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Zusammenfassung

Ziel dieser Studie war die Entwicklung einer Software zur Bestimmung der räumlichen
Abdeckung des AllSky7-Fireball-Netzwerks. Dazu wurde ein Ansatz gefunden, um die
Abdeckung der einzelnen Kameras zu bestimmen und dann ein Abdeckungsprofil für
das gesamte Netzwerk zu erstellen. Um das Gebiet über Europa zu diskretisieren,
wurde ein Raster erstellt, das in der Länge einen Bereich von −20° to 37° und in der
Breite einen Bereich von 27° to 67° umfasst. Bei einer Beobachtungshöhe von 100 km
deckt das Netz 25.23 % des verwendeten Rasters und 0.93 % der Welt unter idealen
Bedingungen ab. Dann wurde ein Modell für die Helligkeitsabnahme aufgrund der
Lichtauslöschung durch die Atmosphäre und die zunehmende Entfernung bei niedri-
gen Höhenwinkeln eingeführt. Die Abdeckung wurde durch einen Grenzwinkel für jede
Kamera in Abhängigkeit von der Höhe der Station und einer bestimmten Helligkeit im
Zenit angepasst. Die resultierende Abdeckung des Gitters beträgt 19.4 % und 0.72 %
der Welt. Unter Berücksichtigung verschiedener Meteorebenen verringert sich die
abgedeckte Fläche um 23.87 % bei einer Beobachtungshöhe von 80 km im Vergleich
zur Referenzhöhe von 100 km. Bei einer Beobachtungshöhe von 120 km erhöht sich
Abdeckung um 28.08 %. Die Ergebnisse zeigen, dass die räumliche Abdeckung über
Mitteleuropa, insbesondere Deutschland, auf einer Höhe von 100 km sehr gut ist. Im
Gegensatz dazu ist die Abdeckung im Norden und Osten Europas nicht ausreichend.
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Abstract

This study aimed to develop software to determine the spatial coverage of the AllSky7
Fireball Network. Therefore, an approach was found to determine the coverage of indi-
vidual cameras and then create a coverage profile for the entire network. To discretize
the area over Europe a grid was created ranging from −20° to 37° in longitude and
from 27° to 67° in latitude. At an observation altitude of 100 km, the network covers
25.23 % of the used grid and 0.93 % of the world under ideal conditions. Then a model
for the brightness reduction due to light extinction by the atmosphere and the increas-
ing distance at low elevation angles was introduced. The coverage was adjusted by
a limiting angle for each camera depending on the station’s altitude and a specified
magnitude at the zenith. The resulting coverage of the grid is 19.4 % and 0.72 % of the
world. Considering different meteor levels, the covered area decreases by 23.87 % at
an observing altitude of 80 km in comparison to the reference altitude of 100 km. At
an observing height of 120 km, the coverage area increases by 28.08 %. The results
showed that the spatial coverage over central Europe, especially Germany, is quite
good for an altitude of about 100 km. In contrast, the coverage in Europe’s north and
east is insufficient.
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Introduction

1 Introduction

The threat of an impact by a massive asteroid on Earth is minor, but the aftermath of
such an impact can be devastating. So far, the most likely theory for the extinction
of the dinosaurs is such an impact by an asteroid about 10 km in size [1]. Every day
micrometeorites fall on the Earth. Most of them are being evaporated in the atmo-
sphere but around 10 % of them are reaching the Earth’s surface [2]. Moreover, even
some more enormous impacts of asteroids happened in recent history. The most re-
cent impact was by an asteroid of about 20 m in diameter over the city of Chelyabinsk
in 2013. Although it did not hit the ground, it exploded in 30 km height and created
a shock wave that caused several injuries and damaged buildings. Another big event
happened in 1908, when an object of approximately 30 m in diameter exploded in the
sky over Tunguska in Russia, releasing energy equal to 1000 Hiroshima bombs. [3] If
such an event happens over a big metropolis, the effects would be catastrophic. Space
organizations like NASA and ESA are tracking such Near-Earth Objects (NEOs) and
maintaining a risk list of all known objects with a higher probability than zero to hit the
Earth [4]. However, not all objects can be seen from Earth due to their small size or
position to the sun. Furthermore, it is hard to track the entire sky. Therefore, more infor-
mation about the amount, size, and trajectories of asteroids and meteoroids is needed
to calculate the risk of possible impacts. Amateur astronomers significantly contribute
to this data.

1.1 The AllSky7 Fireball Network

The AllSky7 fireball Network was founded as a non-commercial organization to track
the sky and record fireball events. It consists of owners of AllSky7 Fireball camera
systems to support scientific analyses and spread information, data, and recordings
of meteors and fireballs. The Network started in Germany and is now spread all over
Europe, having stations in Austria, Belgium, Switzerland, Germany, Denmark, Spain,
France, Hungary, Netherlands, Norway, Ireland, Italy, Poland, Portugal, Slovenia, Slo-
vakia, United Kingdom, and the United States / Iowa [5]. To cover the entire sky above
an observation site, the AllSky7 fireball camera System consists of seven highly sensi-
tive NetSurveillance NVT cameras. Five cameras point at an elevation of 25° above the
horizon, whereas two cameras point at an elevation of 70° in the northern and southern
direction [5]. The camera system is shown in figure 1–1.

1.2 Determination of the Flux Density

To contribute to ESA’s work on NEOs, the LRT is working on determining the flux
density of meteoroids and asteroids in the size range below tens of meters. As part of
the AllSky7 network, the LRT can analyze the footage to get the required parameters.
These parameters are the spatial coverage, the time of clear sky, and the number of
fireballs. Although, in theory, a camera system can observe the entire sky, there are
often objects in the field of view. In addition, the observable sky might not be fully
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(a) Housing (b) Cameras

Fig. 1–1: AllSky7 Camera System [5]

visible over the observation time due to cloud cover. Moreover, an observed fireball
must be detected by at least two cameras to confirm its existence and to be able to
compute the trajectory of the object. To calculate the object’s size, it is also necessary
to determine the actual magnitude of the fireball. Because the value can be inaccurate
due to the characteristics of a camera when observing a moving object. [6]

1.3 Scope of this Thesis

As a first step, the mentioned problems have to be solved. This study aims to de-
velop software to determine the spatial coverage of the AllSky7 Fireball network. For
this purpose, an approach is found to determine the spatial coverage of each station
by analyzing the calibration images. The obtained data is then used to calculate the
spatial coverage of the entire network using the developed software. To account for
brightness reduction at low elevation angles, a model is proposed to determine a mini-
mum elevation angle for each station as a function of a certain magnitude at zenith and
the station’s elevation above sea level. The spatial coverage is then analyzed for the
influence of brightness degradation and different observation levels. Finally, the results
are discussed, and an outlook for further research is given.
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Basics of meteor observation

2 Basics of meteor observation

To improve knowledge of the meteorite and asteroid population in the solar system,
these objects must first be studied. Most is known about the larger objects in the
hundreds of meters to kilometers range. Because of their size, they reflect enough
light from the Sun to be observed from Earth. The smaller they are, the fainter they
appear and the more difficult it becomes to detect them from Earth. For very small
objects such as micrometer-sized planetary dust, the number can be extrapolated from
a small detection range because they frequently strike the Earth. The population of
meteoroids ranging in size from tens of meters to millimeters is not yet well known.
They are usually perceived as meteors only when they strike the Earth’s atmosphere.
This chapter explains the basic definitions and describes the details of observation.

2.1 Asteroids, Meteoroids and Interplanetary Dust

The solar system consists mostly of the Sun and eight planets orbiting the Sun. The
space in between is mostly vacuum. However, there are also some dwarf planets such
as Pluto, Ceres, and Eris, as well as cosmic debris which is, in most cases, leftovers
from the solar system’s formation. To distinguish these terms, some definitions must be
given here. A planet is defined by the International Astronomical Union as a celestial
body that orbits the Sun, is large enough to form a round shape due to its mass, and is
capable of clearing its orbit of cosmic debris [7]. Therefore, Pluto has lost its status as a
planet because, despite its round shape, it is not large enough to clear its orbit. Cosmic
debris can be divided into asteroids, meteoroids, and interplanetary dust. However, the
classification is not always precise. Celestial objects significantly smaller than a planet
but larger than a meteoroid are called asteroids. The size at which asteroids can still
be detected from Earth has been proposed as a lower limit. This gives a rough size
range of about 1000 km to a few meters in diameter. Most known asteroids are located
in the asteroid belt between Mars and Jupiter. Most known asteroids are located in the
asteroid belt between Mars and Jupiter. However, due to gravitational forces, they can
break out of the belt and change their orbit, posing a threat to Earth. Objects that come
closer to Earth than 1.3 au are called near-Earth objects. All particles smaller than
10 µm are called interplanetary dust. Consequently, a meteoroid is classified as an
object with a diameter between 1 m and 10 µm. Meteoroids may be parts of asteroids
separated by collisions or gravitational forces or remnants of planet formation. [8] For
simplicity, the term meteoroid is used in the following sections to describe the events
of an impact on Earth.

2.2 Meteors, Fireballs and Bolides

The following section is largely based on Ceplecha’s description of meteor phenomena,
and their phases [9]. A meteor is a luminous phenomenon caused by the heating of
a meteoroid or an asteroid as it enters the Earth’s atmosphere. A logarithmic scale,
magnitude, is used to describe the brightness of celestial objects. The brightest stars
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in the sky are classified as having a magnitude of 1, and the faintest stars visible to
the naked eye are classified as having a magnitude of 6. The scale ratio is 2.512,
meaning that a star is 2.512 times brighter than a star in the next fainter category.
Much brighter objects have a negative magnitude, for example, the full moon has a
magnitude of −13, and the Sun shines with a magnitude of −27. The brightness of a
meteor depends on the size and velocity of the incoming object. The limiting size for
a meteoroid to produce a meteor is about 0.01 mm. If the meteor is brighter than −3
in magnitudes, it is also called a fireball. At brightnesses of about −17 magnitudes,
when it can be seen by satellites in Earth orbit, it is called a super bolide. [6] Solar
system meteoroids can have velocities between 11.2 km s−1 (escape velocity of Earth)
and 72.8 km s−1 (velocity of meteoroid at Earth’s perihelion: 42.5 km s−1 plus velocity of
Earth at perihelion: 30.3 km s−1). Therefore, most meteor impacts on Earth are due to
collisions rather than gravity. The direction from which a meteoroid comes is called a
radiant. Most meteors come from meteor showers like the Perseids, where all meteors
belong to the same stream and have the same radiant. Only a small part are so-called
sporadic meteors, which do not belong to any meteor shower.

2.2.1 Meteor Phases

Ceplecha describes the phenomenon of a meteor in five phases: Orbital motion, pre-
heating, ablation, dark flight, and impact [9].

2.2.1.1 Orbital Motion

The trajectory of a meteoroid is primarily influenced by the Sun’s gravity. However, its
trajectory can be disturbed by the gravity of larger bodies, such as planets or minor
planets, as well as by collisions or the irradiation of cosmic rays.

2.2.1.2 Preheating

When the meteoroid enters the atmosphere, the surface is strongly heated by collisions
with air molecules. Preheating begins at an altitude of about 300 km to 100 km. Except
for very small bodies, the core of the body remains unheated. The preheating process
usually lasts only a few seconds. At a temperature of 900 K, ablation begins. Due to the
high-temperature gradients, the meteoroid may fall apart. The dominant heat transfer
mechanism for small bodies is radiation, while for larger bodies, it is more likely to be
conduction.

