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Abstract

For decades, light microscopy has been an inevitable technology in biological and medical research.

Recently, the massive increase of data acquired with high temporal and spatial resolution in

high-throughput experiments requires new image analysis tools to fully exploit technological

advances in microscopy. Deep learning has become an indispensable tool for data analysis in

biomedicine as it can outperform established machine learning and analytical methods and

human experts, both in terms of data processing speed and in terms of prediction accuracy and

prediction consistency. Furthermore, deep learning methods can detect and extract previously

inaccessible information that is not obvious to humans, thus enabling new ways for data analysis.

However, there is still a need for deep learning methods that ease access to morphological

information of a single cell, while reducing imaging time and obviate tissue fixation and staining,

and thereby enable high-throughput single cell microscopy. In this thesis, methods that facilitate

and accelerate the analysis of three-dimensional (3D) microscopy images are presented: To ease

access to state-of-the-art deep learning methods for a broad range of users, without requiring a

profound computational background, InstantDL combined basic image processing tools, such as

image segmentation, pixel-wise regression and image classification in one easy-to-apply package.

Minimizing microscopic image acquisition times, I developed a deep learning model, called

SHAPR, that predicts 3D single cell shapes from two-dimensional (2D) microscopy images and

allows researchers to shorten acquisition time by a manifold. Utilizing a novel loss function based

on topological features, the prediction performance of my model was further improved. In the

application of red blood cell classification, SHAPR significantly improved performance in terms

of F1 score. Maximizing the amount of information extractable from 3D bright-field time-lapse

movies, while reducing laborious and error prone tissue fixation and staining, I developed the

deep learning method Bright2Nuc. This deep learning method predicts nuclear stainings from

3D bright-field microscopy images, enabling the tracking and quantification of morphological

properties of single cells in bright-field movies. Applied on human-induced pluripotent 3D cell

cultures, Bright2Nuc enables the detection of cell differentiation events by tracking of cell mobility

in 3D time-lapse bright-field movies, and Bright2Nuc enables the morphological feature based

transcription factor prediction in 3D bright-field images.

The presented methods not only extract previously inaccessible information from 3D microscopic

images, but also pave the way towards microscopy-based, non-invasive, high-throughput single

cell monitoring and image analysis and are suited to process the increasing amount of microscopic

data. These methods hence offer researchers the opportunity to upscale 3D cell phenotyping and

expand the impact that researchers can generate from their microscopy image data.
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Zusammenfassung

Seit Jahrzehnten ist die Lichtmikroskopie eine unverzichtbare Technologie in der biologischen

und medizinischen Forschung. In jüngster Zeit erfordert die massive Zunahme von Daten, die

mit hoher zeitlicher und räumlicher Auflösung in Hochdurchsatz-Experimenten erfasst werden,

neue Methoden für die Bildanalyse, um die technologischen Fortschritte in der Mikroskopie voll

auszuschöpfen. Deep Learning ist zu einem unverzichtbaren Werkzeug für die Datenanalyse in der

Mikroskopie geworden, da es analytische Methoden und menschliche Experten sowohl in Bezug

auf die Geschwindigkeit der Datenverarbeitung als auch in Bezug auf die Vorhersagegenauigkeit

und die Konsistenz der Vorhersagen übertreffen kann. Darüber hinaus können Deep-Learning-

Methoden durch automatisches Feature-Learning bisher unzugängliche Informationen erkennen

und extrahieren, die für den Menschen nicht offensichtlich sind. Es besteht jedoch immer noch

Bedarf an Deep-Learning-Methoden, die den Zugang zu morphologischen Informationen einer

einzelnen Zelle erleichtern und gleichzeitig die Bildgebungszeit verkürzen und die Fixierung und

Färbung des Gewebes überflüssig machen, so dass die Einzelzellmikroskopie mit hohem Durchsatz

möglich wird.

In dieser Arbeit werden Methoden vorgestellt, die die Analyse von dreidimensionalen (3D)

Mikroskopiebildern erleichtern und beschleunigen: Um den Zugang zu modernen Deep-Learning-

Methoden für ein breites Spektrum von Nutzern zu erleichtern, ohne dass ein tiefgreifendes

IT Kentnisse vorauszusetzen, sind in InstantDL grundlegende Bildverarbeitungswerkzeuge wie

Bildsegmentierung, pixelweise Regression und Bildklassifizierung in einem einfach anzuwendenden

Softwarepaket kombiniert. Um die Aufnahmezeiten für mikroskopische Bilder zu minimieren, habe

ich ein Deep-Learning-Modell namens SHAPR entwickelt, das 3D-Formen von einzelnen Zellen

aus zweidimensionalen (2D) Mikroskopiebildern vorhersagt und es damit Forschern ermöglicht,

die Aufnahmezeit um ein Vielfaches zu verkürzen. Durch die Verwendung einer neuartigen

Loss-funktion, die auf topologischen Features basiert, konnte die Performance meines Modells

weiter verbessert werden. Bei der Anwendung der Klassifizierung roter Blutkörperchen verbesserte

SHAPR die Leistung in Bezug auf den F1-Score erheblich. Um die Menge an Informationen

zu maximieren, die aus Zeitrafferfilmen von 3D-Hellfeld-Bildern extrahiert werden können, und

gleichzeitig die mühsame und fehleranfällige Fixierung und Färbung von Gewebe zu reduzieren,

habe ich die Deep-Learning-Methode Bright2Nuc entwickelt. Diese Deep-Learning-Methode

sagt Kernfärbungen aus 3D-Hellfeldmikroskopiebildern voraus und ermöglicht die Verfolgung

und Quantifizierung morphologischer Eigenschaften einzelner Zellen in Filmen. Angewandt auf

humane induzierte pluripotente 3D-Zellkulturen, ermöglicht Bright2Nuc die Erkennung von

Zelldifferenzierungen durch Verfolgung der Mobilität der Zellen in Zeitrafferfilmen von 3D-

Hellfeldmikroskopen, und Bright2Nuc ermöglicht die auf morphologischen Merkmalen basierende

Vorhersage von Transkriptionsfaktoren in 3D-Hellfeldbildern.

Die vorgestellten Methoden extrahieren nicht nur bisher unzugängliche Informationen aus mi-

kroskopischen 3D-Bildern, sondern ebnen auch den Weg für mikroskopie basierte, nicht-invasive

Beobachtung einzelner Zellen und Bildanalyse im Hochdurchsatz und sind geeignet, die wachsende
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Menge an mikroskopischen Daten zu verarbeiten. Die in dieser Arbeit entwickelten Methoden bie-

ten den Forschern daher die Möglichkeit, die Phänotypisierung zu verbessern und die Information,

welche Forscher aus Mikroskopie-Bildern extrahieren können, zu maximieren.
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1. Introduction

Observing and uncovering the morphology of single cells and their dynamic behavior is a central

goal in biological research [12, 13]. Since populations of cells are most often heterogeneous in

function and fate, a quantitative description at the single cell level allows for insights into the

inner workings of cellular dynamics beyond the population level. By measuring phenotypic,

spatial and temporal behavior of single cells, researchers can investigate molecular processes,

cellular states, differentiation decisions or disease progression [13]. Biomedical research combines

the fields of biology and medicine with the aim to understand biological processes to improve

medical care.

1.1. Microscopic imaging for single cell analysis

Insights into phenotypic relationships of single cells can be provided by microscopic imaging

[13–15]. In an ideal scenario, single cells should be observed in-vivo for an extended period of

time in an non-invasive manner and with high resolution to gain insights into phenotypic, spatial

and temporal behavior of single cells. This requires high-quality imaging and statistical methods

for the quantitative analysis of single cells and single cell populations. For decades, microscopy

has been used for studying single cells. Since the origin of pathology in 19th century, microscopy

has made significant improvements in terms of resolution and throughput [16]. While most of

these advances originate from improved hardware, in recent years software that can be used to

post-process and analyze the recorded images is now the driver of innovation in microscopic

imaging.

Light microscopy has become a standard technique to uncover single cell properties in tissues in

the past decades. It allows for insight into spatial properties and dynamics with sub-micrometer

resolution and provides spatial and temporal information at a single cell level. The simplest,

cheapest and most popular light microscopy technique is bright-field microscopy, as it requires no

staining of the sample. With bright-field microscopy, the sample is illuminated with white light,

while the contrast in the recorded image is caused by differences in attenuation of the light by

the sample. This label-free microscopy is most commonly used for live cell imaging, for example

to record time-lapse movies, as it does not require fixation and staining of the sample or reporter

cell lines. However, due to the transparency of cells, the detection and quantification of single

cells from bright-field images is difficult.

Fluorescence microscopy, the development of fluorescent stains and protein tagging allow re-

searchers to image cellular properties and thereby reveal specific tissue or cell structures as well

as morphology. For analyzing cellular processes, fluorescence microscopy has an irreplaceable role

as it enables studies of functional processes and morphological aspects of cells. As an example,

fluorescent microscopy plays a vital role in drug discovery, where microscopic imaging is used at

several stages from preclinical research to clinical trials. Fluorescent microscopy enables scientists

to investigate phenotypes, organs, tissues, cells and subcellular components. Enabled by digital

image analysis, the biological mechanisms can be revealed [17].
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Figure 1.1: Four cell clusters imaged with a confocal microscope. The first column displays the
cell cluster imaged in bright-field (BF) and the second the same cell clusters imaged
with a fluorescent DAPI stain that binds to the DNA of cells, thus indicating the
location of nuclei. Specific stains enable the investigation of cell states, Oct-4 is a
fluorescent stain that can be used to mark undifferentiated cells, while FoxA2 and
Sox17 indicates differentiated cells.

Tissue samples can have intrinsically fluorescent dyes, such as the green fluorescent protein, or

be labeled with a fluorescent marker, which binds to specific sites in the cells, such as the DNA

[18]. The contrast in the recorded image is created by the fluorescent dye that emits photons

when illuminated with light of the required wavelength, called the excitation light, which is often

created by a laser [18]. This allows for quantification of spatial distribution of fluorescent particles

that are tagged to cellular regions of interest. Using fluorescent dyes, the traditional resolution

limit of optical microscopes, the Abbe limit, can be overcome [19]. However, fluorescence labeling

brings a number of disadvantages, such as difficult signal reproducibility and photo-bleaching

that describes the effect when a fluorescent dye irreversibly loses its ability to fluoresce due to

exposure excitation light [18]. Exposure to the excitation light can impair sample physiology and

even lead to sample death by damaging macromolecules. This photo-toxicity frequently occurs

during fluorescent microscopy [18, 20]. Biological structures can not be imaged easily in-vivo,

as it requires reporter cell lines, which are costly to create as stable cell lines that have been
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labeled with reporter genes have to be breed [13, 14]. To overcome the need to stain biological

samples in order to reveal their structures, machine learning researchers are developing methods

for single cell microscopy and extend the impact of statistical microscopic image analysis [12].

Figure 1.2: Visualization of a microfluidic platform for 3D cell culture experiments. 128 cell
cultures can be grown in parallel in a controlled microenvironement with 32 different
conditions. Four cell cultures share the same condition, which can be controlled
automatically with a valve system. This allows for a parallelization of experiments,
for example in the application of drug testing or in stem cell research [4]. In
the upper right corner, one fixed cell culture with a fluorescent nuclear marker
imaged with a confocal microscope is visualized. Scale bars: 500µm (top), 1000µm
(bottom).

Confocal fluorescence microscopy can not overcome the downsides of fluorescent imaging, however

it is an excellent technique for quantitative imaging of cells and tissues. Data acquired with a

confocal microscope has mainly been used in this thesis (see Figure 1.1). One main advantage

over traditional widefield or epifluorescence microscopes is the ability to generate high-contrast

images through optical sectioning. By blocking out-of-focus light, an optical sectioning through

a specimen can be performed, allowing for quantification of fluorescent signals with very high

spatial precision [21]. In contrast, traditional widefield microscopes acquire the image as a

superposition of sharp features originating from the focal plane and blurry features from outside

of the focus [21]. In a confocal microscope, a laser beam is focused into a specimen, its cone

of illumination excites fluorescent molecules. These emit light of a longer wavelength than the

wavelength of the excitation laser, which is collected by the objective lens. The collected light is

focused by another lens through a pinhole, ensuring that only fluorescence that originates at

the focal point is captured by the camera. Thereby, fluorescence emission from outside the focal

plane is blocked [21]. Because the microscope collects fluorescence signals from only one focal

point at a time, the specimen is scanned using mirrors that sweep the laser beam across the
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specimen, generating an image pixel by pixel [21]. Scanning times are around one second for one

slice containing 1014x1024 pixels, for 3D imaging this can easily result in minutes of imaging

time per volume [4].

In modern biological experiment designs, researchers seek to reduce the complexity of biological

processes with in-vitro models that mimic the architecture of the tissue niche, promoting cell-

to-cell and cell-to-matrix interactions [4]. Thereby, in-vitro disease models can be obtained

and regenerative therapies explored so that drug screens requiring animal experiments can be

replaced [22]. Microfluidic chip technologies have emerged to provide controllable environments

by automating fluid programs where cell cultures can be grown (see figure 1.2). Microfluidic

platforms combined with confocal microscopy therefore offer researchers a way to investigate

cellular processes in a controllable microenvironment, mimicking biological processes observable

with high temporal and spatial resolution. Parallelization of these experiments results in large

amounts of acquired images that need to be processed. Phenotyping or tracking cells in 3D

cultures in high-throughput experiments is a challenge because cells cultured in 3D adopt

higher density configurations than in 2D cultures and cell morphologies in 3D cultures are more

heterogeneous and less recognizable than in 2D cultures [4].

1.2. Machine learning

Machine learning is a computational technique, that enables algorithms to adapt to some degree

automatically. Thereby they learn automatically how to solve a task. In 1997, Tom Mitchell

defined machine learning: “A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P if its performance at tasks in T, as measured

by P, improves with experience E“ [23]. The experience E is information that is contained in the

data-set a machine learning algorithm is trained on. The task T is defined by the user, that can

be for example classifying single cells or segmenting an image. Depending on the task different

algorithms are to be applied. The performance of the algorithm to solve task T is measured by a

performance measure P that can be any metric. Common uses are for example the mean-squared

error to evaluate pixel-value predictions, or the cross entropy for classification tasks. However

machine learning algorithms share the ability to learn and adapt without following explicit

instructions by drawing inferences from patterns in data. For task T, we use experience E to

train a mapping f from the models inputs X, that is a subset of the experience E to the ground

truth Y , that is another subset of the experience E [24]. The inputs X and the groundtruth Y is

provided by the user to the model, both must not have an overlay, else the model will only learn

trivial solutions. The experience E can be provided by N data points, which are pairs of xi ∈ X

and yi ∈ Y, i = {1, ..., N} in the scenario of supervised training, where yi are ground truth labels.

Or in the scenario of unsupervised training, where no ground truth labels are available, only by

xi ∈ X ∀i ∈ N , this will be discussed in more detail in the following section 1.4. During training,

model parameters are iteratively modified, improving model performance P with experience E.

A loss function is employed to quantify the performance P of model parameters during training.
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Depending on the machine learning task, the cost function can vary from mean absolute error or

mean squared error to more specific functions, such as the dice loss [25], which is often used for

object segmentation (see section 1.3.3). Choosing a suitable loss function is an influential decision

as it determines to which optimum the model converges [26]. During training, a validation set is

used to monitor if and how effective the optimization procedure converges the model parameters

towards a minimum of the cost function. After training the model is evaluated on a held-out test

set.

1.3. Classification

Classification specifies the task to assign a class label to each input, for example assigning a

label to each image in a data-set [24, 27]. The output space C in classification tasks is a set of k

mutually exclusive, unordered labels or classes C = {0, ..., k − 1}. For every data point xi in the

data-set, there is a label yi and a mapping f(X) = Y, ∀xi ∈ X, yi ∈ Y, i = {1, ..., N}, where the

number of classes is always smaller than the number of input data points N . Typically, each

class label is represented by an integer. Tasks with only two classes yi ∈ {0, 1}, are called binary

classification [24, 27]. In a classification task the output is a class label, and the ground truth

typically a positive integer, as such requiring a classification loss, such as the categorical cross

entropy (see section 1.3.3).

1.3.1. Regression

If continuous real-valued numbers yi ∈ R ∀i ∈ N are predicted instead of discrete class labels,

the task is called regression [24, 27–29]. The label can be a single real-valued number or may

be of arbitrary dimensions, for example pixels in an image. In a regression task the output

can have any dimensions, for example be a single number, or pixel values in an image. For all

regression tasks the model’s output and the groundtruth are both continuous floating point

numbers, requiring a regression loss, such as the mean squared error (see section 1.3.3).

1.3.2. Segmentation

Image segmentation is the task of classifying each pixel in an image and thereby partitioning

regions of an image, with the goal to identify pixels belonging to objects [24, 27]. The inputs xi

and outputs yi ∈ N, typically have the same spatial dimensions. Machine learning researchers

differentiate between semantic segmentation and instance segmentation [24, 27]. The goal of

semantic segmentation is to classify each pixel, while in instance segmentation objects of the

same class are first individual objects in an image are identified and then object of the same

class are segmented [24]. In a segmentation task the output typically has the same dimension as

the input, as for every input pixel a label is predicted. The ground truth for this task is typically

a pixel map with positive integers as class labels, allowing for the application of segmentation

loss functions, such as the dice loss (see section 1.3.3).

5



1.3.3. Optimization and metrics

The choice of the cost function is crucial as the performance measure T of a machine learning

model [26]. The cost function can be any differentiable and convex mathematical function. This

metric is also used to evaluate the performance of a trained model on an unseen test set. The

most important metrics to train and evaluate machine learning models are listed in the following.

For a model f with parameters θ, the mapping f(xi, θ) describes the model prediction, while yi

denotes the ground truth.

Meanabsoluteerror(MAE) =

∑
[|f(xi, θ) − yi|]

N
(1.1)

The mean absolute error is often used in regression tasks.

Meansquarederror(MSE) =

∑
[f(xi, θ) − yi]

2

N
(1.2)

The mean squared error is often used in regression tasks.

Binarycrossentropy(BCE) =

∑
[yi ∗ log(f(xi, θ)) + (1 − yi) ∗ log(1 − f(xi, θ)]

N
(1.3)

The BCE is often used in binary classification or binary segmentation tasks.

Categoricalcrossentropy(CCE) = −
∑

[yi ∗ log(f(xi, θ))] (1.4)

The CCE is often used in multi-class classification or multi-class segmentation tasks.

Diceloss =
2 ∗
∑

yi ∗ f(xi, θ)

(
∑

yi)
2 + (

∑
f(xi, θ))2

(1.5)

The Dice loss is often used in image segmentation tasks. To define precision, we first need to

define true positive, which is the outcome when a model correctly predicts the positive class.

Accordingly, a true negative is an outcome where the model correctly predicts the negative class.

A false positive is when the model incorrectly predicts the positive class, a false negative is

an outcome where the model incorrectly predicts the negative class [24].

Precision =
true positive

true positive + true negative
(1.6)

Recall =
true positive

true positive + false negative
(1.7)

F1Score =
precision ∗ recall
precision + recall

(1.8)

Accuracy =
true positive + true negative

N
(1.9)
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1.4. Learning strategies

For a given data-set D, containing N data points xi and possibly the corresponding ground truth

labels yi∀i ∈ N , typically a fraction of the data points is removed from the training process as

a separate test set. On this test set the model is evaluated after the training. The remaining

data-set is called the train set. The test set must not contain data also contained in the train

set, but its distribution should reflect the distribution of the whole data-set. From the train set,

typically 20% of the data is split into a validation set that is used to monitor the performance of

the model during training. The model is then optimized to maximise the performance measure

P, which depends on the task.

1.4.1. Supervised learning

Supervised learning is the most common form of machine learning. For task T, a mapping f is

learned f(xi) = yi from the inputs xi ∈ X to the outputs yi ∈ Y , with the goal to minimize

the cost function |f(x) − y| where yi ∈ Y is also called ground truth [24]. The experience E is

provided by N data points, i.e. pairs of xi and yi ∀i ∈ N .

1.4.2. Adversarial learning

Adversarial training is a subcategory of supervised training, where a second model, the adversarial

model, is trained with the goal to improve the performance of the original model [30]. The

adversarial model can for example be a discriminator, such as a classification model, which is

trained to differentiate between samples from the ground truth data-set and the predictions

of the original model. The two models are typically trained in an alternating fashion, which

can be interpreted as a contest between the two models, where they iteratively challenge each

other and thereby improve their performance. During training, the adversarial model improves

its classification accuracy in each training cycle, while the original model is optimized generate

plausible examples and thereby fool the adverserial model.

1.4.3. Unsupervised learning

In unsupervised learning, a model is trained without ground truth Y . These algorithms can also

be used for clustering [24]. As no ground truth is needed, unsupervised learning is especially

attractive for tasks where the collection of labeled data-sets is time consuming or expensive,

which is the case for many biomedical applications. In the biomedical field data labeling often

requires a trained expert to manually annotate a data-set. Autoencoders (see section 1.6.5)

are a typical application of self-supervised training, where the input data is encoded to a lower

dimension and then decoded with the aim to recover the input data. The performance P of the

Autoencoder is measured using the reconstruction error |f(x) − x|. Self-supervised learning can

be used as a pre-training of a model, which can later be fine-tuned with supervised learning

using a small set of labeled data.
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1.4.4. Self-supervised learning

One subclass of unsupervised learning is self-supervised learning, where a supervised task is

created to train a model on unlabelled data using implicit labels from the data-set [31].

1.5. Deep learning

As a branch of machine learning, deep learning has emerged in the last decade. Deep learning

models are artificial neural networks that tries to resemble the human nervous system or the

human brain structure [32]. It is typically built from input layers, output layers, and hidden layers

[24]. While each layer is a mathematical function. Hidden layers allow for modeling complex

nonlinear relationships, they are called hidden, because the true workings are only indirectly

accessible. As opposed to machine learning models, deep learning methods are characterized

by several hidden layers performing nonlinear transformations. This enables them to generate

more abstract and complex mappings between the inputs x and outputs f(x) [24]. The key idea

behind deep learning is to estimate a function,

f(x) = w ∗ x + b (1.10)

which maps the input x to the output y, with the objective to minimize the cost function

|f(x) − y| (1.11)

The flexibility of the model can be increased by replacing x with a feature transformation, that is

a function ϕ(x), sometimes called basis function expansion. For example a polynomial function

could be used.

f(x) = w ∗ ϕ(x) + b (1.12)

To overcome the limit of having specific feature transformations we can endow the feature

extractor with its own parameters θ

f(x, θ) = w ∗ ϕ(x, θ) + b (1.13)

We can stack these functions to obtain more complex functions, each function containing its own

parameters:

f(x, θ) = (fL(fL−1(...(f1(x)...))) (1.14)

where fL(x) is the function at layer L. This allows deep multi-layer networks to have many levels

of non-linearities enabling them to compactly represent highly non-linear and highly-varying

functions.
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1.5.1. Optimization for deep learning models

To adjust model parameters, the backpropagation algorithm is used [24]. Typically the parameters

of the model are initialized randomly or drawn from a distribution, such as the normal distribution

[24]. After each training step, the loss between the output of the model and the ground truth is

calculated using the cost function (see section 1.3.3) and is then propagated backwards through

the model, adjusting the parameters of the model for improved predictions, thereby learning the

best model parameters [24]. This can be reformulated as searching the minimum of the cost

function, where in each training step the minimum is approached iteratively [24]. The direction

in which the parameters of the model are optimized is calculated by the gradient of the cost

function. This algorithm is called gradient descent [24, 33]. The gradient descent algorithm

calculates the direction using gradient at the current position, then scales it by the learning rate

and subtracts the obtained value from the current position to make an optimization step. The

learning rate is a parameter that is multiplied with the gradient to regulate amount of change that

is applied to the parameters of the model. The learning rate is a crucial parameter for optimizing

a neural network. If the learning rate is chosen too high, the model will converge fast, but might

overshoot the minimum; if the learning rate is chosen too low it will take long to converge. Often

the learning rate and automatically adapted during training either by a predefined schedule or if

the loss has not decreased for a few iterations. One widely used extension to the gradient descent

algorithm is called Adam [34], its main improvement is the application of per-parameter learning

rates by calculating the average of the first and second moments of the gradients [34].

