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Abstract

There are many research directions in the field of discrete optimization, all of which
interact with one another. This thesis is threefold, and each part focuses on a different
aspect of discrete optimization.

The first chapter deals with a modified version of one of the most classic problems in
combinatorial optimization, namely finding a minimum-cost flow in a directed graph D.
For the modified version, we consider a surface-embedded digraph D together with
non-negative costs on its arcs. Given any integer circulation in D, we study the problem
of finding a minimum-cost non-negative integer circulation in D that is homologous
over the integers to the given circulation. For orientable surfaces, polynomial-time
algorithms have been obtained for different variants of this problem. We complement
these results by showing that the convex hull of feasible solutions has a very simple
polyhedral description. In contrast, we show that the problem is strongly NP-hard for
general non-orientable surfaces, and give the first polynomial-time algorithm for surfaces
of fixed genus. For the latter, we provide a characterization of Z-homology that allows
us to recast the problem as a special integer program, which can be efficiently solved
using some general integer programming techniques.

Many techniques used in integer optimization are based on lattice theory. In the
second chapter, a basic object associated to a lattice is studied: Voronoi cells of lattices.
We consider these with respect to their polyhedral description, and aim for finding small
representations using lifts. Such lifts may yield compressed representations of polytopes
which are typically used to construct small-size linear programs. We construct an explicit
d-dimensional lattice such that every lift of the respective Voronoi cell has 2¢(¢/logd)
facets. On the positive side, we show that Voronoi cells of d-dimensional root lattices
and their dual lattices have lifts with O(d) and O(d log d) facets, respectively.

Keeping the polyhedral view, we investigate another combinatorial problem in the
third chapter. Given any undirected graph G = (V, E'), we deal with the task of finding
a densest subgraph of G, where the density is given by the average node degree. This
problem can be formulated as a linear program. We characterize adjacencies in the
underlying polytope, and tailor a recently published algorithm [Dad+22] for general
convex optimization problems in the separation oracle model to the densest subgraph
problem.
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Zusammenfassung

Diese Arbeit besteht aus drei Teilen und jeder Teil konzentriert sich auf einen anderen
Aspekt der diskreten Optimierung.

Das erste Kapitel befasst sich mit einer Variante eines der klassischen Probleme
der kombinatorischen Optimierung, namlich der Suche nach einem kosten-minimalen
Fluss in einem gerichteten Graphen D. Fiir die modifizierte Version betrachten wir D
zellular eingebettet in eine Flache mit nicht-negativen Kosten auf seinen Bégen. Sei
y eine beliebige ganzzahlige Zirkulation in D. Die Aufgabe ist es nun eine kosten-
minimale, nicht-negative ganzzahlige Zirkulation in D zu finden, die tiber die ganzen
Zahlen homolog zur gegebenen Zirkulation y ist. Auf orientierbaren Flachen ist dieses
Problem effizient 16sbar. Wir ergdnzen diese Resultate, indem wir zeigen, dass die
konvexe Hiille der zuldssigen Losungen eine sehr einfache polyedrische Beschreibung
hat. Im Gegensatz dazu zeigen wir, dass das Problem fiir allgemeine nicht-orientierbare
Flachen NP-schwer ist und geben den ersten polynomiellen Algorithmus fiir Flachen
mit konstantem Euler-Geschlecht. Fiir letzteres liefern wir eine Charakterisierung der
Homologieklassen {iber den ganzen Zahlen, die es uns erlaubt, das Problem als ein
spezielles ganzzahliges Programm umzuformen, das mithilfe einiger Resultate aus der
ganzzahligen Optimierung effizient gelost werden kann.

Viele Techniken, die in der ganzzahligen Optimierung verwendet werden, basieren
auf Resultaten iiber Gitter. Im zweiten Kapitel untersuchen wir Voronoi-Zellen von
Gittern. Wir betrachten diese mit Blick auf ihre polyedrische Beschreibung und ver-
suchen, mithilfe von erweiterten Formulierungen, kleine Darstellungen von ihnen zu
finden. Erweiterten Formulierungen werden typischerweise studiert, um linearen Pro-
gramme mit moglichst wenigen Ungleichungen zu finden. Wir konstruieren ein ex-
plizites d-dimensionales Gitter, sodass jede erweiterte Formulierung der entsprechenden
Voronoi-Zelle 2(¢/1°g4) yiele Ungleichungen benétigt. Auf der positiven Seite zeigen
wir, dass Voronoi-Zellen von d-dimensionalen Gittern, die von Wurzelsystemen erzeugt
wurden, und deren duale Gitter erweiterte Formulierungen mit O(d) bzw. O(dlogd)
Ungleichungen besitzen.

Waéhrend wir den polyedrischen Blickwinkel beibehalten, untersuchen wir im dritten
Kapitel ein weiteres kombinatorisches Problem. Fiir einen beliebigen ungerichteten
Graphen G = (V, E) ist ein dichtester Teilgraph von G gesucht, wobei die Dichte durch
den durchschnittlichen Knotengrad gegeben ist. Dieses Problem kann als lineares Pro-
gramm formuliert werden. Wir charakterisieren die Adjazenzen im zugrundeliegenden
Polytop und schneiden einen kiirzlich veroffentlichten Algorithmus [Dad +22] fiir all-
gemeine konvexe Optimierungsprobleme auf das Problem des dichtesten Teilgraphen
zu.
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Chapter 1
Introduction

Discrete optimization is usually concerned with finding an optimal object within a finite
or at least countable set. Many optimization tasks in this field rely on combinatorial
structures such as graphs. Moreover, most discrete optimization problems can be recast
as an integer program

min{cTz : Az < b,z € Z"}, (IP)

with A € Zm*™ b e Z™, and ¢ € R", which is equivalent to optimizing a linear objective
function over the polyhedron conv{z € Z" : Ax < b}. Therefore, besides combinatorial
and integer optimization, polyhedral combinatorics also plays an important role within
discrete optimization. This thesis is threefold, and each part focuses on different aspects
of discrete optimization. The interplay between the different disciplines in the field of
discrete optimization within the chapters of this thesis is depicted in Figure 1.1.

homologous

circulations

densest Voronoi

subgraphs polyhedral comb. cells

Figure 1.1: The three topics homologous circulations in Chapter 2, Voronoi cells in Chapter 3, and
densest subgraphs in Chapter 4 of this thesis and their interplay with the different
branches in discrete optimization.

For instance, finding minimum-cost circulations satisfying some additional constraints,
discussed in Chapter 2, or detecting dense subgraphs, discussed in Chapter 4 are purely
combinatorial problems. Combinatorial and integer optimization are very closely related



Chapter 1 Introduction

to each other, since as mentioned above most combinatorial optimization problems
can be formulated as integer programs. An example for this can be seen in Chap-
ter 2. Here, we model our combinatorial circulation problem as an integer program
that can be solved using general integer programming techniques. Moreover, studying
these special circulations was motivated by a recent series of work considering gen-
eral integer programs with constraint matrices A whose submatrices have bounded
determinants [Fio+22].

Another common approach for solving discrete optimization problems deals with
finding good representations of the associated polyhedral structure. For instance in
Chapter 4, we consider a linear programming formulation of the densest subgraph prob-
lem, and study its feasible region. While the number of facets of this polyhedron is very
small, this is not the case for most polyhedra arising in discrete optimization. However,
it turns out that many polytopes that arise in the study of polyhedral combinatorics are
linear projections of higher-dimensional polytopes, also called lifts, with significantly
fewer facets. In Chapter 3, we investigate whether this also holds true for Voronoi cells
of lattices, which are basic polytopes in the study of lattice problems. Since lattices
play a crucial role in integer programming, Chapter 3 is concerned with both integer
optimization and polyhedral combinatorics.

In what follows, we give a summary of the three parts of this thesis and highlight
their main results.

Homologous circulations

Our main motivation for the study of minimum-cost circulations with additional con-
straints in Chapter 2 is a result regarding one of the fundamental problems in combina-
torial optimization, namely the stable-set problem. Therefore, let us start with a small
detour, taking a closer look at the stable-set problem.

Given a graph G, a stable-set in G is a subset S < V(G) of the nodes in G such that
no two nodes in S are adjacent. The unweighted stable-set problem asks for a stable-set
of maximum cardinality, whereas in the weighted version the graph is given together
with weights w € RY(®) on the nodes of G, and the problem asks for a stable-set S
of maximum weight > _cw(s). Since node-covers are precisely the complement of
stable-sets, and the node-cover problem, also known as the vertex-cover problem, is
proven to be NP-complete in a paper by Karp [Kar72] in 1972, the decision version of
the unweighted stable-set problem is among the very first problems that are shown to
be NP-complete, which underlines the importance of the stable-set problem. Therefore,
unless P = NP, we cannot find a polynomial-time algorithm that solves the stable-set
problem on general graphs. The stable-set problem can be modeled as an integer



program via max {wTz : Ax < 1,z € Z‘;(()G) }, where A denotes the edge-node-incidence

matrix of G. For bipartite graphs, the corresponding integer program is solvable in
polynomial time. Recall that bipartite graphs are graphs without any odd cycle. A
natural extension to this class is given by the family of graphs that do not contain & + 1
node-disjoint odd cycles, where k£ > 0 is a fixed constant. The smallest number % such
that a graph G satisfies the claimed property is called the odd cycle packing number of G,
denoted by ocp(G).

This extension also translates to a property regarding the incidence matrix. To formal-
ize this, we use the following notion. A matrix A € Z™*" is called totally A-modular, if
every determinant of a square submatrix of A is bounded by A in absolute value. It is
well known that the incidence matrix A of G is totally 20cp(G) modular [GKS95]. In gen-
eral, determining the complexity status of integer programs (IP) with totally A-modular
constraint matrix A for some fixed constant A is an open problem, see e.g., [AWZ17].
However, special cases of the above question have been solved within the last few
years. For instance, Fiorini, Joret, Weltge, and Yuditsky [Fio+22] developed a strongly
polynomial-time algorithm for integer programs with totally A-modular coefficient ma-
trices A that contain at most two non-zero entries in each row for every fixed constant A,
in 2022. Their work was built on a prior published work [Con+20a] about the stable-set
problem for graphs with bounded genus and bounded odd cycle packing number. Within
their approach, they crucially exploit that the considered graphs G admit a special
embedding in a surface of bounded genus. This embedding yields an orientation of
the dual graph D such that stable-sets in G directly correspond to non-negative integer
circulations in D satisfying a particular topological constraint. Informally speaking, flow
sent along the boundary of a face in D corresponds to excluding the corresponding node
in the “primal” graph from the stable-set. Using this construction, their special stable-set
problem can be efficiently reduced to some minimum-cost circulation problem with an
additional topological constraint.

The standard minimum-cost circulation problem is among the most-studied problems
in combinatorial optimization. Given a digraph D = (V, A) with costs ¢ on its arcs, it
asks for an assignment of flow f € R4 satisfying the flow conservation constraints
requiring that the amount of flow “entering” a node v equals the amount “leaving” v,
minimizing the total cost ¢T f.

This problem is studied in various versions. For instance, one may introduce lower
and upper capacity bounds on the arcs, or require satisfying certain non-zero demands
at some nodes. Besides many efficient combinatorial algorithms that solve these general
circulation problems, we mention that they also admit a nice linear programming
formulation. The flow conservation constraints are linear constraints, whose coefficient
matrix equals the node-arc-incidence matrix of D, which is totally unimodular since D
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is a digraph. Therefore, optimal circulations can always be chosen to be integral.
While these general circulation problems are extensively studied in combinatorial
optimization, much less seems to be known about this version.

Problem 1.1 (see Problem 2.1). Given a directed graph D cellularly embedded in a surface
together with non-negative costs c on its arcs and any integer circulation y in D, find a
minimum-cost non-negative integer circulation in D that is Z-homologous to y.

Here, a circulation z is said to be Z-homologous to y if their difference = — y is
a linear combination of facial circulations with integer coefficients, where a facial
circulation is a circulation that sends one unit along the boundary of a single face, see
Figure 1.2. Remember that informally speaking, a face is just a connected region that
arises when cutting out the nodes and arcs of the embedded digraph “drawn” on the
surface. As an example for Problem 1.1, if y is the all-zeros circulation, then y = 0
itself is clearly an optimal solution to Problem 2.1. The same holds true for D being
planar, meaning that D is cellularly embedded in the sphere, since on the sphere all
circulations are homologous, and therefore independent of y the all-zeros circulation is
optimal. However, for general y and general surfaces, the all-zeros circulation might not
be feasible.

Figure 1.2: The circulations that send one unit along the blue directed cycles on the torus
are Z-homologous. In fact, their difference is the sum of three facial circulations
which are depicted in orange.

We distinguish between orientable, such as the sphere and the torus, and non-orientable
surfaces, such as the projective plane and the Klein bottle. In either case, we measure
the “complexity” of a surface with the (Euler) genus g. The sphere has genus g = 0,
the projective plane g = 1, and for the Klein bottle ¢ = 2 holds. In Chapter 2, we will
provide a more detailed introduction to surfaces and homology.

Due to its already displayed connection to the stable-set problem, one might already
suspect Problem 1.1 to be hard, and this is indeed true. However, special cases are
tractable. The main contribution of Chapter 2 is the following theorem.

Theorem 1.2 (see Theorem 2.4). Problem 1.1 can be solved in polynomial time on surfaces
of fixed genus.



For orientable surfaces this even holds true for general genus, which was known
before, see Chambers, Erickson, and Nayyeri [CEN12]. We complement these results
by showing that the convex hull of feasible solutions to Problem 1.1 has a very simple
polyhedral description.

To prove Theorem 1.2 on non-orientable surfaces, we first provide a characterization
of Z-homology via g—1 linear constraints and one parity constraint. This characterization
allows us to recast the problem as a special integer program using only properties of
circulations independently of the embedding and the surface. This integer program has
both a fixed number of constraints and the absolute values of entries in the constraint
matrix bounded by a constant. Such integer programs can be efficiently solved using
proximity results and dynamic programming, see [Art+16].

We note that Problem 1.1 on surfaces of fixed genus ¢ can also be recast as another
integer program (IP) with totally 29-modular constraint matrix A just like the mentioned
stable-set problem with bounded odd cycle packing number. It can be shown that this
integer program describing Problem 1.1 meets the properties required in [Fio+22]
providing an alternative proof of Theorem 1.2. However, when we developed our
algorithm, these results were not yet known.

The connection between the purely combinatorial stable-set problem or the minimum-
cost circulation problem and these special integer programs, shows how closely the
different branches such as combinatorial and integer optimization are intertwined.
Chapter 2 contributes to both subfields and at the same time exploits techniques from
both areas.

This chapter has been created on the basis of a joint publication, and the results are
also presented in:

S. Morell, 1. Seidel, and S. Weltge. “Minimum-cost integer circulations in
given homology classes”. In: Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms (SODA). SIAM. 2021, pp. 2725-2739.

Voronoi cells

In the previous section, we already mentioned some approaches to solve special integer
programs efficiently, although general integer programming covers NP-hard problems.

Besides that, a landmark result by Lenstra [Len83], improved by Kannan [Kan87] and
Dadush [Dad12], provides a polynomial-time algorithm that solves integer programs (IP)
with a constant number of variables n. Considering any polyhedron P = {x € R" : Ax <
b} with A, b integral, the feasibility version of integer programming asks whether there
exists a point z € P n Z". Lenstra’s algorithm efficiently decomposes this problem into
a bounded number of subproblems of smaller dimension considering certain parallel
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slices of P. This approach heavily relies on the famous flatness theorem, first proven
by Khinchine [Khi48] stating that P either does contain a lattice point or is flat in one
direction in the sense that P is only contained in very few lattice hyperplanes orthogonal
to this direction. Here, a lattice A is the image of Z™ under an injective linear map.

Computing a flat direction involves finding a short vector in the dual lattice. Therefore,
Lenstra’s algorithm crucially relies on lattice algorithms (approximately) solving the
shortest vector problem. Given a lattice A € R™ the shortest vector problem asks for
finding a non-zero lattice point z € A\{0} minimizing ||z|. The inhomogeneous version,
or a generalization of this problem is the closest vector problem. For a target vector ¢t € R",
the closest vector problem asks for a lattice point z € A that is closest to ¢, meaning
minimizing ||¢ — z|. Here, | - | denotes the Euclidean norm.

These two problems are classic lattice problems. Both are assumed to be NP-hard and
the closest lattice problem is even shown to be hard to approximate, see [Emd81] for the
general hardness results. Dinur, Kindler, and Safra [DKS98] show that approximating
the closest vector problem within a factor of n(!/1°g1g") js NP-hard. Special cases of
these problems are even assumed to be hard in average-case. Due to their conjectured
hardness, these lattice problems play a crucial role in cryptography, and serve as a
security measure for many cryptographic schemes, see e.g., [MGO02] for an overview.

One famous result, achieving a polynomial-time algorithm for approximating the
shortest lattice vector within a factor of 2(»~1)/2 is the lattice reduction algorithm by
Lenstra, Lenstra, and Lovasz, also called LLL-algorithm [LLL82]. This algorithm provides
a sufficiently accurate approximation for Lenstra’s algorithm, and it has applications
in many other areas, such as cryptoanalysis. In 2010, Micciancio & Voulgaris [MV13]
gave the first deterministic algorithms solving both the shortest and the closest vector
problem using only 20(")_time and space. Their approach heavily relies on Voronoi cell
computations, which motivates our studies.

The Voronoi cell VC(A) of a lattice A < R” is the set of all points in lin(A) for which
the origin is among the closest lattice points, i.e.,

VC(A) :={zx elin(A) : |z|| < |z — z| for all z € A},

where lin(-) denotes the linear hull. The Voronoi cell of a lattice has many favorable
properties. First of all, it is a polytope. Moreover, it is centrally symmetric, and the
lattice translates z + VC(A), z € A, induce a facet-to-facet tiling of lin(A), see Figure 1.3

As mentioned, the closest vector problem is one of the main motivations for our study
of Voronoi cells. In view of that, we note that z is a closest lattice point of some ¢ € R™ if
and only if £ — z € VC(A). Thus, a description of VC(A) in terms of polynomially many
linear inequalities yields an efficient algorithm for testing whether a lattice point is a
closest lattice vector to t. However, in view of the fact that the closest vector problem is



Figure 1.3: A lattice in R? together with its Voronoi cell (shaded gray) and the corresponding
tiling of the plane via its lattice translates.

NP-hard, and the belief that NP # coNP, we do not expect efficient algorithms that, for
general lattices, decide whether a point is the closest lattice vector to ¢.

Besides that, the already mentioned work of Micciancio & Voulgaris [MV13] benefits
from compact representations of Voronoi cells, which recently motivated their study,
see e.g., [HRS20] by Hunkenschroder, Reuland, and Schymura. Furthermore, in his
thesis [Hun20, §4.1] Hunkenschroder displayed that an optimization oracle for the
Voronoi cell of a lattice is sufficient to obtain an algorithm for the closest vector problem
that runs in expected polynomial time using results by Dadush & Bonifas [DB15].

Clearly, polynomial-size lifts for the Voronoi cell of a lattice yield an efficient imple-
mentation of an optimization oracle. The study of lifts of polytopes is a common tool in
polyhedral combinatorics, and a very active research field over the last decade. For a
polytope P, we write xc(P) for the minimum number of facets of any polytope that can
be linearly projected onto P. This number is called the extension complexity of P. In
Chapter 3, we provide bounds on the extension complexities of Voronoi cells of lattices.
Moreover, we will also give a more detailed introduction to lattices and the concept of
lifts.

We remark that the mere existence of polynomial-size lifts or equivalently descriptions
using only polynomially many linear inequalities may not be immediately applicable,
since finding such representations as well as verifying that they indeed yield the Voronoi
cell of a given lattice might be hard. In fact, we initially considered the possibility that
the rich structure of Voronoi cells of lattices results in such small lifts. Indeed, this
is true for several examples as for the prominent class of root lattices and their duals.
However, as a main result within Chapter 3, we show that Voronoi cells of lattices might
be as complicated as stable-set polytopes, i.e., the convex hull of characteristic vectors
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of stable-sets in a graph. Matching the hardness of the stable-set problem, we know that
there are families of graphs for which no lifts of the corresponding stable-set polytopes
with only polynomially many facets exist [GJW18]. This yields the following theorem.

Theorem 1.3 (see Theorem 3.2). There exists a family of n-dimensional lattices A such
that xc(VC(A)) = 29(n/logn)

This bound is very close to the trivial upper bound, since a Voronoi cell of a lattice
can have up to 2(2" — 1) many facets. In the proof of Theorem 1.3, we exploit the
fact that the extension complexity of a face of a polytope P is always at most xc(P).
Moreover, we use that xc(P) = xc(P°) holds for every polytope P with the origin
in its interior, where P° is the dual polytope of P. With this in mind, we display a
construction that yields a lattice for each 0/1-polytope Q whose dual Voronoi cell has
a face that projects onto ). Very roughly speaking, we define the lattice as the set of
integral solutions to a system of homogenized diophantine equations that arise from
the constraints describing (). Using this construction, a specific set of lattice vectors
directly corresponds to the integer points in ). These lattice vectors appear as outer
normal vectors for VC(A) in one “region” of the Voronoi cell. In the dual VC(A)°, they
correspond to vertices of a particular face. To prove Theorem 1.3, we are left with
finding a 0/1-polytope with high extension complexity that fits for our construction. In
recent years, lower bounds on extension complexities have been established for various
prominent polytopes, including many 0/1-polytopes, such as cut polytopes [Fio+15;
KW15; Cha+16], matching polytopes [Rot17], and certain stable-set polytopes [GJW18].
To the best of our knowledge, we believe that the bound on the stable-set polytope by
GO00s, Jain & Watson [GJW18] provides the best bound for Theorem 1.3 when using our
construction. Furthermore, we even extended Theorem 1.3 for spectrahedral lifts and
small approximations.

