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Learning Causal Relationships of Object Properties
and Affordances Through Human Demonstrations
and Self-Supervised Intervention for Purposeful

Action in Transfer Environments
Constantin Uhde1, Nicolas Berberich1, Hao Ma2, Rogelio Guadarrama1 and Gordon Cheng1

Abstract—Learning object affordances enables robots to plan
and perform purposeful actions. However, a fundamental chal-
lenge for the utilization of affordance knowledge lies in its
generalization to unknown objects and environments. In this
paper we present a new method for learning causal relationships
between object properties and object affordances which can be
transferred to other environments. Our approach, implemented
on a PR2 robot, generates hypotheses of property-affordance
models in a toy environment based on human demonstrations
that are subsequently tested through interventional experiments.
The system relies on information theory to choose experiments
for maximal information gain, performs them self-supervised
and uses the observed outcome to iteratively refine the set of
candidate causal models. The learned causal knowledge is human-
interpretable in the form of graphical models, stored in the
knowledge graph. We validate our method through a task requir-
ing affordance knowledge transfer to three different unknown
environments. Our results show that extending learning from
human demonstrations by causal learning through interventions
led to a 71.7% decrease in model uncertainty and improved
affordance classification in the transfer environments on average
by 47.49%.

Index Terms—Learning Categories and Concepts; Learning
from Demonstration; Cognitive Modeling

I. INTRODUCTION

KNOWLEDGE transfer from known to unknown environ-
ments through generalization is a central but challenging

problem of cognitive robotics and artificial intelligence [1].
Without this ability, robotic systems need to start learning
from scratch for each new environment they encounter. For
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Fig. 1: Properties such as size and shape are causal for the actions a robot
can perform with an object. These causal properties-affordance relationships
can be learned through a combination of human demonstrations and self-
supervised interventions and transferred to new environments to predict
affordances of unknown objects. This causal affordance knowledge is well
suited for purposeful robotic action planning.

humans, this challenge is literally child’s play - children learn
the actions they can perform with different objects through
playing with toys, such as stacking blocks, carrying balls or
inserting small objects into boxes. Without much visible effort,
they then apply this newly acquired affordance knowledge to
other scenarios such as eating breakfast. Researchers in human
cognitive development have hypothesized that children achieve
this generalization through explanation [2] [3], showing that
young children between 4 and 7 years generalize significantly
better when they have a mechanistic understanding of how a
certain function of an object is associated with its properties.
Similar to scientists [4], children identify generalizable pat-
terns and rules ,when they play with objects (i.e. an object
A can be stacked on top of an object B if A is light and
small enough for grasping and both have flat surfaces). These
concepts extend beyond the observation being explained [5].
Lombrozo and Carey suggested that this “Explanation for Ex-
port” functionality [6] serves the purpose of future prediction
and intervention.
In machine learning, which is based on generating models

that represent statistical associations between features, ex-
planations are difficult to obtain and are studied within the
field of explainable artificial intelligence (XAI) [7]. While
many approaches aim at making black-box machine learning
models explainable, e.g. by finding training samples which
have similarities with prototypical parts of the test sample
[8] or attention models which provide class activation maps
[9], others have suggested to work on developing inherently
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Fig. 2: Method overview illustrated on the example of learning and utilizing the affordance "supports stacking other objects on top". Objects for which the
affordance is classified correctly are displayed in pink, wrongly classified in yellow. From left to right, the system is confronted with a new environment
and learns correlation information from human demonstrations (a). Subsequently, it creates causal hypotheses of property-affordance models based on the
observations (b). The system then chooses and performs optimal interventional experiments using information theory to test and refine the model pool in a
self-supervised fashion (c). This object property based affordance knowledge is transferred to a new environment with unknown object and used to predict
their affordances (d). Finally, equipped with the causal affordance models, the system is able to perform a purposeful transfer planning task with previously
unknown objects (e).