2.2.1.3 Ablation

Ablation begins with the fragmentation of the body at lower temperatures. When the
surface temperature reaches 2200 K, the material begins to melt. At even higher tem-
peratures of about 2500 K, vaporization occurs. The hot gases fill the air around the
meteoroid, and light is emitted as the particles are de-excited by radiation. The temper-
ature remains relatively constant at this point because most of the kinetic energy is lost
through ablation. Smaller objects are little affected by deceleration because the body
is consumed by ablation before it can be decelerated. Larger meteoroids can persist
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Fig. 2–1: Meteor Phases based on Ceplecha [9]

up to a velocity of about 3 km s−1. The high temperature cannot be maintained at this
speed, and the meteor enters the dark flight phase. The phase of a visible meteor
starts usually at 110 km and ends at 80 km height [6].

2.2.1.4 Dark Flight

In this phase, the velocity of the meteoroid is too low to heat the surface above the
melting temperature due to air friction. The surface of the meteoroid is now rapidly
cooled and forms a crust. As the velocity decreases, the body goes into free fall, which
can last for several minutes. Since the meteoroid is no longer visible during this phase,
it can be complicated to calculate its trajectory.

2.2.1.5 Impact

The velocity at impact with Earth ranges from 10 m s−1 for smaller bodies of 10 g to
100 m s−1 for larger objects of 10 kg final mass. The impact of average meteoroids
forms a pit about as large as itself. If the object is large enough that the ablation phase
continues to the ground, a huge box may form due to the explosive release of kinetic
energy. Figure 2–1 shows the different meteor phases.

2.2.2 Influence of the Velocity

Velocity greatly affects the mass loss of the meteoroid during the flight phase. This
process is called ablation and is proportional to v−6

∞ , where v∞ is the initial velocity
before entering the atmosphere. Thus, the higher the velocity, the larger the meteoroid
must be to reach the ground. When a meteoroid hits the Earth’s surface, it is called a
meteorite. An upper limit for the fall of a meteorite is approx. 30 km s−1. If the meteoroid
has a higher initial velocity, the body will most likely vaporize before it hits the ground.
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2.2.3 Influence of the Size

There are four types of meteor phenomena, depending mainly on the object’s mass.
The following distinctions apply to a meteorite with an initial velocity of 15 km s−1 and a
bulk density of 3500 kg m−3.

2.2.3.1 Meteors

A typical meteor has a brightness between 6 and 2 mag. The size ranges from 0.05 mm
to 20 cm. The size limit visible to the naked eye is about 0.01 mm. For bodies larger
than 0.05 mm, only the surface down to tenths of a millimeter is heated by collisions
with the air molecules. At a temperature of 2200 K, the surface layer begins to sublime,
and the surrounding air fills with vapor particles. The excited atoms emit their energy
through radiation, producing the visual effect of a meteor. After a few kilometers, the
entire body mass has evaporated without losing much of its velocity, and the visible
light fades.

2.2.3.2 Fireballs

Meteors with a brightness of −3 mag or higher are called fireballs [6]. Such bright
phenomena are caused by objects larger than 20 cm. At this size, the body does not
lose all its mass in the ablation phase. The remaining mass is decelerated to the
critical velocity of 3 km s−1, and the surface temperature drops below 2200 K. At this
temperature, evaporation no longer occurs, and the meteor light goes out. The molten
surface cools and forms a crust. The body then enters a dark flight phase and slows to
free fall speed. The remnant falls to the ground as a meteorite.

2.2.3.3 Bolides and Superbolides

A fireball is classified as a bolide if the brightness exceeds −14 mag and as a super-
bolide, if it exceeds −17 mag. [8]. In this very rare case, a body of several meters in size
collides with the Earth. Because of its enormous mass, it cannot be decelerated below
the critical velocity before hitting the ground. Consequently, the light does not end in
the flight phase, and the asteroid impacts the Earth’s surface at several kilometers per
second, forming a meteor crater. If the object is unstable, it can also explode in the
air before hitting the ground. This happened, for example, in 2013 over Chelyabinsk,
where a super bolide of about 20 m exploded at about 30 km altitude. The shock wave
released energy equal to that of 30 Hiroshima bombs.

2.2.3.4 Meteoric Dust Particles

Small dust particles of a few hundredths of a millimeter decelerate quickly in high at-
mospheric layers. Therefore, the particles cannot reach the evaporation temperature,
and no meteor phenomenon occurs. The dust settles unchanged on the surface of the
earth.
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2.3 Types of meteor observation

There are several ways to observe meteors, which are well described in the Interna-
tional Meteor Organization’s Meteor Observing Handbook by Rendtel and Arlt [6]. The
following section is primarily based on this manual.

2.3.1 Visual observation

The oldest method is visual observation with the naked eye. The advantage over the
other methods is that almost no equipment is needed for observation. However, it is
necessary to write down all essential parameters such as time, position, speed, and
brightness by hand. Therefore, the accuracy of the recorded data can vary greatly.
Especially the brightness is difficult to determine. The only reference for brightness is
a star in the same region of the observed sky. The limiting magnitude is about +6 mag
or +5 mag and depends on the capabilities of the observer’s eye. However, in the case
of heavy meteor activity, it may be challenging to capture all essential parameters in
time.

2.3.2 Photographic observation

Another method is photographic observation. The most convincing argument is the
accuracy of position determination required to accurately calculate the meteor’s tra-
jectory, velocity, mass, and spectrum. A significant disadvantage of the photographic
method is the low limiting magnitude of about +1. Another limiting factor is the focal
length f . The limiting magnitude is inversely proportional to the focal length f . The
higher the focal length, the narrower the image. So the exposure time is shorter be-
cause the meteor moves faster across the pixel. Much space is mapped onto a few
pixels at large angles, so the meteor path is relatively short.

2.3.3 Video observation

For automated observations, the video-based approach is the best method for meteor
detection. It combines the advantages of photographic and visual observation. The de-
termination of the essential parameters is sufficiently accurate, while the limiting mag-
nitude is about the same as with the naked eye. Moreover, there are no physiological
limitations, such as fatigue.

2.3.4 Radar observation

Radio observations achieve the highest detection strength. This method can be used
to detect smaller objects and is independent of weather or time of day. However, it is
more difficult to interpret the data.

2.4 Celestial Coordinates

Right ascension α and declination δ are geocentric coordinates. The reference point is
the vernal equinox, i.e., the Sun’s position at the beginning of spring. Right ascension
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Fig. 2–2: Right Ascension and Declination

gives the angle between the vernal point and the observed object in the equatorial
plane. The declination gives the angle from the equatorial plane to the observed object.
A sketch of the coordinate system of right ascension and declination is shown in Figure
2–2.

2.5 Horizontal Coordinates

The horizontal coordinate system is centered at the observer. Azimuth and elevation
define a point in the sky from the observer’s position on Earth. Azimuth is the tangent
to the Earth’s surface and indicates the direction, while elevation indicates the height
of the defined point in the sky. Both values are measured in degrees. Azimuth starts
north and increases clockwise from 0 to 360 degrees. Elevation starts at the horizon
and increases vertically from 0° to 90° to the zenith. The principle is shown in figure
2–3.
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Fig. 2–3: Azimuth and Elevation

2.6 Coordinate Transformation

The transformation of right ascension and declination to azimuth and elevation is well
described by Walraven [10]. First, the sidereal time must be calculated. A solar day is
the time in which the celestial sphere revolves once around the Earth. Since the Earth
moves around the Sun, the sidereal day is slightly shorter than a normal day. The
sidereal time in Greenwich (ST) in hours can be calculated with the following formula:

ST = 6.720165 + 24∗
(

d

365.25
− (y − 1980)

)
+ 0.000001411 · d, (2–1)

where d is the days since the reference epoch J1980 plus the local time expressed
in days and y is the current year. Afterward, the local standard time LST can be
calculated as well:

LST = ST − λ, (2–2)

where λ is the local longitude in hours (1 h = 15◦). Finally, the local lateral time S can
be calculated as follows:

S = LST + 1.0027379 · (LST + Z − C), (2–3)

with the local time zone Z and C being either zero or one, depending on whether
daylight saving time is in effect or not. With the local solar time, the hour angle HA can
be calculated, which gives the distance from the zenith to the observed object in hours,
minutes, and seconds:
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HA = α− S, (2–4)

Finally, the azimuth γ and elevation ϵ can be determined using the following expres-
sions:

z = arccos(sin(ϕ)sin(δ) + cos(ϕ)cos(δ)cos(HA)), (2–5)
ϵ = 90◦ − z, (2–6)

γ = arcsin

(
cos(δ)

HA

sin(z)

)
, (2–7)

where z is the angular distance from the zenith to the object and ϕ is the latitude of the
observer.

2.7 Plate Solving

Plate Solving is a method of determining a camera’s alignment position and lens dis-
tortion. It used to be done by hand by comparing the positions of stars to a star chart.
With the advent of computers, plate solving is now performed by algorithms. Using a
star catalog, the algorithms can detect star patterns and determine the right ascension
and declination of the center of the image. By calculating the deviation of the star po-
sitions, a mathematical model can be derived that describes the lens distortion. Using
this model, the coordinates of each pixel can be determined [11].

2.8 Previous works on meteor flux density determination

In 1990, Koschack and Rendtel described a method to calculate the flux density from
visual observations [12]. Later, this method was further developed by Bellot-Rubio to
apply it to photographic meteor observations [13].

Grün et al. developed a flux density model for small objects in the range of 10-21 kg
to 10-3 kg [14]. For larger objects, for meteor diameters from 1 m to 9 m, Brown et
al. provided a model for flux density as a function of energy [15]. Drolshagen et al.
derived a combined meteor flux model from Green’s model for the small size range
and Brown’s model for larger objects. For this purpose, they converted Brown’s flux
model into a function of mass. The missing middle size range, from 10-3 kg to 103 kg,
was then interpolated. The resulting diagram is shown in Figure 2. [16]

With data from the CILBO (Canary Islands Long-Baseline Observatory) and alternative
models, they derived a final model of flux density over the range of 10-21kg to 1012
kg. Figure 3 [16] shows the combined flux density models.

Other works on automated video-based observation to determine the flux density in
the visual domain were carried out by Molau et al. and Blaauw et al. [17] [18]. Molau
et al. evaluated data from the 2011 Draconid Meteor Viewer. The data came from the
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Fig. 2–4: Masses impacting Earth [16]

Fig. 2–5: Combined flux density model [16]

Video Meteor Network of the International Meteor Organization. The coverage area
was set to a constant altitude of 100 kilometers. Therefore, the number of meteors
was divided by the area at that altitude. Blaauw et al. determined flux density us-
ing a system of eight wide-angle meteor cameras. Their approach was to create a
three-dimensional grid at the altitude of each meteor’s brightest point, allowing a more
accurate determination of the collection area. Another work by Koschny et al. used
the CILBO mentioned above, with two cameras pointed at a position 100 km above the
ground. By calculating the longitude and latitude, the overlap area could be determined
[19].
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3 Approach to Determine The Spatial Coverage of station
AMS 80

In this chapter, an approach is presented to how the spatial coverage of the AllSky7
Network can be determined. For that purpose, a program called "Horizon" was written
with Python to determine the actual horizon data of a single camera. And another pro-
gram called "Coverage" was written to determine the coverage of the entire network.
In the first step, the pixel values of an image must be looked at to obtain the actual
horizon. Then, the pixel values can be transformed into azimuth and elevation coordi-
nates. With this information, a polar plot of the actual horizon of a camera system is
generated. To determine the spatial coverage of the entire network, the coordinates
are transformed into longitude and latitude. The coverage can be represented with a
grid in a heat map.