1.5.2. Layers in a neural network

Deep learning models are typically built from multiple layers [24]. While new layers are constantly

developed, some have found wide acceptance in the machine learning community and are

commonly used, so in this thesis. One key technique in deep learning models for image analysis

are convolutional layers, which are inspired by the human visual system’s structure [24]. The

main challenge when constructing a deep neural network is designing the sequential order of

layers, also referred to as the network architecture. As not all deep learning architectures perform

equally well on different tasks, developing and benchmarking architectures is an ongoing process

in machine learning research. Generally, the more layers a model has, the better it can abstract

the input data to higher order patterns [24]. A model with more layers has more parameters

and is therefore more difficult to train and is increasingly prone to overfitting if the data-set is

not sufficiently large and diverse. A model which perfectly fits the training data, but which is

too complex, is said to suffer from overfitting, it often fails to generalize to data not contained

in the training set [24]. Large models often suffer from vanishing backpropagation gradients,

when gradients become smaller for layers closer to the input during backpropagation through

the network [35]. Small models are fast to train but might lack the ability to capture the

complexity required to solve a task. Before describing architectures that are routinely used by the

machine learning community in biomedical data analysis, I will describe the layers used to build

9



these architectures. Frameworks such as TensorFlow [36] or PyTorch [37] have been developed

by Google and Meta, respectively, where frequently used layers are implemented, easing the

development of deep learning methods for researchers.

• Convolutional layer extract feature maps from the input data. They are inspired by

biology, such as the connectivity pattern between neurons in a human brain and by the

organization of the visual cortex [24]. The parameters of each convolutional layer p are a

set of learnable filters or kernels, with a small receptive field. The basic idea is to divide

the input into overlapping patches, and to compare each patch with a set of small weight

matrices, filters, or kernels. This can be thought of as a form of template matching [24].

The model will learn the best templates during training. Because the templates are small

(often just 3x3 or 5x5, in the 2 dimensional case), the number of model parameters is

significantly reduced as compared to larger templates [24]. Upon receiving the input, a

filter is moved across the dimensions of the layers’ input, while the dot product between the

filter entries and the input is calculated. During training the model learns to optimize the

convolutional layers parameters so that filters are activated when specific features in the

input are detected [24]. Because convolutions are used for the template matching, instead

of dot products, the model will be translationally invariant. This is useful for tasks such as

image classification, where the goal is to classify if an object is present, regardless of its

location [24].

• Normalization layer normalize the input of a layer. They are important when building

deep neural models as they standardize the statistics of the hidden layers and can prevent

the gradient from vanishing or exploding and thereby impede the models training. Most

commonly a normalization by the mean and standard deviation is used [24]. Batch

normalization layers standardize the whole batch of the layers input data [24]. This layer

does not learn any parameters.

• Pooling layer reduce the dimensions of the layers input and thereby allow to down-sample

the input in a convolutional neural network, while leaving the channel size untouched [24].

They combine inputs from a fixed set of inputs by calculating their mean or maximum. A

common example is a max-pooling layer, where the maximum of a set of input features

is calculated and passed forward. As opposed to convolutional layers, which preserve

information about the location of the input features, pooling layers process the information

invariant from its location, as they pass the same response no matter where in their

receptive field the information occurs [24]. This layer does not learn any parameters.

• Upsampling layer perform an upsampling to the input data by extrapolating to nearest

neighbours via linear, bilinear or trilinear interpolation in a convolutional neural network.

They can be used to increase the dimensions of the input and to perform the inverse

operation to the pooling layer [24]. This layer does not learn any parameters.
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• Fully connected layer process information contained in the whole input tensor. They

connect every neuron of a previous layer to every neuron in the next layer and therefore have

a large number of parameters. They are most often used to bundle all information allowing

for high-level reasoning. Their activation can be calculated by a matrix multiplication with

a bias offset [24].

• Dropout layer randomly erase parts of the input. These are often utilized for regularization,

forcing the model to perform well even if some of the input is missing [38, 39]. This layer

does not learn any parameters.

• Activation functions map the input x to an output f(x) via a fixed mathematical function

[24]. The most common activation functions used in deep neural models today are listed in

the following and shown in figure 1.3.

– Binary

f(x) = 0; if x ≤ 0,

f(x) = 1; if x ≥ 0
(1.15)

– Linear

f(x) = α ∗ x

with α ∈ R
(1.16)

– Sigmoid

f(x) =
1

1 + ex
(1.17)

– Hyperbolic tangent

f(x) =
ex − e−x

ex + e−x (1.18)

– Rectified linear unit (ReLU)

f(x) = 0; if x ≤ 0,

f(x) = x; if x ≥ 0
(1.19)

– Leaky rectified linear unit (Leaky ReLU)

f(x) = λ ∗ x; if x ≤ 0

f(x) = x; if x ≥ 0

with λ ∈ R and typically λ ≤ 1

(1.20)

In practice, leaky rectified linear functions are often used, which allow a small non-zero gradient

for input values smaller than zero [24].

11



Figure 1.3: An activation function in a neural network transforms the weighted sum of the
input x to an output f(x) for each node in the network. Using nonlinear activation
functions allows the model to learn complex patterns. Depending on the desired
task some activation functions have proven more suitable than others [24, 32]

1.5.3. Techniques to improve predictive performance of deep neural models

Performance of a deep neural model can be improved by either making the training more efficient,

such as using transfer learning, or by avoiding pitfalls that hinder the model to perform well,

such as overfitting. Overfitting is a common pitfall when training neural models, meaning that

a model performs well on training data but fails to generalize to unseen data [24, 40]. Such

a situation can be identified if the training loss steadily decreases, while the validation loss

increases. Multiple techniques have been developed to prevent overfitting, summarized under the

term regularization. Regularization techniques include data augmentation, dropout and early

stopping, which will be described in the following.

• Data augmentation can be applied to enrich the data-set by spatial or color augmentations

and thereby increase ability of the model to generalize. Spatial augmentations include image

rotation, translation, mirroring or zooming. Color augmentations include brightness changes,

contrast changes, or blurring of the images, addition of noise and image normalization

[41–43].

• Dropout layers randomly deactivate a fraction of the neurons of the model at each

training step. This can prevent overfitting, increase the ability of the model to generalize

and improve the predictions robustness [44]. During interference, dropout layers can be

used for model averaging and uncertainty quantification [45].

• Early stopping is a method to measure when a model has trained enough and might start

overfitting. The predictive of the model performance is measured on the validation data-set

during training. If the validation error no longer decreases for a certain number of training
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steps the training will be interrupted automatically saving computational resources [33].

• Transfer learning uses the parameters of trained models to initialize a the parameters of

a second model, allowing for faster convergence of the model and superior predictions [6,

46]. The weights for model initialization can for example be obtained by training a model

on another labeled data-set in a supervised fashion. Often, weights for commonly used

models are published and can directly be applied on new tasks.

• Batch computing is used to increase the efficiency of the optimization by consolidating

a number of input data points, called batch and processing them simultaneously. This

increases the robustness of the gradient during training [24].

• GPU computing is using a graphics processing unit (GPU), which can process tasks

magnitudes faster than the central processing unit (CPU) due to its parallel processing

capabilities and thereby speed up training and interference using deep learning models [47].

Today’s deep learning frameworks are optimized to be used with a GPU.

1.5.4. Uncertainty quantification in deep learning

Assessing the quality of the prediction of a neural network is not straightforward. Predictions

of a deep learning model can be unreliable or wrong if the model fails. Model failures can be

caused if the input not inside the training distribution or if the input is corrupted. Uncertainty

quantification is one method that measures the uncertainty of a model for each prediction,

thereby the robustness of a model can be assessed, which adds a new level of insights and

interpretability to model predictions. Bayesian statistics allow us to assess uncertainty in deep

learning models, considering both both data and prior knowledge. One of the presumptions

is that model parameters are not fixed weights but distributions. Ensembling is one method

to obtain model weigh distributions, however it requires training a large number of models

to obtain prediction distributions. However, Bayesian inference can be also approximated in

deep Gaussian processes by Monte Carlo dropout [45], which is an efficient way to measure the

uncertainty of predictions of deep learning models. It does not require any retraining of the

model, only multiple inferences with Monte Carlo dropout. Therefore Monte Carlo dropout can

be utilized for uncertainty quantification, requiring dropout layers (see section 1.5.2) to be added

to the model [45]. If these are activated during inference, which is an easy approach to perform

model averaging. Several forward passes of the same data point are performed with randomly

changing deactivated neurons, thereby a distribution of predictions can be obtained from which

the uncertainty of the predictions of a model can be calculated [45].

1.5.5. Topological loss function

The loss function (see section 1.3.3) is a crucial parameter when optimizing a deep learning

model to predict the desired output [26]. Established geometrical loss functions such as the MSE,

dice loss or BCE (see section 1.3.3) only capture errors made between pixels or voxels and do
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not consider contextual information. Topological data analysis, by contrast, provides contextual

information by characterizing data in terms of pixel or voxel connectivity (or even generic point

cloud connectivity).

Topology is a field in mathematics concerned with the properties of a geometric object that are

preserved under continuous deformations. Continuous deformation include stretching, twisting,

crumpling, and bending the object [48]. During these deformations no holes in the object are

opened or closed, nothing is teared, glued or passed thought itself.

A topological space is a set endowed with a structure, called a topology, that allows for the

definition of continuous deformation of subspaces, and, more generally speaking, all kinds of

continuity. Metric spaces, such as the euclidean space are examples of a topological space, as

a topology is defined by a distance or metric defines a topology. Deformations considered in

topology are homeomorphisms and homotopies. A property invariant under such deformations

is a topological property. Examples of topological properties are: the dimension, that allows

for the differentiation between a line and a surface and the compactness, that allows for the

differentiation between a line and a circle, and the conceitedness that allows for the distinguishing

between a circle from two non-intersecting circles. These topological features provide a different

and enriching view on the differences between the data points processed in machine learning.

These topological features primarily characterize data primarily in terms of connectivity, thus

giving a different perspective on data that can be utilize to compute a loss term that penalizes

differences in connectivity patterns. The resulting topological features can be utilized to construct

a loss function that compares connectivity patterns instead of geometrical information.

Topologial features

To extract topological features from images or volumes a cubical complex is used to represent

the data. Cubical complexes are related to meshes but use squares instead of triangles as their

building blocks. Meshes are one possibility to describe volumetric data with a grid fitted to

their surface. Cubical complexes can represent image data by containing individual pixel or

voxel as vertices, and connectivity information about their neighborhoods via edges, squares and

higher-dimensional counterparts [3, 49]. In 0 dimensions (0D) topological features are connected

components, in 1D cycles, and in 2D voids. A topological dimension in space X has dimension n

if n is the smallest natural number such that for every open covering there is (Ui)i∈I a finer open

covering (Vj)j∈J such that every point from X in at most n + 1 of the sets Vj lies. If there is

no such n, then X of infinite dimension. The dimension of X is given by dim(X). Since there

is a whole set of other dimension terms, one speaks more precisely of the Lebesgean covering

dimension [50, 51].

Persistent Homology

Based on that representation multi-dimensional topological features can be calculated [52] with

persistent homology as follows. In the setting of image segmentation a probability f(x) for each
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pixel or voxel x is predicted by the model f : V → R, indicating if a pixel or voxel belongs to

the segmented object. For different probability thresholds τ1 ≥ . . . ≥ τm, τi ∈ R applied to the

predicted values of a model f(x) different segmentation can be obtained. Therefore this results in

different cubical complexes C(τ) := {x ∈ V | f(x) ≥ τ} that can be calculated, leading to different

sets of topological features. The cubical complexes change at finite numbers, since pixel values

are finite, leading to a sequence of nested cubical complexes ∅ ⊆ C(τ1) ⊆ C(τ2) ⊆ · · · ⊆ C(τm) = V ,

which is called a superlevel set filtration [3]. We use a method called Persistent homology that

can track topological features across all cubical complexes in the filtration and relate each feature

to a tuple (τi, τj), with τi ≥ τj , indicating when the feature first appeared in the cubical complex,

called ‘birth’, and when it disappears, called ‘death’. The tuples extracted from the cubical

complex k-dimensional features, with 0 ≤ k ≤ d, are stored in the kth persistence diagram

D(k)
f , forming a multi-scale shape descriptor of all topological features in an image. For a tuple

(τi, τj) in a persistence diagram, the sum of all persistence values is known as the degree-p total

persistence, it is defined as: Persp(Df ) :=
∑

(τi,τj)∈Df

∣∣Pers(τi, τj)
p∣∣ [3]. Using the Wasserstein

distance, a metric used in optimal transport, two persistence diagrams D and D′ can be compared

[3, 53]. The pth Wasserstein distance is defined as:

Wp

(
D,D′) :=

(
inf

η : D→D′

∑
x∈D

∥x− η(x)∥p∞

) 1
p

, (1.21)

where η(·) describes a bijection. Because D and D′ most likely have different cardinalities, we

assume they contain an infinite number of tuples (τ, τ) with zero persistence to calculate suitable

bijections. Therefore suitable bijections η(·) can always be calculated and with optimal transport,

solving equation 1.21 is feasible and the equation is well-defined. Although topological features

are discrete, persistent homology allows for calculating gradients with respect to parameters of

the likelihood function f , allowing for automatic differentiation schemes [54–56]. Optimization

algorithms converge for a wide class of persistence-based algorithms, as proven by Carrière et al.

[57], enabling topology-based optimization loss functions.

With that the ground truth yi and the prediction of the model f(xi) we can calculate a topology-

aware loss function by:

LT

(
yi, f

′, p
)

:=

d∑
i=0

Wp

(
D(j)

yi
,D(j)

f(xi)

)
+ Pers

(
D(j)

f(xi)

)
. (1.22)

The first part of equation 1.22 regularizes the model to minimize the Wasserstein distance

between topological features extracted from yi and f(xi). The second part regularizes the model

to minimize overall topological activity, thereby decreasing the noise in the reconstruction [3].

1.6. Machine and deep learning models

Five machine and deep learning models have been used in this thesis which are introduced in the

following sections: random forest, residual networks, Mask R-CNN, autoencoders, and U-Net.
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Random forests are machine learning models that can be used for feature based classification

and regression, that is also the exact application of them in this thesis. Residual networks, Mask

R-CNN, autoencoders and the U-Net are deep learning networks that are applied on images.

Residual networks are designed to classify images, in this thesis they have been used to classify

microscopy images. The Mask R-CNN is an object detection network that detects instances in

an image and then classifies and segments them. In this thesis it was used to segment images.

In this thesis autoencoders have found application on the task of 3D shape prediction from

2D images, where I have stacked a 2D encoder with a 3D decoder. The U-Net is a semantic

segmentation network, as the Mask R-CNN it has been used in this thesis to segment microscopy

images and as a regression model to predict fluorescent stainings from bright-field images. Before

introducing the models in detail an essential part of every machine learning project, the data

pre-processing is elaborated.

1.6.1. Data pre-processing for deep learning

Preparing a data-set be one of the most difficult and influential steps for any machine learning

project. Labels for supervised training need to as be error free as possible, because errors might

be adapted by the model [58]. While the data preparation process is highly data-set specific,

there are a few commonalities that are mentioned in this section. Once the aim of the machine

learning project is defined, the right model can be selected and the data we assume is most

likely to lead to a successful project outcome can be collected. Often, as a second step the data

needs to be reformatted, as some data types such as specific microscopy image files might not

be readable by the machine learning framework. This second step also includes data cleaning,

as often data-sets contain errors, noise or meaningless data points, preventing the model from

learning on false or irrelevant data. After that, properties that are irrelevant to the machine

learning task, such as large background spaces in an image, should be identified and removed, to

shrink the data-set size and improve learning speed and accuracy. When working with images,

this step can include a rescaling step of the pixel or voxel size and patching or cropping images

to obtain the desired dimensions for the task at hand. Machine learning models perform best on

normalized data-sets, where data points are on the same scale [24, 59]. Standard techniques are

normalization with a minimum and maximum, or a mean and standard deviation normalization.

1.6.2. Random forest

There are numerous published machine learning algorithms, the Random forest algorithm is

the only one used in this thesis. Random Forest is a supervised machine learning algorithm,

constructed from an ensemble of decision trees [32]. Decision trees consist of a set of nested

binary decision rules that are inferred from the data points xii ∈ N . At each node of a tree, the

input vector of the node is compared to a threshold value and thereafter passed down to one

of two subsequent branches. At the end of this process, the model predicts an output for any

input that falls into that part of the input space. To fit a tree to a data-set, the tree is grown
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iteratively by one node per step. Thereby, the loss function is used to minimize the entropy or to

maximize the information gain. In a random forest algorithm, an ensemble of decision trees is

constructed, each with a randomly chosen subsets of the data and with randomly chosen subsets

of features, resulting in a sufficiently diverse base model [24, 60]. The random forest prediction

can be obtained by averaging of all decision trees predictions (see figure 1.4).

Figure 1.4: Schematic visualization of a Random forest. An ensemble of decision trees is
constructed, each with a randomly chosen subset of the data-set and subset of
features.

1.6.3. Residual networks

Residual neural networks (ResNets) are a class of deep learning models that can be used for

image classification. As deep learning models are constructed with greater depth to increase their

performance, they become increasingly difficult to train, as the back-propagated gradients to

earlier layers becomes infinitely small due to repeated multiplications [24, 35]. This can lead to a

performance saturation or even degrading when models nested. The ResNet architecture tackles

this vanishing gradient problem by introducing ‘identity shortcut connections’, which skip one or

more layers [35]. These stacked layers allow gradients to flow through shortcut connections to

any other earlier layer. The key idea is to replace the layer fl(x) with the output xl+1

xl+1 = fl(x) (1.23)

with

xl+1 = xl + fl(x). (1.24)

This is called the residual block, since fl only needs to learn the residual between input xl+1

and output xl + fl(x) of this layer. As gradients in a residual model can flow directly from the

output to earlier layers, these are easier to train, while having the same number of parameters as

a model without residual connections [24]. Today, ResNet and its variants are often used for

classification tasks in biomedical imaging [61].
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1.6.4. Mask R-CNN

The Mask R-CNN is a Region Based Convolutional Neural Network (R-CNN) that can be used

for object detection and instance segmentation [35]. It is composed of a multi-stage process,

starting with a region proposal network that proposes candidate regions for object bounding

boxes. In a second stage, features from these candidate bounding boxes are extracted and a

bounding-box regression and object classification is performed. Additionally, Mask R-CNN

segments each instance in a bounding box (see figure 1.5). Thereby, multiple objects in an image

can be detected, classified and segmented at once. As backbone, Mask R-CNN uses a ResNet

architecture (see section 1.6.3) that can be pre-trained e.g. on ImageNet (see section 1.5.3), a

data-set containing over 14 million hand annotated images [35, 62]. During training, a multi-task

loss is calculated as the sum of the object detection, classification, and segmentation loss.

Figure 1.5: Schematic visualization of the Mask R-CNN model architecture. In each input
image objects are detected, aligning one Regions of interest (RoI) for each detected
object. In the next step each object in each RoI is classified and segmented using
convolutional layer.

1.6.5. Autoencoder

An autoencoder is a deep learning model that learns an efficient embedding of data points

and then regenerates the predictions from embeddings (see figure 1.6). Autoencoders are a

classical application of self-supervised training (see section 1.4.4). Autoencoders have been

applied for many different tasks, such as denoising, feature encoding, abnormality detection, or

self-supervised pre-training [24, 63]. An autoencoer is constructed of two modules, the encoder

fe and the decoder fd, which are often symmetric to each other. The encoder is a network that

reduces the input dimensions and compresses the input data into an encoded representation. This

encoded representation is contained in the so-called bottleneck layer, which links the encoder

with the decoder. The decoder reconstructs the output from the encoded representation to match

the input data [24, 63]. Encoder and decoder architectures can be composed of consecutive

convolutional, normalization and downsampling or respectively upsampling layers (see section

1.5.2). The reconstruction function has the form:

a(x) = fd(fe(x)). (1.25)
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Often a reconstruction loss

L(θ) = ||a(x) − x|| (1.26)

between the input and output of the model is used to train autoencoders. Therefore, they can

be used for self-supervised training as no ground truth labels are required for training.

Figure 1.6: Schematic visualization of an autoencoder model architecture. In this example each
2D input image is encoded into a latent space representation, before it is decoded
again to a 3D single cell shape. For this 2D and 3D convolutional layers are utilized.

1.6.6. U-Net

A U-Net is a deep neural network with primary applications in semantic segmentation and

pixel-wise regression of 2D and 3D images [64, 65]. Similar to an autoencoder, it consists of

downsampling and upsampling steps. For each downsampling step the number of features per

layer is doubled while the dimension is halved and vice versa in the upsampling steps [64, 65].

This symmetry yields the U-Net’s name (see figure 1.7). So called skip connections between

downsampling and upsampling layers enable the preservation of high-frequency information and

are concatenated to the respective upsampling layers. Each layer consists of two convolutional

layers, followed by an activation function and a dropout layer (see section 1.5.2). For downsampling

steps, a pooling layer is added and for upsampling steps an upsampling layer is used.

Figure 1.7: Schematic visualization of a U-Net model architecture. U-Nets downsample the
input image using stacked convolutional layers, and then upsample the encoding
again. To preserve high-frequency information skip connections are used to con-
catenate the output of the downsample layers to the respective upsample layers.
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1.7. Machine learning applications in microscopic imaging

Recent progress in microscopic image analysis has been driven by machine learning [12, 24, 66].

Common challenges associated with biomedical data-sets, such as data processing speed, sparse

labels, inconsistent staining, or laborious 3D imaging can be tackled with deep learning methods

[12, 58, 66]. These new techniques promise to transform biomedical research and address

fundamental questions from basic to translational science [12, 66]. The large amount of image

data collected makes manual processing inefficient or even impossible. Machine learning methods

allow for automated processing, de-noising, classification, visualization, data integration and

comparison of large data-sets, and through statistical analysis they enable the interpretation

of complex image data to extract new biological insights [12, 58]. By automatically learning

complex patterns in images that may not be obvious to humans, machine learning algorithms

can uncover hidden biological relationships and provide new insights from biological data [12,

24, 58]. Thereby, microscopic image analysis can be standardized and accelerated as machine

learning tools are fast to apply and can deliver reliable analysis.

Deep learning (see section 1.5) has contributed to the advancement of microscopic image analysis

in manifold applications.

Microscopic images can be classified (see section 1.3) with deep learning methods [24, 58], wthout

relying on biological or hand-crafted features, deep learning models can identify different types

of cells [61] or tissue [67]. With a classification method however only one class per image can

be predicted, which complicates the analysis of large images where several different cells or

structures might be present.

Object detection algorithms, such as the Mask R-CNN [68] (see section 1.6.4) have been developed

to detect multiple different objects in one image. These deep learning models are costly to train

as they require large annotated data-sets, but they deliver excellent performance once trained

[69].

Biological structures can be segmented (see section 1.3.2) routinely with deep learning methods

from fluorescent microscopic images to uncover their position, shape and morphology [70].

Recently, deep learning methods have become available delivering good performance without

requiring the user to retrain the model [71, 72]. Morphological features, such as the volume,

surface or eccentricity can be calculated from a segmentation [2], or features outputted by the

deep learning model can be used for other tasks. However, the features are often not interpretable

but might capture information that is missed using hand crafted features. The extraction of

these cellular features is an important task, as they can provide information about cell type,

cellular states or processes, which in turn can provide information about biological mechanisms

or diseases.

In the field of drug discovery, extracted features have been used to reveal patterns indicating

biological activity, to identify disease associated phenotypes, to understand disease mechanisms

or to predict the activity, toxicity or mechanism of action of the drug [73].

