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Abstract

X-rays can be used for imaging a patient’s anatomy as well as for navigating medical
devices during an intervention. However, they may expose patients as well as clinical staff
to a non-negligible amount of ionizing radiation. To keep the potential consequences to a
minimum, the X-ray dose should be kept as low as reasonably achievable. Unfortunately,
lowering the X-ray dose also results in a reduced signal-to-noise-ratio (SNR), i.e., a reduced
image quality. To improve the situation in such cases, it is possible to apply denoising
techniques that carefully consider the associated image characteristics.

The denoising of X-ray images corrupted by signal-dependent quantum noise as well
as signal-independent electronic noise is often approached using noise variance stabi-
lization techniques, such as the generalized Anscombe transform (GAT). This image pre-
processing technique facilitates the use of denoising algorithms designed for white Gaus-
sian noise. In order to perform the GAT, the system gain and the additive white Gaussian
noise component need to be known. Unfortunately, predicting these parameters on-the-
fly while acquiring X-ray images can be complicated as they are impacted by the patient,
X-ray spectrum as well as the imaging mode of the detector. As a solution, a data-driven
noise estimation method relying on a linear Poisson-Gaussian noise model is introduced
in this thesis for deriving the parameters required for performing the GAT.

Subsequently, two spatio-temporal denoising methods are presented. They utilize the
above mentioned noise model to exploit the non-local self-similarity in X-ray image se-
quences. The methods make use of temporally coherent and redundant structures across
subsequent frames to reduce the noise in the images. This way, images with a higher SNR,
which are otherwise associated with higher dose acquisitions, are obtained. Since low-
dose images are severely corrupted by correlated noise, the Poisson-Gaussian noise model
is used for identifying similar patches or pixels. The matched pixels are then processed
using constrained low-rank approximations in order to reduce the associated noise.

Even though well-engineered analytical denoising methods significantly improve the
image quality, applying them on high-resolution X-ray images in real-time requires cost-
performance trade-offs. As a solution, a novel real-time capable learning-based denoising
strategy is presented in the final part of this thesis. It utilizes noise-corrupted instances
alone during the training phase. The data required for training the denoising network is
generated using a model-based noise simulation approach proposed in this thesis. It takes
into account the system gain, electronic noise and detector blur. During a thorough analy-
sis it has been found that there are interesting similarities between the proposed learning-
based denoising strategy and denoising via thresholding of sub-band coefficients.

A thorough evaluation of the proposed denoising methods suggests that X-ray dose can
be significantly reduced without sacrificing clinically relevant information. This opportu-
nity for X-ray dose reduction will be highly beneficial to patients and clinical practitioners.
To determine and validate the dose reduction potential for existing and new applications,
further clinical evaluations are required. Nevertheless, low-noise images can be obtained
at acceptable X-ray dose levels. This will open doors for a variety of procedures that were
not performed in the past due to the requirement of high exposure levels. Beyond clinical
benefits, the dose reduction capability also enables the use of lower power X-ray tubes that
do not require elaborate cooling solution, effectively facilitating lighter and more mobile
X-ray imaging devices. This might improve the overall patient access to X-ray imaging.
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1. Introduction

1.1. Motivation

X-ray imaging is one of the oldest and the most established imaging modality. It is widely
used for the visualization of the interior of the human body, both for diagnostic and inter-
ventional purposes. In diagnostics, static images or exposures are, for example, acquired
to assist in the diagnosis and treatment regarding bone structure and breast cancer. On
the other hand, in an interventional setting, dynamic imaging also known as fluoroscopy
or radioscopy is an essential component for many minimally invasive interventional pro-
cedures, surgeries in particular, as they facilitate a faster recovery for patients, reduce the
risk of infection and also lower healthcare costs. However, X-ray imaging also exposes
patients and the clinical staff, in an interventional setting, to ionizing radiation. In partic-
ular, complex procedures that last for several hours as well as the repetition of procedures
(e.g., due to repeated attempts) may lead to severe irradiation of the patients and also to
high accumulation of X-ray dose levels in the clinicians over a period of time. Exposure
to such radiation may result in harmful effects such as hair loss, skin injury or even can-
cer [9]. In addition to the potential health risks caused by the ionizing radiation associated
with X-ray imaging, the use of strong iodinated contrast agents for visualizing a patient’s
vasculature puts a burden on their kidneys [10]. Therefore, the applied radiation dose and
the contrast agent must be kept as low as reasonably achievable. Although it is possible
to lower the X-ray dose and the concentration of the contrast agent, the resulting loss in
image quality may not be acceptable for carrying out the procedure safely without further
image enhancement. Therefore, the application of advanced image processing methods to
maintain the required image quality at lower X-ray dose levels and reduced contrast agent
concentrations is a very important field of research.

The transition of the century-old technique from film-based to digital imaging using
semiconductor flat-panel detectors has made it possible to process images before present-
ing them to clinicians [11, 12, 13]. In addition, technological advancements in the past
decades have enabled real-time processing of X-ray images acquired during live proce-
dures. These developments have played a major role in the design of algorithms ulti-
mately facilitating low-dose X-ray imaging. In the case of fluoroscopic procedures, involv-
ing successive frames of X-ray images, the obvious ways to reduce the X-ray exposure
are to either reduce the frame rate or to lower the X-ray exposure per frame. However,
decreasing the frame rate leads to temporal undersampling resulting in jerkiness [14]. In
order to smoothen the appearance of the X-ray sequences, temporal interpolation meth-
ods have been applied [14]. Continuous visualization of flowing contrast is an important
requirement to analyze anatomical structures such as blood vessels. Therefore, it has been
investigated whether dose reduction for such applications can be achieved by changing
the X-ray intensity on a per-frame basis and then performing a weighted combination of
multiple X-ray images to improve the signal-to-noise ratio [15]. Apart from this, the use of
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1. Introduction

spatial denoising of single images to improve the signal-to-noise ratio before visualization
is considered to be a suitable alternative to reduce the X-ray dose.

Prominent analytical denoising approaches often utilize self-similar structures in images
and typically involve sophisticated thresholding techniques. Variational approaches based
on partial differential equations are also widely used for denoising. Although existing
state-of-the-art analytical approaches have yielded good results for high- and standard-
dose levels, their performance drops significantly for applications performed with low-
and very low-dose settings. These approaches can be improved by taking into account the
imaging and noise model associated with X-ray images. However, applying them in real-
time involves cost-performance trade-offs. On the other hand, learning-based approaches
have been shown to outperform traditional denoising techniques. However, these meth-
ods are not directly applicable to X-ray imaging as they usually require spatially aligned
pairs of noisy and (ideally) noise-free images whose acquisition in a clinical scenario is
practically close to impossible due to ethical concerns and patient motion.

Considering the aforementioned health risks for patients as well as clinical staff due
to X-ray imaging and the shortcomings of state-of-the-art image processing techniques to
allow for comparable dose reduction in real time, this thesis aims to show that analytical
and learning-based approaches that take into account the noise model associated with X-
ray images can significantly lower the X-ray dose and yet retain the information needed
for clinical decision making.

1.2. Scientific Focus and Contributions

Image quality plays a significant role in clinical imaging. The main scientific focus of this
work is to develop novel image processing methods for improving image quality to facili-
tate X-ray imaging at reduced radiation levels, particularly in an interventional setting. To
this end, analytical and learning-based approaches that take into account the noise model
associated with X-ray images are proposed. The noise model is derived by accurately mod-
eling the noise characteristics of an X-ray system. In the following list, the major scientific
contributions are summarized:

• A data-driven approach for estimating the parameters required to stabilize the noise
variance in X-ray images has been proposed in [1]. The method takes into consid-
eration an X-ray imaging model to estimate the variance of signal-dependent noise
that is needed for performing a noise variance stabilization. The method has been
evaluated using phantom images with respect to beam hardening and denoising per-
formance.

• In [2], a patch-based spatio-temporal denoising algorithm that exploits non-local self
similarity in X-ray sequences has been presented. The method carefully takes into
account the characteristics of noise associated with X-ray images in order to achieve
robust patch matching and thereby improving the performance of denoising based
on low-rank approximation.

• In [3], a constrained weighted rank-one approximation for performing the spatio-
temporal denoising of digital subtraction angiography sequences – acquired at low

2



1.3. Outline

X-ray dose level and contrast concentration – has been presented. The method uti-
lizes the low-rank nature of a spatially aligned temporal sequence where variation is
introduced by the flow of contrast agent through a vessel tree of interest. The result-
ing images are free from artifacts and the inherent characteristics of images is also
preserved.

• A novel noise simulation method based on an X-ray imaging model has been pro-
posed in [4]. The method makes use of the system parameters associated with low-
and high-dose X-ray image acquisitions, such as system gain and electronic noise, to
preserve the noise characteristics of low-dose images. The realistic simulations are
crucial for developing robust learning-based denoising algorithms.

• A novel learning-based strategy for denoising low-dose X-ray images that is based
on model-based simulations of low-dose X-ray images during the training phase is
presented in [5]. In addition, a data-driven normalization step that increases the
robustness of the proposed approach to varying amounts of signal-dependent noise
associated with different X-ray image acquisition protocols is presented.

• In [6], a thorough analysis on understanding and preventing image degradation
when utilizing a learning-based denoising approach is presented. Moreover, it has
been shown that viewing the results from the perspective of denoising via threshold-
ing of sub-band coefficients can be very beneficial to get a better understanding of
the learning-based denoising strategy proposed in [5].

In addition to the core contributions, peer-reviewed workshop publications [7, 8] have
been made.

1.3. Outline

This thesis is a collection of articles that have been published in peer-reviewed interna-
tional scientific journals and at conferences. It is structured in three parts and consists of
five main chapters. Part I contains Chapters 2 and 3 that focus on the technical background
of X-ray imaging and image denoising, respectively. The state-of-the-art options, available
at the time of writing, are also presented. The scientific contributions are presented in
Part II. They include Chapters 4, 5, and 6.

In Chapter 4, a method for estimating the X-ray imaging parameters from X-ray images
is introduced. The estimated parameters can be used to perform a noise variance stabi-
lization on the X-ray images to render images with a constant noise level. This approach
serves as a basis for the novel denoising methods introduced in the following chapters.

In Chapter 5, two novel analytical spatio-temporal denoising approaches are presented.
The first approach improves upon existing patch-based denoising approaches by carefully
using the characteristics of noise present in X-ray images to achieve robust patch matching
in ultra low-dose fluoroscopic images as well as noise reduction by computing a low-rank
approximation. The second denoising approach is designed specifically for neurovascu-
lar digital subtraction angiography sequences. The method involves the application of
an iterative weighted low-rank approximation to stacks of spatially aligned images. The

3



1. Introduction

weights prevent the contribution of temporally mismatched pixels, caused by the inflow
and outflow of contrast agent, towards the low-rank approximation.

In Chapter 6, a novel learning-based X-ray image denoising strategy is presented. The
method involves the use of realistic simulations of low-dose X-ray images in the training
phase. A model-based method for simulating realistic low-dose images is presented. This
is followed by the learning-based denoising strategy of using noise variance-stabilized
simulated images along with an initial evaluation of the method on low-dose X-ray im-
ages. In addition, an improved noise simulation approach is presented and the denoising
strategy is thoroughly evaluated. The potential pitfalls of the method are analyzed along
with the ways to prevent them.

Finally, in Part III, all the methods presented in this thesis are summarized and dis-
cussed.

1.4. Summary

Motivated by the necessity to reduce the X-ray dose and minimize the health risks due
to X-ray radiation exposure, the objective of this thesis is to show that X-ray dose can
be significantly lowered using well designed image denoising algorithms. The scientific
contributions of this thesis include the development and evaluation of several image pro-
cessing algorithms that have been published in peer-reviewed international journals and
conference proceedings. The contributions are presented in different chapters along with
the technical background to medical X-ray imaging and image denoising. Using the pro-
posed methods, a significant reduction in the X-ray dose and the amount of iodinated
contrast agent can be achieved. If the proposed methods are implemented in a clinical set-
ting, they could have a direct impact on reducing the accompanied health risks for patients
and clinical staff. Apart from clinical benefits, the dose reduction capability can enable the
use of low power X-ray tubes that do not require sophisticated cooling solutions. This
might facilitate lighter, more mobile and cost effective imaging systems. Such systems will
improve the access of patients to X-ray imaging.

4
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2. Medical X-ray Imaging

2.1. Introduction

For more than a century, the use of X-rays have had a significant impact on the field of
medical imaging as they enabled the visualization of the patient’s internal anatomy. In this
chapter, the history of X-ray imaging is presented briefly. This is followed by the physical
principles of X-ray imaging and their applications in the medical field that are relevant for
this thesis. A comprehensive overview of these topics can be found in [16, 17, 18, 19].

2.2. A Brief History of X-ray Imaging

Inspired by the experiments of the physicist Philipp Lenard, Wilhelm Conrad Roentgen
(1845-1923), a German physicist, was investigating the behavior of cathode rays (electrons)
in air-evacuated cathode ray tubes with short platinum electrodes fitted at the ends at his
laboratory in Würzburg, Germany. He discovered that passing a high-voltage discharge
through the tube resulted in the production of radiation that could penetrate objects. He
used the term ’X’ to represent this unknown type of radiation. He also noticed a faint light
due to the fluorescence of a small piece of paper coated with Barium platinocyanide where
the brightness of the fluorescence differed depending on the material and the thickness of
the objects put in front of it [20]. In recognition of his outstanding contribution to science,
he was awarded the first Nobel Prize for Physics on December 10, 1901 [21].

Soon after Roentgen’s discovery, the investigation of the unknown rays dominated the
field of research. Charles Glover Barkla (1877-1944) discovered that X-rays were plane
polarizable and that an irradiated compound emits secondary radiation. Moreover, he
found the secondary spectrum to be unique for every element, independent of tempera-
ture, structure and chemical composition. For this discovery – of the characteristic Roent-
gen radiation of the elements – he was awarded the Nobel Prize for Atomic Physics in
1917 [22]. Herman Haga and Cornelius Werd found that X-rays could be diffracted and
Arnold Sommerfeld performed a mathematical analysis of the diffraction and thereby
showed that their results could be explained in terms of aperiodic impulses [23]. Max
von Laue, Walter Friedrich and Paul Knipping succeeded in verifying the diffraction of
X-rays and proved that they belong to a category of radiation called electromagnetic ra-
diation [11]. William Henry Bragg and William Charles Bragg proceeded with the first
measurements in X-ray spectroscopy [23]. They used an X-ray tube and a collimating slit
to produce the incoming rays. In addition, they utilized various minerals such as quartz,
rock salt, iron, pyrite, zincblende and calcite as three-dimentional gratings and a photo-
graphic plate or an ionization chamber as a detector. By 1913, crystal analysis with X-rays
had become a standard technique. The results gave insight into the structure of the crystals
as well as the nature of the anode that produced the X-rays. In 1921, Albert Einstein was

7



2. Medical X-ray Imaging

awarded the Nobel prize for his insights on the photoelectric effect, the most important
way of generating contrast with X-rays in medical imaging. Another important person in
this context is Arthur Holly Compton, who was awarded the Nobel prize for his work on
the Compton effect, the second most important interaction of X-ray photons with matter
in the energy range used for medical imaging.

Since its discovery, the focus of X-rays has been on applications, especially in the med-
ical field. Its potential in this field was already pointed out by Roentgen who produced
and published an X-ray photograph of his wife’s hand. Within a month of Roentgen’s an-
nouncement, doctors were using X-rays to locate bullets in human bodies and studied bro-
ken bones [23]. The first use of X-rays under clinical conditions was by John Hall-Edwards
in Birmingham, England, on 12 January 1896, when he radiographed a needle stuck in the
hand of an associate [24]. Around this time, doctors also used X-rays to diagnose sarcoma
of the tibia in the right leg of a boy [23]. Hall-Edwards, J. R. Ratcliffe and J. H. Clayton were
the first to use X-rays in a surgical procedure to guide the removal of a needle in a woman’s
hand [25]. Henry Cattel confirmed the importance of X-ray imaging for the diagnosis of
kidney stones and cirrhotic livers [23]. Roentgen also showed its potential for material
testing by taking an X-ray image of a sporting gun and pointing out the flaws in the gun
barrel [26]. Several weeks after Roentgen’s discovery, Ivan Romanovich Tarkhanov ob-
served that X-rays not only enable to take pictures, but also affect the living function when
he irradiated frogs and insects with X-rays [27]. Therefore, X-rays were also considered
to be applicable for medial therapeutic applications. Inspired by reading that an engineer
working with X-rays lost his hair, Leopold Freund used X-rays to remove the strong hair
growth of a five year old girl [28]. At this period, the dangers of X-rays due to the biolog-
ical interaction, were still underestimated. Problems such as skin injuries were reported
as early as 1896. Elihu Thomson deliberately exposed his fingers to an X-ray tube over
a period of time-half an hour per day for several days – and suffered pain, swelling and
blistering. Then he documented the harm caused by X-rays to his body [29]. His docu-
mentation led to the first norms on radiation protection in 1896. In 1927, Hermann Joseph
Muller showed that X-rays not only cause observable damage to the body but also lead
to artificial mutations of the genes which affect one’s progeny. For this discovery, he was
awarded the Nobel Prize in Physiology or Medicine in 1946 [30].

On February 2, 1896, Joseph John Thomson introduced the term ’ionizing radiation’
as X-rays were capable of splitting air molecules into electrically charged particles. The
measure of the ionizing ability of X-rays is called exposure. The roentgen (R) is a (now
obsolete) traditional unit of exposure in charge/kilogram of air. Today, the term ’dose’
has three different definitions and physical units taking into consideration the ionization,
energy exchange and biological effect of the radiation [11]. Absorbed dose is the concen-
tration of energy deposited in the human tissue due to exposure. It is measured in terms
of gray (Gy) which has the unit joules/kilogram. Equivalent dose addresses the impact
that the radiation has on human tissue. It is measured in terms of the unit sievert (Sv). For
diagnostic radiation, the absorbed dose in Gy is equal to the equivalent dose in Sv. Effec-
tive dose is a calculated value based on the absorbed dose to the organs, the harm level of
the radiation and sensitivities of each organ to radiation. Effective dose is also measured
in Sv [16].
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2.3. Physical Principles of X-ray Imaging

In this section, the basic working principle and the physics behind the generation and
detection of X-rays, relevant to this thesis, are presented.

2.3.1. X-ray Generation

X-rays are generated in an evacuated X-ray tube enclosing two electrodes, known as the
cathode and the anode, when electrons are emitted at the cathode and accelerated towards
the anode by high voltage and then stopped within the anode. The generation happens
due to two physical processes: (i) a strong deceleration of incoming electrons in the electric
field of an atomic nucleus, referred to as Bremsstrahlung and (ii) characteristic radiation
in the electron shell of atoms [11]. In the following sections, these fundamental principles
of X-ray generation are described in more detail.

X-ray Tube

In an X-ray tube, the electrons that are used for generating the X-rays are produced by
heating a filament attached to the cathode using a small voltage and a high current. These
electrons are then accelerated towards a target, a small region in the anode, by an accel-
eration voltage Vt. This is caused by a negative potential at the filament and a positive
potential at the anode. If there were gas molecules within the tube, the electrons would
react with them, slow down and produce secondary electrons [16]. In order to prevent
this reaction, the two electrodes of the X-ray tube have to be sealed in vacuum. The usage
of vacuum in the X-ray tubes also provides the advantage of controlling the amount and
the speed of the accelerated electrons independently. To prevent the electric discharge be-
tween the electrodes, specific shapes and sizes are used for the construction of the tubes
and the connecting wires are sealed inside the glass wall of the X-ray tube [16]. The basic
elements of an X-ray tube are shown in Fig. 2.1(a).

Typically, for medical applications, Vt is in the range of 30 to 130 kV. The current is
around 10 to 1000 mA depending on the amount of X-ray flux that needs to be generated.
The target may be water-cooled as only around one percent of the power used for acceler-
ating the electrons is converted into X-rays, whereas, the remaining 99 percent end up in
the heating of the target.

The number of electrons generated at the filament by thermal emission depends on the
work function or the Fermi energy level W of the metal and the temperature T of the
filament. Owen Williams Richardson gave a quantitative description of the relationship
between the emission current density J of electrons that are produced and the W and T
with the Richardson-Dushman-equation

J = AoT
2e

−W
kBT , (2.1)

where A0 is the Richardson constant and kB is the Boltzmann constant [31]. As per this
equation, the number of electrons generated has an exponential dependency on W and
T . For medical imaging, it is important to ensure a constant value for J . For a metal,
W is constant, whereas, T can vary. If the acceleration voltage is increased, more of the
generated electrons reach the target. A saturation is reached when all the electrons that
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have left the metal are accelerated to the target. At such a state, a higher value for T would
result in more electrons that consistently reach the target. In other words, at such a state,
the parameter T can be used to deliver a consistent beam current. High-power X-ray tubes
in medical imaging are designed such that all the generated electrons reach the target.

The filament may comprise a wire made of tungsten of about 0.2 mm in diameter. The
wire may be coiled to form a vertical spiral of about 0.2 cm in diameter and 1 cm or less
in length. The wires connected to the cathode supply a voltage of about 10V and a current
of about 3 to 5A to heat the filament. The temperature T used for heating the wire and
produce electrons ranges between 2200◦C and 3000◦C [16]. Though alloys of tungsten are
more efficient in emitting electrons, tungsten is still used in tubes because of its ductility
and high melting point (3370◦C). Due to the repulsive forces between the electrons, the
stream of electrons spreads out and bombards a large area of the anode. This undesirable
effect is prevented by the usage of cathode focusing cups made of nickel. The task of the
focusing cup is to direct the stream of electrons to a small region of the anode as shown in
Fig. 2.1(a).

(a) (b)

Figure 2.1.: Visualization of an X-ray tube with (a) a stationary anode [32] and (b) a rotat-
ing anode [16]. The focusing cup and the inclined anode in (a) minimize the
region of the anode bombarded by the electrons from the cathode when looked
at from the outside along the beam direction (focal spot). The heating of the
anode caused due to the narrowing of the region bombarded can be overcome
by using a rotating anode (b).

As tungsten has a high melting point as well as the ability to absorb and dissipate heat
rapidly, it is also used as anode material for radiography and computed tomography (CT)
applications. Anodes made of molybdenum and rhodium are used in applications such as
mammography that require lower energies and a discrete spectrum.

Even though tungsten has good thermal characteristics, it cannot withstand the heat of
repeated and continuous exposures. Moreover, the region of the target that is bombarded
by electrons is reduced – by inclining the anode by an angle of about 6 to 20◦ – since a
smaller focal spot produces better radiographic details. Focusing X-rays on a small region
subjects the anode to significant heating. To prevent the tungsten anode from melting, an-
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odes in the form of a large disc made of tungsten or its alloy, rotating at a speed of about
3000 rpm, have been introduced (Fig. 2.1(b)) [16]. This allows for the heat load to be dis-
tributed over a ring around the rotating anode. In addition, the target is also cooled by
a liquid behind to remove the energy efficiently, thereby substantially increasing the total
power that can be applied to an X-ray tube from around 1 kW to 150 kW and facilitat-
ing repeated X-ray pulses for longer periods like in fluoroscopy applications due to better
heat spreading. Rotating anodes are used mainly in angiography due to lengthy proce-
dures performed at high dose levels. Rotating anodes are heavier and larger, compared to
stationary anodes. As a consequence, the compact mobile C-arm models, that are used for
low dose and shorter X-ray examinations, usually employ stationary anodes.

Currently, the use of liquid metal to replace the solid target is under research [33]. The
idea is to hit an alloy containing indium and gallium, which is liquid at room temperature,
by the electron beam to generate X-rays. This allows for adding more power per square
millimeter on a fixed X-ray target as the liquid metal can be continuously replaced with
new material. However, this is not yet used in medical imaging as the characteristic emis-
sion lines for gallium and indium are relatively lower than required. The emission lines
for gallium are at 9.25 kilo electron volt (keV) and 10.26 keV, for indium they are at 24.2
keV and 27.2 keV, whereas for tungsten they are at 59.3 keV and 67.2 keV. If the liquid
metal could be replaced with a material having a higher atomic number Z, then it could
be potentially used in medical imaging.

In conventional X-ray tubes, switches used for initiating and stopping an exposure are
subjected to large changes in the voltage applied between the cathode and the anode. As
an alternative, grid controlled X-ray tubes make use of the focusing cup as an additional
electrode, to control the flow of electrons from the filament to the target. The voltage
across the filament-grid, produces an electric field along the path of the electron beam,
that pushes the electrons even closer. This voltage can be made to act as a switch, to turn
the tube current on and off, as a high voltage completely reduces the tube current. Since
the focusing cup and the filament are placed close to each other, the voltage required to
cut off the flow of electrons is not very large. For example, for a 0.3 mm focal spot tube
operating at 105 kilo volt peak (kVp) about 1500 V between the filament and the cup are
required to cut the electrons off [16].

Grid controlled X-ray tubes can significantly reduce the absorbed dose for the patients [34,
35]. In a grid-controlled tube, an additional electrode, known as the grid electrode, is in-
cluded in the tube between the cathode and anode. The electrons accelerated from the
filament to the target are made to pass through the grid electrode. When a negative volt-
age relative to the cathode is applied to the grid electrode, the electrons emitted from the
target will get repelled and pushed back into the filament [36]. Therefore, precise control
over the intensity of the X-ray beam in each pulse can be achieved using this technology.
In other words, the electron flow and the X-ray production can be switched off when the
resulting X-ray beam gets absorbed by the patient and will not have the required energy
to reach the detector and contribute to the imaging process.

Principles related to the the generation of X-rays

Bremstrahlung and characteristic emission of X-ray fluorescence are the two main physical
principles that produce X-rays at the target.
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(a) (b) (c)

Figure 2.2.: The graphic (a) illustrates the generation of X-rays using Bremsstrahlung [16].
In (b), the Bremsstrahlung spectra with and without filtering are shown for an
acceleration voltage of Vt = 90 kVp. In (c), the filtered Bremsstrahlung spectra
corresponding to different acceleration voltages are presented.

In Bremsstrahlung, as shown in Fig. 2.2(a), incoming electrons are attracted towards the
positive charge of the nucleus of the target atom. This results in the deflection of the elec-
tron from its original direction. When the electron changes direction, it loses speed and
energy. The lost kinetic energy is emitted in the form of photons. As the loss of kinetic
energy depends on the distance between electron and atomic core, the spectrum of the
generated X-rays is continuous. In other words, the closer the incoming electron is to the
atomic nucleus, the higher is the energy of the emitted X-ray photon. The maximum radi-
ated energy of the emitted X-ray photon Ephoton is equal to the kinetic energy EKE(electron)
of the incoming electron. This can be represented as

Ephoton = EKE(electron). (2.2)

The variable Ephoton can also be represented as

Ephoton = hfmax, (2.3)

where h is Planck’s constant and fmax represents the maximum frequency of X-ray emis-
sion. The parameter fmax is related to the minimum wavelength of the emitted X-rays λmin
as follows

fmax =
c

λmin
, (2.4)

where c is the speed of light. On the other hand, EKE(electron) can be represented as

EKE(electron) = eVt, (2.5)

where e represents the charge. From Eq. 2.2, Eq. 2.3, Eq. 2.4 and Eq. 2.5, the following
relationship can be determined:

λmin =
hc

eVt
. (2.6)

In Fig. 2.2(b), the spectrum generated by Bremsstrahlung when the target is hit with
electrons that have been accelerated with Vt = 90 kVp is presented. It can be seen that the
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maximum energy of the emitted X-ray radiation is proportional to the maximum accelera-
tion voltage of the electrons. However, the probability of electrons colliding head on with
atomic nuclei emitting X-rays with 90 keV is small. This probability increases for lower
values of keV. In theory, this probability increases linearly with a decrease in the energy
of the radiated X-ray photon. This can be observed in the unfiltered Bremsstrahlung spec-
trum (Fig. 2.2(b)). The value is highest when the energy of the radiated X-ray photon is 0
keV. However, in practice, the increasing probability becomes stable at a point and then
reduces again. This happens because the produced X-rays get filtered or absorbed, for ex-
ample, by the cooling liquid surrounding the tube and by a window (made of beryllium
or carbon, 300 - 500 microns thick) when it leaves the vacuum. In addition, electrons get
self absorbed while hitting the target. In this case, the electrons, while reaching the target
penetrate a few microns into the material. When X-rays are produced by these electrons a
few microns within the target, the X-rays get absorbed by the dense target. In other words,
X-rays produced deep inside the target cannot leave the X-ray tube and this also causes the
Bremsstrahlung spectrum to decay towards lower keV energies. Moreover, due to anode
heel effect, the diverging beams, which are parallel or near parallel to the inclined anode,
get absorbed by the anode itself. Therefore the rays closer to the anode have less intensity
than the rays close to the cathode end of the tube [11]. In Fig. 2.2(c), the Bremsstrahlung
spectrum for three different values of Vt is presented. In all the cases, the maximum value
of keV is proportional to the acceleration voltage Vt and the whole spectrum for each case
is shifted accordingly. At the lower end of the spectrum, the self absorption process is sim-
ilar for all the three cases. It is desired to have a cut-off at the lower energies as the X-ray
photons at these energies cannot penetrate through the human body and do not contribute
to the image formation. Instead, they only increase the dose absorbed by the patient.

On the other hand, in the case of X-ray generation by characteristic radiation (Fig. 2.3(a)),
a high energy electron collides with an inner shell electron and displaces it, resulting in the
creation of a hole. This hole is filled by a free electron or an electron from a higher energy
level. This creates a difference of energy which is emitted by radiation. The resulting
spectrum is discrete. This phenomenon depends on the material of the target and is related
to its shell composition and can be represented using Moseley’s law:

1

λ
= RH (Z −K)2

Å
1

n2
1

− 1

n2
2

ã
, (2.7)

where λ is the wavelength of the emitted X-rays, RH is Rydberg’s constant, Z is the atomic
number of the material in the periodic table, K is the shielding constant and n1 and n2

represent the main quantum numbers of the shells involved in the transition, respectively.
That is, the energies of the X-rays that would be released for a certain transition between
two shells can be calculated using Moseley’s law. Kα represents the transition between the
inner K shell and the next L shell. Similarly, Kβ represents the transition between the M
and the K shells. The energy difference for Kα and Kβ are called characteristic lines.

In Fig. 2.3(b) and Fig. 2.3(c), the full spectrum of a tungsten tube is presented. This in-
cludes the effect of Bremsstrahlung and characteristic radiation. The peaks in the spectrum
are caused by characteristic radiation. In Fig. 2.3(c), it is to be noted that only when Vt is
much greater than 60 kVp, characteristic radiation is present. When Vt is equal to or below
60 kVp there is no excitation of the characteristic lines and only Bremsstrahlung plays a
role.
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(a) (b) (c)

Figure 2.3.: Visualization of (a) the generation of X-rays by characteristic X-ray radia-
tion [16], (b) the continuous Bremspectrum with characteristic lines (Kα, Kβ)
for tungsten for an acceleration voltage of Vt = 150 kVp and (c) the spectra for
tungsten for different values of Vt.

Except mammography, where soft tissue contrast is created using discrete spectra, diag-
nostic imaging of other tissues are based on continuous spectra [16].

2.3.2. Interaction Mechanisms of X-ray Photons in Matter

In medical applications such as radiography, mammography and CT, contrast in images
is formed by the attenuation (gradual loss of intensity) of the incoming X-ray beam by
an object with certain attenuating properties. For example, bones and metals result in
a higher attenuation, whereas, soft tissue results in lesser attenuation. In the following
paragraphs, the principles behind attenuation of X-rays are presented briefly. In addition,
the characteristics of an X-ray beam used in conventional medical imaging are presented.

Attenuation can be caused by absorption, coherent and incoherent scattering, reflec-
tion and refraction of X-ray photons. However, for medical X-ray imaging, attenuation is
caused mainly by absorption and scattering when X-ray photons interact with orbital elec-
trons of atoms of the imaged object. In particular, the interaction happening in the range
of X-ray energy used in diagnostics is through coherent scattering, the photoelectric effect
and Compton scattering [16], where the effects depend on the density and the composition
of the material as well as the incoming energy of the X-rays.

In coherent scattering, also referred to as classical scattering, radiation encounters the
electrons of an atom and sets them into vibration at the frequency of the radiation. As
shown in Fig. 2.4(a), these vibrating electrons emit radiation, while returning to their orig-
inal state. This is the only type of interaction, where ionization does not occur. The per-
centage of radiation that undergo coherent scattering is small compared to the other types
of interactions, typically less than 5%.
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(a) (b) (c)

Figure 2.4.: Illustration of the mechanisms (a) coherent scattering, (b) photoelectric effect
and (c) Compton scattering by which X-ray photons interact with matter. Most
of the interactions are due to Compton scattering and the photoelectric effect.
Only about 5% of the radiation undergo coherent scattering [16].

The photoelectric effect occurs when photons having energy more than the binding en-
ergy of an electron, kicks out such an electron from its orbit. The incident photon is com-
pletely absorbed in the process. The probability of this effect is the highest when the elec-
tron is tightly bound (as in the K-shell). The electron void on the K-shell of the atom is
instantly filled, usually by an electron from the outer adjacent L-shell, occasionally from
the M-shell and very rarely by other free electrons from the same or a different atom. As
an electron drops into the K-shell, it emits the energy in the form of an X-ray photon. The
amount of energy emitted depends on the element and the characteristic radiation is pro-
duced by the transition of electrons within the atom. Then an electron from the M-shell
drops down to fill the void in L-shell, which also results in the emission of radiation [17].

The photoelectric effect reduces as the photon energy (E) increases. That is, to break the
binding energy of 33.2 keV, a photon with 34 keV would be more successful compared
to a photon with 100 keV. The photoelectric effect is also more likely to occur for atoms
in which the electrons are tightly bound in the orbit. This characteristic is possessed by
elements with higher atomic number (Z). For elements with low atomic numbers, most
interactions occur at the K shell, whereas, for elements with high atomic numbers, inter-
actions can take place even at the L and M shells, if the energy of the incident photon is
insufficient for the K shell [16]. This process is shown in Fig. 2.4(b) and the occurrence of
the photoelectric effect can be represented as follows:

photoelectric effect ∝ Z3

E3
. (2.8)

For diagnostic imaging, the photoelectric effect is responsible for the tissue contrast in
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radiographic images, as this effect or absorption differs for different elements. As photo-
electric reactions also result in radiation exposure for patients, it is desirable to use high
photon energies to reduce the absorbed dose, but it will yield X-ray images with lower
contrast [37].

Almost all scatter radiation encountered in diagnostic radiology is from Compton scat-
tering [16]. In this process, represented by Fig. 2.4(c), an incident photon with relatively
high energy ejects an electron from the outer shell of an atom, but, during this process
the photon also gets deflected. The reaction produces an ion pair, a positive atom and a
negative electron, which is also referred to as a recoil electron. A part of the energy of
the incident photon is transferred to the recoil electron as kinetic energy and the rest is
retained by the deflected photon. When compared to the photoelectric effect, in Compton
scattering, the amount of energy spent on freeing the photoelectron is significantly less.
The energy retained by the deflected photon can be calculated using the initial energy of
the incident photon and the angle of deflection of the recoil electron [16]. Compton scat-
tering impairs contrast between soft tissue types and vessels. To overcome this problem,
anti-scatter grids are mounted in front of X-ray detectors. Another way to increase contrast
in specific structures, for example, blood vessels, is to use contrast agents like iodine and
barium [38, 39].

The intensity of an X-ray beam is given by the product of the number of photons in the
beam and the energy of the photons. For monochromatic radiation, containing a single
energy level, attenuation depends on the material through which the beam passes and it
can be described using the Beer-Lambert law

I = I0exp

Ç
−
∫ x1

x0
µ(x)dx

å
, (2.9)

where I0 is the initial intensity of the beam, I is the reduced intensity after attenuation,
x ∈ [x0, x1] denotes the path of the X-ray photons and µ(x) denotes the linear attenuation
coefficient of the material. For objects with constant attenuation coefficient µ and thickness
d, attenuation according to Beer-Lambert can be simplified to:

I = I0e
−µd. (2.10)

For conventional medical X-ray imaging, only polychromatic beams are available. Un-
like monochromatic beams, polychromatic beams contain a whole spectrum of various
energies. Their mean energy is from one third to one half of the peak energy. As poly-
chromatic radiation passes through a material, the transmitted beams undergo change in
the number of photons, and the energy spectrum of the beam changes too. A large per-
centage of low energy photons are attenuated when the beam enters the material and this
results in the increase in the mean energy of the remaining photons that continue to pass
through the material [16]. This effect is called beam hardening. In order to prevent the
lower energy photons from being rapidly absorbed in the tissue, they can be filtered out,
using metal filters placed after the X-ray tube and before the patient. By this process, only
those photons that are useful for imaging are retained.

16



2.3. Physical Principles of X-ray Imaging

2.3.3. X-ray Detection

Detectors serve as a means for measuring the intensity of an attenuated X-ray beam. Over
the years, the fundamental design of the X-ray tube has basically remained the same,
whereas the detectors have constantly undergone changes. Detectors can be broadly classi-
fied into analog and digital detectors. In the case of analog detectors, the absorbed energy
can be used to directly form an image, for example, on a photographic plate. Whereas, in
digital detectors, a charge generated based on the absorbed energy is first converted into
a digital signal and then stored as a digital image. Analog film detectors are still used for
static X-ray images while digital detectors are necessary to record dynamic X-ray image
sequences [11].

Requirements of X-ray detection

In clinical X-ray imaging, X-ray energy, X-ray flux and spatial resolution play an important
role and are described in the following paragraphs.

The X-ray energy used for clinical applications is in the range 30−130 keV. The detection
systems have to be most efficient in this range. The choice of the energy depends on the
anatomy under observation and the procedure at hand. The lower end is usually used for
mammography and the upper for CT. The intensity or the flux of X-ray photons (photons
per second per surface area) is in the range 100−109 ph/sec/mm2 for clinical applications.
For interventional as well as non-interventional radiology, the flux of the X-ray photons
is reduced significantly due to attenuation by the patient. In other words, when a low X-
ray dose level is used, the number of photons emitted by the X-ray tube is also low. As a
consequence, only a few X-ray photons are available for image formation after the atten-
uation by the patient. The effect of attenuation of the incident photons by a patient with
an average thickness of 20 cm has been evaluated in this thesis and is shown in Table 2.1.
Here, the patient entrance as well as detector entrance dose rates associated with different
X-ray energies and intensities used in interventional radiology are presented. The patient
has been emulated with plexiglass of thickness 20 cm. The dose rates have been measured
using RaySafe X2 X-ray Measurement System, Fluke Biomedical, Billdal, Sweden. In or-
der to calculate the number of photons that contributed to image formation, first the mean
energy associated with a spectrum has been computed using Spektr 3.0 [40]. Then, the re-
lationship between mean X-ray energy and dose per mm2 given in [17] has been used for
estimating the number of X-ray photons present per mm2 in the attenuated beam. Finally,
by assuming a dimension of a sensing element on the detector of 0.15 mm × 0.15 mm, the
number of associated photons was computed. It has been found that at very low dose lev-
els, only a few hundred photons per second are available for image formation. The value
will significantly reduce at higher frame rates.

The flux of the X-ray photons controls the dynamic range of the images. The dynamic
range is defined as ratio of the maximum to minimum value detected within the linear
range of the detector [13]. This is because there are limitations in the lower and upper end
(minimum and maximum values). If the input signals are outside the detector’s dynamic
range, these values are clipped and the detector behaves non-linearly. Small values at the
lower end are corrupted by electronic read-out noise, whereas, at the upper end, the values
might get saturated, for example, due to limitations in the capacitors of the photo diodes
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Table 2.1.: The patient entrance and detector entrance dose rates (µG/s) associated with
different X-ray energies (kVp) and intensities, determined by tube current (mA),
pulse width (ms) and Copper filtration (mm), as well as the number of X-ray
photons available for image formation. The patient entrance dose has been mea-
sured by placing plexiglass (polymethyl methacrylate, PMMA) of thickness 20
cm to substitute the patient. The number of X-ray photons per detector element
(0.15 mm × 0.15 mm) has been computed from the mean energy associated with
the chosen spectrum based on the relationship between X-ray dose and mean X-
ray energy presented in [17]

.

Energy
X-ray

Current
Tube

Width
Pulse

Filter
Copper Dose Rate (µG/s)

Detector Element
No. Photons/s Per

Entrance
Patient

Entrance
Detector

68 35 3.5 0.2 66.66 0.16 98
68 70 3.5 0.2 133.33 0.32 197
68 138 3.5 0.2 255.00 0.62 381
68 150 5.6 0.2 441.66 1.04 639
68 153 11.1 0.2 866.66 2.08 1278
65 395 12 0.2 2083.33 4.58 2721
65 399 22 0.2 4383.33 8.43 5007
70 425 23.3 0.0 16000.00 22.50 10581
75 400 24.8 0.0 18333.33 28.27 14184
83 360 25 0.0 21000.00 39.60 22453

for indirect conversion detectors. The analog to digital conversion contributes some more
noise.

Energy resolution or the ability to discriminate between different energies is a good
characteristic to have. This is because the interaction of the X-ray beam with the object
to be imaged depends strongly on the X-ray energy [41]. Therefore, the energy of the
attenuated beam can be used for resolving the different material of a heterogeneous object.
This information cannot be exploited if it is lost in the detection. For example, one photon
at 60 keV could produce, in principle, the same signal as two photons of 30 keV or three
photons of 20 keV, while the transmission through the target of a photon of 60, 30, or 20
keV is very different [41]. Although energy resolution, ability to discriminate between
different energies, is a good characteristic to have, it is not yet clinically available, at least
not for typical X-ray angiography devices, and is still under research.

Spatial resolution is another important property in X-ray imaging as it is related to de-
tecting details and hence to the quality of the acquired data [42]. In clinical applications,
the required spatial resolution is in the range 50 µm for mammography to 0.5 mm for den-
tal imaging and most applications in CT. More details on spatial resolution are given in
Sec. 2.3.5.