3.1 Camera Systems

The AllSky7 Fireball Network consists of over 50 active camera systems stationed
mainly in Europe. Each station has seven highly sensitive NetSurveillance NVT cam-
eras with the SONY STARVIS IMX291 CMOS Sensor. The lens has a focal length of
4 mm and an aperture of f/1.0. The small focal length allows a wide field of view of
about 45° × 85°. Due to the low aperture number, the camera can detect objects with
a low brightness up to 4 mag. The resolution of a camera is 25°. The first five cameras
are evenly spaced in a circle and oriented at about 25° above the horizon. The last
two cameras each point north and south, respectively, at an elevation of about 70°. [5]
With this setup, a camera system can, in theory, cover the whole sky over a station. In
reality, there are often obstacles in front of the cameras, reducing the coverage area.

3.2 Determination of the Real Horizon

To compute the coverage area of a camera system, the real horizon must be deter-
mined. The AllSky7 software can generate mask images of the camera footage to
identify obstacles in the field of view. An algorithm analyzes photographs taken early
in the morning when the sun is10° to 5° below the horizon. In these photographs, the
sky appears brighter than the objects in the field of view because the sunlight has not
reached them yet. The dark areas below a certain threshold are then covered with a
mask geometry. An example of a mask image of camera 4 of station AMS 80 is shown
in figure 3–1. Figure 3–1a shows the mask applied to the photograph, while figure 3–
1b shows the resulting mask image used to determine the real horizon. However, very
thin objects are not detected. For example, the antenna in the photograph in 3–1a is
not transferred to the mask image in 3–1b.
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(a) Mask in photograph (b) Resulting mask image

Fig. 3–1: Mask of camera 4 of the station AMS80

3.2.1 Determination of Horizon Pixels

In the mask images, the sky is displayed in black, and the obstacles are in white. With
the help of an image processing tool, the pixel values can be read out. The tool used
for this work is the OpenCV package in Python. Reading an image results in a matrix of
pixel values that indicate the pixel’s color. Depending on the mode in which an image is
read, the pixel will have either three channels in color mode or one in grayscale mode.
Each channel can take values from 0 to 255. The value of the channel indicates the
intensity of the color. For a grayscale image, the value (0) represents the color black,
and (255) represents the color white. The values in between are different shades of
gray that become lighter with higher channel values. In OpenCV, the channels for the
color mode are blue, green, and red. Figure 3–2 shows some examples of pixel color.
The blue color is represented by the full intensity of the blue channel and the zero
intensity of the other two channels. With zero intensity in all channels, the resulting
color is black, while full intensity in all channels gives the color white. A simplified
matrix of a mask is shown in Figure 3–3. The position of the pixels is given by their (x,
y)-coordinates. The origin is in the upper left corner, with the x-values running from left
to right (column number) and the y-values from top to bottom (row number).

In this work, the lowest pixel with a clear view in a column is called horizon pixel. The
Horizon algorithm iterates through each column from the top row to the bottom to obtain
the horizon pixel. Since the sky is black, the pixel values in all channels are close to
zero. The mask begins when the pixel color changes to white e. g. a channel value
is bigger than zero. In this case, a threshold of 30 is set to determine the change to
white. When a channel in a column exceeds the threshold, the pixel position of the
previous row is saved. This pixel is the last pixel with a clear view of the sky. The red
pixel in the 3–3 figure represents the horizon pixel of the first column. The threshold is
exceeded at pixel (0, 8), so the saved pixel is the red pixel (0, 7). If a column reaches
the bottom without detecting a mask, the last pixel of the column is saved. The result
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Fig. 3–2: Pixel values in colored mode have three channels (B, G, R) with the values
giving the intensity of a color.

of the algorithm is a list with all horizon pixels of the mask image. A visualization of the
horizon pixel data for camera 4 of the AMS 80 station is shown in figure 3–4.

Fig. 3–3: Simplified Pixel Matrix with Horizon Pixel in Red

3.2.2 Transformation of Pixel Positions into Azimuth and Elevation

In order to plot the horizon data, the pixel position must be transformed into azimuth
and elevation coordinates. The AllSky7 software uses plate solving to determine the
right ascension and declination of the center and to generate a lens model describing
the lens distortion. The deviation of the positions of the stars is transformed into a
polynomial model. With this model, the coordinates of each pixel can be determined.
The lens model for camera four of the AMS 80 station is shown in figure 3–5.

With the lens model, the AllSky7 software can transfer any pixel position into azimuth
and elevation with an accuracy of about 0.1°. In figure 3–6, the contour of the horizon
for camera four is shown in the azimuth and elevation grid created by the lens model.
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Fig. 3–4: Colored horizon of camera 4 mask of AMS 80

Fig. 3–5: Lens Model for Camera 4 of AMS 80

(a) Colored Horizon for Camera 4 in Mask
Image of AMS 80

(b) Horizon Contour for Camera 4 in Grid Im-
age of AMS 80

Fig. 3–6: Horizon for Camera 4 in Mask and Grid Image AMS 80
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The Horizon code saves the pixel azimuth and elevation values. To reduce the data and
to be able to compare the elevation, the azimuth values are rounded to 0.1°, and the
average elevation of the same azimuth values is taken. The result is a list of azimuth
values in 0.1° steps and their elevation angles for a camera image.

3.2.3 Data Merging Algorithms for Lower Images

After running the code on all seven cameras of a camera system, the data had to be
merged to create the horizon data of a full circle. Because the cameras overlap at the
edges, the horizon data of two sequential cameras have the same azimuth values at
the overlapping areas. However, the elevation angles are not exactly the same since
the viewing angles of the cameras are different. In addition, the masks are created
differently for every picture leading to different elevation angles. Therefore, a good
merging algorithm had to be found. For the merging algorithm, three options are avail-
able: optimistic, pessimistic, and weighted.

3.2.3.1 Weighted Merge

The optimistic and pessimistic approaches create a hard cut-off at the end of an image.
A weighting system was applied to smooth the transition. The principle of the algorithm
is shown in Figure 3–7. A value is weighted more the deeper it is in an image. First, the
overlapping values are counted. Then two weighting factors are introduced: i for the
first image and j for the second image. For the example of 20 overlapping values, the
first value of the first image is weighted 20 times to 1 for the value of the second image.
Advancing into the second image, the weighting factor i of the first image decreases,
and the weighting factor j of the second image increases. The sum is divided by the
number of values to get the weighted value. In the case of 20 overlapping values, 21
values are received so the sum is divided by 21.

Fig. 3–7: Weighting Factors

3.2.3.2 Pessimistic Merge

The pessimistic Merge assumes that the mask covers less area than in reality by ob-
stacles. Hence, the algorithm takes the highest elevation angle as the correct value.
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3.2.3.3 Optimistic Merge

For the optimistic approach, it is assumed that a mask covers more area than in reality.
Therefore, when comparing the elevation angle of the same azimuth values, the lowest
elevation is taken as the correct value. The data represented in this work is merged
with the optimistic approach because it is assumed that the mask generation covers
more area than needed.

3.2.4 Data Merging Algorithms for Upper Images

Although the lower five cameras cover a full circle, some cameras have obstacles in the
field of view reaching the top of the image. For example, an upper image is shown in
figure 3–8. Considering the lower images would result in a lower elevation angle than
in reality due to a cutoff at the upper edge. Therefore, obstacles in the upper images
have to be taken into account. However, the horizon pixel search algorithm must be
adjusted because the azimuth angles can no longer be assumed constant in a column.
Furthermore, the iteration of a column should not stop when reaching a bright pixel.
To solve this issue, the algorithm saves the pixel when a color change is detected. To
get the obstacles’ vertical edges, the algorithm iterates from top to bottom in the first
run and from left to right in the second run. The horizon pixels at the edges of the
obstacles in the upper images override the horizon data for the same azimuth of the
lower images.

(a) Colored Horizon for Camera 6 in Mask
Image of AMS 60

(b) Horizon Contour for Camera 4 in Grid Im-
age of AMS 80

Fig. 3–8: Horizon for Camera 6 in Mask and Grid Image AMS 60

3.2.5 Horizon Data of Camera AMS 80

The completed horizon data of a camera system consists of a list with azimuth angles
from 0° to 359.9° in 0.1° steps and their elevation angles. An example of the resulting
horizon for station AMS 80 is shown in figure 3–9. The elevation angle is plotted over
the azimuth angle. The visible sky lies above the plotted line. All horizontal lines in
the image are of inverse parabolic shape in the diagram because of the lens distortion.
The large arcs represent a single camera, whereas the small arcs display jumps due
to obstacles in the field of view. The first arc is displaying the horizon of camera 1 and
goes from 320° to 42°, the second arc represents camera 2 and goes from 32° to 120°,
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camera 3 goes from 103° to 189°, camera 4 goes from 174° to 262° and camera 5 goes
from 242° to 329°. Camera 1, 2 and 5 are only having few obstacles and therefore the
arcs can be recognized very well. In this case, there are no obstacles in the upper
images, so the elevation angles stay under 30°.

Fig. 3–9: Horizon Line of AMS 80

3.3 Determine the Observing Coverage of Station AMS 80

To determine the area that the AllSky7 cameras can observe, the actual horizon on
the images had to be considered. Under perfect conditions, at zero height above the
ground, the elevation of the horizon is 0°. However, in most cases, the perfect horizon
is obscured by houses or trees in the line of sight of the camera system. Therefore,
in the first step, an approach was found to determine the actual horizon of a camera
system. The next step was calculating the observing distance in all directions and
plotting the covered area. After determining the distance, the station’s coverage area
could be calculated.
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Fig. 3–10: Principal to Determine the Observing Distance

3.3.1 Calculation of the Observing Distance

Figure 3–10 shows the concept of an obstructed view, where φ is the elevation, and dh
is the horizontal distance we can see at a given height.

For the calculations, we consider the triangle with the sides a, b, c. First, we define the
angle α, which is the elevation angle ϵ plus 90°. The length c is the average radius of
the Earth R. Moreover, the length a is given by R plus the height H above sea level at
which we expect the meteors. Therefore, we get the following expressions:

α = 90◦ + ϵ, (3–1)
c = R, (3–2)
a = R +H. (3–3)

To then obtain the observed distance, we use the following trigonometric considera-
tions.
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With the sine law

a

sin(α)
=

c

sin(γ)
(3–4)

we get:

γ = arcsin

(
c · sin(α)

a

)
, (3–5)

β = 180◦ − α− γ, (3–6)

β = 90◦ − ϵ− arcsin

(
R · sin(α)
R +H

)
. (3–7)

Finally, we get the curved distance d and the horizontal distance dh, which we can see
at the height of H:

d = 2πr · β

360◦
, (3–8)

dh = sin(β) · c. (3–9)

.

The observing distance of camera AMS 80 is plotted in figure 3–11 in polar coordinates,
where 0° degrees represents the North.

Fig. 3–11: Observing Distance for Azimuth angle of AMS 80
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3.3.2 Determination of the Coverage Area of a Camera

As the last step, the coverage of a camera system had to be ascertained. In the
following, three procedures of area determination are presented.

3.3.2.1 Calculation of the Coverage Area with Trapezoidal Rule

The first method to calculate the area is the trapezoidal rule. Figure 3–12 shows the
principle of the trapezoidal approach. The area between the x-axis and the function is
divided into n trapezoidal segments. Subsequently, the areas Si of the trapezoids are
summed up to approximate the integral of the function. The Python package "scipy"
has a built-in function that uses the rule to calculate the area of a function. Since the
distances are obtained in polar coordinates, the data points had to be transferred from
polar into Cartesian coordinates.

Fig. 3–12: Principal of the Trapezoidal Rule

3.3.2.2 Calculation of the Coverage Area with a Triangle Approach

The second approach represents the area between two data points as triangles. The
area of a triangle can then be calculated with the equation:

A =
1

2
· b · h (3–10)

.