This Chapter 3 relies on a joint publication, and the results are also presented in:

M. Schymura, L. Seidel, and S. Weltge. “Lifts for Voronoi cells of lattices”.
In: arXiv:2106.04432, to appear in Discrete & Computational Geometry 2023
(2021).

Densest subgraphs

As mentioned above, Chapter 4 deals with the underlying polyhedral structure of
the densest subgraph problem. In general, knowing a linear programming formula-
tion min{cTz : Az < b,z € R"} with underlying polyhedron P = {z € R" : Az < b}
opens a wide range of algorithms for solving the problem. Most prominent, though
not guaranteed to run in polynomial-time, is Dantzig’s simplex algorithm [Dan16].



Geometrically, this algorithm starts at a vertex of the feasible region P, and moves
along edges of P towards vertices that admit a better objective value until it reaches an
optimal vertex. Being aware of a concrete characterization of the edges and vertices
of P can help to translate this general approach into a combinatorial algorithm.

Motivated by this, Hausmann and Korte characterized the edges of different polytopes
associated with classical optimization problems such as the matching or independence
polytope in [HK78]. One prime example of an algorithm traversing the edges of the
corresponding polytope is Edmonds’ Matching algorithm [Edm65a; Edm65b] following
Berge’s idea of using augmenting paths [Ber57]. In fact, two vertices of the matching
polytope corresponding to matchings that only differ by an augmenting path are adjacent,
see Chvatal [Chv75]. Moreover, the greedy algorithm for matroids [Rad57; Edm71]
follows also the edges of the underlying polytope.

Within Chapter 4 we consider the densest subgraph problem defined as follows.

Problem 1.4 (see Problem 4.1). Given an undirected graph G = (V, E), find a non-empty

iooe [E(H)|
subgraph H of G that maximizes |-

Analogously, we can phrase Problem 1.4 as finding a subgraph whose average degree
is maximized, see Figure 1.4.

Figure 1.4: A graph G together with its densest subgraph H highlighted in blue, satisfying
[E(H)|/[V(H)| = 1.9.

At first glance, this problem does not have a linear objective function. However, due to
Charikar it admits a simple linear programming formulation [Cha00] providing solvabil-
ity in polynomial time, which was known before, see [PQ82; Gol84]. In Charikar’s work
it is also shown that a simple greedy approach serves as a 2-approximating algorithm
for Problem 1.4. Despite having exact algorithms, simple approximation algorithms
seems to be very popular, see e.g., [Hoo+16], or [Boo+20]. This points out the im-
portance of a very simple and intuitive algorithm, and indicates that the development



Chapter 1 Introduction

of exact algorithms is not yet completed. To the best of our knowledge, so far none of
the combinatorial algorithms directly use Charikar’s linear programming formulation.
Therefore, we started with exploring its polyhedral structure. We derived the following
characterization of vertices and edges of the feasible region Pgeps in Charikar’s linear
programming formulation.

Theorem 1.5 (see Theorem 4.2 & 4.3). Each vertex of Pgens. directly corresponds to a
non-empty connected subgraph H of G and vice versa. Moreover, two vertices of Pyense
corresponding to different subgraphs Hy, Hy share an edge if and only if

* H, and H, are disjoint, or

* one is a subgraph of the other, w.l.o.g. Hy ¢ Hs, and H; is obtained from H, either
via deleting one edge, or one connected subgraph.

After gaining this knowledge about the underlying polyhedral structure, we consider
possible approaches for exploiting it in an algorithm. Obviously, all algorithms that
follow the edges of the underlying polytope, can only be efficient if there exist short
paths between any two vertices. The combinatorial diameter of a polytope measures
the length of the greatest shortest path between two vertices. Therefore, the diameter
serves as a lower bound on the number of steps a method that follows edges might take
to obtain an optimal solution. In Chapter 4, we show that the combinatorial diameter of
Pgense is bounded by 3 for every graph, which does not directly rule out the approach
of following edges. However, we will also give evidence why it might be difficult to
develop a simple algorithm that follows edges.

Therefore, instead of imitating the simplex procedure, we demonstrate another
approach. We tailor a recently published algorithm to the densest subgraph problem.
This algorithm by Dadush, Hojny, Huiberts, and Weltge [Dad+22] is designed for general
convex optimization problems in the separation oracle model. Their oracle algorithm
performs natural and simple update steps and is easy to implement, which makes it very
applicable in practice, and therefore it fits at least our goal of having an algorithm that
only performs simple updates.

This Chapter 4 resulted from conversations with my supervisor Stefan Weltge. Similar
results to Theorem 1.5 discussed in Section 4.3.1 have been independently obtained by
Milena Akemann during her master’s thesis project [Ake22].
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Preliminaries

Throughout this work, we assume the reader to be familiar with basic facts about linear
and integer programming as well as polyhedra. For detailed background information,
we refer to the book of Schrijver [Sch98]. Furthermore, two chapters deal with combina-
torial problems based on graphs. Thus, the book of Korte & Vygen [KV11] might serve
as an additional reference for standard graph terminology. Since, every chapter deals
with different aspects of discrete optimization, we will introduce all problem specific
concepts locally. Here, only the basic terminology and notational conventions used
during the work are provided. Using a subscript, e.g., R>(, we restrict the real numbers
to be non-negative. We write [n] := {1,2,...,n} for a positive integer n. The all-zeros
vector in R" is denoted by 0,,, the all-ones vector by 1,,, and we omit the subscript if the
dimension is clear from the context. We use the standard Euclidean scalar product (-, -)
as well as the associated Euclidean norm (¢2-norm). Thus, | - | denotes the Euclidean
norm, unless otherwise specified. For any = € R" the supremum norm |z| ., denotes the
greatest entry of x in absolute value.

11






Chapter 2

Minimum-cost integer circulations in given
homology classes

2.1 Background

Finding optimal subgraphs of a surface-embedded graph that satisfy certain topological
properties is a basic subject in topological graph theory and an important ingredient in
many algorithms, see, e.g., [EN11, §1]. Motivated by recent work of Conforti, Fiorini,
Joret, Huynh, and Weltge [Con+20a; Con+20b], we study a variant of the minimum-
cost circulation problem with such an additional topological constraint. In [Con+20a;
Con+20Db], it was crucially exploited that the stable-set problem for graphs with bounded
genus and bounded odd cycle packing number can be efficiently reduced to the below-
stated Problem 2.1. While the standard minimum-cost circulation problem is among
the most-studied problems in combinatorial optimization, much less seems to be known
about this version.

Problem 2.1. Given a directed graph D cellularly embedded in a surface together with
non-negative costs c on its arcs and any integer circulation y in D, find a minimum-cost
non-negative integer circulation in D that is Z-homologous to y.

Here, a circulation z is said to be Z-homologous to y if their difference = — y is a linear
combination of facial circulations with integer coefficients, where a facial circulation is
a circulation that sends one unit along the boundary of a single face, see Figure 2.1.
If x — y is a linear combination of facial circulations with real coefficients, we say
that 2 is R-homologous to y. As an example, if y is the all-zeros circulation, then y
itself is clearly an optimal solution to Problem 2.1. However, for general y the all-zeros
circulation might not be feasible. In fact, if the surface is different from the sphere
and the projective plane, there are actually infinitely many homology classes, and their
characterization is a basic subject in algebraic topology. We will provide more formal
definitions in Section 2.2.

13
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Figure 2.1: The circulations that send one unit along the blue directed cycles on the torus
are Z-homologous. In fact, their difference is the sum of three facial circulations
which are depicted in orange.

In this chapter, we introduce this problem to the combinatorial optimization commu-
nity, with a particular emphasis on the case in which the surface is non-orientable. While
we complement existing results for orientable surfaces and show that the underlying
polyhedra are actually easy to describe, only little seems to be known in the case of non-
orientable surfaces. Our main result is a polynomial-time algorithm for non-orientable
surfaces of fixed genus. Moreover, we show that the problem becomes NP-hard for
general non-orientable surfaces.

For the case of orientable surfaces, Chambers, Erickson, and Nayyeri [CEN12] show
that Problem 2.1 can be solved in polynomial time. Their approach is based on
an exponential-size linear program that can be solved using the ellipsoid method
in near-linear time, provided that the surface has small genus. Dey, Hirani, and
Krishnamoorthy [DHK11] consider a variant of Problem 2.1 defined on simplicial com-
plexes of arbitrary dimension, in which the (weighted) ¢;-norm of a chain homologous
to y is to be minimized. For the case of an orientable surface, they derive a polynomial-
time algorithm that is based on a linear program defined by a totally unimodular
matrix.

We complement these results by showing that the convex hull of feasible solutions
to Problem 2.1 has a very simple polyhedral description. To this end, notice that Prob-
lem 2.1 asks for minimizing a linear objective over the convex hull of all non-negative
integer circulations in D that are Z-homologous to y. We will denote this polyhedron
by P(D,y). Moreover, let P(D) be the convex hull of non-negative integer circulations
in D, which (as a network-flow polyhedron) has a simple linear description. Notice
that any integer circulation x that is Z-homologous to y must also be R-homologous
to y. In other words,  must be contained in the affine subspace of all circulations that
are R-homologous to y, which we denote by L(D,y). Surprisingly, it turns out that it
suffices to add the equations defining L(D, y) to a description of P(D) in order to obtain
one for P(D,y).

14



2.1 Background

Theorem 2.2. Let D be a directed graph that is cellularly embedded in an orientable
surface and let y be any integer circulation in D. Then, P(D,y) = P(D) n L(D,y).

We will provide an explicit description for L(D, y) later. Unfortunately, Theorem 2.2
does not hold for non-orientable surfaces. In fact, we show that Problem 2.1 becomes
inherently more difficult on general non-orientable surfaces.

Theorem 2.3. Problem 2.1 is strongly NP-hard on general non-orientable surfaces.

While Dunfield & Hirani in [DH11] show that variants of Problem 2.1 become NP-
hard on 3-dimensional simplicial complexes, their approach does not seem to apply to
surfaces. In fact, the reduction therein crucially relies on 3-dimensional gadgets, and
equivalent 2-dimensional configurations are not obvious to us. We obtain a reduction
from general 3-SAT instances, showing that Problem 2.1 is indeed (strongly) NP-hard.
To this end, we exploit ideas developed in [Con+20a] to reduce very particular instances
of the stable-set problem to Problem 2.1.

On the positive side, we show that Problem 2.1 becomes tractable when dealing with
non-orientable surfaces of fixed genus:

Theorem 2.4. Problem 2.1 can be solved in polynomial time on non-orientable surfaces of
fixed genus.

A special case of Problem 2.1 was already treated and shown to be solvable in
polynomial time in [Con+20a], where only instances arising from very specific stable-
set problems were considered. Here, we consider the general problem. The algorithm
in [Con+20a] is based on an alternative characterization of Z-homology, which we
have to replace by a more general one, see Theorem 2.5. In fact, in the instances
considered in [Con+20a] the orientation of the arcs of D is already determined by
an embedding scheme (defined in Section 2.2.1) of the dual graph, which we cannot
assume here. Moreover, it is exploited that, in their setting, optimal circulations can be
found in {0, 1}4, which is also not the case for a general instance of Problem 2.1. Using
a bound of Malni¢ and Mohar [MM92] on the number of certain non-freely-homotopic
disjoint closed curves, it is then shown that an optimal circulation can be decomposed
into few disjoint closed walks that can be enumerated efficiently. In this approach,
the existence of optimal solutions with small entries is crucial to obtain a polynomial
running time.

We propose another decomposition technique that enables us to reformulate Prob-
lem 2.1 as an integer program in standard form with a constant number of equality
constraints, provided that the genus is fixed. Applying results on the proximity of integer
programs, the resulting problem can be efficiently solved using dynamic programming.

15
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Our approach does not rely on further topological ingredients, in particular we do not
require bounds from [MM92].

Outline In Section 2.2, we provide a brief introduction to surfaces and graph embed-
dings, focusing on the facts that are necessary for the two subsequent sections. Our
polynomial-time algorithm for Problem 2.1 on non-orientable surfaces with fixed genus
is described in Section 2.3. This section relies on a characterization of Z-homology
that is provided later, so that the presented approach can be viewed without using
information regarding homology. The proof of Theorem 2.3 is presented in Section 2.4.
The introduction to graph embeddings continues in Section 2.5. Moreover, we present
alternative characterizations of homology. More precisely, Section 2.5.1 is devoted to the
case of orientable surfaces and contains a discussion of Theorem 2.2. The non-orientable
case is treated in Section 2.5.2. Here, we provide a proof for a main ingredient (Theo-
rem 2.5) of our algorithm. We close this chapter with a discussion of open problems in
Section 2.6.

2.2 Preliminaries

We start with a brief introduction to surfaces, graph embeddings and the concept of
homology. Further details and illustrations will be provided in Section 2.5.

2.2.1 Surfaces and embeddings

A surface is a non-empty connected compact Hausdorff topological space in which each
point has an open neighborhood that is homeomorphic to the open unit disc in the plane.
Examples of such surfaces are the sphere, the torus, and the projective plane. While the
first two are orientable surfaces, the latter one is non-orientable. Up to homeomorphism,
each surface S can be characterized by a single non-negative integer called the Euler
genus g of S together with the information whether S is orientable. If S is orientable,
then g is even and S can be obtained from the sphere by deleting g/2 pairs of open discs
and, for each pair, identifying their boundaries in opposite directions (“gluing handles”).
Otherwise, S is non-orientable and can be obtained from the sphere by deleting g > 1
open discs and, for each disc, identifying the antipodal points on its boundary (“gluing
Mobius bands”), see Figure 2.2 for an illustration.

In the following, we consider (undirected and directed) graphs G = (V, E') embedded
in a surface with non-crossing edges. We require that every face of the embedding is
homeomorphic to an open disc, which is called a cellular embedding.
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Figure 2.2: A graph embedded in the Klein bottle, the non-orientable surface of Euler genus 2. On
the left, the surface is embedded in 3-dimensional space. Recall that the Klein bottle
is obtained from the sphere by deleting two open discs and, for each disc, identifying
the antipodal points on its boundary. On the right, an equivalent embedding of the
same graph is shown, where these discs are depicted in gray.

Regardless of the (global) orientability of a surface, one can define a local orientation
around each node v of G. If the surface is orientable, these local orientations can be
chosen in a way that they are consistent along each edge. In non-orientable surfaces,
this is not possible. To keep track of these inconsistencies, one can represent any
cellular embedding by an embedding scheme 11 = (w, \): The rotation system w describes,
for all nodes, a cyclic permutation of the edges around a node induced by the local
orientation. The signature A € {—1, +1}¥ indicates, for every edge, whether the two
local orientations (clockwise vs. anti-clockwise) of the adjacent nodes agree (+1) or not
(—1), see Figure 2.4. We assume that an embedded graph is always given together with
such an embedding scheme. Conversely, given any collection 7 of cyclic permutations
of the edges incident to nodes and any vector A € {—1,+1}¥, there exists a cellular
embedding for which IT = (7, \) is a corresponding embedding scheme.

For each face of the embedding of G, let us pick exactly one closed walk along the
boundary of this face. In this way, we obtain a collection of closed walks which we
call TI-facial walks and denote by F. A more formal definition of F' is provided in
Section 2.5. Euler’s Formula states

VI=[El+|F| =2~y 2.1

where g is the Euler genus of the surface.

Given a graph G = (V, E) with embedding scheme II = (7, \) and a set of II-facial
walks F, we define a dual graph G* = (V*,E*) as follows: Each node f* of G*
corresponds to a Il-facial walk f € F' of G and each edge e¢* € E* corresponds to an
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edge e € E. If the edge e is part of two II-facial walks f and g in G, the dual edge e¢*
is incident to f* and g*. As two II-facial walks may share more than one edge and an
edge might appear twice in the same Il-facial walk, the dual graph may have parallel
edges and loops. If a graph is directed with arc set A, we define the dual graph to be
the dual graph of the underlying undirected graph and an arc that corresponds to the
dual edge e* is called e.

We will equip the dual graph with a dual embedding scheme II* = (7* A\*): the
traversing directions of the II-facial walks in F' directly correspond to the dual rotation
system 7%, and the signature A\*(-) of a dual edge is positive if the corresponding edge
in G is used in opposite direction by the two corresponding IT-facial walks, and negative
otherwise. This dual embedding scheme defines an embedding in the same surface.
The collection F* of IT*-facial walks is chosen in a way that their walking directions
correspond to the rotation system of GG. An illustration of the dual embedding scheme
and its relation to I1-facial walks is given in Figure 2.3.

Figure 2.3: An extract of an embedded graph together with its dual graph (transparent). The
embedding scheme and the associated dual embedding scheme are depicted in
green. Corresponding facial walks are depicted in blue.

Let D = (V,A) be a digraph with underlying undirected graph G = (V, E) and
dual graph G*. For any walk W = (vy,e1,v9,€9,...,e-1,v¢) in G, we define the
corresponding characteristic flow x(W) € Z* to be an assignment vector on the arcs
of D indicating the total flow over the arcs when sending one unit of flow along W.
This means that for (v,w) € A, x(W)((v,w)) equals the number of appearance of the
subsequence (v, {v, w},w) in W minus the number of appearance of (w, {v, w},v).

2.2.2 Homology

Given a directed graph D = (V, A) cellularly embedded in S, two integer circula-
tions z,y € Z* are said to be Z-homologous if x — y = 2 rer Nrx(f), where 1y € Z

18



2.3 A polynomial-time algorithm on non-orientable surfaces with fixed genus

for each facial walk f € F. Let ¢ € Z**¥ be the matrix whose columns are the
vectors x(f), f € F. Problem 2.1 can then be reformulated as

min{cTz : v =y+0dn, v>0,zeZ neZ"}. (2.2)

For the case of an orientable surface, it is easy to see that the matrix ¢ is totally
unimodular [DHK11], which implies that Problem 2.1 can be solved efficiently in this
case. Unfortunately, ¢ is not totally unimodular whenever the surface is non-orientable.

2.3 A polynomial-time algorithm on non-orientable surfaces
with fixed genus

While it is easy to obtain a polynomial-time algorithm for Problem 2.1 on orientable
surfaces, much more work is required for non-orientable surfaces. In this section we
describe an algorithm that runs in polynomial time for surfaces of fixed Euler genus.
We will later see that the problem becomes NP-hard for general surfaces. A main
ingredient of our algorithm is the following characterization of integer circulations that
are Z-homologous to a given one.

Theorem 2.5. Given a digraph D = (V, A) cellularly embedded in a non-orientable surface
of Euler genus g, and an integer circulation y in D, there exist vectors wi,...,wy—1 €
{0,+1,+2}4, h e {0,1}4 such that the following holds. An integer circulation = € Z4
is Z-homologous to y if and only if

(wi, xy ={w;,yy  forallie[g—1] (2.3)
and
(hyzy = (h,y) (mod 2). (2.4)
Moreover, wi, . ..,wy—1, h can be computed in polynomial time.

The constraints in (2.3) describe the affine subspace of all = for which there ex-
istny € R for f € F such that x —y = >, o nyx(f). The parity constraint in (2.4) then
characterizes those « for which the coefficients 7y can be chosen to be integer. A proof
of this characterization is given in Section 2.5.2.

From now, we fix a non-orientable surface of Euler genus g, and let wy, ..., wy—1, h be
as in Theorem 2.5. Recall that in Problem 2.1 we are given costs ¢ € R4, and an integer
circulation 3 € Z4 in D, and we want to find a minimum-cost non-negative integer
circulation that is Z-homologous to y.

In what follows, we will exploit the basic fact that every non-negative circulation can
be decomposed into circulations that correspond to directed cycles. To see whether a sum
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of such circulations is feasible for Problem 2.1, we make use of the following notation.
Let d € Z9~! be the vector whose i-th entry is equal to (w;, y). Set e := (h,y) (mod 2) €
{0, 1}. For each walk W in D, we consider the vector ¢(W) € Z9~! whose i-th entry is
equal to (w;, x(W)). Moreover, set p(W) := (h, x(W)) (mod 2) € {0,1} and B := 2|V]|.

A closed walk W = vy, a1,v9,...,05_1,a5_1, v in D is called a B-walk if |g(W;)|o <
B holds for all subwalks W; = vy,a1,vs,...,v;_1,a;_1,v; of W. Notice that every
directed cycle is a B-walk, and hence every non-negative integer circulation is the sum
of circulations that correspond to B-walks. We consider the set

Q:={(gW),p(W)) : Wisa B-walkin D}.
Lemma 2.6. For each (q,p) € Q, one can compute in polynomial time a B-walk W =: W,
in D with ¢q(W) = q and p(W) = p that minimizes cTx(W).

For the sake of exposition, we provide a proof at the end of this section. Notice
that || < 2(2B + 1)97! = poly(|V|), hence the collection {W,, : (¢,p) € Q} can be
computed in polynomial time. Let us now consider the following set

€= { Z 2qpX(Wap) : 2qp € Z>o for every (g,p) € €,
(a,p)e2
Z Zqpd = d? Z ZqpP =€ (IIlOd 2)}
(g:p)eQ (q,p)eQ

of non-negative integer circulations in D.

Lemma 2.7. Every circulation in C is feasible for Problem 2.1. Moreover, C contains at
least one optimal solution.