In the application of flow cytometry, microscopic images of single cells can now be routinely
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analyzed and classified [11, 74]. Class frequency changes and morphological changes can be used

to link morphological features to function, thereby machine learning techniques can revolutionize

high-throughput experiments, for example to allow for antibody design [6]. Fluorescent markers

can be predicted with machine learning algorithms from bright-field images in fixed tissue

to uncover single cell morphology or state, without requiring laborious, time-consuming and

phototoxic stains [28, 29, 75]. In an in-silico staining task, each pixel or voxel in a bright-field

image is correlated to a predicted intensity that resembles a fluorescent staining.

Deep learning methods can also be used to accelerate microscopic image acquisition. Image

restoration techniques can be used to under-sample the recording of image planes and use deep

learning to predict missing information on a tissue level [76]. Furthermore, deep neural methods

can virtually refocus a two-dimensional fluorescence image onto user-defined three-dimensional

surfaces within the sample, obtaining 3D information [77]. However, deep learning algorithms

typically require large annotated data-sets for training, assessment and testing of generalizability

[12, 24, 58].

Unsupervised learning (see section 1.4.3) has recently emerged as a new field in deep learning,

allowing researchers to train models without explicit labels. These methods rely on creating a

supervised task on unlabelled data using implicit labels from the data-set to train a model [31].

It can be used to train models for image denoising [78], or for feature learning [6, 79], which can

be used for gene expression prediction [80] or to identify and quantify microanatomical tissue

structures in multiplexed images [79]. In the application of histopathology, unsupervised learning

can be used to search large databases that contain gigapixel sized whole slide images to identify

relevant regions in images [81]. Unsupervised learning has also been used in histopathology

to identify sub-regions of high diagnostic value in whole slide images, to classify whole slides

or to perform a clustering of image features [82]. Often, models trained in an unsupervised

fashion are later refined on a smaller labeled data-set in a supervised fashion [74]. When applied

successfully, deep learning algorithms can achieve higher accuracy in single cell classification

tasks than trained experts [66, 83, 84] and outperform humans at data processing speed and

prediction consistency [84–86].

Deep learning based image analysis can be extended with a new layer of information by using

multi-omics approaches [87–89]. The combination with information from other modalities, such

as genomics, epigenomics, transcriptomics, proteomics, and metabolomics, offers the opportunity

to investigate relationships across multiple levels of cellular organization and to provide new

insights into biological processes that cannot be inferred from a single modality [90, 91]. The

integration of large, complex, multimodal data into a single model represents a considerable

challenge [91].

First steps in the field have been made combining microscopy with genomics and transcriptomics

but data integration remains a challenge. For survival outcome prediction, histology images

and genomics have shown to complement each other leading to superior prognostic performance

in cancer diagnosis and prognosis [92]. In combination with spatial transcriptomics, gene

activity across different cells and intracellular structures can be studied. It has been shown that
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registration and analysis of transcriptome images and immunostaining images can reveal new

biological insights [93].

1.8. Research questions

Deep learning can open new ways to extract information from microscopic images. This requires

the development of reproducible and reliable methods that are easily applicable by researchers

from different fields. Within the scope of this cumulative thesis, the following research questions

are addressed:

I) How can a larger audience be enabled to apply state-of-the-art deep learning algorithms?

II) How can the effort of obtaining 3D morphological information of single cells from microscopy

images be reduced?

III) How can single cells be monitored in 3D time-lapse bright-field movies?

1.9. Summary of results

The series of papers I present in this thesis provide researchers with methods that can be used to

simplify and accelerate the analysis of single cell image data-sets and thereby pave the way towards

quantitative high-throughput microscopy (see figure 1.8). InstantDL [1] provides researchers with

an easy-to-use, reliable framework, combining deep learning models for semantic segmentation,

instance segmentation, pixel-wise regression and classification. This debugged and benchmarked

framework eases the access for researchers with a basic computational background to state-of-the-

art deep learning algorithms. The SHAPR [2] algorithm can be used to reconstruct the shape of

3D cells or nuclei from 2D images. This algorithm reduces the number of microscopic images

needed to obtain 3D information and thereby minimizes the effort of microscopic imaging. SHAPR

has been extended in a follow-up [3] with a topology-based loss function that captures contextual

information and thereby further improves shape prediction. I further present Bright2Nuc [4],

a deep learning model to predict a nuclear marker from 3D bright-field images, allowing for

segmentation of nuclei from bright-field images, tracking nuclei in cell cultures imaged in live

bright-field, and predicting cell states based on the expression of transcription factors from single

cell morphology. Thereby researchers can omit tissue fixation and staining and still obtain a

nuclear marker signal to assess cellular morphology. Furthermore, it allows for the tracking of

single cells in 4D time-lapse movies.

Core publications as main author

• [1] in section 2.1: InstantDL - An easy-to-use deep learning pipeline for image segmentation

and classification

Most deep learning algorithms are developed to solve one specific problem; they typically

require a considerable coding effort and a machine learning background for their application.

This raises issues of reproducibility and applicability when trying to transfer the methods
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Figure 1.8: In this thesis, three obstacles for the application of high-throughput microscopy
are tackled with deep learning methods. As the main author, I published three
contributing articles, which have the potential to ease the application of deep
learning methods in microscopic image analysis, enable researchers to obtain 3D
morphological information of single cells from 2D microscopy images and provide
tools to monitor single cells in 3D time-lapse movies.

developed to other data-sets. To ease application commonly used state-of-the-art deep

learning algorithms for microscopic image analysis are bundled in InstantDL. InstantDL

can be used for semantic segmentation, instance segmentation, pixel-wise regression and

classification, providing automated and standardized workflows. The algorithm was exten-

sively tested on different data-sets. InstantDL, despite not being tuned for a specific task,

achieves competitive results on a variety of biomedical image data-sets that were used for

benchmarking. It is in use at the Helmholtz Zentrum Munich and has been cited from

researchers in several countries.

• [2] in section 2.2: SHAPR - An AI approach to predict 3D cell shapes from 2D microscopic

images

Imaging single cells in 3D is a time-consuming task as it requires stacking two-dimensional

images. Our SHApe PRediction autoencoder (SHAPR) eases the trade-off between through-

put and resolution in space and time for 3D microscopic imaging by predicting the 3D

shapes of single cells from 2D microscope images. This deep learning algorithm combines

a 2D encoder for feature extraction from 2D images with a 3D decoder to predict 3D

shapes from latent space representations. The results demonstrate that SHAPR is able

to predict 3D shapes of single red blood cells and shapes of cell nuclei imaged with a

confocal microscope. The nuclei were counterstained human-induced pluripotent stem cells
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(iPSCs) cultured in a spheroidal aggregate. The potential applications of SHAPR include

accelerated drug screening with patient derived cell clusters.

• [3] in section 2.3: Capturing Shape Information with Multi-Scale Topological Loss Terms

for 3D Reconstruction

The challenging task of predicting 3D objects from 2D images is tackled by SHAPR [2]. To

further improve this spatial reasoning task, contextual information of the shapes of the

objects is critical. However, established loss functions only capture geometrical information,

but not contextual information. Therefore, we complement an established loss function

(e.g. the dice loss and binary cross entropy loss) with contextual information, by comparing

multi-scale topological features, such as connected components, cycles and voids, between

the ground truth and SHAPRs predictions. By adding this loss function to the SHAPR

algorithm, we substantially improved reconstruction quality. Applications of this topological

loss function span from image segmentation to image reconstruction and shape prediction

with deep learning methods.

• [4] in section 2.4: Label-free imaging of 3D pluripotent stem cell differentiation dynamics

on chip

Organoids can replicate organ complexity or mimic functional aspects and thereby allow

researchers to study organ development and disease. To unleash the full potential of

automated high-throughput screening analysis of organoids with single cell resolution and

thereby gain insight into organ development, self-organization and disease progression

novel tools are required. These tools can extract information from bright-field images,

making fixation and staining of tissue unnecessary and that can process large amounts of

data, acquired during time-lapse experiments fast. We have developed Bright2Nuc, a deep

learning method to predict nuclear staining from 3D bright-field images, reducing slow,

expensive and phototoxic fluorescent stainings that can damage cells [4]. Furthermore, we

can segment individual nuclei, quantify their morphological properties, track them over

time and predict transcription factor expression. By applying our deep learning tools

on organoids of human induced pluripotent stem cells differentiating towards definitive

endoderm, we determine the number of nuclei with high accuracy, calculate nuclei velocities

and predict lineage specific transcription factor expression. Our methods are available in

an open source pipeline.
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2. Methods: Summary of contributed articles

This chapter summarizes my contributed articles in the context of the methods described in

section 1.

2.1. InstantDL — An easy-to-use deep learning pipeline for image segmentation

and classification

Combining the architectures, methods and concepts described in section 1, I have built an

easy-to-use deep learning pipeline, InstantDL [1].

Research problem

Published algorithms mostly solve only one specific problem as they are developed by one lab for

a specific task. Plus they typically require a considerable coding effort and machine learning

background for their usage. This raises issues of reproducibility and applicability for other labs,

when trying to use the methods on other data-sets.

Approach

I have aimed at developing a deep learning pipeline for four common image processing tasks:

semantic segmentation, instance segmentation, pixel-wise regression and classification. Therefore,

I have used existing deep learning architectures and combined them in one pipeline: a U-Net

(see section 1.6.6) for semantic segmentation and regression tasks, a Mask R-CNN for instance

segmentation (see section 1.6.4), and a ResNet (see section 1.6.3) with 18 layers for image

classification.

One of the main challenges was to unify the pre- and evaluation for these different methods

and architectures, in order to make InstantDL easy and convenient to apply. To tackle this, I

have implemented shared data loaders, data normalization, data augmentation and optimization

procedures as described in section 1.6.1. To automate and thereby simplify the evaluation for

the user, I have added commonly used metrics, which are automatically calculated after test set

predictions. To assess the uncertainty of U-Net and ResNet predictions, I have added dropout

layers (see section 1.5.2) to the model enabling the application of Monte Carlo dropout [45] as

described in section 1.5.4. To run InstantDL, the user must only split the data-set in a train and

test set by sorting the images in the corresponding folders, the validation set will automatically

be split from the test set during dataloading. Thereafter, InstantDL can be run with default

settings, meaning that the user must only provide the task name and data path. If the user

wishes to adapt InstantDL, a maximum of twelve parameters can be set. These are: The task

(i.e. semantic segmentation, instance segmentation, regression, or classification), a seed for repro-

ducibility, path to the project directory containing the train and test files, pre-trained weights to

initialize the model, batchsize, number of iterations over the data-set, data augmentations, loss

function, number of classes, if the images should be resized during import, uncertainty calculation

after training, and automated evaluation after training. With InstantDL I also provide ten dif-
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Figure 2.1: InstantDL [1] provides researchers with an easy-to-use deep learning pipeline for
biomedical image analysis. a, Indicated user actions are highlighted in gray in this
flow diagram. (1) The user must choose the desired task (semantic segmentation,
instance segmentation, pixel-wise regression, classification) and may choose from
to twelve parameters in the configuration file, illustrated by a code snippet. (2)
The user must split the data into train and test set by putting the data in the
corresponding folders. By executing the python configuration file, the pipeline
automatically loads the data, creates a validation set, normalizes and augments
the data and then starts training using either a pre-trained or randomly initialized
model. Once finished training, the model predicts test labels, and results can be
interpreted by the user via statistical and visual assessment that is automatically
performed by InstantDL. Example output for a b, 2D semantic segmentation using
the U-Net, c, a 2D instance segmentation using the Mask R-CNN, a d 3D pixel-wise
regression task using the U-Net, and e, a classification task using the ResNet.
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ferent pretrained weights, which the user can use for transfer learning as described in section 1.5.3.

Validation on published data-sets

We have benchmarked InstantDL on seven publicly available data-sets (four of which come from

data science challenges) and compared its performance to published results. If no test set was

provided, we took 20% of the data to create our own test set. This was done on the highest

level of abstraction, for example on patient level or tissue-slide level whenever possible, otherwise

the data was randomly split. I used the same evaluation metrics as published in the respective

publications (Jaccard index, AUC, Pearson correlation) to compare our results appropriately.

Results

InstantDL enables researchers with a basic computational background to apply debugged and

benchmarked state-of-the-art deep learning algorithms to their own data with minimal effort. To

make the pipeline robust, I have automated and standardized workflows and extensively tested it

in different scenarios. With InstantDL, I achieved competitive results without any hyperparameter

tuning. While I could not reach the challenge winners’ performance (who typically use specifically

tuned algorithms) of the respective challenges with our out-of-the-box approach, the output of In-

stantDL suffices for standard biomedical data analytics performed after the image processing step.

Conclusion

InstantDL simplifies the access to the advantages of deep learning algorithms for biomedical

researchers with limited background in computer science. The only requirement is a solid

understanding of the data (and how to appropriately split it into training and test set) and of the

loss function that should be optimized during training the model. The pipeline is designed for

maximal automation to make training and testing as convenient and easy as possible. However,

some parameter settings depend on the data-set properties and therefore cannot be automated.

After setting a maximum of twelve parameters, the pipeline can be run without further user

interactions. We included state-of-the-art analysis metrics that are directly accessible out-of-

the-box. Moreover, we incorporated uncertainty prediction to provide an additional level of

interpretability. For customization of the pipeline to specific tasks, all code is easily accessible

and well documented, see also A.1.

Individual contribution: Carsten Marr and Niklas Köhler had the idea to create an easy-to-use

general deep learning pipeline that can be applied to common image analysis tasks. Together

with Carsten Marr and Niklas Köhler, I developed the scope of InstantDL. I implemented the

complete code: I wrote a U-Net for semantic segmentation and pixel-wise regression, added

an open-source package of the Mask-RCNN for instance segmentation and an existing package

containing a ResNet for image classification. I adapted these packages to create a smoothly

and efficiently operating pipeline. I wrote the data loader, the data augmentation module, the

evaluation pipeline, and the uncertainty estimation from scratch. I benchmarked InstantDL on
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selected publicly available single cell image data-sets with the support of Niklas Kiermeyer. With

Sayedali Shetab Boushehri, I created the python package and unit tests. Finally, I wrote the text

and created the figures of the manuscript together with Sayedali Shetab Bousheri and Carsten

Marr.

I am main the main author of this publication.

2.2. SHAPR predicts 3D cell shapes from 2D microscopic images

With the methods and concepts described in section 1, I have built a SHApe PRediction autoen-

coder (SHAPR) [2].

Research problem

Recording single cells in three dimensions (3D) as opposed to recording single cells in two dimen-

sions (2D) is often desired, as it leads to an information gain in the obtained images. However, 3D

imaging is prohibitively time-consuming as it requires stacking of two-dimensional (2D) images

or tomographic imaging, limiting its application in high-throughput biomedical imaging. This

raises the question of how throughput and resolution in space and time can optimally be traded off.

Approach

We aim to eliminate the trade-off between throughput and resolution in space and time for 3D

microscopic imaging by predicting the 3D shapes of single cells from 2D microscope images. I have

developed SHAPR, a deep learning algorithm that combines a 2D encoder for feature extraction

from 2D images with a 3D decoder to predict 3D shapes from a latent space representation,

resulting in an autoencoder-style model, as introduced in section 1.6.5. I have used a 2D encoder

with three convolutional blocks and three downsampling steps to extract the information, and

seven convolutional blocks with seven upsampling layers to obtain 3D shapes from the latent

space representation.

To increase SHAPR’s prediction accuracy, a discriminator model was trained to differentiate

between true and predicted 3D cell shapes, similar to an an adversarial model, as described in

section 1.4.2.

Data-sets

I have used two data-set to evaluate SHAPR. For proof of concept, I predicted cell shapes using

a recently published library detailing 3D red blood cell shapes (n = 825 cells) [94, 95]. Each cell

shape was reconstructed from 68 confocal images with a z-resolution of 0.3µm. The 2D image of

the red blood cell is intersecting the 3D image at the center slice. In a second step, I challenged

SHAPR to predict cell nuclei shapes from confocal z-stacks containing fluorescence counterstained

nuclei from human-induced pluripotent stem cells (iPSCs) cultured in a spheroidal aggregate. To

generate the ground truth data, 887 cell nuclei from six iPSC-derived aggregates were manually
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Figure 2.2: a, SHAPR [2] pairs a 2D encoder and a 3D decoder, which reconstructs a 3D shape
from a 2D image embedding. To train SHAPR, we segment 3D microscopy images
and combine each 2D segmentation with the microscopy image of the same slice to
be used as an input for the encoder. We train SHAPR in two steps; first supervised,
where the sum of the dice loss and the binary cross entropy loss between the 3D
segmentations and SHAPR predictions is minimized. b, In a second step SHAPR is
fine-tuned by adding a discriminator. The discriminator is trained to differentiate
between the output of SHAPR and the ground truth segmentation and minimize
the adversarial loss. It thereby challenges SHAPR to output realistic 3D objects.
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segmented in 3D. SHAPR was provided with one 2D image slice taken at an aggregate depth

of 22 µm in the cell culture and its corresponding segmentation as input, meaning that nuclei

were cut at random heights, leading to a variety of segmented areas. I have made the datasets

available via Zenodo [95].

Results

SHAPR is able to predict 3D shapes of single red blood cells and nuclei from 2D microscope

images. Compared against two näıve stereological models, i.e. a cylindrical and an ellipsoid fit,

the predictions of SHAPR significantly outperformed these models with respect to intersection

over union, volume error, 2D surface area error, and surface roughness error. Using features

of the predicted 3D red blood cells for a classification task into six classes, the F1 score was

significantly improved by adding 3D prediction features of SHAPR to features extracted from

the 2D images only.

Conclusion

I have shown that SHAPR can be used to reconstruct 3D cell shapes from 2D fluorescent

microscopy images. From the predictions of SHAPR, relevant features can be extracted, as

proven by a downstream classification task, which was significantly improved when adding 3D

prediction features of SHAPR as opposed to using the features of the 2D images alone. Applying

SHAPR to single nuclei, we showed that relevant nuclear characteristics are captured, as opposed

to the two näıve models. Using SHAPR to predict 3D shapes from 2D images thus offers a simple

way to reduce imaging time and data storage as compared to 3D microscopy, while retaining

morphological details. Trained SHAPR models can be applied to predict single cell volume distri-

butions and density, can screen cell cultures and identify outlier events. Future applications might

also include feature based label-free transcription factor prediction or single cell classification

for diagnostic purposes in computational pathology. SHAPR may also be extended to increase

efficiency of biomedical imaging in multiple domains, including other biological structures, as for

example organelles and proteins, see also A.2.

Individual contribution: Carsten Marr and I had the idea of predicting 3D cell morphology

from 2D microscopy images. I was responsible for creating the computational methodology from

scratch, including designing and implementing the code, the deep learning network, the data

loader, the data augmentation and the evaluation scripts from scratch. With Carsten Marr, I

designed the experiments and, together with Niklas Kiermeyer, I performed the hyperparameter

optimization and conducted the experiments. With Mohammad Mirkazemi, I wrote the SHAPR

python package to make the method publically available. Matthias Meier and Scott Atwell

provided a data-set that Scott manually annotated for our evaluation. Finally, I created the text

and figures of the manuscript with Scott Atwell, Ario Sadafi, Matthias Meier and Carsten Marr.

I am main the main author of this publication.
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Figure 2.3: A novel topological loss function for capturing shape information on mutliple scales.
For an object predicted by SHAPR and its corresponding 3D ground truth object,
we calculate topological features with cubical persistent homology, thereby we
obtain two persistence diagrams. Each point in a persistence diagram denotes the
birth and death of a topological feature of some dimension of the given object in
different scales. With our topological loss we compare these diagrams and combine
this with existing loss terms like BCE and dice loss.

2.3. Capturing Shape Information with Multi-scale Topological Loss Terms for 3D

Reconstruction

Using the methods described in section 1.5.5 and utilizing SHAPR (see section 2.2) as a use-case

we have developed a novel topological loss function [3].

Research problem

Using SHAPR for reconstruction of 3D objects from 2D images is a spatial reasoning task.

Contextual information about the overall shape of an object is not captured by established loss

terms like the dice loss or BCE loss (see section 1.3.3).

Approach

We aimed to improve the reconstruction performance of SHAPR using a novel regularization

technique that goes beyond geometrical loss terms, but captures contextual information. This

contextual information is not caputres by established loss terms, such as the dice loss or BCE

loss. Therefore we have developed a method to extract multi-scale topological features, compare

these features with an optimal transport metric and use it as a loss function (see section 1.5.5).

We jointly optimised the model using the BCE, dice loss and topological loss during training

with L = 1
2LBCE + 1

2LDiceloss + λLtopological, where λ ∈ R+. To accelerate the calculation of our
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topological loss term, we downsample each volume from 64×64×64 voxels to 16×16×16 voxels

using trilinear interpolation. I found that this is sufficiently good enough to capture topological

information, while resulting in only small empirical errors.

Data-sets

We have used the same two data-sets as for SHAPR (see section 2.2 and [2]).

Results

To evaluate the topological loss, I perform the same experiment twice: In a first round we used a

joint BCE and dice loss (setting λ = 0), followed by adding the topological loss (setting λ = 0.1).

Without the topological loss, I achieve results comparable to the original SHAPR publication

[2], while minor deviations arise from stochasticity and implementation differences between

PyTorch and Tensorflow. I jointly optimised the BCE, dice loss and topological loss during

training, which lead to the best results in a hyperparameter search. We observe statistically

significant performance gains in all but one of multiple metrics for both data-sets when adding

the topological loss to the model [3].

Conclusion

I have shown that a topology-aware loss function can improve a spatial reasoning task, by employ-

ing multi-scale topological features. The loss term can be integrated into existing deep learning

models, for reconstruction and segmentation tasks. It does not optimise classical segmentation or

reconstruction metrics, but serves as an inductive bias for incorporating multi-scale topological

features, capturing contextual information. I found that the topological loss did not improve

performance evenly across different classes of the red blood cell data-set, but improves results the

most on shapes that have complex morphological features, such as echinocytes or bi-concavely

shaped cells (discocytes and stomatocytes) [3], see also A.3.

Individual contribution: Bastian Rieck and I discussed how we could improve the predictions

of SHAPR with a content-aware loss function. Bastian had the idea to implement a topological

loss. I translated SHAPR from tensorflow to pytorch, to enable the integration of the topological

loss function that he created, and we both implemented the topological loss into the SHAPR

framework. Together, we optimized hyperparameters and performed experiments. Bastian and I

created the figures and, with the help of Carsten Marr, we wrote the manuscript.

I am main the main author of this publication.

2.4. Label-free imaging of 3D pluripotent stem cell differentiation dynamics on chip

Using the methods described in section 1 and based on InstantDL, described in section 2.1, I

have build Bright2Nuc, enabling insights into cell differentiation.
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Research problem In-vitro 3D stem cell cultures can mimic in-vivo environments and be used

for culturing organ-specific tissue from stem cells. They can replicate organ complexity or express

selected aspects and thereby allow researchers to study organ development and disease. To

unleash the full potential of automated high-throughput screening analysis of 3D cell cultures, to

gain insight into cell development, self-organization and disease progression, novel computational

tools are needed. Currently, slow and expensive imaging in 3D using phototoxic fluorescent stains

hampers its potential. Tissue requires to be fixed before staining, killing cells and making long

term monitoring infeasible.

Approach

I have developed Bright2Nuc, a deep learning methods to predict nuclear staining in 3D from

bright-field images, so tissue must not be fixed and stained to investigate cellular properties [4].

This in-silico staining of 3D bright-field images opens a range of downstream analysis like cell

segmentation and analysis of morphological features or single cell tracking. I trained a U-Net

(see section 1.6.6) on paired bright-field and fluorescently labeled images to predict a nuclear

marker staining. To incorporate 3D information, I modified the U-Net with 3D convolutional

layers and 3D downsampling and upsampling layers. In each downsampling and upsampling

layer the x-y-dimension was changed, while the z-dimension stayed unchanged throughout the

network. Thereby, neighboring slice information was added. Using this in-silico staining, I could

segment individual nuclei using a re-trained method called Stardist [72, 96], allowing for feature

based morphometry and cell status prediction. Applying the in-silico staining to live bright-field

movies in 4D allowed me to track single nuclei in space and time using trackmate [97].

