cover all test cases.

While combinatorial algorithms cannot only be functions for enumeration, but also
for example, functions to search for a combinatorial object which satisfies a certain
condition [10], I will address in this thesis only combinatorial enumeration algorithms.

2 Selection of Combinatorial Objects

What we mean by combinatorial objects is very comprehensive. In this thesis we will
define a combinatorial object as a structure which can only have a finite number of
configurations, where a configuration is a state of an object which is different to all other
states and which satisfies a certain condition. The set of structures with all possible
configurations, is then what we call the combinatorial object’s set and this is what we
want to enumerate.

All kinds of combinatorial objects exit, they appear in different mathematical fields,
ranging from number theory over order theory up to graph theory. For instance, in
number theory the set of all natural numbers smaller or equal to 8, in order theory all
equivalence relations, or in graph theory all acyclic graphs. Due to the large number of
possible combinatorial structures, we need to categorize them and then select some of
the most common and important ones to stay in the scope of a bachelor thesis.

First, it makes sense to distinguish between combinatorial objects with different
amounts of distinct configurations, because of inequality of their set cardinality. If the
cardinality would be equal, we should in general be able to find bijections between
those sets, which then may be able to be applied in linear time to get an algorithm for
the other object. Moreover, for some combinatorial objects it is possible to combine
different enumeration algorithm to get a correct result, but it may still be necessary to
use separate functions if a faster algorithm can be implemented.

2.1 The Twelvefold Way

The Twelvefold Way is another scheme we can look at, that has even been formalized in
Isabelle, though the existing formalization only contains results about the cardinalities
and no enumeration algorithms [5]. This scheme talks about the amount of functions
f+ N = X where N and X are finite sets. It is split into the cases of f being injective,
surjective or any function, and in the cases of whether all elements of N or all elements of
X are distinguishable [11]. Those restrictions then conclude the cardinalities in Table 2.1.

2 Selection of Combinatorial Objects

’ Elements of N ‘ Elements of X H Any f ‘ Injective f ‘ Surjective f ‘
distinct distinct x" (X)n x!{7}
indistinct distinct ((3)) ((,%)
distinct indistinct o{i} [n < x] {%}
indistinct indistinct Yiopi(n) [n < x] px(n)

Table 2.1: The Twelvefold Way, adapted from [11].

To clarify some notations of Table 2.1:

* 1 is the cardinality of N and x is the cardinality of X.

(x)n is a falling factorial and equal to n! - ().

{1} is the stirling number second kind.

x+n71)'

((3,)) is the multiset coefficient and equal to (**

px(n) is the partition function which counts how many partition of n into x non
zero parts are possible.

e [n < x] is an Iverson bracket which is 1 if the condition holds and 0 if not.

However, these notations are only used here for compactness reasons and from now
on we will derive notations from our formalization in Isabelle, which will be introduced
in Chapter 1.

The Twelvefold Way, can also be interpreted in a more discrete and intuitive way, by
solving the problem of putting balls into urns [8]. From Table 2.2 we can then select
combinatorial object.

balls per urn unrestricted <1 >1
n labeled balls, n-sequences n-permutations | partitions of {1, ...,n}
m labeled urns of m things of m things into m ordered parts
n unlabeled balls, n-multisubsets n-subsets compositions of n
m labeled urns of m things of m things into m parts
n labeled balls, | partitions of {1,...,n} n pigeons partitions of {1,..,n}
m unlabeled urns into < m parts into m holes into m parts
n unlabeled balls, partitions of n n pigeons partitions of n
m unlabeled urns into < m parts into m holes into m parts

Table 2.2: The Twelvefold Way with balls and urns, adapted from [8].

2.2 Other Combinatorial Objects

2.2 Other Combinatorial Objects

Some of the most common combinatorial objects are included in the Twelvefold Way,
but of course it is far away from being complete. Moreover, sometimes structures may
not appear to be, but are, directly related to this classification, like the stars and bars
problems [11], which are similar to n-multisubsets and compositions of .

Nevertheless, there are also more complex structures with cardinalities different from
the twelvefold way. To name a few:

Dyck words and binary trees with labeled nodes have a cardinality equal to the
catalan number [8].

Lattice paths with different constraints can create specific combinatorial objects
[11].

Or simply anything from graph theory, including order relations , but some of
course fit into the Twelvefold Way. For example equivalence relations, are similar
to n_partitions.

2.3 Selection

To make a selection of combinatorial objects, we want to verify an algorithm for, it is
worth taking a look at what algorithms have already been formalized in Isabelle. The
standard library contains algorithms for permutations, multset permutations and lists,
additionally an algorithm for equivalence relations can be found in the AFP [7]. Though
I have to admit here, that there may be more which I haven’t found.

Considering enumeration algorithms that have already been verified in Isabelle, and
the brief categorization from before, enumeration algorithms for

n_Sequences, n_Permutations, n_Subsets, Powerset, Integer_Compositions,
Integer_Partitions, Weak_Integer_Compositions and Trees

were verified for this thesis.

