
Embodiment in Virtual and Mixed Environments

Sandro Weber

Vollständiger Abdruck der von der TUM School of Computation, Technology

and Information der Technischen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Georg Carle

Prüfer*innen der Dissertation:

1. Prof. Gudrun J. Klinker, Ph.D.

2. Prof. Dr. Dieter Schmalstieg

Die Dissertation wurde am 09.12.2022 bei der Technischen Universität München

eingereicht und durch die TUM School of Computation, Information and Tech-

nology am 09.02.2023 angenommen.

Technische Universität München
TUM School of Computation, Technology and Information

Abstract

The prospect of reality being complemented by a virtual sphere where hu-
mans are naturally embedded in their digital surroundings has inspired human
imagination in many ways. It carries the promise of transforming all aspects
of human life from health care to education, industry and entertainment on
a personal to a global level by making them more efficient, less cumbersome
or broadening and enriching their scope, influences and possibilities via far-
reaching virtual means. The advancements in the fields of Virtual, Augmented
& Mixed Reality, Ubiquitous Computing, Internet of Things, Machine Learning
among others bring the realization of such scenarios ever closer.
Yet such transformative processes also carry a lot of risks and considerations.
Apart from security and privacy concerns similar to today’s problems, the pro-
cess of mixing different environments and interfering with aspects of human life
can have non-trivial social, psychological and cultural consequences.

This work presents a framework designed for Ubiquitous Mixed Environ-
ments. The framework is built to be generally applicable on all scales, yet it
understands itself as one piece to the puzzle: enabling flexible communication
between interaction devices and facilitating individualistic setups that allow
users to control where and to what extent interaction happens by forming a
well-attuned and personalized digital ”skin” or ”suit” that embodies them in a
virtual environment.
The thesis gives a technical and conceptual overview of the framework and ar-
gues design decisions. Tests and tools aimed at assisting use and development
are also presented.
It then explores use-cases with a focus on embodiment scenarios and how to ap-
ply and support modular and interoperable solutions as part of an open Mixed
Reality world.

I

Zusammenfassung

Die Aussicht, dass die Realität durch eine virtuelle Sphäre ergänzt wird in
der Menschen auf natürliche Weise in ihr digitales Umfeld eingebettet sind hat
die menschliche Fantasie auf viele Weisen inspiriert. Sie bringt das Versprechen
mit sich alle Aspekte des menschlichen Lebens - von Gesundheitsvorsorge über
Bildung bis hin zu Industrie und Unterhaltung - auf persönlicher bis globaler
Ebene zu verändern indem sie effizienter oder weniger beschwerlich gestaltet
werden und ihr Horizont, die Einflüsse und Möglichkeiten durch weitreichende
virtuelle Hilfsmittel erweitert und bereichert werden.
Jedoch tragen solch umgestaltende Prozesse auch viele Risiken und Bedenken
mit sich. Neben den Anliegen zu Sicherheit und Privatsphäre die sich ähnlich zu
heutigen Problemen äußern kann das Vermischen von unterschiedlichen Umge-
bungen und der Eingriff in Aspekte des menschlichen Lebens nicht-triviale
soziale, psychologische und kulturelle Konsequenzen haben.

Diese Arbeit präsentiert ein Framework, das für Ubiquitous Mixed Environ-
ments entworfen wurde. Das Framework ist für generelle Fälle auf allen Ebenen
anwendbar, es versteht sich jedoch als ein Teil des Puzzles: das Ermöglichen
von flexibler Kommunikation zwischen Interaktionsgeräten und die Förderung
individueller Konfigurationen die dem Nutzer Kontrolle darüber erlauben wann
und in welchem Ausmaß Interaktion geschieht indem sie eine gut abgestimmte
und personalisierte digitale ”Haut” oder digitalen ”Anzug” erzeugen, die/der
den Nutzer in einer virtuellen Umgebung verkörpert.
Die Arbeit gibt einen technischen und konzeptuellen Überblick über das Frame-
work und verargumentiert Entscheidungen zum Design. Tests und Werkzeuge
mit dem Ziel die Nutzung und das Entwickeln zu erleichtern werden ebenfalls
präsentiert.
Anschließend werden Anwendungsfälle untersucht mit dem Fokus auf Embodiment-
Szenarien und wie modulare und kompatible Lösungen im Rahmen einer offenen
Mixed-Reality-Welt angewendet und unterstützt werden können.

II

Contents

1 Introduction 2

1.1 Original Motivation . 2

1.2 Generalizing the Original Goal 3

2 Theoretical Background: Mixed Reality 5

2.1 Motivational Scenario Revisited 5

2.2 Ubiquitous Mixed Reality & Environments 7

2.2.1 Virtual Reality & Environments 8

2.2.2 Mixed Reality & Environments 13

2.2.3 Ubiquitous Computing . 17

2.2.4 Reality vs. Environments 21

3 Re-Embodiment Scenarios 24

3.1 Related Work . 24

3.1.1 Body, Mind, Tools and Technology 25

3.1.2 Body Image & Body Schema 25

3.1.3 Disembodiment vs Re-Embodiment 26

3.1.4 Virtual (Re-)Embodiment 27

3.1.5 Robotics, Teleoperation, Telepresence 28

3.2 Libraries, Tools & Platforms . 29

3.2.1 Unity3D . 29

3.2.2 Three.js . 30

3.2.3 babylon.js . 30

3.2.4 Gazebo . 30

3.2.5 Nengo . 30

III

3.2.6 Neurorobotics Platform 30

3.2.7 PID Controller . 31

3.3 Dealing with Discrepancies between Environments 32

3.4 Robot Hand Control using sEMG 34

3.5 NRP Re-Embodiment . 36

3.5.1 Unity VR Client . 37

3.5.2 Humanoid Robot Avatar 38

3.5.3 Motion Control Plugin & Limitations 39

3.5.4 PID auto-tuning . 40

3.5.5 Replicating humanoid motion 40

3.5.6 Transition to Ubi-Interact 41

4 Towards building a Mixed Reality Framework 42

4.1 Overview: Communication Patterns 42

4.1.1 Services & Request/Reply 43

4.1.2 Event-Based & Publish/Subscribe 44

4.1.3 Dedicated Streaming Protocols 46

4.2 Publish/Subscribe Systems . 46

4.2.1 Apache Kafka . 46

4.2.2 ROS . 48

4.2.3 DDS . 48

4.2.4 MQTT . 49

4.3 Data Processing in Event-Driven Architectures 49

4.3.1 ROS . 49

4.3.2 Node-RED . 50

4.3.3 Neurorobotics Platform 50

IV

4.3.4 UbiTrack . 51

4.4 Message Descriptions and Formats 51

4.4.1 JSON . 52

4.4.2 Apache Avro . 52

4.4.3 Google Protocol Buffers 52

4.4.4 YANG . 53

4.4.5 Zero-Copy Formats . 53

4.5 Agents, IVAs, AI . 54

4.6 Digital Twins . 55

4.7 Context-Awareness . 55

4.8 Security & Privacy . 60

4.9 Libraries, Tools & Platforms . 64

4.9.1 ZeroMQ . 64

4.9.2 Node.js . 64

5 Ubi-Interact 65

5.1 Requirement Analysis . 66

5.2 General Design Decisions . 71

5.2.1 System of systems . 72

5.2.2 Centralized local units . 73

5.2.3 Architecture Goals . 74

5.2.4 Message schemas and internal API 75

5.3 Nodes . 76

5.3.1 Client Node . 76

5.3.2 Master Node . 77

5.4 Devices & Components . 79

V

5.4.1 Components . 79

5.4.2 Devices . 80

5.4.3 Usage . 80

5.5 Processing Modules & Sessions 82

5.5.1 Processing Modules . 83

5.5.2 Sessions . 88

5.5.3 Comparison with other data processing architectures . . . 89

5.6 Choice of Implementation Language 90

5.7 Publish/Subscribe Broker . 90

5.7.1 Existing Solutions . 91

5.7.2 Broker features for Ubiquitous Mixed Reality 93

5.7.3 Performance Measurements 96

5.8 Debugging . 100

5.9 Testing . 100

5.10 Web Frontend . 101

5.10.1 Client-Device-Component Viewer 101

5.10.2 Topic and Service Inspector 101

5.10.3 Test Record Publishing 103

5.10.4 Graph Visualizer . 103

5.11 Applications . 104

5.11.1 Image Processing Demonstrator 104

5.11.2 Entertainment and Sports 105

5.11.3 Virtual Supermarket . 107

5.11.4 Serious Games . 107

5.11.5 Hololayer . 107

VI

5.12 Modular Re-Embodiment with Ubi-Interact 108

5.12.1 Ubi-Interact setup . 109

5.12.2 Unity3D . 110

5.12.3 Web . 111

5.12.4 Results . 111

6 Future Work 113

6.1 Node features . 113

6.2 Pub/sub broker performance . 113

6.3 Time Synchronization . 113

6.4 Security . 114

6.5 Conditional Publish/Subscribe 114

6.6 Intent . 115

7 Conclusion 116

A Appendix 121

A.1 Ubi-Interact broker performance 121

A.2 Acronyms . 127

VII

Acknowledgments

Firstly, I want to thank Prof. Gudrun Klinker for her persistent support, for
her investment of time and her exceptional care during this endeavor.

Thanks also goes to my mentor Dr. Patrick Maier for being one of the most
energetic and enjoyable people to work with.

A lot of appreciation also goes to my colleagues, who are always up for
endless discussions and feedback and who took the time to give half-baked ideas
a try.

I want to thank family and friends for their continued support and under-
standing, listening to ideas and offering their viewpoints.

1

1 Introduction

1.1 Original Motivation

This endeavor originally started with the Neurorobotics Platform (NRP) as a
simulation platform for embodied robotics and the goal of letting humans join
the virtual robots in their simulated environment through the use of commer-
cially affordable and available hardware.

The focus was to establish both robot and human as equal actors on a level
playing field inside the simulation without one having privileged access to parts
of the physics or visualization nor being able to circumvent any of their internal
mechanisms - for example observing elements or performing actions that would
be considered physically impossible.
For a human user to be able to present themselves with agency in this manner
inside the virtual world of the robot, they would require a surrogate body - an
avatar - embedded in the physics engines of the simulator that they can take
over and control.

Given such a setup, it would allow for investigations in two directions.
Firstly, as the robot is being developed and tested inside this simulated scenery
during the first phases of its life-cycle, it would be able to encounter human
behaviour and interaction with more of its complex and unpredictable facets -
something inherently difficult to simulate. Secondly, it would explore what is
necessary and what it means to bring agency to humans in a virtual environ-
ment when they are not the center piece but instead just one more actor inside
it - being exposed to all the limiting factors like physics calculations affecting
their proxy body etc. that keep the virtual world consistent while trying to
approximate reality.

Due to several technical as well as political decisions during the development
of the NRP it became clear that real-time and interactive simulations were not
the primary consideration for the foreseeable future, i.e. the time-frame of
this work. Non-real-time simulation however is an obvious death sentence to
proper experiments involving human interaction in Virtual Reality (VR). In
consequence, the scope of this work changed to finding an approach that would
allow to

• quickly set up an alternative environment involving the same base com-
ponents like physics engine, VR rendering, robot sensors & actuators, etc.

• being able to adopt the already invested work for the NRP in terms of VR
rendering, human avatar motion controls, etc. as much as possible

• allowing this separate solution to hook back into the original platform at
a later stage if possible

2

• work in conjunction with all state-of-the-art utilities for VR and robotics
development and hopefully future developments which are occurring at a
fast pace

Following these considerations, it became clear that fulfilling all these wishes
would require a framework that was highly configurable and modular. The
impression also formed that its use might well extend beyond the scope of this
work alone and the base necessary mechanisms could also prove helpful in other
applications in the field of Mixed Reality (MR) in general.

1.2 Generalizing the Original Goal

All of these considerations shifted the goal of this work towards a more general
approach of a framework designed for MR scenarios. The focus was on building
connections and interactivity between heterogeneous and distributed systems,
trying to find solutions with the highly dynamic situations that are inherent to
MR.

To elaborate, let us extend the idea of bringing humans and virtual robots
together into the same room by reversing the roles of human and robot: we try
to bring the simulated robot into the real laboratory by means of augmented
reality.
Robots already are highly complex systems with physical and virtual parts to
them, so they seem like a good starting point for thinking about how these two
worlds can mix. We could opt to build a sort of proxy platform that acts as a
real-life representation for the robot so it can actually physically influence its
environment. The closer that proxy gets to the actual capabilities of the robot
the more we are actually just building the robot in reality. This line of thinking
relates to the concepts of a digital twin, only it is approaching from the opposite
side and instead tries to establish a ”real-life twin”.
If we instead keep the robot purely virtual we would nevertheless need some sort
of room-scanning device creating a virtual representation of the environment
that we then can (partly) convey to the virtual robot as its point of view.

In the reverse case we seem to have a much easier time supplying a virtual
body to a human as the virtual world usually lends itself to be our playground
with little limitations. Trying to truly encompass the human capabilities as was
argued for the robot proxy before however is just as daunting of a task on closer
inspection.
To map all desirable forms of interaction and cover its full range, it would require
technology almost forming a ”digital skin” for an individual user - involving
smart software that can translate and mitigate between human body and virtual
representation and environment, operating in a tight loop with the user and
acting as a sort of digital cognitive extension managing parts of the virtual

3

Figure 1: ”Hyper-Reality” by Keiichi Matsuda.

aspects.
Such a system does not have to be limited to virtual extensions/augmentations
either, it could be similarly applied to real-life robotics (see 3.1.5).

Efforts like Nvidia’s Omniverse1 or Meta’s Metaverse2 indicate that this
merging of realities is of great interest to global companies for various purposes
and forms of activity.

The concept film ”Hyper-Reality”3 by Keiichi Matsuda poignantly paints a
picture of a ubiquitous case where realities overload each other (Figure 1).
In such an environment, how is it decided what is important, worth attention
and visualization and/or put into the foreground? How is it decided what to
interact with and how?

1https://www.nvidia.com/gtc/keynote/ (last accessed 08-06-2022)
2https://about.facebook.com/what-is-the-metaverse/ (last accessed 08-06-2022)
3http://km.cx/projects/hyper-reality

4

https://www.nvidia.com/gtc/keynote/
https://about.facebook.com/what-is-the-metaverse/
http://km.cx/projects/hyper-reality

2 Theoretical Background: Mixed Reality

Coming from the introductory scenario, the goal is to build a framework for
Ubiquitous Mixed Reality (UMR) and explore degrees of virtual embodiment.
This section will provide an overview over the terms Virtual Reality, Mixed
Reality and ubiquitous computing to see how they are defined, what different
interpretations are offered, what they imply and what conceptual boundaries can
be identified to form a better understanding of where the eventual framework
is placed and what it is trying to achieve.

2.1 Motivational Scenario Revisited

As a thought experiment, let us examine the virtual embodiment scenario of
a human in a virtual simulation from the introduction again and extend it
with additional hypothetical features to achieve a closer investigation of our
terminology.

In its original conception, it is as close to the colloquial interpretation of VR
as today’s consumer hardware will allow us to go: a human joining a virtual
and fully simulated environment where things continue to happen even without
their involvement.
Once the human has a virtual body - or at least something that can replicate the
functionality of a body part - that is adhering to and embedded in the virtual
laws (of physics), they can use it to ”get in touch” with the virtual world.

The robot on the other hand perceives its environment through its simu-
lated sensors and acts through its simulated actuators. The processing of its
sensors/actuators (cognition may be a bit of an overstatement), too, is entirely
reliant on synthetic computation via a brain simulation or simpler algorithms.
What do we call the reality the robotic system is processing? If we regard the
robot as its own individual system - as unintelligent as it may be - that has
to find its way around an unknown environment by processing signals and we
locate it on the virtual end of the spectrum, the argument is that it perceives
true or the purest form of VR: there are no physical components influencing
its perception, it is a purely simulated system existing in a purely simulated
environment performing simulated processing which forms its subjective sim-
ulated (or virtual) reality. Whatever technology a human would utilize, their
experience of that same reality would be a more mitigated and intermediate one
with remaining other-reality-influences compared to the robot’s perception.

What if we then tried to turn the physical-virtual dials for different aspects
of this scenario? What if we wanted to replace the simulated environment with a
real laboratory or robot test course? We could generate 3D scans of the physical
environment or try to generate live 3D mappings of the surrounding geometry

5

via SLAM algorithms ([1][2]), then place the virtual robot inside it. Instead
of a virtual robot we could alternatively imagine an intelligent virtual assistant
(IVA, see 4.5) in the same room.

Now the robot is facing the same issue as the human in the initial scenario
- it does not have a body (sensors / actuators attached to a platform) it could
use to interact with its environment.
If the 3D environment mapping is detailed and complete enough, we could
emulate a virtual camera perspective reflecting the robot’s location and feed it
to the robotics internal systems. Checking the virtual robot’s geometry against
the 3D mapping, we could also tell it when it supposedly bumped into a wall
or collided with objects. Given the live updates of the environment geometry
happen fast enough, this might even be possible for collisions with mobile entities
like real humans in the room. IoT devices located in the room could give the
robot additional impressions about its environment like temperature which it
might otherwise get from its on-board sensors.

But to have real physical presence and to be able to, in turn, physically
affect its surrounding the robot would need a physical body or access to e.g.
actuators/effectors. If not that, then it would have to rely on a system capa-
ble of emulating certain forces - in a simple form this could be achieved via
physical proxy objects and more dynamically via robotics systems moving and
providing appropriate haptic/force feedback throughout the physical environ-
ment. [3][4][5]
For the robot, we could start with a little proxy construction - just a platform
with wheels in the approximate dimensions and a stick with a camera attached.
We could extend this proxy until we realized the full robot. Now we introduce
a second and a third robot, which have not been fully realized and still rely on
physical proxy elements or are purely virtual. Maybe we have a person that
is physically present in the lab and another human joins the scenario through
virtual means using VR technology.
How about we throw a ball that is purely virtual into the scenario for all robots
and humans to play with together - the ball of course having virtual material
properties (elasticity, surface friction, etc.) and reacting to the physical envi-
ronment (carpet floor, cement wall, etc.).
As the virtual environment would be replaced with scans of a physical envi-
ronment or the robot being actualized with e.g. a camera, it would translate
towards physical reality (PR) in its experience and be part of a MR too - only
that it approaches the Milgram continuum[6] (see Figure 2) from the other end.
Can it translate fully to PR or will some minimal part of its perception always
remain VR as with humans utilizing a CAVE or HMD setup?

This gives the impression of several environments where all entities involved
are heterogeneous and complicated or even complex systems[7] in and of them-
selves, trying to perceive their environment(s) and interact with it. They, as well
as other entities, might exist on different ends of the continuum, maybe they

6

Figure 2: Milgram-Kishino continuum for categorizing AR, VR, MR. [6]

are comprised of physical and virtual components at the same time, maybe the
nature of what currently represents them changes over time and depends on the
circumstances.

Perception and interaction with the other environment can only happen if
mechanisms can be found to translate/mediate input & output and if rules of
causality between environments can be established. The intra- as well as inter-
environment rules of causality constitute action-reaction relations and define
possible interactions.
Some interactions we can choose and define ourselves, some are dictated onto us.
We can also see that there are some discrepancies and limitations between envi-
ronments that are not solvable and make interactions impossible with currently
available technology - as in the case of a system applying forces or emulating
physical barriers where current technology can only fake/emulate so much until
it becomes an intrusive hindrance itself.

The mixed environment itself becomes a complex system too, at the latest
when it involves influences from ubiquitous computing and becomes a socio-
technological system on scales from individual to global involving personalized
computation, smart environments, machine learning and the risks that come
with such considerations.

2.2 Ubiquitous Mixed Reality & Environments

In 1994 Milgram and Kishino[6] introduced a virtuality continuum along a 1-
dimensional axis, particularly focused on MR visual displays. In Figure 2 we
see the continuum with real (i.e. physical) and virtual environment lying on
the outer bounds and Mixed Reality (MR) spanning all scenarios where some
influence or component of both worlds is present, like Augmented Reality (AR)
or Augmented Virtuality (AV).

According to Speicher et al. [8] the Milgram-Kishino continuum is still
the most cited source when it comes to defining MR. Speicher et al. also state,
however, that there is no singular established definition for MR and that varying
and sometimes contradictory interpretations exist between experts.
Arguably, MR is very multi-faceted and multi-dimensional in its nature so a

7

linear scale is not quite adequate when talking about what MR encompasses
currently and possibly in the future. If the goal is to build a framework set in
the field of MR or Mixed Environments (ME), it is necessary to find at least
useful models reflecting central aspects of it. In order to think about these
models, an informative (working) definition is helpful or at least should serve
to clarify the approach the framework is taking on the matter.

2.2.1 Virtual Reality & Environments

In Milgram et al.’s work on ”A taxonomy of mixed reality visual displays”[6]
the real environment and the virtual environment are the outer boundaries of
the mixed reality continuum. The term physical environment instead of real
environment would be more distinguishing here as the term reality is heavily
used for all aspects of the spectrum and the interpretation of what is real is
rather vague.

To expand on the scope of what a virtual environment implies: what is today
available as VR applications or hardware is hardly the conceptual boundary of
what we can envision as an equivalent reality on the other end of the spectrum.
It often reflects the current technical limitations for human-centric immersive
3D technology trying to mimic aspects of our physical environment or substitute
it.
But it often also entails a limiting scope when thinking about what a VR/VE
means in full consequence. Trying to explore these conceptual boundaries, the
common factors and differences between physical and virtual environments and
what constitutes an environment in general might give some better ideas for a
consistent definition. This work takes the word ”virtual”4567 as to mean ”artifi-
cial”, ”synthetic”, ”computer generated” or ”only indirectly evident” instead of
”decidedly not real” or ”fictional”. As an additional note, a VR/VE is seen as
possibly including very abstract processes not necessarily aligning with familiar
physical reality concepts.

There may also arise the notion that virtual stands for whatever is not the
original subjective reality, i.e. what is virtual reality from our perspective, for a
virtual existence from that virtual reality it is normal reality and them experi-
encing our physical environment would be their virtual reality. This notion is of
course problematic because it confuses terms or makes them difficult to use for
consistent communication. In that case one might just label our physical envi-
ronment as PE and the virtual one as VE to clarify and ensure the statements
made are referring to the same environment.

4https://www.merriam-webster.com/dictionary/virtual (last (last accessed 08-06-2022)
5https://www.thefreedictionary.com/virtual (last (last accessed 08-06-2022)
6https://dictionary.cambridge.org/us/dictionary/english/virtual (last (last ac-

cessed 08-06-2022)
7https://www.dictionary.com/browse/virtual (last (last accessed 08-06-2022)

8

https://www.merriam-webster.com/dictionary/virtual
https://www.thefreedictionary.com/virtual
https://dictionary.cambridge.org/us/dictionary/english/virtual
https://www.dictionary.com/browse/virtual

Due to this vagueness, this work seeks a clear separation of the terms reality
and environment. For example, we have to acknowledge that our interpretation
of our physical surroundings as our physical reality heavily relies on our per-
ception through the senses and cognition available to us, mediating signals and
forming our interpretation.
Nevertheless, we would certainly not deny a fully blind person to be living in
the same objective reality as a person with intact vision as it is possible for both
to share and agree upon observations about it, e.g. the pinch of a needle. [9]

The discussion will consequently use reality as an indication of a subjectively
formed representation using senses and agency within an objective environment.
One could instead prefix terms with subjective/objective (e.g. sMR / oMR), but
reality/environment are felt to form a clearer distinction and cleaner reading
experience.

A very defining characteristic of our physical environment is that we are
very much trapped inside it and nothing can transcend its causal effects (to our
knowledge). It is the boundary condition for our existence. Another aspect is
a certain persistence of entities and actions having considerable consequences.
As the ultimate indicator: if the consequences of a process can be so drastic as
to cause our death, then we can not help but consider it very much real (also
see 3.1).
A more logical equivalent as an analog to our physical environment would be
to have a virtual environment with (more or less) persistent entities, properties,
events and causality rules, possibly even observers and simulated consciousness
living inside it. This environment would not necessarily have to adhere to the
same laws and stipulations as our physical environment nor would it have to
work on the same time-scale. Consciousness, too, could be very non-human.
To put it at an equivalent scale: if it was possible to simulate a whole planet,
star system, galaxy or even universe together with a population of conscious
observers that had no need or possibility to escape it, then that simulation
would constitute their reality. This comes closer to what one could interpret as
a strict or ”pure” virtual environment.
Any process inside the simulation may be completely oblivious to what is going
on in our external physical environment - the only thing of consequence to
internals of the simulation is the outside physical hardware being kept intact
and operating. There would be no need or means to escape the simulation.
This existence, in turn, reflects propositions by the simulation hypothesis[10]
about the nature and composition of our physical reality - only if we built and
ran the simulation, we could be sure about its true nature as a sort of artificial
”sub-reality”.

Some works like the one of Robert J. Bradbury on Matrioshka-Brains [11]
even try to think about how hardware to run simulations on such a massive
scale could be theoretically achieved within the constraints of our reality. And
while such technologies can assuredly be put off into the far future (if ever

9

achievable), imaginations and thought experiments along these lines might serve
to shift the mindset a little into conceptualizing a world where the virtual is
acknowledged as potentially its own form of environment/reality and is not just
a single playground extension to hop into and forget about immediately after
closing it. One could imagine virtual spheres of existence that persist and evolve
with little outside intervention or explicit consent. It may help to recognize the
eventual complexity of a space where physical and virtual entities (co-)exist,
collaborate, combine, compete and truly mix with each other.

This is not to mean that we should start building VEs for artificial minds
completely bypassing humanity. If humans build VEs and use VR, it should be
of assistance to humans.
Naturally it will reflect concepts that are familiar and easy to grasp and handle
for us like 3-dimensionality, speaking to our human senses and having agency by
controlling elements exclusive to us, i.e. having a body as a manifest corporeal
representation that grounds us in said environment (3.1).
But whenever an application is primarily geared towards human senses and is
not so much interested in establishing something independent that resembles
an environment it might be better to use terms like ”immersive technology”
[12][13] to avoid this interpretation conflict of ”reality” vs. ”environment”.
The mediating step of making certain properties visible, understandable and
interactive to humans does not encompass all aspects of what a virtual envi-
ronment might be, yet is often labeled as VE. In fact, a virtual environment
that continues to evolve without a human overlooking or controlling it seems
to conform much more with the understanding of ”reality” than a user-centric
immersive application.

Expert opinions and interpretations

When Speicher et al.[8] interviewed experts to characterize virtual reality,
they pointed towards an artificially constructed reality and to fully immersive
technology with a focus on head-mounted displays (HMDs) and the ability to
visit remote places.

Example: 360° Video
As examples for VR, two experts named watching 360° video using an HMD -
whereas watching it on a smartphone 2D display was not considered VR.

Discussion:
This example hints at the important distinction, when there is VR hardware
and technology at work but the content is in the form of static playback. One
may label it with the term reality as it plays with one’s perceived surroundings.
Arguably though, excluding outside visual (and maybe auditive) perception of
physical reality, and replacing it with virtual content that adjusts analogously
with head/posture movements to how physical reality would, does alter a big
part of human perception but is not nearly enough to ”just ignore” and replace

10

physical reality altogether. Alternatively one may just call it a more elaborate
and immersive presentation of a video playback.

In terms of environment however there is almost no dynamics, it is a static
video where entities do not really interact with each other and perform rule/event-
based exchanges. The only available influence is being able to adjust one’s per-
spective.
On this note, agent-based modeling and simulations[14] have more landmarks
of a virtual environment - even when not displayed in an immersive way - than
video playback. This field of research also relies on the term ”environment”
to describe the space or boundary condition an agent is perceiving and acting
within. Examples given in [14] of environments for agents are the physical world,
a user via a graphical user interface, a collection of other agents, the internet, or
a combination of them. Agents themselves are characterized with the properties
of autonomy (internal state and decision making without direct intervention),
reactivity (situated in environment, respond in a timely fashion), pro-activeness
(capable of initiative, not just reactions) and social ability (interaction with
other agents and humans through an agent-communication language, achieve
goals with the help of cooperation or negotiation).
These characteristics for agents also serve well to classify how dynamic a VE
is. The more agent-like elements a VE is comprised of, the more the VE will
turn from a static background into a system with momentum that is capable
of producing more wide-ranging or variable consequences when interacted with.
In consequence, mixing with such a VE produces more involved results and
possibilities.

Example: CAVE
Another example for VR named was a CAVE system[15][16].

Discussion:
CAVEs - just like HMD-based systems - serve to illustrate the aforementioned
point: they may immerse the user and produce some aspects of VR, but they
will not be able to exclude the physical environment nor the implications of the
user’s body (3.1.1). One can very much run against the walls of a CAVE and
hurt one’s nose and feet. With HMDs one can still get entangled in video cables
or hit objects in the room (or the room itself) if not careful. All these things
serve as a very quick reminder about the other environment (and in consequence
its reality) we’re still beholden to.
CAVE and HMD setups certainly try to minimize any influences coming from
physical interactions. But save for a direct VR brain interface with signal ex-
change blocking and bypassing our normal perception, these influences will al-
ways remain to some extent. Even wearing VR equipment and the tiring effects
caused by it can break immersion and pull us back to (physical) reality. Later
arguments about embodiment (3.1) will pick up on details of this consideration.

Example: Movie ”The Matrix”

11

On the topic of brain interfaces, the movie ”The Matrix”8 was also named as
an example of VR. This work of fiction presents a world where humans are held
inside a simulated world indistinguishable from physical reality through a brain
link. In this fictional work, still the virtual presence vanishes with the death of
the physical body.

Discussion:
Here it is important to consider what is being identified as VR - the construct of
the Matrix as a shared virtual environment or the brain interface used to enter it.
In the first case (VR = VE), this question follows: the virtual reality(environment)
in the movie is also occupied by purely artificial minds and agents. If one was
to remove all human existences from the Matrix itself and leave its simulation
to the machines only, would it stop being a virtual reality? In other words: is
the involvement of humans a necessary criterion for a virtual reality and any
reality in general?

If VEs are to be interpreted as an outer boundary for a spectrum, the def-
inition of a VE as a ”side-reality” that is exclusively dependent on human in-
volvement is not a definition this work follows, as it removes many interesting
considerations and possibilities for the modeling of mixed environments (or real-
ity for that matter) - autonomous agents or assistants that remain active when
the user is not, among others.
Instead, it is considered as a system that may indeed be very limited in its
complexity and time-scale of existence or heavily rely on human input. But any
human involvement short of digitalizing a human mind and uploading it should
be considered MR with a heavy focus on the VR side - in some cases referred
to as AV. Respectively the actual outer boundary lies further off to the side
and includes more than immersion of human senses - something that may be
implied by the continued arrows in the original continuum ([6]) but not so much
in other discussions about the characteristics of VR.

If one would prefer the term simulated reality instead of virtual reality for
this definition, one would have to specify that simulation is not meant with the
connotation of reproducing/approximating physical laws but to be any form of
virtually generated dynamic and rule-based process. Synthetic reality may be
another alternative term. Cyberspace could be seen as another option, but car-
ries the connotation of a unified and all-encompassing ”aether” where a virtual
environment is understood here to potentially be limited in its scale.
One might also try to differentiate between digital and virtual environments,
both being generated by artificial means but the latter explicitly being a 3D
reality familiar to physical reality concepts.

8Silver, J. (Producer) & Wachowski, L. and L. (Directors) (1999). The Matrix [Film].
United States: Warner Bros.

12

2.2.2 Mixed Reality & Environments

This section will take a closer look at what it means to mix realities and envi-
ronments. To avoid confusion, most examples will be limited to considerations
about mixing only two environments - the physical environment PE and the
virtual environment VE. There may potentially be many different environments
that are trying to mix of course, and in these cases they will receive distinguish-
able labels.

