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A B S T R A C T

Teaching robots to perceive, understand, and interact with the world
around us is one of the fundamental problems for building artificial
intelligence systems. Deep learning recently made great progress in
solving long-standing research challenges for computer vision prob-
lems. However, current artificial intelligence algorithms are still far
from achieving human-level performance in real-world applications,
even after being trained with enormous amounts of labeled data. An-
other major challenge is the development of computer vision systems
that are robust and can reliably provide detailed and accurate infor-
mation about their surroundings even under changing environmental
conditions. To this end, this thesis presents deep learning-based meth-
ods for vehicle localization and control under challenging conditions.

We introduce effective methods for robust vision-based sensori-
motor control that do not require annotated data for each changing
environmental condition. Our proposed learning-based frameworks
combine transfer learning and domain adaptation strategies to transfer
knowledge between multiple different conditions. The experiments
reveal that our approach achieves equivalent performance with a small
subset as it can with the total amount of annotated data.

Furthermore, we present a direct visual localization system that
exploits featuremetric instead of photometric error for the optimization
and thus improves robustness against visual appearance changes. Our
method can be trained in a self-supervised manner, removing the need
for manual human annotations. The experimental evaluation shows
that our approach outperforms classical methods and is more robust
against bad initialization, illumination, and weather changes.

Finally, we present a large-scale benchmark dataset composed of
challenging environmental conditions to evaluate visual SLAM and
long-term localization algorithms. Our dataset provides accurate refer-
ence poses and maps from multiple runs in the same scenes through-
out the year. It enables us to understand the shortcomings of current
algorithms and helps to advance the state-of-the-art in long-term
localization and mapping.
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Z U S A M M E N FA S S U N G

Robotern beizubringen, die Welt um uns herum wahrzunehmen, zu
verstehen und mit ihr zu interagieren, stellt eines der grundlegen-
den Probleme bei der Entwicklung künstlicher Intelligenzsysteme
dar. In den letzten Jahren wurden im Bereich des Deep Learnings
große Fortschritte bei der Lösung langjähriger Forschungsaufgaben
für Computer-Vision-Probleme gemacht. Die derzeitigen Algorithmen
für künstliche Intelligenz sind allerdings, selbst wenn sie mit enor-
men Mengen an annotierten Daten trainiert wurden, noch weit davon
entfernt, in praktischen Anwendungen eine Leistung auf menschli-
chem Niveau zu erreichen. Eine weitere große Herausforderung ist
die Entwicklung von Bildverarbeitungssystemen, die robust sind und
auch unter wechselnden Umweltbedingungen zuverlässig detaillierte
und genaue Informationen über die Umgebung liefern können. Daher
werden in dieser Arbeit Deep-Learning-basierte Methoden zur Fahr-
zeuglokalisierung und -steuerung unter schwierigen Bedingungen
vorgestellt.

Wir präsentieren effektive Methoden für eine robuste visuelle sen-
somotorische Steuerung, mit deren Hilfe nicht für jede wechselnde
Umgebungsbedingung annotierte Daten erforderlich sind. Unsere vor-
geschlagenen lernbasierten Ansätze kombinieren Transferlernen und
Domänenanpassungsstrategien, um Informationen zwischen mehre-
ren unterschiedlichen Umgebungsbedingungen zu übertragen. Die
Experimente zeigen, dass unser Ansatz mit einer kleinen Teilmenge
die gleiche Leistung erzielen kann wie mit der Gesamtmenge der
annotierten Daten.

Des Weiteren stellen wir ein direktes visuelles Lokalisierungssystem
vor, das für die Optimierung nicht den photometrischen, sondern
den merkmalsmetrischen Fehler ausnutzt und damit die Robustheit
gegenüber Veränderungen des visuellen Erscheinungsbildes verbes-
sert. Unsere Methode kann selbstüberwacht trainiert werden und
macht manuelle Annotationen überflüssig. Die Auswertungen zeigen,
dass unser Ansatz klassische Methoden übertrifft und robuster gegen
schlechte Initialisierung, Beleuchtungs- und Wetteränderungen ist.

Zudem stellen wir einen umfangreichen Benchmark-Datensatz vor,
der aus anspruchsvollen Umgebungsbedingungen besteht, um visu-
elle SLAM- und langfristige Lokalisierungsalgorithmen zu bewerten.
Unser Datensatz liefert bei einer Reihe von Durchläufen in denselben
Szenen über das ganze Jahr hinweg genaue Referenzposen und Karten.
Er ermöglicht, die Defizite aktueller Algorithmen zu verstehen und
trägt dazu bei, den Stand der Technik bei der Langzeitlokalisierung
und -kartierung zu verbessern.

ix





A C K N O W L E D G M E N T S

This thesis would not have been possible without the help, support,
and guidance of many people.

First and foremost, I would like to thank my doctoral advisor, Prof.
Daniel Cremers, for his excellent supervision and guidance throughout
my PhD. I deeply appreciate the fact that he allowed me to pursue
my research interests and supported the directions I took. I am very
grateful for having such a great advisor and for becoming a part of
an outstanding research group with so many talented and awesome
people to learn from. Second, I thank Prof. Laura Leal-Taixé for her
guidance, especially during the early stages of this work. Further, I
would like to thank Prof. Nassir Navab and Prof. Wolfram Burgard
for agreeing to serve as committee members for this dissertation.

I want to thank Quirin Lohr for his continuous technical support
and Sabine Wagner for her assistance in administrative matters.

I also want to thank my excellent collaborators for their hard work
and all the fruitful discussions: Lukas von Stumberg, Nan Yang, Niclas
Zeller, Qadeer Khan, Qing Cheng, Rui Wang, and Torsten Schön.

I have also been fortunate to be surrounded by amazing people who
made my life as a PhD student much more enjoyable. I hereby want to
thank all my former colleagues at the Computer Vision Group at TUM
and Artisense for the amazing time and the inspiring conversations.

I am very glad that I had the opportunity to do exciting research
internships at two world-class research labs during my PhD. Firstly, I
would like to thank my peers at Meta Reality Labs Research for the
invaluable internship experience. Secondly, I would like to thank the
whole research team at Niantic for the wonderful time. Even though
the internships were only possible remotely due to the pandemic, I’ve
enjoyed the opportunity to collaborate with teams of world-renowned
researchers to work on the future of AR/VR technology.

Last but not least, I would like to thank my family and friends who
always supported me and never pressured me to take any particular
path. Thank you, Leonie, for everything.

xi





C O N T E N T S

i introduction and preliminaries

1 introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Literature Overview . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . 7

2 contributions 9

2.1 List of Publications . . . . . . . . . . . . . . . . . . . . . 9

2.2 Major Contributions . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Toward Robust Sensorimotor Control . . . . . . 9

2.2.2 Direct Visual Localization . . . . . . . . . . . . . 11

2.2.3 4Seasons Dataset . . . . . . . . . . . . . . . . . . 12

3 fundamentals 15

3.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . 15

3.1.1 Rigid Body Motion . . . . . . . . . . . . . . . . . 15

3.1.2 Pinhole Camera Model . . . . . . . . . . . . . . 15

3.1.3 Nonlinear Least-Squares Optimization . . . . . 16

3.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Types of Learning . . . . . . . . . . . . . . . . . 18

3.2.2 Regularization . . . . . . . . . . . . . . . . . . . . 21

3.2.3 Optimization . . . . . . . . . . . . . . . . . . . . 23

3.2.4 Nonlinear Activation Functions . . . . . . . . . 24

3.2.5 Feed-Forward Neural Networks . . . . . . . . . 25

3.2.6 Convolutional Neural Networks . . . . . . . . . 27

ii own publications

4 mvc for transferring semantic information be-
tween weather conditions 31

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Imitation Learning on the Latent Semantic Vector . . . 34

4.4 Master-Servant Architecture for Transfer Learning . . . 36

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . 39

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 towards generalizing sensorimotor control across

weather conditions 45

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Sensorimotor Control Across Weathers . . . . . . . . . 49

5.3.1 Teacher End-to-End Training . . . . . . . . . . . 49

5.3.2 Knowledge Transfer . . . . . . . . . . . . . . . . 51

5.3.3 Substitution . . . . . . . . . . . . . . . . . . . . . 52

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 52

xiii



xiv contents

5.4.1 Evaluation Metrics . . . . . . . . . . . . . . . . . 53

5.4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.3 Models . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 gn-net : the gauss-newton loss for multi-weather

relocalization 61

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Deep Direct SLAM . . . . . . . . . . . . . . . . . . . . . 66

6.4 Relocalization Tracking Benchmark . . . . . . . . . . . . 70

6.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . 72

6.5.1 Quantitative Multi-Weather Evaluation . . . . . 74

6.5.2 Qualitative Multi-Weather Evaluation . . . . . . 74

6.5.3 Additional Experiments on EuRoC and CARLA 76

6.6 Conclusion & Future Work . . . . . . . . . . . . . . . . 76

7 4seasons : a cross-season dataset for multi-weather

slam in ad 79

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2.1 Visual Odometry . . . . . . . . . . . . . . . . . . 81

7.2.2 Long-Term SLAM . . . . . . . . . . . . . . . . . 82

7.2.3 Other Datasets . . . . . . . . . . . . . . . . . . . 82

7.3 System Overview . . . . . . . . . . . . . . . . . . . . . . 82

7.3.1 Sensor Setup . . . . . . . . . . . . . . . . . . . . 83

7.3.2 Calibration . . . . . . . . . . . . . . . . . . . . . . 84

7.3.3 Ground Truth Generation . . . . . . . . . . . . . 84

7.4 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.4.1 Ground Truth Validation . . . . . . . . . . . . . 86

7.5 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.5.1 Visual Odometry in Different Weather Conditions 88

7.5.2 Global Place Recognition . . . . . . . . . . . . . 88

7.5.3 Map-Based Re-Localization Tracking . . . . . . 89

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 lm-reloc : levenberg-marquardt based direct vi-
sual relocalization 91

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 93

8.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.3.1 Direct Image Alignment with LM . . . . . . . . 95

8.3.2 Loss Formulation for Levenberg-Marquardt . . 97

8.3.3 CorrPoseNet . . . . . . . . . . . . . . . . . . . . . 99

8.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.4.1 CARLA Relocalization Benchmark . . . . . . . . 102

8.4.2 Oxford RobotCar Relocalization Benchmark . . 102

8.4.3 Ablation Studies . . . . . . . . . . . . . . . . . . 104



contents xv

8.4.4 Qualitative Results . . . . . . . . . . . . . . . . . 105

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 106

iii conclusion and outlook

9 summary 109

10 future research 111

iv appendix

a original publications 115

a.1 MVC for Transferring Semantic Information Between
Weather Conditions . . . . . . . . . . . . . . . . . . . . . 117

a.2 Towards Generalizing Sensorimotor Control Across Weather
Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 135

a.3 GN-Net: The Gauss-Newton Loss for Multi-Weather
Relocalization . . . . . . . . . . . . . . . . . . . . . . . . 143

a.4 4Seasons: A Cross-Season Dataset for Multi-Weather
SLAM in AD . . . . . . . . . . . . . . . . . . . . . . . . . 153

a.5 LM-Reloc: Levenberg-Marquardt Based Direct Visual
Relocalization . . . . . . . . . . . . . . . . . . . . . . . . 169

b abstracts of additional publications 183

b.1 Self-Supervised Steering Angle Prediction for Vehicle
Control Using Visual Odometry . . . . . . . . . . . . . 183

b.2 Vision-Based Mobile Robotics Obstacle Avoidance With
Deep Reinforcement Learning . . . . . . . . . . . . . . . 184

own publications 185

bibliography 187



L I S T O F F I G U R E S

Figure 2.1 The 4Seasons dataset . . . . . . . . . . . . . . . 13

Figure 3.1 The agent-environment interaction loop in a
Markov decision process . . . . . . . . . . . . . 19

Figure 3.2 Dropout regularization in a neural network . . 23

Figure 3.3 Illustration of backpropagation . . . . . . . . . 24

Figure 3.4 A feed-forward neural network . . . . . . . . . 26

Figure 3.5 Illustration of a convolution operation . . . . . 27

Figure 3.6 Illustration of a max-pooling operation . . . . 28

Figure 4.1 Perception module . . . . . . . . . . . . . . . . 32

Figure 4.2 Semantic segmentation of the scene . . . . . . 35

Figure 4.3 Segmentation reconstructions . . . . . . . . . . 36

Figure 4.4 Master-servant architecture . . . . . . . . . . . 38

Figure 4.5 Mean squared error between the actual and the
predicted steering commands . . . . . . . . . . 40

Figure 5.1 Teacher-student training . . . . . . . . . . . . . 46

Figure 5.2 A high-level overview of knowledge transfer . 50

Figure 5.3 General architecture of the model . . . . . . . . 51

Figure 5.4 Error plot between ground truth and predicted
steering angle . . . . . . . . . . . . . . . . . . . 55

Figure 5.5 Sample images with corresponding semantic
segmentation . . . . . . . . . . . . . . . . . . . . 57

Figure 5.6 Mean absolute error between the ground truth
and predicted steering label . . . . . . . . . . . 59

Figure 5.7 Activation maps of the feature extraction module 60

Figure 6.1 Teaser GN-Net . . . . . . . . . . . . . . . . . . . 62

Figure 6.2 Training correspondences between a pair of
images from our benchmark . . . . . . . . . . . 66

Figure 6.3 This figure shows images and their correspond-
ing feature maps predicted by our GN-Net . . 71

Figure 6.4 Cumulative relocalization accuracy on the Ox-
ford RobotCar dataset . . . . . . . . . . . . . . 75

Figure 6.5 Figure shows image pairs used in the qualita-
tive relocalizations . . . . . . . . . . . . . . . . 76

Figure 6.6 This figure shows a point cloud result of our
GN-Net . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 6.7 Qualitative visualization of the influence of the
Gauss-Newton loss . . . . . . . . . . . . . . . . 77

Figure 7.1 Dataset overview . . . . . . . . . . . . . . . . . 80

Figure 7.2 Recording setup . . . . . . . . . . . . . . . . . . 83

Figure 7.3 3D models of different scenarios contained in
the dataset . . . . . . . . . . . . . . . . . . . . . 86

xvi



list of figures xvii

Figure 7.4 Reference poses validation . . . . . . . . . . . . 87

Figure 7.5 Accurate pixel-wise correspondences, making
cross-seasonal training possible . . . . . . . . . 88

Figure 7.6 Challenging scenes for global pace recognition 89

Figure 8.1 Teaser LM-Reloc . . . . . . . . . . . . . . . . . . 92

Figure 8.2 Visualization of the typical behavior of direct
image alignment with Levenberg-Marquardt . 96

Figure 8.3 Results on the CARLA relocalization tracking
benchmark test data . . . . . . . . . . . . . . . . 100

Figure 8.4 Ablation study on different loss parts of the
CARLA relocalization tracking benchmark . . 105

Figure 8.5 Point cloud from a sunny reference map over-
layed with the point cloud from a relocalized
snowy sequence . . . . . . . . . . . . . . . . . . 105

Figure 8.6 Example image pairs from the relocalization
tracking benchmark . . . . . . . . . . . . . . . . 106



L I S T O F TA B L E S

Table 2.1 Full list of publications . . . . . . . . . . . . . . 10

Table 4.1 Percentage of successfully completed turns . . 42

Table 5.1 Percentage for which the ego-vehicle remains
within the driving lane . . . . . . . . . . . . . . 56

Table 8.1 AUC for the relocalization error on the CARLA
relocalization tracking benchmark test data . . 102

Table 8.2 Results on the Oxford RobotCar relocalization
tracking benchmark . . . . . . . . . . . . . . . . 103

Table 8.3 AUC for the relocalization error on the Ox-
ford RobotCar relocalization tracking bench-
mark test data . . . . . . . . . . . . . . . . . . . 104

xviii



L I S T O F A C R O N Y M S

ATE Absolute Trajectory Error

AR Augmented Reality

CNN Convolutional Neural Network

DoF Degrees-of-Freedom

FPGA Field Programmable Gate Array

FPS Frames per Second

GN Gauss-Newton

GAN Generative Adversarial Network

GNSS Global Navigation Satellite System

IMU Inertial Measurement Unit

ICP Iterative Closest Point

LM Levenberg-Marquardt

LiDAR Light Detection and Ranging

MVS Multi-View Stereo

ORB Oriented FAST and Rotated BRIEF

PnP Perspective-n-Point

PCA Principal Component Analysis

RANSAC Random Sample Consensus

RTK Real-Time Kinematic

ReLU Rectified Linear Unit

RPE Relative Pose Error

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SfM Structure-from-Motion

VR Virtual Reality

VO Visual Odometry

VIO Visual-Inertial Odometry

xix





Part I

I N T R O D U C T I O N A N D P R E L I M I N A R I E S





1
I N T R O D U C T I O N

1.1 motivation

The field of deep learning has grown rapidly and has led to tremen-
dous progress in computer vision over the last decade. While steady
progress is primarily made for individual annotated datasets, the per-
formance is typically limited to their domain. Hence, the natural next
step is to foster the development of computer vision systems that are
robust under all perceptual conditions and overcome the following
challenges.

illumination conditions In general, most computer vision
applications are strongly sensitive to illumination changes. Severe
changes in lighting can drastically reduce the accuracy of computer
vision systems. One of the main tasks of robot vision is the develop-
ment of robust and efficient systems that can operate reliably under
any environmental condition.

viewpoint variations Many computer vision algorithms are
inherently tailored toward specific viewpoints and thus often fail to
generalize to new or unseen viewpoints. Therefore, one fundamental
challenge is the development of methods that are viewpoint-agnostic.

variety Improving the model’s ability to generalize to new data
is crucial for successfully deploying a deep learning system in the
real world. Therefore, datasets should provide a significant variety
in terms of pose, lighting, and textures allowing the neural network
to capture all invariances present in the real world. It is therefore
of utmost importance to train deep learning algorithms on large-
scale and diverse datasets that provide variations in terms of camera
viewpoint, environmental conditions, lighting conditions, weather and
seasonal changes, etc.

limited annotations One of the driving factors behind the
success of computer vision is the amount of data we generate today.
However, deep learning algorithms require enormous amounts of man-
ually annotated training data. Obtaining annotations of high quality
is not only a very tedious and expensive process but rather sometimes
infeasible to do for every potential object of interest. Therefore, the
urge to develop methods that can learn with limited or no human
supervision at all is becoming inevitable.

3



4 introduction

While these challenges are quite broad and generally hold for most
computer vision tasks, we approach this research gap and present
techniques for vehicle localization and control under challenging con-
ditions. For instance, a visual localization system, i.e. the task of esti-
mating the 6DoF camera pose for a given image in a known map, must
work in all conditions, no matter what. Consequently, one needs to de-
velop algorithms that overcome those challenges. In this dissertation,
we propose novel approaches for three challenging computer vision
problems: robust sensorimotor control that addresses the problem of
requiring annotations for every environmental condition, direct visual
localization techniques that are robust to illumination and viewpoint
changes, and a large-scale real-world dataset including large appear-
ance variations caused by changes in the season and illumination for
benchmarking visual SLAM and long-term localization.

1.2 literature overview

In this section, we provide an overview of the relevant literature and
the research context. We cover three main research topics. Firstly,
we discuss sensorimotor control techniques, with a focus on deep
learning-based approaches for vision-based vehicle control. Secondly,
we discuss visual odometry and SLAM methods relevant to this work.
Lastly, we provide an overview of different benchmarking datasets
for long-term localization and SLAM in the context of autonomous
driving.

sensorimotor control The safe navigation of autonomous
vehicles in complex and unstructured environments remains a key
challenge in robotics. Existing systems often rely on a modular pipeline
consisting of separate, handcrafted components for planning and con-
trol [93]. However, the sequential structure of this approach involves
manual heuristics and compounding errors. Instead, end-to-end senso-
rimotor control tackles the vision-based navigation problem by learn-
ing to act based on raw sensory data [15, 97]. In contrast to a modular
pipeline, this approach directly learns to map from raw input data to
control commands. Therefore, autonomous vehicles can directly learn
driving policies from data without additional hand-engineering. How-
ever, these algorithms mainly perform well under the conditions for
which they have been trained. Thus, the generalization capabilities to
unseen conditions are typically limited. Therefore, a major challenge
is the development of robust and reliable algorithms that are capable
of operating in a variety of different conditions with as little annotated
data as possible.

In this thesis, we tackle the problem of learning vision-based ve-
hicle control policies that can generalize to challenging conditions
with limited annotations. The key idea is to use semi-supervised and
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unsupervised domain adaptation methods to transfer driving poli-
cies across environmental and weather conditions. Usually, driving
data with steering is collected once in a certain condition (source do-
main). However, collecting similar data for all other conditions (target
domain) is generally an expensive and time-consuming process. There-
fore, in the source domain, we have enough annotated data to train a
supervised machine learning algorithm, while in the target domain,
we have little or no annotated data, leading to poor generalization
capabilities. To alleviate this problem, we propose using domain adap-
tation techniques that rely on limited or no annotations from the
target domain. A great advantage is that it allows the use of passively
collected datasets from other domains without labels. We demonstrate
that the presented approaches for learning deep sensorimotor policies
for vision-based vehicle control with limited annotations from the
target domain achieve comparable performance to their supervised
counterparts.

visual odometry and slam In computer vision and robotics,
understanding the 3D world around us is a fundamental aspect of
perception and navigation. It allows us to explore and navigate in
unknown environments, experience augmented reality (AR) appli-
cations, or help robots perceive their surroundings to safely move
around. A key enabler to reconstructing the 3D world, i.e. incremen-
tally inferring the 3D geometry and tracking the camera motion from
a sequence of 2D images, is commonly referred to as simultaneous
localization and mapping (SLAM). In general, the task of localiza-
tion and reconstruction can be performed either sparsely or densely.
Sparse methods [34, 87] usually rely only on a selected set of points
(e.g. corners), whereas dense methods [64, 91] attempt to leverage a
dense set of points to reconstruct the majority or all pixels of the 2D
image domain. Moreover, visual SLAM methods can be classified as
indirect or direct. Direct methods [34, 91] directly operate on raw pixel
intensities provided by the camera sensor. For passive sensors, the
direct approach relies on optimizing a so-called photometric error,
i.e. by comparing the intensities between the pixels in one image and
its warped projection in another image. The name direct stems from
the fact, that the process uses the actual measurements from the raw
sensor without pre-processing. Indirect methods [72, 87] involve an
additional pre-processing step, i.e. the matching of correspondences
between a reference image and a target image. Usually, this is done
by extracting and matching a set of keypoints. It then optimizes a
geometric objective, namely the reprojection error. This generally leads
to good convergence, since the matching points do not necessarily
have to be spatially close to each other. However, one fundamental
limitation of an indirect setting is the ability to correct sensor errors,
since the approach only leverages matched points rather than raw
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sensor measurements. Direct methods instead are advantageous in
averaging out sensor noise, since this approach is based on raw sensor
values. However, directly operating on the raw sensor values comes
with a limited convergence basin, requiring good initialization for the
pose.

This thesis develops novel solutions for improving two major draw-
backs of direct methods: (1) requiring good initialization, and (2)
susceptibility to challenging lighting and weather conditions. This is
mainly achieved by replacing images with learned multiscale deep fea-
tures and replacing the classical photometric error with a featuremetric
error. Using deep features for the optimization yields a wider conver-
gence despite significant appearance changes compared to classical
photometric alignment using images.

benchmarking datasets for long-term slam A key en-
abler for advancing the field of visual odometry and SLAM has been
the availability of large-scale datasets for benchmarking these algo-
rithms. In the context of autonomous driving, one of the most popular
benchmarks is probably KITTI [41]. However, the data has mainly
been collected in clear weather and daytime conditions. Neverthe-
less, it is of utmost importance to develop mapping and localization
algorithms that maintain satisfactory performance even under chal-
lenging conditions. Concerning long-term SLAM datasets, the Oxford
RobotCar Dataset [82] pioneered this area by providing a large-scale
dataset consisting of sequences recorded multiple times for the same
environment over one year. It covers challenging variations in appear-
ance such as nighttime, rain, and snow as well as structural changes.
However, the variety of scenarios is mainly limited to an urban en-
vironment. While many of the existing datasets focus on long-term
SLAM, they lack sequential structure [128, 131] or accurate ground
truth [115, 131], only provide a certain adverse condition [96], or focus
on AR scenarios [113].

This thesis presents a benchmarking dataset for autonomous driving
containing nine different scenarios collected in all seasons of the
year. The dataset consists of various recording areas, ranging from
urban driving, i.e. exhibiting many dynamic objects, to rural areas,
i.e. with homogenous and repetitive structures. Moreover, our large-
scale dataset provides a wide variety of appearance, illumination, and
weather changes. The dataset was deliberately recorded by traversing
each scenario several times, yielding diversity in the environmental
conditions. It allows benchmarking visual odometry, global place
recognition, and map-based visual localization. Overall, we believe
that this dataset will help to understand the limitations of current
state-of-the-art mapping and localization approaches and advance
future research on long-term SLAM.
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1.3 outline of the thesis

This thesis is structured into four main parts as follows:
Part I introduces the motivation of the research challenges tackled in

this thesis. Moreover, the underlying theoretical foundations are pro-
vided. Chapter 1 gives a motivation for the research topic. Chapter 2

summarizes the main contributions of this cumulative dissertation
along with an overview of the respective original publications. Chap-
ter 3 introduces the fundamental computer vision and deep learning
concepts and mathematical tools used throughout the thesis.

Part II presents the five peer-reviewed publications that form the
cumulative content of this thesis. First, in Chapter 4, we propose a
method for transferring sensorimotor control commands across dif-
ferent weather conditions by means of semantic segmentations [5].
Second, a framework to deal with limited annotated training data for
the application of vision-based vehicle control is introduced in Chap-
ter 5 [2]. Third, Chapter 6 proposes a novel paradigm for 6DoF cam-
era tracking by combining direct alignment approaches with high-
dimensional learned feature representations that are robust to large
illumination and viewpoint changes [3]. Fourth, Chapter 7 proposes
a large-scale real-world outdoor dataset with SLAM localization and
maps from multiple runs in the same scenes exhibiting changing en-
vironmental conditions [7]. Fifth, Chapter 8 presents a direct method
for visual localization based on a loss formulation inspired by the
classical Levenberg-Marquardt algorithm, improving the robustness
against bad initialization.

Part III provides a summary of the contributions and a discussion
of the proposed techniques in Chapter 9. Finally, Chapter 10 concludes
the thesis with an outlook on avenues for future research.

Part IV contains the original versions of the papers [2–5, 7] along
with the specific individual contributions of the author of this thesis.





2
C O N T R I B U T I O N S

This thesis develops novel methods for vehicle localization and control
under challenging conditions. In this chapter, we summarize the con-
tributions of the publications that investigate this research problem
and form the cumulative content of this dissertation.

2.1 list of publications

This cumulative thesis comprises five full-length publications [2–5, 7]
included in Chapters 4, 5, 6, 7, and 8. These peer-reviewed papers are
the result of collaborations with Daniel Cremers, Laura Leal-Taixé,
Lukas von Stumberg, Nan Yang, Niclas Zeller, Qadeer Khan, Qing
Cheng, and Rui Wang. These papers were published in highly ranked
and peer-reviewed international conferences and journals. Table 2.1
provides an overview of the publications that contribute to this cumu-
lative dissertation. In addition, the table contains other co-authored
papers published while pursuing this degree, which are not included
as a contribution.

2.2 major contributions

The key contributions of this cumulative dissertation are threefold.
First, we explore vision-based sensorimotor control approaches for
learning intelligent agents to perform useful actions based on raw
sensory observations under challenging perceptual conditions. Second,
we propose novel approaches for visual localization using featuremet-
ric optimization via direct alignment. Third, we present a large-scale
benchmark dataset covering seasonal and challenging perceptual con-
ditions for autonomous driving.

2.2.1 Toward Robust Sensorimotor Control

Chapter 4 is based on [5] and proposes a knowledge distillation
approach for transferring vehicle control steering labels across different
weather conditions using semantic maps without requiring to collect
new ground truth labels. Even though end-to-end supervised learning
methods have shown promising results for sensorimotor control tasks,
their performance is mainly influenced by the data it was trained
on. Sensorimotor control models that have been trained under one
weather condition usually show poor generalization capabilities to
unseen weather conditions. In this work, we propose to split the

9
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Table 2.1: Full list of publications. Full list of peer-reviewed publications
done within the course of this degree, in chronological order. The
five publications this cumulative dissertation is based on are listed
in black, with references to the respective chapters. Research pa-
pers not included in this thesis are marked in gray.

Modular Vehicle Control for Transferring Semantic Information
Between Weather Conditions Using GANs. Patrick Wenzel, Qadeer
Khan, Daniel Cremers, and Laura Leal-Taixé. In: Conference on Robot
Learning (CoRL). 2018 [5] (Chapter 4).

Towards Generalizing Sensorimotor Control Across Weather Con-
ditions. Qadeer Khan, Patrick Wenzel, Daniel Cremers, and Laura
Leal-Taixé. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2019 [2] (Chapter 5).

GN-Net: The Gauss-Newton Loss for Multi-Weather Relocaliza-
tion. Lukas von Stumberg, Patrick Wenzel, Qadeer Khan, and Daniel
Cremers. In: IEEE Robotics and Automation Letters (RA-L). 2020 [3]
(Chapter 6).

4Seasons: A Cross-Season Dataset for Multi-Weather SLAM in
Autonomous Driving. Patrick Wenzel, Rui Wang, Nan Yang, Qing
Cheng, Qadeer Khan, Lukas von Stumberg, Niclas Zeller, and
Daniel Cremers. In: German Conference on Pattern Recognition (GCPR).
2020 [7] (Chapter 7).

LM-Reloc: Levenberg-Marquardt Based Direct Visual Relocaliza-
tion. Lukas von Stumberg, Patrick Wenzel, Nan Yang, and Daniel
Cremers. In: International Conference on 3D Vision (3DV). 2020 [4]
(Chapter 8).

Self-Supervised Steering Angle Prediction for Vehicle Control
Using Visual Odometry. Qadeer Khan, Patrick Wenzel, and Daniel
Cremers. In: International Conference on Artificial Intelligence and Statis-
tics (AISTATS). 2021 [1].

Vision-Based Mobile Robotics Obstacle Avoidance With Deep
Reinforcement Learning. Patrick Wenzel, Torsten Schön, Laura
Leal-Taixé, and Daniel Cremers. In: IEEE International Conference on
Robotics and Automation (ICRA). 2021 [6].
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task of vehicle control into two separate modules: a control module
that is trained on one weather condition with labeled steering data
and a perception module that is used as an interface between the
unseen weather conditions and the control module. The semantic
maps for the unseen conditions needed to train the perception module
are generated using a generative adversarial network (GAN) in an
unsupervised manner. We use a teacher-student framework for transfer
learning, wherein the teacher network (semantic labels are available)
trains the student network (semantic labels are not available). The
results show that our proposed approach trained on ground truth data
from a single weather condition achieves performance on par with
an end-to-end model trained with ground truth steering labels for all
weather conditions.
Chapter 5 is based on [2] and proposes a framework to cope with
scarce annotated training data for the application of vision-based
vehicle control. In general, the ability of deep learning models to gen-
eralize beyond the domain they have been trained is limited. However,
labeling large amounts of data for all possible scenarios that a model
may encounter is not always feasible and sometimes impossible. In
this work, we overcome the need to have access to labeled data for
all conditions and show how limited data with steering labels for a
single condition can be transferred to multiple different conditions, i.e.
weather conditions. This is achieved by leveraging unlabeled images in
a teacher-student framework complemented with an image-to-image
translation network. The translation network transfers the images to
a new domain, whereas the teacher network provides soft labels to
teach the student network on this domain. The experimental results
show that the proposed approach generalizes across different weather
conditions using only ground truth steering labels from one domain.

2.2.2 Direct Visual Localization

Chapter 6 is based on [3] and proposes GN-Net: a network optimized
with the novel Gauss-Newton loss for training weather and lighting
invariant deep features, tailored for direct alignment. To achieve this,
we learn dense descriptors using pixel-wise correspondences between
images from different scenes. For learning the feature representa-
tions of the images, we leverage convolutional neural networks and
their ability to extract hierarchical feature maps in a coarse-to-fine
manner. These learned representations are robust to large illumina-
tion changes and provide a larger convergence basin. In comparison,
classical direct image alignment algorithms operate directly on pixel
intensities and are therefore not robust to strong appearance changes.
The experimental evaluation shows that our proposed approach is
more robust against bad initialization, variations in the daytime, and
weather changes compared to the state-of-the-art.
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Chapter 8 is based on [4] and introduces LM-Reloc: a novel approach
for visual localization based on the direct alignment of multiscale deep
features. In this follow-up work to GN-Net, we propose a loss formula-
tion inspired by the classical Levenberg-Marquardt algorithm to train
LM-Net. Furthermore, we propose a camera pose estimation network,
CorrPoseNet, which regresses the relative camera pose to bootstrap
the direct alignment. The final relative 6DoF pose between a reference
and query image is then obtained by classical Levenberg-Marquardt
optimization in a coarse-to-fine manner leveraging the learned multi-
scale deep features. The learned deep features significantly improve
the robustness of the alignment, especially for localization candidates
exhibiting large appearance changes. This results in a reliable camera
pose estimation without relying on feature matching and RANSAC,
allowing the utilization of any region in an image with sufficient
gradients.

2.2.3 4Seasons Dataset

Chapter 7 is based on [7] and presents a novel large-scale benchmark
dataset for autonomous driving with globally-consistent reference
poses with up to centimeter-level accuracy obtained from the fusion
of direct stereo visual-inertial odometry with RTK-GNSS. The data
has been captured in a large variety of different environments under
challenging perceptual conditions. This dataset allows benchmarking
long-term visual odometry and visual localization. The data collected
under a wide variety of weather conditions and illuminations results in
more than 300 km of recordings in nine different environments ranging
from multi-level parking garages over urban (including tunnels) to the
countryside and highways. Figure 2.1 shows some example images
from the dataset.
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Figure 2.1: The 4Seasons dataset. Illustration of a single frame from each
of the captured sequences. Note the wide variety of covered
environments and large changes in appearance. It includes short-
term illumination and weather changes, as well as long-term
seasonal and structural changes.





3
F U N D A M E N TA L S

This chapter introduces the fundamental computer vision and deep
learning concepts and mathematical tools that are the foundation of the
approaches presented in this thesis. We first describe the mathematical
preliminaries together with the pinhole camera model and nonlinear
optimization techniques. We then give an overview of deep learning, in
particular an overview of feed-forward neural networks, convolutional
neural networks, and techniques for regularization and optimization
functions that can be used for training the networks.

3.1 mathematical preliminaries

Notation: Scalars are denoted as c ∈ R with regular (lowercase)
letters, while vectors x ∈ Rn (lowercase), and matrices A ∈ Rm×n

(uppercase) are written in bold letters. We denote 3D points as p =

[x,y, z]> ∈ R3, and 2D pixels as x = [u, v]> ∈ R2. The respective
homogeneous coordinates are denoted as p̃ = [x,y, z, 1]> ∈ R4, and
as x̃ = [u, v, 1]> ∈ R3.

3.1.1 Rigid Body Motion

Elements of the 3D rotation group, SO(3) with 3 Degrees-of-Freedom
(DoF) are represented by 3D rotation matrices:

SO(3) =
{

R ∈ R3×3
∣∣∣ R>R = In

}
, (3.1)

where In denotes the identity matrix. The special Euclidean group
SE(3) is defined as follows:

SE(3) =

{[
R t

0> 1

] ∣∣∣∣∣ R ∈ SO(3), t ∈ R3

}
, (3.2)

where t ∈ R3 is a 3D translation vector.

3.1.2 Pinhole Camera Model

A camera model describes the basic geometric relationship between
a 3D scene and its projections onto a 2D image plane. In the pinhole
camera model, the camera aperture is modeled as a single point and no
lenses are used for focusing the light. The intrinsic camera parameters
describe the mapping of the scene in front of the camera (3D points in

15
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the local camera coordinate frame) to the 2D pixels in the final image
using a projection function.
Pinhole Projection Model: In the basic pinhole camera model, for
a given point p = [x,y, z]> ∈ R3 in 3D, the general perspective
projection function π : R3 → R3 is defined as:

π(p) =



u

v

1


 =

1

z



x

y

z


 . (3.3)

The intrinsic camera calibration matrix K ∈ R3×3 is then defined as:

K =



fx 0 cx

0 fy cy

0 0 1


 , (3.4)

where fx, fy corresponds to the focal length, and cx, cy to the principal
point of the camera. The projected homogeneous 2D pixel position x̃
of a 3D point p can then be calculated as:

x̃ =



u

v

1


 = Kπ(p). (3.5)

For a 2D point with known depth z, the back-projection to 3D is given
by the inverse projection π−1 : R2 ×R→ R3 :

p =



x

y

z


 = π−1

([
u

v

]
, z

)
= K−1



u

v

1


 z. (3.6)

3.1.3 Nonlinear Least-Squares Optimization

Many optimization problems in computer vision can be formulated
such that the objective is to minimize an energy function that takes
the form of a sum of squared residual terms. In general, the energy
function can be written as:

E(x) =
∑
i

r2i (x), (3.7)

where ri is the i-th residual term, and E is the optimization objective.
In most cases, the residual terms are a nonlinear function of the

optimization variables, making the energy function E nonlinear as well.
In the following, we introduce the Gauss-Newton and the Levenberg-
Marquardt method. Both of these are second-order, iterative optimiza-
tion methods for minimizing least-squares problems.
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Gauss-Newton: The Gauss-Newton (GN) algorithm is an iterative
method to compute and solve a quadratic approximation to E by lin-
earizing the residual function r, using the first-order Taylor expansion
to approximate the objective function linearized around x0:

E (x0 + δ) = ‖r (x0 + δ)‖2 (3.8)

≈ ‖r0 + Jrδ‖2 (3.9)

= r>0 r0 + 2δ>J>r r0 + δ>J>r Jrδ, (3.10)

with

Jr =
dr(x)
dx

∣∣∣∣
x0

and r0 = r(x0). (3.11)

To evaluate the optimal value of δ that minimizes the energy function,
we set its derivative to zero. This leads to the update step of the
Gauss-Newton algorithm:

J>r Jrδ+ J>r r0 = 0. (3.12)

Solving for the increment δ gives:

δ = −(J>r Jr)
−1J>r r0 = −H−1b. (3.13)

To obtain the final estimate, the increment is added to the evaluation
point and repeated until convergence:

x← x0 + δ. (3.14)

Levenberg-Marquardt: The Levenberg-Marquardt (LM) [73, 83] al-
gorithm extends the Gauss-Newton algorithm by adding a damping
factor λ to the update step to better condition the updates and make
the optimization more robust. This is done by adaptively switching
between gradient descent steps and Gauss-Newton updates. If λ is
large, the update step will be close to a gradient descent step, while
if λ is small, the update step will be close to a Gauss-Newton step.
On the one hand, the Gauss-Newton algorithm shows fast quadratic
convergence close to the local minimum, however, it can become un-
stable for poor initializations. On the other hand, gradient descent
shows slow linear convergence, however, it is guaranteed to decrease
the function for a sufficiently small step size. The updates can then be
computed as:

δ = −(H + λdiag(H))−1 b, (3.15)

where the diagonal matrix diag(H) contains the diagonal entries of H.
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3.2 deep learning

In this section, we introduce the basic concepts of deep learning, which
are fundamental to the work presented in this thesis. In particular,
we focus on deep neural networks and their use for computer vision
tasks. Deep learning architectures such as deep neural networks and
convolutional neural networks have made tremendous success in
many areas and in particular have revolutionized computer vision
research. Deep learning is a subset of machine learning where neural
networks are used to learn from huge amounts of data. For a more
comprehensive introduction, we recommend the Deep Learning book
from Goodfellow et al. [43].

3.2.1 Types of Learning

In general, learning problems in machine learning can be separated
into three main types: supervised, unsupervised, and reinforcement
learning. However, since the boundaries between supervised and
unsupervised learning are not straight, we will also introduce some
more common hybrid types of learning: semi-supervised learning,
and self-supervised learning.
Supervised Learning: The most common type of learning problem in
machine learning is supervised learning. Supervised learning can be
described as training a model that enables the mapping between input
data and target variables. We assume that we have a dataset comprised
of observations of the input variable together with corresponding
observations of the target variable. The complete dataset is usually
split into a training set, validation set, and test set. The model is fit on
the training set consisting of n examples {(x1,y1), . . . , (xn,yn)} and
used to make predictions on the test set. To evaluate the accuracy of
the learned model (f : X 7→ Y), the output predictions ŷi = f(xi) from
the model are compared to the withheld true target variables yi from
the test set. To train the model parameters, we define a scalar-valued
loss function L (f(x), y) that measures the discrepancy between a true
target label yi and the model prediction, i.e. ŷi = f(xi) for some f ∈ F,
where F denotes some particular class of functions.