Then the areas Si of the triangles can be summed to obtain the station’s coverage
area. The Concept is shown in figure 3–13. The advantage over the first approach is
that the data points do not have to be converted into Cartesian coordinates.
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(a) Area of a Triangle (b) Triangle Areas of Data Points

Fig. 3–13: Triangle Approach for Area Calculation

3.3.2.3 Calculation of the Coverage Area with a Spherical Integral

The last two methods are intuitive, but they can only calculate the area in a flat plane,
whereas, in reality, the area is curved. Therefore a third approach was developed using
Riemann sums with a midpoint rule seen in 3–14.

Fig. 3–14: Riemann Integral with Midpoint Rule

In order to deduce the curved area, a modified version of the general integral of a
sphere was used. The spherical integral can be expressed as:

dV =

∫ Φ

0

∫ R

0

∫ Θ

0

r2 sin(θ)dθdrdφ, (3–11)

with the radius r, the angle θ in the y-z-plane, starting from the z-axis, and angle φ in
the x-y-plane, starting from the x-axis. With a fixed radius R and the angle φ between
two data points, the area dA can be computed with:

dA = φR2

∫ Θ

0

sin(θ)dθ = φR2[1− cos(θ)] (3–12)
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In this case, the radius R is composed of the Earth’s radius REarth = 6371km plus
the height of the meteor level H = 100 km: R = REarth + H = 6471 km. The azimuth
angle between two data points equals the incremental angle φ: φ = 0.1◦ and the upper
boundary theta equals 90° minus the elevation angle ϵ: Θ = 90◦ − ϵ. The area dA for
two data points is shown in figure 3–15, and the observable area can be deduced by
summing the areas of all data points.

Fig. 3–15: Surface Integral dA of a Sphere with radius R

3.3.3 Comparison of Proposed Methods

Now the previously introduced methods for area determination are compared and eval-
uated. For that purpose, the areas for station AMS 80 at an altitude of 100 km will be
used. In table 3–1, the calculated areas of the trapezoidal rule and the triangle ap-
proach are compared to the spherical integral approach. The difference between all
three methods is minimal due to the large radius. Therefore the curved surface could
be neglected. However, the spherical integral was chosen for the upcoming calcula-
tions since extending the model to calculate volumes is effortless.

Tab. 3–1: Calculated Area Comparison for AMS 80

Spherical Integral Triangle Approach Trapezoidal Rule

Area 1 480 109 km2 1 479 155 km2 1 481 378 km2

Difference 0 % −0.6 % 0.09 %
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3.3.4 Calculation of the Observable Volume

Because meteors are moving through the atmosphere, the meteor level of 100 km can
only be used as a projection plane for meteor trails. Therefore it can be advantageous
to calculate a coverage volume from 80 km to 120 km height since most meteors have
their maximum brightness at this height level. For the volume calculation, the general
spherical integral in equation 3–11 can be modified to:

dV = φ

∫ R2

R1

∫ Θ

0

r2 sin(θ)dθdr, (3–13)

dV = φ

∫ Θ

0

[
1

3
r3 sin(θ)

]R2

R1

dθ, (3–14)

dV =
1

3
φ[R3

1(cos(θ)− 1) +R3
2(1− cos θ)], (3–15)

for radius boundaries from R1 = REarth + H0 and R2 = REarth + H2 with H1 = 80 km
and H2 = 120 km height. For station AMS 80, the coverage volume can be calculated
to 59 204 542 km3.
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4 Determination of the Spatial Coverage of the AllSky7
Fireball Network

In the previous chapter, the procedure for obtaining the horizontal data and calculat-
ing the coverage of a single camera was described. In this chapter, the determination
of the spatial coverage of the entire network will be performed using the methods in-
troduced in the previous chapter. In order to map the coverage of all cameras, the
horizon data have to be transformed into longitude and latitude coordinates. Then a
grid is generated, which counts how many cameras can see a specific grid point. A
heat map then visualizes the coverage. After that, the magnitude reduction due to the
atmosphere and the distance was considered, and a new spatial coverage profile was
created.

4.1 Coordinate Transformation to Latitude and Longitude

So far, only individual cameras have been considered. For this purpose, an observer-
centered coordinate system with azimuth and elevation was a good solution. However,
an earth-centered coordinate system is needed to analyze the coverage by multiple
cameras. Therefore, the data points are transferred to the geographic coordinate sys-
tem with longitude and latitude. To convert the data points, consider a sphere of radius
R = REarth +H = 6471 km with the mean radius of the Earth REarth = 6371 km and the
meteor observation altitude H = 100km shown in Figure 4–1. The north pole N , the
station position P1, and an arbitrary horizon point P2 form a triangle on the spherical
surface with the arcs of a great circle a, b, c and the angles A,B,C between the arcs.

With known longitude and latitude of the station (λ1, ϕ1), the longitude λ2 and the lati-
tude ϕ2 of the second point can be calculated with the spherical sine and cosine laws:

B = arcsin

(
sin(b) · A

sin(a)

)
, (4–1)

a = arccos(cos(b)cos(c) + sin(c)sin(b)cos(A)). (4–2)

With the calculated angle B, which is the difference angle of λ2 and λ1, and a, which
is 90° minus the latitude of the second point, the longitude λ2 and the latitude ϕ2 of the
horizon point can be calculated with:

b = distance/R, (4–3)
c = 90◦ − ϕ1, (4–4)
A = azimuth. (4–5)
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Fig. 4–1: Spherical Sine and Cosine Law

With the calculated angle B, which is the difference angle of λ2 and λ1, and a, which is
90° minus the latitude of point two, the longitude λ2 and latitude ϕ2 of the horizon point
can be computed with:

λ2 = B + λ1, (4–6)
ϕ2 = 90◦ − a. (4–7)

After converting the AMS 80 station horizon data to longitude and latitude, the result is
the plot of the coverage area shown in Figure 4–2 at an observation altitude of 100 km.

4.2 Determination of the Spatial Coverage

The first step in determining the network coverage is to discretize the area of Europe.
In this case, the grid created ranges from −20° to 37° in longitude and from 27° to 67°
in latitude. The grid points contain the latitude, longitude, and a counter that counts
the cameras that can see the grid point at the observation height. For each station,
the algorithm loops through the grid file and checks which grid points are visible to
the camera. To check if a point is within camera coverage, the distances at the same
azimuth angles of the horizon point and the grid points are compared. If the distance
from the meteor level station position to the grid point is less than the distance to the
horizon point, the grid point is covered by the camera. The distances to the horizon
points have already been calculated in section 3.3.1. The azimuth and distance from
the station must first be determined for the grid points. For the distance, the spherical
cosine law applies for b:
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Fig. 4–2: Coverage of station AMS 80

b = arccos(cos(a)cos(c) + sin(a)sin(c)cos(B)). (4–8)

The distance can then be calculated with the expression 4–4:

distance = b ·R. (4–9)

To obtain the azimuth angle to the grid point, the spherical cosine law for a can be
solved for A = azimuth:

azimuth =
arccos(cos(a)− cos(b)cos(c))

sin(c)sin(b)
. (4–10)

4.2.1 Determination of the Coverage Area

In order to calculate the coverage area, an area must be defined to represent the one-
dimensional grid points. Here, the area spanned by going half the distance to the next
grid points was used. The principle is shown in figure 4–4.

Now, a modified integral of the general spherical volume can be used to calculate the
area dA of a grid point, as shown in Figure 4–4. With a constant radius r = R+H, the
angle phi, which is the angle between two grid points, and the initial and final angles of
theta, the modified integral can be derived from equation 4–12 as follows:
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Fig. 4–3: Area dA of a Grid Point

dV =

∫ R

0

∫ φ

0

∫ θ

0

r · sin(θ) drdφdθ, (4–11)

dA = r2φ

∫ θ

0

sin(θ)dθ = r2φ[cos(θ1)− cos(θ2)]. (4–12)

Fig. 4–4: Area dA of a Grid Point
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4.2.2 Determination of the Coverage Volume

To calculate the volume, the constant radius r for the area calculation is now extended
to a variable radius. The expanded volume is shown in figure 4–5 , where the radius
ranges from r1 to r2. The modified integral for the volume dV of a grid point is given in
equation 4–13.

dV = 1/3φ[r31(cos(θ2)− cos(θ1)) + r32(cos(θ1)− cos(θ2))]. (4–13)

Fig. 4–5: Volume dV of a Grid Point

4.2.3 Choosing the Right Step Size

A fine grid provides the most accurate values, but the required time to calculate the
values quadruples if the step size is doubled in the 2D case. Therefore, a good com-
promise for the step size of the grid had to be found. The step size was defined by
step = 1/n, starting with n = 1, then n was doubled until n = 8. The difference in the
area to the previous step size was then compared. The resulting coverage areas, their
differences, and the percentages are shown in the table 4–1.

The first reduction of the step size from 1° to 0.5° resulted in a difference of 0.77 %.
Further halving the step size to 0.25° resulted in a difference of 0.13 %. With a step
size of 1.25°, the difference was only 0.09 %. For the upcoming calculations, the step
size was set to step = 1/4 since this was the best ratio of accuracy to computation time.
The resulting coverage of the network at a meteor level of 100 km is visualized in a heat
map in Figure 4–6. The heat map was obtained by plotting the grid with matplotlib as
pcolormesh.
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Tab. 4–1: Influence of the Step Size on the Coverage Area

n Coverage Area Difference Percentage

1 4 947 703 km2

2 4 909 707 km2 37 996 km2 0.77 %

4 4 903 549 km2 6157 km2 0.13 %

8 4 898 987 km2 4562 km2 0.09 %

Fig. 4–6: Heat Map of the Coverage of AllSky7 Network
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4.3 Consideration of the Brightness Reduction at Low Elevation
Angles

Until now, only the visible sky was considered for the detection profile to detect a me-
teor. However, in reality, the brightness is reduced by the atmosphere and the distance
between the light source and the observer. In this section, a model is proposed to
predict the brightness reduction and limit the camera’s elevation angle.

4.3.1 Magnitude Reduction due to the Atmosphere

The extinction of light by the atmosphere is influenced mainly by three factors: Rayleigh
scattering, aerosol scattering, and molecular absorption. Each factor depends on
wavelength as well as time and altitude variations. [20]

4.3.1.1 Rayleigh Scattering

Rayleigh scattering is caused by air molecules whose size is smaller than the wave-
length of the scattered light. The extinction caused by this can be modeled under
standard conditions by the following expression [20]:

ARaySTP = 0.0094977 · λ−4 · n2
s · e−

h
7.996 , (4–14)

where λ is the wavelength in µm, h is the height of the observer above sea level, and
ns is the refractive index, which can be described as follows:

ns = 0.23465 +
107.6

146− λ−2
+

0.93161

41− λ−2
. (4–15)

A scaling factor can be used to account for pressure and temperature deviations from
the standard state [21]:

ARay = ARaySTP ·
(
TSTP

T

P

PSTP

)
, (4–16)

where TSTP = 273.15K, PSTP = 760mmHg, and T and P are the actual temperatures
and pressures during the observations.

4.3.1.2 Aerosol Scattering

Scattering by aerosols such as water, pollen, dust, or soot strongly depends on the con-
centration of these particles and varies not only from place to place but also in time.
The effect of aerosols can be divided into wavelength-independent neutral aerosol ex-
tinction An and selective aerosol extinction AS [22]. The smaller the particles, the
stronger the wavelength dependence. The extinction can be modeled as [20]:

Aaer = A0 · λ−α0 · e
−h
H . (4–17)
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The values A0, α0, and H are difficult to determine without direct measurements. How-
ever, since the extinction can be calculated accurately due to Rayleigh scattering and
the minimal influence of ozone, the values can be adjusted to correspond to typical
extinction values. Green suggests as values A0 = 0.05, α0 = 1.3, and H = 1.5 km [23].