Expert opinions and interpretations

Next to VR and AR, Speicher et al.[8] also asked experts to give their inter-
pretation and important aspects for MR. The experts were asked to categorize
three (deliberately provocative) examples as either mixed reality or not: (1)
listening to music; (2) Tilt Brush, a painting application utilizing stereoscopic
video HMDs and handheld controller motion for brush strokes (3) Super Mario
Bros.™ (SMB), a video game typically played on a TV screen with a gamepad.

Example: Listening to music
Listening to music was not an example of MR for most interviewees in [8].

Discussion:
When looking at ME, just like with the VR 360° video example there is little
dynamics within the environment. Given a visual application that would be
decidedly categorized as MR by everyone, the mere addition of audio playback
via attached headphones would probably only considerably elevate the MR ex-
perience if it dynamically reacted to the listeners spatial pose. It would be
interesting to see how experts would categorize a technology like the ”AUUG
Motion Synth”9 where 3D hand/finger poses and movements dynamically adjust
tone, pitch and octave to create live music but otherwise focuses on an auditive
experience (the conductor’s movement may actually be interpreted as visually
enhancing to the experience). This may be an indication that dynamic (recipro-
cal) interaction (i.e. an exchange of events that have noticeable influence) from
one environment to the other is key.

Example: Tilt Brush
The example of Tilt Brush was almost unanimously classified as VR instead of
MR. One expert put it under MR with the reasoning that VR is a kind of MR
according to the Milgram-Kishino continuum.

Discussion:
Following prior examples and argumentations on VR, for this work it would
be more accurate to classify it as MR leaning heavily towards VR - but not
exclusively VR. One may disagree with the subsumption of VR under MR based
on the idea that - taken to its extreme end - a virtual reality does not need to

9https://www.auug.com/ (last accessed 08-06-2022)

13

https://www.auug.com/

mix with physical reality. As for a VE, there is very little internal pro-active
momentum on the virtual side e.g. the only dynamic comes from the user’s
inputs.

Example: Super Mario Bros.™
With the video game example of Super Mario Bros.™, there are a few interesting
points as well. The experts of [8] were unanimous in their refusal to call SMB
mixed reality. Reasons given were that it’s just input, a missing spatial aspect,
a notion of ”if this is MR, then everything is” and a gap between real world and
game GUI.

Discussion:
It is true for a single player video game, just as with Tilt Brush, that very little
happens without the player’s input. In comparison, a game that is essentially
playing itself would be a sort of VE/VR within the interpretation of this work.

On the notion of input, arguably the press of a button on a gamepad is a
more direct and faster link (and therefore integration) of a human’s intention
into a virtual environment than for example motion controls as is the case with
Tilt Brush. It represents less physical effort (e.g. mapping physical actions
to virtual reactions) and is therefore reducing the reach and complications of
mixing both realities. The presentation of the game’s output on a 2D screen
however leaves a lot of possibilities to perceive physical reality and thus puts a
lot of weight towards physical reality again.

Another interesting observation is that video games featuring a shared world
(i.e. social aspects) with tradeable in-game resources - often located in the
massively-multiplayer online (MMO) genre - regularly form mechanisms of ex-
changing real world currency for in-game resources. Some game publishers offer
sanctioned ways for these transactions. But especially the cases where this hap-
pens without the publishers’ intent or is even expressly forbidden by them as to
not negatively affect the general player experience, it still happens quite often
that a black market forms. Players want to exchange their real-world resources
against virtual resources and would consider losing virtual resources a very real
loss to themselves. The notion of ”realness” seems to be heavily reinforced
through the social aspects as well as all players having autonomy, reactivity and
pro-activeness within the game world to some degree.
Yet in the case of SMB very few people would consider paying money to achieve
something inside the game world to be a sensible course of action. This is prob-
ably due to the game’s sole focus on the single player (no social aspect) that
makes it entirely inconsequential after turning it off.

Some works further categorize additional realities with technology and mech-
anisms of extending, diminishing or altering perception of physical and virtual
objects.
Schnabel et al.[17] categorize the methodology by which (visual) perception is

14

Figure 3: Classification of reality technologies according to Schnabel et al.[17]

altered as follows: Virtual Reality is presented as technology that ”[...] cre-
ates a total Virtual Environment (VE) [...]”. Mixed Reality in comparison is
named as a more expansive form of VR with two major modes, Augmented
Reality and Augmented Virtuality with one end of the spectrum being aug-
mented/complemented by objects from the other end. Mediated reality, then, is
a general concept of altering sensory input by computationally filtering it - this
includes Diminished Reality which deliberately removes or blends out objects.
Amplified Reality, on the other hand, is used to describe processes of objects
controlling how inherent perceivable properties are being expressed. Amplified
Reality is contrasted with Augmented Reality which super-imposes virtual in-
formation onto physical objects while leaving the perception of properties of
physical objects (mostly) untouched. Virtualized Reality describes the process
of capturing a physical scene in its spatial structure and virtualizing it, in turn
being able to synthesize new virtual perspectives from that scene description.
They continue to place each term along two dimensions (see Figure 3):
1) The correlation of action and perception, meaning how much action and per-
ception are happening within the same space. Handling physical objects, action
and perception coincide and ”we can see what we do”.
2) The extent to which physical entities are interacted with.

As discussion on the termMediated Reality, it should be considered that even
the human senses and consequent signal processing in the brain are already
a mediating step of constructing reality[9], as disorders like (visual) neglect
show[18].

15

Figure 4: The Multimediated Reality Continuum according to Mann et al.[19].
Some axes are correlated, thus do not form an orthonormal basis.

Mann et al.[19] add to the discussion by investigating the term XR (or X-
Reality), again presenting three conflicting interpretations. They give mediality
its own dimension for categorization and provide examples for phenomenological
aspects of altering reality perception that stay purely within physical means like
making electromagnetism perceivable through visual or tactile means - calling
it Phenomenological Reality.
They also discuss the role of Artificial Intelligence (AI) and Humanistic Intelli-
gence as the concept of human-in-the-loop-AI. This puts the senses and effectors
of humans in a feedback loop of controllability (surveillance) and observability
(sousveillance) with machine sensors and actuators. This reciprocal sensing is
seen as the fundamental technological basis for Multimediated Reality.
Multimediated Reality (Figure 4) is characterized as a multi-scale, multi-modal,
multi-sensory, multi-veillant, multi-disciplinary and multi-dimensional contin-
uum for describing ”reality” technology. The origin of this multi-dimensional
reality continuum is regarded to constitute an absence of any sensory stimula-
tion (e.g. total sensory deprivation). Multimediated Reality is also about how
humans interact with their environment, and technology extending their body
and mind to that end. As an abbreviation for Multimediated Reality ”All R”,
”*R” or ”ZR” are suggested.

A conclusion from all of this could be the following:

16

Humans strive to alter/enhance their perception and agency through technolog-
ical means. Whether it be our base biological senses or technology mapping to
those senses, all of it serves as a mediating step to form our (subjective) reality
of an (objective and independently existing) environment.

2.2.3 Ubiquitous Computing

Weiser [20][21] originally described ubiquitous computing as a world where in-
formation and computation is available everywhere in a world of fully connected
devices which seamlessly integrate into everyday life while becoming virtually
or effectively invisible. This is also described as ”calm” technology existing and
working peripherally [22][23], ”invisibile” computing [24]. Comparing it against
virtual reality he said that ”Unlike virtual reality, ubiquitous computing will
integrate information displays into the everyday physical world. Its proponents
value the nuances of the real world and aim only to augment them” ([21], p.71).

Lyytinen and Yoo[25] provide a further distinction along the dimensions of
mobility/embeddedness between mobile (high mobility, low embeddedness) and
pervasive (low mobility, high embeddedness) computing. Ubiquitous computing
will then combine the advances of both ideas.
Mobile computing can be achieved either by small-scale devices that can be car-
ried, fit into pockets and clothing or by making computation available through
broadband networks accessed through lightweight devices. The ability to bring
and access computation almost anywhere on the world, however, also discloses a
limitation when the mobile device cannot retrieve contextual information about
its current working environment and adjust its computation accordingly. It is
also stated that a manual reconfiguration to changing environments by the user
is something that the average user does not want to perform.
Pervasive computing as the idea of an area being populated by sensors, pads,
badges and physical/virtual models of physical/social/cognitive environments
can remedy this lack of context by obtaining and providing information about
the environment where the device is embedded in. The authors describe this
process to be reciprocal in that the environment should also be capable of de-
tecting other (mobile) devices entering the environment and making appropriate
changes in their computation.
This mutual dependency and interaction is estimated to lead to a new capacity
for systems to act more ”intelligently” upon and within their environment.

Different authors have described several characteristic features of ubiquitous
systems and applications. These give an overview and can inform technical
decisions as well as challenges a system is potentially facing:

Distributed, Omnipresent Systems
The environment will consist of many small-scale mobile and pervasive devices
located in very different places, relying on wired and mostly wireless inter-

17

connectivity for communication. The networking between devices will likely be
decentralized and modular. [21][26][27]

Heterogeneous Devices and Information
The devices in use may be personal or shared in nature. They greatly differ in
capabilities (older generation devices, cheap vs. expensive, manufacturer, dif-
ferent nature/purpose, etc.) and purpose (efficient / proprietary data formats).
Multiple services including different databases, data formats and access rights
are involved in a single situation. Applications themselves also have to move be-
tween devices when engaged at different times or circumstances which requires
interoperability. [28][27][29]

Appearance, Explicitness
Devices and computation manifest themselves in a calm, invisible, disappear-
ing, peripheral, ambient background manner. Computational capabilities are
embedded in everyday objects and situations. [21][22][23][24]

Resource Constraints
Small-scale devices have limited computational power, the physical size also
affects e.g. available display space. Since devices can be mobile, the overall
available resources also depend on the currently present amount/type of de-
vices. Available bandwidth is also limited with increased number of devices and
increased communication. [21][28][25][30]

Context-Awareness
A central aspect of making computation smarter is to enable devices to share
their context and work within the context of their spatial, functional but also
semantic surroundings, thereby adapting computation to changing situations
in order to reach better performance and/or more helpful conclusions. It also
opens avenues for completely new possibilities and considerations for human-
computer-interaction when input can be given indirectly and effortlessly. It
is a foundation to better support heterogeneous device constellations, applica-
tion/task adaptation and resource constraints.
[25][26][31][32][27][33][28][34][35][36][37][38][39][40][30]
This topic will be elaborated in Section 4.7.

Dynamic Adaptation
Environments in general but also user’s intentions, goals and actions change
due to new developments and circumstances. Applications will (automatically)
adjust accordingly, and communicate what restructurings happened and why.
[28][26][36][30]

Social Factors
Ubiquitous scenarios will in most cases involve a social component. The social
environment of a user plays a role in terms of context. But the technology itself
also has an impact on social dynamics. [28][27][26]

18

The Internet of Things (IoT) as a highly related field has been quoted as a
technology with similar characteristics: Large Scale, Intelligence, Sensing, Com-
plex System, Dynamic Environment, Massive Amount of Data, Heterogeneity,
Limited Energy, Connectivity, Self-configuring, Unique Identity, Context aware-
ness. [41]

With this vision of course also come challenges and novel considerations.
Greenfield’s book titled ”Everyware: The dawning age of ubiquitous computing”
[40] discusses many technical but also social aspects.
In terms of individual user experience these are some of the topics identified:
The user experience will be permanently engaged instead of an intentional and
focused human-machine interaction ([40] Thesis 9). Users also get engaged
inadvertently, unknowingly and unwillingly ([40] Thesis 16). One has to consider
that most users will not be experts in this kind of technology ([40] Thesis 17).
The use of such systems is ambient and peripheral instead of active and focused
([40] Thesis 18). Such ”calm” technology then carries the problem that the
physical form of objects may not hint at the digital capabilities that are attached
([40] Thesis 38).
The new and indirect ways of interaction with the digital environment will
also require new forms of HCI. Haptic interfaces in the form of tangible media
or physical computing are mentioned as interfaces that join the physical and
digital spheres and go beyond what we already know from e.g. voice and touch
interfaces. Interfaces that understand natural gestures can work intuitively and
effortlessly, in more complicated cases they can rely on learned movements and
muscle-memory of the user. Some gestures are culturally specific or different
though, another point to consider for context. ([40] Thesis 10)

One should also take into account that ubiquitous systems can encompass
all scales and varieties of locations.
This ranges from the human body (biosensors) to rooms, buildings, cities, and
the globe ([40] Thesis 11-15). On larger scales, dealing with a multiplicity of
users, inputs, intentions, devices and systems may lead to conflicts ([40] Thesis
20). Yet this (re-)combination of practices and technologies may also grow to
become bigger than the sum of their parts ([40] Thesis 21).
Weiser[21] includes a quick estimation of how bandwidth intensive such an en-
vironment would be, even for just an office building and further suggests that
the crucial metric should be bits per second per cubic meter - indicating that
respecting locality of data should make a big difference in bandwidth consump-
tion.

There are some potential and some definitive risks that have to be paid at-
tention to.
The inter-related nature of everything is something that could be taken advan-
tage of. The highly enriched and available amount of data carries the risk of
being cross-correlated if not secured and protected, i.e. an attacker inserting
itself into the loop and accessing and recording data not meant for them could

19

lead to malicious data mining and unwanted identification of users across ap-
plications and environments leading to extensive profiling and transparency of
human beings ([40] Thesis 22).
Systems not only need to protect against malicious abuse, they also need to
consider social impact and implications, how cultural differences are reflected
in the internal decision-making, semantic reasoning and context analysis ([40]
Thesis 23). The introduction of such technology, especially with respect to be-
fore unrelated and untouched everyday situations and analog elements, can be
intrusive, mediating and transformative to the original process ([40] Thesis 34).
The exposure of otherwise latent information that would typically go unnoticed
or is quickly forgotten is at risk of being made explicit or even recorded by
ubiquitous systems, which can lead to social and psychological discomfort ([40]
Thesis 35). The goal of making all aspects of daily interaction machine readable
and understandable also means that they have to fit into technical standards,
formats and protocols. This, too, is a certain kind of explicit exposure and
imposes a ”rigid” approach to things as it can influence the way humans think
about such systems when everything needs to be identifiable, searchable and fit-
ting into conventions ([40] Thesis 36). There is a certain contradiction in many
elements of everyday life being tacit, unprecise or unspoken versus IT systems
that need things to be as explicit as possible ([40] Thesis 37).
When talking about ”calm” and ”hidden” technology, this also means that cer-
tain intentions or agendas behind their use are equally opaque to the user,
making an informed decision about how their data is utilized difficult ([40] The-
sis 39).
The seamless integration of so many aspects of life may actually be something
that is undesirable. It may lead to a diffusion of boundaries, e.g. ownership
and responsibility. This can contradict the initial desire for effortlessness in the
interaction ([40] Thesis 40).

Some risks are also inherent to the technological architecture chosen to re-
alize ubiquitous systems.
The freedom given to users also depends on the architecture and design of a
system to some extent ([40] Thesis 42). The algorithms, standards and norms
will require human agency, judgement and compliance in one form or another
([40] Thesis 43).
There is a general tendency in humans to anthropomorphise and socialize in-
teraction with artificial systems. For that reason it may be incumbent on ubiq-
uitous systems to become more ”friendly” and relatable in appearance and be-
haviour in order to be received more generously and less like a nuisance ([40]
Thesis 45). When a user is faced with new, unfamiliar, advanced technology or
considers themselves less adept than desirable in handling it, there’s the impulse
to blame themselves for faulty behaviour and interaction. The system is rather
accepted as given, good and working as intended even if this may not be the
case ([40] Thesis 46).

Finally, some challenges for conducting research can be given.

20

Ubiquitous computing as a field in its early stages of development involves not
only solving existing problems. Instead it will encounter issues worth investi-
gating that are still to come up through new inventions, conceptions and imag-
inations. [25]
It will involve very individual problems on a global scale, e.g. effects of wear-
ables on a global market in various environments. [25]
Research must involve both social and technical aspects, and analysis must be
conducted on different scales from individual to teams to organizations. [25]
To achieve adaptable and composable environments a semantic modeling is re-
quired. This includes models for user preferences, tasks, goals, needs and device
capabilities. This can be achieved through ontologies. [28][42][43][44][45]
A software infrastructure has to be built that is capable of finding, delivering
and adapting relevant applications for a given context, environment or task
[28][46]
Applications need to be developed and configured according to their composi-
tion of services and user interfaces. Their data flow needs to be orchestrated.
Applications will be seen more as a high-level description of a user task instead of
a single piece of software targeted towards a particular environment/hardware.
Applications will also need to specify their interaction logic on the level of in-
tentions and their requirements on the basis of data and computation. Creating
reusable services will be a bigger challenge as they will relate to physical arti-
facts (sensors/actuators) for a particular case. [28]
Finally, validating user experience will be an extensive task, consisting of large-
scale user studies and wider deployment. The scenarios are inherently dynamic
with varying social backgrounds and use of heterogeneous devices. This makes
conducting consistent evaluations more complicated. It will involve more field
research instead of contained laboratory experiments. [28]

Relevant fields of application are manifold. [27][26]
Identified, among others, are mobility[34][47] & logistics[48][49] , living[50][51],
health care [38][33][52], industry and economy, food and pets, security of doc-
uments, ticketing, education [39][37][53], workspace, travel, entertainment and
military[54].

2.2.4 Reality vs. Environments

Aggregating all the previous considerations in this section on the nature of
physical reality, mixed reality, virtual reality, their environments and how they
intertwine, a conclusion relevant to this work should be made about an appro-
priate terminology to represent realities, environments and what is necessary to
allow them to properly mix and interact.

The taxonomy of [17][19] are helpful additions to clearly distinguish the
different approaches of altering perception and presenting virtual content, thus
the word reality is entirely fitting.

21

This work is more concerned with the environments and clearly distinguishes
them from the technology used to represent them as a reality. There should
be a clearer split between the technology used to ”access” virtual content - i.e.
the mediating step that allows perception - and the virtual content itself. As
soon as MR applications evolve beyond a single technology focus, as soon as
they become more than a closed sandbox entirely dependant on the processing
hardware, the environment itself will play a distinguished role and must be
recognized as a separate problem from the reality technology. The content or
environment may in the future not be accessed through the same means by
everyone, meaning one user may opt to view it on a 2D desktop and another
user may put on a VR HMD.

When it comes to the term ”reality”, there is certainly a very deep philo-
sophical or ontological rabbit hole that one could descend into. In this context,
radical constructivism[9] should only be named as a school of thought that
makes a clear distinction between the objective reality or environment and the
subjectively constructed interpretation of the same reality. This is not the focus
of this work however.
Instead this thesis is trying to find some very base assumptions of what consti-
tutes an environment, how these base principles can be used to describe different
environments (physical and virtual) and how to support dynamic behaviour be-
tween them. The goal is to derive a consistent approach to technically describe
exchanges between environments and how to effectively model them:

1) The first assumption is that an environment consists of (more or less) persis-
tent entities with certain properties. The properties can be expressed in some
form, and can possibly be influenced through processes inside and outside of the
entity. It also means that different observers can come to similar conclusions
about the properties or state of entities and the environment in general. This
consent often reassures its ”realness”.
2) The second assumption is that interactions or events between entities follow
dynamic but consistent laws of causality. They imply relations and processes.
The reactions to these actions/events, too, must have a certain persistence and
consequence. A system where actions do not have perceivable, lasting, relevant
and comprehensible consequences is difficult to be accepted as ”real”.

Addendum:
Something that goes along with the base assumptions but only plays a role when
relating environments to each other is a demand for consequence and agency. If
the processes within one environment A can not have noticeable consequences
for a second environment B beyond a minimal fleeting scope or single individual
observer, the first environment A will usually not be considered ”real” by the
generality of the second environment B. If neither environment can affect the
other one in a meaningful way, there is little need to pay attention to the events
of either from the perspective of the other one as it may just as well not exist
or be an internal part of a singular entity. Nevertheless, to entities within one

22

environment it is still ”real”.

It is a bit unfortunate and possibly the source for some of the divergent in-
terpretations found in related work presented that these assumptions very much
fit a description of objective reality. But as the term virtual reality is loaded in
research already, it seems to invite even more confusion to talk about (object)
physical reality and virtual reality in this context. Instead the terms ”physi-
cal environment” and ”virtual environment” are used to describe the objective
base here and anything carrying the suffix ”... reality” is taken as any form of
subjective interpretation or mediation of the former. As such, the term physical
environment could be exchanged with objective physical reality but to form a
clearer distinction while reading this work and because it has some fitting anal-
ogous use in related fields of science, the term environment will be preferred.
For physical environments then, these two assumptions are obviously reflected
in particles and the laws governing forces and interaction between them. For
a virtual environment, it may try to simulate physical laws in their detail and
operation yet it may also be very abstract, simple and/or artificial in its func-
tion - since one of the enticing aspects of VR and MR is often stated to be the
ability to diverge from or expand on what would physically be allowed.

23

3 Re-Embodiment Scenarios

This chapter describes the original idea from the introduction about re-embodiment
in VR. It first explores some of the works related to theoretical background about
embodiment and how it applies to VR and MR applications. After that, it de-
scribes some of the experimental setups that happened before the development
of Ubi-Interact - indicating some of the considerations that later influenced its
design. It closes with a setup testing Ubi-Interact’s applicability and intended
modularity for embodiment scenarios specifically and MR scenarios in general.

3.1 Related Work

The examples and scenarios native to ubiquitous mixed reality deal with a
close or sometimes even intimate relation between technology and its user by
wearing devices that directly overlay our senses or monitor our physical status
(HMDs, digital glasses, spatial audio, biosensors, gesture/posture recognition,
EMG, EEG, ...). Human cognition is also targeted for integration, sometimes
explicitly through e.g. EEG devices, sometimes more implicitly.

VR technology tries to ”drag” a user into a different world and offer new
experiences. Quite often the stated goal is a feeling of immersion and presence
for the user. How the user is represented inside the virtual environment varies:
they may be a silent watcher - incorporeal but able to look or move around,
they may be granted (usually handheld) gadgets through which they can trig-
ger specialized interactions or they may receive a full body representation that
moves in sync with their physical body.

With ubiquitous computing, the question is more about how devices and
virtual interfaces influence and integrate with ourselves, our body and the image
we have of ourselves when they are always present and are physically close
to us and/or easily reached in the virtual sense - similar to how we use our
smartphones today already.

Whenever there is an effort to bring differing environments together there
is the issue of how to represent an entity from one environment by means of
another environment. If the environments are dissimilar enough they appear
as entirely abstract, indiscernible or unknowable to each other. An entity thus
needs a form and expression that fits the other environment for it to be embed-
ded and recognizable. Examples for this are the virtual replacement body in
VR but also a ubiquitous service making itself aware and engaging with us.
At the same time, the form an entity takes may very well influence the way it in-
teracts within its environment’s constraints and how the internal computation or
cognition attunes to these interactions - in that sense outer form/representation
also influences internal processes. This in turn can have a reciprocal effect on

24

the entity itself and its behaviour. [55][56]

This concept of external form affecting internal or underlying computa-
tion/cognition, forming a more and more inseparable and indiscernible unit
the tighter this integration becomes is represented in several aspects of this
work: whether it be the virtual self representation of a human in egocentric
VR, the use of additional tools and interaction devices in a ubiquitous digital
environment or the steering of co-located, remote or virtual robotics systems.

3.1.1 Body, Mind, Tools and Technology

We use technology as a tool to enhance/alter/substitute our capabilities. In
the case of physical (motor/sensory) capabilities, tools can be the carpenter’s
hammer, a pen for writing, glasses to improve vision, the sword of a fighter, a
musician’s instrument or the keyboard used to type out this sentence.
Neurological studies[57] suggest that during tool use our (visual) perception
does not stay limited to the hand wielding the tool but extends to the contact
point or target of the tool where its intended effect actually occurs. During use
and with increased proficiency, the tool itself takes a background role in our
perception and becomes, in a sense, quasi-transparent. One does not have to
look at the keyboard while typing, the fingers know where they are placed and
where to move. And if one were to exchange the keyboard that one is used to
with a differently-sized or formed one, one would loose some of the typing speed
and would need to recalibrate first. Likewise, the blind person’s cane and its
mediated tactile feedback to the hand is so well integrated that it can be used
as a ”feeler” for the environment.

Furthermore, technology can also expand cognitive capabilities. A prominent
example given by Clark and Chalmers[58] deals with a person suffering from
Alzheimer’s disease who is using a notebook to remember crucial things and
navigate the world. They argue that the constant use and heavy reliance on
their notebook makes it essential to their life and to them as a person as a base
for their cognitive processes much like a healthy person relies on their memory.
It plays as much of an important role on the cognitive level as the blind person’s
cane becoming an essential ”feeler” to them on a physical level.
The smartphone we use daily is another highly personalized device assisting in
communication and memory.

3.1.2 Body Image & Body Schema

The automatic bottom-up sensory and organizational integration process to
form an internal representation of the body is called a body schema. It is
dynamic and malleable to some extend, representing spatial and biomechanical

25

information derived from multi-sensory input that can also include important
aspects of the environment, even just temporarily. It is not limited to the
biological body, but may include tools and technological extensions [59][60].
Complementary, the top-down representation is referred to as body image. It
relies on lexical-semantic descriptions and is connected to three modalities: 1)
perceptual experience of the body, 2) conceptual understanding of the body and
3) emotional attitude towards the body.
Body schema and image are not separate. Examples stretching into both image
and schema and exploring their connections are the cane of a blind person ([61],
p.165) or a prosthetic limb ([62]). [63][64][65]

When it comes to VE and ME applications, it is clear that the goal is to have
objects/tools/interfaces extending into the different environment and allowing
us to incorporate them into our body schema and use them to become an active
participant.
The same could also be said for truly ubiquitous computing environments. In
an environment surrounded by virtual assets, humans are generally blind to
what is happening around them on the other end of the spectrum. We need
either an equivalent to the blind person’s cane that we can use to ”get in touch”
with it - some of these interfaces eventually becoming part of our body schema
again. Or the virtual systems need some way of making themselves known to
us. A ubiquitous service accompanying us as users may have multiple ways
of embodying itself on displays, through audio alone, etc. depending on the
situation. It may be beneficial to them to rely on a variable ”body schema”
for their smart assistance as well, relating back to some of the points made by
Greenfield[40] about ”friendly” and relatable interfaces.

3.1.3 Disembodiment vs Re-Embodiment

Especially in the case of VR there often exists the notion that - in a cartesian
sense - the body is left behind and it is only our mind and our senses fed by the
VR technology that are important to consider for the virtual world.

Merleau-Ponty however argues from a phenomenological point that there is
no such reduction. The body and mind can not be mutually separated ([61],
p.84-102). There is further neurophysiological evidence that such a separation is
incomplete and that embodiment is a bottom-up as well as a top-down process.
[9][63]

In comparison, true disembodiment occurs during a failure of body schema
as well as body image to induce desired motor skills. It is the feeling of an alien
object that one has no control over.

De Preester[62], too, argues that the use of technology does not imply the
human capability for disembodiment but instead requires re-embodiment. We

26

do not so much leave our body behind, instead we extend our bodily self to
include the technology, even just temporarily.
De Preester further offers a distinction between body extension and incorpo-
ration of non-bodily items, the latter involving more drastic alterations and
conditions. Tool use, for example, is seen as changing motor and sensory capac-
ities, but not the feeling of body ownership.
True re-embodiment is then seen as a matter of incorporation with a required
shift in subjective experience. In a categorization of limb, perceptual and cog-
nitive extensions/prostheses this would necessitate a changed feeling of body
ownership, a change in subjective perceptual experience and a change in felt
ownership of thought respectively.

Finally, Buongiorno[66] argues that for the digital space, the distinctions
made by De Preester are more complex and that digital embodiment is a blurred
complementary process of bodily extension and incorporation of objects.

3.1.4 Virtual (Re-)Embodiment

Kilteni et al.[67] built a working definition for the sense of embodiment in
VR. They identify three underlying supporting senses: self-location, agency
and body ownership.
Self-location refers to the spatial experience of being collocated inside a body.
Out-of-body experiences constitute a disturbed self-location. [68][69]
Agency means motor control that follows intent and the concious experience of
will. [70][71][72]
A sense of body ownership is connected to a feeling of possession over a body
and the body being the source of sensory feedback [70][71][72]

Concerning fundamental limitations of virtual re-embodiment and telepres-
ence, Dolezal[73] gives the impossibility for risk of bodily harm (death in the
extreme case). Physical contact and proximity are also mentioned as cases where
virtually replicating e.g. the comfort of touch or presence inherent to physical
reality seems impossible.

As mentioned by Tsakiris et al.[74], synchronicity between multi-sensory
feedback (e.g. visual and proprioceptive) is a crucial factor for embodiment.
The increasing end-to-end latency between the user’s movement and visual feed-
back through the VR HMD will negatively affect embodiment efforts.
Caserman et al.[75] cite a number of thresholds evaluated through user studies.
Results show that a latency beyond 63ms for visual updates induces cybersick-
ness symptoms. Above 101ms feeling of body ownership was concluded to be
significantly affected.
A study by Waltemate et al.[76] cites 75ms as a limit to motor performance and
perception of simultaneity. Sense of agency and body ownership are determined
to deteriorate at thresholds of 125ms and again noticeably above 300ms but

27

never vanish completely.
The effects of linear latency vs. jitter were compared by Roth & Latoschik[77].

Seeking a validated method of measurement for virtual embodiment, Roth
& Latoschik[77] designed and tested a virtual embodiment questionnaire.
They highlight the three factors of ownership, agency and change in a perceived
body schema.

VR opens the possibility to display the environment from a non-egocentric
perspective. Different studies[78][79][80] have tested the effects and came to
the conclusion that diverging from an ego-centric reference frame and visual
perspective overall negatively affects embodiment.

VR not only allows a change in perspective, but also of body structure and
capabilities though.
Kilteni et al.[59] investigated to what degree a virtual arm could diverge from the
physical one in posture and length before breaking with the sense of ownership.
Kasahara et al.[81] performed a study on how visualizing one’s body in VR in
a spatio-temporally deformed state affects embodiment and the perception of
one’s body. They came to the conclusion that perception can be altered, e.g.
extrapolating movement by around 100ms into the future would cause a feeling
of reduced weight.

As Yee et al. [82] argue, VR can also be used an escape to the ”tyranny” of
the laws governing us, inventing beneficial ways to partly break with or subvert
familiar mechanisms of embodiment like being able to keep eye contact with
more than one person. Such departures from the conventions and limitations of
our physical experience may provide beneficial or simply interesting experiences.

3.1.5 Robotics, Teleoperation, Telepresence

The fields of robotics, teleoperation and telepresence also offer many examples
of control over additional or remote limbs and machines. Often, the goal is
to recover or increase (felt) agency while keeping the cognitive load low. The
system’s design should support the user in both directions.

Llorens-Bonilla et al.[83] designed a Supernumerary Robotic Limbs (SRL)
system with two additional robot arms worn as a backpack. It is meant to
reduce workload, especially in over-head tasks, by assisting with grasping and
holding objects.
They emphasize the importance of communication and coordination between
the SRL system and its operator. Decoding the intention of the user is a key
aspect for the system to work properly.

Penaloza and Nishio[84] performed an experiment where healthy participants

28

were challenged to control a third robotic arm via a Brain-Machine-Interface
(BMI) using non-invasive EEG sensors.
The study compared performance between a single task condition of grasping a
bottle with the robot arm and a multi-tasking condition adding a ball balancing
task using the subjects’ natural hands in addition to the robot arm grasping.

Martens et al.[85], too, utilized a non-invasive EEG interface to control a
robot. They conclude that the system could potentially be improved in its
awareness of incorrectly interpreted commands by including and learning from
error-related potentials[86] detected via the BMI.