3 Infrastructure

Since we don’t want to start from scratch, we need an existing foundation to rely on in
the formalization. This will also reduce the amount of work that needs to be done, and
provide compatibility for other Isabelle projects. Additionally, new infrastructure for
generalizing our problems and thus simplifying some proof processes, is desirable.

3.1 Foundation

3.1.1 Isabelle/HOL

As already mentioned, the verification will be done in Isabelle. It is a generic proof
assistant that can especially be used for mathematical proofs and formal verification [13].
In particular, we will use Isabelle/HOL, where HOL stands for Higher Order Logic,
to verify algorithms. For this, Isabelle provides us with a standard ML like syntax for
functional programs, proving assistance with for example computational induction, and
many libraries from which we will especially use List, Set, Multiset, Tree, Binomial and
Permutations. Some noteworthy functions/definitions we will use are distinct, C and
set. Of course there is a lot more to tell about Isabelle, but to keep it concise, refer to the
documentation [13] for anything unclear or not mentioned here.

Code generation is another Isabelle feature which is useful in the context of this thesis.
With this it is possible to convert executable Isabelle code directly to SML, OCaml,
Haskell and Scala programs [13]. These programs are then formally verified, and the
risk of making mistakes when manually adopting from Isabelle code, does no longer
exist. In our case this would for instance mean, that we could with little effort get haskell
programs for enumerating combinatorial objects.

3.1.2 Archive of Formal Proofs

While the Isabelle standard libraries contain common formalization, the Archive of
Formal Proofs, or in short AFP, is another reliable place to get library files. To expand
our foundation following AFP entries were used.

3 Infrastructure

Catalan Numbers contains a formalization of catalan numbers, including a correspond-
ing induction scheme [6].

Cardinality of Number Partitions as the name suggests, it contains proofs for the cardi-
nality of number partitions [2].

The Falling Factorial of a Sum contains theorems about falling factorials [4].

Needless to say, the AFP has also theories which we don’t directly use as infrastructure,
but are still closely related to combinatorial objects. For instance, Derangements,
Enumeration of Equivalence Relations and The Twelvefold Way [3, 7, 5].

3.2 Additionally Verified

We have to prove the same things for every implemented enumeration algorithm and
they seem to be fairly similar, because the algorithms use list comprehension and rely
on the following pattern:

fxy.x < xs,y < gx]

where xs is a list, g a function that takes elements from xs, and f a function that takes
elements from xs as well as results from g, f can also be seen as a constructor for
combinatorial objects. However, for some of the algorithms g and f take less arguments
and thus the verification is easier, but this is the general case.

Therefore, it is quite obvious that we can show some abstract properties to simplify
further proofs. Moreover, the libraries shown before lack some theorems and concepts,
we want in our formalization. Thus, in this chapter additional infrastructure will be
verified.

3.2.1 Distinctness

Firstly, proofs of whether the result of a function is distinct can be made easier. For this
purpose inj2 will be introduced.

definition inj2-on :: (a = 'b = 'c) = 'a set = 'b set = bool where
inj2-on fAB <+— (Vx1€A. Vx2€A. VyleB.Vy2eB. fx1yl =fx2y2 — x1 =x2 ANyl = y2)

abbreviation inj2 :: (a = 'b = 'c) = bool where
inj2 f = inj2-on f UNIV UNIV

3.2 Additionally Verified

It is a property for functions which take two arguments, and holds if the uncurried
version is injective. This property implies injectivity of the partially applied functions.
It is used for functions which construct a combinatorial object and thus abstracts our
enumeration functions. In addition, the proofs become simpler, since we don’t need to
care about currying. In this regard, following lemma shows the equivalence:

lemma inj2-curried: inj2-on (curry f) A B <— inj-on f (AxB)
unfolding inj2-on-def inj-on-def by auto

The first useful lemma that can be shown with inj2 is an extension of the existing
distinct_map to partly applied functions.

lemma inj2-on-distinct-map:
assumes inj2-on f {x} (set xs)
shows distinct xs = distinct (map (f x) xs)

Considering the shape of the enumeration algorithms, we can use inj2 and come up
with a general lemma, which can be proven by an induction on xs and some auxiliary
lemmas including inj2-on-distinct-map.

lemma inj2-distinct-concat-map-function:
assumes inj2 f
shows [V x € set xs. distinct (g x); distinct xs]| = distinct [fx y. x < xs, y < g X]

With this theorem we consequently only need to show Vx € set xs. distinct (g x),
distinct xs and inj2 f, to prove the distinctness for each algorithms. An even more
general theorem that uses inj2-on instead of inj2 would also be desirable, but it wasn’t
needed for any of the algorithms.