Again, we postpone the proof to the end of this section. Setting ¢, ,, := c"x (W) for
each (q,p) € Q, by Lemma 2.7 it remains to obtain a solution for

min{ Z CopZqp © ZE€ Zgo, Z Zqpq = d, Z Zqpp = € (mod 2)}
(

q,p)EQ (g,p)e (g,p)e2
= min { Z CqpZqp * %€ Zgo, k € Z>o, Z Zqpq = d, 2 2qpp = 2k + e}.
(¢,p)eQ (g,p)e (g,p)e

Notice that the latter is an integer program in n := || + 1 = poly(|V|) variables of the
form

min {ET:L' c Ar=b,z€ Zgo},

where A € Z9%" and b € Z9. Recall that the entries in A are polynomially bounded
in n, and that ¢ (the number of rows in Az = b) is assumed to be fixed. It is known
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that integer programs of this form can be solved in polynomial time. For instance, a
polynomial-time algorithm for this setting is described in [Art+16], which is based on
Papadimitriou’s pseudopolynomial-time algorithm for integer programs with a fixed
number of constraints [Pap81]. Another approach can be found in [EW19, Thm. 3.3].
This finishes the proof of Theorem 2.4. We close this section by providing the proofs for
Lemma 2.6 and Lemma 2.7.

Proof of Lemma 2.6. We determine each W, , by computing shortest paths in the follow-
ing auxiliary graph D = (V, A) defined by

V= {(v,(a:,y)) cveV, xe {—B,...,B}gfl,yeZQ},

) (v, (2,9), (0, (&) € V, (0,0) € A,
A= { (0, (. 9)), (0 (@) = @+ Mx((v,0)) = . }
y+ Chox((0,0)) = o/ (mod 2)

Here, M is the matrix whose rows are the vectors wy, ..., w;_,. Observe that for every
walk W, we have My (W) = ¢(W). The cost ¢ of an arc a = ((v, (z,v)), (v/, (', y)))
in A is defined by ¢(a) := ¢((v,v’)). Notice that D can be constructed in polynomial
time and that ¢ is non-negative.

Let (¢,p) € © and fix a node v € V. We observe that there is a bijection between B-
walks W in D starting (and ending) at v with ¢(W) = q and p(W) = p, and walks W
in D from (v, (0,0)) to (v,(¢(W),p(W))). Moreover, the costs of W and W coin-
cide. Indeed, let W be a B-walk in D with ¢(W) = ¢ and p(W) = p that starts at v.
Let vy, ..., vk, v1 be the sequence of nodes visited by W, and let W; denote the respective
subwalk from v; to v;. Then, walk W in D is obtained by visiting the nodes

(v1,(0,0)), (v2, (q(W2), p(W2))), - - ., (vk, (a(Wk), p(WE))), (v1, (¢(W),p(W)))

in the given order, and the cost of I equals the cost of .

Conversely, consider any walk W from (v, (0,0)) to (v, (g,p)) in D, and let (v;, (2, y:)),
i =1,...,k, be the sequence of nodes it visits. Define W to be the closed walk that
visits the nodes vy, ...,v;. We see that W is a B-walk with ¢(W) = ¢ and p(W) = p,
and that the costs of W and W coincide.

We conclude that a B-walk W in D with ¢(WW) = ¢ and p(W) = p minimizing ¢Tx (W)
can be found by computing a shortest path in D from (v, (0,0)) to (v, (¢(W), p(W)))
for every v € V, and returning the walk in D that corresponds to the path of minimum
length. O

Proof of Lemma 2.7. Again, let M be the matrix whose rows are the vectors w{, ..., w;_;.
Observe that for every walk W, we have M x (W) = ¢q(W). Moreover, by Theorem 2.5 a
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non-negative integer circulation x in D is feasible for Problem 2.1 if and only if Mz = d
and (h,z) = e (mod 2).

Let 2 = >, pyea Za.pX(Wq,p) e any circulation in C. First, notice that each x(Wq,p) is
a non-negative integer circulation in D, and so is x. Moreover, we have

Mz = Z ZgpMx(Wyp) = Z 2qpd(Wap) = Z Zgpq = d
(a,p)E (a,p)eQ (a,p)e

as well as

Chyw)y = Z z2gp ey x(Wop)) = Z zgpp = € (mod 2).
(g:p)eQ (g,p)ef?

Thus, z is feasible for Problem 2.1.

Now let z* be an optimal solution to Problem 2.1. As discussed earlier, we may
decompose z* into B-walks W7, ..., Wy such that x* = Zle zix(W;), where zq, ..., 2 €
Zxo. Clearly, we have that (¢;,p;) := (¢(W;),p(W;)) € Q fori = 1,..., k. We consider
the non-negative integer circulation

k
2’ = ) aix(Wap)-
i=1

As z* is feasible, we have Mx* = d and (h, z*) = e (mod 2), which yields

k k
Z 2iq; = Z ziMx(W;) = Mz* =d
i=1 i=1

as well as
k k
Z ZipPi = Z 2q <h7 X(M/Z)> = <h,11?*> =e (mOd 2)
i=1 i=1
This shows that 2/ € C. In particular, z’ is also feasible for Problem 2.1. By definition
of Wy, p,» we have ¢Tx(Wy, p,) < c"x(W;) for i = 1,...,k, which yields ¢T2’ < cTa*.
Therefore, 2’ is also an optimal solution to Problem 2.1. O

2.4 Hardness for instances on general non-orientable surfaces

In the previous section, we have shown that Problem 2.1 can be solved in polynomial
time on non-orientable surfaces of fixed Euler genus. This problem becomes NP-hard
on general non-orientable surfaces.

Let us consider the following problem, which is a special case of (the decision version
of) Problem 2.1.

22



2.4 Hardness for instances on general non-orientable surfaces

Problem 2.8. Given a digraph D = (V, A) cellularly embedded in a surface with arc
costs c € {0, 5, 1}4 such that 1 € Z* is a circulation in D, and an integer k, decide whether
there exists a non-negative integer circulation in D that is Z-homologous to 1 and has cost

at most k.

In what follows, we will prove that Problem 2.8 is NP-hard, which implies Theo-
rem 2.3. We will also see that the problem remains hard if we restrict ourselves to
circulations in {0,1}*. In Section 2.4.3, we show that the following problem can be
efficiently reduced to Problem 2.8.

Problem 2.9. Given a connected graph G = (V, E) together with edge costs c € {0, 5, 1},
and an integer k, decide whether there exists a vector x € 7. satisfying x(v) + z(w) < 1
foreach {v,w} € Eand 3, ,1c; c({v,w})(2(v) + 2(w)) > k.

Problem 2.9 can be seen as a special stable-set problem where we neglect the non-
negativity constraints. We will show that the following special case of the weighted
stable-set problem can be efficiently reduced to Problem 2.9. A proof is given in
Section 2.4.2. The node weights in Problem 2.10 and 2.9 are induced by edge costs,
meaning that the weight of a node is just the sum of the costs of its incident edges.

Problem 2.10. Given a graph G = (V, E) with edge costs c € {0, 1,1} and an integer k,

decide whether there exists a stable-set S < V in G such that ), c(e)|S ne| > k.

Finally, we show that Problem 2.10 is NP-hard by a reduction from 3-SAT in the next
section. This concludes the proof of Theorem 2.3.

2.4.1 Hardness of Problem 2.10

The following reduction is based on the standard reduction for the classical stable-set
problem, see Garey and Johnson [GJ79].

Let (U, C) be any instance of 3-SAT, where U is the set of variables and C' denotes the
set of clauses. Now, for each variable u € U we define the graph G* consisting of two
nodes representing v and its negation u, which are joined by an edge ¢,,. The cost of
this edge is set to c(e,) := 1. Next, for each clause ¢ € C we define a triangle graph G¢
containing one node for each literal in ¢ and three edges connecting them. We assign
costs of 1/2 to all edges in the triangle. Finally, we define G = (V, E) as union of all G*
(u e U) and G° (c € C) together with the following additional edges: For each literal ¢
that appears in a clause c and corresponds to variable u, connect the node in G° that
represents ¢ with the node in G that represents the negation of /. The edge costs ¢ for
all these additional edges is defined to be zero.
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Notice that every stable-set S in G satisfies |S| = >, _pc(e)]S N e|. We leave to
the reader to check that (U, C) is satisfiable if and only if G has a stable-set S of
cardinality |S| > |U| + |C|. A formal proof can be found in [GJ79].

2.4.2 Reduction from Problem 2.10 to Problem 2.9

We may assume G to be connected, otherwise we would treat each component separately.
Since the problem becomes easy in the case of bipartite graphs, let G be non-bipartite.

It remains to show that G has a stable-set S with Y| _, c(e)|S n e| > k if and only if
there exists a vector = € Z" satisfying z(v) + 2(w) < 1 for each {v,w} € E and

1 cl{o, wh)(@(v) + z(w)) = k. (2.5)

{v,w}eE

If G has a stable-set S with Y __c(e)|S ne| > k, we define z € {0,1}" to be the
characteristic vector of S. For each edge e = {v,w} € E, we clearly have z(v) + z(w) < 1,
and |S n e| = z(v) + z(w), which yields (2.5).

Conversely, suppose that

max Z c({v,w})(z() + z(w)) : e ZV, z(v) + z(w) < 1 for {v,w} e E } > k.
{v,w}eE

Since G is non-bipartite, it can be shown that the convex hull of feasible solutions
to the above integer program is a pointed polyhedron. Moreover, it can be shown
that each vertex of this polyhedron is a 0/1-vector. Both facts and their proofs can
be found in [Con+20a, Proposition 12]. Moreover, as ¢ is non-negative, the above
integer program is certainly bounded. This means that the optimum to the above integer
program is attained at a point = € {0, 1}V, which yields the claim.

2.4.3 Reduction from Problem 2.9 to Problem 2.8

The following reduction is based on methods developed in [Con+20a] that are designed
for graphs with a particular embedding. First, we have to construct such an embedding
for the input graph G which will have the property that the edges of the dual graph G*
may be directed such that every facial walk in G* is a directed walk.

The embedding is obtained by equipping G with a rotation system II = (7, A) in which
the signature of every edge is defined to be —1. Its cyclic permutations around each
node can be chosen arbitrarily.

We may define the set F' of II-facial walks in G corresponding to this embedding.
This can then be used to define the dual graph G* together with a corresponding
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dual embedding scheme IT* = (7%, \*), and a set F'* of exactly those II*-facial walks
whose traversing directions correspond to the cyclic permutations 7w around the nodes
in G. Since A = —1, all dual edges in G* will always be used in the same direction in
the IT*-facial walks in F**. To obtain a digraph D = (V*, A), we direct all edges in G*
corresponding to the direction in which the edges are used in the walks in F'*. Now,
all IT*-facial walks in F* are directed walks. Observe that in D the vector 1 € Z4 is a
circulation. Indeed, it is half times the sum over all characteristic flows of facial walks

in F*,ie. 1 =13 . x(v*). Since there is a one-to-one correspondence between E
1
DX
to show that there exists a vector z € Z" satisfying x(v) + x(w) < 1 for each {v,w} € E

and

and A, the costs on the edges in G may also be seen as arc costs ¢ € {0, 5, 1} It remains

>, v, wh)(@(v) + z(w) > k, (2.6)
{v,w}eE
if and only if there exists a non-negative integer circulation in D that is Z-homologous
to 1 € Z* and has cost at most 3, c(e) — k.
Suppose that there exists a vector x € Z" satisfying z(v)+z(w) < 1 for each {v,w} € E
and Inequality (2.6). We consider the following integer circulation in D

yi=1- Y 2()x(v*)
veV
which clearly is Z-homologous to 1. Moreover, each arc a in D appears exactly twice
in IT*-facial walks in F'* and the nodes (or node) in G corresponding to these IT*-facial
walks are joined by an edge whose dual edge corresponds to a. Since z(v) + x(w) < 1
for each {v,w} € F, the value of y assigned to the dual arc corresponding to {v, w} is
non-negative. Moreover, since each facial walk in G* is a directed walk, we have

Ty =cT (1 - Z X(v*)x(v)) = 2 cle) — Z Z cle) |z(v)

veV ecE veV \ e€d(v)
- Z cle) — Z c({v,w})(z(v) + z(w))
ecE {v,w}eFE
< Z cle) — k.
eeE

Conversely, consider any non-negative integer circulation y in D that is Z-homologous
to the circulation 1 with cost at most ) c(e) — k. Since y is Z-homologous to 1, there
exist coefficients n,« for all v* € Z¥™ such thaty = 1 — Dkeps Mok X (v*). As there is a
one-to-one correspondence between nodes v in G and II*-facial walks v* in F'*, we may
define the vector = € Z" via x(v) = n,« for all v € V. Since y is non-negative, the sum
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of two coefficients 7,+ and 7, that correspond to facial walks using the same arc can
never exceed one. Moreover, we have

Y, v w(z) +a@w) =Y | X cle) |z(v) = Y w(v)x(v¥)

{v,w}eFE veV \ e€d(v) veV
= Z cle) — T (1 - Z x(v)x(v*))
ecE veV
= Z cle) —cy =k,
eelk

which concludes the proof.

2.5 Characterizing homology

In this section, we present alternative characterizations of homology, leading to a
discussion of Theorem 2.2 and the proof of Theorem 2.5. To this end, we need to provide
further details and definitions regarding surfaces and homology. For further information,
we refer to the books of Hatcher [HatO5] and Mohar and Thomassen [MTO01].

Consider a graph G = (V, E) cellularly embedded in a surface with a corresponding
embedding scheme IT = (7, \). In what follows, we provide a more formal definition of
the set F' of II-facial walks.

Consider the following procedure which defines a II-facial walk, see Figure 2.4: Start
at an arbitrary node v and an edge e incident to v, then traverse e and continue the
walk at the edge ¢’ coming after, or before, e in the cyclic permutation given by =
if the signature of ¢ is positive, or negative, respectively. Reaching the next node,
we continue again with the edge coming after, or before, the edge ¢’ if the number
of already traversed edges with negative signature is even, or odd, respectively. We
continue until the following three conditions are met: (i) we reach the starting node v,
(ii) the number of traversed edges with negative signature is even, (iii) the next edge
would be the starting edge e. This way, we obtain a collection of closed walks which
we then call II-facial walks. Notice that the II-facial walks of a digraph are walks in the
underlying undirected graph. We consider two II-facial walks to be equivalent if they
only differ by a cyclic shift of nodes and edges or if one is the reverse of the other one.
Let us pick one Il-facial walk from each equivalence class and denote the resulting set
of walks by F'. Notice that every edge is either contained twice in one walk in F' or in
exactly two walks in F'.

By construction, the number of used edges with negative signature in a II-facial walk
is even. If a closed walk in G traverses an even number of edges with negative signature,
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Figure 2.4: An extract of an embedded graph. The embedding scheme is depicted in green:
Arrows around the nodes indicate their local orientations and the numbers on the
edges the induced signature. The facial walks in F' are drawn in blue.

it is called two-sided, otherwise it is called one-sided. It turns out that every two-sided
cycle in the surface has a neighborhood that is homeomorphic to an annulus, whereas
every one-sided cycle has a neighborhood that is homeomorphic to an open Mobius
band. It follows that the presence of a one-sided cycle implies that the underlying
surface is non-orientable.

To elaborate on an alternative characterization of homology, we also need the fol-
lowing notion. In addition to the notion of the characteristic flow x(W) e Z4 for
walks W in G, we define the vector ¢(H*) € Z4 for any walk H* in the dual graph G*
as follows. Intuitively, we think of £{(H*) as a flow that sends one unit along the edges
in H*. Whenever a unit is sent along a dual edge, we account it for the correspond-
ing arc in D. The sign of this value will depend on the direction we traverse H*
along this arc. Formally, consider any arc a = (v,w) € A and let f be any Il-facial
walk in F' of G. Set s(a, f) € {—1,0,1} to be non-zero in the case that edge {v, w}
appears once f or twice in the same direction and zero otherwise. If f traverses the

edge from v to w, then s(a, f) = 1, otherwise s(a, f) = —1. Observe that the sign of
s(a, f) equals the sign of 0, ;. For instance, in Figure 2.4, s((v,w), f) = 1. Now, for a
walk H* = (ff,el, f5,...,e;_1, /) in G* and arc a € A, we define
EH" ()= D) A(ef)- A(eiz1)s(a, fi).
i€{1,...,0—1}
a=e;

Observe that (z,&(v*)) = 0 for any circulation z in D and any IT*-facial walk v* in G*.
Before we start with the characterization of Z-homology, we consider the slightly
weaker concept of R-homology, which arises by dropping the integrality condition for
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ny in the definition of Z-homology. More formally, given a directed graph D = (V, A)
cellularly embedded in S, two circulations z,y € R4 are called R-homologous if z — y is
a linear combination of characteristic flows of II-facial walks, which we also call facial
circulations. That is, there exists an assignment vector n € RY" with a coefficient ny € R
for each facial walk f € F, such that z —y = > ;. p nyx(f). To rewrite the above in a
compact way, recall the matrix ¢ = dp € Z4A*F defined by

Oaf == X(f)(a) forallae A, feF.

Circulations z,y are R-homologous if = = y + o7 for some n € RF.

Observe that two circulations x,y are R-homologous (Z-homologous) if and only
if  — y is R-homologous (Z-homologous) to the circulation 0 € R“. For this reason, in
what follows we will first provide an alternative description of circulations that are R-
homologous (Z-homologous) to 0 € R4, which then directly yields characterizations
for R-homology (Z-homology) between two arbitrary circulations.

2.5.1 Orientable surfaces

For any digraph D, we denote the convex hull of non-negative integer circulations in
D by P(D). It is a basic fact that P(D) is actually equal to the set of all non-negative
circulations in D. Hence, this polyhedron can be described as the set of all z € R4, that
satisfy the “flow conservation” constraints. Regarding Problem 2.1, we are interested in
the convex hull of only those integer circulations in P(D) that are Z-homologous to a
given integer circulation y, and we denote the respective polyhedron by P(D,y). The
purpose of this section is to show that a description of P(D,y) can be easily obtained in
the orientable case.

As mentioned in Section 2.2.2, the matrix ¢ is totally unimodular in the case of
orientable surfaces, and hence, Problem 2.1 can be solved in polynomial time. Here,
we would like to elaborate on another consequence for the description of P(D,y). By
expressing Z-homology using 0, we know that

P(D,y)zconv{erA : x=y+8n7m>0,neZF}
=

=conv{zeR* : x=y+n, x>0,neR"}

where the second equality follows from the integrality of the latter polyhedron, a
consequence of ¢ being totally unimodular. This means that P(D,y) is the set of all
non-negative circulations in D that are R-homologous to y. Denoting by L(D, y) the set
of all circulations in D that are R-homologous to y, we obtain

P(D,y) = P(D) n L(D,y),
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and hence Theorem 2.2. To obtain an even more explicit description of P(D, y), observe
that L(D, y) is an affine subspace which is generated by all facial circulations and shifted
by y. First, let us consider the case in which y = 0. The set L(D, 0) of all circulations
in D that are R-homologous to 0 is the subspace generated by all facial circulations. If
the surface is orientable, the facial circulations generate a space of dimension |F'|—1. On
the other hand, it is well-known that the space of all circulations in D is (|4| — |V| + 1)-
dimensional. Thus, besides the constraints describing the set of all circulations, Euler’s
formula (2.1) yields that we need ¢ additional constraints to obtain L(D, 0).

These constraints can be obtained by the following construction, also see [CEN12].
Pick any spanning tree K in G and observe that G*\K* := (V(G*), E(G*)\{e*
E(K)}) is still connected. Hence, there exists a spanning tree 7* in G*\K*. By Euler’s
formula, there exist exactly g edges eq,..., e, in G that are not contained in K and
whose dual edges ef, ..., e; are not contained in T*. For each i € [g], we define the
cycle C; as the unique (dual) cycle in (V(T™), E(T*) u {e]}). These g cycles will yield
the additional constraints needed to describe L(D, 0).

Proposition 2.11. Let D be a digraph cellularly embedded in an orientable surface of
Euler genus g, and let C1, . .., Cy be the (dual) cycles defined above. Then,

L(D,0) = {x e R* : zisa circulation and (x,£(C;)y = 0 Vi € [g]}.

Proof. Let L denote the linear subspace on the right-hand side.

We first show that L(D,0) < L. Every z € L(D, 0) is of the form = = >} ;. - nyx(f) for
some coefficients ¢ € R. Clearly, every cycle H = (f{, f5,..., fi) in the dual graph G*
is two-sided, and therefore, we have

k
<w § Z nfz nfz+1 =0,

where fi.1 = fi. This shows that = € L, and hence L(D,0) < L.

It remains to show that dim(L) < dim(L(D, 0)). Recall that dim(L(D,0)) = |F| —1
and that the space of all circulations has dimension |F| — 1 + g. With each con-
straint (z, {(C;)) = 0 that we iteratively add to the space of all circulations, the dimen-
sion drops by one. Indeed, for each i € [g] there is a (unique) cycle H; in K uU {e;}.
For this H;, the circulation x(H;) satisfies all constraints (x(H;),{(C;)) = 0 for j # i,
but {x(H;),&(C;)) # 0. This means that dim(L) < (|[F|—-1+g)—g = |F| -1 =
dim(L(D,0)). O

Corollary 2.12. Let D = (V, A) be a digraph cellularly embedded in an orientable
surface of Euler genus g and let y be an integer circulation in D. Then, we can efficiently
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compute cycles C1, . ..,Cy in the dual graph of D such that the following holds: An integer
circulation x € Z4 is Z-homologous to y if and only if

(#,£(Cy)) = (., &(Ci))  forallie[g]
holds.
We note that the description of P(D,y) following from Proposition 2.11 does not

need to be totally unimodular. In Figure 2.5, we depicted a graph embedded on the
torus, whose corresponding constraint matrix contains (} _11) as a submatrix.

— . — = Y\
! ;
) )
b
d
!

(a) Graph G embedded on the torus drawn (b) Spanning tree K (blue), dual tree T*
in black and its dual in orange. (orange), remaining edges (green).
—— |
1
/7

/L

(c) One dual cycle in orange.