4.3.1.3 Molecular Absorption

The effect of molecular absorption on light extinction is quite small compared to the
other two effects. Knowing the total thickness T in mmcm−1 of the ozone layer, the
extinction can be calculated according to [22]:

Aoz = 1.09 · T · k(λ), (4–18)

where k(λ) is the absorption coefficient of ozone. Without knowing the ozone con-
centration at the observer’s location, Green suggests a value for ozone absorption of
Aoz = 0.016 [23].

4.3.1.4 Air Mass

The factors presented for light extinction by the atmosphere apply to observations with
a zenith angle z = 0. The zenith angle refers to the angular distance from the zenith.
To estimate extinction at smaller angles, the air mass is used to describe the amount
of air between the observer and the object. A rough approximation of the air mass can
be given by 1/cos(z). At a zenith angle of zero, the air mass is equal to 1; as angle
z increases, the air mass increases slowly at first but rapidly at high zenith angles.
However, this approximation fails for observations near the horizon. A more accurate
estimate is given by Rozenberg, who is mentioned by Green [23]:

X = cos(z) + 0.025 · e−11cos(z). (4–19)

The final reduction in brightness ∆matm due to light extinction by the atmosphere can
then be calculated with the expressions:

A = ARay + Aaer + Aoz, (4–20)
∆matm = X · A. (4–21)

This model assumes a linear dependence between light extinction and air mass and is
known as the Bouguer method. However, light shifts to a redder spectrum as air mass
increases, which changes the wavelength-dependent extinction coefficients. Red light
is scattered less than blue light, resulting in nonlinear behavior [22]. Nevertheless, a
linear dependence was assumed for this work. Also, the coefficients calculated here
are values for the reduction through the entire atmosphere. Since the meteors are
visible at altitudes of about 120 km to 80 km, the values may not be accurate. However,
the air density above this level is very low, so most of the light extinction occurs below
this meteor level. Therefore, the values should still be a reasonable estimate.
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4.3.2 Magnitude Reduction due to the Distance

In addition to the decrease in brightness due to the atmosphere, the light loses intensity
with increasing distance. The intensity is inversely proportional to the square of the
distance to the observer. The ratio of a light source at a distance d1 to a light source at
a distance d2 can be expressed as follows:

I1
I2

=

(
d2
d1

)2

. (4–22)

Therefore, the reduction of the magnitude due to the distance can be calculated with:

m2 −m1 = 2.5log

(
I1
I2

)
, (4–23)

m2 −m1 = 2.5lo

(
d2
d1

)2

, (4–24)

∆mdist = 5log

(
d2
d1

)
. (4–25)

4.4 Determination of the Limiting Elevation Angle

To adjust the spatial coverage to the brightness reduction, both effects were consid-
ered. With the two models, the combined brightness reduction is given by:

∆m = ∆mdist +∆matm, (4–26)

= 5log

(
d2
d1

)
+X · A. (4–27)

Since there is no analytical solution for the combined model for the elevation angle
ϵ, the problem was solved numerically. Standard conditions were assumed, and the
wavelength was set to 0.51µm. The values for A0, α0, and H were set to 0.05, 1.3, and
1.5 km, respectively. A value of Aoz = 0.016 was assumed for the molecular absorption.
To calculate the distance-induced brightness decrease, the reference distance d1 at
the meteor level was set as d1 = 100 km. The distance d2 is the direct distance at which
the camera can no longer detect the object and depends on the elevation angle ϵ. It
holds:

β = arccos

(
R · cos(ϵ)
R +H

)
− ϵ, (4–28)

d2 = (R +H) · sin(β)
cos(ϵ)

. (4–29)
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The problem is solved numerically in the code for a specified magnitude mz at zenith
and the limiting magnitude mlim = 4mag of the cameras so that it holds:

mz −∆m < mlim = 4mag. (4–30)

The limiting angle is increased from 0° in 1° steps until the resulting magnitude mr =
mz −∆m is smaller than 4 mag. The table 4–2 shows the limiting angles for the magni-
tudes −3, −2, −1 and 0. Each camera’s minimum angle is calculated based on its height
H above sea level. The elevation angles in the data that are less than the minimum
angle are then set to the limiting angle.

Tab. 4–2: Limiting Elevation Angle for Different Magnitudes

Magnitude Light
Extinction

Distance Magnitude
Reduction

Resulting
Magnitude

Limiting
Angle

-3 2.463 4.246 6.709 3.709 5°

-2 1.856 3.881 5.736 3.736 7°

-1 1.344 3.394 4.738 3.738 10°

0 978 2.851 3.829 3.828 14°

In figure 4–7 the heatmap of the reduced coverage for a magnitude at zenith mz =
−3mag is shown.

Finally, it should be noted that the light is distributed over several pixels when observing
moving objects with a camera. Therefore, there is also a decrease in brightness due to
the velocity of the meteor. This effect is being researched by another student and has
been neglected in this paper.
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Fig. 4–7: Heat Map of Reduced Coverage of the AllSky7 Network
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5 Results and Analysis

In this chapter, the results of the area calculations are discussed. First, the calculated
area is compared with the grid’s and the world’s area. Then the effect of brightness
reduction on the area is determined. Finally, the effect of observation heights is exam-
ined.

5.1 Spatial Coverage of the AllSky7 Network Compared to the Grid
and World

Figure 5–1 shows the coverage of the AllSky7 network for an ideal case without correc-
tions for brightness degradation at an altitude of 100 km. For clarity, the camera coun-
ters have been grouped into seven categories. All grid points with a camera counter
of less than two were set to zero, resulting in the yellow area. The next areas are grid
points, which can be observed up to 5, 10, 15, 20, 25 and 27 cameras, respectively.
Since at least two cameras are needed to calculate the trajectories of the meteors,
the orange area is the area of interest. In Table 5–1, the orange area and volume are
compared to the displayed grid’s area and the entire world’s area. The volume was
calculated from a height of 80 km to 120 km since most meteors are visible at this al-
titude. The percentage indicates the ratio of coverage to the grid or world. The grid
covers 25.23 % of the grid area and 0.93 % of the world area. The same percentages
apply to the volume. The sky over Germany is covered by at least 20 cameras almost
everywhere, even up to 27 since most cameras are stationed in Germany. Smaller
neighboring countries, such as the Netherlands, Belgium, Switzerland, Austria, the
Czech Republic, and even Poland, also have good coverage due to their proximity to
Germany. However, there are no AllSky7 cameras in France, as France has its own
network called FRIPON. The Nordic and Eastern countries, as well as Spain, also have
poor coverage.

Tab. 5–1: Ideal Coverage Area of the AllSky7 Network at a Height of 100 km

Coverage Grid (Europe) World

Area 4.95 × 106 km2 19.43 × 106 km2 526.2 × 106 km2

Volume 1.96 × 108 km3 7.77 × 108 km3 210.48 × 108 km3

Percentage 0 % 25.23 % 0.93 %
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Fig. 5–1: Ideal Coverage of the AllSky7 Network at a Height of 100 km

5.2 Reduced Spatial Coverage due to Brightness Reduction at Low
Elevation Angles

As mentioned in section 4.3, the limiting angle for a given brightness at the zenith
can be calculated for each camera. The resulting cutoff angle depends mainly on the
altitude of the stations. For most stations, the minimum elevation angle was calculated
to be 5° or 6°. Increasing the elevation angle means decreasing the visible distance.
The distance a camera can see a point in the azimuth direction was then adjusted.
The resulting coverage is shown in Figure 5–2. It can be seen that the edges were
smoothed by truncating low-elevation angles. Coverage in the center is still strong,
although not as dense as in the ideal coverage profile. The data are summarized in
Table 5–2. The reduced area covers only about 76.89 % of the ideal coverage area. In
terms of the grid, the covered area drops from 25.23 % to 19.4 % and in terms of the
world, from 0.93 % to 0.72 %.
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Fig. 5–2: Adjusted Coverage due to Brightness Reduction at Low Elevation Angles

Tab. 5–2: Reduced Coverage due to Brightness Reduction at Low Elevation Angles at
a Height of 100 km

Reduced
Coverage

Ideal Coverage Grid (Europe) World

Area 3.77 × 106 km2 4.95 × 106 km2 19.43 × 106 km2 526.2 × 106 km2

Volume 1.51 × 108 km3 1.96 × 108 km3 7.77 × 108 km3 210.48 × 108 km3

Percentage 0 % 76.89 % 19.4 % 0.72 %

5.3 Influence of the Observation Height on the Spatial Coverage

Lastly, the Influence of the Observation Height on the Spatial Coverage was examined.
For this the, coverage values of 80 km and 120 km height were compared with the
reference area at 100 km. All areas in this section are adjusted to the limiting elevation
angle.
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5.3.1 Comparison of Coverage Area at 80 km to 100 km Height

For observations at lower altitudes, the field of view is narrower, so the area covered
should be reduced at the edges. Figure 5–3 shows the comparison of the area at 80 km
and 100 km altitude. As expected, coverage shrinks at the edges. Furthermore, the
total number of cameras decreases to 20 to 15 per grid point over Germany. The max-
imum camera density also decreases from 27 to 25. Table 5–3 compares the values
of 80 km height with the values of 100 km, the grid, and the world. The coverage area
decreases to 76.13 % of the reference area. The covered area of the grid decreases by
4.63 % to 14.77 %, and the covered area of the world decreases from 0.72 % to 0.55 %.

Tab. 5–3: Comparison of the Coverage Area at 80 km and 100 km Height

Coverage
80 km

Coverage
100 km

Grid (Europe) World

Area 2.87 × 106 km2 3.77 × 106 km2 19.43 × 106 km2 526.2 × 106 km2

Volume 1.15 × 108 km3 1.51 × 108 km3 7.77 × 108 km3 210.48 × 108 km3

Percentage 0 % 76.13 % 14.77 % 0.55 %

5.3.2 Comparison of Coverage Area at 120 km to 100 km Height

Figure 5–4 shows the coverage area in 120 km and 100 km height. The area covered
by up to 27 cameras has greatly increased, and the minimum coverage of at least two
cameras has also expanded. The coverage area has grown by 28.08 % compared
to the reference height at 100 km. The covered area of the grid has increased from
19.4 % to almost 25 %, and the covered area of the world has increased from 0.72 %
to 0.92 %.

Tab. 5–4: Comparison of the Coverage Area at 120 km and100 km Height

Coverage
120 km

Coverage
100 km

Grid (Europe) World

Area 4.83 × 106 km2 3.77 × 106 km2 19.43 × 106 km2 526.2 × 106 km2

Volume 1.93 × 108 km3 1.51 × 108 km3 7.77 × 108 km3 210.48 × 108 km3

Percentage 0 % 128.08 % 24.85 % 0.92 %
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(a) Coverage Area at 100 km Height

(b) Coverage Area at 80 km Height

Fig. 5–3: Comparison of the Coverage Area at 100 km and 80 km Height
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(a) Coverage Area at 100 km Height

(b) Coverage Area at 120 km Height

Fig. 5–4: Comparison of the Coverage Area at 120 km and 100 km Height
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The results showed that the spatial coverage over central Europe, especially Germany,
is quite good for an altitude of about 100 km. In contrast, the coverage in the north and
east of Europe is relatively poor. However, not all active cameras could be processed
due to missing files in the archive. The cameras used to create the coverage profiles
are listed in the appendix section A.1. Nevertheless, a coverage of almost 0.7 % of the
world and 20 % of the grid is a good starting point.