To give an overview, these lemmas may be used for the following functions which
satisfy the inj2 property.

lemma Cons-inj2: inj2 (#)

lemma Cons-Suc-inj2: inj2 (Ax ys. Suc x # ys)
lemma Node-right-inj2: inj2 (Al r. Node l e r)
lemma Node-left-inj2: inj2 (Ar 1. Node l e 1)

While the concept of inj2, could also be implemented as a locale in Isabelle, to generate
various lemmas automatically for every inj2 function, it makes more sense to implement
it as a simple assumption and only derive theorems when needed, because a locale
would be a bit too much for such a small assumption, and this way it is more similar to
the existing theorems with inj.

3 Infrastructure

3.2.2 Cardinality Helpers

Helping lemmas can also be implemented for the purpose of proving cardinalities.

lemma length-concat-map-function-sum-list:
assumes A\ x. x € set xs == length (g x) =hx
shows length [fx r . x < xs, r < ¢ x| = sum-list (map h xs)

With this we can get rid of f as well as g and introduce a counting function % , such
that, for the most part, we only have to reason about a series. The next two lemmas will
also be helpful in this regard.

lemma leq-sum-to-sum-list: (Y x < n. fx) = (¥ x<—[0..<Suc n]. f x)

lemma sum-list-extract-last: (Y x<[0..<Suc n|. fx) = (Lx[0..<n|.fx) + fn

3.2.3 Miscellaneous

Isabelle’s list library doesn’t contain many lemmas about count_list, since it is advised
to use count o mset instead, but for our purposes count_list is more suited, because the
combinatorial algorithms enumerate lists and no unordered structures like multisets.
Moreover, the multiset library does not have to be imported if we just use count_list.
These four lemmas for count_list will be used in our formalizations and they could
enhance the List library.

lemma count-list-replicate: count-list (replicate x y) y = x
lemma count-list-full-elem: count-list xs y = length xs <— (Vx € set xs. x = y)
lemma count-list-zero-not-elem: count-list xs x = 0 <— x & set xs

lemma count-list-length-replicate: count-list xs y = length xs <— xs = replicate (length xs) y

10

3.2 Additionally Verified

3.2.4 Map Bool List

Now we take a look at concept which we will later use for bijections, in the algorithms
of n_subsets and powerset. It is the filtering of lists with other lists that contain boolean
values. Another interpretation would be the application of a bitmap. In this sense
the boolean lists can be seen as binary numbers. There are many ways to implement
map_bool_list, we chose the following, since it provides a convenient computational
induction scheme.

fun map-bool-list :: bool list = 'a list = 'a list where
map-bool-list [] - =]
| map-bool-list - [| = |]
| map-bool-list (x#xs) (y#ys) = (if x then y#(map-bool-list xs ys) else (map-bool-list xs ys))

Another way to implement this is with the nth function, of which the equivalence can
be shown.

lemma map-bool-list-set-nth:
set (map-bool-list xs ys) = {ys ! n |n. xs ! n A n < length xs A n < length ys }

For the verification we then need theorems about map_bool_list, some of which are:

lemma map-bool-list-elem:
x € set (map-bool-list ys xs) = x € set xs

lemma map-bool-list-card:
[distinct xs; length xs = length ys] == card (set (map-bool-list ys xs)) = count-list ys True

lemma map-bool-list-distinct:
distinct xs == distinct (map-bool-list ys xs)

lemma map-bool-list-inj:
distinct xs == inj-on (Ays. map-bool-list ys xs) {ys. length ys = length xs}

11

4 Combinatorial Algorithms

Finally, we will start formalizing combinatorial enumeration algorithms. The functions
will operate on lists, because lists are ordered, which makes it easier to use them for
programs. If we then need a set for the verification, it will be substituted with set xs
and distinct xs where xs is a list. For every combinatorial object the following will be
provided.

¢ The object’s formalized definition.
¢ An example for illustration.
¢ The actual enumeration function(s).

¢ A proof the show correctness, in the manner, that the set of what the enumeration
function generates is equal to the object definition.

* Distinctness proof(s) where necessary, since our function(s) only operate on lists
and the set conversion removes duplicates.

* A verification of the combinatorial object’s set cardinality, which in some cases can
be directly deduced from the infrastructure and in other cases will be shown by
using the enumeration function.

Even though, in Isabelle there is no difference between lemmas and theorems, we will
use lemma for auxiliary claims and theorem for the main statements, which were just
mentioned. This notation should make the structure of the verification more visible.