Figure 2.5: In this figure, a graph G embedded on the torus is depicted. Thereby, the torus is
illustrated via a plane extract of the sphere with attached handle illustrated as a
bridge shaded in gray. For node v, the flow conservation constraint yields one +1
and one —1 for the arcs a and b. Figure 2.5b shows the construction of the trees
used to define the dual cycles. For the cycle C in Figure 2.5¢ £(C)(a) = £(C)(b) =1
holds when choosing a clockwise orientation around each node (—1 else). This
shows the existence of a submatrix with determinant +2.
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2.5.2 Non-orientable surfaces

In this section, we provide a characterization of Z-homology that is exploited in Sec-
tion 2.3. To this end, we first provide a characterization of R-homology similar to
Corollary 2.12 in the orientable case. In the previous section, we have seen that for
an orientable surface two integer circulations are Z-homologous if and only if they
are R-homologous. Unfortunately, this is not true for non-orientable surfaces. Therefore,
some more arguments are required to obtain Theorem 2.5.

Let D be a digraph cellularly embedded in a non-orientable surface of Euler genus g
according to an embedding scheme IT = (7, ). Let G* be the dual graph canonically
embedded in the same surface. In order to obtain a description as in Proposition 2.11,
let us consider the following construction of g — 1 closed walks in G*. This construc-
tion is similar to the construction for embeddings in orientable surfaces described in
Section 2.5.1.

Pick any spanning 1-tree 7* in G* (a spanning tree with one additional edge forming
one single cycle) whose cycle C* is a one-sided cycle. Denote the set of arcs in D
containing all arcs whose dual edges are in 7* by T. Notice that in most cases T’
does not form a tree. Since C* is a one-sided cycle, D\T' := (V(D), E(D)\T) is still
connected. Hence, there exists a spanning tree K in D\T.

By Euler’s formula (2.1), there exist exactly g — 1 arcs by,...bys—1 in D that are not
contained in F(K)uT. For eachi € [g—1], we define W* as the (dual) two-sided closed
walk in 7% u {b}} := (V(T™), E(T*) v {b}}): In case that T u {b}} contains a two-sided
cycle, W;* equals this cycle. Otherwise, 7% u {b}} contains two one-sided cycles, namely
C* and a cycle containing b;. In this case W;* walks once along C*, along a path in T*
towards the one-sided cycle containing b}, along this cycle, and finally back to C* on
the same path. For the remainder of this section, we keep 7', 7%, K, C,C*, by, ... ,by_1
and W, ..., W, fixed.

Notice that we defined the above-described walks in such a way that each walk uses
an edge at most twice. These g — 1 closed walks will yield the constraints needed to
describe R-homology.

Lemma 2.13. Let z € R4 be a circulation in D and let n € RY be an assignment on
the II-facial walks such that z(a) = dn(a) holds for all arcs a € T U {b1,...bg—1}. Then z
is R-homologous to the all-zeros circulation.

Proof. As z(a) = dn(a) holds for all arcs a € T' U {b1,...bg—1}, z — On is a circulation
in D that is zero on all arcs that are not contained in the spanning tree K. Since K
does not contain any cycle, the circulation z — dn must be zero on all arcs in K as well.
Therefore, z = 0n, which yields the claim. O
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In what follows, we will identify linear equations that ensure the existence of a
vector 7 € RY such that 2(a) = on(a) foralla € T U {by,...,by_1}. To this end, the
following properties of the matrix ¢ will be useful. Recall that the rows in ¢ correspond
to the arcs in A, and the columns in ¢ correspond to the walks in F'. We have d, y # 0 if
walk f uses the underlying undirected edge corresponding to a once, or twice in the
same direction. Since there are one-to-one correspondences between arcs A and dual
edges A*, and between walks F' and dual nodes V*, respectively, 0 may be interpreted

. . * *
as a matrix in Z4"*V

. With this interpretation we have Jqx s+ # 0 if edge ¢* is no
loop and incident to f* in the dual graph G*, or if a* is a loop at f* with negative dual

signature.

Lemma 2.14. For a submatrix dc of ¢ consisting only of the rows and columns that
correspond to nodes and edges used in C*, respectively, we have | det(dc)| = 2. Moreover,
the absolute value of the determinant of any submatrix of dc, obtained by deleting exactly
one row and one column, equals one.

Proof. In case that C* is just a loop consisting of the edge e*, the signature of ¢* needs
to be negative, since C* is one-sided. Therefore, the corresponding arc in D is used
twice in the same direction in the corresponding Il-facial walk. Therefore, ¢ = (£2).

In case that C* is not a loop, all entries in ¢ are either +1 or zero. Moreovet, for
any arc * and node f* in C*, the entry Jq+ s+ # 0 if edge a* is incident to f* in the
dual graph G*. Let C* = (f{,e¥, f5,....ej_1, [ e}, i) with X*(ef) - - - - N (ef) = —1.
Notice that in each row and column in d¢, there are exactly two non-zero coefficients,
each of them equals either +1 or —1. In a row that corresponds to an arc a, the two
non-zero coefficients have the same sign if and only if the walks in F’ use the underlying
edge of a in the same direction. This is the case if and only if the dual signature of the
dual edge of a is negative. Since C* is one-sided, the number of rows in dc in which the
two non-zero entries have the same sign is odd. Notice that resorting rows/columns or
multiplying rows/columns by —1 does not change the absolute value of d¢’s determinant.
Moreover, multiplying rows/columns by —1 does not change the parity of the number of
rows in which the two non-zero entries have the same sign. Hence, the absolute value
of d¢’s determinant may be calculated as follows:

11
11
11
| det(0c)| = |det - — b+ (—1)a| = 2,
1
a b
where a, b € {—1, +1}. Here, the second equality follows from Laplace’s formula, and

the last equality is due to ab = (—1)**!. This holds true because C* is one-sided, and
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hence, the displayed matrix should contain an odd number of rows, in which the two
non-zero entries have the same sign.

The second assertion regarding further submatrices of d¢ follows by a similar argu-
mentation, ending up with a triangular matrix. O

Lemma 2.15. Given a circulation z € R? in D, there is a unique n € RY such that z(a) =
on(a) holds for all arcs a € T.

Proof. For any n € R, let nc denote the restriction of 1 to the II-facial walks that
correspond to nodes of C*. Moreover, let 2z denote the restriction of z to the arcs
in C. By Lemma 2.14, the determinant of 0 equals +2. Hence, d¢ is regular and 7 is
uniquely determined by the values of 2z via the equation z¢ = done. The remaining
values of 7 are uniquely determined by extending 7¢ along the arcs in 7' to € R such
that z(a) = dn(a) = s(a, h)ny + s(a, g)n, for every arc a € T whose underlying edge is
used in the two walks h, g € F. O

We are now ready to characterize circulations that are R-homologous to 0. Intuitively,
a circulation is a linear combination of facial circulations if and only if the amount of
flow that crosses a two-sided closed walk W;* of the dual graph sums up to zero for
i € [g — 1], see Figure 2.6a.

Lemma 2.16. A circulation z € R is R-homologous to 0 if and only if the following g — 1
linear equations hold:

(2, 6(WF)) =0 forallie [g—1].

Proof. By Lemma 2.15, let € R be the unique assignment vector, which satisfies
z(a) = dn(a) for all arcs a € T'. Lemma 2.13 states that the circulation z is R-homologous
to 0 if and only if z(b;) = dn(b;) holds for all b; € D\(K u T). We show that for
any ¢ € [g — 1] the equation (z, {(W*)) = 0 is equivalent to z(b;) = dn(b;).

We think of (z,£(W}*)) as walking along W;* and whenever crossing an arc a of D
adding the value z(a) with the appropriate sign. Since W;* is two-sided, the appropriate
sign may be interpreted as an indicator for the direction z(a) crosses W;*. The crucial
property (besides IW* being two-sided) leading to the claimed equivalence is that all
arcs corresponding to W;* except b; belong to T'. Therefore, z restricted to these arcs
can be written as the combination of facial circulations with coefficients . Hence, at
these positions, the values added when entering or leaving a face in D while walking
along W will cancel out. As a consequence, {z,£(W;*)) = 0 holds if and only if the
value added (with the appropriate sign, since WW;* is two-sided) at b; also cancels out.
This happens if and only if z(b;) = on(b;).
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Formally, consider the following two relationships:
on(a) = s(a, f)ny + s(a, g)ng, and 2.7)
s(a, f)s(a,g) = =A\*(a®), (2.8)

where the underlying edge of a appears in the II-facial walks f and g and the dual
edge of a is denoted by a*. Since a cyclic shift does not change our considerations, we

assume W;* to be the following walk in the dual graph: (f{, e}, f5,...,ej 1, f/. e} =
We denote the corresponding arcs in D by ej,...,e; 1,4 = b;. By the definition

of £(+), we have

Wiy =30 | 2 Afed) X (ep)s(a fy) |- 2(a)

acA ]E{l 7777 e}

All arcs in WW; except b; lie in T'. For those arcs, we assume that z(e;) = dn(e;). Hence,

1
(2, E(WF)y = D A (eD) - A (e _1)s(ej, f3) - one;)
j=1

+ A*(ef) - A (eg_y)s(er, fo) - 2(bi)
-1
= DUN(ER) - A (efiy)s(eg, £) - (ngys(ess 1) + npas(ess i)
j=1
+ A*(ef) - A (eg_y)s(er, fe) - 2(bi)
holds using Equation (2.7). Now, by Equation (2.8), we have
-1
(W) = DN (ed) - X (efy) - (s, — X (Dm0 )
j=1
+ A" (el) - A" (er_1)s(ees fr) - 2(bi)
=np — A(er) - A (eg1)ny,
+ N*(e}) - A (eg_y)s(er, fe) - 2(bi).

Therefore, (z,{(W*)) = 0 holds if and only if

N _77f1 - )‘*(eik) T )\*(62‘,1)%
20 = =Nl A (e y)slen Jo)

= = (np = A"(el) -~ A" (ef-)my,) - (A"(eD) - A* (€] 1) s(er, fo))
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because the denominator is +1. Hence,

2(bi) = ng,s(er, fo) = A*(e1) - A¥(ei_1)nps(ers fo)-

Using Equation (2.8) and that W;* is two-sided, we obtain,

2(bi) = ny,s(er, fo) + A*(eT) - X*(ep)ng, s(ee, f1)
= ny,5(ee, fo) + 0y s(ee, f1)
= on(bi),

which concludes the proof. O

Notice that even if the given circulation z in D is integer, the vector n € R' defined in
Lemma 2.15 is not necessarily integer. The following lemma yields a characterization
when 7 can be chosen to be integer. Intuitively, the coefficients n are integer if and
only if the amount of flow crossing a one-sided cycle in the dual graph is even, see
Figure 2.6b for an illustration of a one-sided cycle.

(a) Two-sided cycle (green) and facial cir- (b) Two-sided cycle (green) and one-sided
culations (orange) on the Klein bottle. cycle (blue) on the Klein bottle.

Figure 2.6: The figures illustrate the Klein bottle. The green cycle on the surface is two-sided,
whereas the blue cycle is one-sided. The directed orange cycles illustrate facial
circulations of a graph embedded on the Klein bottle. The flow sent across the
two-sided cycle by facial circulations sums up to zero.

Lemma 2.17. Given a circulation z € Z* in D and 1 € R such that z(a) = on(a) for all
arcs a € T, n is integer if and only if Y.~ z(a) = 0 (mod 2) holds.

Proof. Observe that integrality extends along the arcs in 7" via the relation z(a) =
on(a) = s(a, h)n, + s(a, g)n, for every arc a € T" whose underlying edge is used in the
two walks h, g € F. Exploiting this fact, we fix one Il-facial walk f € F' that corresponds
to a node in the dual cycle C*. Hence, it suffices to prove that 5y € Z is equivalent to
Y acc #(a) being even. Using the same notation as in the proof of Lemma 2.15, value 7
is uniquely defined by z¢ = done. By Cramer’s rule, 1y = det(dc, )/ det(dc), where dc,
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Chapter 2 Minimum-cost integer circulations in given homology classes

denotes the matrix obtained by replacing the column in dc corresponding to f by z¢.
By Lemma 2.14, | det(d¢)| = 2 and deleting one row and one column in d¢ results in
a matrix that has determinant +1. Therefore, by Laplace’s rule applied to the column
that equals z¢, we conclude that det(dc;) = > ,cc £1 - 2(a). Since the signs in the
summation do not affect the parity, det(dc, ) is even if and only if >} - 2(a) is even. It
follows that ) . z(a) is even if and only if 7); is integer. O

Lemma 2.15, Lemma 2.16, and Lemma 2.17 yield the following characterization
of Z-homology.

Proposition 2.18. Let D = (V, A) be a digraph cellularly embedded in an orientable
surface of Euler genus g and y an integer circulation in D. We can efficiently compute
a one-sided cycle C' and two-sided closed walks Wy, ..., Wy, in the dual graph of D
(which do not use an edge more than twice) such that the following holds: An integer
circulation x € Z* is Z-homologous to y if and only if

(x, EWi)) =y, &(W7))  forallie[g—1],

and

2 z(a) = Z y(a) (mod 2).

aeC aeC

Observe that Theorem 2.5 is a direct consequence of this Proposition 2.18.

2.6 Open questions

When we considered Problem 2.1 in 2021, we were wondering whether the assumptions,
namely ¢ being non-negative and not allowing for arbitrary capacity bounds on 2 can be
dropped while still having a polynomial-time algorithm for fixed genus. For orientable
surfaces, adapting the formulation in (2.2) results again in a totally unimodular system,
and the discussion in Section 2.5.1 directly extends to this more general setting. However,
our algorithm for non-orientable surfaces in Section 2.3 does neither cover arbitrary
costs nor general bounds on x. Nevertheless, the generalized problem can be efficiently
solved on surfaces of fixed genus. We remark that using the formulation (2.2) results in
the following integer program

min{ch : x=y+5n,€<x<u,erA,neZF},

where ¢, u € Z* denote lower and upper capacity bounds. This formulation is equivalent
to

min{(dT¢)Tn : dn<u-—y, (977>£—y,77€ZF},
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2.6 Open questions

Using the fact that the Euler genus of a non-orientable surface is equal to the largest
number of pairwise disjoint one-sided simple closed curves and Lemma 2.14, one can
show that ¢ is totally 29-modular. As addressed in Chapter 1, determining the complexity
status of integer programs with totally A-modular constraint matrix is an open problem
for fixed A. However, a strongly polynomial-time algorithm for integer programs with
totally A-modular coefficient matrices that contain at most two non-zero entries in each
row (or column) for every fixed constant A is given in [Fio+22]. As every arc appears
in at most two facial walks, ¢ actually has at most two non-zeros in each row and hence
these integer programs are solvable in polynomial time for fixed genus.

Another natural generalization of this problem arises by considering b-flows instead of
just circulations. Again, a formulation according to (2.2) results in an integer program
that is solvable in polynomial time for fixed genus. In the case of a constant number of
nodes with non-zero demand or supply, we can even adopt our algorithm in Section 2.3
to the setting of b-flows.

Most questions answered by [Fio+22], we are still left with the following. Note that
while the running time of our algorithm is polynomial for fixed Euler genus g, the degree
of the polynomial depends on g (see, e.g., the cardinality of 2 in Section 2.3). We do
not know whether Problem 2.1 is fixed-parameter tractable in g.

Question 2.19. Is Problem 2.1 fixed-parameter tractable in the genus g?
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Chapter 3

Lifts for Voronoi cells of lattices

3.1 Background

Many polytopes that arise in the study of polyhedral combinatorics are linear pro-
jections of higher-dimensional polytopes, also called lifts, with significantly fewer
facets. Prominent examples include basic polytopes such as permutahedra [Goel5],
cyclic polytopes [Bog+15], and polygons [Shil4], as well as several polytopes associ-
ated to combinatorial optimization problems such as spanning tree polytopes [Mar91;
Won80], subtour-elimination polytopes [Yan91], stable-set polytopes of certain fam-
ilies of graphs [FOS12; PS93; Con+20b], matching polytopes of bounded-genus
graphs [Ger91], independence polytopes of regular matroids [AF22], or cut domi-
nants [CCZ13].

In this chapter, we study to which extent this phenomenon also applies to Voronoi
cells of lattices. Here, a lattice is the image of Z* under an injective linear map. We say
that a lattice is d-dimensional, if d is the dimension of its linear hull. The Voronoi cell
VC(A) of a lattice A < R* is the set of all points in lin(A) for which the origin is among
the closest lattice points, i.e.,

VC(A) :={z elin(A) : |z|| < |z — z| for all z € A},

The lattice translates z + VC(A) for z € A, induce a facet-to-facet tiling of lin(A), so
that in particular Voronoi cells of lattices are what is commonly called space tiles, see
Figure 3.1. Moreover, it is known that VC(A) < RF is a centrally symmetric polytope
with up to 2(2"7 — 1) facets. We refer to [Gru07, Ch. 32] for background on translative
tilings of space.

It is tempting to believe that the rich structure of Voronoi cells of lattices allows
constructing polytopes that linearly project onto VC(A) having significantly fewer than
2(2F — 1) facets. In fact, this is true for several examples: A lattice whose Voronoi cell
has the largest possible number of facets is the d-dimensional dual root lattice A%, see
Section 3.3.1 for a definition. However, its Voronoi cell is a permutahedron and admits a
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Chapter 3 Lifts for Voronoi cells of lattices

Figure 3.1: A lattice in R? together with its Voronoi cell and the corresponding tiling of the
plane via its lattice translates.

lift with only O(dlog d) facets [Goel5], see Section 3.3.1. More generally, if the Voronoi
cell of a d-dimensional lattice is a zonotope, then it has O(d?) generators and hence has
a lift with O(d?) facets. We discuss this result in detail in Section 3.3.2.

The lattice A’ also belongs to the prominent class of root lattices and their duals. By
their algebraic and geometric properties, these lattices are prime examples in various
contexts: For example, they play a crucial role in Coxeter’s classification of reflection
groups, [CS99, Ch. 4], and they yield the densest sphere packings and thinnest sphere
coverings in small dimensions, see [CS99] or [Sch09].

As one part of this chapter, we show that Voronoi cells of such lattices generally admit
small lifts. In what follows, for a polytope P we write xc(P) for the minimum number
of facets of any polytope that can be linearly projected onto P. This number is called
the extension complexity of P.

Theorem 3.1. For every d-dimensional lattice A that is a root lattice or the dual of a root
lattice, we have xc(VC(A)) = O(dlogd).

This raises the question whether Voronoi cells of other lattices also have a small
extension complexity, say, polynomial in their dimension. One of the main motivations
for representing a polytope P as the projection of another polytope @ is that a linear
optimization problem over P can be reduced to one over Q. If  has a small number of
facets, then the latter task can be expressed as a linear program with a small number of
inequalities, also known as an extended formulation.

Thus, given a lattice A < R? whose Voronoi cell has a small extension complexity, we
may phrase any linear optimization problem over VC(A) as a small-size linear program.
Such a representation may have several algorithmic consequences for the closest vector
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problem. In this problem, one is given A in terms of a lattice basis and a point = € R?
and is asked to determine a lattice point that is closest to z, i.e., a point in

c(z,A):i={zeA: |z —z|<|z—7|forall 2’ € A}.

Note that z € cl(x, A) if and only if x — z € VC(A). Thus, a small extension complexity
of VC(A) would yield a small-size linear program to test whether a lattice point is the
closest lattice vector to z. However, in view of the fact that the closest vector problem is
NP-hard [Emd81] and the belief that NP # coNP, we do not expect efficient algorithms
that, for general lattices, decide whether a point is the closest lattice vector to z.

Another sequence of algorithmic implications arises from the algorithm of Micciancio
& Voulgaris [MV13], which also motivated other recent work on compact representations
of Voronoi cells, such as [HRS20]. As discussed in the thesis of Hunkenschroder [Hun20,
84.1], an optimization oracle for the Voronoi cell of a lattice is sufficient to obtain an
algorithm for the closest vector problem that runs in expected polynomial time: Dadush
& Bonifas [DB15] describe an efficient procedure to almost uniformly sample a point
y from VC(A), which can be used to traverse the so-called Voronoi graph by a path of
expected polynomial length to obtain a lattice vector that is closest to a given target
point z. For sampling y, they only require a membership oracle for VC(A), which can
be obtained from an optimization oracle [GLS93, §6]. For traversing the Voronoi graph,
it is necessary to have an efficient procedure for determining the normal of a facet of
VC(A) that is intersected by a given line segment. Again, this can be implemented with
an optimization oracle for VC(A). Clearly, a polynomial-size extended formulation for
the Voronoi cell of a lattice yields an efficient implementation of an optimization oracle.
This motivates the study of Voronoi cells of lattices for which small-size lifts can be
efficiently constructed.

We remark that the mere existence of small size extended formulations of Voronoi
cells may not be immediately applicable, since finding such representations as well as
verifying that they indeed yield the Voronoi cell of a given lattice might be NP-hard.
Thus, polynomial bounds on the extension complexities of Voronoi cells of general
lattices would not contradict hardness assumptions in complexity theory. In fact, we
initially considered the possibility of such bounds.

However, as our main result, we explicitly construct lattices with Voronoi cells of
extension complexity close to the trivial upper bound 2(2¢ — 1).