Teleoperating a Nao humanoid robot has been achieved by Stanton et al.[87].
To train the mapping of movements between human and robot body, they uti-
lized full-body motion capture and machine learning.
During a calibration phase, the human user was asked to follow a pre-programmed
sequence of movements and perform them in synchrony with the robot. A neu-
ral network was then trained on the synchronized data of body poses between
human and robot. The trained network would then map the human motions to
the robot during live use.

Sivakumar et al.[88] used available online videos of hand movement to train a
teleoperation system on the task of translating human hand movement captured
with a single camera onto a robot arm with a four-fingered hand. The tasks
for previously untrained subjects involved object pickup, rotation, stacking,
pouring, opening and closing drawers.

3.2 Libraries, Tools & Platforms

Development of the systems described hereafter naturally involved additional
software. This is a short list of the major ones and a description of their specific
relevance.

3.2.1 Unity3D

Unity3D10 is a game engine providing visual rendering, physics simulation, an-
imation, GUI, I/O and component-based scripting APIs. It also provides in-
tegration for VR and AR applications. It enjoys widespread adoption in the
scientific community.

10https://unity.com/ (last accessed 26-03-2022)

29

https://unity.com/

3.2.2 Three.js

Three.js11 is a cross-browser 3D library based primarily on WebGL rendering.
Animation modules are available and it can be integrated with physics engines
like ammo.js or Oimo.js.

3.2.3 babylon.js

Babylon.js12 is an open web rendering engine.
Some of the relevant features are integration for WebXR and the Mixed Reality
Toolkit library as well as animation and physics engine support.

3.2.4 Gazebo

Gazebo13[89] is an open-source robotics simulation platform. As such, it focuses
on accurate sensor and physics simulation but also provides visual rendering.
A transport module provides a pub/sub messaging system and services which
build upon Google Protocol buffers and ZeroMQ.

3.2.5 Nengo

Nengo14[90] is a Python-based library for spiking and non-spiking neural net-
works.
It features an easy to use GUI and special API allowing to map mathematical
functions into SNNs.

3.2.6 Neurorobotics Platform

The Neurorobotics Platform (NRP)15[91] is a platform connecting different sim-
ulators for the purpose of experiments embodying brain models in simulated
robots. It features brain or neural network simulators that can be connected to
robotics and physics simulators.

The mission statement of the Neurorobotics Platform[91] is to investigate
biologically realistic models of the brain via spiking neural network simulations.

11https://threejs.org/ (last accessed 26-03-2022)
12https://www.babylonjs.com/ (last accessed 26-03-2022)
13https://gazebosim.org/home (last accessed 26-03-2022)
14https://www.nengo.ai/ (last accessed 26-03-2022)
15https://neurorobotics.net

30

https://threejs.org/
https://www.babylonjs.com/
https://gazebosim.org/home
https://www.nengo.ai/
https://neurorobotics.net

In order for such brains to perform realistic sensory-motor tasks, they require
embodiment in a realistic environment. They require a robot body that anchors
them. The physical construction and properties of this robot, e.g. the length and
weight of a gripper arm or the material it is made of, do need to be considered
and attuned to by the brain to use them efficiently. A change in the length
of the robot’s legs, their material’s flexibility or their contact surfaces requires
a change in the computational processes inside the brain that make the robot
walk properly.

In its current version (up to 3.2) the supported neural simulators are NEST[92],
Nengo and TensorFlow16[93]. For robotics and environment simulation, Gazebo
and ROS are deployed.
All simulators are updated in a closed loop to guarantee their synchronization.
In order to transmit data between the different simulators and their individual
design architectures, data formats, etc. the NRP uses so-called Transfer Func-
tions. These are Python code snippets called between each simulator update.
They are the means to map and transform data and signals from one simulator
to the other, e.g. transforming spikes from brain simulator to voltage for a robot
actuator.

With version 4.0, the architecture of the NRP becomes more open and
general-purpose. Simulators are encapsuled into Engines and an arbitrary num-
ber of them can be connected into a synchronized simulation. The concept of
Transfer Functions, now called Transceiver Functions, is kept.

The NRP also includes a web frontend, offering among other things a visual
rendering through Three.js of the simulation environment whose updates are
communicated via ROS topics.

3.2.7 PID Controller

PID controllers[94] are a form of continuous feedback loop control well estab-
lished in industry and robotics.
They are commonly used to regulate the dynamics of a system, like a robot
arm driven by a motor moving into a target position, with the goal to avoid
overshooting the target while still providing a minimal or adequate response
time for reaching the target.
The controller works by constantly calculating an error term between the set
target state and the current state of a system. Based on this error the three
name-giving proportional, integral and derivative correction terms are calcu-
lated and used to update the system state.
Each of the correction terms can be tuned by a factor, giving the adjustable
parameter space for a PID controller. Variations like PD controllers with two

16https://www.tensorflow.org/

31

https://www.tensorflow.org/

parameters also find application.

3.3 Dealing with Discrepancies between Environments

Whenever environments are brought together the degree to which they are spa-
tially, temporally and/or semantically separate in their interaction is an influ-
ence to be respected.
Especially when both environments appear next to each other or are supposed
to work similarly as with typical VR/MR applications and 3D spatial registra-
tion and tracking, the immersive integration of these realities can quickly form
expectations about what must be happening inside the distinct environments
even if their separated nature makes this impossible.

Some examples already given in Section 2.2.1 and 2.2.2 describe a clear
mismatch of object placement and general structure between a physical and a
virtual room when body movement is tracked and a one-to-one mapping be-
tween environments is desired. As seen in Section 3.1.4, introducing even a
small amount of latency between the movement of the physical arm and the
movement or just visual rendering of the virtual arm can result in disturbing
the expected behaviour of the observed virtual arm which leads to a loss of
embodiment.
In this case the issues may be prevented through increased performance or more
detailed observations about either environment. At some point, however, dis-
crepancies become unavoidable because the limitations like a wall or similar
blocking object are inherent to either environment and not reproducible or in-
tended to be reproduced on the other end. Here, different solutions have to be
pursued.
If, for example, the virtual arm adheres to a simulation of physics, that same
simulated realism may forbid it from moving exactly like the physical arm be-
cause of diverging properties like mass and weight distribution or motor strength
and range of motion. Teleoperation scenarios show the exact same issues, only
there the behaviour of the other environment is more evidently different and
thus there is less demand or expectation of an alignment between both.
With increased immersion, any occurring mismatches are less expected and po-
tentially disturb embodiment as studies cited in Section 3.1.4 show.

Together with Jonathan Haudenschild17 a small-scale preliminary study
on detected body-posture discrepancies between human and humanoid virtual
avatar has been conducted. The study compared the effectiveness and induced
level of discomfort of different methods for visual, auditory and haptic feedback
to replace the missing tactile and proprioceptive feedback.
One of the scenarios was how to deal with physical impossibilities, e.g. when a

17Haudenschild, J. (2018). Virtual Embodiment: Dealing with Discrepancies between the
Virtual and the Real Body [Unpublished Bachelor’s Thesis]. TUM.

32

Figure 5: Top: User positioned inside a wall, view of outside geometry is blocked
and unnatural color indicates undesired state. Bottom: ghostly second arm vi-
sualizing discrepancy between limb postures. Adopted from Jonathan Hauden-
schild’s thesis.

33

user standing unobstructed in a room is free to move their head or whole body in
any direction whereas the virtual avatar would be blocked by a virtual wall. As
physically restricting the user’s movement would require considerable additional
effort in hardware and pose potential risks, other methods of providing feedback
and preventing users from peeking through walls have to be investigated. Vi-
sual effects on their field of view like blurring, distortion, fading to black and
changes in virtual geometry appearance were tested. Visual distortion received
very negative feedback while blurring, fading to black and a change of colors
were graded highest but also resulted in disorientation and discomfort for some.
Blocking out all geometry apart from the interior of the wall upon entry would
let subjects keep their orientation while also blocking their view (Figure 5, top)
but was not as effective in preventing this behaviour as e.g. fading their vision
to black.
Regarding discrepancies in limb posture when for example bumping into ob-
jects, three feedback methods were evaluated for the arms. Especially in cases
where limbs are out of sight the lack of tactile and proprioceptive feedback
is exemplified. Firstly, visual feedback in the form of a ghostly second repre-
sentation of the user’s own arm posture was made to appear once divergence
between it and the avatar’s arm posture exceeded a certain threshold (Figure
5, bottom). Secondly, auditive feedback in then form of a monotone sound was
given. Thirdly, the controller held by the user and used to track their hand
position was made to vibrate giving tactile feedback. Here, the tactile feedback
was decidedly preferred.

3.4 Robot Hand Control using sEMG

Together with Tieck et al.[95], an experiment was conducted integrating the
signals of a surface electromyography (sEMG) armband with a robot hand. It
detected finger movements through the sEMG sensors and subsequently trig-
gered movement reflexes in the form of motion generators for appropriate robot
fingers.

The experimental setup (Figure 6) used the ThalmicLabs Myo Armband18

and the Schunk SVH robot hand19 with their signals connected via a spiking
neural network (SNN) pipeline simulated in Nengo.
EMG data was accessed using an open-source Python API20 while the Schunk
hand provides a ROS interface. Nengo as a simulator is running in Python.

Figure 7 shows the full pipeline. Here, instead of focusing on the technical
details and implementation steps it is more interesting to focus on the gen-
eral segments and how they could be applicable to other studies and setups,

18https://developerblog.myo.com/ (last accessed 08-06-2022)
19https://schunk.com/de_en/gripping-systems/highlights/svh/ (last accessed 08-06-

2022)
20https://github.com/dzhu/myo-raw/ (last accessed 08-06-2022)

34

https://developerblog.myo.com/
https://schunk.com/de_en/gripping-systems/highlights/svh/
https://github.com/dzhu/myo-raw/

Figure 6: Experimental setup using the sEMG armband (left), the robot hand
in mid-motion (middle) and the running SNN simulation using Nengo simulator
(right).

especially since the whole setup was implemented before development on Ubi-
Interact began and subsequently informed some of its design.
It starts with aquiring raw sEMG data via an API for the Myo armband. From
this, the first group of Nengo networks generate a finger classification for one
of the digits. This classification triggers a motion reflex primitive for the corre-
sponding digit on the Schunk robot hand.

The Myo hardware used in this setup was at some point stopped for sale and
support was discontinued21. The requirement of interoperability & extensibility
cited in [96] echoes this issue.
This shows that experimental devices or small-scale production runs can poten-
tially be phased out rather quickly or are iterated on with newer generations.
Driver and SDK support is not guaranteed long-term so experimental setups
are hard to maintain. Integrating such devices with newer software setups and
versions can become difficult at some point. To counter this issue, it is beneficial
to have an isolated and maintainable driver/SDK/API integration that can be
combined quickly with other systems through simple communication interfaces.

Within the Nengo network, both segments of sEMG classification and motion
reflexes can have separate uses and the pipeline as such can be divided into
separate Nengo networks. The finger classification segment can find additional
applications in novel user interfaces making use of individual finger movements
using wearable devices. And while the network can be split, Nengo itself is a

21At the time of writing, the Myo armband is available for purchase again

35

Figure 7: SNN pipeline with segments of EMG data interface, EMG classifica-
tion, motion reflexes and robot motor commands.

dedicated software that can not be combined and integrated into just any other
setup with ease.

The Schunk robot hand is a rather expensive piece of hardware that not every
laboratory has at hand and may instead want to replace it or compare solutions
with different setups. Models of the Schunk hand for virtual simulations are
available and could replace some stages of experimentation and development.

As the results achieved in this experiment are certainly not final, it would
also be of great value to have the setup retained in a flexible manner so as to
exchange input methods, robot end-effectors or mapping algorithms between
the two for continued study and improvements.

3.5 NRP Re-Embodiment

The NRP is a platform where embodiment experiments for virtual robots con-
trolled by neural simulators in a simulated environment can be conducted. It
is, of course, focused on the neurorobotics aspects of embodiment for learning
and task performance.
If the same platform featured human agents in the environment, it would open
the option for HRI (Human-Robot-Interaction) experiments. As more complex
human behaviour and interaction is difficult to simulate, the only option is to
represent human actors in the simulated environment. As such, they require an
interface giving them enough agency to reflect various intricate behaviours.
The focus was on building an adequate technical foundation that would support
embodiment experiments with respect to the conditions quoted in Section 3.1.

36

Figure 8: Side-by-side view of NRP setup. VR equipment with finger tracking
(left) and simulation where user’s hand motion translates to the robot avatar
picking up a cube (right).

To provide this feature, the required additional elements are
1) a body tracking capturing the movement of human users,
2) a way of conveying the simulated environment to the users that is conducive
to embodiment , i.e. a first-person VR perspective[97],
3) a body representation that is part of the environment simulation, i.e. a
humanoid robot that the user can take ownership and control over and
4) motion control mechanisms translating the tracked human movements to the
humanoid robot, i.e. 4a) determining a full body pose if not all parts of the
body are tracked and 4b) estimating the forces necessary to move the robot
avatar’s body parts towards the body posture determined in 4a.

To get an impression of the eventual result, a video22 is available. Figure 8
is a screenshot from this video showing an outside view of the VR equipment
including finger tracking controllers and the performed grabbing motion by the
user next to the simulation view of the avatar picking up a small cube from a
table.

3.5.1 Unity VR Client

To cover the requirements of body tracking and visual representation, the choice
fell to consumer level VR hardware and a software client implemented in Unity3D.
Relying on widely available hardware would open the possibility for experiments
involving humans to a much wider user base.

22https://www.youtube.com/watch?v=-nTGG33ErNc

37

https://www.youtube.com/watch?v=-nTGG33ErNc

Figure 9: First-person view of robot arms. For illustrative purposes, controllers
and estimated pose of arms (transparent) are shown as an overlay. Robot arms
(opaque) are in the process of adjusting their position to the same as the trans-
parent estimate.

Visual information and updates about the NRP environment are communi-
cated via ROS topics and reflected in a Unity Scene. All of the physics calcula-
tions still happen within Gazebo.

Modern VR hardware supplies the necessary tracking for head and hands,
with the option to extend to more detailed information like fingers, torso or feet
tracking using additional or newer upcoming hardware developments.
To arrive at a full body pose from this, inverse kinematics (IK)[98][99] can give
estimations of arm and leg poses. If no tracking data for torso or feet are avail-
able, IK targets can be approximated based on the head and arm positions and
heights as well as a walking animation during movement.
Unity3D’s character animation system already offers an API capable of a weighted
interpolating between IK targets and animations. It was thus used to cover the
above part of 4a for determining a body pose from the tracking data.

3.5.2 Humanoid Robot Avatar

As a physical representation model, the abstract X- (female) and Y-Bot (male)
models available on Mixamo23 were chosen.
The model geometry was then ported into the Gazebo native format of SDF24.
This resulted in a model consisting of 83 individual rigid body parts connected
by 82 joints.
Collision and inertia were added to body parts.
Joints were defined by their type and rotational constraints. The number of

23https://www.mixamo.com/
24http://sdformat.org/

38

https://www.mixamo.com/
http://sdformat.org/

joints results from some of the human joints that are movable in multiple di-
mensions (e.g. the shoulder) being represented by a concatenation of several
one-dimensional robot joints to cover their respective degrees of freedom. The
dynamic behaviour of joints was then handled through a dedicated plugin in a
second step.

3.5.3 Motion Control Plugin & Limitations

The SDF file format has plugin library mechanisms by which different controllers
can be applied to a model. Plugins allow initialization via a Load() function as
well as iterative update calculations via OnUpdate().
For the humanoid robot avatar, a plugin with several controllers offering differ-
ent modes and aspects of motion control was implemented.

Regarding the control of joints, one of the controllers adds a PID controller
for each point and ROS topics to set PID parameters as well as a target position
for the respective joint.
Another controller opens topics to set a force that would constantly be applied
during updates, offering a more direct low-level control without relying on a
PID Controller implementation.
Controllers for direct application of linear and angular velocities and forces
have also been implemented, controlling the robot avatar akin to a puppet with
strings attached instead of forward kinematics using joint motors.

Apart from the motion control over limbs, there is also the question of how
the avatar is supposed to be kept in an upright position.
The task of keeping a two-legged humanoid robot upright is in itself not easy
and usually requires a purposeful design of robot legs, feet, certain limitations
to its movement range and/or sophisticated software in order to keep balance
[100]. These requirements are not reflected in the robot avatar that was chosen
to be abstract but reflective of the full range of human motion capabilities.
User movements like leaning, stretching out legs, etc. would further complicate
this task and require an elaborate sense of balance and control over foot place-
ment and force contacts with the ground in order for the robot not to fall over
immediately.
The hardware and input/output capabilities between human user and robot
avatar in their current state do not offer enough fidelity to imagine such a de-
tailed and dexterous control over a simulated body. The user is lacking any
form of proprioceptive feedback regarding the robot limbs and it would require
for new hardware to be designed first in order to convey this information in any
meaningful way. It was thus decided to artificially support the robot avatar at
its hips with forces keeping it upright / according to the tracked body pose at
all times.

One of the aspired future experiments is to test how a motion controller

39

could consider both the user input and the required balance using mass dis-
tribution, velocities and torques to form a balancing pose control that merges
both inputs. Artificial support could be gradually lowered to test the viability.
This would in some sense resemble a physical rehabilitation experiment for the
aspired balance controller.
This, again, is one of the challenges Ubi-Interact is trying to address - having
personalized input/output from/to multiple directions merge and build an in-
crementally extendable system on it that can work in tandem with their user
and extend their capabilities.

3.5.4 PID auto-tuning

With 82 joints and attached PID controllers that widely differ in their dynamics
- e.g. a finger joint with grams of mass on each end being far down the forward
kinematic chain of the body vs. a hip joint - a method for attuning the parameter
space of each individual PID controller was necessary.
The latency of network communication and the future potential of personalized
avatars with differing physiques are other factors that can influence the PID
parametrization on a case-by-case basis.

Together with Markus Webel25 - a tuning suite was developed that involved
automatic as well as manual tuning options for on- and offline use. The tuning
mechanisms were separated into modules with immediate visual and plotting
feedback. This allowed to programmatically narrow down viable ranges of pa-
rameter space and then fine-tune the results manually until acceptable perfor-
mance in overshooting and responsiveness were achieved.

3.5.5 Replicating humanoid motion

For the process of testing the viability and reactivity for human motions, relying
on an actual user wearing VR hardware and performing movements or recording
a full set of full-body motion captures was deemed inefficient. Instead the setup
was extended to allow playback of freely available motion capture animations.
The catalogue of animations included idle standing, walking, running, opening
doors, jumping and even break-dancing. This also allowed to control the play-
back speed to test at what point parametrization of joint dynamics failed and/or
the system would not be able to keep up anymore.

25Webel, M. (2019). PID-Tuning Framework for Remotely Operated Humanoid Robots [Un-
published Master’s Thesis]. TUM. https://wiki.tum.de/display/infar/MA%3A+PID-Tuning+
Framework+for+Remotely+Operated+Humanoid+Robots

40

https://wiki.tum.de/display/infar/MA%3A+PID-Tuning+Framework+for+Remotely+Operated+Humanoid+Robots
https://wiki.tum.de/display/infar/MA%3A+PID-Tuning+Framework+for+Remotely+Operated+Humanoid+Robots

3.5.6 Transition to Ubi-Interact

Due to the NRP’s orientation towards deterministic and HPC simulations not
running in real-time, it became apparent that further development of VR re-
embodiment experiments with tight integration in the NRP ecosystem would
not be feasible in the near future. The options were to continue with the exist-
ing setup relying on ROS, Gazebo and Unity or to embrace Ubiquitous Mixed
Reality requirements completely and explore a system providing a flexible ba-
sis to adapt to the various device and simulation configurations with re-usable
modules connecting them and taking care of the necessary intermediate trans-
formations.

41

4 Towards building a Mixed Reality Framework

After a very general and conceptual exploration of how Ubiquitous Mixed Re-
ality presents itself in Section 2, this chapter will take a closer look into the
technologies involved that enable Ubiquitous Mixed Reality as well as related
fields and how their influences can complement, inform and enhance solutions
for Ubiquitous Mixed Reality.

Ubiquitous Mixed Reality encompasses quite a few (eco)systems and fields
of research that play a role like the internet, robotics, IoT, machine learning,
HCI and HRI.
In computation hardware it involves all levels from wearables to cloud comput-
ing. Traditional and prototypical devices are employed alongside each other
to involve all human senses. They are intended for interaction within private
homes as well as public places.
Many of them bring with them historically grown and established standards and
protocols fitting their purposes. They formulate different demands for compu-
tational resources, data transfer and communication patterns, data formats, se-
mantic representation and security among others. The following sections cover
these aspects and present current practices.

This work focuses on the communication and discovery between devices and
how to combine them in their capabilities - not just physical devices with but-
tons, etc. but also abstract objects of interaction.

4.1 Overview: Communication Patterns

One key issue for Ubiquitous Mixed Reality is the question of how to pass
around data between all elements involved. A single standard of communication
between them would be ideal but seems unlikely for the time being. Even with
a future standard protocol established, what these fields of application involve,
what context they operate under, how they integrate with their environment,
their scope of connectivity, what data and formats they use and what is ideal
for their efficiency - i.e. the meaning behind and interpretation of the data
they use - is probably so diverse and needs to remain specialized to some extent
that a generalized standard for data exchange between all of them seems rather
implausible.

There are of course quite a few different communication patterns each with
their respective advantages and disadvantages. Data distribution in Ubiquitous
Mixed Reality scenarios are characterized by a very dynamic environment. It
should be possible for elements to enter and leave at any point in time - maybe
even move along a continuous ”distance” measurement with the rest of the
system being able to react.

42

All of this means that message distribution for Ubiquitous Mixed Reality
must be thought of from two perspectives.
On one hand, when building a Ubiquitous Mixed Reality framework from the
grounds up there is the question of how to pass messages within the system -
between each part that is built with the help of the framework. Here a choice
can be made on the basis of what patterns fit Ubiquitous Mixed Reality and
the purpose of the framework best.
On the other hand, there are a lot of systems already out there with established
messaging interfaces that belong in the bigger picture of Ubiquitous Mixed Re-
ality. Simply ignoring them will not help bring about Ubiquitous Mixed Reality,
instead the goal should be to find ways of communicating with them.
There are many existing examples of plugins and bridge components that are
capable of translating between major and related development platforms and
environments. This raises the question for a Ubiquitous Mixed Reality frame-
work of how existing external and especially upcoming messaging systems can
be inter-communicated with. If data is shared between two systems only, a di-
rect one-to-one bridge between the two is perfectly fine. If however Ubiquitous
Mixed Reality scenarios grow bigger and relevant context or computation in-
volves data from three or more participants, a separated implementation being
able to disseminate between all participants starts to make sense.

For Ubiquitous Mixed Reality scenarios, we have a few conditions that should
inform a decision. Depending on the scenario, some communication patterns fit
requirements of bandwidth use, update frequency, scalability, adaptability &
plasticity, etc.[96] better than others. Here are presented three major commu-
nication patterns and the use-cases they are best suited for.

4.1.1 Services & Request/Reply

Stateless protocols are communications that do not persist any session state and
deal with self-contained requests only. Prominent examples are IP and HTTP.
As such, they lend themselves to implement services with a request/reply pat-
tern where requests contain all necessary information and can be handled in
isolation, potentially followed by a reply being sent back and thus concluding
the transaction. Such services are categorized as synchronous communication
as the sender of a request usually waits for a reply before continuing. This can
but does not necessarily imply that the process of the sender is also halted until
a reply is received.
When used to retrieve data such a service is comparable to polling, meaning any
requesting party must send a new request if it deems an update is necessary.
This can make communication inefficient as it prevents a dynamic and reactive
exchange of information that is triggered only when actual changes happen.

43

4.1.2 Event-Based & Publish/Subscribe

Event-based or event-driven communication is a form of asynchronous commu-
nication, meaning event messages can be sent whenever they occur and the
receiving end decides when to handle them. They can be emulated over state-
less protocols, but in order to overcome the continuous polling problem they
typically rely on a stateful communication channel that is kept open for contin-
uous exchange - TCP and Websockets are common examples for protocols. A
full-duplex protocol facilitates a simultaneous exchange of event data on both
ends.

The publish/subscribe pattern is an event-based communication and data
distribution pattern. It involves participants providing data by publishing it.
Other participants can then announce interest in certain (patterns of) events
by subscribing to them. This forms a 1-to-n distribution of events between pub-
lishers and subscribers.
Routing of these messages between participants can take different forms. If
all participants form a decentralized peer-to-peer network, each would typically
subscribe at the publisher itself and receive messages directly. Alternatively, a
network around a centralized message broker receiving all published messages
and distributing them to subscribers can be established. The second form is
better suited for cases with very heterogeneous participants where establish-
ing bi-directional peer-to-peer communication between them might be difficult.
Both solutions of course slightly differ in their behaviour, performance and scal-
ability and each topology has its benefits.
As early as 1987, a publish/subscribe-like communication pattern for distributed
systems likened to a billboard has been described in [101]. Emphasis was put
on its flexibility and robustness while being easy to use for developers of ap-
plications. Indeed the pub/sub pattern is very appropriate for decoupling data
producers and consumers in distributed interactive systems as well as potentially
scaling message delivery to many interested parties.

Eugster et al.[102] differentiate all pub/sub systems against other interaction
schemes for their ability to decouple across space, time and synchronization -
meaning in order to exchange messages participants do not have to know about
each other (i.e. know their network addresses), do not have to be present at
the same time and their execution or message processing is not dependant on
processes on the other end of the connection.
They further discriminate pub/sub systems into topic-based, content-based and
type-based. In topic-based systems the identifier used to categorize message
events is called topic (typically in the form of a character string). It is also used
during subscriptions to express interest in events under said topic. Topics do not
guarantee exclusivity per se, meaning that depending on the implementation it
is allowed for different participants to publish their events under the same topic
as well as different forms or types of events being able to be published under

44

the same topic. In many cases however, it is beneficial to ascribe a topic to a
single publisher (”owning” the topic) and keep the type of data being published
consistent in order to avoid confusion or ambiguity.
For content-based systems, subscriptions are handled based on what information
is contained inside any message event. Subscriptions then take the form of a
condition on certain message data fields/properties - for example an arithmetic
or logical comparison describing a condition, threshold or distance metric based
on event values like price or location. With content-based approaches an efficient
and scalable implementation of these condition checks becomes very important
to the overall performance of the messaging system. [103][104]
In type-based systems, subscriptions are registered based on the general format
or type of event sent. On a social platform one could for example express
interest in all messages that describe and inform about other users or persons.
This requires that a set of known message/event/data formats is shared between
all parts of the system whereas in a topic-based system the broker doesn’t
necessarily have to know anything about the payload contained inside message
events.

Another relevant issue for publish/subscribe message distribution is mes-
sage persistence, i.e. a solution to circumstances where participants join ”late”
but are still interested in or even required to receive past events. These past
messages often reflect some form of global state which is necessary for other
participants and is not updated frequently because it involves large amounts of
data and/or does not change over time, meaning it is enough to publish only
once. We will see in the following examples how implementations solve this
issue.
How participants know about or agree upon topics and what format or protocol
the data being sent adheres to are questions addressed via different mechanisms.

As we’ve seen in this section, the pub-sub method of message dissemina-
tion seems very adequate for many of Ubiquitous Mixed Reality’s use-cases. It
reflects the decoupled, dynamic and distributed nature. Some activities of Ubiq-
uitous Mixed Reality need to happen for all parties involved and independently
of them, so offloading certain computations into edge-computing processes or
separate nodes that exist outside of individuals is a must.
Building ad-hoc networks - while being an interesting prospect for some cases
- would require a lot of data replication on all participants (even when they
individually don’t need it) to guarantee availability of data in case one or more
participants leave or drop connection.

The reason why Ubiquitous Mixed Reality and pub/sub are a good fit are
as follows:

• In an environment that is dynamic, where entities come and leave as they
please and its not clear who is present at a certain point in time, we need
spatial decoupling. It is also not clear when and if somebody is currently

45

present, so temporal decoupling is important in certain circumstances. To
assume we can interfere or have influence over execution flow of external
systems in such an environment is also out of the question - i.e. synchro-
nization decoupling is a must.

• In an environment that is not a-priori known to participants, they need
other ways of identifying and expressing interest in certain aspects of the
environment and respectively the relevant data channels. Pub/sub sys-
tems can provide this via topic/type/content subscriptions.

Naturally, event-based communication also has its weaknesses, one of them
being large amounts of continuous data where the event-wrapper of individual
event messages generates an accumulated overhead. This leads to the next
communication pattern to be considered.

4.1.3 Dedicated Streaming Protocols

With event-based messaging, there is typically a bit of overhead for each event,
for example additional information about the event’s origin/identifier or what
type of events are contained inside the message. There’s possibly additional
overhead (un-)packing messages before/after accessing event data inside. In
cases where large amounts of data are sent with high frequency, this overhead
can become costly. Sometimes data also occurs in a continuous flow with inter-
dependant time sequences instead of asynchronous events. Video streaming is
a prime example for this category of communication.

Such streaming protocols are typically very specific and geared towards spe-
cial data/application cases in order to achieve better compression rates or la-
tency. They are thus not prominent when considering the design of a dynamic
and generally applicable base communication of a framework but are an essen-
tial consideration when it comes to how such a framework can support their
use-cases.

4.2 Publish/Subscribe Systems

4.2.1 Apache Kafka

Apache Kafka [105] is a distributed messaging system originally developed for
LinkedIn with a focus on log data stored on hard drives.

For log events (e.g. user activity on a website) it is required for consumers
to be able to do data analytics possibly days after events occur. Therefore
the entire event history needs to be saved persistently to the filesystem to be

46

processed at a later date. This is why Kafka prefers data consumers to pull
messages over them receiving push updates. That way consumers can throttle
message bandwidth to their processing speed.
In comparison, any MR environment is more transitional, immediate and inter-
active. Usually there is less use for analysis over event histories (e.g. how many
times an element was interacted with) and only the last update or the current
event itself matters (e.g. 6DoF pose updates, interactions with surroundings).
Event history only becomes interesting for MR when thinking about testing
or training (recording and replaying sequences), predictions / extrapolations or
”time-travel” scenarios. One should definitely think about how to accommodate
these use-cases but they can not be considered the default operating mode.
Nevertheless, some of the architecture and performance decisions of Kafka can
inform decisions on MR systems. Kafka puts more emphasis on throughput
rates and scalability than quality-of-service guarantees. These priorities are
certainly adequate for MR as well for the above reasons - for example the up-
date frequency on pose data is naturally very high and missed updates are rather
inconsequential.

In Kafka, log events are topic-based. It is also inherently distributed, featur-
ing multiple brokers that split topics into partitions for efficient load balancing
of consumers requesting data. Kafka also handles batches of individual log
messages as one transmission which limits message overhead.

For real-time stream processing demands, Kafka features options to apply
time-windows to messages and join different streams of messages. In MR sce-
narios, mechanisms like these are relevant for interpolation/extrapolation al-
gorithms (time-windowing) as well as establishing interactivity depending on
separate streams of data (joining) - i.e. events of differing types coming from
varying users, clients, processes, etc. that need to be observed in combination
with each other because they should form relations triggering certain reactions.
Especially the dynamic joining of individual data streams is interesting for deliv-
ering a combined package of all the necessary base as well as context information
to processes doing advanced reasoning and interactivity in MR.

One benefit of persistent filesystem storage for events is that brokers can
potentially crash, restart and still have old data present. In many MR cases a
broker crash seems rather inconsequential as clients reconnecting after a broker
crash would just continue to push their latest events (e.g. position) but as
soon as keeping context between isolated use-sessions of a MR app becomes an
issue persistent storage needs to be addressed. An effective and well-performing
link between any event data and storage solutions (Databases etc.) is therefore
relevant to MR as well.

Kafka uses Avro (4.4.2) as a data serialization system for delivering messages
in binary format.