4.1 n_Sequences

The probably most simple combinatorial object we are going to formalize is n_sequences,
also called n_tuples, and since it is the first one we will do it in more detail and omit
non interesting parts for further objects. n_sequences are defined as all lists of length #,
which contains only elements from a given set A. In Isabelle it looks as follows.

definition n-sequences :: ‘a set = nat = 'a list set where
n-sequences A n = {xs. set xs C A A length xs = n}

One example would be:

n_sequence {0,1,2} 2 = {[0,0],[0,1],[0,2],[1,0],[1,1],[1,2],[2,0],[2,1],[2,2] }

13

4 Combinatorial Algorithms

The list library from Isabelle HOL already contains a function to generate those lists,
which has already been verified for correctness.

primrec n-lists :: nat = 'a list = 'a list list where
n-lists 0 xs = [[]] |
n-lists (Suc n) xs = concat (map (Ays. map (Ay.y #ys) xs) (n-lists n xs))

lemma set-n-lists: set (List.n-lists n xs) = {ys. length ys = n A set ys C set xs}

But to exemplify what we need to do for every enumeration function, it is worth
taking a look at another one which has a similar shape to enumeration algorithms from
the other combinatorial objects.

fun n-sequence-enum :: 'a list = nat = 'a list list where
n-sequence-enum xs 0 = [[]]
| n-sequence-enum xs (Suc n) = [x#r . x < xs, r < n-sequence-enum xs n|

This function produces the same n_sequences as n_lists, which can be shown by
induction on n.

lemma set (n-sequence-enum xs n) = set (List.n-lists n xs)

Though n_sequences_enum is probably slower then n_[ists, since it doesn’t reuse the
same n_sequence_enum call for each element of xs. A concept to make it more efficient
is structural sharing. With this, previous parts get reused and don’t consume additional
memory for each version [9]. It can not only be used for n_sequences, but also for some
of the other objects, whenever the combinatorial object’s configurations build up on one
another, like it is the case for trees.

For the correctness we need to proof that it only produces lists which are n_sequences
and that the result contains all of them. Therefore, we need a proof by exhaustion, in
the sense, that we have to show the subset relation in both directions. The proofs work
in this case again straightforward with an induction on 7.

theorem n-sequence-enum-correct:

set (n-sequence-enum xs n) = n-sequences (set xs) n
proof standard

show set (n-sequence-enum xs n) C n-sequences (set xs) n
next

show n-sequences (set xs) n C set (n-sequence-enum xs n)
qed

In distinctness proof, we can now use a lemma which follows from 3.2.1, where the
inj2 function is just the Cons constructor of lists.

theorem n-sequence-enum-distinct: distinct xs == distinct (n-sequence-enum xs n)
by (induct n) (auto simp: Cons-distinct-concat-map)

14

4.2 n_Permutations

While we could directly use the card_lists_length_eq lemma which already verifies
the cardinality, it is also possible to use our algorithm now, to get an intuition of how it
could be done for every other combinatorial object.

lemma n-sequence-enum-length: length (n-sequence-enum xs n) = (length xs) " n
theorem n-sequences-card:

assumes finite A
shows card (n-sequences A n) = card AN n

4.2 n_Permutations

A n_permutation is like a n_sequence with the additional restriction, that the list must
be distinct. It is a permutation with a constrained length.

definition n-permutations :: 'a set = nat = 'a list set where
n-permutations A n = {xs. set xs C A A distinct xs A length xs = n}

An example: n_permutation {0,1,2} 2 = {[0,1],[0,2],[1,0],[1,2],[2,0],[2,1]}

The function works similar to the one from the Multiset Permutations library, but has
an additional parameter n to limit the length. The set is here again passed as list, like
we previously discussed.

fun n-permutation-enum :: 'a list = nat = 'a list list where

n-permutation-enum xs 0 = [[|]
| n-permutation-enum xs (Suc n) = [x#r . x < xs, v < n-permutation-enum (removel x xs) n

For the correctness, we essentially need those four auxiliary lemmas.
lemma n-permutation-enum-subset: ys € set (n-permutation-enum xs n) == set ys C set xs
lemma n-permutation-enum-length: ys € set (n-permutation-enum xs n) == length ys = n

lemma n-permutation-enum-elem-distinct:
distinct xs == ys € set (n-permutation-enum xs n) == distinct ys

lemma n-permutation-enum-correct2:
ys € n-permutations (set xs) n = ys € set (n-permutation-enum xs n)

To finally show the following, where the list xs is assumed to be distinct, since it is
meant to represents a set.

15

4 Combinatorial Algorithms

theorem n-permutation-enum-correct:
distinct xs = set (n-permutation-enum xs n) = n-permutations (set xs) n

To verify, that no duplicates are generated inj2_distinct_concat_map_function is used
again, but here the function g, which has to produce distinct results for an input
x € set xs, is n_permutation_enum (removel x xs) n, though this can be shown in the
induction step, to then get:

theorem n-permutation-distinct: distinct xs == distinct (n-permutation-enum xs n)

For this object the cardinality has already been proven, in the Falling Factorial Sum
library with the card_lists_distinct_length_eq lemma [4]. Therefore, we only need to
adopt it to our definition, which gets us the following, where f fact is the failing factorial
function.

theorem finite A = card (n-permutations A n) = ffact n (card A)

4.2.1 n_Multiset Permutations

It is also worth saying, that the function we just verified cannot only be used to enumerate
n_permutation, but also to enumerate n_multiset_permutations, if we apply a remove
duplicates function.