It should be mentioned that the coverage presented here is not always visible due to
clouds, so the coverage model needs to be extended to include considerations of pre-
cise sky time and cloud cover. In addition, brightness reduction due to light extinction
in urban areas with heavy light pollution may be an essential factor. Furthermore, a
decrease in brightness due to meteor motion must also be considered.
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6 Conclusion

In this study, software was developed to determine the coverage of individual cam-
eras. With the obtained data, a coverage profile for the entire network was created.
A correction for the minimum elevation angle was performed to consider the influence
of brightness reduction due to light extinction and the atmosphere. Subsequently, the
results were analyzed on the influence of the brightness reduction and the observation
altitude. Then the results were discussed. This chapter summarizes the work of the
thesis and gives an outlook on further research.

6.1 Summary

A short introduction to the topic was given in chapter 1. The importance of meteor
observation was explained, and the AllSky7 Fireball Network was introduced. Then a
short outlook on the scope of this thesis was given.

Chapter 2 described the basics of meteor observations. The celestial and geographi-
cal coordinate system was explained, and a method to transform the coordinates was
given. The last section dealt with the literature for determining the flux density of mete-
oroids and the work’s significance.

Chapter 3 presented an approach to determine the coverage of a camera system. For
the determination, mask images of the cameras are processed to determine horizon
pixels above obstacles. The pixels are then converted to azimuth and elevation coordi-
nates. With this data, the viewable distance is calculated for each azimuth angle. The
resulting distance values were then visualized in a polar plot.

In chapter 4, the obtained data were transformed into geographical coordinates. The
coverage data could then be plotted on a map. With the help of a grid, the area over
Europe was discretized to determine network coverage. The grid ranged from −20°
to 37° in longitude and from 27° to 67° in latitude. The cameras with coverage of the
point were counted for each grid point. The resulting coverage grid was then plotted
on a heat map. The coverage area was then adjusted to account for the brightness
reduction at low elevation angles with a limiting angle.

Chapter 5 presented the results of the spatial coverage determination and analyzed
the influence of the brightness reduction and differing altitudes. Under ideal conditions
and an altitude of 100 km, the network covers 25.23 % of the grid and 0.93 % of the
world. The coverage was then adjusted to brightness reductions with a limiting angle.
The resulting reduced coverage covers 19.4 % of the grid and 0.72 % of the world.
The altitude of observation was then analyzed by comparing the coverage at altitudes
of 80 km and 120 km to a reference area at 100 km. At an altitude of 80 km the area
decreases by 23.87 % and increases by 28.08 % at an altitude of 120 km.
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6.2 Further Research

To calculate the flux density, the observed area, the observation time, and the number
of meteors are needed. The presented results give information about the area but are
only valid to clear sky conditions. Therefore an important research topic is the cloud
cover above the cameras. The model should consider the visible area and the time
frame at which the sky is visible. Furthermore, a more precise magnitude reduction
model must be developed. The decrease in brightness due to light extinction can be
modeled at the meteor level to yield more accurate values. Also, the light pollution in ur-
ban areas has to be considered, which is decreasing the magnitude too. Furthermore,
since the meteors are moving, the light gets distributed on several pixels, reducing the
overall magnitude. Another student researched to account for this problem. A decent
counting method should be used to determine the meteor numbers.
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A First Appendix

A.1 Processed Stations

The stations used for the determination of the coverage are:

AMS 16, AMS 18, AMS 21, AMS 22, AMS 30, AMS 31, AMS 32, AMS 33, AMS 34,
AMS 35, AMS 36, AMS 50, AMS 54, AMS 56, AMS 57, AMS 58, AMS 59, AMS 65,
AMS 67, AMS 70, AMS 71, AMS 72, AMS 74, AMS 75, AMS 80, AMS 86, AMS 87,
AMS 88, AMS 90, AMS 94, AMS 96, AMS 97, AMS 100.

Some active stations had missing calibration files and were not considered in this work
as well as systems stationed in the USA.

A.2 Code

The data of this work was processed and visualized with the two python scripts shown
below. The Horizon.py script was used for the data acquisition in chapter 3 and the
Coverage.py script was used to compute and display the coverage of the network in
chapter 4 and 5.

Horizon.py

1 import cv2
2 import os
3 import numpy as np
4 import math
5 import matplotlib.pyplot as plt
6 import cartopy.crs as ccrs
7 import cartopy.feature as cfeature
8 from scipy.integrate import trapz
9 from lib.PipeUtil import load_json_file

10 from lib.PipeAutoCal import XYtoRADec , AzEltoRADec
11 from datetime import date
12
13 # Round to the nearest number with the specified precision , and

break ties by rounding up
14 def round_half_up(n, decimals =0):
15 multiplier = 10 ** decimals
16 return math.floor(n*multiplier + 0.5) / multiplier
17
18 # Go through all cal_files and selects the cal_file with the

smallest residual
19 # pixel error
20 def get_best_cal_file(cal_files):
21 best_cp = {}
22 best_cf = None
23 best_cp[’total_res_px ’] = 9999
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24 for data in cal_files:
25 cf, _ = data
26 cal_file = load_json_file(cf)
27
28 if float(cal_file[’total_res_px ’]) <

float(best_cp[’total_res_px ’]):
29 print(’RESET␣BEST␣CAL!’, cal_file[’total_res_px ’])
30 best_cp = cal_file
31 best_cf = cf
32
33 return(best_cf , best_cp)
34
35 # Calculate the distance and horizontal distance at a specific

height
36 def calc_distance(data , H, min_elevation):
37 Distance = []
38 R = 6371
39 r = R + H
40
41 for point in data:
42 if point [1] < min_elevation:
43 point [1] = min_elevation
44 phi = point [1]
45 alpha = math.radians (90 + phi)
46 beta = 90 - phi - math.degrees(math.asin(R *

math.sin(alpha) / (R+H)))
47 distance = 2 * math.pi * r * beta /360
48 distance_h = math.sin(math.radians(beta))*r
49 distance_g = 2 * math.pi * R * beta /360
50 az = point [0]
51 distance = float(’{:1.3f}’.format(distance))
52 distance_h = float(’{:1.3f}’.format(distance_h))
53 distance_g = float(’{:1.3f}’.format(distance_g))
54 beta = float(’{:1.3f}’.format(beta))
55 Distance.append ([az, distance , distance_h , distance_g ,

beta])
56 return(Distance)
57
58 # Merge the data points with equal az values
59 def reduce_data_points_low(data):
60 v = 0
61 red_data = []
62 num = 1
63 for element in data:
64 if v == 0:
65 v = element [0]
66 sum = element [1]
67 else:
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68 if v == element [0]:
69 num += 1
70 sum = sum + element [1]
71 else:
72 average = float(’{:1.3f}’.format(sum / num))
73 red_data.append ([v, average ])
74 v = element [0]
75 sum = element [1]
76 num = 1
77 average = float(’{:1.3f}’.format(sum / num))
78 red_data.append ([v, average ])
79 return(red_data)
80
81 # Sum all points with same azimuth and calculate mean value
82 def reduce_data_points_up(data):
83 data.sort()
84 v = 0
85 red_data = []
86 num = 1
87 sum = 0
88 for element in data:
89 if v == 0:
90 v = element [0]
91 sum = element [1]
92 else:
93 if v == element [0]:
94 num += 1
95 sum = sum + element [1]
96 else:
97 average = float(’{:1.3f}’.format(sum / num))
98 red_data.append ([v, average ])
99 v = element [0]

100 sum = element [1]
101 num = 1
102 average = float(’{:1.3f}’.format(sum / num))
103 red_data.append ([v, average ])
104 return(red_data)
105
106 # Write a list of lists into a txt file
107 def write_data_to_txt(data , name , var , station_id):
108 f = open(r’/home/ams/amscams/pipeline/Horizon/’ + station_id
109 + ’/’ + name + ’.txt’, ’w’)
110 for name in var:
111 f.write(name + ’␣␣’)
112 f.write(’\n’)
113 for point in data:
114 for element in point:
115 f.write(str(element) + ’␣’)
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116 f.write(’\n’)
117 f.close()
118
119 # Update the poly line variables in the cal_params file with the

poly line
120 # variables of the multi_poly -AMSID -ID.info file
121 def update_poly_lines(station_id , id, cal_params):
122 mpf = ’/mnt/ams2/cal/multi_poly -’ + station_id + ’-’ + id +

’.info’
123 try:
124 multi_poly = load_json_file(mpf)
125 except FileNotFoundError:
126 print(’multi -poly␣file␣not␣found ’)
127 else:
128 x_poly = multi_poly[’x_poly ’]
129 y_poly = multi_poly[’y_poly ’]
130 x_poly_fwd = multi_poly[’x_poly_fwd ’]
131 y_poly_fwd = multi_poly[’y_poly_fwd ’]
132
133 cal_params[’x_poly ’] = x_poly
134 cal_params[’y_poly ’] = y_poly
135 cal_params[’x_poly_fwd ’] = x_poly_fwd
136 cal_params[’y_poly_fwd ’] = y_poly_fwd
137 return(cal_params)
138
139
140 # Merges the input data with the existing ’HorDat ’ data
141 # If HorDat is None it appends the whole list
142 # The transition between the lists is realized by weighting the

values
143 # depending on how deep they are in a picture
144 def merge_lower_horizon_weighted(data , HorDat):
145 if HorDat == None:
146 HorDat = data
147 else:
148 i = 0
149 j = 0
150 k = 1
151 last_value = HorDat [ -1][0] # Last value of existing List
152 first_value = HorDat [0][0] # First value of existing List
153 if first_value < 300:
154 first_value = 360
155 print(’fv:␣’ + str(first_value))
156 print(’lv:␣’ + str(last_value))
157 # Counts Overlapping data at start of list
158 while data[i][0] <= last_value:
159 i += 1
160 # Counts Overlapping data at end of list
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161 while data[-k][0] > first_value: # Only ’>’ because k
starts with 1

162 k += 1
163
164 # If overlapping at start of list
165 s_weight = i
166 s_weight_l = s_weight
167 s_weight_r = 1
168
169 # If overlapping at end of list
170 e_weight = k
171 e_weight_l = e_weight
172 e_weight_r = 1
173
174 # Iterate through data considering all cases:
175 # If element == last_value: calculate weighted elevation
176 # If element between last_value and first_value: add

element to list
177 # If element >= first_value: calculate weighted elevation
178 for element in data:
179 if element [0] <= last_value:
180 HorDat[-i][1] =

float(’{:1.3f}’.format (( s_weight_r*element [1]
181 + s_weight_l*HorDat[-i][1])
182 / (s_weight +1)))
183 s_weight_l -= 1
184 s_weight_r += 1
185 i -= 1
186 if element [0] > last_value and element [0] <

first_value:
187 HorDat.append(element)
188 last_value = HorDat [ -1][0]
189 if element [0] >= first_value:
190 HorDat[j][1] =

float(’{:1.3f}’.format (( e_weight_l*element [1]
191 + e_weight_r*HorDat[j][1])
192 / (e_weight +1)))
193 e_weight_l -= 1
194 e_weight_r += 1
195 j += 1
196 return(HorDat)
197
198 # If azimuth value already exists , the lower elevation value is

taken
199 # If value does no exist , the value is added to HorDat
200 def merge_lower_horizon_optimist(data , HorDat):
201 if HorDat == None:
202 HorDat = data
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203 else:
204 for element in data:
205 exist = False
206 for el in HorDat:
207 if element [0] == el[0]:
208 if element [1] < el[1]:
209 el[1] = element [1]
210 exist = True
211 if exist == False:
212 HorDat.append(element)
213 HorDat.sort()
214
215 return(HorDat)
216
217 # If azimuth value already exists , the higher elevation value is