47

4.2.2 ROS

The Robot Operating System[106][107] (ROS) is a widely used open-source stan-
dard for robotics applications in industry and research. It is therefore quite rel-
evant to understand how ROS solves connecting the sometimes heterogeneous
computational components of (groups of) robots and how it manages and dis-
tributes the processing elements required to achieve necessary tasks.

To establish communication, ROS builds a graph of nodes instantiated on
each of the individual components. Each node can be regarded as a processing
unit with a distinct purpose. All nodes initially connect to a master node
that organizes and orchestrates them. After recognizing other connected nodes
all further data exchange between nodes happens through direct peer-to-peer
connections negotiated through the master node. Data is distributed between
the nodes via a topic-based publish-subscribe mechanism.
A special case exists for elements that can not open their own networking sockets
for others to connect to via peer-to-peer because they lack the technical means
to do so - browser applications are a good example - but nevertheless want to
communicate with the ROS infrastructure. These cases can rely on rosbridge
and its websocket server as a means to still exchange messages via publish-
subscribe mechanisms.

Data formats are defined in special message schema files which are then
compiled for all languages used by the different nodes. These schema definitions
build upon primitive data types as well as previously established schemas which
makes them continuously extendable. Users are then able to adopt and to build
upon already established schemas.

To solve the issue of nodes receiving data being published in the past, ROS
allows topics to be flagged as what it calls ”latched”. This results in the last
event published being stored and any new subscribers automatically receiving
the last event upon subscription.

ROS can fulfill quite a few of the requirements from chapter 1. It is however
lacking in some other aspects. For example, for establishing communication
typically the setup and number of interacting elements in the environment of
the robot is assumed to be known.

4.2.3 DDS

The Object Management Group26 (OMG) provides an open standard for the
Data Distribution Service for Real-Time Systems27 (DDS). DDS is a pub-

26https://www.omg.org/ (last accessed 26-03-2022)
27https://www.dds-foundation.org/ (last accessed 26-03-2022)

48

https://www.omg.org/
https://www.dds-foundation.org/

lish/subscribe middleware for distributed systems with industrial IoT in mind.
It is designed for low-latency, reliability and scalability. [108][109]

4.2.4 MQTT

MQTT is a network protocol standardized for the IoT. It too builds upon the
publish/subscribe pattern with a centralized broker. There is a list of available
MQTT broker implementations28 with varying software distribution models and
sets of features. As a general solution for IoT the MQTT broker is typically
topic-based.

4.3 Data Processing in Event-Driven Architectures

Ubiquitous and distributed systems often involve headless devices (IoT), devices
with limited hardware resources (mobile or robotics applications) or the simple
requirement to establish system logic and functionality governing certain parts
of the system or providing services in a neutral fashion independent of any single
directly involved participant. They form a network of (sub-)systems with data
flowing between them via agreed-upon channels. This decoupling of function-
ality also has the advantage that it can potentially act as a library of reusable
and combinable blocks with clear interfaces and modularity. On the other hand
easy-to-use and adequate mechanisms to link and integrate these blocks with
the rest of the participants is required. The more dynamic the structure of the
overall system becomes, the more complex it becomes to establish these links
and have them adjust to changes.
The following will take a closer look at some of the systems from the different
fields that successfully implemented such mechanisms. They follow paradigms
such as reactive programming, flow-based programming ...

4.3.1 ROS

The Robot Operating System, too, offers ways of distributing and sharing com-
putational resources.
The example described by Quigley et al. in [106] (II.A.) presents a scenario
of industrial robots that have multiple on-board computers networked together
but also need to off-load computationally intensive tasks to more powerful hard-
ware not located on the robot. This example illustrates it is sometimes necessary
to offload computation onto different hardware. For these cases of distributed

28List of MQTT brokers: https://mqtt.org/software/#servers-brokers (last accessed
26-03-2022)

49

https://mqtt.org/software/##servers-brokers

processing and control, ROS nodes can provide functionality to other nodes. In-
teresting to note are the different modi in which computation can be triggered
(also see [107]).
The first case is to simply establish a node subscribing to certain topics, pro-
cessing data, then publishing the results - this is the fully asynchronous mode in
which the node continuously does its work without additional outside influence
or control.
As a second alternative, nodes can provide fully synchronous Services where
one node would post a request and await the result.
In cases of long-lasting tasks that should not be blocking execution for other
nodes and/or require progress & status updates during their execution, ROS
provides the concept of Actions that can be requested and will eventually
provide a result.

4.3.2 Node-RED

Node-RED is built on Node.js and is designed to connect together devices, APIs
and online services. It allows users to combine functional blocks called nodes
into data flows to handle and manipulate event data between these endpoints.
Nodes representing inputs, processing and outputs can either be taken from
an existing library or new ones can be written in Javascript, then potentially
published for others to import into their library. Flows can be created, changed
and deployed in a browser-based editor. In the same editor, individual nodes
belonging to the flow can be configured or edited. The editor follows a visual
programming approach. Node-RED can be deployed on different scales from
small personal devices to cloud servers.

4.3.3 Neurorobotics Platform

The NRP has two components that are essentially event-driven. On one hand,
there is the robotics simulation based on ROS and Gazebo (until v3.2, more
engines from v4.0 on), both of which communicate their events via pub/sub
messaging. On the other hand, there is the brain simulation running on Spiking
Neural Network soft- (NEST[92], Nengo[90]) or hardware (SpiNNaker[110]).
Neuromorphic architectures - whether in hard- or software - are event-driven in
nature (spikes) and the event-driven processing is a core feature.
To combine both (originally) indepentent systems, the NRP uses the concept
of Transfer Functions (TFs) forming an event-loop between both ends that is
continuously evaluated and keeps both systems and their signals/events syn-
chronized. TFs are pieces of code that can translate sensors data (e.g. camera
images) into spikes and vice-versa (e.g. spikes into motor control).
As such, TFs act as translator modules mapping events from one domain to the
other.

50

4.3.4 UbiTrack

UbiTrack[111] is a framework tackling the challenge of tracking in ubiquitous
environments containing heterogeneous sensors.

It determines optimal data flows in a peer-to-peer network through Spatial
Relationship Graphs (SRGs) - nodes representing local coordinate frames and
edges specifying spatial relations. Notably, implicit spatial relationships can
also be deduced.

Trackman[112] is a GUI tool for UbiTrack that provides a library of patterns
and modules to apply to tracking tasks. Visualizations of SRGs help with the
identification and setup of computational patterns.

4.4 Message Descriptions and Formats

As argued before, MR/ME is and will likely stay a heterogeneous, multi-standard
and multi-purpose conglomerate. It follows that systems or applications exist-
ing in an MR context will be following different data formats that offer the right
level of abstraction level and fitting performance for their purpose. So, apart
from the question of how best to deliver messages between the parts of a mixed
reality system, a common basis for communication needs to be found.

In Section 2.2.1 and 2.2.2 virtual and mixed environments were characterized
in their different levels of complexity. Agent-based models were also quoted
with the need for an agent-communication language. With extremely static
VEs like videos or even just 3D models that do not change over time, any
environment can be constructed and mixed with this static format as long as
an importer/translator for the file format exists. Analogously, for a dynamic,
event-based and reactive mixing of environments a common language is required
to describe these events and enable every environment to interpret them.

These data format protocols constitute the common vocabulary between
heterogeneous systems. And here two problems form on both ends of commu-
nication: a) finding an efficient internal standard understood by all parts of
one system/application developed by one team for one purpose and b) finding
efficient ways of communication with external systems and standards developed
by other teams. Besides an internally consistent way of communication when
building MR applications, it is therefore also prudent to think about how this
application will be able to communicate with external standards and formats -
essentially how foreign vocabularies or ”dialects” can be learned and interpreted
or how translators between both can be found and established.

The structure in which a message is being transmitted will be called message

51

format. The way of describing such a format to an interpreter trying to read or
formulate valid messages will be called message schema.

4.4.1 JSON

JSON 29 (JavaScript Object Notation) is a data interchange format based on
human-readable text defining name-value pairs. It is language independent and
supported by all modern languages. Being interchanged between systems in
its text form, it is usually not the most bandwidth-efficient solution for data
exchange. To reduce space requirements, solutions like BSON30 (Binary JSON)
exist.
While it offers syntax and primitives like objects, arrays, strings, numbers,
booleans and null, higher level semantics and schemas of data type definitions
beyond the standard sets that are required for (de-)serialization or validation of
messages during exchange between systems require additional setup like JSON
Schema31.

4.4.2 Apache Avro

Avro32 is a message schema description and binary (de-)serialization system.
Kafka integrates it for its message formatting purposes. Its message schemas
are written as JSON and are evolvable. It can also act as a container format
when writing files.
One distinction of Avro is that the schema describing the data format is al-
ways transmitted or saved together with data and thus schema compilation into
code for different languages is not mandatory but can be done for optimization
purposes.

4.4.3 Google Protocol Buffers

Google’s Protocol Buffers33 is another way of establishing message formats via
schema description files which are then compiled to all relevant programming
languages. Message objects are (de-)serialized into binary before and after trans-
mission respectively.
A performance evaluation comparing Protocol Buffers to JSON/BSON for IoT
is available in [113].

29https://www.json.org (last accessed 26-03-2022)
30https://bsonspec.org/ (last accessed 26-03-2022)
31http://json-schema.org/ (last accessed 26-03-2022)
32https://avro.apache.org/ (last accessed 26-03-2022)
33https://developers.google.com/protocol-buffers/ (last accessed 26-03-2022)

52

https://www.json.org
https://bsonspec.org/
http://json-schema.org/
https://avro.apache.org/
https://developers.google.com/protocol-buffers/

4.4.4 YANG

YANG[114][115] (Yet Another Next Generation) is a data modeling language re-
flecting its data models (or schemas) in so-called modules. Modules can include
and augment other modules as submodules and track revision history, thus any
defined model can be extended.

Modules can be hosted as a web resource, their URL serving as their reference
for others to import. This allows any system to use and understand publicly
available modules.
Also worth noting, multiple parties can theoretically implement the same model
under different URLs without producing conflicts. Standardization of such an
overlapping model at a later point in time is possible without much additional
effort.

4.4.5 Zero-Copy Formats

Both Avro and Protocol Buffers presented above involve a (de-)serialization step
converting from programming language specific message objects to binary be-
fore sending and back from binary to language object after receiving a message.
This of course means additional processing overhead for each message. Solutions
like Google’s Flatbuffers34 and Cap’n Proto35 eliminate this (de-)serialization
step by aligning message fields in memory and addressing individual fields of a
message via fixed (e.g. 32 bit floats) or pre-calculated offsets (e.g. strings). The
goal is to gain increased performance by omitting these steps. In short, a mes-
sage is already written in a serialized fashion while assigning values to its fields
during building/definition of a message object. Conversely, after receiving a
message individual fields can be accessed directly through their offsets without
prior deserialization. Compiled message objects per language now essentially
are reduced to getter/setter functions storing the respective offset for a field
and reading/writing data to the appropriate places in memory.
Some performance comparison and additional investigation on hardware accel-
eration has been done in [116].

This, however, also means that message construction and modification is
much more rigid and complex. If, for example, messages should be treated as
communication of states with intermediate processing steps changing parts or re-
combining fields of separate messages into new messages, then handling via these
methods becomes much more difficult. Messages in their memory-aligned binary
format usually have to be reconstructed or recombined from scratch to guaran-
tee proper alignment. Together with Leon Sandner in his thesis ”Ubi-Interact:

34https://google.github.io/flatbuffers/ (last accessed 26-03-2022)
35https://capnproto.org/ (last accessed 26-03-2022)

53

https://google.github.io/flatbuffers/
https://capnproto.org/

Architecture for Programming Language Independent Interaction Modules”36

performance tests were conducted comparing Flatbuffers to Protocol Buffers.
An overall performance advantage in latency of about 10-15% was observed.
It became also clear, however, that for certain languages memory access/copy
was implemented using sub-optimal methods which was especially noticeable
for larger byte data like images, resulting in a net performance loss. These is-
sues are surely fixable over time. What is a more problematic downside is the
natural complexity for handling messages dynamically. This essentially resulted
in helper and utility functions being implemented to save time and effort during
coding and make code more readable and manageable, negating some or all of
the original performance gain.

4.5 Agents, IVAs, AI

The virtual world can be populated with simple entities whose properties are
presented to us and which we can manipulate to some effect through simple
interactions. Eventually though, agents should enter the environment(s) that
can perform more complex and helpful tasks and assistance. Such agents are
usually referred to as Intelligent Virtual Agents/Assistants (IVA).

A definition of an agent can be adopted from Wooldridge and Jennings [117].
Specifically, the weak notion of agents with properties of autonomy, social abil-
ity, reactivity and pro-activeness seems sufficient for considerations about how
they could navigate Ubiquitous Mixed Reality scenarios. Human-like charac-
teristics might be helpful in some use-cases but are not generally required here.
Russell and Norvig [118] also characterize agents by their ability to perceive
their environment and act upon it through sensors and effectors.

Norouzi et al.[119] investigated the convergence of the fields of augmented
reality, the internet of things and intelligent virtual agents, describing their com-
bined potential as transformational. They note how with increased contextual
awareness the usefulness and range of possible tasks of an IVA also increases.
IoT is identified as an opportunity for IVAs to observe and influence the physical
world and to pervasively integrate - also noting that this requires new mech-
anisms for privacy, access control and sharing of awareness, appearance and
abilities. AR represents the possibility to seamlessly blend or embody an agent
into the user’s surroundings but also for a user to utilize contextual and natural
forms of communication, building trust and understanding about which tasks
the agent is currently performing.

Chung et al.[120] specifically look at one of the more wide-spread consumer

36Sandner, L.A. (2020). Ubi-Interact: Architecture for Programming Lan-
guage Independent Interaction Modules [Unpublished Bachelor’s Thesis]. TUM.
https://wiki.tum.de/display/infar/%5B19WS+-+BA%5D+Ubi-Interact%3A+Architecture+

for+Programming+Language+Independent+Interaction+Modules

54

https://wiki.tum.de/display/infar/%5B19WS+-+BA%5D+Ubi-Interact%3A+Architecture+for+Programming+Language+Independent+Interaction+Modules
https://wiki.tum.de/display/infar/%5B19WS+-+BA%5D+Ubi-Interact%3A+Architecture+for+Programming+Language+Independent+Interaction+Modules

devices today with regards to privacy concerns for cloud-hosted services. They
demonstrate how additional contextual information and profiles about users
like time of use or behavioural patterns, personal interests and preferences and
travelling routes can be extracted with continued use of the system. A discussion
about user security&privacy risks that go beyond simple data security&privacy
is added with potential measures against it, such as regularly triggering wipes
of usage history and logs from the cloud servers.

4.6 Digital Twins

The subject of digital twins are a related field in which the mixing of environ-
ments becomes very apparent and a single physical object or device becomes
heavily intertwined with its digital counterpart. Instead of the term physi-
cal/virtual environment, these concepts are also referred to as physical/virtual
space, cyber space, Cyber-Physical System (CPS) and Cyber-Physical Production
System (CPPS). [121][122][123][124]
Furthermore, their concept mostly occurs in the context of industrial manufac-
turing and optimization and is applicable to many/all stages in the life-cycle of
an object [125][126][123][122][124]. The individual objects are thus embedded
in a bigger environment of communication, analysis, prediction and control.
Concepts and hardware typical to VR, AR or MR research can play a role for vi-
sualization and interaction but are not necessarily the focus. The research field
of digital twins serves as another example where a clear differentiation between
the (objective) environment and the (subjective) reality is made.

For a technical foundation to realize digital twin systems, Tao et al.[121][122]
identify five dimensions that are important: 1) the physical entity, 2) the virtual
entity, 3) a shared data buffer at the center, 4) services with data access that
both the physical and virtual entity can rely on and 5) a connection part bridging
to all elements.
A mixed reality & environments framework certainly reflects these dimensions
in some form if it wants to achieve a tight integration of environments.

4.7 Context-Awareness

This section will present some more detail and solutions to acquiring contextual
information and ways to use it. This is not because of the relevance of the
individual solutions for the rest of this work but more to give an overview and
discussion over what mechanisms a framework needs to provide and integrate
with to be viable for the task of context-awareness for UMR.

Figure 10 gives a rather humorous example of a visual scene where context
helps making sense. Machine Learning in particular, though, illustrates that

55

Figure 10: Visual example for context - LinkedIn post by Ralph Aboujaoude
Diaz

context is an integral part of what is being learned and understood. [127]

Context in its various definitions 37383940 can be interpreted as the environ-
ment or circumstances under which an event happens that help characterize the
event and its relations with and effects on the environment. It helps not only to
explain events but is often enough the only way to achieve proper meaning and
avoid misinterpretation. The relevance it plays for making proper observations
and useful conclusions in any reality is therefore obvious.
Sato defines it as follows: ”Context is a pattern of behaviour or relations among
variables that are outside of the subjects of design manipulation and potentially
affect user behaviour and system performance”. [128]
Bricon-Souf and Newman[33] refer to several other definitions and give an anal-
ysis framework for healthcare applications. They identify three main axes:
1) The purpose of use, meaning context can be used to a) present information
and services to a user, b) execute a service and c) tag information for later
retrieval.
2) The items of representation, i.e. mainly people, environment and activities.
3) The organization of features, i.e. are features of context following a) hi-

37https://www.merriam-webster.com/dictionary/context (last accessed 26-03-2022)
38https://www.thefreedictionary.com/context (last accessed 26-03-2022)
39https://www.dictionary.com/browse/context (last accessed 26-03-2022)
40https://dictionary.cambridge.org/dictionary/english/context (last accessed 26-03-

2022)

56

https://www.linkedin.com/posts/ralph-aboujaoude-diaz-40838313_technology-artificialintelligence-computervision-activity-6912446088364875776-h-Iq?utm_source=linkedin_share&utm_medium=member_desktop_web
https://www.linkedin.com/posts/ralph-aboujaoude-diaz-40838313_technology-artificialintelligence-computervision-activity-6912446088364875776-h-Iq?utm_source=linkedin_share&utm_medium=member_desktop_web
https://www.merriam-webster.com/dictionary/context
https://www.thefreedictionary.com/context
https://www.dictionary.com/browse/context
https://dictionary.cambridge.org/dictionary/english/context

erarchical ordering from general to specific, b) conceptual ordering of internal
aspects (mood, etc.) vs. external aspects (temperature, etc.), c) ordering based
on the focus of current activities or d) a usefulness ordering based on relevance
for current actions.
As described in Section 2.2.3, in general context information can come from am-
bient sensors and environment models as well as individual devices/systems/users.

For UMR applications it is then imperative to be context-aware, especially if
they are supposed to operate in everyday life scenarios. If realities are supposed
to mix, they need to be able to relate themselves to the context of the other
reality. Especially the capabilities, affordances and internal context/state of
virtual entities - even if they have a physical component to them - can be quite
hard to decipher for humans and other systems if the entity does not give concise
clues and feedback about its processes, state and how to approach it ([40], Thesis
38+39).
To make these things more apparent and relatable, a framework needs to provide
standardized ways to describe and connect to such interfaces and give form to
the virtual aspects.

Apart from the typical live context an application is running in - e.g. loca-
tion, individual and social circumstances or available devices - debugging can be
seen as an extreme example that (hopefully) does not belong to everyday use-
cases but demonstrates the difficulty one might encounter trying to understand
virtual processes. Debugging in itself, whether from the perspective of a simple
user or a developer, is a complete switch of context by which the application is
approached and usually requires far greater insight into what is happening and
why, especially in mobile distributed applications ([40], Thesis 41+44+46).
For a framework to be viable long-term and with growing complexity, it needs
to provide accessible and powerful tools of introspection to developers and ap-
propriate warning and error communication channels to participants. It fur-
thermore needs to be aware of its own operating context to be able to detect
potential failures early or give indicators and logs about sources of errors.

For improved 3D scene understanding with localization and reconstruction,
the works of Bowman et al.[129], Dai et al.[130], Fehr et al.[131] and Tahara et
al.[132] show increased focus and consideration for integrating visual seman-
tic information. These solutions typically rely on a mobile system like an
HMD or a robot equipped with cameras. They generate and integrate the
semantic information together with the geometric reconstruction from SLAM-
based[133][134][135] approaches as this integration helps both sides reach better
solutions.

For the system of RagRug providing a framework for situated analytics in
AR, Fleck et al.[136] also utilize reactive programming mechanisms to provide
necessary real-world context for AR visualizations and user interaction. Targets
for context-awareness are movement of physical objects to adjust placement etc.

57

of the augmented visualizations, changing light conditions to adjust display and
rendering conditions, inferred targets for user commands improving ease of use
for the system and error detection to warn about invalid actions.

For any environment, some participants may not be equipped with all nec-
essary capabilities to generate certain contextual information. A framework or
overarching system that aims to integrate and provide visual (semantic and ge-
ometrical) information - and for that matter any other context - thus needs to
provide pathways to retrieve, store and consolidate such information from the
capable elements like mobile cameras.
Mobile devices, though, may not be present at all times and/or in all desired di-
rections while stationary/ambient devices can not rely on dynamic exploration
and mapping. In order to provide a more complete picture, a UMR system will
probably rely on the continuous effort of multiple devices over time accumulated
in an instance independent of each individual element.

Intelligent Virtual Assistants/Agents (IVAs), too, greatly benefit from con-
textual enrichment and integration. Indeed, many cases of assistance they are
designed and envisioned for improved personal relatability and engagement or
providing helpful information relevant to an open-ended situation are entirely
impossible without proper understanding of the situation they are operating in.
[137][138]

Norouzi et al.[119] describe how the fields of Augmented Reality, the In-
ternet of Things and Intelligent Virtual Agents can benefit each other in the
future. They describe a possible outcome of such a convergence as an Aug-
mented Reality Agent (ARA) with awareness of the surrounding physical world
and potential to influence it through IoT devices, seamlessly blending in. This
again illustrates that such systems - while being physically, logically and/or
computationally separate because of the sheer complexity of each system alone
- can not exist in isolation.

Activity Recognition is one recognized problem for ubiquitous computing
applications, relying on e.g. accelerometer and GPS data from smartphones.
[139][36][35]
For ubiquitous computing in general, according to Schilit et al.[32] context is
also quite essential to navigate and discover the environment and help medi-
ate interactions. They investigate mobile distributed computing systems which
they describe as a collection of mobile and stationary computing devices that
are communicating and cooperating on the user’s behalf with the aim to provide
ubiquitous access to information, communication, and computation. Context
gives information about which elements are of interest or important and should
come into the focus of attention at a given time, which devices are fit to help
reach a certain goal, where the user is and who he is with, and so on. Other
important contextual information they list are ”... lighting, noise level, net-
work connectivity, communication costs, communication bandwidth and even

58

manual automatic
information proximate selection

& contextual infor-
mation

automatic contex-
tual reconfiguration

command contextual com-
mands

context-triggered
actions

Table 1: Context-Aware Software Dimensions as described by Schilit et al.[32]

the social situation” ([32], p.1). As Schilit et al. also note, this ubiquitous
computational environment is constantly changing. It should therefore be vital
to systems embedded in a Ubiquitous Mixed Reality world to be able to inform
about their purpose, their profile, their interface, etc. as to be identified, found
and used properly.

In remote collaborative work scenarios where virtual body posture play a big
role, the distance or general visibility of other participants could indicate which
body pose data updates are actually required by whom and which updates can
be currently omitted to save bandwidth. A network analysis of a current state-
of-the-art collaborative workspace system by Ruizhi et al.[140] shows possible
shortcomings in terms of scalability.
In order to make sensible use of given resources like bandwidth and computa-
tional power in mobile and ubiquitous scenarios, the depth and type of infor-
mation that is being transferred between systems should be adjusted according
to contextual factors.

To describe, build and categorize context-aware applications, they use two
orthogonal dimensions. They differentiate by 1) whether a task is retrieving in-
formation or execution commands and 2) whether a task is executed manually
(user input) or automatically. Multiple challenges are identified with each cate-
gory according to Table 1. For Proximate Selection combining different dimen-
sions of contextually relevant information, e.g. location and order, together and
finding an appropriate UI display method can be difficult, especially with lim-
ited screenspace on mobile devices. With Automatic Contextual Reconfiguration
rapid changes in context might negatively affect system performance as well as
confuse or distract users so it may be necessary to narrow down relevant context
based on the situation and/or user’s task and intention. Especially with Con-
textual Commands it was commented that service providers like businesses and
government providing such a command interface could extract contextual infor-
mation, thus gaining access to or being able to generate personal user profiles
unintended and unwanted by the user and using/abusing them for personalized
advertisement or assistance. The main issues with Context-Triggered Actions
are identified as balancing timely execution versus predictable behaviour as well
as the expressiveness of a predicate language in combination with the accuracy

59

and timeliness of underlying context information.

As vitally important as context-awareness is, the thought of a large-scale
Ubiquitous Mixed Reality system where a centralized authority monitors, pro-
vides and possibly even generates context can quickly lead to scenarios with
massive security, privacy and ethical concerns. It might not even be feasible
from a technical side to establish such a singular ”big brother” that is capable
of accumulating the full context, as some contextual information may be intrin-
sic to systems and communicated to the outside world only partly or not at all.
Some of the context might be more abstract, something that for example an
image processing algorithm can’t extract on its own (location gives hints that
a tiger in the middle of the street is very unlikely, agent formulates what their
intention/goal is at the moment).
If we instead assume that a Ubiquitous Mixed Reality world consists of several
individual systems, context should rather be something that is communicated,
formed and emergent between systems. This again reinforces the importance of
Ubiquitous Mixed Reality systems being able to find adequate common commu-
nication grounds with foreign systems - much like interpersonal communication.
This can be done through standardized data exchange formats or tight integra-
tion of available interfaces to the ”outside world” as to be able to integrate
external events into the internal feedback loop. If a Ubiquitous Mixed Real-
ity system is not built to do this effectively, it will stay isolated and ”lonely”.
Standardized formats naturally form over time and plugins for external systems
are developed for each system as necessary - the important part is the internals
of the system being engineered to work with external sources effectively and
flexibly.

4.8 Security & Privacy

Already today, when and how big internet service providers or government agen-
cies make use of personal data is a big topic of discussion. If technology and
services are integrated in a ubiquitous way intertwining with physical reality,
these problems even take on new qualities and can potentially become much
more intrusive and concerning. Especially when it comes to medical data, the
topics of confidentiality and consent become prominent ([141]).

Figure 11 gives a general overview of security and privacy properties and
their threats pertaining to MR scenarios. Not all properties can be guaranteed
at the same time as some security demands conflict with privacy considerations
- as illustrated by non-repudiation or anonymity being a possible property and
threat simultaneously. This means one has to find an acceptable trade-off be-
tween security and privacy in some cases. [142]
Gabriel et al.[143], too, note that ”[t]here is an inherent conflict between per-
vasive computing’s goal of accurately identifying persons, objects and messages

60

Figure 11: Overview of general security and privacy properties and the respec-
tive threats to them as presented in [142].

(authenticity), and the desire for anonymity – to prevent data trails from the
outset”.
Bellotti and Sellen[144] ”[...] take privacy to be a personal notion shaped by
culturally determined expectations and perceptions about one’s environment”
in light of evolving social norms and practices determining what is acceptable
and at what point benefits outweigh risks.

Many of today’s security and privacy concerns are focused on the world wide
web as the major technology for open and widely available international com-
munication. Internet technology offers several protocols, layers and mechanisms
as solutions to these risks. Yet they are commonly focused on one-to-one client-
server communication. For any web-hosted service, securing the web server, the
end user’s client device as well as the communication between them has to be
considered. [145]
To bolster the integrity of communication channels, they can be encrypted via
SSL/TLS and HTTPS or SSH.
For the issue of authentication of users/processes/devices and their consequent
authorization of resource/data access, one can rely on open solutions like OAuth
([146]), OpenID Connect (OIDC, [147]), Security Assertion Markup Language
(SAML, [148]) , JSON Web Tokens (JWT, [149]) and Keycloak ([150][151]).

The field of IoT also exemplifies several additional considerations. [41][152]
In general, the heterogeneity and increased scaled in terms of numbers of devices
increase security threats. As a complex system of interconnected devices any

61

disturbances carry a higher chance for unpredictable cascading effects. Confi-
dentiality is harder to fulfill when messages can take several stops in a chain of
nodes and processes where originator and authorization are not checked in every
step. Any communication of devices without identity and permission checks or
without notifications to owners can be problematic. Conversely, the exaggerated
time, performance and energy constraints on small-scale or embedded devices
make security checks using traditional methods harder. Especially when work-
ing on streams of large amounts of data, excessive overhead must be prevented
and light-weight algorithms are preferred.
The dynamic and often ad-hoc nature of their environments also requires new
methods of establishing trust between participants when there’s no central and
certified entity. Unexpected environments also require more adaptation ans
self-healing capabilities in order to make networks more resilient. Information
that might otherwise be confidential like location may change its confidentiality
during an emergency situation when help is needed and the disclosed location
might be invaluable.
IoT devices also hold the potential to pervasively surveil and identify users
without their control, consent or knowledge. Together with profiling over long
periods of time it is another threat to privacy, the mere prospect of which is of-
ten enough to produce aversion in users towards such technology. The presence
of a certain set of devices alone can be enough to identify a place or person if
these devices are openly addressable (inventory attack). Another cause of un-
warranted disclosure may be the change of ownership or shared use of devices.
Linkability is also at a higher risk in a distributed and pervasive environment
that integrates different sources of data over time.

For social aspects, Bellotti and Sellen[144] comment that besides insidious
exploitation, the issues of disembodiment and dissociation received relatively
little attention while potentially being much more pervasive as they are unin-
tentional.
Disembodiment occurs when there is no technical means of communicating ad-
ditional contextual information like body posture, facial expressions, gaze direc-
tion or voice level/intonation. It also refers to uncertainty and a lack of feedback
about when and to whom information is conveyed. Dissociation means the that
only results of actions and not the actions themselves are presented so that the
originator or cause can not be determined.
Another consequence of new technology may be the breakdown of established
social and behavioural norms by violating principles like ”if i can’t see you, you
can’t see me” when there is no control over who can observe one’s actions at
any given time. This loss of personal privacy is also mirrored when others in-
advertently intrude private space due to not being sure about one’s availability
or willingness to interact.
[144] proposes a design framework for applications that considers feedback and
control in categories of information capture, construction (processing, storage),
accessibility and purpose (might require inference).

62

Ubiquitous Mixed Reality with its pervasiveness and increased need of sens-
ing shares a lot of the previous issues. Latent and bystander privacy is as much
of a problem if a user’s physical environment is constantly scanned, mapped
and contextualized. A new quality is the focus on physical input, output and
interaction with virtual content that may give away information or allow ad-
versarial attacks. To name a few examples, a recording device may capture
a display containing sensitive content from another application (passive/latent
input) or gestures (active input), content may be perturbed (sometimes in hu-
manly unrecognizable ways) to fool algorithms in their analysis [153] and ma-
licious placement (e.g. obscuring physical dangers) or properties (e.g. flashing
lights) of visually rendered content may affect users. For this reason [142] cat-
egorizes threats and protection mechanisms for MR into input, data access,
output, interaction and device.

Besides many detailed technical solutions so these issues, there are some
general concepts presented by the previous works.
A simplification of services and a separation of concerns draws better borders
and limits the scope of data use. Sanitization layers can be introduced that
clear e.g. latent and private content and data before passing it further down
the pipeline. These sanitization layers can work with intrinsic parameters de-
fined by the current application itself but also rely on extrinsic or context-based
parameters defined and provided by the environment. Furthermore, abstraction
layers can e.g. pre-process and classify events instead of giving direct access to
raw data. A general policy of minimum disclosure by only requiring and com-
municating what is essential to the provided service for the minimal duration
it is lasting is a good idea as well. In changing environments, Attribute-based
access control (ABAC, [154][155][156]) can be utilized in this regard, evaluating
attributes and characteristics of users, objects, environment(s), connectino and
administration rather than assigned roles. If content is only to be provided with
the express agreement or presence of all affected parties, secret sharing or secure
multi-party computation may be an option.