fun n-multiset-permutation-enum :: 'a list = nat = 'a list list where
n-multiset-permutation-enum xs n = remdups (n-permutation-enum xs n)

This is how n_multiset_permutations are defined:

definition n-multiset-permutations :: 'a multiset = nat = 'a list set where
n-multiset-permutations A n = {xs. mset xs C# A A length xs = n}

Example: n_multiset_permutation {#0,0,1#} 3 = {#[0,0,1],[0,1,0], [1,0,0}#}

The correctness proof is simple, since there are some lemmas which can be reused,
and the distinctness follows directly from the application of remdups.

lemma n-multiset-permutation-enum-correct:
set (n-multiset-permutation-enum xs n) = n-multiset-permutations (mset xs) n

lemma distinct (n-multiset-permutation-enum xs n)

However, because of remdups, this algorithm is not very efficient. A more efficient
version could use remdups in every iteration, or somehow don’t generate duplicates, by
for example remembering already generated permutations, but this we didn’t formalize.

16

4.3 Powerset

4.3 Powerset

Next we will enumerate powersets, which are already defined in the Isabelle library.

definition Pow :: 'a set = a set set
where Pow-def: Pow A = {B.B C A}

Example: Pow {0,1} = {{}, {0},{1},{0,1}}

To illustrate similarities to binary numbers and to define an alternative enumeration
function, the algorithm doesn’t directly enumerate the powerset, but instead uses boolean
lists.

fun all-bool-lists :: nat = bool list list where
all-bool-lists 0 = [[]]

| all-bool-lists (Suc x) = concat [[Falset#xs, True#xs| . xs < all-bool-lists x]

fun powerset-enum where
powerset-enum xs = [(map-bool-list x xs) . x < all-bool-lists (length xs)]

Here the map bool list infrastructure finds its uses. To utilize it, first those two lemmas
are needed.

lemma distinct-all-bool-lists : distinct (all-bool-lists x)
lemma all-bool-lists-correct: set (all-bool-lists x) = {xs. length xs = x}
And now the correctness and distinctness can be shown.
theorem powerset-enum-correct: set (map set (powerset-enum xs)) = Pow (set xs)
theorem powerset-enum-distinct: distinct xs = distinct (powerset-enum xs)

However, an additional lemma has to be verified, since for correctness the elements
were mapped to sets.

theorem powerset-enum-distinct-elem: distinct xs = ys € set (powerset-enum xs) == distinct ys
A cardinality proof for powersets does also already exist in the library.

lemma card-Pow: finite A = card (Pow A) = 2 " card A

4.3.1 Alternative Algorithm for all_bool_lists

For an alternative algorithm, n_sequence_enum can be used to generate boolean lists.

17

4 Combinatorial Algorithms

fun all-bool-lists2 :: nat = bool list list where
all-bool-lists2 n = n-sequence-enum [True, False] n

We already have verified n_sequence_enum, therefore the proofs for correctness and
distinctness can be concluded directly, and with them we could replace all_bool_lists
with all_bool_lists2.

lemma all-bool-lists2-distinct: distinct (all-bool-lists2 n)

lemma all-bool-lists2-correct: set (all-bool-lists n) = set (all-bool-lists2 n)

4.4 n_Subsets

n_subsets are subsets that contain exactly n elements. They are like the powerset, with
an additional restriction of the cardinality being 7.

definition n-subsets :: 'a set = nat = 'a set set where
n-subsets An = {B.B C A A card B=n}

Example: n_subsets {0,1,2} 2 = {{0,1},{0,2},{1,2}}

For the algorithm, we will do the same we did with n_sequence_enum. Therefore,
n_bool_lists does enumerate boolean lists, that contain exactly n True elements.

fun n-bool-lists :: nat = nat = bool list list where
n-bool-lists n 0 = (if n > 0 then [] else [[]])
| n-bool-lists n (Suc x) = (if n = 0 then [replicate (Suc x) False]
else if n = Suc x then [replicate (Suc x) True]
else if n > x then |]
else [Falsettxs . xs <— n-bool-lists n x| @ [Truetxs . xs < n-bool-lists (n—1) x])

fun n-subset-enum :: 'a list = nat = 'a list list where
n-subset-enum xs n = [(map-bool-list x xs) . x < (n-bool-lists n (length xs))]

n_bool_lists is a little bit more complicated than it needs to be, but replicating True or
False when the rest only contains True or False, may make it more efficient, however with
this the proofs become more difficult. Considering this, the following two lemmas need
to be shown, and here some lemmas about count_list, we verified for the infrastructure,
are applied.

lemma n-bool-lists-distinct: distinct (n-bool-lists n x)

lemma n-bool-lists-correct: set (n-bool-lists n x) = {xs. length xs = x A count-list xs True = n}

18

4.5 Integer_Compositions

Then we can infer the correctness and distinctness of n_subsets, with the same addi-
tional distinctness, discussed preversly for powerset_enum.