Theorem 3.2. There exists a family of d-dimensional lattices A such that xc(VC(A)) =
2Q(d/ log d)'

Lower bounds on extension complexities have been established for various prominent
polytopes in recent years. Of particular note are results for cut polytopes [Fio+15;
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KW15; Cha+16], matching polytopes [Rot17], and certain stable-set polytopes [GJW18].
Lower bounds for other polytopes @ are typically obtained by showing that a face F' of
Q affinely projects onto one of the polytopes P from above and using the simple fact
xc(P) < xc(F) < xc(Q). Unfortunately, it seems difficult to construct lattices for which
this approach can be directly applied to the Voronoi cell. However, we will exploit the
lesser known fact that xc(Q) = xc(Q°) holds for every polytope @ with the origin in its
interior, where Q° is the dual polytope of Q. In fact, we will describe a way to obtain
many 0/1-polytopes as projections of faces of dual polytopes of Voronoi cells of lattices.
As an example, for every n-node graph G, we can construct a lattice A of dimension at
most n + 1 such that the stable-set polytope of G is a projection of a face of VC(A)°.
Theorem 3.2 then follows from a construction of Go6os, Jain & Watson [GJW18] of
stable-set polytopes with high extension complexity.

Moreover, we adopt the framework used to obtain Theorem 3.2 to more general
settings. On the one hand, we consider small approximations of Voronoi cells. Further-
more, we study another prominent way of representing polytopes via linear projections
of feasible regions of semidefinite programs, i.e., spectrahedra. We will discuss how
our approach also yields versions of Theorem 3.2 for approximations, and for such
semidefinite lifts with a slightly weaker but still superpolynomial bound.

Outline In Section 3.2, we provide a brief introduction to lifts of polytopes and lattices,
focusing on tools and properties that are essential for our arguments in this chapter. In
Section 3.3, we derive upper bounds on the extension complexity of Voronoi cells for
some selected classes of lattices, such as root lattices and their duals, zonotopal lattices,
and a class of lattices that do not admit a compact representation in the sense of [HRS20].
The proof of Theorem 3.2 is given in Section 3.4, more precisely in Section 3.4.1.
Moreover, in Section 3.4.2, we generalize this approach towards approximations of
Voronoi cells, and in Section 3.4.3, we briefly introduce semidefinite lifts and present a
version of Theorem 3.2 with a superpolynomial bound on the semidefinite extension
complexity. We close this chapter with a discussion of open problems in Section 3.5.

3.2 Preliminaries

3.2.1 Extension complexity: A toolbox

Throughout this chapter, we only need basic facts regarding extension complexities of
polytopes and most of them are well-known. For the sake of completeness, we provide
proofs here. First, we start with a simple fact already mentioned in the introduction.
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Lemma 3.3. For every polytope P < R? and affine subspace H < R%, we have xc(PnH) <
xc(P).

Proof. If P is the image of a polyhedron @) € R" with k facets under a linear map ,
then P n H is the image of 7~} (H) n Q, where 7—!(H) is an affine subspace in R" and
hence 7~ (H) n Q has at most k facets. O

Corollary 3.4. For every face F' of a polytope P, we have xc(F') < xc(P).

For the next fact, we need the notion of a slack matrix of a polytope. To this
end, we consider a polytope P = {z € R? : {a;,z) < b; fori € [m]} = conv{vy,...,v,}.
Corresponding to these two descriptions of P, we define the slack matrix S = (S; ;) €
R, "™ via S; ; = b; — {as,v;). Yannakakis [Yan91] showed that the extension complexity
xc(P) of P equals the non-negative rank of S, which is the smallest number r such
that S = FV, where F € RL" and V € RL{", and which is denoted by r, (S). This
characterization yields another proof for Corollary 3.4, using that the slack matrix of a
face of a polytope P is just a submatrix of S.

For a polytope P containing the origin 0 in its relative interior, the dual polytope of P
is defined as

P°:={yelin(P) :{(x,y) < 1forall x € P}.

It is a basic fact that P° is again a polytope with the origin in its relative interior,
lin(P°) = lin(P), and (P°)° = P. Moreover, (AP)° = P° holds for A € R\{0}, and
Q° < P°if P < Q for polytopes P, with 0 € relint(P) n relint(Q). Furthermore, it is
easy to see that if

P = {z elin(P) : (w;,xy < 1 fori e [m]} = conv{vy,...,v,},
then

P° ={yelin(P): (v, zy <1forice [n]} = conv{ws,...,wn}. 3.1
In particular, this shows that if S is a slack matrix of P induced by v,...,v, and
wi, ..., Wwn, then ST is a slack matrix of P°. Since 7, (S) = r4(ST) holds, we obtain the

following Lemma 3.5.

Lemma 3.5. For every polytope P  R? that contains the origin in its relative interior, we
have
xc(P) = xc(P°).

The next statement shows that the extension complexity behaves well under Cartesian
products, Minkowski sums and intersections.
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Lemma 3.6. If P < R?% Q < R? are polytopes, then
() xc(P x Q) < xc(P) + x¢(Q).

Moreover, if d = d’, then

(i) xc(P + Q) < xc(P) + xc(Q) and

(i) xc(P n Q) < xc(P) + x¢(Q).

Proof. (i): If P’ linearly projects onto P and @’ onto @, then P’ x @’ linearly projects
onto P x (). Moreover, the number of facets of P’ x @)’ is equal to the sum of the number
of facets of P’ and Q.

(ii): The polytope P x @) linearly projects onto P + @ via (p,q) — p+q for (p,q) € P x Q,
and hence the claim follows from (i).

(iii): If P = n(P’) and @Q = 7(Q’) hold for some polyhedra P’, Q)" and linear maps , 7,
then P n @ is a linear image of the polyhedron L = {(y,2) € P’ x Q' : w(y) = 7(2)}.
Moreover, the number of facets of L is at most the number of facets of P’ x ', which,
again, is equal to the sum of the number of facets of P’ and Q’. O

The next fact is a very useful result following from a work of Balas [Bal79] deriving a
description of the convex hull of the union of certain polytopes. The proof of the version
presented here can be found in [Well5, Prop. 3.1.1].

Lemma 3.7. For polytopes P, ..., Py, we have
k
xe(conv(Py U ... U By)) < Y xe(P) + [{i € [k] : dim(P;) = 0}
i=1

We mentioned already that some lattices have a permutahedron as their Voronoi
cell. These polytopes arise from a single vector by permuting its coordinates in all
possible ways and taking their convex hull. Let us denote the set of all bijective maps
on [d] by Sy. For a permutation m € Sy and a vector v = (v(1),...,v(d)) € RY, let
m(v) := (v(7(1)),...,v(w(d))) be the vector that arises from v via permuting its entries
according to 7.

Lemma 3.8. For every v € R%, we have xc(conv{rn(v) : m € Sy}) < d>.

Proof. For m € Sy, let P(w) € {0,1}?*? be the associated permutation matrix with
P(m);; = lifand onlyif 7(i) = j foralli, j € [d]. Itis easy to see that conv{m(v) : 7 € S4}
is the image of By := conv{P(7) : 7 € Sy} under the linear map 7 : R¥*¢ — R with
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7(X); = Z?ZI vjX;; for i € [d]. The latter polytope is the Birkhoff~von Neumann
polytope [Bir46; Neu53] described via

d d
B, = {XGR%‘J{:ZXW- =1for j € [d], ZXU =1forie [d]},
i=1 j=1

which has d? facets. O

Goemans [Goel5] showed that if v = (1,2,...,d), then the above bound can be
improved to xc(conv{rn(v) : m € Sg}) = O(dlogd).

3.2.2 Lattices and Voronoi cells

Most basic notions regarding lattices and their Voronoi cells have been already intro-
duced in Section 3.1. In this section, we provide some further definitions and results
that we use to obtain bounds on the extension complexity of Voronoi cells of lattices.
We call two lattices A,I" < R? isomorphic if there exists an orthogonal matrix Q €
R9*4 such that QA = I'. Note that VC(I') = Q VC(A) and therefore the extension
complexities of their Voronoi cells coincide.
In some parts, we will consider the dual lattice of a lattice A = R?, which is defined as

AN ={zxelin(A) : (z,yyeZforallye A}.

Note that for every two lattices A, T', their product A x I is also a lattice. The following
lemma shows that the Cartesian product behaves well with respect to Voronoi cells or
duals of lattices.

Lemma 3.9. For any two lattices A = R? and T' = R?, we have
(D VC(A xT') =VC(A) x VC(I'), and
(i) (AxD)*=A*xT™

Proof. The first claim follows since

VC(A x T) = {(z,y) €lin(A xT) : ||(z,9)|*> < |(z,y) — (w, 2)|? for all (w,z) € A x T'}
= {(z,y) : x €lin(A), y € lin(T"),
Jal + Iyl < & — w]? + ly — 2| for all (w, 2) € A x T}
= {(z,y) : x €lin(A), y € lin(T"),
|z|? < |& — w|? forallw € A, |ly|® < |y — z|? for all z € T'}

= VC(A) x VC(T)
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holds.

For the second claim, it is clear that A* x I'* < (A x I')* holds. To see that the reverse
inclusion holds as well, let (z,y) € (A x I')*. For every w € A, we have (w,0) e A x I’
and hence (z,w) = {(z,y), (w,0)) € Z. This yields x € A*. We obtain y € I'* in an
analogous fashion. O

A main ingredient for proving Theorem 3.2 is to consider the dual polytope VC(A)°
of VC(A). Recall that we have xc(VC(A)) = xc(VC(A)°) by Lemma 3.5. The following
two observations are crucial for our arguments.

Lemma 3.10. For every lattice A, we have
VC(A)° = conv {Wz 1z € A\{O}} .
Proof. In view of the identities

VC(A) ={z € lin(A) : || < |« — z|? for all z € A}
={z elin(A): (z,2) < i[z|* forall z € A}
- {m e lin(A) : <:c #@ <1forall z e A\{O}} :
the claim follows from (3.1). O

Lemma 3.11. Let A < R? be a lattice and p € R% If 0 € cl(p, A), then

conv {ﬁz : z € cl(p, A)\{O}}
is a face of VC(A)°.

Proof. Since 0 € cl(p, A), every non-zero lattice point z € A\{0} satisfies |p — z|? = |p|?,
with equality if and only if z € cl(p, A)\{0}. Note that the above inequality is equivalent
to <p, ﬁz> < 1. Thus, due to Lemma 3.10, we see that F' := {y € VC(A)° : {p,y) = 1}
is a face of VC(A)°. This establishes the claim since

F = Conv{ﬁz : z € A\{0}, <p, ﬁz> = 1}

= conv { \|22H2Z : z € cl(p, A)\{O}} . O

3.3 Lattices with small extension complexity

In this section, we provide bounds on the extension complexities of Voronoi cells of
some prominent lattices.
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3.3.1 Root lattices and their duals

We start with Voronoi cells of root lattices and their duals. An irreducible root lattice
is a lattice A for which there exists a finite set S of vectors of squared length equal
to one or two, such that A = {}, s b : oy € Z for all b € S}. We say that a lattice
is a (general) root lattice, if it is isomorphic to a lattice obtained by iteratively taking
Cartesian products with irreducible root lattices. A well-known theorem related to the
classification of reflection groups states that besides the lattice Z? of integers, up to
isomorphism the irreducible root lattices split into the two infinite classes

Ay = {erdH cx(l)+ ...+ x(d+1) 20} and
Dy = {erd:x(1)+...+x(d) iseven},
and the three exceptional lattices

Es=Dsu (31+ Ds),
E; ={x € Eg: {x,x7 + xs) = 0} and
E¢ = {xe Er:{x,x¢ + xs) = 0}.

Here and in the following, we denote by y; the ith standard Euclidean unit vector.
Moreover, the dual lattices of the two infinite classes A; and D, are given by

d
Ay = i+ Aa),
i=0

with v; = (dzl,...,d’ —ﬁ,...,—ﬁ) for0<i<dandj=d+1-—14,and
~ Y h
j times 4 times

Dy =z'u ($1+727),

respectively. In the literature the dual D} is usually scaled by a factor of two in order to
get an integral lattice, which is often more convenient to investigate. In order to avoid
confusion, we denote it by

DY = 2D} = (QZd) U (1 + zzd) ,

and note that this scaling has no effect on the extension complexity of its Voronoi cell.
We refer to Conway & Sloane [CS99, Ch. 4 & Ch. 21] and Martinet [Mar03, Ch. 4]
for proofs, original references, and background information on root lattices. Details
on Voronoi cells and Delaunay polytopes of root lattices can be found in Moody &
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Patera [MP92], which together with the two aforementioned monographs are our main
sources of information.

Given a lattice A < R?, we write |A| = min{|z| : z € A\{0}} for the length of a
shortest non-trivial vector in A. A minimal vector of A is any vector z € A with |z = |A],
and a facet vector of A is any vector w € A, such that the constraint (z,w) < 1|w]?
defines a facet of the Voronoi cell VC(A). For convenience, we write

S(A)={zeA:|z|=]|A]} and
F(A) = {we A :wis a facet vector of A},

for the set of minimal vectors and facet vectors, respectively. In general, one has the
inclusion S(A) < F(A), which however is usually strict. Root lattices are now neatly
characterized by the property that every facet vector is at the same time a minimal
vector, that is, the equality S(A) = F(A) holds, see Rajan & Shende [RS96].

Since the set of minimal vectors of the irreducible root lattices are well-understood,
this allows to describe their Voronoi cells as well. For the sake of the asymptotic study of
the extension complexity of their Voronoi cells, it suffices to understand the two infinite
families A4 and D, and their duals A} and D};. In the sequel, we provide bounds on the
extension complexities of the Voronoi cells of these lattices. To achieve these bounds,
we sometimes use a characterization of the facet vectors and in other cases we use a
characterization of the vertices of the Voronoi cell. For the sake of easy reference, we
describe the vertices and facet vectors in all cases. Due to Lemma 3.6 and Lemma 3.9,
these bounds directly imply Theorem 3.1. Moreover, the bound in Theorem 3.1 is
asymptotically tight since the Voronoi cell of A} is a permutahedron, see Lemma 3.14.

Voronoi cell of A4,
The Voronoi cell of the root lattice A, is given by
VC(Ay) = conv {m(v;) : m € Sqiq fori € {0,...,d}},

where

_ i i _J d+1
UZ_(g+17""d+1J’ d+1° d+1)€R

Y Y
j times i times

with j = d + 1 — . Moreover, we have
VC(4y) = {w eR™:(z,z)<1forall z € ]—'(Ad)} , Where
‘F(Ad) = {W((l, _]-a 07 ... 70)) CTE Sd+1} 3

see [CS99, Ch. 21 & Ch. 4, Sec. 6].
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Lemma 3.12. xc(VC(4,)) = O(d).

Proof. Using the description of the facet vectors stated above, we obtain that VC(A,)° =
S + (—95), where S is the d-dimensional simplex S = conv{x1,..., x4+1}- Hence, using
Lemma 3.5 and Lemma 3.6, we obtain the upper bound xc¢(VC(Ay)) < 2(d + 1). O

Voronoi cell of D,
The Voronoi cell of D, is given by
VC(D,) = conv ({ixl, N IR {—%,% d) .
Moreover, we have
VC(Dy) = {x eRM :(z,z)<1forall z e ]—“(Dd)} , where
F(Dg) ={txi txj:1<i<j<d}.

This follows from the characterization of the minimal (and thus facet) vectors of Dy
given in [CS99, Ch. 4, Sec. 7]. The inner description of the Voronoi cell can be read off
from the vertices of a fundamental simplex for Dy, see [CS99, Ch. 21, Fig. 21.7].

Lemma 3.13. xc(VC(Dy)) = O(d).

Proof. Using the description of the vertices of VC(D,) stated above, we obtain that the
dual of the Voronoi cell is the intersection of a hypercube and a crosspolytope, i.e.,

VC(Dy)° = 2 - conv{+x1,...,+txaq} n [-1,1]%

Since
XC ([—1, 1]d> = xc(conv{txi,...,txq}) = 2d, (3.2)

see, e.g., [GPS18, Cor. 2.5]. Lemmas 3.5 and 3.6 imply xc(VC(Dy)) = O(d). O

Voronoi cell of A
The Voronoi cell of the dual of the root lattice A’ is given by
VC(A4}) = conv{m(v) : m € Sgy1},

where

v = ﬁ(—d,—d—i—2,—d+4,...,d—4,d_2’d)eRdH.
Moreover, we have

F(A}) = {v elin(A}) : vis avertex of VC(Ay)}.
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Chapter 3 Lifts for Voronoi cells of lattices

The characterization of the vertices can be found in [CS99, Ch. 21, Sec. 3F] and the
fact that the facet vectors are exactly the vertices of VC(A4,) is explained in detail in the
unpublished monograph [EMS04, Ch. 3.5].

Lemma 3.14. xc(VC(A4})) = ©(dlogd).

Proof. Using the description of the vertices of VC(A}) stated before, we obtain that
VC(A}) is an affine linear transformation of the standard permutahedron

Py ={(r(1),...,m(d+1)): 7€ Su1}.

In fact,

VC(Ay) = ﬁPd - Qdd—fél.
The claim follows, since Goemans [Goel5] showed that the extension complexity of Py
is in ©(dlogd). O

Voronoi cell of D
As explained before, we consider the integral lattice D instead of D}. The Voronoi cell
of Dy is given by

VC (D) = conv {m(v) : 7€ Sg,v eV},

where ; .
{0}2 x {—1,1}2 , if d is even,
V= d-1 - -1
{0} 2 x{—5,5}x{-1,1} 2 ,ifdisodd.

Moreover, we have
F(D}) = {£2x1,..., +2xa} U {~1,1}"

We refer to [CS99, Ch. 21, Sect. 3E] for the characterization of the facet vectors and the
inner description of the Voronoi cell, which is therein denoted by the symbols 3(d, d/2)
for even d, and 34(d, (d — 1)/2) for odd d.

Lemma 3.15. xc(VC(D})) = O(d).

Proof. Using the above description of the facet vectors, we obtain that the Voronoi cell
of D} is the intersection of a hypercube and a crosspolytope, i.e.,

VC (D}) = [-1,1]~ ¢ - conv{£x1,..., £xa}-

As in the case of the root lattice Dy, the stated bound follows by Lemma 3.6 and
Equation (3.2). ]

Note that all the bounds stated in Lemmas 3.12, 3.13, and 3.15 are asymptotically
tight, since the extension complexity of a polytope grows at least linearly with its
dimension [Fio+13, Eq. 2 & Prop. 5.2].
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3.3.2 Zonotopal lattices

A zonotope Z < R? is the Minkowski sum of finitely many line segments, that is, there
are vectors ai, b1, . .., am, by, € R% such that Z = >t convia;, b;}. The non-zero vectors
z; = b; — a; are usually called the generators of the zonotope, and clearly, Z is an affine
projection of the m-dimensional cube [—1,1]™ via y; — z; for 1 <+ < m and a suitable
translation. Regarding the extension complexity of a zonotope Z, the bound xc(Z) < 2m
immediately follows from the definition.

A lattice A < R? is said to be zonotopal if its Voronoi cell is a zonotope. Every
lattice of dimension at most three is zonotopal, but from dimension four on there
exist non-zonotopal lattices. For instance, the Voronoi cell of the root lattice Dy is
the non-zonotopal 24-cell. Examples of classes of zonotopal lattices are Z¢, the root
lattice Ay, its dual lattice A%, lattices of Voronoi’s first kind, and the tensor product
Aq® Az . Zonotopal space tiles have been extensively studied over the years, mostly due
to their combinatorial connections to regular matroids, hyperplane arrangements, and
totally unimodular matrices. For a detailed account on zonotopal lattices and pointers
to the original works containing the previous statements we refer to [McC+21, Sect. 2].

The tiling constraint on a zonotope that arises as the Voronoi cell of a lattice, allows it
to have at most quadratically many generators in terms of its dimension. In particular,
these polytopes admit lifts with quadratically many facets.

Theorem 3.16. Each zonotopal lattice A = R? satisfies xc(VC(A)) < d(d + 1).

Proof. It suffices to argue that the Voronoi cell is generated by at most (dgl) line

segments. Indeed, each line segment L satisfies xc(L) = 2 and hence the statement
follows using Lemma 3.7.

Erdahl [Erd99, Sect. 5] proved that the generators of a space tiling zonotope corre-
spond to the normal vectors of a certain dicing. A dicing in R? is an arrangement of
hyperplanes consisting of » > d families of infinitely many equally-spaced hyperplanes
such that: (1) there are d families whose corresponding normal vectors are linearly inde-
pendent, and (2) every vertex (0-dimensional affine subspace arising form intersecting
hyperplanes) of the arrangement is contained in a hyperplane of each family.

By [Erd99, Theorem. 3.3], every dicing is affinely equivalent to a dicing whose set of
hyperplane normal vectors — one normal vector for each of the r families — consists of the
columns of a totally unimodular d x r matrix. By construction, this totally unimodular
matrix is such that for any two of its columns v, w, we have v # t+w and v,w # 0. A
classical result that is often attributed to Heller [Hel57], but already appears in Korkine
& Zolotarev [KZ77], yields that every such totally unimodular d x r matrix has at

most r < (d;rl) columns. Thus, the zonotopal Voronoi cell VC(A) is generated by at
most (*}') line segments. O
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Chapter 3 Lifts for Voronoi cells of lattices

Alternatively, the fact that zonotopal Voronoi cells in R? are generated by at most (d'Q”)
line segments also follows from Voronoi’s reduction theory. The Delaunay subdivisions
of zonotopal lattices correspond to certain polyhedral cones (Voronoi’s L-types) in the
cone Sio of positive semi-definite d x d matrices that are generated by rank one matrices.
d'gl), Carathéodory’s Theorem yields the bound. We refer
the reader to Erdahl [Erd99, Sect. 7] for an intuitive description and references to the

original works.