Thus, our objective in learning is to find f∗ ∈ F that minimizes the
expected loss over the data generating distribution p̂data:

f∗ = arg min
f∈F

E(x,y)∼p̂data
L (f(x), y) , (3.16)

where f(x) is the predicted output for input x. However, in practice,
we do not have access to all the elements of the data generating distri-
bution p̂data, making the optimization problem intractable. Therefore,
we usually approximate the expected loss in Equation (3.16) with
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Agent

Environment

actionstate reward

Figure 3.1: The agent-environment interaction loop in a Markov decision
process. An agent interacts with its environment by taking actions,
yielding and receiving rewards, and an updated representation
of the state.

sampling by averaging the loss over the examples from the training
set:

f∗ ≈ arg min
f∈F

1

n

n∑
i=1

L (f(xi),yi) . (3.17)

The two most well-known supervised learning problems are regression
and classification. Their main difference is in the representation of
the target labels. In regression problems, the labels are continuous,
whereas, in classification problems the labels are categorical.
Unsupervised Learning: In comparison to supervised learning, unsu-
pervised learning leverages only the input data without having access
to target variables. Therefore, unsupervised learning needs to learn
meaningful patterns from data without the possibility of being guided
through labels.

Despite the existence of many different unsupervised learning prob-
lems, the two main common problems that are frequently encountered
are clustering and density estimation. A clustering algorithm deals
with finding groups or clusters of similar data points in an unlabelled
dataset. Density estimation is the process of estimating the underlying
probability density function based on observed data points.
Reinforcement Learning: Reinforcement learning is a general learn-
ing framework that describes a class of problems where an agent
interacts in an environment and learns to operate using rewards. The
typical agent-environment interaction loop of a reinforcement learn-
ing scenario is illustrated in Figure 3.1. An agent interacts with its
environment in discrete time steps. At each time step t, the agent
receives the current state st and on that basis chooses an action at.
In the next time step, the agent receives a reward rt+1 based on the
selected action and ends up in a new state st+1.
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Reinforcement learning problems can be modeled as a Markov
decision process (MDP). An MDP is a 4-tuple (S,A,P,R), where S is a
set of states called the state space, A is a set of actions called the action
space, P is the probability that action a in state s at time t will lead
to state st+1 at time t+ 1, and R is the reward (or expected reward)
received after transitioning from state st to state st+1. To solve the
problem, we introduce the notion of a policy function π : S 7→ A, that
maps from state space S to action space A. The goal of the agent is to
find a policy that maximizes the cumulative reward through repeated
interaction with the environment. We, therefore, introduce the notion
of a state-value function:

vπ(s) = Eπ

[ ∞∑
k=0

γkrt+k+1 | st = s

]
, (3.18)

where γ ∈ [0, 1] is a discount factor that trades off the importance of
immediate vs. long-term rewards. To further describe the impact of a
particular action, we can define an action-value function:

qπ(s,a) = Eπ

[ ∞∑
k=0

γkrt+k+1 | st = s,at = a

]
. (3.19)

The optimal state-value function v∗(s) is the maximum state-value
function over all policies:

v∗(s) = max
π
vπ(s). (3.20)

The optimal action-value function q∗(s,a) is the maximum action-
value function over all policies:

q∗(s,a) = max
π
qπ(s,a). (3.21)

The optimal value function specifies the best possible performance in
the MDP. A policy that achieves the optimal state-value and action-
value function is called an optimal policy and is usually denoted by
π∗ (there can be multiple optimal policies). An optimal policy can be
found by maximizing over q∗(s,a):

π∗(s,a) =

1 if a = arg max
a∈A

q∗(s,a)

0 otherwise
(3.22)

Semi-Supervised Learning: Semi-supervised learning is a special case
of supervised learning where we only have access to labels for a small
subset of the training set. The main goal of semi-supervised learning
algorithms is to make effective use of all the available data and not
just the labeled data as in a supervised setting.
Self-Supervised Learning: Self-supervised learning can be interpreted
as an unsupervised learning problem that is framed as a supervised
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learning problem such that algorithms from supervised learning could
be applied. Therefore, self-supervised learning methods try to obtain
supervisory signals from the data itself, without dependence on man-
ual annotations. Thus, the general idea of self-supervised learning is
to predict an unobserved or hidden part of the input based on some
known part of the input.

In recent years, contrastive self-supervised learning approaches
have attracted great attention and surpassed their supervised learning
counterparts on various computer vision downstream tasks. The main
idea behind contrastive learning is the use of distance-based losses,
such that similar samples are grouped closer together and dissimi-
lar samples are far from each other. Furthermore, generative models
can also be used to learn representations without explicit supervi-
sion. An autoencoder [49] is a type of neural network that is used to
learn low-dimensional features, which would allow for an accurate
reconstruction of the input. This is achieved via an encoder-decoder
architecture that is separated by a bottleneck that represents the in-
ternal compact representation of the input. Generative adversarial
networks (GANs) [44] are powerful generative models that are used
to learn the underlying distribution of the training data to create new
data instances. GAN models consist of two separate networks, a gen-
erator and a discriminator that are trained in the form of a min-max
two-player game. The generator aims to generate realistic-looking fake
samples, and the discriminator’s objective is to estimate the probability
that a sample is real or fake.

3.2.2 Regularization

A common problem for deep neural networks is the issue that trained
models can not generalize well to unseen data. This is mainly at-
tributed to the following reasons. First, a model with too little capacity
cannot fit the data. Second, a model with too much capacity can fit
the data too well and overfit the training dataset. Underfitting can
be reduced by increasing the model capacity, however, to prevent
deep neural networks from overfitting the use of regularization tech-
niques is required. Lastly, a naive solution to Equation (3.17) could
be a function f that perfectly maps each sample pair in the training
data, however, returns zero elsewhere. This would yield a function
that would most likely not generalize to all (x, y) ∼ p̂data. To overcome
these issues, a regularization factor R is added to the loss objective:

f∗ ≈ arg min
f∈F

1

n

n∑
i=1

L (f(xi),yi) + R(f). (3.23)
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In the following, we present the most commonly used regulariza-
tions in deep neural networks, i.e. L1 and L2 regularization. The L1
regularization on the model parameter θ is defined as:

R(θ) = ‖θ‖1 =
∑
i

|θi|. (3.24)

L1 regularization is a good choice when the number of features is
high since it provides sparse solutions. Therefore, features with zero
coefficients can be ignored and it is acting as a form of feature selection.
Moreover, L1 regularization is robust to outliers.

The L2 regularization on the model parameter θ is defined as:

R(θ) =
1

2
‖θ‖22 =

1

2

∑
i

θ2i . (3.25)

L2 regularization provides non-sparse solutions and, therefore, does
not exhibit an implicit feature selection property. In contrast to L1
regularization, it is not robust to outliers.
Data Augmentation: In practice, deep learning algorithms require
tremendous amounts of annotated training data. Mostly, the labeling
process is not only tedious, error-prone, and expensive due to man-
ual interactions, it is sometimes infeasible to obtain labels for every
potential object of interest. However, having access to more data is
a practical way to get better consistent deep learning models. Unfor-
tunately, in a real-world application, the amount of training data is
typically limited. Data augmentation is one way of alleviating this
problem. It provides a simple and cheap way to increase the size of
the training dataset. Common data augmentations applied to images
may include brightness changes, perspective transformations, random
rotations, blurring, scaling, etc.
Dropout: Dropout [125] is another popular technique for reducing
overfitting in deep neural networks. It is achieved by ignoring ran-
domly selected nodes during training. This effectively forces hidden
nodes to become less interdependent and to be ignored in a particular
forward or backward pass. Dropout can be easily implemented by
randomly selecting nodes to be dropped out with a given probability.
In practice, dropout is usually only applied at training time and is not
used at inference time to preserve a deterministic behavior. Dropout
can essentially be interpreted as a way to learn an ensemble of many
different networks since, at each training step, randomly chosen nodes
are temporarily removed from the network. Figure 3.2 shows a typical
neural network where all nodes are connected and activated (before
applying dropout) on the left. On the right, after applying dropout, the
crossed nodes have been dropped and all the associated connections
are removed.
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(a) Before applying dropout.

× ×

× × ×

× ×

(b) After applying dropout.

Figure 3.2: Dropout regularization in a neural network. Left: A neural net-
work before applying dropout. Right: The same neural network
after applying dropout. The crossed units have been dropped out.

3.2.3 Optimization

In this section, we introduce the techniques used for training neu-
ral networks. In general, the problem of learning the parameters θ
of a model for a supervised learning task can be formulated as an
optimization problem of the general form:

θ∗ = arg min
θ
g(θ), (3.26)

where g(θ) = 1
n

∑n
i=1 L (fθ(xi),yi) + R(fθ). The objective function

of neural networks is highly non-convex. Thus using gradient-based
learning methods, we are not guaranteed to converge to the global min-
ima. Therefore, in practice, proper weight initialization is important to
reach a good local minima. Most commonly, the network weights are
updated through backpropagation and variants of gradient descent
optimization algorithms.
Gradient Descent Optimization: Gradient descent is a commonly
used first-order iterative optimization algorithm to find a local mini-
mum of a differentiable objective function. The algorithm iteratively
updates the parameters in the negative direction of the loss objective.
In practice, for training deep neural networks, we only approximate
the gradients using a small minibatch of examples since calculating
derivatives on the entire dataset is usually intractable. The parameters
are then updated using stochastic gradient descent (SGD):

θ← θ− η∇θg(θ), (3.27)

where η is called step size or learning rate and∇θ denotes the gradient
w.r.t. θ.

More recently, advanced iterative optimization methods for obtain-
ing faster convergence have been proposed. Commonly used optimiza-
tion schemes include: SGD with momentum [129], Adadelta [145],
Adagrad [32], RMSProp [134], and Adam [65].
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Figure 3.3: Illustration of backpropagation. A simple graph for illustrating
backpropagation within deep neural networks.

Backpropagation: Backpropagation is a commonly used concept for
efficiently computing the gradients of loss functions with respect to
their inputs. The algorithm works by decomposing the parameters of
the network to a sequence of differentiable functions for computing
the gradients one layer at a time using the chain rule. The calculation
of gradients is usually computed backward through the network, i.e.
starting with the gradient of the final layer and chaining backward to
the gradient of the first layer. This is a very efficient method to update
the weights in a neural network since the weights are updated layer by
layer and gradients do not need to be recomputed. Figure 3.3 shows a
simple illustration of a neural network consisting of one input neuron,
one hidden layer neuron, and one output neuron to demonstrate how
the chain rule works. For simplicity, we denote the loss based on the
output z(3)1 and the ground truth value to be L. To update the loss
w.r.t. w1, we apply the chain rule as follows:

δL

δw1
=

δL

δz
(3)
1

δz
(3)
1

δh
(2)
1

δh
(2)
1

δw1
. (3.28)

3.2.4 Nonlinear Activation Functions

In a neural network, the nonlinear activation function transforms the
summed weighted input from a node into its corresponding output.
Nonlinear mapping helps the network to learn complex patterns in the
data. In this section, we present the most commonly used nonlinear
activation functions for neural networks.
The Logistic Sigmoid function

Sigmoid(x) = σ(x) =
1

1+ exp(−x)
(3.29)

transforms the input to the range [0, 1]. In practice, the sigmoid ac-
tivation function has two major drawbacks. First, the output is not
zero-centered, which may lead to undesirable zig-zagging behavior
in the gradient updates of the weights. Second, very small and large
input values easily lead to vanishing gradients.
The Tanh function

tanh(x) =
exp(x) − exp(−x)
exp(x) + exp(−x)

(3.30)
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transforms the input to the range [−1, 1] and therefore leads to a
zero-centered output and is preferably chosen over the sigmoid non-
linearity.
The Rectified Linear Unit (ReLU) [90] function

ReLU(x) = (x)+ = max(0, x) (3.31)

has become very popular in the last few years. It is a piecewise linear
function and the activation is simply thresholded at zero. The function
is not differentiable at x = 0 and is not zero-centered. However, the
convergence of stochastic gradient descent is much faster compared to
the sigmoid or tanh functions [67]. Unfortunately, one major drawback
of ReLU units is that they can be very fragile during training and
can die, i.e. only output zero for any input. In order to overcome the
dying ReLU problem, Leaky ReLUs [81] and Exponential Linear Units
(ELUs) [23] are introduced.
The Softmax function

Softmax(xi) =
exp xi∑
j exp(xj)

(3.32)

is a function that ensures that the output is a probability distribution:
each element is non-negative and the summation of those values is
guaranteed to equal 1. It is most commonly used as the last operation
in a neural network to convert logits to probabilities for multi-label
classification problems. Please note that the softmax function is a gen-
eralization of the sigmoid function. For the task of binary classification
(2 classes), softmax reduces to sigmoid.

3.2.5 Feed-Forward Neural Networks

Deep neural networks are composed of several layers and are capable
of learning complex functions. A neural network can be constructed by
connecting different units, also called neurons. At a basic level, a neural
network consists of three main components: an input layer, multiple
hidden layers, and an output layer. In principle, neural networks can
take any arbitrary network structure, however, feed-forward neural
networks are one of the first and most well-known architectures. A
feed-forward neural network can also be interpreted as a form of a
directed acyclic graph. Figure 3.4 illustrates a simple three-layer feed-
forward neural network. We denote the neural network as a three-layer
network since the input layer is usually not counted. This network is
fully connected since each neuron in layer l is connected to all input
neurons from layer l− 1.

The neurons are the smallest building blocks and an elementary
component in neural networks. A neuron is used to compute a linear
combination of its inputs. In general, given D input neurons, each
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Figure 3.4: A feed-forward neural network. Network graph of a three-layer
feed-forward neural network architecture with four input units
and two output units. The hidden layers contain five hidden units
each. Each circle corresponds to a unit that takes several inputs
and produces a single output. The network structure is formed
by connecting the different units.

input xj is separately weighted and summed up to produce an output
uk for a given neuron k:

uk =

D∑
j=0

wkjxj + bk, (3.33)

where wkj denotes the weights and bk the bias of neuron k. The out-
put can then be passed through a differentiable, nonlinear activation
function φ (see Section 3.2.4) yielding a nonlinear mapping:

yk = φ(uk). (3.34)

Finally, we denote the computation of a layer’s output response con-
sisting of M neurons as follows:

y = φ(Wx + b), (3.35)

where x ∈ RD denotes each layer’s input, y ∈ RM denotes each
layer’s output, and φ denotes the nonlinear activation function which
is applied elementwise. The learnable weight matrix is denoted by
W ∈ RM×D and the bias vector is b ∈ RM.

The layered structure of deep neural networks allows us to learn
highly nonlinear input-output relationships. By stacking many layers
on top of each other, each layer can extract a different representa-
tion of the input, making deep neural networks universal function
approximators.
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Figure 3.5: Illustration of a convolution operation. Illustration of convolving
a 3× 3 kernel (or filter) over an input array with stride 1 and with-
out zero-padding. The receptive field of the filter is highlighted
in orange, the kernel weights in blue, and the resulting output
activation in green. Each element of the output is the result of a
dot product between the kernel and the input array.

3.2.6 Convolutional Neural Networks

Convolutional neural networks (CNNs, or ConvNets) are neural net-
work architectures most commonly used for data with a grid-like
topology since spatial correlations between features can be exploited.
In this thesis, we mainly deal with image-based tasks, where the input
can be represented as a multi-dimensional array (i.e. a tensor).

In Figure 3.4, we depict a feed-forward multi-layer perceptron,
where each neuron is connected to all neurons from the previous layer
(fully connected). In contrast, CNNs are typically composed of three
types of layers: convolution, pooling, and fully connected layers. In
the following, we introduce the basic concepts of convolution and
pooling.
Convolution: Convolutional neural networks are based on convolution
operations in which the learnable weights of each layer are defined
as kernels (or filters). Figure 3.5 illustrates a convolution operation,
where a kernel operates on the input array in a sliding window fashion.
In general, the output of a convolutional layer is called feature map or
activation map and is defined as follows:

O[m,n] =
∑
i

∑
j

k[i, j]I[m− i,n− j], (3.36)

whereO[m,n] denotes the value at location [m,n] in the output feature
map, I denotes the input, k denotes the kernel, and i and j define the
kernel size.

The main motivation of a convolution operation is that the kernel
weights are shared between pixel values such that it significantly re-
duces the number of learnable weights in contrast to fully connected
layers. As a result, neural networks can learn generic features for com-
puter vision tasks. During training, the kernel weights are automat-
ically learned based on the provided dataset. However, convolution
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Figure 3.6: Illustration of a max-pooling operation. Illustration of a max-
pooling operation with a receptive field of size 2× 2. The receptive
field is shown in orange and the output is shown in green.

layers have a couple of hyperparameters that must be predefined,
such as the size of the kernels, number of kernels, padding, and stride.
Padding defines the size that extends the input on both sides. The
most commonly used padding strategy is zero-padding (adding zeros
to all four sides of the input). Stride controls the number of pixels
we slide the filter over the input. When the stride is 1, we move the
filters one pixel at a time. When the stride is 2, we move the filters two
pixels at a time yielding a reduced spatial dimension. Moreover, each
convolutional layer can have multiple kernels (also called channels).
Each kernel generates one channel in the output feature map. For an
input array of size W1 ×H1 ×D1, the output feature map size of the
convolutional layer is then calculated as follows:

W2 = (W1 − F+ 2P)/S+ 1 (3.37)

H2 = (H1 − F+ 2P)/S+ 1 (3.38)

D2 = K, (3.39)

where K denotes the number of kernels, F is the kernel size, S defines
stride, and P denotes the amount of padding on the borders of the
input.
Pooling: Pooling is a technique to perform downsampling of the
feature maps. The most popular form of pooling operation is max-
pooling, which is illustrated in Figure 3.6. It extracts patches from
the input and outputs the maximum value of each patch whilst disre-
garding all other values. In practice, max-pooling with a filter of size
2× 2 and stride of 2 is commonly used to downsample the in-plane
dimension of the input by a factor of 2.
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Abstract: Even though end-to-end supervised learning has shown
promising results for sensorimotor control of self-driving cars, its
performance is greatly affected by the weather conditions under which
it was trained, showing poor generalization to unseen conditions. In
this paper, we show how knowledge can be transferred using semantic
maps to new weather conditions without the need to obtain new
ground truth data. To this end, we propose to divide the task of vehicle
control into two independent modules: a control module which is only
trained on one weather condition for which labeled steering data
is available, and a perception module which is used as an interface
between new weather conditions and the fixed control module. To
generate the semantic data needed to train the perception module,
we propose to use a generative adversarial network (GAN)-based
model to retrieve the semantic information for the new conditions in
an unsupervised manner. We introduce a master-servant architecture,
where the master model (semantic labels available) trains the servant
model (semantic labels not available). We show that our proposed
method trained with ground truth data for a single weather condition
is capable of achieving similar results on the task of steering angle
prediction as an end-to-end model trained with ground truth data of
15 different weather conditions.

Revised layout and minor adaptations. Accepted version of original publication [5]
and detailed disclaimer are included in Appendix A.1.
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Figure 4.1: The perception module is trained as an encoder-decoder archi-
tecture, without any skip connections. The encoder sub-module
first embeds the raw image into a lower dimensional latent vector.
The decoder sub-module reconstructs the semantic scene from
this latent vector. If the low dimensional latent vector contains
all the necessary information to reconstruct the semantic scene
to a reasonable degree of accuracy, then we directly feed it as an
input to the control module instead of the semantic labels.

4.1 introduction

One major goal of robotics and artificial intelligence research is to de-
velop self-driving cars which can accurately perceive the environment
and interact with the world. To develop an approach for addressing
these problems, we have to deal with enormous challenges in per-
ception, control, and localization. In general, the task of building an
autonomous driving system can be divided into two parts: 1) path
planning, and 2) vehicle control. Path planning provides a global solu-
tion for reaching a destination from a given starting position. It uses
various information from different sensors such as GPS, IMU, and
traffic conditions to infer the most optimized path. Meanwhile, vehicle
control is meant to provide a local solution for predicting the imme-
diate steering commands at the current instance in time. It utilizes
information from sensors such as RGB cameras, lidar or radar. These
sensors allow the self-driving car to sense and understand its current
surroundings, such as the status of traffic lights or the presence of a
pedestrian or another vehicle in front of the car.

In this paper, we focus our attention only on vehicle control to
explain how transfer learning can be utilized to improve the robustness
and stability of predicting steering commands even for unseen weather
conditions for which no supervised data is available. For this, the task
of vehicle control is segregated into perception and control. Figure 4.1
represents two modules, with each performing one of these tasks.
The purpose of the perception module is to pre-process the raw input
sensor data and extract useful features. In our approach, we use images
captured by an RGB camera to extract semantic features of the scene.
These extracted features are then fed to the control module which aims
to produce the correct steering command for that particular sensor
input.
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Modular pipeline vs end-to-end learning. In an end-to-end train-
ing approach, both the perception and the control module would
be trained together [20]. We propose to split the task into separate
perception and control, so that each module is trained and optimized
independently without affecting each other. The main advantage of
the separate modules is that without retraining the control module,
we can simply replace the perception module to work on different
environmental conditions, whereas in an end-to-end learning system,
supervised labels for the new domain would first be needed to be
collected and then the control module would also need to be retrained
on this additional data.

Our main contributions are the following:

• Ability to control the vehicle in unseen weather conditions with-
out having the need to collect additional data for the steering
commands and without requiring to retrain the control mod-
ule. This is done by simply replacing the perception module
additionally trained on the semantics of the new condition.

• We show how knowledge can be transferred from a weather
condition for which semantic labels are available to other weather
conditions for which no labels exist in an unsupervised manner
using GANs.

4.2 related work

Supervised learning for self-driving cars. The use of supervised
learning methods to train driving policies for self-driving cars is a well-
known and common approach. The first step towards using neural
networks for the task of road following dates back to ALVINN [97].
This approach uses a very simple shallow network which maps images
and a laser range finder as input and produces action predictions.
Recently, NVIDIA [15] proposed to use deep convolutional neural
networks trained end-to-end for a simple lane following task. This
approach was successful in relatively simple real-world scenarios. One
major drawback of end-to-end imitation learning is that it cannot
generalize well across different domains for which no labeled training
data is available. However, most end-to-end learning approaches [71,
121, 147] suffer from this problem.
Transfer learning. Generative adversarial networks provide a frame-
work to tackle this generalization gap [61] by image generation tech-
niques which can be used for domain adaptation. The authors of [144]
proposed a network that can convert non-realistic virtual images into
realistic ones with similar scene structures. Similarly, Hoffman et
al. [50] proposed a novel discriminatively-trained adversarial model
which can be used for domain adaptation in unseen environments.
They show new state-of-the-art results across multiple adaptation
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tasks, including digit classification and semantic segmentation of road
scenes.
Semantic segmentation. Visual understanding of complex environ-
ments is an enabling factor for self-driving cars. The authors of [26]
provide a large-scale dataset with semantic abstractions of real-world
urban scenes focusing on autonomous driving. By using semantic seg-
mentation, it is possible to decompose the scene into pixel-wise labels
we are particularly interested in. This especially helps self-driving
cars to discover driveable areas of the scene. It is therefore possible to
segment a scene into different classes (e.g. road and not road) [21].
Modular pipeline vs end-to-end learning. The authors of [31] trained
both an end-to-end and a modular based model on one set of weather
conditions and tested the model on a different set of weather condi-
tions. Based on their experiments they concluded that the modular
approach is more vulnerable to failures under complex weather condi-
tions than the end-to-end approach.

Our method also uses a modular approach, but additionally intro-
duces an image translation technique to overcome the generalization
gap between the unseen weather conditions. This is done by only
retraining the perception module without having to retrain the control
module for each and every domain (i.e. weather condition). A useful
consequence of this is that we do not have to recollect additional
labeled data for the new conditions.

4.3 imitation learning on the latent semantic vector

Perception module. In this work, we use images captured by an
RGB camera placed at the front of the car as inputs to the perception
module. The perception module processes these images and produces
an output map containing the semantics of the scene, which in turn
can be used as an input to the control module. The CARLA [31]
simulator yields semantic labels for 13 classes. The advantage of using
semantic labels instead of raw RGB data is described below:

• Figure 4.2 shows how two weather conditions have different RGB
inputs but the same semantic pixel labels. Hence, the control
module does not separately need to learn to predict the correct
steering commands for each and every weather condition.

• The semantic labels can precisely localize the pixels of impor-
tant road landmarks such as traffic lights and signs. The sta-
tus/information contained on these can then be read off to take
appropriate planning and control decisions.

• A high proportion of the pixels have the same label as its neigh-
bors. This redundancy can be utilized to reduce the dimension-
ality of the semantic scene. Hence, the number of parameters
required to train the control module can then also be reduced.
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Figure 4.2: For the perception module we take in raw image data as obtained
from the car’s camera and output the semantic segmentation of
the scene. Notice that irrespective of the weather condition the
semantics of the scene remain the same. Since the perception mod-
ule bears the burden of producing the correct semantic labels, the
control module would be robust to changes in lighting, weather,
and climate conditions.

The perception module, which is used to produce the semantic la-
bels of a scene from the RGB camera is trained as an encoder-decoder
architecture. The network architecture which is being used is a modi-
fied version of the one proposed by Larsen et al. [69]. The structure
and the parameters of the model are shown in the supplementary ma-
terial. The encoder first encodes the information contained in the input
data to a lower dimensional latent vector. The decoder, then takes this
latent vector and attempts to reconstruct the semantics of the scene.
The output of the decoder is of the same size as the image but having
13 channels with each representing the probability of occurrence of
one of the semantic labels. The model is trained by minimizing the
weighted sum of the categorical cross-entropy of each pixel in the
image. The categorical cross-entropy (negative log-likelihood) between
predictions p and targets t is calculated as follows:

Li = −
∑
j

ti,j log(pi,j)wj, (4.1)

where i denotes the pixel and j denotes the class. The weight wj
of each semantic label is inversely proportional to its frequency of
occurrence in the dataset.
Control module. Note that we do not use skip connections between
the encoder and decoder of the perception module. Therefore, since
the lower dimensional latent vector is capable of reconstructing the
semantic labels of the scene, we can directly use this vector as input to
the control module instead of the complete scene. Figure 4.1 depicts
how the latent semantic embedding vector produced by the encoder of
the perception module can be used as an input to the control module.

The control module aims to predict the correct steering angle, from
the latent embedding fed as an input to the model. The data used for
training the control module is collected in a supervised manner by
recording images and their corresponding steering angles. The loss
function attempts to minimize the mean squared error (MSE) between
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Figure 4.3: This figure shows the segmentation reconstructions S11 and S22
when image X0 is passed through two segmentation models
M1 (with Encoder E1, Decoder D1) and M2 (with Encoder E2,
Decoder D2). Both models are trained independently on the same
data. Note that the reconstructions reflect the true semantics of
the scene reasonably well. S12 shows the reconstruction when the
embedding from encoder E1 is fed to through decoder of D2. The
ambiguity in S12 implies that for the same image the two models
yield different semantic vectors.

the actual steering angle and the one predicted by the model across
all the samples. The architecture of the control model is depicted in
the supplementary material.

4.4 master-servant architecture for transfer learning

The control module does not perform well if tested in an environment
which is completely different from the one on which the perception
module was trained on. A naive and yet computational demanding
solution could be to retrain the perception module under every other
weather condition. However, this is not a viable solution for the fol-
lowing reasons:

• We would need semantic labels for every other weather condition.
Obtaining semantic labels of a scene is a painstakingly slow
process and prone to errors, since it requires human effort.

• Even if we have access to the semantic labels and retrain the
perception module under the new environmental conditions, we
would still have to also retrain the control module. This is due
to the fact that the semantic latent vector produced by the new
perception module might be different from the one produced
by the old perception module, despite the same semantics of
the scene. Figure 4.3 describes how for the same image, two
independently trained segmentation models could yield different
semantic vectors, despite being trained on the same data.

Proposed master-servant architecture. Suppose that the perception
module P0 and the control module C0 are trained under a certain
environmental condition. When tested on a very different weather
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condition P0 may fail to produce the relevant semantic latent vector
for the control module C0 to take the correct steering decision. We
would therefore like to replace P0 with a different perception module
P1 such that it produces the correct latent vector to allow the same
control module C0 to execute the appropriate steering command even
on this very different condition. For this, we propose a master-servant
architecture model for training the perception module functioning
on images from a domain for which no semantic labels are avail-
able. Figure 4.4 demonstrates the necessary steps of the master-servant
architecture.

Suppose we have images (from domain X) and their corresponding
semantic labels. With this, we can train a segmentation model using
the encoder-decoder architecture described previously. We refer to
the trained encoder of this model as the master perception module
P0. We would also like to obtain the correct semantic embedding of
images (from domain Y) for new conditions for which no semantic
labels are available. We refer to the perception module for which we
would like to furnish the correct semantic embedding for images in
domain Y as the servant perception module P1. We use the master
module, P0, to train the servant module, P1, in the steps described as
follows:

1. An image X0 is arbitrarily selected from domain X. X0 is fed
to through P0 to obtain the semantic embedding of the scene
denoted by z0. Meanwhile, the generator G translates the image
X0 to generate an image Y0 from domain Y, such that the seman-
tics of the scene are preserved. If semantics are being preserved,
then z0 should be equal to z1 (the semantic embedding obtained
by feeding Y0 through P1).

2. Y0 is fed through P1 to get the predicted latent embedding z1.

3. The mean squared error (MSE) between z0 and z1 is used as the
loss function to update the weights of P1 in order to minimize
the difference between the two latent embeddings.

Some examples of the images produced by the generator G, seg-
mentation reconstruction when z0 (semantic embedding of the master)
and z1 (semantic embedding of the servant) is fed through the decoder
of the master perception module P0 are shown in the supplementary
material.
Unsupervised transfer of semantics. We observe that with this master-
servant architecture we are able to train the servant perception module
for obtaining the correct semantic embeddings for images from domain
Y for which semantic labels were never available. We can thus replace
P0 with P1 which would also work on these unseen weather conditions
without having to retrain the control module. Moreover, no additional
human effort is required for the labeling of semantics.
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Figure 4.4: We propose a master-servant architecture to train a servant per-
ception module P1 for images which do not have semantic labels
in an unsupervised manner. Images in domain X have semantic
labels and are used to train the perception module P0, which we
refer to as the master perception module. P0 is pre-trained using
the complete encoder-decoder architecture. Images in domain Y
do not have semantic labels. The process works as follows. Step 1:
The generator G is used to convert an image X0 from domain X
to an image Y0 in domain Y such that the semantic information
is preserved. Meanwhile X0 is also fed to the master perception
module P0 to get the latent embedding z0. Step 2: The image Y0
is fed to the servant perception module P1 to get the predicted
latent embedding z1. Step 3: Since the semantic labels of X0 and
Y0 are the same, their latent embeddings should also be the same.
We use the mean squared error (MSE) to minimize this difference,
wherein the embedding z0 is used as the true label for training
P1. Update Weights: We back-propagate the MSE loss to update
the weights of only P1 so that its embedding matches with that of
P0. The green arrows indicate forward propagation and the red
arrow shows back-propagation.
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The most critical component which made the functioning of this
approach possible is the generator G, which is able to translate images
between two different domains, while preserving the semantics. The
generator G is pre-trained using the CycleGAN [151] approach. Unlike
other image-to-image translation methods such as pix2pix [54], an
important feature of CycleGANs is the fact that this approach does
not require paired data between two domains. Therefore, the task
of collecting (if even possible) images with a one-to-one correspon-
dence between two domains can be eliminated. The procedure for
training the generator G using the CycleGAN approach is shown in
the supplementary. The architecture used was taken from [151]. The
supplementary material shows some examples of paired and unpaired
data from two different domains produced by the CARLA simulator.

4.5 experimental results

Experimental setup. For evaluating our method, we used the CARLA
simulator. The CARLA simulator provides 15 different weather condi-
tions (labeled from 0 to 14). We focus our attention on the car turning
around corner scenarios since it is a more complicated maneuver to
perform than lane following and it would thus give a better under-
standing of possible failure conditions. We train 5 different models to
predict the steering angle whilst assuming that the car throttle is fixed.
For a fair comparison, the approach is evaluated on multiple different
turns and we do not consider the presence of pedestrians and cars in
the ego vehicle’s driving lane. The starting position of the agent is just
before the curve and the duration of the turn is fixed to 120 frames
since it covers the entire turning maneuver. The turn is considered
successful if the car did not crash whilst executing the turn. Further-
more, in order to make a quantitative evaluation of the performance
of each of the 5 models, new test data containing the images and the
corresponding true steering commands for each of the 15 weather
conditions was collected. Figure 4.5 shows a plot of the mean squared
error (MSE) between the actual and the predicted steering commands
by the 5 different models across all the weather conditions on samples
of the test data. Meanwhile, Table 4.1 enumerates the percentage of
turns each of the 5 models are successfully able to execute across all
the 15 weather conditions.

The supplementary material contains the description and some sam-
ples of the 15 weather conditions along with video samples demon-
strating the performance of the models on certain weather conditions.
The dataset can be downloaded at: https://git.io/fApfH. The details
of the 5 models are given below:
End-to-end, all weathers. An end-to-end model is trained on all
weather conditions. Here we have assumed that we have access to
the steering commands across all the conditions. As can be seen

https://git.io/fApfH
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Figure 4.5: Plot of the mean squared error (MSE) between the actual and
the predicted steering commands by 5 different models across
the weather conditions 0 to 14. The blue line is the error plot
for a model trained end-to-end, from images and corresponding
steering commands for all the 15 weather conditions. The cyan
error curve corresponds to the end-to-end model trained on im-
ages and steering commands for weathers 5-9. The red line is
for the model trained end-to-end from images and correspond-
ing steering commands for only the default weather condition
0. The black line represents the model referred to as the master
whose perception and control modules are trained separately. The
perception module is trained using the actual semantic labels
available for the default weather condition, whereas the control
model is trained from the actual steering commands of the same
condition. The green curve is the model whose control model is
the same as the one for the master, but the perception module
is trained as a servant from the master perception module from
images generated by the CycleGANs for weather conditions 2, 3,
4, 6, 8, 9, 10, 11, 12, and 13, in addition to the default condition 0.

from Figure 4.5, this model gives the lowest error particularly for
weathers 1 to 14. Moreover, we observe in Table 4.1 that this model is
able to successfully execute a high proportion of the turns across all the
weather conditions, since it was trained on all of them. All subsequent
models are trained with the steering commands available for a subset
of the weather conditions and their performance is compared with
this model.
End-to-end, weather 5-9. This model is trained end-to-end on weath-
ers 5, 6, 7, 8, and 9 which were arbitrarily selected just to see how it
would perform on unseen weather conditions. As shown in Figure 4.5
it has a relatively low error on these conditions and a higher error
elsewhere. Furthermore, the plot shows that this end-to-end approach
only seems to work well on the trained conditions for which we have
labeled data. Moreover, as can be seen in Table 4.1, the model is ca-
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pable of maneuvering well on the trained weather conditions and on
those which are similar or have good visibility. However, on weather
conditions 11-14 the model fails to execute the majority of the turns.
This is mainly due to the fact that these weather conditions (11-14) are
relatively disparate in terms of appearance and visibility as compared
to the trained ones (5-9).

In practice, we do not have the steering commands available for
all the possible or even a diverse subset of the weather conditions.
Rather, the labeled data would correspond to only the condition of
the day/period on which it was collected. Therefore, the 3 successive
models that we now consider assume that the steering commands and
the corresponding images/semantics are only available for the default
weather condition (labeled as 0). From this, we evaluate how end-
to-end training would compare to the proposed modular approach
across all the remaining weather conditions for which no labeled data
is available.
End-to-end, weather 0. This model is trained end-to-end from images
and steering commands for the default weather condition. Figure 4.5,
shows that this model outperforms all the other models only on
weather condition 0 on which it was trained. For all other conditions,
it gives high errors.
Modular master. This model is trained on the default weather condi-
tion (0) but the task is divided into 2 separate perception and control
modules. The perception module P0 is trained on the semantic labels.
We refer to this perception module as the master, since it will later
be used to train the servant module for retrieving the semantic in-
formation of the unseen weather conditions. The control module is
in turn trained with imitation learning to predict the steering angle
of the car from the latent embedding generated by the encoder of
P0. The fourth row of Table 4.1 depicts the percentage of turns the
model was successfully able to maneuver for each of the 15 conditions.
As observed in the table, the model is successful only on the default
weather conditions (on which it was trained) and the sunny weather
condition (which closely resembles the default condition). Similar to
the previous model (trained end-to-end on the default condition),
this model also fails on a large proportion when tested on weather
conditions that are far off from the default condition in terms of visual
appearance. From this, there seems to be no apparent advantage of
using a modular approach over the end-to-end training when we have
access to the labels for only one weather condition. Nevertheless, the
master perception module P0 obtained through this method will serve
as a baseline for training a servant perception module that additionally
works for unseen weather conditions. This approach is described in
the following.
Our approach (Modular servant). We train one servant perception
module to cater for weather conditions on which P0 failed to perform.
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We selected a subset of weather conditions (i.e. 2, 3, 4, 6, 8, 9, 10, 11, 12,
and 13) to train the servant module. Using CycleGANs, separate gen-
erators were trained between each of these conditions and the default
weather condition. The images produced by the CycleGAN generators
for each of these conditions were fed as an input in equal proportion
along with the default images to train only a single servant perception
module P1. Despite having no access to the steering commands and
the semantic labels for weather conditions 1 to 14, Figure 4.5 shows
that the error for this model across these 14 weather conditions is sig-
nificantly lower than the previous 2 models which were also trained
only from labels of weather condition 0. Moreover, we see from the last
row of Table 4.1, that this model is successfully able to execute a good
proportion of the turns for most of the weather conditions. Only on
condition 13 (HardRainSunset), the model fails to perform well. The
visibility under this condition is low and the images generated by the
CycleGAN do not seem to preserve the semantics, hence resulting in
the model to perform relatively poorly. Nevertheless, on all the other
remaining weather conditions its performance is comparable to the
first end-to-end model trained on steering labels for all the weather
conditions.

4.6 conclusion

In this paper, we have shown that in order to generalize vehicle control
across unseen weather conditions it is worthwhile to divide the task
into separate perception and control modules. This separation elimi-
nates the tedious task of recollecting labeled steering command data
for each and every new environment the vehicle might come across.
Moreover, retraining of the control module for new environments
can be avoided by a simple replacement of the perception module.
The initial perception module was trained from the semantic labels
available only for one of the weather conditions. For environments for
which semantic labels are missing, the proposed master-servant ar-
chitecture can be deployed for transferring semantic knowledge from
one domain to another (i.e. between different weather conditions)
in an unsupervised manner using CycleGANs which do not require
paired data. We believe that the presented approach to making driving
policies more robust by training under different weather conditions
will prove useful in future research.
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Figure 5.1: Teacher-student training for generalizing sensorimotor control
across weather conditions. Top: The teacher network, trained
on ground truth data collected on sunny weather is capable of
predicting the correct steering angle when tested on this condition.
Middle: However, the teacher fails to predict the correct steering
when tested on an input image from a different domain (rainy
weather). Bottom: With our proposed framework, the student
network trained with supervised information from the teacher
network is capable of predicting the correct steering for the rainy
weather. This is done without any additional ground truth labels
or semantic information.

5.1 introduction

The ubiquity of a tremendous amount of processing power in contem-
porary computing units has proliferated the usage of deep learning-
based approaches in control applications. In particular, supervised
deep learning methods have made great strides in sensorimotor con-
trol, whether it be for autonomous driving [15], robot perception [62],
or manipulation tasks [74, 89, 148]. However, the performance of such
models is heavily dependent on the availability of ground truth labels.
To have the best generalization capability, one should annotate data
for all possible scenarios. Nonetheless, obtaining labels of high quality
is a tedious, time consuming, and error-prone process.

We propose to instead utilize the information available for one do-
main and transfer it to a different one without human supervision
as shown in Figure 5.1. This is particularly helpful for many robotic
applications wherein a robotic system trained in one environment
should generalize across different environments without human in-
tervention. For example in simultaneous localization and mapping
(SLAM), it is very important that the algorithm is robust to differ-
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ent lighting conditions [95]. In the context of autonomous driving,
transferring knowledge from simulation to the real world or between
different weather conditions is of high relevance. Recently, [86, 5,
144] have attempted to tackle these problems by dividing the task of
vehicle control into different modules, where each module special-
ized in extracting features from a particular domain. In these works,
semantic labels are used as an intermediate representation for trans-
ferring knowledge between different domains. However, obtaining
these semantic labels requires human effort which is time-consuming,
expensive, and error-prone [5]. In this work, we instead propose to
use a teacher-student learning-based approach to generalize sensori-
motor control across weather conditions without the need for extra
annotations, e.g. semantic segmentation labels.

To this end, we make the following contributions:

• We demonstrate how knowledge of ground truth data for steer-
ing angles can be transferred from one weather scenario to
multiple different weather conditions. This is achieved without
the additional requirement of having semantic labels. We make
use of an image-to-image translation network to transfer the
images between different domains while preserving information
necessary for taking a driving decision.

• We show how the proposed method can also utilize images
without ground truth steering commands to train the models us-
ing a teacher-student framework. The teacher provides relevant
supervised information regarding the unlabeled images to train
the features of the student. Hence, we can eliminate the need for
an expert driver for data collection across diverse conditions.