interpretable models instead [10].
With “causal inference”, Judea Pearl and others have intro-
duced a learning approach that is aimed at explicitly mod-
elling the causal connections between variables which can
be used for interventions and counterfactual reasoning [11],
both of which are necessary for reliable robot action planning
and execution.Such causal connections in the form of causal
graphical models [12] can naturally serve as explanations as
they represent underlying cause and effect relationships which
afford to answer “why”-questions.
In order to perform purposive actions [13] towards a given
goal in unstructured scenarios, robotic systems have to model
their previously unknown environments and detect what ac-
tions (with their associated effects) are afforded. Especially
in mission-critical settings, the robotic system should also
minimize execution errors, which can be achieved by pre-
dicting the correct available actions using knowledge about
causal connections in this environment. Originally discussed in
psychology by James Gibson [14], knowledge about available
actions can be formally represented through the concept of
affordances which are relations between the object, the action
and the agent’s embodiment. In recent years, affordance learn-
ing has become an active field of research within robotics with
varying approaches such as learning from human demonstra-
tions, learning in simulation and learning through real-world
execution [15].
In this paper we consider the following problem: A robot is
situated in front of a set of toy objects and can observe human
interactions with these toys, but can also interact with them
itself. After a short explorative learning phase, the robot is
placed into a breakfast environment with many every-day-life
objects such as jam, fruit and cereal. The robot is given some
time to adapt to this new scenario after which it is given goal-
directed tasks such as “Clean up the breakfast table and place
/ stack / insert all objects on a tray.”

Contribution: To solve this affordance generalization
problem, we propose a new method based on learning which
salient object properties such as size, weight, concavity or
shape are causal requirements for a given robot action type, as
depicted in Fig. 1. The system learns through the combination

of observing human demonstrations, affordance hypothesis
generation, hypothesis testing through deliberate experimen-
tation based on maximizing information gain, adaptation to
new environments and affordance knowledge exploitation for
purposive planning. The learned causal connections are trans-
parent and interpretable to the user, as they are stored in the
searchable knowledge graph of the system.

II. RELATED WORK
The development of systems that are able to learn about ob-

ject affordances is an important challenge in robotics [15][16].
Previous research has focused on predicting affordances using
computer vision [17] [18]. However, good quality datasets are
sparse, which some groups like Zhang et al. [19] try to address,
and observational information can only used for associations
in contrast to causal learning enabled by interventions [11]
and neglects the central role of embodiment for robots and
cognitive systems [20]. In earlier work, we demonstrated the
usefulness of interventions for learning causal dependencies
between actions, in order to make more profound sense of
human demonstrations in a shared environment [21]. An
approach on how causal inference can be applied to affordance
learning has been presented in [22]. The authors focus on
pushing and pulling affordances and learn structural causal
models with dynamically constructed neural networks, how-
ever, similar to our previous work, they do not focus on the
transfer of the learned knowledge to new environments and
objects. Finally, some works addressed learning the association
between object features and affordances in order to perform
affordance classification like Mar et al. [23][24]. These works
utilize unsupervised learning methods in order to associate
object features with affordances. Both works focus on explo-
rative discovery without learning from demonstration and don’t
generate a priori hypotheses about which features are salient
and thus don’t explicitly consider causal connections.

III. METHODS
To tackle the challenge of affordance knowledge environ-

ment transfer, we propose a robotic learning system consisting
of multiple phases as illustrated in Fig. 2.
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a) Observation of Human Demonstrations: Knowledge
about causal dependencies can be taught and learned. Other
agents may have valid models of the environment. This infor-
mation is especially helpful if those agents are humans with
extensive experience. In order to speed up learning causal
dependency, we utilize imitation learning. Usually, this is done
with video recordings of humans performing the action se-
quences. In this work, we created a virtual reality-based (VR)
teleoperation system to let a human demonstrator interact with
the objects through the robot’s own embodiment. The human
demonstrator is presented with the egocentric perspective of
the robot, as can be seen in Fig. 3. The demonstrator’s hand
position is tracked in VR and corresponds to a robot end-
effector goal position which is given to the robotic motion
controller.

(a) Teleoperation Setup (b) Robot Observations

Fig. 3: Teleoperation setup for human demonstration for object interactions.
Only a small set of demonstrations is necessary for the system to bootstrap
self-supervised interventional learning.

For controlling the robotic system in an intuitive fashion, we
rely on a custom implementation of a whole-body controller
based on nullspace projections [25], which allows us to define
hierarchical controller tasks quickly. This enables us to stay in
the same embodiment for demonstrations and autonomous in-
terventions, which simplifies the learning process by avoiding
the “correspondence problem” [26].