taken
218 # If value does no exist , the value is added to HorDat
219 def merge_lower_horizon_pessimist(data , HorDat):
220 if HorDat == None:
221 HorDat = data
222 else:
223 for element in data:
224 exist = False
225 for el in HorDat:
226 if element [0] == el[0]:
227 if element [1] > el[1]:
228 el[1] = element [1]
229 exist = True
230 if exist == False:
231 HorDat.append(element)
232 HorDat.sort()
233
234 return(HorDat)
235
236 # If azimuth value already exists , the upper value is taken
237 # If value does not exist , the value is added to HorDat
238 def merge_upper_horizon(data , HorDat):
239 if HorDat == None:
240 HorDat = []
241 HorDat.append(data)
242 else:
243 for element in data:
244 exist = False
245 for el in HorDat:
246 if element [0] == el[0]:
247 el[1] = element [1]
248 exist = True
249 if exist == False:
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250 HorDat.append(element)
251 HorDat.sort()
252 return(HorDat)
253
254 # Iterate trough each column and go from top row down , search for

bright
255 # pixel (k>=30)
256 # If bright pixel is found set hor variable to False , get az and

el with
257 # XYtoRADec and append to a list
258 # If no bright pixel is found in a column the hor variable is

still True ,
259 # so the last pixel in the coulumn is taken
260 def get_lower_image_hor(mask_img , cal_file , cal_params , json_conf ,
261 station_id , id):
262 rows ,cols ,_ = mask_img.shape
263 AzAl = []
264 #AzEl = []
265
266 for x in range(cols):
267 hor = True
268 for y in range(rows):
269 k = mask_img[y,x]
270 if np.any(k >= 30):
271 hor = False
272 _,_,ra,dec ,raz ,al = XYtoRADec(x,y-1,cal_file ,
273 cal_params ,json_conf)
274 AzAl.append ([float(’{:1.1f}’.format(raz)),
275 float(’{:1.3f}’.format(al))])
276 mask_img[y-1,x] = (0,0 ,255)
277 break
278
279 if hor:
280 _,_,ra,dec ,raz ,al =

XYtoRADec(x,y,cal_file ,cal_params ,json_conf)
281 AzAl.append ([float(’{:1.1f}’.format(raz)),
282 float(’{:1.3f}’.format(al))])
283 mask_img[y,x] = (0,0,255)
284 path = "/home/ams/amscams/pipeline/Horizon/" + station_id +

"/masks/"
285 cv2.imwrite(os.path.join(path , id + ’_mask_new.png’),

mask_img)
286 return(AzAl)
287
288 # Get the horizon coordinates of an upper image (Cam6 , Cam7)
289 def get_upper_image_hor(mask_img , cal_file , cal_params , json_conf ,
290 station_id , id):
291 mask_img , AzAl = get_upper_hor_tp(mask_img , cal_file ,
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cal_params ,
292 json_conf)
293 mask_img , AzAl = get_upper_hor_lr(mask_img , cal_file ,

cal_params ,
294 json_conf)
295 AzAl.sort()
296 path = "/home/ams/amscams/pipeline/Horizon/" + station_id +

"/masks/"
297 cv2.imwrite(os.path.join(path , id + ’_mask_new.png’),

mask_img)
298 return(AzAl)
299
300 # Get the horizon coordinates of an upper image (iterate from top

to bot)
301 def get_upper_hor_tp(mask_img , cal_file , cal_params , json_conf):
302 AzAl = []
303 rows ,cols ,_ = mask_img.shape
304 for x in range(cols):
305 wb = False
306 for y in range(rows):
307 k = mask_img[y,x]
308 if wb == False:
309 if np.any(k >= 30):
310 if y == 0:
311 wb = True
312 continue
313 else:
314 _,_,ra,dec ,raz ,al =

XYtoRADec(x,y-1,cal_file ,
315 cal_params ,json_conf)
316 AzAl.append ([float(’{:1.1f}’.format(raz)),
317 float(’{:1.3f}’.format(al))])
318 mask_img[y-1,x] = (0,0 ,255)
319 wb = True
320 if wb:
321 if np.all(k < 30):
322 _,_,ra,dec ,raz ,al = XYtoRADec(x,y,cal_file ,
323 cal_params ,json_conf)
324 AzAl.append ([float(’{:1.1f}’.format(raz)),
325 float(’{:1.3f}’.format(al))])
326 mask_img[y,x] = (0,0,255)
327 wb = False
328 return(mask_img , AzAl)
329
330 # Get the horizon coordinates of an upper image (iterate from left

to right)
331 def get_upper_hor_lr(mask_img , cal_file , cal_params , json_conf):
332 AzAl = []
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333 rows ,cols ,_ = mask_img.shape
334 for y in range(rows):
335 wb = False
336 for x in range(cols):
337 k = mask_img[y,x]
338 if wb == False:
339 if np.any(k >= 30):
340 if k[0] == 0 and k[1] == 0 and k[2] == 255:
341 continue
342 elif y == 0:
343 wb = True
344 continue
345 else:
346 _,_,ra,dec ,raz ,al =

XYtoRADec(x,y-1,cal_file ,
347 cal_params ,json_conf)
348 AzAl.append ([float(’{:1.1f}’.format(raz)),
349 float(’{:1.3f}’.format(al))])
350 mask_img[y-1,x] = (0,0 ,255)
351 wb = True
352 if wb:
353 if np.all(k < 30):
354 _,_,ra,dec ,raz ,al = XYtoRADec(x,y,cal_file ,
355 cal_params ,json_conf)
356 AzAl.append ([float(’{:1.1f}’.format(raz)),
357 float(’{:1.3f}’.format(al))])
358 mask_img[y,x] = (0,0,255)
359 wb = False
360 return(mask_img , AzAl)
361
362 # Get the horizon coordinates of the edge of an upper image
363 def get_upper_edge(mask_img , cal_file , cal_params , json_conf):
364 AzAl_edge = []
365 rows ,cols ,_ = mask_img.shape
366 # Search for horizon and color it red
367 for x in range(cols):
368 for y in range(rows):
369 k = mask_img[y,x]
370 if x == 0 or x == (cols -1) or y == (rows - 1):
371 if np.all(k <= 30):
372 _,_,ra,dec ,raz ,al = XYtoRADec(x,y,cal_file ,
373 cal_params ,json_conf)
374 AzAl_edge.append ([float(’{:1.1f}’.format(raz)),
375 float(’{:1.3f}’.format(al))])
376 return(AzAl_edge)
377
378 # Ask for the height of Calculations
379 def get_height ():
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380 while True:
381 try:
382 height = int(input(’Please␣enter␣the␣height␣in␣

kilometers:␣’))
383 except ValueError:
384 print(’Incorrect␣input ,␣please␣enter␣a␣positive␣

number.’)
385 continue
386
387 if height < 0:
388 print(’Please␣enter␣a␣positive␣number.’)
389
390 else:
391 print(’Height␣set␣to␣’ + str(height) + ’␣kilometers ’)
392 break
393
394 return(height)
395
396 # Ask for input of mode to merge data
397 def get_mode ():
398 while True:
399 try:
400 mode = int(input(’1␣=␣optimist␣\n2␣=␣pessimist␣\n3␣=␣

weighted␣\
401 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣\nPlease␣enter␣the␣mode␣to␣merge␣the␣

horizon␣data:␣’))
402 except ValueError:
403 print(’Invalid␣input.’)
404 continue
405
406 if mode == 1:
407 mode = ’optimist ’
408 break
409
410 if mode == 2:
411 mode = ’pessimist ’
412 break
413
414 if mode == 3:
415 mode = ’weighted ’
416 break
417
418 else:
419 print(’Mode␣does␣not␣exist ,␣please␣enter␣1,␣2␣or␣3.’)
420 continue
421
422 return(mode)
423
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424 # Transform polar coordinates into cartesian coordinates
425 def pol2cart(rho , phi):
426 x = rho * np.cos(phi)
427 y = rho * np.sin(phi)
428 return(x, y)
429
430 # Calculate area of polar horizon with trapz function
431 def calc_area(data):
432 new_data = []
433 for el in data:
434 new_data.append(pol2cart(el[1], math.radians(el[0])))
435
436 x = []
437 y = []
438 for el in new_data:
439 x.append(el[0])
440 y.append(el[1])
441
442 area = trapz(x, y) #switched x, y so integral gets positive
443 return(area)
444
445 # Calculate area of polar horizon by adding triangle areas of 2

data points
446 def int_pol(data):
447 A = 0
448 l = len(data)
449 i = 0
450 while i < (l-1):
451 g = data[i][1]
452 g2 = data[i+1][1]
453 phi = data[i+1][0] - data[i][0]
454 if g < g2:
455 v = g
456 g = g2
457 g2 = v
458 h = g2 * math.radians(np.sin(phi))
459 dA = 1/2 * g * h
460 A = A + dA
461 i += 1
462 g = data [ -1][1]
463 g2 = data [0][1]
464 phi = (360.0 - data [ -1][0]) + (data [0][0])
465 if g < g2:
466 v = g
467 g = g2
468 g2 = v
469 h = g2 * math.radians(np.sin(phi))
470 dA = 1/2 * g * h
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471 A = A + dA
472 return(A)
473
474 # Calculate area of polar horizon by integration of sphere volume
475 def int_pol_sphere(data , H, H0, H1):
476 A = 0
477 V = 0
478 l = len(data)
479 i = 0
480 R = 6371
481 r = R + H
482 r0 = R + H0
483 r1 = R + H1
484 while i < (l-1):
485 phi = math.radians(data[i+1][0] - data[i][0])
486 theta = math.radians(data[i][4])
487 dA = r*r * phi * (-np.cos(theta) + 1)
488 A = A + dA
489 dV = 1/3 * phi * (r0*r0*r0 * (math.cos(theta) - 1)
490 + r1*r1*r1 * (1 - math.cos(theta)))
491 V = V + dV
492 i += 1
493 phi = math.radians ((360.0 - data [ -1][0]) + (data [0][0]))
494 theta = math.radians(data [ -1][4])
495 dA = r*r * phi * (-np.cos(theta) + 1)
496 A = A + dA
497 dV = 1/3 * phi * (r0*r0*r0 * (math.cos(theta) - 1)
498 + r1*r1*r1 * (1 - math.cos(theta)))
499 V = V + dV
500 return(A, V)
501
502 # Get cal data from allsky7 archive
503 def get_cal_data(station_id , id, json_conf):
504 #station_id = ’AMS74’
505 print(id)
506
507 # Load cal_range file and select first element with the same

cam id
508 cal_range = ’/mnt/archive.allsky.tv/’ + station_id + ’/CAL/’ +

station_id\
509 + ’_cal_range.json’
510 try:
511 cr = load_json_file(cal_range)
512 except FileNotFoundError:
513 print(’cal_range␣file␣not␣found’)
514 error.write(station_id + ’_cal_range.json␣not␣found ’ +

’\n’)
515 return(None)
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516 else:
517 cal_param = {}
518 cp = None
519 for element in cr:
520 if element [0] == id:
521 cp = element
522 break
523
524 # Load cal_params from cal_range.json file into a dictionary
525 if cp is not None:
526 cal_param[’center_az ’] = cp[3]
527 cal_param[’center_el ’] = cp[4]
528 cal_param[’position_angle ’] = cp[5]
529 cal_param[’pixscale ’] = cp[6]
530 cal_param[’total_res_px ’] = cp[7]
531 else:
532 print(’cal_params␣do␣not␣exist’)
533 error.write(station_id + ’_’ + id + ’␣cal_params␣do␣not␣

exist’ + ’\n’)
534 return(None)
535
536 # Load cal_history.json file to find a cal_file for the cam id
537 cal_files = ’/mnt/archive.allsky.tv/’ + station_id + ’/CAL/’ +

station_id\
538 + ’_cal_history.json’
539 try:
540 cf = load_json_file(cal_files)
541 except FileNotFoundError:
542 print(’cal_history␣file␣not␣found’)
543 error.write(station_id + ’_cal_history.json␣not␣found’ +