Data-sets

All the data used for this publication was imaged by Scott Atwell with a confocal microscope. I

have made them available via Zenodo [98].

Results

We showcase our methods on data-sets containing aggregates of human induced pluripotent

stem cells, imaged with a confocal microscope. In two experiments cell cultures have been

imaged in live bright-field, and were later fixed and stained with a nuclear marker and with

three transcription factor stainings. These transcription factor stainings indicating cell state,

namely pluripotency or differentiated towards definitive endoderm. In two other experiments cell

cultures have not been fixed and stained but bright-field movies were recorded. During one of

these experiments a reporter cell line was used marking a sub-population of cells with a nuclear

marker which was used as a benchmark. Our tools allow for:

• the calculation of the number of nuclei with high accuracy in fixed and live 3D bright-field

images

• the calculation of nuclei velocities in live 4D bright-field movies
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• the prediction of cell states from 3D bright-field images

We were able to confirm existing literature by showcasing that we measure an increase of nuclei

movement during differentiation.

Conclusion

Our deep learning approaches allow for monitoring of single cells in cell cultures, reducing the

need to fix and stain the tissue to investigate cellular morphology or cell states. Thereby I pave

the way towards high-throughput applications microscopy based cell analysis and monitoring. By

in-silico staining of bright-field images I can predict the nuclei position, shape and morphology

and thereby gain insights into cell states and movement patterns, without the need for fixation

and staining of tissue [4], see also A.4.

Individual contribution: Matthias Meier and Carsten Marr developed the idea to predict

nuclear markers from the 3D bright-field images that Scott Atwell records in the laboratory.

There was no applicable solution for this data available, therefore Matthias Meier, Scott Atwell,

Carsten Marr and I created an outline for the project. I was responsible for adapting the

InstantDL pipeline to the specific needs of predicting nuclear markers from 3D bright-field images.

This enables tracking of individual nuclei over time. Moreover, it allows for segmentation the

nuclei for assessing their morphology. From the morphology, we predicted the transcription factor

expression of single nuclei. With Carsten Marr, Matthias Meier and Scott Atwell, I designed the

computational experiments. I developed the Bright2Nuc python package to make the method

publicly available. Matthias Meier and Scott Atwell provided the data-sets. Scott and I were

responsible for creating the manuscript text and figures with the help of Carsten Marr and

Matthias Meier.

Scott Atwell and I share main authorship of this publication.
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3. Discussion

Deep learning models have become drivers of innovation in biomedical microscopy data analysis

with numerous applications, such as denoising, illumination correction, image restoration, stain

prediction, segmentation, feature extraction and morphology analysis. Being able to outperform

non-machine learning methods and human experts concerning data processing speed, deep

learning methods are well suited to handle the increasing amount of microscopy images and

larger 3D data-sets. Another advantage of deep learning methods is their prediction consistency

as, once trained, most of the deep learning models are deterministic. They provide consistent

predictions as opposed to a human who’s predictions might vary.

3.1. Summary

In this thesis, I developed deep learning methods for 3D microscopy image analysis. The resulting

tools extended the impact that researchers can generate from their microscopy image data. The

presented methods are easy-to-apply, benchmarked, reproducible, reviewed, well-documented,

and were published open source. They can be used for image segmentation and classification, 3D

shape prediction from 2D images as well as in-silico staining.

InstantDL [1] enables users to apply state-of-the-art deep learning methods in an easy-to-use

framework for recurring image analysis tasks, such as image segmentation, pixel-wise regression

or image classification (see section 2.1).

To accelerate microscopic imaging, I developed SHAPR [2], a deep learning model that predicts

the 3D shape of single cells and nuclei from 2D microscopic images. This enables researchers to

retrieve 3D morphological information of single cells, while only imaging in 2D (see section 2.2).

By replacing 3D imaging with 2D imaging, which is multiple times faster, SHAPR can substantially

decrease imaging time and allow for high-throughput microscopy.

The latest developments at the intersection between mathematics and computer science enabled

the fast extraction of topological features from images [49, 99, 100]. We extended SHAPR with a

topological loss function [3], which considers contextual information, based on the extraction of

multi-scale topological features using a cubical complex. These topological features are compared

using Wasserstein distance, a metric from optimal transport. The developed loss function is

model agnostic and can be added to any neural network (see section 2.3).

To access currently untapped information contained in bright-field images, such as the single

cell volume, I developed Bright2Nuc, a deep learning model to predict a nuclear marker from

3D bright-field images [4]. Bright2Nuc allows researchers to segment in-silico stained nuclei and

to assess morphological information in bright-field images (see section 2.4). By expanding the

in-silico staining method to live 4D bright-field movies (3 spatial dimensions and time), the

method allows quantification of single cell dynamics. Furthermore, I was able to predict cell states

that indicate the differentiation status with a feature-based approach by combining morphological

features extracted from bright-field images and the nucleus predictions from Bright2Nuc.

Taken together, these methods enable faster image analysis: InstantDL eases the access to state-
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of-the-art deep learning methods, SHAPR accelerates 3D microscopic imaging, and Bright2Nuc

reduces the number of fluorescent stains required to assess the position, shape, morphology

and dynamics of a single cell. All presented methods increase the amount of information that

researchers can automatically extract from microscopic images. This thesis benefits the research

community as I ensured reproducible results by providing well-documented and reviewed open-

access python packages, by meeting high software standards, and by benchmarking my work on

several data-sets.

The developed methods can pave the way towards microscopy-based, non-invasive, high-throughput

single cell monitoring and image analysis enabled by deep learning methods. The methods pre-

sented in this thesis enable researchers to apply state-of-the-art deep learning methods to their

own data, to reduce microscopic imaging time, the use of fluorescent stains and tissue fixation, and

enable monitoring of cells in high-throughput time-lapse experiments, only based on bright-field

movies. Thereby, the impact that researchers can generate from microscopy experiments can be

increased.

3.2. Outlook

Developments in deep learning

New deep learning algorithms are constantly developed, with ever increasing predictive perfor-

mance and new applications, as indicated by the exponentially increasing number of publications

in the field. These new deep learning methods will significantly change 3D microscopic imaging

towards high-throughput cell monitoring in space and time. This development will thereby help

to uncover previously undetectable information, such as phenotypes, from bright-field images.

Label scarcity is an ever occurring issue when training deep learning models on biomedical data.

These labels are especially difficult to obtain in the biological and medical domain, as an expert is

often required to perform annotations [101]. Self supervised learning can help utilizing unlabelled

data-sets in numerous applications, as it can be used to train deep learning models without

explicit labels (see section 1.4.4). Self supervised models can then either be directly applied on

specific tasks, such as to discover tissue architecture in multiplex imaging [79], or in a transfer

learning approach, where a model is trained in a self supervised fashion on a data-set without

annotations and then the model weights are refined in another supervised training step [6]. In

future, I expect to see the field of self supervised deep learning methods expanding, whereby

unlabeled data is used effectively. Presumably, most models will be initialized with weights

obtained from a self supervised tasks, and shared between applications, as transfer learning

improves model performance and decreases training time, thus saving valuable resources.

Approaches that use weakly labelled data-sets are emerging, meaning that insufficient annotations

are available, for example. if only a fraction of the data-set is labelled or only higher level labels

are available. Examples are large whole slide images that are too large to be processed by

a computer at once and only contain labels for the respective whole slide image but not for

sub-regions of the image. Multiple instance learning methods are developed for these weakly

36



labeled data-set, they intelligently extract features from image sub-regions and combine them so

that supervised training is enabled [102].

Recently, diffusion models have gained increasing attention due to their predictive power [103,

104], outperforming other generative models. They have also found application on biological and

medical tasks, for anomality detection [105] and for image segmentation [106]. We applied a

diffusion model to predict 3D single cell shapes from 2D images, yielding superior results [10].

I expect these models to find wide application in microscopic image analysis, for example, in

domain transfer or to impute missing data.

Graph neural networks are another emerging method that has the potential to find a wide range

of use cases in microscopic image analysis. Single cells are not isolated objects, but must be

understood in the context of their environment. Accordingly, graph neural networks are able to

efficiently describe relationships between tissue regions and cells [107]. They have already been

successfully applied in histopathology to retrieve regions of interest in whole slide images [108] and

for image classification [107, 109, 110]. Graph deep learning is to detect contextual pathological

features within a complex tumor microenvironment for prognosis prediction of patients with

tumours and to identify prognostic biomarkers [111]. Furthermore, graph neural networks can

leverage spatial protein profiles in tissue specimens to model tumour microenvironments to detect

contextual pathological features. Thereby, not only prognostic biomarkers can be identified,

but they can also capture distinctive cellular interactions associated with differential clinical

outcomes [112]. In the application of transcription factor prediction, I expect a graph neural

network to outperform our feature based regression approach [4] as graph neural networks can

relate a single nucleus to its context and thereby increase predictive performance.

Transformer models [113] have started to outperform traditional deep learning methods in

medical image segmentation [114] and classification [115]. Transformer models are originally

sequence-to-sequence models with the obvious application in natural language processing. They

transform a sequence, such as the words in a sentence, into another sequence. This task can be

reformulated so that transformers are applicable on images [116]. These architectures provide

exciting opportunities for a new generation of deep learning methods.

Applicability and reproducibility

The field of microscopic imaging lacks behind in terms of standardization and reproducibility of

techniques as compared to genomic sciences. In the field of genomic sciences, next-generation

sequencing techniques in combination with robust platforms for profiling gene expression, high-

quality shared databases and analysis tools have contributed to a major success, including

hundreds of genome-wide association studies [7, 8, 12]. Automatic image analysis tools are often

developed to address one specific problem in an individual project or lab, leading to many highly

specialized solutions. Due to the high specificity of the tools, the provided solutions are often

not easily applicable by other researchers and therefore do not scale [7, 117, 118].

Tackling this issue, general purpose deep learning frameworks, such as OpenML [119], offer an
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ecosystem of data-sets and machine learning models. However, online models require that the

users upload their data-set and make it publicly available, which is often not possible in the

biomedical domain because of strict data security restrictions. ImJoy [120] is an online tool with

that users can select plugins for processing their data, which is easy and convenient, yet not

locally executable. The tools nucleAIzer [121] and yeastspotter [122] are easy-to-use web tools

but provide only cell and nuclei segmentation using drag-and-drop with pre-trained machine

learning models.

Data-sets

Large standardized and public data-sets, such as ImageNet [62] in the natural image domain,

are likewise required in the biomedical domain to test, benchmark and compare the developed

methods. This is partly tackled by machine learning challenges, often accompanying machine

learning conferences, where participants can test and compare methods [123, 124]. However,

these challenges are often performed on a limited data-set in terms of number and diversity

of images, ensuring neither the generalization of developed methods to other data-sets nor

their applicability by other researchers. In recent years, data-sets have been used to define a

challenge that motivated researches to develop solutions for a specific problem, thereby the

challenge organizers have set a direction for the field, for example in nucleus segmentation [125].

Creating challenges that solve meaningful problems of a field is one powerful way of moving a

research field forward. In future, I expect to see large, curated multi-omics data-sets that are

continuously updated in terms of number of data points, annotations and modalities to create a

standard for researches to test and benchmark their tools. Larger data-sets might also require the

application of multiple methods, such as modality specific pre-processing and feature extraction,

in combination with data integration and evaluation tools.

For the future, I also envision easier-to-apply deep learning methods, such as InstantDL, making

them usable for a large audience, for example by their integration into user-friendly interfaces

such as ImageJ [126] and Napari [127], as exemplified by TrackMate [128]. This approach will,

furthermore, simplify the successive application of deep learning methods, for example performing

a noise reduction followed by a staining prediction and a cell segmentation. Currently, these are

separate steps for researchers, requiring different methods that all have to be successively applied.

Solving these challenges can lead to faster, more reliable and more reproducible microscopy image

analysis that enables high-throughput imaging.

Multi-omics integration

In combination with multi-scale and multi-omics approaches [87–89], high-throughput microscopy

approaches, such as SHAPR and Bright2Nuc, can amplify the information researchers are able

to obtain in biomedical experiments. Multi-omics, including image-based cell profiling, can

add a new layer of information to existing approaches, that can complement existing analysis.

The field still has a lot of untapped potential, with a few challenges remaining, such as data
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integration. Recently a multi-modal approach displayed the fields potential, by integrating

medical imaging, histopathologic and genomic features to predict immunotherapy response [129].

In future multi-omics approaches can help to uncover numerous biological phenomena, help to

identify relevant genes via functional genomics, to study cell responses to treatments, and to

detect new biomarkers [130].

Contribution to translational research

Large-scale image-based screenings can accelerate several fields, such as drug screening and

drug discovery, in-vitro disease modeling, personalized medicine and regenerative therapies [17,

130]. In the application of drug screening, image-based cell profiling can be used to extract

information from biological images to uncover relevant patterns, reveal unexpected biological

activity and, thereby, contribute to the identification of disease-associated phenotypes, disease

mechanisms and prediction of drug activity [130]. Moreover, disease diagnosis [131, 132] and

prediction of patient outcomes in cancer research and in histopathology [133–135] can profit from

light microscopy in combination with deep learning for image analysis by accelerating diagnosis

and increasing prediction performance. Personalized medicine can benefit from deep learning

methods applied on light microscopy images, for measuring patient responses after treatment

with various potential therapies [130].

For a clinical application of deep learning methods, many technical, regulatory and ethical

challenges remain. The numerous obstacles for implementation of machine learning methods

in daily clinical practice include issues with transparency, the inherent bias in the data they

are fed with and potential security [136]. As a first step, the machine learning model needs to

be thoroughly evaluated and regulatory authorities need to approve the method, e.g., the U.S.

Food and Drug Administration (FDA) or the European Medicines Agency (EMA) [136, 137].

Joint efforts of interdisciplinary teams and strong communication between data scientists and

clinicians can span the gap between machine learning research and its adoption in the clinic

[137]. All these issues can be addressed through adequately planned validation studies, leading

to credible clinical implementations of deep learning in the clinics [138] in close collaboration

with regulatory authorities and clinical partners.

The mentioned novel deep learning techniques promise to transform biomedical research and

address fundamental questions from basic to translational science, offering an exciting outlook

for biomedical researchers.
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InstantDL: an easy‑to‑use deep 
learning pipeline for image segmentation 
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Background
Deep learning has revolutionised image processing [1]. For specific biomedical image 
analysis tasks such as cell segmentation [2, 3], cell classification [4–6] or in-silico stain-
ing [7, 8], deep learning algorithms now achieve higher accuracy than trained experts 
[6, 9, 10] and outperform humans at data processing speed and prediction consistency 
[11, 12]. However, machine learning algorithms are mostly developed to solve one spe-
cific problem. Moreover, applying them often requires a strong computer science and 
machine learning background.

We here provide InstantDL, a pipeline that automates pre- and post-processing for 
biomedical deep learning applications. InstantDL bundles commonly used deep learning 

Abstract 

Background: Deep learning contributes to uncovering molecular and cellular 
processes with highly performant  algorithms. Convolutional neural networks have 
become the state-of-the-art tool to provide accurate and fast image data processing. 
However, published algorithms mostly solve only one specific problem and they typi-
cally require a considerable coding effort and  machine learning background for their 
application.

Results: We have thus developed InstantDL, a deep learning pipeline  for four 
common image processing tasks: semantic segmentation, instance segmentation, 
pixel-wise regression and classification. InstantDL enables researchers with a basic 
computational background to apply debugged and benchmarked state-of-the-art 
deep learning algorithms to their own data with minimal effort. To make the pipeline 
robust, we have automated and standardized workflows and extensively tested it in 
different scenarios. Moreover, it allows assessing the uncertainty of predictions. We 
have benchmarked InstantDL on seven publicly available datasets achieving competi-
tive performance without any parameter tuning. For customization of the pipeline to 
specific tasks, all code is easily accessible and well documented.

Conclusions: With InstantDL, we hope to empower biomedical researchers to con-
duct reproducible image processing with a convenient and easy-to-use pipeline.
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algorithms in one easy-to-use framework.  We did not change the bundled algorithms or 
tune them for a specific problem. Still, InstantDL achieves competitive results on differ-
ent biomedical image datasets.  It can be used for semantic segmentation (i.e. the clas-
sification of each pixel into a particular class), instance segmentation (i.e. the detection 
and classification of objects), pixel-wise regression (i.e. for in-silico staining) and image 
classification (i.e. to discriminate cancerous from healthy cells). InstantDL is an easy-to-
use python package that can be executed by setting only two variables: the task and the 
data directory. For advanced users, twelve parameters can be set  to adapt InstantDL to 
the specific task (see Methods). Moreover, different examples are provided in the docu-
mentation, which the user can follow. We provide 10 pre-trained models for  transfer 
learning, since biomedical datasets are often sparsely annotated, as manual annotation is 
laborious and costly.

InstantDL is benchmarked on seven publicly available (see “Results” section) datasets: 
nuclei detection in divergent images [13], multi-organ nuclei segmentation [14, 15], lung 
segmentation from CT scans [16], in-silico prediction of a mitochondrial and a nuclear 
envelope staining [7], cell classification in digitized blood smears [17, 18], and cancer 
classification on histopathology slides [19]. Without any hyperparameter tuning, we 
achieve competitive results.

InstantDL serves as a centralized repository and provides a straight-forward wrapper 
to execute image computing tasks. It is designed for users interested in applying deep 
learning to their own data. A basic understanding of programming suffices. In contrast 
to easy-to-use browser based segmentation tools [3, 20], it is not limited to one specific 
task and ensures data privacy. The code is open source and well documented for those 
who want to customize the pipeline to their needs. By providing a debugged, tested, and 
benchmarked pipeline we help reduce errors during code development and adaptation, 
and contribute to reproducible application of deep learning methods.

Implementation
InstantDL offers the four most common tasks in medical image processing: Semantic 
segmentation, instance segmentation, pixel-wise regression, and classification [21, 22]. 
In the following we describe the algorithms implemented in InstantDL to address these 
tasks and how they can be applied within the pipeline.

Semantic segmentation

One of the standard approaches for detecting image patterns is semantic segmentation 
[23]. For each pixel in the input image a class label is predicted by the algorithm. The 
U-Net [24] is a commonly used architecture for semantic segmentation with numer-
ous applications in biomedicine [25, 26]. It consists of a symmetric contractive path to 
capture context and an expansive path to capture fine localizations [24]. In InstantDL 
we made minor changes to the architecture from [24]: we (i) use padded convolutions 
to receive the same output and input dimensions and (ii) have implemented dropout 
layers in the encoder. These do not affect the performance of the network, but enable 
uncertainty quantification. The U-Net outputs continuous values between 0 and 1 for 
each pixel, which can be interpreted as probabilities to belong to a given class. InstantDL 
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allows for two classes (background vs. foreground) and thresholds the output using 
Otsu’ method [27, 28].

Instance segmentation

Instance segmentation is used to detect objects (instances) within an image [23, 28]. We 
implemented the Mask-RCNN [29] in InstantDL for this task. It first detects a bound-
ing box for each object in the image and then performs a segmentation in each bound-
ing box. Our Mask-RCNN is based on a ResNet50 from Abdullah’s [30] implementation. 
The Mask-RCNN requires instance level ground truth: For each image in the training 
set, a set of labels has to be created, each containing a segmentation mask of one single 
instance. An algorithm to create instance level ground truth from binary semantic seg-
mentation ground truth is provided as a jupyter-notebook with the pipeline.

Pixel‑wise regression

Tasks where no pixel-wise class labels but a continuous pixel value is desired (such as 
in-silico staining, [7]) are called pixel-wise regression. InstantDL uses the same U-Net 
implementation as for semantic segmentation. The only difference is that the U-Net out-
put is not interpreted as probabilities to belong to one or another class, but is regarded 
as a regression. We thus use continuous labels for training and the mean-squared-error 
as regressive loss as proposed previously [7].

Image classification

Here, the task is to classify each image into one of a specific number of given classes. For 
this task a residual network [31] is implemented. These architectures are widely used for 
biomedical image classification [12, 32]. Residual networks use residual blocks, a refor-
mulation of layers as learning residual functions, which enable the use of many layers, 
while ensuring convergence [31]. We use a slightly modified ResNet50 with 50 layers in 
InstantDL, where we have added dropout layers to enable uncertainty estimation.

The InstantDL pipeline
Data preparation

Data has to be manually split in a train and a test set (see Fig. 1a) according to the user’s 
hypothesis: For one dataset a random split might be suitable [33], while for others a split 
on patient or tissue slide level is methodically appropriate [6]. InstantDL can process 
stacked images, enabling the prediction from multiple channels. Input and ground truth 
images must have the same filename including the file ending (Table 1).

Pipeline settings

After data preparation the user can specify tasks and parameters in the configura-
tion file (see Fig. 1a) or run InstantDL with default settings only providing the task 
and data path. A maximum of twelve parameters can be set. These are: The task (i.e. 
Semantic segmentation, instance segmentation, regression, or classification), the seed 
for reproducibility, the path to the project directory containing the train and test 
files, the pre-trained weights for model initialization, the batchsize, the number of 
iterations over the dataset (i.e. epochs), the data augmentations, the loss function, the 
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number of classes, if the images should be resized during import, if the uncertainty 
should be calculated after training, and if the model should be automatically evalu-
ated after training. Within the pipeline one.json file serves as a config file.

Fig. 1 InstantDL provides an easy to use pipeline for the analysis of biomedical images. a Flow diagram of 
the pipeline with indicated user action highlighted in gray. (1) One out of four tasks (semantic segmentation, 
instance segmentation, pixel-wise regression, classification) is selected by the user. Up to twelve parameters 
can be set in the configuration file to adapt the pipeline to the task. A code snippet illustrates task selection 
and six of the twelve parameter settings in the configuration file: selected task (“use_algorithm”), path to 
folder (“path”), if pre-trained weights should be used the path to these (“pretrained_weights_path”) should 
be set, batch size (“batchsize”) and epochs chosen (“Iterations_Over_Dataset”). (2) Input data is split into 
train and test sets. The user specifies these by putting the data in the corresponding folders. After executing 
the python configuration file the pipeline will automatically load the data from the train folder, create a 20 
percent validation split, normalize and augment the data (see Methods for details). Training is initiated with 
either a pre-trained or randomly initialized model. After training, the model predicts test labels: segmentation 
masks, pixel values or labels for the images in the test set according to the chosen task. (3) Results can be 
interpreted by the user via statistical and visual assessment of the predicted outcome by comparing it to 
the ground truth in the test set. b Example output for a 2D semantic segmentation task: Cell nuclei in a 
brightfield image (left) are segmented with InstantDL (Prediction) using the U-Net, and compared to the 
original annotation (Groundtruth). The Errormap indicates over- and under-predicted pixels. The image is 
part of the 2018 Kaggle nuclei segmentation challenge dataset [13]. c Example output for a 2D instance 
segmentation task (same image as in b): A binary mask is predicted for each object in the image using 
InstantDLs Mask-RCNN algorithm and compared to the groundtruth. d Example output for a 3D pixel-wise 
regression task using a U-Net. From stacks of bright-field images (Image) [7] the pipeline predicts a nuclear 
envelope (Prediction) that resembles the true staining (Groundtruth). The first row shows the x–y-plane, 
the bottom row the x–z plane of the 3D volume. e Example output for a classification task of benign and 
leukemic blood cells in blood smears from 200 individuals [17]. We show two exemplary microscopy images 
(left) of two white blood cell classes, a monoblast and a neutrophil. The white blood cell type is predicted 
with a ResNet50. The confusion matrix (middle) shows that most of the 15 classes can be well predicted, in 
accordance to Matek et al. [6]
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After setting these parameters, the user executes the configuration file which starts 
the training with InstantDL on the desired task using the training data with the pre-
trained weights and the chosen configurations.