To segment actions, we use the concept of grasp event
delimitation as proposed in [27]. In order to detect grasp and
release events in our system, we utilize force feedback from
the PR2 grippers. After the beginning and end of an action
are detected, we recognize the action type (Carry, Place,
Stack, Insert) with distance thresholding, as well as spatial
relations between objects. Each action has a related tool and
affected object, e.g. inserting tea (tool) into a cup (affected
object). Objects provide the affordance with the same name
as the corresponding action, if they adhere to a certain set
of properties. We selected the four affordances inspired by
developmental science [16], as they seem to emerge early
in development, work with primitive objects and provide a
general basis for more complex affordances. We represent
objects with property values, that are subjective to the em-
bodiment of the robot (such as light and heavy). We assume
that property categories are prior knowledge, inspired by [28].
Property values such as "size: large" were selected relative
to the robots embodiment. The categories have been pre-
selected in accordance to existing affordance ontology work by
Bhattacharyya et al. [29]. The set of properties we consider
is shown in Fig. 6. The system records the observed action
sequences into a knowledge graph using the Neo4J graph
data platform. We exploit the expressiveness of the declarative

Neo4J querying language Cypher [30], in order to formulate
most of the presented reasoning tasks. A reference to the
conceptual structure of the graph can be seen in Fig. 4.

b) Property-Affordance Hypothesis Generation: After
storing several demonstrated action sequences in the knowl-
edge graph, we calculate correlations between property values
and affordances. The intention behind this is to use the human
prior in order to reduce the search space, by only looking at
highly correlated values. We calculate the occurrence proba-
bility of each property value inside one property category with
respect to the observed action type. Highly correlated property
values get selected as candidates for causal model generation.
See Eq. 1, where xlight is the property value light of weight
Xweight , acarry is the action carry, N light

carry is the number of
occurrences of the weight-light value in all carry actions and
Ncarry is the number of occurrences of all carry actions. The
result is the occurrence probability of Xweight = xlight given
the affordance acarry:

P(Xweight = xlight |acarry) =
N light
carry

Ncarry
(1)

A high probability value means that many of the objects which
were part of an observed action type share this property,
making the property a likely candidate for causally affording
the action. Salient candidates are selected by thresholding the
probability with a user-defined value, similar to [21]. After
collecting all salient property values for each the tool and the
affected object components of a given affordance, we generate
separate super-sets M (sets of candidate affordance models)
of all possible property value combinations for both tool and
affected affordance participants (e.g.
MCarry = {{Xweight = xlight,medium, Xsize = xsmall,medium},

{Xweight = xlight, Xsize = xsmall},

{Xweight = xlight, Xsize = xmedium},

{Xweight = xlight },

...}

for the affordance Carry and the affected object). We
show the generated models in the set notation. Formulated
in the logic notation, the model mCarry = {Xweight =

xlight,medium, Xsize = xsmall,medium} for Carry would be
shown as:

(Xweight = xlight ∨ Xweight = xmedium)∧

(Xsize = xsmall ∨ Xsize = xmedium) =⇒ acarry
Where acarry is implied by the logical conjunction of the
given property categories in an object. Note here that intra-
property values are considered as logical disjunction. Each
entry in the super-set is uploaded to the knowledge graph and
connected to its assigned affordance with a model weight edge,
as can be seen in Fig. 4. The super-set of properties-affordance
models is filtered by the observed actions, so that only models
remain that correctly explain the observations. These filtered
models are stored in the knowledge graph and initially equally
weighted, as we do not yet know which models most closely
represent the causal property dependencies for the affordance.

c) Self-Supervised Experimentation through Causal In-
terventions: Human demonstrations give almost exclusively
positive examples of which actions are possible with different
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Fig. 4: Knowledge graph for learning the causal affordance models. Actions
are modelled as instances of affordances and objects are based on property
values. Instead of connecting object classes to affordances, our system learns
causal relationships between object properties and affordances.

objects because humans already have an extensive concept
of possible interactions and if the human fails to perform
a certain action with an object, the robot can’t learn from
it as it doesn’t know what the human intended to do. This
bias towards positive examples causes our system to initially
generate many candidate models. To prune these large sets
of potential affordance models, the system has to discover
which actions are not possible with the available objects by
performing deliberate interventions. In our example model set
for the affordance Carry presented in the last paragraph, the
candidate hypothesis mCarry = {Xweight = xlight } would
mean that being light is the only causal property for an object
to afford to be carried. If our system performs an experiment
in which it tries to carry a light, large object, but fails to do
so, it can remove this hypothesis and instead assigns higher
certainty weights to the hypotheses {Xweight = xlight, Xsize =