In his work on dataveillance, Clarke[157] identifies major privacy issues
whenever the possibility arises to cross-identify people and their saved data
between platforms and institutions.
For a ubiquitous mixed reality, ways of isolating the use of private data is thus
a must.

Recent developments like the Fediverse[158] based on federated and self-
hosted hard- and software as a counterpoint to big centralized social media
platforms are an expression such concerns.

63

4.9 Libraries, Tools & Platforms

4.9.1 ZeroMQ

ZeroMQ41 (also ØMQ, 0MQ or zmq) is a networking library that can extend to
perform as a concurrency framework, allowing inter-process as well as in-process
message transport. It supports multiple communication patterns over different
protocols (TCP, UDP, IPC, TIPC, multicast, WebSocket) like the aforemen-
tioned request/reply and publish/subscribe among others.

4.9.2 Node.js

Node.js42 is a JavaScript (JS) runtime based on the V8 engine43. It is asyn-
chronous and event-driven in nature, designed for real-time network applica-
tions. It furthermore allows cross-platform development.
While JS code execution itself is single-threaded, the V8 engine features an
event-loop where non-blocking methods and especially I/O calls like filesystem
and network access provided through native C/C++ libraries like libuv can be
handled asynchronously via callbacks, thus enabling concurrency. Libuv44, in
turn, makes use of a thread pool for execution of tasks. This makes Node.js
rather easy to use while still being relatively performant when applied to I/O
and networking tasks. It is however comparatively weak for CPU-intensive op-
erations.
Parallelism can be achieved through forking child processes or using worker
threads, with data exchange between processes/threads being supported in a
straight-forward - again event-based - fashion. This is further supported by JS
libraries like workerpool that perform analogously to thread pools, supporting
both Node.js and browser environments.

41https://zeromq.org/ (last accessed 26-03-2022)
42https://nodejs.org/ (last accessed 26-03-2022)
43https://v8.dev/ (last accessed 26-03-2022)
44https://github.com/libuv/libuv (last accessed 26-03-2022)

64

https://zeromq.org/
https://nodejs.org/
https://v8.dev/
https://github.com/libuv/libuv

5 Ubi-Interact

Following considerations about the structure and important issues of Ubiquitous
Mixed Reality from the previous chapter, Ubi-Interact is an effort to connect
environments. This of course means signals captured from physical entities to
be related to virtual environments and vice-versa, but also connections between
otherwise separate VEs as there may exist several - reflecting the heterogeneity
and plurality of Ubiquitous Mixed Reality.
The goal is to build a framework capable of representing relevant base elements
of environments in a useful and flexible way and then enable each environment
to react to signals from other ones. Adapting to future developments, offering
easy integration and fast results that can be incrementally built upon are the
main goals relating to the use of the framework by developers.

The core focus of Ubi-Interact is on the communication between different
systems and devices. Their individual strengths and capabilities should be lever-
aged in combination with each other. This forms them into a bigger distributed
system that opens up new forms of interaction, benefiting from their mixed ca-
pabilities. At the same time, the individual parts and components delivering
this data should be represented in a way that makes it possible to dynamically
identify and adapt to changing circumstances as well as have individual parts
be replaceable and interchangeable with a given profile of their affordances.

In its base communication functionality, Ubi-Interact can be used like a mes-
saging and service middleware. It starts to act like a framework when concepts
of Devices, Components and Processing Modules are used to provide form and
functionality to a more complex system.

Ubi-Interact tries to keep the scope limited to communication and repre-
sentation of communication interfaces as far as it is required to find adequate
paths of communication and combination for Ubiquitous Mixed Reality. When
concepts are introduced, the goal is to make them generally applicable and ex-
tendable so they stay useful without imposing restrictive or overboarding effort
on developers.
It should always serve to offer quick ways of describing the context of what
a certain part of the distributed system is designed to do and with that offer
other parts the ability to identify foreign contexts without imposing limitations
on the individual systems. This means that a given device or functionality -
rather than working within the mindset of Ubi-Interact - should find it easy to
add Ubi-Interact into its own process and use it to connect to the rest of the
Ubiquitous Mixed Reality environment.

Whenever Ubi-Interact finds a beneficial application, it is always seen as a
small addition to the multiplicity of Ubiquitous Mixed Reality and therefore
must itself stay flexible in its communication and integration with systems not
based on Ubi-Interact. Integrating other systems via control and orchestration

65

over them may be desirable, but there is equal focus on being integrated by
other systems and offering ways for them to control the necessary / allowable
parts of Ubi-Interact.

All code is available on Github45.
Terms in italic refer to a Ubi-Interact class or concept and can usually be
found as a Protocol Buffers schema under https://github.com/SandroWeber/
ubii-msg-formats/blob/develop/src/proto.

5.1 Requirement Analysis

In [96] a list of general requirements for Ubiquitous Mixed Reality frameworks
has been argued for. The following will take a closer look at how Ubi-Interact
specifically is trying to address each issue.

Plasticity, Adaptivity

Plasticity is seen as a system’s capability to be utilized in different environ-
ments, operate on different scales, work with moment-to-moment changes in its
surroundings but also work with changes in the underlying hardware. In short,
it is a criterion for how malleable a system is.
Adaptivity is regarded as the capability to automatically adjust internal config-
urations without requiring specific user input or defined preferences.

One of the main assumptions about the nature and future of Ubiquitous
Mixed Reality from Section 2.2 is an extremely dynamic environment, constantly
shifting in participants, technology, standards and so forth. This is already a
challenge for developers in such an environment within a single homogeneous
framework, but becomes even more difficult when considering external systems
operating in the same environment and how to interact with them.
Especially with multiple actors that are very similar in their characteristics but
are otherwise only directly addressable via a special unique identifier which is
often quite cryptic to guarantee its uniqueness, it becomes less and less about
predefined hard-wired addresses or values shared and assumed to be known by
every party and more about being able to identify and navigate surrounding
entities and their profiles.

As an analogy, we as humans recognize other humans, their faces and their
common structures yet recognize their individual differences without having to
know them personally. The same is true for tools and objects, whose function-
ality can often be worked out with a bit of inspection, trial and error. Different
types of roads or pathways, too, can be judged to be fit to drive on or not.
Something similar should also be possible in a more abstract fashion for virtual

45Meta-Repository: https://github.com/SandroWeber/ubi-interact, individual reposito-
ries found under user https://github.com/SandroWeber

66

https://github.com/SandroWeber/ubii-msg-formats/blob/develop/src/proto
https://github.com/SandroWeber/ubii-msg-formats/blob/develop/src/proto
https://github.com/SandroWeber/ubi-interact
https://github.com/SandroWeber

entities and their properties during navigation of a virtual reality, even though
they might not have an associated physical structure or visual geometry that
make them easily recognizable to us.
The question is then how to model the characteristics of virtual entities in a flex-
ible manner so that certain profiles or characteristics can be observed by other
entities (and eventually humans after one or more additional mediated steps)
and they can spot potential tools, partners, etc. for their needs and purposes.

The desirable end-state for this issue would probably be a shared standard
between systems for describing affordances of virtual entities and how to interact
with them. As such a standard is currently lacking, Ubi-Interact is trying to
investigate some common and useful structures that might solve some of the
issues in terms of individual systems dynamically adapting to other systems
that share the same (virtual) space.
The objective is not to define such a standard but instead to explore some of
the components that may be helpful in this regard. Ubi-Interact uses it as
an internal standard only, external systems that are integrated with can be
described in Ubi-Interact’s terms through their respective node though.

In terms of virtual entities expressing their properties, affordances or events
Ubi-Interact utilizes the concept of Components and Devices, which will be
described in more technical details later. Suffice to say for now that components
describe the individual affordances in an extendable way - i.e. new fields and
descriptors can be added as deemed necessary - and devices are used to freely
define groups of components that logically belong together and form a unit.

Important to note here is that the format in which components and devices
can be described can be evolved and that devices do not put any conceptual
restrictions on which components can be grouped. This helps avoid circum-
stances where common devices must be described in a certain but static way
that might not be applicable anymore when slight variations occur, e.g. a pro-
totypical interaction device is exploring a new combination of components, the
next generation of hardware has to be integrated with a new descriptor because
it gained/lost certain aspects relative to the preceding iteration or comparable
situations.

Instead the new profile can be adjusted and other entities can judge for
themselves whether it still fulfills their needs. Components and especially their
constellations as devices can then be searched and filtered to find your way
around the virtual environment and identify ways of interaction.

The decoupled event communication gained through a pub/sub broker also
contributes to a general plasticity in the system. Any communication between
nodes only relies on a shared message type for their respective calls to work.
Theoretically any such data source or sink can be re-mapped during runtime.

67

Connectivity

In a Ubiquitous Mixed Reality world, individual entities need to be able to
connect with each other without either knowing about the other side in advance.
They potentially also need to communicate across time with either side being
absent at the time of events occurring. The pub/sub scheme (4.1.2, [102])
identifies these properties as decoupling in space and time and is therefore an
ideal candidate to achieve these requirements of connectivity. This is confirmed
by the many systems with similar characteristics adopting the pub/sub scheme
([46], [136], [106], [159], [160]).

Ubiquitous Mixed Reality should also show characteristics of persistence,
thus systems need to run over extended periods of time - ideally 24/7 with
fast recovery after a breakdown. For Ubi-Interact this means that continuous
deployment and testing is required and that general (reconnect) and special
cases (data/state persistence) of recovery after breakdown need to be considered.

Spatial distribution of deployed and mobile elements are another issue. La-
tency and inconsistencies of data channels are important considerations here.
Ubi-Interact must not only work in localized networks but also be able to com-
municate world-wide. The performance required for real-time latency interac-
tion must constantly be evaluated and mechanisms allowing to the system and
developers to detect and adjust to fluctuations in latency should be considered.

Scalability

Different use-cases like IVAs (Section 4.5) in a personal room-scale environ-
ment up to ArenaXR[46] with a city split up into realms for localized content
make it clear the ubiquitous part of Ubiquitous Mixed Reality is covering many
different scales. Consequently, Ubi-Interact should be able to operate on differ-
ent scales itself as well as be able to connect and integrate within several spatial
scales.

Within a single category of spatial scale, it is also important to consider that
client-independent processing like edge/cloud computing solutions be scalable
to a varying number of attendants. With different numbers of participants it is
of course also important to treat communication bandwidths efficiently.

Security, Privacy

From Section 4.8 it can be concluded that concerns for privacy arise with
centralized platforms where cross-identification of individuals can be achieved
between multiple activities without the individual having any control over said
data.

In terms of security in Ubiquitous Mixed Reality, encryption is a given. For
the channels of physical reality that can’t be secured digitally where data can

68

be observed, spied upon or stolen intentionally or unintentionally, an increased
situational awareness and contextual understanding of physical reality by the
Ubiquitous Mixed Reality system is desired. The same awareness may also help
with decisions about when/if to occupy users with new information in situations
where distractions (from physical reality as well as from other more important
information) could cause harm to them and others.

Ubi-Interact is therefore trying to keep individualized setups on user-controlled
hardware possible, establishing time-limited context and sessions between par-
ties that give their consent and trust with the ability to react to changes that
might affect their decisions and considerations during use like additional people
joining or a change in spatial relations like moving to a specific area or keeping
certain distance thresholds.

For issues arising with data processing, Ubi-Interact is trying to move to-
wards minimalistic interfaces between separate systems that define and demand
only what is essentially necessary for interactivity instead of granting gener-
alized access. Individual instances of open-source and inspectable processing
modules should also give confidence in data ownership being guaranteed to the
degree that is achievable while the range of interactions with remote systems is
not being substantially limited.

The web server itself should make sure no process/execution triggered by
clients can gain elevated access rights to e.g. filesystem that go beyond the
client’s authority and could potentially compromise integrity.

N-Dimensional Content Reasoning

From the various application scenarios and the consideration about context
(Section 4.7), it is clear that for Ubiquitous Mixed Reality to work beyond a
limited experimental scope it is essential to be able to take in various data along
multiple dimensions to be viable. Traditionally, spatial reasoning has taken a
center place and is still the main consideration in most Mixed Reality appli-
cations, but semantic ([129], [161], [130], [132]) and temporal ([131]) reasoning
about events is finding more and more influence.

The design goal for Ubi-Interact is to give each element involved in the sys-
tem the possibility to identify and access the relevant data for these reasoning
capabilities in a convenient fashion. Security & privacy concerns need to be
weighed against these options, i.e. they become part of the reasoning mecha-
nism itself.

Interoperability, Extensibility

A major revision update in software can trigger a cascade of issues in a larger

69

scale system when APIs become incompatible or packages and dependencies are
not (yet) available for the newer version. If a project wants to move to a
new version or parts of the project require an update, it should not have the
consequence of paralyzing other parts or having to restructure them. A clear
separation of concerns and self-contained runtime environments for individual
parts of a project can help alleviate these issues.

Conversely, in a distributed system or heterogeneous accumulation of sys-
tems interacting with each other, one should assume that individual parts will
be operating on different standards to some extent. Some elements may be-
come old and outdated or rely on older software versions. They can lag behind
with updates or simply not receive any in the future. They may be replaced in
hardware and software with newer, better, more efficient solutions.

Ubi-Interact is tasked with keeping inter-dependencies of involved systems
low while maintaining high flexibility within a single runtime. It should pay
attention to keep transitions of and extensions to existing functionality smooth
and choose an architecture that will not force major updates on existing inte-
grations. It should also help with designing software in a way that incentivizes
interoperability and extendable.

Convenience

Of course, any framework trying to attract users should aim for convenience.
This means opening up complex settings only if desired by the developer and
otherwise hiding or properly auto-configuring them.
Integration of the framework into existing software should not pose any major
hurdles. Keeping a setup running and up-to-date should also be quite con-
venient and not demand tedious amounts of extra work. Documentation of
implementation steps and updates should be plentiful and kept accurate.

Quality Assurance

The need for quality assurance is true for the developed framework itself as
much as for the framework to provide tools for developers that want to test
their implementations.
The focus for Ubi-Interact is to a) supply debugging tools like inspectors and
monitors for state and events of the system, b) continuously profile the system
with performance and integration tests that are accessible and reproducible
by users of the framework themselves and c) make modules and parts shareable
between users so others may test them, adopt them, improve them and generally
benefit from them instead of having to redo the work.

Swan[162] commented on the importance for the scientific process to repli-
cate findings and affirm their validity. Testing findings and solutions under
slightly differing circumstances and permutations can also help solidify results
or extract and condense key aspects.

70

Ubi-Interact focuses on three things:
1) To be easily integrated into the native runtime of existing solutions and -
vice versa - being able to quickly adopt third-party findings with their native
runtime into one’s own system.
2) Providing convenient wrapping and interfacing functionality exposing exist-
ing solutions and modules to a wider system.
3) Being able to easily swap similar solutions against each other and make them
comparable while the rest of the system can stay the same.

In terms of system design and use, applying the principles of Poka-Yoke[163]
for quality assurance can certainly help build interfaces that are not ambiguous
and easily misinterpreted and therefore incidentally and unintentionally broken.

Integrability

Based on the assumptions about future Ubiquitous Mixed Reality from Sec-
tion 2.2 any system operating in such an environment is only one part of a
bigger puzzle. A system then faces the complementary questions of ”How well
can it integrate foreign systems into its own behaviour?” as well as ”How well
can it be integrated by foreign systems?”.

Ubi-Interact takes both questions as fundamental design decisions. It must
be able to provide an umbrella for isolated systems and processes but it must
also be able to allow influences and a certain degree of control about its in-
ner workings from outside and provide clear paths on how information can be
exchanged and interaction can happen.

5.2 General Design Decisions

The very first intention for Ubi-Interact was to build highly individual setups
incorporating multiple personal devices to form a ”digital skin” or ”digital suit”
which would flexibly embody users in the digital world depending on the capa-
bilities of the devices utilized and the tasks and intentions for the current digital
environment - with the assumption that these setups would have to work within
the context of a larger and a-priori unfamiliar and dynamically changing envi-
ronment.
It would have to offer easy and efficient ways of integrating with other sys-
tems that follow their own architecture, standards and/or purposes. It would
therefore also have to offer (ideally reusable and shareable) ways of identifying
surrounding systems, reaching out to them and establishing communication.
These would probably take the form of modules acting as mediators, transla-
tors and/or control instances for the external system.

71

Figure 12: Ubi-Interact working on different scales, integrating with other sys-
tems. Big master nodes with smaller peripheral client nodes. Solid blue connec-
tions indicate protocols native to Ubi-Interact , dashed purple lines are foreign
protocols.

5.2.1 System of systems

If such a system was effective in extending a hand and ”play ball” with the rest
of the world, it would be even simpler to build networks consisting of instances
of the same system. These networks could be organized hierarchically/vertically,
but they could also form decentralized, lateral, peer-to-peer relations. Figure
12 shows a hierarchical scenario with Ubi-Interact instances acting over several
scales from a personal level up to cloud-hosted services. Ubi-Interact takes a
”divide-and-conquer” approach with multiple layers of operation rather than
a highly scalable single-instance approach to cover aspects of scalability and
avoid massively centralized data and processing accumulation out of privacy
considerations. Any of the instances should of course be replaceable with a
”foreign” system as indicated by the API box inside the cloud. Solid blue
connections indicate communication channels following Ubi-Interact’s protocols
while dashed purple connections stand for arbitrary other protocols, possibly
peer-to-peer.

72

This general conception brings with it the implication that Ubi-Interact is
trying to stay protocol agnostic to some extent. Blanco-Novoa et al.[159] also
comment on the difficulties trying to rely on a single protocol when different
fields of research with solutions geared towards their needs are converging.
While protocols and standards are obviously necessary to establish any com-
munication channel in the first place, Ubi-Interact is trying to treat them as
equally viable and use them in parallel as much as possible - not only towards
outside communication but also with respect to their internal integration in the
Ubi-Interact system itself. In consequence, this means that one instance should
offer multiple parallel ways of connecting - with additional options integrated
as necessary. The internal standards should not be too intertwined with the
functionality apart from naming and conceptual conventions and thus leave the
possibility to be swapped/alternated.

5.2.2 Centralized local units

We can see that each Ubi-Interact configuration is centered around a bigger
master node with smaller orbital client nodes around it.
The master node acts as the logistics and management center, handling central
services essential to all Ubi-Interact clients as well as passing messages between
client nodes.
Client nodes act as the communication interface for processes and systems with
the rest of their local Ubi-Interact neighborhood, transferring e.g. device data
or triggering reactions to events. If multiple entities live and work in the same
system process, they can rely on a shared client node.

While decentralized peer-to-peer architectures certainly have advantages in
some regards (see Section 4.2.2 and [106]), a centralized architecture was chosen
instead of peer-to-peer connections as the goal was to treat all possible client
environments equally, especially those that are not capable or allowed to act
as servers themselves and thus can not form any host endpoints of peer-to-peer
connections.
Examples of this are headless IoT devices (see Section 4.2.4) or web applications
running in the browser. These environments rely on centralized architectures
or otherwise have to rely on special connection bridges and proxies.

In Figure 12, both the dashed purple lines and the solid blue lines connect-
ing a client node to a remote client or master node indicate more specialized
connections that are capable of building such bridges outside the conventional
ways of communication.
In the case of solid blue connections, a client node establishes a special routine
opening another client connection to a foreign master node and relaying any
relevant information between both setups.
In the case of dashed purple connections, it is two client nodes or respectively
a client node and foreign API endpoint communication over a different proto-

73

col. Pub/sub protocols are typically geared towards efficiently processing many
small data packages and are therefore not very well suited for large amounts
of data. A good example for such a connection would be a peer-to-peer au-
dio or video stream protocol, which is highly specialized to its purpose and
therefore vastly more efficient in its implementation than any of the ”native”
Ubi-Interact protocols. Setups may also require a bridge to another pub/sub
broker, for example MQTT.

5.2.3 Architecture Goals

All this should illustrate that while a singular Ubi-Interact setup is centralized
in its architecture for reasons of simplicity and equal treatment of client nodes,
it is in no way ruling out specialized peer-to-peer or other communication be-
tween its client nodes and other systems.
The purpose of Ubi-Interact is not to cover every use-case, it is to bring hetero-
geneous distributed systems together and integrate with them. It is, however,
a goal for Ubi-Interact to enable users/developers to share their implemented
nodes and processes dealing with such specialized use-cases - as is very common
with tools like ROS (Section 4.3.1) and Node-RED (Section 4.3.2) - so that
solutions can be built, adapted and maintained more time-efficiently and with
better quality.

Another question is how to connect to legacy systems that might not bring
their own communication/interaction API. In that case it is necessary to es-
tablish a Ubi-Interact client within their process, taking over the job of outside
communication. It also follows that client nodes must be built for their respec-
tive environments so they can natively fit into the rest of a program. As an
open-source project, once a client node has been established for a certain pro-
gramming language or operating environment, it can be adopted and maintained
by all active users.

Two goals can be derived from this architectural decision:
1) In terms of intra-dependencies inside a node, the aim is for maximum free-
dom in the choice of environment (programming language, runtime, etc.) a
client node is running under as well as additional software, libraries, drivers and
so forth. Only that way can it be guaranteed to accommodate special cases
where certain performance, hardware or software is required. The framework
itself should not by default limit the developers in their choice of additional
software they want to make use of.
2) In terms of inter-dependencies between nodes, the aim is for minimal depen-
dencies between them. Client nodes should be able to connect to the master
node via multiple protocols, ideally covering all commonly used ones. As the
common language, i.e. the message exchange format, it must be easy to include
and use by all major platforms and environments.

74

With nodes being implemented for their respective programming environ-
ments and being used to connect additional software processes with libraries
etc. to the larger Ubi-Interact network, they easily lend themselves to also
supply data processing solutions to other nodes when those solutions are not
native or harder to do in their respective codebase - if the network latency and
overhead is an acceptable downside.
And while the master node is capable of integrating additional processing tasks
just like any client node and indeed is a natural accumulation point to access all
available data, running these tasks in the same process as the master node has
to be considered with special care as to not interfere with message delivery per-
formance. If additional performance is available on the master node hardware,
it is usually best to establish another client node in the same machine and rely
on inter-process communication (IPC).

On a less technical but personalized level, Ubi-Interact is intended as a
framework to have a flexible combination of extensions working in tandem with
each other and the environment. This includes humans as users of technology
as well as simpler digital systems.

5.2.4 Message schemas and internal API

Many of the conceptual objects like client nodes, the entities related to them, etc.
are implemented in every node codebase but naturally have to be communicated
between nodes too, e.g. a client node describing itself and its entities to the
master node, thus registering the information to be queried by other nodes.

This naturally leads to many of the node internal classes and objects be-
ing reflected one-to-one by an associated schema and message object. The
common message formats between nodes represent most interfaces and API of
Ubi-Interact as a whole.
Since an extendable message format definition was chosen for Ubi-Interact, a
desirable property for the system was for native implementation of objects to
be able to naturally grow with their message formats.

It is ultimately up to each node how to handle this, but with current node
implementations it was an effort to align the internal objects as much as possible
with their message representation, either by saving the respective message as a
property to be safely updated/modified as needed or the object itself directly
reflecting the message properties.
It should be taken care that this is implemented in a way that keeps direct code
dependencies to the implementation of the message formats minimal, in case it
is ever deemed necessary to replace the message definition system in the future.

75

Figure 13: Overview of different elements for a client node implementation.
Dashed lines indicate indirect relationships instead of direct dependencies.

5.3 Nodes

This section presents the technical buildup of nodes composing one centralized
Ubi-Interact unit.

5.3.1 Client Node

For any client node implementation, there are some mandatory components and
some optional ones that can be incrementally added as features.

In its minimal implementation, the client needs a service as well as event
data (TopicData) connection to the master node. After exposing interfaces for
service calls and publishing/subscribing to events using the compiled Protocol
Buffers message objects, a minimal viable client node is established.

For efficiency reasons, it should also offer local subscription management as
to allow multiple parties from the client node environment to announce interest
in the same topic, topic regular expression or Component (see 5.4) without

76

announcing redundant subscriptions at the master node. Figure 13 locates this
feature in the TopicDataProxy.

Depending on the node’s implementation language, a ConfigLoader is also
helpful with setup configuration like communication endpoints, encryption and
so forth. Another convenient addition is a DeviceManager offering a simplified
interface for (de-)registering Devices with the master node and keeping track of
local Devices / Components.

All additional elements are mainly a consequence of providing a node with
the ability to run Processing Modules (see 5.5).
Some processing modes require asynchronous access to event data, it is therefore
efficient to keep these subscribed topics and their latest data readily stored in a
local buffer (TopicDataBuffer). Once a local buffer is implemented, it is again
convenient to hide it behind a proxy (TopicDataProxy) so other node elements
relying on event data may use it as if it was the global topic data buffer on
the master node. This simplifies subscriptions for the node user by removing
manual service calls and callback handling for received events. Instead all this
functionality is managed by the TopicDataProxy.

5.3.2 Master Node

Compared to a client node, the master node takes care of some global respon-
sibilities. The major additions are thus a ServiceManager, a ClientManager as
well as a SessionManager. It also features a TopicDataBuffer that is equivalent
in its functionality to a client node but holds all event messages of all nodes
involved.

The ServiceManager takes care of registering all available services.
For each incoming service request on the master node, it forwards the request
to the responsible service based on the topic the service registered. Naturally,
there can only ever be one service for a single topic. The service also defines
what request formats it expects and which response formats can be expected
in turn. Services are also responsible for formulating their response themselves
and return it to the ServiceManager.
As such, services themselves will have dependencies on various other master
node elements to accomplish their purpose - they are omitted in Figure 14 for
clarity.
A master node exposes the ServiceManager so developers can add services be-
yond the standard set as required.

The ClientManager ’s responsibilities consist of keeping track and verifying
connected Clients as well as their registered Devices and Components. It also
has an indirect dependency on the pub/sub communication as it keeps a sign-
of-life status updated for each client and sends out heartbeat messages over this

77

Figure 14: Overview of different elements for a master node implementation.
Dashed lines indicate indirect relationships instead of direct dependencies.

78

channel.
Anytime the client publishes a new message, it will be registered as the client still
being active. After a certain timespan of inactivity by a client, the ClientMan-
ager will send a ”PING” message to the client, expecting a ”PONG” message
being sent back. If no such response is sent, the ClientManager will consider
said client as inactive and after a second longer period elapses the client will be
considered inactive or unresponsive and most of it’s information will be excluded
from the general communication.

The SessionManager is the central control instance for all Processing Mod-
ules, whether they run on client nodes or the master node itself, and the Sessions
that contain them.
It reacts to service calls for establishing new Session configurations, starting,
stopping and pausing them. Communication with all nodes and their Processing
Modules involved in a Session happens through preset topics.

5.4 Devices & Components

Devices and Components are Ubi-Interact’s way of giving ”form” to entities and
specifically their I/O profile - physical and virtual - that can be understood and
connected with by other parts of the system.
The mechanism of describing these profiles should 1) fit the purpose of Ubi-
Interact without overextending and 2) instead of pre-defining categories al-
low the minimum base building blocks necessary to be extended and naturally
grouped. Colloquially speaking, this is a ”walks like a duck, quacks like a duck”
approach to defining entities and their communication behaviour.

5.4.1 Components

Components are treated as the building blocks that either produce or consume
data in some form. As such they are associated with an event data format, an
event key used to identify the associated communication channel/topic and ad-
ditional properties that help identify where data comes from, how it is produced
or what it is being used for. In terms of abstract entities (2.2.4), a Component
is what signals some of their properties (publisher) or expresses the ability to
receive and react to some event (subscriber).
For any component, Ubi-Interact is not concerned with what happens behind
it, i.e. how the data is produced or consumed. These things might inform meta-
data of the component but are otherwise up to the processes around nodes reg-
istering said component. It should also be mentioned that Components are not
required in order to use pub-sub messaging, any code part can use topic-based
communication directly via the node’s methods.

79

(a) Component properties (b) Device properties

Figure 15: Component and Device properties.

5.4.2 Devices

Devices group Components into more complex structures. Apart from the list of
Components belonging to them, they also contain additional meta information.
Their purpose is essentially to describe this list of individual affordances to the
rest of the world so others may find a tool, a target, similar individual entities
and the like and thus make sense of their (virtual) surroundings.

A comment on the naming of Devices: There was a consideration whether
devices should rather be named entities to better reflect the abstract nature
(physical and/or virtual). Yet entities may carry more than just I/O data, for
example intent (4.5), which may be desirable to reflect in Ubi-Interact in the
future. The name Device was thus kept as it is also more relatable to the familiar
UI abstractions of a traditional input/output device.

5.4.3 Usage

After registering a Device at the respective master node service, other nodes can
get a list of them using a second service. If the second service is called without
any additional parameters, it will give back the full list of all registered Devices.
If however the request is sent containing a Device specification, the service will
filter the results by matching against this profile.
The same is true for services related to Components and other conceptually
defined elements of Ubi-Interact.
With that, any node can define the profiles they offer and also use them as
searching/filtering criteria. A few examples should illustrate the concept.

In case where a device is needed that acts like a traditional mouse - maybe
there even is a regular mouse, only it is plugged into another system - it could
be expressed as a Device having at least one Component firing button events
(possibly two, tagged with left and right button) as well as a Component pub-

80

lishing 2D float vectors (Ubi-Interact message format Vector2). Whether the
2D vector is used as a relative change or as an absolute position (normalized in
([0;1][0;1]) indicating mouse pointer movement should be further classified by
the Component, for example by carrying an agreed tag like ”relative” or ”abso-
lute”.
There may be mice-like Devices with additional Components (e.g. a Compo-
nent for the mouse wheel with its respective events) but if remote systems are
looking for a base mouse input device they can rely on this profile to search for
matches.

A virtual car might be a Device too, with an entire physics simulation behind
it that Ubi-Interact remains oblivious to. It could feature Components for input
like left-right steering commands and speed throttle. For output, it may be
reporting it’s current speed to the rest of Ubi-Interact.

A human user may rely on a system tracking their entire body as well as
their eye gaze direction or even emotional face expression recognized through
some image processing library and wear a bluetooth wristband that is capable of
giving back vibration signals. They could register this as a Device representing
them in different aspects to some capacity.
If technological extensions are added or changed, the Device profile is extended
or adapted. Depending on the implementation, the node can do this dynamically
by aggregating only the active Components currently in use.

After a request, if the service response contains only one device, we can
immediately go through its Components and subscribe to their topics to connect
whatever function callbacks we need.
If the service responds with a list of Devices, either the Device needs to be
qualified further or additional criteria can be added. The Device profile could
be extended by another Component exposing its location in the area so that
the nearest one can be found (in consequence requiring that viable Devices do
implement such a Component. Since Components can have NotifyConditions
(see 5.7.2) attached, we can rely on them to specify requirements on dynamic
data and describe conditions like Devices withing a certain range of the request
sender’s location.

The ID of Devices, Components or any element of Ubi-Interact is naturally
an exact matching criteria but has to be known in advance when requesting it.
Any other property like name, message format or tags can be used as potentially
ambiguous search criteria and only their combination and aggregation makes a
target specific.
This also means that any element should be described well in its profile. If
the profile for a certain concept like Components does not offer enough flexibil-
ity for an application case, the Protocol Buffers schema can be extended with
additional fields.

81

It was mentioned that the functional workings behind a component produc-
ing or consuming data are of no concern to Ubi-Interact as a system itself.
This functionality usually involves a lot more (pre-existing) APIs, drivers, SDKs,
system calls, etc. and the description in the form of a Ubi-Interact Component
is a simple addendum. It can still be beneficial to have common Components
established as their own class object with their functionality as well as Ubi-
Interact profile. This eases sharing and maintenance and speeds up development
by providing ready-to-use elements.