theorem n-subset-enum-correct:
distinct xs = set (map set (n-subset-enum xs n)) = n-subsets (set xs) n

theorem n-subset-enum-distinct-elem: distinct xs == ys € set (n-subset-enum xs n) == distinct ys

theorem n-subset-enum-distinct: distinct xs == distinct (n-subset-enum xs n)

The cardinality has here again already been shown. It is located in the Binomial
standard library, where choose is the the binomial coefficient.

theorem n-subsets:
assumes finite A
shows card {B. B C A A card B =k} = card A choose k

4.4.1 Alternative Algorithm for n_bool_lists

Another algorithm for n_bool_lists can also be verified. It uses permutations_of_multiset
which has an enumeration algorithm in HOL-Combinatorics.Multiset_Permutations,
but due to the fact, that it uses permutations_of_multiset, n_bool_lists2 is properly less
efficient.

fun n-bool-lists2 :: nat = nat = bool list set where
n-bool-lists2 n x = (if n > x then {} else
permutations-of-multiset (mset (replicate n True @ replicate (x—n) False)))

To use it instead of n_bool_lists, another lemmas was verified, but we don’t need a
distinctness lemma, since this algorithm, as an exception, indirectly operates on sets.

lemma n-bool-lists2-correct: set (n-bool-lists n x) = n-bool-lists2 n x

4.5 Integer_ Compositions

Until now, we had only formalized combinatorial objects, which depend on a pro-
vided set, but the next objects will only take numbers. In this sense, we will define
integer_compositions. It can be understood as the ways of how a natural number can be
split into non zero summands, where the order matters. Due to this, the definition uses
lists. If we would additionally restrict the list’s length, integer_compositions should be
equal to the stars and bars problem of first kind.

19

4 Combinatorial Algorithms

definition integer-compositions :: nat = nat list set where
integer-compositions i = {xs. sum-list xs =i N\ 0 & set xs}

Example: integer_compositions 3 = {[3],[2,1],[1,2],[1,1,1]}"

The algorithm follows the patter we have seen previously, but this time the recursive
call depends on two arguments, 7 and m.

fun integer-composition-enum :: nat = nat list list where
integer-composition-enum 0 = [[]]

| integer-composition-enum (Suc n) =
[Suc m #xs. m < [0..< Suc n], xs < integer-composition-enum (n—m)]

Showing the correctness in this case is a bit more difficult, since the recursive call
takes any nat smaller to the previous one. However, with the right induction and some
auxiliary lemmas the correctness follows.

theorem integer-composition-enum-correct: set (integer-composition-enum n) = integer-compositions n

For the distinctness inj2_distinct_concat_map_function can be used. The inj2 function
is in this case not just Cons, but (Ax xs. Cons (Suc x) xs).

theorem integer-composition-enum-distinct: distinct (integer-composition-enum n)

The length_concat_map_function_sum_list lemma from our cardinality helper infras-
tructure will be used now, so that we essentially only have to show the equivalence of a
series, to verify the cardinality.

lemma sum-list-two-pow: Suc (Y. x<[0..<n].2 " (n — Sucx)) =2"n
lemma integer-composition-enum-length: length (integer-composition-enum n) = 2"(n—1)

theorem integer-compositions-card: card (integer-compositions n) = 2"(n—1)

4.6 Integer Partitions

integer_partitions are like integer_compositions, with the only difference that their ele-
ments aren’t ordered. Therefore, they are represented by multisets. They are equal to
Young diagrams [12].

definition integer-partitions :: nat = nat multiset set where
integer-partitions i = {xs. sum-mset xs =i A\ 0 ¢# xs}

Example: integer_partitions 4 = {{4},{3,1},{2,2}{2,1,1},{1,1,1,1}}

20

4.7 Weak_Integer_Compositions

The enumeration function uses an auxiliary function, which carries a parameter m
to limit how big the split integers can be. Therefore, each produced integer partition is
sorted in descending order.

fun integer-partitions-enum-aux :: nat = nat = nat list list where
integer-partitions-enum-aux 0 m = [[]]
| integer-partitions-enum-aux n m =
[h#tr . h < [1..< Suc (min n m)], r < integer-partitions-enum-aux (n—h) h|

fun integer-partitions-enum :: nat = nat list list where
integer-partitions-enum n = integer-partitions-enum-aux n n

By showing what we expect from integer_partitions_enum_aux we can then prove the
correctness of integer_partitions_enum.

lemma integer-partitions-enum-aux-max:

xs € set (integer-partitions-enum-aux n m) = x € set xs = x < m
theorem integer-partitions-enum-correct:

set (map mset (integer-partitions-enum n)) = integer-partitions n

The proof for distinctness isn’t very interesting, since it doesn’t involve anything new.

theorem integer-partitions-enum-distinct: distinct (integer-partitions-enum n)