xsmall} and {Xweight = xlight, Xsize = xmedium}. {Xweight =

xlight,medium, Xsize = xsmall,medium}. Instead of randomly
testing different interventions, we implemented a method for
generating experiments with the available objects which pro-
duce a maximized information gain. We limit ourselves to
generating experiments from existing objects, as the system
can apply this approach iteratively, in order to learn from
further exposure to new objects. This is in contrast to a setup
where we generate the perfect experiment instead, by maximiz-
ing information gain over all potential property combinations,
which makes the system dependent on an expert operator
who provides said objects. This may also be seen as the
difference between field and lab experiments [31]. We utilize
the information gain formulation as seen in Eq. 2 for a possible
intervention as the reduction of model uncertainty before and
after the intervention. In each intervention, the robot fixes
the value of one property by choosing a suitable object, e.g.
fixing the weight property to light (do(Xweight = xlight )), and
then attempts to perform the action. Success or failure of this
attempt is captured in the outcome variable y. The information
gain for affordance a and intervention do(Xweight = xlight ) is
calculated as follows:

Gaina(do(Xweight = xlight )) =

Entropy(Ma) −

Y={t, f }∑
y

P(y |do(Xweight = xlight ))·

·Entropy(Ma |do(Xweight = xlight ))

(2)

Where
∑Y={t, f }

y iterates through all outcomes. The entropy is
calculated as Entropy(V) =

∑nV
i=1 P(vi) · log2(P(vi)) where V

Fig. 5: A single causal model in the Neo4J graph database, depicting the
ground truth for the affordance Carry. Each affordance has several hundred
causal models initially, which get successively removed as the system learns
through intervention. In a perfect experimental setup, only the ground truth
model remains. If the system retains more than one model, it performs model
voting to come to a classification result.

are the current model weights Ma and the conditional model
weights Ma |do(Xweight = xlight ) respectively. The act of
intervention is formalized with the Do-Operator, popularized
by Pearl [11], which establishes the causal direction between
the used random variables. In order to iteratively find the
object that maximizes the information gain on the given set
of candidate models, we calculate the information gain for
all available objects based on their properties and test the
affordance actions with the highest information gain object
through an experiment. Instead of selecting among available
objects, the system can also generate the overall ideal set of
properties for maximum information gain. The system then
requests an object with these properties for an experiment. In
the remainder of this paper, we use the first approach.
After selecting an experiment (consisting of tool object,

affected object and the action which is to be tested) that
maximizes information gain, the system generates an action se-
quence using a Planning Domain Definition Language (PDDL)
planner [32], in order to create the pre-conditions required
to execute the action in question. To check whether a red
cube affords to be stacked on another object the robot first
has to grasp and carry it. For this, we first calculate possible
actions based on existing affordance models and the available
objects. If enough models in the knowledge graph agree on
the executability of the action for the given object, it is
assigned the action label, that the PDDL planner then uses to
generate the setup sequence. While executing the experiment,
the system uses the same action perception pipeline as for the
teleoperation demonstrations to determine whether the action
was successful. Thus, it employs self-supervised learning
to update its affordance knowledge graph by adapting the
associated causal model mi weights for the case ytrue based
on the experiment outcomes and the Bayes rule:

P(mi |do(Xweight = xlight ), ytrue) =
P(mi)P(ytrue |do(Xweight = xlight ),mi)

P(ytrue |do(Xweight = xlight ))
(3)

All models whose weight converges to zero are pruned from
the affordance model set Ma which is part of the knowledge
graph. This process is repeated until either only one model
remains or no available object combination provides sufficient
information gain anymore.

d) Affordance Knowledge Transfer and Exploitation:
With the refined sets of possible causal models for all affor-
dances the system has generated abstract affordance knowledge
which is independent of the specific objects in its learning
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environment. This knowledge can then be transferred to new
environments that include previously unknown objects. Based
on the new objects’ properties and the learned property-
affordance models, the system predicts what actions each
object affords. This decision is done by calculating a certainty
value based on the vote of all related models. Given an
object with the property set o = {Weightlight, Sizemedium},
the model set Mcarry from above (with the assumption that
only the four shown models exist) produces a vote result of
3/4 for the existence of the affordance Carry on the object o,
since three out of four models agree with the object’s property
combination. A single such model can be seen in Fig. 5. If the
certainty value lies above a user-defined threshold, the system
predicts that the object affords the robot to perform the action
and incorporates it into task planning. The certainty measure
may be set lower or higher, depending on the required trust in
the success of the planned action sequence.
The stored causal models for all affordances can be queried
in a human-readable format as they adhere to the categories
shown in Fig. 4. The graph database provides the declarative
querying language Cypher for this purpose.

e) Purposeful Plan Assembly: After refining the previ-
ously generated causal affordance models, the system is able to
assign probable affordances to all observed objects. Equipped
with this information, a PDDL planner is able to generate an
action sequence towards a given goal-condition. This plan can
then be executed by the robot.