One such Component established quite early in the development of Ubi-
Interact is a smart device touch component for web apps. Given a touch area
HTML element and the Ubi-Interact node, it registers the necessary HTML
event listeners, normalizes touch coordinates to ([0;1],[0;1]) and publishes all
touch events to the wider Ubi-Interact system. It found multiple applications
and the desired interactivity between e.g. a handheld smartphone touch display
and a remote system like a model viewer, VR application or video game could
repeatedly be achieved with very little time effort in about an afternoon. Any
such Components are then of course available to be combined into Devices as
necessary.

5.5 Processing Modules & Sessions

As mentioned in Section 5.2 and 4.3, in distributed systems involving mobile and
hardware-limited devices it is often convenient or even necessary to outsource
computation to more appropriate edge or cloud resources.
It also helps with modularizing solutions and offering them as a black-box service
to a wider number of clients. Sometimes these modules need additional setup
and orchestration with the rest of the distributed system in order to function in
time.

Processing Modules are the interface to describe these black-boxes to the
Ubi-Interact network together with configuration on how to operate them so
others can find, instantiate and connect with them as required.
The idea is not to have a static number of instances of a module but to allow
instantiation as required. Depending on computing resources and application
case, a single Processing Module may handle all entities and data - especially
when they need to be processed in relation to each other - while in other cases
individual entities may rely on separate instances of the same module for their
subjective needs and states.

Sessions are a way of giving the Processing Modules a runtime configuration
without the modules having to know anything about specifics like other Clients
and their Components.
Sessions arrange which data channels are actually connected to the Processing
Module’s inputs and outputs. They provide the wiring of Components to Pro-

82

Figure 16: Properties of ProcessingModules and related objects

cessing Modules so either can stay truly modular and be implemented without
prior knowledge about the rest of the overall setup. A Session is also designed
to give an enclosed space for Processing Modules to work in, possibly including
and excluding other modules and clients and providing synchronization points
specific to this Session.

5.5.1 Processing Modules

Processing Modules46 are designed with continuous event processing in mind and
less about request-reply-like communication. Using the trigger on input mode
described later and a dedicated setup of responsible client Components, one
can turn them into a module with remote procedure call (RPC) characteristics.
Still, a more dedicated processing mode together with the master node acting
as a service request and reply proxy for the Processing Module would be better
suited for these use-cases and may be implemented in the future as necessary.

46https://github.com/SandroWeber/ubii-msg-formats/blob/develop/src/proto/

processing/processingModule.proto (last accessed 08-06-2022)

83

https://github.com/SandroWeber/ubii-msg-formats/blob/develop/src/proto/processing/processingModule.proto
https://github.com/SandroWeber/ubii-msg-formats/blob/develop/src/proto/processing/processingModule.proto

The base structure of a Processing Module consists of 1) some general de-
scriptive data, 2) the I/O and processing profile with inputs, outputs, processing
mode, implementation language and 3) status and lifecycle with callback func-
tions (see Figure 16).
Apart from the general information like id, name, etc. and what node and
Session it is running under, the core continuous functionality provided by a
Processing Module is implemented inside its onProcessing() function which is
further described in its parameters by the inputs and outputs.

inputs & outputs
A module’s inputs & outputs are specified in the form of a list of ModuleIO
objects. Their internal name is the variable name used by the module’s au-
thor(s) to address its I/O within the lifecycle callbacks - this ensures a module
can be implemented without coupling it to external parameters. The mes-
sage format describes the type of events that are expected and is record list
describes whether the input/output actually refers to a single event record of
type message format or a list of records all of that same type.

processing mode
The choice of a processing mode determines when and how the central lifecycle
callback of onProcessing() is triggered. As a central piece of control over how
the Processing Module is working together with the rest of the system they
deserve a detailed explanation:

• free:
The free mode allows the module itself (respectively the process it is run-
ning under) full control over when to call its onProcessing() function. As
such it is the most asynchronous mode of execution, there are no outside
checks, guarantees or control on timing. It is especially suited for cases
where Ubi-Interact can or must not have any say in the execution cycle.
An example for this is a module where functionality is entangled with
a physics engine which has its own strict update cycle that needs to be
adhered to.

• frequency:
With the frequency mode starting the Processing Module will establish
a task calling onProcessing() in a set time interval (with best effort).
This mode still operates quite asynchronously as it does not react to in-
put/output events and will take the latest data present at the node’s buffer
whenever onProcessing() is called. It is best suited for cases where con-
tinuous and frequent updates are required but the synchronization with
inputs and outputs is of no concern and best effort on the latest available
data is enough.

• trigger on input:
With trigger on input mode the module can react to input events and

84

only process if necessary. For more fine-grained steering of execution, the
min delay ms can set a minimal delay in milliseconds between execution
- this can e.g. prevent a flood of execution triggers with inputs that
occur in rapid succession or adjust execution to available computational
power. The all inputs need update setting requires that all input channels
of the module be updated since the last iteration before triggering another
one. Future extensions to this mode could include a selected list of inputs
(referring to the internal name) that act as execution triggers.

• lockstep:
Lockstep is a synchronized mode where the overarching Session controls
exactly when each processing iteration happens. Inside one Session, all
Processing Modules following this mode will execute in lockstep and the
next iteration will only happen after all modules have finished.
The synchronization of input and output happens by the Session on the
master node. Before each processing iteration, it will gather all relevant
inputs for all modules involved. This of course means that inputs are in
no way hardware synchronized between nodes producing the input data
and the node executing the Processing Module - it is only guaranteeing
that all modules will process on the same data snapshot in time taken by
the master node. The Session will then send processing commands to the
respective nodes of each module with that command message containing
the needed set of inputs from the snapshot. It will then wait for each pro-
cessing node to report back with an appropriate response containing their
respective outputs. After all Processing Modules have finished and their
outputs have been received, the outputs are written back to the global
event data buffer by the Session. At this point, the next cycle can be
started.
To reiterate, this does not involve any event timing or hardware synchro-
nization between producing input data and processing it. It only guar-
antees that two Processing Modules running under lockstep in the same
Session will see and work on the same timeset of inputs and their outputs
will be written back simultaneously.

language
Language simply indicates which language the module was implemented in.
This is useful in cases where two versions of a module with the same purpose
are to be implemented in different languages and compared against each other
to evaluate e.g. performance.

status
A module’s status gives information about its current state (see Figure 17).

lifecycle callbacks
Figure 17 shows an overview over a module’s lifecycle and associated functions.
The functions of start(), pause() and stop() are accessible from outside and

85

Figure 17: State and lifecycle of Processing Modules. Orange circles are states,
blue squares are execution flow commands accessible from outside and green
rounded squares are automatically triggered event callback functions.

86

can be used to steer execution. The callbacks of onCreated(), onProcessing(),
onPaused(), onHalted() and onDestroyed() are automatically triggered through
their respective events in the lifecycle of a the module. A Processing Module will
only reach its INITIALIZED status after onCreated() was executed successfully.

Regarding the signature of lifecycle callbacks, all of them - with the excep-
tion of onDestroyed() when the module object itself already stopped existing -
take the module’s internal state as parameters. This is intended to access the
internal state for setup and teardown operations.
For onProcessing() specifically it also takes the time passed since the last call
and its required list of TopicDataRecords as inputs. It then returns its outputs,
again a list of TopicDataRecords. With the execption of the free processing
mode, this means before each run of onProcessing() the task controlling exe-
cution will gather all inputs from the local TopicDataBuffer, map the Topic-
DataRecords to their internal names for easy access and provide them as the
”inputs” parameter. Conversely, after onProcessing() is done, the set of re-
turned TopicDataRecords mapped to their internal output names is accepted
and published to their respective topics.
While any of these parameters could theoretically also be accessed through
means internal to a class object like a private getter/setter, it makes the work-
ing structure of a Processing Module more explicit and - depending on the node’s
implementation language features - offers the possibility to execute calls on a
thread/process worker pool where input/output parameters of functions may
be required to be serialized through message marshalling.
Given this reasoning for an explicit functional signature, it is not forbidden for
node implementations to offer getter- and setter-like structures allowing this in-
ternal retrieval and writing of values through their internal names as variables,
even while onProcessing() has not finished. This more dynamic access means
that within the Processing Module, a getter under the name of its inputs’ inter-
nal names would pull the data from the node’s local TopicDataBuffer only when
actually needed during processing. It also allows for outputs to be published
during execution as an intermediate update or simply a faster result whenever
an output variable is written via its setter, indirectly publishing the provided
TopicDataRecord under the mapped topic.

The properties ending in ... stringified are an option for clients to transfer
Processing Modules in their entire functionality to the master node and have
them run there. This is only possible for stringified Javascript functions. It can
be used for very simple self-contained functionality with only base dependencies.
It is otherwise not recommended and can pose security risks, so an option in
the master node configuration can prevent this type of specification from being
used.

As mentioned above, Processing Modules could be specified and transmitted
entirely in Javscript via the respective (message) properties. The more flexible
and powerful way of implementing modules however is to write them as their own

87

Figure 18: Properties of Sessions and IOMappings.

class that inherits from a base Processing Module class, implements an according
interface or simply allows to pass a corresponding message specification to its
constructor as well as generate a message object from an existing instance.
That way an author of a module is completely free to choose any additional
dependencies that the language or system has to offer.

5.5.2 Sessions

As seen in Figure 18, a Session contains a list of processing modules it manages.
When it is started/paused/stopped, it will request all Processing Modules to do
so accordingly.
The most essential part of a Session is the io mappings which determine how a
Processing Module - identified via its ID or name - has its inputs and outputs
connected to topic sources and destinations. In their current state, this can be
either a discrete topic or a TopicMultiplexer/-Demultiplexer which will be dis-
cussed in their functionality later. If the Processing Module can not be uniquely
identified via its name within its Session then the Session will throw an error
message at the master node during initialization. The master node will not be
able to create a Session with configuration ambiguity or errors and in case a
client node is trying to set up such a Session it will be notified of the error.

Currently, Sessions are only about organizing Processing Modules. In the
future these will be expanded to include access management layers for topics,
probably involving a list of participating clients, devices, and so on.

88

5.5.3 Comparison with other data processing architectures

For users that are familiar with other prominent systems, a few comparisons
to equivalent approaches or respectively ways of implementing certain patterns
with Ubi-Interact should be helpful.

ROS

In Section 4.3.1 we’ve seen that ROS offers different ways of triggering exe-
cution on nodes within the network.
ROS’s asynchronous mode would be equivalent to Ubi-Interact’s free or fre-
quency mode, depending on what is more convenient for the node’s implemen-
tation system to control the execution.
The mode of operation for ROS Actions would be best matched using the trigger
on input mode, with intermediate status updates reporting before the Action
is performed completely requiring that the node and Processing Module im-
plementation allow direct access to output variables during onProcessing() (as
described in Section 5.5.1, lifecycle callbacks).
Client nodes offering synchronized Service structures is not possible in Ubi-
Interact yet. However, it is possible to add extra services inside the structures
of the master node.

Node-RED

When compared to Node-RED, a Ubi-Interact Processing Module can most
closely be compared to functional nodes executing arbitrary Javascript code in
their onMessage() configuration. A Session then resembles the flow containing
a configuration of nodes that can be started and stopped as a whole.
Node-RED nodes configured to have inputs are triggered whenever a message
arrives. This is how Ubi-Interact’s trigger on input mode operates. However,
where Ubi-Interact defines separate modes of execution, Node-RED simply pro-
vides additional nodes like ”trigger” that can fire in set intervals and whose
output messages can then serve as input triggers to the next node - this achieves
the same result as a frequency processing mode. The execution triggering event
then represents a message within the system itself, something that has not been
requested for Ubi-Interact yet but might be useful to know.
In order to save states between execution, nodes in Node-RED can also rely
on a context objects covering different scopes of the system like node, flow and
global. In Ubi-Interact, any state beyond the scope of the Processing Module
itself needs to be shared via topic communication or other outside means.

In Node-RED any functionality working on message events is encapsuled in
a node. Especially small-scale operations that could be seen as pre- or post-
processing steps for major functionality within the pipeline like aggregating,
filtering, rerouting, multiplexing, etc. lend themselves to be templated and
reused often.

89

Ubi-Interact here faces the additional complication that steps of the pipeline
may be distributed over the network. It would be inefficient to establish pre-
/post-steps on another client node than the main functionality itself as it in-
creases bandwidth and latency. One potentially beneficial place to put such
functionality would be on the master node itself. Right now, Ubi-Interact takes
the approach of meta-devices created on the same client node as the Processing
Module that do the preparatory or follow-up work up- and downstream of the
Processing Module’s inputs and outputs. Further investigation on this topic is
postponed to future work.

5.6 Choice of Implementation Language

Any client node is obviously implemented for its respective environment.
For the master node, the main considerations are I/O and networking perfor-
mance as well as enough flexibility to cover a wide range of connection protocols.
Quick iterative development cycles are a big bonus in the early stages of testing
and research. For the reasons given in Section 4.9.2 Node.js is a good candidate
and was therefore chosen.

Depending on future requirements of scalability and performance, it may be
beneficial to port the master node / core message broker functionality to another
language or exinsting codebase at a later stage - for now Node.js has proven to
be quite sufficient in its performance, especially considering Ubi-Interact’s focus
on smaller individual setups organized into layers of communication instead of
a centralized global server (cluster) infrastructure.

5.7 Publish/Subscribe Broker

Section 4.2 lists a choice of well-established publish/subscribe broker implemen-
tations already available. The pub/sub way of delivering messages seems well
suited for Ubiquitous Mixed Reality systems due to its capability of decoupling
participants, which is a necessity for dynamic environments.

Somewhat missing in pub/sub approaches is the case-by-case decision of who
is allowed to receive messages. Some of the option for targeted/exclusive com-
munication is lost or made more difficult with pub/sub. In Ubiquitous Mixed
Reality , it is not a matter of participants either communicating with each other
in general or not. Instead it is more of a nuanced decision. Some data chan-
nels are meant for one recipient specifically, but that recipient is chosen in the
moment and may change over time. Some messages might be relevant within a
certain range or group that, again, may evolve over time. Other messages might
be for system communication and services only.
One solution is to put the decision-making into the hands of the broker which

90

is then (and in extension the central overarching platform) responsible for the
proper communication.
Ubi-Interact is meant to enable the participants themselves to make their choices.

5.7.1 Existing Solutions

The solutions presented in Section 4.2 are topic-based. In cases of general so-
lutions like MQTT it is clear why they would stay agnostic to the content of
delivered messages.
With purely topic-based brokers, one can rely on topics as strings and regular
expressions on these topics to identify data channels and subscriptions. A sub-
scriber has to know the string - or a regular expression fitting that string - in
order to establish communication. Yet the topic alone as a string has obvious
limitations in its descriptiveness. A character string alone is not well suited as
a schema to encode a lot of additional non-sequential characteristics, metrics,
categories and relations of the data being sent.
While it is an efficient and human-readable categorization of data channels, if
the environment with its topics is unknown and the notification mechanism is
supposed to react to changing circumstances in the environment, the system
has to provide a content-based approach that allows the consideration of topic
data content for subscriptions and notifications.
In a Ubiquitous Mixed Reality case, ”hard-wiring” the communication against
topic strings does not cover the characteristics of our environment(s).

To further illustrate, the next paragraph discusses some of the strategies and
complications of regular topic-based approaches for Ubiquitous Mixed Reality,
but may as well be skipped if the reader is already familiar.

With topic-based brokers, the topic string is often treated as a strategy to
establish some context for the data being communicated. Hierarchical structures
can be given by the URI structure of topics, e.g. a smarthome with topics like
”home/living-room/ceiling-light/intensity”. In that sense it is comparable to
a global variable name and implies a certain naming scheme for topics that
participants know, adhere to and can be fit into. This is in and of itself not
a problem, but it establishes certain preconditions on the topic string that are
not enforced by general-purpose solutions while potentially causing problems if
not adhered to.

If there are multiple agents that behave similarly or have to be treated
interchangeable on a certain level - i.e. they all provide the same profile of
topics and data like a swarm of small robots in a factory hall, a crowd of users
or individuals entering and leaving a place as they see fit - the usual solution
is to include some form of unique ID in their topic to guarantee no conflicts
between topics and a separation of concerns avoiding their data being mixed
together. So each topic might be prefixed with a UUID which then inevitably

91

requires a subscriber to rely on regular expressions for a topic as the UUID is
or should not be guessable. Depending on how many layers of abstractions are
supposed to be represented by the hierarchical structure of the topic, this may
result in a rather lengthy concatenation of UUIDs.

If on the other hand every agent published on a shared single topic and
included their ID with the data, subscribers would loose the ability to express
interest in a specific agent and instead always receive data from everybody.
Here we either face a further additional complication to the topic strings or
the requirement to provide content-based filters in order to provide specific
connections.

How to identify the data format being communicated over a topic is another
question that typically arises. The topic could for example be suffixed with
”.../int”, ”.../boolean” or ”.../image”. With this a subscriber can understand
how to interpret data or look for specific types of data that may be of relevance
to their intentions (another addition/convention to the topic string). Another
solutions is to provide a sort of wrapper format for topic data that includes
information about the contained information. This however does not allow the
system to identify topics based on their message format unless a subscription is
established first and data is received - which is highly inconvenient to provide
contextual information about the data. Once data has been published the broker
knows and can supply information, but in cases where a participant is opening a
subscription in advance as a data sink accepting commands for others to publish
to, this approach fails because the expected message format has to be supplied
to potential publishers beforehand. This meta-information on topics is then
often supplied by other means.

The data format alone might not be enough to put the data into context
though. A channel for ”.../image” may be addressable without producing errors,
but information about the origin, content and purpose of these images is still
missing. The hierarchical information of the topic may give some additional
hints. Additionally, other topics belonging to the same entity providing the
images might be relevant for context which in turn need to provide some context
or embed themselves into the same context as the image topic.

Also affecting performance, if the topic is included with the data during
transmission in its original data type of string instead of being hashed to a
number, the longer a topic string becomes the more bandwidth will be con-
sumed. This is especially problematic for small but high-frequency data like
positional updates where the topic itself with all the additional necessary ex-
tensions would provide the predominant part of the message size after a certain
character length is reached.

As an alternative to using the topic string itself one could instead have a con-
vention of topics communicating context for other topics, i.e. for any topic there

92

is a (list of) topics to the like ”.../info”, ”.../context” etc. providing additional
information. This again imposes a convention on the topic string, which would
imply certain topics not being viable - a restriction that existing topic-based
brokers usually do not provide for and would instead require users/developers
to adhere to by themselves.

From personal experience, this use of topics is fast and easy but does not
scale so well to multiple independent users, developers or live agents extending
a system because it requires a lot of implicit knowledge and familiarity. It is
perfectly acceptable for networked systems with limited scale and/or a closed
circle of participants like a smarthome, an experimental setup, limited industrial
setting or when data exchange happens primarily between a central instance
and isolated participants. It is not so well suited for open, not pre-defined
environments where it is mainly about communication between unrecognized
participants that may not trust each other from the start, have to familiarize
themselves with their environment first and/or stay oblivious about each other
while still trying to act in the same environment. It is very much applicable if
systems are seen as isolated islands with very specific connections to the rest
of the world, but often enough leads to unintended conflicts and difficulties in
configuration and adaption for open-ended environments.

5.7.2 Broker features for Ubiquitous Mixed Reality

As [142] illustrates, security and privacy concerns in Ubiquitous Mixed Reality
scenarios are sometimes more dynamic than a one-time evaluation of ”Is partici-
pant P authenticated and allowed to receive data on topic T?” upon subscription
by P with the consequence of P receiving all updates on T in the future. As
an example, participants may in general (not) be allowed to receive data about
T except when P enters or exits certain areas. In general, a Ubiquitous Mixed
Reality system may need to evaluate the relations between participants, topics
and potential (meta-)information about them with each update on the topic.

With Ubi-Interact one of the core ideas is to support the required context-
awareness and content reasoning stated in Section 5.1 on the level of identify-
ing communication channels and message notifications themselves. The broker
should be able to dynamically react to the environment for efficiency and secu-
rity reasons.
With the aforementioned scenario in which the location and positional relation-
ship between participants matters as context, this would enable the system to
judge whether it makes sense or should be allowed to communicate information
and updates based on whether participants are within a certain distance of each
other, can visually see each other or are residing within a certain area.
The examples of [21] and [140] (also see Section 4.7) illustrate why this makes
sense and can save bandwidth and overall performance in certain situations.
The same mechanisms can equally be used to implement security checks - for

93

example data may only be shared with clients nearby. In security cases the
conditions should obviously not rely on data provided by the peers themselves
as it could easily be faked by the respective client in order to fool the system.
This conditional message brokering should be able to consider static character-
istics of publishers and subscribers like certain I/O profiles or belonging to a
certain session or user group as well as react to the content of messages them-
selves without negating the benefits of publish/subscribe systems, namely the
decoupling of participants.

One of the goals for Ubi-Interact was therefore to build additional enabling
features into the base of the message brokering. Establishing subscriptions in
the first place also brings additional complications with it if one starts from a
mix of environments that has to be understood and explored first in order to
generate a picture of what is available and of interest instead of having implicit
assumptions about who or what can be expected to be present and which parts
of the distributed system need to communicate with each other. The subscrip-
tion mechanism itself must be linked to available information and relations.
The context for this conditional publishing/subscribing thus includes both static
information about data producers/consumers like profiles of components, de-
vices, clients, etc. as well as dynamic topic data like positional information.

The eventual choice for Ubi-Interact was then to build its own message
broker to test these experimental features instead of building on top of an ex-
isting code-base that may not work well in supporting the planned features.
An effort is made in the development of Ubi-Interact to keep topic-based and
content/context-based mechanisms as separate as possible as to be able to poten-
tially more easily port finalized and tested Ubi-Interact features to established
broker implementations in order to benefit from their experience, features and
performance.
Ubi-Interact’s broker separates the concerns of topics as a pure data channel
identifier and meta-information about the data being communicated over said
channel. The result is a broker that is in its fundamentals topic-based but can
include additional content-based features, enriching subscription and notifica-
tion logic based upon additional info from Clients/Devices/Components as well
as topic content itself. The topics can then boil down to a random UUID and
serve as a (short) random identifier only.

To give a little more detail on a possible scenario where location and pose
data is relevant for data communication, one can envision a VR offfice/conference
environment with multiple rooms and digital avatars that represent their users
with high fidelity down to individual finger movements. Any user may freely
publish their body pose information, but if users are not directly looking at
each other or are even located in different rooms, it may not be good use of
bandwidth to propagate all updates to all other users at all times.
Instead users could express interest in body pose updates with the added con-
dition that peers would be located in the same room as them or within their

94

Figure 19: Both publisher and subscriber can formulate conditions without
knowing specifics about each other. Any potential notification is evaluated for
each publisher-subscriber pair if necessary.

Figure 20: NotifyCondition API - general conditions on the profiles of publishers
and subscribers can be set via the client profile pub/...sub option. During calls
to evaluate() the client profiles of publisher and subscriber for which it is to
be evaluated are passed as parameters and methods to retrieve topic data are
available.

approximate field of view. Another condition for specific body parts like fingers
could be to have a maximum distance away from them in order to receive up-
dates because finger movements are deemed indiscernible and irrelevant beyond
a certain distance. Those same conditions could also be imposed by the pub-
lisher instead of the subscriber, or both having different conditions that make
sense for their purposes.

Neither publisher nor subscriber have to receive and process the opposite’s
position in advance, they only establish logical conditions for notifications on the
master node which naturally has access to data from both sides. The decoupling
of pub/sub as a central requirement is thus kept.
These conditions may of course include the requirements for other clients to
provide the necessary information in the first place or have other prerequisites
filtering out potential peers before a subscription can even be established.

The idea is for both publishers and subscribers to be able to formulate con-
ditions on message dissemination/reception without having to know their peer
and/or exact topics containing data that is relevant to the evaluation of the
condition. The NotifyCondition API (see Figure 20) is thus passed the client
profile (which includes Devices and Components) of both publisher and sub-

95

scriber for each notification. The API also allows to retrieve topic data based
on the topic itself, a regular expression or a Component profile. While a topic
is specific in and of itself, regular expressions and Components may be more
ambiguous, therefore the topic data retrieval can be further qualified by a client
profile to restrict which sources of topic data to consider.
If, for example, a component profile is provided that may fit for several clients
but the topic data to consider should come from the subscriber specifically, the
addition of the given subscriber client profile provided to the evaluation call will
limit the search of components to the subscriber client only. If a single topic
is expected, the use of getTopicDataRecord() will ensure an error is thrown
in case multiple components fit the given profile. In the other case, getTopic-
DataRecordList() is expected to give a list of topic data for all fitting sources
for the given regular expression or component.

The evaluation happens within a JS method expected to return a boolean,
making it possible to use common math, mapping, filtering and similar functions
available in JS to formulate the behaviour of the condition. ... getclients(profile,
topic data)

5.7.3 Performance Measurements

The performance characteristics of the message broker are naturally relevant for
a real-time system.
To get a better picture, a series of performance measurements have been con-
ducted under different hardware configurations and protocols. The full set can
be viewed in Appendix A.1.

These measurements are in no way meant to indicate a competitive perfor-
mance. Rather they serve as a means to get an approximate picture on the
viability of Ubi-Interact for its intended purposes. They also serve as a basis
for comparison for future performance measurements. Lastly, they can give an
indication on where to improve Ubi-Interact’s broker performance or compare
the viability/necessity to move to a different broker at a later stage.

The following hardware was used to run the tests:
A) AMD Ryzen 5 3600 6-Core Processor (3.60 GHz) CPU, 16GB RAM under
Ubuntu 20.04.5 LTS
B) Raspberry Pi 4 Model B under Raspbian 11
The router in all local setups was a FritzBox 7430.

96

Figure 21: Broker throughput of TopicDataRecords. Graphs are split by record
payload size. Protocol used is HTTP/WebSockets.

Figure 22: Broker throughput of TopicDataRecords. Graphs are split by record
payload size. Protocol used is ZeroMQ.

Figure 21 and Figure 22 show a sequence of measurements comparing overall
throughput of TopicDataRecords per second depending on the number of simul-
taneous registered client nodes and the payload size per record.
Each client node ran under a separate NodeJS process. Both ZeroMQ’s TCP
socket connection and HTTP/WebSocket connections were tested. All nodes,
the master node running the broker as well as the client nodes, ran on the same
system (A) connected via localhost.
The overall number of TopicDataRecords is evenly distributed over all clients.

97

The method of publishing was to send out each TopicDataRecord separately
and immediately instead of bundling them in set intervals - this puts maximum
load on the connections, the bundled method typically increases performance.

The client nodes were configured to send out a TopicDataRecord on an indi-
vidual topic and subscribe to their own topic. Consequently each client would
receive back each record published, allowing time delay measurements and ef-
fectively doubling the amount of messages communicated.
The records consisted of a timestamp (64 Byte) that was used to measure time
between publishing and subscription callback being called. Additionally, each
record carried a random string payload of variable size - 0, 1024, 2048 or 4096
Bytes. This leads to the overall record sizes of 66, 1092, 2116 and 4164 Bytes
for the serialized Protocol Buffers message bytestream.

Each test was run with constant record payload and constant records per
second per client. The number of clients were set to ramp up over time to the set
limit. After the target number of clients was reached, the test was continuously
run for at least five minutes to allow for a settling in phase.
Additionally, the master node is running a profiler. It was configured to check
overall performance every five seconds and to print console warning statements
in case performance was affected (elapsed time since the last gathering of statis-
tics being at least 10% delayed, in this case more than 5.5s).
If the profiler continuously issued multiple warnings for degraded performance
over one minute or the number of maximum active clients was not continuously
upheld (i.e. some clients were considered inactive from time to time until the
broker could catch up), this would be regarded as unstable and unacceptable
performance for the test.
A test configuration that would overload the broker would typically be detected
within seconds to half a minute after reaching the set targets. For these reasons,
five minutes was determined a reasonable stretch of time to settle into a stable
state of message handling.

The outer boundaries of the graph require some additional contextualization.
Each NodeJS client node process was able to handle no more than approximately
960 TopicDataRecords sent and received per second (1920 total in + out). For
this reason the graph is capped for one client at slightly below 1000 records per
second.
As for the right boundary, 400 simultaneous NodeJS processes was the maximum
the quoted hardware (A) was able to handle.

Figure 21 clearly shows a degradation of performance with increasing number
of clients. Interestingly, HTTP/WebSocket shows better performance overall
than ZeroMQ/TCP - this may hint at a suboptimal integration of ZeroMQ
libraries under NodeJS but could be due to other factors as well and should be
investigated further.
The performance down-trend is also true when broker and client nodes are run

98

on separate hardware, as seen in Figure 23 where the master node runs on a
Raspberry Pi 4.

Figure 23: Broker throughput running on Raspberry Pi.

Naturally, the Raspberry Pi (hardware B) offers little performance compared
to hardware A. It is nevertheless usable if the number of clients stays below 150
and payloads are small on average.

Round-Trip-Time (RTT) has also been measured. While latency measure-
ments are of interest in general, they depend on the infrastructure and should
therefore best be performed in their live network environment (more later).
On localhost, measured latency is below one millisecond. An average of 0.38ms
with a minimum below 1ms and maximum of 2ms was recorded.
Over WiFi, the average lies at 6.28ms, minimum recording being 2ms and max-
imum 335ms. RTT was also tested for a deployment on a university virtual
machine (VM).
From within the university network, RTT was again quite low: average 0.85ms
with a minimum of below 1ms and maximum of 5ms.
Latencies were also measured over the internet from a site roughly 18km away.
In an earlier round of tests, the average was determined to be 23.18ms (min.
20ms, max. 28ms). Interestingly, after a restructuring of the university network
in June 2022 the performance dropped to an average of 34.48ms (min. 33ms,
max. 37ms).
This observation reinforces the notion above that such performance tests should
always be reproduced and run in their actual environment.

Appendix A.1 also includes graphs for overall bandwidth throughput. The
maximum bandwidth observed was just below 280MB under hardware configu-
ration A, HTTP/WebSocket and the bundled publishing mode.

99

5.8 Debugging

The requirements of convenience and quality assurance are crucial aspects for
the development of distributed systems.
In practice, this requires effective ways of debugging during development as well
as live usage. Ubi-Interact supports this via several mechanisms.

All communication has the option to report errors. Service responses can
always include an error report related to the preceding request. In case of
asynchronous occurrences of errors, any TopicData message may also include
error data. As nodes operate in different environments, it is up to the node
and its surrounding process to decide in what fashion to convey these errors
(console, GUI, etc.).
Of course, the option to open dedicated topics for error reports exists as well.
There are no mandatory or default topics for these cases as general report
mechanisms exist in the way described above, but any setup may establish
its additional error reporting mechanisms according to its needs.

Tracking performance and identifying bottlenecks and breakdowns is another
important feature. Nodes are continuously extended to provide performance and
latency measurements for their message publishing and execution of Processing
Modules as far as they are expected to run according to a specified performance.
For TopicData - as there are no acknowledge messages passed back from the
master node - this is only applicable to the bundled publishing mode that gath-
ers records and flushes them in set intervals.
For Processing Modules, all execution modes except for the free mode are ex-
pected to follow some form of control, be it reacting to a trigger or executing
according to a fixed schedule. This again allows to measure elapsed time until
execution of a processing iteration is finished.
Additionally, the master node keeps track of all client node latency through
heartbeat messages. It will update their status as active, inactive or unavail-
able after certain delay thresholds have been exceeded.

Graphical tools for debugging are available in the web frontend and will be
presented in Section 5.10.