18



2.3. Physical Principles of X-ray Imaging

Analog Image Detectors

Conventional X-ray imaging is based on analog detectors. They make use of photographic
films – coated with silver bromide emulsion – which are exposed to X-rays and then de-
veloped. X-ray absorption leads to the splitting of silver bromide into silver and bromide
ions. The development process forms oxidized silver that appears black on the photo-
graphic film. Though the film has an excellent spatial resolution of about 0.025 mm, it is
not very sensitive to radiation as only 1% of the X-ray quanta contribute to the image [16].
By placing the film between two intensifier screens in film cassettes, the quantum efficiency
can be increased and this allows a reduction of X-ray dose. The screens emit visible light
by luminescence when exposed to radiation. This luminescence, in turn, exposes the pho-
tographic emulsion, which results in the generation of a static image. This type of imaging
is still widely used, for example, for dental imaging because it is very compact compared
to any digital detector.

Static Digital Imaging Detectors

In the beginning of the 1980s, computed radiography (CR), a digital technique, succeeded
the above discussed analog technique. CR uses photostimulable phosphor as image re-
ceptor. The phosphor is composed of europium activated Barium fluorohalide, which is
coated on an imaging plate. The phosphor temporarily stores a latent image on the imag-
ing plate and this latent image is converted to a light image, using laser-stimulated lumi-
nescence. A photo-multiplier tube converts the light image into an analog electrical signal,
which is amplified, converted to a digital signal and stored in the computer. Though the
spatial resolution is only 0.1 mm, the resulting clinical images are often as useful as film
systems. These CR systems provide the advantage of reusable CR cassettes, which con-
tributes to the reduction of X-ray image acquisition cost.

The technique CR has been succeeded by digital radiography (DR) (using flat panel
detectors) in the late 1990s. This technique makes use of the semiconductor flat panel de-
tectors. Amorphous silicon has been a suitable choice of material for making photodiodes
due to its superior real-time imaging capability [43]. As silicon is not sufficiently sensitive
for detecting X-ray energies, it is coated with a layer of fluorescent caesium iodide (CsI) or
gadolinium oxiSulfate (GOS), which act as an image conversion layer by absorbing X-ray
photons and emitting visible light. GOS is less expensive than CsI and provides good light
output but the emitted light will spread out resulting in the blurring of the emitted sig-
nal. On the other hand, CsI has less light spread since the crystal has a columnar structure
which makes the light follow the columns of the CsI as it passes through the crystal. This
reduced blurring leads to higher spatial resolution for CsI based systems compared with
GOS systems. Due to the high quantum detection efficiency (60%), the resulting image
is of superior quality compared to CR systems. Flat panel detectors yield an improved
workflow at reduced operating costs. The main advantage of the DR systems is the in-
stant availability of the image. There is no need for film development or storage cassette
readers.
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Dynamic Digital Imaging Detectors

In the early days of X-ray imaging, dynamic processes were visualized on fluorescent
screens. Those were succeeded later on by image intensifiers. Nowadays flat-panel digital
detectors have been gradually replacing the image intensifier systems [11]. The detected
quantum efficiency of flat panel detectors is about 20% higher than that of conventional
intensifiers and this leads to better image quality and dose reduction. In particular, the flat
panel detectors offer distortion-free images, improved contrast, large dynamic range and
high X-ray sensitivity [12]. Moreover, as these digital detectors weigh less when compared
to conventional intensifiers, the X-ray imaging systems can be made more manoeuvrable.

There are two types of flat detector technologies. The first one makes use of indirect
X-ray conversion processes, while the second one converts X-ray photons directly into an
image. Both these technologies can be coupled with active pixel readout matrices made
of hydrogenated amorphous silicon (a-Si:H) as they feature several favourable character-
istics. First, they exhibit semiconductor properties such as doping, photo conductivity or
junction formation, which makes it suitable for the manufacture of electrical components
such as thin film transistors (TFTs) and photodiodes. Second, the plasma decomposition
process permits large-area decomposition and this allows for the production of active ma-
trices of several million pixels with sizes exceeding 40x40 cm2. Third, as amorphous silicon
has proven to be highly robust to radiation, it is suitable for applications in medical X-ray
imaging [12].

The flat detector technology with the two-level indirect X-ray conversion process using
cesium iodide (CsI) scintillators is the dominating method as it offers considerable advan-
tages in radiography, angiography and fluoroscopy [44, 45, 46, 47, 13]. In this detection
process, an X-ray photon is absorbed in the scintillator mainly by the photoelectric effect.
This creates a large number of electron-hole pairs, which are trapped in luminescence cen-
ters. These pairs then recombine to produce scintillation photons in the visible range [46].
The light is converted into electrical charge in a pixelized matrix of photodiodes [13]. For
flat detectors, the scintillator of choice is thallium-doped CsI (CsI:TI) as it provides sev-
eral favourable properties for medical imaging. The high atomic numbers of Cs (55) and I
(53), and the effective density of CsI (about 3.6 g/cm3) results in very good X-ray absorp-
tion properties. In particular, it is well suited to enable high detective quantum efficiency
(DQE) for different clinically relevant frequencies and energy spectra required for a wide
range of imaging tasks [13].

A schematic representation of this detection process is presented in Fig. 2.5. The scintil-
lator comprises CsI:TI shaped in needle-like structure with individual crystals measuring
5-10 µm in diameter and up to 600 µm or more in length. This structure facilitates the
collection of the emitted light into the photo-diode below the scintillator [13]. In the acqui-
sition and read out process, the inversely biased photodiodes are first charged to a given
voltage. Then, during X-ray acquisition, the impinging optical photons, created during
the photoabsorption and scintillation process, generate electron-hole pairs which gradu-
ally discharge the photodiodes [13]. The readout process is carried out by addressing all
the TFTs line by line. Specifically, in this process, the charge required to recharge the re-
spective photodiodes to the predefined bias voltage is computed. Low-noise application-
specific integrated circuits are used to carry out charge-sensitive amplification. Multiplex-
ing is performed to feed analog-to-digital converters with bit depths of 14 bits or 16 bits.
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After this, the image data is available for preprocessing (e.g., flat-field correction, defective
pixel correction), and clinical image post-processing (e.g., denoising or contrast enhance-
ment) [13]. Recently, a new readout technology has been introduced by replacing the a-Si
photodiode and the readout structure with a complementary metal oxide semiconductor
(CMOS) sensor containing crystalline Si. The electrical properties of crystalline Si enable
high performance analog or digital circuitry. This reduces readout electronic noise and
makes on-pixel amplification possible (active pixel sensors). This, in turn, helps in moving
towards the goal of quantum-noise-limited X-ray detectors for low-dose levels.

Figure 2.5.: Schematic view of an indirect conversion flat panel detector based on columnar
cesium iodide and an active matrix of amorphous silicon photodiodes [13].

On the other hand, in the direct conversion flat detector technology, photoelectrons gen-
erated during the X-ray absorption process directly create electron-hole pairs which are
collected by applying an electric field across the detector material [13]. This method makes
use of amorphous selenium (a-Se) as the X-ray detection material. A-Se can be deposited
directly onto an active matrix of a-Si, where each pixel consists of a charge collecting elec-
trode and readout TFT. The low K-edge (12.6 keV) of a-Se makes it suitable for the rela-
tively soft X-ray spectra used in mammography [13].

Apart from cost reduction, digital imaging provides various advantages such as the
opportunity to process the image before and after visualization as well as data archival. By
post-processing, the image quality can be improved. This, in turn, improves the diagnostic
accuracy as well as the outcome of interventional procedures.

2.3.4. X-ray Image Formation

By modeling the behavior of an indirect-detection, flat-panel X-ray detector using a cas-
caded linear systems approach, the formation of fluoroscopic X-ray images from X-ray
photons can be described as a succession of stages. Each stage represents a physical pro-
cess having intrinsic gain or spreading properties [44]. Assuming that the flat-panel detec-
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tor has a linear detector response, the average output signal z̄ can be written as

z̄ = a2pd · x̄ · ḡ1 · ḡ2 · ḡ3 + go, (2.11)

where a2pd represents the light sensitive area of the sampling aperture (photo-diode), x̄ is
the mean fluence of Poisson-distributed incident X-ray quanta, ḡ1 is the mean fraction of X-
rays that interact with the converting medium (scintillator) to produce light, ḡ2 represents
the mean quantum gain associated with the generation and emission of optical quanta
in the X-ray converter, ḡ3 denotes the mean gain associated with the coupling of optical
quanta to the detector elements and go is the overall offset. As described in [44], when
the detector is used for acquiring image sequences, for example, in fluoroscopic mode, the
variance of noise associated with the exposure can be expressed as

σ2
z̄ =

Å
1− t

1 + t

ã
a2pd · x̄ · ḡ1 · ḡ2 · ḡ3 (1 + ḡ3 (ḡ2 + ϵg2) s) + σ2

n. (2.12)

In Eq. 2.12, t ∈ [0, 1] denotes the fraction of the number of electrons trapped in the photo-

diode after readout and the parameter ϵg2 =
σ2
g2
ḡ2

− 1 is the Poisson excess (where ḡ2 is the
mean gain, and σ2

g2 is its variance) [44]. Poisson excess noise is a result of variations in the
number of secondary quanta detected per primary quanta absorption [48]. The parameter
s in Eq. 2.12 refers to the sharpness factor of the system and can, for example, be calculated
in the frequency domain as follows:

s = a2pd

∫ +∞

−∞

∫ +∞

−∞
T 2
1 (u, v) · T 2

2 (u, v) dudv. (2.13)

Here, T1(u, v) and T2(u, v) represent the system modulation transfer functions (MTFs) de-
scribing the spreading of optical photons in the converting medium and the integration
of quanta by the photo-diode, respectively. The variables u, v are the spatial-frequency
coordinates. The sharpness factor s ∈ [0, 1] accounts for the effects of image blur on the
noise and it is one for an ideal converter (no spreading) [44]. Finally, the parameter σ2

n

in Eq. 2.12 refers to the variance of the total additive noise due to different sources, such
as intrinsic noise from the photo-diode pixel, voltage fluctuations on gate and bias lines,
noise from the amplifier and digitization noise [44]. Equation 2.12 shows that the variance
σ2
z̄ is proportional to the mean signal z̄ with an offset due to additive noise σ2

n.
By rewriting Eq. 2.12 with respect to z̄ (given by Eq. 2.11) and taking samples at detector

pixel positions, the following is obtained:

σ2
z̄ [r, c] = α[r, c] (z̄[r, c]− go) + σ2

n with α[r, c] =

Å
1− t

1 + t

ã
(1 + ḡ3 (ḡ2 + ϵg2) s) , (2.14)

where [r, c] are spatial coordinates and α[r, c] is the pixel-dependent gain associated with
the pixel at [r, c]. In general, the gain is spatially varying because it depends on the energy
of the X-ray beam reaching the associated detector elements [49, 50]. Equation 2.14 repre-
sents the noise level function (NLF), relationship between noise variance and gray values,
that can also be written as the variance of a Poisson variable with mean z̄[r, c] scaled by
α[r, c] > 0 and corrupted by additive Gaussian noise ρ[r, c] as follows:

σ2
z [r, c] = α[r, c] · z̄[r, c] + ρ[r, c] with ρ[r, c] = σ2

n − α[r, c] · go. (2.15)
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From Eq. 2.15, it can be observed that α[r, c] and ρ[r, c] are the slope and the y-intercept of
the NLF, respectively. A different aspect of noise in digital X-ray detectors is given in the
following subsection.

2.3.5. Characteristics of an X-ray Imaging System

The characteristics of an X-ray imaging system is determined mainly by the spatial resolu-
tion, effectiveness of the system in converting incident X-ray photons into signal, and the
characteristics of noise associated with the acquired images. In the following paragraphs,
these aspects are explained briefly.

Spatial resolution does not just depend on the nominal pixel size given by the man-
ufacturer but on the overall image acquisition process. If the detector is modeled as a
linear system, a point spread function (PSF) can be used for characterizing its properties,
in particular, the spatial resolution. A PSF shows the response of the detector to a point-
like X-ray beam [51]. The MTF of the detector is the Fourier transform of the PSF. It is
a contrast function that defines how different spatial frequencies are actually transferred
through the detector. It specifies the contrast in the output for different spatial frequencies
at the input. In practice, the MTF is typically measured using line pairs with varying spa-
tial frequencies. The spatial resolution limit of an imaging system is typically defined as
10% MTF, i.e., the point where the contrast has dropped to 10% of its original value.

Quantum efficiency (QE) measures how many of the incoming photons contribute to the
actual image formation. In other words, it is the measure of the effectiveness of an imaging
device to convert incident X-ray photons into the signal responsible for image formation.
On the other hand, the DQE is the ratio of the detected signal-to-noise ratio (SNR) to the
incoming SNR [17]:

DQE =
SNR2

det

SNR2
in

. (2.16)

Both the signals are typically Poisson-distributed. The DQE gives the complete perfor-
mance of the detector and also includes the influence of noise. As described in [52], the
DQE associated with a spatial frequency f can also be expressed in terms of measurable
quantities such as MTF, noise power spectrum (NPS), system gain α and mean incident
fluence x̄:

DQE(f) =
x̄α2MTF2(f)

NPS(f)
. (2.17)

The NPS describes the spectral composition of the noise variance in an image as a function
of spatial frequency.

As mentioned in Sec. 2.3.4, noise in digital X-ray detectors consists of different compo-
nents such as quantum noise (primary and secondary quanta), excess Poisson noise, alias-
ing noise and additive electronic noise encountered during read-out. In addition, structure
or fixed pattern noise occurs due to the spatially fixed variations in the gain across the de-
tector. The effect of this noise is removed as a part of clinical imaging routine through flat-
field image correction. According to the sampling theorem, aliasing occurs when an image
(acquired at the detector entrance) contains frequencies higher than the Nyquist frequency
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– which is defined as fNYQ = 1/(2∆y), where ∆y is the pixel pitch in mm. Aliasing noise
has a strong effect on direct conversion flat panel detectors. However, for the scintillator-
based indirect conversion detectors its effect is almost negligible. This is because the blur
of the scintillator acts as a low-pass filter which reduces the high frequencies above fNYQ.

In practice it is non-trivial to measure the pre-sampling NPS [48], whereas, it is possi-
ble to compute the NPS associated with the acquired digital images from flat-field X-ray
images. After correcting the fixed pattern noise in X-ray images, the NPS can be calcu-
lated from flat-field images as follows. First, the global mean associated with the flat-field
images is subtracted. Then, the 2D-NPS is calculated from P non-overlapping regions of
interest yp ∈ RM ′×N ′

extracted from the field images as shown below:

NPS[u, v] =
∆r ·∆c

P ·M ′ ·N ′

P∑

p=1

|F{yp[r, c]− µyp}|2, (2.18)

where u and v are spatial frequencies corresponding to r and c, F represents the Fourier
transform, ∆r and ∆c are the vertical and horizontal pixel pitches, and µyp is the mean
value of the region yp.

2.4. Clinical Applications and Challenges

X-ray imaging can be used to reveal internal structures of the body that is made up of
various parts with differing densities, such as bones and soft tissue. This is the reason be-
hind the wide use of X-ray imaging in diagnostics, therapy planning, real-time navigation
guidance and procedure monitoring. Both static and dynamic X-ray imaging techniques
have their own set of applications.

Static images are mainly used for the examination of the skeleton and for detecting dis-
ease processes in soft tissue. For example, X-rays are suitable for visualizing bony fractures
and ingested foreign objects with high density. Not only diseases concerning bone pathol-
ogy such as osteoarthritis [53], osteomyelitis [54] and osteosarcoma [55], can be diagnosed
using radiographs, but also growth studies such as achondroplasia and scoliosis can be
conducted [56]. X-rays of the chest are useful for identifying lung diseases such as pneu-
monia, lung cancer and pulmonary oedema [57]. Abdominal X-rays help to detect bowel
obstruction, gallstones and kidney stones. Dental radiography allows the diagnosis of cav-
ities in the teeth. X-ray examination of the breasts (mammography) is used to detect breast
cancer. With the exception of mammography, X-ray dose minimization is often not of the
highest priority in these contexts, as only a limited number of radiographs are taken per
patient. Therefore, X-ray dose is often adjusted to yield high contrast to aid diagnosis. An-
other exception to this are paediatric examinations, as growing tissues are very sensitive
to ionizing radiation.

Fluoroscopy is the acquisition of a sequence of X-ray images in real-time. This tech-
nique is mainly performed to view the movement of contrast agents (angiography) and
also to guide medical instruments in the interior of the human body. A wide variety of
applications such as abdominal aortic aneurysm repair, percutaneous coronary interven-
tion [58], digital subtraction angiography (DSA), ablation, stenting, endovascular coiling
for brain aneurysms, endovascular embolization for treating arteriovenous malformation
in the brain rely on this technique [59].
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Ideally the choice of the parameters used for imaging should be organ-specific. For med-
ical diagnostic and interventional imaging, typical values for the X-ray energy E range
from 25 to 150 KeV [11]. Even with a specific choice of parameters, it is difficult to discrim-
inate different tissue types from blood vessels. This is solved by the injection of contrast
agents, typically iodine [60]. However, iodinated contrast agent puts a burden on the pa-
tients’ kidneys.

Although the per-image dose used in fluoroscopy is lower compared to radiographs,
dose minimization is still important. This is due to the fact that a large number of images
are acquired during interventional procedures. For example, complex cases such as percu-
taneous coronary interventions [58] may expose the patients and the staff, over a period of
time, to high doses of radiation. Traditional methods for dose management include beam
pre-filtration and pulsed fluoroscopy at 7.5 to 30 fps [11]. In order to achieve further radia-
tion reduction, the acquisition dose can be reduced, but this degrades the image quality. In
addition, organ motion increases the complexity of fluoroscopic X-ray imaging as this can
result in significant blurring. Although the amount of blurring caused by motion can be
reduced significantly using pulsed fluoroscopy, the effect cannot be completely removed.
For example, to produce an X-ray image at the lowest possible dose and with an accept-
able image quality, X-rays at a certain energy and a pulse duration need to be used. A
reduction in the pulse duration would also reduce the image quality if it is not possible to
increase the tube current. Therefore, it is necessary to restore the image quality associated
with such acquisitions.

Sophisticated image processing techniques, in particular, image denoising, have been
shown to be successful in lowering the X-ray dose level and at the same time produce
images with the required quality [61]. However, utmost care has to be taken while pro-
cessing the images, as artifacts can lead to wrong clinical decisions. For instance, artifacts
in mammograms might be mistaken for cancer and will result in an unnecessary biopsy
of a healthy woman. In Chapters 5 and 6, advanced X-ray image denoising techniques are
presented along with a thorough evaluation with respect to denoising performance and
freedom from artifacts.

2.5. Summary

X-rays are ionizing radiation that can penetrate objects and, hence, provide information
about tissues and structures inside the body based on their X-ray absorption properties.
They are generated in an evacuated X-ray tube enclosing two electrodes known as the
cathode and the anode, respectively. For angiography, tungsten is usually used for mak-
ing the cathode and the anode as it has a high melting point and can dissipate heat rapidly.
There are three steps in the production of X-rays: (i) thermal emission of electrons in the
cathode, (ii) electron acceleration in the vacuum and (iii) physical processes that generate
X-rays in the target, namely Bremsstrahlung and characteristic radiation. In the case of
Bremsstrahlung, the spectrum of the generated X-rays is continuous, whereas, for charac-
teristic radiation, the spectrum is discrete. For diagnostic imaging (except mammography)
and interventional imaging, Bremsstrahlung is used for generating X-rays. Flat detectors
that utilize indirect X-ray conversion process are typically used for detecting and convert-
ing the transmitted X-rays into images. During the process of X-ray image formation, there
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are two main sources of noise, namely quantum noise and electronic noise. The image for-
mation process can be modeled using a succession of stages where each stage represents a
physical process having intrinsic gain or spatial spreading. This facilitates the derivation
of the relationship between signal and noise. In order to keep the exposure of the ioniz-
ing X-ray radiation to a minimum, the X-ray dose needs to be kept as low as reasonably
achievable. However, this reduces the SNR. Hence, it is common practice to use denoising
algorithms to improve the image quality. In Chapter 3, an overview of well established de-
noising approaches is presented. In order to achieve superior denoising performance, the
characteristics of noise has to be taken into account. In Chapter 4, a data-driven method
for extracting the noise characteristics associated with low-dose X-ray images is presented.
Finally, the techniques developed during this research are presented in Chapters 5 and 6 .
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3.1. Introduction

As mentioned in Chapter 2, low-dose X-ray images are severely corrupted by noise. As a
consequence, they have a low signal-to-noise ratio (SNR). In order to improve the image
quality of such noise-corrupted low-dose X-ray images, especially the visibility of clin-
ically relevant information, denoising techniques can be designed and applied by care-
fully taking into account the associated noise characteristics (mentioned in Sec. 2.3.4 and
Sec. 2.3.5). Noise reduction has been an important requisite not only for medical images
but also for optical images, e.g., digital photographs. Hence, this problem has been studied
for a long time. Mathematically, the problem can be represented as

y = x+ n, (3.1)

where y ∈ RM×N is the observed noisy image, x ∈ RM×N is the unknown noise-free
image and n ∈ RM×N represents the noise. The parameter n is modeled based on the
characteristics of noise, e.g., a Gaussian distribution, a Poisson distribution or a mixture
(as mentioned in Sec. 2.3.4). The purpose of denoising is to get a good estimate x̂ of the
noise-free image by reducing the noise n in the image y and hence enhancing the visibility
of information present in the image, i.e., improving the SNR. Therefore, it is important to
minimize loss of structures (in particular, edges and texture) during this process. Since
denoising is an ill-posed inverse problem with a solution that is not unique, it is a chal-
lenging task to obtain a good noise-free estimate. In addition to preserving the essential
information in the images, denoising should not introduce any artifacts. This is partic-
ularly important in the case of medical imaging as this could lead to a wrong medical
decision.

In this chapter, a brief overview of the achievements including some current state-of-the-
art approaches made in the area of denoising that are relevant to this thesis is presented. To
this end, the denoising methods are broadly classified into analytical and learning-based
approaches. A comprehensive overview of the methods can be found in [62, 63, 64]. The
overview is followed by commonly used image quality metrics for evaluating the results
of denoising.

3.2. Analytical Approaches

Prior to the advent of learning-based methods (introduced in Sec. 3.3), denoising ap-
proaches were designed by explicitly taking into account certain characteristics present
in the images. In this thesis, the term analytical approaches has been chosen to refer to
these methods. Well established denoising techniques include spatial domain filtering,
variational approaches, patch-based and transform-based methods, and approaches that
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involve sparse and low-rank modeling. In this section, these approaches are introduced
and described in more detail.

3.2.1. Spatial Domain Filtering

Approaches that involve filtering in the spatial domain are widely used as they are simple
to implement and also provide a good trade-off between performance and speed. The
approaches can be classified into linear and non-linear filtering. The traditional filtering
approaches used are linear and separable, i.e., a 2D filter can be replaced by two 1D filters.
In these techniques, a noisy image y is convolved with a filter kernel g to obtain the filtered
image x̂ as per

x̂ = y ∗ g. (3.2)

Mean and Gaussian filters are commonly used examples of the filter kernel [65, 66].
Although linear filters were designed to remove noise and can achieve this quite effi-

ciently, they often fail to preserve image textures [64]. For example, mean filtering, which
has been adopted for Gaussian noise reduction, can over-smooth images that are corrupted
by a high amount of noise due to the rather large support needed in this case. On the other
hand, non-linear noise-reduction filters such as the median filter and weighted median fil-
tering were introduced to deal with impulse noise [67, 68]. In median filtering, each pixel
is replaced by the median value of its neighboring pixels. Bilateral filtering is a widely
used non-linear and edge-preserving noise-reduction approach used for denoising images
corrupted by Gaussian noise [69]. The intensity values of the pixels in an image are re-
placed by a weighted average of their spatial neighbors. The weights are assigned to the
spatial neighbors based on their distance to the current pixel as well as the similarity in the
intensity values of the corresponding pixels.

3.2.2. Variational Denoising Approaches

Variational denoising approaches are based on utilizing image priors (assumptions on the
images) and minimizing an energy function E(.) to estimate x̂:

x̂ = argmin
x

E(x). (3.3)

The maximum a posteriori (MAP) probability estimation is the backbone of variational
denoising methods. From a Bayesian perspective, the MAP probability estimate of x based
on the observations y is given by

(3.4)
x̂ = argmax

x
p(x|y)

= argmax
x

p(y|x)p(x)
p(y)

,

where p(y|x) is a likelihood function of x and p(x) represents the image prior [64]. In the
case of additive white Gaussian noise (AWGN), i.e., additive Gaussian noise with a flat
noise power spectrum (NPS), Eq. 3.4 can be rewritten as

x̂ = argmin
x

Å
1

2
||y − x||22+λR(x)

ã
, (3.5)
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where ||y−x||22 is the data term, R(x) is the regularization term and λ is the regularization
parameter [64]. In the case of variational methods, the regularization term R(x) and the
regularization parameter λ play an important role. In Tikhnonov regularization [70, 71],
R(x) is minimized with respect to the L2-norm. Unfortunately, this may result in the over-
smoothing of image details such as edges and texture.

Anisotropic diffusion-based methods have been designed to preserve image details [72,
73]. In the case of anisotropic diffusion, smoothing is performed iteratively only within
regions defined by edges. In other words, they apply an inhomogenous process that re-
duces the diffusivity at those locations which have a larger likelihood to be edges [73]. The
Perona-Malik filter [72] is based on the equation

∂ty = div(g(|∇y|2)∇y), (3.6)

with ∇ being the gradient operator and div(.) is the function that calculates the divergence.
The Perona-Malik filter [72] uses diffusivities g(.) such as

g(s2) =
1

1 + s2/κ2
with (λ > 0), (3.7)

where s is the function variable and κ is the gradient magnitude threshold parameter that
controls the rate of the diffusion. That is, it serves as a soft threshold between the image
gradients that are attributed to noise and those attributed to edges [74]. Even after carefully
choosing diffusitives, anisotropic diffusion may still result in blurred edges [75, 76]. To
address the issue of over-smoothing, total variation (TV)-based regularization has been
proposed [64, 77].

The assumption made here is that noisy images are grainy throughout and that noise-
free images have a set of connected objects, with smooth contours. The images are also
assumed to be smooth inside the connected objects with variations only across the bound-
aries. Therefore, denoising is performed by minimizing discrete gradients - that corre-
spond to noise - while making sure that the denoised image closely resembles that of the
noisy image [78]. TV regularization is defined as follows:

RTV(x) = ||∇x||1. (3.8)

Even though this approach can yield denoised images with sharp edges, it has three major
drawbacks. First, textures tend to be over-smoothed. Second, flat areas are approximated
by a piece-wise constant surface resulting in stair-casing effect. Finally, the results suffer
from a loss of contrast [79, 80, 81]. In order to improve the performance of this regulariza-
tion model, partial differential equations have been extensively studied [82, 83, 84].

3.2.3. Transform-based Approaches

Contrary to filtering in the spatial domain, transform-based approaches involve the trans-
formation of a noisy image into another domain where the transformed coefficients are
processed. Usually, the coefficients are thresholded with respect to the standard deviation
of noise in the image. Then, an inverse transform is applied to the processed coefficients
to obtain the filtered or processed image as shown below:

x̂ = T−1(γ(T (y))), (3.9)
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where T (.) and T−1(.) represent the forward and inverse transformation, respectively, and
γ(.) is the thresholding function. The Fourier transform, the discrete cosine transform
(DCT) and the wavelet transform are some well-established transforms in the context of
denoising [85, 65, 86, 87, 88]. In order to process the transform coefficients hard threshold-
ing [89], soft thresholding [90], and empirical Wiener shrinkage [91] are commonly used
approaches.

Linear hard thresholding retains only those transform coefficients that are greater than
τhard. Donoho and Jonestone [89] suggest τhard = σn

√
2log(M ×N) as a good choice for

the hard threshold, where M and N represent the number of rows and columns in the
image, respectively. Although hard thresholding is effective in reducing the noise associ-
ated with the transform coefficients, it introduces artifacts as the retained coefficients may
already be corrupted by noise. The associated basis functions of these coefficients appear
similar to salt and pepper noise in the denoised image.

In soft thresholding, the threshold value τ soft for a coefficient depends on its statistical
property across windowed data samples. For example, in the case of the DCT, each coef-
ficient may be thresholded differently using MAP [92] along with the assumption that the
corresponding DCT coefficients across the overlapping patches follow a Laplacian distri-
bution [93]. Soft thresholding on DCT coefficients yDCT [r, c] using the threshold τ soft[r, c]
(in the location [r, c]) can be performed as follows:

γ(yDCT [r, c], τ soft[r, c]) =





yDCT [r, c] + τ soft[r, c], if yDCT [r, c] < −τ soft[r, c],

0, if − τ soft[r, c] ≤ yDCT [r, c] ≤ τ soft[r, c],

yDCT [r, c]− τ soft[r, c], if yDCT [r, c] > τ soft[r, c].

(3.10)
The soft threshold τ soft[r, c] for the coefficient [r, c] can, for example, be computed from the
standard deviation of the corresponding noise-free coefficient σ̆DCT [r, c] and the standard
deviation of the AWGN σn using the following equation:

τ soft[r, c] =
σ2
n

√
2

σ̆DCT [r, c]
, (3.11)

where σ̆DCT [r, c] is computed from the standard deviation of the noisy coefficients σDCT [r, c]
by

σ̆DCT [r, c] =
»
σDCT 2[r, c]− σ2

n. (3.12)

The effect of basis functions associated with the DCT appearing in the denoised image
occurs even with soft thresholding, but it is less compared to hard thresholding.

Instead of thresholding the coefficients, shrinking them can prevent the salt and pepper
noise like artifacts caused by the appearance of DCT basis functions. Empirical Wiener
shrinkage [94] is a suitable choice for this task, as it shrinks the coefficients using the SNR:

γ(yDCT [r, c], τws[r, c]) =

{
yDCT [r, c]× τws[r, c], if τws[r, c] > 0,

0, otherwise,
(3.13)

where the shrinkage factor τws[r, c] is given by

τws[r, c] =
σ̆DCT [r, c]

2

σ̆DCT [r, c]2 + σn2
. (3.14)
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Another well established shrinking approach is the BayesShrink proposed by Chang et
al. [87]. It facilitates the estimation of (sub-band) adaptive thresholds. From a theoretical
point of view, BayesShrink involves the soft-threshold τ s that minimizes the Bayes risk
assuming a Generalized Gaussian prior. Based on the thresholded wavelet coefficients Ŷ
and the regular wavelet coefficients Y , the Bayes risk is defined as

γ(τ s) = E(Ŷ − Y )2. (3.15)

The optimal threshold is the argument minimizing this function. Although no analytical
solution for τ s could be derived, Chang et al. [87] found an approximation closely match-
ing their numerically obtained results:

τ s =
σ2
n

σY
(3.16)

Here, σ2
n is the noise variance and σY is the standard deviation of the signal’s wavelet

coefficients. Both values can be calculated from the image data. This facilitates a data-
driven, sub-band-adaptive thresholding approach. At high noise levels, the basis functions
associated with the transform may still appear in the denoised image.

3.2.4. Patch-based and Transform-based Approaches that Utilize Non-local
Self-similarity

In patch-wise denoising, overlapping patches of size K ×K are denoised separately and
inserted back into an image. The corresponding pixels of the overlapping denoised patches
are then averaged, before insertion. Non-local means (NL-means) [95], block matching 3D
(BM3D) [96] and video block matching 3D (V-BM3D) [97] are some methods that fall into
this category.

The NL-means algorithm, takes advantage of the high degree of redundancy in images.
That is, a small patch in an image is likely to be associated with many similar patches in the
same image. The neighborhood of a pixel y[r, c] can be a set of pixels y[r′, c′] represented
by their row locations r′ and column locations c′. In the neighborhood, the patch around
many y[r′, c′] and the patch around y[r, c] are similar. All the pixels in the neighborhood
can be used to estimate a new value for y[r, c]. The NL-means algorithm estimates the new
value yNL[r, c] by computing the average of all the pixels in its neighborhood. This can be
represented by

yNL[r, c] = Σr′Σc′wNL[r, c, r
′, c′]y[r′, c′], (3.17)

where [r′, c′] ∈ ΩR([r, c]) and the normalized weights wNL[r, c, r
′, c′] depend on the simi-

larity between the pixels in the K × K patch around y[r, c] as well as y[r′, c′]. The similarity
measure is computed by weighing the Euclidean distance with a Gaussian filter (wg), with
standard deviation greater than 0. The weights are defined as follows:

wNL[r, c, r′, c′] = e−
∑K/2

i=−K/2

∑K/2
j=−K/2

(y[r+i,c+j]−y[r′+i,c′+j])2×wg [i,j]

h2 , (3.18)
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where the parameter h controls the degree of filtering. These weights are within [0,1] and
are normalized such that they sum up to 1 as shown below:

wNL[r, c, r
′, c′] =

1

S
wNL[r, c, r′, c′], with S = Σr′Σc′w

NL[r, c, r′, c′], (3.19)

where [r′, c′] ∈ ΩR([r, c]). In order to find similar pixels, the NL-means algorithm not only
compares the gray level in single pixels but also compares the gray level of all the pixels in
the patches around respective pixels. This makes the computations of similar pixels robust
and ultimately leads to good denoising.

BM3D [96] has been proposed as an improvement to NL-means. It combines patch-
based and a transform-based denoising. The algorithm is divided into two major steps:
computation of an initial estimate of the denoised image followed by the computation of
a refined estimate. In the first step, for each overlapping reference patch p ∈ Rk×k, similar
patches are found and grouped into a set P ∈ Rk×k×n. Then collaborative filtering is per-
formed on the sets. In this process, a 3D isometric linear transformation T3D is applied on
these sets [96]. Then, the transformed coefficients are thresholded using a hard threshold-
ing function γ3D to reduce noise and finally an inverse transform T−1

3D is applied to return
to the image domain. This process is represented by

P̂ = T−1
3D (γ3D(T3D(P))), (3.20)

where

γ3D(s) =

{
0, if s < 0,

s, otherwise.
(3.21)

In order to reduce the amount of computations, the 3D transform is performed by a 2D
transform on each patch, and subsequently by a 1D transform along the third dimension
of the 3D group. Collaborative filtering provides an estimate for each used patch. Thus
a variable number of estimates for every pixel is obtained. The estimates for a particu-
lar pixel that is to be calculated are weighted, based on the characteristics of the patch it
belongs to. Patches containing an edge will be given less importance, compared to ho-
mogeneous ones [96]. The denoised image obtained at the end of this step is only a basic
estimate. The basic estimate is then used for associating similar patches. In the second
step, Wiener filtering of the patches of the original image is performed, instead of hard
thresholding. Experiments show that by following such an approach, more details are
restored and the denoising performance is improved. Weights or the empirical Wiener co-
efficients are calculated based on the grouped similar patches. Subsequently, collaborative
filtering is performed on the grouped noisy patches using the calculated weights. Similar
to the first step, weighted aggregation is performed on the estimates to compute the final
denoised image.

As mentioned previously, V-BM3D [97] is an extension to BM3D targeted at denoising
video sequences. Contrary to BM3D, where similar patches are obtained within a single
frame, in V-BM3D, patches are obtained within a single frame, as well as across frames [97].
Though these methods perform better than transform-based approaches applied on pixels,
they may still suffer from artifacts caused due to thresholding of transform coefficients.
Moreover, they are computationally expensive.
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3.2.5. Sparse Modeling and Low-rank Approximation

The motivation behind sparse modeling is to find a representation for an unobserved high-
dimensional signal from a limited number of observations, for example decoding a signal
from its noisy encoding. The ground-truth solution (e.g., the noise free estimate) can be
well approximated by a sparse vector where only a few variables are truly important. Even
if the original problem specification does not yield a sparse solution, one can typically find
a mapping to a new coordinate system or a dictionary that allows for a sparse representa-
tion [98]. Algorithms in the context of sparse modeling and low-rank approximation are
often implemented using patch-based methods. In the denoising methods that make use
of dictionary learning, a noisy patch is approximated from a sparse linear combination of
the atoms or columns of a dictionary D, resulting in a general model:

α̂ = argmin
α

||y −Dα||22+λ||α||1, (3.22)

where α is a matrix containing vectors of sparse coefficients and λ is the regularization
parameter [99, 100]. The sparse representation model or the dictionary D is computed
from a dataset as well as the image itself using the K-singular value decomposition (K-
SVD) algorithm by solving the joint optimization problem:

α̂ = arg min
ŷ,D,α

γ||y − ŷ||22+
∑

i

||Riŷ −Dαi||22+
∑

i

λi||αi||1, (3.23)

where Ri is the matrix for extracting patch ŷi from the estimated image ŷ at location i,
and λi and γ are regularization factors [101, 102]. Learned dictionaries are more flexible
in representing image structures [103]. Hence learned dictionaries perform better than
designed dictionaries. This approach has been further improved by coupling with the
sparsity from the self-similarity properties of optical images [104, 105, 106].

On the other hand, low-rank-based approximation focuses on recovering the noise-free
estimate of a patch based on a set of similar patches. In other words, the patch to be
denoised p ∈ Rk×k as well as n − 1 similar patches are first vectorized and stacked into
a matrix P ∈ Rk2×n. Then, to estimate the noise-free data P̂ , a low-rank approximation
is performed on the matrix. Low-rank estimation approaches for the reconstruction of a
signal from noisy estimates can be grouped into two main categories: (i) methods based
on low-rank factorization [107, 108, 109, 110, 111, 112], and (ii) methods based on nuclear
norm minimization (NNM) [113, 114, 115, 116].

Methods belonging to the first category approximate a data matrix as a product of ma-
trices of fixed rank. Since singular value decomposition (SVD) results in optimal energy
compaction in the least square sense, it is a suitable choice for performing the decompo-
sition and estimating the low-rank matrix [117]. Using SVD, P is first decomposed into
a singular value matrix S ∈ Rk2×n with singular values si present in decreasing order in
the diagonal elements (i.e., the largest singular value is present in the first singular vector
s0 and the smallest in the last sn) and the associated singular vector matrices U ∈ Rk2×k2

and V ∈ Rn×n. Then, the low-rank matrix can, for example, be obtained by processing the
singular values in the BayesShrink framework [109]. However, for this approach the rank
of the matrix must be known a-priori. In addition, the processing of the singular values
that are too low or too high might result in the loss of details or the preservation of noise.
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Methods based on NNM aim to find the lowest rank approximation of the data matrix
by solving

P̂ = argmin
P ′

||P − P ′||2F+λ||P ′||∗, (3.24)

where ||.||F denotes the Frobenius norm and ||.||∗ the nuclear norm. ||P ′||∗ is given by∑
i||si(P ′)||1, where si(P

′) is the i-th singular value of P ′. The solution is a low-rank
approximation obtained by taking only a few large singular values and the corresponding
singular vectors. This can be represented by

P̂ = Ufλ(S)V
T , (3.25)

where P = USV T is the SVD of P and fλ(S) is the singular value thresholding operator.
The choice of the largest l singular values required for obtaining the low-rank approxima-
tion, is computed by solving the following equation [117]:

n∑

i=l

s2i > σ2
η′ × (k2 · n− 1) ≥

n∑

i=l+1

s2i , (3.26)

where ση′ is the standard deviation of Gaussian noise associated with P . The low-rank
matrix P̂ ∈ Rk2×n can then be constructed from the l largest singular values as follows:

P̂ =

l∑

i=1

siuiv
T
i . (3.27)

In the case of NNM, all the singular values are considered to be equally important.
Hence, the same threshold is applied to each singular value. However, different singular
values have different levels of importance. On this basis, a weighted approach known
as weighted nuclear norm minimization (WNNM) was presented in [113, 114], where
weights were adaptively assigned to different singular values and denoising was carried
out by applying a soft threshold on the weighted singular values. In other words, given a
weight vector w, the weighted nuclear norm problem is based on finding an approxima-
tion P̂ of P that minimizes the following cost function:

P̂ = argmin
P ′

||P − P ′||2F+||P ′||w,∗, (3.28)

where ||P ′||w,∗=
∑

i||wisi(P
′)||1 is the weighted nuclear norm of P ′. The variable wi is the

weight assigned to the singular value si(P
′). Equation 3.28 has a unique global minimum

when the weights satisfy 0 ≤ w1 ≤ w2 ≤ . . . ≤ wn [113]. The WNNM algorithm has been
shown to achieve advanced denoising performance and is more robust to noise compared
to other methods based on NNM [113]. These approaches perform better than patch- and
transform-based approaches, however, they are computationally expensive.

3.3. Learning-based Approaches

Analytical denoising approaches, such as prior-based methods [113, 114, 96], usually rely
on solving complex optimization problem to find an optimal solution for the denoising
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problem. Therefore, these methods usually involve time-consuming and iterative infer-
ence. In addition, the models used require several manually chosen parameters that have
to be tuned for getting the best denoising performance. To overcome the limitations of an-
alytical approaches, discriminative learning methods have been developed to learn image
prior models and eliminate the iterative optimization procedure during the application
phase [118]. On the other hand, learning-based denoising has also been treated as a plain
discriminative learning problem, i.e., separating noise from a noisy image by feed-forward
convolutional neural networks (CNNs) [119]. CNNs have been considered to be a suitable
choice due to the following reasons: (i) CNNs with deep architecture are flexible and ef-
fective in increasing the capacity and flexibility for exploiting image characteristics [120],
and most importantly it is easy to modify the depth of a CNN, (ii) continuous advances
in the design of network architectures and components, and (iii) CNNs are well suited
for parallel computation on modern powerful GPUs. Furthermore, adversarial learning
approaches that make use of CNNs have been designed to generate images with certain
signal and noise characteristics [121]. A brief overview of these methods is presented in
this section.

3.3.1. Discriminative Learning-based Methods

In this category, the restoration of the noise-free image x from its corrupted observation y
(based on the noise corruption model presented in Eq. 3.1) is considered by combining an
observation likelihood and an image prior invoking Bayes’ rule [122], given as

p(x|y) ∝ p(y|x) · p(x)

∝ N (y;Kx, λ) ·
N∏

i=1

∏

c∈C
exp(−pi(f

T
i x(c))).