IV. RESULTS

We validated the described causal affordance learning sys-
tem with a knowledge transfer task between a toy objects
environment and a breakfast objects environment (see Fig. 6).
Similar to children, the robotic system is given the opportunity
to first observe human demonstrations and then playfully
learn by itself which actions are possible with different toys.
Afterward, the robot is placed in front of a set of unknown
breakfast objects and given the task to place them on a
tray, requiring it to transfer and utilize its refined affordance
knowledge from the toy environment. The system has to use
its previously learned affordance models to infer which actions
the breakfast objects afford in order to generate a goal-directed
plan. The task forces the system to exploit the affordances
Stack and Insert in addition to Carry and Place as there is not
enough space on the tray.

The toy environment consists of 9 toy objects such as
colored cubes, a cup, a cylinder and balls, with varying
properties as presented in Fig. 6 a). The toys were selected
to be diverse, in order to cover multiple property variations.
We simplified the recognition of the objects’ properties by
attaching ArUco markers [33] to the objects and providing the
system with a database of object-properties relations. Using
the VR-teleoperation system, a human user interacted with the
objects through the robot’s own embodiment, while the robot
observed the actions through its head cameras. The human
demonstrations consisted of all affordance actions (Carry,
Place, Stack, Insert) and covered the underlying property val-
ues, while maintaining a small set of object interactions. At the

(a) Affordance learning in toy
environment

(b) Affordance knowledge trans-
fer to breakfast environment

(c) Affordance knowledge trans-
fer to bathroom environment

(d) Affordance knowledge trans-
fer to chemistry environment
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Size small med. large med. med. med. med. med.
Weight light light med. light light med. med. med.
Color red org. yellow red org. org. white udef.
Material organ. plast. organ. metal organ. organ. plast. glass
Rigidity hard hard med. hard hard hard hard hard
Concavity none strong none strong med. none none strong
Surface med. smth. med. smth. med. med. smth. smth.
Shape cub. cyl. cub. cyl. cub. pole pole cyl.

(e) Subset of objects from each environment with their corresponding
properties. These values are defined relative to the robot embodiment
and thus represent qualitative quantities.

Fig. 6: Experimental setup for causal affordance model learning. (a) The PR2-
robot is placed in front of a set of toy objects with varying properties. Through
observations and interventions it learns causal connections between the object
properties and actions it can perform with the objects. (b) This affordance
knowledge is then transferred to a unknown breakfast environment where the
robot predicts affordances for each object based on their properties. A selection
of objects with their corresponding properties can be seen in table e).

beginning, the system has no information about which sets of
the 52 property values are causal for each affordance. Thus, all
possible combinations of them (their power set) are potential
models, resulting in 4.5·1015 candidate models (the cardinality
of the power set). Instead of creating this vast amount of
candidate models, the system uses the observations from the
human demonstrations and only generates models which are
combinations of property values that frequently occur (p>20%)
in objects where the respective affordance was observed. This
results in a several magnitudes smaller number of candidate
causal models for each affordance as shown in Fig. 7. These
model sets are then filtered with the observations such that all
models are removed which do not fit to observed actions and
their associated objects. E.g. if a model says that the affordance
Carry can only be executed with an object of light weight
and the observations contain a carry action with a medium
weight object, the model is filtered out. For further pruning
of the candidate model sets, the system generated a sequence
of experiments to optimally test through interventions which
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Fig. 7: Learning progress for the affordance model pools (Carry illustrated in
black with numbers) represented in the decrease of candidate models shown on
a logarithmic scale. Initially, the power set of 52 property values is considered
as model candidates and subsequently pruned through observational and
interventional learning.