• If the sample data with ground truth labels is limited, then the
teacher and student models may tend to overfit. To overcome
this, we propose using weighted auxiliary networks connected
to the intermediate layers of these models. During inference, the
model size can be reduced by eliminating auxiliary layers with
low weights without reducing accuracy.

In the following sections, we first review related work. We then
present the details of our method, followed by an analysis of our
model’s performance. Finally, we discuss various parts of our model.

5.2 related work

Vision-based autonomous driving approaches have been studied ex-
tensively in an academic and industrial setting [55]. A plenty of real
world [26, 41, 139] as well as synthetic [38, 102, 103, 107] datasets for
autonomous driving research have become available. In recent years,
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neural network approaches have significantly advanced the state-of-
the-art in computer vision tasks. Especially, end-to-end learning for
sensorimotor control has recently gained a lot of interest in the vi-
sion and robotics community. In this context, different approaches to
autonomous driving are studied: modular pipelines [133], imitation
learning [97], conditional imitation learning [25], and direct percep-
tion [20].
Embodied agent evaluation. Most available datasets [26, 41] cannot
be used for evaluating online driving performance due to their static
nature. The evaluation of driving models on realistic data is challeng-
ing and often not feasible. Therefore, a lot of interest has emerged
in building photo-realistic simulators [31, 85, 119] to analyze those
models. However, despite having access to simulation engines, there is
currently no universally accepted benchmark to evaluate vision-based
control agents. Therefore, our experimental setup is a step towards a
field where it is still not quite established how to evaluate and measure
the performance of the models [10, 24].
Unpaired image-to-image translation networks. Unsupervised image-
to-image translation techniques are rapidly making progress in gen-
erating high-fidelity images across various domains [53, 75, 76, 151].
Our framework is agnostic to any particular method. Hence, continual
improvements in these networks can be easily integrated into our
framework by replacing a previous network.
Transfer learning via semantic modularity. Several works used seman-
tic labels of the scene as an intermediate representation for transferring
knowledge between domains. In the context of autonomous driving,
the authors of [86] proposed to map the driving policy utilizing se-
mantic segmentation to a local trajectory plan to be able to transfer
between simulation and real-world data. Furthermore, for making a
reinforcement model trained in a virtual environment workable in
the real world, the authors of [144] utilize the intermediate semantic
representation as well to translate virtual to real images. However,
there is still little work on generalizing driving models across weath-
ers. The work by [5] showed how to transfer knowledge between
different weather conditions using a semantic map of the scene. In
contrast, in this paper, we demonstrate the possibility of transferring
the knowledge between weathers even without semantic labels.
Knowledge distillation. Originally, knowledge distillation [48] was
used for network compression (student network is smaller than the
teacher while maintaining the accuracy). However, the authors of [140]
focus on extracting knowledge from a trained (teacher) network and
guide another (student) network in an individual training process.
Furthermore, [120] used a slightly modified version of knowledge
distillation for the task of pedestrian detection. In this work, we use a
teacher-student architecture, but rather to leverage unlabeled data for
sensorimotor control.
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5.3 sensorimotor control across weathers

In this section, we introduce a computational framework for transfer-
ring knowledge of ground truth labels from one weather condition
to multiple different scenarios without any semantic labels and addi-
tional human labeling effort. Figure 5.2 gives a high-level overview of
the framework.

5.3.1 Teacher End-to-End Training

In this step, the teacher model is trained end-to-end in a supervised
manner to predict the steering command of the vehicle from the raw
RGB images generated by the camera placed at the front of the ego
vehicle. The training data is collected by an expert driver only once
for that particular weather scenario. We refer to the images recorded
under the weather condition under which this data was collected as
belonging to domain D0. Note that the teacher model is itself divided
into a Feature Extraction Module (FEM), F0 and a control module, C0.
The raw image (belonging to D0) is passed through F0 to retrieve a
lower-dimensional feature representation. This feature representation
is in turn fed to the C0 which predicts the steering angle. A depiction
of the model is shown in Figure 5.3. The FEM, F0 is a sequential
combination of 4 units where each unit comprises a convolutional,
pooling, and activation layer. The output of unit 4 is flattened to a
size of 800, which is in turn fed as an input to the module, C0. The
control module, C0 is a series of fully connected layers and outputs
the steering command.
Auxiliary network. It might be the case that the amount of images
with labels is limited or the model is too large for the task at hand.
Hence, the model may tend to overfit. Therefore, during training, to
mitigate the effect of overfitting, F0 additionally uses auxiliary net-
works connected to its intermediate layers [130]. Each of the auxiliary
networks has a control module, C0 with shared weights. The projec-
tion layers, P1, P2 and P3 project the feature maps of the intermediate
layers to the dimension of C0, i.e. 800. The overall output of the teacher
model is the weighted sum of the outputs of the auxiliary networks.
The loss is also described by a weighted combination of the individual
losses of the 4 auxiliary networks. The loss for each of the control
modules is the mean squared error (MSE) between the ground truth
label provided by the expert and that predicted by C0. The overall loss
is a weighted sum of the losses from each of the 4 control modules.

L =

4∑
i=1

αiLi, s.t.
4∑
i=1

αi = 1, (5.1)
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Figure 5.2: This figure gives a high level overview of the 3 steps for transfer-
ring knowledge between two domainsD0 andD1 for the purpose
of sensorimotor control. Ground truth steering data for only a
limited number of images from domain D0 is available. Details
of the framework are provided in Section 5.3.
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Figure 5.3: The figure depicts the general architecture of the model comprised
of the FEM and the auxiliary control modules.

where αi, and Li are the weighting and the error for the auxiliary
network, obtained from the intermediate unit i of the FEM F0. The
error functions are calculated as follows:

Li =
1

N

N∑
j=1

(
yj −Oij

)2 , (5.2)

where yj is the ground truth steering angle obtained from the expert
driver for a sample j and N denotes the number of total samples. Oij
is the output of the control module corresponding to the ith auxiliary
network for the jth sample.

The weights αi are themselves learned by a separate weight network.
The auxiliary network that has the greatest contribution toward the
overall output would also have the highest relative weight. This is
important in case of limited data, wherein not all layers may be
essential to train the model. In such a case the weights of the shallower
auxiliary networks would be higher in comparison to the deeper
auxiliary networks. Hence, a significant contribution towards the
overall prediction would come from these shallow layers, thereby
making the deeper layers effectively dormant. An extreme case would
be when the labeled data is so small that even the first layer is enough
to give a correct model prediction. In such a case, only α1 = 1 and all
other αi = 0, for i = 2, 3, 4.

5.3.2 Knowledge Transfer

As described in step 2 of Figure 5.2, knowledge of ground truth labels
from domain D0 is transferred to domain D1 using a teacher-student
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architecture. The output of the auxiliary networks acts as the teacher
to provide supervised information to train the student.

We use the FEM, F0 and control module, C0 (combined, referred
to as teacher) trained on images belonging to domain D0, for which
ground-truth steering labels are available, to transfer knowledge to a
different combination of FEM, F1 and control module, C1 (referred to
as student) for domain D1, for which we have access to only unlabeled
images. The subsequent procedure is detailed in the following steps:

1. Image I0 belonging to domain D0 is passed through an image-
translation-network to generate image I1 belonging to domain
D1 in a manner that only the semantic information is preserved
but the weather condition is modified. [53, 75, 151] describe meth-
ods for training a translation network in an unsupervised man-
ner using generative adversarial networks (GANs). We use [151]
for our experiments. A positive implication of using these net-
works is that they preserve the semantics of the scene and hence
the steering angle label would also be the same.

2. Hard loss: If I0 happens to have a ground truth (hard) label then
the weights of the student network are updated with these labels
and the loss is referred to as the hard loss. Soft loss: Otherwise, a
forward pass can also be done by passing I0 through the teacher.
Meanwhile, the corresponding image I1 is passed through the
student network. The output of the teacher can then be used
as a soft target for updating the weights of the student via the
soft loss. The overall loss is the weighted average of the soft and
hard losses. The weights indicate the relative importance given
to the soft targets in relation to the ground truth labels.

Note that the student network can be fed not only images from
domain D1 but rather multiple domains including domain D0. Hence,
the student network would not only be capable of predicting the
steering for multiple domains but would act as a regularizer for better
generalization (See P1 in Section 5.5).

5.3.3 Substitution

This refers to step 3 described in Figure 5.2. At inference time, the
teacher network can be substituted with the student network to predict
the correct steering command on images from all domains which the
student encountered during training.

5.4 experiments

In this section, we evaluate our approach on the CARLA simulator [31]
version 0.8.2. It provides a total of 15 different weather conditions
(labeled from 0 to 14) for two towns, Town1 and Town2, respectively.
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5.4.1 Evaluation Metrics

Finding appropriate evaluation metrics is rather challenging for nav-
igation and driving tasks. There is no unique way to quantify these
tasks. The authors of [10] discuss different problem statements for em-
bodied navigation and present based on these discussions evaluation
metrics for some standard scenarios. In [24], a more extensive study
on evaluation metrics for vision-based driving models is carried out.
In particular, they analyzed the difference between online and offline
evaluation metrics for driving tasks. The preliminary results showed
that driving models can have similar mean squared error (MSE) but
drastically different driving performances. As a result of this, it is not
straightforward to trivially link offline to online performance due to a
low correlation between them. Nevertheless, the authors of [24] found
that among offline metrics not requiring additional parameters, the
mean absolute error between the driving commands and the predicted
ones yields the highest correlation with online driving performance.

In addition to using this offline metric, we evaluate the online per-
formance of the models when executing multiple and diverse turnings
around corners, since it is a much more challenging task in comparison
with simply moving in a straight line. The online performance is tested
on the CARLA simulator across all the 15 weather conditions. For each
weather condition, we evaluate the models for multiple different turns.
In all experiments, the starting position of the vehicle is just before
the curve. The duration of the turn is fixed to 120 frames because it
covers the entire curvature of the turn. We report the percentage of
time the car remains within the driving lane as a measure of success.

5.4.2 Dataset

For collecting ground truth training data, we navigate through the
city using the autopilot mode. To demonstrate the superiority of our
method, we collect a limited sample size of 6500 images for weather
condition 0 of which only 3200 are labeled with ground truth steering
commands. Using our proposed method we aim to transfer knowledge
to the remaining 14 weather scenarios. Also, note that none of the
6500 images have any semantic labels.

The 3200 sample images with ground truth data are only available
for Town2, whereas all the offline and online evaluations are performed
on Town1. To focus the attention on the effectiveness of our approach
and preserve compatibility with prior work [15, 24, 139], the models
are trained to predict the steering angle of the car while keeping the
throttle fixed. The steering angles in CARLA are normalized to values
between −1 and 1. The corresponding degrees for these normalized
values depend on the vehicle being used. The default vehicle which
we use for our experiments has a maximum steering angle of 70°.
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5.4.3 Models

The offline and online performance of the models described in this
section are given in Figure 5.4 and Table 5.1, respectively. Figure 5.4
shows the plot of the mean absolute error between the actual steering
command and that predicted by all of the models. Table 5.1 contains
the percentage for which the ego-vehicle remains within the driving
lane while making turning maneuvers executed by the models across
the 15 weather scenarios.
Oracle: Steering labels for all weathers. Here we have assumed that
we have access to the ground truth steering commands across all the
15 different weather conditions for Town1. Since we are also evaluating
the models on Town1 across all the weather conditions, we find in
both the offline and online evaluation metrics that this model achieves
the highest accuracy and hence it could serve as an upper bound for
evaluating the other models along with our approach.
Model [5]: Steering and semantic labels for weather 0. Here we adopt
the approach of [5], wherein the semantic labels of the images are
additionally available for the 3200 labeled samples on weather 0. This
additional information is used to first train what we refer to as the
feature extraction module (FEM) in a supervised manner. The FEM
module, in this case, is trained as an encoder-decoder architecture.
The encoder encodes the input image into a lower-dimensional latent
vector, while the decoder reconstructs the semantic map of the image
from the latent vector. The latent vector is then used to train the
control module from the ground truth steering labels. The FEM and
control modules are hence trained independently and without any
auxiliary networks. This FEM trained on the semantics of weather 0 is
used as a teacher to train the student which is capable of producing
the semantics of all the other 14 weather conditions. The authors
of [5] used the method of [151] and provide 10 separate networks
for translating from weather 0 to weathers 2, 3, 4, 6, 8, 9, 10, 11, 12,
and 13, respectively. The translated images for each of the 10 weather
conditions along with weather 0 are fed in equal proportion to train
the student. We would particularly like to evaluate our method which
does not have access to any semantic labels against this model. In
addition to this, we also evaluate the performance of this method on
the model provided by the paper, which was trained with more than
30 000 samples from both Town1 and Town2. The performance of this
model on Town1 is far superior since it was trained on much greater
data and also had access to ground truth data from Town1.
Teacher: Steering angles for weather 0. This model is trained us-
ing only the available labeled data for weather 0 in an end-to-end
manner. This model has a poor performance for the unseen weather
conditions, particularly for conditions 3-14, which are considerably
different in visual appearance compared to weather 0. Nevertheless,
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Figure 5.4: This plot shows the mean absolute error between the actual steer-
ing angle and that predicted by the 5 different models (see Sec-
tion 5.4.3) on data collected across the 15 different weather condi-
tions on Town1. Lower is better.

despite the poor performance this model can be used as a teacher to
train the student for predicting the correct steering angles for weather
conditions 1-14 for which no ground truth data exists. This approach
is described in the next model. Also, note that the unlabeled data
remains unutilized here.
Ours: Steering angles for weather 0. This model is trained using the
method described in Section 5.3, wherein knowledge is transferred
from the teacher network trained on images and ground truth steering
commands from weather 0 to the student network which is capable
of handling images from all weathers 0-14. For a fair comparison
against the model trained with semantic labels (Model [5], described
earlier) we use the same data and generative models to translate even
the unlabeled images to weathers 2, 3, 4, 6, 8, 9, 10, 11, 12, and 13,
respectively. These generated images can then be fed to the student
model for predicting the correct steering angles for all the 15 weather
conditions.

5.5 discussion

In this section, we discuss some critical insights on the experimental
observations we obtained while evaluating the models. Here are some
points we found worthwhile to provide some commentary based on
the results provided in Figure 5.4 and Table 5.1.
P1 - Better regularization: It is interesting to observe that the teacher
model, trained only on the available 3200 labeled samples from Town2
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Figure 5.5: This plot shows three sample images (column 1) with the corre-
sponding semantic segmentation output by the model (column
2) for 3 different weathers. The segmentation produced by the
model does not reflect the actual semantic characteristics of the
scene (column 3).

on weather 0 has a worse offline performance for Town1 on weather
0 in comparison to our method. This seems to imply that our ap-
proach which has been trained on multiple kinds of weather has better
generalization capabilities and can even outperform its teacher when
evaluated in a different town. Hence, an additional positive conse-
quence of training the student with generated images from multiple
diverse domains is that it acts as a regularizer tending to prevent
overfitting to one specific domain.
P2 - Semantic inconsistency: Note that Model [5] which in addition
to having the same data and labels as our approach has also access
to ground truth semantic labels. Yet, its performance is significantly
poor. Upon investigation, we found that due to the limited number of
semantic labels, the FEM trained as an encoder-decoder architecture
seemed to be overfitting to the available data. Hence, when tested
on unseen environments, the semantic segmentation output of the
module breaks. The latent vector representing these broken semantics
is then fed to the control module, which is incapable of predicting
the correct steering command. Figure 5.5 shows some sample images
with the corresponding semantic segmentation outputs which are
considerably different from the true semantics of the scene.
P3 - Modular training constraints: Furthermore, the modular ap-
proach of Model [5] wherein the FEM and control module are trained
independently as opposed to an end-to-end model served to be a
bottleneck in being able to learn the features universally. Also, an
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assumption to train the control module well is that the FEM would
work perfectly well, which is not the case. Hence, the overall error
of the modular pipeline would be an accumulation of the errors of
the independent FEMs and control modules. We found that if we also
shift the training of our approach to a modular one then performance
deteriorates. This can be done in our approach by updating only the
weights of the FEM of the student from the output features of the FEM
of the teacher.
P4 - Auxiliary weights: To prevent overfitting of the models, trained
on limited data we used a weighted sum of the outputs of the auxiliary
layers. The weights themselves were learned as part of the training.
Once training of our student model was complete, we found that more
than 97% of the weight was held by the first auxiliary network. This
seemed to imply that only the first unit of the FEM is enough for
predicting the steering command. Hence the remaining unit layers
are not providing any additional information for the model. So we
evaluated our model based on the output of the first auxiliary network
rather than on the weighted sum of the 4 auxiliary networks. The
online evaluation of this approach is given in Table 5.1 against the
row labeled Ours (Auxiliary network 1). It is interesting to note that
this approach is comparable in its performance with the original one.
Therefore, at test time we can prune the network to a smaller size
by making predictions only based on the first auxiliary network and
removing the remaining 3 auxiliary networks. This would result in
less computation and faster inference.
P5 - Online vs offline evaluation: Figure 5.6 shows an offline evalu-
ation of the two variations of our method described in the previous
point across the 15 weather conditions. Note that apart from weather
0, 1, and 2, the two curves are indistinguishable from one another.
However, the online evaluation results do not correspond with this
observation. For weathers 3, 5, 7, and 9-14 the online performance is
different despite having the same offline metric. This confirms the
intuition presented in [10] and the problems associated with eval-
uating embodied agents in offline scenarios. The topic of finding a
correlation between offline evaluation metrics and online performance
has therefore recently started to receive positive traction. It is therefore
important to come up with a universal metric for evaluating various al-
gorithms across the same benchmark. Due to the non-existence of such
benchmarks, we created our own for the evaluation of the different
approaches.
P6 - Activation maps: To understand the behavior of the model, which
also works with only the first auxiliary network, we took the sum
of the activation maps of the first unit of the FEM of the student
and displayed it as a heatmap as shown in Figure 5.7 for a sample
of 2 images. We see that the activation maps are most prominent in
regions where there are lane markings, sidewalks, cars, or barriers.
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Figure 5.6: This plot shows the mean absolute error between the ground
truth steering label and that predicted by the two models. The
blue curve is the weighted sum of all the 4 auxiliary networks of
our model. The orange line depicts the output of only the first
auxiliary network of our model.

Knowing these cues seems to be enough for the network to take an
appropriate driving decision in most of the cases. Therefore, the higher-
level features determined by the preliminary layers of the model are
already enough to detect these objects of interest.

5.6 conclusion

In this work, we showed how a teacher-student learning-based ap-
proach can leverage limited labeled data for transferring knowledge
between multiple different domains. Our approach, specifically de-
signed to work for sensorimotor control tasks, learns to accurately
predict the steering angle under a wide range of conditions. Experi-
mental results showed the effectiveness of the proposed method, even
without having access to semantic labels as an intermediate representa-
tion between weather conditions. This framework may be extendable
to other application areas for which a certain domain has ground
truth data and shares a common characteristic with other domains for
which no labels are available.
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Figure 5.7: This figure shows the sum of the activation maps displayed as a
heatmap of the first unit of the FEM of the student model for a
sample taken from 2 different weather conditions. The activation
maps are more prominent in regions where there are lane mark-
ings, sidewalks boundaries, other vehicles, or barriers.
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Figure 6.1: We relocalize a snowy sequence from the Oxford RobotCar dataset
in a pre-built map created using a sunny weather condition. The
points from the prior map (gray) align well with the new points
from the current run (blue), indicating that the relocalization is
indeed accurate.

6.1 introduction

In recent years, very powerful visual SLAM algorithms have been
proposed [66, 87]. In particular, direct visual SLAM methods have
shown great performance, outperforming indirect methods on most
benchmarks [8, 34, 35]. They directly leverage the brightness data of
the sensor to estimate localization and 3D maps rather than extracting
a heuristically selected sparse subset of feature points. As a result, they
exhibit a boost in precision and robustness. Nevertheless, compared
to indirect methods, direct methods suffer from two major drawbacks:

1. Direct methods need a good initialization, making them less
robust for large baseline tracking or cameras with a low frame
rate.

2. Direct methods cannot handle changing lighting/weather condi-
tions. In such situations, their advantage of being able to pick
up very subtle brightness variations becomes a disadvantage to
the more lighting invariant features.

In the last years, researchers have tackled the multiple-daytime
tracking challenge with deep learning approaches that are designed
to convert nighttime images to daytime images, e.g. using GANs [54,
76, 98]. While this improves the robustness to changing lighting, one
may ask why images should be the best input representation. Could
there be better alternate representations?
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This paper addresses the problem of adapting direct SLAM methods
to challenging lighting and weather conditions. In this work, we show
how to convert images into a multi-dimensional feature map which
is invariant to lighting/weather changes and has by construction
a larger basin of convergence. Thereby we overcome the aforemen-
tioned problems simultaneously. The deep features are trained with a
novel Gauss-Newton loss formulation in a self-supervised manner. We
employ a Siamese network trained with labels obtained either from
simulation data or any state-of-the-art SLAM algorithm. This elimi-
nates the additional cost of human labeling that is typically necessary
for training a neural network. We exploit the probabilistic interpreta-
tion of the commonly used Gauss-Newton algorithm for direct image
alignment. For this, we propose the Gauss-Newton loss which is de-
signed to maximize the probability of identifying the correct pixel
correspondence. The proposed loss function thereby enforces a feature
representation that is designed to admit a large basin of convergence
for the subsequent Gauss-Newton optimization. The superiority of
our method stems from its ability to generate these multi-channel,
weather-invariant deep features that facilitate relocalization across
different weathers. Figure 6.1 shows how our method can successfully
relocalize a snowy sequence in a pre-built map created using a sunny
sequence.

In common benchmarks [115], localizing accurately in a pre-built
map has been tackled by finding nearby images (e.g. by using NetVLAD
[12]) and tracking the relative pose (6DOF) between them. However,
we propose to split this into two separate tasks. In this work, we focus
on the second challenge which we refer to as relocalization tracking. This
way, we can evaluate its performance in isolation. This is formalized
to what we refer to as relocalization tracking. Since there is no publicly
available dataset to evaluate relocalization tracking performance across
multiple types of weather, we are releasing an evaluation benchmark
having the following 3 attributes:

• It contains sequences from multiple different kinds of weather.

• Pixel-wise correspondences between sequences are provided for
both simulated and real-world datasets.

• It decouples relocalization tracking from the image retrieval task.

The challenge here in comparison with normal pose estimation
datasets [17, 37] is that the images involved are usually captured at
different daytimes/seasons and there is no good initialization of the
pose. We summarize the main contributions of our paper as:

• We derive the Gauss-Newton loss formulation based on the
properties of direct image alignment and demonstrate that it
improves the robustness to large baselines and illumination/
weather changes.
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• Our experimental evaluation shows, that GN-Net outperforms
both state-of-the-art direct and indirect SLAM methods on the
task of relocalization tracking.

• We release a new evaluation benchmark for the task of relocal-
ization tracking with ground-truth poses. It is collected under
dynamic conditions such as illumination changes, and differ-
ent weathers. Sequences are taken from the the CARLA [31]
simulator as well as from the Oxford RobotCar dataset [82].

6.2 related work

We review the following main areas of related work: visual SLAM,
visual descriptor learning, deep direct image alignment, and image-
based relocalization in SLAM.
Direct versus indirect SLAM methods: Most existing SLAM systems
that have used feature descriptors are based on traditional manual
feature engineering, such as ORB-SLAM [87], MonoSLAM [29], and
PTAM [66].

An alternative to feature-based methods is to skip the pre-processing
step of the raw sensor measurements and rather use the pixel inten-
sities directly. Popular direct visual methods are DTAM [91], LSD-
SLAM [35], DSO [34], and PhotoBundle [8]. However, the main limita-
tion of direct methods is the brightness constancy assumption which is
rarely fulfilled in any real-world robotic application [94]. The authors
of [9] propose to use binary feature descriptors for direct tracking
called Bit-planes. While improving the robustness to bad lighting
situations it was also found that Bit-planes have a smaller conver-
gence basin than intensities. This makes their method less robust to
bad initialization. In contrast, the features we propose both improve
robustness to lighting and the convergence basin.
Visual descriptor learning: Feature descriptors play an important
role in a variety of computer vision tasks. For example, [22] pro-
posed a novel correspondence contrastive loss which allows for faster
training and demonstrates their effectiveness for both geometric and
semantic matching across intra-class shape or appearance variations.
In [116], a deep neural network is trained using a contrastive loss
to produce viewpoint- and lighting-invariant descriptors for single-
frame localization. The authors of [105] proposed a CNN-based model
that learns local patterns for image matching without a global geo-
metric model. [138] uses convolutional neural networks to compute
descriptors which allow for efficient detection of poorly textured ob-
jects and estimation of their 3D pose. In [19], the authors propose to
train features for optical flow estimation using a Hinge loss based on
correspondences. In contrast to our work, their loss function does not
have a probabilistic derivation and they do not apply their features
to pose estimation. [42] uses deep learning to improve SLAM perfor-
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mance in challenging situations. They synthetically create images and
choose the one with most gradient information as the ground truth for
training. In contrast to them, we do not limit our network to output
images similar to the real world. In [28], the authors compare dense
descriptors from a standard CNN, SIFT, and normal image intensities
for dense Lucas-Kanade tracking. There, it can be seen that grayscale
values have a better convergence basin than the other features, which
is something we overcome with our approach.
Deep direct image alignment: BA-NET [132] introduces a network
architecture to solve the structure from motion (SfM) problem via
feature-metric bundle adjustment. Unlike the BA-NET, instead of pre-
dicting the depth and the camera motion simultaneously, we propose
to only train on correspondences obtained from a direct SLAM sys-
tem. The advantage is that correspondences are oftentimes easier to
obtain than accurate ground-truth poses. Furthermore, we combine
our method with a state-of-the-art direct SLAM system and utilize
its depth estimation, whereas BA-NET purely relies on deep learn-
ing. RegNet [46] is another line of work which tries to replace the
handcrafted numerical Jacobian by a learned Jacobian with the help
of a depth prediction neural network. However, predicting a dense
depth map is often inaccurate and computationally demanding. The
authors of [80] propose to use a learning-based inverse compositional
algorithm for dense image alignment. The drawback of this approach
is that the algorithm is very sensitive to the data distribution and
constrained towards selecting the right hyperparameters. In [56] they
use high-dimensional features in a direct image alignment framework
for monocular VO. In contrast to us, they only use already existing
features and do not apply them for relocalization.
Relocalization: An important task of relocalization is to approximate
the pose of an image by simply querying the most similar image
from a database [27, 60]. However, this has only limited accuracy
unless the 6DOF pose between the queried and the current image is
estimated in a second step. Typically, this works by matching 2D-3D
correspondences between an image and a point cloud and estimating
the pose using indirect image alignment [88]. In contrast, we propose
to use direct image alignment paired with deep features.
Relocalization benchmarks: The authors of [115] have done sequence
alignment on the Oxford RobotCar dataset, however, they have not
made the matching correspondences public. The Photo Tourism [123]
is another dataset providing images and ground-truth correspon-
dences of popular monuments from different camera angles and across
different weather/lighting conditions. However, since the images are
not recorded as a sequence, relocalization tracking is not possible.
Furthermore, their benchmark only supports the submission of fea-
tures rather than poses, thereby restricting evaluation to only indirect
methods.
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Figure 6.2: This figure shows training correspondences between a pair of
images from our benchmark.

6.3 deep direct slam

In this work, we argue that a network trained to output features which
produce better inputs for direct SLAM as opposed to normal images
should have the following properties:

• Pixels corresponding to the same 3D point should have similar
features.

• Pixels corresponding to different 3D points should have dissimi-
lar features.

• When starting in a vicinity around the correct pixel, the Gauss-
Newton algorithm should move toward the correct solution.

For optimizing the last property, we propose the novel Gauss-
Newton loss which makes use of the probabilistic background of
the Gauss-Newton algorithm for direct image alignment. The final
loss is a weighted sum of the pixel-wise contrastive loss and the
Gauss-Newton loss.
Architecture: We are interested in learning a non-linear mapping,
which maps images, RW×H×C to a dense visual descriptor space,
RW×H×D, where each pixel is represented by a D-dimensional vector.
The training is performed by a Siamese encoder-decoder structured
network, where we feed a pair of images, Ia and Ib, producing multi-
scale feature pyramids Fla and Flb, where l represents the level of the
decoder. For each image pair, we use a certain number of matches,
denoted by Npos, and a certain number of non-matches, denoted by
Nneg. A pixel ua ∈ R2 from image Ia is considered to be a positive
example if the pixel ub ∈ R2 from image Ib corresponds to the
same 3D vertex (Figure 6.2). We make use of the inherent multi-scale
hierarchy of the U-Net [106] architecture to apply the different loss
terms from coarser to finer-scaled pyramid levels. With this approach,
our learned features will have a larger convergence radius for visual
SLAM methods.
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Pixelwise contrastive loss: The pixelwise contrastive loss attempts
to minimize the distance between positive pairs, and maximize the
distance between negative pairs. It can be computed as follows:

Lcontrastive (Fa, Fb, l) = Lpos (Fa, Fb, l) +Lneg (Fa, Fb, l) (6.1)

Lpos (Fa, Fb, l) =
1

Npos

∑
Npos

D2feat (6.2)

Lneg (Fa, Fb, l) =
1

Nneg

∑
Nneg

max (0,M−Dfeat)
2 (6.3)

where Dfeat(·) is the L2 distance between the feature embeddings:
Dfeat =

∥∥Fla(ua) − Flb(ub)
∥∥
2

and M is the margin and set to 1.
Gauss-Newton algorithm for direct image alignment: Our learned
deep features are ultimately applied to pose estimation. This is done
using direct image alignment but generalized to a multi-channel fea-
ture map F with D channels. The input to this algorithm is a reference
feature map F with known depths for some pixels in the image, and
a target feature map F ′. The output is the predicted relative pose
ξ. Starting from an initial guess the following steps are performed
iteratively:

1. All points pi with known depth values are projected from the
reference feature map F into the target feature map F ′ yielding
the point p ′i. For each of them a residual vector r ∈ RD is
computed, enforcing that the reference pixel and the target pixel
should be similar:

ri
(
pi, p ′i

)
= F ′

(
p ′i
)
− F (pi) (6.4)

2. For each residual the derivative with respect to the relative pose
is:

Ji =
dri
dξ

=
dF ′

(
p ′i
)

dp ′i

dp ′i
dξ

(6.5)

Notice that the reference point pi does not change for different
solutions ξ, therefore it does not appear in the derivative.

3. Using the stacked residual vector r, the stacked Jacobian J, and a
diagonal weight matrix W, the Gaussian system and the step δ
is computed as follows:

H = J>WJ and b = −J>Wr and δ = H−1b (6.6)

Note that this derivation is equivalent to normal direct image align-
ment (as done in the frame-to-frame tracking from DSO) when re-
placing F with the image I. In the computation of the Jacobian, the

numerical derivative of the features
dF ′(p ′i)
dp ′i

is used. As typical images
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are extremely non-convex this derivative is only valid in a small vicin-
ity (usually 1 to 2 pixels) around the current solution which is the
main reason why direct image alignment needs a good initialization.
To partially overcome this, a pyramid scheme is often used. Usually
tracking on multiple channels instead of one can decrease the conver-
gence radius ([9, 28]). However, in our case, we train the feature maps
to in fact have a larger convergence basin than images by enforcing
smoothness in the vicinity of the correct correspondence.
Gauss-Newton on individual pixels: Instead of running the Gauss-
Newton algorithm on the 6DOF pose we can instead use it on each
point pi individually (which is similar to the Lucas-Kanade algo-
rithm [79]). Compared to direct image alignment, this optimization
problem has the same residual, but the parameter being optimized is
the point position instead of the relative pose. In this case, the Hessian
will be a 2× 2 matrix and the step δ can simply be added to the
current pixel position (we leave out W for simplicity):

J ′i =
dF ′(p ′i)
dp ′i

and H ′i = J ′>i Ji and b ′i = J ′>i ri (6.7)

These individual Gauss-Newton systems can be combined with the
system for 6DOF pose estimation (Equation (6.6)) using:

H =
∑
i

(
dp ′i
dξ

)>
H ′i

(
dp ′i
dξ

)
and b =

∑
i

(
dp ′i
dξ

)>
b ′i.

(6.8)

The difference between our simplified systems and the one for pose
estimation is only the derivative with respect to the pose, which is
much smoother than the image derivative [34].

This means that if the Gauss-Newton algorithm performs well on
individual pixels it will also work well on estimating the full pose.
Therefore, we propose to train a neural network on correspondences
which are easy to obtain, e.g. using a SLAM method, and then later
apply it for pose estimation.

We argue that training on these individual points is superior to train-
ing on the 6DOF pose. The estimated pose can be correct even if some
points contribute very wrong estimates. This increases robustness at
runtime but when training we want to improve the information each
point provides. Also, when training on the 6DOF pose we only have
one supervision signal for each image pair, whereas when training on
correspondences we have over a thousand signals. Hence, our method
exhibits exceptional generalization capabilities as shown in the results
section.
The probabilistic Gauss-Newton loss: The linear system described
in Equation (6.7) defines a 2-dimensional Gaussian probability distri-
bution. The reason is that the Gauss-Newton algorithm tries to find
the solution with maximum probability in a least squares fashion.
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This can be derived using the negative log-likelihood of the Gaussian
distribution:

E(x) = − log fX(x) (6.9)

=
1

2
(x − µ)>Σ−1 (x − µ) + log

(
2π
√
|Σ|
)

(6.10)

=
1

2
(x − µ)>H (x − µ) + log (2π) −

1

2
log (|H|) (6.11)

where x is a pixel position and µ is the mean.
In the Gauss-Newton algorithm the mean (which also corresponds

to the point with maximum probability) is computed with µ = xs + δ,
where the δ comes from Equation (6.6) and xs denotes the start point.
To derive this, only the first term is used (because the latter parts are
constant for all solution x). In our case, however, the second term is
very relevant, because the network can influence both µ and H.

This derivation shows, that H, b as computed in the GN-algorithm,
also define a Gaussian probability distribution with mean xs + H−1b
and covariance H−1.

When starting with an initial solution xs the network should assign
maximal probability to the pixel that marks the correct correspon-
dence. With x being the correct correspondence, we therefore use E(x)
= Equation (6.11) as our loss function which we call the Gauss-Newton
loss (see Algorithm 1).

Algorithm 1 Compute Gauss-Newton loss

Fa ← network(Ia)
Fb ← network(Ib)
e← 0 . Total error
for all correspondences ua, ub do

ft ← Fa(ua) . Target feature
xs ← ub + rand(vicinity) . Compute start point
fs ← Fb(xs)
r← fs − ft . Residual
J← dFb

dxs
. Numerical derivative

H← J>J + εIn . Added epsilon for invertibility
b← J>r
µ← xs − H−1b
e1 ← 1

2(ub − µ)
>H(ub − µ) . First error term

e2 ← log(2π) − 1
2 log(|H|) . Second error term

e← e+ e1 + e2
end for

In the algorithm, a small number ε is added to the diagonal of the
Hessian, to ensure it is invertible.
Analysis of the Gauss-Newton loss: By minimizing Equation (6.11)
the network has to maximize the probability density of the correct
solution. As the integral over the probability densities always has to be
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1, the network has the choice to either focus all the density on a small
set of solutions (with more risk of being penalized if this solution is
wrong), or to distribute the density to more solutions which in turn
will have a lower individual density. By maximizing the probability
of the correct solution, the network is incentivized to improve the
estimated solution and its certainty.

This is also reflected in the two parts of the loss. The first term
e1 = 1

2
(ub − µ)

>H (ub − µ) penalizes deviations between the esti-
mated and the correct solution, scaled with the Hessian H. The second
term e2 = log (2π) − 1

2 log (|H|) is large if the network does not output
enough certainty for its solution. This means that the network can
reduce the first error term e1 by making H smaller. As a consequence,
the second error term will be increased, as this will also reduce the
determinant of H. Notice also that this can be done in both dimensions
independently. The network has the ability to output a large uncer-
tainty in one direction, but a small uncertainty in the other direction.
This is one of the traditional advantages of direct methods which are
naturally able to utilize also lines instead of just feature points.

From Equation (6.11), it can be observed that the predicted uncer-
tainty depends only on the numerical derivative of the target image at
the start position. The higher the gradients the higher the predicted
certainty. In DSO this is an unwanted effect that is counteracted by
the gradient-dependent weighting applied to the cost-function [34,
Equation (7)]. In our case, however, it gives the network the possibility
to express its certainty and incentivizes it to output discriminative
features.

Upon training the network with our loss formulation, we observe
that the features are very similar despite being generated from images
taken from sequences with different lighting/weather conditions, as
shown in Figure 6.3.

6.4 relocalization tracking benchmark

Previous tasks for localization/odometry can primarily be divided
into two categories:

• Odometry datasets [17, 37], where there is a continuous stream
of images (sometimes combined with additional sensor data like
IMUs).

• Image collections where individual images are usually further
apart from each other in space/time [63, 115].

We argue that for several applications a combination of these two
tasks which we refer to as relocalization tracking is a more realistic
scenario. The idea is that the algorithm has two inputs:

1. An image sequence (like a normal odometry dataset).
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Figure 6.3: This figure shows images and their corresponding feature maps
predicted by our GN-Net for the Oxford RobotCar dataset. Each
column depicts the image and feature map for a sample taken
from 2 different sequences. Despite lighting and weather changes,
the feature maps are robust to these variations. The visualization
of the features shows the high-dimensional descriptors reduced
to 3D through PCA.

2. A collection of individual images (possibly with different weath-
ers/times), each of which shall be tracked against one specific
image from point 1.

The algorithm is supposed to track the normal sequential image
sequence and at the same time perform tracking of the images in
point 2. The advantage of this task is that the used algorithm can
utilize the temporally continuous sequence from point 1 to compute
accurate depth values for a part of the image (using a standard visual
odometry method), which can then be used to improve the tracking
of the individual images of point 2.

This task is very realistic as it comes up when tracking an image
sequence and at the same time trying to relocalize this sequence in
a prior map. A similar challenge occurs by trying to merge multiple
maps from different times. In both cases, one has more information
than just a random collection of images. It is important to reiterate
here that the task of finding relocalization candidates is not considered
but rather tracking them with maximum accuracy/robustness is the
focus. This is because our benchmark decouples image retrieval from
tracking.

We have created a benchmark for relocalization tracking using the
CARLA simulator and the Oxford RobotCar dataset. Our benchmark
includes ground-truth poses between different sequences for training,
validation, and testing. We focus on the use case of relocalization in the
context of autonomous driving. Therefore, our datasets contain limited
point-of-view changes but strong lighting and weather changes.
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CARLA: For synthetic evaluations, we use CARLA version 0.8.2. We
collect data for 3 different weather conditions representing WetNoon,
SoftRainNoon, and WetCloudySunset. We recorded the images at a
fixed framerate of 10 frames per second (FPS). At each time step, we
record images and its corresponding dense depth map from 6 different
cameras with different poses rendered from the simulation engine,
which means that the poses in the benchmark are not limited to just
2DOF. The images and the dense depth maps are of size 512× 512. For
each weather condition, we collected 3 different sequences comprising
500-time steps with an average distance of 1.6m. This is done for
training, validation, and testing, meaning there are 27 sequences,
containing 6 cameras each. Training, validation, and test sequences
were all recorded in different parts of the CARLA town. We have
generated the test sequences after all hyperparameter tuning of our
method was finished, meaning we had no access to the test data when
developing the method. In accordance, we shall withhold the ground
truth for the test sequences.
Oxford RobotCar: Creating a multi-weather benchmark for this dataset
imposes various challenges because the GPS-based ground truth is
very inaccurate. To find the relative poses between images from dif-
ferent sequences we have used the following approach. For pairs of
images from two different sequences, we accumulate the point cloud
captured by the 2D lidar for 60 meters using the visual odometry
result provided by the Oxford dataset. The resulting two point clouds
are aligned with the global registration followed by ICP alignment
using the implementation of Open3D [150]. We provide the first pair of
images manually and the following pairs are found using the previous
solution. We have performed this alignment for the following se-
quences: 2014-12-02-15-30-08 (overcast) and 2015-03-24-13-47-33 (sunny)
for training. For testing, we use the reference sequence 2015-02-24-
12-32-19 (sunny) and align it with the sequences 2015-03-17-11-08-44
(overcast), 2014-12-05-11-09-10 (rainy), and 2015-02-03-08-45-10 (snow).
The average relocalization distance across all sequences is 0.84m.

6.5 experimental evaluation

We perform our experiments on the relocalization tracking benchmark
described in Section 6.4. We demonstrate the multi-weather relocal-
ization performance on both the CARLA and the Oxford RobotCar
dataset. For the latter, we show that our method even generalizes well
to unseen weather conditions like rain or snow while being trained
only on the sunny and overcast conditions. Furthermore, a qualitative
relocalization demo1 on the Oxford RobotCar dataset is provided,
where we demonstrate that our GN-Net can facilitate precise relocal-
ization between weather conditions.