For the cardinality we can rely on the Cardinality of Number Partitions library.
However, we need one additional lemma, that surprisingly doesn’t already exist. It can
be shown by applying a bijection with the count function for multisets. If it isn’t already
clear Partition is the partition function. It can be found in the library.

lemma card-partitions-number-partition: card {p. p partitions n} = card {N. number-partition n N}

theorem integer-partitions-cardinality: card (integer-partitions n) = Partition (2xn) n

4.7 Weak_Integer_Compositions

Another combinatorial object is weak_integer_compositions. They are integer_compositions,
which are weak in the sense that they can contain zeros. In addition, the length is fixed,
since otherwise infinitely many configurations would be possible. weak_integer_compositions
are also equal to stars and bars of second kind.

definition weak-integer-compositions :: nat = nat = nat list set where
weak-integer-compositions i | = {xs. length xs = I A\ sum-list xs = i}

21

4 Combinatorial Algorithms

Example: weak_integer_compositions 2 2 = {[2,0],[1,1],[0,2]}

The algorithm is quite simple, but the base cases may not seem to be obvious.

fun weak-integer-composition-enum :: nat = nat = nat list list where
weak-integer-composition-enum i 0 = (if i = 0 then [[]] else [])
| weak-integer-composition-enum i (Suc 0) = [[i]]
| weak-integer-composition-enum i | =
[h#tr . h < [0..< Suc i], r < weak-integer-composition-enum (i—h) (I—1)]

The proofs for correctness and distinctness are here again not very interesting.

theorem weak-integer-composition-enum-correct:
set (weak-integer-composition-enum i l) = weak-integer-compositions i |

theorem weak-integer-composition-enum-distinct: distinct (weak-integer-composition-enum i)

For the cardinality however, we need to show something more exciting. We are
verifying it by again arguing about a series. Moreover, multichoose will be defined as
the multiset coefficient.

definition multichoose:: nat = nat = nat (infixl multichoose 65) where
n multichoose k = (n + k —1) choose k

lemma a-choose-equivalence: Suc () x<[0..<k]. n + (k — x) choose (k — x)) = Suc (n + k) choose k
lemma composition-enum-length: length (weak-integer-composition-enum i n) = n multichoose i

theorem weak-integer-compositions-cardinality: card (weak-integer-compositions n k) = k multichoose n

4.8 Trees

The last structure we will formalize an algorithm for is trees. My supervisor, Prof. Tobias
Nipkow has already provided the definition, an algorithm, the cardinality proof, and the
basis of the distinctness lemma. We are only interested in the structure of the tree and
don’t care about what it stores. Therefore, all Nodes will be the Unity (). The trees we
enumerate are also called binary labeled trees, since the two child nodes have an order.

definition trees :: nat = unit tree set where
trees n = {t.sizet = n}

fun tree-enum :: nat = unit tree list where
tree-enum 0 = [Leaf]
| tree-enum (Suc n) = [Node t1 () t2.i < [0..<Suc n], t1 < tree-enum i, {2 < tree-enum (n—i)]

22

4.8 Trees

N N
oY ¢ v dodn g n 000
Ty O S Ty

Figure 4.1: Example: trees 3

The cardinality was proven with an induction scheme from catalan numbers, which
can be found in the Catalan Numbers library.

theorem length (tree-enum n) = catalan n

By using the computational induction scheme of tree_enum, the correctness can be
verified.

theorem tree-enum-correct: set(tree-enum n) = trees n

However, showing that no duplicates will be produced is more complex, since this
algorithm has two recursive calls and is different from the pattern we have seen so
far. Nevertheless, we can still make use of our infrastructure for distinctness, where
(M r.Nodel () r) and (Ar l. Node I () r) satisfy inj2. With this we can show the following
three auxiliary lemmas, to finally get the distinctness.

lemma tree-enum-elem-injective?:
X € set (tree-enum n) ==y € set (tree-enum m) =>x =y = n=1m

lemma tree-enum-distinct-aux-outer:
assumes Vi < n. distinct (tree-enum i)
and distinct xs
andV i€setxs.i <n
and sorted-wrt (<) xs
shows distinct (map (Ai. [Node l () r. 1 < tree-enum i, v <— tree-enum (n—i)]) xs)

lemma tree-enum-distinct-aux-left:
V i < n. distinct (tree-enum i) = distinct ([Node 1 () r. i < [0..< n], | < tree-enum i])

theorem tree-enum-distinct: distinct(tree-enum n)

23

5 Conclusion

The formalization did work well with Isabelle, and I successfully formalized enumeration
algorithms for eight combinatorial objects, if n_multiset_permutations and the boolean
lists aren’t counted separately. It took about 2000 lines of code, and not only the resulting
theorems, but also some of the infrastructure may be useful for further projects. In this
regard, it is planned to make an AFP entry out of this thesis, so that other people can
use it. However, there are still many things which can or should be done.