Transfer learning

Pre-trained weights can be used to initialize a training process, a practice called 
transfer learning. The choice of weights can have a huge influence on the performance 
of the algorithm. Depending on the dataset and problem, transfer learning from natu-
ral images such as ImageNet to the medical domain can or cannot be the preferred 
solution [34]. With InstantDL we provide 10 pre-trained weight sets: four pre-trained 
weights from 2D nuclei segmentation (two from semantic and instance segmentation 
of the nuclear detection challenge dataset [13] and the nuclei in microscopy images 
of multiple organs segmentation, respectively [14, 15]), two pre-trained weights from 
2D lung segmentation [16] (from semantic and instance segmentation), two from 3D 
in-silico staining [7] (from predicting mitochondria and the nuclear envelope from 
brightfield images), and one from the classification of white blood cells [17, 18] and 
metastatic cancer [19], respectively. Moreover, ImageNet weights can be loaded. 
InstantDL will load the weights given in the configuration file. It automatically selects 
weights for layers which fit the desired model and reports them in the logfile. As it is 
not clear which pre-trained weight will lead to a performance increase on the desired 
task we recommend to use weights from a task with similar characteristics to the 
dataset at hand in terms of structure and color. Expert users can choose to only train 
desired layers in the model file.

Data augmentation

Data augmentation is a method commonly used in machine learning to artificially 
increase the variance in the training dataset and thereby train the network to general-
ize better [35]. We implemented spatial (horizontal and vertical flip, zoom and rotation) 
and color (contrast, brightness, poisson noise, feature scaling, standard-mean normali-
zation, resampling, gamma shift) augmentations. The user can choose the desired aug-
mentations, which are then randomly applied online, while importing the input images. 
The user can choose to visualize the augmentations used for training to ensure sensible 
inputs.

Table 1 Overview on  the  image processing tasks implemented in  InstantDL, required 
input, label, and output format

Semantic 
segmentation

Instance segmentation Pixel‑wise regression Classification

Input image 2D & 3D 2D 2D & 3D 2D

Labels Binary images Images with float pixel 
values

Images with float pixel 
values

Labels in a .csv 
file

Output Binary images Binary masks Images with float pixel 
values

Labels in a .csv 
file

Architecture U-Net Mask RCNN U-Net ResNet50
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Model training

InstantDL reads data from the corresponding folders and prepares for training and 
testing. This includes the following steps: (i) Model initialization with pre-trained 
weights, if selected. (ii) Import of data and normalization, split of validation data from 
the data contained in the train data folder, shuffle of training data, batch creation and 
online data augmentation. (iii) Training of the model using the Adam optimizer [36] 
for the given number of epochs using early stopping, which can be monitored live 
using tensorboard and automated saving of the best model. (iv) Prediction of labels 
from the test dataset. (v) For semantic segmentation, pixel-wise regression and clas-
sification uncertainty can be calculated after training.

Model evaluation

The trained model is evaluated on the unseen test images and labels (i.e. the 
groundtruth). For semantic segmentation, instance segmentation and pixel-wise 
regression, the network predictions are saved as image stacks to ease evaluation 
of large datasets with limited CPU capabilities. This also allows an initial manual, 
qualitative evaluation and quality control. In the second step the predictions can be 
quantitatively evaluated. For that, accuracy, mean relative and absolute error, pixel-
wise Pearson correlation coefficient and Jaccard index over all pixels of the test set 
are calculated. Boxplots are generated to visualize quantitative model performance. 
The standard quantitative evaluation output plots (i) the input images side-by-side 
to the corresponding labels and predictions and (ii) an error map between the labels 
and predictions to visualize training performance (see example evaluation Fig. 1b–d). 
For classification the predicted labels in the test set are compared to the true labels 
and multiple error scores (Jaccard index, mean absolute error, mean squared error, 
area under curve) are calculated. A confusion matrix and a receiver operating char-
acteristic (ROC) curve are automatically visualized (Fig. 1e). All evaluation steps are 
implemented in the pipeline and can be set to be executed after testing. Additionally, 
post-processing (i.e. statistical analysis and visual assessment) is accessible in jupyter 
notebooks for customization, which are provided with InstantDL.

Uncertainty quantification

Neural networks predictions can be unreliable when the input sample is outside of the 
training distribution, the image is corrupted or if the model fails. Uncertainty estima-
tion can measure prediction robustness, adding a new level of insights and interpret-
ability of results [37, 38]. Bayesian inference can be approximated in deep Gaussian 
processes by Monte Carlo dropout [37]. We have implemented Monte Carlo drop-
out for semantic segmentation, pixel-wise regression and classification in the pipe-
line. During the inference phase, 20 different models are created using Monte Carlo 
dropout and model uncertainty is calculated on the test set. For pixel-wise regression 
and semantic segmentation, the pipeline saves an uncertainty map. From this, pixel 
uncertainty can be plotted and saved to the project folder or average pixel uncer-
tainty for an image can be calculated (Fig.  2a, b). For classification InstantDL adds 
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the uncertainty score to the results file where a score close to zero indicates certain 
predictions, and score close to 1 indicates high uncertainty (Fig. 2c, d).

Implementation of InstantDL

InstantDL is implemented in Python and leverages Tensorflow and Keras [39], which 
provide an excellent framework for our pipeline due to the modular, composable and 
user friendly design. The pipeline can be run locally ensuring data protection, on a 
cluster or with Google-Colab [40], which has successfully been used for deep learn-
ing projects [41] making it usable for those with limited computational resources. We 
provide the pipeline as one package in a Docker image [42] to simplify installation and 
application.

Hardware requirements

InstantDL can run on a CPU with or without GPU acceleration, locally or on a server. 
For users with limited hardware InstantDL can also be run using Google Colab. The 
notebook to execute InstantDL in Google Colab is provided with the package. On an 
Nvidia GeForce RTX2070, the multi-organ segmentation dataset requires 8  min to 
train with semantic segmentation and 14  min with instance segmentation. Semantic 

Fig. 2 Uncertainty of semantic segmentation, pixel-wise regression and classification can be estimated 
with InstantDL. a The distribution of average pixel uncertainty u for 162 images of a semantic segmentation 
task [13]. The distribution is approximately bi-modal. b Three exemplary semantic segmentations from the 
data visualized in a with InstantDLs pixel uncertainty estimation. Correct predictions correspond to a low 
average pixel uncertainty u (top and middle row), while a high average pixel uncertainty indicates failed 
segmentations (bottom row). Regions with ambiguous predictions are indicated by high pixel uncertainty 
(right column). c For the prediction of white blood cells classes [6], classification uncertainty indicates 
incorrect predictions. d The distributions of classification uncertainty for correct and false predictions differ 
significantly (p value < 0.001, Mann–Whitney rank test)
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segmentation with Google-Colab GPU took 9  min. This dataset contains 120 training 
images of size 512 × 512 pixels and we ran it with a batch size of 1 for 37 epochs. 

Results
To evaluate InstantDL broadly, we applied it to seven publically available datasets (four 
of which come from data science challenges) and compared its performance to pub-
lished results. If no test set was provided, we took 20% of the data to create our own 
test set. This was done on the highest level of abstraction, for example on patient level 
or tissue-slide level whenever possible, otherwise the data was randomly split. We used 
the same evaluation metrics as published in the respective papers (Jaccard index, AUC, 
Pearson correlation) to compare our results appropriately.

For pre-processing, we transformed the images to.tiff files and classification labels to 
a.csv file to adapt them to the InstantDL requirements. Training was performed by sav-
ing the best model using early stopping. As data augmentation we used horizontal and 
vertical flipping. For pixel-wise regression we used mean squared error loss, for seman-
tic segmentation we used binary cross entropy loss and for classification we used cat-
egorical cross entropy loss. For instance segmentation, binary cross-entropy was used 
as segmentation loss in combination with the localization and classification loss in the 
Mask-RCNN [29].

We evaluated the performance of semantic segmentation and instance segmentation 
on three datasets. In the first dataset we segmented nuclei in microscopy images con-
tained in the Data Science Bowl 2018 [13] dataset. Using InstandDL instance segmen-
tation we reached a median Jaccard index of 0.60 (25–75%ile: 0.61 to 0.58 estimated 
from bootstrapping), while using semantic segmentation we reached a median Jaccard 
index of 0.16 (25–75%ile: 0.15 to 0.17). The winner of the challenge reached a Jaccard 

(See figure on next page.)
Fig. 3 InstantDL achieves competitive performance on published datasets and computer vision challenges 
without hyperparameter tuning. a InstantDLs instance segmentation achieves competitive results on 
the nuclear detection challenge dataset [13], which contains a variety of experimental conditions, cell 
types, magnifications, and imaging modalities. We show one exemplary image from the dataset and the 
corresponding prediction using InstantDL’s instance segmentation. The winner of the challenge achieved 
a Jaccard index of 0.63 (solid line), while the median participant achieved 0.42 (dotted line). InstandDLs 
instance segmentation achieved a median Jaccard index of 0.60 without hyperparameter tuning. We 
estimate the Jaccard index distribution by bootstrapping, sampling 100 times half of the test set. Boxes 
indicate the median and the 25/75%ile of the distribution, whiskers indicate the 1.5 interquartile range. b 
For the challenge of segmenting nuclei in microscopy images of multiple organs with hematoxylin and 
eosin staining [14, 15], the winner achieved a Jaccard index of 0.69 (solid line) and the median participant 
0.63 (dotted line). InstantDL using instance segmentation reached a Jaccard index of 0.29, and 0.57 using 
semantic segmentation. c Evaluation of instance segmentation of lung CT images from the Vessel-12 
dataset [16]. The winner of the challenge reached an area under the receiver operating characteristic curve 
(AUC) of 0.99, while the median participant reached 0.94. InstantDL reached an AUC of 0.90 with semantic 
segmentation, and 0.94 with instance segmentation. d InstantDL’s pixel-wise regression performs similarly 
well as the published approach ([7] for in-silico staining of bright-field images in three dimensions, but with 
a higher variability. We achieved a median pearson correlation of 0.85 for nuclear envelope staining and 
0.78 for mitochondria staining. e For classification of leukemic blast cell images vs. benign white blood cell 
images [17, 18], InstantDL achieved an AUC of 0.99, while Matek et al. report 0.99. f Classification of metastatic 
cancer in small image patches taken from larger digital pathology scans on histopathological images [19]. 
InstantDL achieved an AUC of 0.93 while the winner of the challenge achieved an AUC of 1.0 and the median 
participant 0.91
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index of 0.63 while the median participant reached 0.42 (solid and dotted line, Fig. 3a). 
The second task was the multi-organ nuclei segmentation challenge. Here, 30 micros-
copy images of various organs with hematoxylin and eosin staining are provided [14, 15]. 
We reached a median Jaccard score of 0.57 (25–75%ile: 0.56 to 0.59) with InstantDL’s 
semantic segmentation and 0.29 (25–75%ile: 0.28 to 0.30) with instance segmentation. 
The winner of the challenge reached 0.69 and the median participant scored 0.63 (solid 
and dotted line, Fig. 3b). Thirdly, we benchmarked InstantDL on lung CT images from 
the Vessel-12 challenge [16]. Using instance segmentation we reached an area under the 
receiver operator curve (AUC) of 0.94 (25–75%ile: 0.94 to 0.94), and 0.90 (25–75%ile: 
0.88 to 0.92) with semantic segmentation. The winner of the challenge reached a score of 
0.99 and the median participant 0.94 (solid and dotted line, Fig. 3c).

To evaluate InstantDL’s performance for pixel-wise regression, we predicted the 3D 
nuclear envelope and mitochondria staining from brightfield images [7]. For the nuclear 
envelope staining prediction, we achieved a median pixel-wise Pearson correlation to 
the real staining of 0.85 and 0.78 for the prediction of mitochondria staining (Fig. 3d), 
similar to the published result.

Classification performance was evaluated on two datasets. In Matek et al. images of 
single white blood cells from 100 leukemic and 100 non-leukemic individuals were clas-
sified into leukemic blast cell images vs. benign white blood cell subtype images [6]. We 
reached an AUC of 0.99 where Matek et al. reached 0.99 (Fig. 3e). The second task was 
to classify metastatic cancer image patches of digital pathology scans, taken from the 
Histopathologic Cancer Detection Kaggle challenge [19]. We reached an AUC of 0.93, 
while the winner reached 1.00 (solid line in Fig. 3f ) and the median participant scored 
0.91 (dotted line, Fig. 3f ).

Discussion
We present InstantDL, a deep learning pipeline for semantic segmentation, instance 
segmentation, pixel-wise regression and classification of biomedical images. InstantDL 
simplifies the access to the advantages of deep learning algorithms for biomedical 
researchers with limited computer science background. The only requirement is a solid 
understanding of the data (and how appropriately split it into training and test set), as 
well as of the task and loss function that should be optimized during training the model 
(see e.g. [1, 43]). The pipeline is designed for maximum automation to make training and 
testing as convenient and as easy as possible. However, some parameter settings depend 
on the dataset properties and therefore cannot be automated. After setting a maxi-
mum of 11 parameters, the pipeline can be run without further user interactions. We 
included state-of-the-art analysis metrics that are accessible out of the box. Moreover, 
we included uncertainty prediction to provide an additional level of interpretability of 
predictions.

We tested the performance of InstantDL on a variety of publicly available datasets and 
achieved competitive results without any hyperparameter tuning. While we could not 
reach the winners’ performance (typically using elaborate problem specific algorithms 
and data pre- and post-processing) of the respective image computing challenges with 
our out-of-the-box approach, the output of InstantDL suffices for standard biomedical 
data analytics performed after the image processing step.



Page 11 of 15Waibel et al. BMC Bioinformatics          (2021) 22:103  

To improve performance on a specific dataset we recommend to select specialized 
data augmentations and a suitable loss function in the configuration file for higher per-
formance. Expert users can also adapt InstantDL’s code to their needs. We plan to extend 
InstantDL by implementing self-supervised and semi-supervised learning methods to 
utilize unlalleded data optimally in the future [34]. To improve semantic segmentation 
specifically, we will implement specialized loss functions, such as Malis loss [46]

The networks currently implemented are suitable for the most frequently used image 
processing tasks. Due to InstantDLs modular implementation it is however easy for 
users with python knowledge to exchange deep learning algorithms for a taylormade 
solution, e.g. other classifications networks like the ResNext [44] or MobileNet [45].

Other deep learning frameworks such as OpenML [46], ImJoy [47] and ZeroCost-
DL4Mic [48], nucleAlzer [3] and yeastspotter [20] allow for the application of deep 
learning methods on user data (Table  2). However, they all require data upload to a 
cloud system. OpenML, e.g., offers an online ecosystem of datasets and machine learn-
ing models, but the dataset will be made publically available with upload. The web tools 
nucleAlzer [3] and yeastspotter [20] are extremely easy to use, but provide only cell and 
nuclei segmentation using drag-and-drop with pre-trained machine learning models. 
ImJoy [47] and ZeroCostDL4Mic [48] are more flexible frameworks. ImJoy is an online 
tool where users can select plugins for processing their data, which is easy and conveni-
ent, yet not locally executable. Users can create their own plugins requiring professional 
programming knowledge. ZeroCostDL4Mic requires similar knowledge about program-
ming as InstantDL, but solely relies on Google Colab. This requires the upload of data 
to the users Google drive, which has a memory limit of 15 GB in the free version and 
a runtime limit of 12 h. This can impose a hurdle for users, in particular for large data-
sets, common e.g. in computational pathology applications. InstantDL is applicable to 
any 2D or 3D image segmentation task and the only tool offering uncertainty estima-
tion. Our pipeline can easily be installed and run locally on a computer or server, ensur-
ing data scalability, privacy and security. However, InstantDL can also be used on cloud 
solutions, such as Google Colab. Table 2 compares the features of InstantDL with other 
frameworks.

Table 2 Comparison of InstantDL to other deep learning frameworks

InstantDL Open ML ImJoy ZeroCostDL4Mic

Host Local, on cluster, or 
Google-Colab

Web based Web based platform Web based (Google-
Colab)

Data privacy Yes (running locally) No (shared with 
upload)

Limited (hosted in 
the cloud)

Limited (hosted in the 
cloud)

Target audience Researchers and 
developers

Researchers and 
developers

Biomedical 
researchers

Biomedical research-
ers

Developed for Biomedical images All kinds of data All kinds of data Biomedical images

Customizability of 
Code

Open source Open source Open source Open source

Cost Free Free Free Free
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Conclusions
InstantDLs code is publicly available and convenient to tune and extend. It is ideal for 
labs looking for a customizable tool to apply deep learning to their own data. We thus  
hope to empower biomedical researchers to conduct reproducible image processing 
with a convenient and easy-to-use pipeline.

Availability and requirements

Project name: InstantDL.
Project home page: https ://githu b.com/marrl ab/Insta ntDL
Operating system(s): Platform independent.
Programming language: Python.
Other requirements: cudatoolkit: 10.1.243 # in case of GPU existence, cudnn: 7.6.5 
# in case of GPU existence, h5py: 2.9.0, hdf5: 1.10.4, imageio: 2.6.1, keras: 2.2.4, mat-
plotlib: 3.1.1, numpy: 1.16.4, python: 3.6.7, scikit-image: 0.15.0, scikit-learn: 0.21.3, 
scipy: 1.3.0, tensorboard: 1.14.0, tensorflow: 1.14.0, tensorflow-gpu: 1.14.0 # in case 
of GPU existence, pandas: 1.0.3
License: MIT.
Any restrictions to use by non-academics: None.
For reproducing our results, all data used for illustration and benchmarking is availa-
ble for download at https ://hmgub ox2.helmh oltz-muenc hen.de/index .php/s/YXRD4 
a7qHn Ca9x5 .

Availability and implementation
InstantDL is available under the terms of MIT licence. It can be found on GitHub: 
https ://githu b.com/marrl ab/Insta ntDL

Supplementary informationWeights and validation data are available under: 
https ://hmgub ox2.helmh oltz-muenc hen.de/index .php/s/YXRD4 a7qHn Ca9x5 
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ROC: Receiver operating characteristic; AUC : Area under  curve.
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SHAPR predicts 3D cell shapes
from 2D microscopic images

Dominik J.E. Waibel,1,2,3 Niklas Kiermeyer,1,2 Scott Atwell,5 Ario Sadafi,1,2,4 Matthias Meier,5,*

and Carsten Marr1,2,6,*

SUMMARY

Reconstruction of shapes and sizes of three-dimensional (3D) objects from two-
dimensional (2D) information is an intensely studied subject in computer vision.
We here consider the level of single cells and nuclei and present a neural
network-based SHApe PRediction autoencoder. For proof-of-concept, SHAPR
reconstructs 3D shapes of red blood cells from single view 2D confocal micro-
scopy images more accurately than naı̈ve stereological models and significantly
increases the feature-based prediction of red blood cell types from F1 = 79%
to F1 = 87.4%. Applied to 2D images containing spheroidal aggregates of
densely grown human induced pluripotent stem cells, we find that SHAPR
learns fundamental shape properties of cell nuclei and allows for prediction-
based morphometry. Reducing imaging time and data storage, SHAPR will
help to optimize and up-scale image-based high-throughput applications for
biomedicine.

INTRODUCTION

Recording single cells with confocal microscopy for high-throughput biomedical applications is prohibitively

time-consuming in three dimensions (3D) as it requires the acquisition of multiple two-dimensional (2D) im-

ages. This raises the question of how to optimally trade-off between throughput and resolution in space and

time. A number of methods to reduce imaging time for single cell characterization have recently been devel-

oped, ranging from microscopic techniques, such as optical diffraction tomography (Sung et al., 2009), dig-

ital holographic imaging (Javidi et al.) or integral imaging microscopy (Moon et al., 2013; Martı́nez-Corral

and Javidi, 2018), to in-silico fluorescence staining (Ounkomol et al., 2018; Christiansen et al., 2018; Rivenson

et al., 2019) and image restoration techniques (Weigert et al., 2018). To predict single-cell 3D morphology,

one would ideally be able to exploit the information in 2D fluorescence microscopy images. Deep learning-

based solutions for predicting 3D object shapes from photographs exist, creating meshes (Wang et al.,

2018; Gkioxari et al., 2019), voxels (Choy et al., 2016), or point clouds (Fan et al., 2017) for airplanes, cars,

and furniture, but they cannot be translated to fluorescence microscopy for several reasons. First, fluores-

cence microscopy imaging is fundamentally different from real-world photographs in terms of color,

contrast, and object orientation. Second, unlike the shapes of cars or furniture that might vary because of

differing photographic viewpoints, the shapes of single cells are similar but never the same, and it is often

not feasible to image the same cell from different angles in high throughput microscopy. Finally, existing

computer vision algorithms have been trained on tens of thousands of photographs where synthetic 3D

models are available (Chang et al., 2015; Sun et al., 2018; Xiang et al., 2014). In the biomedical domain

the number of potential training images is orders of magnitude smaller. Although Wu et al. (2019) have

demonstrated that neural networks can be used for 3D refocusing onto a user-defined surface from 2D mi-

croscopy images containing single fluorescent beads or fluorophore signals, to the best of our knowledge

no model exists in the biomedical domain to reconstruct 3D cell shapes from 2D confocal microscopy

images.

RESULTS

We addressed these problems with SHAPR, a deep learning network algorithm that combines a 2D

encoder for feature extraction from 2D images with a 3D decoder to predict 3D shapes from a latent space

representation (Figures 1A and S1).
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Figure 1. SHAPR predicts 3D cell shapes from 2D microscopic images more accurately than naı̈ve stereological models and improves shape

classification

(A) SHAPR consists of an encoder for embedding 2D images into a 128-dimensional latent space and a decoder for reconstructing 3D cell shapes from the

latent space representations.

(B) Two-step training approach: during step 1, SHAPR was trained in a supervised fashion with 2D fluorescent confocal cell microscopy images and their

corresponding binary segmentations from a red blood cell library. During step 2, SHAPR was fine-tuned with a discriminator challenging its cell shape

predictions.

(C) Example predictions for a set of red blood cells representing six different classes. The SDE shape class combines spherocytes, stomatocytes, discocytes,

and echinocytes.

(D) The volume error is significantly lower for SHAPR (20 G 18%) as compared to two naı̈ve stereological models (Volumecylindrical = 33 G 22, pcylindrical =

2.63 10�46; and Volumeellipsoid = 37G 23; pellipsoid = 7.8 3 10�73, n = 825, paired Wilcoxon signed-rank test). Volume, surface area, and roughness error are

significantly reduced.

(E) Random forest-based red blood cell classification is significantly improved when morphological features extracted from SHAPR predicted cell shapes are

added to features derived from 2D images (p = 0.005, paired Wilcoxon signed-rank test, n = 825).
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SHAPR predicts 3D cell shapes from 2D microscopic images more accurately than naı̈ve

stereological models

For proof of concept, we predicted cell shapes using a recently published library detailing 3D red blood cell

shapes (n = 825 cells) (Simionato et al., 2021). Each cell shape was reconstructed from 68 confocal images

with a z-resolution of 0.3mm. Using the 2D image that intersects the red blood cell at the center slice, and

the corresponding segmentation as input, SHAPR was trained by minimizing binary cross-entropy and dice

loss between the true and the predicted 3D red blood cell shape (Figure 1B and STAR methods). To in-

crease SHAPR’s prediction accuracy, a discriminator model (Figure 1B) was trained to differentiate between

true and predicted 3D cell shapes. SHAPR and the discriminator were trained until the predicted cell shape

converged to an optimum. In each one of five cross-validation runs, 495 (60%) red blood cells from the

library were used for training and 165 (20%) for intermediate validation during training. During testing,

we predicted the 3D shapes of 165 (20%) previously unseen red blood cells. The results demonstrate

that SHAPR is able to predict single red blood cell 3D shapes: although non-complex morphologies

from red blood cells with a biconcave discoid shape (stomatocyte-discocyte-echinocyte (SDE) shape class)

were predicted with low relative volume error, more complex shapes with irregular protrusions or cavities

as seen in knizocytes and acanthocytes were predicted with larger errors (Figure 1C). We compared this cell

shape prediction to two naı̈ve stereological models, i.e., a cylindrical and an ellipsoid fit (see STAR

methods). SHAPR predictions significantly outperformed these models with respect to volume error, 2D

surface area error, surface roughness error and intersection over union (Figure 1D).