Since SZ, has dimension (

3.3.3 Lattices defined by simple congruences

For any a € Z=1, we consider the lattice
Ag(a) = {erd:xlszE...Exd mod a}. (3.3)

The case a = [%] played a special role in [HRS20, Thm. 2] for the determination of
lattices that do not have a basis that admits a compact (in their setting) representation of
the Voronoi cell. To this end, the authors specified the set F (A4 ([2])) of facet vectors
explicitly. Note that there are exponentially many of facet vectors. However, their proof
can be extended to general «a to give a description of the facet vectors of F(Ag4(a)) that
is precise enough to allow drawing conclusions towards small extended formulations.

Lemma 3.17. For all a € Zx, the set of facet vectors of Ay4(a) is contained in

F(Aa(a)) € {1, -1} u {xax; : i € [d]}
useent g sz ee |22 [}

where vg (i) = a— £, ifi € S, and vg (i) = —¢, if i ¢ S.
Proof. Follows directly with the proof of [HRS20, Lem. 3]. O
Theorem 3.18. For all a € Z1, we have xc(VC(A4(a))) = O(d3).

Proof. Due to Lemma 3.17, Equation (3.1), the definition of the Voronoi cell and the
fact that the set of points given in Lemma 3.17 does only contain lattice vectors, the
dual polytope of the Voronoi cell of Ay(a) equals

VC(Ag4(a))® = conv <VJ_r1 U Vigu U Vk7g> ,
k.
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3.4 Lower bounds on the extension complexity of Voronoi cells

where the last union is over all k € [d — 1], £ € {| 2|, [%]} and the sets V.4, V4, and
Vi¢ are defined as follows:

Vi = conv{%l,—%l},
Vig :=conv{+Zay; : i€ [d]} and
Vi,e := conv {W—WZ czefa—10,—0}°
with exactly k entries equal to a — ¢ }

Clearly, xc(V11) = 2 holds. Since V7, is a crosspolytope, xc(V,) = 2d holds, see (3.2).
Furthermore, for k € [d — 1] and ¢ € {|%|,[%]}, using Lemma 3.8 and the fact that
Vi,e up to scaling equals
conv{m(vg ) : ™€ Sq},

where v,y = (a—¢,...,a—¥{,—(,...,—¢) with exactly k entries equal to a — ¢, we obtain
XC(ijg) < d2.

Combining these bounds and applying the Lemmas 3.5 and 3.7, we obtain the desired
bound. O

3.4 Lower bounds on the extension complexity of Voronoi cells

The main contribution of this section is the proof of Theorem 3.2. After that, we
generalize the ideas to approximations and semidefinite lifts.

3.4.1 Lattices with large extension complexity

The aim of this section is to prove Theorem 3.2. Inspired by Kannan’s proof [Kan87,
Sec. 6] of the NP-hardness of the closest vector problem, we gain the following result.
For every 0/1-polytope P, we are able to construct a lattice such that a face of its dual
Voronoi cell projects onto P. To obtain a lattice of small dimension, P needs to fulfill
some extra condition.

Lemma 3.19. Let H < R be an affine subspace such that all vectors in X := {0,1}* n H
have the same norm. There is a lattice A with dim(A) < dim(H) + 1 such that conv(X) is
a linear projection of a face of VC(A)°.

Proof. Let~ > 0 be such that |z| = v for all x € X. We may assume that H is nonempty
and that v > 0, otherwise conv(X) is empty or consists of a single point, in which case
the claim is trivial. Consider h € H and let L be the linear subspace such that H = L + h.
Now, consider the lattice

A= {z = (,2")eZF x~AZ: 2 + %z”h €L, 1,2y +~2" = 0} , (3.4)
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Chapter 3 Lifts for Voronoi cells of lattices

and let p := (0, —v) € R¥*1, We will show that
cl(p,A) ={0} U {(z,—y) :xe X} =U (3.5)
holds. By Lemma 3.11, this will imply that

conv{m(@", —y):x € X} = conv{v%(ﬂs, —y):x € X}

is a face of VC(A)® that linearly projects onto conv(X).

First note that U < A holds. Moreover, we have |p — 0| = ~, and |p — (z,—7)| =
|z| = ~ holds for each = € X. Thus, in order to establish (3.5) it remains to show that
every lattice point z = (2/,2”) € A\U satisfies v < ||p — z||. Equivalently, we have to
show that every such point satisfies

F2) = 1217 + 12" + ) >+ (3.6)

This is clear if 2” ¢ {0, —v, —2v}. If 2” = 0, then since z ¢ U, we must have 2’ # 0.
Hence, f(z) = ||2/||> + 4? > 7% holds.

If 2 = —~, then 2’ € H and (1, 2’) = 2 hold. Since 2’ € ZF, we obtain f(z) = |2/|? =
(1,2"y = v* with equality only if 2’ € {0, 1}*. However, in the latter case, we would have
2/ €{0,1}* n H = X and hence z € U, a contradiction. Thus, we obtain f(z) > 2.

Finally, if 2 = —2v, then f(z) = ||#/||* + 4% and (1, 2') = 24% > 0, implying 2’ # 0
and hence (3.6) holds. O

While the previous lemma appears quite restrictive, the next lemma shows that we
may apply it to a large class of 0/1-polytopes.

Lemma 3.20. Let X = {z € {0,1}* : Az < b}, for some A € R™*F, b e R™ such that
b— Az € {0,1}™, for all x € X. There is a lattice A of dimension at most k + 1 such that
conv(X) is the linear projection of a face of VC(A)°.

Proof. Consider the set
X' = {(x,a:’,s,s') e {0, 1}pthtmim . Ay 4 s—ba+a' =1,s+5 = 1},

and observe that projecting X’ onto the first & coordinates yields the set X. Moreover,
notice that every vector in X’ consists of exactly & + m ones. In other words, the norm
of every vector in X’ equals vk + m and hence, we may apply Lemma 3.19 to obtain
a lattice A with dimension at most k£ + 1 such that conv(X’) is the linear projection
of a face F' of VC(A)°. Since conv(X) is a linear projection of conv(X’), we see that
conv(X) is also a linear projection of F. O
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Proof of Theorem 3.2. We use a result of G66s, Jain & Watson [GJW18] that yields a
family of n-node graphs G such that the stable-set polytope P of G satisfies xc(Pg) =
2%n/logn)  Let X < {0,1}" denote the set of characteristic vectors of stable-sets in G.
Notice that

X ={ze{0,1}": 2(i) + 2(j) < 1 for all {i, j} € E(G)}.

By Lemma 3.20, there is a d-dimensional lattice A with d < n + 1 such that conv(X) is a
linear projection of a face F' of VC(A)°. We conclude

xc(VC(A)) = xc(VC(A)?) = xc(F) = xc(conv (X)) = xc(Pg) = 29(”/10g”),

and the claim follows since d = O(n). O

3.4.2 Generalization to approximations of Voronoi cells

In Section 3.4.1, we have seen that the extension complexity of Voronoi cells can be
superpolynomial. Within this section, we study whether this still holds true if we allow
approximations instead of exact descriptions. For o > 1, we say that a polytope Q is
an a-approximation of a polytope P if P < () < aP. This is a common way to define
approximations of polytopes, since it also perfectly matches the approximation factor
when optimizing over the respective polytopes. For any objective vector ¢, we have

max{cTz : z € P} < max{cTz:z € Q} < amax{c'x : z € P}.

In Section 3.4.1, the lower bound on the extension complexity was obtained by con-
structing a lattice whose dual Voronoi cell possesses a face that projects onto a stable-set
polytope and exploiting the lower bound for stable-set polytopes. It turns out that there
also is a superpolynomial lower bound on the extension complexity of small approx-
imations of stable-set polytopes, see Lemma 3.23. Therefore, we tailor the approach
of Section 3.4.1 for our result on approximations. Dualizing polytopes behaves well
with containment, and therefore we can easily extend the idea of considering the dual
Voronoi cell to approximations. Furthermore, Lemma 3.22 shows how to generalize
the idea of projecting a face. Combining all these ingredients results in the following
theorem.

Theorem 3.21. There exists a family of d-dimensional lattices A such that for any polytope
Q satisfying VC(A) € Q < (1 + 5oz ) VC(A), we have xc(Q) = 22V,

The next Lemma 3.22 deals with the generalization of projecting a face. Therefore,
consider a polytope V, which possesses a face F' that projects onto a polytope P. For a
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polytope @ approximating V', Lemma 3.22 essentially shows that () intersected with the
affine hull of F" will project onto a polytope K that approximates P. To be more precise,
this only holds true if 0 € relint(P). Since we aim to apply this lemma for V being the
dual Voronoi cell and P the stable-set polytope, we will only have 0 € P. In this case,
we will have to cut the projected slice of @ with the positive hull of P, which is defined
by

pos(P) := ﬂ C.

C2P,
C convex cone

Lemma 3.22. Let v > 0, P < R" and V < R be polytopes with 0 € relint(V), 0 € P, and
F be a face of V such that n(F) = P, where = is a linear map. Moreover, let a € R? such
that the hyperplane H = {y € R : {a,y) = 1} satisfies F = V ~ H. Then, there exists an
e > 0 such that for any polytope Q satisfying

Ve (l+e)V,

we have
Pcn(@QnH)npos(P)< (1+7)P.

Here, ¢ depends on P, V, ~, and w and can be determined as follows. Let ¢ > 0 be such
that {a,v) + ¢ < 1 holds for all vertices v of V' that do not lie in the face F'. Let ry satisfy
rv = max{[ly| : y € V} and for P described via P = {x € R" : {¢;,x) < 1foralli e
[k]} N pos(P), let rp be a bound for the coefficient vectors, i.e., 5 = max{|c;| : i € [k]}.
Then, the above statement is true for all

e I8

<+ rvrplal’

where || < oo denotes the operator norm of m corresponding to the Euclidean norms in
R™ and R?

Proof. The first inclusion is trivial, since I’ < ()n H and therefore P = n(F) < n(Qn H).
For the second inclusion, we consider y € @ n H < (1 +¢)V. Hence, y may be written
as a convex combination of the vertices of (1 + ¢)V, which are just the vertices of V'
scaled by (1 + ¢). We split this convex combination into a convex combination vy of
vertices in /" and a combination v of vertices not in F. Therefore, we can write y as

y=(1+¢)(Avr+(1-Avgp)

for some A € [0, 1]. Since we already know that 7(vr) € P, we only need to show that
the impact of v is small enough. Hence, we first bound A from below. Therefore, we
consider

L=,y =(1+e)(A+ (1 =M)a,vp) <(T+e)A+ (1 -A)(1-9)),
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which is equivalent to 0 < A¢ + eA¢ — ¢ — e¢ + €. In turn, this yields a bound for A via

1-A<

(l+¢)

We consider
(14+~)P ={xeR":{¢,xz) <1+~forallie [k]} npos(P),
and verify that 7(y) € (1 + «)P holds if 7(y) € pos(P), by checking all the inequalities.

Ceim(y)) = (L+ &) (Mei, m(vr)) + (1= A)ei, m(v)))
<@+ A+ (A =Nlellr[lvzl)

)
)

<+e) (14 grgrilalny)

(1)

for all i € [k], which proves the claim. O

The following lemma uses the notion of a line graph L(G) of a graph G = (V, E),
defined by L(G) := (E,{{e, f} S E:en f # J}).

Lemma 3.23. There exists a family of n-node graphs G with corresponding stable-set
polytopes Pg such that for any polytope @ satisfying P < Q < (1 + H\/#ﬁ)PG’ we
have xc(Q) = 2V, Moreover, the graphs G can be chosen as line graphs of complete
graphs. Therefore, there exists a set of vectors cy, . .., ¢ With

Pg = {:c eRUD . (eiay < 1forallie [k]},
and |¢;l|oo < 1 forall i € [k].

Proof. Due to Braun & Pokutta [BP14], we know that the matching polytope P, more
precisely the convex hull of all matchings in the complete graph K, on n nodes, possesses
the following lower bound. For any polytope Q satisfying Pp; € Q < (1 + 1) Py, we
have xc(Q) = 2°("). We note that matchings in K,, directly correspond to stable-sets
in the line graph L(K,), and the corresponding polytopes coincide. Note that L(K,,)
has n(n — 1)/2 many nodes, which yields the claim. Furthermore, due to [Edm65a], the
polytope P); may be described using only inequalities of the claimed type. O

Proof of Theorem 3.21. Analogously to the proof of Theorem 3.2, we let G = (V, E)
be an n-node graph with n > 5 having the properties described in Lemma 3.23, and
define the corresponding d-dimensional lattice A with d < n + 1 such that the stable-set
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polytope Py is the image of a face F' of VC(A)° under a linear map n. We aim to apply
Lemma 3.22 with V' = VC(A)° and P = Pg. Therefore, we claim that we can choose
the parameters in Lemma 3.22 as follows.

rp = /n, (3.7) |7|| = n +m, and (3.9
ry =2, (3.8) ¢ = e (3.10)
where |E| = m. Moreover, corresponding to Lemma 3.23, we choose v = 1+\/?snT'

According to Lemma 3.22, we consider any € > 0 bounded via

2 1
1++/8n+1 n+m
e < , (3.11)
ﬁ + 24/n(n + m)

and any polytope Q with VC(A) < @ < (1+¢) VC(A). This is equivalent to 1%@ VC(A)° <
Q° < VC(A)°, which, in turn, is equivalent to VC(A)° < (1 +¢)Q° < (1 +¢) VC(A)°.
Note that we have xc(Q) = xc(Q°) = xc((1 + €)Q°), where the first equality follows by
Lemma 3.5. With the assumptions from above, Lemma 3.22 states that

Pecn((1+e)Q° nH) npos(Pg) < (1 + w%) Pg,

with H n VC(A)° = F. Moreover,

x¢(Q) =xc((14+¢)Q°) = xc((14+¢e)Q° n H) = xc(n((1 +¢)Q° n H))
> xe((r((1+)@° ~ H))  pos(Pe) —n,

where the first inequality is due to Lemma 3.3, and the last inequality follows with
Lemma 3.6, since pos(P;) = RY has n facets. Due to Lemma 3.23, xc((7((1 + £)Q° n
H)) npos(Pg)) —n = 22" — p holds, which yields xc(Q) = 24V™),

Showing that ¢ = 1/(192d*) satisfies the bound in (3.11), proves the claim. There-
fore, note that the bound in (3.11) can be shown to be at least 1/ (12n(n + m)?).
Furthermore, the number of edges of line graphs with n nodes may be calculated via
m =% (14 +/8n + 1 — 2) < 3ny/n. This yields that every e with ¢ < 1/(192n?) satisfies
(3.11). We will see that d = n + 1 holds, which then yields the claim.

We are left with showing that the parameters in (3.7) — (3.10) are chosen correctly.

First, we observe that P; has the properties stated in Lemma 3.23, and therefore
it possesses a description P = {z € RY; : {¢;,z) < 1 fori € [r]} with max{|c;]e : i €
[r]} < 1, which in turn proves max{|c;|| : i € [r]} < +/n validating (3.7).

Now, we validate the parameters regarding the dual Voronoi cell. Therefore, we first
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explicitly state the lattice A indicated in the previous section in (3.4):

A= {(:c,a:’,s,s/,t) e 2%V x 7*E x \/n+ mZ:

Z(x(z) + 2'(4)) + Z (s(e) +s'(e)) +vVn+mt=0 (3.12)
1€V eclk

x(i) + z(3) + s({i,7}) + \/nl+7mt =0 for {i,j} € E(Q), (3.13)

T4z + n1+mt1 =0, (3.14)

545+ Atl = 0}. (3.15)

We note that (3.12) is implied by (3.14) and (3.15), showing that dim(A) = n + 1.
According to Lemma 3.10, the dual of the Voronoi cell of A is described via

VC(A)® = conv {”2’2|22 1z € A\{O}} .

Therefore, the norm of every y € VC(A)® is bounded by two, which validates (3.8).

Following the proof of Lemma 3.19, a face F' of VC(A)° projects onto P via 7(y) =
(n + m)yy, where yy equals the vector y restricted to the first n coordinates. Therefore,
the operator norm is given by || = n + m, which matches (3.9).

We are left with validating the Parameter (3.10) regarding the slacks for the face F' of
VC(A)°. Again, following the proof of Lemma 3.19, the face F with the desired property
is described via

F=conv{ﬁz:zecl((_h),/\)} = VC(A)° n H, with
H = {yelin(A) : <(_\/2+—myy> = 1}.

Here, the second description follows from the proof of Lemma 3.11. Let y = ﬁz with
z = (z,2',s,5,4/n+mk) € A\{0} be a vertex of VC(A)° that does not lie in F. To
validate (3.10), we have to show that

e e = T R TIN

holds for all such vectors y. If & > 0 the first summand in (3.16) becomes non-positive,
and (3.16) is trivially satisfied.

Now, let us assume that k = —1. Since y ¢ F, we have that z ¢ cl ( 7\/?%),/&).
Recalling (3.5) in the proof of Lemma 3.19, this shows that the vector (x, 2/, s, s’) needs
to contain entries that are not in {0, 1}. For i € V, e € E, the Constraints (3.14) & (3.15)
imply z(i),2(i), s(e), s'(e) ¢ {0,1} whenever 2/ (i), z(7), s'(e), s(e) ¢ {0, 1}, respectively.
For a pair z(i), 2/ (i), or s(e), s'(e) being not in {0, 1}, at least one of the two entries will

59
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be strictly greater than one in absolute value. Moreover, for every i € V, and e € E,
the Constraints (3.14) & (3.15) imply (i) # 0 or 2/(z) # 0, and s(e) # 0 or s'(e) # 0,
resulting in at least n + m non-zero entries. Therefore,

Iz|? = (n +m) + 2% + (n + m) = 2(n + m) + 4, which implies
_—2(n—|—m)< 2(n +m) 2 . 1

22 T 2m+m)+4 0 n+m+2 n+m’

showing (3.16).

Since k is integral, we are left with the case in which k£ < —2. In this case the
Equations (3.14) & (3.15) imply at least n + m entries in (z,2’, s, s’) that are at least
—k/2. Therefore,

k?Q
|21? > Z(n +m) + k*(n + m), which implies

 2k(n+m) - —2k(n+m) =2 _1 1
HZHQ - k:2(n+m)(l+%) ]{;(14_%) = 1_|_% 5’
which is smaller than 1 — njm, showing (3.16). 0

3.4.3 Generalization to spectrahedral lifts

A generalization of linear lifts of a polytope is the following. By S", we denote the set
of all symmetric, real m x m matrices. Moreover, we denote the set of all those matrices
in 8™ that are positive semidefinite (PSD), by S*. A spectrahedron is a set containing
all vectors z € R™ that fulfill conditions of the form M (z) € ST, where M : R" — S™ is
an affine function. For a polytope P, the pair (Q, 7), where ) < R” is a spectrahedron
and 7 : R" — R? is an affine map with 7(Q) = P, is called a (PSD) lift of P. The size of
this lift refers to the dimension of the matrix A (z). For Q = {x € R" : M(z) € ST'} the
size equals m. The semidefinite extension complexity of P, denoted by sxc(P), is defined
as the smallest size of any of its (PSD) lifts.

Given a polyhedron Q = {x € R" : {a;,z) < b; fori € [m]}, we can define M :
R"™ — §™ via M (x);; = b; — {a;, ) for all i € [m] and M(x);; = 0 for i # j and hence
Q = {r € R" : M(x) € ST'}. This shows that every polyhedron is a spectrahedron and
therefore

sxc(P) < xc(P).

Hence, the upper bounds obtained in Section 3.3 also apply to the semidefinite case.
Furthermore, it is clear from the definition that for any polyhedron P and any affine

map 7 we have that sxc(m(P)) < sxc(P). Moreover, Corollary 3.4 and Lemma 3.5

analogously hold in the semidefinite case, since Yannakakis’ result on the non-negative
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rank of a slack matrix was extended to (PSD) lifts in [Fio+12; GPT13]: The semidefinite
extension complexity P equals the PSD rank of S, which is the smallest dimension r
for which there exist PSD matrices F, F», ..., F;, € S| and Vq,Va,...,V, € S such
that S;; = (F;, V;) where the scalar product of two matrices is defined via (A, B) =
2 j Aij Bij-

We obtain a superpolynomial lower bound on the semidefinite extension complexity
of Voronoi cells of certain lattices using a lower bound of Lee, Raghavendra, and
Steurer [LRS15] on semidefinite extension complexities of correlation polytopes.

Theorem 3.24. There exists a family of d-dimensional lattices A such that sxc(VC(A)) =
2Q(d1/13).

Proof. In [LRS15] it is proven that the semidefinite extension complexity of the correla-
tion polytope

P, = conv {zaT : x € {0,1}"}
is bounded from below by 22(n***) Notice that
Py = conv {Y € {0,117 1 ¥ < iy, Yiy < Yy and Vi + Y5 — 1 < Vi,
for all i, j € [n] with i # j}.

Hence, the correlation polytope can be written as the convex hull of binary vectors
Y e {0,1}" ™ satisfying linear inequalities whose slacks only have values in {0,1}.
Therefore, by Lemma 3.20 there is a lattice of dimension d where d < n? + 1 = O(n?)
such that P, is a linear projection of a face F' of VC(A)°. Analogously to the proof of
Theorem 3.2 for the linear extension complexity, we conclude

2/13)

sxc(VO(A)) = sxc(VC(A)®) = sxc(F) = sxe(P,) = 2907

and the claim follows since n = Q(+/d). O

3.5 Open questions

We conclude our investigations of the extension complexity of Voronoi cells of lattices
with a collection of some open problems that naturally arise from our studies and which
we find interesting to pursue in future research.

In view of Theorem 3.2, a natural question is whether the logarithmic term in the
lower bound 2%(@/1ogd) on the extension complexity of certain Voronoi cells can be
removed.
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Question 3.25. Does there exist a family of d-dimensional lattices A such that xc(VC(A)) =
292

We remark that our bound relies on a lower bound by G66s, Jain & Watson [GJW18]
on extension complexities of stable-set polytopes, which meet the criteria of Lemma 3.20.
It is known that there exist d-dimensional 0/1-polytopes with extension complexity 2%,
see [Rot13]. However, no explicit construction of such polytopes is known and so it is
unclear how to transform such polytopes in order to apply Lemma 3.19 efficiently.