5.9 Testing

Equally important to cover quality assurance, testing should be a constant en-
deavour during development.
With distributed systems, much of the functionality is reliant on communication
and behaviour may change with live runtimes. Ubi-Interact thus focuses more
on integration tests that can be run and reproduced by any user/developer.
Base functionality of services and the message broker are unit tested, but the

100

performance can only really be evaluated in its actual deployment, as it heavily
depends on network infrastructure and hardware.

Consequently, Ubi-Interact’s performance is constantly tested against previ-
ous developments in the same environment(s) to ensure it does not needlessly
or unintentionally degrade. All tests - most of them available through the web
frontend (Section 5.10) - are available to be run through a GUI or a simple
script with help instructions.
Deployments and test runs are also performed over longer periods of time (hours)
under load to identify potential stability and performance failures like ramping
memory consumption or building up message processing queues.

At the same time, these integration tests can serve as a code example on
how to use certain features. Tests exist for simple publish/subscribing or the
setup and use of a specific execution mode for a Processing Module.

5.10 Web Frontend

The web frontend developed for Ubi-Interact serves as an introspection, de-
bugging, administration and testing UI. To this end, it offers tools, integration
tests and exemplary applications that can be run from the web GUI. The fol-
lowing will quickly present only some of the tools deemed helpful when building
distributed applications with Ubi-Interact.

From a technical perspective, it acts like any other client node - utilizing
the node developed for browser environments. It is usually deployed on the
same hardware as the master node but can in principle be served on any other
machine too.

5.10.1 Client-Device-Component Viewer

With this tool, one can see a list of all Clients with their registered Devices and
Components (see Figure 24).
Clients that have not responded to a heartbeat message from the master node
for a while are categorized as unresponsive after a certain timeout. This may
include Clients that have disconnected without deregistration and will be listed
separately as to not clutter the active list.

5.10.2 Topic and Service Inspector

One of the tools included in the frontend is a topic data and service inspector
(Figure 25).

101

Figure 24: View Clients with their registered Devices and Components.

Figure 25: Tool to view topic data and available services. Topics will be receive
live updates (green light next to topic name and their data can be inspected.
Services include their request and reply message format(s).

102

Figure 26: Write TopicDataRecords in their JSON object notation and publish
them.

In the category topic data, an updated list of all topics is available. Once a
topic is expanded, the inspector will open a subscription. Consequently its data
is visible and will receive live updates. Only expanded topics are subscribed, as
a general subscription to all topics can quickly lead to overload depending on
the amount of data communicated through the rest of the system.
This tool should still be used carefully, as many expanded topics equal a lot
of subscriptions and may lead to significant load on the browser tab process
depending on topic update frequency.

The list of available services includes their request and response message
format(s). It will later include descriptions and options to send service specific
requests and see responses.

In future steps, the inspectors should add filtering options for topics like
message format, etc. to support a fast and structured navigation of bigger
systems.

5.10.3 Test Record Publishing

To quickly test subscription callbacks for which there is no active publisher yet,
it is helpful to publish test data manually.
With this web interface, one can formulate TopicDataRecords in their respective
JSON version and publish them as seen in Figure 26.

5.10.4 Graph Visualizer

The graph visualizer (Figure 27) is designed to give an overview over the nodes
and their communication paths involved in a Ubi-Interact setup and more specif-

103

Figure 27: The example of mouse pointer mirroring (also accessible through the
web frontend) visualized as a graph. Active publishing triggers an animation
along respective edges.

ically a running Session.
It also serves to edit setups by e.g. graphically editing topic connections via
drag-and-drop.

5.11 Applications

This section introduces some of the applications and environments that Ubi-
Interact found use in. It may serve to illustrate how some of Ubi-Interact’s
concepts are applied in practice.

5.11.1 Image Processing Demonstrator

Intended to be both a test scenario for the handling of larger message sizes
(images) and the integration with machine learning frameworks as well as a
starting point for a useful extendable library of image processing functionality,
a setup providing object recognition and optical character recognition (OCR)
has been implemented together with Maximilian Schmidt47.

47Schmidt, M. (2022). Distributed Python Computation in Mixed Reality Environments
[Unpublished Master’s Thesis]. TUM. https://wiki.tum.de/display/infar/%5B22SS+-+MA%
5D+Distributed+Python+Computation+in+Mixed+Reality+Environments

104

https://wiki.tum.de/display/infar/%5B22SS+-+MA%5D+Distributed+Python+Computation+in+Mixed+Reality+Environments
https://wiki.tum.de/display/infar/%5B22SS+-+MA%5D+Distributed+Python+Computation+in+Mixed+Reality+Environments

In MR scenarios, it should serve as a library of image analysis modules that
can be quickly integrated into a system including one or more cameras to make
additional information available.
It was envisioned as a very dynamic and ad-hoc option for an individual par-
ticipant to be able to take out their smartphone, open a provided web interface
via a few clicks, place it into the environment or hold it onto a scene and have
the added information available to them or the entire system depending on the
use-case.
Of course, any permanently installed camera or other form of image source
(maybe even realistic renderings of a virtual scene?) may be integrated just as
well.

The setup consists of a web interface served through the web frontend that
connects to an available camera stream and publishes images with a frequency
of 10Hz. The same interface also opens a subscription for a topic of type OB-
ject2DList that serves as a sink for extracted information coming from any
Processing Module having analyzed the published image.
The frontend provides a GUI with a list of available Processing Modules that fit
its own I/O schema of Image in, Object2DList out. Upon selecting a Processing
Module and clicking start, it will create a new Session including the selected
module mapped to its own topics.

One Processing Module was implemented for NodeJS. It imports an exist-
ing Tensorflow Single Shot MulitBox Detector (SSD) network48 trained on the
CoCo[164] dataset to recognize objects. Recognized objects are packed into the
Object2D data model with name, image position and dimensions and conse-
quently published as a list.

Another Processing Module allowing for OCR was implemented in Python
by Maximilian Schmidt. It exists in three variants with different pre-processing
steps,

5.11.2 Entertainment and Sports

A framework for super-human sports applications is being built by Eichhorn et
al. at the FAR chair. Current application plans involve a quadcopter and teams
of players wearing HMDs. All elements on the field need to communicate their
game state and actions, potentially with immediate consequences to the game
flow. [165]

This poses strict requirements on low-latency dissemination of messages and
the potential to test out edge computation of game logic elements inside Pro-
cessing Modules.

48https://www.npmjs.com/package/@tensorflow-models/coco-ssd

105

https://www.npmjs.com/package/@tensorflow-models/coco-ssd

Figure 28: Results of the Python module for OCR on a test image.

106

5.11.3 Virtual Supermarket

A virtual supermarket scenario developed by Eichhorn et al. at the FAR chair
has adopted Ubi-Interact for integration of a personal smartphone. [166]

The eventual goal is for the smartphone as an interaction device to be re-
flected as accurately and naturally in all its capabilities as possible.
To date, this involves relaying touch interaction, IMU data and potentially a
camera stream to the VR application.

5.11.4 Serious Games

Some of the serious games developed by Plecher et al. at the FAR chair have
integrated Ubi-Interact to provide multiplayer functionality. [167][168][169]

This is an excellent benchmark for Ubi-Interact’s capabilities to deal with
various requirements on number of connected clients, communication and syn-
chronization speeds.

Developer support to implement application specific services and processing
are also challenged by these developments.

5.11.5 Hololayer

Ubi-Interact was also integrated with the Hololayer system developed by Siemens
Technology. [170]
This exemplifies a successful integration between industrial AR and research
project. Concepts and events from both systems were used to trigger combined
interactions and open up options for further experimentation, extensions and
collaborations.

This integration also identified the aspects of security that are typically very
low priority in research but essential in industrial settings and thus require
increased priority for Ubi-Interact in order to deploy it conveniently in such
environments.

107

Figure 29: Three stages to the setup: 1) user tracking and VR visualization, 2)
full body pose estimation and calculation of forces/velocities based on current
avatar pose, 3) physically simulated avatar.

5.12 Modular Re-Embodiment with Ubi-Interact

The following setup was development during a bachelor’s thesis49 in cooperation
with Leonard Goldstein to test the ability of Ubi-Interact to freely combine
individual environments together in an interchangeable way. It takes on the
same task of motor control over a physically simulated humanoid avatar as
described in Section 3.5, albeit in a slightly different form.

The split between 1) an environment for VR visualization and human body
tracking, 2) modules for the mapping between tracked body pose and applied
forces to the avatar and 3) a physical simulation for the avatar in its environment
was kept (see Figure 29).

The goal was then to build two alternatives for each step and demonstrate
that Ubi-Interact can enable developers to freely connect any sequence of al-
ternatives. The purpose was not to demonstrate one superior solution but to
emphasize that solutions can be exchanged and compared easily through the
integration with Ubi-Interact.

For one of the alternatives, the existing setup for Unity3D described in Sec-
tion 3.5 was adopted and adjusted. The other alternative was implemented in
a browser environment using Babylon.js.

For the motor control of the avatar, instead of applying forces for joint
motors, it was decided to assume only the base functionality of any physics

49Goldstein, L. (2022). Physical Embodiment in VR: Interchangeable Web-
Based Modules using Ubi-Interact [Unpublished Bachelor’s Thesis]. TUM. https:

//wiki.tum.de/display/infar/%5B22WS+-+BA%5D+Physical+Embodiment+in+VR%3A+

Interchangeable+Web-Based+Modules+using+Ubi-Interact

108

https://wiki.tum.de/display/infar/%5B22WS+-+BA%5D+Physical+Embodiment+in+VR%3A+Interchangeable+Web-Based+Modules+using+Ubi-Interact
https://wiki.tum.de/display/infar/%5B22WS+-+BA%5D+Physical+Embodiment+in+VR%3A+Interchangeable+Web-Based+Modules+using+Ubi-Interact
https://wiki.tum.de/display/infar/%5B22WS+-+BA%5D+Physical+Embodiment+in+VR%3A+Interchangeable+Web-Based+Modules+using+Ubi-Interact

Figure 30: Interchangeable combination of stages. One alternative follows a
web-based implementation (W), the other one is an adopted version of the
Unity3D setup (U).

engine of applying linear and angular forces/velocities to bodies of mass.

5.12.1 Ubi-Interact setup

All three stages have been wrapped and described using the concepts of Ubi-
Interact.

In stage 1, the element responsible for producing IK targets in stage 1 was
wrapped in a Device with a single Component publishing data of format Ob-
ject3DList50 and carrying the tags ”avatar”, ”user tracking”, ”ik”, ”targets”,
”ik targets” and ”inverse kinematics”. One Object3D includes position and
orientation information reflecting one of the IK targets.

Stage 3 on the other hand provides a Device with two Components.
One Component would publish the current avatar body part poses - also of for-
mat Object3DList tagged with ”avatar”, ”bones”, ”pose”.
The other Component subscribed to topics - again of format Object3DList, car-
rying tags of ”avatar”, ”bones”, ”control”, ”velocity”, ”linear”, ”angular” -
awaiting velocities to be applied to individual body parts.

The data format of Object3DList fit for all three cases. It can reference
elements via ID and name, i.e. specify IK target or body part from a string
dictionary or reference auto-generated IDs of scene graph objects. Two times
it reflects the actual 3-dimensional position and orientation description of an
element, one time it is interpreted as linear and angular velocities to be applied.
The way any stage and its data channels are identified is not based on their topic
name or format, but by an overall Device, Component or Processing Module

50https://github.com/SandroWeber/ubii-msg-formats/blob/develop/src/proto/

dataStructure/object3d.proto

109

https://github.com/SandroWeber/ubii-msg-formats/blob/develop/src/proto/dataStructure/object3d.proto
https://github.com/SandroWeber/ubii-msg-formats/blob/develop/src/proto/dataStructure/object3d.proto

Figure 31: Side-by-side Unity3D visualization with consequent delay and de-
viation in pose: 1) user tracking and IK targets, 2) full body pose estimation
and calculation of forces/velocities based on current avatar pose, 3) physically
simulated avatar.

I/O profile including their tags and message formats. The topic is subsequently
retrieved from an identified Component.

Stage 2 was represented in a Processing Module. Relying on the Device spec-
ifications of the other stages, it could then search for all Components required,
link against their input/output channels and start its calculations once a setup
has been established. Scaling this to multiple users is also possible, assuming a
user (stage 1) first chooses or spawns their instance of an avatar (stage 3) and
provides this ownership as input to stage 2. Stage 2 itself can either consist of
a personal user instance of the required modules or one module acting for all
users with additional input channels for user reference.

5.12.2 Unity3D

As mentioned before, the Unity3D implementation built upon the previously
achieved setup for the NRP.
For convenience, all three stages were integrated into the same Unity3D scene
but all communication went through the Ubi-Interact master node.
Individual components were then wrapped into Components, Devices and Pro-
cessing Modules according to Ubi-Interact specifications. Stage 2 specifically
as a Processing Module was run in ”free” mode since its calculations happened
within the Unity3D rendering cycle and thus must happen outside of any iter-
ations controlled by Ubi-Interact.

110

Figure 32: Side-by-side BabylonJS visualization with debugging GUI. From left
to right: IK targets (red), processing and simulated body (here only visualized
as spheres).

5.12.3 Web

Much like in the case of the Unity3D application, all stages had to be com-
municated with Ubi-Interact. Implementation was accomplished by Leonard
Goldstein.

Especially the body pose estimation from IK targets proved to be challeng-
ing, as the choice of existing IK libraries involving constraints of the human
body are limited. The solutions of the JS version of stage 2 are therefore in
general inferior to the Unity3D equivalent.

5.12.4 Results

Expressing the functionality of the different stages via Ubi-Interact concepts
proved helpful with their discoverability and interchangeability. It made it easy
for both alternatives to provide the same profile of functionality (while poten-
tially differing in their implementation) and discover the other stages related
to them. Either alternative could be run and would not require any manual
reconfiguration of the overall setup.

It also allowed for a direct comparison of stage 2 implementations. Either
option can be exchanged or even run in parallel and the results be compared
side-by-side during runtime.

As indicated in Figure 29, stage 2 actually consists of two separate steps.
In the setup described here, they were part of the same Processing Module. If

111

Figure 33: Evaluation of latency (x-axis, milliseconds) and displacement in X-
coordinates (y-axis, meters) between visual output of stage 1 and stage 3. The
upper graph shows the Unity3D case, the lower graph shows the web application.
Adopted from Leonard Goldstein’s thesis.

in the future the setup was to include full body tracking for the user, stage
2 would be split into two separate modules. The first module would then get
instantiated depending on what data stage 1 can provide. This reflects the
goal for Ubi-Interact to conditionally and contextually decide what parts of an
implementation to rely on.
To avoid extra network latency and bandwidth use, both modules should ideally
still run on the same Node. The Node can thus act as an event hub to the rest
of the process without having to go through the broker, but keep the option for
external input/output to/from the module from outside the Node.

Detailed measurements on latency and displacement between solutions are
available in Leonard Goldstein’s thesis mentioned above. End-to-end latency
between movement and visual feedback was well within the limits mentioned in
Section 3.1.4 for the particular test environment (Figure 33).

112

6 Future Work

Naturally, there is a continuous list of improvements to be made - whether it
be for security, performance, convenience or completely new features.
The following sections list some of the items on top of the list.

6.1 Node features

New Ubi-Interact nodes are typically implemented whenever they are needed
for the targeted environment. Their development and feature list extension is
certainly a community effort.
Sometimes, not all features are required at the time of implementation. Features
above the base communication, too, are added whenever there is demand.

The use of Protocol Buffers schema definitions for all messages means that
nodes usually do not degrade over time because of changes to the master node,
only that they may be missing some additional features.

It is a continuous effort to keep nodes and their API consistent and up-to-
date.

6.2 Pub/sub broker performance

For the broker itself, one of the main performance gains would certainly be to
move from topics being handled as integers instead of strings.
This requires implementation of a hashing function consistent for all nodes, after
which lookup and comparison speed would certainly be increased.

All plans to improve broker performance, however, have to be weighted
against the option to adopt an existing pub/sub system if possible.
This decision will be postponed until the additional features of Ubi-Interact for
conditional notifications have been tested, their useful has been (dis)proven and
an evaluation has been made on the possibility to integrate such features into
an existing code base.

6.3 Time Synchronization

Although TopicDataRecords include the possibility for timestamps, there is cur-
rently no time synchronization feature between nodes.

One possible solution to this could be for the master node to send configu-

113

ration for a shared Network Time Protocol51[171] (NTP) server during initial
registration of a client.
Alternatively, if all nodes run in the same local area network, the Precision Time
Protocol52[172] (PTP) should produce higher precision.

6.4 Security

When it comes to support for security and privacy features, there is certainly a
list of additional features that need to be implemented in Ubi-Interact.

The most general and already available method of securing a Ubi-Interact
deployment is on the level of a web server proxy or request access.
Nginx53 is one of the most prominent tools for web server configuration and there
are several options to include user authentication and access control inside an
Nginx configuration for any request before forwarding it to Ubi-Interact.

Beyond this broad level of security, Ubi-Interact should offer services to
integrate with existing user and access management solutions.
This could then be leveraged in Sessions as an additional client and scope control
for any topic and service data, forming communication groups with restricted
access that are isolated against each other.
Such a mechanism would entail additional Session login services and checks that
need to be specified by the creating node.

On the lowest level of integration, this authentication / authorization service
should be made available within NotifyConditions to allow checks on a per-topic
and per-notification basis.

6.5 Conditional Publish/Subscribe

The concepts introduced in Section 5.7.2 for NotifyConditions need to be fully
evaluated.

This will require bigger in-situ studies to determine their usefulness for dif-
ferent scenarios of efficiency, security and privacy.
How Ubi-Interact can support in managing the added complexity and decision
making is another aspect to investigate.

Equally, their impact on performance of the broker and how to implement
them efficiently (e.g. conditions being shared and only being evaluated once for

51http://www.ntp.org/
52https://endruntechnologies.com/pdf/PTP-1588.pdf
53https://nginx.org

114

http://www.ntp.org/
https://endruntechnologies.com/pdf/PTP-1588.pdf
https://nginx.org

updates on the values they depend on, non-critical conditions being evaluated in
tolerable time intervals instead of triggering with each update, etc.) is something
that must be carefully balanced.

6.6 Intent

Llorens-Bonilla et al.[83] already mentioned how crucial it is for their robotic
limbs assistance system to understand its user’s intent.
For any technological extension to human agency, cooperative task performance
is a crucial factor to investigate.

How to generally represent agent intent in a system like Ubi-Interact and
make it a shared context and resource to build upon for all elements involved
in an agent’s activity is another point of future research.
This does not only involve human actions in physical scenarios, but also more
abstract goals and interactions in virtual spaces.

With this, modules working in a tight loop with user input may be able to
e.g. compensate momentary latency spikes and bridge gaps of lost agency.
Alternatively they could assist in or completely take over subtasks more effec-
tively.

To give some possible direcions, methods of human activity recognition[173]
or eye-tracking hardware integration as a Component could surely contribute in
this regard.

115

7 Conclusion

In conclusion, it is the hope of the author that this work as a framework can
contribute to flexible and re-usable setups.

Ubi-Interact is a framework designed to facilitate ambiguous Ubiquitous
Mixed Reality environments where agents are a priori unfamiliar with parts
of their environment and being part of the system does not imply being eligible
to receive all information at all times.

If Ubi-Interact allows for setups to be more maintainable over time and
experimentation to happen more rapidly, then it has fulfilled its purpose.
It should help keep experiments alive, functional and quickly adjustable to new
circumstances at a later point in time.
If different approaches need to be evaluated against each other, the functionality
provided should ease the process as well.

Ideally, this fosters cooperation by reducing the effort to combine setups
developed in parallel.
Reproducing and testing approaches in-situ in combination with other systems
working in the same environment should not impose impeding effort in time and
complexity handling.

Lastly, it is the hope that users of Ubi-Interact find its concepts convenient
to use and beneficial in their application. Ubi-Interact must be continuously
improved with the help and feedback of its users in order to advance.

116

List of Figures

1 ”Hyper-Reality” by Keiichi Matsuda. 4

2 Milgram-Kishino continuum for categorizing AR, VR, MR. [6] . . 7

3 Classification of reality technologies according to Schnabel et al.[17] 15

4 The Multimediated Reality Continuum according to Mann et
al.[19]. Some axes are correlated, thus do not form an orthonor-
mal basis. 16

5 Top: User positioned inside a wall, view of outside geometry
is blocked and unnatural color indicates undesired state. Bot-
tom: ghostly second arm visualizing discrepancy between limb
postures. Adopted from Jonathan Haudenschild’s thesis. 33

6 Experimental setup using the sEMG armband (left), the robot
hand in mid-motion (middle) and the running SNN simulation
using Nengo simulator (right). 35

7 SNN pipeline with segments of EMG data interface, EMG clas-
sification, motion reflexes and robot motor commands. 36

8 Side-by-side view of NRP setup. VR equipment with finger track-
ing (left) and simulation where user’s hand motion translates to
the robot avatar picking up a cube (right). 37

9 First-person view of robot arms. For illustrative purposes, con-
trollers and estimated pose of arms (transparent) are shown as
an overlay. Robot arms (opaque) are in the process of adjusting
their position to the same as the transparent estimate. 38

10 Visual example for context - LinkedIn post by Ralph Aboujaoude
Diaz . 56

11 Overview of general security and privacy properties and the re-
spective threats to them as presented in [142]. 61

12 Ubi-Interact working on different scales, integrating with other
systems. Big master nodes with smaller peripheral client nodes.
Solid blue connections indicate protocols native to Ubi-Interact ,
dashed purple lines are foreign protocols. 72

13 Overview of different elements for a client node implementation.
Dashed lines indicate indirect relationships instead of direct de-
pendencies. 76

117

https://www.linkedin.com/posts/ralph-aboujaoude-diaz-40838313_technology-artificialintelligence-computervision-activity-6912446088364875776-h-Iq?utm_source=linkedin_share&utm_medium=member_desktop_web
https://www.linkedin.com/posts/ralph-aboujaoude-diaz-40838313_technology-artificialintelligence-computervision-activity-6912446088364875776-h-Iq?utm_source=linkedin_share&utm_medium=member_desktop_web

14 Overview of different elements for a master node implementation.
Dashed lines indicate indirect relationships instead of direct de-
pendencies. 78

15 Component and Device properties. 80

16 Properties of ProcessingModules and related objects 83

17 State and lifecycle of Processing Modules. Orange circles are
states, blue squares are execution flow commands accessible from
outside and green rounded squares are automatically triggered
event callback functions. 86

18 Properties of Sessions and IOMappings. 88

19 Both publisher and subscriber can formulate conditions without
knowing specifics about each other. Any potential notification is
evaluated for each publisher-subscriber pair if necessary. 95

20 NotifyCondition API - general conditions on the profiles of pub-
lishers and subscribers can be set via the client profile pub/...sub
option. During calls to evaluate() the client profiles of publisher
and subscriber for which it is to be evaluated are passed as pa-
rameters and methods to retrieve topic data are available. 95

21 Broker throughput of TopicDataRecords. Graphs are split by
record payload size. Protocol used is HTTP/WebSockets. 97

22 Broker throughput of TopicDataRecords. Graphs are split by
record payload size. Protocol used is ZeroMQ. 97

23 Broker throughput running on Raspberry Pi. 99

24 View Clients with their registered Devices and Components. . . . 102

25 Tool to view topic data and available services. Topics will be
receive live updates (green light next to topic name and their
data can be inspected. Services include their request and reply
message format(s). 102

26 Write TopicDataRecords in their JSON object notation and pub-
lish them. 103

27 The example of mouse pointer mirroring (also accessible through
the web frontend) visualized as a graph. Active publishing trig-
gers an animation along respective edges. 104

28 Results of the Python module for OCR on a test image. 106

118

29 Three stages to the setup: 1) user tracking and VR visualization,
2) full body pose estimation and calculation of forces/velocities
based on current avatar pose, 3) physically simulated avatar. . . 108

30 Interchangeable combination of stages. One alternative follows
a web-based implementation (W), the other one is an adopted
version of the Unity3D setup (U). 109

31 Side-by-side Unity3D visualization with consequent delay and de-
viation in pose: 1) user tracking and IK targets, 2) full body pose
estimation and calculation of forces/velocities based on current
avatar pose, 3) physically simulated avatar. 110

32 Side-by-side BabylonJS visualization with debugging GUI. From
left to right: IK targets (red), processing and simulated body
(here only visualized as spheres). 111

33 Evaluation of latency (x-axis, milliseconds) and displacement in
X-coordinates (y-axis, meters) between visual output of stage
1 and stage 3. The upper graph shows the Unity3D case, the
lower graph shows the web application. Adopted from Leonard
Goldstein’s thesis. 112

119

List of Tables

1 Context-Aware Software Dimensions as described by Schilit et
al.[32] . 59

120

A Appendix

A.1 Ubi-Interact broker performance

For reference - hardware abbreviations:
A) AMD Ryzen 5 3600 6-Core Processor (3.60 GHz) CPU, 16GB RAM under
Ubuntu 20.04.5 LTS
B) Raspberry Pi 4 Model B under Raspbian 11

121

122

123

124

125

126

A.2 Acronyms

PR Physical Reality
VR Virtual Reality
AR Augmented Reality
AV Augmented Virtuality
MR Mixed Reality
UMR Ubiquitous Mixed Reality
PE Physical Environment
VE Virtual Environment
ME Mixed Environment
IMU Internal Measurement Unit
IoT Internet of Things
HCI Human-Computer-Interaction
HRI Human-Robot-Interaction
NRP Neurorobotics Platform
IVA Intelligent Virtual Agent / Assistant

127

References

[1] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and map-
ping: part i. IEEE robotics & automation magazine, 13(2):99–110, 2006.

[2] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scara-
muzza, José Neira, Ian Reid, and John J Leonard. Past, present, and
future of simultaneous localization and mapping: Toward the robust-
perception age. IEEE Transactions on robotics, 32(6):1309–1332, 2016.

[3] William A McNeely. Robotic graphics: a new approach to force feed-
back for virtual reality. In Proceedings of IEEE Virtual Reality Annual
International Symposium, pages 336–341. IEEE, 1993.

[4] Parastoo Abtahi, Benoit Landry, Jackie Yang, Marco Pavone, Sean
Follmer, and James A Landay. Beyond the force: Using quadcopters to
appropriate objects and the environment for haptics in virtual reality. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems, pages 1–13, 2019.

[5] Antonio Frisoli, Fabio Salsedo, Massimo Bergamasco, Bruno Rossi, and
Maria C Carboncini. A force-feedback exoskeleton for upper-limb rehabili-
tation in virtual reality. Applied Bionics and Biomechanics, 6(2):115–126,
2009.

[6] Paul Milgram and Fumio Kishino. A taxonomy of mixed reality vi-
sual displays. IEICE TRANSACTIONS on Information and Systems,
77(12):1321–1329, 1994.

[7] Mark EJ Newman. Complex systems: A survey. arXiv preprint
arXiv:1112.1440, 2011.

[8] Maximilian Speicher, Brian D Hall, and Michael Nebeling. What is mixed
reality? In Proceedings of the 2019 CHI conference on human factors in
computing systems, pages 1–15, 2019.

[9] Heinz Von Foerster. On constructing a reality. In Environmental design
research, pages 35–46. Routledge, 2018.

[10] Nick Bostrom. Are we living in a computer simulation? The philosophical
quarterly, 53(211):243–255, 2003.

[11] Robert J Bradbury et al. Matrioshka brains. preprint at http://www.
aeiveos. com/˜ bradbury/MatrioshkaBrains/MatrioshkaBrains. html,
2001.

[12] James J Cummings and Jeremy N Bailenson. How immersive is enough?
a meta-analysis of the effect of immersive technology on user presence.
Media psychology, 19(2):272–309, 2016.

128

[13] Ayoung Suh and Jane Prophet. The state of immersive technology re-
search: A literature analysis. Computers in Human Behavior, 86:77–90,
2018.

[14] Michael Wooldridge. Agent-based software engineering. IEE Proceedings-
software, 144(1):26–37, 1997.

[15] Carolina Cruz-Neira, Daniel J Sandin, and Thomas A DeFanti. Surround-
screen projection-based virtual reality: the design and implementation
of the cave. In Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, pages 135–142, 1993.

[16] Cagatay Demiralp, Cullen D Jackson, David B Karelitz, Song Zhang, and
David H Laidlaw. Cave and fishtank virtual-reality displays: A qualita-
tive and quantitative comparison. IEEE transactions on visualization and
computer graphics, 12(3):323–330, 2006.

[17] Marc Aurel Schnabel, Xiangyu Wang, Hartmut Seichter, and Tom Kvan.
From virtuality to reality and back. 2007.

[18] Peter W Halligan, Gereon R Fink, John C Marshall, and Giuseppe Val-
lar. Spatial cognition: evidence from visual neglect. Trends in cognitive
sciences, 7(3):125–133, 2003.

[19] Steve Mann, Tom Furness, Yu Yuan, Jay Iorio, and Zixin Wang. All real-
ity: Virtual, augmented, mixed (x), mediated (x, y), and multimediated
reality. arXiv preprint arXiv:1804.08386, 2018.

[20] Mark Weiser. The computer for the 21 st century. Scientific american,
265(3):94–105, 1991.

[21] Mark Weiser. Hot topics-ubiquitous computing. Computer, 26(10):71–72,
1993.

[22] Mark Weiser and John Seely Brown. Designing calm technology. Power-
Grid Journal, 1(1):75–85, 1996.

[23] Mark Weiser and John Seely Brown. The coming age of calm technology.
In Beyond calculation, pages 75–85. Springer, 1997.

[24] Donald A Norman. The invisible computer: why good products can fail,
the personal computer is so complex, and information appliances are the
solution. 1998.

[25] Kalle Lyytinen and Youngjin Yoo. Ubiquitous computing. Communica-
tions of the ACM, 45(12):63–96, 2002.

[26] Michael Friedewald and Oliver Raabe. Ubiquitous computing: An
overview of technology impacts. Telematics and Informatics, 28(2):55–
65, 2011.

129

[27] Johann Bizer, Kai Dingel, Benjamin Fabian, Oliver Günther, Markus
Hansen, Michael Klafft, Jan Möller, and Sarah Spiekermann. Tech-
nikfolgenabschätzung: Ubiquitäres Computing und Informationelle Selb-
stbestimmung Studie im Auftrag des Bundesministeriums für Bildung und
Forschung ; TAUCIS. 2006.

[28] Guruduth Banavar and Abraham Bernstein. Software infrastructure and
design challenges for ubiquitous computing applications. Communications
of the ACM, 45(12):92–96, 2002.

[29] Felix Ocker, Birgit Vogel-Heuser, and Christiaan JJ Paredis. A framework
for merging ontologies in the context of smart factories. Computers in
Industry, 135:103571, 2022.

[30] Mahadev Satyanarayanan. Pervasive computing: Vision and challenges.
IEEE Personal communications, 8(4):10–17, 2001.

[31] Albrecht Schmidt. Ubiquitous computing-computing in context. Lancaster
University (United Kingdom), 2003.

[32] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing
applications. In 1994 first workshop on mobile computing systems and
applications, pages 85–90. IEEE, 1994.

[33] Nathalie Bricon-Souf and Conrad R Newman. Context awareness in health
care: A review. international journal of medical informatics, 76(1):2–12,
2007.

[34] Ola Henfridsson and Rikard Lindgren. Multi-contextuality in ubiquitous
computing: Investigating the car case through action research. Informa-
tion and organization, 15(2):95–124, 2005.

[35] Davide Figo, Pedro C Diniz, Diogo R Ferreira, and Joao MP Cardoso.
Preprocessing techniques for context recognition from accelerometer data.
Personal and Ubiquitous Computing, 14(7):645–662, 2010.

[36] Louis Atallah and Guang-Zhong Yang. The use of pervasive sensing for
behaviour profiling—a survey. Pervasive and mobile computing, 5(5):447–
464, 2009.