SHAPR improves morphological feature based cell classification

Simionato et al. (Simionato et al., (2021) classified red blood cells into six categories (Figure 1C) based on

their 3D morphology. Can SHAPR predictions from 2D images improve such a downstream classification

task? To investigate this, we extracted 126 morphological features, 11 features from an additionally pre-

dicted object mesh, object moments up to third order, correlation and dissimilarity of gray level co-occur-

rence matrices, and 64 Gabor features (see STAR methods for more details) from each predicted 3D cell

shape. Using random forest (Breiman, 2001), we classified each blood cell into one of the six classes and

compared SHAPR’s performance with the 3D ground truth features and a 2D baseline, where only features

derived from the 2D image and segmentation were used (see STAR methods). As expected, classification

based on ground truth features led to the highest F1 score (Figure 1E; 88.6G 3.7%). Strikingly, enriching 2D

features with SHAPR derived features performed significantly better (F1 = 87.4 G 3.1%, mean G std.dev.,

n = 10 cross-validation runs) than using 2D features only (F1 = 79.0 G 2.2%) in a tenfold cross-validation

(Figure 1E, p = 0.005, paired Wilcoxon signed-rank test).

SHAPR learns fundamental 3D shape properties of human-induced pluripotent stem cell

(iPSC) nuclei from a single 2D slice

Predicting shapes from2Dplanes close to the cell’s center ofmass does not accurately reflect the complexity of

real world applications. Therefore, we challenged SHAPR with the task of predicting cell nuclei shapes from

confocal z-stacks containing fluorescence counterstained nuclei from human-induced pluripotent stem cells

(iPSCs) cultured in a spheroidal aggregate. To generate the ground truth data, 887 cell nuclei from six iPSC-

derived aggregates weremanually segmented in 3D (Figure 2A). SHAPRwas providedwith one 2D image slice

taken at an aggregate depth of 22 mm and it is the corresponding segmentation as input (Figure 2B). Nuclei

were thus cut at randomheights, leading toa varietyof segmentedareas,markedly complicating theprediction

of 3D shapes (Figure 2C). Following this, we trained five SHAPR models during cross-validation. Predictions

were compared to cylindrical and ellipsoid fits, as described above. Again, the relative volume error was signif-

icantly lower for SHAPR (Figure 2D; VolumeSHAPR = 33G 41 vs. VolumeCylindrical = 44G 25, p = 9.23 10�36, and

VolumeEllipsoid = 62G 29, p = 8.73 10�86, n = 887, paired Wilcoxon signed-rank test) compared to the naı̈ve

models.More importantly, SHAPRpredictionswere also closer to the truenuclei shapes in terms of volumeand

surface area compared with cylindrical and ellipsoid model predictions (Figure 2D). To determine how much

information ourmodel had learned about nuclear shape, we compared the 2D segmentation areawith the vol-

ume of the ground truth, the SHAPR predictions, and the cylindrical and ellipsoid fits (Figure 2E). As expected,

the cylindrical and ellipsoid models were simply extrapolating area to volume monotonically, whereas the

ground truth suggested a more complex relationship. SHAPR was able to learn that small segmentation areas

(<200 pixels) do not emerge from minuscule nuclei but from slices at the nuclear edge. Notably, our model

couldonly obtain high intersectionover union scores for slices close to the center ofmass, in contrast to volume

andsurfaceerror (Figure 2F). This suggests that it canpredict volumeandsurface correctly, but not if a nucleus is

cut in its upper or the lower half.
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DISCUSSION

SHAPR is able to solve theambiguous inverseproblemofpredicting3Dshapesof single cells andnuclei from2D

images, shown on two different datasets. Although Wu et al.’s (Wu et al., 2019) approach can predict the axial

position of single fluorophores from a 2D image, andOunkomol et al. (Ounkomol et al., (2018) have shown that

fluorescent markers can be accurately predicted from 3D brightfield images, which is an image to image trans-

lation task, SHAPR performs a spatial reasoning task, considering contextual information to reconstruct the

shape of cells and nuclei. SHAPR is however not able to reconstruct information that is inaccessible or coming

from far away from the imaged plane. Reconstructing 3D shapes is an ambiguous inverse problem because it is

not clear if voxelswould lieoverorunder the imaged2Dplane that SHAPRwasprovidedwith. Furthermore, each

2D imagepermits numerous 3D reconstructions, similar to how a shadowalone does not permit precise conclu-

sions about the corresponding shape. Position-invariant metrics such as the volume error or surface area error

A B C

D E

F

Figure 2. SHAPR learns fundamental 3D shape properties of human-induced pluripotent stem cell (iPSC) nuclei from a single 2D slice

(A) Representative image of a segmented human-iPSC derived 3D cell culture with fluorescently stained nuclei. To generate ground truth data, six 3D cell

cultures were manually segmented.

(B) 2D nuclei segmentation from a single slice at 22mm depth.

(C) 2D segmentation areas and fluorescent image intensities varied considerably with the position of the intersecting slice.

(D) SHAPR predictions outperform cylindrical and ellipsoid models in terms of volume, surface area error and intersection over union.

(E) Although the cylindrical and ellipsoid models are only able to extrapolate volumes in a naı̈ve manner, SHAPR learned complex, non-linear relationships

between the 2D segmentation area and the 3D volume of a nucleus.

(F) Although the intersection over union decreased with distance to the nucleus center of mass, volume, and surface predictions were unaffected.
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should thus be used as alternative evaluation metrics beyond the IoU. Although there are some outliers with a

high reconstruction error, SHAPRs was generally able to retrieve real-world 3D information and outperformed

naı̈ve 3D shape fitting models on both datasets. Furthermore we have shown that classification accuracy for

red blood cells was significantly improved using the features provided by SHAPR, as opposed to the features

extracted from the 2D images. Predicting 3D shapes from2D images thus offers a simpleway to reduce imaging

time anddata storagewhile retainingmorphological details. A trained SHAPRmodel could thus enable efficient

predictionsof single-cell volumedistributionsanddensity, e.g. toscreenorganoidsand identifyoutlier events. In

combination with in-silico staining approaches (Ounkomol et al., 2018; Christiansen et al., 2018; Rivenson et al.,

2019), SHAPR could be used for label-free single cell classification, e.g., for diagnostic purposes in computa-

tional pathology (O’Connor et al., 2020,2021; Anand et al., 2017).We are curious to further explore SHAPR’s po-

tential on phenotypic data, where cell morphologiesmay be subject to change andamodel trainedonwildtype

datamight have difficulties to generalize. As a general framework SHARP is not limited to confocal fluorescence

images, and it will be particularly interesting to integrate different imagemodalities in the future. Also, utilizing

multiple 2D slices as an input for SHAPRcouldprovebeneficial, aswell as usingmore informative losses that e.g.

incorporate topological information (Horn et al., 2021). Our well documented open source package of SHAPR,

available on GitHub, allows for easy extension of the data loader and adaptations of the loss function used.

Going beyond single-cell shape prediction, our approach may be extended to other biological structures,

including organelles and proteins, and may increase the efficiency of biomedical imaging in multiple domains.

Limitations of the study

SHAPR may predict cell shapes with a high relative error to the ground truth for some samples. The binary

cross entropy and dice loss used during training are not able to regularize contextual information, but only

geometrical information. We explore a possible solution to this by incorporating a topology based loss

function (Waibel et al., 2022).
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Carsten Marr (carsten.marr@helmholtz-muenchen.de).

Data and code availability

d The datasets are available at: https://doi.org/10.5281/zenodo.7031924.

d The code of SHAPR is available as a well documented, pip installable package together with commented

analysis scripts at https://github.com/marrlab/SHAPR.

METHOD DETAILS

SHAPR

Our SHApe PRediction algorithm SH APR S consists of an encoder and a decoder with parameters q (see

Figure S1A) that transforms an 2D input i˛ I, which is a 2D fluorescent image and a corresponding binary

mask (see Figure 1A), to a binary 3D output p:

p = Sði; qÞ:
A discriminatorD with parameters t tries to distinguish if a 3D shape x comes from SHAPR or from real data:

l = Dðx; tÞ:
Parameters q and t are learned during training when the objective function L is minimized:

L = Lrec + a ðLadv + LdisÞ:
Here,Lrec is the reconstruction loss, Ladv is the adversarial loss, Ldis is the discriminator loss and a regulates

the impact of adversarial and discriminator loss during training. The reconstruction loss tries to match the

generated 3D output p with 3D ground truth y and is defined as:

LrecðqÞ = d
�
p; y

�
+b

�
p; y

�
where dð:; :Þ and b ð:; :Þ are Dice loss and binary cross entropy loss, respectively (see Figure S1A). The ad-

versarial loss tries to match the distribution of generated shapes with the dataset ground truth:

LadvðqÞ = Ei ˛ I log ð1 � DðSði; qÞ; tÞ:
The discriminator loss is defined by:

LdisðtÞ = Ey ˛ Y log Dðy; tÞ + Ei ˛ I log
�
1 � DðSði; qÞ; tÞ:

In the following implementation details are explained in further details: The encoder is built of three blocks

(see Figure S1A). Each block contains two 3D convolutional layers with a kernel size of (1,3,3), followed by a

batch normalization, a dropout, and a max pooling layer to downsample convolutions. The last activation

function of the encoder is a sigmoid. The decoder consists of seven convolutional blocks and each of them

contains two 3D convolutional layers, followed by batch normalization, a dropout, and a 3D transpose con-

volutional layer for upsampling. We upsample the z-dimension seven times and the x-y dimensions 3 times

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Red blood cell dataset (Simionato et al., 2021) https://doi.org/10.5281/zenodo.7031924

Nuclei Dataset This paper https://doi.org/10.5281/zenodo.7031924

Software and algorithms

SHAPR This paper https://github.com/marrlab/SHAPR
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in an alternating fashion. The discriminatorD consists of five convolutional layers with a kernel size of (3,3,3)

followed by an average-pooling in each dimension and two dense layers, one with 128 and one with 1 unit,

followed by a sigmoid activation function, which outputs a binary label for each 3D input shape. The reg-

ularization parameter a is a step function starting with 0 so the model is trained using the reconstruction

loss alone. After 30 epochs or if the validation loss has not improved for 10 epochs, a switches to 1.

From then on, SHAPR is training in an adversarial fashion. Model was implemented using Tensorflow

and Keras (Abadi et al., 2016; Chollet et al., 2015).

Training parameters

Five independent models were trained on both datasets in a round-robin fashion, so each input image was

contained in the test set exactly once. For each model 20% of the dataset was used as a held out test set.

20% of the remaining data was used as a validation set during training. The remaining 60%was used to opti-

mize SHAPRs model weights during training. SHAPRs hyperparameters, such as the learning rate and num-

ber of model weights have been fixed before training. Adam optimizer (Kingma and Jimmy, 2014) with an

initial learning rate of 1*10�3, beta1 of 0.9, and beta2 of 0.999 were used. For data augmentation, training

data was randomly flipped horizontally and vertically and rotated with a chance of 33% for each augmen-

tation to be applied on each data point.

To obtain a binary image all SHAPR predictions are thresholded at 126, as their pixel values range from 0 to

255.

Evaluation metrics

For comparison with different models, five metrics are used: relative voxel error, relative volume error, rela-

tive surface error, relative surface roughness error and intersection over union (IoU). With Y being the

ground truth and P the prediction, these are defined as:

IoUðY ;RÞ =
YXP

YWP

Relative voxel error ðY ;PÞ =
1

NMK

XN
x = 1

XM
y = 1

XK
z = 1

����Yxyz � Pxyz

Yxyz

����

Relative volume error ðY ; PÞ =
volume ðY Þ � volume ðPÞ

volume ðY Þ

Relative surface error ðY ;PÞ =
surface ðY Þ � surface ðPÞ

surface ðY Þ

Relative surface roughness error ðY ; PÞ =
surface roughness ðY Þ � surface roughness ðPÞ

surface roughness ðY Þ
where N, M, and K are the bounding box sizes and volumeð:Þ and surfaceð:Þ yield the volume by counting

non-zero voxels:

Volume ðPÞ =
PN

x = 1

PM
y = 1

PK
z = 11ðPxyz > 0Þ, where 1 is the indicator function.

and surface area by counting all voxels on the surface of a given 3D binary shape:

Surface ðPÞ =
PN

x = 1

PM
y = 1

PK
z = 11ðPxyz = vPÞ, where vP is defined as the surface of P.

The function surface roughnessð:Þ is defined as:

Surface roughness ðPÞ =
XN
x = 1

XM
y = 1

XK
z = 1

���Pxyz � Pgaussian
xyz

���
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with:

Pgaussian
xyz =

1� ffiffiffiffiffiffi
2p

p
s
�3

exp

�
� x2 + y2 + z2

2 s2

	
; cx; y; z ˛ P

Feature extraction

We extract 126 features from each 3D shape, comprising volume, surface, shape index, roughness, convex-

ity, and gabor features with NumPy and the Skimage toolbox (Table S3) (Boulogne et al., 2014). Eleven fea-

tures are derived by describing the object with a mesh consisting of faces and vertices. The mesh is calcu-

lated using the marching cubes algorithm in python’s Skimage toolbox (Lewiner et al., 2003; Boulogne

et al., 2014), resulting in faces and vertices. The surface, 19 mesh principals, the first nine mesh inertia ei-

genvalues were calculated using trimesh (‘‘Basic Installation — Trimesh 3.9.24 Documentation’’ n.d.). The

moments of inertia represent the spatial distribution of mass in a rigid 3D shape. This depends on the 3D

shapes mass, size, and shape. The moment of inertia is calculated as the angular momentum divided by the

angular velocity around a principal axis. We also calculate the objects’ moments up to the third order, cor-

relation and dissimilarity of the gray level co-occurrence matrices, and one gabor feature for each z-slice,

resulting in 64 gabor features all using the Skimage toolbox (Boulogne et al., 2014).

From 2D segmentations, we extract 9 features. These are the mean pixel value, area, boundary length,

boundary roughness, convexity, two moments, and three gabor features and 5 features from the 2D micro-

scopy images (see Table S3).

Feature-based classification

To establish the baseline for the feature-based classification, we extract 9 morphological features (mean

pixel value, area, boundary length, boundary roughness, convexity, two moments, and three gabor fea-

tures) and 5 features from the 2D microscopy images that have been multiplied with the respective seg-

mentation mask to reduce noise (mean and standard deviation of the pixel intensity, one gabor feature,

and the correlation and dissimilarity of the gray level co-occurrence matrices). In total, we extract 15 fea-

tures from each of the paired 2D images and 2D segmentations. We compared random forest, decision

tree, K-nearest-neighbors, linear discriminant analysis, naı̈ve Bayes, and support vector machine classifiers

using the Sklearn toolbox (Varoquaux et al., 2015). The random forest classifier with 1000 estimators per-

formed best.

Prior to the classification we oversample the training data to compensate for class imbalance, and

normalize all features by subtracting their mean and dividing by their standard deviation. Prior to the

tenfold cross-validation classification, we trained one random forest model to investigate feature impor-

tance. We found that accuracy increases if we remove features with an importance lower than 0.005 (see

Figure S1C). We do not only achieve an overall higher F1 score using ShapeAEs predictions, but increase

the number of true positives for four of the six classes, while for two classes we obtain the same scores

(Figure S1A).

Datasets

Red blood cells

We use 825 publicly available 3D images of red blood cells (Simionato et al., 2021) of size (64, 64, 64) voxels,

each assigned to one of the following six classes: SDE shapes, cell cluster, multilobate, keratocyte, knizo-

cyte, and acanthocyte. Spherocytes, stomatocytes, discocytes, and echinocytes are combined into the SDE

shapes class, which is characterized by the stomatocyte–discocyte–echinocyte transformation (Chen and

Boyle, 2017). The other classes’ shapes occur in samples from patients with blood disorders or other

pathologies.

The number of cells in each class were: 602 for SDE shapes (93 spherocytes, 41 stomatocytes, 176 disco-

cytes, and 292 echinocytes), 69 for cell clusters, 12 multilobates, 31 keratocytes, 23 knizocytes, and 88 acan-

thocytes. Red blood cells were drawn from 10 healthy donors and 10 patients with hereditary spherocytosis

via finger-prick blood sampling and then fixed. Thereafter the cells were imaged with a confocal micro-

scope and then manually classified. We extracted the 2D image from the central slide of each 3D image

and segmented it by thresholding. Also, the 3D ground truth was obtained by thresholding.
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Human pluripotent stem cells derived 3D cultures

Six human induced pluripotent stem cell-derived 3D cultures were imaged with a Zeiss LSM 880 Airyscan

inverted confocal microscope with DAPI as a nuclear counterstain. Full 3D stacks were acquired using a 203

objective with a resolution of 0.25mm/pixel and a distance between slices of 1mm. We rescaled the images

to 0.5mm/pixel in x-y dimension. From the center z-slice of each 3D cell culture, we manually segment and

isolate all nuclei in 2D and the corresponding 3D nuclei, resulting in a dataset of 887 paired 2D/3D single-

cell shapes of shapes (64,64) pixel and (64, 64, 64) pixel. We interpolated the single 3D nuclei to an isotropic

spacing of 0.5mm/pixel. While for the red blood cell dataset we could expect to cut each single cell roughly

in its middle, in this dataset the nuclei are cut at any possible z-position.
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A.3. Capturing Shape Information with Multi-Scale Topological Loss Terms for 3D

Reconstruction
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Abstract

The dynamic chemical and architectural microenvironments of 3D stem cell cultures can be

controlled by integration into a microfluidic chip. Massive parallelized 3D stem cell cultures

for engineering in vitro human cell types require new imaging methods with high time and

spatial resolution to fully exploit technological advances in cell culture. Here, we introduce a

label-free deep learning method called Bright2Nuc to predict in silico nuclear staining in 3D

from bright-field images obtained using traditional confocal microscopy. Bright2Nuc was

trained and applied to several hundred 3D human induced pluripotent stem cell cultures

differentiating towards definitive endoderm on a microfluidic platform. Combined with existing

image analysis tools, Bright2Nuc segmented individual nuclei from bright-field images,

quantified their morphological properties, predicted stem cell differentiation state, and

tracked the cells over time. Our methods are available in an open-source pipeline that

enables researchers to upscale 3D cell phenotyping in stem cell culture.
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Introduction

New cell culture technologies for pluripotent stem cells are central to enabling in vitro

disease models, regenerative therapies, and animal replacing drug screens 1. 3D culture

techniques have become commonly used in differentiation trials of stem cells towards

defined cell types, such as beta cells 2, hepatocytes 3, and intestinal epithelial cells 4.

Although 3D cultures can mimic the architecture of the tissue niche, promoting cell-to-cell

and cell-to-matrix interactions, the chemical microenvironment requires additional

technological tools. Microfluidic chip technologies can fill this gap by automating fluid

programs to test complex differentiation protocols in parallelized stem cell cultures 5. Further,

microfluidics offers miniaturized solutions for unifying the shape and size of 3D stem cell

cultures, but also for positioning the cell cultures to simplify high-content data acquisition.

With the progression of cell culture technologies, analytical methods to phenotype 3D cell

cultures under higher throughput conditions have become difficult because cells in 3D adopt

high-density compact configurations, and cell morphologies are more heterogeneous and

less recognizable than in 2D cultures. Thus, tracking and phenotyping massively parallelized

3D cultures at the single-cell level presents the challenge of not only developing image

acquisition methods allowing to resolve the 3D cell cultures in high time and spatial

resolution, but also powerful computational methods to handle the increasing amount of data

being generated 6.

Owing to the widely accessible equipment, confocal fluorescence is the gold standard for

obtaining single-cell resolutions in optical microscopy. Real-time imaging of cell types,

functions, or cell states is hampered by the need for fluorescent reporter cell lines, which

often require lengthy processes to engineer and validate 7. Furthermore, fluorescent

reporters may affect biochemical phenomena or cell types of interest and induce cytotoxic

stress under prolonged imaging times. Label-free microscopy, based on deep learning image

processing and analysis, has emerged as an alternative to fluorescent reporters. For

example, in silico staining can be used to predict fluorescent markers from the bright-field

images of various tissue types 8–11. Once trained, deep-learning models are fast and

consistent in their predictions. For high-content imaging in screening studies, label-free

microscopy can dramatically reduce the image acquisition time by inferring multiple

fluorescent in silico stains from single images without being limited by spectral cross-talk.

Most of the previous approaches have focused on high-resolution imaging of 2D cell cultures

or tissue sections with high numerical apertures. Higher-throughput imaging results in a

trade-off between acquisition time, resolution, and phototoxicity. In particular, a higher

resolution is only achieved with liquid immersion objectives, which are cumbersome for

2

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2022. ; https://doi.org/10.1101/2022.08.30.505835doi: bioRxiv preprint 



high-content data acquisition. Further, though not unprecedented 12, applications of in silico

staining to live 3D cell cultures are rare. Finally, no previous approach has addressed the

problem of phenotyping stem cells in a 3D environment from bright-field images.

Herein, we present a microfluidic platform for complex fluid programming in a multiplexed

high-throughput manner to enable the differentiation of human induced pluripotent stem cells

(hiPSC) in 3D, while simultaneously facilitating live imaging. We focused on acquiring

imaging data on 3D cell cultures with a relatively low-resolution and low-numerical-aperture

air-immersion 20X objective through confocal microscopy to increase data acquisition

throughput. We introduced a deep learning-based method, named Bright2Nuc, to predict

nuclear fluorescence within on-chip 3D cell cultures from low-magnification bright-field

images. In silico staining images were used to infer the differentiation state of human stem

cells and cell dynamics within on-chip cultivated 3D cell cultures undergoing endodermal

differentiation. For reproducibility and applicability, the Bright2Nuc deep learning method and

associated data were published using open-source software.

Results

Imaging of 3D human stem cell cultures on chip

We developed a microfluidic large-scale integration chip platform to automate the formation,

culture, and differentiation of 128 3D cell cultures under 32 independent chemical conditions

(Fig. 1a). Cells were seeded as a single-cell suspension in each chamber, and after 4 h, 3D

cell cultures were formed by self-aggregation (Fig. 1b). A chamber height of 50 µm

constrained the 3D cell cultures between the glass substrate and PDMS channel top,

ensuring imaging from top to bottom (Fig. 1c). Together with the position stability of the cell

culture compartments, the chip enabled high-content time-resolved imaging of reproducibly

homogeneous (Supplementary Fig. 1a) live 3D cell cultures with temporal control of

chemical conditions.

Within the first 24 h after the start of DE differentiation, 3D cell cultures lost an average 42.6

± 17.1% (mean ± SD, averaged over Nr = 4 biological replicates with a total of N = 426

cultures) of their surface area in the xy-plane due to cell disaggregation (Supplementary
Fig. 1b and d). After this initial cell loss, most of the cell cultures recovered and grew until

the end of differentiation (Supplementary Fig. 1c). The individual growth behavior of 3D cell

cultures varied depending on the initial cell loss, but TF expression during differentiation was

comparable for all cell cultures, where hiPSCs lost the expression of the pluripotency marker

3
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OCT4 within the first 48 h and gained the expression of the DE-specific markers, FOXA2

and SOX17 (Fig. 1d).

Figure 1 | Microfluidic large-scale integration chip platform chip enables the multiplexed
differentiation and imaging of 3D human induced pluripotent stem cell cultures.
a, Scheme of microfluidic large-scale integration chip layout. The black and gray lines denote the flow and
control microchannels of the double-layered PDMS chip, respectively. The inset on the right shows a
magnified view of one cell culture chamber (red). The bottom inset shows the cross-section through a filled
cell culture area. b, On-chip 3D cell culture formation process: i) seeding of single-cell solution, ii) separation
of cell culture areas upon actuation of pneumatic membrane valves, followed by cell rinsing, and iii)
self-aggregation of cells in the confined cell culture volume after 4 h and 24 h. Scale bar: 500 µm. c,
Orthogonal views of an on-chip 3D cell culture stained with DAPI. Images were taken with a 0.25 µm/px
xy-resolution and 1 µm/px z-resolution. Scale bar: 50 µm. d, Immunofluorescence confocal images of 3D cell
cultures fixed along the differentiation trajectory from the pluripotency (OCT4 positive) to the definitive
endoderm (FOXA2 and SOX17 double-positive) cell stage. Scale bar: 100 µm. e, Quantitative image analysis
of cell type marker expression along the differentiation trajectory within all cells of 3D cell cultures from a
single chip run. Each data point represents the mean fluorescence intensity of individual nuclei segmented in
3D; the indicated percentages represent the fraction of FOXA2/SOX17 double-positive nuclei (nuclei
considered: n0h = 5501, n24h = 8700, n48h = 22587, n72h = 14936) from multiple 3D cell cultures (N0h = 12, N24h =
25, N48h = 24, N72h = 30).