1 https://vision.in.tum.de/gn-net.

https://vision.in.tum.de/gn-net
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We train our method using sparse depths created by running Stereo
DSO on the training sequences. We use intra-sequence correspon-
dences calculated using the DSO depths and the DSO pose. Mean-
while, inter-sequence correspondences are obtained using DSO depths
and the ground-truth poses provided by our benchmark. The ground
truth poses are obtained via Lidar alignment for Oxford and directly
from the simulation engine for CARLA as explained in Section 6.4.
Training is done from scratch with randomly initialized weights and
an Adam optimizer with a learning rate of 10−6. The image pair fed
to the Siamese network is randomly selected from any of the training
sequences while ensuring that the images in the pair do not differ by
more than 5 keyframes. Each branch of the Siamese network is a mod-
ified U-Net architecture with shared weights. Further details of the
architecture and training can be found in the supplementary material.
Note that at inference time, only one image is needed to extract the
deep visual descriptors, used as input to the SLAM algorithm. While
in principle, our approach can be deployed in conjunction with any
direct method, we have coupled our deep features with Direct Sparse
Odometry (DSO).

We compare to state-of-the-art direct methods:
Stereo Direct Sparse Odometry (DSO) [136]: Whenever there is a
relocalization candidate for a frame we ensure that the system creates
the corresponding keyframe. This candidate is tracked using the coarse
tracker, performing direct image alignment in a pyramid scheme. We
use the identity as initialization without any other random guesses
for the pose.
GN-Net (Ours): Same as with DSO, however, for relocalization track-
ing, we replace the grayscale images with features created by our
GN-Net on all levels of the feature pyramid. The network is trained
with the Gauss-Newton loss formulation described in Section 6.3.

We also compare to state-of-the-art indirect methods:
ORB-SLAM [88]: For relocalization tracking, we use the standard
feature-based 2-frame pose optimization also used for frame-to-keyframe
tracking. We have also tried the RANSAC scheme implemented in
ORB-SLAM for relocalization, however, it yielded worse results overall.
Thus we will report only the default results.
D2-Net [33], SuperPoint [30]: For both methods we use the models
provided by the authors. The relative pose is estimated using the
OpenCV implementation of the PnP algorithm in a RANSAC scheme.

We also evaluated the Deeper Inverse Compositional Algorithm [80]
on the relocalization tracking benchmark. However, the original im-
plementation didn’t converge despite multiple training trials with
different hyperparameters.

For all our quantitative experiments we plot a cumulative distribu-
tion of the relocalization error, which is the norm of the translation
between the estimated and the correct solution in meters. For each
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relocalization error between 0 and 1 meter, it plots the percentage
of relocalization candidates that have been tracked with at least this
accuracy.

6.5.1 Quantitative Multi-Weather Evaluation

We demonstrate the relocalization tracking accuracy on our new bench-
mark across different weathers. For these experiments, tracking is
performed only across sequences with a different weather condition.
CARLA: For this experiment, we train on the training sequences
provided by our benchmark. For all learning-based approaches, the
best epoch is selected using the relocalization tracking performance
on the validation set. The results on the test data are shown in the
supplementary.
Oxford RobotCar: We train on the sunny and overcast condition
correspondences provided by our relocalization tracking benchmark
for the Oxford dataset. For the learning-based methods, we select
the best epoch based on the relocalization tracking performance on
the training set. We use the same hyperparameters that were found
using the CARLA validation set. We show the results on the test data
in Figure 6.4. Our method significantly outperforms the baselines.
The Gauss-Newton loss has a large impact as compared to the model
trained with only the contrastive loss.

Figures 6.4b to 6.4f show how well our model generalizes to unseen
weather conditions. Despite being trained only on two sequences with
overcast and sunny conditions the results for tracking against a rainy
and a snowy sequence are almost the same. Interestingly our model
which was trained only on the CARLA benchmark outperforms all
baselines significantly.

6.5.2 Qualitative Multi-Weather Evaluation

Finally, we show a relocalization demo comparing our GN-Net to
DSO. For this, we load a point cloud from a sequence recorded in
the sunny condition and relocalize against sequences from rainy and
snowy conditions. For each keyframe, we try to track it against the
nearest keyframe in the map according to the currently estimated
transformation between the trajectory and the map. Figure 6.6 shows
that the point clouds from the different sequences align nicely, despite
belonging to different weather conditions. This experiment shows
that our method can perform the desired operations successfully
on a real-world application, including relocalization against unseen
weather conditions. Figure 6.7 demonstrates the difference between
our Gauss-Newton loss and the contrastive loss. This shows that the
quantitative improvement has a visible effect on the application of
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(a) Relocalization sunny and overcast.
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(b) Relocalization sunny and rainy.
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(c) Relocalization sunny and snowy.
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(d) Relocalization overcast and rainy.
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(e) Relocalization overcast and snowy.
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(f) Relocalization rainy and snowy.

Figure 6.4: This figure shows the cumulative relocalization accuracy on the
Oxford RobotCar dataset for different sequences. D denotes the
dimension of the feature descriptor. Our method achieves the
highest accuracy across all sequences. It is interesting to observe
that despite being trained only on two sequences in overcast and
sunny condition, our model still generalizes very well to even
unseen rainy and snowy conditions. Even the model trained only
on the synthetic CARLA benchmark outperforms all baselines,
showing exceptional generalization capabilities.
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Figure 6.5: This figure shows image pairs used in the qualitative relocal-
izations. Left: rainy (top row) and snowy (bottom row) images
relocalized against the sunny reference images (right).

relocalization. Figure 6.5 shows sample images used in the qualitative
relocalizations.

6.5.3 Additional Experiments on EuRoC and CARLA

In the supplementary, we provide more evaluations on datasets with
and without brightness variations. This includes relocalization track-
ing on the CARLA benchmark and visual odometry on the EuRoC [17]
dataset. We show that also in these situations our deep features signif-
icantly outperform DSO and ORB-SLAM because of their robustness
to large-baselines. On the EuRoC dataset, we improve the DSO perfor-
mance by almost a factor of 2 for low-framerates.

6.6 conclusion & future work

With the advent of deep learning, we can devise feature space en-
codings that are designed to be optimally suited for the subsequent
visual SLAM algorithms. More specifically, we propose to exploit the
probabilistic interpretation of the commonly used Gauss-Newton al-

Figure 6.6: This figure shows a point cloud result of our GN-Net. We relocal-
ize a rainy sequence (blue) against a reference map created from
the sunny sequence (gray).
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Figure 6.7: Top: relocalization using the model trained with only the con-
trastive loss. Bottom: relocalization using the model trained with
our loss formulation. This visually demonstrates the influence of
the Gauss-Newton loss.

gorithm to devise a novel loss function for feature space encoding that
we call the Gauss-Newton loss. It is designed to promote robustness
to strong lighting and weather changes while enforcing a maximal
basin of convergence for the respective SLAM algorithm. Quantitative
experiments on synthetic and real-world data demonstrate that the
Gauss-Newton loss allows us to significantly expand the realm of ap-
plicability of direct visual SLAM methods, enabling relocalization and
map merging across drastic variations in weather and illumination.
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Figure 7.1: Dataset overview. Top: overlaid maps recorded at different times
and environmental conditions. The points from the reference map
(black) align well with the points from the query map (blue),
indicating that the reference poses are indeed accurate. Bottom:
sample images demonstrating the diversity of our dataset. The
first row shows a collection from the same scene across different
weather and lighting conditions: snowy, overcast, sunny, and
night. The second row depicts the variety of scenarios within the
dataset: inner city, suburban, countryside, and a parking garage.

7.1 introduction

During the last decade, research on visual odometry (VO) and si-
multaneous localization and mapping (SLAM) has made tremendous
strides [34, 35, 87, 91] particularly in the context of autonomous driv-
ing (AD) [36, 88, 136, 143]. One reason for this progress has been the
publication of large-scale datasets [18, 26, 40] tailored for benchmark-
ing these methods. Naturally, the next logical step towards progressing
research in the direction of visual SLAM has been to make it robust un-
der dynamically changing and challenging conditions. This includes
VO, e.g. at night or rain, as well as long-term place recognition and
re-localization against a pre-built map. In this regard, the advent
of deep learning has exhibited itself to have promising potential in
complementing the performance of visual SLAM [33, 56, 58, 3]. There-
fore, it has become all the more important to have datasets that are
commensurate with handling the challenges of any real-world envi-
ronment while also being capable of discerning the performance of
state-of-the-art approaches.
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To accommodate this demand, we present in this paper a versatile
cross-season and multi-weather dataset on a large-scale focusing on
long-term localization for autonomous driving. By traversing the same
stretch under different conditions and over a long-term time horizon,
we capture variety in illumination and weather as well as in the
appearance of the scenes. Figure 7.1 visualizes two overlaid 3D maps
recorded at different times as well as sample images of the dataset.

In detail this work adds the following contributions to the state-of-
the-art:

• A cross-season/multi-weather dataset for long-term visual SLAM
in automotive applications containing more than 350 km of
recordings.

• Sequences covering nine different kinds of environments ranging
from multi-level parking garage over urban (including tunnels)
to countryside and highway.

• Global six degrees of freedom (6DoF) reference poses with up-to
centimeter accuracy obtained from the fusion of direct stereo
visual-inertial odometry (VIO) with RTK-GNSS.

• Accurate cross-seasonal pixel-wise correspondences to train
dense feature representations.

7.2 related work

There exists a variety of benchmarks and datasets focusing on VO and
SLAM for AD. Here, we divide these datasets into the ones which
focus only on the task of VO as well as those covering different weather
conditions and therefore aiming towards long-term SLAM.

7.2.1 Visual Odometry

The most popular benchmark for AD certainly is KITTI [40]. This multi-
sensor dataset covers a wide range of tasks including not only VO, but
also 3D object detection, and tracking, scene flow estimation as well as
semantic scene understanding. The dataset contains diverse scenarios
ranging from urban over countryside to highway. Nevertheless, all
scenarios are only recorded once and under similar weather conditions.
Ground truth is obtained based on a high-end inertial navigation
system (INS).

Another dataset containing LiDAR, inertial measurement unit (IMU),
and image data at a large-scale is the Málaga Urban dataset [14]. How-
ever, in contrast to KITTI, no accurate 6DoF ground truth is provided
and therefore it does not allow for a quantitative evaluation based on
this dataset.



82 4seasons : a cross-season dataset for multi-weather slam in ad

Other popular datasets for the evaluation of VO and VIO algorithms
not related to AD include [127] (handheld RGB-D), [17] (UAV stereo-
inertial), [37] (handheld mono), and [118] (handheld stereo-inertial).

7.2.2 Long-Term SLAM

More related to our work are datasets containing multiple traversals
of the same environment over a long period of time. With respect
to SLAM for autonomous driving, the Oxford RobotCar Dataset [82]
represents a kind of pioneer work. This dataset consists of large-scale
sequences recorded multiple times for the same environment over a
period of one year. Hence, it covers large variations in the appearance
and structure of the scene. However, the diversity of the scenarios is
only limited to an urban environment. Also, the ground truth provided
for the dataset is not accurate up-to centimeter-level and therefore,
requires additional manual effort to establish accurate cross-sequence
correspondences.

The work [115] represents a kind of extension to [82]. This bench-
mark is based on subsequences from [82] as well as other datasets.
The ground truth of the RobotCar Seasons [115] dataset is obtained
based on structure from motion (SfM) and LiDAR point cloud align-
ment. However, due to inaccurate GNSS measurements [82], a globally
consistent ground truth up-to centimeter-level can not be guaranteed.
Furthermore, this dataset only provides one reference traversal in the
overcast condition. In contrast, we provide globally consistent refer-
ence models for all traversals covering a wide variety of conditions.
Hence, every traversal can be used as a reference model that allows
further research, e.g. on analyzing suitable reference-query pairs for
long-term localization and mapping.

7.2.3 Other Datasets

Examples of further multi-purpose AD datasets which also can be
used for VO are [18, 26, 52, 137].

As stated in Section 7.1, our proposed dataset differentiates from
previous related work in terms of being both large-scale (similar
to [40]) as well as having high variations in appearance and conditions
(similar to [82]). Furthermore, we are providing accurate reference
poses based on the fusion of direct stereo VIO and RTK-GNSS.

7.3 system overview

This section presents the sensor setup which is used for data recording
(Section 7.3.1). Furthermore, we describe the calibration of the entire
sensor suite (Section 7.3.2) as well as our approach to obtain up-to
centimeter-accurate global 6DoF reference poses (Section 7.3.3).
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(a) Test vehicle.
(b) Sensor system.

Figure 7.2: Recording setup. Test vehicle and sensor system used for dataset
recording. The sensor system consists of a custom stereo-inertial
sensor with a stereo baseline of 30 cm and a high-end RTK-GNSS
receiver from Septentrio.

7.3.1 Sensor Setup

The hardware setup consists of a custom stereo-inertial sensor for
6DoF pose estimation as well as a high-end RTK-GNSS receiver for
global positioning and global pose refinement. Figure 7.2 shows our
test vehicle equipped with the sensor system used for data recording.

7.3.1.1 Stereo-Inertial Sensor

The core of the sensor system is our custom stereo-inertial sensor.
This sensor consists of a pair of monochrome industrial-grade global
shutter cameras (Basler acA2040-35gm) and lenses with a fixed focal
length of f = 3.5mm (Stemmer Imaging CVO GMTHR23514MCN).
The cameras are mounted on a highly-rigid aluminum rail with a
stereo baseline of 30 cm. On the same rail, an IMU (Analog Devices
ADIS16465) is mounted. All sensors, cameras, and IMU are triggered
over an external clock generated by a field-programmable gate ar-
ray (FPGA). Here, the trigger accounts for exposure compensations,
meaning that the time between the centers of the exposure interval
for two consecutive images is always kept constant (1/[frame rate])
independent of the exposure time itself.

Furthermore, based on the FPGA, the IMU is properly synchronized
with the cameras. In the dataset, we record stereo sequences with a
frame rate of 30 fps. We perform pixel binning with a factor of two
and crop the image to a resolution of 800× 400. This results in a field
of view of approximately 77° horizontally and 43° vertically. The IMU
is recorded at a frequency of 2000Hz. During recording, we run our
custom auto-exposure algorithm, which guarantees equal exposure
times for all stereo image pairs as well as a smooth exposure transition
in highly dynamic lighting conditions, as it is required for visual
SLAM. We provide those exposure times for each frame.
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7.3.1.2 GNSS Receiver

For global positioning and to compensate drift in the VIO system we
utilize an RTK-GNSS receiver (mosaic-X5) from Septentrio in combi-
nation with an Antcom Active G8 GNSS antenna. The GNSS receiver
provides a horizontal position accuracy of up-to 6mm by utilizing
RTK corrections. While the high-end GNSS receiver is used for ac-
curate positioning, we use a second receiver connected to the time-
synchronization FPGA to achieve synchronization between the GNSS
receiver and the stereo-inertial sensor.

7.3.2 Calibration

7.3.2.1 Aperture and Focus Adjustment

The lenses used in the stereo system have both adjustable aperture
and focus. Therefore, before performing the geometric calibration of
all sensors, we manually adjust both cameras for a matching average
brightness and a minimum focus blur [51], across a structured planar
target in 10m distance.

7.3.2.2 Stereo Camera and IMU

For the intrinsic and extrinsic calibration of the stereo cameras as well
as the extrinsic calibration and time-synchronization of the IMU, we
use a slightly customized version of Kalibr1 [100]. The stereo cameras
are modeled using the Kannala-Brandt model [59], which is a generic
camera model consisting of in total eight parameters. To guarantee
an accurate calibration over a long-term period, we perform a feature-
based epipolar-line consistency check for each sequence recorded in
the dataset and re-calibrate before a recording session if necessary.

7.3.2.3 GNSS Antenna

Since the GNSS antenna does not have any orientation but has an
isotropic reception pattern, only the 3D translation vector between
one of the cameras and the antenna within the camera frame has to
be known. This vector was measured manually for our sensor setup.

7.3.3 Ground Truth Generation

Reference poses (i.e. ground truth) for VO and SLAM should pro-
vide high accuracy in both local relative 6DoF transformations and
global positioning. To fulfill the first requirement, we extend the
state-of-the-art stereo direct sparse VO [136] by integrating IMU mea-
surements [126], achieving a stereo-inertial SLAM system offering

1 https://github.com/ethz-asl/kalibr

https://github.com/ethz-asl/kalibr
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average tracking drift around 0.6% of the traveled distance. To fulfill
the second requirement, the poses estimated by our stereo-inertial
system are integrated into a global pose graph, each with an addi-
tional constraint from the corresponding RTK-GNSS measurement.
Our adopted RTK-GNSS system can provide global positioning with
up-to centimeter accuracy. The pose graph is optimized globally using
the Gauss-Newton method, ending up with 6DoF camera poses with
superior accuracy both locally and globally. For the optimization, we
make use of the g2o library [68].

One crucial aspect for the dataset is that the reference poses which
we provide are actually accurate enough, even though some of the
recorded sequences partially contain challenging conditions in GNSS-
denied environments. Despite the fact that the stereo-inertial sensor
system has an average drift around 0.6%, this cannot be guaranteed
for all cases. Hence, for the reference poses in our dataset, we report
whether a pose can be considered to be reliable by measuring the
distance to the corresponding RTK-GNSS measurement. Only RTK-
GNSS measurements with a reported standard deviation of less than
0.01m are considered as accurate. For all poses, without corresponding
RTK-GNSS measurement we do not guarantee a certain accuracy.
Nevertheless, due to the highly accurate stereo-inertial odometry
system, these poses still can be considered to be accurate in most cases
even in GNSS-denied environments, e.g. tunnels or areas with tall
buildings.

7.4 scenarios

This section describes the different scenarios we have collected for
the dataset. The scenarios involve different sequences – ranging from
urban driving to parking garage and rural areas. We provide complex
trajectories, which include partially overlapping routes, and multiple
loops within a sequence. For each scenario, we have collected multiple
traversals covering a large range of variations in environmental ap-
pearance and structure due to weather, illumination, dynamic objects,
and seasonal effects. In total, our dataset consists of nine different
scenarios, i.e. industrial area, highway, local neighborhood, ring road,
countryside, suburban, inner city, monumental site, and multi-level
parking garage.

We provide reference poses and 3D models generated by our ground
truth generation pipeline (c.f. Figure 7.3) along with the corresponding
raw image frames and raw IMU measurements. Figure 7.4 shows an-
other example of the optimized trajectory, which depicts the accuracy
of the provided reference poses.

The dataset will challenge current approaches on long-term local-
ization and mapping since it contains data from various seasons and
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Figure 7.3: 3D models of different scenarios contained in the dataset. The
figure shows a loop around an industrial area (left), multiple
loops around an area with high buildings (middle), and a stretch
recorded in a multi-level parking garage (right). The green lines
encode the GNSS trajectories, and the red lines encode the VIO
trajectories. Top: shows the trajectories before the fusion using
pose graph optimization. Bottom: shows the result after the pose
graph optimization. Note that after the pose graph optimization
the reference trajectory is well aligned.

weather conditions as well as from different times of the day as shown
in the bottom part of Figure 7.1.

7.4.1 Ground Truth Validation

The top part of Figure 7.1 shows two overlaid point clouds from
different runs across the same scene. Note that despite the weather
and seasonal differences the point clouds align very well. This shows
that our reference poses are indeed very accurate. Furthermore, a
qualitative assessment of the point-to-point correspondences is shown
in Figure 7.5. The figure shows a subset of very accurate pixel-wise cor-
respondences across different seasons (autumn/winter) in the top and
different illumination conditions (sunny/night) in the bottom. These
point-to-point correspondences are a result of our up-to centimeter-
accurate global reference poses and are obtained in a completely
self-supervised manner. This makes them suitable as training pairs for
learning-based algorithms. Recently, there has been an increasing de-
mand for pixel-wise cross-season correspondences which are needed
to learn dense feature descriptors [33, 101, 124]. However, there is still a
lack of datasets to satisfy this demand. The KITTI [40] dataset does not
provide cross-season data. The Oxford RobotCar Dataset [82] provides
cross-seasons data, however, since the ground truth is not accurate
enough, the paper does not recommend benchmarking localization
and mapping approaches.
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Figure 7.4: Reference poses validation. This figure shows two additional 3D
models of the scenarios collected. Note that these two sequences
are quite large (more than 10 km and 6 km, respectively). Top:
before the fusion using pose graph optimization. Bottom: results
after optimization. The green lines encode the GNSS trajectories,
the red lines show the VIO trajectories (before fusion) and the
fused trajectories (after fusion). The left part of the figure shows
a zoomed-in view of a tunnel, where the GNSS signal becomes
very noisy as highlighted in the red boxes. Besides, due to the
large size of the sequence, the accumulated tracking error leads
to a significant deviation of the VIO trajectory from the GNSS
recordings. Our pose graph optimization, by depending globally
on GNSS positions and locally on VIO relative poses, successfully
eliminates global VIO drifts and local GNSS positioning flaws.

Recently, RobotCar Seasons [115] was proposed to overcome the
inaccuracy of the provided ground truth. However, similar to the
authors of [124], we found that it is still challenging to obtain accu-
rate cross-seasonal pixel-wise matches due to pose inconsistencies.
Furthermore, this dataset only provides images captured from three
synchronized cameras mounted on a car, pointing to the rear-left, rear,
and rear-right, respectively. Moreover, the size of the dataset is quite
small and a significant portion of it suffers from strong motion blur
and low image quality.

To the best of our knowledge, our dataset is the first that exhibits
accurate cross-season reference poses for the AD domain.

7.5 tasks

This section describes the different tasks of the dataset. The provided
globally consistent 6DoF reference poses for diverse conditions will
be valuable to develop and improve the state-of-the-art for different
SLAM-related tasks. Here the major tasks are robust VO, global place
recognition, and map-based re-localization tracking.

In the following, we will present the different subtasks for our
dataset.
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Figure 7.5: Accurate pixel-wise correspondences, making cross-seasonal
training possible. Qualitative assessment of the accuracy of our
data collection and geometric reconstruction method for a sample
of four different conditions (from top left in clockwise order: over-
cast, snowy, night, sunny) across the same scene. Each same colored
point in the four images corresponds to the same geometric point
in the world. The cameras corresponding to these images have
different poses in the global frame of reference. Please note that
the points are not matched but rather a result of our accurate
reference poses and geometric reconstruction. This way we are
capable of obtaining sub-pixel level accuracy. On average we get
more than 1000 of those correspondences per image pair.

7.5.1 Visual Odometry in Different Weather Conditions

VO aims to accurately estimate the 6DoF pose for every frame relative
to a starting position. To benchmark the task of VO there already exist
various datasets [37, 41, 127]. All of these existing datasets consist
of sequences recorded at rather homogeneous conditions (indoors,
or sunny/overcast outdoor conditions). However, especially methods
developed for AD use cases must perform robustly under almost
any condition. We believe that the proposed dataset will contribute
to improving the performance of VO under diverse weather and
lighting conditions in an automotive environment. Therefore, instead
of replacing existing benchmarks and datasets, we aim to provide an
extension that is more focused on challenging conditions in AD. As we
provide frame-wise accurate poses for large portions of the sequences,
metrics well known from other benchmarks like absolute trajectory
error (ATE) or relative pose error (RPE) [41, 127] are also applicable to
our data.

7.5.2 Global Place Recognition

Global place recognition refers to the task of retrieving the most sim-
ilar database image given a query image [78]. In order to improve
the searching efficiency and the robustness against different weather
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Figure 7.6: Challenging scenes for global place recognition. Top: two pic-
tures share the same location with different appearances. Bottom:
two pictures have similar appearances but are taken at different
locations.

conditions, tremendous progress on global descriptors [11, 13, 39, 57]
has been seen. For the re-localization pipeline, visual place recogni-
tion serves as the initialization step to the downstream local pose
refinement by providing the most similar database images as well
as the corresponding global poses. Due to the advent of deep neural
networks [47, 67, 122, 130], methods aggregating deep image features
are proposed and have shown advantages over classical methods [12,
45, 99, 135].

The proposed dataset is challenging for global place recognition
since it contains not only cross-season images that have different
appearances but share a similar geographical location but also intra-
season images which share similar appearances but with different
locations. Figure 7.6 depicts example pairs of these scenarios. We
suggest following the standard metric widely used for global place
recognition [12, 13, 45, 114].

7.5.3 Map-Based Re-Localization Tracking

Map-based re-localization tracking [3] refers to the task of locally
refining the 6DoF pose between reference images from a pre-built
reference map and images from a query sequence. In contrast to wide-
baseline stereo matching, for re-localization tracking, it is also possible
to utilize the sequential information of the sequence. This allows us to
estimate depth values by running a standard VO method. Those depth
estimates can then be used to improve the tracking of the individual
re-localization candidates.

In this task, we assume to know the mapping between reference
and query samples. This allows us to evaluate the performance of
local feature descriptor methods in isolation. In practice, this mapping
can be found using image retrieval techniques like NetVLAD [12] as
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described in Section 7.5.2 or by aligning the point clouds from the
reference and query sequences [115], respectively.

Accurately re-localizing in a pre-built map is a challenging problem,
especially if the visual appearance of the query sequence significantly
differs from the base map. This makes it extremely difficult especially
for vision-based systems since the localization accuracy is often limited
by the discriminative power of feature descriptors. Our proposed
dataset allows us to evaluate re-localization tracking across multiple
types of weather conditions and diverse scenes, ranging from urban
to countryside driving. Furthermore, our up-to centimeter-accurate
ground truth allows us to create diverse and challenging re-localization
tracking candidates with an increased level of difficulty. By being
able to precisely change the re-localization distances and the camera
orientation between the reference and query samples, we can generate
more challenging scenarios. This allows us to determine the limitations
and robustness of current state-of-the-art methods.

7.6 conclusion

We have presented a cross-season dataset for the purpose of multi-
weather SLAM, global visual localization, and local map-based re-
localization tracking for AD applications. Compared to other datasets,
like KITTI [40] or Oxford RobotCar [82], the presented dataset pro-
vides diversity in both multiplicities of scenarios and environmental
conditions. Furthermore, based on the fusion of direct stereo VIO and
RTK-GNSS we are able to provide up-to centimeter-accurate reference
poses as well as highly accurate cross-sequence correspondences. One
drawback of the dataset is that the accuracy of the reference poses
can only be guaranteed in environments with good GNSS receptions.
However, due to the low drift of the stereo VIO system, the obtained
reference poses are also very accurate in GNSS-denied environments,
e.g. tunnels, garages, or urban canyons.

We believe that this dataset will help the research community to
further understand the limitations and challenges of long-term visual
SLAM in changing conditions and environments and will contribute
to advancing the state-of-the-art. To the best of our knowledge, ours is
the first large-scale dataset for AD providing cross-seasonal accurate
pixel-wise correspondences for diverse scenarios. This will help to
vastly increase robustness against environmental changes for deep
learning methods. The dataset is made publicly available to facilitate
further research.
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Figure 8.1: We propose LM-Reloc – a novel approach for visual relocaliza-
tion based on direct image alignment. It consists of two deep
neural networks: LM-Net, an encoder-decoder network for learn-
ing dense visual descriptors and a CorrPoseNet to bootstrap the
direct image alignment. The final 6DoF relative pose estimate
between image I and I′ is obtained in a coarse-to-fine pyramid
scheme leveraging the learned feature maps. The initialization for
the direct image alignment is obtained by the CorrPoseNet.

8.1 introduction

Map-based relocalization, that is, to localize a camera within a pre-
built reference map, is becoming more and more important for robotics
[27], autonomous driving [16, 92] and AR/VR [109]. Sequential-based
approaches, which leverage the temporal structure of the scene pro-
vide more stable pose estimations and also deliver the positions in
global coordinates compared to single image-based localization meth-
ods. The map is usually generated by either using LiDAR or visual
Simultaneous Localization and Mapping (vSLAM) solutions. In this
paper, we consider vSLAM maps due to the lower-cost visual sensors
and the richer semantic information from the images. Feature-based
methods [29, 66, 87, 88] and direct methods [8, 34, 35, 64] are two main
lines of research for vSLAM.

Once a map is available, the problem of relocalizing within this map
at any later point in time requires to deal with long-term changes in
the environment. This makes a centimeter-accurate global localization
challenging, especially in the presence of drastic lighting and appear-
ance changes in the scene. For this task, feature-based methods are
the most commonly used approaches to estimate the ego pose and
its orientation. This is mainly due to the advantage that features are
more robust against changes in lighting/illumination in the scene.

However, feature-based methods can only utilize keypoints that
have to be matched across the images before the pose estimation
begins. Thus they ignore large parts of the available information.
Direct methods, in contrast, can take advantage of all image regions
with sufficient gradients and as a result, are known to be more accurate
on visual odometry benchmarks [34, 142, 149].

In this paper, we propose LM-Reloc, which applies direct tech-
niques to the task of relocalization. LM-Reloc consists of LM-Net,
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CorrPoseNet, and a non-linear optimizer, which work seamlessly
together to deliver reliable pose estimation without RANSAC and
feature matching. In particular, we derive a loss formulation, which
is specifically designed to work well with the Levenberg-Marquardt
(LM) algorithm [73, 83]. We use a deep neural network, LM-Net, to
train descriptors that are being fed to the direct image alignment
algorithm. Using these features results in better robustness against
bad initializations, large baselines, and against illumination changes.

While the robustness improvements gained with our loss formula-
tion are sufficient in many cases, for very large baselines or strong
rotations, some initialization can still be necessary. To this end, we
propose a pose estimation network. Based on two images it directly
regresses the 6DoF pose, which we utilize as initialization for LM-Net.
The CorrPoseNet contains a correlation layer as proposed in [104],
which ensures that the network can handle large displacements. The
proposed CorrPoseNet displays a lot of synergies with LM-Net. De-
spite being quite robust, the predictions of the CorrPoseNet are not
very accurate. Thus it is best used in conjunction with our LM-Net,
resulting in very robust and accurate pose estimates.

We evaluate our approach on the relocalization tracking benchmark
from [3], which contains scenes simulated using CARLA [31], as well
as sequences from the Oxford RobotCar dataset [82]. Our LM-Net
shows superior accuracy especially in terms of rotation while being
competitive in terms of robustness.

We summarize our main contributions:

• LM-Reloc, a novel pipeline for visual relocalization based on
direct image alignment, which consists of LM-Net, CorrPoseNet,
and a non-linear optimizer.

• A novel loss formulation together with a point sampling strategy
that is used to train LM-Net such that the resulting feature
descriptors are optimally suited to work with the LM algorithm.

• Extensive evaluations on the CARLA and Oxford RobotCar re-
localization tracking benchmark which show that the proposed
approach achieves state-of-the-art relocalization accuracy with-
out relying on feature matching or RANSAC.

8.2 related work

In this section, we review the main topics that are closely related
to our work, including direct methods for visual localization and
feature-based visual localization methods.
Direct methods for visual localization. In recent years, direct meth-
ods [34, 35, 64] for SLAM and visual odometry have seen a great
progress. Unlike feature-based methods [29, 66, 87, 88] which firstly
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extracts keypoints as well as the corresponding descriptors, and then
minimize the geometric errors, direct methods minimize the energy
function based on the photometric constancy assumption without per-
forming feature matching or RANSAC. By utilizing more points from
the images, direct methods show higher accuracy than feature-based
methods [142]. However, classical direct methods show lower robust-
ness than feature-based methods when the photometric constancy
assumption is violated due to, e.g. the lighting and weather changes
which are typical for long-term localization [115]. In [9] and [95], the
authors propose to use the handcrafted features to improve the robust-
ness of direct methods against low light or global appearance changes.
Some recent works [19, 80, 3] address the issue by using learned fea-
tures from deep neural networks [70]. In [19] they train deep features
using a Hinge-Loss based on the Lucas-Kanade method, however, in
contrast to us, they estimate the optical flow instead of applying the
features to the task of relocalization. The most related work to ours is
GN-Net [3] which proposes a Gauss-Newton loss to learn deep fea-
tures. By performing direct image alignment on the learned features,
GN-Net can deliver reliable pose estimation between the images taken
from different weather or season conditions. The proposed LM-Net
further derives the loss formulation based on Levenberg-Marquardt
to improve the robustness against bad initialization compared to the
Gauss-Newton method. Inspired by D3VO [141], LM-Reloc also pro-
poses a relative pose estimation network with a correlation layer [104]
to regress a pose estimate which is used as the initialization for the
optimization.
Feature-based visual localization. Most approaches for relocalization
utilize feature detectors and descriptors, which can either be hand-
crafted, such as SIFT [77] or ORB [108], or especially in the context
of drastic lighting and appearance changes can be learned. Recently,
many descriptor learning methods have been proposed which follow
a detect-and-describe paradigm, e.g. SuperPoint [30], D2-Net [33], or
R2D2 [101]. Moreover, SuperGlue [112], a learning-based alternative
to the matching step of feature-based methods has been proposed and
yields significant performance improvements. For a complete relocal-
ization pipeline, the local pose refinement part has to be preceded by
finding the closest image in a database given a query [12]. While some
approaches [110, 111, 131] address the joint problem, in this work, we
decouple these two tasks and only focus on the pose refinement part.

8.3 method

In this work, we address the problem of computing the 6DoF pose
ξ ∈ SE(3) between two given images I and I′. Furthermore, we assume
that depths for a sparse set of points P are available, e.g. by running a
direct visual SLAM system such as DSO [34].
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The overall pipeline of our approach is shown in Figure 8.1. It is
composed of LM-Net, CorrPoseNet, and a non-linear optimizer using
the LM algorithm. LM-Net is trained with a novel loss formulation
designed to learn feature descriptors optimally suited for the LM
algorithm. The encoder-decoder architecture takes as input a reference
image I as well as a target image I′. The network is trained end-to-end
and will produce multi-scale feature maps Fl and F′l, where l = 1, 2, 3, 4
denotes the different levels of the feature pyramid. In order to obtain
an initial pose estimate for the non-linear optimization, we propose
CorrPoseNet, which takes I and I′ as the inputs and regresses their
relative pose. Finally, the multi-scale feature maps together with the
depths obtained from DSO [34] form the non-linear energy function
which is minimized using LM algorithm in a coarse-to-fine manner
to obtain the final relative pose estimate. In the following, we will
describe the individual components of our approach in more detail.

8.3.1 Direct Image Alignment with Levenberg-Marquardt

In order to optimize the pose ξ (consisting of rotation matrix R and
translation t), we minimize the feature-metric error:

E(ξ) =
∑
p∈P

∥∥F′l(p′) − Fl(p)
∥∥
γ

, (8.1)

where ‖·‖γ is the Huber norm and p′ is the point projected onto the
target image I′ using the depths and the pose:

p′ = Π
(
RΠ−1(p,dp) + t

)
. (8.2)

This energy function is first minimized on the coarsest pyramid level 1,
whose feature maps F1 have a size of (w/8,h/8), yielding a rough pose
estimate. The estimate is refined by further minimizing the energy
function on the subsequent pyramid levels 2, 3, and 4, where F4 has
the size of the original image (w,h). In the following, we provide
details of the minimization performed in every level and for simplicity
we will denote Fl as F from now on.

Minimization is performed using the Levenberg-Marquardt algo-
rithm. In each iteration we compute the update δ ∈ R6 in the Lie
algebra se(3) as follows: Using the residual vector r ∈ Rn, the Huber
weight matrix W ∈ Rn×n, and the Jacobian of the residual vector with
respect to the pose J ∈ Rn×6, we compute the Gauss-Newton system:

H = J>WJ and b = −J>Wr. (8.3)

The damped system can be obtained with either Levenberg’s for-
mula [73]:

H′ = H + λIn (8.4)
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Figure 8.2: Visualization of the typical behavior of direct image alignment
with Levenberg-Marquardt. Initially, the projected point position
(orange point, p ′∇) is far away from the correct solution (green
point, p ′gt), and λ is large, yielding an update step similar to
gradient descent. After some iterations the projected point posi-
tion gets closer to the optimum (red point, p ′∇2 ) and at the same
time λ will get smaller, leading to an update step similar to the
Gauss-Newton algorithm. This is the intuition behind our point
sampling strategy, where we utilize the ground-truth correspon-
dence p ′gt for Equation (8.7), a negative p ′neg sampled across the
whole image for Equation (8.8), a negative p ′∇ sampled in a far
vicinity for Equation (8.12), and a negative p ′∇2 sampled in a close
vicinity for Equation (8.14).

or the Marquardt’s formula [83]:

H′ = H + λdiag(H) (8.5)

depending on the specific application.
The update δ and the pose ξi in the iteration i are computed as:

δ = H ′−1b and ξi = δ� ξi−1, (8.6)

where � : se(3)× SE(3)→ SE(3) is defined as in [34].
The parameter λ can be seen as an interpolation factor between

gradient descent and the Gauss-Newton algorithm. When λ is high
the method behaves like gradient descent with a small step size, and
when it is low it is equivalent to the Gauss-Newton algorithm. In
practice, we start with a relatively large λ and multiply it by 0.5 after
a successful iteration, and by 4 after a failed iteration [34].
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Figure 8.2 shows the typical behavior of the algorithm. In the be-
ginning, the initial pose is inaccurate, resulting in projected point
positions, which are a couple of pixels away from the correct location.
λ will be high meaning that the algorithm will behave similarly to gra-
dient descent. After a couple of iterations, the pose got more accurate,
and the projected points are in a closer vicinity to the correct loca-
tion. By now, λ has probably decreased, so the algorithm will behave
more similarly to the Gauss-Newton algorithm. Now we expect the
algorithm to converge quickly.

8.3.2 Loss Formulation for Levenberg-Marquardt

The key contribution of this work is LM-Net which provides feature
maps F that improve the convergence behavior of the LM algorithm
and, in the meantime, are invariant to different conditions. We train
our network in a Siamese fashion based on ground-truth pixel corre-
spondences.

In this section, p denotes a reference point (located on image I) and
the ground-truth correspondence (located on image I′) is p ′gt. For the
loss functions explained below we further categorize p ′ into p ′neg, p ′∇,
and p ′∇2 , which is realized by using different negative correspondence
sampling. Our loss formulation is inspired by the typical behavior of
the Levenberg-Marquardt algorithm explained in the previous section
(see Figure 8.2). For a point, we distinguish four cases which can
happen during the optimization:

1. The point is at the correct location (p ′gt).

2. The point is an outlier (p ′neg).

3. The point is relatively far from the correct solution (p ′∇).

4. The point is very close to the correct solution (p ′∇2).

In the following we will derive a loss function for each of the 4
cases:
1. The point is already at the correct location. In this case, we would
like the residual to be as small as possible, in the best case 0.

Epos =
∥∥∥F ′(p ′gt) − F(p)

∥∥∥
2

(8.7)

2. The point is an outlier or the pose estimate is completely wrong. In
this case, the projected point position can be at a completely different
location than the correct correspondence. In this scenario, we would
like the residual of this pixel to be very large to reflect this and
potentially reject a wrong update. To enforce this property we sample
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a negative correspondences p ′neg uniformly across the whole image,
and compute

Eneg = max
(
M−

∥∥∥F ′(p ′neg) − F(p)
∥∥∥
2

, 0
)

(8.8)

where M is the margin of how large we would like the energy of a
wrong correspondence to be. In practice, we set it to 1.
3. The predicted pose is relatively far away from the optimum,
meaning that the projected point position will be a couple of pixels
away from the correct location. As this typically happens during the
beginning of the optimization we assume that λ will be relatively large
and the algorithm behaves similarly to gradient descent. In this case,
we want that the gradient of this point is oriented in the direction of
the correct solution so that the point has a positive influence on the
update step.

For computing a loss function to enforce this property we sample
a random negative correspondence p ′∇ in a relatively large vicinity
around the correct solution (in our experiments we use 5 pixels dis-
tance). Starting from this negative correspondence p ′∇ we first compute
the 2× 2 Gauss-Newton system for this individual point, similarly to
how it is done for optical flow estimation using Lucas-Kanade:

rp(p, p ′∇) = F ′(p ′∇) − F(p) (8.9)

Jp =
dF ′(p ′∇)
dp ′∇

and Hp = J>p Jp and bp = J>p rp (8.10)

We compute the damped system using a relatively large fixed λf, as
well as the optical flow step1:

H ′p = Hp + λfIn and p ′after = p ′∇ + H ′−1p bp. (8.11)

In order for this point to have a useful contribution to the direct image
alignment, this update step should move in the correct direction by at
least δ. We enforce this using a Gradient-Descent loss function which
is small only if the distance to the correct correspondence after the
update is smaller than before the update:

EGD = max
(∥∥∥p ′after − p ′gt

∥∥∥
2
−
∥∥∥p ′∇ − p ′gt

∥∥∥
2
+ δ, 0

)
(8.12)

In practice, we choose λf = 2.0 and δ = 0.1.
4. The predicted pose is very close to the optimum, yielding a pro-
jected point position in very close proximity of the correct correspon-
dence, and typically λ will be very small, so the update will mostly
be a Gauss-Newton step. In this case we would like the algorithm to
converge as quickly as possible, with subpixel accuracy. We enforce

1 Here we use Equation (8.4) instead of Equation (8.5) since we find it more stable for
training LM-Net.
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this using the Gauss-Newton loss [3]. To compute it we first sample a
random negative correspondence p ′∇2 in a 1-pixel vicinity around the
correct location. Then we use Equations (8.9) and (8.10), replacing p ′∇
with p ′∇2 to obtain the Gauss-Newton system formed by Hp and bp.
We compute the updated pixel location:

p ′after = p ′∇2 + (Hp + εIn)−1bp (8.13)

Note that in contrast to the computation of the LM-Loss (Equa-
tion (8.12)), in this case, ε is just added to ensure invertibility and
therefore ε is much smaller than the λf used above. The Gauss-Newton
loss is computed with:

EGN =
1

2

(
p ′after − p ′gt

)>
Hp

(
p ′after − p ′gt

)

+ log(2π) −
1

2
log
(∣∣Hp

∣∣) (8.14)

Note how all our 4 loss components use a different way to sample
the involved points, depicted also in Figure 8.2. With the derivation
above we argue that each loss component is important to achieve
optimal performance and we demonstrate this in the results section.
Note that the Gauss-Newton systems computed for the GD-Loss
and the GN-Loss are very relevant for the application of direct im-
age alignment. In fact, the full Gauss-Newton system containing all
points (Equation (8.3)), can be computed from these individual Gauss-
Newton systems (Equation (8.10)) by simply summing them up and
multiplying them with the derivative with respect to the pose [3].