Comparing the superpolynomial bound in Theorem 3.2 with the polynomial upper
bounds for certain classes of lattices in Section 3.3, the question arises what to expect
from the extension complexity of the Voronoi cell of a “generic” lattice.

Question 3.26. What is xc(VC(A)) for a “random” d-dimensional lattice A?

Of course, this requires a suitable notion of a random lattice. Our question refers
to interesting examples such as Siegel’s measure [Sie45] or uniform distributions over
integral lattices of a fixed determinant, see Goldstein & Mayer [GMO03].

In Theorem 3.2, we have shown that exactly describing a Voronoi cell of a lattice may
require superpolynomial-size extended formulations. We even extended the idea of
the proof in Theorem 3.21 to show that (1 + @) -approximations may also require
superpolynomial-size extended formulations. Next, it would be interesting to consider
greater approximation factors, in particular in view of various results on the complexity
of the approximate closest vector problem, see e.g. Aharonov & Regev [ARO5].

Question 3.27. What can be said about (semidefinite) extension complexities of «-
approximations of Voronoi cells of lattices?

Clearly, for huge factors of «a, the approximation becomes trivial, in particular, in
view of the John-Lowner ellipsoid that approximates centrally symmetric convex bodies
within a factor of v/d. Therefore, there exist a-approximations with small extension
complexities for a greater than v/d in the semidefinite case and for « greater than d in
the linear case. Furthermore, considering complexity results reveals ranges of « that
are interesting to consider. On the one hand, approximating the closest vector problem
within a factor of v/d is in coNP, see [ARO5], on the other hand, approximating the
closest vector problem within a factor of d(!/1°81°gd) js NP-hard, see [DKS98]. Therefore,
it would be interesting to gain a better understanding of a-approximations for « being a
constant factor up to fractional powers of d.

We have seen in Theorem 3.1 that not only the root lattices but also their dual lattices
have polynomial extension complexity. Is that a general phenomenon?

62



3.5 Open questions

Question 3.28. Given a d-dimensional lattice A, is there a polynomial relationship between
xc¢(VC(A)) and xc(VC(A*))?

We note that our arguments in Theorem 3.16 leading to a quadratic upper bound for
zonotopal lattices are not constructive. Given the fact that the closest vector problem
on such lattices can be solved in polynomial time [McC+21] one might expect that
small-sized lifts of the corresponding Voronoi cells can actually be constructed explicitly.

Question 3.29. Given a basis of a d-dimensional zonotopal lattice A, is it possible to
construct an explicit lift of VC(A) with polynomially many facets in polynomial time?

As discussed in the introduction, a small lift for the Voronoi cell of a lattice gives an
expected polynomial-time algorithm for the closest vector problem. Similarly, given a
c-compact basis by, . . ., by of a lattice A, i.e.,

F(A) < {Zd] Aibi s A e [—¢,¢]? n Zd} ,
=1

one can adjust the algorithm of Micciancio & Voulgaris to obtain a polynomial-space

O(d), This notion was

algorithm for the closest vector problem with running time (2¢)
introduced in [HRS20]. In Section 3.3.3, we have shown that there are lattices that do
not admit c-compact bases for constant ¢ but whose Voronoi cells have small lifts. One

may ask whether the converse holds as well, or equivalently:

Question 3.30. Given a d-dimensional lattice A and a c-compact basis of A, can xc(VC(A))
be bounded by a polynomial in d for fixed c?
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Chapter 4

Exploring the densest subgraph LP

4.1 Background

Given any undirected graph G = (V, E), we aim to find a densest subgraph of GG. In the
literature different notions of density have been studied over the last decades [FR19;
Lee+10]. In this chapter, we measure density simply by the ratio between the number
of edges and nodes of a graph.

Problem 4.1. Given an undirected graph G = (V, E), find a non-empty subgraph H of G
|E(H)|

that maximizes -

Analogously, we can phrase Problem 4.1 as finding a subgraph whose average degree is
maximized.

In practice, detecting dense substructures in huge graphs is of great interest. Many
web systems and social networks, as well as biological data, can be represented in graphs.
Therefore, Problem 4.1 has applications in various fields, for instance in computational
biology for finding complex patterns in a gene annotation graph [Sah+10], or detect-
ing regulatory DNA motifs [Fra+06]. Moreover, Problem 4.1 appears when detecting
link spam in the web graph [GKTO05], or within community detection in social net-
works [CS10]. It can be used to detect fake reviews in online marketplaces [Hoo+16]:
Here users and the products they reviewed are represented by a bipartite graph. One
expects that fake reviews are written by fake users that create reviews for multiple
products and on the other hand huge groups of fake users are controlled by one agent
and write reviews for the same products. Therefore, the set of fake users and their
reviewed products form a dense subgraph.

Based on this huge amount of applications, Problem 4.1 and multiple variations have
been studied extensively. Depending on the variation, the complexity of the problems
varies widely. Some versions appear to be NP-hard due to their close connection to the
clique problem. For instance, fixing or bounding the number of nodes in H makes the
problem NP-hard, see Feige, Peleg, and Kortsarz [FPKO1], or Khuller & Saha [KS09],
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respectively. Furthermore, using the ratio between the number of edges and the number
of all possible edges as the measure of density, the problem will again become NP-hard.
This and other variants are displayed in [FR19].

In contrast, Problem 4.1 can be solved in polynomial time. The first and best exact
algorithms rely on network flow computations. The first algorithms are by Picard &
Queyranne [PQ82], and Goldberg [Gol84], and their running time can be improved to
O(|V||E|log(]V|?/|E|)) using the preflow-push algorithm in the parametric network by
Gallo, Grigoriadis, and Tarjan [GGT89]. Moreover, Charikar [Cha00] provides a linear
programming formulation for Problem 4.1.

As already mentioned, applications of Problem 4.1 deal with huge graphs. Therefore,
a lot of research is concerned with finding very fast and simple algorithms, at the cost
of exact solutions. In [Cha00], Charikar presents a very intuitive greedy approach that
basically removes the node with the smallest degree in each iteration. Clearly, the
number of iterations of this algorithm is linear. This greedy approach first appeared in a
work of Asahiro, Iwama, Tamaki, and Tokuyama [Asa+00]. Charikar proves that this
algorithm is a 2-approximation. The best, known to us, e-approximations outputting
a value of at least (1 — ¢)OPT runs in O(|E|log|V|/e?) time, see Bahmani, Goel, and
Munagala [BGM14], and relies on more general linear programming techniques.

Motivated by the fact that the simplest algorithm one can think of already yields
a 2-approximation, we hope to find an exact algorithm that also uses only simple
updates. Such “simple” steps might be moving from one dense subgraph to another by
only changing few nodes, or updating values for nodes and edges following a simple
and intuitive rule. By now, no such algorithm exist, as most exact algorithms rely on
computations of maximum flows in auxiliary networks and do not reveal intermediate
primal solutions.

In this chapter, we explore Charikar’s polyhedral description to support the develop-
ment of new algorithms. We characterize the vertices and edges of the corresponding
polytope, see Section 4.3. Characterizing adjacencies in underlying polytopes of op-
timization problems is essential for many approaches. Because whenever we find a
vertex of our feasible region whose objective value is greater than the value of all its
neighbors, we are done. Moreover, following the idea of the simplex method, we may
find an optimal solution via traversing the edges of the polytope. Motivated by this,
Hausmann and Korte [HK78] characterized the edges of different polytopes associated
with classical optimization problems such as the matching or independence polytope.
One prime example of an algorithm traversing the edges of the corresponding polytope
is Edmonds’ Matching algorithm [Edm65a; Edm65b] following Berge’s idea of using
augmenting paths [Ber57]. In fact, two vertices of the matching polytope corresponding
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to matchings that only differ by an augmenting path are adjacent, see Chvétal [Chv75].
Moreover, also the greedy algorithm for matroids [Rad57; Edm71] follows the edges of
the underlying polytope.

Obviously, all algorithms that follow the edges of the underlying polytope can only
be efficient if there exist short paths between any two vertices. The (combinatorial)
diameter of a polytope measures the length of the greatest shortest path between two
vertices. Therefore, the diameter serves as a lower bound on the number of steps a
method that follows edges might take to obtain an optimal solution. We compute the
diameter in Section 4.3.2 and give evidence why it might be difficult to develop a simple
algorithm that follows edges.

So instead of imitating the simplex procedure, we demonstrate another approach in
Section 4.4. We tailor a recently published algorithm to the densest subgraph problem.
This algorithm by Dadush, Hojny, Huiberts, and Weltge [Dad +22] is designed for general
convex optimization problems in the separation oracle model. In theory, for general
problems, the ellipsoid method runs faster than this algorithm. However, this does
not have to apply for our specific problem. In [Dad+22] the authors demonstrated in
various experiments that their approach works much better in practice, especially if one
is only interested in approximations. Moreover, the oracle algorithm performs natural
and simple update steps and is easy to implement, which makes it very applicable in
practice. This fits our goals of having an algorithm that only performs simple updates
on variables associated with nodes and adjacencies of the graph following a simple and
rather intuitive rule.

Outline In Section 4.2, we provide Charikar’s linear programming description of the
densest subgraph problem, which serves as the basis for our studies. Section 4.3 is
dedicated to the underlying polyhedral structure of the linear program. More precisely,
in Section 4.3.1, we characterize the vertices and edges, and the bound on the diameter
is proven in Section 4.3.2. Our algorithm is described in Section 4.4. We close this
chapter with a discussion of open problems in Section 4.5.

4.2 Review of Charikar’s formulation

This section is dedicated to the study of Charikar’s LP formulation for Problem 4.1.
Therefore, let us fix the undirected graph G = (V| F) as the graph for which we want
to solve Problem 4.1. Throughout the chapter, we assume that |E| > 0, to rule out
trivial instances. Moreover, to simplify notation, we assume that G does not have any
isolated nodes. This can be done since isolated nodes will never be present in any
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optimal solution. First, we provide a short revision of Charikar’s work on deriving the
LP formulation.
For GG the densest subgraph problem reads as follows.

e yle)
max S (o)
st.  yle) —z(v) < Vee E,veV withv e e, (4.1)

z(v )79(6)6{0 1} YweV,eekE.

We note that the linear constraints in (4.1) form a totally unimodular system. Relaxing
the binary conditions and transforming the fractional problem into a linear one yields

max Z y(e)
ecll
s.t. z(v) =1,
b @2)

yle) —x(v) <0 Vee E,veV withv € e,
z(v),yle) =20 YveV,eeFE.

The transformation to the linear problem is achieved by first introducing a new variable
z =1/Y,c x(v) and afterwards substituting zz(v) and zy(e) by x(v) and y(e), respec-
tively for e € E,v € V. It actually holds true that the optimal values of (4.1) & (4.2)
coincide for every graph G, which is formally proven in [Cha00]. Moreover, this fact
follows also from total unimodularity using some arguments that are displayed in the
next section to determine the vertices of the feasible region.

Within the following Section 4.3, we will stick to the above linear programming
description. However, we can also relax the first constraint to ), ,, z(v) < 1. With
this relaxed constraint, the feasible region gains exactly one additional vertex, namely
0, and therefore, the optimal objective value will not change. Moreover, z(v) > 0 is
implied by y(e) > 0 via the constraint y(e) — z(v) < 0 fore € E,v € V with v € e.
Therefore, the non-negativity constraints on the x variables are redundant. On the
other hand, we might drop the non-negativity constraints on the y variables and stick to
the constraints on the x variables. That will not change the objective value, since we
are maximizing > . y(e), and assigning a negative value to some y(e) does not affect
the choice on the other variables, since the only constraints regarding y(e) relate this
variable to non-negative x variables. So in any optimal solution, the values assigned to
the edges of the graph will be non-negative. In Section 4.4, we need inequalities instead
of equations and to simplify notation, as few of these inequalities as possible. Therefore,
we use a modified LP in Section 4.4.
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4.3 Polyhedral description and properties

Knowing Charikar’s LP, we can characterize the vertices and edges of its feasible region.
We define Pjense to be the feasible region of the densest subgraph LP, i.e.,

Pense := {(x,y) eRY xR : Z z(v) =1,
veV

y(le) —x(v) <0 forallee E,veV withvee,

y(e) >0 forallee E}

We note that dropping the )| _,, (v) = 1 constraint, which just “scales all subgraphs”,
and (re-)inserting an upper bound on the variables, we end up with the following

polytope P, subgraph-
Pyubgraph := {(,7) € [0, 11V % [0,1]% : y(e) —x(v) < Oforee E,v eV withv e e}.

Clearly, every vertex of Pypgraph iS the characteristic vector of a subgraph of G, since the
polytope is described by a totally unimodular system. With these observations, the stage
is set for determining the vertices of Pgepse.

4.3.1 Vertices and edges

We note that Pyepse results from Pyperaph by cutting with a hyperplane, i.e.,

Piense = subgraph M {(as,y) eRY xRP: Z z(v) = 1} .
veV
Therefore, a vertex of Pjense is either a vertex of Pypgraph OF lies on an edge of Pypgraph-
To satisfy >, ., #(v) = 1, these vertices need to lie on an edge between 0 and some
other characteristic vector of a subgraph. For this reason, every vertex (z*, y*) of Pgense
is of the following form.

1 ; 1 i
[V (H)] if v e V(H) and y*(e) = V(H)] ifee E(H) allee E, v E VY,

=9 ifv¢ V(H) 0 ife¢ E(H)

for some non-empty subgraph H of G. We use characteristic vectors in order to address
points of the above form. For any non-empty graph H, we define the characteristic
vector of H via xg := (Xv(m): xpun) € {0,1}V x {0,1}¥ having an entry of 1 for
every v € V(H),e € E(H) and 0 else. Using this notation, we can simply write
(«*,y*) = iy X
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Theorem 4.2. A point (z*,y™*) is a vertex of Pyens. if and only if (z*,y*) = ﬁ){[—[ for
a non-empty connected subgraph H of G.

Proof. We already know that the set of vertices V (Pgenge) Of Pgense Satisfies
1
P, ———xg: Hi - ty sub h of :
V (Pgense) S {|V(H)|XH is a non-empty subgraph o G}

Let H be a non-empty connected subgraph of G. Corresponding to H, we define the
following objective vector c € RV x R,

—d if V(H 2 if E(H
c(v){ cgr(v) ifveV( )andc(e){ ifee B )foralleeE,veV.

-1 if v ¢ V(H) ~1 ife¢ E(H)

We claim that ﬁx g is the unique optimizer of max {c7z : z € Pgense}, and therefore,

a vertex of Pyepee. Clearly, WIH” xx is feasible, and cT ‘V(lH)‘ xz = 0. For any non-empty

subgraph H’, we have

1 1 , ,
AT = @ (\E (H')\E(H)| + |V () \V (H)

cT

+ Z |{66E(H)\E(H'):UEG}|>,

veV (H')AV (H)
which is non-positive.

Let us assume that T mx g = 0 holds. Hence, each summand has to be zero.
The first two being zero implies E(H')\E(H) = ¢, meaning F(H') < E(H), and
V(H)\V(H) = &, meaning V(H') < V(H), which in addition implies V(H')nV (H) #
. The last summand yields that {e € E(H)\E(H') : v € e} = ¢ holds for all v €
V(H'")nV (H). Together with E(H') < E(H), this implies that anode v € V(H')nV (H)
is incident to the same set of edges in H and H’'. Therefore, no edge in H connects
anodeve V(H')nV(H) # & and a node w € V(H)\V(H'). Since H is connected,
V(H)\V(H') = & must hold. So, H = H' holds proving that ﬁXH is actually the
unique maximizer.

Now, we consider any non-empty subgraph H of G that is not connected. For two
non-empty subgraphs Hy, Hy of H, where H; is a connected component of H and Hs is
the subgraph induced by V(H)\V (H;), we have

XH XHi + XH,
V(H)| [V (H)]+ |V (Ha)
_ ‘V(H1)| - XH; + |V(H2)’ - XH>
V(H)[+ [V (Hp)| [V (H)| [V (H)|+ [V (H)| |V (Ha)
_ |V (H1)] X +<1_ |V (H1)] ) X Hy
V(H)[+ |V (Ha)| [V (H1)| |V (H)| + [V (H2)| ) [V (H2)|’
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proving that WlHn x g is not a vertex of Pjepse, Since it is a non-trivial convex combination

of 1y X and [y X, - O

The following theorem characterizes the edges of Pyense. It basically tells that two
vertices corresponding to subgraphs are connected by an edge whenever the subgraphs
are either disjoint or one can be obtained from the other via adding/deleting some
connected part. In order to formalize this, we use some shorthand notation. For any
graph G, node set S € V(G), and edge set F' < E(G), we use G[S] for the induced
subgraph with node set S containing all edges in £(G) that have both endpoints in S,
and G — F for the graph (V(G), E(G)\F).

Theorem 4.3. Two vertices WX m, and W}{z)'x 1, corresponding to different non-
empty connected subgraphs Hy, Hy with |E(H,)| < |E(Hz2)| share an edge in Pjeps. if and
only if one of the following applies.

P1) The subgraphs are disjoint, i.e., V(Hy) n V(Hs3) = &, or

P2) H, is a subgraph of Hy and

a) H; is obtained from Hs via deleting a non-empty connected subgraph from
Hs,. Formally, E(H,) < E(Hs), Ho[V (H2)\V (H;)] is connected, and every
e € E(H2)\E(H,) is incident to some v € V(H2)\V (Hy), or

b) H, is obtained by H via deleting one edge, i.e., V(H;) = V(H3), E(H;) <
E(Hs), and |E(H2)\E(H,y)| = 1.

Proof. Let Hy, Hy be two distinct non-empty connected subgraphs of G with |E(H;)| <
|E(H2)|, such that they satisfy one of the properties stated in the theorem. Correspond-
ing to these subgraphs H;, H,, we define the following objective vector c € RV x RF.

-

-1 ifve¢ V(H) UV (Hy)
c(v) = < —degy, (v) ifveV (H) for all v € V, and

| —degy,(v) ifveV (Ha)\V (Hy)

(—1 ife¢ E(Hy) U E (Hs)
cle) =42 ifee F(Hy) forallee E.

{enV (Ho)\V (Hy)}| ifee E(H2)\E (H;)

q

We may easily calculate that cT W X, = 0and T m X#, = 0. For any non-empty
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connected subgraph H of G, we calculate

1 1
cf Ve T v ( [VH\(V (Hy) vV (Ha))| + |[E(H)\ (E (H1) v E (H))|

+ > Hee E(H)\E(H):vee}|

veV (H)n(H1)

+ > y{eeE(Hg)\E(H):vee}y>,

veV (H)NV (H2)\V (H1)

which is non-positive.

We assume that cT ﬁ)@q = 0 holds. Considering the first two summands, we
conclude that V(H) < V(H;) v V(H2) and E(H) < E(H;) v E(H>). Therefore, the
first or the second sum is not empty.

First, suppose that the second sum is empty, meaning that V(H)nV (H2)\V (H;) = &,
or equivalently V(H) < V(H;), holds. In this case, the first sum is non-empty, and for
everyv e V(H;) nV(H) # & all edges e € E(H;) incident to v satisfy e € E(H). Since
H, is connected, this implies V(H,) < V(H) and E(H,) < E(H). If E(H) < E(H)),
we have H = H;. Otherwise, E(H) contains an additional edge from E(H>) connecting
two nodes of V(H;), which is only possible in case P2)b). This yields H = H,.

Now, suppose that the second sum is non-empty, meaning that V (H)nV (H2)\V (H;) #
& holds. Therefore, V(H;) # V(Hs) holds, and H;, H, either satisfy Property P1),
or P2)a). Using that Ho[V (H2)\V (H1)] is connected and every edge in E(H>)\E(H1)
is incident to a node in V(H2)\V(H1), we can infer V(Hy)\V(H;) < V(H) and
E(H>)\E(H,) < E(H) analogously to the arguments displayed above for a non-empty
first sum. If H; and H, are disjoint, H = Hs, since H is connected. If H;, Hs sat-
isty P2)a), E(H2)\E(H1) < E(H) implies V(H;) n V(H) # ¢ yielding a non-empty
first sum. With the above argumentation, we obtain V(H,) < V(H) and E(H;) < E(H)
and hence H = H, holds.

Therefore, no vertex of Pjepee distinct from \V( X and V)T H X He is a maximizer
for c. This proves that they actually share an edge.

On the other hand, let H;, H, be distinct connected subgraphs of G with |E(H;)| <
|E(H2)|, not satisfying one of the properties of the theorem. Therefore, V (H;)nV (Hz) #
. Moreover, if Hy is a subgraph of Hs the subgraphs have to differ by more than one
edge or one connected subgraph.

We will consider several cases, in each following the same idea. We provide two
additional non-empty subgraphs H' and H", such that at least one of the Vectors

1 1 - .
VX )] X cannot lie on the line segment between 1% (H VD and v (H2)|XH2
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4.3 Polyhedral description and properties

Moreover, we choose the subgraphs in such a way that they satisfy

XH, + XH: = Xp' + Xp- (4.3)
This yields

V| (y VY
|V (Hy)| + [V(Hz)| |V (Hy) [V (H)| + [V(Hz)| ) [V (Hy)|
v VED

[V (H)|+ [V(H)| |V (H)[ [V (H)|+ |[V(H2)| |[VI(H2)|
_ XH, + XH;

[V (Hy)| + [V (Hz)|
__ Xg tXp"

V(H)|+ [V(H")|
v (v X

VH)|+ [V(H")] [V(H)] VH)|+ [V(H")] ) VEH)]

which shows that an inner point of the line segment between ‘V( X and %Al ( X
is a non-trivial convex combination of the feasible points

w29 e
which proves that \V(i}ﬁ)\XHl and mmﬁ do not share an edge in Pjepge-

Let us start with the case in which V/(H;) n V(H2) # & but H; is not contained in Hy.
In this case, we define the two non-empty subgraphs H' := (V (H;) n V(H>), E(H;) n
E(H,))and H' := (V(H;) U V(Hs), E(H,) u E(Hy)) of G.