(3.29)

In Eq. 3.29, the corruption process N (.) is modeled with a Gaussian likelihood, where
Kx ≡ k⊗x denotes the convolution of x with a kernel k, and λ is related to the strength of
the assumed additive Gaussian noise [122]. Regularization is provided through a Markov
random field model [123] with N robust potential functions pi(.) that model the responses
fT
i x(c) of filter f i over all regions c ∈ C of the image x [122]. The posterior distribution is

given by p(x|y) ∝ exp(−E(x|y)), where E(x|y) can be expressed by the associated Gibbs
energy

E(x|y) = λ

2
||y −Kx||2+

N∑

i=1

∑

c∈C
pi(f

T
i x(c)). (3.30)

In order to minimize Eq. 3.30, independent auxiliary zic are introduced for all filter re-
sponses fT

i x(c) to obtain an augmented energy function E(x, z|y) such that

argmin
x

E(x|y) = argmin
x,z

E(x, z|y). (3.31)

In order to solve for argminx,z E(x, z|y), a block coordinate descent strategy is used.
The strategy alternates between minimizing with respect to x and z. In addition, this
strategy has a faster convergence compared to minimizing argminxE(x|y) directly [122].
The auxiliary variables are introduced in such a way that E(x|z, y) becomes a quadratic
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function. In this case, minimizing E(z|x, y) will amount to solving many independent
univariate optimization problems. That is, each iteration of the algorithm uses a different
quadratic relaxation E(x, z|y) determined by z in order to solve the original objective func-
tion. This approach was introduced first in [124, 125] under the name half-quadratic regu-
larization and can be further categorized into additive [124] and multiplicative [125] forms.
A main computational difference between the two forms is that for the multiplicative form
E(x|z, y) = Ω(z, y)−1η(y), whereas, for the additive form E(x|z, y) = Ω(y)−1η(z, y). The
variable Ω ∈ RB×B is a sparse system matrix with B being the number of pixels and the
variable η ∈ RB is a vector. This implies that the quadratic function can be minimized by
solving a system of linear equations. In the case of the multiplicative form z influences
only Ω, whereas, in the additive form, z influences only the right hand η of the equation
system [122].

The parameters η and Ω are determined from model parameters θ (learned from the
observed images y and their noise-free counterparts x), the observed image y and the point
spread function (PSF) k [122]. The model parameters θt at each iteration t of the algorithm
are learned by minimizing the cost function:

J(θt) =
S∑

s=1

l(x̂
(s)
t , x(s)), (3.32)

with x̂
(s)
t being the result of processing y(s) and x(s) the associated noise-free ground truth.

For performing the training, S pairs of noisy and noise-free data are used. In addition,
the PSF k associated with the images is considered during the optimization in the case
of blind processing [122]. Continuously differentiable loss functions such as the negative
peak signal-to-noise ratio (PSNR) are used as a cost function (see Sec. 3.4.2). In order to
minimize Eq. 3.32, a gradient-based method is relied on [122]. That is, the loss is differ-
entiated with respect to model parameters and the parameters are updated based on the
estimated loss.

Although discriminative learning-based methods have shown promising results toward
bridging the gap between computational efficiency and denoising quality, their perfor-
mance is inherently restricted to the specified forms of prior information (based on the
analysis model), which are limited in capturing the full characteristics of image structures.
Moreover, the parameters are learned by stage-wise training combined with joint fine-
tuning across all the stages. Furthermore, similar to the analytical approaches specified in
Sec. 3.2 these methods involve many handcrafted parameters. Another important draw-
back is that these approaches involve the training of a specific model for a certain noise
level, and are hence limited in blind image denoising [118].

3.3.2. Denoising using CNNs

CNNs are an integral part of deep learning that are well known for processing data having
a grid pattern, e.g., images. Their design is inspired by the organization of an animal’s
visual cortex with the goal of automatically and adaptively learning a spatial hierarchy
of features, from low- to high-level patterns [126]. They are widely used for tasks such
as data analysis [127], object detection and classification [128], segmentation [129], image
enhancement [118] and image synthesis [130]. A CNN typically consists of three types of
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layers namely convolutional, pooling and fully connected layers. The convolutional and
pooling layers perform the task of feature extraction. The fully connected layers are used
for mapping the extracted features into an output, e.g., for the task of classification. In
order to train a CNN to perform the required task, the different parameters associated
with the network, e.g., filter kernels or weights, need to be learned. This is performed by
setting up a loss function or a cost function between the output of the network and the
ground-truth. The parameters are updated to minimize the output of the loss function. To
this end, the backpropagation algorithm is used [131]. It works by computing the gradient
of the loss function with respect to each weight using the chain rule, i.e., the gradient is
computed one layer at a time, iterating backward from the last layer to avoid redundant
calculations of intermediate terms [131]. The different components of a CNN relevant to
this thesis are briefly described in the following paragraphs. A comprehensive overview
of CNNs can be found in [132, 133, 134].

Basic Components of CNNs

As mentioned above, a CNN consists of convolutional, pooling and fully connected lay-
ers. A convolutional layer is composed of a stack of linear mathematical operations, such
as convolutions. This layer receives an array of numbers (also known as a tensor) as input
and provides the transformed input as output (also known as a feature map). The trans-
formation is performed by convolving (actually correlating) the input with a filter kernel
whose parameters can be learned to optimally perform the given task. A convolutional
layer can have more than one filter kernel. Therefore, multiple kernels can be used to form
an arbitrary number of feature maps, which represent different characteristics of the input
tensors. The two key hyperparameters that define the convolution operation are the size
and the number of kernels. The number of kernels is arbitrary and determines the depth
of output feature maps [126]. Due to the filtering operation, the size of the output tensors
will be smaller than that of the input depending on the size of the filter kernels. If the size
of the feature maps should be same as the input, the input tensor can be padded before
the convolution is performed. Typically, zero-padding is applied but other options are also
available, e.g., mirroring. The size and the number of kernels have an influence on the re-
ceptive field, the region in the input space that a particular feature of the CNN is exposed
to. Since every unit or neuron in a convolutional layer represents the response of a filter
applied to the previous layer, deeper networks will result in a larger receptive field.

The output of the convolutions are then passed through a nonlinear activation function.
Previously, smooth nonlinear functions such as sigmoid function

f(x) =
1

1 + e−x
, (3.33)

or the hyperbolic tangent

f(x) =
ex − e−x

ex + e−x
, (3.34)

have been used as they are mathematical representations of a biological neuron behavior.
The sigmoid and the hyperbolic tangent functions are bounded and do not result in the
activations to explode. But they may cause the gradients (used in backpropagation) to
vanish. In addition, one needs to normalize the data carefully. The rectified linear unit
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(ReLU) is considered a better alternative and shows superior convergence performance
[119]. The ReLU is defined by

f(x) =

{
0, if x < 0,

x, otherwise.
(3.35)

The ReLU is computationally more efficient and is significantly less affected by the van-
ishing gradient problem. Moreover, it is not as sensitive as the above activation functions
with respect to network intitialization and data normalization. However, when too many
activations get below zero, most of the units in the network with ReLU will simply output
zero. This will prohibit learning. This problem can be handled to some extent by the Leaky
ReLU

f(x) =

{
0.01x, if x < 0

x, otherwise.
(3.36)

Here, the output is no longer zero when the input is less than 0 but a small number. Para-
metric rectified linear unit (PReLU) takes this idea further by making the coefficient of
leakage into a parameter a that is learned along with the other neural-network parame-
ters. It is defined by

f(x) =

{
ax, if x < 0,

x, otherwise.
(3.37)

The exponential linear unit (ELU), defined by

f(x) =

{
x, if x > 0,

a(ex − 1), otherwise,
(3.38)

the sigmoid linear unit (SiLU), defined by

f(x) =
x

1 + e−x
, (3.39)

and the Gaussian Error Linear Unit (GELU), defined by

f(x) = xϕ(x), (3.40)

are some nonlinear variants of the ReLU [135, 136, 137]. In Eq.3.40, ϕ(x) is the cumulative
distribution function of the standard normal distribution [135].

A pooling layer performs a downsampling operation, i.e., it reduces the in-plane di-
mensionality of the feature maps and, as a consequence, reduces the number of subse-
quent learnable parameters. However, it is to be noted that pooling layers do not contain
any learnable parameters. But there are hyperparameters such as filter size, stride, and
padding that can be tuned. Max pooling is currently the most popular form of pooling op-
eration, which extracts the maximum value of a region and discards all the other values.
For example, max pooling with a filter of size 2×2 and a stride of 2 downsamples the in-
plane dimension of feature maps by a factor of 2. The height and the width of the feature
maps change, whereas, the depth remains unaltered. Global average pooling is another
pooling operation. Here, the average of the region is taken while downsampling instead
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of the maximum value. Both, max pooling as well as averaging introduce translation in-
variance to small shifts and distortions.

For a regression task, such as denoising, it is desirable for the spatial dimensions of
the input and the output of the network to be the same, if not, there will be a loss in in-
formation. Hence, downsampled feature maps need to be upsampled. There are several
methods for performing upsampling such as the nearest neighbor interpolation, bi-linear
interpolation and bi-cubic interpolation. Max unpooling is another option. In max unpool-
ing, first, the index of the maximum value is saved for every max-pooling layer. The saved
index is then used during the upsampling step where the input pixel is mapped to the
saved index and the other indices are filled with zeros. It is to be noted that all the above-
mentioned techniques are predefined and do not depend on data, and this makes them
task-specific. In addition, they do not learn from data and hence they are not a generalized
technique. To enable the network to perform optimal upsampling, it needs to be learnable.
Hence, transposed convolutions have been introduced [138]. Here filters are learned to
perform deconvolution and upsample the input feature map to a desired output feature
map.

In order to make the training of the networks faster (i.e., speed up the convergence) and
more stable, batch normalization (BN) has been introduced [139, 140, 141]. It normalizes
the output of the hidden layers of the current batch using its mean µB and variance σ2

B

such that the output has standard normal distribution. In BN, first the input is normalized
by

Z
(i)
norm =

Z(i) − µB»
σ2
B − ϵ

, (3.41)

where Z(i) is the input, Z(i)
norm is the normalized value and ϵ is a small positive infinitesimal

quantity. Then, a linear transformation is applied to Z
(i)
norm with two trainable parameters

γB and βB . The transformed value Z
(i)
BN is given by

Z
(i)
BN = γB × Z

(i)
norm + βB. (3.42)

This step with the learnable parameters allows the model to choose the optimum distri-
bution for each hidden layer as γB allows for the standard deviation to be adjusted and
βB aids in controlling the bias. BN can be applied right before or right after the nonlinear
activation function.

The learning strategies relevant to this thesis can be broadly classified into supervised
learning, self-supervised learning and unsupervised learning. In supervised learning, a
CNN is trained to find a mapping between the input and the target data. In the con-
text of denoising, noisy images are the input and the associated noise-free images are
the ground-truth. In self-supervised and unsupervised learning, a-priori information re-
garding the characteristics of the images is used for training the CNN to perform denois-
ing [142, 143, 144, 145]. For example, autoencoders [142] take the input data, compress it
into a code (latent variable), and then try to recreate the input data from that summarized
code. The recreated data is denoised as the network cannot replicate the stochastic noise
in the input [142]. Unsupervised approaches also involve the learning of the mapping
of the input based on the characteristics (e.g., noise properties) associated with the target
images [121].
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The learning strategy and the network architecture have been designed based on the
scenario, i.e., the task and the availability of data for the training phase. A brief overview
of the strategies used in different scenarios is presented in the following sections:

Scenario: Spatially Aligned Pairs of Noisy and Noise-free Images are available

When pairs of spatially aligned noisy and noise-free data are available, supervised ap-
proaches are preferred. The goal here is to train a CNN to find a mapping between the
noisy and noise-free ground-truth images. For images of static objects, noise-free images
can, for example, be computed by averaging several noisy acquisitions. However, in prac-
tice, an adequate amount of noise-free images and real noisy images is often not available.
Hence, in such cases, training data is generated by adding white noise to the available
data [146, 118]. As loss functions, mean squared error and mean absolute error are com-
monly used.

In one of the most established learning-based denoising approaches [118], a deep CNN
architecture has been proposed for performing the task of denoising. Rather than directly
yielding the denoised image, the approach is designed to predict the residual image, i.e.,
the difference between the noisy observation and the latent noise-free image. The loss
function is given by

l(θ) =
1

2P

P∑

i=1

∥∥∥∥
Å
D(y(i), θ)− (x(i) − y(i))

ã∥∥∥∥2
F

, (3.43)

where D represents the network, D(y(i), θ) represents the output of processing the sample
y(i) (with ground truth x(i)) using D and ||.||F denotes the Frobenius norm. As shown
in Fig. 3.1, the network has three types of layers: (i) convolution followed by activation
using ReLU (Conv+ReLU), (ii) Convolution followed by BN and activation using ReLU
(Conv+BN+ReLU) and (iii) convolution. Type (i) is used as the first layer of a network
with DL layers. 64 filters of size 3×3×c are applied to generate 64 feature maps, where
c represents the number of channels. Type (ii) is used for layers 2 to (DL - 1) where 64
filters of size 3 × 3 are used. Finally, type (iii) for the last layer with c filters of size 3
× 3 are involved to reconstruct the output. The approach implicitly removes the latent
noise-free image with the operations in the hidden layers and only yields the noise image.
Furthermore, batch normalization is introduced to stabilize and enhance the training per-
formance. It has been shown in [118] that residual learning and batch normalization can
benefit from each other, and their integration is effective in speeding up the training and
boosting the denoising performance.

Wang et al. [147], Bae et al. [148] and Jifara et al. [149] also presented residual learning
methods along with deeper CNNs for image denoising. However, as the approaches relied
on deeper architectures with several layers, they result in the prior states or layers having
little influence on the subsequent ones. Tai et al. [150] have proposed a very deep persis-
tent memory network that introduces a memory block, consisting of a recursive unit and
a gate unit, to explicitly mine persistent memory through an adaptive learning process.
The recursive unit learns multi-level representations of the current state under different
receptive fields. The representations and the outputs from the previous memory blocks
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3.3. Learning-based Approaches

Figure 3.1.: Network architecture of DnCNN [118] including an example of a noisy image
used as input to the network and the resulting residual image obtained as out-
put. The denoised image is obtained by subtracting the residual image from
the noisy image. DnCNN consists of convolutional filters, rectified linear unit
(ReLU) activations and batch normalization (BN).

are concatenated and adaptively controlled by the gate unit, which decides how much of
the previous states should be reserved and how much of the current state should be stored.

In order to cope with the limited availability of training data in certain domains, several
methods have been attempted to extract more useful information by taking into considera-
tion prior knowledge of the data [151, 152, 153]. For example, Yuan et al. [154] combined a
deep CNN, residual learning and multi-scale knowledge to remove the noise from hyper-
spectral data. However, these CNNs usually involve increased computational costs and
memory requirements. To address these issues, Gholizadeh et al. [155] proposed the use of
dilated convolutions [156] to enlarge the receptive field and reduce the depth of network.
Lian et al. [157] presented a residual network via multi-scale cross-path concatenation to
perform denoising. This demonstrates that improving the network architecture can result
in superior denoising.

A modification to the network architecture usually involves the following changes: (i)
fusing the features from multiple inputs of a CNN, (ii) modifying the depth or the width
of the CNN for enlarging the receptive field size [158, 159, 160], (iii) adding auxiliary plu-
gins, (iv) introducing skip connections or cascade operations to provide complementary
information to different layers [161, 162, 163, 157, 164] and (v) changing the loss function.
Category (i) includes providing different parts of one sample as multiple inputs for dif-
ferent networks [165], different perspectives on the one sample as input, such as multiple
scales [166, 167, 168]. Category (iii) involves different activation functions, dilated convo-
lutions and pooling operations as well as their placement [169, 170]. Finally, different loss
functions are defined according to the characteristics of the images to extract more robust
features [171]. Perceptually motivated image quality metrics, such as structural similarity
index measure (SSIM) and its different variants, have also been used [172, 173, 174]. Chen
et al. [175] proposed joint Euclidean and perceptual loss functions to extract more edge
information.

Scenario: Spatially Aligned Pairs of Noisy and Noise-free Images are not available

When noise-free images are not available or when it is not possible to generate spatially
aligned pairs of noisy and noise-free images, a change in the training strategy is required.
Lehtinen et al. [176] have shown that a denoising network can be trained by presenting
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the network with spatially aligned noisy images alone. As network architecture they used
a U-Net [129]. The architecture has an encoder (contraction path) and a decoder part (ex-
pansion path) as shown in Fig. 3.2. In the encoder, downsampling blocks are repeatedly
applied one after another, where each block comprises convolutions using 48 3×3 filters,
ReLU and 2× 2 max pooling. In the decoder, upsampling blocks are repeatedly applied.
As input to these blocks, complementary information is provided from the associated en-
coding blocks through skip connections. In these blocks, convolutional layers, activation
using ReLU and transpose convolutions (for upsampling) are used. As shown in Fig. 3.2,
the final block has convolutional layers followed by activation through ReLU. This com-
bination is repeated twice. Then, convolutional filters are applied to the output and as
activation, a leaky ReLU with α = 0.1 is used to get the denoised image. The performance
of the denoising network is similar – sometimes even better – compared to the case where
noise-free images are used in the training phase [176]. In this case, neither an explicit
statistical likelihood model of the corruption nor an image prior is required.

Similar approaches that require neither noisy pairs nor noise-free image targets have
been presented in [145, 144]. They come under the category of self-supervised approaches
and make two simple statistical assumptions: (i) the signal is not pixel-wise indepen-
dent and (ii) the noise is conditionally pixel-wise independent given the signal. In the
approaches, both parts of the training sample, the input and the target, are derived from a
single noisy training image. However, if the same patch is extracted as input and its center
pixel is used as target, the network will learn the identity by directly mapping the value
at the center pixel to the output. To prevent this, the authors have presented a blindspot
network. The receptive field of this network has a blind-spot in its center. Therefore, the
prediction for a pixel is affected by all input pixels in a square neighborhood except by
the input pixel at its very location (center pixel). The blindspot network has a slightly less
information available for the predictions. Due to this reason, its accuracy is expected to
be slightly impaired compared to a normal network. As only one pixel out of the entire
receptive field is removed, the approach is expected to perform reasonably well, but not
as effective as a traditional training approach. Such self-supervised denoising approaches
have been further developed in [177, 143].

For training denoising networks in an unsupervised manner, generative adversarial net-
works (GANs) have been employed [178, 179]. The idea of GANs is to have a genera-
tor, which is trained to generate the desired image from noisy input, and a discriminator,
which is trained to discriminate between the noise-free image and the generated image.
The generator and discriminator are adversarial. They are trained together so that after
training, the generator would be good at generating images that look authentic [130, 180].
This training strategy does not require spatially aligned pairs of noisy and noise-free im-
ages. However, the network needs to be presented with noisy and noise-free images so
that it learns the characteristics associated with them. The Wasserstein distance is an ex-
ample of the loss function that is used as a discrepancy measure between distributions
and a perceptual loss that computes the difference between images in an established fea-
ture space [181]. GANs have also been used to generate noise and noisy images from
noise-free images. [175]. The training pairs can then be used for performing supervised
training. Kang et al. [121] have proposed a cycle-consistent adversarial denoising network
to learn the mapping between two domains, low-dose and high-dose computed tomogra-
phy images. The approach involves cycle consistency loss [182] that is typically used for
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Figure 3.2.: Network architecture of U-Net used in [176]. It is a convolutional neural net-
work that has a contracting path and an expansive path giving it the u-shaped
architecture. It consists of downsampling or convolutional filters (conv) and
upsampling or transpose-convolutional filters, rectified linear unit (ReLU) ac-
tivations and maxpooling operations. Filters of size 3 × 3 and 2 × 2 are used.
Skip connections or cascade operations (copy) are used to provide complemen-
tary information to different layers.

unpaired image-to-image translation.

The components of such a training strategy are presented in Fig. 3.3. In this approach,
mapping functions between two domains low-dose X-ray images YLD and high-dose X-
ray images YHD are learned given training samples yLD ∈ YLD and yHD ∈ YHD. The data
distributions are denoted by yLD ∼ pdata(yLD) and yHD ∼ pdata(yHD). The model includes
two mapping functions or generators: (i) GHD for mapping data in YLD to YHD and (ii)
GLD for mapping data in YHD to YLD. In addition, two adversarial discriminators are used:
(i) DHD for distinguishing between GHD(y

LD, θ) and yHD and (ii) DLD for distinguishing
between GLD(y

HD, θ) and yLD. The objective contains two types of terms: adversarial
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losses for matching the distribution of generated images to the data distribution in the
target domain given by

LADV (GHD, DHD, YLD, YHD) = EyHD∼pdata(yHD) [log(DHD(yHD, θ)] ,

LADV (GLD, DLD, YHD, YLD) = EyLD∼pdata(yLD) [log(DLD(yLD, θ)] ,
(3.44)

and cycle consistency losses to prevent the learned mappings GHD and GLD from contra-
dicting each other defined by

LCY C(GHD, GLD) = EyHD∼pdata(yHD)

ï∥∥∥∥ÅGHD(GLD(yHD, θ), θ)− yHD

ã∥∥∥∥
1

ò
+ EyLD∼pdata(yLD)

ï∥∥∥∥ÅGLD(GHD(yLD, θ), θ)− yLD

ã∥∥∥∥
1

ò
.

(3.45)

The idea is to enforce the intuition that these mappings should be reverses of each other
and that both mappings should be bijections. This loss reduces the space of possible map-
ping functions learned by the network by enforcing forward and backward consistency.
However, it is to be noted that for this strategy, high-dose X-ray images would be needed.
Such images may be either not available or, if available, would be a limiting factor, since
the results would at the most be as good as the image quality of the high-dose images used
during training.

3.4. Image Quality Metrics

In order to measure the quality of the denoised image, approaches such as the PSNR, the
SSIM and the contrast-to-noise ratio (CNR) are commonly used. For these metrics, a higher
value indicates better performance. In this section, these approaches are briefly described.

3.4.1. Structural Similarity Index (SSIM)

The SSIM measures the similarity between an image of perfect quality, noise-free ground
truth x in this case, and another image, e.g., a denoised image x̂. The SSIM metric is as-
sessed based on a luminance term lt, contrast term ct, and structure term st. It is computed
as:

(3.46)
SSIM (x, x̂) = [lt(x, x̂)]

αt ∗ [ct(x, x̂)]βt ∗ [st(x, x̂)]γt

=

(
2µx̂µx + c1
µ2
x̂ + µ2

x + c1

)αt
(

2σxσx̂ + c2
σ2
x + σ2

x̂ + c2

)βt
(

σxx̂ + c3
σxσx̂ + c3

)γt

where µx, µx̂, σx, σx̂ and σxx̂ are the local means, standard deviations, and cross-covariance
for images x and x̂, respectively. c1, c2 and c3 are regularization constants for the lumi-
nance, contrast and structural terms, respectively, and have been set to

c1 = (.01 ∗DR)
2

c2 = (.03 ∗DR)
2

c3 = c2/2

(3.47)
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Figure 3.3.: Components of generative adversarial networks. There are two generators
GHD, for mapping low-dose input to high-dose, and GLD, for mapping high-
dose input to low-dose. There are two generators DHD, for discriminating
high-dose input from the high-dose output generated by GHD, and and DLD,
for discriminating low-dose input from the low-dose output generated by
GHD.

where DR is the dynamic range of the image x. The exponents for luminance, contrast and
structural terms, αt, βt and γt, respectively, in Eq. (3.46) are set to 1 by default.

3.4.2. Peak Signal-to-noise Ratio (PSNR)

PSNR is the ratio of the power of a signal to the power of noise that affects the signal’s
quality, where the noise is computed by comparing an image with perfect quality x, to
another image x̂. It is computed as

PSNR (x̂, x) = 10log10

Ç
DR

ΣrΣc (x̂[r, c]− x[r, c])2

å
, (3.48)

where DR is the dynamic range of x. For positive pixel values, the maximum value of x is
also used, i.e., for image pixels with a resolution of 10 bits, the maximum value is 1024.
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3.4.3. Contrast-to-noise Ratio (CNR)

CNR is the ratio of signal intensity differences between two regions to image noise. It is
defined as:

CNR =
|µx̂i,j

− µx̂i′,j′ |
σx̂i,j

+σx̂i′,j′
2

(3.49)

where x̂i,j and x̂i′,j′ represent neighboring flat patches of the same frame with a notice-
able variation in their mean gray values, µx̂i,j

and µx̂i′,j′ represent the corresponding patch
means, and σx̂i,j

and σx̂i′,j′ represent the corresponding patch standard deviations. Multi-
ple CNR values are determined for each frame and averaged to ensure reliability.

3.5. Summary

Denoising is a viable strategy to improve the image quality associated with noisy low-dose
X-ray images. Denoising algorithms need to be designed by carefully taking into account
the associated noise characteristics. Existing denoising approaches can be broadly cate-
gorized into analytical and learning-based. Well established techniques such as simple
spatial domain filtering, variational approaches, patch- and transform-based methods and
approaches that involve sparse and low-rank modeling belong to the category of analyti-
cal approaches. These approaches usually rely on solving complex optimization problems
to find an optimal solution. Hence, they are time-consuming during the inference phase.
In addition, they typically involve multiple parameters that need to be tuned to get the
best results. Learning-based methods, on the other hand, do not suffer from such issues.
In particular, CNNs are well suited for parallel computation on modern GPUs. Moreover,
network architectures have become more flexible and efficient in performing the required
tasks. Finally, commonly used metrics for assessing the image quality in denoised images,
such as SSIM, PSNR and CNR, have been presented. In chapters 5 and 6, novel analytical
and learning-based denoising strategies have been proposed and thoroughly evaluated.
The techniques make use of the X-ray imaging model and the noise estimation approach
presented in Chapters 2 and 4. For evaluating the proposed denoising approaches, some
of the techniques presented in this chapter, such as [96, 97, 113, 176, 145], have been con-
sidered as benchmark.
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4. Estimation of X-ray Imaging and Noise
Model

4.1. Introduction

In X-ray images, noise has various sources, e.g., Poisson noise, electronic noise, and quan-
tization noise. Depending on the imaging situation, different detector gains and beam
energies may be selected. This may also change the noise characteristics present in an
X-ray image. Therefore, it is important to take the characteristics of noise into account
accurately (and adaptively) while designing denoising algorithms. In this chapter, a data-
driven method for estimating the noise characteristics of X-ray images is presented. The
proposed method is published in [1].

4.2. Data-driven Estimation of Noise Variance Stabilization
Parameters for Low-dose X-ray Images

4.2.1. Paper Summary

Denoising of X-ray images corrupted by signal-dependent mixed noise can be performed
after stabilizing the noise variance to a known constant as this facilitates the application
of denoising algorithms designed for additive Gaussian noise. The generalized Anscombe
transform (GAT) is a well performing noise variance stabilization (NVS) transform [183].
However, it requires knowledge of the overall system gain and the variance of electronic
noise. They are, unfortunately, difficult to predict from the X-ray tube settings in clinical
practice due to the presence of the patient changing the X-ray beam properties.

Common approaches to obtain the system gain and the additive Gaussian noise compo-
nent involve extensive calibrations or they are based on data-driven noise estimation algo-
rithms. The data-driven techniques proposed in [184, 185] estimate the signal-dependent
noise in the frequency domain to obtain a noise level function (NLF) describing the rela-
tionship between noise variance and intensity levels. In [186, 187], a noise model, for raw
data of digital sensors, comprising two mutually independent parts, a signal-dependent
part and a signal-independent part, has been presented. In addition, a method for estimat-
ing them is presented. Even though the methods proposed in [184, 185, 187] yield good
results in the case of optical images (digital photographs), they can be improved further
when applied to X-ray images.

The contribution of the following article [1] is a computationally efficient method for
estimating X-ray imaging parameters from X-ray images. The approach extends the NLF
estimation proposed in [185]. It utilizes the energy compaction property of the discrete
cosine transform (DCT) and is based on the following two properties of medical images:
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4. Estimation of X-ray Imaging and Noise Model

First, low-frequency DCT coefficients predominantly contain image information (signal).
Second, high-frequency DCT coefficients capture edges and noise. According to these
properties, high-frequency DCT coefficients associated with flat patches, i.e. patches hav-
ing a little texture, can be used to estimate noise. Based on this and the linear x-ray image
formation model, the NLF associated with an X-ray image is estimated. Subsequently, the
imaging parameters are computed from the NLF by a weighted model fitting scheme that
minimizes the influence of outliers arising due to the absence of sufficient flat patches for
some gray values.

The method has been experimentally validated with respect to beam hardening as well
as denoising performance for different dose and scatter levels using X-ray images of an
anthropomorphic phantom. The results have revealed that the method has robustly esti-
mated the parameters for performing the GAT with an average error of only 4.2%. Perfor-
mance gains of 5% for peak-signal-to-noise ratio and 4% for structural similarity index can
be obtained, when the proposed method is used for performing the GAT followed by the
application of denoising compared to existing methods designed for extracting the NLF.
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Abstract.

Purpose: Denoising X-ray images corrupted by signal-dependent mixed noise is

usually approached either by considering noise statistics directly or by using noise

variance stabilization (NVS) techniques. An advantage of the latter is that the noise

variance can be stabilized to a known constant throughout the image, facilitating the

application of denoising algorithms designed for the removal of additive Gaussian noise.

A well-performing NVS is the generalized Anscombe transform (GAT). To calculate

the GAT, the system gain as well as the variance of electronic noise are required.

Unfortunately, these parameters are difficult to predict from the X-ray tube settings

in clinical practice, because the system gain observed at the detector depends on the

beam hardening caused by the patient.

Material and Methods: We propose a data-driven method for estimating the

parameters required to carry out an NVS using the GAT. It utilizes the energy

compaction property of the discrete cosine transform to obtain the NVS parameters

using a robust regression approach relying on a linear Poisson-Gaussian model. The

method has been experimentally validated with respect to beam hardening as well as

denoising performance for different dose and scatter levels.

Results: Across a range of low-dose X-ray settings, the proposed robust regression

approach has estimated both system gain and electronic noise level with an average

error of only 4.2%. When used to perform a GAT followed by the denoising of low-

dose X-ray images, performance gains of 5% for peak-signal-to-noise ratio and 4% for

structural similarity index can be obtained.

Conclusion: The parameters needed to calculate the GAT can be estimated efficiently

and robustly using a data-driven approach. The improved parameter estimation

method facilitates a more accurate GAT-based NVS and, hence, better denoising

of low-dose X-ray images when algorithms designed for additive Gaussian noise are

applied.

Author’s Final Manuscript
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1. Introduction

X-ray fluoroscopy is an important imaging technique for navigating endovascular tools

during an intervention. Although X-ray imaging has distinct advantages, it may also

expose the patients as well as the clinical staff to a non-negligible amount of ionizing

radiation. To keep potential consequences to a minimum, the X-ray dose has to be

kept as low as reasonably achievable (ALARA principle). Unfortunately, lowering the

dose also reduces the number of photons that are available for image generation. This

results in a reduced signal-to-noise-ratio (SNR). Depending on the imaging system and

the clinical situation, X-ray images can be corrupted by different amounts and types of

noise, in particular, signal-dependent quantum noise and signal-independent electronic

noise. A possible solution to retain image quality in the presence of noise is to apply

denoising techniques that are designed by carefully taking into account the associated

noise characteristics. This has been done either by directly considering the statistics

of the particular noise model [1, 2] or by applying noise variance stabilization (NVS)

techniques [3] together with algorithms designed for the removal of additive Gaussian

noise [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. An interesting example combining NVS with the

popular denoising approach namely block matching 3D (BM3D) [14], is the iterative

algorithm designed for low SNR scenarios proposed by Azzari et al. [15].

If the signal-independent noise component of X-ray images can be safely ignored,

a simple square root transform or the conventional Anscombe transform can be applied

to perform an NVS [16]. However, at very low dose levels, neglecting signal independent

noise and applying traditional NVS techniques may no longer be sufficient. A possible

solution to this is the generalized Anscombe transform (GAT) [3] for mixed noise

scenarios [7, 8]. To apply the GAT, the system gain and the additive Gaussian noise

component need to be known. These parameters are, unfortunately, difficult to predict

from the (known) tube settings due to beam hardening caused by the patient’s body.

Common approaches to obtain the system gain and the additive Gaussian noise

component involve extensive calibrations or they are based on data-driven noise

estimation algorithms. The data driven algorithms can be broadly classified into

four groups: (i) filtering of noisy images to separate the noise from the actual

signal [17, 18, 19, 20, 21, 22] and an exclusion of high gradients to prevent their

influence on the noise estimation [23], (ii) wavelet-based approaches that assume that

the noise and the signal can be separated into different sub-bands [24], (iii) techniques

such as a principal component analysis or a singular value decomposition operating on

homogeneous patches to obtain noise estimates [25, 26, 27, 28, 29] and (iv) frequency

domain techniques including the discrete cosine transform (DCT) for estimating the

noise [30, 31, 32].

Ponomarenko et al. [31] have proposed a method for estimating the signal-

dependent noise in the frequency domain to obtain a noise level function (NLF) that

gives the association between noise variance and intensity levels. The method is based on

iteratively identifying patches with low texture (flat patches) from low-frequency DCT
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coefficients and subsequently estimating the noise level from associated high-frequency

DCT coefficients. This approach has been modified by Colom et al. [32]. They have

replaced the iterative noise estimation by selecting a fixed number of patches whose

low-frequency DCT coefficients have low energy, consequently selecting flat patches

effectively.

Similarly, Foi et al. [24] and Pyatykh et al. [33] have presented a noise model for

raw data of digital sensors and an algorithm for estimating noise from a single noisy

image. They have assumed that the noise is composed of two mutually independent

parts, a signal-dependent part and a signal-independent part. Pyatykh et al. [33] have

proposed an optimization procedure based on principal component analysis to find the

parameters for performing an NVS that will transform the noisy image into an image

with signal-independent noise.

Even though the methods proposed in [31, 32, 33] yield good results in the case of

optical images, they can be improved further when applied to X-ray images. This can

be done by utilizing the fact that a flat-panel X-ray detector’s response is designed to

be strictly linear with respect to the incoming dose [34, 35, 36].

The main contribution of this paper is a feasible and practical approach for

estimating the parameters needed to compute the GAT-based NVS in the context of

X-ray imaging. The approach extends the NLF estimation proposed in [32]. While

estimating the NLF, it is essential to avoid patches containing texture since the texture

in such patches may be mistaken to be noise. If this is not possible, at least their impact

needs to be reduced as much as possible. As a solution to this problem, we propose

the use of weights when fitting a linear model. They ensure that noise is estimated

predominantly from flat patches. This prevents patches with texture from influencing

the noise estimation process hence making the overall NVS more stable. In order to

apply the GAT, the pixel-wise system gain and the additive Gaussian noise component

need to be known. Since estimating the gain for each pixel is not feasible in practice,

e.g., due to beam hardening and patient motion, we have experimentally investigated

whether it would be sufficient and acceptable to use an average system gain in the case of

low-dose X-ray imaging instead of pixel-wise system gain. A thorough evaluation using

X-ray images from two different imaging systems has shown that the proposed GAT-

based approach works robustly and outperforms the currently used NVS techniques.

Although the focus of this paper is not on denoising, we have used the proposed approach

as a pre-processing step for the well-known BM3D denoising technique to illustrate its

potential for performance gains. The positive results that we have obtained with BM3D

suggest that other denoising techniques designed for the removal of additive Gaussian

noise, e.g., the ones mentioned in [37], could benefit from the proposed GAT-based NVS

approach as well.
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2. Material and Methods

In this section, a computationally efficient method for estimating X-ray imaging

parameters from X-ray images based on a linear imaging model, is proposed. The

estimated parameters can be used to perform an NVS using the GAT [3].

2.1. X-ray Imaging System Model

The behavior of an indirect-detection flat-panel X-ray detector can be modelled using

a cascaded linear systems approach [34]. According to this model, the formation of

fluoroscopic X-ray images from X-ray photons can be described in a series of stages where

each stage represents a physical process having intrinsic gain or spreading properties [34].

Assuming that the flat-panel detector has a linear detector response, the average output

signal z̄ can be written as

z̄ = ḡ · x̄+ go, (1)

where ḡ is the overall system gain, x̄ is the mean fluence of Poisson-distributed incident

X-ray quanta and go is the overall offset. When the detector is used for acquiring image

sequences, the variance of noise associated with the exposure at different detector pixel

positions can be expressed as

σ2
z̄ [r, c] = α[r, c]

(
z̄[r, c]− go

)
+ σ2

n, (2)

where α[r, c] is the pixel-dependent gain associated with the pixel located at [r, c] [34, 38].

The parameter σ2
n refers to the variance of the total additive noise due to different

sources, such as intrinsic noise from the photo-diode pixel, voltage fluctuations on gate

and bias lines, noise from the amplifier and digitization noise [34]. For simplicity,

we have assumed that the electronic noise is independent of location but could be

extended to position-dependent electronic noise. In general, the gain is spatially varying

because it depends on the energy of the X-ray beam reaching the associated detector

elements [39, 35]. Equation (2) represents the NLF. It can be seen as the variance of

a Poisson variable with mean z̄[r, c] scaled by α[r, c] > 0 and corrupted by additive

Gaussian noise ρ[r, c] and also written as follows:

σ2
z [r, c] = α[r, c] · z̄[r, c] + ρ[r, c] with ρ[r, c] = σ2

n − α[r, c] · go. (3)

In (3), α[r, c] and ρ[r, c] are the slope and the y-intercept of the NLF, respectively.

The imaging model presented in (3) has been experimentally verified using an image

quality phantom comprising a Copper step wedge placed on a 40 mm Aluminum block

(for more details see Appendix A). The results of the experiment have shown that the

gain α[r, c] depends on the spectrum of the X-ray photons collected at the detector [40].

This is expected, since the sensitivity of the X-ray detector is energy-dependent [35].
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2.2. Noise Variance Stabilization and Denoising

As mentioned above, the GAT can be used as an NVS transform to stabilize mixed

Poisson-Gaussian noise to a constant [10, 3]. The forward transform is given by

z′[r, c] = f(z[r, c], α[r, c], ρ[r, c]) =
2

α[r, c]

√
α[r, c] · z[r, c] + 3

8
α[r, c]2 + ρ[r, c]. (4)

After denoising an image in the GAT domain, either an algebraic or an unbiased inverse

GAT [10] can be used to return to the original image domain.

It can be inferred from (3) and (4) that the pixel-wise gain α[r, c] and the intercept

ρ[r, c] need to be known to perform the forward GAT. However, in a practical scenario,

e.g., during cardiac catheterization, it is difficult to compute pixel-wise parameters

accurately, e.g., due to the presence of signal-dependent noise. Therefore, we have

investigated based on realistic imaging conditions, if it is feasible to use an average gain

instead of pixel-wise gains (for more details see Appendix B). We have found that the

benefit of using an accurate α[r, c] is marginal compared to using an average estimate

ᾱ, derived by averaging all the pixel-wise estimates α[r, c]. Since accurate estimates of

α[r, c] are difficult to compute in practice, using a somewhat less accurate gain for each

pixel instead can be considered acceptable.

2.3. Method for Estimating the NVS Parameters

The proposed method involves the following steps: First, patches of an X-ray image

are grouped into bins based on their mean gray values. Second, a bin-wise estimation

of the noise variance, taken from high frequencies, and texture variance based on low

frequencies, is performed from the patches within the bin. Third, bin-wise weights are

computed from the texture variance and the number of elements associated with the

respective bins. Finally, based on the weights, a model is fit to the noise variances

resulting in the parameters needed to carry out the GAT. The weights reduce the

influence of unreliable bins on the model fitting process. Unreliable bins are those

containing either an inadequate number of patches or patches with texture. The different

parts of the method are described in detail in the subsequent sections and the general

workflow is illustrated in figure 1.

2.3.1. Estimation of the NLF As a first step, the noisy image z = {z[r, c]} ∈ RM×N

is decomposed into overlapping square patches zi ,j , of width W , extracted at every

possible pixel location i, j. The patches are then transformed using the DCT. In the

DCT domain, ζi,j[u, v] represents the value of the DCT coefficient at row u and column

v in the matrix ζi ,j associated with the DCT-transformed image patch zi ,j . Next, the

patches are grouped into b = 1, . . . , B bins based on the mean of the patches µ as found

in the zero-frequency DCT coefficient. For every bin b, an estimate of the noise variance

σ2
H is computed. This technique is described in more detail in the following paragraphs.
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Patch extraction and

grouping into bins

Bin-wise variance
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Bin-wise weight
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Line fitting

X-ray Image

Extract

overlapping

patches

Transform patches

to DCT domain

Group patches

into bins based

on patch means

Estimate

σ2
H [b], σ2

L[b], E[b],

b = 1, . . . , B

Compute

W [b], b = 1, . . . , B

Fit line to noise

variance estimates

ᾱ, ρ̄ of fitted line

Figure 1: Visualization of the schematic workflow for the proposed parameter estimation

approach to get the slope ᾱ and the intercept ρ̄ of the fitted line. For b = 1, . . . , B bins,

σ2
H [b] is the variance due to noise, σ

2
L[b] is the variance due to texture, E[b] is the number

of elements associated with bin b, and W [b] is the estimated weight.

Due to the energy compaction property of the DCT, the DC (at zero frequency)

coefficient and its low-frequency neighbors usually capture most of the energy as they are

associated with low-frequency information and this phenomenon is typically dominant

in natural and medical images. The higher-frequency DCT coefficients mostly represent

noise and remaining edge information. To get the noise variance estimates, high-

frequency DCT coefficients of patches with little texture (flat patches) are preferred

and we give more importance to bins with a high number of flat patches using weights.

Such flat patches are characterized by low texture variance, i.e., a low energy across

low-frequency DCT coefficients associated with a patch.

High-frequency coefficients can be differentiated from low-frequency coefficients by

choosing transform coefficients based on their position [u, v] in the DCT domain. This

can be achieved using the parameter τ as per

δ[u, v] =





1, if (u+ v < τ) ∩ (u+ v ̸= 0) ,

0, if (u+ v ≥ τ) ∩ (u+ v ̸= 0) ,

-1, if (u = v = 0) .