8.3.3 CorrPoseNet

In order to deal with the large baselines between the images, we
propose CorrPoseNet to regress the relative pose between two images
I and I′, which serves as the initialization of LM optimization. As
our network shall work even in cases of large baselines and strong
rotations, we utilize the correlation layer proposed in [104] which is
known to boost the performance of affine image transformation and
optical flow [84] estimation for large displacements, but has not been
applied to pose estimation before.

Our network first computes deep features fcorr, f ′corr ∈ Rh×w×c

from both images individually using multiple strided convolutions
with ReLU activations in between. Then the correlation layer corre-
lates each pixel from the normalized source features with each pixel
from the normalized target features yielding the correlation map
c ∈ Rh×w×(h×w):

c
(
i, j,
(
i ′, j ′

))
= fcorr (i, j)

> f ′corr
(
i ′, j ′

)
(8.15)

The correlation map is then normalized in the channel dimension and
fed into 2 convolutional layers each followed by batch norm and ReLU.
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(a) Translation error.
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(b) Rotation error.

Figure 8.3: Results on the CARLA relocalization tracking benchmark test
data [3]. For each error threshold, we show the percentage of relo-
calizations (cumulative error plot) for LM-Reloc (ours) and other
state-of-the-art methods. Compared to the indirect methods our
approach exhibits significantly better accuracy in both translation
and rotation, while having a similar robustness. Compared to
GN-Net, the novel loss formulation (see red dashed line), and the
CorrPoseNet (see red line) both boost the robustness. D is the
feature dimensionality.

Finally, we regress the Euler angle reuler and translation t using a fully
connected layer. More details on the architecture are shown in the
supplementary material.

We train CorrPoseNet from scratch with image pairs and ground
truth poses reuler

gt , tgt. We utilize an L2-loss working directly on Euler
angles and translation:

E =
∥∥t − tgt

∥∥
2
+ λ

∥∥∥reuler − reuler
gt

∥∥∥
2

, (8.16)

where λ is the weight, which we set to 10 in practice.
As the distribution of ground truth poses in the Oxford training

data is limited we apply the following data augmentation. We first
generate dense depths for all training images using a state-of-the-
art dense stereo matching algorithm [146]. The resulting depths are
then used to warp the images to a different pose sampled from a
uniform distribution. In detail, we first warp the depth image to the
random target pose, then inpaint the depth image using the OpenCV
implementation of Navier Stokes, and finally warp our image to the
target pose using this depth map. Note that the dense depths are only
necessary for training, not for evaluation. We show an ablation study
on the usage of correlation layers and the proposed data augmentation
in the supplementary material.

8.4 experiments

We evaluate our method on the relocalization tracking benchmark
proposed in [3], which contains images created with the CARLA
simulator [31], and scenes from the Oxford RobotCar dataset [82].
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We train our method on the respective datasets from scratch. LM-
Net is trained using the Adam optimizer with a learning rate of
10−6 and for CorrPoseNet we use a learning rate of 10−4. For both
networks, we choose hyperparameters and epochs based on the results
on the validation data. Our networks use the same hyperparameters
for all experiments except where stated otherwise; the direct image
alignment code is slightly adapted for Oxford RobotCar, mainly to
improve performance when the ego-vehicle is standing still.

As the original relocalization tracking benchmark [3] does not in-
clude validation data on Oxford RobotCar we have manually aligned
two new sequences, namely 2015-04-17-09-06-25 and 2015-05-19-14-
06-38, and extend the benchmark with these sequences as validation
data.
Evaluation metrics: We evaluate the predicted translation test and
rotation Rest against the ground-truth tgt and Rgt according to Equa-
tions (8.17) and (8.18).

t∆ =
∥∥test − tgt

∥∥
2

(8.17)

R∆ = arccos

(
trace

(
R−1

est Rgt
)
− 1

2

)
(8.18)

In this section, we plot the cumulative translation and rotation error
until 0.5m and 0.5°, respectively. For quantitative results, we compute
the area under the curve (AUC) of these cumulative curves in percent,
which we denote as tAUC for translation and RAUC for rotation from
now on.

We evaluate the following direct methods:
Ours: The full LM-Reloc approach consists of CorrPoseNet, LM-Net
features and direct image alignment based on Levenberg-Marquardt.
The depths used for the image alignment are estimated with the stereo
version [136] of DSO [34].
Ours (w/o CorrPoseNet): For a more fair comparison to GN-Net we
use identity as initialization for the direct image alignment instead of
CorrPoseNet. This enables a direct comparison between the two loss
formulations.
GN-Net [3]: In this work, we have also improved the parameters of
the direct image alignment pipeline based on DSO [34]. Thus we
have re-evaluated GN-Net with this improved pipeline to make the
comparison as fair as possible. These re-evaluated results are better
than the results computed in the original GN-Net paper.
Baseline methods: Additionally, we evaluate against current state-of-
the-art indirect methods, namely SuperGlue [112], R2D2 [101], Super-
Point [30], and D2-Net [33]. For these methods, we estimate the relative
pose using the models provided by the authors and the OpenCV im-
plementation of solvePnPRansac. We have tuned the parameters of
RANSAC on the validation data and used 1000 iterations and a re-
projection error threshold of 3 for all methods. For estimating depth



102 lm-reloc : levenberg-marquardt based direct visual relocalization

Table 8.1: This table shows the AUC until 0.5 meters / 0.5 degrees for the
relocalization error on the CARLA relocalization tracking bench-
mark test data. Powered by our novel loss formulation and the
combination with CorrPoseNet, LM-Reloc achieves lower rotation
and translation errors compared to the state-of-the-art.

Method tAUC RAUC

Ours 80.65 77.83

SuperGlue [112] 78.99 59.31

R2D2 [101] 73.47 54.42

SuperPoint [30] 72.76 53.38

D2-Net [33] 47.62 16.47

Ours (w/o CorrPoseNet) 63.88 61.90

GN-Net [3] 43.72 44.08

values at keypoint locations we use OpenCV stereo matching. It would
be possible to achieve a higher accuracy by using SfM and MVS solu-
tions such as COLMAP [117]. However, one important disadvantage of
these approaches is, that building a map is rather time-consuming and
computationally expensive, whereas all other approaches evaluated
on the benchmark [3] are able to create the map close to real-time,
enabling applications like long-term loop-closure and map-merging.

8.4.1 CARLA Relocalization Benchmark

Figure 8.3 depicts the results on the test data of the CARLA benchmark.
For all methods, we show the cumulative error plot for translation
in meters and rotation in degrees. It can be seen that our method
is more accurate than the state-of-the-art while performing similarly
in terms of robustness. We also show the AUC for the two Figures
in Table 8.1. Compared to GN-Net it can be seen that our new loss for-
mulation significantly improves the results, even when used without
the CorrPoseNet as initialization. The figure conveys that the direct
methods (Ours, GN-Net) are more accurate than the evaluated indirect
methods.

8.4.2 Oxford RobotCar Relocalization Benchmark

We compare to the state-of-the-art indirect methods on the 6 test
sequence pairs consisting of the sequences 2015-02-24-12-32-19 (sunny),
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Table 8.3: This table shows the results on the Oxford RobotCar relocalization
tracking benchmark test data against GN-Net. Thanks to our LM-
based loss formulation we consistently outperform GN-Net on all
sequences.

Sequence Ours (w/o CorrPoseNet) GN-Net [3]

tAUC RAUC tAUC RAUC

Sunny-Overcast 79.61 55.45 73.53 49.31

Sunny-Rainy 70.46 42.86 64.58 37.27

Sunny-Snowy 59.7 44.17 55.27 41.36

Overcast-Rainy 79.67 63.08 75.72 60.13

Overcast-Snowy 54.94 47.19 51.34 42.91

Rainy-Snowy 66.23 39.93 62.63 36.2

2015-03-17-11-08-44 (overcast), 2014-12-05-11-09-10 (rainy), and 2015-
02-03-08-45-10 (snowy). In Table 8.2, we show the area under the
curve until 0.5 meters / 0.5 degrees for all methods. It can be seen
that our method clearly outperforms the state-of-the-art in terms of
rotation accuracy, while being competitive in terms of translation error.
It should be noted that the ground truth for these sequences was
generated using ICP alignment of the 2D-LiDAR data accumulated
for 60 meters. We have computed that the average root mean square
error of the ICP alignment is 16 centimeters. Therefore, especially
the ground-truth translations have limited accuracy. As can be seen
from Figure 8.3, the accuracy improvements our method provides
are especially visible in the range below 0.15 meters which is hard
to measure on this dataset. The rotation error of LiDAR alignment is
lower than the translational one, which is why we clearly observe the
improvements of our method on the rotations.

In Table 8.3, we compare LM-Net without the CorrPoseNet to GN-
Net. Due to our novel loss formulation, LM-Net outperforms the
competitor on all sequences significantly.

8.4.3 Ablation Studies

We evaluate LM-Net on the CARLA validation data with and without
the various losses (Figure 8.4). Compared to a normal contrastive loss,
the given loss formulation is a large improvement. As expected, EGD

(green line) mainly improves the robustness, whereas EGN (blue line)
improves the accuracy. Only when used together (our method), we
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Figure 8.4: This plot shows our ablation study for removing different loss
parts on the CARLA relocalization tracking benchmark. Without
the GD-loss the achieved robustness is reduced, whereas remov-
ing the GN-loss leads to decreased accuracy. Using our full-loss
formulation yields a large improvement.

Figure 8.5: This figure shows a point cloud from a sunny reference map
(grey points) overlayed with the point cloud from a relocalized
snowy sequence (blue points). The well-aligned point clouds
demonstrate the high relocalization accuracy of LM-Reloc.

achieve large robustness and large accuracy, confirming our theoretical
derivation in Section 8.3.

8.4.4 Qualitative Results

To demonstrate the accuracy of our approach in practice, we show
qualitative results on the Oxford RobotCar dataset. We track the snowy
test sequence 2015-02-03-08-45-10 using Stereo DSO [136] and at the
same time perform relocalization against the sunny reference map
2015-02-24-12-32-19. Relocalization between the current keyframe and
the closest map image is performed using LM-Net. Initially, we give the
algorithm the first corresponding map image (which would in practice
be provided by an image retrieval approach such as NetVLAD [12]).
Afterward, we find the closest map image for each keyframe using
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Figure 8.6: Example image pairs from the relocalization tracking benchmark
which have been successfully relocalized by LM-Reloc (with an
accuracy of better than 10 cm). Top row: Oxford sunny against
snowy condition, middle row: Oxford sunny against rainy condi-
tion, bottom row: CARLA benchmark.

the previous solution for the transformation between the map and the
current SLAM world Tw_m. We visualize the current point cloud (blue)
and the point cloud from the map (grey) overlayed using the smoothed
Tw_m (Figure 8.5). The point clouds will align only if the relocalization
is accurate. As can be seen in Figure 8.5, the lane markings, poles,
and buildings between the reference and query map align well, hence
qualitatively showing the high relocalization accuracy of our method.
We recommend watching the video at https://vision.in.tum.de/

lm-reloc. In Figure 8.6 we show example images from the benchmark.

8.5 conclusion

We have presented LM-Reloc as a novel approach for direct visual
localization. In order to estimate the relative 6DoF pose between two
images from different conditions, our approach performs direct image
alignment on the trained features from LM-Net without relying on
feature matching or RANSAC. In particular, with the loss function
designed seamlessly for the Levenberg-Marquart algorithm, LM-Net
provides deep feature maps that coin the characteristics of direct
image alignment and are also invariant to changes in lighting and
appearance of the scene. The experiments on the CARLA and Oxford
RobotCar relocalization tracking benchmark exhibit the state-of-the-art
performance of our approach. In addition, the ablation studies also
show the effectiveness of the different components of LM-Reloc.

https://vision.in.tum.de/lm-reloc
https://vision.in.tum.de/lm-reloc
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S U M M A RY

In this thesis, we investigated a very important research topic: vehicle
localization and control under challenging conditions. We presented
simple, powerful, and effective deep learning-based approaches to
get one step further toward robust and reliable computer vision algo-
rithms that work under challenging perceptual conditions and require
less labeled data. Leveraging the recent progress in diverse fields
(computer vision, deep learning, and robotics), the ideas presented in
this thesis enable challenging previously inaccessible tasks.

In the following, we present concluding remarks on the key contri-
butions of this dissertation.

toward robust sensorimotor control Sensorimotor con-
trol approaches usually need tons of labeled data to reflect flexible
navigation in complex and dynamic environments. When performing
driving strategies, a key factor is the collection of annotated training
data. However, obtaining sufficient and high-quality labeled data is a
tedious, time-consuming, and error-prone process. Moreover, to gen-
eralize well across changing perceptual conditions, one would need
to collect data samples for all invariances present in the real world.
This is hardly or not at all possible. To this end, we proposed learning-
based frameworks that can use limited labeled training data to transfer
knowledge between multiple different domains. We thereby remove
the need to have access to annotated training data for all conditions
a sensorimotor control approach may encounter. This is achieved by
leveraging ground truth data available for one domain and transfer-
ring the knowledge across other domains. We show that our approach
can achieve equivalent performance with a small subset of the labels
as if we had access to labeled data for all domains.

direct visual localization The problem of visual localiza-
tion is a long-standing challenge in computer vision research and
is a core component of technologies such as autonomous driving
and augmented or virtual reality. It has been predominantly tack-
led in an indirect setting that relies on matching sparse keypoints
via visual descriptors between a query image and a reference point
cloud. Motivated by the exceptional performance of direct SLAM on
visual odometry tasks, we advocated a paradigm shift in enabling
localization capabilities for direct approaches that are robust under
challenging perceptual conditions. To this end, we proposed novel
loss formulations based on the properties of direct image alignment
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to train dense features. These dense feature descriptors are predicted
by deep neural networks in a self-supervised fashion and are used
to estimate the camera pose by alignment via differentiable optimiza-
tion. Our approach expands the scope of applicability of direct SLAM
methods by enabling re-localization and map merging in changing
conditions. We thus believe that our contributions will have a great
impact on future visual localization research using direct objectives
for dense image alignment.

4seasons dataset In recent years, research on visual SLAM and
long-term localization has made tremendous strides. An important
reason is the availability of real-world datasets tailored for bench-
marking these methods. However, most algorithms are only evaluated
under a particular environmental condition or in a specific scenario.
This might lead to the development of methods that work well in a
particular setting and do not necessarily generalize to all invariances
present in the real world. It is, therefore, crucial to develop methods
that are robust under all environmental conditions. To this end, we
proposed a large-scale real-world benchmark dataset to evaluate the
performance of visual SLAM and long-term localization in changing
conditions and environments. We believe that our dataset enables the
research community to further understand the limitations of current
approaches and will thereby help to advance the state-of-the-art.

To sum up, in this thesis, we explored techniques for vehicle localiza-
tion and control under challenging conditions and made new research
advances for several challenging computer vision tasks. While this
dissertation only provides a small step toward robust vision systems
in all environmental conditions, we believe that future research will
benefit from the presented contributions.
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F U T U R E R E S E A R C H

The techniques presented in this thesis contribute to the vision of
robust perception for all conditions and enable challenging, previously
inaccessible tasks. While the work in this dissertation is a promising
step toward a more powerful embodied vision, there are still many
open challenges. In the following, we describe several future research
avenues to help achieve this goal.

learning without human-labeled data While the pro-
posed techniques are providing solutions that require less annotated
data, we are still far from having equally good-performing algorithms
that can learn entirely without human-labeled data. This suggests that
further research is needed in acquiring data that needs less manual hu-
man interaction for the labeling process. Moreover, the development of
learning strategies that can learn in an unsupervised or self-supervised
setting needs to be accelerated. Especially in the context of sensori-
motor control, it is almost impossible to collect large-scale real-world
datasets with labels exhibiting all possible scenarios.

sim2real transfer Most of the deep learning-based methods
presented in this thesis require high volumes of training data to achieve
good accuracy. However, real-world data acquisition is not only time-
consuming and expensive, but it also raises privacy concerns if the
data has to be collected in crowded public environments. A promising
approach to overcome the dependency on real-world datasets is the
Sim2Real transfer concept, i.e. to train models in simulation or with
synthetic data and deploy them on real sensors. Modern simulation
environments provide the possibility to generate large-scale automati-
cally labeled datasets in minutes, compared to the complex process of
collecting and labeling data with real sensors. We believe that the re-
search communities need to make faster progress in the development
of algorithms that can transfer capabilities learned in simulation to
reality.

lifelong machine learning To enable long-term dynamic
scene understanding for robots, we will need intelligent systems that
allow these robots to accurately and robustly perceive and understand
the world around them. As humans, we can perceive and understand
complex visual scenes from an early age. This enables us to learn
and reason about complex situations, ideally allowing us to build and
update a world model, i.e. a spatial and temporal representation of the
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environment, from early on. Unfortunately, building and updating
such a model is still an incredibly hard challenge for today’s artificial
intelligence systems. We believe that the concept of lifelong learning is
key to true human intelligence, and we are excited to see what future
research will bring us.

final remarks Although our contributions in this dissertation are
mainly from the field of computer vision, we believe that researchers
from computer vision, graphics, machine learning, and robotics need
to collaborate more closely to develop the next generation of artificial
intelligence systems. Improvements in every field will help advance
artificial intelligence and will enable us to get one step closer to build-
ing robots with human-like capabilities. Solving all these problems is
an incredibly exciting challenge that will keep researchers busy for
decades.
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O R I G I N A L P U B L I C AT I O N S

This chapter includes the original publications of the peer-reviewed
research papers [2–5, 7] this cumulative dissertation is based on. The
works in Chapters 4, 5, 6, 7, and 8 have revised layouts as well as minor
content adaptations compared to the original publications included
in this appendix. Additionally, a detailed disclaimer for each paper,
indicating a copyright notice, the publication abstract, and the specific
individual contributions of the author of this thesis is provided.
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Abstract
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trol module. To generate the semantic data needed to train the
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Abstract: Even though end-to-end supervised learning has shown promising re-
sults for sensorimotor control of self-driving cars, its performance is greatly af-
fected by the weather conditions under which it was trained, showing poor gen-
eralization to unseen conditions. In this paper, we show how knowledge can be
transferred using semantic maps to new weather conditions without the need to
obtain new ground truth data. To this end, we propose to divide the task of vehicle
control into two independent modules: a control module which is only trained on
one weather condition for which labeled steering data is available, and a percep-
tion module which is used as an interface between new weather conditions and
the fixed control module. To generate the semantic data needed to train the per-
ception module, we propose to use a generative adversarial network (GAN)-based
model to retrieve the semantic information for the new conditions in an unsu-
pervised manner. We introduce a master-servant architecture, where the master
model (semantic labels available) trains the servant model (semantic labels not
available). We show that our proposed method trained with ground truth data for
a single weather condition is capable of achieving similar results on the task of
steering angle prediction as an end-to-end model trained with ground truth data of
15 different weather conditions.

Keywords: Imitation learning, transfer learning, modular vehicle control

1 Introduction

One major goal of robotics and artificial intelligence research is to develop self-driving cars which
can accurately perceive the environment and interact with the world. To develop an approach for
addressing these problems, we have to deal with enormous challenges in perception, control, and
localization. In general, the task of building an autonomous driving system can be divided into two
parts: 1) path planning, and 2) vehicle control. Path planning provides a global solution for reaching
a destination from a given starting position. It uses various information from different sensors such
as GPS, IMU, and traffic conditions to infer the most optimized path. Meanwhile, vehicle control
is meant to provide a local solution for predicting the immediate steering commands at the current
instance in time. It utilizes information from sensors such as RGB cameras, lidar or radar. These
sensors allow the self-driving car to sense and understand its current surroundings, such as the status
of traffic lights or the presence of a pedestrian or another vehicle in front of the car.

In this paper, we focus our attention only on vehicle control to explain how transfer learning can
be utilized to improve the robustness and stability of predicting steering commands even for unseen
weather conditions for which no supervised data is available. For this, the task of vehicle control
is segregated into perception and control. Figure 1 represents two modules, with each performing
one of these tasks. The purpose of the perception module is to pre-process the raw input sensor data
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dence to: Patrick Wenzel <wenzel@cs.tum.edu>.
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and extract useful features. In our approach, we use images captured by an RGB camera to extract
semantic features of the scene. These extracted features are then fed to the control module which
aims to produce the correct steering command for that particular sensor input.
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DECODER Semantic 
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Figure 1: The perception module is trained as an encoder-decoder architecture, without any skip
connections. The encoder sub-module first embeds the raw image into a lower dimensional latent
vector. The decoder sub-module reconstructs the semantic scene from this latent vector. If the low
dimensional latent vector contains all the necessary information to reconstruct the semantic scene to
a reasonable degree of accuracy, then we directly feed it as an input to the control module instead of
the semantic labels.

Modular pipeline vs end-to-end learning. In an end-to-end training approach, both the perception
and the control module would be trained together [1]. We propose to split the task into separate
perception and control, so that each module is trained and optimized independently without affect-
ing each other. The main advantage of the separate modules is that without retraining the control
module, we can simply replace the perception module to work on different environmental condi-
tions, whereas in an end-to-end learning system, supervised labels for the new domain would first
be needed to be collected and then the control module would also need to be retrained on this addi-
tional data.

Our main contributions are the following:

• Ability to control the vehicle in unseen weather conditions without having the need to col-
lect additional data for the steering commands and without requiring to retrain the control
module. This is done by simply replacing the perception module additionally trained on
the semantics of the new condition.

• We show how knowledge can be transferred from a weather condition for which semantic
labels are available to other weather conditions for which no labels exist in an unsupervised
manner using GANs.

2 Related Work

Supervised learning for self-driving cars. The use of supervised learning methods to train driving
policies for self-driving cars is a well-known and common approach. The first step towards using
neural networks for the task of road following dates back to ALVINN [2]. This approach uses a very
simple shallow network which maps images and a laser range finder as input and produces action
predictions. Recently, NVIDIA [3] proposed to use deep convolutional neural networks trained end-
to-end for a simple lane following task. This approach was successful in relatively simple real-world
scenarios. One major drawback of end-to-end imitation learning is that it cannot generalize well
across different domains for which no labeled training data is available. However, most end-to-end
learning approaches [4, 5, 6] suffer from this problem.

Transfer learning. Generative adversarial networks provide a framework to tackle this general-
ization gap [7] by image generation techniques which can be used for domain adaptation. The
authors of [8] proposed a network that can convert non-realistic virtual images into realistic ones
with similar scene structure. Similarly, Hoffman et al. [9] proposed a novel discriminatively-trained
adversarial model which can be used for domain adaptation in unseen environments. They show new
state-of-the-art results across multiple adaptation tasks, including digit classification and semantic
segmentation of road scenes.
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Semantic segmentation. Visual understanding of complex environments is an enabling factor for
self-driving cars. The authors of [10] provide a large-scale dataset with semantic abstractions of real-
world urban scenes focusing on autonomous driving. By using semantic segmentation, it is possible
to decompose the scene into pixel-wise labels we are particularly interested in. This especially helps
self-driving cars to discover driveable areas of the scene. It is therefore possible to segment a scene
into different classes (e. g. road and not road) [11].

Modular pipeline vs end-to-end learning. The authors of [12] trained both an end-to-end and a
modular based model on one set of weather conditions and tested the model on a different set of
weather conditions. Based on their experiments they concluded that the modular approach is more
vulnerable to failures under complex weather conditions than the end-to-end approach.

Our method also uses a modular approach, but additionally introduces an image translation tech-
nique to overcome the generalization gap between the unseen weather conditions. This is done by
only retraining the perception module without having to retrain the control module for each and ev-
ery domain (i. e. weather condition). A useful consequence of this is that we do not have to recollect
additional labeled data for the new conditions.

3 Imitation Learning on the Latent Semantic Vector

Perception module. In this work, we use images captured by an RGB camera placed at the front
of the car as inputs to the perception module. The perception module processes these images and
produces an output map containing the semantics of the scene, which in turn can be used as an
input to the control module. The CARLA [12] simulator yields semantic labels for 13 classes. The
advantage of using semantic labels instead of raw RGB data is described below:

• Figure 2 shows how two weather conditions have different RGB inputs but the same se-
mantic pixel labels. Hence, the control module does not separately need to learn to predict
the correct steering commands for each and every weather condition.

• The semantic labels can precisely localize the pixels of important road landmarks such as
traffic lights and signs. The status/information contained on these can then be read off to
take appropriate planning and control decisions.

• A high proportion of the pixels have the same label as its neighbors. This redundancy
can be utilized to reduce the dimensionality of the semantic scene. Hence, the number of
parameters required to train the control module can then also be reduced.

Sunny  
Weather 

Rainy  
Weather 

Semantic  
Labels 

Figure 2: For the perception module we take in raw image data as obtained from the car’s camera and
output the semantic segmentation of the scene. Notice that irrespective of the weather condition the
semantics of the scene remain the same. Since the perception module bears the burden of producing
the correct semantic labels, the control module would be robust to changes in lighting, weather, and
climate conditions.

The perception module, which is used to produce the semantic labels of a scene from the RGB
camera is trained as an encoder-decoder architecture. The network architecture which is being used
is a modified version of the one proposed by Larsen et al. [13]. The structure and the parameters
of the model are shown in the supplementary material. The encoder first encodes the information
contained in the input data to a lower dimensional latent vector. The decoder, then takes this latent
vector and attempts to reconstruct the semantics of the scene. The output of the decoder is of the
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same size as the image but having 13 channels with each representing the probability of occurrence
of one of the semantic labels. The model is trained by minimizing the weighted sum of the categori-
cal cross-entropy of each pixel in the image. The categorical cross-entropy (negative log-likelihood)
between predictions p and targets t is calculated as follows:

Li = −
∑

j

ti,j log(pi,j)wj ,

where i denotes the pixel and j denotes the class. The weight wj of each semantic label is inversely
proportional to its frequency of occurrence in the dataset.

Control module. Note that we do not use skip connections between the encoder and decoder of the
perception module. Therefore, since the lower dimensional latent vector is capable of reconstructing
the semantic labels of the scene, we can directly use this vector as input to the control module instead
of the complete scene. Figure 1 depicts how the latent semantic embedding vector produced by the
encoder of the perception module can be used as an input to the control module.

The control module aims to predict the correct steering angle, from the latent embedding fed as an
input to the model. The data used for training the control module is collected in a supervised manner
by recording images and their corresponding steering angles. The loss function attempts to minimize
the mean squared error (MSE) between the actual steering angle and the one predicted by the model
across all the samples. The architecture of the control model is depicted in the supplementary
material.

4 Master-Servant Architecture for Transfer Learning

The control module does not perform well if tested in an environment which is completely differ-
ent from the one on which the perception module was trained on. A naive and yet computational
demanding solution could be to retrain the perception module under every other weather condition.
However, this is not a viable solution for the following reasons:

• We would need semantic labels for every other weather condition. Obtaining semantic
labels of a scene is a painstakingly slow process and prone to errors, since it requires human
effort.

• Even if we have access to the semantic labels and retrain the perception module under the
new environmental conditions, we would still have to also retrain the control module. This
is due to the fact that the semantic latent vector produced by the new perception module
might be different from the one produced by the old perception module, despite the same
semantics of the scene. Figure 3 describes how for the same image, two independently
trained segmentation models could yield different semantic vectors, despite being trained
on the same data.

Proposed master-servant architecture. Suppose that the perception module P0 and the control
module C0 are trained under a certain environmental condition. When tested on a very different
weather condition P0 may fail to produce the relevant semantic latent vector for the control module
C0 to take the correct steering decision. We would therefore like to replace P0 with a different per-
ception module P1 such that it produces the correct latent vector to allow the same control module
C0 to execute the appropriate steering command even on this very different condition. For this, we
propose a master-servant architecture model for training the perception module functioning on im-
ages from a domain for which no semantic labels are available. Figure 4 demonstrates the necessary
steps of the master-servant architecture.

Suppose we have images (from domain X) and their corresponding semantic labels. With this, we
can train a segmentation model using the encoder-decoder architecture described previously. We
refer to the trained encoder of this model as the master perception module P0. We would also like
to obtain the correct semantic embedding of images (from domain Y ) for new conditions for which
no semantic labels are available. We refer to the perception module for which we would like to
furnish the correct semantic embedding for images in domain Y as the servant perception module
P1. We use the master module, P0, to train the servant module, P1, in the steps described as follows:
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Image X0 S11 S22 S12 
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Figure 3: This figure shows the segmentation reconstructions S11 and S22 when image X0 is passed
through two segmentation models M1 (with Encoder E1, Decoder D1) and M2 (with Encoder E2,
Decoder D2). Both models are trained independently on the same data. Note that the reconstructions
reflect the true semantics of the scene reasonably well. S12 shows the reconstruction when the
embedding from encoder E1 is fed to through decoder of D2. The ambiguity in S12 implies that for
the same image the two models yield different semantic vectors.

1. An image X0 is arbitrarily selected from domain X . X0 is fed to through P0 to obtain the
semantic embedding of the scene denoted by z0. Meanwhile, the generator G translates the
image X0 to generate an image Y0 from domain Y , such that the semantics of the scene are
preserved. If semantics are being preserved, then z0 should be equal to z1 (the semantic
embedding obtained by feeding Y0 through P1).

2. Y0 is fed through P1 to get the predicted latent embedding z1.

3. The mean squared error (MSE) between z0 and z1 is used as the loss function to update the
weights of P1 in order to minimize the difference between the two latent embeddings.

Some examples of the images produced by the generator G, segmentation reconstruction when z0
(semantic embedding of the master) and z1 (semantic embedding of the servant) is fed through the
decoder of the master perception module P0 are shown in the supplementary material.

Unsupervised transfer of semantics. We observe that with this master-servant architecture we
are able to train the servant perception module for obtaining the correct semantic embeddings for
images from domain Y for which semantic labels were never available. We can thus replace P0 with
P1 which would also work on these unseen weather conditions without having to retrain the control
module. Moreover, no additional human effort is required for the labeling of semantics.

The most critical component which made the functioning of this approach possible is the generator
G, which is able to translate images between two different domains, while preserving the semantics.
The generator G is pre-trained using the CycleGAN [14] approach. Unlike other image-to-image
translation methods such as pix2pix [15], an important feature of CycleGANs is the fact that this ap-
proach does not require paired data between two domains. Therefore, the task of collecting (if even
possible) images with a one-to-one correspondence between two domains can be eliminated. The
procedure for training the generator G using the CycleGAN approach is shown in the supplemen-
tary. The architecture used was taken from [14]. The supplementary material shows some examples
of paired and unpaired data from two different domains produced by the CARLA simulator.

5 Experimental Results

Experimental setup. For evaluating our method, we used the CARLA simulator. The CARLA
simulator provides 15 different weather conditions (labeled from 0 to 14). We focus our attention
on the car turning around corner scenarios since it is a more complicated maneuver to perform than
lane following and it would thus give a better understanding of possible failure conditions. We train
5 different models to predict the steering angle whilst assuming that the car throttle is fixed. For a
fair comparison, the approach is evaluated on multiple different turns and we do not consider the
presence of pedestrians and cars in the ego vehicle’s driving lane. The starting position of the agent
is just before the curve and the duration of the turn is fixed to 120 frames since it covers the entire
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Figure 4: We propose a master-servant architecture to train a servant perception module P1 for
images which do not have semantic labels in an unsupervised manner. Images in domain X have
semantic labels and are used to train the perception module P0, which we refer to as the master
perception module. P0 is pre-trained using the complete encoder-decoder architecture. Images in
domain Y do not have semantic labels. The process works as follows. Step 1: The generator G is
used to convert an image X0 from domain X to an image Y0 in domain Y such that the semantic
information is preserved. Meanwhile X0 is also fed to the master perception module P0 to get the
latent embedding z0. Step 2: The image Y0 is fed to the servant perception module P1 to get the
predicted latent embedding z1. Step 3: Since the semantic labels of X0 and Y0 are the same, their
latent embeddings should also be the same. We use the mean squared error (MSE) to minimize this
difference, wherein the embedding z0 is used as the true label for training P1. Update Weights:
We back-propagate the MSE loss to update the weights of only P1 so that its embedding matches
with that of P0. The green arrows indicate forward propagation and the red arrow shows back-
propagation.

turning maneuver. The turn is considered successful if the car did not crash whilst executing the
turn. Furthermore, in order to make a quantitative evaluation of the performance of each of the 5
models, new test data containing the images and the corresponding true steering commands for each
of the 15 weather conditions was collected. Figure 5 shows a plot of the mean squared error (MSE)
between the actual and the predicted steering commands by the 5 different models across all the
weather conditions on samples of the test data. Meanwhile, Table 1 enumerates the percentage of
turns each of the 5 models are successfully able to execute across all the 15 weather conditions.

The supplementary material contains the description and some samples of the 15 weather conditions
along with video samples demonstrating the performance of the models on certain weather condi-
tions. The dataset can be downloaded at: https://git.io/fApfH. The details of the 5 models are
given below:

End-to-end, all weathers. An end-to-end model is trained on all weather conditions. Here we
have assumed that we have access to the steering commands across all the conditions. As can be
seen from Figure 5, this model gives the lowest error particularly for weathers 1 to 14. Moreover, we
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Figure 5: Plot of the mean squared error (MSE) between the actual and the predicted steering com-
mands by 5 different models across the weather conditions 0 to 14. The blue line is the error plot
for a model trained end-to-end, from images and corresponding steering commands for all the 15
weather conditions. The cyan error curve corresponds to the end-to-end model trained on images
and steering commands for weathers 5-9. The red line is for the model trained end-to-end from
images and corresponding steering commands for only the default weather condition 0. The black
line represents the model referred to as the master whose perception and control modules are trained
separately. The perception module is trained using the actual semantic labels available for the de-
fault weather condition, whereas the control model is trained from the actual steering commands of
the same condition. The green curve is the model whose control model is the same as the one for the
master, but the perception module is trained as a servant from the master perception module from
images generated by the CycleGANs for weather conditions 2, 3, 4, 6, 8, 9, 10, 11, 12, and 13, in
addition to the default condition 0.

observe in Table 1 that this model is able to successfully execute a high proportion of the turns across
all the weather conditions, since it was trained on all of them. All subsequent models are trained
with the steering commands available for a subset of the weather conditions and their performance
is compared with this model.

End-to-end, weather 5-9. This model is trained end-to-end on weathers 5, 6, 7, 8, and 9 which were
arbitrarily selected just to see how it would perform on unseen weather conditions. As shown in
Figure 5 it has a relatively low error on these conditions and a higher error elsewhere. Furthermore,
the plot shows that this end-to-end approach only seems to work well on the trained conditions
for which we have labeled data. Moreover, as can be seen in Table 1, the model is capable of
maneuvering well on the trained weather conditions and on those which are similar or have good
visibility. However, on weather conditions 11-14 the model fails to execute the majority of the turns.
This is mainly due to the fact that these weather conditions (11-14) are relatively disparate in terms
of appearance and visibility as compared to the trained ones (5-9).

In practice, we do not have the steering commands available for all the possible or even a diverse
subset of the weather conditions. Rather, the labeled data would correspond to only the condition of
the day/period on which it was collected. Therefore, the 3 successive models that we now consider
assume that the steering commands and the corresponding images/semantics are only available for
the default weather condition (labeled as 0). From this, we evaluate how end-to-end training would
compare to the proposed modular approach across all the remaining weather conditions for which
no labeled data is available.
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End-to-end, weather 0. This model is trained end-to-end from images and steering commands for
the default weather condition. Figure 5, shows that this model outperforms all the other models only
on weather condition 0 on which it was trained. For all other conditions, it gives high errors.

Modular master. This model is trained on the default weather condition (0) but the task is divided
into 2 separate perception and control modules. The perception module P0 is trained on the seman-
tic labels. We refer to this perception module as the master, since it will later be used to train the
servant module for retrieving the semantic information of the unseen weather conditions. The con-
trol module is in turn trained with imitation learning to predict the steering angle of the car from the
latent embedding generated by the encoder of P0. The forth row of Table 1 depicts the percentage of
turns the model was successfully able to maneuver for each of the 15 conditions. As observed in the
table, the model is successful only on the default weather conditions (on which it was trained) and
the sunny weather condition (which closely resembles the default condition). Similar to the previous
model (trained end-to-end on the default condition), this model also fails on a large proportion when
tested on weather conditions that are far off from the default condition in terms of visual appearance.
From this, there seems to be no apparent advantage of using a modular approach over the end-to-
end training when we have access to the labels for only one weather condition. Nevertheless, the
master perception module P0 obtained through this method will serve as a baseline for training a
servant perception module that additionally works for unseen weather conditions. This approach is
described in the following.

Our approach (Modular servant). We train one servant perception module to cater for weather
conditions on which P0 failed to perform. We selected a subset of weather conditions (i. e. 2, 3, 4,
6, 8, 9, 10, 11, 12, and 13) to train the servant module. Using CycleGANs, separate generators were
trained between each of these conditions and the default weather condition. The images produced
by the CycleGAN generators for each of these conditions were fed as an input in equal proportion
along with the default images to train only a single servant perception module P1. Despite having
no access to the steering commands and the semantic labels for weather conditions 1 to 14, Figure 5
shows that the error for this model across these 14 weather conditions is significantly lower than the
previous 2 models which were also trained only from labels of weather condition 0. Moreover, we
see from the last row of Table 1, that this model is successfully able to execute a good proportion
of the turns for most of the weather conditions. Only on condition 13 (HardRainSunset), the model
fails to perform well. The visibility under this condition is low and the images generated by the
CycleGAN do not seem to preserve the semantics, hence resulting in the model to perform relatively
poorly. Nevertheless, on all the other remaining weather conditions its performance is comparable
to the first end-to-end model trained on steering labels for all the weather conditions.

Table 1: The table reports the percentage of successfully completed turns by the 5 models for each
weather condition. Higher is better.

Weather condition
Model 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 average

End-to-end, all weathers 100 100 88 88 100 100 100 100 100 100 100 88 88 88 100 96
End-to-end, weather 5-9 88 88 100 88 100 100 100 100 100 100 100 50 50 25 88 85
End-to-end, weather 0 100 63 38 38 13 13 0 0 0 50 13 0 0 0 0 22
Modular master 100 100 88 50 50 63 50 50 50 63 75 50 0 0 50 56
Our approach (Modular servant) 100 100 100 100 88 100 100 100 100 100 100 88 100 63 100 96

6 Conclusion

In this paper, we have shown that in order to generalize vehicle control across unseen weather condi-
tions it is worthwhile to divide the task into separate perception and control modules. This separation
eliminates the tedious task of recollecting labeled steering command data for each and every new
environment the vehicle might come across. Moreover, retraining of the control module for new en-
vironments can be avoided by a simple replacement of the perception module. The initial perception
module was trained from the semantic labels available only for one of the weather conditions. For
environments for which semantic labels are missing, the proposed master-servant architecture can
be deployed for transferring semantic knowledge from one domain to another (i. e. between different
weather conditions) in an unsupervised manner using CycleGANs which do not require paired data.
We believe that the presented approach to making driving policies more robust by training under
different weather conditions will prove useful in future research.
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Supplementary Material

Table S.1: Encoder-decoder architecture used to train the segmentation perception module for the
master and all servant models. The convolution layers numbered 15 and 16 have a kernel size of 4,
stride of 1 and no padding. All other convolution layers have kernel size 4, stride of 2 and padding
of 1. All the Leaky ReLU activation functions have a negative slope of 0.2. The output of the model
has 13 channels with each corresponding to one of the semantic labels. The output of the last layer
of the encoder (Layer 15) is fed to the control module to predict the correct steering direction. The
same layer is also used to train the encoders of all servant modules. The code and model of the
architecture is a modified version of https://github.com/seangal/dcgan_vae_pytorch.