Furthermore, on-chip differentiation resulted in a nearly homogenous cell population with a

yield as high as 96 ± 3% FOXA2/SOX17 double-expressing cells after 72 h (Fig. 1e, mean ±
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SD, n = 14936 nuclei in N = 20 cultures). However, experimental yields varied with an

average of 90 ± 6% (mean ± SD, Nr = 4) of double-expressing cells at the end of

differentiation, as previously observed in the standard cell well plate and chip culture formats
15.

We applied our platform to definitive endoderm (DE) differentiation, a critical first step for

differentiating liver, gut, pancreas, lungs, trachea, and thyroid cell types. hiPSC-derived 3D

cultures could be differentiated on-chip towards DE by activating the TGF-β/nodal and WNT

signaling pathways with activin A and CHIR-99021, respectively. Over a period of 3 days, the

two chemical components were controlled in time and concentration using fluid programming

(Methods). Upon fixation of subsets of 3D cell cultures with NHS-ester every 24h, a

differentiation trajectory was established (Supplementary Fig. 2). All cell cultures were

immunostained on the chip at the end of differentiation for the pluripotency marker

octamer-binding transcription factor 4 (OCT4) and the two DE-specific transcription factors

(TFs) forkhead box A2 (FOXA2) and SRY-box 17 (SOX17). Bright-field and

immunofluorescence (IF) images were recorded by standard confocal microscopy with a

xy-resolution of 0.25 µm/px and a z-resolution of 1 µm/plane. Quantitative fluorescence

signals of the TFs were extracted per nucleus for all 3D cell cultures by segmenting the 3D

DAPI signal using a re-trained StarDist model 13,14. All IF images were corrected for the

signal decrease in the z-direction caused by increasing light scattering and for the signal

decrease in the xy-direction caused by gradually decreasing penetration of labeled

antibodies (Methods).

Label-free prediction of nuclei in 3D cell cultures

The full high-content imaging of hiSPC-derived 3D cell cultures with standard confocal

microscopy with four fluorescence channels is laborious and time-consuming, requiring

approximately 48 h for IF staining and 48 h of imaging. To cope with the chip throughput and

characterize live cell cultures, we sought to predict the nuclear fluorescence of cells within

whole 3D cell cultures along the DE differentiation trajectory from low-magnification

bright-field images. For this purpose, we developed Bright2Nuc, a U-Net-based deep neural

network (Fig. 2a and b). Bright2Nuc was trained on 255 paired bright-field stacks (one

image below and one above a central slice) and fluorescence nucleus images of 181 live

and 74 fixed 3D cell cultures by minimizing the mean-squared pixel error between the paired

predicted and true IF nucleus images (see Fig. 2a and Methods). While images from fixed

3D cell cultures were acquired along the DE trajectory as described previously (Fig. 1c),

images from live 3D cell cultures were obtained in the pluripotent state using a
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SOX2-T2A-tdTomato fluorescence reporter hiPSC line (Supplementary Fig. 3). Using the

local 3D information from three neighboring z slices as input (Fig. 2b), the trained

Bright2Nuc model accurately predicted nucleus images in an independent test set containing

85 cell cultures (26 fixed, 59 live) from the same experiments completely excluded from

training (Fig. 2c).

Figure 2 | Neural network accurately predicts nuclear staining in 3D cell cultures from bright-field
images.
a, We trained Bright2Nuc, a U-Net-based neural network, on paired bright-field and IF nucleus images, and b,
used it to predict nucleus images from bright-field images. c, Representative bright-field image of an on-chip
3D cell culture (left), corresponding ground-truth DAPI IF nucleus image (middle), and the predicted nucleus
image (right). Yellow rectangles highlight the position of a specific region for comparison. Scale bar: 100 µm.
d, Correlation between the fluorescence pixel values of the ground-truth nucleus image given in (c) and the
pixel values of the corresponding predicted nucleus image (Pearson correlation ρ = 0.70). Each data point
represents a single pixel value and the line represents the y = x identity. e, The model’s prediction
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performance is independent of the imaging depth. The Pearson correlation between the predicted and
ground-truth pixels was stable along the z-axis of the cell culture, as shown in (c). f, Average Pearson
correlation between the ground-truth and predicted pixel values from whole 3D cell cultures imaged in either
fixed (N = 54) or live (N = 31) states. g, 3D segmentation of the IF nucleus image in (c) (middle, blue) and the
predicted nucleus image (right, orange). The overlays of both segmentations show a high overlap (left, green;
80.6% overlapping area with the ground-truth segmentation). h, Top: Categories for comparison of predicted
segmentation ground-truth IF segmentation. Bottom: Distribution of categories for predicted segmentations
from fixed (N = 54) and live (N = 31) 3D cell cultures. i, High accuracy for the prediction of nuclei counts in the
85 fixed and live 3D cell cultures in the test set (Pearson correlation ρ = 0.98; coefficient of determination r² =
0.93). The diagonal line represents the y = x identity.

The pixel values of the predicted nucleus images were highly correlated with the fluorescent

nucleus signals of the ground-truth images (Fig. 2d, Pearson correlation of ρ = 0.70 for the

pixel values of the image shown in Fig. 2c), independent of the tissue imaging depth (Fig.
2e). In the test set, predicted nucleus images from fixed 3D cell cultures showed an average

pixel correlation of ρ = 0.79 ± 0.06 (mean ± SD, N = 54) that dropped to ρ = 0.62 ± 0.03 (N =

31) for live 3D cell cultures (Fig. 2f).

Accurate segmentation of nuclei from bright-field imaging

The predicted nucleus images were segmented in 3D using a re-trained StarDist 13,14 model

(Fig. 2g). To benchmark the results, segmented nuclei were classified into five categories: (i)

bijections, that is, predicted nuclei overlapping with a single nucleus in the ground-truth

image; (ii) over-segmentations, that is, two or more predicted nuclei overlapped with a single

nucleus in the ground-truth image; (iii) under-segmentations, that is, single predicted nuclei

overlapped with two or more nuclei in the ground-truth image; (iv) over-predictions, where

predicted nuclei overlapped with no nuclei in the ground-truth image; and (v)

under-predictions, where nuclei in the ground-truth existed with no overlap in the prediction

image (Fig. 2h). In fixed cultures, the Bright2Nuc and StarDist approaches resulted in 79.5 ±

6.1% of the predicted nuclei as bijections (mean ± SD, n = 47224). An additional 2.1 ± 2.0%

and 1.6 ± 1.7% of the predicted nuclei were correct, but over- or under-segmentated,

respectively. However, the approach yielded 16.3 ± 6.4% of over-predictions, whereas

conversely, 16.1 ± 6.6% of all ground-truth segmentations were under-predicted (Fig. 2h).

Furthermore, prediction was enabled in live cultures at the cost of a slightly decreased

accuracy of 70.1 ± 3.4% of bijections (Fig. 2h). The number of nuclei in each 3D cell culture

was predicted with a high correlation to the groundtruth (Fig. 2i, ρ = 0.98; r² = 0.93).
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Figure 3 | Bright-field and predicted morphological features predict single-cell differentiation state.
a, We extracted 56 features from bright-field and 63 morphological features from segmented Bright2Nuc 3D
images in combination with the differentiation label obtained from the IF expression to train the random forest
model. b, Visually, the predicted label (3rd column, color coded from cyan to red) matches the true IF
expression (last column, merged IF images showing OCT4 in cyan and SOX17 in red). Scale bar: 100 µm.
The random forest model predicted a differentiation label for each cell in the on-chip 3D cell cultures. c,
Comparison of the ground truth to the predicted differentiation label is shown on the right. Each data point
represents a single nucleus (n = 26213) extracted from 49 3D cell cultures. (r² = 0.48, mean absolute error =
0.19). The mean absolute error observed on nuclei in 3D cell cultures fixed 24 h after the start of DE
differentiation is much higher (MAE24h = 0.38 ± 0.18, n = 4376) than the one for other time points (MAE0h =
0.15 ± 0.18, n = 3028; MAE48h = 0.13 ± 0.11, n = 11364; MAE72h = 0.17 ± 0.14, n = 7445). This discrepancy can
be explained by the inaccurate value of the differentiation label obtained from the IF images. At 24 h, cells
displayed high OCT4 and low FOXA2/SOX17 expression, thus resulting in low differentiation label values,
even though the cells were already committed to the DE differentiation path. The random forest interestingly
predicts a label value of DL24h-pred = 0.46 ± 0.18, which spans the range between the values for the 0 h and
48 h time points (DL0h-pred = 0.21 ± 0.18; DL48h-pred = 0.64 ± 0.15).
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Label-free prediction of differentiation state

Next, we investigated whether morphological and other features derived from bright-field

images were predictive of hiPSC differentiation. In previous studies, the morphology of stem

cell nuclei was shown to be indicative of their differentiation state 16–19. Therefore, we first

mapped the expression of the three TFs to a single normalized value: the differentiation label

(DL). The DL was defined as the ratio between the average of the normalized expressions of

eFOXA2 and eSOX17 of the differentiation markers FOXA2 and SOX17, and the sum of the

normalized expression of eOCT4 of the pluripotency marker OCT4 and the differentiation

markers:

. 𝐷𝐿 = 1

1+ 
2 𝑒

𝑂𝐶𝑇4

𝑒
𝐹𝑂𝑋𝐴2

 + 𝑒
𝑆𝑂𝑋17

DL progressed from values close to zero for pluripotent cells at t = 0 h with high OCT4

expression to a value of ~1 for DE cells after 72 h with high FOXA2 and SOX17 expression

(Supplementary Fig. 4). To predict the DL for each nucleus, we designed an explainable

feature-based approach. For each of the 26213 segmented nuclei along the DE

differentiation trajectory, 120 features were extracted: 64 morphological features from the 3D

segmentations after Bright2Nuc and StarDist applications and 56 bright-field texture features

were extracted from a fixed-sized bounding box centered on the nucleus on the paired

bright-field 3D images. A random forest algorithm with 1000 estimators and a depth of 10

was trained on the features for predicting DL (Methods). The ground truth DL for model

training was calculated for each nucleus from the TF expression in the bounding box of the

associated IF image (Fig. 3a).

The resulting random forest model predicted single-cell DL in the bright-field images of 3D

cell cultures fixed along the DE differentiation trajectory. In a round-robin fashion, five

random forest models were trained on different training and test sets, ensuring that each cell

culture was contained in the test set exactly once, while the training and test sets were split

on the level of whole cell cultures. Visually, the predicted DL correlated with true IF staining,

even in the case of non-homogeneously expressing cell cultures (Fig. 3b). For all 26213

nuclei, the predicted DL correlated with the true DL with a coefficient of determination of r2 =

0.48 and a mean absolute error of 0.19 ± 0.17 (mean ± SD, Fig. 3c). We observed strong

deviations for nuclei fixed 24 h after DE induction, where the mean absolute error was higher

than that at other time points. Interestingly, the predicted DL values at 24 h spanned the

entire range, indicating that the random forest predicted nuclei as being in a developmental

transition state rather than resembling pure DE or pluripotent cell states. The discrepancy

between the predicted and true DL can be explained by an inaccurate ground truth at 24 h,
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where cells exhibited a high OCT4 and a low FOXA2/SOX17 expression (Fig.1d-e),

resulting in a low true DL (0.09 ± 0.14, mean ± SD, n = 4376) indicative of pluripotent cells,

which does not reflect the state of those cells after 24 h of DE induction. In fact, a single-cell

transcriptomic time trajectory of DE differentiation under comparable conditions 20 showed

that after 24 h, the transcriptome of hiPSCs clustered differently from pluripotent stem cells

(Supplementary Fig. 5a), while still expressing Oct4 at the mRNA level (Supplementary
Fig. 5c). Consequently, the simplified view of cell type differentiation based on single-cell

state fluorescence markers argues for descriptive states, whereas the neural network

learning approach resolves a continuous cell type transition, as is seen with time-resolved

single-cell transcriptomics. Our approach highlights the rich and hidden information sources

of bright-field images and their potential to resolve the transcriptional states of human stem

cells.

Label-free tracking of single cells

Bright2Nuc can bridge the domain gap between fixed and living tissues by tracking nuclei in

live 3D cell cultures. To this end, we first generated ground-truth tracking data with 3D cell

cultures formed from a mixture of wild-type hiPSCs and the SOX2-T2A-tdTomato reporter

line in a one-to-two ratio to generate heterogeneous mixtures of labeled and non-labeled

nuclei. Bright-field and IF images were acquired every 7.5 min for 17 h, resulting in 136

frames. The trained Bright2Nuc was then applied to every frame of the bright-field image

sequence to predict nuclei. Predicted and IF-stained nuclei were tracked using TrackMate 21.

Expectedly, we detected roughly two thirds of the number of nuclei (Fig. 4a, blue curve) in

the IF images as compared to nuclei from the predicted images (Fig. 4a, black curve). With

increasing experimental time, the number of detected tracks increased due to cell

proliferation in both curves, with the ratio between ground-truth and predicted tracks

remaining constant at nGT/nPred=0.58 ± 0.03 (Fig. 4a, mean ± SD, n = 136 frames). Assigning

nuclei to tracks resulted in a more stable nuclei count than counting segmented nuclei alone

(Fig. 4a; orange curve). Tracks in the ground truth are, on average, longer than tracks found in

the predicted sequence (Supplementary Fig. 6b), which can be due to under-predictions of

Bright2Nuc (Fig. 2), causing nuclei to be lost in a track.

For further tracking evaluation, we calculated the percentage of ground-truth tracks with a

matched predicted track as a function of the predicted track length (Fig. 4b). We counted a

match between two tracks if the distance between the center of mass of nuclei in the

ground-truth and predicted images was less than 11 µm, which is roughly equal to the

average nuclei diameter. The percentage of matched tracks decreased steadily from an
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initial 85% for the minimum requirement of two frames to approximately 50% for the

requirement of 25 consecutive frames, corresponding to 3 h of imaging (Fig. 4b).

Figure 4 | Label free single-cell tracking in live 3D cell cultures.
a, Tracked nuclei in the label-free predicted images (orange) and fluorescence reporter images (blue) in one
representative 3D cell culture. As per the ratio of fluorescent cells to the wild type, the ground-truth contained
fewer tracks than the prediction. Incorporating temporal information by counting the number of tracks results
in a more stable nucleus count than that based on the segmentations of each individual segmented label-free
predicted image (black). b, If we require the tracks to match for a higher number of frames, the percentage of
tracks in the fluorescence reporter images with a matched track in the predicted images decreases. The
longer we require the tracks to be, the fewer we can identify them as matching. c, Representative 3D
single-cell tracks in the predicted nucleus images (orange) and ground-truth SOX2-T2A-tdTomato
fluorescence nucleus reporter images (blue). The background gray-value images show the ground-truth
nuclear signal at the tracking end. The frame interval is 7.5 min. d, In spherical coordinates averaged over five
frames, we found a high correlation in displacement (vector length, ρ = 0.74, r² = 0.64) and directionality (polar
angle, ρ = 0.91, r² = 0.88, and azimuthal angle, ρ = 0.46, r² = 0.64) and between prediction and ground truth.

Finally, we compared tracks from the ground truth with their matched predicted tracks, taking

an arbitrary threshold of five consecutive frames for which 81% of the ground-truth tracks

had a predicted track match (Fig. 4b). Exemplary velocity vectors were derived by averaging

the cell movement over five consecutive frames matched visually (Fig. 4c), and their

spherical coordinates were correlated between the ground truth and predicted tracks with

Pearson correlations for the vector lengths, polar angles, and azimuthal angles of ρ = 0.74, ρ

= 0.91, and ρ = 0.46, respectively (Fig. 4d). The distributions of both the ground truth and

predicted velocity vector coordinates were similar (Supplementary Fig. 6d-f). Movement in
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the xy-plane was isotropic with a homogeneous distribution of the polar angle

(Supplementary Fig. 6e), whereas the values of the azimuthal angle remained close to 0

(Supplementary Fig. 6f), indicating little movement in the z-direction. The limited z-directed

movement was probably caused by the constrained geometry of the on-chip cultures.

However, this confinement did not affect nuclei velocities, as evidenced by the lack of

dependence of the velocity vector length on the z-position of the nuclei (Supplementary
Fig. 6c). Overall, considering a track length of five frames, Bright2Nuc coupled with the

TrackMate algorithm allowed us to track 81% of the nuclei in 3D cell culture (Fig. 4c).

Label-free detection of cell velocities during differentiation

During DE differentiation, human pluripotent stem cells undergo synchronous

epithelial-mesenchymal transition (EMT) 22,23,24. It is known that DE cells show significantly

higher migration in 2D experiments as compared to pluripotent cells in a scratch assay 23,

which argues that DE cells exhibit a higher cell mobility than stem cells. Therefore, in the last

step, we investigated whether Bright2Nuc in combination with single-nuclei tracking can

detect motility changes in label-free 3D cell cultures during DE differentiation. Along this line,

we detected changes in the expression of cell adhesion molecules indicative of EMT during

the DE differentiation on-chip (Fig. 5a). IF images of fixed 3D cell cultures along the DE

differentiation trajectory showed that E-CAD/N-CAD expression changes co-occurred with

upregulation of the DE marker SOX17. The single-cell transcriptomic dataset 20 also

confirmed EMT TF changes, such as SNAIL1/2, whose expression peaked between the 24 h

and 48 h time points (Supplementary Fig. 5c). To assess changes in cell motility during DE

differentiation, we captured bright-field movies of six 3D cell cultures every 24 h over a

period of 75 min with a 5 min/frame acquisition period (Fig. 5). Bright-field images were

acquired using confocal microscopy with the same resolution as before. The Bright2Nuc +

TrackMate approach was then used to extract the nuclei velocities, defined as the effective

displacement of the nuclei over five frames (Fig. 5a). Strikingly, we observed an increase in

effective cell displacement up to 48 h after induction of the DE differentiation. The highest

effective cell displacement (D48h = 0.98 ± 0.30 µm/min, mean ± SD) coincided with the time

point of the E-CAD/N-CAD expression change and the appearance of the DE-specific

marker SOX17. The population median of the four effective cell displacement distributions

(D0h = 0.78 ± 0.22 µm/min, D24h = 0.70 ± 0.26 µm/min, D48h = 0.98 ± 0.30 µm/min, D72h = 0.82

± 0.24 µm/min, mean ± SD) differs significantly (p = 3.9 × 10-242, Kruskal–Wallis H-test).

Post-hoc analysis with a Bonferroni correction revealed a significant increase at the 48 h

time point compared to the other time points (p0h-48h = 7.3 × 10-165, p24h-48h = 1.4 × 10-164, p48h-72h
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= 2.3 × 10-109, Mann–Whitney-U-Test). Thus, the cells displayed higher motility during DE

differentiation than during the pluripotent state. Notably, cell movements within the 3D cell

cultures were non-directed throughout differentiation, as evidenced by the homogeneously

low values of directionality calculated from the same velocity vectors (Supplementary Fig.
7). Interestingly, the measured increase in cell migration rates during DE differentiation was

lower than that previously reported in 2D cultures 23, where DE cells showed a five times

higher migration rate than that of pluripotent cells. This could reflect the more complex ECM

within the 3D cell culture compared with a simple 2D cell surface culture.

Figure 5 | Single-cell live tracking in 3D cell cultures during DE differentiation captures increased cell
mobility.
a, Distribution of the effective displacement over five frames, calculated using Bright2Nuc and TrackMate on
bright-field movies with a 24 h interval along the definitive endoderm differentiation trajectory. Each time point
represents the distribution of the velocity vectors of nuclei in six 3D cell cultures (number of nuclei: n0h = 2862,
n24h = 1308, n48h = 2144, and n72h = 2820). Movies were acquired with a 5 min per frame interval over 75 min.
White circles indicate the mean, boxes mark the first and third quartiles, and bars indicate standard deviation.
b, A significant increase in effective displacement correlates with the change in cadherin expression, as
shown in the immunofluorescence confocal images of 3D cell cultures fixed along the DE differentiation
trajectory, showing the evolution of epithelial-cadherin expression (E-CAD) and neural-cadherin expression
(N-CAD). The evolution of the differentiation marker SOX17 was shown to mark progress towards the DE
stage. Scale bar: 100 µm.
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Discussion

Microfluidic cell culture technologies for controlling the massive parallelization of 3D cell

cultures are rapidly advancing, while high-throughput analytical methods to exploit

miniaturized biological samples are lacking. In this study, we provide a label-free and live

imaging approach to cope with the faster image acquisition of on-chip-cultivated 3D stem cell

cultures. The developed neural network learning algorithm, Bright2Nuc, can be coupled with

pre-existing image analysis tools such as StarDist and TrackMate for segmentation and

tracking, respectively. With StarDist, Bright2Nuc enabled us to infer the cell number and

nuclear locations from accessible confocal bright-field images with an accuracy of over 80%

for 3D cell cultures with more than 10000 cells. Using the simplest imaging methods for

high-content imaging, we offer a general imaging approach for screening 3D tissues. Deep

learning approaches to detect cell nuclei have been previously employed for 2D adherent

cell cultures 8,9,11,12 or histological tissue slices10. Existing neural networks have not yet

attempted to infer information from cell images acquired with lower numerical aperture

objectives and xy-resolution9–11 in 3D. Beyond locating only the nucleus volume and

positions, morphological features from inferred nuclei and corresponding bright-field images

allowed the determination of transcriptional cell states along the pluripotent to DE

differentiation trajectory. Notably, the resulting cell state predictions were more continuous

than the cell state descriptions generated from the fluorescence signals of descriptive

fluorescence markers, which is the standard research approach in developmental biology.

Our results highlight the currently untapped potential information contained in the bright-field

images.

In addition to the static view, we demonstrated that Bright2Nuc can resolve real-time

information from live nuclei in 3D cell cultures by using a neural network together with the

TrackMate algorithm. For example, we captured label-free cell dynamics, indicating

epithelial-mesenchymal transition on a timescale of hours. The homogeneous transition from

pluripotent to DE cell stage within the on-chip cultivated 3D cell culture was reflected in the

nuclei velocity changes during differentiation. Nevertheless, the provided image analysis

method will allow the assessment of motion directionality, cell migration, and neighboring

cell-cell contacts upon formation of architecturally complex structures into endodermal

tissue, such as pancreatic or liver cell types. To further decrease the image acquisition time

and increase the time resolution for subsequent 3D cell cultures, we expect that Bright2Nuc

can be adopted for widefield bright-field images. In summary, we believe that the general
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framework of Bright2Nuc opens a wide field of applications for the high-content screening of

3D cell cultures on chips.

Code availability

Bright2Nuc is available as a pip-installable package, together with commented analysis

scripts at https://github.com/marrlab/Bright2Nuc.