(5)

If δ[u, v] = 0, the position has been taken as a high-frequency coefficient, and if

δ[u, v] = 1, it has been taken as a low-frequency coefficient. The DC coefficient has

not been taken into consideration. To keep the math consistent and compact, δ[0, 0] has
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been assigned the value −1.

The empirical low-frequency patch variances νi,j have been derived from the low-

frequency coefficients of ζi ,j as follows:

νi,j =
1

θ

W−1∑

u=0

W−1∑

v=0

ζi,j[u, v]
2 ×max

{
δ[u, v], 0

}
with θ =

W−1∑

u=0

W−1∑

v=0

max
{
δ[u, v], 0

}
. (6)

Since the low-frequency DCT coefficients (except the DC coefficient) of flat patches are

small, the patches with a low value for νi,j are likely to feature low texture. To identify

low-texture patches, we have proceeded as follows: For each (gray value) bin b with

mean µ[b], we have sorted the DCT transformed patches ζi ,j in ascending order with

respect to νi,j. The sorted patches can be viewed as vectors ζb,p , where p denotes the

index of a patch in bin b. Colom et al. [32] have suggested that using the first 210 sorted

patches is sufficient to get a robust estimate for the noise variance σ2
H [b] associated with

a bin b. They have computed the estimates of the noise variance from each of the high-

frequency DCT coefficients and subsequently computed the median of the estimates to

obtain the final noise variance [32]. However, for X-ray images, we have found that

using the median of the estimates underestimates the amount of noise. To arrive at a

more accurate result, we have modified their method and computed the bin-wise final

noise variance estimate as the mean of all high-frequency coefficients σ2
H [b] as follows:

σ2
H [b] =

1

γ

P−1∑

p=0

W−1∑

u=0

W−1∑

v=0

ζb,p[u, v]
2(1− |δ[u, v]|) with γ = P

W−1∑

u=0

W−1∑

v=0

(1− |δ[u, v]|), (7)

where γ is a normalization factor and P is the number of patches used for computing

the noise variance for each bin b. Similarly, we have computed the bin-wise texture

variance σ2
L[b] as per

σ2
L[b] =

1

ψ

P−1∑

p=0

W−1∑

u=0

W−1∑

v=0

ζb,p[u, v]
2 ×max

{
δ[u, v], 0

}
with ψ = P × θ. (8)

2.3.2. Estimation of Imaging Parameters for NVS After calculating the variances, each

bin b has the associated mean µ[b], an estimate for the noise variance σ2
H [b], an estimate

for texture variance σ2
L[b] and the number of elements in the bin E[b]. The pairs (µ[b],

σ2
H [b]) can be used to estimate the NLF [32]. According to our noise model presented

in (2), fitting a line with slope ᾱ and intercept ρ̄ to the estimated noise variances is a

logical choice. Furthermore, to reduce the influence of outliers during the fitting process,

weights can be used. This line fitting process can be represented as

ᾱ, ρ̄ = argmin
α,ρ

∑

b

W [b]
(
σ2
H [b]− α× µ[b]− ρ

)
, (9)

where the weights for the data elements have been set to W [b] = E[b]/σ2
L[b]. The use

of weights is necessary as certain (gray value) bins may not have enough patches or
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the patches may not be flat enough to give a good estimate. Thanks to the weights,

such bins are given lesser importance. On the other hand, if a bin has many elements

and a low variance associated with texture, it is considered more reliable and a higher

weight is assigned. Thus, the higher the weight, the higher is the weighted distance. To

minimize the weighted distance, the point has to be close to the fitted curve.

In order to solve the optimization problem presented in (9) and compute the model

parameters, we have made use of a weighted line fitting approach based on the random

sample consensus algorithm [41]. According to this approach, the data elements (µ[b],

σ2
H [b]) vote for a model depending on their weighted distance (standard deviation) from

the model. Hence ᾱ and ρ̄ are obtained from the point pairs with minimum weighted

distance, i.e., from the most reliable point pairs.

2.4. Material

To evaluate the proposed method, we have acquired data from two X-ray systems with

different detector technologies (Siemens Healthineers AG, Erlangen, Germany) denoted

as System-1 and System-2, respectively. System-1 is a general-purpose angiography

system, whereas System-2 has been optimized for low-dose X-ray applications. The

acquired data sets comprise raw X-ray images (after detector correction) of a thorax

phantom with a thickness of 20 cm. The X-ray images have been taken at 25%, 50%

and 100% of the standard low-dose level (SD). To generate a realistic amount of scatter,

plexiglass (polymethyl methacrylate, PMMA) of different thickness ranging from 2 cm

to 16 cm has been used.

The proposed method follows Ponomarenko et al. [31, 32], but performs a robust

weighted estimate of the NLF based on an X-ray imaging system model (”weighted

Ponomarenko method”, WPM). For comparison, the unweighted linear fit approach

(”unweighted Ponomarenko method”, UPM) has also been presented. In addition, the

results obtained using the method by Pyatykh et al. [33] has been used as a benchmark

to compare our results.

As described in section 2.3, the proposed method requires the image to be divided

into patches, which are then grouped into bins associated with gray values µ[b]. Since

larger patches will increase the robustness of their mean gray value estimates in

homogeneous regions, we have set the width of the square patches to W = 30 pixels

corresponding to a detector area of 4.8 mm × 4.8 mm. In order to take into account

the influence of noise on the mean gray values of the patches – while allowing for small

deviations introduced due to the random nature of noise – we have set the bin width to

N = 2 gray values. Then, by analyzing the NLFs and the fitted noise models obtained

for images acquired at different dose levels (25% SD, 50% SD and 100% SD) and different

scatter levels (2 cm, 4 cm, 8 cm and 16 cm PMMA) from two different detectors, we

have ascertained that choosing at most P = 210 patches from each of the B bins – as

suggested by Colom et al. [32] – is also suitable to estimate robustly and efficiently the

required parameters in the case of low-dose X-ray images. To distinguish low-frequency
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DCT coefficients from high-frequency DCT coefficients (as described in (5)), we have

empirically determined τ = 7 as a good choice.

To evaluate the different NVS approaches, the ground-truth (GT) estimates of the

imaging parameters are required. The GT estimates can be computed using pairs of

noisy and noise-free images. To this end, we have acquired 500 raw X-ray images

of a static object (thorax phantom) and averaged them pixel-wise in the temporal

direction to remove signal-dependent as well as signal independent noise. Subsequently,

we have computed the average noise variance associated with every gray value from the

corresponding pixels in the GT and the noisy images as follows: First, we have identified

the pixel positions in the GT associated with a particular gray value. Then, we have

computed the noise variance from the gray values at these pixel positions in the noisy

image. Based on the noise model presented in (3), a line has been fitted to the noise

estimates to obtain the parameters ᾱ and ρ̄ for the NVS. As an example, we show in

figure 2 X-ray images of the thorax phantom acquired at 25% SD, the corresponding GT

and the corresponding NLF as well as the fitted model. In fact, our experiments have

shown that the imaging model presented in (3) is accurate for low-dose X-ray images.

To provide a practical example showing the merits of our approach, we have

presented the results of denoising using the well-established BM3D [14] after performing

an NVS based on the UPM, the WPM and the method by Pyatykh et al. [33]. We have

also compared the results with those of Azzari et al. [15], an iterative denoising method

that combines NVS and BM3D – as we consider the method as a benchmark. The

denoised images have been evaluated with respect to peak-signal-to-noise ratio (PSNR)

and structural similarity index (SSIM).

25% SD image GT image

25% SD image GT image
25% SD image GT image

Estimate Fit

NLF

0 200 400
0

200

400

Mean Gray Value (z̄)

N
o
is
e
V
ar
ia
n
ce

(σ
2 z
)

Figure 2: Visualization of an X-ray image of a thorax phantom acquired at 25% standard

dose (SD), the corresponding ground truth (GT) image (average of 500 spatially aligned

instances of the low-dose image that have been subsequently acquired), and the noise

level function (NLF) associated with the 25% SD X-ray image. The mean gray values z̄

have been sampled from the GT image and the noise variances have been computed by

comparing the corresponding pixels in the GT image with those of the 25% SD image.
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3. Results

In figure 3, we show the noise variance estimates σ2
H , the texture variances σ2

L and the

number of elements E for each bin as well as the weights W assigned to the different

bins corresponding to different mean gray values µ. These components are used for

estimating the parameters of the underlying X-ray imaging system model. It can be

observed that the weights are high when the corresponding texture variances are low and

the number of elements present in the associated bin is high. Figure 4 is a visualization

of the fitted lines for the noise variance estimates obtained using the method by Pyatykh

et al. [33], the UPM and the WPM together with the GT. It can be seen that the method

by Pyatykh et al. [33] has resulted in inaccurate estimates for ᾱ and accurate estimates

for ρ̄. The UPM has yielded better estimates but has been affected by outliers. In

comparison, the WPM, that involves weights, has resulted in accurate estimates even

in the presence of outliers.
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Figure 3: Illustration of the noise variance estimates σ2
H , the texture variances σ2

L and

the number of elements E for each bin associated with different mean gray values µ.

The weights W computed from σ2
L and E are also presented.
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Figure 4: Visualization of the fitted models for the ground truth (GT) and the estimated

noise level functions based on the method by Pyatykh et al. [33], the unweighted

Ponomarenko method (UPM) and the weighted Ponomarenko method (WPM).
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To highlight these findings, we display in figure 5 the GT imaging parameters as

well as the estimated imaging model parameters computed from 50 images using the

method by Pyatykh et al. [33], the UPM and the WPM for different dose and scatter

levels in the cases of System-1 and System-2. From collimated regions of the X-ray

images, we have estimated the system offset go to be 0. Therefore, the slope and the

intercept of the fitted curve are given by ᾱ and σ2
n, respectively. It can be seen that

the method by Pyatykh et al. [33] has consistently underestimated ᾱ and the UPM has

yielded an inaccurate estimation of σn in a few cases. The WPM, however, has provided

an accurate estimation of both ᾱ and σn throughout the investigated cases.

A quantitative analysis of the results has shown that the WPM has accurately

estimated ᾱ with an average error of 2.98%±3.93% for System-1 and 5.45%±2.30% for

System-2. The method by Pyatykh et al. [33] (average error of 127.24% ± 21.74%

for System-1 and 282.11% ± 36.97% for System-2) and the UPM (average error of

7.35%±8.03% for System-1 and 8.43%±7.95% for System-2), however, have yielded less

reliable estimates. For the estimation of σn, the WPM has provided the most accurate

results (average error of 3.97% ± 3.39% for System-1 and 4.46% ± 5.74% for System-

2), followed by the method by Pyatykh et al. [33] (average error of 4.18% ± 17.12%

for System-1 and 6.58% ± 4.54% for System-2) and the UPM (average error of

11.84%± 18.06% for System-1 and 28.56%± 41.96% for System-2).

In figure 6, we show denoising results for X-ray images representing an average

patient (thorax phantom placed on 2 cm PMMA and acquired at 100% SD) obtained

using the method proposed by Azzari et al. [15] and BM3D [14]. Prior to applying

BM3D, an NVS has been applied based on the parameter estimates for ᾱ and ρ̄ computed

as per the method by Pyatykh et al. [33], the UPM and the WPM. Overall, the results

obtained using BM3D with the WPM and BM3D with the UPM have been visually

superior compared to BM3D with the method by Pyatykh et al. [33] and the method by

Azzari et al. [15]. The method proposed by Azzari et al. [15] has resulted in noise that is

most visible in the case of System-1 and somewhat lesser noise in the case of System-2.

In the case of BM3D with the method by Pyatykh et al. [33], it can be seen that there

is significantly higher noise compared to BM3D with the UPM and BM3D with the

WPM. By performing a quantitative analysis of the results with respect to PSNR and

SSIM, we have found that, among the compared approaches, the highest improvement

over the input has been achieved using BM3D where the NVS is based on the WPM

(25.75% for PSNR and 30.77% for SSIM) followed by BM3D with the UPM (25.22% for

PSNR and 30.33% for SSIM), BM3D with the method by Pyatykh et al. [33] (20.37%

for PSNR and 27.39% for SSIM) and the method by Azzari et al. [15] (19.46% for PSNR

and 24.33% for SSIM). Finally, in the case of BM3D where NVS parameters have been

derived using WPM, there are only minor differences compared to the results obtained

for BM3D with the GT NVS parameters (0.18% for PSNR and 0.07% for SSIM). These

differences are higher for BM3D with the UPM (0.56% for PSNR and 0.26% for SSIM),

BM3D with the method by Pyatykh et al. [33] (4.46% for PSNR and 1.68% for SSIM)

and the method by Azzari et al. [15] (4.87% for PSNR and 3.49% for SSIM). For more
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Figure 5: Visualization of the ground truth (GT) as well as the estimated imaging

model parameters ᾱ and σn based on the method by Pyatykh et al. [33], the unweighted

Ponomarenko method (UPM) and the weighted Ponomarenko method (WPM) for X-ray

images acquired using System-1 (a general-purpose angiography system) and System-2

(an angiography system optimized for low-dose X-ray applications). The X-ray images

have been acquired at different dose levels (25% standard dose (SD), 50% SD and

100% SD). Additional scatter has been generated using 2 cm, 4 cm, 8 cm and 16 cm of

polymethyl methacrylate (PMMA). The plots show the mean and the standard deviation

of the estimates computed from 50 measurements.

details regarding the quantitative analysis, see Appendix C.

4. Discussion and Conclusion

Although denoising algorithms designed specifically for signal-dependent noise have

been proposed [1, 2], the removal of such noise using algorithms developed for additive

Gaussian noise, often involves an NVS [10, 9, 6] in practice. To apply a GAT-based

NVS and stabilize the noise variance to a known constant, the underlying imaging
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Figure 6: Visualization of X-ray images of the anthropomorphic thorax phantom

placed on 2 cm polymethyl methacrylate acquired using System-1 (a general-purpose

angiography system) and System-2 (an angiography system optimized for low-dose X-

ray applications). Ground truth (GT) images (average of 500 spatially aligned instances

of a standard-dose (SD) image that have been subsequently acquired) are followed by

SD X-ray images together with the results of Azzari et al. [15] and block matching 3D

(BM3D) [14]. Denoising using BM3D has been performed after applying the generalized

Anscombe transform (GAT) on the noisy images based on the parameters obtained using

the method by Pyatykh et al. [33], the unweighted Ponomarenko method (UPM) and

the weighted Ponomarenko method (WPM).

parameters, i.e., the system gain and the electronic noise, are required. Unfortunately,

it is difficult to derive the system gain directly from the system settings, because the

X-ray spectrum received at the detector changes depending on the patient and the

X-ray imaging settings. It is also not feasible to estimate accurately pixel-wise gains

α[r, c] during a clinical intervention as it is in general not possible to acquire identical

images that differ only in dose to estimate pixel-wise NLFs – due to patient motion and

ethical reasons. Fortunately, in the context of image denoising, we could show that it

is still possible to achieve an improved performance by resorting to an average gain ᾱ

associated with a single X-ray image when performing an NVS.
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To sum up, we have developed a data-driven method by modifying and enhancing

the approaches presented in [31, 32]. In particular, we have made use of a linear X-ray

image acquisition model to calculate the imaging parameters directly from the acquired

images. This is particularly relevant when the X-ray imaging parameters change, e.g.,

due to varying view directions during an X-ray guided minimally invasive catheterization

procedure. The proposed approach utilizes the following two properties of natural and

medical images: First, low-frequency DCT coefficients predominantly contain image

information. Second, high-frequency DCT coefficients capture edges and noise. Hence,

high-frequency DCT coefficients associated with flat patches, i.e., patches having little

texture, can be used to estimate noise. Based on this and the linear X-ray image

formation model, we can estimate an NLF by fitting a line (”unweighted Ponomarenko

method”, UPM). To obtain even more accurate results, we have developed a weighted

model fitting scheme (”weighted Ponomarenko method”, WPM) that minimizes the

influence of outliers. Once the imaging parameters have been estimated from the NLF,

they can be used to perform an NVS using the GAT.

Using the WPM, we have been able to estimate the system gain and the electronic

noise with an average error of 2.98% and 3.97% in the case of a general purpose

angiography system (System-1) and 5.45% and 4.46% in the case of a dedicated low-

dose angiography system (System-2). These results are based on averaging associated

deviations from the GT across all dose levels and PMMA thicknesses, respectively. Since

the impact of quantum noise is usually much higher than that of electronic noise, an

accurate estimation of the system gain is generally more important for performing an

NVS. On the contrary, when UPM is used, the combined average error in the cases of

System-1 and System-2 has been significantly higher (7.89% for system gain and 20.20%

for electronic noise) as the fitted models are impacted by outliers. The method proposed

by Pyatykh et al. [33] has also resulted in a higher average error in the case of System-1

and System-2 (204.67% for system gain and 5.38% for electronic noise). A possible

explanation for the high average error is that the method does not exploit the model

associated with an X-ray imaging system.

Comparing the results of denoising after applying an NVS based on the different

parameter estimation methods, we have found that an accurate estimation of the

NVS parameters, especially ᾱ, has a significant impact on the denoising performance.

Specifically, the WPM that has resulted in the most accurate estimation of the NVS

parameters has also yielded the best denoising results. Based on these results, we

conclude that the use of an accurate NVS before applying denoising algorithms designed

for the removal of additive Gaussian noise with a known variance is a very viable strategy

due to its efficiency and robustness. Finally, it would be interesting to see whether

advanced methods such as [42, 43] could also benefit from the proposed approach when

used in the context of X-ray imaging. However, this needs more in-depth investigations

and could be considered for future research.
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Appendix A. Experimental Verification of the X-ray Imaging System Model

To verify the imaging model presented in (3), an image quality phantom comprising a

Copper step wedge placed on a block of 40 mm Aluminum has been used (see figure A1).

The phantom has been designed to represent an object with a water-equivalent thickness

between 200 mm and 300 mm depending on the tube voltage. The Copper wedge has 6

steps, indicated as regions of interests (ROIs) 1 - 6 in figure A1, where the thickness of

the steps are 0.3 mm, 0.5 mm, 0.8 mm, 1.1 mm, 1.5 mm and 2.0 mm, respectively. This

phantom has been used to investigate the effect of beam hardening otherwise caused by

different anatomical structures, such as bones and organs.

An NLF according to (3) associated with each ROI, i.e., each step of the phantom,

has been computed for three different tube voltages: 80 kVp, 100 kVp and 120 kVp. The

data points (mean gray values and associated noise variances) required for computing

the NLF (for a specific tube voltage) have been obtained from the X-ray images of the

phantom acquired at five different dose levels obtained by varying the mAs settings.

The dose levels used for the acquisitions ranged from 35 nGy to 2100 nGy. These values

have been measured by placing a dosimeter (RaySafe X1, Fluke Corporation, Glenwood,

Ill, USA) on the detector’s surface. In figure A1, the NLFs associated with the the steps

of 0.3 mm and 2.0 mm thickness of the Copper wedge (highlighted as ROIs 1 and 6 in

figure A1) have been presented for the tube voltages 80 kVp, 100 kVp and 120 kVp,

respectively. It can be observed that the NLFs associated with the ROIs follow a linear
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Figure A1: Visualization of an X-ray image of an image quality phantom comprising a

Copper step wedge with six steps (0.3 mm, 0.5 mm, 0.8 mm, 1.1 mm, 1.5 mm and 2.0

mm, respectively) placed on a block of 40 mm of Aluminum and the noise level functions

(NLFs) associated with ROIs 1 and 6. The NLFs have been measured by varying tube

currents for the tube voltages 80 kVp, 100 kVp, and 120 kVp, respectively.

relationship according to the model presented in (3). In table A1, the values for α[r, c]

associated with all the steps of the phantom are listed. The computed values confirm

that α[r, c] depends on the tube voltage and the object imaged, i.e., it depends on the

spectrum of the X-ray photons received at the detector [40]. They also indicate that a

”harder” beam is associated with a higher α[r, c].

Table A1: System gain α associated with different thickness of Copper (placed on block

of Aluminum) and different tube voltages.

ROI Object
α estimated for

80 kVp 100 kVp 120 kVp

1 40 mm Al + 0.3 mm Cu 4.669 5.674 6.574

2 40 mm Al + 0.5 mm Cu 4.706 5.733 6.654

3 40 mm Al + 0.8 mm Cu 4.775 5.824 6.811

4 40 mm Al + 1.1 mm Cu 4.966 6.038 7.004

5 40 mm Al + 1.5 mm Cu 5.073 6.186 7.154

6 40 mm Al + 2.0 mm Cu 5.105 6.243 7.234

Appendix B. Impact of Pixel-dependent Gains on NVS

To study the impact of the pixel-dependent gains α[r, c] on the NVS based on GAT

experimentally, we have utilized the ROIs highlighted in figure A1. To find the
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differences in the standard deviations after NVS, the GAT has been performed using (i)

an accurate estimate of α[r, c] and (ii) an average estimate ᾱ. The average estimate ᾱ has

been computed by averaging the estimates of α[r, c] obtained for a specific tube voltage

(shown in table A1). The standard deviation of the noise variance stabilized ROIs

associated with different tube settings, 80 kVp, 100 kVp and 120 kVp, are presented

in table B1. It can be observed that the ROIs measured in thicker Copper steps of the

phantom (associated with a higher α[r, c]) have a marginally higher standard deviation,

when ᾱ is used for performing the GAT. On the contrary, regions measured in thinner

steps appear to have a lower standard deviation when ᾱ is used. Overall, the standard

deviation of noise obtained in the case of ᾱ has deviated from that obtained for specific

α[r, c] by only 1.59%.

Table B1: Standard deviations of the noise σ associated with noise variance stabilized

ROIs obtained based on accurate α and average estimates ᾱ of the system gain for the

tube voltages 80 kVp, 100 kVP and 120 kVP.

80 kVP

ROI
15 mAs 30 mAs 60 mAs 90 mAs

σα σᾱ |σα -σᾱ| σα σᾱ |σα -σᾱ| σα σᾱ |σα -σᾱ| σα σᾱ |σα -σᾱ|
1 1.005 0.987 0.019 0.994 0.973 0.020 1.022 1.001 0.021 1.053 1.031 0.022

2 0.990 0.976 0.015 0.990 0.974 0.016 1.010 0.992 0.017 1.071 1.052 0.019

3 1.024 1.015 0.009 1.010 1.000 0.010 1.021 1.011 0.010 1.021 1.010 0.011

4 1.022 1.028 0.006 0.993 1.001 0.007 1.017 1.026 0.008 1.040 1.048 0.008

5 1.033 1.047 0.014 1.019 1.034 0.016 0.994 1.011 0.017 1.007 1.025 0.018

6 1.016 1.032 0.015 1.009 1.027 0.018 0.997 1.017 0.020 0.996 1.016 0.020

100 kVP

ROI
15 mAs 20 mAs 25 mAs 30 mAs

σα σᾱ |σα -σᾱ| σα σᾱ |σα -σᾱ| σα σᾱ |σα -σᾱ| σα σᾱ |σα -σᾱ|
1 1.001 0.978 0.023 0.976 0.954 0.023 1.028 1.004 0.024 1.026 1.002 0.024

2 1.026 1.007 0.018 1.016 0.997 0.018 1.029 1.010 0.019 1.019 1.000 0.018

3 1.009 0.999 0.010 1.034 1.023 0.011 1.019 1.008 0.011 1.043 1.032 0.011

4 1.006 1.013 0.007 1.016 1.023 0.007 1.015 1.023 0.007 1.023 1.030 0.007

5 1.015 1.034 0.019 0.989 1.008 0.019 1.000 1.019 0.019 0.979 0.998 0.019

6 0.977 0.999 0.023 0.973 0.996 0.023 0.995 1.019 0.024 1.001 1.024 0.024

120 kVP

ROI
15 mAs 16 mAs 17 mAs 18 mAs

σα σᾱ |σα -σᾱ| σα σᾱ |σα -σᾱ| σα σᾱ |σα -σᾱ| σα σᾱ |σα -σᾱ|
1 1.024 0.999 0.025 1.085 1.059 0.026 1.098 1.072 0.027 1.105 1.078 0.027

2 1.019 1.001 0.019 1.078 1.058 0.020 1.129 1.108 0.021 1.177 1.155 0.022

3 1.024 1.017 0.007 1.107 1.099 0.008 1.155 1.147 0.008 1.167 1.159 0.008

4 1.049 1.056 0.007 1.105 1.113 0.008 1.135 1.143 0.008 1.146 1.154 0.008

5 1.030 1.048 0.018 1.124 1.144 0.020 1.197 1.218 0.021 1.226 1.248 0.022

6 1.062 1.087 0.025 1.107 1.133 0.026 1.093 1.119 0.026 1.126 1.152 0.027
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Appendix C. Influence of NVS on Denoising

We have studied the influence of NVS (based on GAT) obtained using the method by

Pyatykh et al. [33], the UPM and the WPM on the denoising performance (table C1 and

table C2). For this, we have first applied an NVS on the phantom images – acquired

using System-1 and System-2 – based on the parameters (ᾱ and ρ̄) obtained using

the above mentioned methods as well as computed GT imaging parameters. We have

subsequently denoised the transformed images using BM3D [14]. Then, we have applied

an unbiased inverse GAT to return to the original image domain [10]. We have also

compared the results with those of the method by Azzari et al. [15]. In table C1 and

table C2, we present the quantitative analysis of the results in the cases of System-1

and System-2, respectively, with respect to PSNR and SSIM. It can be seen that when

the parameters obtained using the WPM are considered for performing the NVS, the

quality metrics are most similar to those obtained using GT imaging parameters, i.e.,

the PSNR values in the cases of System-1 and System-2 differ on an average by 0.17%

and 0.19%, respectively. The SSIM values in the cases of System-1 and System-2 differ

on an average by 0.09% and 0.05%, respectively. On the other hand, when the UPM is

used, there is a slightly higher deviation in the PSNR (0.75% for System-1 and 0.37% for

System-2) and SSIM (0.43% for System-1 and 0.10% for System-2). When the method

by Pyatykh et al. [33] is used, the deviation is even higher with respect to PSNR (3.62%

for System-1 and 5.31% for System-2) and SSIM (1.75% for System-1 and 1.61% for

System-2). Finally, in the application of the method by Azzari et al. [15], the deviation

is similarly high with respect to PSNR (8.80% for System-1 and 0.94% for System-2)

and SSIM (6.78% for System-1 and 0.29% for System-2).

By comparing the improvement in the image quality – with respect to the input –

obtained using the above mentioned methods, we have found that in the case of System-

1, the method by Azzari et al. [15] has resulted in a low improvement (19.94% for PSNR

and 37.86% for SSIM), whereas, the other methods, BM3D with the method by Pyatykh

et al. [33] (27.01% for PSNR and 47.40% for SSIM), BM3D with the UPM (30.77% for

PSNR and 49.56% for SSIM) and BM3D with the WPM (31.57% for PSNR and 50.15%

for SSIM), have yielded a significantly higher improvement. In the case of System-2,

BM3D with the method by Pyatykh et al. [33] has yielded a small improvement over

the input (13.74% for PSNR and 9.39% for SSIM), whereas the application of the other

methods, the method by Azzari et al. [15] (18.97% for PSNR and 10.88% for SSIM),

BM3D with the UPM (19.68% for PSNR and 11.11% for SSIM) and BM3D with the

WPM (19.94% for PSNR and 11.17% for SSIM), have improved the quality by a higher

factor.
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Table C1: Comparison of the impact of noise variance stabilization (NVS) on denoising

using block matching 3D (BM3D) [14] with respect to peak signal-to-noise-ratio (PSNR)

and structural similarity index (SSIM) in the case of System-1 (a general-purpose

angiography system). The NVS performed using the generalized Anscombe transform

(GAT) is based on the parameters estimated using Pyatykh et al. [33], the unweighted

Ponomarenko method (UPM) and the weighted Ponomarenko method (WPM) in

addition to the ground truth (GT) parameters. For the comparison, X-ray images

of a thorax phantom acquired at different dose levels and scatter levels (generated using

polymethyl methacrylate (PMMA) of different thickness) have been used. The results

of Azzari et al. [15] are also presented. The values closest to the GT are highlighted.

PMMA Dose

PSNR

Input
Azzari

et al.

Denoised using BM3D with GAT

et al.

Pyatykh
UPM WPM GT

2 cm

25% 27.231 32.448 36.170 37.416 37.454 37.485

50% 30.915 37.232 38.716 40.234 40.265 40.293

100% 34.148 40.549 40.729 42.232 42.272 42.292

4 cm

25% 26.760 31.968 35.382 34.910 36.438 36.640

50% 30.383 36.587 38.189 39.505 39.566 39.561

100% 33.610 40.065 40.388 41.764 41.797 41.824

8 cm

25% 26.105 31.210 34.758 35.439 35.866 35.991

50% 29.598 35.304 36.389 37.120 37.374 37.439

100% 33.186 39.589 39.891 41.129 41.275 41.270

16 cm

25% 24.839 30.019 34.339 35.726 35.737 35.853

50% 27.883 34.179 36.080 37.677 37.700 37.782

100% 28.351 34.110 35.387 36.645 36.704 36.747

PMMA Dose

SSIM

Input
Azzari

et al.

Denoised using BM3D with GAT

et al.

Pyatykh
UPM WPM GT

2 cm

25% 0.551 0.836 0.928 0.946 0.947 0.947

50% 0.770 0.940 0.957 0.970 0.970 0.970

100% 0.883 0.972 0.973 0.981 0.981 0.981

4 cm

25% 0.549 0.834 0.922 0.914 0.939 0.942

50% 0.763 0.938 0.957 0.968 0.969 0.969

100% 0.879 0.971 0.973 0.980 0.981 0.981

8 cm

25% 0.485 0.800 0.908 0.921 0.929 0.930

50% 0.744 0.930 0.948 0.958 0.961 0.961

100% 0.871 0.969 0.971 0.978 0.979 0.979

16 cm

25% 0.375 0.739 0.893 0.921 0.921 0.923

50% 0.608 0.889 0.927 0.949 0.949 0.950

100% 0.638 0.897 0.925 0.946 0.947 0.948
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Table C2: Comparison of the impact of noise variance stabilization (NVS) on denoising

using block matching 3D (BM3D) [14] with respect to peak signal-to-noise-ratio (PSNR)

and structural similarity index (SSIM) in the case of System-2 (an angiography system

optimized for low-dose X-ray applications). The NVS performed using the generalized

Anscombe transform (GAT) is based on the parameters estimated using Pyatykh et

al. [33], the unweighted Ponomarenko method (UPM) and the weighted Ponomarenko

method (WPM) in addition to the ground truth (GT) parameters. For the comparison,

X-ray images of a thorax phantom acquired at different dose levels and scatter levels

(generated using polymethyl methacrylate (PMMA) of different thickness) have been

used. The results of Azzari et al. [15] are also presented. The values closest to the GT

are highlighted.

PMMA Dose

PSNR

Input
Azzari

et al.

Denoised using BM3D with GAT

et al.

Pyatykh
UPM WPM GT

2 cm

25% 32.337 39.118 37.879 39.664 39.700 39.780

50% 35.620 42.152 40.176 42.332 42.346 42.406

100% 38.684 44.849 42.560 44.886 44.955 44.960

4 cm

25% 31.860 38.681 37.257 39.090 39.151 39.287

50% 35.239 41.959 40.050 42.139 42.217 42.286

100% 37.961 43.028 41.318 43.039 43.053 43.112

8 cm

25% 31.299 38.054 36.668 38.234 38.520 38.639

50% 34.881 41.411 39.435 41.560 41.769 41.710

100% 37.855 43.923 41.913 43.928 43.985 44.060

16 cm

25% 29.888 36.858 35.486 37.457 37.475 37.572

50% 32.235 39.011 36.896 39.279 39.325 39.479

100% 35.043 41.351 39.038 41.537 41.687 41.662

PMMA Dose

SSIM

Input
Azzari

et al.

Denoised using BM3D with GAT

et al.

Pyatykh
UPM WPM GT

2 cm

25% 0.824 0.961 0.948 0.966 0.966 0.967

50% 0.911 0.980 0.968 0.981 0.981 0.981

100% 0.955 0.989 0.981 0.989 0.989 0.989

4 cm

25% 0.825 0.962 0.947 0.965 0.966 0.967

50% 0.914 0.981 0.971 0.982 0.982 0.982

100% 0.955 0.988 0.980 0.988 0.988 0.988

8 cm

25% 0.804 0.957 0.940 0.958 0.961 0.962

50% 0.904 0.979 0.966 0.979 0.980 0.980

100% 0.951 0.988 0.981 0.988 0.988 0.988

16 cm

25% 0.760 0.947 0.928 0.954 0.954 0.955

50% 0.854 0.968 0.948 0.970 0.970 0.971

100% 0.920 0.981 0.967 0.982 0.982 0.982



4.3. Summary

4.3. Summary

The use of an accurate NVS transform before applying denoising algorithms designed for
the removal of additive Gaussian noise with a known variance is a viable strategy due to its
efficiency and robustness. In this chapter, a data-driven method for estimating the imaging
parameters required for performing an NVS using the generalized Anscombe transform
has been presented. Compared to previous approaches, significant performance gains in
the outcome of denoising has been achieved when using the proposed method prior to
the application of a well established denoising algorithm designed for optical images. In
the following chapters, novel denoising algorithms tailored for X-ray images, in order to
enable low-dose X-ray imaging, are presented. The model-based X-ray imaging parameter
estimation approach presented in this chapter is used for performing an NVS prior to the
application of the denoising approaches.
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5. Analytical Approaches for X-ray Image
Denoising

5.1. Introduction

Reducing ionizing radiation is essential to minimize the consequences of exposure to ra-
diation for patients and clinical staff. To reduce the X-ray dose and at the same time retain
the required image quality, spatio-temporal denoising can be a suitable approach for cer-
tain applications. In this chapter, two spatio-temporal denoising approaches targeted at
denoising of ultra-low dose X-ray fluoroscopic and digital subtraction angiography (DSA)
sequences are presented.

5.2. A photon recycling approach to the denoising of ultra-low
dose X-ray sequences

5.2.1. Paper Summary

To keep the X-ray dose as low as reasonably achievable while navigating surgical instru-
ments under X-ray guidance, a patch-based spatio-temporal denoising approach is pro-
posed in the following paper [2]. The method is inspired partly by patch-based denois-
ing algorithms designed originally for optical images (such as [117, 188, 189]), and suit-
ably modified and applied to ultra-low dose X-ray sequences. The motivation behind the
proposed approach is to use accurate motion estimation to match patches from previous
frames and subsequently use the associated pixels to improve the image quality.

The approach utilizes a sophisticated noise model to exploit the non-local self-similarity
in the temporal direction while matching patches as well as computing a low-rank ap-
proximation of the temporally aligned patches. In addition, it has been shown that (i)
by carefully taking into account the noise characteristics, robust patch matching can be
achieved even in a high noise environment, and (ii) by carefully using noise characteristics
while performing spatio-temporal denoising of ultra-low dose X-ray sequences, the neces-
sity of a guide image, that is normally required to obtain good denoising performance, can
be eliminated. This reduces the computational cost significantly.

An evaluation of the algorithm using 500 clinical images acquired at 50% of the stan-
dard low dose level has revealed that an average improvement in the contrast-to-noise
ratio (CNR) by a factor of around 3.5 can be achieved. A qualitative evaluation by im-
age quality experts has suggested that the proposed strategy of recycling photons from
previous frames results in denoised images that comply with the required image quality
criteria. The qualitative analysis by experts has also confirmed that the denoised ultra-low
dose X-ray images obtained using the proposed method are more realistic compared to
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5. Analytical Approaches for X-ray Image Denoising

existing state-of-the-art spatio-temporal denoising techniques with respect to appearance.
However, at ultra low-dose levels, it is possible that systems designed for higher exposure
levels no longer work as expected. For example, the beam energy may become incon-
sistent. In such a situation, patch matching may no longer yield suitable results causing
sub-optimal denoising. Another drawback is that the denoised images may suffer from
mild blurring around instrument edges. This is caused by imperfect matches due to the
3D motion of objects followed by low-rank approximation. In such a case, the low-rank
approximation will result in the averaging of pixels that have not been well registered.
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A photon recycling approach to the denoising of
ultra-low dose X-ray sequences
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Abstract
Purpose. Clinical procedures that make use of fluoroscopy may expose patients
as well as the clinical staff (throughout their career) to non-negligible doses of
radiation. The potential consequences of such exposures fall under two cate-
gories, namely stochastic (mostly cancer) and deterministic risks (skin injury).
According to the ”as low as reasonably achievable” principle, the radiation dose
can be lowered only if the necessary image quality can be maintained.
Methods. Our work improves upon the existing patch-based denoising algo-
rithms by utilizing a more sophisticated noise model to exploit non-local self-
similarity better and this in turn, improves the performance of low rank ap-
proximation. The novelty of the proposed approach lies in its properly designed
and parameterized noise model and the elimination of initial estimates. This
reduces the computational cost significantly.
Results. The algorithm has been evaluated on 500 clinical images (7 patients,
20 sequences, 3 clinical sites), taken at ultra-low dose levels, i.e., 50% of the
standard low dose level, during electrophysiology procedures. An average im-
provement in the contrast-to-noise ratio (CNR) by a factor of around 3.5 has
been found. This is associated with an image quality achieved at around 12
(square of 3.5) times the ultra-low dose level. Qualitative evaluation by X-ray
image quality experts suggests that the method produces denoised images that
comply with the required image quality criteria.
Conclusion. The results are consistent with the number of patches used, and
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they demonstrate that it is possible to use motion estimation techniques and
”recycle” photons from previous frames to improve the image quality of the
current frame. Our results are comparable in terms of CNR to Video Block
Matching 3D (VBM3D) - a state-of-the-art denoising method. But qualitative
analysis by experts confirms that the denoised ultra-low dose X-ray images
obtained using our method are more realistic with respect to appearance.

1 Introduction

X-ray guided interventional procedures have become increasingly important
in medical practice over the years. As new procedures, such as transcatheter
aortic valve implantation procedures, are introduced and validated, they either
tend to replace the equivalent surgical procedures or may enable new (hybrid)
surgical interventions. Unfortunately, the medical benefits are accompanied by
health risks due to radiation exposure. The stochastic risk is present for both
the patient and the staff, and there may also be a deterministic risk of skin
injury to the patient in some special cases [12]. This is why a reduction in X-
ray dose has been an active and important area of research for several decades
by now. Unfortunately, X-ray dose reduction typically results in a sacrifice
of image quality. For example, if the dose is lowered by a factor of four, the
signal-to-noise-ratio (SNR) will drop by a factor of two. In order to preserve
the clinically required image quality, sophisticated image sequence processing
techniques can be applied. Fortunately, we have ever-increasing computational
resources at our disposal which we can employ to enhance image quality.

The most obvious approach to reduce X-ray exposure during fluoroscopy
procedures involving successive frames of X-ray images is to either reduce
the frame rate or the X-ray exposure per frame. Since lowering the frame rate
may introduce jerkiness (abrupt motion), temporal interpolation methods have
been applied to smoothen the appearance of the resulting X-ray sequences [10].
Due to the requirement of continuous visualization of flowing contrast media,
Parker et al. [20] have investigated changing the X-ray intensity on a per-
frame basis by varying it between two extreme levels (0.5mAs and 10mAs)
while keeping the tube voltage constant. They have shown that a weighted
combination of multiple X-ray images obtained at different X-ray intensities
could improve the signal to noise to dose ratio.

Noise reduction has been an important requisite not only for X-ray images
but also for optical still images and medical images. A prominent transform
based denoising method that involves sophisticated thresholding of undeci-
mated wavelet coefficients has been proposed by Luisier et al. [18]. Similarly,
multiscale approaches [17] as well as diffusion filters [23] have been shown to
produce good denoised images. Denoising methods have also been attempted to
take advantage of the self-similar structures present in most images. Nonlocal-
means [4,8], nonlocal-median based approaches [6,11] and block matching 3D
(BM3D) [9] are well-known methods of this kind. A related approach involves
redundant representations of patches taken from patch dictionaries [15]. The
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use of patches for denoising have been exploited further by Albarqouni et
al. [1], who have proposed a patch-based regularized graph spectral filtering
technique. Learning based approaches, such as cascade of shrinkage fields [21]
and trainable nonlinear reaction diffusion [7] have also been shown to outper-
form the well engineered BM3D for optical color still images. Deep learning
has also facilitated the design of blind denoising methods [25]. Cerciello et
al. [5] have compared the performance of some common denoising algorithms,
designed for optical images - corrupted by independent additive, white noise
or by signal-dependent noise - on X-ray fluoroscopy data and have shown that
applying the version of BM3D designed for signal-dependent noise is the most
effective approach.

While the denoising of single image frames is important, additional gains
can be obtained by the joint processing of successive X-ray images taken dur-
ing fluoroscopic procedures. Amiot et al. [2] have proposed the use of recursive
temporal filtering in a multi-scales space and dual-tree complex wavelet do-
main. Wagner et al. [22] have developed an isotropic filtering technique that
involves dedicated directional kernels. Lee et al. [16] have designed a 3D non-
local means filter based on stochastic information that incorporates motion in-
formation. VBM3D (Video Block Matching 3D) [14], a video denoising method
designed for optical video sequences, also provides excellent performance even
for X-ray images [2]. It groups patches taken from the same frame and across
frames and subsequently performs collaborative filtering. While Cerciello et
al. [5] suggest the use of BM3D designed for signal-dependent noise, Boracchi
et al. [3] emphasize the necessity of applying a noise variance stabilization
transform before processing raw images using VBM3D.

Though VBM3D provides favorable denoising performance at today’s range
of X-ray dose levels, its performance may drop at ultra-low dose levels. While
it is still possible to obtain a good contrast-to-noise ratio (CNR) under these
circumstances, structures and regions may be oversmoothed [2]. Nevertheless,
BM3D and VBM3D are excellent denoising methods [5] and a more recently
proposed method [2], specifically designed for X-ray imaging, outperforms
them only by a small degree for artificially introduced noise.