Now, we assume that H; is a subgraph of H,. Let E denote the set of edges in
E(H>)\E(H,) that are not incident to a node in V (H>)\V (H1).

If Ho[V(H,)\V (H1)] is empty, meaning that V(Hs) = V(H;) holds, we have E =
E(Hy)\E(H,) = {e1,...,ex} with k > 1. In this case, we define H := (V (H,), E(H;)u
{er})and H" := (V(H,), E(Hy) U {ea,...,ex}).

If Ho[V (H2)\V(H;)] is non-empty and connected, the set E is not empty. So, we
define H' := Hy[V (H;)] and H" := (V(Hs), E(H)\E).

If Ho[V (H2)\V (H1)] is not connected, it has connected components (1, . .., Cy with
k > 1. Here, E might be empty. We note that, each connected component is attached to
H; by an edge, since H is connected. So, we define the non-empty connected graphs
H' := Hy[V(Hy) uV(Cy)] — Eand H" := Hy[V(Hy) v U, V(Ch)].

We note that all these graphs H', H" are non- empty and distinct from Hy, H,. More-

n . .
over, H is connected in all cases. Therefore, X, 1S @ vertex in Pyepge distinct

IV( V")
from |V(1 )IXHl’\V(l T3] XHa> showing that it does not lie on the line segment between
|V(H1)|XH1 and % ( TV XM Furthermore, in all cases H' H satisfy (4.3), which proves
the claim. O
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Chapter 4 Exploring the densest subgraph LP

4.3.2 Diameter

Using the information about adjacency in Pjepse, We show that the diameter of this
polytope is very small.

Theorem 4.4. The diameter of the polytope Pjens. is at most 3 for every graph G and there
exist graphs for which the diameter actually equals 3.

Proof. Given two vertices of Pgepnse corresponding to the connected subgraphs H; and
H, of G, there exist nodes v; € V(H;) and ve € V(H3) such that H; [V (H;)\{v1}] and
H>[V (H2)\{v2}] are connected. (Choose v; to be a leaf in a spanning tree of H; for
i € {1,2}.) Due to Theorem 4.3, the vertices corresponding to ({v;}, &) and H; share
an edge for i € {1, 2}, as well as the vertices corresponding to ({v;}, &) and ({v2}, &)
share an edge if they are not equal. This proves that the diameter is at most three.

For the graph in Figure 4.1, the diameter of Pge,s actually equals three, which we
easily see by considering the two vertices corresponding to the depicted subgraphs.

Figure 4.1: Graph G = (V, F) and subgraphs, one depicted in blue and one in orange such that
the corresponding vertices have distance 3 in Pyepge.

O]

Despite having small diameter, developing an easy and efficient algorithm that follows
edges does not seem to be straight forward. Clearly, we like to follow only edges along
which the objective value increases. Obviously, the described paths of length three do
not satisfy this property. Furthermore, the naive approach of only following improving
edges that correspond to solely adding or deleting one node (with all incident edges)
will not always work out, see Figure 4.2.

Furthermore, when we mimic the simplex algorithm, we have to deal with highly
degenerated vertices of Pyense- TO US, it seems as if simply following edges won’t lead
to an efficient algorithm, although the diameter is just a constant. This phenomenon
is not unusual. The diameter of the travelling salesperson polytope is bounded by a
constant [PR74; RC98] and the cut polytope (of the complete graph) has a diameter of
one [BM86], but optimization over these polytopes is NP-hard [Kar72; GJ79].
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4.4 Algorithm

Figure 4.2: Here K; (and not the whole graph) is optimal, but removing only one node from
the whole graph results in a subgraph having smaller density than the whole graph.
Therefore, this simple update is not improving.

4.4 Algorithm

As discussed in the previous section, following the edges of Pjense does not directly
yield an efficient algorithm. Nevertheless, we still can use Charikar’s LP formulation to
develop an algorithm. Our algorithm is based on the following LP model.

max Z y(e)
ecll
t <1,
s.t ;x(v) < 4.4)

yle) —xz(v) <0 Vee E,veV withv€e,
—z(v) <0 VYveV.

As discussed, in an optimal solution of (4.4) all values assigned to the edges of the
graph will be non-negative. Moreover, there is always an optimal vertex solution (z*, y™*)
for (4.4) satisfying >} .\, 2*(v) = 1. Therefore, the above formulation is equivalent to
Charikar’s LP formulation (4.2) for the densest subgraph problem.

The dual of this problem reads as follows.

min a
s.t. Z ble,v) <a YvelV,
ecE, vee
b({v,w},v) + b({v,w},w) =1 V{v,w}eE, (4.5)

a =0,

ble,v) >0 Vee E,veV withvee.

Provided these LPs one can apply standard linear programming techniques such as the
ellipsoid method. However, this method is not simple, and it also does not perform well
in practice. The authors of [Dad+22] tackled exactly that issue and provide a method
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Chapter 4 Exploring the densest subgraph LP

that is much easier to implement. Their algorithm serves as an approximation algorithm
for convex optimization problems whose feasible region is given via a separation oracle.
The algorithm and the proofs displayed in this section are based on this work. Since in
our case the description of the feasible region is fully accessible, we do not have to deal
with adding new constraints. Moreover, we are only dealing with a linear optimization
problem instead of general convex optimization. This gives us the ability to provide the
proofs and the algorithm in a much more direct way.

Our displayed approach crucially relies on the interplay between primal and dual
solutions. We will use some kind of dual multipliers to assign values on the nodes
and edges of our graph. These node and edge values will provide intermediate primal
solutions. During the algorithm, we iteratively update the multipliers and therefore, the
node and edge values. Moreover, we use a collection of linear expressions telling us
which dual multiplier needs to be increased and when we reach optimality.

To define our multipliers, we consider an index set I := {0,1} U {(e,v) : e€ E,v €
e} u V, where 0 is associated with the objective of (4.4) and the indices 1, (e, v) for
e € E,v € e, and v for v € V correspond to the inequalities of (4.4). Moreover, for
A € RL ), we define node and edge values (p,q) e RY x R via

p() == > Ae,v) +A(v) = A1), forallve V

eeE vee

q({v,w}) = A(0) — A({v,w},v) — A({v,w}, w), for all {v,w} € E.

Furthermore, let LB € R be any lower bound to the optimal value of the densest
subgraph problem. We consider a vector R € R!, whose entries are computed via the
following linear expressions that will serve as an indicator for optimality.

R(0) := — > q(e) + (LB(A(1) = AM0)LB))

eeE
R(1):= ) p(v) = (A(1) = A(0)LB),
veV
R(e,v) := q(e) — p(v) Vee E,ve V withvee,
R(v) := —p(v) YveV.

Now, the following two lemmas show the interplay between the signs of R and the lower
bound.

Lemma 4.5. There exist A € RL with A(0) > 0 such that R = 0 if and only if LB is the
optimal value of the densest subgraph problem.
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Proof. If there are multipliers A € RL, with A\(0) > 0 satisfying R = 0, we obtain
0 = p(v) = q(e) = A1) — A(0)LB for all e € E,v € V. Since A\(0) > 0 holds, we
have LB = A(1)/A(0). We may define a dual solution via a* := LB and b*(e,v) :=
Ae,v)/A(0) = 0 for all e € E,v € e. To check feasibility, we observe that p(v) = 0
and A(v) = 0 imply > . p . 0*(e,v) < a* for all v € V, and ¢({v,w}) = 0 implies
b*({v,w},v) + b*({v,w},w) = 1 for all {v,w} € E. Therefore, (a*, b*) is feasible for the
dual LP, and attains a value of LB, proving optimality by using weak duality.

On the other hand, we suppose that LB is optimal. Due to duality, there exist a*, b*
that are feasible for the dual LP and attain a value of LB = a*. We set A\(1) := a*,
Ale,v) :=b*(e,v) foralle € E,v € e, A(v) 1= a* =3 cp e, 0" (e,v) = Oforallv e V, and
A(0) := 1. We obtain p(v) = 0 and ¢g(e) =0 forallve V,ee E and A(1) — A(0)LB = 0.
This implies R = 0. O

Lemma 4.6. If R < 0, then W(p, q) is a feasible solution for (4.4) with an
objective value strictly greater than LB.

Proof. First, we observe that A(1) — A(0)LB > 0, if R < 0. Since R(0) < 0 holds, we
have > . .WQ(@ > I{B proving a strictly greater o‘bjec‘Five Valu(f. Moreover,
R(l) <0 lmphes Z'UEV Wp(v) < 1, R(e,v) <0 lmplles Wq(@) —
mp(v) <Oforallee E,v € e, and R(v) < 0 implies mp(v) > 0 for all
v € V, which shows that m(p, q) is feasible. O

Bearing Lemma 4.5 and Lemma 4.6 in mind, we design an algorithm that manipulates
A to decrease R whenever R has positive entries. We note that increasing \(¢), decreases
R(i) for i € I. Whenever R < 0 holds, the algorithm updates the lower bound in
accordance to Lemma 4.6. This results in the better lower bound %.
solely updating L B might increase R(1), we also increase \(1), A(v) for v € V in such

Since

a way that it evens out the update of LB. The algorithm terminates whenever R = 0.
Unfortunately, we cannot guarantee that we reach this state. Nevertheless, we will
quantify the approximation error whenever the entries of R are close to zero. Obviously,
this is only meaningful if X is in some sense bounded away from zero. Therefore, we
normalize A. We note that normalizing A results in scaling R by a factor of at most 1 if
we start with a normalized A\. Hence, this step will not increase a positive R. Algorithm 1
follows exactly these ideas.

This algorithm serves as a conceptually simple framework that leaves several degrees
of freedom to obtain optimized implementations. Within this section, we show that
there is a way to specify these steps such that the framework becomes an algorithm
running in polynomial time. Thereby, to keep the analysis simple, we do not care about
achieving the smallest possible degree of the polynomial.
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Chapter 4 Exploring the densest subgraph LP

Algorithm 1 Approximating density
initialize LB, A
while R # 0 do
if R(i) = 0 for some i € I then increase A(7)

else
LB — )\(%Efi(%()eL)B
A1) < A(1) + M(0)(LB' — LB)
A(v) < Av) + M0)(LB'— LB) forallve V
LB « LB
end if

normalize \

end while
return LB

For our analysis, we assume the following initialization. We start with the trivial lower
bound, namely the density of the whole graph % Moreover, we need non-negative
starting values for A\ ensuring A(0) > 0. Therefore, we start with A(0) = 1, and A(i) = 0
for i € I\{0}. We note that during the algorithm, we either increase a variable or
normalize all of them, which maintains positivity. Therefore, A\(0) > 0 and A(i) = 0 for

i € I holds at any state during the algorithm.

Another degree of freedom is the value by which A(7) is increased. We choose that
value to be the ¢ defined in Lemma 4.7 below. In the original algorithm in [Dad+22] a
different step length is chosen to obtain a better running time. Furthermore, normalizing
A can be done in different ways. We choose to normalize with respect to the ¢;-norm,
which means that the entries of A serve as convex coefficients satisfying

AO0)+ AL+ D> Ae,v) + D0 Aw) =1 (4.6)

ecE vee veV

To analyze the algorithm the following notations will come in very handy. We define

—-p
Z\,LB = —q
A(1) — A\(0)LB

For simpler notation, we will often only use z in cases where the dependency on the
variables is clear. We note that R = 0 holds if and only if z = 0. So, instead of measuring

78



4.4 Algorithm

the distance of R to 0, we will consider the Euclidean norm of z. Furthermore, we define

Ov 1y —Xv
ro:=| —1g |,ri:= | 0g |,7ep = | Xxe |foree E,vee, and
—LB 1 0
—Xv
ry:=| 0g | forveV,
0

where x, € {0,1}V, x. € {0,1}¥ denote the standard unit vectors. We note that z =
Dies AM@)rs, and (ry, z) = —R(3) for i € 1.

A closer look at the vectors r; for ¢ € I\{0} reveals that they are actually the coefficient
vectors of the linear inequalities of the LP (4.4) with appended right-hand side, and the
first coordinates of —r( coincide with the objective vector of that LP. This observation
serves another interpretation of the algorithm. We aim to find coefficients \(i) such that
combining the inequalities of the LP with these coefficients proves ). _, y(e) < LB.

The following Lemma 4.7 specifies the increase of A\(¢) for i € I in the algorithm and
provides first indications towards the convergence rate.

Lemma 4.7. Let \, LB and the corresponding vector z be given such that |z|? < 16|V|?
and R(j) = 0 holds for some j € I. We define

I
16V — 2]
and
i AG) L () . .
N(j) = 1 )\(z).—€+1 foralli e I\{j}.

Then, the following holds
love|” <lloawsl? - LHZ’A a|*
’ ’ 16|V )27
Note that if ) satisfies (4.6), the same holds true for ).

Proof. Since z is linear in each component of \,

Z)\/,LB = (Z)\,LB + ET]) m

holds. For i € I\{0}, we easily see that |;| < 2|V| holds. Moreover, the optimal value
and therefore LB is always bounded by |V|. Therefore, |r;| < 2|V| even holds for all
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i € I. Since z is just a convex combination of these vectors, |z| < 2|V| holds as well.

With these observations, we conclude
2

|2y Lsl? = 711 (rj — 2\ LB)
2 ¢ % 2
= |zaB|” — 201 {2\ LBy A LB — Tj) + 71 lzxLe — 74

1 0 \?
< sl - 2€ 1 (ZaLBs20LB) + (€+1) lzans — il

Lol + () 16
(+1/"MEB 0+ 1

2 2\ 2
_ Hz)\,LBHQ_QHZ)\’LBH HZ)\,LBH2+ (‘Z)\,LBH ) 16’V|2

<|aaral’ -2

16|V|? 16|V|?
_ HZ H2 o HZ)\,LBH4
A\ LB IG‘V‘Q )
using that (r;, z) 1) = —R(j) < 0 holds. O

As mentioned, other step lengths can be chosen. In [Dad+22], the vectors r; fori € I
are scaled to obtain a better step length and therefore also a better running time. We
focus on the version without scaling, to obtain a simpler algorithm and analysis.

The following Lemma 4.8 links the norm of z with the approximation error.

Lemma 4.8. For |z| < we have

S\V\
2)z] (1 + 16|V [?)
1-38|z[|V]

LB < max { I‘VE %I H is a non-empty subgraph of G}

Proof. For any optimal vertex solution (z,y), we have

0 T
0 T 1
)G =mmo(1) )
1 0 T
= — A(0 1 | =) Ae)rg, ()i,
A<o><“LB 20 _1><§o y>
= 0 <—z ;})\(i)<m, _yl >

7“ H )H 2l

‘ -

>

//\
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where the first inequality follows by the Cauchy-Schwarz inequality, and because (z, y)
is feasible, which is equivalent to

X
<7‘Z‘, Y > <0
—1

for all 7 # 0. For the second inequality, we note that y is non-negative and », _\, z(v) = 1
holds in any optimal vertex solution. Therefore, it suffices to consider only the vertices
of Pjense to bound ||(x,y, —1)|. As observed in Section 4.3, a vertex of Pgeyse is of the
form WlHn X1, where H is a subgraph of G, and

V(H ‘XH 1 2 1 2 1
H( ) g\/|V(H)|<\V(H)\> 1! () +1 <y +2 <2

We are left with bounding A(0). Therefore, we consider the feasible point (z,y) :=
(QI%/I 1, 4|V| 1) that is not tight at any constraint. It even satisfies

T, _g =
v))Z v

for all 7+ # 0. We note that

1 1
—7,—g, )| =4V E 1<2

Therefore, again using the Cauchy—Schwarz inequality, we obtain

—z 0 —Z
Iz =5 ]| = ( X A@Ori=A0) | 1|, —z?>

1 i#0 LB 1
0 -
> > A )< 1|, | -3 >
4 V
1#0 ‘ ‘ LB 1

0 -
=<1—A<o>>4|§/—A<o>< 1, —y>
LB

> (1—)\(0))4ﬁ/ ~ A0

= (1-X0)) )AlV] =

1
— 4|V
v~ 4|vw 4|V| 4 ‘)
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which in turn yields

v — 202l
A(0) > 'fi
vy + 41V

We conclude
0 VN LB <22 HLV AV _ 2|#] (1+16|V?)
1) \y vy — 20z | =8V

Combining Lemma 4.7 and Lemma 4.8, we obtain to following result.

Theorem 4.9. For every ¢ > 0, we obtain a feasible solution satisfying

[E(H)|
LB < max : H is a subgraph of Gy < LB + ¢
{IV(H)\

after O ( v > iterations in Algorithm 1.

Proof. Since we aim for an additive error of at most £, Lemma 4.8 tells us to stop
Algorithm 1 if the norm of z satisfies

2|2[ (1 + 16]V]?)
1-8lz(v]

and |z| <

=

1
8|’

which is satisfied if
€

2(1+16|V|?) +£8|V]|’

2] < 4.7)

We note that whenever we update LB during the algorithm, we do not increase z.
Moreover, the algorithm starts with a vector z = zg = 7, satisfying

£

2
E| + <
I=ol” = 11 + 72

<2V A (4.8)
Furthermore, R(0) = 0 holds after each update of the LB. Therefore, the algorithm
either stops in the iteration after an update of LB, or Lemma 4.7 applies in the next
iteration. Let ¢t be the number of iterations that we run Algorithm 1 for. For i €
{0,1,...,t}, we denote the vector z after the ith iteration of the algorithm, by z;. Hence,
by applying Lemma 4.7 in at least every second iteration,

|z

2] < lzial® =

1
16|V)?
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holds for all i € {2,...,t}. Therefore,
1 1

>
2z
2] |zi—2]? (1 - ﬁ“ziﬂw)

2
1 2
- (whplaal®) 1+ ghplanl 1 1

= + .
el (1- s laial?) zi-2]? lzia]? " 16[V]?

For even ¢ this implies
1 1 t

> + :
[z~ 2ol 32[V?

Since z satisfies (4.8), its norm is less than 32|V|?, and we obtain

1 - t+1
2] = 32[V[*’
if ¢ is even. With |z < |z;—1|| for ¢t € Z<1, we conclude
V32|V
lzell <
Vit

for general ¢. To obtain the desired error in the approximation, the number of iterations
t needs to satisfy the following condition, which we obtain using (4.7),

V32|V| _ £
Vi S+ 16|V 8V

This is satisfied if

> (@\vr (2(1+16V]?) +68\vr>>2

3

which yields the claim. O

We can use the discussed approximation algorithm to determine the exact density
of a densest subgraph. For this, we use the following fact that has been exploited for
many exact algorithms, see [Gol84]. The set of different densities that may occur in
a subgraph is a finite discrete set. To be more precise, every density d of a subgraph
of G lies within the set {m/n : 0 < m < |E|,1 < n < |V|}. Given two distinct densities
mi/n1, ma/ng, their difference equals

ma m2

ni ng

— |Mm1in2—mani
ning

()

1

Since n1ny < |V|? holds, we obtain () > IV% So within an interval of length e there

is at most one value that is a fraction between some number of edges and some number

of vertices. Therefore, having an additive error of at most \V% suffices to obtain the

exact optimal value. Due to Theorem 4.9, Algorithm 1 can be used to find the exact
optimal value to the densest subgraph problem in O(|V|'Y) many iterations.
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4.5 Open questions

2
iterations in Theorem 4.9. Since the output of the algorithm will always be better than
6
|E|/|V|, this yields a multiplicative e-approximation with O (%) iterations. For a

very dense graph, this is quite comparable to the existing e-approximations. Regarding

Using the original algorithm with the scaling as in [Dad+22], we only need O (‘V‘4)

the running time two very natural questions arise. First, from a theoretical perspective
we ask:

Question 4.10. Is the analysis of the running time tight?

We suppose that the worst case analysis of the progress within one iteration is tight,
but we guess that within some iterations the progress will be noticeably larger.

On the practical side, a reasonable next step is to implement the proposed al-
gorithm to provide computational comparison. Besides the already mentioned e-
approximation [BGM14], it may also be interesting to compare against the approx-
imation algorithm in [Boo+20] by Boob, Sawlani, Wang, and others. This algorithm
named Greedy+ + is not yet proven to be an s-approximation, but it seems to work
quite well in practice. Moreover, it was designed with the goal of developing a simple
algorithm such as we did.

Question 4.11. How does our algorithm perform in practice?

When performing practical experiments, it will also be interesting to compare the
occurrence of primal steps, meaning updating the lower bound, against the amount of
dual steps, meaning updating A to decrease the norm of z. Do they alternate, or does
one step dominate in the beginning and the other at the end? Is the amount of steps of
one kind noticeably larger than the other or are they about the same?

Although, our algorithm only performs simple updates on values assigned to nodes
and edges, we did not achieve what we aimed for. Regarding the suggested LP, the
algorithm outputs intermediate primal solutions, but these do not give rise to actual
intermediate subgraphs. So our ambitious question from the beginning is still present.
Sticking to our proposed algorithm, it would be great to obtain intermediate subgraphs
in addition to the intermediate primal solutions.

Question 4.12. Can we adopt our algorithm in such a way that it outputs intermediate
subgraphs whose density hits the current lower bound without involving complicated
computations?
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