object properties are causal for each affordance. Instead of
linearly testing all candidate models for each affordance which
would have required 1282 tests, using information theory to
choose experiments resulted in only 21 experiments. The PR2
robot conducted these self-supervised experiments within 25
min, requiring on average 1 min 11 s per experiment. Using
the available toy objects, the system was able to reduce the
candidate model sets to the following cardinalities: Carry - 3,
Place - 7, Stack tool - 12, Stack affected - 3, Insert tool -
126, Insert affected - 212. To verify these remaining sets of
causal models for each affordance, we applied model voting
for each object to determine if the trained system correctly
predicts if they afford their ground truth actions. In Fig. 8,
we present accuracy values for each affordance, denoting for
how many objects in both environments the system correctly
classified the affordance. Finally, we test the performance of
the trained system on a planning task, in which we define
a carrying tray as goal for all breakfast objects the system is
able to handle. The result can be seen in the last image of Fig.
2. The system correctly predicts that it can’t carry the bread,
cereal box and marmalade and is able to use the transferred
affordance knowledge to generate a plan for fitting all other
objects on the small tray by stacking them and inserting the
orange juice bottle in the cup.

V. DISCUSSION

The results presented in Fig. 7 show that the system is
able to effectively reduce the number of candidate affordance
models through the combination of learning from observation
and self-supervised interventions. This supports our initial
hypothesis that interventional learning enables the system to
gather information which is not available through exclusive
observation, allowing it to filter out additional candidate causal
models. We verify the performance in Fig. 8 by comparing the
affordance classification accuracy between the purely obser-
vant and the self-supervised intervention system. The learning
effect is even more pronounced when tested with unknown ob-
jects from a new environment. We argue that learning through
causal interventions approximates the underlying causal model
for the affordance, in contrast to observed correlations, which
will only work well as long as the imitator stays and performs
in the same environment. Learning about the underlying causal
mechanisms lets the system transfer more effectively to novel
environments. Although not the focus of this work, our system
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Affordance classification after learning from observations
Affordance class. after additional learning from interventions

Fig. 8: Classification accuracy of object affordances with observation and
intervention data from the toy object set, applied to the toy and transfer
breakfast, bathroom and chemistry object sets. The bars in light blue represent
the classification accuracies of the system after the observational learning
phase. The dark blue bars contrast this with the classification accuracy
of the intervention-trained system. A classification threshold of 0.33 has
been used, meaning that 1/3 of all models in the respective model pools
have to predict that the object affords the action. Affordance knowledge
exclusively from observations leads to decent classification accuracy in the
training environment, but generalizes badly to transfer environments. In
contrast, learning causal affordance models through interventions allows the
system to maintain high classification accuracy above 80% in the toy and
breakfast environments, and improves the average classification accuracy by
47.49% in the three transfer environments, from 47,06% in the learning
from demonstration case to 69,41% with the additional intervention stage.
Ground truth data was generated from human demonstrations in the VR robot
embodiment.

supports continual learning through performing interventional
experiments in transfer environments.

In the knowledge transfer task in the breakfast environment,
the robot successfully plans the placement of multiple objects
on the tray (see Fig. 2 e)). It correctly assigns the Carry
affordance and only leaves behind the objects that are too large
or too . In addition to these predictions, the system provides
causal reasons for them and can thus explain them (XAI): the
box of cereal and the bread are too large and the glass of
marmalade is too heavy. The system plans to stack the apple
on top of the honey, even though it has no stable support. This
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is an effect of the residual uncertainty in the model pool, as the
set of objects available for experiments is limited. To improve
its classification further, the system can perform additional
interventions in transfer environments. Preliminary results
show that such continued model pool refinement leads to
improved performance for most affordances but also highlights
the remaining challenge of modelling tool-affected property
interdependence, as in the case of the affordance Insert.

VI. CONCLUSION

In this work we demonstrated a new method for learning
causal relationships between object properties and object af-
fordances through the combination of human demonstrations
and self-supervised interventions. We show that this method
is able to transfer the learned affordance knowledge to an
unknown scenario where it can be used for purposive action
planning. The proposed method was implemented on a PR2
robot using a semantic knowledge graph and was validated
on a toy environment to breakfast environment transfer task.
Our results demonstrate the importance of interventions for
learning domain-transferable causal property-affordance mod-
els. Generating optimal intervention experiments based on
information theory led to a 71.7% decrease of candidate
models and improved affordance classification in the transfer
environments by 47.49%. Extending our robot-as-scientist
approach, the system computes information gain to choose
optimal interventions as experiments to refine its affordance
knowledge. This knowledge stays always human-interpretable
in the knowledge graph. In the future,we intend to address
different (human) embodiments, which will allow us to com-
pete in established affordance benchmarks. we also aim to
test and improve the scalability of our system with a broader
set of affordances and transfer environments, with the goal of
tackling more complex real-world robotic tasks.
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