In order to obtain good image quality in ultra-low dose environments at an
acceptable computational cost, we have exploited non-local self-similarity in
the temporal direction by matching associated patches followed by computing
a low-rank approximation of the temporally aligned patches in the SVD do-
main. The method is inspired partly by the algorithm proposed in [13], which
has been designed originally for optical images, and leveraged to ultra-low dose
X-ray sequences. Our goal is not only to remove noise, but also to produce im-
ages that are free from artefacts such that they create the impression of higher
dose images. Our main contribution is the design of a dedicated algorithm for
the denoising of ultra-low dose X-ray (fluoroscopy) sequences by recycling pho-
tons received in the past. In particular, we show that i) by carefully taking
noise characteristics into account, we can achieve robust patch matching even
in a high noise environment, and ii) by carefully using noise characteristics
while performing spatio-temporal denoising of ultra-low dose X-ray sequences,
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Fig. 1 Workflow of the spatio-temporal denoising algorithm.

we can eliminate the necessity of a guide image that is normally required to
obtain good denoising performance.

2 Method

In X-ray images, noise has various sources (e.g., Poisson noise, electronic noise,
quantization noise) and, depending on the imaging situation, different detector
gains may be selected. To tackle this issue, we propose a denoising method that
is partly related to the two-step denoising strategy designed for mixed noise
environments [3]. The outline of the algorithm is presented in Fig. 1. As a first
step, we stabilize the noise variance (signal-dependent mixed noise) across
the input images (Fig. 1(a)) using the generalized Anscombe transform [19]
(Fig. 1(b)). In the second step, we use weighted patch matching to estimate
patch motion and align similar image regions in the current (reference) frame
and the previous frames (Fig. 1(c)). We then apply patch-wise denoising to
the spatial and temporal patches aligned along the temporal direction using
a noise level based low rank approximation (Fig. 1(d)). This is followed by a
weighted aggregation of the patches to obtain the denoised image. Finally, an
inverse noise variance stabilization transform is applied to return to the X-ray
image domain (Fig. 1(e)). The core of the algorithm is described below.

2.1 Noise Model

The formation of images from X-ray quanta can be assumed to follow a linear
model [24]. The mean gray value Ȳ [r, c] at a particular location [r, c] has a
linear relationship with respect to the incident mean X-ray air kerma X̄ at that
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location. That is, the measured mean quanta X̄ [r, c] is scaled by the detector
gain α and shifted by the overall system offset g. This can be represented using
the following equation:

Ȳ [r, c] = α · X̄ [r, c] + g. (1)

The quantum nature of X-ray photons can be modelled using a Poisson distri-
bution. The presence of electronic noise, e.g., due to read out noise and dark
noise, can be modelled using a Gaussian distribution with zero mean. The
formation of an image can thus be represented as:

Y [r, c] = α ·
(
X [r, c] + ηa [r, c]

)
+ p+ ηq [r, c] (2)

= α ·X [r, c] + g + η[r, c],

where X , ηa , ηq and Y represent the X-ray quanta, electronic noise due to
analog sensor read out, electronic noise due to quantization (analog to digi-
tal conversion) and the noise-corrupted detector pixel value, respectively. The
overall additive noise can be represented as η. By taking into account the sys-
tem parameters, the noise variance of the mixed signal-dependent noise can be
stabilized to a constant σ2

η′ using the generalized Anscombe transform [19], i.e.,
after transformation, the noise can be modelled using a Gaussian distribution
with variance σ2

η′ . The following equation describes this process:

I [r, c] =





2
α

√
α ·Y [r, c] + 3

8α
2 + σ2

η − α · g if Y [r, c] > − 3
8α− σ2

η

α + g

0 if Y [r, c] ≤ − 3
8α− σ2

η

α + g.

(3)
where I ∈ RN×M represents the image after noise variance stabilization to σ2

η′ .
In order to represent a frame in a sequence (after noise variance stabilization),
we have introduced a subscript f to I (If ∈ RN×M ).

2.2 Patch Motion Estimation

Criteria. To avoid matching of noise patterns at high noise levels, we include
the characteristics of noise during patch matching. For a perfect match in noise
variance stabilized images, the standard deviation of the difference between
the matched and the reference patch, σd, should be close to

√
2 × ση′ . If σd

is much greater or much smaller than
√
2 × ση′ , we can conclude that it is a

poor match. Due to the random nature of noise, we introduce a threshold τ to
compensate for the randomness, i.e, in the case of a good match the following
condition is satisfied: ∣∣∣σd −

√
2× ση′

∣∣∣ ≤ τ. (4)
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Strategy. As patch-wise denoising is applied, for each vectorized patch ⃗q(t,f ) ∈
Rk2×1 (t represents the index of a patch of frame f and k represents the patch
width), a set of similar patches is required. For simplicity, we use vectorized
versions of patches. Usually, X-ray images present a stationary background
(e.g., spine, rib cage), possibly some moving organs (lung, heart), and instru-
ments navigated by a physician. Using the characteristics of noise, moving and
non-moving parts across the frames of X-ray images can be identified. As a first
step, we compare patches at the same locations in the pairs of images (reference
frame If and previous frames If ′) using Eq. 4 to obtain stationary regions.
For the non-stationary regions, we use a multi-scale search strategy using a
weighted sum of the squared distance to obtain a set of temporally matched
patches. The weight vector w⃗ ∈ Rk2×1 is Gaussian distributed to ensure that
the pixels close to the patch center get more importance during patch match-
ing. Patches in If ′ that are within the radius of rt pixels around the current
patch center are checked in this process. Eq. 5 describes the weighted patch
matching process for patch t between frame f and f ′:

νt,f ′ = argmin
νt,f′

k2∑

i=1

{(
⃗q(t,f )[i]− ⃗q(t+νt,f ′ ,f ′)[i]

)2
· w⃗ [i]

}
, (5)

where νt,f ′ is the displacement between the indices that matches patch ⃗q(t,f )
with ⃗q(t+νt,f ′ ,f ′) and i is the pixel index of the patch.

Stack Building. Finally, for each patch ⃗q(t,f ) in the reference image, a set of
temporally matched patches is obtained using Eq. 5. To reduce the complexity
introduced due to notations, we remove the subscripts t and f from here on-
wards as it can be generalized over all the patches, i.e, ⃗q(t,f ) will be simplified to
q⃗ . In order to compensate for unmatchable deformable motion of instruments
in some frames, we include spatial patches within the radius of at most rs pix-
els from the reference patches in addition to the matched temporal patches.
The reference and the matched patches are then vectorized and stacked into a
matrix P ∈ Rk2×m (general notation Pt,f ) such that p⃗m ∈ Rk2×1 represents
the vectorized reference patch and ⃗p1 ..m−1 represent the vectorized matched
patches.

From the m vectorized patches, we then select only the most suitable n
patches with the least deviation from expected standard deviation for a dif-
ference patch as per Eq. 4. This helps in removing those spatial and temporal
patches that are not sufficiently similar to the reference patch. The deviations

or the errors, ⃗e ∈ R1×m , for all the vectors in P are computed by comparing
p⃗m and the other vectors ⃗pm′ with respect to the amount of noise by:

em′ =
∣∣∣σ(p⃗m − ⃗pm′)−

√
2× ση′

∣∣∣ . (6)

P is then constructed in such a way that p⃗n is the vectorized reference patch.
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2.3 Denoising of Temporally Aligned Patches

In the ideal case, where the patch matching has been perfect, the noisy ma-
trix P is a combination of a matrix that has a low rank and a noise matrix
of standard deviation ση′ . The optimal energy compaction of singular value
decomposition in the least square sense makes it a suitable choice for esti-
mating the low rank matrix [13]. From the singular value decomposition of

P - into a singular value matrix S ∈ Rk2×n with singular values si present
in non-increasing order in the diagonal elements and the associated singular
vector matrices U ∈ Rk2×k2

and V ∈ Rn×n - the low rank approximation can
be obtained by taking only a few large singular values and the correspond-
ing singular vectors. The choice of the largest l singular values required for
obtaining the low rank approximation, is computed by solving the following
equation [13]:

n∑

i=l

s2i > σ2
η′ × (k2 · n− 1) ≥

n∑

i=l+1

s2i . (7)

The low rank matrix PLRA ∈ Rk2×n can then be constructed from the l
largest singular values as follows:

PLRA =

l∑

i=1

siu⃗i v⃗T
i . (8)

We then set ⃗pLRA
n as the vectorized denoised patch ⃗ˆ(t,f )q. The denoised

patches ⃗ˆLRA
(t,f )q are finally combined using weighed aggregation to reconstruct

the denoised image Ŷf .

3 Experiments and Results

We have evaluated the proposed denoising method on 20 clinical sequences
(3 sites, 7 patients, 500 images) acquired at 50% of the standard low dose
setting (ultra-low dose). 7 sequences (137 images) from site 1, 11 sequences
(292 images) from site 2 and 2 sequences (71 images) from site 3 have been
used. All X-ray sequences have been acquired using using Artis zee systems
(Siemens Healthineers, Erlangen, Germany). Site 1 and site 3 have a 26×30
cm2 crystalline Silicon flat panel detector, and site 2 has a 20×20 cm2 amor-
phous Silicon flat panel detector. The ultra-low dose clinical sequences have
been acquired during cardiac and renal electrophysiology (EP) procedures.
The image sequences have been acquired either at a matrix size of 1024×1024
or 960×960 and at 3 frames per second. We have compared our method to
the well established VBM3D as recent methods have not significantly outper-
formed VBM3D for images that have been corrupted by real (non-synthetic)
noise [2]. Since VBM3D has been designed for additive Gaussian noise, we
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have performed VBM3D in the generalized Anscombe transform domain after
stabilizing the noise variance [19]. To perform quantitative evaluation, we have
computed an average CNR from 2 pairs of manually selected regions within
and outside instruments. We have also obtained qualitative evaluations from
twelve X-ray image quality experts.

3.1 Parameter Setting

We have evaluated the algorithm for the patch width k = 9 and for different
choices of aligned spatio-temporal patches in the stack (n = 3, 5.. 20). We have
chosen to use k = 9, as we have found this setting to preserve structures while
still yielding good denoising. Since temporal coherence drops over time, we
have restricted the temporal history to at the most 11 frames, i.e., to somewhat
less than four seconds. For temporal patch motion estimation, rt is set to 150
pixels to compensate for the comparatively low frame rate. The threshold τ
for checking whether pixels have undergone motion is set to 0.05 × ση′ . To
reduce the computational load, only those spatial patches within rs = 2 pixels
around the reference patch and rs = 1 around the matched patches have been
considered as they are expected to share similar characteristics especially along
the edges. From the set of all these matched patches, we have chosen n patches
to perform spatio-temporal denoising. We have used patches only from the past
(at the most 11) frames for VBM3D as it is not possible to use future frames
during live X-ray imaging. Using the available VBM3D software [14], we have
selected the normal balanced profile and computed the denoised sequence.

3.2 Results

In order to highlight the importance of using noise characteristics while match-
ing patches, we have shown in Fig. 2 the results of denoising using low rank
approximation when patches have been matched with and without taking the
characteristics of noise into account. In the selected region of interest (ROI),
the instrument is stationary, whereas the background is not stationary due to
breathing motion. For both the cases (Fig. 2(b) and Fig. 2(c)), the value of n
has been set to 9. In the highlighted region of Fig. 2(c), structures have been
severely blurred and noise patterns can also be observed, whereas in Fig. 2(b)
such artefacts are not present. In fact, it appears as a higher dose image.

The quantitative analysis of the proposed denoising method in terms of
CNR for the clinical sequences has been summarized in Table 1. For the se-
quences from clinical sites 1 and 3, the proposed method outperforms VBM3D
even for the choice of n = 7 by a factor of 1.2 and 1.03, respectively. For the
sequences from clinical site 2 alone, VBM3D performs better the proposed
method by a factor of 1.36 for the nominal case (n = 9). But, on an average,
the proposed method outperforms VBM3D for the nominal case.
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(a) (b) (c)

Fig. 2 (a) is an ROI of the input image, (b) and (c) are denoised versions using the proposed
algorithm. In (b) noise characteristics have been used for patch matching, and in (c) noise
characteristics have not been used for patch matching.

Table 1 Validation of the 20 Sequences acquired from the 3 clinical sites with respect to
CNR. The CNR for each site is represented as Median ± Standard deviation

Site 1 Site 2 Site 3 Mean
Input 0.73 ± 0.12 0.29 ± 0.1 0.79 ± 0.1 0.60

Proposed

n=3 1.84 ± 0.27 0.76 ± 0.23 1.49 ± 0.11 1.37
n=7 2.67 ± 0.52 1.12 ± 0.29 1.82 ± 0.13 1.91
n=9 2.8 ± 0.57 1.24 ± 0.29 1.86 ± 0.14 2.00
n=11 2.88 ± 0.6 1.31 ± 0.29 1.88 ± 0.14 2.05
n=15 2.95 ± 0.63 1.39 ± 0.3 1.9 ± 0.14 2.10
n=20 2.99 ± 0.65 1.43 ± 0.3 1.91 ± 0.14 2.13
VBM3D 2.2 ± 0.32 1.9 ± 0.24 1.76 ± 0.04 1.93

By studying those cases where VBM3D has performed better than the
proposed method in terms of CNR, we have found that VBM3D can lead
to oversmoothed regions, i.e., a loss of texture creating an unnatural image
appearance. An example can be seen in the ROI of Fig 3(b) (sequence 6 of site
2), where the body of the catheter is completely missing. Other regions around
wires are affected by artefacts as well. Since the regions are very smooth, such
artefacts may go unnoticed. On the other hand, the proposed method does
not result in such a loss of structures (Fig. 3(c)). Even when a maximum of 20
patches are used for denoising, details, e.g., devices, are preserved in the case
of the proposed method (Fig. 3(d)). A proper value for n has been found by
analysing how the CNR values changed depending on the number of patches
used (see Table 1). We have found that n = 9 provides the best trade-off
between denoising performance and computational effort.

In Fig. 4, we show ROIs of several images before and after processing us-
ing the proposed method (Fig. 4(b)) and VBM3D (Fig. 4(c)). In the ROI in
Fig. 4 (Col. 1), the denoising performance of the methods has been analysed
for a sequence that has been used for the navigation of an ablation catheter
inside a kidney. It can be observed that VBM3D produces images that can
be characterized by flat local regions and sharp edges. This results in the
”patchy” appearance of the image background. For instance, in Fig 4 (Col. 2),
catheter shafts appear to be missing in some regions and in addition, the edges
of the catheters appear to have undergone noticeable deformation. Unfortu-
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(a) (b) (c) (d)

Fig. 3 (a) is an ROI of input sequence 6 from site 2. (b) is the ROI of VBM3D processed
image. (c) and (d) are ROIs of the denoised images using the proposed method where n =
9 and n = 20, respectively. The circles highlight the region where the body of the catheter
is missing in (b).

nately, such artefacts could mislead device detection algorithms further along
an image processing chain. On the other hand, the proposed method produces
smooth local regions with structures intact. In certain cases it may not reach
the contrast that can be obtained with VBM3D as shown in Fig. 4(b) (Col.
3 and Col. 4). For a more comprehensive comparison, we have also obtained
qualitative evaluations of the denoised scenes from twelve independent X-ray
image quality experts (Fig. 5). The evaluations are in line with our quanti-
tative evaluation. According to the experts, the denoising performance of the
proposed method is superior to VBM3D. They have also found the proposed
method to outperform VBM3D consistently in terms of producing artefact-free
and realistically appearing images facilitating better catheter visibility.

4 Discussion and Conclusion

In this paper, we have proposed a patch-based, blind spatio-temporal denoising
method for ultra-low dose fluoroscopy sequences. The method includes the
characteristics of noise to match patches, build a stack of temporally aligned
patches and denoise them using low rank approximation. Most importantly,
each patch can be denoised independently. This makes the algorithm highly
parallelizable and a suitable candidate for the architecture of modern graphics
processing units.

The state-of-the-art block matching methods [13,14] make use of a guide
image (initial estimate) to tackle mismatches due to the presence of noise, i.e.,
they follow a two-step process, where an initial estimate is used to improve
patch matching and the overall denoising performance. But at high noise lev-
els, even this ad-hoc strategy of matching patches fails as the guide image
retains noise patterns that resemble structures. These noise patterns in turn
get preserved in the final denoised estimate in the form of artefacts. Since
VBM3D has been designed to produce smooth images, severe thresholding
of Haar coefficients may be carried out. This can lead to images where small
regions are almost flat or where edges are no longer smooth but appear jagged.
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(a) ROIs of input images

(b) ROIs of denoised images (proposed method)

(c) ROIs of denoised images (VBM3D)

Fig. 4 Each column shows the input as well as the results of the processing using the
proposed method and the VBM3D. The shown ROIs are from (columns left to right) se-
quence 1 of site 3, sequence 8 of site 2, sequence 1 of site 1 and sequence 5 from site 2,
respectively. The highlighted regions in columns 1 and 2 indicate places where VBM3D has
introduced artefacts. The highlighted regions in columns 3 and 4 show places where the
proposed method has slightly lower contrast compared to VBM3D.

Taking into account the noise properties not only helps in reducing such
artefacts but also removes the necessity of computing a guide image. This may
provide us with the opportunity to use our algorithm in a real-time environ-
ment. The evaluation on the EP sequences from clinical site 1 suggests that
an improvement in the CNR by a factor of around 3.88 with respect to the
input could be achieved. In this case, the proposed method also outperforms
VBM3D in terms of CNR by a factor of 1.27 and also in terms of visual appear-
ance. For sequences from clinical site 2, the improvement in the CNR of the
proposed method (4.38) is comparatively lower than VBM3D (6.00). For the
sequences from clinical site 3, the average improvement in the CNR is similar
to the proposed method (2.33) and VBM3D (2.21). The steep improvement in
the case of VBM3D for clinical site 2 could be due to the fact that VBM3D
has been designed to provide smooth regions. Unfortunately, X-ray images are
not composed of smooth regions as anatomical structures are not flat. This is
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Fig. 5 Qualitative evaluation of the proposed method (black) and VBM3D (grey) based
on the visual inspection of twelve X-ray image quality experts.

evident from the qualitative evaluation by X-ray image quality experts, who
have found the improvement after denoising using the proposed method to be
superior and artefact-free when compared to VBM3D. Most importantly, the
experts have stated that the results resemble higher dose X-ray images. This
suggests that the standard X-ray dose could be reduced further by a signifi-
cant amount. As the proposed method depends mainly on the characteristics
of noise, it is expected to be applicable to all ultra-low dose procedures.

Although, the proposed method ensures a significant reduction in noise,
the images are not noise-free. One of the reasons for this could be a variation
in the standard deviation of the expected noise ση′ that is obtained after
applying a noise variance stabilization transform using the system parameters.
The system parameters, system gain, electronic noise and offset, are usually
obtained from calibrations. At ultra-low dose levels, it may be possible that
the system does not behave as expected and consequently the calibrated values
may vary. Another (usually minor) drawback is that the denoised images may
suffer from mild blurring around instrument edges. This is due to the lack of
perfect matches due to the 3D motion of objects. In such cases, the application
of low rank approximation will result in the averaging of pixels that may not be
perfectly matched. Our future work would be to target this issue by performing
constrained low rank approximations.
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care GmbH. The concepts and results presented in this paper are based on
research and not commercially available. Ethical approval: All procedures per-
formed in studies involving human participants were in accordance with the
ethical standards of the institutional and/or national research committee and
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5. Analytical Approaches for X-ray Image Denoising

5.3. Preliminary results of DSA denoising based on a weighted
low-rank approach using an advanced neurovascular
replication system

5.3.1. Paper Summary

Digital subtraction angiography (DSA) is essential to assess the structure of blood vessels
as well as the flow of blood through them in detail. Acquiring high-quality DSA images
usually involves the use of undiluted contrast agent and high X-ray dose. Unfortunately,
the high amount of iodine in the contrast agent puts a burden on the patients’ kidneys,
while the high X-ray dose may expose patients and medical staff to a considerable amount
of radiation. Lowering the concentration of the contrast agent or the X-ray dose usually
means sacrificing image quality. However, to retain the required image quality in such a
situation, a spatio-temporal denoising approach has been proposed and published in [3].

Sequences acquired in the context of neurovascular DSA are usually composed of spa-
tially aligned X-ray images. Since the background is stationary, the sequences are of low-
rank and variation is introduced by the inflow and outflow of the contrast agent. Although
there are several methods for denoising X-ray sequences, the availability of literature fo-
cusing specifically on the denoising of DSA sequences is limited. Moreover, the methods
which make use of inaccurate noise models [190], fail to preserve the temporal dynamics
of contrast flow [191], or appear ad-hoc with respect to the choice of thresholds [192].

To denoise a frame while taking into account the low-rank nature of the sequence, a con-
strained weighted rank-1 approximation of the stack comprising the frame to be denoised
and its temporal neighbors is computed. The weights are used to compensate for the mis-
matches between the spatially aligned frames due to the inflow and outflow of the contrast
agent. In other words, they are chosen to prevent mismatched pixels from contributing to-
wards the low-rank approximation. The rank-1 approximation is performed by a weighted
singular value decomposition. As there are several local optima for the singular vectors
and values, a-priori information such as the smoothness of the approximants are used to
perform constrained row- and column-wise approximations. The method has been eval-
uated using a vascular flow phantom emulating cranial arteries into which contrast agent
can be manually injected (Vascular Simulations Replicator, Vascular Simulations, Stony
Brook NY, USA). For the evaluation, image sequences acquired at different dose levels as
well as different contrast agent concentrations have been used.

A quantitative analysis has suggested that the proposed method has resulted in signifi-
cant improvement with respect to CNR and also that the dose as well as the concentration
of the contrast agent could be reduced by about 75%. A visual analysis has indicated that
the method yields images that share the characteristics of typical DSA images. The use of
constrained low-rank approximations prevents the occurrence of smoothing artifacts that
are introduced by patch-based denoising methods due to the presence of the flowing con-
trast agent. This is because the pulsatile motion of the contrast agent will lead to temporal
mismatches. In the case of the proposed method, these temporal mismatches in the vessel
regions will result in low temporal weights. As a consequence, denoising will focus on in-
plane neighboring pixels. Thus, the texture of the flowing contrast agent will be retained,
but the denoising performance in these regions may be lower.
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Abstract
Purpose. 2D digital subtraction angiography (DSA) has become an important
technique for interventional neuroradiology tasks, such as detection and subse-
quent treatment of aneurysms. In order to provide high-quality DSA images,
usually undiluted contrast agent and a high X-ray dose are used. The iod-
inated contrast agent puts a burden on the patients’ kidneys while the use
of high-dose X-rays expose both patients and medical staff to a considerable
amount of radiation. Unfortunately, reducing either the X-ray dose or the con-
trast agent concentration usually results in a sacrifice of image quality.
Materials and Methods. To denoise a frame, the proposed spatio-temporal de-
noising method utilizes the low-rank nature of a spatially aligned temporal
sequence where variation is introduced by the flow of contrast agent through
a vessel tree of interest. That is, a constrained weighted rank-1 approximation
of the stack comprising the frame to be denoised and its temporal neighbors is
computed where the weights are used to prevent the contribution of non-similar
pixels towards the low-rank approximation. The method has been evaluated
using a vascular flow phantom emulating cranial arteries into which contrast
agent can be manually injected (Vascular Simulations Replicator, Vascular
Simulations, Stony Brook NY, United States). For the evaluation, image se-
quences acquired at different dose levels as well as different contrast agent
concentrations have been used.
Results. Qualitative and quantitative analyses have shown that with the pro-
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posed approach, the dose and the concentration of the contrast agent could
both be reduced by about 75%, while maintaining the required image quality.
Most importantly, it has been observed that the DSA images obtained using
the proposed method have the closest resemblance to typical DSA images, i.e.,
they preserve the typical image characteristics best.
Conclusion. Using the proposed denoising approach, it is possible to improve
the image quality of low-dose DSA images. This improvement could enable
both a reduction in contrast agent and radiation dose when acquiring DSA
images, thereby benefiting patients as well as clinicians. Since the resulting
images are free from artifacts and as the inherent characteristics of the images
are also preserved, the proposed method seems to be well suited for clinical
images as well.

1 Introduction

Interventional X-ray guided imaging is becoming more and more important to
support the treatment of increasingly sophisticated endovascular procedures.
For some procedures, e.g., the coiling of aneurysms in the context of interven-
tional neuroradiology, high-quality angiographic images, digital subtraction
angiography (DSA) in particular, are essential to assess the structure of blood
vessels as well as the blood flow through them in detail. In DSA, a digital sub-
traction of non-contrast-enhanced (mask image) from contrast-enhanced X-ray
images (fill images) is performed to remove obstructing anatomical background
information and obtain a clear view of the vasculature. In order to account
for the exponential attenuation of the body, the digital subtraction is usually
carried out after applying a logarithmic transformation on the mask and fill
images, respectively.

As of today, acquiring high-quality DSA images usually involves the use
of undiluted contrast agents and a high X-ray dose. The strong iodinated
contrast agent puts a burden on the patients’ kidneys, while the high X-ray
dose may expose both patients and medical staff to a considerable amount
of radiation. Unfortunately, a reduction in the X-ray dose or the contrast
agent concentration results in a sacrifice of image quality—due to a drop in
the contrast-to-noise-ratio (CNR). Fortunately, with the help of sophisticated
denoising techniques, the image quality can be improved. This, in turn, could
facilitate a reduction in X-ray dose and may make it possible to lower the
concentration of the contrast agent used.

At low X-ray dose levels, the resulting images are corrupted by both signal-
independent electronic noise and signal-dependent quantum noise. The prob-
lem of denoising images corrupted by signal-dependent noise is usually ap-
proached by either directly considering the statistics of the particular noise
model [14,15], or by using a variance stabilization transform (VST) to per-
form the denoising task in a more modular way [8]. With the latter approach,
the signal-dependency is removed by rendering the noise variance constant
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throughout the image [23]. This allows the reuse of any denoising technique
designed for the removal of Gaussian noise.

Spatial denoising algorithms, designed for Gaussian noise, that are based
on solving partial differential equations, such as diffusion-based filtering [20,
24], have made a sizeable impact on biomedical imaging mainly due to their
performance at a low computational cost. Cerciello et al. [4], on the other
hand, consider the well engineered patch-based method BM3D [11], as one of
the best denoising algorithms for biomedical images when combined with a
VST. Additional gains can be obtained by spatio-temporal methods that for
example make use of wavelets [1,13], dictionary learning [7,12] and non-local
self similarities between spatio-temporal neighborhoods of patches [3,8]. An
important addition to the latter is a particularly well known spatio-temporal
version of BM3D [11], known as VBM3D [10]. More recently, learning-based
methods have been shown to deliver promising results [5,25,26]. Since these
methods require pairs of spatially aligned noisy and noise-free images for train-
ing, they cannot be straightforwardly applied to real X-ray images. This is due
to the non-availability of corresponding noisy and noise-free pairs of clinical
images as patients cannot be irradiated twice to obtain them. In addition,
acquiring exactly spatially aligned X-ray images at different dose levels may
not be possible due to the motion introduced by the internal organs as well as
breathing.

Although there are several methods for denoising X-ray sequences, the
availability of literature that focuses specifically on the denoising of DSA se-
quences is surprisingly limited. Bugunović et al. [2] have presented two de-
noising approaches, one based on a 1D Wiener filtering of temporal data and
another based on 3D wavelet denoising via a wavelet shrinkage technique. How-
ever, their assumption that noise in the high-dose images follows a Gaussian
distribution, may not be appropriate for X-ray images [8]. Another interesting
approach has been proposed by Niu et al. [19], who have taken advantage of
the low-rank nature of DSA image sequences by applying a singular value de-
composition on the matrix comprising vectorized digitally subtracted images
and subsequently thresholding the singular values based on a predefined level.
However, a drawback of this approach may be a compromise in the temporal
resolution of image regions with high temporal dynamics due to the thresh-
olding of a significant number of singular values in order to achieve a high
denoising performance. The resulting images may be unsuitable for analyzing
the flow of contrast, especially in regions with aneurysms. Menger et al. [18],
on the other hand, have calculated individual cut-off thresholds for each pixel
of a DSA series. Unfortuntaly, the choice of these thresholds are ad-hoc and
not easy to replicate. Finally, using a sophisticated noise reduction algorithm,
Söderman et al. [21] have suggested that the dose required to acquire DSA
sequences can be reduced by 75% without the loss of image quality. How-
ever, they have not analyzed the impact of a reduction in the contrast agent
concentration on the achieved image quality.

Sequences acquired in the context of neuro DSA are usually composed
of spatially aligned X-ray images. Therefore, the sequences are of low-rank
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and variation is introduced by the inflow and outflow of the iodinated contrast
agent (consistent background with moving contrast agent). Since the denoising
approach presented in [8] relies on accumulating and utilizing similar spatio-
temporal patches to perform denoising, it is not well suited to DSA. This is
because the inflow and outflow of the contrast agent changes the appearance
of patches. More specifically, there will be some pixels that are already well
opacified in some frames of the fill images, whereas in the other frames the cor-
responding pixels are either yet to be filled with contrast agent or are already
clear of it. To tackle this problem, we have developed a denoising method that
involves the application of an iterative weighted low-rank approximation to
stacks of spatially aligned (full-resolution) images. The purpose of the weights
is to prevent the contributions of temporally mismatched pixels towards the
low-rank approximation. The approach results in denoised mask and fill images
which, after subtraction result in DSA images with superior image quality.

2 Methodology

In X-ray based digital imaging techniques, the occurance of noise can have
various sources, e.g., quantum noise, electronic noise and quantization noise.
In addition to this, the detector gains may be switched based on the clinical
imaging scenario. To handle these different factors, we have proposed a de-
noising approach that is related to the modular denoising strategy used in [8].

For denoising a frame (single image) zf ∈ RN×M (with N rows and M
columns at frame number f) in a sequence z ∈ RN×M×F of spatially aligned
F frames, we have made use of zf and its T − 1 neighboring frames (T frames
in total). Since DSA images are viewed and analyzed only after the entire
sequence has been acquired, the previous as well as future frames (associated
with the current frame) can be used to denoise the current frame. To this end,
the T frames have been combined into a 3D matrix yf ∈ RN×M×T . The ma-
trix yf comprises zf and its neighboring T − 1 frames zf ′ , where f ′ represents
the indices of the neighboring frames of zf , t represents the current tempo-
ral location of zf in yf (yf,t) and t′ represents the temporal locations of zf ′

in yf (yf,t′) (Fig. 1a). A schematic overview of the complete denoising work-
flow is presented in Fig. 1. After setting up an input stack of X-ray frames
around a particular image, we have stabilized the noise variance across the
frames in yf using the generalized Anscombe transform (GAT) [16] to obtain
Yf ∈ RN×M×T (Fig. 1b). In the second step, we have computed pixel-wise
weights Wf ∈ RN×M×T for all the frames in Yf with respect to the current
frame Yf,t (Fig. 1c). After that, we have applied a row-wise spatio-temporal
denoising to Yf using an iterative weighted low-rank approximation to ob-

tain the denoised current frame in the GAT domain Ỹf,t (Fig. 1d). Similarly,
stacks corresponding to the neighboring frames Yf ′ are denoised row-wise to

obtain the denoised neighboring frames in the GAT domain Ỹf ′,t that are then

used to construct the denoised stack Ỹf (Fig. 1e). Then, we have performed

column-wise spatio-temporal denoising to the denoised stack Ỹf using the
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iterative weighted low-rank approximation (Fig. 1f) to obtain the denoised
current frame Ŷf,t. Finally, we have applied an inverse noise VST to return to
the X-ray image domain ẑf (also represented as ŷf,t in ŷf ) (Fig. 1g). The main
elements of the algorithm are described in detail in the subsequent sections.

Fig. 1 Schematic workflow visualization of the proposed denoising approach using a
weighted low-rank approximation.

2.1 Imaging Model and Noise Variance Stabilization

We have made use of the imaging model mentioned in [9], where X-ray images
are assumed to be corrupted by signal-dependent quantum noise and signal-
independent electronic noise. The model can be represented by:

z[r, c] = α · x[r, c] + g + η[r, c], (1)

where α is the system gain, g is the system offset, and z[r, c], x[r, c] and
η[r, c] represent the observed gray value, quanta and electronic noise at the
particular location [r, c], respectively. The quantum noise associated with x
can be modeled using a Poisson distribution and the overall electronic noise η
can be modeled using a Gaussian distribution with zero mean and a specific
standard deviation σn. The variance of mixed noise σ2

z can be expressed as

σ2
z [r, c] = α2 · σ2

x[r, c] + σ2
n. (2)

By taking the system parameters into account, the noise variance of the
mixed signal-dependent noise can be stabilized to a constant σ2

η′ using the gen-
eralized Anscombe transform (GAT) [23]. More formally, as shown in Fig. 1b,
we have applied the GAT on yf to obtain Yf .
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2.2 Weight Computation

In order to account for potential mismatches among pixels in successive frames
Yf,t′ in Yf when compared to the current frame Yf,t, weights are utilized as a
part of the low-rank approximation. When the compared pixels are dissimilar,
low weights are assigned. Accordingly, highly similar pixels are assigned high
weights. The weights for frame Yf,t′ at the location [r, c] are derived by

wf,t′,r,c = e
−|wµ

f,t′,r,c×ws
f,t′,r,c | × e

−|wσ
f,t′,r,c×ws

f,t′,r,c | (3)

and are based on the mean µdf,t′,r,c , the standard deviation σdf,t′,r,c and the
smoothing factor wsf,t′,r,c associated with the difference patch

df,t′,r,c = Yf,t′,r,c − Yf,t,r,c (4)

that is computed from the k×k spatial neighborhoods around [r, c] in the cur-
rent frame Yf,t,r,c and neighboring frames Yf,t′,r,c. The different components
are computed as follows:

wµf,t′,r,c = µdf,t′,r,c , (5)

wσf,t′,r,c =| σdf,t′,r,c −
√
2× ση′ |, (6)

wsf,t′,r,c =
max(Y )2

µYf,t′,r,c × µYf,t,r,c

. (7)

In an ideal case, where there is a perfect match, df,t′,r,c should contain
noise alone. Therefore, the standard deviation σdf,t′,r,c and the mean µdf,t′,r,c

of the difference patch df,t′,r,c should approximately be equal to
√
2×ση′ and 0,

respectively. Since the gray values associated with contrast agent are low, the
smoothing factor wsf,t′,r,c contributing to such pixels should be low in order
to have minimal temporal averaging in the case of a mismatch. Finally, when
either wσf,t′,r,c or wµf,t′,r,c in Eq. 3 is high, then we consider this a mismatch
and the assigned weight will be low and vice versa.

2.3 Weighted Low-rank Approximation

In data samples with missing or corrupted entries, the use of non-uniform
weights is required to account for any difference in the samples [22].

Given a data matrix A ∈ RM×T constructed from T data samples of size
M × 1 and a weight matrix W ∈ RM×T containing non negative weights for
each of the M×T elements, the best rank R approximation of the data matrix
can be described by a weighted singular value decomposition given by

[U,Σ, V ] = min
U,Σ,V

||A− UΣV ∗||2W , (8)

where U ∈ RM×R and V ∈ RT×R are the rank R singular matrices, Σ ∈
RR×R is a diagonal matrix containing singular values and || ||W represents the
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weighted L2 norm with respect to W [17]. As there are several local optima for
U , V and Σ in Eq. 8, Das et al. [6] have proposed the use of prior information
about the data or the approximants. For example, in the case of images, the
smoothness of the approximants can usually be assumed and this leads to

[U,Σ, V ] = min
U,Σ,V

{
||A− UΣV ∗||2W +

αu

2
||BuU ||2F +

αv

2
||BvV ||2F

}
, (9)

where Bu and Bv are linear operators set to second order finite difference ma-
trices for reflecting a-priori information, αu and αv are regularizers and || ||F
represents the Frobenius norm. In our case, since the frames in Yf are spa-
tially aligned, Yf is expected to have a low-rank where variation is introduced
by the flowing contrast agent. By using the weights Wf to account for noise
as well as the mismatches introduced due to the inflow and outflow of contrast
agent, the denoising of Yf can be performed with the help of an iterative
weighted rank-1 approximation. Unfortunately, due to the large matrix sizes
of the X-ray images, it is computationally expensive to compute a weighted
rank-1 approximation of Yf . Therefore, we have approximated the weighted
rank-1 approximation of a 3D matrix with two 2D rank-1 approximations ap-
plied row-wise and column-wise. At the outset, the data matrix and the weight
matrix for performing the weighted rank-1 approximation row-wise on Yf are
built. For each row r, the data matrix Af,r ∈ RM×T is obtained by taking a
horizontal slice of Yf at the row location r (represented as stripes in Fig. 1d).
The corresponding weight matrixWf,r is computed fromWf accordingly. Sub-
sequently, based on an assumption that the singular vectors should be smooth
for an image, the weighted-1 approximation of Af,r is solved by

[Uf,r, Σf,r, Vf,r] = min
Uf,r,Σf,r,Vf,r

{
||Af,r − Uf,rΣf,rV

∗
f,r||2Wf,r

+ . . .

. . .
αu

2
||BuUf,r||2F +

αv

2
||BvVf,r||2F

}
. (10)

This problem involves an iteratively performed alternating optimization to es-
timate the left and the right approximants [6]. Once the row-wise denoised es-
timates for the entire sequence are available (Fig. 1e), a column-wise weighted
rank-1 approximation of the frames of Ŷ is computed—similar to the above
mentioned row-wise rank-1 approximation—using the associated data and
weight matrices (Fig. 1f). After the final denoised estimate Ŷ is computed,
an inverse GAT is applied to return to the image domain (Fig. 1h).

2.4 Denoising of DSA Images

Instead of denoising a DSA sequence as proposed in [18,19], the mask frame(s)
and fill frames of a sequence are first denoised independently using the stacks
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of frames generated specifically for each of the mask and fill images, respec-
tively. Subsequently, the DSA images are computed by subtracting the loga-
rithm transformed pixels of the denoised mask frame from the corresponding
logarithm transformed pixels of the denoised fill frames. As all frames of the
X-ray sequence (including frames free from contrast agent) are denoised, the
mask frame is chosen from one of the denoised low-dose mask frames (frames
without contrast agent). This avoids the necessity of acquiring a high-dose
mask image. In fact, the use of a low-dose mask instead of a high-dose mask
might even give superior results as the spatio-temporal denoising would result
in similar noise characteristics.

3 Material

In order to validate the proposed method, we have used X-ray images of a
vascular flow phantom emulating cranial arteries (Fig. 2) into which contrast
agent can be manually injected (Vascular Simulations Replicator, Vascular
Simulations, Stony Brook NY, United States). We have obtained X-ray se-
quences at 3 different concentration levels of the contrast agent (25%, 50%
and 100% of the standard contrast agent concentration) and 4 different dose
levels (12%, 18%, 27%, 100% of the standard dose level). We have compared
our results quantitatively and qualitatively against the well established de-
noising method VBM3D [10] (in the noise variance stabilized domain [16])
and a recently published denoising method based on a low-rank approxima-
tion (LRA) that has been designed for live fluoroscopic images [8]. Since the
use of 9 spatio-temporal patches of size 9×9, for computing the denoised im-
age, has been found to offer a good trade-off between denoising performance
and computational effort [8], we have kept this choice for denoising the mask
and the fill images, respectively. In addition, we have compared the denoised
results with the images acquired using standard settings (100% dose level and
100% contrast agent concentration).

(a) Mask image (b) Fill image

Fig. 2 Visualization of a mask and a fill image acquired at standard dose level. The high-
lighted region in (b) has been used in Fig. 3 for visualizing the weights computed between
two successive fill frames.
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4 Results

In order to highlight the impact and the sensitivity of the weights used in
the proposed denoising algorithm (introduced in Eq. 3), the pixel-wise weights
computed from two subsequent example frames of the acquired X-ray sequence
are shown in Fig. 3. They have been computed for the frame shown in Fig. 3a
with respect to the one displayed in Fig. 3b. It can be observed that even
small differences in the gray values between the corresponding pixels have
been captured by the weights visualized in Fig. 3c.

(a) (b) (c)

Fig. 3 Visualization of the computed weights (c) for a region of interest (ROI) (a) with
respect to ROI (b). The two frames to which (a) and (b) belong to have been acquired at
different points in time. Dark and bright colors represent low and high weights, respectively.

For the proposed method, the choice of k = 13 when calculating weights
among k× k spatial neighborhoods results in a reliable comparison of the sta-
tistical properties of associated patches and hence results in accurate weights.
A smaller value for k would result in inconsistencies in the computed esti-
mates. To obtain singular vectors with a similar smoothness in the spatial as
well as the temporal direction, setting Bu and Bv to second order finite differ-
ence operators with the same accuracy is preferable. Therefore, they have been
set to the maximum number of frames used for denoising T . Finally, setting
both αu and αv to 0.0001 has been found to be a suitable choice for reducing
the noise level while at the same time retaining the sharpness of the image.
Therefore, these parameters have been used for further computations. In Ta-
ble 1, a quantitative analysis with respect to the average CNR for all DSA
sequences acquired at different dose levels and contrast agent concentrations
is presented. It can be observed from Table 1 that for the proposed method,
the average CNR increases with an increase in T and is comparable with those
of VBM3D and LRA for T = 9. In fact, the proposed method outperforms the
compared methods for T = 10 with respect to average CNR.

As the goal is to study the possibility of a reduction in the dose level and
contrast agent concentration, the results computed for the 12% dose level and
the 25% contrast agent concentration have been visualized in Fig. 4. In accor-
dance to the quantitative results shown in Table 1, a progressive improvement
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Table 1 Quantitative analysis with respect to average CNR for DSA sequences acquired us-
ing different dose levels and contrast agent concentrations and processed using VBM3D [10],
LRA [8] and the proposed method for different values of T , respectively. The best values
are highlighted using bold face.