Data availability

The dataset is made available via Zenodo
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Supplementary Figure 1 | On-chip 3D cell culture and hiPSC differentiation.
a, Distribution of 3D cell culture diameters measured 24 h after seeding cells on the microfluidic platform
across nine experimental replicates. The first two repeats were seeded with a single-cell solution with a
concentration of 1.5 × 108 cells/mL; and the last seven repeats were seeded at a concentration of 3.5 × 108

cells/mL. White circles indicate the mean, boxes mark the first and third quartiles, and bars indicate standard
deviation. b, Evolution of the area occupied by 3D cell cultures measured in the xy-plane every 24 h along the
DE differentiation trajectory. Cell culture areas were normalized individually to the area measured before the
start of differentiation. Data points represent the mean and error bars show the standard deviation. Each of
the four curves represents a distinct biological replicate with N = 128 cell cultures. c, Bright-field images of a
typical 3D cell culture taken every 24 h along the DE differentiation trajectory. d, Evolution of the number of
nuclei contained in 3D cell cultures fixed every 24 h along the DE differentiation trajectory for one experiment
(curve with squares in b) with the corresponding evolution of the nuclear volume (e). White circles indicate the
mean; boxes mark the first and third quartiles; bars indicate the standard deviation (N0h = 16 cultures, N24h =
N48h = N72h = 36; n0h = 26973 nuclei, n24h = 12802, n48h = 41550, and n72h = 67780).
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Supplementary Figure 2 | Comparison of fixation methods to enable time trajectories on the mLSI
chip.
a, Immunostaining images of iPSC 3D cell cultures stained for pluripotency markers OCT4 and NANOG. The

top cell culture was fixed using 40 mM Bis-PEG4-NHS ester, while the bottom was fixed using 4% PFA. Scale
bar: 100 µm. b-c, Mean fluorescence [A.U.] for OCT4 and NANOG in individual nuclei measured from
confocal images after segmenting the DAPI signal. The distribution of nuclei fluorescence signals is shown for
the 3D cell cultures fixed either with NHS (n = 1706 nuclei in eight cell cultures) or with PFA (n = 2852 nuclei
in 10 cell cultures). White circles indicate the mean, boxes mark the first and third quartiles, and bars indicate
standard deviation.

Supplementary Figure 3 | Confocal image of a pluripotent SOX2-T2A-tdTomato-reporter live 3D cell
culture. Scale bar: 100 µm.
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Supplementary Figure 4 | The differentiation state of cells expressed as differentiation label.
a, The differentiation label is defined as the ratio of the average normalized expression of the differentiation
markers eFOXA2 and eSOX17 to the sum of pluripotency (eOCT4) and differentiation expression. b, Evolution of
the differentiation label along the definitive endoderm differentiation trajectory for the experiment presented in
Fig. 1 (nuclei considered: n0h = 5501, n24h = 8700, n48h = 22587, n72h = 14936; 3D cell cultures: N0h = 12, N24h =
25, N48h = 24, and N72h = 30). White circles indicate the mean, boxes mark the first and third quartiles, and
bars indicate standard deviation.
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Supplementary Figure 5 | Single-cell transcriptomics of hiPSCs during definitive endoderm
differentiation.
Data adapted from datasets published by Cuomo et al. 20

a, UMAP clustering of single-cell RNA expression of human induced pluripotent stem cells sampled every 24
h during a 72 h differentiation protocol towards definitive endoderm. The overlaid colors represent the
sampling time after the start of the DE differentiation. b, UMAP clustering overlaid with pseudotime, a
measure of the differentiation state of the cells towards DE, analogous to our differentiation label. c, Single
cell expression of selected genes as a function of pseudotime; colors indicate the sampling time. POU5F1,
CDH1, and CDH2 are known as OCT4, E-CAD, and N-CAD, respectively. VIM is a mesenchymal marker that
typically appears after the EMT. SNAI1 and SNAI2 are markers closely associated with EMT; interestingly,
their expression peaks exactly between 24 h and 48 h.
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Supplementary Figure 6 | Single-cell live tracking in 3D cell cultures.
a, Example frames with a 60 min interval for the tracking of a nucleus using both the ground-truth nucleus
image (top row, SOX2 expression of pluripotent iPSCs) and in silico prediction from Bright2Nuc (bottom row).
The overlaid tracks can be seen to have similar shapes in the ground truth and prediction. Scale bar: 5 µm. b,
Distribution of track lengths. More vectors with a shorter length were found within the Bright2Nuc image
frames than for the nucleus image tracks, as the tracking has a longer temporal persistence in the ground
truth. c, Displacement of individual nuclei as a function of their z-position in the 3D cell culture. There was no
observed dependence on the displacement relative to the z-position. d-f, Distribution of velocity vector
coordinates for vectors with a mean error smaller than 11 µm between the positions of the nuclei in the
prediction and the nuclear signal. Both distributions were remarkably similar in length (d), polar angle (e), and
azimuthal angle (f). The mean velocity vector was calculated for five consecutive frames for 5362
corresponding nuclei.
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Supplementary Figure 7 | Directionality of cell movement in live tracking of 3D cell cultures during DE
differentiation.
Directionality, defined over five frames as the effective displacement divided by the absolute value of the
displacement, is a measure of the randomness of cell movement. The directionality is calculated using
Bright2Nuc and TrackMate on bright-field movies from Fig. 5 with a 24 h interval along the definitive endoderm
differentiation trajectory. Each time point represents the distribution of the velocity vectors of nuclei in six 3D
cell cultures (n0h = 2862, n24h = 1308, n48h = 2144, and n72h = 2820). Movies were acquired for 5 min. frame
intervals over 75 min. White circles indicate the mean, boxes mark the first and third quartiles, and bars
indicate standard deviation.
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Supplementary Figure 8 | Threshold optimization for StarDist segmentation.
The probability threshold, inherent to the StarDist model, for the segmentation of the in silico prediction
nucleus image was optimized by maximizing the nuclei count accuracy calculated by comparing the number
of objects segmented in the prediction with the number of objects in the ground-truth segmentation. Objects
determined by the StarDist algorithm are accepted as valid segmentations if they have a probability that is
higher than this threshold. Consequently, a higher threshold indicates fewer objects, but these objects are
generally more trustworthy. Indeed, as the threshold increases, the percentage of over-predicted objects
diminishes, and bijections increase as a percentage of in silico predictions. However, as fewer objects are
predicted, the percentage of under-predictions increases as the bijections decrease as a percentage of
ground truth objects. The value of the threshold has little to no consequence on the mean volume accuracy of
the predicted bijections or their intersection over union ratio (IoU). It should be noted that, as a result, different
threshold values were used when segmenting in silico prediction nucleus images of fixed cell cultures
(threshold = 0.355) and live cell cultures (threshold = 0.290).
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Supplementary Video 1 | Seeding process of the microfluidic platform.
Seeding of single-cell suspensions in the chambers of the microfluidic large-scale integration chip platform.
Cells were perfused into each of the individually addressable cell culture chambers while the pneumatic
membrane valves were in the open state. Cells in the four central cell compartments were shielded from direct
flow upon the actuation of the pneumatic membrane valves. Subsequently, side channels were rinsed and the
cell culture process, including a feeding cycle of every 4 h for 30 s, was started. Video dimension: 5570 ×
3324 µm². The video speed was real-time.

Supplementary Video 2 | Live tracking of nuclei in pluripotent SOX2-T2A-tdTomato-reporter 3D cell
culture.
Video of a pluripotent SOX2-T2A-tdTomato-reporter 3D cell culture imaged with a confocal microscope with a
20X/0.8NA objective, as shown in Fig.4. Cell culture was imaged every 7.5 min for 17 h. (Left) Bright-field
image of the 3D culture at a height of 5 µm. (Right) Average RFP fluorescence signal in the axial direction of
the first 10 µm of the 3D cell culture. The nuclei in this video were tracked in 2D using StarDist integrated with
TrackMate in ImageJ. The tracks are color-coded, and the lines indicate the past trajectories of the nuclei.
Video height: 350 µm. Video speed:8 frames/s i.e. 3600×.
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Methods

Microfluidic chip fabrication

PDMS chips were produced using traditional soft lithography techniques for two-layered
devices 25. Briefly, two molds were fabricated by photolithography. The mold for the control
channel network was made to have features 25µm in height using SU-8 3025 (MicroChem).
The mold for the flow flayer was fabricated in three steps. First, the flow channel was made
using the AZ40XT photoresist (MicroChemicals) at a height of 40µm and re-flowed to obtain
rounded half-channels. Second, the perfusion channels of the cell culture chambers were
produced at a height of 20µm using SU-8 3025 (MicroChem). Finally, the cell chambers were
made using SU-8 3050 at a height of 50µm. All masks for photolithography were designed
using the AutoCAD software (AutoDesk, 2019) and photoresists were patterned using a
laser Micro Pattern Generator (µPG101, Heidelberg Instruments). All molds were coated
with CYTOPTM (CTL-809M; AGC Chemicals) to prevent the adhesion of the PDMS. Chips
were cast from the molds using Sylgard 184 PDMS (Dow Corning). The chips were
assembled in a push-down configuration with the flow layer on the bottom. Flow and control
layers were bonded using the off-ratio PDMS bonding procedure (5:1 pre-polymer to
cross-linking reagents ratio for the control layer and 20:1 ratio for the flow layer). Finally, the
flow layer was bonded to a glass slide carrier (Brain Laboratories) through oxygen plasma
activation (20 W at 0.9 mbar for 25 s). Each cell culture chamber comprised a central flow
channel and two side channels bifurcating at the entry of the culture chamber. Pneumatic
membrane valves divided the central flow channel into four 640x400µm² cell culture
compartments with a volume of 0.013 µL. Gaps with a cross-section of 20x20µm² allowed
the crossing of fluids between the side channels and the culture compartments.

Microfluidic chip operations

Pneumatic microfluidic valves (PMVs) within the chips were operated by applying a 1.5 mbar
pressure on the control lines. The pressure could be switched on and off automatically on
each individual control line using a homemade system enabling the individual control of 24
solenoid valves (LMV155RHY-5A-Q; SMC). Additionally, the system included a pressure
regulator (ref pressure regulator) connected to 8 additional solenoid valves which applied a
controllable pressure (0-1.5 bar) on light-proof gas-tight bottles containing the reagents to be
introduced in the chip. All connections were made using Tygon tubings (ND 100-80;
Proliquid, Germany). Chips were placed in a microscope stage top incubator (STX, Tokai
Hit®) for maintaining a 37°C and 5% CO2 humidified environment while allowing live
imaging. Prior to cell seeding, the cell culture chambers were coated with a 10% Pluronic®
F-127 (Cat#9003-11-6; Sigma-Aldrich) in phosphate-buffered saline (PBS) overnight to
prevent cell adhesion to the glass substrate or PDMS walls. Adherent cells were harvested
at 70-80% confluence with TrypLE Express (Cat# 12604013; Gibco) and resuspended in
40-60 µL at a 1.5-3.5 × 108 cells/mL in maintenance medium (mTeSRTM Plus; StemCell
Technologies) supplemented with 10µM ROCK inhibitor (Y-27632, Cat# sc-281642A; Santa
Cruz Biotechnology). For the formation of 3D cell cultures, a homogeneous single-cell
solution was introduced into each cell culture chamber with PMVs in the open state. Upon
actuation of the PMVs in the cell culture chamber, cells in the four compartments were
isolated from the main flow stream, and cells in the side channels could be rinsed. Once
seeded, cells were left to self-aggregate for 4 h before the first media renewal; media was
then renewed in the cell culture chambers every 2 h using a 100 mbar forward fluidic
pressure. The average diameter of on-chip 3D cell cultures depended on the single-cell
solution density, i.e., 138 ± 13 µm for a cell density of 1.5 × 108 cells/mL and 243 ± 19µm for
a cell density of 3.5 × 108 cells/mL. The 3D cell culture formation process after seeding was
robust, as demonstrated by a low average coefficient of variation CV = 0.10 ± 0.05 and a
chip-to-chip variation as low as CV = 0.08 (Supplementary Fig. 1).
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Human induced pluripotent stem cells (hiPSC) culture

When not specified otherwise, experiments were conducted using a hiPSC cell line 26 which
was kindly provided by Alexander Kleger from Internal Medicine I, University Hospital, Ulm,
Germany. In some experiments for the acquisition of live fluorescence nuclear signals, a
SOX2-T2A-tdTomato reporter hiPSC line was used, generated by Shahryari et al 27. All cell
lines were maintained in a pluripotent state as 2D adherent monolayers in conventional cell
culture plates coated with Geltrex (Cat# A1413302; Life Technologies), fed daily using
mTeSRTM Plus maintenance medium (StemCell Technologies, Canada) and maintained in a
humidified atmosphere at 37°C and 5% CO2. After reaching 70–80% confluence, the cells
were passaged with 0.5 mM EDTA (Cat# A4892; AppliChem) in PBS. To enhance cell
viability after splitting, the maintenance medium was supplemented with 10 μM ROCK
inhibitor (Y-27632, Cat# sc-281642A; Santa Cruz Biotechnology) for the following 24 h.
Mycoplasma-free cell culture was regularly confirmed using a MycoAlertTM Plus Mycoplasma
Detection Kit (Cat# LT07-703; Lonza).

Definitive endoderm differentiation

Before DE induction, cells were fed for 24 h with maintenance medium and ROCK inhibitor
and another 24 h with maintenance medium only. DE differentiation was induced 48 h after
on-chip seeding, the start of differentiation has been called 0 h in this paper. We followed the
differentiation protocol as published in previous literature 28, where the basal medium
(Supplementary Tables 1 and 2) was supplemented with 100 ng/ml activin A (AA) (Cat#
120-14-300; Peprotech) and 3 µM CHIR-99021 (CHIR, GSK3β inhibitor, Cat# 24804-0004;
Tebu-bio) on the first day of differentiation. Basal medium supplemented with 100 ng/ml AA
and 0.3 µM CHIR was added on the second day, and basal medium with 100 ng/ml AA was
added on the third day of differentiation.

Immunocytochemistry on-chip

Partial fixations of 3D cell cultures (fixation of a subset of cell cultures in a single microfluidic
platform, while keeping other cell cultures alive) were performed using NHS Ester
(Bis-PEG4-NHS ester, CAT# BP-21602; BroadPharma). At the end of all experiments,
before immunocytochemistry, all cell cultures were fixed in 4% paraformaldehyde in
deionized water for 1 h (even if previously partially fixed NHS ester). Cell membranes were
permeabilized with 0.2% Triton X-100 and 100 mM glycine in deionized water for 6 h and
blocked in a blocking solution containing 3% donkey serum, 10% fetal calf serum, 0.1%
Tween-20, and 0.1% bovine serum albumin (BSA) in PBS. Primary antibodies were diluted
in the blocking solution and incubated in the cell culture chambers for 24 h before being
rinsed away with PBS. Secondary antibodies and DAPI were then diluted also in the
blocking solution and incubated for 24 h. All cell culture chambers were thoroughly rinsed
with PBS prior to imaging. All steps were conducted on-chip and at room temperature. A full
list of the antibodies used is given in Supplementary Table 3.

Image acquisition

IF images and live bright-field images were acquired using a laser scanning confocal
inverted microscope (Zeiss LSM 880 Airyscan) controlled by the ZEN Black version number
software with a 20x/0.8-NA (numerical aperture) objective (Zeiss Plan-Apochromat 20x/0.8

25

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2022. ; https://doi.org/10.1101/2022.08.30.505835doi: bioRxiv preprint 



M27), with up to five 8-bit or 16-bit data channels per image: transmitted light (bright-field
using either the 633 nm or the 561 nm wavelength laser), DNA labeled with DAPI, and three
types of antibodies distributed in the green (488 nm excitation), yellow (561 nm), and red
(633 nm) channels (see Supplementary Table 3 for antibody list). All images were acquired
with a 0.25 × 0.25 µm² pixel size with the number of pixels being adjusted so that the
scanning area could fit the imaged object in the frame (typical scanning areas were around
200 × 200 µm²). Confocal stacks were acquired to image the full 50 µm z-depth of the 3D
cell cultures with a z-resolution of 1 µm. For the imaging of fixed tissue, the pixel dwell time
was kept in the 1 - 2 µs range, depending on scanning area size, with a two-fold line
averaging. For live tissue, pixel dwell times were reduced to the 0.6 - 0.9 µs range, to
accelerate imaging so that a full confocal stack of a 3D cell culture could be acquired in less
than four minutes.

Fluorescence signal correction

Prior to nuclear fluorescence signal quantification, two types of corrections were applied to
the confocal image stacks. The first correction pertained to the weakening of fluorescence
signals caused by the imaging depth in the 3D cell cultures. We calculated the relative
average nuclear fluorescence signals (ratio between the average nuclear signal at a given
depth and the average nuclear signal at the lowest point of the cell culture) as a function of
the imaging depth. Under the assumption that nuclear signals should be constant on
average relative to imaging depth, we calculated the imaging-depth decay rate through linear
regression over all samples and for each wavelength. This wavelength-dependent correction
was then applied to all image stacks. A second correction addressed antibody penetration
inside the 3D cell culture during full-mount staining. Antibody penetration is a complex issue,
which we resolved assuming that it factored in three main components: the antibodies, the
x-y distance to the border of the cell culture, and the tissue type (differentiation state). We
thus calculated the relative average nuclear fluorescence signal per antibody as a function of
x-y distance to the border of the cell culture. The decay rates were calculated through linear
regression per antibody for every sample within a time point to account for tissue type. All
stacks were corrected under the assumption that nuclear signals should be constant on
average relative to x-y penetration.

In-silico nuclear staining

Bright2Nuc is a deep learning framework with a modified 3D U-Net 29, based on the
InstantDL 30 package, designed to predict nuclear markers from bright-field images (Fig.
2a-b). Bright2Nuc works on 3D data, predicting the nuclear marker from slice to slice. To
incorporate 3D information from the bright-field image stack, we added nearest neighbor
slices to the input of the network. The U-Net architecture was modified from the 3D U-Net
used in InstantDL by keeping the 3D convolutional layers the same but using anisotropic
max-pooling in the encoder, and anisotropic upsampling in the decoder, keeping the
z-dimension unchanged. Bright2Nuc can be trained and evaluated using 3D stacks, through
which it will automatically iterate during training, Bright2Nuc will crop or pad the input data to
a size of 384 pixels in x-y dimension. During inference, it can handle arbitrary image sizes. If
desired, it can rescale the images to keep the nuclei diameter constant, which simplifies
transfer learning between datasets. An average nucleus diameter of 30 pixels worked best
for our model. All considered images were bilinearly downscaled by a factor of 2 to a 0.5
µm/px xy-resolution before being processed for further analysis. We trained Bright2Nuc (i)
on 162 fixed 3D cell culture images in 3D in bright-field and with a DAPI staining and (ii) on
93 cell cultures recorded in 3D in live tissue in bright-field and with a SOX2-T2A-tdTomato
reporter signal. Together, we used approximately a quarter million nuclei/cells. For training,
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we optimized a mean squared error loss for 50 epochs with a batch size of 5. For data
augmentation, we used brightness and contrast shifts of 30% of the pixel values, horizontal
and vertical flips, and zooms with a maximum of 30% of the image size. The test set
contained 85 cell cultures split in a stratified manner from the experimental data, summing
up to around 80.000 cells/nuclei. Bright2Nuc is a ready-to-use python package, it can be
downloaded via GitHub or installed using pip install and comes with our pre-trained model.

Nuclei segmentation

We trained two StarDist 14 3D models, one to segment cell nuclei from images of a nuclear
marker staining (stardist_nuc), and one to segment 3D cell cultures with an in silico staining
(stardist_silico). We manually segmented five 3D cell cultures and trained stardist_nuc on
the corresponding DAPI staining. To train stardist_silico, we created a training set of 15 3D
cell cultures. We used the same five manually segmented cell cultures with the
corresponding DAPI staining and the same five in silico stained cell cultures to the training
set. Additionally, five in silico stained 3D cell cultures from the SOX2-T2A-tdTomato-reporter
dataset were added, for which the segmentation ground truth was obtained by segmenting
the SOX2-T2A-tdTomato signal using the first Stardist model trained on DAPI and manually
verifying the results, summing up to 15 cell cultures. We trained the models as described in
the StarDist documentation, but changed the anisotropy to two (x : 0.5, y : 0.5, z : 1) to
match our imaging resolution. To adapt the StarDist model to the live tissue data, we found it
sufficient to lower the StarDist threshold to 0.29 without retraining the stardist_silico model
(Supplementary Fig. 8). With two resulting models (one for DAPI, one for in-silico) we
segmented all DAPI stained 3D cell cultures and the in silico stained 3D cell cultures used in
this paper.

Transcription factor expression prediction

To assess the differentiation status of single nuclei, we formulated the expression of the
pluripotent marker OCT4 (eOCT4), and the two differentiation markers FOXA2 (eFOXA2) and
SOX17 (eSOX17) as a single ratio called differentiation label (DL) (Supplementary Fig. 4).
Single-nuclei TFs expression were extracted from the corrected IF images (see
Fluorescence signal correction in materials) by calculating the average fluorescence over
each of the 3D DAPI StarDist segmentations. TFs expressions were normalized per dataset
between 0 and 1 to the 1-th and 99-th percentiles, respectively. DL was then calculated for
each nucleus as:

 𝐷𝐿 = 1

1+ 
2 𝑒

𝑂𝐶𝑇4

𝑒
𝐹𝑂𝑋𝐴2

 + 𝑒
𝑆𝑂𝑋17

From each segmented nucleus, 56 bright-field and 64 morphological features were
extracted. The data was then randomly split into five folds, with an 80% / 20% ratio between
train and test set, and a random forest regressor was trained with 1000 estimators on each
fold. In total, five random forest models were trained using the scikit-learn 31 framework in a
round-robin fashion, splitting 20% of the nuclei into test sets iteratively, so that each nucleus
was contained in the test set once.

Live cell tracking

Single nuclei from the live in silico stained 3D cell cultures were tracked with Trackmate 21,
using the integrated LoG detector with a sigma of 22 pixels (11 µm) and a quality threshold
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of 10. Data anisotropy was accounted for by setting the x- and y-values to 0.5 µm (leaving
the z-value at 1 µm). The maximum linking distance was set to 22 pixels (11 µm) and the
frame gap to two frames and 22 pixels. Tracking results were saved as a .csv file and
evaluated in Python using pandas 32. Predicted tracks outside the cell culture were filtered
out using neighborhood-based filtering, removing all tracks that have less than 5 neighbors
in a distance of 50 pixels per time point. Effective displacements were calculated as the
effective distance over five frames divided by the time, with the effective distance being the
distance between the centers of mass of the considered nucleus between the first and fifth
frames. Directionality was also calculated over five frames as the ratio of the effective
distance and the total distance, with the total distance being the sum of distances between
the centers of mass and between all considered frames.
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Supplementary Table 1. Chemical compounds used for DE differentiation.

Chemicals Company, Cat#

MCDB131 Gibco®, Cat# 10372-019

Glutamax Life Technologies, Cat# 35050-079

BSA Sigma, Cat# 10775835001

Sodium bicarbonate Sigma, MO, Cat# S6297

Glucose Sigma, Cat# G8769

ITS-X Life Technologies, Cat# 51500-056

Ascorbic acid Sigma-Aldrich, Cat# A4544

Penicillin/Streptomycin Gibco®, Cat# 15140-122

Supplements Company, Cat#

Activin A Peprotech, Cat# 120-14-300

CHIR-99021 GSK3β inhibitor, Tebu-bio, Cat# 24804-0004

ROCK inhibitor Y-27632, Santa Cruz Biotechnology, Cat# sc-281642A
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Supplementary Table 2. Basal media composition and supplements used for DE
differentiations

Basal media

MCDB131

1x Glutamax

0.5% BSA

1.5g/l Sodium Bicarbonate

1.8g/l Glucose

1% penicillin/streptomycin

Component Day Concentration

ActA Day01 100ng/ml

CHIR 5µM

ROCK inhibitor 0µM

ActA Day02 100ng/ml

CHIR 0.3µM

ActA Day03 100ng/ml

CHIR 0µM
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Supplementary Table 3. Antibodies used in immunochemistry

Antibody Host Reference Fluorophore

anti-OCT4 Mouse IgG1 Cell Signaling 75463 N/A

anti-FOXA2 Rabbit IgG Cell Signaling 8186S N/A

anti-SOX17 Goat IgG Acris/Novus GT15094 N/A

anti-N-Cadherin Mouse IgG1 BD 610920 N/A

anti-E-Cadherin Rabbit IgG Cell Signaling 3195S N/A

anti-Mouse Donkey Invitrogen A21202 Alexa Fluor 488

anti-Rabbit Donkey Invitrogen A31572 Alexa Fluor 555

anti-Goat Donkey Invitrogen A21082 Alexa Fluor 633

anti-Mouse Donkey Dianova 107-175-151 Alexa Fluor 647

anti-Goat Donkey Invitrogen A11055 Alexa Fluor 488
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