ENCODER DECODER

Layer Number Layer Type Layer Input Layer Output Layer Number Layer Type Layer Input Layer Output
1 Convolution 3× 128× 128 32× 64× 64 16 Convolution (Transpose) 64× 1× 1 512× 4× 4
2 Leaky ReLU activation 32× 64× 64 32× 64× 64 17 Batch normalization 512× 4× 4 512× 4× 4
3 Convolution 32× 64× 64 64× 32× 32 18 Leaky ReLU activation 512× 4× 4 512× 4× 4
4 Batch normalization 64× 32× 32 64× 32× 32 19 Convolution (Transpose) 512× 4× 4 256× 8× 8
5 Leaky ReLU activation 64× 32× 32 64× 32× 32 20 Batch normalization 256× 8× 8 256× 8× 8
6 Convolution 64× 32× 32 128× 16× 16 21 Leaky ReLU activation 256× 8× 8 256× 8× 8
7 Batch normalization 128× 16× 16 128× 16× 16 22 Convolution (Transpose) 256× 8× 8 128× 16× 16
8 Leaky ReLU activation 128× 16× 16 128× 16× 16 23 Batch normalization 128× 16× 16 128× 16× 16
9 Convolution 128× 16× 16 256× 8× 8 24 Leaky ReLU activation 128× 16× 16 128× 16× 16

10 Batch normalization 256× 8× 8 256× 8× 8 25 Convolution (Transpose) 128× 16× 16 64× 32× 32
11 Leaky ReLU activation 256× 8× 8 256× 8× 8 26 Batch normalization 64× 32× 32 64× 32× 32
12 Convolution 256× 8× 8 512× 4× 4 27 Leaky ReLU activation 64× 32× 32 64× 32× 32
13 Batch normalization 512× 4× 4 512× 4× 4 28 Convolution (Transpose) 64× 32× 32 32× 64× 64
14 Leaky ReLU activation 512× 4× 4 512× 4× 4 29 Batch normalization 32× 64× 64 32× 64× 64
15 Convolution 512× 4× 4 64× 1× 1 30 Leaky ReLU activation 32× 64× 64 32× 64× 64

31 Convolution (Transpose) 32× 64× 64 13× 128× 128
32 Sigmoid activation 13× 128× 128 13× 128× 128

Table S.2: Architecture of the control model. Note that the input to the control module is a vector of
size 64, corresponding to the size of the latent embedding produced by the encoder of the perception
module.

Layer Number Layer Type Layer Input Layer Output
1 Fully connected 64 100
2 ReLU activation 100 100
3 Fully connected 100 50
4 ReLU activation 50 50
5 Fully connected 50 25
6 ReLU activation 25 25
7 Fully connected 25 15
8 ReLU activation 15 15
9 Fully connected 15 8
10 ReLU activation 8 8
11 Fully connected 8 1
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PERCEPTION 
MODULE 

(P0) 

CONTROL  
MODULE 

(C0) 

PERCEPTION 
MODULE 

(P0) 

CONTROL  
MODULE 

(C0) 

PERCEPTION 
MODULE 

(P1) 

CONTROL  
MODULE 

(C0) 

Figure S.1: To obtain a good segmentation based perception module, semantic labels for a diverse
range of environmental conditions are required. This may not always be the case since semantic
labeling is a tedious and error-prone process. Hence, we may have only access to a limited subset
of the labeled data. Top: This figure shows a perception module P0 trained only on sunny weather
conditions. Hence, when a similar data is fed to P0 at test time the control model C0 performs as
per expectation. Center: This figure demonstrates that if data from a different weather condition
is fed to P0, the control module C0 may not necessarily perform as desired. Bottom: This figure
shows that we would like to replace P0 with P1, such that P1 is capable of handling this unseen
environment in a manner to retain the same semantic embedding. Hence, we can use the same
control module C0 with P1.
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Figure S.2: This figure is with reference to the master-servant architecture. 1st column: The first
column shows five sample images from domain X . 2nd column: The second column shows corre-
sponding images from domain Y , produced by the generator G, maintaining the semantics of the
scene. 3rd column: The segmentation reconstruction produced by feeding z1 through the the mas-
ter decoder. z1 in turn is generated by feeding the images in the 2nd column through the servant
perception module P1. 4th column: Segmentation reconstruction produced by feeding z0 through
the master decoder. z0 is generated by feeding the images in the 1st column through the master
perception module P0. Note that the semantic reconstructions in the 3rd column and 4th column are
almost indistinguishable.
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ONE TO ONE
CORRESPONDENCE

 

DOMAIN X DOMAIN Y

PAIRED DATA

DOMAIN X DOMAIN Y

UNPAIRED DATA

NO 
CORRESPONDENCE

Figure S.3: Examples of paired and unpaired dataset. Note that it is practically not possible to
obtain an exact one-to-one correspondence between two differing road conditions. Hence, we use
CycleGANs for image-to-image translation between unpaired images. The domains correspond to
weather conditions of a sunny day and a rainy afternoon, respectively.
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Generator, G 
  X        Y  

Generator, F 
Y         X 

DISCRIMINATOR 
DX 

DISCRIMINATOR 
DY 

RECONSTRUCTION 
LOSS 

Real Image 
Label

Fake Image
Label

Generator, F 
  Y        X  

Generator, G 
X         Y 

DISCRIMINATOR 
DY 

DISCRIMINATOR 
DX 

RECONSTRUCTION 
LOSS 

Real Image 
Label 

Fake Image
Label

Image X0,
∈ Domain X 

Generated Image, Y0*

Reconstructed Image,
 X0*

Reconstructed Image,
 Y0*Generated Image, X0*

Image Y0,
∈ Domain Y 

Figure S.4: The critical component in the master-servant architecture in achieving unsupervised
training of the servant perception module is the generator G, which transformed images from domain
X to domain Y , while maintaining the semantics of the scene. The generator G is trained using
CycleGANs. Unpaired images from domain X and Y produced by CARLA are used for training of
the model. The top figure shows an arbitrary image X0 from domain X and is passed through the
generator G, which generates an image Y ∗

0 . The generated image Y ∗
0 is then fed to another generator

F , which generates an image X∗
0 . The network is optimized by minimizing the L1 loss between the

real image X0 and the generated image X∗
0 . To make the images appear realistic, each domain has

its own discriminator network i. e. Dx and Dy . The bottom figure is analogous to the top one except
that here, we fed a realistic image from domain Y and try to minimize the L1 loss between Y0 and
Y ∗
0 .
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WEATHER 
CONDITION

SAMPLES

0: DEFAULT 

1: CLEAR NOON 

2: CLOUDY NOON 

3: WET NOON 

4: WET CLOUDY NOON 

5: MID RAINY NOON  

6: HARD RAIN NOON 

7: SOFT RAIN NOON 

8: CLEAR SUNSET 

9: CLOUDY SUNSET 

10: WET SUNSET 

11: WET CLOUDY SUNSET 

12: MID RAIN SUNSET 

13: HARD RAIN SUNSET 

14: SOFT RAIN SUNSET 

Figure S.5: Some sample images of the 15 different weather conditions along with their description
generated by the CARLA simulator. Note that some of the weather conditions are very similar
and therefore, a perception module trained for one of the conditions may also work for a similar
condition also.
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3: WET NOON

4: WET CLOUDY NOON

6: HARD RAIN NOON

8: CLEAR SUNSET

9: CLOUDY SUNSET

12: MID RAIN SUNSET

13: HARD RAIN SUNSET

ONE TO ONE 
CORRESPONDENCE
BETWEEN SAMPLES

2: CLOUDY NOON

10: WET SUNSET 

11: WET CLOUDY SUNSET 

Figure S.6: The figure shows 6 sample images generated from the original default condition for
weather conditions 2, 3, 4, 6, 8, 9, 10, 11, 12, and 13 using the CycleGAN approach. The CyleGAN
was trained with 3500 images from the default and each of the other weather conditions. Most of
the generated images resemble the actual to a reasonable degree. For weather conditions with low
visibility, i. e. 12 and 13 some of the generated images (for e. g. sample 3, 5, and 6) give a poor
reconstruction.
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Towards Generalizing Sensorimotor Control Across Weather Conditions

Qadeer Khan1,2∗ Patrick Wenzel1,2∗ Daniel Cremers1,2 Laura Leal-Taixé1

Abstract— The ability of deep learning models to generalize
well across different scenarios depends primarily on the quality
and quantity of annotated data. Labeling large amounts of data
for all possible scenarios that a model may encounter would not
be feasible; if even possible. We propose a framework to deal
with limited labeled training data and demonstrate it on the
application of vision-based vehicle control. We show how limited
steering angle data available for only one condition can be
transferred to multiple different weather scenarios. This is done
by leveraging unlabeled images in a teacher-student learning
paradigm complemented with an image-to-image translation
network. The translation network transfers the images to a new
domain, whereas the teacher provides soft supervised targets to
train the student on this domain. Furthermore, we demonstrate
how utilization of auxiliary networks can reduce the size of a
model at inference time, without affecting the accuracy. The
experiments show that our approach generalizes well across
multiple different weather conditions using only ground truth
labels from one domain.

I. INTRODUCTION

The ubiquity of a tremendous amount of processing power
in contemporary computing units has proliferated the usage
of deep learning-based approaches in control applications. In
particular, supervised deep learning methods have made great
strides in sensorimotor control, whether it be for autonomous
driving [1], robot perception [2], or manipulation tasks [3],
[4], [5]. However, the performance of such models is heavily
dependent on the availability of ground truth labels. To have
the best generalization capability, one should annotate data
for all possible scenarios. Nonetheless, obtaining labels of
high quality is a tedious, time consuming, and error-prone
process.

We propose to instead utilize the information available
for one domain and transfer it to a different one without
human supervision as shown in Figure 1. This is particularly
helpful for many robotic applications wherein a robotic
system trained in one environment should generalize across
different environments without human intervention. For ex-
ample in simultaneous localization and mapping (SLAM),
it is very important that the algorithm is robust to differ-
ent lighting conditions [6]. In the context of autonomous
driving, transferring knowledge from simulation to the real
world or between different weather conditions is of high
relevance. Recently, [7], [8], [9] have attempted to tackle
these problems by dividing the task of vehicle control
into different modules, where each module specialized in
extracting features from a particular domain. In these works,
semantic labels are used as an intermediate representation for

∗These authors contributed equally.
1Technical University of Munich
2Artisense

Fig. 1: Teacher-student training for generalizing sensorimotor
control across weather conditions. Top: The teacher network,
trained on ground truth data collected on sunny weather is
capable of predicting the correct steering angle when tested
on this condition. Middle: However, the teacher fails to
predict the correct steering when tested on an input image
from a different domain (rainy weather). Bottom: With
our proposed framework, the student network trained with
supervised information from the teacher network is capable
of predicting the correct steering for the rainy weather.
This is done without any additional ground truth labels or
semantic information.

transferring knowledge between different domains. However,
obtaining these semantic labels requires human effort which
is time-consuming, expensive, and error-prone [9]. In this
work, we instead propose to use a teacher-student learning-
based approach to generalize sensorimotor control across
weather conditions without the need for extra annotations,
e.g., semantic segmentation labels.

To this end, we make the following contributions:

• We demonstrate how knowledge of ground truth data
for steering angles can be transferred from one weather
scenario to multiple different weather conditions. This
is achieved without the additional requirement of having
semantic labels. We make use of an image-to-image
translation network to transfer the images between dif-
ferent domains while preserving information necessary
for taking a driving decision.

• We show how the proposed method can also utilize
images without ground truth steering commands to train
the models using a teacher-student framework. The
teacher provides relevant supervised information regard-
ing the unlabeled images to train the features of the



student. Hence, we can eliminate the need for an expert
driver for data collection across diverse conditions.

• If the sample data with ground truth labels is limited,
then the teacher and student models may tend to overfit.
To overcome this, we propose using weighted auxiliary
networks connected to the intermediate layers of these
models. During inference, the model size can be reduced
by eliminating auxiliary layers with low weights without
reducing accuracy.

In the following sections, we first review related work.
We then present the details of our method, followed by an
analysis of our model’s performance. Finally, we discuss
various parts of our model.

II. RELATED WORK

Vision-based autonomous driving approaches have been
studied extensively in an academic and industrial setting [10].
A plenty of real world [11], [12], [13] as well as syn-
thetic [14], [15], [16], [17] datasets for autonomous driving
research have become available. In recent years, neural
network approaches have significantly advanced the state-
of-the-art in computer vision tasks. Especially, end-to-end
learning for sensorimotor control has recently gained a lot of
interest in the vision and robotics community. In this context,
different approaches to autonomous driving are studied:
modular pipelines [18], imitation learning [19], conditional
imitation learning [20], and direct perception [21].
Embodied agent evaluation. Most available datasets [11],
[12] cannot be used for evaluating online driving perfor-
mance due to their static nature. The evaluation of driving
models on realistic data is challenging and often not feasible.
Therefore, a lot of interest has emerged in building photo-
realistic simulators [22], [23], [24] to analyze those models.
However, despite having access to simulation engines, there
is currently no universally accepted benchmark to evaluate
vision-based control agents. Therefore, our experimental
setup is a step towards a field where it is still not quite
established how to evaluate and measure the performance of
the models [25], [26].
Unpaired image-to-image translation networks. Unsuper-
vised image-to-image translation techniques are rapidly mak-
ing progress in generating high-fidelity images across various
domains [27], [28], [29], [30]. Our framework is agnostic
to any particular method. Hence, continual improvements in
these networks can be easily integrated into our framework
by replacing a previous network.
Transfer learning via semantic modularity. Several works
used semantic labels of the scene as an intermediate repre-
sentation for transferring knowledge between domains. In the
context of autonomous driving, the authors of [7] proposed
to map the driving policy utilizing semantic segmentation
to a local trajectory plan to be able to transfer between
simulation and real-world data. Furthermore, for making
a reinforcement model trained in a virtual environment
workable in the real world, the authors of [8] utilize the
intermediate semantic representation as well to translate
virtual to real images. However, there is still little work

on generalizing driving models across weathers. The work
by [9] showed how to transfer knowledge between different
weather conditions using a semantic map of the scene. In
contrast, in this paper, we demonstrate the possibility of
transferring the knowledge between weathers even without
semantic labels.
Knowledge distillation. Originally, knowledge distilla-
tion [31] was used for network compression (student network
is smaller than the teacher while maintaining the accuracy).
However, the authors of [32] focus on extracting knowledge
from a trained (teacher) network and guide another (student)
network in an individual training process. Furthermore, [33]
used a slightly modified version of knowledge distillation
for the task of pedestrian detection. In this work, we use a
teacher-student architecture, but rather to leverage unlabeled
data for sensorimotor control.

III. SENSORIMOTOR CONTROL ACROSS WEATHERS

In this section, we introduce a computational framework
for transferring knowledge of ground truth labels from one
weather condition to multiple different scenarios without
any semantic labels and additional human labeling effort.
Figure 2 gives a high-level overview of the framework.

A. Teacher End-to-End Training

In this step, the teacher model is trained end-to-end in a
supervised manner to predict the steering command of the
vehicle from the raw RGB images generated by the camera
placed at the front of the ego-vehicle. The training data is
collected by an expert driver only once for that particular
weather scenario. We refer to the images recorded under
the weather condition under which this data was collected
as belonging to domain D0. Note that the teacher model
is itself divided into a Feature Extraction Module (FEM),
F0 and a control module, C0. The raw image (belonging to
D0) is passed through F0 to retrieve a lower-dimensional
feature representation. This feature representation is in turn
fed to the C0 which predicts the steering angle. A depiction
of the model is shown in Figure 3. The FEM, F0 is a
sequential combination of 4 units where each unit comprises
a convolutional, pooling, and activation layer. The output of
unit 4 is flattened to a size of 800, which is in turn fed as an
input to the module, C0. The control module, C0 is a series
of fully connected layers and outputs the steering command.
Auxiliary network. It might be the case that the amount
of images with labels is limited or the model is too large
for the task at hand. Hence, the model may tend to overfit.
Therefore, during training, to mitigate the effect of overfit-
ting, F0 additionally uses auxiliary networks connected to its
intermediate layers [34]. Each of the auxiliary networks has
a control module, C0 with shared weights. The projection
layers, P1, P2 and P3 project the feature maps of the
intermediate layers to the dimension of C0 i.e. 800. The
overall output of the teacher model is the weighted sum of the
outputs of the auxiliary networks. The loss is also described
by a weighted combination of the individual losses of the 4
auxiliary networks. The loss for each of the control modules



Fig. 2: This figure gives a high level overview of the 3
steps for transferring knowledge between two domains D0

and D1 for the purpose of sensorimotor control. Ground
truth steering data for only a limited number of images
from domain D0 is available. Details of the framework are
provided in Section III.

is the mean squared error (MSE) between the ground truth
label provided by the expert and that predicted by C0. The
overall loss is a weighted sum of the losses from each of the
4 control modules.

L =
4∑

i=1

αi · Li, s.t.
4∑

i=1

αi = 1,

where αi, and Li are the weighting and the error for the
auxiliary network, obtained from the intermediate unit i of
the FEM F0. The error functions are calculated as follows:

Li =
1

N

N∑

j=1

(yj −Oij)
2,

where yj is the ground truth steering angle obtained from
the expert driver for a sample j and N denotes the number
of total samples. Oij is the output of the control module
corresponding to the ith auxiliary network for the jth sample.

The weights αi are themselves learned by a separate
weight network. The auxiliary network that has the greatest

Fig. 3: The figure depicts the general architecture of the
model comprised of the FEM and the auxiliary control
modules.

contribution towards the overall output would also have the
highest relative weight. This is important in case of limited
data, wherein not all layers may be essential to train the
model. In such a case the weights of the shallower auxiliary
networks would be higher in comparison to the deeper
auxiliary networks. Hence, a significant contribution towards
the overall prediction would come from these shallow layers,
thereby making the deeper layers effectively dormant. An
extreme case would be when the labeled data is so small
that even the first layer is enough to give a correct model
prediction. In such a case, only α1 = 1 and all other
αi = 0, for i = 2, 3, 4.

B. Knowledge Transfer

As described in step 2 of Figure 2, knowledge of ground
truth labels from domain D0 is transferred to domain D1

using a teacher-student architecture. The output of the aux-
iliary networks acts as the teacher to provide supervised
information to train the student.

We use the FEM, F0 and control module, C0 (combined,
referred to as teacher) trained on images belonging to domain
D0, for which ground-truth steering labels are available, to
transfer knowledge to a different combination of FEM, F1

and control module, C1 (referred to as student) for domain
D1, for which we have access to only unlabeled images. The
subsequent procedure is detailed in the following steps:

1) Image I0 belonging to domain D0 is passed through
an image-translation-network to generate image I1
belonging to domain D1 in a manner that only the
semantic information is preserved but the weather
condition is modified. [27], [29], [30] describe methods
for training a translation network in an unsupervised
manner using generative adversarial networks (GANs).
We use [27] for our experiments. A positive implica-
tion of using these networks is that they preserve the
semantics of the scene and hence the steering angle



label would also be the same.
2) Hard loss: If I0 happens to have a ground truth

(hard) label then the weights of the student network
are updated with these labels and the loss is referred
to as the hard loss. Soft loss: Otherwise, a forward
pass can also be done by passing I0 through the
teacher. Meanwhile, the corresponding image I1 is
passed through the student network. The output of the
teacher can then used as a soft target for updating the
weights of the student via the soft loss. The overall
loss is the weighted average of the soft and hard losses.
The weights indicate the relative importance given to
the soft targets in relation to the ground truth labels.

Note that the student network can be fed not only images
from domain D1 but rather multiple domains including
domain D0. Hence, the student network would not only be
capable of predicting the steering for multiple domains but
would act as a regularizer for better generalization (See P1
in Section V).

C. Substitution

This refers to step 3 described in Figure 2. At inference
time, the teacher network can be substituted with the student
network to predict the correct steering command on images
from all domains which the student encountered during
training.

IV. EXPERIMENTS

In this section, we evaluate our approach on the CARLA
simulator [24] version 0.8.2. It provides a total of 15 different
weather conditions (labeled from 0 to 14) for two towns,
Town1 and Town2, respectively.

A. Evaluation Metrics

Finding appropriate evaluation metrics is rather challeng-
ing for navigation and driving tasks. There is no unique
way to quantify these tasks. The authors of [25] discuss
different problem statements for embodied navigation and
present based on these discussions evaluation metrics for
some standard scenarios. In [26], a more extensive study on
evaluation metrics for vision-based driving models is carried
out. In particular, they analyzed the difference between
online and offline evaluation metrics for driving tasks. The
preliminary results showed that driving models can have
similar mean squared error (MSE) but drastically different
driving performance. As a result of this, it is not straight
forward to trivially link offline to online performance due to
a low correlation between them. Nevertheless, the authors
of [26] found that among offline metrics not requiring
additional parameters, the mean absolute error between the
driving commands and that predicted ones yields the highest
correlation with online driving performance.

In addition to using this offline metric, we evaluate the
online performance of the models when executing multiple
and diverse turnings around corners, since it is a much
more challenging task in comparison with simply moving
in a straight line. The online performance is tested on the

CARLA simulator across all the 15 weather conditions. For
each weather condition, we evaluate the models for multiple
different turns. In all experiments, the starting positions of
the vehicle is just before the curve. The duration of the turn
is fixed to 120 frames because it covers the entire curvature
of the turn. We report the percentage of time the car remains
within the driving lane as a measure of success.

B. Dataset

For collecting ground truth training data, we navigate
through the city using the autopilot mode. To demonstrate the
superiority of our method, we collect a limited sample size
of 6500 images for weather condition 0 of which only 3200
are labeled with ground truth steering commands. Using
our proposed method we aim to transfer knowledge to the
remaining 14 weather scenarios. Also, note that none of the
6500 images have any semantic labels.

The 3200 sample images with ground truth data are only
available for Town2, whereas all the offline and online eval-
uations are performed on Town1. To focus the attention on
the effectiveness of our approach and preserve compatibility
with prior work [1], [13], [26], the models are trained to
predict the steering angle of the car while keeping the throttle
fixed. The steering angles in CARLA are normalized to
values between -1 and 1. The corresponding degrees for
these normalized values depends on the vehicle being used.
The default vehicle which we use for our experiments has a
maximum steering angle of 70°.

C. Models

The offline and online performance of the models de-
scribed in this section are given in Figure 4 and Table I,
respectively. Figure 4 shows the plot of the mean absolute
error between the actual steering command and that predicted
by all of the models. Table I contains the percentage for
which the ego-vehicle remains within the driving lane while
making turning maneuvers executed by the models across
the 15 weather scenarios.
Oracle: Steering labels for all weathers. Here we have
assumed that we have access to the ground truth steering
commands across all the 15 different weather conditions for
Town1. Since we are also evaluating the models on Town1
across all the weather conditions, we find in both the offline
and online evaluation metrics that this model achieves the
highest accuracy and hence it could serve as an upper bound
for evaluating the other models along with our approach.
Model [9]: Steering and semantic labels for weather 0.
Here we adopt the approach of [9], wherein the semantic
labels of the images are additionally available for the 3200
labeled samples on weather 0. This additional information is
used to first train what we refer to as the feature extraction
module (FEM) in a supervised manner. The FEM module, in
this case, is trained as an encoder-decoder architecture. The
encoder encodes the input image into a lower-dimensional
latent vector, while the decoder reconstructs the semantic
map of the image from the latent vector. The latent vector is
then used to train the control module from the ground truth



steering labels. The FEM and control modules are hence
trained independently and without any auxiliary networks.
This FEM trained on the semantics of weather 0 is used as a
teacher to train the student which is capable of producing the
semantics of all the other 14 weather conditions. The authors
of [9] used the method of [27] and provide 10 separate
networks for translating from weather 0 to weathers 2, 3, 4,
6, 8, 9, 10, 11, 12, and 13, respectively. The translated images
for each of the 10 weather conditions along with weather 0
are fed in equal proportion to train the student. We would
particularly like to evaluate our method which does not have
access to any semantic labels against this model. In addition
to this, we also evaluate the performance of this method on
the model provided by the paper, which was trained with
more than 30000 samples from both Town1 and Town2. The
performance of this model on Town1 is far superior since
it was trained on much greater data and also had access to
ground truth data from Town1.
Teacher: Steering angles for weather 0. This model is
trained using only the available labeled data for weather 0 in
an end-to-end manner. This model has a poor performance
for the unseen weather conditions, particularly for conditions
3-14, which are considerably different in visual appearance
compared to weather 0. Nevertheless, despite the poor per-
formance this model can be used as a teacher to train the
student for predicting the correct steering angles for weather
conditions 1-14 for which no ground truth data exists. This
approach is described in the next model. Also, note that the
unlabeled data remains unutilized here.
Ours: Steering angles for weather 0. This model is
trained using the method described in Section III, wherein
knowledge is transferred from the teacher network trained on
images and ground truth steering commands from weather 0
to the student network which is capable of handling images
from all weathers 0-14. For a fair comparison against the
model trained with semantic labels (Model [9], described
earlier) we use the same data and generative models to
translate even the unlabeled images to weathers 2, 3, 4, 6, 8,
9, 10, 11, 12, and 13, respectively. These generated images
can then be fed to the student model for predicting the correct
steering angles for all the 15 weather conditions.

V. DISCUSSION

In this section, we discuss some critical insights on the
experimental observations we obtained while evaluating the
models. Here are some points we found worthwhile to
provide some commentary based on the results provided in
Figure 4 and Table I.
P1 - Better regularization: It is interesting to observe
that the teacher model, trained only on the available 3200
labeled samples from Town2 on weather 0 has a worse
offline performance for Town1 on weather 0 in comparison
to our method. This seems to imply that our approach
which has been trained on multiple kinds of weather has
better generalization capabilities and can even outperform
its teacher when evaluated in a different town. Hence, an
additional positive consequence of training the student with

Fig. 4: This plot shows the mean absolute error between the
actual steering angle and that predicted by the 5 different
models (see subsection IV-C) on data collected across the
15 different weather conditions on Town1. Lower is better.

generated images from multiple diverse domains is that it
acts as a regularizer tending to prevent overfitting to one
specific domain.
P2 - Semantic inconsistency: Note that Model [9] which in
addition to having the same data and labels as our approach
has also access to ground truth semantic labels. Yet, its
performance is significantly poor. Upon investigation, we
found that due to the limited number of semantic labels,
the FEM trained as an encoder-decoder architecture seemed
to be overfitting to the available data. Hence, when tested
on unseen environments, the semantic segmentation output
of the module breaks. The latent vector representing these
broken semantics is then fed to the control module, which
is incapable of predicting the correct steering command.
Figure 5 shows some sample images with the correspond-
ing semantic segmentation outputs which are considerably
different from the true semantics of the scene.
P3 - Modular training constraints: Furthermore, the mod-
ular approach of Model [9] wherein the FEM and control
module are trained independently as opposed to an end-to-
end model served to be a bottleneck in being able to learn
the features universally. Also, an assumption to train the
control module well is that the FEM would work perfectly
well, which is not the case. Hence, the overall error of the
modular pipeline would be an accumulation of the errors of
the independent FEMs and control modules. We found that
if we also shift the training of our approach to a modular
one then performance deteriorates. This can be done in our
approach by updating only the weights of the FEM of the
student from the output features of the FEM of the teacher.
P4 - Auxiliary weights: To prevent overfitting of the models,
trained on limited data we used a weighted sum of the
outputs of the auxiliary layers. The weights themselves were
learned as part of the training. Once training of our student
model was complete, we found that more than 97% of the
weight was held by the first auxiliary network. This seemed
to imply that only the first unit of the FEM is enough for



Weather Conditions
Method Trained on 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 overall
Oracle Town1 99.79 99.90 100 97.40 98.96 99.27 98.13 98.85 98.27 99.90 99.27 96.35 93.85 93.96 96.35 98.02
Model [9] Town1&2 99.06 93.44 98.85 98.75 97.92 98.23 97.60 96.56 91.15 96.04 97.29 95.00 94.69 82.08 95.41 95.47
Model [9] Town2 68.33 67.71 50.00 71.77 67.40 64.38 63.85 63.65 61.88 71.35 51.35 67.50 58.33 61.67 66.98 63.74
Teacher Town2 92.19 92.40 82.12 44.38 51.77 73.65 32.50 61.56 49.48 80.10 60.63 48.54 35.20 34.27 50.52 59.29
Ours Town2 93.96 95.21 81.25 99.90 100 94.17 90.42 79.69 77.19 86.77 84.58 65.63 68.54 58.44 80.73 83.77
Ours (Auxiliary network 1) Town2 93.96 93.44 80.73 92.40 100 99.69 90.42 80.10 77.19 87.50 91.98 67.40 66.25 57.29 81.15 83.97

TABLE I: This table shows the percentage for which the ego-vehicle remains within the driving lane while executing a turn
for the models across the 15 different weather scenarios on Town1. Higher is better.

Fig. 5: This plot shows three sample images (column 1)
with the corresponding semantic segmentation output by the
model (column 2) for 3 different weathers. The segmentation
produced by the model does not reflect the actual semantic
characteristics of the scene (column 3).

predicting the steering command. Hence the remaining unit
layers are not providing any additional information for the
model. So we evaluated our model based on the output
of the first auxiliary network rather than on the weighted
sum of the 4 auxiliary networks. The online evaluation of
this approach is given in Table I against the row labeled
Ours (Auxiliary network 1). It is interesting to note that this
approach is comparable in its performance with the original
one. Therefore, at test time we can prune the network to a
smaller size by making predictions only based on the first
auxiliary network and removing the remaining 3 auxiliary
networks. This would result in less computation and faster
inference.
P5 - Online vs. offline evaluation: Figure 6 shows an offline
evaluation of the two variations of our method described in
the previous point across the 15 weather conditions. Note
that apart from weather 0, 1, and 2, the two curves are
indistinguishable from one another. However, the online eval-
uation results do not correspond with this observation. For
weathers 3, 5, 7, and 9-14 the online performance is different
despite having the same offline metric. This confirms the
intuition presented in [25] and the problems associated with
evaluating embodied agents in offline scenarios. The topic
of finding a correlation between offline evaluation metrics
and online performance has therefore recently started to
receive positive traction. It is therefore important to come

Fig. 6: This plot shows the mean absolute error between the
ground truth steering label and that predicted by the two
models. The blue curve is the weighted sum of all the 4
auxiliary networks of our model. The orange line depicts
the output of only the first auxiliary network of our model.

up with a universal metric for evaluating various algorithms
across the same benchmark. Due to the non-existence of such
benchmarks, we created our own for the evaluation of the
different approaches.
P6 - Activation maps: To understand the behavior of
the model, which also works with only the first auxiliary
network, we took the sum of the activation maps of the first
unit of the FEM of the student and displayed it as a heatmap
as shown in Figure 7 for a sample of 2 images. We see that
the activation maps are most prominent in regions where
there are lane markings, sidewalks, cars, or barriers. Knowing
these cues seems to be enough for the network to take an
appropriate driving decision in most of the cases. Therefore,
the higher-level features determined by the preliminary layers
of the model are already enough to detect these objects of
interest.

VI. CONCLUSION

In this work, we showed how a teacher-student learning-
based approach can leverage limited labeled data for trans-
ferring knowledge between multiple different domains. Our
approach, specifically designed to work for sensorimotor
control tasks, learns to accurately predict the steering angle
under a wide range of conditions. Experimental results
showed the effectiveness of the proposed method, even
without having access to semantic labels as an intermediate
representation between weather conditions. This framework



Fig. 7: This figure shows the sum of the activation maps
displayed as a heatmap of the first unit of the FEM of the
student model for a sample taken from 2 different weather
conditions. The activation maps are more prominent in
regions where there are lane markings, sidewalks boundaries,
other vehicles, or barriers.

may be extendable to other application areas for which a
certain domain has ground truth data and shares a common
characteristic with other domains for which no labels are
available.
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“End-to-end Driving via Conditional Imitation Learning,” in Interna-
tional Conference on Robotics and Automation (ICRA), 2018.

[21] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “DeepDriving: Learning
Affordance for Direct Perception in Autonomous Driving,” in IEEE
International Conference on Computer Vision (ICCV), 2015.

[22] M. Müller, V. Casser, J. Lahoud, N. Smith, and B. Ghanem, “Sim4CV:
A Photo-Realistic Simulator for Computer Vision Applications,” In-
ternational Journal of Computer Vision (IJCV), 2018.

[23] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity
Visual and Physical Simulation for Autonomous Vehicles,” in Field
and Service Robotics (FSR), 2017.

[24] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An Open Urban Driving Simulator,” in Conference on Robot
Learning (CoRL), 2017.

[25] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta,
V. Koltun, J. Kosecka, J. Malik, R. Mottaghi, M. Savva, and A. R. Za-
mir, “On Evaluation of Embodied Navigation Agents,” arXiv preprint
arXiv:1807.06757, 2018.

[26] F. Codevilla, A. M. Lopez, V. Koltun, and A. Dosovitskiy, “On Offline
Evaluation of Vision-based Driving Models,” in European Conference
on Computer Vision (ECCV), 2018.

[27] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-
Image Translation using Cycle-Consistent Adversarial Networks,” in
International Conference on Computer Vision (ICCV), 2017.

[28] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised Image-to-Image
Translation Networks,” in Neural Information Processing Systems
(NIPS), 2017.

[29] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal Un-
supervised Image-to-Image Translation,” in European Conference on
Computer Vision (ECCV), 2018.

[30] M. Li, H. Huang, L. Ma, W. Liu, T. Zhang, and Y.-G. Jiang, “Unsu-
pervised Image-to-Image Translation with Stacked Cycle-Consistent
Adversarial Networks,” in European Conference on Computer Vision
(ECCV), 2018.

[31] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a
Neural Network,” arXiv preprint arXiv:1503.02531, 2015.

[32] C. Yang, L. Xie, S. Qiao, and A. Yuille, “Training Deep Neural
Networks in Generations: A More Tolerant Teacher Educates Better
Students,” arXiv preprint arXiv:1805.05551, 2018.

[33] J. Shen, N. Vesdapunt, V. N. Boddeti, and K. M. Kitani, “In Teacher
We Trust : Learning Compressed Models for Pedestrian Detection,”
arXiv preprint arXiv:1612.00478, 2016.

[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with con-
volutions,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.



A.3 gn-net : the gauss-newton loss for multi-weather relocalization 143

a.3 gn-net : the gauss-newton loss for multi-weather

relocalization

Copyright

© 2020 IEEE. Reprinted, with permission, from

Lukas von Stumberg, Patrick Wenzel, Qadeer Khan, and Daniel

Cremers

GN-Net: The Gauss-Newton Loss for Multi-Weather Relocaliza-
tion

IEEE Robotics and Automation Letters (RA-L), 2020

DOI: 10.1109/LRA.2020.2965031

Abstract

Direct SLAM methods have shown exceptional performance on
odometry tasks. However, they are susceptible to dynamic lighting
and weather changes while also suffering from a bad initializa-
tion on large baselines. To overcome this, we propose GN-Net: a
network optimized with the novel Gauss-Newton loss for training
weather invariant deep features, tailored for direct image alignment.
Our network can be trained with pixel correspondences between
images taken from different sequences. Experiments on both sim-
ulated and real-world datasets demonstrate that our approach is
more robust against bad initialization, variations in day-time, and
weather changes thereby outperforming state-of-the-art direct and
indirect methods. Furthermore, we release an evaluation benchmark
for relocalization tracking against different types of weather. Our
benchmark is available at this https://vision.in.tum.de/gn-net.

Individual Contributions

Problem definition contributed

Literature survey significantly contributed

Algorithm development significantly contributed

Method implementation significantly contributed

Experimental evaluation significantly contributed

Preparation of the manuscript significantly contributed

Notice

In accordance with the IEEE Thesis / Dissertation Reuse Permissions,
we include the accepted version of the original publication [3] in
the following.

https://vision.in.tum.de/gn-net


IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019 1

GN-Net: The Gauss-Newton Loss for
Multi-Weather Relocalization

Lukas von Stumberg1,2∗, Patrick Wenzel1,2∗, Qadeer Khan1,2, and Daniel Cremers1,2

Abstract—Direct SLAM methods have shown exceptional per-
formance on odometry tasks. However, they are susceptible to
dynamic lighting and weather changes while also suffering from
a bad initialization on large baselines. To overcome this, we
propose GN-Net: a network optimized with the novel Gauss-
Newton loss for training weather invariant deep features, tailored
for direct image alignment. Our network can be trained with pixel
correspondences between images taken from different sequences.
Experiments on both simulated and real-world datasets demon-
strate that our approach is more robust against bad initialization,
variations in day-time, and weather changes thereby outperform-
ing state-of-the-art direct and indirect methods. Furthermore,
we release an evaluation benchmark for relocalization tracking
against different types of weather. Our benchmark is available
at https://vision.in.tum.de/gn-net.

Index Terms—Localization, Visual Learning, SLAM

I. INTRODUCTION

IN recent years, very powerful visual SLAM algorithms
have been proposed [1], [2]. In particular, direct visual

SLAM methods have shown great performance, outperforming
indirect methods on most benchmarks [3], [4], [5]. They
directly leverage the brightness data of the sensor to estimate
localization and 3D maps rather than extracting a heuristically
selected sparse subset of feature points. As a result, they
exhibit a boost in precision and robustness. Nevertheless,
compared to indirect methods, direct methods suffer from two
major drawbacks:

1) Direct methods need a good initialization, making them
less robust for large baseline tracking or cameras with
a low frame rate.

2) Direct methods cannot handle changing lighting/weather
conditions. In such situations, their advantage of being
able to pick up very subtle brightness variations becomes
a disadvantage to the more lighting invariant features.

In the last years, researchers have tackled the multiple-
daytime tracking challenge with deep learning approaches
that are designed to convert nighttime images to daytime
images e.g. using GANs [6], [7], [8]. While this improves
the robustness to changing lighting, one may ask why images
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Fig. 1: We relocalize a snowy sequence from the Oxford
RobotCar dataset in a pre-built map created using a sunny
weather condition. The points from the prior map (gray) align
well with the new points from the current run (blue), indicating
that the relocalization is indeed accurate.

should be the best input representation. Could there be better
alternate representations?

This paper addresses the problem of adapting direct SLAM
methods to challenging lighting and weather conditions. In
this work, we show how to convert images into a multi-
dimensional feature map which is invariant to lighting/weather
changes and has by construction a larger basin of conver-
gence. Thereby we overcome the aforementioned problems
simultaneously. The deep features are trained with a novel
Gauss-Newton loss formulation in a self-supervised manner.
We employ a Siamese network trained with labels obtained
either from simulation data or any state-of-the-art SLAM
algorithm. This eliminates the additional cost of human label-
ing that is typically necessary for training a neural network.
We exploit the probabilistic interpretation of the commonly
used Gauss-Newton algorithm for direct image alignment. For
this, we propose the Gauss-Newton loss which is designed
to maximize the probability of identifying the correct pixel
correspondence. The proposed loss function thereby enforces a
feature representation that is designed to admit a large basin of
convergence for the subsequent Gauss-Newton optimization.
The superiority of our method stems from its ability to
generate these multi-channel, weather-invariant deep features
that facilitate relocalization across different weathers. Figure 1
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shows how our method can successfully relocalize a snowy
sequence in a pre-built map created using a sunny sequence.

In common benchmarks [9], localizing accurately in a pre-
built map has been tackled by finding nearby images (e.g. by
using NetVLAD [10]) and tracking the relative pose (6DOF)
between them. However, we propose to split this into two
separate tasks. In this work, we focus on the second challenge
which we refer to as relocalization tracking. This way, we
can evaluate its performance in isolation. This is formalized
to what we refer to as relocalization tracking. Since there
is no publicly available dataset to evaluate relocalization
tracking performance across multiple types of weathers, we
are releasing an evaluation benchmark having the following 3
attributes:
• It contains sequences from multiple different kinds of

weathers.
• Pixel-wise correspondences between sequences are pro-

vided for both simulated and real-world datasets.
• It decouples relocalization tracking from the image re-

trieval task.
The challenge here in comparison with normal pose es-

timation datasets [11], [12] is that the images involved are
usually captured at different daytimes/seasons and there is
no good initialization of the pose. We summarize the main
contributions of our paper as:
• We derive the Gauss-Newton loss formulation based on

the properties of direct image alignment and demonstrate
that it improves the robustness to large baselines and
illumination/weather changes.

• Our experimental evaluation shows, that GN-Net out-
performs both state-of-the-art direct and indirect SLAM
methods on the task of relocalization tracking.

• We release a new evaluation benchmark for the task
of relocalization tracking with ground-truth poses. It is
collected under dynamic conditions such as illumination
changes, and different weathers. Sequences are taken
from the the CARLA [13] simulator as well as from the
Oxford RobotCar dataset [14].

II. RELATED WORK

We review the following main areas of related work: visual
SLAM, visual descriptor learning, deep direct image align-
ment, and image-based relocalization in SLAM.
Direct versus indirect SLAM methods: Most existing SLAM
systems that have used feature descriptors are based on tra-
ditional manual feature engineering, such as ORB-SLAM [2],
MonoSLAM [15], and PTAM [1].