Contrast agent concentration: 25%

Dose Input
Proposed (T )

VBM3D LRA
2 4 6 8 9 10

12% 5.51 10.30 14.37 16.97 19.13 20.63 21.25 22.43 20.76
18% 7.29 12.16 17.05 20.15 22.82 24.30 25.70 26.40 24.76
27% 16.41 29.26 40.15 48.76 57.29 60.71 65.55 86.81 69.62

Contrast agent concentration: 50%

Dose Input
Proposed (T )

VBM3D LRA
2 4 6 8 9 10

12% 11.43 20.59 29.67 36.67 42.56 45.07 47.71 47.18 49.45
18% 15.56 27.77 40.29 48.63 54.94 57.58 60.22 46.40 45.47
27% 20.44 34.68 47.07 56.98 67.73 72.01 75.48 82.57 61.90

Contrast agent concentration: 100%

Dose Input
Proposed (T )

VBM3D LRA
2 4 6 8 9 10

12% 15.32 28.87 41.51 51.57 59.12 62.37 65.62 59.13 61.62
18% 19.29 33.37 47.11 57.40 66.46 70.08 75.33 68.86 64.64
27% 23.76 44.54 61.96 75.56 84.48 88.29 94.06 84.07 82.69

in the image quality can be seen for the proposed method with an increase in
T (Fig. 4d-g). However, no significant differences in terms of the image impres-
sion can be observed for T > 8. A comparison to an unprocessed reference ROI
acquired with 100% of the standard dose level and 100% of the contrast agent
concentration (Fig. 4h) indicates that the proposed method results in realis-
tic images, especially with respect to the underlying noise pattern, whereas,
VBM3D (Fig. 4b) and LRA (Fig. 4c) fail to do this even though their average
CNR was higher than that of the proposed method. It should be noted that
the width of the gray level window used to display Fig. 4a-g has been set to
around 25% of that used for Fig. 4h in order to make the images visually
comparable. Although a significant improvement in the CNR up to 21.25 (for
T = 10) can be obtained using the proposed method, the resulting images
(Fig. 4g) have a somewhat higher amount of noise and a lower CNR than the
images acquired at 100% dose level with 100% contrast agent concentration
(CNR: 31.28) (Fig. 4h).

In Fig. 5, we have presented the results of another low-dose and low con-
trast agent concentration setting - 27% dose level and 25% contrast agent
concentration. The gray level windowing has been set similar to Fig. 4. In the
case of VBM3D (Fig. 5b), there is an improvement with respect to background
artifact reduction when compared to Fig. 4b. However, this improvement is
still insufficient to match the appearance of the reference image acquired using
the standard settings (Fig. 5h). From Fig. 5b and Fig. 5c, it can be seen that
the results of VBM3D and LRA contain artifacts and moreover there is a sig-
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(a) Unprocessed (b) VBM3D (c) LRA (d) Proposed T = 6

(e) Proposed T = 8 (f) Proposed T = 9 (g) Proposed T = 10 (h) Reference

Fig. 4 Visualization of an (a) unprocessed ROI acquired using 12% of the standard dose
with 25% contrast agent concentration and the corresponding denoised ROIs obtained using
(b) VBM3D [10], (c) LRA [8] and (d-g) the proposed method for T = {6, 8, 9, 10} along
with an (h) unprocessed reference ROI acquired at 100% dose level with 100% contrast
agent concentration.

nificant difference in the noise characteristics when compared to the reference
image (Fig. 5h). The use of the proposed method has resulted in DSA images
(Fig. 5g) with the highest resemblance to the DSA images acquired using stan-
dard settings (Fig. 5h). From a quantitative perspective, the average CNR of
the processed (27% dose level and 25% contrast agent concentration) sequence
(CNR: 65.55, T = 10) is a little lower than that of the sequence acquired using
the standard setting (CNR: 72.70).

For a more comprehensive comparison, we have also obtained qualitative
evaluations of the denoised scenes from eleven independent X-ray image quality
experts (Fig. 6). The evaluations are in line with our quantitative evaluation.
According to the experts, all the methods preserve the flow of the contrast
agent. They have also found that the proposed method outperforms the other
methods in terms of denoising performance as well as producing artifact free
and realistically appearing DSA images.

5 Discussion and Conclusion

We have proposed a novel method to perform a spatio-temporal denoising
of DSA sequences based on a weighted low-rank approximation. Since the
method utilizes photons received for acquiring past and future frames in a
noise variance stabilized domain by carefully choosing the pixels that con-
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(a) Unprocessed (b) VBM3D (c) LRA (d) Proposed T = 6

(e) Proposed T = 8 (f) Proposed T = 9 (g) Proposed T = 10 (h) Reference

Fig. 5 Visualization of an (a) unprocessed ROI acquired using 27% of the standard dose
with 25% contrast agent concentration and the corresponding denoised ROIs obtained using
(b) VBM3D [10], (c) LRA [8] and (d-g) the proposed method for T = {6, 8, 9, 10} along
with an (h) unprocessed reference ROI acquired at 100% dose level with 100% contrast
agent concentration.
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Fig. 6 Qualitative evaluation of VBM3D [10] (black), LRA [8] (cyan) and the proposed
method (blue) for T = 9 based on the visual inspection of the processed sequences by
eleven independent X-ray image quality experts. The thick lines inside the boxes represent
the median values, the range of the boxes represent the middle 50% of the values, and the
whiskers represent the ranges for the bottom 25% and the top 25% of the data values,
excluding outliers. Due to the distributions of the data values, both the whiskers are not
present for some of the cases.

tribute towards the denoising, the appearance of the resulting processed im-
ages resembles the appearance of the images acquired at a higher-dose setting.
We have also analyzed the possibility of a reduction in the X-ray dose as well
as the concentration of the contrast agent based on a study involving a vas-
cular flow phantom (Vascular Simulations Replicator, Vascular Simulations,
Stony Brook NY, United States).
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A quantitative analysis with respect to CNR for T = 9—a good trade-off
between performance and and computational time [8]—shows that VBM3D [10],
LRA [8] and the proposed method result in a similar overall improvement by
a factor of 3.89, 3.61 and 3.71, respectively. However, a visual analysis sug-
gests that only the use of the proposed method yields images that share the
characteristics of typical DSA images. This is because, the denoising meth-
ods proposed in [10] and [8] modify the properties of the underlying noise.
In the case of [10], artifacts that resemble flat structures are introduced at
very low-dose levels, e.g., 12% of the standard dose level. This could be a
consequence of not taking the noise characteristics into account when finding
similar patches that are used for denoising. Even though the method proposed
in [8] makes use of an X-ray imaging model while matching patches, it may be
difficult to obtain well matched patches due to the inflow and outflow of the
contrast agent. Moreover, the characteristics of noise in the denoised image
may have changed due to the different steps, such as the low-rank approxi-
mation of stacked patches and the aggregation of the denoised patches. This
effect gets enhanced when performing the digital subtraction. Since the pro-
posed method makes use of constrained row-wise and column-wise low-rank
approximations, it does not suffer from the smoothing artifacts introduced by a
non-constrained low-rank approximation of misaligned patches. This, in turn,
reduces blurring artifacts that are otherwise visible in patch-based denoising
approaches. It should also be noted that in the case of pulsatile motion of
the flowing contrast agent, the temporal mismatches in the vessel regions will
result in low temporal weights. As a consequence, denoising will be based on
in-plane neighboring pixels. In such cases, the texture of the flowing contrast
agent will be retained, but the denoising performance may be affected.

Finally, a visual analysis suggests that by denoising using the proposed
method, it may be possible to enhance the appearance of DSA images acquired
at 27% of the standard dose level and 25% of the standard contrast agent
concentration and make them similar to standard DSA images acquired at
100% dose level and 100% contrast agent concentration. In fact, both the
qualitative and the quantitative analyses of the phantom study suggest that a
reduction in the dose as well as the contrast agent concentration by about 75%
may be possible. In our future work, we will evaluate the performance of the
proposed algorithm on clinical X-ray sequences and also focus on improving
the performance of the proposed approach by combining it with a DSA specific
motion compensation algorithm.
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5. Analytical Approaches for X-ray Image Denoising

5.4. Summary

In this chapter, two analytical methods for the spatio-temporal denoising of low-dose X-
ray images have been presented. The methods use the imaging model presented in Chap-
ter 4, especially the noise characteristics, to identify similar pixels and patches while com-
puting a low-rank approximation. Quantitative and qualitative analysis indicate that the
results obtained are well denoised and appear more realistic. Although these results are
promising, applying them in real-time would involve cost-performance trade-offs as they
rely on solving a complex optimization problem. Therefore, in Chapter 6, advanced tech-
niques that are computationally more efficient and facilitate real-time processing – while
facilitating similar performance – are presented.
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6. Learning-based Denoising of X-ray Images

6.1. Introduction

Denoising is considered to be a suitable technique to reduce the X-ray dose level while
maintaining the required image quality. Though analytical denoising approaches provide
suitable results, they involve cost-performance trade-offs during the application time –
since they rely on solving complex optimization problems. In this chapter, computation-
ally inexpensive learning-based denoising algorithms that involve the use of model-based
X-ray simulations during the training phase, are presented and thoroughly evaluated.

6.2. An analytical approach for the simulation of realistic
low-dose fluoroscopic images

6.2.1. Paper Summary

Learning-based denoising algorithms have been shown to outperform analytical meth-
ods. These approaches often rely on spatially aligned pairs of noisy and noise-free images.
However, in the context of clinical X-ray imaging, it is not possible to acquire noise-free
images during clinical interventions. In clinical practice, it is at the most possible to find X-
ray images taken at a higher dose in cases where superior image quality has been required.
Unfortunately, the spatially aligned low-dose counterparts are usually very hard to get due
to organ motion and patient motion, e.g., caused by breathing. Most importantly, as per
the ALARA (as low as reasonably achievable) principle, patients must not be exposed to
unnecessary radiation. A possibility to address this issue is realistic noise simulation ap-
plied to higher dose images to generate lower dose counterparts. The contribution of this
paper is a novel noise simulation approach based on an X-ray image formation model to
generate low-dose images from their higher dose counterparts [4].

In the past, researchers have tried adding noise to high-dose images to simulate low-
dose images based on the assumption that the sequences are corrupted by either Poisson
noise or Gaussian noise or both [193, 194, 195, 196]. Unfortunately, they have usually relied
on image formation models that may not fully account for how X-ray images are acquired
in practice. Researchers have also taken into account the influence of system parameters on
the noise level through extensive calibrations while simulating noise [197, 198]. However,
as these methods consider the noise-corrupted gray values of high-dose images as ground
truth to calculate the variance of noise that is added to generate low-dose images, there
may be inconsistencies in the added signal-dependent noise.

In order to preserve the characteristics of noise associated with low-dose images, the
proposed approach takes into consideration the system parameters associated with low-
and high-dose X-ray image acquisitions, such as system gain and electronic noise (Chap-
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ter 4), in order to perform a noise variance stabilization and subsequently add noise in the
variance-stabilized domain. The method has been evaluated by comparing several corre-
sponding regions of the associated real and simulated low-dose images – obtained from
two different imaging systems of two anthropomorphic phantoms – visually as well as
statistically, using a two sample Kolmogorov-Smirnov Test at 5% significance. In addi-
tion to being visually similar and having small differences with respect to the mean values
and the standard deviations, the hypothesis that the corresponding regions belong to the
same distribution has been accepted in 81.43% of the cases based on 80 pairs of real and
simulated low-dose regions.

The results suggest that the simulated low-dose images obtained using the proposed
method are almost indistinguishable from real low-dose images. The use of an image for-
mation model along with the system parameters used for imaging helps in reducing the
extensive calibrations otherwise needed to construct look-up tables for finding the associ-
ations between mean intensity values and their associated noise variance. Moreover, the
versatility of the method makes it easily adaptable to different imaging systems. This in
turn leads to an increased diversity of the training data for potential learning-based meth-
ods.
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Abstract
Purpose. The quality of X-ray images plays an important role in computer assisted
interventions. Although, learning-based denoising techniques have been shown
to be successful in improving the image quality, they often rely on pairs of asso-
ciated low- and high-dose X-ray images that are usually not possible to acquire at
different dose levels in a clinical scenario. Moreover, since data variation is an im-
portant requirement for learning-based methods, the use of phantom data alone
may not be sufficient. A possibility to address this issue is a realistic simulation of
low-dose images from their related high-dose counterparts.
Method. We introduce a novel noise simulation method based on an X-ray im-
age formation model. The method makes use of the system parameters associated
with low- and high-dose X-ray image acquisitions, such as system gain and elec-
tronic noise, to preserve the image noise characteristics of low-dose images.
Results. We have compared several corresponding regions of the associated real
and simulated low-dose images - obtained from 2 different imaging systems - vi-
sually as well as statistically, using a two sample Kolmogorov-Smirnov Test at 5%
significance. In addition to being visually similar, the hypothesis that the corre-
sponding regions - from 80 pairs of real and simulated low-dose regions - belong-
ing to the same distribution has been accepted in 81.43% of the cases.
Conclusion. The results suggest that the simulated low-dose images obtained us-
ing the proposed method are almost indistinguishable from real low-dose images.
Since extensive calibration procedures required in previous methods can be avoided
using the proposed approach, it allows an easy adaptation to different X-ray imag-
ing systems. This in turn leads to an increased diversity of the training data for
potential learning-based methods.
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1 Introduction

Exposure to X-ray radiation has always been an important concern of patients as
well as clinicians, who are exposed to a non-negligible amount of radiation over
a period of their professional life time. The potential consequences can be classi-
fied into stochastic and deterministic risks. According to the ALARA (as low as rea-
sonably achievable) principle, radiation dose can be lowered if the required image
quality necessary to perform clinical tasks can be retained. Fortunately, the use of
sophisticated image processing techniques, denoising in particular, may help in
improving the image quality. If one can utilize such techniques to maintain the
required image quality, the X-ray radiation dose may be reduced.

Analytical denoising techniques, such as block matching 3D (BM3D) [5] or
wavelet coefficients’ thresholding approach based on Stein’s unbiased risk esti-
mate (SURE) and linear expansion of thresholds (LET) [13], are effective spatial de-
noising techniques for X-ray images [2], in particular, when combined with noise
variance stabilization [14]. Furthermore, the joint processing of successive X-ray
images taken during fluoroscopic procedures provides additional gains [1,11,8].
Unfortunately, even such well-engineered approaches could fail to produce real-
istic images at very low-dose levels (<25% standard dose) where the images are
severely corrupted by noise. On the other hand, learning based methods have been
recently found to solve such complicated problems, if sufficient training data is
available. Cascade of shrinkage fields [17] and trainable nonlinear reaction diffu-
sion [4], have been shown to outperform the well-engineered classical techniques,
such as BM3D, in the case of optical color images. Recently, deep learning has also
facilitated the design of X-ray image denoising methods [16] as well as blind de-
noising methods for optical color images [22]. Wolterink et al. [20] have employed
a generative adversarial network for denoising low-dose CT volumes by transform-
ing them to a higher dose level. Unfortunately, these methods require pairs of im-
ages, which are often not available in clinical practice.

In the past, researchers have tried adding noise to high-dose images to simu-
late low-dose images based on the assumption that the sequences are corrupted
by either Poisson noise or Gaussian noise or even both [16,1,3]. Unfortunately,
they have usually relied on image formation models that may not fully account
for how X-ray images are acquired in practice, e.g., when different gain factors are
used depending on the tube settings. Often the assumption made is that the de-
tector gain is 1. This may not always be true, as a higher gain is usually applied
when the dose is low to make a better utilization of the available dynamic range of
the Digital/Analog converter. Moreover, at very low-dose levels and high gain fac-
tors, even a small amount of electronic noise starts to matter, and the noise itself
may also vary with respect to the detector gain that has been used. Finally, when
developing and assessing algorithms, researchers have often relied on sequences
stored in the DICOM (Digital Imaging and Communications in Medicine) format
for generating noise corrupted images [16]. In general, DICOM image sequences
are tone mapped versions of the Poisson-Gaussian corrupted input sequences and
no longer represent actual pixel values, whose brightness is proportional to the
amount of the received X-ray quanta. Unless system dependent parameters are
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taken into account, it may not be possible to simulate realistic noisy low-dose
sequences from their high-dose counterparts. In this paper, we propose a novel
method to generate realistic low-dose X-ray images from unprocessed (i.e., non-
linear post-processing has not been applied) high-dose X-ray images, while ensur-
ing that the characteristics of the simulated and the corresponding real low-dose
images are similar. The realistic simulations of low-dose images could be used to
develop learning-based denoising approaches in order to enhance the image qual-
ity of low-dose X-ray images. This in turn would benefit patients as well as the clin-
icians as it would result in a reduction in the exposure to X-ray radiation.

2 Related Work

To address the issue of the lack of low-dose X-ray images, researchers have been
considering the possibility of simulating them. In the following paragraphs, we
briefly present some commonly used approaches.

Modelling noise has been an important prerequisite for designing noise reduc-
tion filters. Considering photon noise to be a fundamental limitation of images ac-
quired at low-light levels, Kuan et al. [12] model the images to be corrupted by Pois-
son noise. Based on the degradation model [12], the corrupted pixel value g [i , j ] is
modeled as:

g [i , j ] = Poissona( f [i , j ])

a
, (1)

where, f [i , j ] is the original pixel value, Poissona(.) is a Poisson random generator
and a is a proportionality factor that controls the severity of the noise level. Ac-
cording to [12], a is chosen arbitrarily. They suggest that a suitable range for a is
between 0 and 1 (0 being the worst case). As the emission of photons from an X-
ray source can be described as a Poisson process, Chan et al. [3] have adapted the
model presented in Eq. 1 to X-ray imaging. According to their model, the probabil-
ity of receiving k photons at the detector, given that the mean rate of arrival is n0

photons, is represented by

p(k) = e−n0 ·nk
0

k !
. (2)

As the variance equals the mean for a Poisson process, the standard deviation of
quantum noise is

p
n0. Chan et al. [3] also assume that quantum mottle will mask

the effects of other degradation factors, such as electronic noise and quantization
noise. In the case of attenuation, the average number of received photons n is ap-
proximated as ρ ·n0, where ρ is given as

ρ = e−µl (3)

with µ being the X-ray attenuation factor and l the path length. Finally, they map
the photon count n to a gray value d using a linear function f (.) as follows:

d = f (α ·n), (4)
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where α is the gain of the imaging system. Based on this model, they corrupt the
image by first decreasing the photon count by a degradation factor ρ - which could
be the ratio of dose levels - then generate a new Poisson random number using the
new mean ρ ·n that represents the average photon count incident on the detector
and finally rescale the value by 1/ρ to obtain the corrupted pixel to achieve the
effect of the automatic gain control. Chan et al. [3] claim their model to be similar
to the degradation model of Kuan et al. [12], if ρ = a and the maximum number of
photon counts is equal to the number of gray values. In what follows, we refer to
this approach as DPN-Method (direct Poisson noise estimate). Unfortunately, this
method may not be accurate enough as it involves corrupting a scaled actual X-ray
image - which is already corrupted by some amount of Poisson noise - with more
Poisson noise. Moreover, the influence of electronic noise is completely neglected.
While permissible in a higher dose setting, this assumption may not be applicable
for very low-dose scenarios.

Holdsworth et al. [10] have quantified noise in digital images by calculating
the relationship between standard deviation and intensity values from bright field
and dark field charged coupled device (CCD) images. Veldkamp et al. [19] have
measured the overall noise associated with different pixel values for different mAs
settings using raw X-ray images of a LucAl phantom. Then, by performing linear in-
terpolations between the measured data, they have obtained a look-up table with
pixel values and associated noise levels. For the simulation of low-dose image, they
first calculated a pixel in the reduced dose image r [i , j ] by scaling the pixel inten-
sity values in the input image y[i , j ] by a dose reduction quotient c and then added
noise of the appropriate amount m[i , j ] as shown below:

r [i , j ] = y[i , j ]

c
+m[i , j ]. (5)

m[i , j ] is white noise from a Gaussian distribution with variance σ2
add[i , j ]. This

variance is computed from the variance associated with y[i , j ], σ2
y [i , j ], and the

variance associated with the corresponding mean pixel value of an acquired low-
dose image, σ2

low[i , j ] as follows:

σ2
add[i , j ] =σ2

y [i , j ]
c2 −p2

c2 ·p2 , (6)

where

p2 =
σ2

y [i , j ]

σ2
low[i , j ]

. (7)

In the rest of the paper, this approach is referred to as SDAGN-Method (signal-
dependent additive Gaussian noise).

Gislason-Lee et al. [6] have extended the method proposed in [19] by consid-
ering different beam energies and dose levels for constructing the look-up table.
They have analyzed flat field X-ray images of polymethyl methacrylate blocks ac-
quired at different beam energies and dose levels to obtain the relationship be-
tween variance of noise, the mean pixel intensity and the X-ray dose for different
beam energies, i.e., for each beam energy they have plotted variance of noise as
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a function of the mean pixel intensity at all dose levels and have calculated a lin-
ear fit. With the help of the obtained look-up table, they have simulated low-dose
X-ray images using the method proposed in [19]. Although the methods proposed
in [19] and [6] inherently take into account the system parameters with the help
of extensive calibrations, the gray value r [i , j ] that is used for calculating the vari-
ance of noise to be added is already corrupted. This means that using the gray
value r [i , j ] as the mean estimate of the pixel may be incorrect and this may cause
inconsistencies in the added signal-dependent noise.

3 Material and Methods

Noise can have various sources, e.g., quantum noise, electronic noise or quantiza-
tion noise, and, depending on the imaging situation, different gains are applied.
To take this into account while simulating low-dose X-ray images, Gislason-Lee et
al. [6] and Veldkamp et al. [19] have made use of extensive calibrations. On the
other hand, we have introduced a low-dose simulation method based on an image
formation model instead of extensive calibrations.

3.1 Image Formation and Noise Model

The intensity of an X-ray beam is the product of the number of photons in the
beam and its energy. As the beam traverses matter, it is attenuated and scattered,
resulting in a reduction of the intensity of the beam.

The formation of images from X-ray quanta can be assumed to follow a linear
model [21]. The mean gray value ȳ[i , j ] at a particular location [i , j ] has a linear
relationship with respect to the incident mean X-ray air kerma x̄ at that location.
That is, the measured mean quanta x̄[i , j ] is scaled by the detector gain α and
shifted by the overall system offset p (assuming flat field correction). This can be
represented using:

ȳ[i , j ] =α · x̄[i , j ]+p. (8)

The quantum nature of X-ray photons can be modeled using a Poisson distribu-
tion. The presence of electronic noise, e.g., due to read out noise and dark current,
can be modeled using a Gaussian distribution with zero mean. The formation of
an image can thus be represented as:

y[i , j ] =α · (x[i , j ]+ηa[i , j ]
)+p +ηq [i , j ] =α · x[i , j ]+p +η[i , j ]. (9)

Here, x, ηa , ηq and y represent the quanta, electronic noise due to analog
sensor read out, electronic noise due to quantization (analog to digital conver-
sion) and the noise-corrupted detector pixel value, respectively. The overall addi-
tive noise can be represented as η (η= ηa +ηq ). The gain is typically chosen such
that the resulting pixel values occupy as much of the available dynamic range as
possible before the quantization takes place. The choice of the detector gain deter-
mines the amount of Poisson noise present in the images. The variance associated
with the gray values can be represented as:
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σ2
y [i , j ] =α2 ·σ2

x [i , j ]+σ2
n . (10)

Since the variance of Poisson noise is related directly to the mean value, Eq. 10
can be rewritten as

σ2
y [i , j ] =α2 · x̄[i , j ]+σ2

η. (11)

This noise model is also in line with [6] and [19], i.e., the relationship between
the mean intensity value and the noise variance for different gray values can be
represented using the associated system parameters. This could reduce the exten-
sive calibrations that are required for their low-dose X-ray image simulations.

3.2 Generation of Low-dose Images from corresponding High-dose Images

Let us assume that we acquire a high-dose image yh[i , j ] as well as a low-dose im-
age yl [i , j ] of the same object using the same tube voltage. From Eq. 9, the images
can be modeled as:

yh[i , j ] =αh · xh[i , j ]+ph +ηh[i , j ], (12)

and
yl [i , j ] =αl · xl [i , j ]+pl +ηl [i , j ]. (13)

The mean dose at a particular pixel in the high-dose image should be a scaled
version (by a factor c) of the mean dose of the corresponding pixel in the low-dose
image, i.e.,

x̄l [i , j ] = x̄h[i , j ] · c. (14)

From Eq. 8, Eq. 12, Eq. 13 and Eq. 14, the mean gray values of the low-dose and
high-dose can be related as follows:

ȳh→l [i , j ] = αl

αh
· c · ȳh[i , j ]+pl − c · αl

αh
·ph . (15)

From Eq. 15, it can be observed that the mean pixel values of the low-dose im-
age ȳh→l can be derived from the mean pixel values of the high-dose image by scal-
ing and adding an offset. This is the first step of the algorithm as shown in Fig. 1.
The use of these transform parameters helps in retaining the mean of low-dose
images, i.e, the mean gray values of yh→l are the same as found in yl . In our imple-
mentation, the outcomes of Eq. 14 and Eq. 15 are rounded to the next integer value.
This transformation can also be performed by analyzing several corresponding re-
gions of the low- and high-dose images and obtaining the scaling factor as well as
the offset. The transformation also scales the electronic noise due to analog sensor
read out ηa to match that of low-dose images.

The next step is to add noise to the linearly transformed high-dose image ȳh→l

in such a way that its noise level matches the one found in the original (acquired)
low-dose images [9]. We perform this in the generalized Anscombe domain by
adding an appropriate amount of white Gaussian noise. The generalized Anscombe



7

High-dose
Image (yh )

High-dose Sys-
tem Parameters
(αh ,ηh , ph ,dh )

Low-dose Sys-
tem Parameters

(αl ,ηl , pl ,dl )

Derive Mean Low-dose Image
ȳh→l [i , j ] = αl

αh
· c · ȳh [i , j ]+ pl − c · αl

αh
· ph

Foward Generalized Anscombe Transform
ȳ ′h→l [i , j ] = FG AT (ȳh→l [i , j ],αl , pl ,σηl )

Add Noise
ȳ ′h→l [i , j ] = ȳ ′h→l [i , j ] +ψ · (1 −σh→l )

Inverse Generalized Anscombe Transform
yh→l [i , j ] = IG AT (ȳ ′h→l [i , j ],αl , pl ,σηl )

Simulated
Low-dose

Image (yh→l )

Fig. 1 Workflow of the proposed noise simulation approach.

transform (GAT) has been designed to stabilize signal-dependent mixed Poisson-
Gaussian noise to a known constant (usually unit variance), i.e., the noise in the
transformed image has a normal distribution [18]. The transform is applied element-
wise to the image and the parameters required for the transform are the system
gain, the system offset and the standard deviation of electronic noise. The system
parameters of the low-dose image, αl , pl and σηl , are used to apply the GAT on
ȳh→l to obtain ȳ ′

h→l . Since the signal to noise ratio is much higher in high-dose
images, the noise present in ȳ ′

h→l (σh→l ) will, in general, be very low (variance
much less than 1). The amount of noise in the image is measured by analyzing
flat patches. Taking into account the amount of noise present, a noise mask if first
computed with Gaussian noise of the standard deviation 1−σh→l . If binning of de-
tector elements is involved, the noise mask is filtered accordingly, e.g, in the case of
2×2 binning of the detector elements, the noise mask is scaled by a factor of 2 and
then a 2×2 average filter is applied to maintain the required standard deviation.
Afterwards, the noise mask is added to ȳ ′

h→l in order to make the standard devia-
tion of noise equal to one. The corrupted image in the GAT domain is represented
as y ′

h→l . Finally, an inverse GAT is applied on y ′
h→l using the system parameters of

the low-dose image, αl , σηl and pl , to get back to the image domain yh→l .
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3.3 Material

Unprocessed coronary and cerebral angiography X-ray images have been chosen
to validate the proposed method. The X-ray images (after detector correction) have
been acquired using a thorax phantom at different dose levels (100%, 81%, 50%,
28%, 15% and 7.5%) without moving the phantom. Similarly, X-ray images using
a brain angiogram phantom have been acquired at dose levels of 100%, 66%, 33%
and 22%. Based on the specified phantoms and dose levels, the X-ray images have
been acquired using two different angiographic X-ray imaging systems (Siemens
Healthineers AG, Erlangen, Germany). The first one is a general-purpose angio-
graphic X-ray system, referred to as GP-System hereafter. The second one has been
designed with low-dose applications in mind and has been abbreviated as LD-
System in the rest of the manuscript. The sequences acquired at 100% dose - the
clinical standard - have been used as a basis for the simulation of the low-dose
images. It has also been verified that the images have been acquired at the same
tube voltage. The system parameters used during the acquisition have been used
for transforming the high-dose images yh to low-dose yh→l .

Visual and statistical comparisons of simulated images obtained using DPN-
Method [3], SDAGN-Method [19] and the method proposed in this paper have
been performed. The high-dose images used for simulating the low-dose images
along with the regions used for comparison have been highlighted in Fig. 2. The
statistical comparison has been carried out by analyzing the standard deviation
and the mean of several corresponding flat regions in the acquired low-dose and
the simulated low-dose images for all the mentioned dose fractions. In addition
to this, the corresponding regions of the simulated low-dose images generated
from 100% dose images and the actual low-dose images have been compared us-
ing a two-sample Kolmogorov-Smirnov Test [15] at 5% significance level. The two-
sample Kolmogorov-Smirnov (KS) test is a non-parametric hypothesis test that
evaluates the difference between the cumulative distribution functions of the dis-
tributions of two sample data vectors.

(a) (b) (c) (d)

Fig. 2 100% dose images used for simulating low-dose images. (a) and (b) are the images of the tho-
rax phantom obtained using GP-System and LD-System, respectively. (c) and (d) are the images of the
brain angiogram phantom obtained using GP-System and LD-System, respectively. The regions used
for evaluation have been highlighted. The regions highlighted with blue and green bounding boxes
have been used for assessing the impact of the region size on the evaluation (Fig. 5 and Fig. 6).
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Since, an open source implementation of DPN-Method [3] and SDAGN-Method
[19] is not available, we have implemented the methods ourselves. In the case of
DPN-Method [3], we do not perform a rescaling by 1/ρ as we work with raw images
that do not involve an automatic gain control. For SDAGN-Method [19], we have
used the system parameters associated with yl (Eq. 12) and yh (Eq. 13), to obtain
σlow and σy , respectively, as per Eq. 10.

4 Results

Since the reduction of the X-ray dose used for imaging is our main motivation, we
have decided to focus on the visualization of the images with the lowest available
dose levels in this study, i.e., 7.5% for the thorax phantom and 22% for the brain
angiogram phantom. Figure 3a and Fig. 3b show two example regions of interests
(ROIs) of the acquired 7.5% dose image of the thorax phantom (see Fig. 2a and
Fig. 2b) and the simulated images using the methods presented in [3], [19] and
the proposed method for the two imaging systems, respectively. Similarly, Fig. 4a
and Fig. 4b show two ROIs of the acquired and the simulated results for the brain
angiogram phantom (see Fig. 2c and Fig. 2d). In the case of GP-System, it can be
observed from Fig. 3a and Fig. 4a that the images simulated using DPN-Method [3]
in the case of GP-System may contain either too much noise or too little noise. For
LD-System, it can be seen in Fig. 4b and Fig. 3b that DPN-Method [3] performs
comparatively better. The simulated images obtained using SDAGN-Method [19]
are more similar to the acquired low-dose images with a slight difference in the
appearance of the noise. In fact, the images generated by the proposed method
have the highest visual similarity to the corresponding acquired low-dose images.

Prior to the statistical evaluations, we have determined a suitable region size by
analyzing its impact on the computed standard deviations. In Fig. 5a and Fig. 5b,
we have visualized the standard deviations computed using different region sizes
for two exemplary region locations, a homogeneous region (highlighted with a
blue bounding box in Fig. 2c) and a region with mild texture (highlighted with
a green bounding box in Fig. 2d), respectively. It can be seen from Fig. 5a and
Fig. 5b that when the region size is small, there may be inconsistencies in the com-
puted estimates. Therefore, it may not be possible to estimate reliably the gray-
level statistics of the region. However, if the size of the chosen region is too large, a
reliable estimation of the local statistics may no longer be possible due to an over-
lap with the texture of neighboring regions. Therefore, the size of the region in the
range [20 × 20 pixels, 50 × 50 pixels] may be a suitable choice for analyzing the
local statistics of the generated images. In Fig. 6a and Fig. 6b, we have shown the
influence of the region size - using all the selected regions - on the average percent-
age in deviation of the standard deviation of the measurements when compared
to the ground truth, for DPN-Method [3], SDAGN-Method [19] and the proposed
method in the cases of GP-System and LD-System, respectively. It can be observed
that DPN-Method [3], has the maximum deviation, whereas there is a marginal
difference in the values of SDAGN-Method [19] and the proposed method. In addi-
tion, no significant influence of the region size can be seen, in the cases of SDAGN-
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(a) 7.5% dose images of the thorax phantom for GP-System.

(b) 7.5% dose images of the thorax phantom for LD-System.

Fig. 3 Results for the simulation of low-dose (7.5%) images of the thorax phantom derived from 100%
dose images acquired using (a) GP-System and (b) LD-System. The first column from the left has the
ROIs of the acquired low-dose images and columns two, three and four show the simulated results
using DPN-Method [3], SDAGN-Method [19] and the proposed method, respectively.

(a) 22% dose images of the brain angiogram phantom for GP-System.

(b) 22% dose images of the brain angiogram phantom for LD-System.

Fig. 4 Results for the simulation of low-dose (22%) images of the brain angiogram phantom derived
from 100% dose images acquired using (a) GP-System and (b) LD-System. The first column from the
left has the ROIs of the acquired low-dose images and columns two, three and four show the simulated
results using DPN-Method [3], SDAGN-Method [19] and the proposed method, respectively.

Method [19] and the proposed method. However, it must be noted that for the data
obtained from LD-System, the standard deviation begins to stabilize only when the
region size is around 35 × 35 pixels. Therefore, in order to have a sufficient sam-
ple size to perform a reliable analysis of the statistics of the simulated images - in
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the presence of almost negligible to low amounts of texture - we have chosen the
region size to be 35 × 35 pixels.

(a) (b)

Fig. 5 Influence of a chosen region size (region width × region width) on the computed standard devi-
ation in (a) the absence of variance due to texture (computed from the region highlighted with a blue
bounding box in Fig. 2c) and (b) the presence of variance due to mild texture (computed from the re-
gion highlighted with a green bounding box in Fig. 2d).

(a) (b)

Fig. 6 Influence of a chosen region size (region width × region width) on the average percentage in
deviation of the standard deviation in the case of (a) GP-System and (b) LD-System.

We have presented the results of the statistical/quantitative analysis - with re-
spect to means and standard deviations of several corresponding regions - of the
images in Fig. 3 and Fig. 4, in Tab. 1 and Tab. 2, respectively. The quantitative
analysis of the standard deviations supports the visual analysis of the images. In
the case of DPN-Method [3], the difference in the standard deviations of the re-
gions is comparatively low only for LD-System (see Tab. 2). However, for SDAGN-
Method [19] and the proposed method, the standard deviations are close to the
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acquired low-dose images in almost all the cases. From the analysis of the devi-
ation in the mean values, it can be noticed that all the three methods ensure the
preservation of the mean. In Tab. 3, we have presented the average percentage of
deviations in the means and the standard deviations for the 80 regions of interests
for the three methods and the two systems along with the results of the KS test.
There is a significant difference in the percentage of deviation from the expected
standard deviation in the case of the simulated low-dose (SLD) images obtained
using DPN-Method [3] for GP-System (130.23%) when compared to LD-System
(26.44%). But, in the case of SDAGN-Method [19], these deviations are compar-
atively less and more similar for the two systems (2.56% for GP-System and 3.01%
for LD-System). However, the least deviation (2.49% for GP-System and 2.39% for
LD-System) can be achieved for the simulated images generated using the pro-
posed method. The average percentage of deviation in the means is similar and
almost negligible at around 1.5% for all the compared methods. Finally, the results
of the KS test show that in the case of the proposed method the hypothesis, that the
regions belong to the same distribution, has been accepted for 81.43% of the ana-
lyzed cases, whereas, in the cases of DPN-Method [3] and SDAGN-Method [19] the
hypothesis has been accepted only for 10% and 41.43% of the cases, respectively.

Table 1 Comparison of the low-dose (LD) images of the thorax phantom acquired at 7.5% dose with
the corresponding simulated low-dose (SLD) images with respect to mean µ and standard deviation σ

across several regions.

GP-System

Region
LD (7.5%)

SLD
DPN-Method [3]

SLD
SDAGN-Method [19]

SLD
Proposed

µ σ µ σ µ σ µ σ

1 63.13 11.77 63.07 12.94 62.46 11.60 63.59 11.42
2 17.56 7.44 17.57 6.06 17.76 7.55 18.36 7.47
3 38.71 9.00 39.08 9.18 38.73 8.96 39.00 8.75
4 26.36 8.42 26.47 7.62 26.39 8.10 26.90 8.35
5 8.89 7.21 9.15 4.58 9.37 7.38 9.90 6.92

LD-System

Region
LD (7.5%)

SLD
DPN-Method [3]

SLD
SDAGN-Method [19]

SLD
Proposed

µ σ µ σ µ σ µ σ

1 18.28 9.81 19.08 6.42 19.00 9.66 19.87 10.08
2 30.00 11.16 29.11 8.09 29.00 11.50 30.33 10.82
3 45.88 13.06 46.31 10.48 45.91 12.83 46.62 12.25
4 31.80 11.35 32.15 8.94 32.13 10.91 33.08 11.37
5 16.55 11.19 16.18 8.15 16.80 11.24 17.91 11.20
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Table 2 Comparison of the low-dose (LD) images of the brain angiogram phantom acquired at 22%
dose with the corresponding simulated low-dose (SLD) images with respect to mean µ and standard
deviation σ across several regions.

GP-System

Region
LD (7.5%)

SLD
DPN-Method [3]

SLD
SDAGN-Method [19]

SLD
Proposed

µ σ µ σ µ σ µ σ

1 22.29 1.79 21.72 6.73 21.78 1.82 21.94 1.80
2 10.74 1.29 10.57 4.55 10.67 1.22 10.80 1.26
3 6.01 1.95 6.03 3.73 6.09 1.85 6.07 1.97
4 11.90 1.29 11.51 4.68 11.64 1.30 11.75 1.31
5 15.30 1.41 15.30 5.68 15.24 1.35 15.17 1.32

LD-System

Region
LD (7.5%)

SLD
DPN-Method [3]

SLD
SDAGN-Method [19]

SLD
Proposed

µ σ µ σ µ σ µ σ

1 52.44 29.60 52.70 30.27 53.98 28.12 52.68 29.12
2 80.32 9.90 81.43 13.86 81.88 9.99 81.36 9.57
3 116.88 9.97 116.76 16.43 116.05 9.96 116.85 9.57
4 149.73 10.91 150.80 18.35 149.16 10.65 150.99 10.77
5 121.83 18.27 122.15 21.89 122.79 18.40 122.41 18.14

Table 3 Comparison of the simulated and acquired low-dose images with respect to the average per-
centage in deviation of the means µ, the average percentage in standard deviations σ and the success
rate of Kolmogorov-Smirnov test at 5% significance (h) for 80 regions of interests at different dose levels
and different systems.

System

SLD
DPN-Method [3]

SLD
SDAGN-Method [19]

SLD
Proposed

µ σ h µ σ h µ σ h
1 1.25 130.23 5.71 1.08 2.56 28.57 1.58 2.49 80
2 1.07 26.44 14.29 1.50 3.01 54.29 1.66 2.39 82.86

5 Discussion and Conclusion

In this paper, we have proposed an effective method to simulate low-dose X-ray
images from their higher-dose counterparts by taking into account an X-ray im-
age formation model and the corresponding system parameters used for imaging.
The method involves the corruption of the scaled down pixel values of an image
in a noise variance stabilized domain. The use of an image formation model along
with the system parameters used for imaging helps in reducing the extensive cali-
brations otherwise needed to construct look-up tables to find the associations be-
tween mean intensity values and their associated noise variance. Moreover, com-
pared to strategies that require extensive calibrations, the method is easily adapt-
able to different imaging systems.

Existing noise simulation methods that assume a noise model with unit sys-
tem gain fail to provide satisfactory results, when the associated system gain dif-
fers from 1. This is because at low-dose levels a higher system gain is used and
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therefore the influence of noise (including electronic noise) is significantly higher.
Methods that do not account for system parameters require prior calibration and
look-up tables for determining the choice of noise to be added. Even though, the
requirement of such extensive calibrations could be substituted and simplified by
the use of an X-ray image formation model, methods that involve the addition of
noise based on the intensity value of a corrupt pixel may not give accurate results,
for example, in terms of noise characteristics. Since the proposed method involves
the addition of additive white Gaussian noise in a noise variance stabilized do-
main, the mean pixel intensity values are not required. The results of the KS Test at
5% significance level performed for 80 corresponding regions of the real and sim-
ulated low-dose images suggests that the proposed method generates statistically
similar regions at an average rate of 81.43%, whereas, the methods [3] and [19] may
produce such similar regions only for 10% and 41.43% of the cases, respectively.
These results can be supported by the least average deviations of the standard de-
viations between real and simulated images (see Tab. 3).

Since the proposed method makes use of unprocessed X-ray images to simu-
late their low-dose counterparts, it can also be used to derive the low-dose coun-
terparts of other images generated by an X-ray imaging system. For example, in
computed tomography images, it could be used to generate the low-dose counter-
parts of the projection images before the line integrals are computed. A drawback
of the proposed method is that a certain set of system parameters - in particu-
lar the relationship between dose and gray values (system gain) and the remaining
electronic noise - need to be known. In general, these parameters can be estimated
with the help of calibrations, but this requires significant effort as there are many
possible detector entrance dose levels. Fortunately, these parameters can be esti-
mated online using image processing techniques [7]. We also plan to extend our
study to 3D C-arm applications and use the proposed method to generate training
data for artificial neural networks for denoising low-dose X-ray images.

Acknowledgement, Disclaimer and Conflict of Interest: This work was supported
by Siemens Healthineers AG. The concepts and results presented in this paper are
based on research and are not commercially available. The authors declare that
they have no conflict of interest.

Ethical Approval: This article does not contain any studies with human partici-
pants or animals performed by any of the authors.