[37] Gwo-Dong Chen, Chih-Kai Chang, and Chih-Yeh Wang. Ubiquitous
learning website: Scaffold learners by mobile devices with information-
aware techniques. Computers & education, 50(1):77–90, 2008.

[38] Hariharasudhan Viswanathan, Baozhi Chen, and Dario Pompili. Re-
search challenges in computation, communication, and context awareness
for ubiquitous healthcare. IEEE Communications Magazine, 50(5):92–99,
2012.

130

[39] Vicki Jones and Jun H Jo. Ubiquitous learning environment: An adaptive
teaching system using ubiquitous technology. In Beyond the comfort zone:
Proceedings of the 21st ASCILITE Conference, volume 468, page 474.
Perth, Western Australia, 2004.

[40] Adam Greenfield. Everyware: The dawning age of ubiquitous computing.
New Riders, 2010.

[41] Hany F Atlam and Gary B Wills. Iot security, privacy, safety and ethics.
In Digital twin technologies and smart cities, pages 123–149. Springer,
2020.

[42] Thomas R Gruber. A translation approach to portable ontology specifi-
cations. Knowledge acquisition, 5(2):199–220, 1993.

[43] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific american, 284(5):34–43, 2001.

[44] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The semantic web
revisited. IEEE intelligent systems, 21(3):96–101, 2006.

[45] Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology
language overview. W3C recommendation, 10(10):2004, 2004.

[46] Nuno Pereira, Anthony Rowe, Michael W Farb, Ivan Liang, Edward Lu,
and Eric Riebling. Arena: The augmented reality edge networking archi-
tecture. In 2021 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR), pages 479–488. IEEE, 2021.

[47] Hannu Karvonen, Tuomo Kujala, and Pertti Saariluoma. In-car ubiqui-
tous computing: driver tutoring messages presented on a head-up display.
In 2006 IEEE Intelligent Transportation Systems Conference, pages 560–
565. IEEE, 2006.

[48] Reiner Jedermann and Walter Lang. The benefits of embedded
intelligence–tasks and applications for ubiquitous computing in logistics.
In The internet of things, pages 105–122. Springer, 2008.

[49] Kwanho Kim, Hyunjin Kim, Sang-Kuk Kim, and Jae-Yoon Jung. i-rm:
An intelligent risk management framework for context-aware ubiquitous
cold chain logistics. Expert Systems with Applications, 46:463–473, 2016.

[50] W Keith Edwards and Rebecca E Grinter. At home with ubiquitous
computing: Seven challenges. In International conference on ubiquitous
computing, pages 256–272. Springer, 2001.

[51] Tatsuya Yamazaki. Beyond the smart home. In 2006 International Confer-
ence on Hybrid Information Technology, volume 2, pages 350–355. IEEE,
2006.

131

[52] Marianthi Theoharidou, Nikos Tsalis, and Dimitris Gritzalis. Smart home
solutions for healthcare: privacy in ubiquitous computing infrastructures.
Handbook of smart homes, health care and well-being, 2014.

[53] Ken Sakamura and Noboru Koshizuka. Ubiquitous computing technolo-
gies for ubiquitous learning. In IEEE International Workshop on Wireless
and Mobile Technologies in Education (WMTE’05), pages 11–20. IEEE,
2005.

[54] Yong-Woon Moon, Hae-Sun Jung, and Chang-Sung Jeong. Context-
awareness in battlefield using ubiquitous computing: Network centric war-
fare. In 2010 10th IEEE International Conference on Computer and In-
formation Technology, pages 2873–2877. IEEE, 2010.

[55] Konstantina Kilteni, Ilias Bergstrom, and Mel Slater. Drumming in im-
mersive virtual reality: the body shapes the way we play. IEEE transac-
tions on visualization and computer graphics, 19(4):597–605, 2013.

[56] Sang In Jung, Na Kyung Lee, Kyung Woo Kang, Kyoung Kim, and
Youn Lee Do. The effect of smartphone usage time on posture and respi-
ratory function. Journal of physical therapy science, 28(1):186–189, 2016.

[57] Angelo Maravita and Atsushi Iriki. Tools for the body (schema). Trends
in cognitive sciences, 8(2):79–86, 2004.

[58] Andy Clark and David Chalmers. The extended mind. analysis, 58(1):7–
19, 1998.

[59] Konstantina Kilteni, Jean-Marie Normand, Maria V Sanchez-Vives, and
Mel Slater. Extending body space in immersive virtual reality: a very
long arm illusion. PloS one, 7(7):e40867, 2012.

[60] Meel Velliste, Sagi Perel, M Chance Spalding, Andrew S Whitford, and
Andrew B Schwartz. Cortical control of a prosthetic arm for self-feeding.
Nature, 453(7198):1098–1101, 2008.

[61] Maurice Merleau-Ponty. Phenomenology of perception. Routledge, 2013.

[62] Helena De Preester. Technology and the body: the (im) possibilities of
re-embodiment. Foundations of science, 16(2):119–137, 2011.

[63] Melita J Giummarra, Stephen J Gibson, Nellie Georgiou-Karistianis,
and John L Bradshaw. Mechanisms underlying embodiment, disembod-
iment and loss of embodiment. Neuroscience & Biobehavioral Reviews,
32(1):143–160, 2008.

[64] John Schwoebel and H Branch Coslett. Evidence for multiple, distinct
representations of the human body. Journal of cognitive neuroscience,
17(4):543–553, 2005.

132

[65] Shaun Gallagher and Jonathan Cole. Body image and body schema in a
deafferented subject. The journal of mind and behavior, pages 369–389,
1995.

[66] Federica Buongiorno. Embodiment, disembodiment and re-embodiment
in the construction of the digital self. HUMANA. MENTE Journal of
Philosophical Studies, 12(36):310–330, 2019.

[67] Konstantina Kilteni, Raphaela Groten, and Mel Slater. The sense of em-
bodiment in virtual reality. Presence: Teleoperators and Virtual Environ-
ments, 21(4):373–387, 2012.

[68] Jane Aspell, Bigna Lenggenhager, and Olaf Blanke. Multisensory per-
ception and bodily self-consciousness: from out-of body to inside-body
experience. The neural bases of multisensory processes, (BOOK CHAP),
2011.

[69] Bigna Lenggenhager, Michael Mouthon, and Olaf Blanke. Spatial aspects
of bodily self-consciousness. Consciousness and cognition, 18(1):110–117,
2009.

[70] Shaun Gallagher. Philosophical conceptions of the self: implications for
cognitive science. Trends in cognitive sciences, 4(1):14–21, 2000.

[71] Manos Tsakiris, Gita Prabhu, and Patrick Haggard. Having a body versus
moving your body: How agency structures body-ownership. Conscious-
ness and cognition, 15(2):423–432, 2006.

[72] Olaf Blanke and Thomas Metzinger. Full-body illusions and minimal phe-
nomenal selfhood. Trends in cognitive sciences, 13(1):7–13, 2009.

[73] Luna Dolezal. The remote body: The phenomenology of telepresence
and re-embodiment. Human Technology: An Interdisciplinary Journal on
Humans in ICT Environments, 2009.

[74] Manos Tsakiris, Simone Schütz-Bosbach, and Shaun Gallagher. On
agency and body-ownership: Phenomenological and neurocognitive re-
flections. Consciousness and cognition, 16(3):645–660, 2007.

[75] Polona Caserman, Michelle Martinussen, and Stefan Göbel. Effects of end-
to-end latency on user experience and performance in immersive virtual
reality applications. In Joint International Conference on Entertainment
Computing and Serious Games, pages 57–69. Springer, 2019.

[76] Thomas Waltemate, Irene Senna, Felix Hülsmann, Marieke Rohde, Stefan
Kopp, Marc Ernst, and Mario Botsch. The impact of latency on perceptual
judgments and motor performance in closed-loop interaction in virtual
reality. In Proceedings of the 22nd ACM conference on virtual reality
software and technology, pages 27–35, 2016.

133

[77] Daniel Roth and Marc Erich Latoschik. Construction of a validated virtual
embodiment questionnaire. arXiv preprint arXiv:1911.10176, 2019.

[78] Valeria I Petkova, Mehrnoush Khoshnevis, and H Henrik Ehrsson. The
perspective matters! multisensory integration in ego-centric reference
frames determines full-body ownership. Frontiers in psychology, 2:35,
2011.

[79] Geoffrey Gorisse, Olivier Christmann, Etienne Armand Amato, and Simon
Richir. First-and third-person perspectives in immersive virtual environ-
ments: presence and performance analysis of embodied users. Frontiers
in Robotics and AI, 4:33, 2017.

[80] Henrique Galvan Debarba, Sidney Bovet, Roy Salomon, Olaf Blanke,
Bruno Herbelin, and Ronan Boulic. Characterizing first and third per-
son viewpoints and their alternation for embodied interaction in virtual
reality. PloS one, 12(12):e0190109, 2017.

[81] Shunichi Kasahara, Keina Konno, Richi Owaki, Tsubasa Nishi, Akiko
Takeshita, Takayuki Ito, Shoko Kasuga, and Junichi Ushiba. Malleable
embodiment: changing sense of embodiment by spatial-temporal deforma-
tion of virtual human body. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems, pages 6438–6448, 2017.

[82] Nick Yee, Nicolas Ducheneaut, and Jason Ellis. The tyranny of embodi-
ment. Artifact: Journal of Design Practice, 2(2):88–93, 2008.

[83] Baldin Llorens Bonilla and H Harry Asada. A robot on the shoulder:
Coordinated human-wearable robot control using coloured petri nets and
partial least squares predictions. In 2014 IEEE international conference
on robotics and automation (ICRA), pages 119–125. IEEE, 2014.

[84] Christian I Penaloza and Shuichi Nishio. Bmi control of a third arm for
multitasking. Science Robotics, 3(20):eaat1228, 2018.

[85] Nikolas Martens, Robert Jenke, Mohammad Abu-Alqumsan, Christoph
Kapeller, Christoph Hintermüller, Christoph Guger, Angelika Peer, and
Martin Buss. Towards robotic re-embodiment using a brain-and-body-
computer interface. In 2012 IEEE/RSJ International Conference on In-
telligent Robots and Systems, pages 5131–5132. IEEE, 2012.

[86] Ricardo Chavarriaga and José del R Millán. Learning from eeg error-
related potentials in noninvasive brain-computer interfaces. IEEE trans-
actions on neural systems and rehabilitation engineering, 18(4):381–388,
2010.

[87] Christopher Stanton, Anton Bogdanovych, and Edward Ratanasena. Tele-
operation of a humanoid robot using full-body motion capture, example
movements, and machine learning. In Proc. Australasian Conference on
Robotics and Automation, volume 8, page 51, 2012.

134

[88] Aravind Sivakumar, Kenneth Shaw, and Deepak Pathak. Robotic
telekinesis: learning a robotic hand imitator by watching humans on
youtube. arXiv preprint arXiv:2202.10448, 2022.

[89] Nathan Koenig and Andrew Howard. Design and use paradigms for
gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS)(IEEE
Cat. No. 04CH37566), volume 3, pages 2149–2154. IEEE, 2004.

[90] Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Ter-
rence C Stewart, Daniel Rasmussen, Xuan Choo, Aaron Voelker, and
Chris Eliasmith. Nengo: a python tool for building large-scale functional
brain models. Frontiers in neuroinformatics, 7:48, 2014.

[91] Egidio Falotico, Lorenzo Vannucci, Alessandro Ambrosano, Ugo Albanese,
Stefan Ulbrich, Juan Camilo Vasquez Tieck, Georg Hinkel, Jacques Kaiser,
Igor Peric, Oliver Denninger, et al. Connecting artificial brains to robots
in a comprehensive simulation framework: the neurorobotics platform.
Frontiers in neurorobotics, 11:2, 2017.

[92] Marc-Oliver Gewaltig and Markus Diesmann. Nest (neural simulation
tool). Scholarpedia, 2(4):1430, 2007.

[93] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. {TensorFlow}: a system for {Large-Scale} machine
learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16), pages 265–283, 2016.

[94] Michael A Johnson and Mohammad H Moradi. PID control. Springer,
2005.

[95] J Camilo Vasquez Tieck, Sandro Weber, Terrence C Stewart, Arne Roen-
nau, and Rüdiger Dillmann. Triggering robot hand reflexes with human
emg data using spiking neurons. In International Conference on Intelligent
Autonomous Systems, pages 902–916. Springer, 2018.

[96] Sandro Weber, Linda Rudolph, Christian Eichhorn, Daniel Dyrda,
David A Plecher, Gudrun Klinker, et al. Frameworks enabling ubiquitous
mixed reality applications across dynamically adaptable device configura-
tions. Frontiers in Virtual Reality, page 36, 2022.

[97] Antonella Maselli and Mel Slater. The building blocks of the full body
ownership illusion. Frontiers in human neuroscience, 7:83, 2013.

[98] Deepak Tolani, Ambarish Goswami, and Norman I Badler. Real-time in-
verse kinematics techniques for anthropomorphic limbs. Graphical models,
62(5):353–388, 2000.

135

[99] Richard M Murray, Zexiang Li, and S Shankar Sastry. A mathematical
introduction to robotic manipulation. CRC press, 2017.

[100] Robert J Griffin, Georg Wiedebach, Sylvain Bertrand, Alexander
Leonessa, and Jerry Pratt. Walking stabilization using step timing and
location adjustment on the humanoid robot, atlas. In 2017 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages
667–673. IEEE, 2017.

[101] Ken Birman and Thomas Joseph. Exploiting virtual synchrony in dis-
tributed systems. In Proceedings of the eleventh ACM Symposium on
Operating systems principles, pages 123–138, 1987.

[102] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM computing surveys
(CSUR), 35(2):114–131, 2003.

[103] Joao Pereira, Francoise Fabret, Francois Llirbat, and Dennis Shasha. Effi-
cient matching for web-based publish/subscribe systems. In International
conference on cooperative information systems, pages 162–173. Springer,
2000.

[104] Alexis Campailla, Sagar Chaki, Edmund Clarke, Somesh Jha, and Helmut
Veith. Efficient filtering in publish-subscribe systems using binary decision
diagrams. In Proceedings of the 23rd International Conference on Software
Engineering. ICSE 2001, pages 443–452. IEEE, 2001.

[105] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messag-
ing system for log processing. In Proceedings of the NetDB, volume 11,
pages 1–7, 2011.

[106] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source
robot operating system. In ICRA workshop on open source software, vol-
ume 3, page 5. Kobe, Japan, 2009.

[107] Morgan Quigley, Brian Gerkey, and William D Smart. Programming
Robots with ROS: a practical introduction to the Robot Operating System.
” O’Reilly Media, Inc.”, 2015.

[108] Gerardo Pardo-Castellote. Omg data-distribution service: Architectural
overview. In 23rd International Conference on Distributed Computing
Systems Workshops, 2003. Proceedings., pages 200–206. IEEE, 2003.

[109] Joseph M Schlesselman, Gerardo Pardo-Castellote, and Bert Farabaugh.
Omg data-distribution service (dds): architectural update. In IEEE MIL-
COM 2004. Military Communications Conference, 2004., volume 2, pages
961–967. IEEE, 2004.

136

[110] Steve B Furber, Francesco Galluppi, Steve Temple, and Luis A Plana.
The spinnaker project. Proceedings of the IEEE, 102(5):652–665, 2014.

[111] Manuel Huber, Daniel Pustka, Peter Keitler, Florian Echtler, and Gudrun
Klinker. A system architecture for ubiquitous tracking environments. In
2007 6th IEEE and ACM International Symposium on Mixed and Aug-
mented Reality, pages 211–214. IEEE, 2007.

[112] Peter Keitler, Daniel Pustka, Manuel Huber, Florian Echtler, and Gu-
drun Klinker. Management of tracking for mixed and augmented reality
systems. In The Engineering of Mixed Reality Systems, pages 251–273.
Springer, 2010.

[113] Srdan Popić, Dražen Pezer, Bojan Mrazovac, and Nikola Teslić. Per-
formance evaluation of using protocol buffers in the internet of things
communication. In 2016 International Conference on Smart Systems and
Technologies (SST), pages 261–265. IEEE, 2016.

[114] Huiyang Cui, Bin Zhang, Guohui Li, Xuesong Gao, and Yan Li. Contrast
analysis of netconf modeling languages: Xml schema, relax ng and yang. In
2009 International Conference on Communication Software and Networks,
pages 322–326. IEEE, 2009.

[115] Martin Bjorklund. The yang 1.1 data modeling language. Technical report,
2016.

[116] Deepti Raghavan, Philip Levis, Matei Zaharia, and Irene Zhang. Breakfast
of champions: towards zero-copy serialization with nic scatter-gather. In
Proceedings of the Workshop on Hot Topics in Operating Systems, pages
199–205, 2021.

[117] Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory
and practice. The knowledge engineering review, 10(2):115–152, 1995.

[118] Stuart Russell and Peter Norvig. Artificial intelligence: a modern ap-
proach. 2002.

[119] Nahal Norouzi, Gerd Bruder, Brandon Belna, Stefanie Mutter, Damla
Turgut, and Greg Welch. A systematic review of the convergence of aug-
mented reality, intelligent virtual agents, and the internet of things. Arti-
ficial intelligence in IoT, pages 1–24, 2019.

[120] Hyunji Chung and Sangjin Lee. Intelligent virtual assistant knows your
life. arXiv preprint arXiv:1803.00466, 2018.

[121] Fei Tao and Meng Zhang. Digital twin shop-floor: a new shop-floor
paradigm towards smart manufacturing. Ieee Access, 5:20418–20427, 2017.

[122] Fei Tao, He Zhang, Ang Liu, and Andrew YC Nee. Digital twin in in-
dustry: State-of-the-art. IEEE Transactions on industrial informatics,
15(4):2405–2415, 2018.

137

[123] Mengnan Liu, Shuiliang Fang, Huiyue Dong, and Cunzhi Xu. Review
of digital twin about concepts, technologies, and industrial applications.
Journal of Manufacturing Systems, 58:346–361, 2021.

[124] David Jones, Chris Snider, Aydin Nassehi, Jason Yon, and Ben Hicks.
Characterising the digital twin: A systematic literature review. CIRP
Journal of Manufacturing Science and Technology, 29:36–52, 2020.

[125] Michael Grieves and John Vickers. Digital twin: Mitigating unpredictable,
undesirable emergent behavior in complex systems. In Transdisciplinary
perspectives on complex systems, pages 85–113. Springer, 2017.

[126] Concetta Semeraro, Mario Lezoche, Hervé Panetto, and Michele Dassisti.
Digital twin paradigm: A systematic literature review. Computers in
Industry, 130:103469, 2021.

[127] John Seely Brown, Allan Collins, and Paul Duguid. Situated cognition
and the culture of learning. Educational researcher, 18(1):32–42, 1989.

[128] Keiichi Sato. Context sensitive interactive systems design: A framework
for representation of contexts. In Human-Centered Computing, pages
1323–1327. CRC Press, 2019.

[129] Sean L Bowman, Nikolay Atanasov, Kostas Daniilidis, and George J Pap-
pas. Probabilistic data association for semantic slam. In 2017 IEEE inter-
national conference on robotics and automation (ICRA), pages 1722–1729.
IEEE, 2017.

[130] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas
Funkhouser, and Matthias Nießner. Scannet: Richly-annotated 3d re-
constructions of indoor scenes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5828–5839, 2017.

[131] Marius Fehr, Fadri Furrer, Ivan Dryanovski, Jürgen Sturm, Igor
Gilitschenski, Roland Siegwart, and Cesar Cadena. Tsdf-based change
detection for consistent long-term dense reconstruction and dynamic ob-
ject discovery. In 2017 IEEE International Conference on Robotics and
automation (ICRA), pages 5237–5244. IEEE, 2017.

[132] Tomu Tahara, Takashi Seno, Gaku Narita, and Tomoya Ishikawa. Re-
targetable ar: Context-aware augmented reality in indoor scenes based
on 3d scene graph. In 2020 IEEE International Symposium on Mixed
and Augmented Reality Adjunct (ISMAR-Adjunct), pages 249–255. IEEE,
2020.

[133] Hugh Durrant-Whyte, David Rye, and Eduardo Nebot. Localization of
autonomous guided vehicles. Robotics Research, pages 613–625, 1996.

138

[134] Andrew J Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse.
Monoslam: Real-time single camera slam. IEEE transactions on pattern
analysis and machine intelligence, 29(6):1052–1067, 2007.

[135] MWM Gamini Dissanayake, Paul Newman, Steve Clark, Hugh F Durrant-
Whyte, and Michael Csorba. A solution to the simultaneous localization
and map building (slam) problem. IEEE Transactions on robotics and
automation, 17(3):229–241, 2001.

[136] Philipp Fleck, Aimee Sousa Calepso, Sebastian Hubenschmid, Michael
Sedlmair, and Dieter Schmalstieg. Ragrug: A toolkit for situated analyt-
ics. IEEE Transactions on Visualization and Computer Graphics, 2022.

[137] Thomas Holz, Mauro Dragone, and Gregory MP O’Hare. Where robots
and virtual agents meet. International Journal of Social Robotics, 1(1):83–
93, 2009.

[138] Ghazanfar Ali, Hong-Quan Le, Junho Kim, Seung-Won Hwang, and Jae-
In Hwang. Design of seamless multi-modal interaction framework for intel-
ligent virtual agents in wearable mixed reality environment. In Proceedings
of the 32nd International Conference on Computer Animation and Social
Agents, pages 47–52, 2019.

[139] Thomas Plötz, Nils Y Hammerla, and Patrick L Olivier. Feature learn-
ing for activity recognition in ubiquitous computing. In Twenty-second
international joint conference on artificial intelligence, 2011.

[140] Ruizhi Cheng, Nan Wu, Songqing Chen, and Bo Han. Reality check of
metaverse: A first look at commercial social virtual reality platforms. In
2022 IEEE Conference on Virtual Reality and 3D User Interfaces Ab-
stracts and Workshops (VRW), pages 141–148, 2022.

[141] Grant Kelly, Bruce McKenzie, et al. Security, privacy, and confidentiality
issues on the internet. Journal of Medical Internet Research, 4(2):e861,
2002.

[142] Jaybie A De Guzman, Kanchana Thilakarathna, and Aruna Seneviratne.
Security and privacy approaches in mixed reality: A literature survey.
ACM Computing Surveys (CSUR), 52(6):1–37, 2019.

[143] Peter Gabriel, M Bovenschulte, E Hartmann, W Groß, H Strese, KM Ba-
yarou, M Haisch, M Mattheß, C Brune, H Strauss, et al. Pervasive com-
puting: trends and impacts. SecuMedia, Ingelheim, 2006.

[144] Victoria Bellotti and Abigail Sellen. Design for privacy in ubiquitous
computing environments. In Proceedings of the Third European Confer-
ence on Computer-Supported Cooperative Work 13–17 September 1993,
Milan, Italy ECSCW’93, pages 77–92. Springer, 1993.

139

[145] Simson Garfinkel and Gene Spafford. Web security, privacy & commerce.
” O’Reilly Media, Inc.”, 2002.

[146] Dick Hardt. The oauth 2.0 authorization framework. Technical report,
2012.

[147] Natsuhiko Sakimura, John Bradley, Mike Jones, Breno De Medeiros, and
Chuck Mortimore. Openid connect core 1.0. The OpenID Foundation,
page S3, 2014.

[148] John Hughes and Eve Maler. Security assertion markup language (saml)
v2. 0 technical overview. OASIS SSTC Working Draft sstc-saml-tech-
overview-2.0-draft-08, 13, 2005.

[149] Michael Jones, John Bradley, and Nat Sakimura. Json web token (jwt).
Technical report, 2015.

[150] Stian Thorgersen and Pedro Silva. Keycloak-Identity and Access Manage-
ment for Modern Applications. Packt Publishing, 2021.

[151] Marcus A Christie, Anuj Bhandar, Supun Nakandala, Suresh Marru,
Eroma Abeysinghe, Sudhakar Pamidighantam, and Marlon E Pierce. Us-
ing keycloak for gateway authentication and authorization. 2017.

[152] Sabrina Sicari, Alessandra Rizzardi, Luigi Alfredo Grieco, and Alberto
Coen-Porisini. Security, privacy and trust in internet of things: The road
ahead. Computer networks, 76:146–164, 2015.

[153] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno,
Bo Li, Atul Prakash, Amir Rahmati, and Dawn Song. Robust
physical-world attacks on machine learning models. arXiv preprint
arXiv:1707.08945, 2(3):4, 2017.

[154] Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman, Alan J
Lang, Margaret M Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert
Miller, Karen Scarfone, et al. Guide to attribute based access control
(abac) definition and considerations (draft). NIST special publication,
800(162):1–54, 2013.

[155] Vincent C Hu, D Richard Kuhn, David F Ferraiolo, and Jeffrey Voas.
Attribute-based access control. Computer, 48(2):85–88, 2015.

[156] Daniel Servos and Sylvia L Osborn. Current research and open prob-
lems in attribute-based access control. ACM Computing Surveys (CSUR),
49(4):1–45, 2017.

[157] Roger Clarke. Information technology and dataveillance. Communications
of the ACM, 31(5):498–512, 1988.

140

[158] Lucio La Cava, Sergio Greco, and Andrea Tagarelli. Understanding the
growth of the fediverse through the lens of mastodon. Applied Network
Science, 6(1):1–35, 2021.

[159] Óscar Blanco-Novoa, Paula Fraga-Lamas, Miguel A Vilar-Montesinos, and
Tiago M Fernández-Caramés. Creating the internet of augmented things:
An open-source framework to make iot devices and augmented and mixed
reality systems talk to each other. Sensors, 20(11):3328, 2020.

[160] Kristoffer Waldow and Arnulph Fuhrmann. Using MQTT for platform
independent remote mixed reality collaboration. Mensch und Computer
2019-Workshopband, 2019.

[161] Elad Michael, Tyler Summers, Tony A Wood, Chris Manzie, and Iman
Shames. Probabilistic data association for semantic slam at scale. arXiv
preprint arXiv:2202.12802, 2022.

[162] J Edward Swan. The replication crisis in empirical science: Implications
for human subject research in mixed reality. In 2018 IEEE International
Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct),
pages xxxvi–xxxvi. IEEE, 2018.

[163] Nikkan Kogyo Shimbun. Poka-yoke: improving product quality by pre-
venting defects. Crc Press, 1989.

[164] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco:
Common objects in context. In European conference on computer vision,
pages 740–755. Springer, 2014.

[165] Christian Eichhorn, Adnane Jadid, David A Plecher, Sandro Weber, Gu-
drun Klinker, and Yuta Itoh. Catching the drone-a tangible augmented
reality game in superhuman sports. In 2020 IEEE International Sympo-
sium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), pages
24–29. IEEE, 2020.

[166] Christian Eichhorn, Martin Lurz, David A Plecher, Sandro Weber, Monika
Wintergerst, Birgit Kaiser, Sophie L Holzmann, Christina Holzapfel, Hans
Hauner, Kurt Gedrich, et al. Inspiring healthy food choices in a virtual
reality supermarket by adding a tangible dimension in the form of an
augmented virtuality smartphone. In 2021 IEEE Conference on Virtual
Reality and 3D User Interfaces Abstracts and Workshops (VRW), pages
548–549. IEEE, 2021.

[167] David A Plecher, Christian Eichhorn, Annette Köhler, and Gudrun
Klinker. Oppidum-a serious-ar-game about celtic life and history. In
Games and Learning Alliance: 8th International Conference, GALA 2019,
Athens, Greece, November 27–29, 2019, Proceedings 8, pages 550–559.
Springer, 2019.

141

[168] David A Plecher, Annalena Ulschmid, Tim Kaiser, and Gudrun Klinker.
Projective augmented reality in a museum: development and evaluation
of an interactive application. 2020.

[169] David Plecher, Maximilian Ludl, and Gudrun Klinker. Designing an
ar-escape-room with competitive and cooperative mode. In GI VR/AR
Workshop. Gesellschaft für Informatik eV, 2020.

[170] Valeriya Lehrbaum, Asa MacWilliams, Joseph Newman, Nischita Sud-
harsan, Seongjin Bien, Konstantin Karas, Chloe Eghtebas, Sandro Weber,
and Gudrun Klinker. Enabling customizable workflows for industrial ar
applications. 2022 IEEE International Symposium on Mixed and Aug-
mented Reality (ISMAR) [unpublished at time of writing], 2022.

[171] David L Mills. Internet time synchronization: the network time protocol.
IEEE Transactions on communications, 39(10):1482–1493, 1991.

[172] Steve T Watt, Shankar Achanta, Hamza Abubakari, Eric Sagen, Zafer
Korkmaz, and Husam Ahmed. Understanding and applying precision time
protocol. In 2015 Saudi Arabia Smart Grid (SASG), pages 1–7. IEEE,
2015.

[173] Michalis Vrigkas, Christophoros Nikou, and Ioannis A Kakadiaris. A re-
view of human activity recognition methods. Frontiers in Robotics and
AI, 2:28, 2015.

142

	Introduction
	Original Motivation
	Generalizing the Original Goal

	Theoretical Background: Mixed Reality
	Motivational Scenario Revisited
	Ubiquitous Mixed Reality & Environments
	Virtual Reality & Environments
	Mixed Reality & Environments
	Ubiquitous Computing
	Reality vs. Environments

	Re-Embodiment Scenarios
	Related Work
	Body, Mind, Tools and Technology
	Body Image & Body Schema
	Disembodiment vs Re-Embodiment
	Virtual (Re-)Embodiment
	Robotics, Teleoperation, Telepresence

	Libraries, Tools & Platforms
	Unity3D
	Three.js
	babylon.js
	Gazebo
	Nengo
	Neurorobotics Platform
	PID Controller

	Dealing with Discrepancies between Environments
	Robot Hand Control using sEMG
	NRP Re-Embodiment
	Unity VR Client
	Humanoid Robot Avatar
	Motion Control Plugin & Limitations
	PID auto-tuning
	Replicating humanoid motion
	Transition to Ubi-Interact

	Towards building a Mixed Reality Framework
	Overview: Communication Patterns
	Services & Request/Reply
	Event-Based & Publish/Subscribe
	Dedicated Streaming Protocols

	Publish/Subscribe Systems
	Apache Kafka
	ROS
	DDS
	MQTT

	Data Processing in Event-Driven Architectures
	ROS
	Node-RED
	Neurorobotics Platform
	UbiTrack

	Message Descriptions and Formats
	JSON
	Apache Avro
	Google Protocol Buffers
	YANG
	Zero-Copy Formats

	Agents, IVAs, AI
	Digital Twins
	Context-Awareness
	Security & Privacy
	Libraries, Tools & Platforms
	ZeroMQ
	Node.js

	Ubi-Interact
	Requirement Analysis
	General Design Decisions
	System of systems
	Centralized local units
	Architecture Goals
	Message schemas and internal API

	Nodes
	Client Node
	Master Node

	Devices & Components
	Components
	Devices
	Usage

	Processing Modules & Sessions
	Processing Modules
	Sessions
	Comparison with other data processing architectures

	Choice of Implementation Language
	Publish/Subscribe Broker
	Existing Solutions
	Broker features for Ubiquitous Mixed Reality
	Performance Measurements

	Debugging
	Testing
	Web Frontend
	Client-Device-Component Viewer
	Topic and Service Inspector
	Test Record Publishing
	Graph Visualizer

	Applications
	Image Processing Demonstrator
	Entertainment and Sports
	Virtual Supermarket
	Serious Games
	Hololayer

	Modular Re-Embodiment with Ubi-Interact
	Ubi-Interact setup
	Unity3D
	Web
	Results

	Future Work
	Node features
	Pub/sub broker performance
	Time Synchronization
	Security
	Conditional Publish/Subscribe
	Intent

	Conclusion
	Appendix
	Ubi-Interact broker performance
	Acronyms