5.1 Further Work

Firstly, fitting combinatorial objects should become properly connected to the Twelvefold
Way AFP entry. Also, for the objects discussed in this thesis, it is desirable to have more
different enumeration algorithms, for example for powersets and n_subsets, algorithms
which don’t use boolean lists.

Moreover, a lot more combinatorial objects exist. Some were discussed in Chapter
2, and way more can be found. For every of those combinatorial objects enumeration
algorithms could be formally formalized.

25

List of Figures

41 Trees Example

List of Tables

2.1 The Twelvefold Way, adapted from [11]

2.2 The Twelvefold Way with balls and urns, adapted from [8].

27

Bibliography

[1]

(2]

3]

[4]

[5]

6]

[7]

[8]

[9]

R. C. Bose and B. Griinbaum. “combinatorics.” In: Encyclopedia Britannica (Aug.
2022). https:/ /www.britannica.com/science/combinatorics, [Online; accessed 22.
Aug. 2022].

L. Bulwahn. “Cardinality of Number Partitions.” In: Archive of Formal Proofs (Jan.
2016). https:/ /isa-afp.org/entries/Card_Number_Partitions.html, Formal proof
development. 1ssn: 2150-914x.

L. Bulwahn. “Derangements Formula.” In: Archive of Formal Proofs (June 2015).
https:/ /isa-afp.org/entries/Derangements.html, Formal proof development. 1ssN:
2150-914x.

L. Bulwahn. “The Falling Factorial of a Sum.” In: Archive of Formal Proofs (Dec.
2017). https:/ /isa-afp.org/entries /Falling_Factorial_Sum.html, Formal proof
development. 1ssn: 2150-914x.

L. Bulwahn. “The Twelvefold Way.” In: Archive of Formal Proofs (Dec. 2016). https:
/ /isa-afp.org/entries / Twelvefold_Way.html, Formal proof development. 1ssN:
2150-914x.

M. Eberl. “Catalan Numbers.” In: Archive of Formal Proofs (June 2016). https:
/ /isa-afp.org/entries /Catalan_Numbers.html, Formal proof development. 1ssn:
2150-914x.

E. Karayel. “Enumeration of Equivalence Relations.” In: Archive of Formal Proofs
(Feb. 2022). https:/ /isa-afp.org/entries/Equivalence_Relation_Enumeration.html,
Formal proof development. 1ssn: 2150-914x.

D. E. Knuth. The Art of Computer Programming. Volume 4A. Combinatorial Algorithms.
Part 1. Addison-Wesley Professional. 1sBN: 978-0-13439457-2.

D. Larchey-Wendling, D. Méry, and D. Galmiche. “STRIP: Structural Sharing for
Efficient Proof-Search.” In: Automated Reasoning. Ed. by R. Goré, A. Leitsch, and
T. Nipkow. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 696-700. 1sBN:
978-3-540-45744-2.

A. Nijenhuis, H. Wilf, and W. Rheinboldt. Combinatorial Algorithms: For Computers
and Calculators. Computer science and applied mathematics. Elsevier Science. 1SBN:
9781483273457.

R. Stanley. Enumerative Combinatorics: Volume 1. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2011. 1sBN: 9781139505369.

29

https://www.britannica.com/science/combinatorics
https://isa-afp.org/entries/Card_Number_Partitions.html
https://isa-afp.org/entries/Derangements.html
https://isa-afp.org/entries/Falling_Factorial_Sum.html
https://isa-afp.org/entries/Twelvefold_Way.html
https://isa-afp.org/entries/Twelvefold_Way.html
https://isa-afp.org/entries/Catalan_Numbers.html
https://isa-afp.org/entries/Catalan_Numbers.html
https://isa-afp.org/entries/Equivalence_Relation_Enumeration.html

Bibliography

[12] D. Stanton and D. White. Constructive Combinatorics. New York, NY, USA: Springer.
1SBN: 978-1-4612-4968-9.

[13] L. P. Tobias Nipkow. Isabelle Webpage. https:/ /isabelle.in.tum.de /index.html,
[Online; accessed 31. Aug. 2022]. Dec. 2021.

30

https://isabelle.in.tum.de/index.html

	Acknowledgments
	Abstract
	Contents
	Introduction
	Selection of Combinatorial Objects
	The Twelvefold Way
	Other Combinatorial Objects
	Selection

	Infrastructure
	Foundation
	Isabelle/HOL
	Archive of Formal Proofs

	Additionally Verified
	Distinctness
	Cardinality Helpers
	Miscellaneous
	Map Bool List

	Combinatorial Algorithms
	n_Sequences
	n_Permutations
	n_Multiset_Permutations

	Powerset
	Alternative Algorithm for all_bool_lists

	n_Subsets
	Alternative Algorithm for n_bool_lists

	Integer_Compositions
	Integer_Partitions
	Weak_Integer_Compositions
	Trees

	Conclusion
	Further Work

	List of Figures
	List of Tables
	Bibliography