An alternative to feature-based methods is to skip the pre-
processing step of the raw sensor measurements and rather use
the pixel intensities directly. Popular direct visual methods are
DTAM [16], LSD-SLAM [3], DSO [5], and PhotoBundle [4].
However, the main limitation of direct methods is the bright-
ness constancy assumption which is rarely fulfilled in any real-
world robotic application [17]. The authors of [18] propose
to use binary feature descriptors for direct tracking called
Bit-planes. While improving the robustness to bad lighting
situations it was also found that Bit-planes have a smaller

convergence basin than intensities. This makes their method
less robust to bad initialization. In contrast, the features we
propose both improve robustness to lighting and the conver-
gence basin.
Visual descriptor learning: Feature descriptors play an
important role in a variety of computer vision tasks. For
example, [19] proposed a novel correspondence contrastive
loss which allows for faster training and demonstrates their
effectiveness for both geometric and semantic matching across
intra-class shape or appearance variations. In [20], a deep
neural network is trained using a contrastive loss to produce
viewpoint- and lighting-invariant descriptors for single-frame
localization. The authors of [21] proposed a CNN-based model
that learns local patterns for image matching without a global
geometric model. [22] uses convolutional neural networks
to compute descriptors which allow for efficient detection
of poorly textured objects and estimation of their 3D pose.
In [23], the authors propose to train features for optical flow
estimation using a Hinge loss based on correspondences. In
contrast to our work, their loss function does not have a
probabilistic derivation and they do not apply their features
to pose estimation. [24] uses deep learning to improve SLAM
performance in challenging situations. They synthetically cre-
ate images and choose the one with most gradient information
as the ground-truth for training. In contrast to them, we do not
limit our network to output images similar to the real world.
In [25], the authors compare dense descriptors from a standard
CNN, SIFT, and normal image intensities for dense Lucas-
Kanade tracking. There, it can be seen that grayscale values
have a better convergence basin than the other features, which
is something we overcome with our approach.
Deep direct image alignment: BA-NET [26] introduces a
network architecture to solve the structure from motion (SfM)
problem via feature-metric bundle adjustment. Unlike the BA-
NET, instead of predicting the depth and the camera motion
simultaneously, we propose to only train on correspondences
obtained from a direct SLAM system. The advantage is that
correspondences are oftentimes easier to obtain than accurate
ground-truth poses. Furthermore, we combine our method
with a state-of-the-art direct SLAM system and utilize its
depth estimation, whereas BA-NET purely relies on deep
learning. RegNet [27] is another line of work which tries
to replace the handcrafted numerical Jacobian by a learned
Jacobian with the help of a depth prediction neural network.
However, predicting a dense depth map is often inaccurate
and computationally demanding. The authors of [28] propose
to use a learning-based inverse compositional algorithm for
dense image alignment. The drawback of this approach is
that the algorithm is very sensitive to the data distribution
and constrained towards selecting the right hyperparameters.
In [29] they use high-dimensional features in a direct image
alignment framework for monocular VO. In contrast to us,
they only use already existing features and do not apply them
for relocalization.
Relocalization: An important task of relocalization is to
approximate the pose of an image by simply querying the
most similar image from a database [30], [31]. However, this
has only limited accuracy unless the 6DOF pose between the
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queried and the current image is estimated in a second step.
Typically, this works by matching 2D-3D correspondences
between an image and a point cloud and estimating the pose
using indirect image alignment [32]. In contrast, we propose
to use direct image alignment paired with deep features.
Relocalization benchmarks: The authors of [9] have done
sequence alignment on the Oxford RobotCar dataset, however,
they have not made the matching correspondences public.
The Photo Tourism [33] is another dataset providing images
and ground-truth correspondences of popular monuments from
different camera angles and across different weather/lighting
conditions. However, since the images are not recorded as a
sequence, relocalization tracking is not possible. Furthermore,
their benchmark only supports the submission of features
rather than poses, thereby restricting evaluation to only indirect
methods.

III. DEEP DIRECT SLAM
In this work, we argue that a network trained to output fea-

tures which produce better inputs for direct SLAM as opposed
to normal images should have the following properties:
• Pixels corresponding to the same 3D point should have

similar features.
• Pixels corresponding to different 3D points should have

dissimilar features.
• When starting in a vicinity around the correct pixel, the

Gauss-Newton algorithm should move towards the correct
solution.

For optimizing the last property, we propose the novel
Gauss-Newton loss which makes use of the probabilistic
background of the Gauss-Newton algorithm for direct image
alignment. The final loss is a weighted sum of the pixel-wise
contrastive loss and the Gauss-Newton loss.

Fig. 2: This figure shows training correspondences between a
pair of images from our benchmark.

Architecture: We are interested in learning a non-linear
mapping, which maps images, RW×H×C to a dense visual
descriptor space, RW×H×D, where each pixel is represented
by a D-dimensional vector. The training is performed by a
Siamese encoder-decoder structured network, where we feed
a pair of images, Ia and Ib, producing multi-scale feature
pyramids Fl

a and Fl
b, where l represents the level of the

decoder. For each image pair, we use a certain number of
matches, denoted by Npos, and a certain number of non-
matches, denoted by Nneg. A pixel ua ∈ R2 from image Ia
is considered to be a positive example if the pixel ub ∈ R2

from image Ib corresponds to the same 3D vertex (Figure 2).
We make use of the inherent multi-scale hierarchy of the U-
Net [34] architecture to apply the different loss terms from

coarser to finer scaled pyramid levels. With this approach,
our learned features will have a larger convergence radius for
visual SLAM methods.
Pixelwise contrastive loss: The pixelwise contrastive loss
attempts to minimize the distance between positive pairs,
and maximize the distance between negative pairs. It can be
computed as follows: Lcontrastive(Fa,Fb, l) = Lpos(Fa,Fb, l)+
Lneg(Fa,Fb, l).

Lpos(Fa,Fb, l) =
1

Npos

∑

Npos

D2
feat (1)

Lneg(Fa,Fb, l) =
1

Nneg

∑

Nneg

max(0,M −Dfeat)
2 (2)

where Dfeat(·) is the L2 distance between the feature em-
beddings: Dfeat = ||Fl

a(ua)−Fl
b(ub)||2 and M is the margin

and set to 1.
Gauss-Newton algorithm for direct image alignment: Our
learned deep features are ultimately applied to pose estimation.
This is done using direct image alignment but generalized to
a multi-channel feature map F with D channels. The input to
this algorithm is a reference feature map F with known depths
for some pixels in the image, and a target feature map F′. The
output is the predicted relative pose ξ. Starting from an initial
guess the following steps are performed iteratively:

1) All points pi with known depth values are projected
from the reference feature map F into the target feature
map F′ yielding the point p′i. For each of them a
residual vector r ∈ RD is computed, enforcing that the
reference pixel and the target pixel should be similar:

ri(pi,p
′
i) = F′(p′i)− F(pi) (3)

2) For each residual the derivative with respect to the
relative pose is:

Ji =
dri
dξ

=
dF′(p′i)
dp′i

· dp
′
i

dξ
(4)

Notice that the reference point pi does not change for
different solutions ξ, therefore it does not appear in the
derivative.

3) Using the stacked residual vector r, the stacked Jacobian
J, and a diagonal weight matrix W, the Gaussian system
and the step δ is computed as follows:

H = JTWJ and b = −JTWr and δ = H−1b (5)

Note that this derivation is equivalent to normal direct image
alignment (as done in the frame-to-frame tracking from DSO)
when replacing F with the image I. In the computation of
the Jacobian the numerical derivative of the features dF′(p′

i)
dp′

i

is used. As typical images are extremely non-convex this
derivative is only valid in a small vicinity (usually 1-2 pixels)
around the current solution which is the main reason why
direct image alignment needs a good initialization. To partially
overcome this, a pyramid scheme is often used. Usually
tracking on multiple channels instead of one can decrease the
convergence radius ([18], [25]). However, in our case, we train
the feature maps to in fact have a larger convergence basin than
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images by enforcing smoothness in the vicinity of the correct
correspondence.
Gauss-Newton on individual pixels: Instead of running the
Gauss-Newton algorithm on the 6DOF pose we can instead
use it on each point pi individually (which is similar to
the Lucas-Kanade algorithm [35]). Compared to direct image
alignment, this optimization problem has the same residual,
but the parameter being optimized is the point position instead
of the relative pose. In this case, the Hessian will be a 2-by-2
matrix and the step δ can simply be added to the current pixel
position (we leave out W for simplicity):

J′i =
dF′(p′i)
dp′i

and H′i = J′
T
i Ji and b′i = J′

T
i ri (6)

These individual Gauss-Newton systems can be combined
with the system for 6DOF pose estimation (Equation (5))
using:

H =
∑

i

(
dp′

i

dξ

)T
H′i

(
dp′

i

dξ

)
and b =

∑
i

(
dp′

i

dξ

)T
b′i.

The difference between our simplified systems and the one
for pose estimation is only the derivative with respect to the
pose, which is much smoother than the image derivative [5].

This means that if the Gauss-Newton algorithm performs
well on individual pixels it will also work well on estimating
the full pose. Therefore, we propose to train a neural network
on correspondences which are easy to obtain, e.g. using a
SLAM method, and then later apply it for pose estimation.

We argue that training on these individual points is superior
to training on the 6DOF pose. The estimated pose can be
correct even if some points contribute very wrong estimates.
This increases robustness at runtime but when training we
want to improve the information each point provides. Also,
when training on the 6DOF pose we only have one supervi-
sion signal for each image pair, whereas when training on
correspondences we have over a thousand signals. Hence,
our method exhibits exceptional generalization capabilities as
shown in the results section.
The probabilistic Gauss-Newton loss: The linear system
described in Equation (6) defines a 2-dimensional Gaussian
probability distribution. The reason is that the Gauss-Newton
algorithm tries to find the solution with maximum probability
in a least squares fashion. This can be derived using the
negative log-likelihood of the Gaussian distribution:

E(x) = − log fX(x) = (7)
1

2
(x− µ)TΣ−1(x− µ) + log

(
2π
√
|Σ|
)
= (8)

1

2
(x− µ)TH(x− µ) + log(2π)− 1

2
log(|H|) (9)

where x is a pixel position and µ is the mean.
In the Gauss-Newton algorithm the mean (which also cor-

responds to the point with maximum probability) is computed
with µ = xs + δ, where the δ comes from Equation (5) and
xs denotes the start point. To derive this, only the first term is
used (because the latter parts are constant for all solutions x).
In our case, however, the second term is very relevant, because
the network can influence both µ and H.

This derivation shows, that H,b as computed in the GN-
algorithm, also define a Gaussian probability distribution with
mean xs + H−1b and covariance H−1.

When starting with an initial solution xs the network should
assign maximal probability to the pixel that marks the correct
correspondence. With x being the correct correspondence, we
therefore use E(x) = Equation (9) as our loss function which
we call the Gauss-Newton loss (see Algorithm 1).

Algorithm 1 Compute Gauss-Newton loss

Fa ← network(Ia)
Fb ← network(Ib)
e← 0 . Total error
for all correspondences ua,ub do

ft ← Fa(ua) . Target feature
xs ← ub + rand(vicinity) . Compute start point
fs ← Fb(xs)
r← fs − ft . Residual
J← dFb

dxs
. Numerical derivative

H← JTJ + ε · Id . Added epsilon for invertibility
b← JT r
µ← xs −H−1b
e1 ← 1

2 (ub − µ)TH(ub − µ) . First error term
e2 ← log(2π)− 1

2 log(|H|) . Second error term
e← e+ e1 + e2

end for

In the algorithm, a small number ε is added to the diagonal
of the Hessian, to ensure it is invertible.
Analysis of the Gauss-Newton loss: By minimizing Equa-
tion (9) the network has to maximize the probability density
of the correct solution. As the integral over the probability
densities always has to be 1, the network has the choice to
either focus all the density on a small set of solutions (with
more risk of being penalized if this solution is wrong), or to
distribute the density to more solutions which in turn will have
a lower individual density. By maximizing the probability of
the correct solution, the network is incentivized to improve the
estimated solution and its certainty.

This is also reflected in the two parts of the loss. The first
term e1 = 1

2 (ub−µ)TH(ub−µ) penalizes deviations between
the estimated and the correct solution, scaled with the Hessian
H. The second term e2 = log(2π) − 1

2 log(|H|) is large if
the network does not output enough certainty for its solution.
This means that the network can reduce the first error term
e1 by making H smaller. As a consequence, the second error
term will be increased, as this will also reduce the determinant
of H. Notice also that this can be done in both dimensions
independently. The network has the ability to output a large
uncertainty in one direction, but a small uncertainty in the
other direction. This is one of the traditional advantages of
direct methods which are naturally able to utilize also lines
instead of just feature points.

From Equation (9) it can be observed that the predicted
uncertainty depends only on the numerical derivative of the
target image at the start position. The higher the gradients
the higher the predicted certainty. In DSO this is an unwanted
effect that is counteracted by the gradient-dependent weighting
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Fig. 3: This figure shows images and their corresponding fea-
ture maps predicted by our GN-Net for the Oxford RobotCar
dataset. Each column depicts the image and feature map for
a sample taken from 2 different sequences. Despite lighting
and weather changes, the feature maps are robust to these
variations. The visualization of the features shows the high-
dimensional descriptors reduced to 3D through PCA.

applied to the cost-function [5, Equation (7)]. In our case,
however, it gives the network the possibility to express its
certainty and incentivizes it to output discriminative features.

Upon training the network with our loss formulation, we
observe that the features are very similar despite being
generated from images taken from sequences with different
lighting/weather conditions, as shown in Figure 3.

IV. RELOCALIZATION TRACKING BENCHMARK

Previous tasks for localization/odometry can primarily be
divided into two categories:
• Odometry datasets [11], [12], where there is a continuous

stream of images (sometimes combined with additional
sensor data like IMUs).

• Image collections where individual images are usually
further apart from each other in space/time [36], [9].

We argue that for several applications a combination of
these two tasks which we refer to as relocalization tracking
is a more realistic scenario. The idea is that the algorithm has
two inputs:

1) An image sequence (like a normal odometry dataset).
2) A collection of individual images (possibly with dif-

ferent weathers/times), each of which shall be tracked
against one specific image from point 1.

The algorithm is supposed to track the normal sequential
image sequence and at the same time perform tracking of the
images in point 2. The advantage of this task is that the used
algorithm can utilize the temporally continuous sequence from
point 1 to compute accurate depth values for a part of the
image (using a standard visual odometry method), which can
then be used to improve the tracking of the individual images
of point 2.

This task is very realistic as it comes up when tracking
an image sequence and at the same time trying to relocalize

this sequence in a prior map. A similar challenge occurs by
trying to merge multiple maps from different times. In both
cases, one has more information than just a random collection
of images. It is important to reiterate here that the task of
finding relocalization candidates is not considered but rather
tracking them with maximum accuracy/robustness is the focus.
This is because our benchmark decouples image retrieval from
tracking.

We have created a benchmark for relocalization tracking
using the CARLA simulator and the Oxford RobotCar dataset.
Our benchmark includes ground-truth poses between different
sequences for both training, validation, and testing. We focus
on the use-case of relocalization in the context of autonomous
driving. Therefore, our datasets contain limited point-of-view
changes but strong lighting and weather changes.
CARLA: For synthetic evaluations, we use CARLA version
0.8.2. We collect data for 3 different weather conditions
representing WetNoon, SoftRainNoon, and WetCloudySunset.
We recorded the images at a fixed framerate of 10 frames per
second (FPS). At each time step, we record images and its
corresponding dense depth map from 6 different cameras with
different poses rendered from the simulation engine, which
means that the poses in the benchmark are not limited to
just 2DOF. The images and the dense depth maps are of size
512×512. For each weather condition, we collected 3 different
sequences comprising 500-time steps with an average distance
of 1.6m. This is done for training, validation, and testing,
meaning there are 27 sequences, containing 6 cameras each.
Training, validation, and test sequences were all recorded in
different parts of the CARLA town. We have generated the
test sequences after all hyperparameter tuning of our method
was finished, meaning we had no access to the test data when
developing the method. In accordance, we shall withhold the
ground-truth for the test sequences.
Oxford RobotCar: Creating a multi-weather benchmark for
this dataset imposes various challenges because the GPS-based
ground-truth is very inaccurate. To find the relative poses
between images from different sequences we have used the
following approach. For pairs of images from two different
sequences, we accumulate the point cloud captured by the 2D
lidar for 60 meters using the visual odometry result provided
by the Oxford dataset. The resulting two point clouds are
aligned with the global registration followed by ICP alignment
using the implementation of Open3D [37]. We provide the
first pair of images manually and the following pairs are
found using the previous solution. We have performed this
alignment for the following sequences: 2014-12-02-15-30-08
(overcast) and 2015-03-24-13-47-33 (sunny) for training. For
testing, we use the reference sequence 2015-02-24-12-32-19
(sunny) and align it with the sequences 2015-03-17-11-08-44
(overcast), 2014-12-05-11-09-10 (rainy), and 2015-02-03-08-
45-10 (snow). The average relocalization distance across all
sequences is 0.84m.

V. EXPERIMENTAL EVALUATION

We perform our experiments on the relocalization tracking
benchmark described in Section IV. We demonstrate the multi-
weather relocalization performance on both the CARLA and
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the Oxford RobotCar dataset. For the latter, we show that our
method even generalizes well to unseen weather conditions
like rain or snow while being trained only on the sunny and
overcast conditions. Furthermore, a qualitative relocalization
demo1 on the Oxford RobotCar dataset is provided, where we
demonstrate that our GN-Net can facilitate precise relocaliza-
tion between weather conditions.

We train our method using sparse depths created by running
Stereo DSO on the training sequences. We use intra-sequence
correspondences calculated using the DSO depths and the
DSO pose. Meanwhile, inter-sequence correspondences are
obtained using DSO depths and the ground-truth poses pro-
vided by our benchmark. The ground truth poses are obtained
via Lidar alignment for Oxford and directly from the simula-
tion engine for CARLA as explained in Section IV. Training
is done from scratch with randomly initialized weights and an
ADAM optimizer with a learning rate of 10−6. The image pair
fed to the Siamese network is randomly selected from any of
the training sequences while ensuring that the images in the
pair do not differ by more than 5 keyframes. Each branch of
the Siamese network is a modified U-Net architecture with
shared weights. Further details of the architecture and training
can be found in the supplementary material1. Note that at
inference time, only one image is needed to extract the deep
visual descriptors, used as input to the SLAM algorithm. While
in principle, our approach can be deployed in conjunction with
any direct method, we have coupled our deep features with
Direct Sparse Odometry (DSO).

We compare to state-of-the-art direct methods:
Stereo Direct Sparse Odometry (DSO) [38]: Whenever
there is a relocalization candidate for a frame we ensure
that the system creates the corresponding keyframe. This
candidate is tracked using the coarse tracker, performing direct
image alignment in a pyramid scheme. We use the identity as
initialization without any other random guesses for the pose.
GN-Net (Ours): Same as with DSO, however, for relo-
calization tracking, we replace the grayscale images with
features created by our GN-Net on all levels of the feature
pyramid. The network is trained with the Gauss-Newton loss
formulation described in Section III.

We also compare to state-of-the-art indirect methods:
ORB-SLAM [32]: For relocalization tracking, we use the
standard feature-based 2-frame pose optimization also used for
frame-to-keyframe tracking. We have also tried the RANSAC
scheme implemented in ORB-SLAM for relocalization, how-
ever, it yielded worse results overall. Thus we will report only
the default results.
D2-Net [39], SuperPoint [40]: For both methods we use the
models provided by the authors. The relative pose is estimated
using the OpenCV implementation of the PnP algorithm in a
RANSAC scheme.

We also evaluated the Deeper Inverse Compositional Algo-
rithm [28] on the relocalization tracking benchmark. However,
the original implementation didn’t converge despite multiple
training trials with different hyperparameters.

1https://vision.in.tum.de/gn-net.

For all our quantitative experiments we plot a cumulative
distribution of the relocalization error, which is the norm of
the translation between the estimated and the correct solution
in meters. For each relocalization error between 0 and 1 meter,
it plots the percentage of relocalization candidates that have
been tracked with at least this accuracy.

A. Quantitative multi-weather evaluation

We demonstrate the relocalization tracking accuracy on our
new benchmark across different weathers. For these experi-
ments, tracking is performed only across sequences with a
different weather condition.
CARLA: For this experiment, we train on the training se-
quences provided by our benchmark. For all learning-based
approaches, the best epoch is selected using the relocalization
tracking performance on the validation set. The results on the
test data are shown in the supplementary1.
Oxford RobotCar: We train on the sunny and overcast condi-
tion correspondences provided by our relocalization tracking
benchmark for the Oxford dataset. For the learning-based
methods, we select the best epoch based on the relocalization
tracking performance on the training set. We use the same
hyperparameters that were found using the CARLA validation
set. We show the results on the test data in Figure 4. Our
method significantly outperforms the baselines. The Gauss-
Newton loss has a large impact as compared to the model
trained with only the contrastive loss.

Figures 4b-f show how well our model generalizes to
unseen weather conditions. Despite being trained only on two
sequences with overcast and sunny conditions the results for
tracking against a rainy and a snowy sequence are almost the
same. Interestingly our model which was trained only on the
CARLA benchmark outperforms all baselines significantly.

B. Qualitative multi-weather evaluation

Finally, we show a relocalization demo comparing our GN-
Net to DSO. For this, we load a point cloud from a sequence
recorded in the sunny condition and relocalize against se-
quences from rainy and snowy conditions. For each keyframe,
we try to track it against the nearest keyframe in the map
according to the currently estimated transformation between
the trajectory and the map. Figure 6 shows that the point clouds
from the different sequences align nicely, despite belonging to
different weather conditions. This experiment shows that our
method can perform the desired operations successfully on a
real-world application, including relocalization against unseen
weather conditions. Figure 7 demonstrates the difference be-
tween our Gauss-Newton loss and the contrastive loss. This
shows that the quantitative improvement has a visible effect
on the application of relocalization. Figure 5 shows sample
images used in the qualitative relocalizations.

C. Additional experiments on EuRoC and CARLA

In the supplementary, we provide more evaluations on
datasets with and without brightness variations. This includes
relocalization tracking on the CARLA benchmark and visual
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(a) Relocalization sunny and overcast.
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(b) Relocalization sunny and rainy.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
relocalization translation error (m)

0

10

20

30

40

50

60

70

80

90

100

pe
rc

en
ta

ge
 o

f r
el

oc
al

iza
tio

ns

Ours (D=16)
Ours, trained on CARLA (D=16)
Contrastive loss (D=16)
DSO (D=1)
ORB-SLAM (D=32)
D2-Net (D=512)
SuperPoint (D=256)

(c) Relocalization sunny and snowy.
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(d) Relocalization overcast and rainy.
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(f) Relocalization rainy and snowy.

Fig. 4: This figure shows the cumulative relocalization accuracy on the Oxford RobotCar dataset for different sequences. D
denotes the dimension of the feature descriptor. Our method achieves the highest accuracy across all sequences. It is interesting
to observe that despite being trained only on two sequences in overcast and sunny condition, our model still generalizes very
well to even unseen rainy and snowy conditions. Even the model trained only on the synthetic CARLA benchmark outperforms
all baselines, showing exceptional generalization capabilities.

Fig. 5: shows image pairs used in the qualitative relocaliza-
tions. Left: rainy (top row) and snowy (bottom row) images
relocalized against the sunny reference images (right).

odometry on the EuRoC [11] dataset. We show that also
in these situations our deep features significantly outperform
DSO and ORB-SLAM because of their robustness to large-
baselines. On the EuRoC dataset, we improve the DSO per-
formance by almost a factor of 2 for low-framerates.

VI. CONCLUSION & FUTURE WORK

With the advent of deep learning, we can devise feature
space encodings that are designed to be optimally suited for

the subsequent visual SLAM algorithms. More specifically,
we propose to exploit the probabilistic interpretation of the
commonly used Gauss-Newton algorithm to devise a novel
loss function for feature space encoding that we call the Gauss-
Newton loss. It is designed to promote robustness to strong
lighting and weather changes while enforcing a maximal basin
of convergence for the respective SLAM algorithm. Quantita-
tive experiments on synthetic and real-world data demonstrates
that the Gauss-Newton loss allows us to significantly expand
the realm of applicability of direct visual SLAM methods, en-
abling relocalization and map merging across drastic variations
in weather and illumination.
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[3] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular SLAM,” in ECCV, 2014.

[4] H. Alismail, B. Browning, and S. Lucey, “Photometric Bundle Adjust-
ment for Vision-Based SLAM,” in ACCV, 2017.

[5] J. Engel, V. Koltun, and D. Cremers, “Direct Sparse Odometry,” IEEE
TPAMI, vol. 40, no. 3, 2018.

[6] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised Image-to-Image
Translation Networks,” in NIPS, 2017.

[7] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-Image Trans-
lation with Conditional Adversarial Networks,” in IEEE CVPR, 2017.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019

Fig. 6: This figure shows a point cloud result of our GN-Net. We relocalize a rainy sequence (blue) against a reference map
created from the sunny sequence (gray).

Fig. 7: Top: relocalization using the model trained with only
the contrastive loss. Bottom: relocalization using the model
trained with our loss formulation. This visually demonstrates
the influence of the Gauss-Newton loss.

[8] H. Porav, W. Maddern, and P. Newman, “Adversarial Training for
Adverse Conditions: Robust Metric Localisation using Appearance
Transfer,” in IEEE ICRA, 2018.

[9] T. Sattler, W. Maddern, C. Toft, A. Torii, L. Hammarstrand, E. Stenborg,
D. Safari, M. Okutomi, M. Pollefeys, J. Sivic, F. Kahl, and T. Pajdla,
“Benchmarking 6DOF Outdoor Visual Localization in Changing Con-
ditions,” in IEEE CVPR, 2018.

[10] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “NetVLAD:
CNN Architecture for Weakly Supervised Place Recognition,” in IEEE
CVPR, 2016.

[11] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The EuRoC Micro Aerial Vehicle Datasets,”
IJRR, vol. 35, no. 10, 2016.

[12] J. Engel, V. Usenko, and D. Cremers, “A photometrically calibrated
benchmark for monocular visual odometry,” in arXiv 2016, 2016.

[13] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An Open Urban Driving Simulator,” in CoRL, 2017.

[14] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 Year, 1000km:
The Oxford RobotCar Dataset,” IJRR, vol. 36, no. 1, 2017.

[15] A. Davison, I. Reid, N. Molton, and O. Stasse, “MonoSLAM: Real-Time
Single Camera SLAM,” IEEE TPAMI, no. 6, 2007.

[16] R. Newcombe, S. Lovegrove, and A. Davison, “DTAM: Dense tracking
and mapping in real-time,” in ICCV, 2011.
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Abstract. We present a novel dataset covering seasonal and challenging
perceptual conditions for autonomous driving. Among others, it enables
research on visual odometry, global place recognition, and map-based re-
localization tracking. The data was collected in different scenarios and
under a wide variety of weather conditions and illuminations, including
day and night. This resulted in more than 350 km of recordings in nine
different environments ranging from multi-level parking garage over ur-
ban (including tunnels) to countryside and highway. We provide globally
consistent reference poses with up-to centimeter accuracy obtained from
the fusion of direct stereo visual-inertial odometry with RTK-GNSS. The
full dataset is available at https://www.4seasons-dataset.com.
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1 Introduction

During the last decade, research on visual odometry (VO) and simultaneous
localization and mapping (SLAM) has made tremendous strides [30,12,29,11]
particularly in the context of autonomous driving (AD) [9,44,46,28]. One reason
for this progress has been the publication of large-scale datasets [7,14,6] tai-
lored for benchmarking these methods. Naturally, the next logical step towards
progressing research in the direction of visual SLAM has been to make it ro-
bust under dynamically changing and challenging conditions. This includes VO,
e.g . at night or rain, as well as long-term place recognition and re-localization
against a pre-built map. In this regard, the advent of deep learning has exhibited
itself to be a promising potential in complementing the performance of visual
SLAM [8,22,39,20]. Therefore, it has become all the more important to have
datasets that are commensurate with handling the challenges of any real-world
environment while also being capable of discerning the performance of state-of-
the-art approaches.

To accommodate this demand, we present in this paper a versatile cross-
season and multi-weather dataset on a large-scale focusing on long-term local-
ization for autonomous driving. By traversing the same stretch under different



2 Wenzel et al.

Fig. 1: Dataset overview. Top: overlaid maps recorded at different times and
environmental conditions. The points from the reference map (black) align well
with the points from the query map (blue), indicating that the reference poses
are indeed accurate. Bottom: sample images demonstrating the diversity of our
dataset. The first row shows a collection from the same scene across different
weather and lighting conditions: snowy, overcast, sunny, and night. The second
row depicts the variety of scenarios within the dataset: inner city, suburban,
countryside, and a parking garage.

conditions and over a long-term time horizon, we capture variety in illumination
and weather as well as in the appearance of the scenes. Figure 1 visualizes two
overlaid 3D maps recorded at different times as well as sample images of the
dataset.

In detail this work adds the following contributions to the state-of-the-art:

– A cross-season/multi-weather dataset for long-term visual SLAM in auto-
motive applications containing more than 350 km of recordings.

– Sequences covering nine different kinds of environments ranging from multi-
level parking garage over urban (including tunnels) to countryside and high-
way.

– Global six degrees of freedom (6DoF) reference poses with up-to centimeter
accuracy obtained from the fusion of direct stereo visual-inertial odometry
(VIO) with RTK-GNSS.

– Accurate cross-seasonal pixel-wise correspondences to train dense feature
representations.
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2 Related Work

There exists a variety of benchmarks and datasets focusing on VO and SLAM
for AD. Here, we divide these datasets into the ones which focus only on the
task of VO as well as those covering different weather conditions and therefore
aiming towards long-term SLAM.

2.1 Visual Odometry

The most popular benchmark for AD certainly is KITTI [14]. This multi-sensor
dataset covers a wide range of tasks including not only VO, but also 3D ob-
ject detection, and tracking, scene flow estimation as well as semantic scene
understanding. The dataset contains diverse scenarios ranging from urban over
countryside to highway. Nevertheless, all scenarios are only recorded once and
under similar weather conditions. Ground truth is obtained based on a high-end
inertial navigation system (INS).

Another dataset containing LiDAR, inertial measurement unit (IMU), and
image data at a large-scale is the Málaga Urban dataset [4]. However, in contrast
to KITTI, no accurate 6DoF ground truth is provided and therefore it does not
allow for a quantitative evaluation based on this dataset.

Other popular datasets for the evaluation of VO and VIO algorithms not
related to AD include [40] (handheld RGB-D), [5] (UAV stereo-inertial), [10]
(handheld mono), and [36] (handheld stereo-inertial).

2.2 Long-Term SLAM

More related to our work are datasets containing multiple traversals of the same
environment over a long period of time. With respect to SLAM for AD the
Oxford RobotCar Dataset [27] represents a kind of pioneer work. This dataset
consists of large-scale sequences recorded multiple times for the same environ-
ment over a period of one year. Hence, it covers large variations in the appearance
and structure of the scene. However, the diversity of the scenarios is only limited
to an urban environment. Also, the ground truth provided for the dataset is not
accurate up-to centimeter-level and therefore, requires additional manual effort
to establish accurate cross-sequence correspondences.

The work by [34] represents a kind of extension to [27]. This benchmark is
based on subsequences from [27] as well as other datasets. The ground truth of
the RobotCar Seasons [34] dataset is obtained based on structure from motion
(SfM) and LiDAR point cloud alignment. However, due to inaccurate GNSS
measurements [27], a globally consistent ground truth up-to centimeter-level
can not be guaranteed. Furthermore, this dataset only provides one reference
traversal in the overcast condition. In contrast, we provide globally consistent
reference models for all traversals covering a wide variety of conditions. Hence,
every traversal can be used as a reference model that allows further research,
e.g . on analyzing suitable reference-query pairs for long-term localization and
mapping.
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(a) Test vehicle. (b) Sensor system.

Fig. 2: Recording setup. Test vehicle and sensor system used for dataset
recording. The sensor system consists of a custom stereo-inertial sensor with
a stereo baseline of 30 cm and a high-end RTK-GNSS receiver from Septentrio.

2.3 Other Datasets

Examples of further multi-purpose AD datasets which also can be used for VO
are [7,45,19,6].

As stated in Section 1, our proposed dataset differentiates from previous
related work in terms of being both large-scale (similar to [14]) as well as having
high variations in appearance and conditions (similar to [27]). Furthermore, we
are providing accurate reference poses based on the fusion of direct stereo VIO
and RTK-GNSS.

3 System Overview

This section presents the sensor setup which is used for data recording (Sec-
tion 3.1). Furthermore, we describe the calibration of the entire sensor suite
(Section 3.2) as well as our approach to obtain up-to centimeter-accurate global
6DoF reference poses (Section 3.3).

3.1 Sensor Setup

The hardware setup consists of a custom stereo-inertial sensor for 6DoF pose
estimation as well as a high-end RTK-GNSS receiver for global positioning and
global pose refinement. Figure 2 shows our test vehicle equipped with the sensor
system used for data recording.

Stereo-Inertial Sensor. The core of the sensor system is our custom stereo-
inertial sensor. This sensor consists of a pair of monochrome industrial-grade
global shutter cameras (Basler acA2040-35gm) and lenses with a fixed focal
length of f = 3.5 mm (Stemmer Imaging CVO GMTHR23514MCN). The cam-
eras are mounted on a highly-rigid aluminum rail with a stereo baseline of 30 cm.
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On the same rail, an IMU (Analog Devices ADIS16465) is mounted. All sensors,
cameras, and IMU are triggered over an external clock generated by an field-
programmable gate array (FPGA). Here, the trigger accounts for exposure com-
pensations, meaning that the time between the centers of the exposure interval
for two consecutive images is always kept constant (1/[frame rate]) independent
of the exposure time itself.

Furthermore, based on the FPGA, the IMU is properly synchronized with the
cameras. In the dataset, we record stereo sequences with a frame rate of 30 fps.
We perform pixel binning with a factor of two and crop the image to a resolution
of 800× 400. This results in a field of view of approximately 77◦ horizontally and
43◦ vertically. The IMU is recorded at a frequency of 2000 Hz. During recording,
we run our custom auto-exposure algorithm, which guarantees equal exposure
times for all stereo image pairs as well as a smooth exposure transition in highly
dynamic lighting conditions, as it is required for visual SLAM. We provide those
exposure times for each frame.

GNSS Receiver. For global positioning and to compensate drift in the VIO
system we utilize an RTK-GNSS receiver (mosaic-X5) from Septentrio in combi-
nation with an Antcom Active G8 GNSS antenna. The GNSS receiver provides a
horizontal position accuracy of up-to 6 mm by utilizing RTK corrections. While
the high-end GNSS receiver is used for accurate positioning, we use a second re-
ceiver connected to the time-synchronization FPGA to achieve synchronization
between the GNSS receiver and the stereo-inertial sensor.

3.2 Calibration

Aperture and Focus Adjustment. The lenses used in the stereo-system have
both adjustable aperture and focus. Therefore, before performing the geometric
calibration of all sensors, we manually adjust both cameras for a matching aver-
age brightness and a minimum focus blur [18], across a structured planar target
in 10 m distance.

Stereo Camera and IMU. For the intrinsic and extrinsic calibration of the
stereo cameras as well as the extrinsic calibration and time-synchronization of the
IMU, we use a slightly customized version of Kalibr1 [32]. The stereo cameras are
modeled using the Kannala-Brandt model [23], which is a generic camera model
consisting of in total eight parameters. To guarantee an accurate calibration over
a long-term period, we perform a feature-based epipolar-line consistency check
for each sequence recorded in the dataset and re-calibrate before a recording
session if necessary.

GNSS Antenna. Since the GNSS antenna does not have any orientation but
has an isotropic reception pattern, only the 3D translation vector between one

1 https://github.com/ethz-asl/kalibr
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of the cameras and the antenna within the camera frame has to be known. This
vector was measured manually for our sensor setup.

3.3 Ground Truth Generation

Reference poses (i.e. ground truth) for VO and SLAM should provide high accu-
racy in both local relative 6DoF transformations and global positioning. To fulfill
the first requirement, we extend the state-of-the-art stereo direct sparse VO [44]
by integrating IMU measurements [43], achieving a stereo-inertial SLAM system
offering average tracking drift around 0.6 % of the traveled distance. To fulfill
the second requirement, the poses estimated by our stereo-inertial system are
integrated into a global pose graph, each with an additional constraint from the
corresponding RTK-GNSS measurement. Our adopted RTK-GNSS system can
provide global positioning with up-to centimeter accuracy. The pose graph is op-
timized globally using the Gauss-Newton method, ending up with 6DoF camera
poses with superior accuracy both locally and globally. For the optimization, we
make use of the g2o library [25].

One crucial aspect for the dataset is that the reference poses which we pro-
vide are actually accurate enough, even though some of the recorded sequences
partially contain challenging conditions in GNSS-denied environments. Despite
the fact that the stereo-inertial sensor system has an average drift around 0.6 %,
this cannot be guaranteed for all cases. Hence, for the reference poses in our
dataset, we report whether a pose can be considered to be reliable by measuring
the distance to the corresponding RTK-GNSS measurement. Only RTK-GNSS
measurements with a reported standard deviation of less than 0.01 m are consid-
ered as accurate. For all poses, without corresponding RTK-GNSS measurement
we do not guarantee a certain accuracy. Nevertheless, due to the highly accu-
rate stereo-inertial odometry system, these poses still can be considered to be
accurate in most cases even in GNSS-denied environments, e.g . tunnels or areas
with tall buildings.

4 Scenarios

This section describes the different scenarios we have collected for the dataset.
The scenarios involve different sequences – ranging from urban driving to parking
garage and rural areas. We provide complex trajectories, which include partially
overlapping routes, and multiple loops within a sequence. For each scenario, we
have collected multiple traversals covering a large range of variation in environ-
mental appearance and structure due to weather, illumination, dynamic objects,
and seasonal effects. In total, our dataset consists of nine different scenarios, i.e.
industrial area, highway, local neighborhood, ring road, countryside, suburban,
inner city, monumental site, and multi-level parking garage.

We provide reference poses and 3D models generated by our ground truth
generation pipeline (c.f . Figure 3) along with the corresponding raw image
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Fig. 3: 3D models of different scenarios contained in the dataset. The
figure shows a loop around an industrial area (left), multiple loops around an
area with high buildings (middle), and a stretch recorded in a multi-level parking
garage (right). The green lines encode the GNSS trajectories, and the red lines
encode the VIO trajectories. Top: shows the trajectories before the fusion using
pose graph optimization. Bottom: shows the result after the pose graph opti-
mization. Note that after the pose graph optimization the reference trajectory
is well aligned.

frames and raw IMU measurements. Figure 4 shows another example of the
optimized trajectory, which depicts the accuracy of the provided reference poses.

The dataset will challenge current approaches on long-term localization and
mapping since it contains data from various seasons and weather conditions as
well as from different times of the day as shown in the bottom part of Figure 1.

4.1 Ground Truth Validation

The top part of Figure 1 shows two overlaid point clouds from different runs
across the same scene. Note that despite the weather and seasonal differences
the point clouds align very well. This shows that our reference poses are indeed
very accurate. Furthermore, a qualitative assessment of the point-to-point cor-
respondences is shown in Figure 5. The figure shows a subset of very accurate
pixel-wise correspondences across different seasons (autumn/winter) in the top
and different illumination conditions (sunny/night) in the bottom. These point-
to-point correspondences are a result of our up-to centimeter-accurate global
reference poses and are obtained in a completely self-supervised manner. This
makes them suitable as training pairs for learning-based algorithms. Recently,
there has been an increasing demand for pixel-wise cross-season correspondences
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Fig. 4: Reference poses validation. This figure shows two additional 3D mod-
els of the scenarios collected. Note that these two sequences are quite large (more
than 10 km and 6 km, respectively). Top: before the fusion using pose graph op-
timization. Bottom: results after optimization. The green lines encode the GNSS
trajectories, the red lines show the VIO trajectories (before fusion) and the fused
trajectories (after fusion). The left part of the figure shows a zoomed-in view of
a tunnel, where the GNSS signal becomes very noisy as highlighted in the red
boxes. Besides, due to the large size of the sequence, the accumulated track-
ing error leads to a significant deviation of the VIO trajectory from the GNSS
recordings. Our pose graph optimization, by depending globally on GNSS posi-
tions and locally on VIO relative poses, successfully eliminates global VIO drifts
and local GNSS positioning flaws.

which are needed to learn dense feature descriptors [38,8,33]. However, there is
still a lack of datasets to satisfy this demand. The KITTI [14] dataset does not
provide cross-seasons data. The Oxford RobotCar Dataset [27] provides cross-
seasons data, however, since the ground truth is not accurate enough, the paper
does not recommend benchmarking localization and mapping approaches.

Recently, RobotCar Seasons [34] was proposed to overcome the inaccuracy of
the provided ground truth. However, similar to the authors of [38], we found that
it is still challenging to obtain accurate cross-seasonal pixel-wise matches due to
pose inconsistencies. Furthermore, this dataset only provides images captured
from three synchronized cameras mounted on a car, pointing to the rear-left,
rear, and rear-right, respectively. Moreover, the size of the dataset is quite small
and a significant portion of it suffers from strong motion blur and low image
quality.