References

1. Amiot, C., Girard, C., Chanussot, J., Pescatore, J., Desvignes, M.: Spatio-temporal multiscale de-
noising of fluoroscopic sequence. IEEE Trans Med Imaging 35(6), 1565–1574 (2016)

2. Cerciello, T., Bifulco, P., Cesarelli, M., Fratini, A.: A comparison of denoising methods for x-ray flu-
oroscopic images. Biomed Signal Process Control 7(6), 550–559 (2012)

3. Chan, C.L., Sullivan, B.J., Sahakian, A.V., Katsaggelos, A.K., Swiryn, S., Hueter, D.C., Frohlich, T.:
Simulation of quantum mottle in digital angiographic images. In: Biomedical Image Processing,
vol. 1245, pp. 104–111. SPIE (1990)



15

4. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: A flexible framework for fast and effective
image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2017)

5. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Bm3d image denoising with shape-adaptive prin-
cipal component analysis. In: Signal Processing with Adaptive Sparse Structured Representations
(2009)

6. Gislason-Lee, A.J., Kumcu, A., Kengyelics, S.M., Brettle, D.S., Treadgold, L.A., Sivananthan, M.,
Davies, A.G.: How much image noise can be added in cardiac x-ray imaging without loss in per-
ceived image quality? J Electron Imaging 24(5) (2015)

7. Hariharan, S.G., Kaethner, C., Strobel, N., Kowarschik, M., Fahrig, R., Navab, N.: Estimation of
noise stabilization parameters for low-dose x-ray images corrupted by poisson-gaussian noise.
Manuscript in preparation (2018)

8. Hariharan, S.G., Strobel, N., Kaethner, C., Kowarschik, M., Demirci, S., Albarqouni, S., Fahrig, R.,
Navab, N.: A photon recycling approach to the denoising of ultra-low dose x-ray sequences. Int J
CARS (2018). DOI 10.1007/s11548-018-1746-2

9. Hariharan, S.G., Strobel, N., Kowarschik, M., Fahrig, R., Navab, N.: Simulation of realistic low dose
fluoroscopic images from their high dose counterparts. In: Bildverarbeitung für die Medizin 2018,
pp. 80–85. Springer (2018)

10. Holdsworth, D., Gerson, R., Fenster, A.: A time-delay integration charge-coupled device camera for
slot-scanned digital radiography. Medical physics 17(5), 876–886 (1990)

11. Kostadin, D., Alessandro, F., KAREN, E.: Video denoising by sparse 3d transform-domain collabo-
rative filtering. In: Eur. Signal Process. Conf, vol. 149 (2007)

12. Kuan, D.T., Sawchuk, A.A., Strand, T.C., Chavel, P.: Adaptive noise smoothing filter for images with
signal-dependent noise. IEEE transactions on pattern analysis and machine intelligence (2), 165–
177 (1985)

13. Luisier, F., Blu, T., Unser, M.: A new sure approach to image denoising: Interscale orthonormal
wavelet thresholding. IEEE Trans Image Process 16(3), 593–606 (2007)

14. Makitalo, M., Foi, A.: Optimal inversion of the generalized anscombe transformation for poisson-
gaussian noise. IEEE Trans Image Process 22(1), 91–103 (2013)

15. Massey Jr, F.J.: The kolmogorov-smirnov ttest for goodness of fit. J Am Stat Assoc 46(253), 68–78
(1951)

16. Matviychuk, Y., Mailhé, B., Chen, X., Wang, Q., Kiraly, A., Strobel, N., Nadar, M.: Learning a multi-
scale patch-based representation for image denoising in x-ray fluoroscopy. Proc Int Conf Image
Proc pp. 2330–2334 (2016)

17. Schmidt, U., Roth, S.: Shrinkage fields for effective image restoration. In: Proc IEEE Comput Soc
Conf Comput Vis Pattern Recognit, pp. 2774–2781 (2014)

18. Starck, J.L., Murtagh, F.D., Bijaoui, A.: Image processing and data analysis: the multiscale approach.
Cambridge University Press (1998)

19. Veldkamp, W.J., Kroft, L.J., van Delft, J.P.A., Geleijns, J.: A technique for simulating the effect of dose
reduction on image quality in digital chest radiography. Journal of digital imaging 22(2), 114–125
(2009)

20. Wolterink, J.M., Leiner, T., Viergever, M.A., Isgum, I.: Generative adversarial networks for noise re-
duction in low-dose ct. IEEE Trans Med Imaging (2017)

21. Yang, K., Huang, S.Y., Packard, N.J., Boone, J.M.: Noise variance analysis using a flat panel x-ray
detector: A method for additive noise assessment with application to breast ct applications. Med
Phys 37(7), 3527–3537 (2010)

22. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: Residual learning of
deep cnn for image denoising. IEEE Trans Image Process (2017)



6. Learning-based Denoising of X-ray Images

6.3. Learning-based X-ray Image Denoising Utilizing
Model-based Image Simulations

6.3.1. Paper Summary

It is common practice to use advanced denoising techniques to ensure acceptable image
quality at low X-ray dose levels. However, at very low dose levels, the application of con-
ventional denoising techniques (such as block matching 3D [199] and weighted nuclear
norm minimization [114]) may lead to undesirable artifacts or oversmoothing. In addition,
applying these methods in real-time is non-trivial as they rely on solving a complex op-
timization problem [118]. On the other hand, supervised learning techniques, which are
comparatively less expensive computationally during the inference phase, have outper-
formed conventional denoising techniques, provided aligned pairs of associated noise-free
(high-dose X-ray) and noisy (low-dose X-ray) images are available [118]. Unfortunately, it
is neither acceptable nor possible to acquire such image pairs in clinical practice.

The contribution of the following paper is a novel learning-based denoising strategy for
X-ray images [5]. The approach involves the use of model-based simulations of low-dose
X-ray images during the training phase [4] (Section 6.2). In addition, a data-driven normal-
ization step based on an X-ray imaging model is proposed to make the approach suitable
for images acquired at different dose levels. The normalization involves the application of
the generalized Anscombe transform. It utilizes the imaging parameters associated with
an X-ray image in order to stabilize the noise variance to a known constant [1] (Chapter 4).
In other words, this normalization step is used to remove the dependency of the trained
network on different amounts of signal-dependent noise in the input images acquired at
different dose levels using different image acquisition protocols.

To train the denoising network, 1200 unprocessed clinical X-ray images acquired at 100%
of the standard-dose have been used to simulate X-ray images corresponding to 25% and
30% of the standard X-ray dose. The method has been evaluated using 4475 clinical X-ray
images (2425 at 25% and 2050 at 30% of the standard X-ray dose) and 400 X-ray images
of four different anthropomorphic phantoms (200 at 25% and 200 at 30% of the standard
X-ray dose).

A quantitative and a qualitative analysis carried out by image quality experts have
shown that the proposed strategy outperforms well-established conventional X-ray im-
age denoising methods. Most importantly, the experts have found the proposed method
to yield well-denoised images that are sharp, free from artifacts and have a realistic ap-
pearance. In addition, the proposed strategy of applying noise variance stabilization prior
to training and application of the network avoids the introduction of artifacts that may be
present in the results of commonly used strategies – such as training a denoising network
to transform low-dose X-ray images to higher dose images. Furthermore, the method re-
sults in an image quality that is superior to that of the standard-dose images used for
training. This indicates that the performance of the method is not limited by the quality
of data used during the training phase. Finally, the evaluation has also indicated that the
proposed approach allows for a significant dose reduction without sacrificing important
image information.
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Abstract. X-ray guidance is an integral part of interventional proce-
dures, but the exposure to ionizing radiation poses a non-negligible threat
to patients and clinical staff. Unfortunately, a reduction in the X-ray dose
results in a lower signal-to-noise ratio, which may impair the quality of
X-ray images. To ensure an acceptable image quality while keeping the
X-ray dose as low as possible, it is common practice to use denoising tech-
niques. However, at very low dose levels, the application of conventional
denoising techniques may lead to undesirable artifacts or oversmoothing.
On the other hand, supervised learning techniques have outperformed
conventional techniques in producing suitable results, provided aligned
pairs of associated high- and low-dose X-ray images are available. Un-
fortunately, it is neither acceptable nor possible to acquire such image
pairs during a clinical intervention. To enable the use of learning-based
methods for the denoising of X-ray images, we propose a novel strategy
that involves the use of model-based simulations of low-dose X-ray im-
ages during the training phase. We utilize a data-driven normalization
step that increases the robustness of the proposed approach to varying
amounts of signal-dependent noise associated with different X-ray image
acquisition protocols. A quantitative and qualitative analysis based on
clinical and phantom data shows that the proposed strategy outperforms
well-established conventional X-ray image denoising methods. It also indi-
cates that the proposed approach allows for a significant dose reduction
without sacrificing important image information.

1 Introduction

X-ray guidance during interventional procedures has gained immense importance
in the recent past. Since X-ray imaging involves ionizing radiation, the medical
benefits are accompanied by health risks. Even though the X-ray radiation dose

Author’s Final Manuscript
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could be lowered to reduce them, it would also lower the image quality and
may result in images that are clinically unacceptable. To preserve the required
image quality at lower dose levels, sophisticated denoising techniques can be used.
Noise reduction has been an important requirement not only for medical images,
but also for optical images. Among others, block matching 3D (BM3D) [3]
and denoising based on weighted nuclear norm minimization (WNNM) [4] are
well-engineered patch-based approaches that combine non-local self similarity
with transform-based processing to provide a significant noise reduction. Though
BM3D has been developed about a decade ago, it is still considered to be one of
the most effective methods [2, 13]. However, as these methods rely on solving a
complex optimization problem [13], applying them in real-time is non-trivial.

Deep learning-based denoising techniques have been applied to optical im-
ages [13] and medical images, e.g., fluoroscopic X-ray images [10]. Unfortunately,
such methods require pairs of noise-free and noisy images. Acquiring such image
pairs in a clinical setting is close to impossible due to the associated increase
in ionizing radiation and patient motion. Fortunately, Lehtinen et al. [9] have
recently shown that deep learning-based denoising techniques can be designed
by training networks with pairs of spatially aligned noisy instances of images
alone. However, even acquiring such pairs may be difficult in a clinical scenario.
In principle, the need for aligned image pairs could be overcome by resorting
to generative adversarial networks that make use of a cycle consistency loss [8].
However, high-dose X-ray images would again be needed, which may not be avail-
able. Since the results of the method are at the most as good as the high-quality
images used for training [8], the lack of appropriate data is a limiting factor.

In this work, we propose a strategy that overcomes the above mentioned
issues. It involves the training of a denoising neural network using different
instances of simulated low-dose X-ray images. Since we desire an approach that is
suitable for denoising X-ray images acquired at different dose levels, we introduce
a model-based and data-driven normalization step. The normalization removes
the dependency of the trained network on different amounts of signal-dependent
noise in the input images acquired at different dose levels. To the best of our
knowledge, this is the first work that has shown the benefits of considering an
imaging model when designing learning-based X-ray image denoising algorithms.

2 Material and Methods
Depending on the imaging system and the situation, X-ray images can be cor-
rupted by different amounts and types of noise, e.g., quantum noise, electronic
noise and quantization noise. Moreover, the signal-to-noise-ratio is directly pro-
portional to the radiation dose used. Based on these characteristics, we have
designed a learning-based method to denoise X-ray images.

2.1 X-ray Imaging Model
The transformation of the received X-ray quanta collected at a flat-panel detector

to a gray value in an image involves a series of steps, namely the absorption of
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the X-rays in the scintillator as well as the generation, coupling and integration
of the optical photons by evenly spaced photo-diodes [11]. It can be assumed that
this process follows a linear model [12]. Thus, the observed noise-corrupted gray
value y ∈ RM×N at row r and column c can be represented as

y[r, c] = β · x[r, c] + g + n[r, c], (1)

where x ∈ RM×N , n ∈ RM×N , β and g represent the charges (corrupted by
quantum noise) at the photo-diodes, the electronic noise with standard deviation
(STD) σn, the overall system gain and the (constant) system offset, respectively.
The (mixed) noise variance of a detector pixel’s gray value can be expressed as

σ2
y[r, c] = α · (ȳ[r, c] − g) + σ2

n, (2)

a line with slope α and y-intercept σ2
n. ȳ[r, c] denotes the mean (noise-free) value

of y[r, c] and the parameter α depends on the gain mode of the detector [12]. The
imaging parameters α and σ2

n can, for example, be obtained from the system
specifications or using calibration measurements [11]. Once known, they can be
taken into account to perform a noise variance stabilization (NVS) based on the
generalized Anscombe transform (GAT) as suggested in [5, 6]:

y′[r, c] = t(y[r, c]) = 2
α

√
α · y[r, c] + 3

8α2 − α · g + σ2
n. (3)

The resulting pixel values y′[r, c] have signal-independent noise with unit variance.

2.2 Denoising of low-dose X-ray images

The learning process involves the transformation of noise-corrupted instances
of an image (or a region) into another [9], where the different instances have
the same underlying noise statistics. In order to get two such noise-corrupted
instances, we have relied on realistic simulations of low-dose images yl1 and
yl2 from a standard-dose X-ray image ys. In the first step, ys is scaled down –
such that its gray value range matches the gray value range of a corresponding
low-dose image – to obtain ys→l. Then, to simulate a low-dose image yl from
ys→l, signal-dependent and signal-independent noise need to be added [1]. We
have simulated the signal-independent electronic noise as additive white Gaussian
noise (AWGN) ηe[r, c] in the image domain [1]. Since the gray values of ys→l

are not noise-free, we have simulated the signal-dependent quantum noise by
adding filtered AWGN (correlated noise) ηq[r, c] in the GAT domain [7]. Filtered
AWGN is used to include the influence of the detector blur on quantum noise.
The process is described by

yl[r, c] = t−1(t(ys→l[r, c]) + kq ∗ ηq[r, c]) + ηe[r, c], (4)

where t−1(.) represents the inverse GAT. The filtering kernel kq and the noise
components ηq and ηe can be derived from the system’s modulation transfer
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function and noise power spectrum. As mentioned earlier, we have performed
an NVS on yl1 and yl2 as per Eq. 3 to obtain y′

l1
and y′

l2
, respectively. Similarly,

ys→l can be normalized using the imaging parameters associated with yl1 to
get y′

s→l. From y′
l1

, y′
l2

and y′
s→l, we randomly select regions of size K × K

around a particular location (e.g, around [r, c]) to get l′
1 ∈ RK×K , l′

2 ∈ RK×K

and s′ ∈ RK×K , respectively. Since X-ray images are always corrupted by some
amount of noise, s′ can be expressed as:

s′[r, c] = s̄′[r, c] + ηs→l[r, c], (5)

where s̄′[r, c] is the noise-free version of s′[r, c] and ηs→l[r, c] is the filtered white
Gaussian noise component (associated with s′[r, c] in the GAT domain) with
STD σs→l. Similarly, l′

1 and l′
2 can be expressed as:

l′
1[r, c] = s̄′[r, c] + ηs→l[r, c] + η1[r, c] = s̄′[r, c] + ηl1 [r, c],

l′
2[r, c] = s̄′[r, c] + ηs→l[r, c] + η2[r, c] = s̄′[r, c] + ηl2 [r, c],

(6)

where, η1 and η2 are noise matrices with filtered AWGN of STD
√

1 − σ2
s→l and

the STD of noise in ηl1 and ηl2 is 1.
The network D(l′

1, θ) is then trained with P randomly chosen pairs of noisy
regions {l

′(i)
1 , l

′(i)
2 }P

i=1 based on minimizing the function

l(θ) = 1
P

P∑

i=1

∥∥∥∥∥

(
D(l′(i)

1 , θ) − l
′(i)
2

)∥∥∥∥∥
2

= 1
P

P∑

i=1

∥∥∥∥∥

(
l
′(i)
1 + R(l′(i)

1 , θ) − l
′(i)
2

)∥∥∥∥∥
2

, (7)

where θ represents the parameters of D and the output of D(l′
1, θ) has been

rewritten as l′
1 + R(l′

1, θ) (R(l′
1, θ) ∈ RK×K is the difference between the output

and the input of the network). Using Eq. 6, Eq. 7 can be rewritten as

l(θ) = 1
P

P∑

i=1

∥∥∥∥∥

(
s̄′(i) + η

(i)
l1

+ R(l′(i)
1 , θ) − (s̄′(i) + η

(i)
l2

)
)∥∥∥∥∥

2

= 1
P

P∑

i=1

∥∥∥∥∥

(
η

(i)
l1

+ R(l′(i)
1 , θ) − η

(i)
l2

)∥∥∥∥∥
2

.

(8)

Due to the use of a large amount of simulations, the random nature of noise and
the dependency of the output of the network mainly on l′

1 (and its independence
from l′

2), it is not possible for the network to result in R(l′
1, θ) = ηl2 − ηl1 to

reach an average minimum loss of 0. On the other hand, it may be possible to
obtain R(l′

1, θ) ∼ −ηl1 , which would result in an average loss of around 1 as STD
of noise in ηl1 ∼ 1. This implies that the best possible solution to Eq. 8 is the
generation of a noise-free region.

Since the proposed method involves pairs of low-dose images as input, we have
referred to it as L2L (low2low as analogy to noise2noise [9]). As an alternative,
l′
2 can also be replaced by s′ in Eq. 7, which would result in the convergence of

the average loss to σηs→l
. We have referred to this approach as L2H (low2high).
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2.3 Material

In terms of the network architecture, we have used the U-Net architecture
and the training strategy proposed in [9]. To train networks for the different
denoising approaches, we have made use of 1200 unprocessed clinical X-ray
images (M=N=896) acquired at 100% of the standard X-ray dose and simulated
X-ray images corresponding to 25% and 30% of the standard X-ray dose. We
have trained the networks (one network for each approach) for 1000 epochs
using quadratic regions of width K=128. Then, we have evaluated the trained
networks on 4475 clinical X-ray images (2425 at 25% and 2050 at 30% of the
standard X-ray dose) and 400 X-ray images of 4 different anthropomorphic
phantoms (200 at 25% and 200 at 30% of the standard X-ray dose). To show the
impact of using an NVS, we have presented the results of the networks trained
for L2L and L2H with and without an NVS. As a benchmark, we have also
compared the results of the learning-based approaches with those of WNNM [4]
and BM3D [3]. Since these methods have been designed specifically for AWGN,
we have applied an NVS (Eq. 3) before using them. For the phantom images,
quantitative analyses have been performed with respect to peak signal-to-noise-
ratio (PSNR), structural similarity index (SSIM) and contrast-to-noise ratio
(CNR). Noise-free ground-truth (GT) images have been generated by temporally
averaging 500 noisy static images. Since it is not possible to acquire a GT for
clinical images, we have performed a quantitative evaluation using CNR alone.
In addition, a blind qualitative evaluation of fifteen scenes by six independent
X-ray image quality experts has been conducted.

3 Results

In Fig. 1, we have presented the input as well as the processed regions of interest
(ROIs) of an angiographic head phantom acquired at 30% of the standard X-ray
dose. It can be seen that, even after applying an NVS, BM3D has resulted in
noticeable artifacts (Fig. 1d) and WNNM has yielded a comparatively blurred
output (Fig. 1e). The learning-based approaches, L2L as well as L2H, have also
resulted in mild artifacts when an NVS is not used (Fig. 1f and Fig. 1g). However,
combining these approaches with an NVS has improved their performance signifi-
cantly (Fig. 1h and Fig. 1i). In particular, L2L with an NVS (Fig. 1i) has achieved
a superior denoising performance compared to the other methods. Moreover, the
result of L2L with NVS (Fig. 1i) is more similar to its noise-free counterpart
(Fig. 1a) and also less noisy compared to the corresponding unprocessed standard-
dose ROI (Fig. 1b). In Fig. 2, it can be seen that for the clinical images acquired
at 30% of the standard-dose the results are in accordance with those from the
phantom study. Since the use of L2L has resulted in less artifacts when compared
to L2H in the phantom study, we have focused on L2L for this comparison.

In Tab. 1, we have presented the results of the quantitative analyses for the
X-ray images acquired at 25% and 30% of the standard dose level. It can be
observed that all the methods have resulted in a substantial improvement over
the input. The learning-based approaches L2L and L2H have performed better
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 1: Visualization of X-ray acquisitions (selected ROI) of an angiographic head
phantom: (a) GT, (b) standard-dose, (c) 30% standard-dose and the results
of processing (c) using: (d) BM3D with NVS (e) WNNM with NVS, (f) L2H
without NVS, (g) L2L without NVS, (h) L2H with NVS and (i) L2L with NVS.

(a) (b) (c) (d) (e)

Fig. 2: Visualization of selected ROIs of an angiographic sequence acquired at
30% of the standard dose level: (a) input, (b) BM3D with NVS (c) WNNM with
NVS, (d) L2L without NVS and (e) L2L with NVS.

when an NVS is involved. In fact, L2L with NVS has outperformed the other
methods with respect to mean PSNR and SSIM. On the other hand, WNNM
with NVS has resulted in a mean CNR that is even higher than that of the
GT images indicating that the resulting images have been oversmoothed. These
findings support the visual analysis.

The result of the experts’ evaluation presented in Fig. 3 indicates that the
learning-based approaches outperform BM3D and WNNM. Even though WNNM
has obtained high scores for denoising performance and freedom from artifacts,
it has received low scores for sharpness and realistic appearance. On an average,
L2L with NVS has been found to produce visually superior results that are well
denoised, sharp, artifact-free and most importantly realistic.

4 Discussion and Conclusion

We have presented a learning-based denoising approach that uses an imaging
model to generate training data as well as to normalize the input data. Since the
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Table 1: Quantitative evaluation of the denoising methods. The mean values for
the different metrics are presented and the values closest to GT are highlighted.
Dose Category Metric Input BM3D

NVS
WNNM
NVS

L2H L2L L2H
NVS

L2L
NVS

GT

25% Phantom
PSNR 25.69 29.92 32.54 30.28 30.67 31.70 32.63 Inf
SSIM 0.927 0.971 0.984 0.973 0.975 0.980 0.985 1
CNR 16.39 45.84 84.72 36.98 38.92 40.90 52.16 58.69

Clinical CNR 15.81 43.96 94.57 34.83 35.70 36.12 46.02 -

30% Phantom
PSNR 26.75 30.93 33.06 31.26 31.66 32.65 33.65 Inf
SSIM 0.941 0.977 0.985 0.978 0.980 0.984 0.988 1
CNR 18.75 50.99 119.86 39.92 41.98 44.36 57.07 63.59

Clinical CNR 17.25 42.63 83.58 35.71 36.55 37.01 45.67 -

Denoising
performance

Freedom from
artifacts

Sharpness Realistic
appearance

0
1
2
3
4
5

Image quality criteria

Ex
pe

rt
s’

sc
or

e

Fig. 3: Qualitative evaluation of BM3D with NVS (black), WNNM with NVS
(cyan), L2H without NVS (blue), L2L without NVS (green), L2H with NVS (red)
and L2L with NVS (brown), where 0 is the worst and 5 is the best possible score.

well established patch-based denoising techniques BM3D [3] and WNNM [4] have
been designed to produce smooth images, they underperform on low-dose X-ray
images corrupted by high amounts of noise – even when used with an NVS. The
learning-based approaches L2L and L2H (irrespective of whether an NVS is used)
have produced visually superior results for low-dose X-ray images when compared
to BM3D and WNNM. A possible explanation could be the use of a sufficiently
large amount of realistic training data that is usually important for learning the
required features. Furthermore, a significant gain in the performance of both L2L
and L2H can be achieved when the data is normalized using an NVS. This is
due to the fact that the system gain is not consistent across different dose levels.
Moreover, if the presence of signal-dependent noise is not taken into account,
denoising may result in an uneven smoothing across different gray values thereby
producing artifacts. Therefore, the proposed strategy of applying an NVS prior
to the training as well as during the application not only avoids such artifacts,
but also makes the network robust to different dose levels. This reiterates the
fact that considering simple noise models, such as a Gaussian noise model [10], to
simulate training data may not always be a suitable strategy. Since L2L makes
use of pairs of low-dose simulations, the network is exposed to more instances of
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noisy data when compared to L2H. This factors into a marginal improvement of
L2L over the latter. In addition, the method results in an image quality that is
superior to that of the standard-dose images used for training. This indicates
that unlike [8], the performance of the method is not limited by the quality of
the data used during the training phase.

Finally, quantitative and qualitative evaluations with respect to the images
used in the study suggest that the proposed approach allows for a significant
dose reduction without sacrificing important image information. However, more
experiments are needed to thoroughly analyze the dose saving potential of the
proposed method. A further reduction in the dose may be difficult to achieve in
practice using spatial denoising alone as ultra low-dose images can be severely
corrupted by detector artifacts. In such cases, it would be necessary to include
temporal information to achieve an optimal denoising performance.
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6. Learning-based Denoising of X-ray Images

6.4. Robust Learning-based X-ray Image Denoising - Potential
Pitfalls, their Analysis and Solutions

6.4.1. Paper Summary

In Sec. 6.3, it has been shown that learning-based denoising techniques such as the one
presented in [176], can also be applied to X-ray images by generating spatially aligned
noisy instances utilizing model-based simulations of low-dose X-ray images. Although
several noise simulation approaches have been proposed, they are often found to be based
on rather simplistic noise models or prone to inconsistencies [196, 197, 198]. For example,
X-ray images have been modeled to have Poisson noise alone or noise is added to already
corrupted pixels with signal-dependent noise. To overcome the above mentioned limita-
tions and to simulate realistic low-dose X-ray images, an approach for simulating signal-
dependent quantum noise using Gaussian noise in a noise variance-stabilized domain has
been introduced in Sec. 6.3 [5] as a part of the learning-based denoising strategy. In fact,
the proposed learning-based denoising approach outperforms well-established analytical
and learning-based denoising approaches qualitatively as well as quantitatively. How-
ever, methods that are trained on a particular noise model may be sensitive to a change in
noise characteristics. That is, they may yield sub-optimal outcome when there is a signifi-
cant difference in the characteristics of noise between the training and application data. In
practice, such a situation may, for example, arise when there is a change in the operating
conditions of the imaging system.

The main focus of the following paper [6] is on investigating the behavior of the algo-
rithm with respect to a change in the noise characteristics. To this end, the X-ray imaging
model presented in [5] (Sec. 6.3) is extended by incorporating an apparent, noise shaping
blurring filter kernel. This filter function is used to generate correlated noise that is added
in a noise variance-stabilized domain. Based on this extended model, several experiments
are performed to understand the cause of image degradation while utilizing a learning-
based denoising approach as well as identifying solutions to prevent the degradation. In
order to train networks corresponding to different noise models, 1200 clinical X-ray images
acquired at 100% of the standard-dose level have been utilized. For the evaluation, 1400
X-ray images (200 per dose level) of four anthropomorphic phantoms acquired at different
low-dose levels, specifically 10%, 15%, 20%, 25%, 30% and 50%, as well as 100% of the
standard-dose level, have been used. Finally, a general evaluation of the method has been
performed using 3250 clinical X-ray images acquired at different fractions of the standard
dose level (2050 at 30%, 1200 at 25%, 800 at 20%, 600 at 15% and 600 at 10%).

A thorough analysis of the filter function’s impact on the denoising result has revealed
the importance of using a filter function that is closely related to the imaging system’s noise
power spectrum. In addition, it has been demonstrated that the behavior of the denoising
network can be explained well by drawing an analogy to adaptive sub-band thresholding-
based denoising approaches. Moreover, the analysis has also shown that the outcome of
the network becomes predictable when noise models involved during the training and ap-
plication phases are taken into account. This emphasizes the fact that appropriate noise
modeling plays a crucial role in developing learning-based denoising methods. In partic-
ular, a correct blurring filter function and accurate simulations during the training phase
are essential to obtain superior denoising results on low-dose image data.
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Abstract.
Purpose: Since guidance based on X-ray imaging is an integral part of interventional
procedures, continuous efforts are taken towards reducing the exposure of patients
and clinical staff to ionizing radiation. Even though a reduction in the X-ray dose may
lower associated radiation risks, it is likely to impair the quality of the acquired images,
potentially making it more difficult for physicians to carry out their procedures.
Method: We present a robust learning-based denoising strategy involving model-
based simulations of low-dose X-ray images during the training phase. The method
also utilizes a data-driven normalization step – based on an X-ray imaging model
– to stabilize the mixed signal-dependent noise associated with X-ray images. We
thoroughly analyze the method’s sensitivity to a mismatch in dose levels used for
training and application. We also study the impact of differing noise models used
when training for low and very low-dose X-ray images on the denoising results.
Results: A quantitative and qualitative analysis based on acquired phantom and
clinical data has shown that the proposed learning-based strategy is stable across
different dose levels and yields excellent denoising results, if an accurate noise model is
applied. We also found that there can be severe artifacts when the noise characteristics
of the training images are significantly different from those in the actual images to be
processed. This problem can be especially acute at very low dose levels. During
a thorough analysis of our experimental results, we further discovered that viewing
the results from the perspective of denoising via thresholding of sub-band coefficients
can be very beneficial to get a better understanding of the proposed learning-based
denoising strategy.
Conclusion: The proposed learning-based denoising strategy provides scope for
significant X-ray dose reduction without the loss of important image information if
the characteristics of noise is accurately accounted for during the training phase.
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1. Introduction

Guidance through X-ray imaging is an essential component for many minimally invasive
interventional procedures which facilitate faster patient recovery, reduce the risk of
infection, and lower healthcare costs. Since X-ray imaging involves ionizing radiation,
these benefits are accompanied by some degree of health risks. As a consequence, it is
crucial that the applied radiation dose is kept as low as possible. Unfortunately, lowering
the X-ray radiation dose may also reduce the resulting image quality and may yield
images that are clinically unacceptable. Fortunately, the application of sophisticated
denoising techniques has shown considerable potential to obtain the required image
quality at lower X-ray dose levels [1].

Prominent conventional denoising approaches can be broadly classified as: (i)
transform-based techniques that involve sophisticated thresholding of coefficients in a
transform domain [2–4], (ii) methods that take advantage of self-similar structures in
images [5–15], and (iii) variational approaches that are based on partial differential
equations [16,17]. For example, block matching 3D (BM3D) [7] (still considered one of
the most effective methods [18–20]) and denoising based on a weighted nuclear norm
minimization (WNNM) [8] are well-known patch-based approaches that combine non-
local self similarity with transform-based processing.

More recently, learning-based methods have been shown to outperform the
traditional denoising techniques for optical images [19, 21] as well as for X-ray and
Computed Tomography images [22, 23]. Unfortunately, such methods usually require
spatially registered pairs of noise-free and noisy images whose acquisition in a clinical
setting is practically close to impossible due to the associated additional radiation
exposure and patient motion. As an alternative, it has been shown that deep learning-
based denoising with a similar performance is feasible using pairs of spatially aligned
noisy instances of optical images alone [24]. However, acquiring pairs of associated,
spatially exactly registered X-ray images in a clinical scenario is also difficult in practice.
In principle, the need for aligned image pairs could be overcome by resorting to
generative adversarial networks that make use of a cycle consistency loss [25]. However,
in such a case high-dose (HD) X-ray images would be needed, which may be either
not available or, if available, would be a limiting factor, since the results would at the
most be as good as the image quality of the HD images used during training. Other
approaches not relying on aligned image pairs are the self-supervised methods presented
in [26, 27]. They are based on the assumption that the signal is correlated while the
noise is conditionally pixel-wise independent both of the signal and of itself. Since X-
ray images are impaired by a mixture of correlated Poisson and uncorrelated Gaussian
noise [28], the methods are not suitable. In [29], it has been shown that learning-based
denoising techniques such as the one presented in [24], can also be applied to X-ray
images by generating spatially aligned noisy instances utilizing model-based simulations
of low-dose (LD) X-ray images.

Although several noise simulation approaches have been proposed, they are often
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found to be based on rather simplistic noise models or prone to inconsistencies. In [30],
X-ray images have been modelled to be corrupted by Poisson noise alone without
considering the effects of electronic noise. While permissible in a higher dose setting,
this assumption is hard to justify at (very) low X-ray dose levels. In [31], the overall
noise associated with different pixel values for different mAs settings has been derived
using extensive measurements. Then, for the simulation of LD images, a pixel is first
calculated in the reduced dose image by scaling the pixel intensity values in the input
image by a dose reduction quotient. Subsequently, an appropriate amount of noise is
added. This method has been extended in [32] by taking into consideration different
beam energies and dose levels. Although both methods inherently consider the system
parameters, such as the system gain and the electronic noise component, the gray value
used for calculating the variance of noise to be added is already corrupted. Since using
an actual gray value as the noise-free estimate for a pixel’s gray value is likely to be
incorrect, this approach may cause inconsistencies in the added signal-dependent noise.
To overcome the above mentioned limitations and to simulate realistic LD X-ray images,
an approach for simulating signal-dependent quantum noise using Gaussian noise in a
noise variance stabilized domain has been introduced by the authors [29], where the
noise is signal-independent and Gaussian-distributed [33,34].

In figure 1, the results of applying the proposed denoising method (introduced
in [29]) in the context of LD X-ray image denoising is shown. It can be seen that the
method outperforms well established analytical and learning-based denoising approaches
qualitatively as well as quantitatively – with respect to peak signal-to-noise-ratio
(PSNR) and structural similarity index (SSIM). The strategy of training the network
with pairs of images of the same scenes corrupted by the same underlying noise model,
enables the network to learn the noise characteristics and remove it. It is to be noted
that in the case of Low2High [29], where a network is trained with spatially aligned pairs
of LD and HD images to transform an LD image into a HD image, the network needs
to learn the characteristics of noise associated with LD and HD images to perform the
denoising. Since X-ray images are affected by Poission noise, the noise characteristics in
the LD and HD images are different. This complicates training and may yield inferior
results (as shown in figure 1). On the other hand, methods that are trained on a
particular noise model are sensitive to changes in noise characteristics. They may yield
sub-optimal outcome when there is a significant difference in the characteristics of noise
between the training and application data. This can, for example, happen, if the X-ray
images used for training have been acquired from an imaging system that is different from
the system used for getting the images to be processed, or when there is an unexpected
change in the operating conditions of the imaging system that has not been accounted
for. Three examples are shown in the third, fourth and the fifth column of the second
row in figure 1, respectively. In these cases, the noise properties comprised colored noise
and white noise, all not matching the properties of the imaging system. The resulting
sub-optimal outcomes demonstrate that, it is important to investigate an algorithm’s
robustness with respect to a change in the dose and the noise characteristics.
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To better account for the noise’s correlation properties, we revisit the derivation of
the X-ray imaging model presented in [29] and extend the model by incorporating an
apparent blurring filter function. This filter function is used to generate correlated noise
that is added in a noise variance stabilized domain. Based on this extended model, we
perform several experiments to better understand the cause of image degradation while
utilizing a learning-based denoising approach. We also identify solutions to prevent
artifacts. In addition, we demonstrate that the method can be applied across multiple
dose levels with good results. In particular, we show that using a correct filter function
and accurate simulations during the training phase are essential to obtain superior
denoising results on LD image data. A thorough analysis of the filter function’s impact
on the denoising outcome reveals the importance of using a filter kernel that is related
to the imaging system’s noise power spectrum (NPS). Our analysis also shows that the
outcome of the network becomes predictable when noise models involved during the
training and application phases are taken into account. In fact, by drawing an analogy
to adaptive sub-band thresholding-based denoising approaches, we demonstrate that
the behavior of the network can be explained well this way. Finally, the outcome of
our analysis reveals that appropriate noise modeling plays a crucial role in designing
learning-based denoising methods.

2. Material and Methods

Depending on the imaging system and the clinical situation, X-ray images can be
corrupted by different amounts and types of noise. Considering these factors, a learning-
based denoising strategy that involves an iterative training of a denoising network has
been designed. The respective training and application workflows are presented in
figure 2. In the training phase, the input is a batch of b randomly chosen standard-
dose (SD) images y(i)s ∈ RM×N . The superscript i denotes the ith SD image. As a
first step, for each y

(i)
s , two low-dose (LD) images y(i)l1

∈ RM×N and y
(i)
l2

∈ RM×N are
simulated with different instances of noise. Then, y(i)l1

and y
(i)
l2

are normalized using a
noise variance stabilization transform to get y′(i)l1

∈ RM×N and y′(i)l2
∈ RM×N , respectively.

Subsequently, corresponding regions l′ (i)1 ∈ Rm×n and l′ (i)2 ∈ Rm×n are chosen from y
′ (i)
l1

and y
′ (i)
l2

, and taken as the input and the expected output of the denoising network,
respectively. During the application phase, an acquired LD image yl ∈ RM×N is first
normalized using a noise variance stabilization transform and provided as input to the
trained network. Finally, an inverse noise variance stabilization transform is applied to
the output of the network to map the denoised image back to the actual image domain.
The different aspects of the method are explained in the following sections.

During the training phase, pairs of corresponding image regions (ROIs) are first
extracted at randomly chosen spatial locations from pairs of simulated LD images. The
simulated LD images, derived from standard-dose (SD) images, are normalized using
the generalized Anscombe transform (GAT).
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Input BM3D [7] w/ NVS WNNM [8] w/ NVS Noise2Self [26] Low2High [29]

Ground-truth Proposed in [29] Wrong use of Proposed (Mismatch in Noise Characteristics)

SSIM: 0.956
PSNR: 27.958
CNR: 8.182

SSIM: 0.982
PSNR: 32.056
CNR: 12.491

SSIM: 0.988
PSNR: 33.750
CNR: 17.382

SSIM: 0.978
PSNR: 31.152
CNR: 11.218

SSIM: 0.984
PSNR: 32.345
CNR: 12.325

SSIM: 1.0

PSNR: Inf
CNR: 15.691

SSIM: 0.992
PSNR: 35.192
CNR: 15.306

SSIM: 0.979
PSNR: 31.317
CNR: 10.565

SSIM: 0.990
PSNR: 34.270
CNR: 14.621

SSIM: 0.982
PSNR: 31.989
CNR: 12.175

Figure 1: Visualization of selected regions of phantom images acquired at 30% of
the standard-dose (SD) level. In addition to the input data, the results of different
denoising methods and the GT for the phantom images are shown. Since the methods,
block matching 3D (BM3D) and weighted nuclear norm minimization (WNNM), have
been designed for additive Gaussian noise, they have been used after applying a noise
variance stabilization (NVS). Noise-free ground-truth (GT) images have been generated
by temporally averaging 500 static noisy images. The metrics structural similarity index
(SSIM), peak-signal-to-noise ratio (PSNR) and contrast to noise ratio (CNR) have been
used for performing a quantitative evaluation.

2.1. X-ray Imaging Model

The transformation of the received X-ray quanta – collected at an indirect-detection,
flat-panel detector – into a pixel gray value can be described by a succession of stages [28].
Each stage may involve either a quantum gain or spatial spreading (blurring). It can be
assumed that this process follows a linear model [35]. Thus, an observed noise-corrupted
gray value y ∈ RM×N at row r and column c can be represented as

y[r, c] = β · (x ∗ kq)[r, c] + g + n[r, c], (1)

where x ∈ RM×N represents the charges (corrupted by quantum noise) at the photo-
diodes convolved (∗) with the stochastic spreading function kq [28]. The variable
n ∈ RM×N represents electronic noise with standard deviation (STD) σn sampled at
row position r, and column position c, respectively. The overall scale factor and the
(constant) system offset are given by β and g, respectively. The (mixed) noise variance
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Figure 2: Schematic visualization of the workflows of the proposed strategy for training
a denoising neural network (performed first) and its application (after training). During
the training phase, pairs of simulated low-dose (LD) images y(i)l1

and y(i)l2
are first derived

from standard-dose (SD) images y
(i)
s . The simulated LD images are subsequently

normalized using the generalized Anscombe transform (GAT) to get y′ (i)l1
and y

′ (i)
l2

,
respectively. Then, pairs of corresponding image regions (ROIs) l

′ (i)
1 and l

′ (i)
2 are

extracted at randomly chosen spatial locations from y
′ (i)
l1

and y
′ (i)
l2

, respectively. These
samples are then provided as the input and the target for the network, respectively.
During the application phase, an acquired LD image yl is normalized using the GAT
(to obtain y′l) before being provided as an input to the denoising network. An inverse
GAT is applied to the network’ output ŷ′l in order to map it back to the image domain
(where it is represented as ŷl).

of a detector pixel’s gray value can be expressed as

σ2
y[r, c] = α ·

(
ȳ[r, c]− g

)
+ σ2

n. (2)

This can be interpreted as a line with slope α and y-intercept σ2
n − α · g. In (2), ȳ[r, c]

denotes the mean (noise-free) value of y[r, c] and the parameter α depends on the gain
mode of the detector [35]. The imaging parameters α and σ2

n can, for example, be
computed directly from an X-ray image [36] or obtained from the system specifications
and calibration measurements [28]. Once known, they can be taken into account
to perform a noise variance stabilization (NVS) based on the generalized Anscombe
transform (GAT), tα,σn,g (.), as suggested in [14,29]:

y′[r, c] = tα,σn,g

(
y[r, c]

)
(3)

=
2

α

√
α · y[r, c] + 3

8
α2 − α · g + σ2

n.

The resulting pixel values y′[r, c] can be assumed to have signal-independent noise with
unit variance. Figure 3 shows the power spectral densities (PSDs) and the noise power
spectra (NPSs) derived in the GAT domain from stacks of 500 phantom images acquired
at different dose levels. Since they have been computed in the GAT domain they are
represented as PSD′ and NPS′, respectively. As expected, the NPS′ graphs remain
similar across different dose levels, whereas, the PSD′ curves increase with dose. The
increase is not linear due to the non-linear nature of the GAT.
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Figure 3: Cross-section visualization along the horizontal frequency axis of the power
spectral densities estimated from stacks of phantom images acquired at different dose
levels (left) as well as the associated noise power spectra (right). All the spectra are
calculated in the generalized Anscombe transform domain. The peak amplitudes of the
power spectral density graphs are represented using dashed lines.