To the best of our knowledge, our dataset is the first that exhibits accurate
cross-season reference poses for the AD domain.

5 Tasks

This section describes the different tasks of the dataset. The provided globally
consistent 6DoF reference poses for diverse conditions will be valuable to develop
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Fig. 5: Accurate pixel-wise correspondences, making cross-seasonal
training possible. Qualitative assessment of the accuracy of our data collection
and geometric reconstruction method for a sample of four different conditions
(from top left in clockwise order: overcast, snowy, night, sunny) across the same
scene. Each same colored point in the four images corresponds to the same ge-
ometric point in the world. The cameras corresponding to these images have
different poses in the global frame of reference. Please note that the points are
not matched but rather a result of our accurate reference poses and geometric
reconstruction. This way we are capable of obtaining sub-pixel level accuracy.
On average we get more than 1000 of those correspondences per image pair.

and improve the state-of-the-art for different SLAM related tasks. Here the major
tasks are robust VO, global place recognition, and map-based re-localization
tracking.

In the following, we will present the different subtasks for our dataset.

5.1 Visual Odometry in Different Weather Conditions

VO aims to accurately estimate the 6DoF pose for every frame relative to a
starting position. To benchmark the task of VO there already exist various
datasets [15,40,10]. All of these existing datasets consist of sequences recorded at
rather homogeneous conditions (indoors, or sunny/overcast outdoor conditions).
However, especially methods developed for AD use cases must perform robustly
under almost any condition. We believe that the proposed dataset will contribute
to improving the performance of VO under diverse weather and lighting condi-
tions in an automotive environment. Therefore, instead of replacing existing
benchmarks and datasets, we aim to provide an extension that is more focusing
on challenging conditions in AD. As we provide frame-wise accurate poses for
large portions of the sequences, metrics well known from other benchmarks like
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Fig. 6: Challenging scenes for global place recognition. Top: two pictures
share the same location with different appearances. Bottom: two pictures have
similar appearance but are taken at different locations.

absolute trajectory error (ATE) or relative pose error (RPE) [15,40] are also
applicable to our data.

5.2 Global Place Recognition

Global place recognition refers to the task of retrieving the most similar database
image given a query image [26]. In order to improve the searching efficiency
and the robustness against different weather conditions, tremendous progress
on global descriptors [21,3,1,13] has been seen. For the re-localization pipeline,
visual place recognition serves as the initialization step to the downstream local
pose refinement by providing the most similar database images as well as the cor-
responding global poses. Due to the advent of deep neural networks [37,24,17,41],
methods aggregating deep image features are proposed and have shown advan-
tages over classical methods [2,16,31,42].

The proposed dataset is challenging for global place recognition since it con-
tains not only cross-season images that have different appearances but share a
similar geographical location but also the intra-season images which share sim-
ilar appearances but with different locations. Figure 6 depicts example pairs of
these scenarios. We suggest to follow the standard metric widely used for global
place recognition [2,3,35,16].

5.3 Map-Based Re-Localization Tracking

Map-based re-localization tracking [39] refers to the task of locally refining the
6DoF pose between reference images from a pre-built reference map and images
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from a query sequence. In contrast to wide-baseline stereo matching, for re-
localization tracking, it is also possible to utilize the sequential information of
the sequence. This allows us to estimate depth values by running a standard VO
method. Those depth estimates can then be used to improve the tracking of the
individual re-localization candidates.

In this task we assume to know the mapping between reference and query
samples. This allows us to evaluate the performance of local feature descriptor
methods in isolation. In practice, this mapping can be found using image retrieval
techniques like NetVLAD [2] as described in Section 5.2 or by aligning the point
clouds from the reference and query sequences [34], respectively.

Accurately re-localizing in a pre-built map is a challenging problem, espe-
cially if the visual appearance of the query sequence significantly differs from the
base map. This makes it extremely difficult especially for vision-based systems
since the localization accuracy is often limited by the discriminative power of
feature descriptors. Our proposed dataset allows us to evaluate re-localization
tracking across multiple types of weather conditions and diverse scenes, ranging
from urban to countryside driving. Furthermore, our up to centimeter-accurate
ground truth allows us to create diverse and challenging re-localization track-
ing candidates with an increased level of difficulty. By being able to precisely
changing the re-localization distances and the camera orientation between the
reference and query samples, we can generate more challenging scenarios. This
allows us to determine the limitations and robustness of current state-of-the-art
methods.

6 Conclusion

We have presented a cross-season dataset for the purpose of multi-weather
SLAM, global visual localization, and local map-based re-localization tracking
for AD applications. Compared to other datasets, like KITTI [14] or Oxford
RobotCar [27], the presented dataset provides diversity in both multiplicities of
scenarios and environmental conditions. Furthermore, based on the fusion of di-
rect stereo VIO and RTK-GNSS we are able to provide up-to centimeter-accurate
reference poses as well as highly accurate cross-sequence correspondences. One
drawback of the dataset is that the accuracy of the reference poses can only be
guaranteed in environments with good GNSS receptions. However, due to the
low drift of the stereo VIO system, the obtained reference poses are also very
accurate in GNSS-denied environments, e.g . tunnels, garages, or urban canyons.

We believe that this dataset will help the research community to further
understand the limitations and challenges of long-term visual SLAM in changing
conditions and environments and will contribute to advance the state-of-the-art.
To the best of our knowledge, ours is the first large-scale dataset for AD providing
cross-seasonal accurate pixel-wise correspondences for diverse scenarios. This
will help to vastly increase robustness against environmental changes for deep
learning methods. The dataset is made publicly available to facilitate further
research.
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Figure 1: We propose LM-Reloc – a novel approach for visual relocalization based on direct image alignment. It consists of two deep
neural networks: LM-Net, an encoder-decoder network for learning dense visual descriptors and a CorrPoseNet to bootstrap the direct
image alignment. The final 6DoF relative pose estimate between image I and I ′ is obtained in a coarse-to-fine pyramid scheme leveraging
the learned feature maps. The initialization for the direct image alignment is obtained by the CorrPoseNet.

Abstract
We present LM-Reloc – a novel approach for visual re-

localization based on direct image alignment. In contrast
to prior works that tackle the problem with a feature-based
formulation, the proposed method does not rely on feature
matching and RANSAC. Hence, the method can utilize not
only corners but any region of the image with gradients. In
particular, we propose a loss formulation inspired by the
classical Levenberg-Marquardt algorithm to train LM-Net.
The learned features significantly improve the robustness of
direct image alignment, especially for relocalization across
different conditions. To further improve the robustness of
LM-Net against large image baselines, we propose a pose
estimation network, CorrPoseNet, which regresses the rel-
ative pose to bootstrap the direct image alignment. Eval-
uations on the CARLA and Oxford RobotCar relocaliza-
tion tracking benchmark show that our approach delivers
more accurate results than previous state-of-the-art meth-
ods while being comparable in terms of robustness.

1. Introduction
Map-based relocalization, that is, to localize a cam-

era within a pre-built reference map, is becoming more
∗Equal contribution.

and more important for robotics [6], autonomous driv-
ing [24, 4] and AR/VR [29]. Sequential-based approaches,
which leverage the temporal structure of the scene provide
more stable pose estimations and also deliver the positions
in global coordinates compared to single image-based lo-
calization methods. The map is usually generated by ei-
ther using LiDAR or visual Simultaneous Localization and
Mapping (vSLAM) solutions. In this paper, we consider
vSLAM maps due to the lower-cost visual sensors and the
richer semantic information from the images. Feature-based
methods [14, 7, 22, 23] and direct methods [13, 12, 11, 1]
are two main lines of research for vSLAM.

Once a map is available, the problem of relocalizing
within this map at any later point in time requires to deal
with long-term changes in the environment. This makes a
centimeter-accurate global localization challenging, espe-
cially in the presence of drastic lighting and appearance
changes in the scene. For this task, feature-based meth-
ods are the most commonly used approaches to estimate
the ego-pose and its orientation. This is mainly due to the
advantage that features are more robust against changes in
lighting/illumination in the scene.

However, feature-based methods can only utilize key-
points that have to be matched across the images before the
pose estimation begins. Thus they ignore large parts of the



available information. Direct methods, in contrast, can take
advantage of all image regions with sufficient gradients and
as a result, are known to be more accurate on visual odom-
etry benchmarks [41, 11, 39].

In this paper, we propose LM-Reloc, which applies di-
rect techniques to the task of relocalization. LM-Reloc con-
sists of LM-Net, CorrPoseNet, and a non-linear optimizer,
which work seamlessly together to deliver reliable pose es-
timation without RANSAC and feature matching. In par-
ticular, we derive a loss formulation, which is specifically
designed to work well with the Levenberg-Marquardt (LM)
algorithm [16, 20]. We use a deep neural network, LM-Net,
to train descriptors that are being fed to the direct image
alignment algorithm. Using these features results in better
robustness against bad initializations, large baselines, and
against illumination changes.

While the robustness improvements gained with our loss
formulation are sufficient in many cases, for very large
baselines or strong rotations, some initialization can still
be necessary. To this end, we propose a pose estimation
network. Based on two images it directly regresses the
6DoF pose, which we utilize as initialization for LM-Net.
The CorrPoseNet contains a correlation layer as proposed
in [27], which ensures that the network can handle large
displacements. The proposed CorrPoseNet displays a lot of
synergies with LM-Net. Despite being quite robust, the pre-
dictions of the CorrPoseNet are not very accurate. Thus it is
best used in conjunction with our LM-Net, resulting in very
robust and accurate pose estimates.

We evaluate our approach on the relocalization track-
ing benchmark from [36], which contains scenes simulated
using CARLA [9], as well as sequences from the Oxford
RobotCar dataset [19]. Our LM-Net shows superior accu-
racy especially in terms of rotation while being competitive
in terms of robustness.

We summarize our main contributions:

• LM-Reloc, a novel pipeline for visual relocalization
based on direct image alignment, which consists of
LM-Net, CorrPoseNet, and a non-linear optimizer.

• A novel loss formulation together with a point sam-
pling strategy that is used to train LM-Net such that
the resulting feature descriptors are optimally suited to
work with the LM algorithm.

• Extensive evaluations on the CARLA and Oxford
RobotCar relocalization tracking benchmark which
show that the proposed approach achieves state-of-the-
art relocalization accuracy without relying on feature
matching or RANSAC.

2. Related Work
In this section, we review the main topics that are closely

related to our work, including direct methods for visual lo-

calization and feature-based visual localization methods.

Direct methods for visual localization. In recent years,
direct methods [13, 12, 11] for SLAM and visual odome-
try have seen a great progress. Unlike feature-based meth-
ods [14, 7, 22, 23] which firstly extracts keypoints as well
as the corresponding descriptors, and then minimize the ge-
ometric errors, direct methods minimize the energy func-
tion based on the photometric constancy assumption with-
out performing feature matching or RANSAC. By utilizing
more points from the images, direct methods show higher
accuracy than feature-based methods [39]. However, clas-
sical direct methods show lower robustness than feature-
based methods when the photometric constancy assumption
is violated due to, e.g., the lighting and weather changes
which are typical for long-term localization [33]. In [2]
and [25], the authors propose to use the handcrafted fea-
tures to improve the robustness of direct methods against
low light or global appearance changes. Some recent
works [5, 18, 36] address the issue by using learned fea-
tures from deep neural networks [15]. In [5] they train deep
features using a Hinge-Loss based on the Lucas-Kanade
method, however, in contrast to us, they estimate the op-
tical flow instead of applying the features to the task of re-
localization. The most related work to ours is GN-Net [36]
which proposes a Gauss-Newton loss to learn deep features.
By performing direct image alignment on the learned fea-
tures, GN-Net can deliver reliable pose estimation between
the images taken from different weather or season condi-
tions. The proposed LM-Net further derives the loss for-
mulation based on Levenberg-Marquardt to improve the ro-
bustness against bad initialization compared to the Gauss-
Newton method. Inspired by D3VO [38], LM-Reloc also
proposes a relative pose estimation network with a correla-
tion layer [27] to regress a pose estimate which is used as
the initialization for the optimization.

Feature-based visual localization. Most approaches
for relocalization utilize feature detectors and descriptors,
which can either be handcrafted, such as SIFT [17] or
ORB [28], or especially in the context of drastic lighting
and appearance changes can be learned. Recently, many
descriptor learning methods have been proposed which fol-
low a detect-and-describe paradigm, e.g., SuperPoint [8],
D2-Net [10], or R2D2 [26]. Moreover, SuperGlue [32], a
learning-based alternative to the matching step of feature-
based methods has been proposed and yields significant
performance improvements. For a complete relocalization
pipeline the local pose refinement part has to be preceded
by finding the closest image in a database given a query [3].
While some approaches [31, 30, 35] address the joint prob-
lem, in this work, we decouple these two tasks and only
focus on the pose refinement part.



3. Method
In this work, we address the problem of computing the

6DoF pose ξ ∈ SE(3) between two given images I and
I ′. Furthermore, we assume that depths for a sparse set
of points P are available, e.g., by running a direct visual
SLAM system such as DSO [11].

The overall pipeline of our approach is shown in Fig-
ure 1. It is composed of LM-Net, CorrPoseNet, and a
non-linear optimizer using the LM algorithm. LM-Net is
trained with a novel loss formulation designed to learn fea-
ture descriptors optimally suited for the LM algorithm. The
encoder-decoder architecture takes as input a reference im-
age I as well as a target image I ′. The network is trained
end-to-end and will produce multi-scale feature maps Fl
and F ′l , where l = 1, 2, 3, 4 denotes the different levels
of the feature pyramid. In order to obtain an initial pose
estimate for the non-linear optimization, we propose Corr-
PoseNet, which takes I and I ′ as the inputs and regress their
relative pose. Finally, the multi-scale feature maps together
with the depths obtained from DSO [11] form the non-linear
energy function which is minimized using LM algorithm in
a coarse-to-fine manner to obtain the final relative pose es-
timate. In the following, we will describe the individual
components of our approach in more detail.

3.1. Direct Image Alignment with Levenberg-
Marquardt

In order to optimize the pose ξ (consisting of rotation
matrix R and translation t), we minimize the feature-metric
error:

E(ξ) =
∑

p∈P

∥∥∥∥F ′l (p′)− Fl(p)

∥∥∥∥
γ

, (1)

where || · ||γ is the Huber norm and p′ is the point projected
onto the target image I ′ using the depths and the pose:

p′ = Π
(
RΠ−1(p, dp) + t

)
. (2)

This energy function is first minimized on the coarsest
pyramid level 1, whose feature maps F1 have a size of
(w/8, h/8), yielding a rough pose estimate. The estimate
is refined by further minimizing the energy function on the
subsequent pyramid levels 2, 3, and 4, where F4 has the size
of the original image (w, h). In the following, we provide
details of the minimization performed in every level and for
simplicity we will denote Fl as F from now on.

Minimization is performed using the Levenberg-
Marquardt algorithm. In each iteration we compute the
update δ ∈ R6 in the Lie algebra se(3) as follows: Us-
ing the residual vector r ∈ Rn, the Huber weight matrix
W ∈ Rn×n, and the Jacobian of the residual vector with re-
spect to the pose J ∈ Rn×6, we compute the Gauss-Newton

system:

H = JTWJ and b = −JTWr. (3)

The damped system can be obtained with either Leven-
berg’s formula [16]:

H′ = H + λI (4)

or the Marquardt’s formula [20]:

H′ = H + λ diag(H) (5)

depending on the specific application.
The update δ and the pose ξi in the iteration i are com-

puted as:

δ = H′
−1

b and ξi = δ � ξi−1, (6)

where � : se(3)× SE(3)→ SE(3) is defined as in [11].
The parameter λ can be seen as an interpolation factor

between gradient descent and the Gauss-Newton algorithm.
When λ is high the method behaves like gradient descent
with a small step size, and when it is low it is equivalent
to the Gauss-Newton algorithm. In practice, we start with
a relatively large λ and multiply it by 0.5 after a successful
iteration, and by 4 after a failed iteration [11].

Figure 2 shows the typical behaviour of the algorithm.
In the beginning the initial pose is inaccurate, resulting in
projected point positions, which are a couple of pixels away
from the correct location. λ will be high meaning that the
algorithm will behave similar to gradient descent. After a
couple of iterations, the pose got more accurate, and the
projected points are in a closer vicinity to the correct loca-
tion. By now, λ has probably decreased, so the algorithm
will behave more similar to the Gauss-Newton algorithm.
Now we expect the algorithm to converge quickly.

3.2. Loss Formulation for Levenberg-Marquardt

The key contribution of this work is LM-Net which pro-
vides feature maps F that improve the convergence be-
haviour of the LM algorithm and, in the meantime, are
invariant to different conditions. We train our network in
a Siamese fashion based on ground-truth pixel correspon-
dences.

In this section, p denotes a reference point (located on
image I) and the ground-truth correspondence (located on
image I ′) is p′gt. For the loss functions explained below we
further categorize p′ into p′neg, p′∇, and p′∇2 , which is real-
ized by using different negative correspondence sampling.
Our loss formulation is inspired by the typical behaviour of
the Levenberg-Marquardt algorithm explained in the previ-
ous section (see Figure 2). For a point, we distinguish four
cases which can happen during the optimization:

1. The point is at the correct location (p′gt).



Figure 2: Visualization of the typical behavior of direct im-
age alignment with Levenberg-Marquardt. Initially, the projected
point position (orange point, p′∇) is far away from the correct so-
lution (green point, p′gt), and λ is large, yielding an update step
similar to gradient descent. After some iterations the projected
point position gets closer to the optimum (red point, p′∇2 ) and at
the same time λ will get smaller, leading to an update step similar
to the Gauss-Newton algorithm. This is the intuition behind our
point sampling strategy, where we utilize the ground-truth corre-
spondence p′gt for Equation (7), a negative p′neg sampled across
the whole image for Equation (8), a negative p′∇ sampled in a far
vicinity for Equation (12), and a negative p′∇2 sampled in a close
vicinity for Equation (14).

2. The point is an outlier (p′neg).

3. The point is relatively far from the correct solution
(p′∇).

4. The point is very close to the correct solution (p′∇2 ).

In the following we will derive a loss function for each
of the 4 cases:

1. The point is already at the correct location. In this
case we would like the residual to be as small as possible,
in the best case 0.

Epos = ‖F ′(p′gt)− F (p)‖2 (7)

2. The point is an outlier or the pose estimate is com-
pletely wrong. In this case the projected point position can
be at a completely different location than the correct corre-
spondence. In this scenario we would like the residual of
this pixel to be very large to reflect this, and potentially re-
ject a wrong update. To enforce this property we sample a

negative correspondences p′neg uniformly across the whole
image, and compute

Eneg = max
(
M − ‖F ′(p′neg)− F (p)‖2, 0

)
(8)

where M is the margin how large we would like the energy
of a wrong correspondence to be. In practice, we set it to 1.
3. The predicted pose is relatively far away from the
optimum, meaning that the projected point position will be
a couple of pixels away from the correct location. As this
typically happens during the beginning of the optimization
we assume that λ will be relatively large and the algorithm
behaves similar to gradient descent. In this case we want
that the gradient of this point is oriented in the direction of
the correct solution, so that the point has a positive influence
on the update step.

For computing a loss function to enforce this property
we sample a random negative correspondence p′∇ in a rel-
atively large vicinity around the correct solution (in our ex-
periments we use 5 pixels distance). Starting from this neg-
ative correspondence p′∇ we first compute the 2× 2 Gauss-
Newton system for this individual point, similarly to how it
is done for optical flow estimation using Lucas-Kanade:

rp(p,p′∇) = F′(p′∇)− F(p) (9)

Jp =
dF′(p′∇)

dp′∇
and Hp = JTpJp and bp = JTprp (10)

We compute the damped system using a relatively large
fixed λf , as well as the optical flow step∗

H′p = Hp + λf I and p′after = p′∇ + H′−1
p bp. (11)

In order for this point to have a useful contribution to
the direct image alignment, this update step should move in
the correct direction by at least δ. We enforce this using a
Gradient-Descent loss function which is small only if the
distance to the correct correspondence after the update is
smaller than before the update:

EGD = max
(
‖p′after − p′gt‖2 − ‖p′∇ − p′gt‖2 + δ, 0

)
(12)

In practice, we choose λf = 2.0 and δ = 0.1.
4. The predicted pose is very close to the optimum, yield-
ing a projected point position in very close proximity of the
correct correspondence, and typically λ will be very small,
so the update will mostly be a Gauss-Newton step. In this
case we would like the algorithm to converge as quickly as
possible, with subpixel accuracy. We enforce this using the
Gauss-Newton loss [36]. To compute it we first sample a
random negative correspondence p′∇2 in a 1-pixel vicinity

∗Here we use Equation (4) instead of Equation (5) since we find it more
stable for training LM-Net.



around the correct location. Then we use Equations (9) and
(10), replacing p′∇ with p′∇2 to obtain the Gauss-Newton
system formed by Hp and bp. We compute the updated
pixel location:

p′after = p′∇2 + (Hp + ε I)−1bp (13)

Note that in contrast to the computation of the LM-Loss
(Equation (12)), in this case ε is just added to ensure in-
vertibility and therefore ε is much smaller than the λf used
above. The Gauss-Newton loss is computed with:

EGN =
1

2
(p′after − p′gt)

THp(p′after − p′gt)

+ log(2π)− 1

2
log(|Hp|) (14)

Note how all our 4 loss components use a different way
to sample the involved points, depicted also in Figure 2.
With the derivation above we argue that each loss compo-
nent is important to achieve optimal performance and we
demonstrate this in the results section. Note that the Gauss-
Newton systems computed for the GD-Loss and the GN-
Loss are very relevant for the application of direct image
alignment. In fact the full Gauss-Newton system containing
all points (Equation (3)), can be computed from these in-
dividual Gauss-Newton systems (Equation (10)) by simply
summing them up and multiplying them with the derivative
with respect to the pose [36].

3.3. CorrPoseNet

In order to deal with the large baselines between the im-
ages, we propose CorrPoseNet to regress the relative pose
between two images I and I ′, which serves as the initializa-
tion of LM optimization. As our network shall work even in
cases of large baselines and strong rotations, we utilize the
correlation layer proposed in [27] which is known to boost
the performance of affine image transformation and opti-
cal flow [21] estimation for large displacements, but has not
been applied to pose estimation before.

Our network first computes deep features fcorr, f ′corr ∈
Rh×w×c from both images individually using multiple
strided convolutions with ReLU activations in between.
Then the correlation layer correlates each pixel from the
normalized source features with each pixel from the nor-
malized target features yielding the correlation map c ∈
Rh×w×(h×w):

c(i, j, (i′, j′)) = fcorr(i, j)
T f ′corr(i

′, j′) (15)

The correlation map is then normalized in the channel di-
mension and fed into 2 convolutional layers each followed
by batch norm and ReLU. Finally we regress the Euler angle
reuler and translation t using a fully connected layer. More

details on the architecture are shown in the supplementary
material.

We train CorrPoseNet from scratch with image pairs and
groundtruth poses reuler

gt , tgt. We utilize an L2-loss working
directly on Euler angles and translation:

E = ‖t− tgt‖2 + λ‖reuler − reuler
gt ‖2, (16)

where λ is the weight, which we set to 10 in practice.
As the distribution of groundtruth poses in the Oxford

training data is limited we apply the following data aug-
mentation. We first generate dense depths for all training
images using a state-of-the-art dense stereo matching algo-
rithm [40]. The resulting depths are then used to warp the
images to a different pose sampled from a uniform distribu-
tion. In detail, we first warp the depth image to the random
target pose, then inpaint the depth image using the OpenCV
implementation of Navier Stokes, and finally warp our im-
age to the target pose using this depth map. Note that the
dense depths are only necessary for training, not for evalua-
tion. We show an ablation study on the usage of correlation
layers and the proposed data augmentation in the supple-
mentary material.

4. Experiments
We evaluate our method on the relocalization tracking

benchmark proposed in [36], which contains images cre-
ated with the CARLA simulator [9], and scenes from the
Oxford RobotCar dataset [19]. We train our method on
the respective datasets from scratch. LM-Net is trained
using the Adam optimizer with a learning rate of 10−6

and for CorrPoseNet we use a learning rate of 10−4. For
both networks we choose hyperparameters and epoch based
on the results on the validation data. Our networks use
the same hyperparameters for all experiments except where
stated otherwise; the direct image alignment code is slightly
adapted for Oxford RobotCar, mainly to improve perfor-
mance when the ego-vehicle is standing still.

As the original relocalization tracking benchmark [36]
does not include validation data on Oxford RobotCar we
have manually aligned two new sequences, namely 2015-
04-17-09-06-25 and 2015-05-19-14-06-38, and extend the
benchmark with these sequences as validation data.
Evaluation metrics: We evaluate the predicted translation
test and rotation Rest against the ground-truth tgt and Rgt
according to Equations (17) and (18).

t∆ = ‖test − tgt‖2 (17)

R∆ = arccos
(

trace(R−1
est Rgt)− 1

2

)
(18)

In this section, we plot the cumulative translation and ro-
tation error until 0.5m and 0.5◦, respectively. For quantita-
tive results we compute the area under curve (AUC) of these
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Figure 3: Results on the CARLA relocalization tracking benchmark test data [36]. For each error threshold we show the percentage
of relocalizations (cumulative error plot) for LM-Reloc (ours) and other state-of-the-art methods. Compared to the indirect methods our
approach exhibits significantly better accuracy in both translation and rotation, while having a similar robustness. Compared to GN-Net, the
novel loss formulation (see red dashed line), and the CorrPoseNet (see red line) both boost the robustness. D is the feature dimensionality.

cumulative curves in percent, which we denote as tAUC for
translation and RAUC for rotation from now on.

We evaluate the following direct methods:
Ours: The full LM-Reloc approach consisting of CorrPose-
Net, LM-Net features and direct image alignment based on
Levenberg-Marquardt. The depths used for the image align-
ment are estimated with the stereo version [37] of DSO [11].
Ours (w/o CorrPoseNet): For a more fair comparison to
GN-Net we use identity as initialization for the direct image
alignment instead of CorrPoseNet. This enables a direct
comparison between the two loss formulations.
GN-Net [36]: In this work, we have also improved the pa-
rameters of the direct image alignment pipeline based on
DSO [11]. Thus we have re-evaluated GN-Net with this
improved pipeline to make the comparison as fair as pos-
sible. These re-evaluated results are better than the results
computed in the original GN-Net paper.
Baseline methods: Additionally, we evaluate against
current state-of-the-art indirect methods, namely Super-
Glue [32], R2D2 [26], SuperPoint [8], and D2-Net [10].
For these methods, we estimate the relative pose using the
models provided by the authors and the OpenCV implemen-
tation of solvePnPRansac. We have tuned the parameters
of RANSAC on the validation data and used 1000 itera-
tions and a reprojection error threshold of 3 for all methods.
For estimating depth values at keypoint locations we use
OpenCV stereo matching. It would be possible to achieve
a higher accuracy by using SfM and MVS solutions such
as COLMAP [34]. However, one important disadvantage of
these approaches is, that building a map is rather time con-

Table 1: This table shows the AUC until 0.5 meters / 0.5 degrees
for the relocalization error on the CARLA relocalization tracking
benchmark test data. Powered by our novel loss formulation and
the combination with CorrPoseNet, LM-Reloc achieves lower ro-
tation and translation errors compared to the state-of-the-art.

Method tAUC RAUC

Ours 80.65 77.83
SuperGlue [32] 78.99 59.31

R2D2 [26] 73.47 54.42
SuperPoint [8] 72.76 53.38
D2-Net [10] 47.62 16.47

Ours (w/o CorrPoseNet) 63.88 61.9
GN-Net [36] 43.72 44.08

suming and computationally expensive, whereas all other
approaches evaluated on the benchmark [36] are able to cre-
ate the map close to real-time, enabling applications like
long-term loop-closure and map-merging.

4.1. CARLA Relocalization Benchmark

Figure 3 depicts the results on the test data of the
CARLA benchmark. For all methods we show the cumu-
lative error plot for translation in meters and rotation in
degree. It can be seen that our method is more accurate
than the state-of-the-art while performing similarly in terms
of robustness. We also show the AUC for the two Fig-
ures in Table 1. Compared to GN-Net it can be seen that
our new loss formulation significantly improves the results,



Table 2: Results on the Oxford RobotCar relocalization tracking benchmark [36]. We compare LM-Net (Ours) against other state-of-the-
art methods (SuperGlue, R2D2, SuperPoint, and D2-Net). As can be seen from the results, our method almost consistently outperforms
other SOTA approaches in terms of rotation AUC whilst achieving comparable results on translation AUC.

Sequence Ours SuperGlue [32] R2D2 [26] SuperPoint [8] D2-Net [10]
tAUC RAUC tAUC RAUC tAUC RAUC tAUC RAUC tAUC RAUC

Sunny-Overcast 79.83 55.48 81.01 52.83 80.86 53.57 78.95 50.03 71.93 39.0
Sunny-Rainy 71.54 43.7 75.58 40.59 74.84 41.23 69.76 37.12 65.63 27.5
Sunny-Snowy 59.69 44.06 63.57 43.64 62.92 41.78 60.85 40.02 55.65 30.86

Overcast-Rainy 80.54 63.7 79.99 61.64 81.29 61.23 80.36 61.56 75.66 51.06
Overcast-Snowy 55.38 47.88 57.67 47.16 57.68 48.41 55.39 44.96 51.17 34.54

Rainy-Snowy 68.57 41.67 69.91 39.87 71.79 39.86 67.7 38.05 61.91 27.74

Table 3: This table shows the results on the Oxford RobotCar re-
localization tracking benchmark test data against GN-Net. Thanks
to our LM-based loss formulation we consistently outperform GN-
Net on all sequences.

Sequence Ours (w/o CorrPoseNet) GN-Net [36]
tAUC RAUC tAUC RAUC

Sunny-Overcast 79.61 55.45 73.53 49.31
Sunny-Rainy 70.46 42.86 64.58 37.27
Sunny-Snowy 59.7 44.17 55.27 41.36

Overcast-Rainy 79.67 63.08 75.72 60.13
Overcast-Snowy 54.94 47.19 51.34 42.91

Rainy-Snowy 66.23 39.93 62.63 36.2

even when used without the CorrPoseNet as initialization.
The figure conveys that the direct methods (Ours, GN-Net)
are more accurate than the evaluated indirect methods.

4.2. Oxford RobotCar Relocalization Benchmark

We compare to the state-of-the-art indirect methods
on the 6 test sequence pairs consisting of the sequences
2015-02-24-12-32-19 (sunny), 2015-03-17-11-08-44 (over-
cast), 2014-12-05-11-09-10 (rainy), and 2015-02-03-08-45-
10 (snowy). In Table 2, we show the area under curve until
0.5 meters / 0.5 degrees for all methods. It can be seen that
our method clearly outperforms the state-of-the-art in terms
of rotation accuracy, while being competitive in terms of
translation error. It should be noted that the ground-truth
for these sequences was generated using ICP alignment of
the 2D-LiDAR data accumulated for 60 meters. We have
computed that the average root mean square error of the
ICP alignment is 16 centimeters. Therefore, especially the
ground-truth translations have limited accuracy. As can be
seen from Figure 3, the accuracy improvements our method
provides are especially visible in the range below 0.15 me-
ters which is hard to measure on this dataset. The rotation
error of LiDAR alignment is lower than the translational
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Figure 4: This plot shows our ablation study for removing differ-
ent loss parts on the CARLA relocalization tracking benchmark.
Without the GD-loss the achieved robustness is reduced, whereas
removing the GN-loss leads to decreased accuracy. Using our full
loss formulation yields a large improvement.

one, which is why we clearly observe the improvements of
our method on the rotations.

In Table 3, we compare LM-Net without the Cor-
rPoseNet to GN-Net. Due to our novel loss formulation
LM-Net outperforms the competitor on all sequences sig-
nificantly.

4.3. Ablation Studies

We evaluate LM-Net on the CARLA validation data with
and without the various losses (Figure 4). Compared to
a normal contrastive loss, the given loss formulation is a
large improvement. As expected, EGD (green line) mainly
improves the robustness, whereas EGN (blue line) improves
the accuracy. Only when used together (our method) we
achieve large robustness and large accuracy, confirming our
theoretical derivation in Section 3.



Figure 5: This figure shows a point cloud from a sunny reference map (grey points) overlayed with the point cloud from a relocalized
snowy sequence (blue points). The well aligned point clouds demonstrate the high relocalization accuracy of LM-Reloc.

Figure 6: Example image pairs from the relocalization track-
ing benchmark which have been successfully relocalized by LM-
Reloc (with an accuracy of better than 10 cm). Top row: Oxford
sunny against snowy condition, middle row: Oxford sunny against
rainy condition, bottom row: CARLA benchmark.

4.4. Qualitative Results

To demonstrate the accuracy of our approach in prac-
tice, we show qualitative results on the Oxford RobotCar
dataset. We track the snowy test sequence 2015-02-03-08-
45-10 using Stereo DSO [37] and at the same time perform

relocalization against the sunny reference map 2015-02-24-
12-32-19. Relocalization between the current keyframe and
the closest map image is performed using LM-Net. Ini-
tially, we give the algorithm the first corresponding map
image (which would in practice be provided by an image
retrieval approach such as NetVLAD [3]). Afterwards we
find the closest map image for each keyframe using the
previous solution for the transformation between the map
and the current SLAM world Tw m. We visualize the cur-
rent point cloud (blue) and the point cloud from the map
(grey) overlayed using the smoothed Tw m (Figure 5). The
point clouds will align only if the relocalization is accurate.
As can be seen in Figure 5, the lane markings, poles, and
buildings between the reference and query map align well,
hence qualitatively showing the high relocalization accu-
racy of our method. We recommend watching the video at
https://vision.in.tum.de/lm-reloc. In Fig-
ure 6 we show example images from the benchmark.

5. Conclusion
We have presented LM-Reloc as a novel approach for

direct visual localization. In order to estimate the rela-
tive 6DoF pose between two images from different con-
ditions, our approach performs direct image alignment on
the trained features from LM-Net without relying on feature
matching or RANSAC. In particular, with the loss function
designed seamlessly for the Levenberg-Marquart algorithm,
LM-Net provides deep feature maps that coin the character-
istics of direct image alignment and are also invariant to
changes in lighting and appearance of the scene. The exper-
iments on the CARLA and Oxford RobotCar relocalization
tracking benchmark exhibit the state-of-the-art performance
of our approach. In addition, the ablation studies also show
the effectiveness of the different components of LM-Reloc.
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LM-Reloc: Levenberg-Marquardt Based Direct Visual Relocalization:
Supplementary Material
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A. Video
As mentioned in the paper, we provide a video of

the qualitative relocalization demo, which is available at
https://vision.in.tum.de/lm-reloc.

B. Network Architecture
CorrPoseNet. The CorrPoseNet takes 2 images (I and
I ′) as the input and outputs the relative pose R, t between
those images. The overall network architecture of the Cor-
rPoseNet is depicted in Figure 1. The convolutional blocks
consist of in total 9 convolutional layers followed by ReLU
activations. The architectural details of the convolutional
blocks are listed in Table 1. The correlation layer which
takes the output of the convolutional blocks as input is de-
scribed in the main paper. The correlation layer is followed
by the regression block which regresses the relative pose.
The layers of the regression block are listed in Table 2. The
output of the network is the rotation R as Euler angles and
translation t.

Table 1: Network architecture and parameters of the convolutional
blocks. k denotes kernel size, s stride, and p padding.

Convolutional blocks
layer in-chns out-chns k s p activation
conv0 3 16 16 2 3 ReLU
conv1 16 32 5 2 2 ReLU
conv2 32 64 3 2 1 ReLU
conv3 64 64 3 1 0 ReLU
conv4 64 128 3 2 2 ReLU
conv5 128 128 3 1 1 ReLU
conv6 128 256 3 2 1 ReLU
conv7 256 256 3 1 1 ReLU

LM-Net. We adopt U-Net [1] as the encoder of LM-Net.
However, we change the decoder part of the architecture
in the following way. Starting from the coarsest level, we
upsample (with bilinear interpolation) the feature maps by
2 and concatenate those feature maps with the feature map
of the higher level. This is followed by 1× 1 convolutional

∗Equal contribution.

Figure 1: Network architecture of CorrPoseNet.

filters. This procedure is repeated 4 times. This results in
the feature pyramid maps as described in Table 3.

C. Ablation Study Correlation Layer

We demonstrate the impact of the Correlation layer in
the proposed CorrPoseNet. We compare it to a simpler
pose estimation network where the correlation and regres-
sion layers are replaced with two 1 × 1 convolutions with
3 output-channels each, which directly regress rotation and
Euler angles. This simpler PoseNet has one more convo-

1
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(b) Rotation error.

Figure 2: Cumulative error plot for relocalization on the CARLA relocalization benchmark validation data [2]. It can be seen that the
correlation layer in CorrPoseNet has a large impact on the performance.

Table 2: Network architecture and parameters of the regression
block. k denotes kernel size, s stride, and p padding. Nc = 256
denotes the input channels for the CARLA model, and No = 260
denotes the input channels for the Oxford model, respectively.

Regression block
layer in-chns out-chns k s p activation
conv0 Nc / No 128 7 1 0 ReLU
BN 128 128 - - -
conv1 128 64 5 1 0 ReLU
BN 64 64 - - -
FC 2304 6 - - -

Table 3: Output of the decoder of LM-Net. H , and W denote
height and width of the feature maps.

Decoder layer Output size
F1 16×H/8×W/8
F2 16×H/4×W/4
F3 16×H/2×W/2
F4 16×H ×W

lutional block conv8 with 512 output channels, kernel size
3, stride 2, and padding 1. Otherwise the network architec-
ture and parameters are the same as for CorrPoseNet. The
results on the CARLA validation data are shown in Figure
2. Even the simpler pose estimation network (PoseNet w/o
Correlation layer) improves the result over using identity
as an initialization for the direct image alignment (LM-Net
only). However, utilizing the correlation layer significantly
boosts the performance.

Table 4: This table shows the AUC until 0.5 meters / 0.5 degrees
for the relocalization error on the Oxford validation sequences.
Our data augmentation (which warps the images using random
poses) improves both rotation and translation error.

Method tAUC RAUC

Ours 80.45 65.11
Ours w/o data augmentation 80.15 64.58

D. Ablation Study Oxford Data Augmentation
We show the impact of the data augmentation for the Ox-

ford RobotCar Relocalization benchmark, where we warp
the images to different poses using dense depths in Table
4. It can be seen that the proposed augmentation improves
translation and rotation error on the validation data.

References
[1] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolu-

tional Networks for Biomedical Image Segmentation. In MIC-
CAI, 2015. 1

[2] L. von Stumberg, P. Wenzel, Q. Khan, and D. Cremers. GN-
Net: The Gauss-Newton Loss for Multi-Weather Relocaliza-
tion. RA-L, 5(2):890–897, 2020. 2

2





B
A B S T R A C T S O F A D D I T I O N A L P U B L I C AT I O N S

b.1 self-supervised steering angle prediction for vehi-
cle control using visual odometry

Qadeer Khan, Patrick Wenzel, and Daniel Cremers

Self-Supervised Steering Angle Prediction for Vehicle Control
Using Visual Odometry

International Conference on Artificial Intelligence and Statistics (AIS-
TATS), 2021

PMLR 130:3781-3789

Abstract

Vision-based learning methods for self-driving cars have primarily
used supervised approaches that require a large number of labels for
training. However, those labels are usually difficult and expensive to
obtain. In this paper, we demonstrate how a model can be trained to
control a vehicle’s trajectory using camera poses estimated through
visual odometry methods in an entirely self-supervised fashion. We
propose a scalable framework that leverages trajectory information
from several different runs using a camera setup placed at the front
of a car. Experimental results on the CARLA simulator demonstrate
that our proposed approach performs at par with the model trained
with supervision.
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b.2 vision-based mobile robotics obstacle avoidance

with deep reinforcement learning
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Vision-Based Mobile Robotics Obstacle Avoidance With Deep
Reinforcement Learning

IEEE International Conference on Robotics and Automation (ICRA), 2021
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Abstract

Obstacle avoidance is a fundamental and challenging problem for
autonomous navigation of mobile robots. In this paper, we con-
sider the problem of obstacle avoidance in simple 3D environments
where the robot has to solely rely on a single monocular camera.
In particular, we are interested in solving this problem without
relying on localization, mapping, or planning techniques. Most of
the existing work consider obstacle avoidance as two separate prob-
lems, namely obstacle detection, and control. Inspired by the recent
advantages of deep reinforcement learning in Atari games and un-
derstanding highly complex situations in Go, we tackle the obstacle
avoidance problem as a data-driven end-to-end deep learning ap-
proach. Our approach takes raw images as input and generates
control commands as output. We show that discrete action spaces
are outperforming continuous control commands in terms of ex-
pected average reward in maze-like environments. Furthermore, we
show how to accelerate the learning and increase the robustness of
the policy by incorporating predicted depth maps by a generative
adversarial network.
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