The effect of the system blur introduced by kq in (1) can be investigated by looking
at the noise power spectra. We decided to analyze noise not in the image domain but
in the noise variance stabilized domain because this is where we inject noise following
Borges et al. [37]. To find the noise power spectra in the GAT domain, we have used flat-
field images [38, 39]. First, we have transformed the flat-field images yb ∈ RM×N using
the GAT t(.)(.). Then, we have performed a power spectral analysis. In this context, we
have subtracted an offset related to the electronic noise (computed from flat-field dark
images) from the NPS of mixed noise to get the NPS of quantum noise in the GAT
domain (referred to as NPS′). From this we get an estimate of the apparent blurring
filter in the frequency domain by taking the square root of the individual frequency
components of NPS′ (denoted as K̃ ′

q) [38, 39]. Subsequently, we have fitted a Gaussian
mixture model K̂ ′

q to the estimated filter K̃ ′
q (in the GAT domain) such that the mean

squared error between the fitted model and the estimated filter is minimized. The fitted
model is then represented as follows:

K̂q[u, v] =
4∑

i=1

(
aie

− (u−bi)
2
+(v−bi)

2

2·w2
i

)
, (4)

where ai, bi and wi are the parameters of the Gaussian model. This process is shown in
figure 4. The filter coefficients are normalized such that the sum of their square values is
equal to one. In (4), the number of mixture models has been set to four as this resulted
in the best fit for our experiments and analysis. It is to be noted that the Gaussian
mixture model is only an example and other model fitting approaches can also be used.
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Figure 4: Cross-section visualization along the horizontal frequency axis of the noise
power spectrum of the mixed noise (left), followed by the quantum noise (middle),
computed by subtracting the offset related to the electronic noise, along with the
normalized derived filter K̂ ′

q (right). All the spectra are computed in the generalized
Anscombe transform domain and hence denoted as NPS′.

2.2. Simulation of Low-dose X-ray Images

The gray values of an SD X-ray image ys are first scaled down by a dose reduction
factor d such that its intensity range matches the gray value range of a corresponding LD
image. The resulting image with a reduced gray level range is referred to as ys→l. Then,
to obtain a realistic LD image yl from ys→l, signal-dependent and signal-independent
noise need to be added [40]. We have simulated the signal-independent electronic
noise as additive white Gaussian noise (AWGN) ηe[r, c] with standard deviation of
σe = σn

√
1− 1

d2
and added it in the image domain [40]. Since the gray values of ys→l

are not noise-free, we have simulated the signal-dependent quantum noise by adding
filtered AWGN ηq[r, c] in the GAT domain [34]. The entire process is described by

yl[r, c] = t−1
α,σn

d
,g

(
tα,σn

d
,g

(
ys→l[r, c]

)
+ ηq[r, c]

)
+ ηe[r, c], (5)

where t−1
(.) (.) represents the inverse GAT. As per [41], the signal-dependent noise

component ηq is obtained by filtering AWGN noise having STD σq with K̂ ′
q, e.g., in

the frequency domain. The noise variance in y′s→l as per the applied GAT will be 1
d
.

Since the resulting image is expected to have noise with unit variance and due to the
chosen normalization of the filter coefficients, it holds that σq =

√
1− 1

d
.

2.3. Strategy for Training the Denoising Network

Training is performed in the GAT domain using P pairs of spatially aligned noisy image
patches l′(i)1 and l

′(i)
2 that have the same signal component but different realizations of

noise. In both cases, the noise has identical statistical properties. The P associated
patch-pairs, each comprising k × k pixels, are randomly drawn from two simulated,
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GAT-transformed LD images, y′l1 and y′l2 . The two underlying LD images, yl1 and yl2 ,
are derived from the same standard dose image, ys following ( 5).

As a consequence of the steps outlined above, we can write

l
′ (i)
1 [r, c] = s′ (i)[r, c] + η

(i)
l1
[r, c],

l
′ (i)
2 [r, c] = s′ (i)[r, c] + η

(i)
l2
[r, c].

(6)

In (6), η(i)l1
[r, c] and η

(i)
l2
[r, c] are uncorrelated noise matrices with a standard deviation

of one, and s′ (i) is the noise-free version of the ith patch’s signal component in the GAT
domain.

Our goal now is to train a neural network estimating s′ using paired noisy training
examples l′1 and l′2. This is equivalent to finding a set of weights, θ, minimizing the
following L2 loss function

l(θ) =
1

P

P∑

i=1

∥∥∥∥∥

(
D(l

′ (i)
1 , θ)− l

′ (i)
2

)∥∥∥∥∥
2

. (7)

In this equation, the network D(.) tries to predict the noisy patch l
′ (i)
2 from the

associated noisy patch l
′ (i)
1 . If we try to predict the noise-free signal of the ith patch,

s′ (i), from associated noisy regions, l′ (i)1 , then the best estimate is well known to be the
conditional mean of s′ (i) given l

′ (i)
1 . In fact, this also holds if we try to predict noisy

targets from noisy inputs [24]. In both cases, the output of the network is a prediction
of the noise-free version of the input.

2.4. Application of the Denoising Network

In the application phase, the noise variance associated with an input image is normalized
using the GAT, and the normalized image is provided as input to the trained network D
(as shown in figure 2). An inverse GAT is applied to the output of the neural network
to get the denoised image.

2.5. Analogy between learning-based and sub-band denoising

To gain some additional insights into how convolutional neural networks (CNNs) may
perform denoising, let us recall that they comprise three main stages: First, the input
image, a grayscale X-ray image in our case, is convolved (actually cross-correlated) with
a set of (learned) filter kernels. This generates as many feature maps as there are filter
kernels. Each feature map can be viewed as a collection of transform coefficients obtained
by mapping image pixels within a certain receptive field onto (learned) basis functions.
In the second step, each transform coefficient is thresholded, typically by means of a
rectified linear activation unit (ReLU). Then, pooling, normally max-pooling, is applied.
After this stage, the three-step procedure may be repeated on the reduced-sized feature
maps effectively generating a convolutional pyramid.
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Since classical, transform-based denoising approaches also involve convolutions,
downsampling operations and thresholding, we can establish some interesting analogies
between CNNs and sub-band transforms. We are particularly drawn to the BayesShrink
soft-thresholding approach proposed by Chang et al. [3]. It facilitates the estimation
of (sub-band) adaptive thresholds. This is important because adaptive thresholds are
an integral part of CNNs. From a theoretical point of view, BayesShrink involves the
soft-threshold T that minimizes the Bayes risk assuming a Generalized Gaussian prior.
Based on the thresholded wavelet coefficients X̂ and the actual wavelet coefficients X,
the Bayes risk is defined as

r(T ) = E(X̂ −X)2. (8)

The optimal threshold is the argument minimizing this function. Although no analytical
solution could be derived, Chang et al. [3] found an approximation closely matching their
numerically obtained results:

TB(σX) =
σ2

σX
. (9)

Here σ2 is the noise variance and σX is the standard deviation of the signal’s wavelet
coefficients. Both values can be calculated from the data within the individual
sub-bands. This facilitates a data-driven, sub-band-adaptive thresholding approach.
According to (9), we will get a small threshold if the noise in a sub-band is low compared
to the signal. In such a case, most of the wavelet coefficients are kept. On the other hand,
if the noise in a sub-band exceeds the signal, the resulting threshold is large effectively
removing all but the biggest wavelet coefficients. In fact, it is possible to estimate σX
from its context (context modeling) and obtain spatially adaptive thresholding [42].
Although wavelet denoising approaches are far less flexible than CNNs, they serve as a
good working model for the explanations in the subsequent sections.

2.6. Material

To perform a thorough evaluation of the proposed algorithm, we have analyzed the
robustness of the method as well as the potential causes of artifacts related to the
training of the denoising network across different dose levels and noise characteristics
both qualitatively and quantitatively. As network architecture, we have used the U-Net
architecture [43] proposed in [24] and the training strategy proposed in [29]. Although
different network architectures are available, we have chosen the U-Net architecture as
it can be understood on a conceptual level, and, because it enables real-time image
processing which is essential for guiding devices under X-ray. For generating training
data corresponding to different (low) dose levels, we have utilized 1200 unprocessed
clinical X-ray images (M=N=896 pixel) acquired at 100% standard dose (SD). We have
trained a network (depending on the analysis) for 1000 epochs using square regions of
width K=128 pixel. For the evaluation, we have taken 1400 X-ray images (200 per dose
level) of four anthropomorphic phantoms acquired at different low dose (LD) levels,
specifically at 10% SD, 15% SD, 20% SD, 25% SD, 30% SD and 50% SD, as well as
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100% SD. For the quantitative evaluation, we have applied structural similarity index
(SSIM) and peak signal-to-noise-ratio (PSNR) where the noise-free ground-truth (GT)
images have been generated by temporally averaging 500 static noisy images. We have
made use of phantom images for these evaluations instead of clinical images as it is
basically impossible to obtain hundreds of static X-ray patient images in a clinical
setting due to practical and ethical reasons. Such a stack of images is needed to arrive
at noise-free references which are essential to perform a quantitative evaluation utilizing
standard performance metrics such as PSNR and SSIM. For clinical images, where no
ground truth is available, we have used contrast-to-noise ratio (CNR) – from pairs of
homogeneous regions with different mean gray values.

To evaluate the stability of the proposed method across the different LD levels, we
have first trained denoising networks for the different LD levels using associated images
derived from the 100% SD clinical images (based on (5)). Then, we have applied the
trained networks on X-ray images of the phantom acquired at the different LD levels.
In addition, we have evaluated the performance of a mixed-dose denoising network. For
training it, we used X-ray images associated with the different dose levels mentioned
above. To obtain the X-ray images at different dose levels, we have relied on our model-
based simulation approach.

When simulating X-ray images at various LD levels used for training, we need to
add noise. This is a critical step that can give rise to denoising artifacts. In order to
study the cause of such artifacts and to prevent them, we have investigated the impact of
different noise characteristics. To this end, we colored AWGN differently by modifying
K̂ ′

q, when generating the training data. We have then trained multiple networks with
the data generated from the unprocessed clinical X-ray images using modified blurring
filter kernels

K ′
q,δ[u, v] =

4∑

i=1


aie

− (u−bi)
2
+(v−bi)

2

2·
(
wi(1+ δ

100 ·)
)2


 , (10)

where δ is the percentage by which the standard deviation of the Gaussian model has
been changed. The parameter δ effectively controls the bandwidth of the apparent
blurring filter. The smaller the value for δ, the narrower the bandwidth and vice versa.
We have made sure that the filter coefficients have been properly normalized in all cases.
In what follows, we have carefully studied how the networks react to different settings
for δ ∈ [−60,−50, ..., 0, ..., 50, 60] depending on the X-ray dose of the input images.
Here, δ = 0% defaults to the original blurring filter kernel. When δ < 0%, the filter’s
bandwidth is reduced and fewer high-frequency components are retained, whereas for
δ > 0% the bandwidth increases. It should be noted that δ and the bandwidth of K ′

q

are not linearly related.
For the general evaluation of the approach, we have used 3250 clinical X-ray images

(2050 at 30% SD, 1200 at 25% SD, 800 at 20% SD, 600 at 15% SD and 600 at 10%
SD). As a benchmark, we have compared the results with those of other learning-based
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denoising strategies, such as Noise2Self [26] and Low2High. Low2High is a commonly
used strategy where spatially aligned pairs of simulated LD image and the associated
SD image are used for training the denoising network [29]. In the case of Low2High, we
have used pairs of simulated LD images (based on (5)) and the associated SD images.
For Noise2Self, we have used 80% of the available acquired LD data for training the
network.

3. Results

In this section, we present the results of our sensitivity analysis, both with respect to
a mismatch in dose levels as well as with differing noise characteristics between the
training images and the test images, respectively.

3.1. Influence of the Dose Level used for Training

To discuss the influence of the dose level utilized during the training phase, we present
the results of applying the neural networks on X-ray images of an anthropomorphic
thorax phantom acquired at 10% SD, 20% SD and 30% SD in figure 5. Prior to the
application, we have trained the respective networks for 10% SD, 20% SD, and 30% SD
as well as a mixture of LD levels (comprising LD images with dose levels ranging from
10% to 30% SD). As a reference, we also display the GT images associated with the
input images.

Overall, the qualitative comparison of the denoised images acquired at the different
dose levels shows that the denoising networks perform well independent of the particular
training dose levels since there are only subtle differences between the denoised images.
In the case of the X-ray images acquired at 10% SD, the network trained for 10% SD
has resulted in well-denoised images with structures intact. Even in the case of the
networks trained for 20% SD and 30% SD, the structures are restored clearly. However,
these networks yield results with a higher amount of residual noise. The application of
the denoising networks on images acquired at 20% SD shows that a training for 20% SD
results in well-denoised and sharp images, whereas the use of a network trained for 10%
SD results in slight blurring and a network trained for 30% SD results in some amount
of residual noise. For the X-ray images acquired at 30% SD, the network trained for
30% SD has resulted in qualitatively good results, i.e., well-denoised and sharp images.
Lowering the dose level used for training to 20% SD or even to 10% SD also yield good
results demonstrating an overall stable denoising performance. However, it is to be
noted that lower the dose level used for training, higher is the tendency of the network
to generate slightly smoother and blurred images. In all the cases, the application of the
network trained on mixed LD levels has resulted in denoised X-ray images resembling
a balanced trade-off solution. This can be seen in the set of images provided as an
example, where the results are most similar to the outcome achieved by applying the
network trained for 20% SD.
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Although the dose used during the training phase has some (small) impact on the
results in terms of residual noise and spatial resolution, the differences between the input
and the denoised results do not contain visible structures. As an example, the results
of processing the images acquired at 10% SD and 30% SD using the networks trained
for 10% SD and 30% SD are presented in figure 6. Even for the corner cases of this
investigation presented here, the denoised results show that the structures are intact
and no salient features are present in the images with the differences.

The quantitative evaluation of the results with respect to SSIM and PSNR is
presented in Table. 1. The values confirm the qualitative evaluation based on the images
shown in figure 5. Irrespective of the training dose levels and the application dose levels,
the quality metrics are similar and high. The coefficient of variation (CV) between the
quantitative values, computed by taking the ratio of the standard deviation of the values
and the mean of the values, are below 0.38% for SSIM and 4.57% for PSNR across the
applied dose levels and below 0.22% for SSIM and 2.05% for PSNR across networks
trained for different dose levels. Irrespective of the input dose level, the network trained
for 10% SD has resulted in the highest SSIM and PSNR, the network trained for 30%
SD has resulted in the lowest and the network trained on mixed dose levels has resulted
in a value that is in-between the above two cases.

3.2. Influence of the Noise Model used for Training

In figure 7 and figure 8, we present the impact of training denoising networks using
different noise models. In this context, we have changed the power spectra of the noise
added in the GAT domain during the training phase and have applied the trained
networks on actual X-ray images acquired at 15% SD and 100% SD (second row in
figure 7). These experiments have been performed using networks trained for the mixed
LD levels. This has simplified the analysis while obtaining results that are only slightly
different than what would have been obtained had the exact matches been used (see
Sect. 3.1). From figure 7 it can be observed that when a network is trained using
uncorrelated noise (flat power spectrum), it can produce results that are severely affected
by artifacts especially for LD inputs. However, in the case of 100% SD inputs, using a
flat noise power spectrum for training also produced acceptable results. For both the
cases, the network trained for correlated noise derived using the proper filter kernel K̂ ′

q,
has resulted in substantial improvement.

In figure 8, we show the influence of the power spectra of correlated noise added
in the GAT domain during the training phase by varying K̂ ′

q based on further image
examples. The resulting networks have then been used during the application phase
for the denoising of the actual anthropomorphic thorax phantom X-ray images to
evaluate how a mismatch with respect to spectral properties would affect the denoising
performance. When the trained networks are applied on an X-ray image acquired at
15% SD, it can be seen that the networks trained assuming correlated noise generated
by applying a low-pass filter with a bandwidth that is too small, e.g., δ = −30%, have
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Figure 5: Visualizations of a region of interest of a phantom image acquired at different
fractions of the standard X-ray dose (SD) level and processed using the networks D(.)

trained for different SD levels (last four rows). In addition to this, the (unprocessed)
input and the GT data for the respective acquisitions are shown in the first two rows.

resulted in blurred images. The blurring can be severe. For example, in the case of
δ = −60%, many details are lost in the denoised results. On the other hand, networks
trained using correlated noise associated with a low-pass filters characterized by a very
high cut-off frequency (δ >> 0%) have yielded artifacts that could be mistaken as
anatomical structures, e.g., small blood vessels. Finally, we have found the resulting
denoised images to be sufficiently sharp and free from artifacts only when the noise
power spectra in the training and testing data are similar. On the contrary, for an X-
ray fluoroscopy image acquired at 100% SD, where the SNR is comparatively higher, the



Robust Learning-based X-ray Image Denoising 15

10
%

SD
30

%
SD

Im
ag

e
ac

qu
ir
ed

at

GT Input Result Result - Input

D(.) trained for 10% SD

Result Result - Input

D(.) trained for 30% SD

Figure 6: Visualization of a region of interest of phantom images acquired at 10%
standard X-ray dose (SD) level and 30% SD. In addition to the ground truth (GT) and
input data, the results of denoising using the networks D(.) trained for 10% SD and
30% SD along with the respective differences to input images are shown.
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Figure 7: Visualization of the denoising results in the case of images acquired at
15% standard-dose (SD) and 100% SD for networks D(.) trained for mixed LD with
uncorrelated and correlated noise (δ = 0%). In addition to this, the respective ground
truth (GT) and input images are displayed.

impact of the noise power spectrum’s shape used during training has been less severe on
the resulting denoised images. Compared to the observations at 15% SD, the structures
are mostly intact even for larger deviations from δ = 0. Similarly, the artifacts are less
pronounced. These findings are also reflected in the quantitative analysis of our results
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with respect to SSIM and PSNR (see figure 9). Since the SNR of an X-ray image is
directly proportional to the X-ray dose, the metrics computed for higher dose images
are higher. Across the dose levels, the highest values for the metrics are obtained for
(and close to) δ = 0%. The results start deteriorating for larger deviations of δ from 0%.
It can be seen from figure 8 and figure 9 that the worsening in the image quality within
a dose level is directly related to the deviation in the shape of the filter kernel. In the

Table 1: Results of the quantitative evaluation regarding the influence of the dose level
used for training a denoising network D(.) with respect to structural similarity index
(SSIM) and peak signal-to-noise-ratio (PSNR). SD represents the standard X-ray dose
level. The coefficient of variation (CV) calculated across the rows and the columns of
the results are included.

SSIM

Image acquired at
CV

10% SD 15% SD 20% SD 25% SD 30% SD

Input 0.906 0.935 0.949 0.959 0.967

D
(.
)

tr
ai

ne
d

fo
r 10% SD 0.990 0.992 0.994 0.994 0.995 0.20%

15% SD 0.989 0.991 0.993 0.994 0.995 0.24%
20% SD 0.988 0.991 0.992 0.993 0.994 0.23%
25% SD 0.986 0.990 0.992 0.993 0.994 0.32%
30% SD 0.984 0.989 0.991 0.992 0.994 0.38%

Mixed LD 0.988 0.990 0.992 0.993 0.994 0.24%

CV 0.22% 0.10% 0.10% 0.08% 0.05%

PSNR

Image acquired at
CV

10% SD 15% SD 20% SD 25% SD 30% SD

Input 25.334 26.900 28.266 29.240 30.381

D
(.
)

tr
ai

ne
d

fo
r 10% SD 35.667 35.815 37.696 37.989 38.949 3.84%

15% SD 35.168 35.505 37.184 37.638 38.455 3.82%
20% SD 34.638 35.147 36.807 37.379 38.243 4.15%
25% SD 34.210 34.924 36.400 36.853 37.739 3.99%
30% SD 33.629 34.423 36.037 36.635 37.637 4.57%

Mixed LD 34.670 34.911 36.388 36.818 37.797 3.64%

CV 2.05% 1.39% 1.65% 1.44% 1.33%
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case of 15% SD, the CV computed across the SSIM values is 1.73% and that computed
across the PSNR values is 1.80%. In the case of 30% SD, the CV is 0.90% for SSIM and
1.54% for PSNR. For a slightly higher dose of 50% SD, the CV is 0.53% for SSIM and
1.30% for PSNR. Finally, in the case of 100% SD, the CV is 0.26% for SSIM and 0.96%
for PSNR. These results also support our previous visual analysis that the influence of
the noise characteristics used during training is higher at LD levels and lower at HD
levels. This means that lower the dose, more important it is to choose a filter kernel
generating noise with the correct noise power spectrum, to avoid image degradation.
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Figure 8: In the first row, we visualize the normalized filter kernels’ cross-sections with
different bandwidth parameters δ used to generate the power spectra of the noise added
in generalized Anscombe transform (GAT) domain for training different mixed low-dose
(LD) networks (one for each filter). Below are images showing the filters’ impact on the
resulting denoising network’s performance for X-ray images acquired at 15% standard-
dose (SD) and 100% SD (second column in figure 7). As characteristics of the filter
kernels’ δ, the maximum value (horizontal line(s), black dashed) and the full width at
half maximum (FWHM, vertical line(s), black dashed) are shown and compared to the
respective ones for δ = 0% (horizontal and vertical lines, gray dotted). The values for
the metrics structural similarity index (SSIM) and peak signal-to-noise-ratio (PSNR)
are computed with respect to the GT shown in the first row of figure 7.
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Figure 9: Quantitative evaluation of the kernel influence on the denoising performance
for X-ray images acquired at different fractions of the standard-dose (SD) level based
on structural similarity index (SSIM) and peak signal-to-noise-ratio (PSNR).

3.3. General Evaluation of the Method using Phantom and Clinical Images

In figure 10, we present the input as well as the processed regions of interests (ROIs) of
clinical images acquired at 30% SD, 25% SD, 20% SD, 15% SD and 10% SD. Noise2Self,
a method designed for AWGN, does not yield suitable results for all the cases. We have
also found that in the case of clinical images, the differences in image quality between
Low2High and the proposed method are not as pronounced as for the phantom images
(in figure 1). Still, the proposed learning-based approach is superior as indicated by
the CNR values. It does not display any visible artifacts (neither in clinical nor in
phantom images), i.e., the background noise is low and, at the same time, anatomical
structures and instruments appear sharp. In the clinical examples, it can also be seen
that the proposed method and Low2High have improved the visibility of small vessels
and instruments. This would, for example, help a physician in choosing a suitable
path for navigating instruments and guide wires. In addition, the improved visibility of
electrodes, catheters and their tips would be beneficial in electrophysiology and ablation
procedures. However, when the proposed method is not applied correctly, it can result
in sub-optimal denoising and even severe artifacts as shown in figure 11. This is also in
line with the analysis made using the X-ray images of phantoms.

4. Discussion and Conclusion

In this paper, we have presented a robust learning-based X-ray image denoising
approach. It uses a refined image acquisition model involving a blurring filter kernel to
generate noise that is added when creating training data. The robust behavior of the
method is also due to noise variance stabilization of the input data. By performing a
quantitative evaluation of the influence of the dose levels associated with the training
images, we have found that the proposed approach works well across multiple dose levels.

The qualitative evaluation of the influence of the dose levels used during training
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Figure 10: Visualization of selected regions of clinical images acquired at different
fractions of the standard-dose (SD) level. In addition to the input data, the results
of different denoising methods are shown. The results of the quantitative analysis with
respect to contrast-to-noise-ratio (CNR) are also presented.
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Figure 11: Visualization of selected regions of clinical images acquired at different
fractions of the standard-dose (SD) level. In addition to the input data, the results
of denoising using the proposed approach are presented. For this purpose, the denoising
networks have been trained using the noise model associated with the input images
(column 2) as well as different models (columns 3 and 4).

has shown that networks trained for a specific dose level have yielded superior results
when applied on X-ray images acquired at the corresponding dose level. A network
trained for a different dose level resulted in sub-optimal denoising performance (see
figure 5). For example, we see the retention of noise after denoising when the denoisig
network is trained on higher dose levels and applied on images acquired at lower dose
levels. On the other hand, a network trained for a lower dose level has resulted in mild
blurring when applied on images taken at higher dose levels.

In this context, we can recall our wavelet thresholding analogy and revisit (9),
keeping in mind that the GAT normalizes the noise level to a fixed value σ, while
the signal energy σX scales (non-linearly) with the dose. According to our analogy,
the thresholds should be higher when the training of the network is performed with
lower-dose inputs. This is because the values of the transform coefficients in the various
sub-bands are smaller. If the network is then used for denoising higher-dose inputs, some
of their signal parts will be strong enough to exceed the higher thresholds, i.e., those
signals will remain unaffected. But there may also be instances where some signal details
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are lost due to thresholding. Transform coefficients due to noise are, however, likely to
be removed well. This yields well denoised results that may appear slightly blurred.
If we train a denoising network with higher-dose input images, the thresholds will be
smaller. This is because the numerator in (9) remains the same while the denominator
increases. Hence, if we now use this network to denoise lower-dose images, for which
higher thresholds would be more appropriate, there will be more noise left in the outputs
as less of it gets thresholded away.

In the second part of our analysis, we have analyzed the impact of different noise
models used during the training phase (see figure 8). If the training data features more
low-frequency noise components compared to the actual data used during application,
the trained network yields denoised images that are blurred. This can again be explained
by applying the wavelet sub-band analogy together with (9). If our training data has
more low frequency noise than expected, the thresholds in the associated low-frequency
sub-bands will be higher. If we now denoise an image acquired at a lower dose featuring
a regular frequency distribution using such a trained network, the signal components
as well as the noise in these low-frequency sub-bands are likely to be removed. This
may yield a very blurred result. In addition, as most of the noise in the training data
is pushed into lower-frequency sub-bands, less noise will go to the higher frequency
sub-bands. As a consequence, the thresholds in these sub-bands will be lower. The
effect of this is that the denoised images will contain high-frequency noise. On the
other hand, if the training data comprises more noise in the high frequency sub-
bands than regular, there will be less noise in the lower-frequency sub-bands. This
is because the amount of noise is normalized to a constant by the GAT. In such a
case, the thresholds in the lower-frequency sub-bands will be too low, whereas they
will be too high in the upper-frequency sub-bands. If we now process a lower dose
X-ray image with normal frequency content using this network, we are left with too
much noise in the lower-frequency sub-bands, while noise in the high-frequency noise
will be removed significantly. Unfortunately, the left-over lower-frequency noise may
resemble anatomical structures such as vessels. For input images with high enough
dose, the various thresholds in the different sub-bands are less of a problem because
their signal parts should in general be strong enough to avoid being eliminated by the
thresholds. However, noise present in HD images will be removed considerably due to
the normalization inherent in the GAT. A quantitative analysis of the results of the
different trained networks – with respect to SSIM and PSNR – has revealed that the
negative effects of using incorrect noise characteristics are particularly prominent at very
LD levels, while the impact on higher dose levels is considerably lower. This analysis is
in line with the explanation given above.

Extending our analogy to training with higher dose images would imply very small
thresholds due to a fixed noise level σ and higher signal levels σX . In such a case, the
thresholds will be rather small. Therefore, it may be possible to use less accurate noise
models without adverse consequences. In other words, simple noise models, such as a
Gaussian noise model [22] or uncorrelated Poisson noise [30], to simulate training data
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may be acceptable at HD levels, whereas for the denoising of LD X-ray fluoroscopic
images such models may not be suitable. As we have found that the outputs of
our denoising networks are very sensitive to the noise models for LD inputs, we infer
that a network trained for a particular imaging system using the proposed approach,
may not be suitable for other systems with significantly different noise characteristics,
particularly not for LD inputs.

To sum up, the proposed method is a robust learning-based denoising approach
suitable for a range of X-ray dose levels, in particular very LD levels. For higher dose
levels, the proposed method gives good results even when there is a mismatch in the
noise characteristics used for training the denoising network and those present in the
image on which denoising is performed. However, for lower dose levels, where only
a limited number of X-ray photons are available for image generation, it is crucial
to use an accurate noise model during the training phase of the proposed method to
retain the underlying image fidelity without introducing any artifacts in the denoised
images that might mimic anatomical structures. This indicates that networks trained
for different imaging systems and imaging modes may be required during the inference
phase to get the best results. On the contrary, the other learning-based denoising
methods, Noise2Self [26] and Low2High [29] have under-performed. Since Noise2Self
has been designed for uncorrelated AWGN, it is not surprising that it has problems
with a situation it has not been developed for. On the other hand, as there is no noise
variance stabilization transform during the application phase of Low2High, the method
can introduce severe artifacts (as shown in figure 1). This happens when the imaging
conditions (e.g., the system gain) used for training differ from those encountered during
the application of the neural network. Though the results of the proposed method are
promising for phantom and especially clinical images acquired at LD levels, there is
a limit on the amount by which dose can be reduced. This is due to the fact that
clinically important structures are likely to be missed at extreme LD levels. Hence a
drastic reduction, e.g., below an X-ray dose of 10% SD, may be considered inadequate or
too risky for some procedures while it may be acceptable for others. Therefore, further
evaluations are needed.

Disclaimer: The concepts and results presented in this paper are based on research
and are not commercially available.

Ethical Statement: All procedures performed in studies involving human participants
were in accordance with the ethical standards of the institutional and/or national
research committee and with the 1964 Helsinki declaration and its later amendments or
comparable ethical standards. The clinical data used in the manuscript were acquired
retrospectively.
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6. Learning-based Denoising of X-ray Images

6.5. Summary

In this chapter, a novel X-ray imaging model-based noise simulation approach as well as
a learning-based X-ray image denoising strategy have been presented. The training data
for the learning-based denoising approach has been generated by simulating realistic low-
dose X-ray images from their higher dose counterparts. In addition, the method uses a
normalization step that takes into account imaging parameters such as the system gain and
the electronic noise to stabilize the noise variance, as described in Chapter 4, to a known
constant. The method delivers excellent results, especially at low-dose levels. A thorough
evaluation of the method is also presented where the focus has been on understanding the
cause of image degradation while utilizing such a learning-based denoising approach as
well as identifying solutions to prevent the degradation.
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X-ray dose must be kept as low as reasonably possible in order to reduce the risk of ex-
posure to ionizing both for the patient (due to direct radiation) as well as for the clinical
staff (due to scattered radiation). A consequence is that fewer X-ray photons are available
for image formation resulting in lower image quality due to a reduced signal-to-noise ratio
(SNR). The focus of this thesis has been on improving the image quality of low-dose X-ray
images by developing advanced image processing techniques. The technical background
required for the thesis is presented in Part I that contains Chapters 2 and 3. In Chapter 2,
an introduction to medical X-ray imaging has been given. This includes a brief introduc-
tion to the physical principles of X-ray imaging as well as related clinical applications. In
Chapter 3, an overview of the available denoising approaches has been provided. The
contributions of this thesis have been presented in Chapters 4, 5 and 6.

Noise variance stabilization (NVS) is commonly used to pre-process images corrupted
by signal-dependent noise prior to denoising as this allows for the application of denoising
techniques designed for signals in which the noise can be considered as additive white
Gaussian with a known variance. The generalized Anscombe transform (GAT) is a well-
performing NVS technique to stabilize the noise variance to a known constant. To apply
the GAT-based NVS, the underlying imaging parameters, i.e., the system gain and the
electronic noise, are required. Unfortunately, it is difficult to derive the system gain directly
from the system settings, because the X-ray spectrum received at the detector changes, e.g.,
because of beam hardening caused by the patient. As a solution to this problem, a data-
driven method has been developed for extracting the system gain and the electronic noise.
It is presented in Chapter 4. Across a range of low-dose x-ray settings, the approach has
estimated both system gain and electronic noise level with an average error of only 4.2%.

Two analytical spatio-temporal X-ray image denoising methods have been presented in
Chapter 5. The first method is a blind spatio-temporal denoising approach designed for
ultra-low dose fluoroscopy sequences. The method includes the characteristics of noise to
match patches, build a stack of temporally aligned patches and denoise them using low
rank approximation. Taking into account the noise properties not only helps in reducing
artifacts but also removes the necessity of computing a guide image, which is usually used
in high-noise scenarios to improve patch matching. The evaluation of the approach on
electrophysiology sequences has indicated that an improvement in the contrast-to-noise
ratio (CNR) by a factor of around 3.5 can be achieved. In addition, X-ray image quality
experts have found the improvement after denoising using the proposed method to be
visually superior when compared to the well-established denoising approach video block
matching 3D (V-BM3D). Most importantly, the experts have stated that the results resemble
higher dose X-ray images. A minor drawback of the approach is that the denoised images
may suffer from mild blurring around instrument edges due to imperfect matches caused
by 3D object motion. In such cases, applying a low rank approximation will result in the
averaging of pixels that may not be perfectly matched.

The second analytical spatio-temporal denoising approach presented in Chapter 5 makes
use of a weighted low-rank approximation to denoise digital subtraction angiography
(DSA) sequences. Since DSA sequences are inspected after acquisition, there are no real-
time requirements. As a consequence, the method can utilize past and future frames when
processing the current one. This approach also operates in the NVS domain and carefully
estimates which pixels to include for denoising. The method results in an improvement in
the CNR by a factor of 3.7, which is comparable to other state-of-the-art spatio-temporal
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denoising approaches. For example, the first proposed method results in an improve-
ment in the CNR by a factor of 3.6 when used in the context of DSA. However, a visual
analysis suggests that only the use of the second proposed method yields images that
share the characteristics of typical DSA images. This is because, the method makes use
of constrained row-wise and column-wise low-rank approximations which do suffer from
the smoothing artifacts introduced by a non-constrained low-rank approximation of mis-
aligned patches. It should also be noted that in the case of pulsatile motion of the flow-
ing contrast agent, temporal mismatches in the vessel regions are hard to avoid. How-
ever, since the proposed approach monitors how well patches match, it will automatically
switch to in-plane denoising in such a case. As a consequence, the texture of the flowing
contrast agent will be retained, albeit at the price of a somewhat higher noise level.

The proposed analytical denoising methods have the potential to improve significantly
the image quality associated with low-dose X-ray images. The denoising methods have
also been designed such that they can be deployed on massively parallel processing graphic
processing units. Nevertheless, applying them on high-resolution images in real-time
would require cost-performance trade-offs. As a solution to this problem, learning-based
denoising algorithms based on convolutional neural networks CNNs are available that are
significantly less expensive computationally during the application phase. However, such
methods require pairs of associated high- and low-dose X-ray images during the training
phase. Unfortunately, it is neither acceptable nor possible to acquire such image pairs dur-
ing clinical cases due to the associated increase in ionizing radiation and patient motion.
Hence, a learning-based spatial denoising strategy that involves the use of model-based
simulations of realistic low-dose X-ray images during the training phase is introduced in
Chapter. 6.

The noise simulation method introduced in Chapter 6 takes into account an X-ray image
formation model and the corresponding system parameters used for imaging to derive
a low-dose X-ray image from its higher-dose counterpart. Signal-dependent noise has
been simulated using Gaussian noise in a noise variance stabilized domain and signal-
independent noise has been injected in the image domain. The use of an image forma-
tion model along with the system parameters helps in reducing the extensive calibrations
otherwise needed to construct look-up tables relating mean intensity values and their as-
sociated noise variance. Moreover, the method is easily adaptable to different imaging
systems. The results of the Kolmogorov-Smirnov test at 5% significance level performed
for 80 corresponding regions of the real and simulated low-dose images has suggested that
the proposed method generates statistically similar regions at an average rate of 81.43%.
The method has been further improved by taking into consideration the influence of detec-
tor blur when simulating the signal-dependent noise. This has been achieved by adding
correlated (colored) Gaussian noise in an NVS domain (based on the GAT). The simulated
low-dose images have then been used for developing a learning-based denoising algo-
rithm.

The learning-based denoising algorithm introduced in Chapter 6 is based on transform-
ing noise-corrupted instances of an image into another noise-corrupted instance of the
same image, where the different instances have the same underlying noise characteristics.
It is to be noted that the imaging model has not only been used for generating training
data but also for normalizing the input to the network using the GAT so that the input to
the network has noise with known variance, e.g., unit variance. This step ensures that the
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network always receives inputs with specific noise characteristics, even if there is a change
in the system gain. Due to the use of a large amount of simulated instances during train-
ing, the random nature of noise and the dependency of the output of the network only
on the input, the network is forced to generate a noise-free instance in order to minimize
the dissimilarity of the generated output to the target. A quantitative and a qualitative
evaluation have indicated that the proposed learning-based denoising algorithm is robust
across dose levels, and it has outperformed well-established analytical and learning-based
spatial denoising approaches. In addition, the method has resulted in an image quality
that is superior to that of the standard-dose images used for training. This indicates that
the performance of the method is not limited by the quality of the data used during the
training phase. Using this method, an X-ray image of size 1024 × 1024 can be processed
using a mid range GPU NVIDIA RTX A4000 in around 8 milliseconds.

In the final part of Chapter 6, the potential pitfalls associated with such a learning-based
denoising approach have been thoroughly investigated. The analysis has confirmed the as-
sumption that it is important to rely on an accurate noise model during the training phase.
A mismatch in the characteristics of noise present in the training data and the application
data can yield images with blurring, noise or artifacts. It is important to understand the
consequences of a mismatch as such a situation could arise when there is an unexpected
change in the operating conditions of the imaging system that has not been accounted
for. By drawing an analogy to sub-band thresholding approaches, it has been possible to
get a better understanding of the denoising network and also predict the behavior of the
network when there is a mismatch in the noise characteristics.

To sum up, three denoising approaches (two analytical and one learning-based) that are
suitable for a range of dose levels, in particular very low-dose levels, have been proposed
in this thesis. The analytical patch-based approaches, designed by taking into account
imaging and noise characteristics, make use of spatio-temporal information. The methods
reuse information, belonging to associated regions of interest, from past frames, to im-
prove the current frame. This type of processing yields images that resemble higher dose
X-ray images. These approaches, however, involve parameters that need to be carefully
set in order to get suitable results. Moreover, as mentioned above, cost-performance trade-
offs need to be made to satisfy real-time requirements. This is why a computationally
inexpensive learning-based spatial denoising approach has been designed by accurately
taking into account the noise characteristics associated with X-ray images. Unlike the an-
alytical approaches, the learning-based approach performs spatial denoising of one image
at a time. This means that if information is lost due to noise in the input images, it cannot
be recovered after denoising. Nevertheless, the results have been found to be comparable
to those of the analytical spatio-temporal denoising approaches, in spite of not utilizing
temporal information.

A loss of information in the input images is a consequence of acquiring X-ray images
at very low radiation dose levels, as only a limited number of X-ray photons are avail-
able for image generation. Even then the proposed methods, especially the learning-based
approach, have retained the underlying spatial resolution without introducing any arti-
facts. However, at extreme low-dose levels, clinically important structures may be missed.
Hence a drastic reduction, e.g., below an X-ray dose of 10% standard-dose, may be con-
sidered inadequate or too risky for some procedures while it may be acceptable for others.
Therefore, further evaluations are needed to identify the dose saving potential of the pro-
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posed algorithms for different clinical applications. The proposed denoising techniques
not only protect patients and staff, but they also reduce the power requirements for the X-
ray tubes. Hence it is possible to get better image quality under challenging circumstances
which may arise when obese patients are imaged or when a steep angulation is used for
imaging.

Furthermore, the proposed denoising methods have the potential to enable the clinical
use of X-ray imaging applications that are considered noise-sensitive and dose-intensive.
2D dual energy DSA is such an application. Here, subsequent frames are acquired with
different energy spectra, typically with tube voltages of 70 kVp and 120 kVp. The frames
are then registered and a weighted subtraction is performed. The weights are chosen de-
pending on the anatomy that needs to be visualized. For the case where a lower energy
is used, the detector entrance dose may be low as low-energy photons are better absorbed
by the body. As a result, the SNR in these images will be lower and the weighted subtrac-
tion will boost the noise. Therefore, future work will focus on evaluating the approach for
such applications that would benefit from (and are limited by) low-dose X-ray imaging.
In addition, clinical evaluations will be performed to determine the amount of dose sav-
ing possible with learning-based methods for existing applications. This would also give
an insight into whether low-power and less expensive X-ray tubes that do not require so-
phisticated cooling solutions may be sufficient for certain applications. This will facilitate
lighter and more mobile X-ray imaging devices making X-ray imaging even more widely
available.

—————————————————————————
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Acronyms

a-Se Amorphous selenium. 21

a-Si Amorphous silicon. 21

a-Si:H Hydrogenated amorphous silicon. 20

ALARA As low as reasonably achievable. 107

AWGN Additive white Gaussian noise. 28, 30

BM3D Block matching 3D. 31, 32

BN Batch normalization. 39–41

CMOS Complementary metal oxide semiconductor. 21

CNN Convolutional neural network. 35–37, 39–41

CNNs Convolutional neural networks. xi, 35–37, 40, 41, 46, 164

CNR Contrast-to-noise ratio. xii, 44, 46, 75, 90, 163, 164

CR Computed radiography. 19

CsI Caesium iodide. 19, 20

CT Computed tomography. 10, 14, 17, 18

DCT Discrete cosine transform. 30, 49, 50

DQE Detective quantum efficiency. 20, 23

DR Digital radiography. 19

DSA Digital subtraction angiography. 24, 75, 90, 163, 164, 166

ELU Exponential linear unit. 38

GANs Generative adversarial networks. 42

GAT Generalized Anscombe transform. ix, 49, 50, 163, 164

GELU Gaussian Error Linear Unit. 38

GOS Gadolinium oxiSulfate. 19
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Acronyms

GPU Graphics processing unit. 35, 46, 165

Gy Gray. 8

keV Kilo electron volt. 11, 13, 15, 17, 18, 21

kVp Kilo volt peak. 11–14, 18

MAP Maximum a posterior. 28, 30

MTF Modulation transfer function. 23

MTFs Modulation transfer functions. 22

NL-means Non-local means. 31, 32

NLF Noise level function. 22, 23, 49, 50

NNM Nuclear norm minimization. 33, 34

NPS Noise power spectrum. 23, 24, 28

NVS Noise variance stabilization. 49, 73, 163, 164

PReLU Parametric rectified linear unit. 38

PSF Point spread function. 23, 36

PSNR Peak signal-to-noise ratio. xii, 36, 44–46

QE Quantum efficiency. 23

R Roentgen. 8

ReLU Rectified linear unit. 38, 40–43

SiLU Sigmoid linear unit. 38

SNR Signal-to-noise ratio. ix, 23, 26, 27, 30, 163, 166

SSIM Structural similarity index. xi, 41, 44, 46

Sv Sievert. 8

SVD Singular value decomposition. 33, 34

TFT Thin film transistor. 21
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TI Thallium. 20
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TV Total variation. 29
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WNNM Weighted nuclear norm minimization. 34
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