’\n’)
544 return(None)
545 else:
546 cal_file = cf[id][’cal_files ’]
547 if len(cal_file) > 0:
548 cal_file = cal_file [-1]
549 else:
550 print(’cal_files␣do␣not␣exist’)
551 error.write(station_id + ’_’ + id + ’␣cal_files␣do␣not␣

exist’ + ’\n’)
552 return(None)
553
554 # Calculate ra_center and dec_center with AzEltoRADec function
555 # from cal_file
556 ra, dec = AzEltoRADec(cal_param[’center_az ’],

cal_param[’center_el ’],
557 cal_file , cal_param , json_conf)
558
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559 cal_param[’ra_center ’] = math.degrees(ra)
560 cal_param[’dec_center ’] = math.degrees(dec)
561
562 # Load missing cal_params from LENS_MODEL.json into dictionary
563 mpf = ’/mnt/archive.allsky.tv/’ + station_id + ’/CAL/’ \
564 + station_id + ’_’ + id + ’_LENS_MODEL.json’
565 try:
566 cal_params = load_json_file(mpf)
567 except FileNotFoundError:
568 print(’lens_model␣file␣not␣found ’)
569 error.write(station_id + ’_’ + id + ’_LENS_MODEL.json␣not␣

found’ + ’\n’)
570 return(None)
571 else:
572 cal_params.update(cal_param)
573
574 return(cal_params , cal_file)
575
576 # Calculates the longitude and latitude with given camera position ,
577 # azimuth and distance
578 def AzEltoLonLat(data , station_lon , station_lat , H):
579 LonLat = []
580 R = 6371 + H
581
582 for element in data:
583 az_deg = element [0]
584 dist = element [1]
585 b = dist/R
586 c = math.radians (90 - station_lat)
587 az = math.radians(az_deg)
588 a = math.acos(math.cos(b)*math.cos(c) + math.sin(c)*\
589 math.sin(b)*math.cos(az))
590 B = math.asin(math.sin(b)*math.sin(az)/math.sin(a))
591 Lat = 90 - math.degrees(a)
592 Lon = math.degrees(B) + station_lon
593 LonLat.append ([az_deg , float(’{:1.3f}’.format(Lon)),
594 float(’{:1.3f}’.format(Lat))])
595
596 return(LonLat)
597
598 # Plot the horizontal distance data in polar coordinates
599 def plot_distance(data , station_id):
600 rad = []
601 r = []
602
603 for point in data:
604 rad.append(math.radians(point [0]))
605 r.append(point [2])
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606
607 plt.figure ()
608 ax = plt.subplot(1, 1, 1, projection=’polar’)
609 ax.plot(rad ,r,’g.-’, markersize =1, linewidth =1)
610 ax.set_theta_zero_location("N") # theta=0 at the top
611 ax.set_theta_direction (-1)
612 ax.set_xlabel(’Distance␣in␣[km]’)
613 plt.savefig(’/home/ams/amscams/pipeline/Horizon/’ + station_id
614 + ’/horizon.pdf’)
615 #plt.show()
616
617 # Plot the horizontal distance in cartesian coordinates
618 def plot_hor_line(data , station_id):
619 x = []
620 y = []
621 for point in data:
622 x.append(point [0])
623 y.append(point [1])
624
625 plt.figure ()
626 ax = plt.subplot(1, 1, 1, projection = None)
627 ax.plot(x, y, ’g.-’, linewidth=1, markersize =1)
628 ax.set_ylim ([0, 60])
629 ax.set_xlabel(’Azimuth␣in␣°[]’)
630 ax.set_xlabel(’Elevation␣in␣°[]’)
631 plt.savefig(’/home/ams/amscams/pipeline/Horizon/’ + station_id
632 + ’/horizon_line.pdf’)
633 #plt.show()
634
635 # Plot longitude and latitude on scatter plot
636 def plot_LonLat(data , station_id):
637 lon = []
638 lat = []
639 for point in data:
640 lon.append(point [1])
641 lat.append(point [2])
642
643 plt.figure ()
644 ax = plt.subplot(1, 1, 1, projection = None)
645 ax.plot(lon , lat , ’g.-’, linewidth=1, markersize =1)
646 ax.set_xlabel(’Longitude␣in␣°[]’)
647 ax.set_xlabel(’Latitude␣in␣°[]’)
648 plt.savefig(’/home/ams/amscams/pipeline/Horizon/’ + station_id
649 + ’/Coverage.pdf’)
650 #plt.show()
651
652 # Plot longitude and latitude on scatter plot with cartopy
653 def plot_LonLat_cart(data , station_id , station_lon , station_lat):
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654 lon = []
655 lat = []
656
657 for point in data:
658 lon.append(point [1])
659 lat.append(point [2])
660
661 fig = plt.figure ()
662 ax = fig.add_subplot (1, 1, 1, projection=ccrs.PlateCarree ())
663 ax.plot(lon , lat , ’g.-’, linewidth=1, markersize =1)
664 ax.plot(station_lon , station_lat , ’go’, markersize =3)
665 ax.gridlines ()
666 ax.add_feature(cfeature.BORDERS)
667 ax.add_feature(cfeature.COASTLINE)
668 ax.add_feature(cfeature.OCEAN , facecolor =(0.5 ,0.5 ,0.5))
669 plt.savefig(’/home/ams/amscams/pipeline/Horizon/’ + station_id
670 + ’/Coverage_cart.pdf’)
671 #plt.show()
672
673 # Plot longitude and latitude on scatter plot
674 def plot_LonLat_stations(data):
675 plt.title(’AllSky7␣Coverage ’)
676 plt.xlabel(’Longitude ’)
677 plt.ylabel(’Latitude ’)
678 markers = [’g.-’, ’r.-’, ’b.-’, ’y.-’]
679
680 plt.figure ()
681 for element in data:
682 lon = []
683 lat = []
684 for point in data:
685 lon.append(point [1])
686 lat.append(point [2])
687
688 plt.plot(lon , lat , ’g.-’, linewidth =1, markersize =1)
689 plt.grid()
690
691 #plt.savefig(’/home/ams/amscams/pipeline/Horizon/Coverage.pdf ’)
692 #plt.show()
693
694 # Get list with station_ids in archive
695 def get_station_ids(path):
696 archive_dirs = os.listdir(path)
697 station_ids = []
698 for element in archive_dirs:
699 if ’AMS’ in element:
700 station_ids.append(element)
701 return(station_ids)
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702
703 # Load config file , extract cam ids , get device position
704 def get_station_information(station_id):
705 json_file = ’/mnt/archive.allsky.tv/’ + station_id +

’/CAL/as6.json’
706 if os.path.exists(json_file):
707 if os.stat(json_file).st_size > 0:
708 json_conf = load_json_file(json_file)
709 cams = json_conf[’cameras ’]
710 cams_id = []
711 lat = float(json_conf[’site’][’device_lat ’])
712 lon = float(json_conf[’site’][’device_lng ’])
713 alt = float(json_conf[’site’][’device_alt ’])
714 else:
715 print(’conf␣file␣empty ’)
716 error.write(station_id + ’␣as6.json␣is␣empty’ + ’\n’)
717 return(None)
718 else:
719 print(’conf␣file␣not␣found’)
720 error.write(station_id + ’␣as6.json␣not␣found’ + ’\n’)
721 return(None)
722
723
724 # Create list of cam ids
725 for cam in cams:
726 cam_id = json_conf[’cameras ’][cam][’cams_id ’]
727 cams_id.append(cam_id)
728
729 id0 = cams_id [0] # first cam id
730 return(lat , lon , alt , cams_id , id0 , json_conf)
731
732 # Load config file , extract cam ids , get device position
733 def get_system_health(station_id):
734 json_file = ’/mnt/archive.allsky.tv/’ + station_id \
735 + ’/’ + station_id + ’_system_health.json’
736 if os.path.exists(json_file):
737 if os.stat(json_file).st_size > 0:
738 json_conf = load_json_file(json_file)
739 last_update = json_conf[’last_update ’]
740 date_time = last_update.split("_")
741 year = int(date_time [0])
742 month = int(date_time [1])
743 day = int(date_time [2])
744 else:
745 print(’system_health␣file␣empty’)
746 #error.write(station_id + ’ systen_health.json is

empty’ + ’\n’)
747 return(None)
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748 else:
749 print(’system_health␣file␣not␣found’)
750 #error.write(station_id + ’ as6.json not found’ + ’\n’)
751 return(None)
752 today = date.today()
753 d0 = date(year , month , day)
754 d1 = today
755 delta = d1 - d0
756 return(delta.days)
757
758 # Open and resize mask images
759 def get_mask(station_id , id):
760 mask_path = (’/mnt/archive.allsky.tv/’ + station_id +

’/CAL/MASKS/’
761 + id + ’_mask.png’)
762
763 mask_img = cv2.imread(mask_path)
764 if mask_img is not None:
765 mask_img = cv2.resize(mask_img , (1920 ,1080))
766 else:
767 print(’mask␣file␣not␣found’)
768 error.write(station_id + ’_’ + id + ’_mask.png␣not␣found’

+ ’\n’)
769 return(None)
770 return(mask_img)
771
772 def get_horizon_data(cams_id , station_id , json_conf , id0 , mode):
773 HorDat = None
774 for id in cams_id:
775 print(id)
776
777 cal_data = get_cal_data(station_id , id, json_conf)
778 if cal_data is not None:
779 cal_params , cal_file = cal_data
780 else:
781 return(None)
782
783 mask_img = get_mask(station_id , id)
784
785 if mask_img is not None:
786 if int(id) - int(id0) < 5:
787 AzAl = get_lower_image_hor(mask_img , cal_file ,

cal_params ,
788 json_conf , station_id ,

id)
789 else:
790 AzAl = get_upper_image_hor(mask_img , cal_file ,

cal_params ,
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791 json_conf , station_id ,
id)

792 else:
793 return(None)
794
795 # Saving AzAl data to text file
796 name = ’AzAl’ + id
797 write_data_to_txt(AzAl , name , [’az’,’al’], station_id)
798 print(’cam␣’ + id + ’␣data␣generated ’)
799
800 # Reduce data points
801 if int(id) - int(id0) < 5:
802 red_AzAl = reduce_data_points_low(AzAl)
803 name = ’red_AzAl ’ + id
804 red_var = [’az’, ’al’]
805 write_data_to_txt(red_AzAl , name , red_var , station_id)
806 else:
807 if len(AzAl) > 0:
808 red_AzAl = reduce_data_points_up(AzAl)
809 name = ’red_AzAl ’ + id
810 red_var = [’az’, ’al’]
811 write_data_to_txt(red_AzAl , name , red_var ,

station_id)
812
813 # Create horizon data
814 if int(id) - int(id0) < 5:
815 if mode == ’optimist ’:
816 HorDat = merge_lower_horizon_optimist(red_AzAl ,

HorDat)
817 if mode == ’pessimist ’:
818 HorDat = merge_lower_horizon_pessimist(red_AzAl ,

HorDat)
819 if mode == ’weighted ’:
820 HorDat = merge_lower_horizon_weighted(red_AzAl ,

HorDat)
821 else:
822 HorDat = merge_upper_horizon(red_AzAl , HorDat)
823 return(HorDat)
824
825 # Calculate the minimum angle for the limiting magnitude and the

meteor level H
826 def get_limiting_angle(alt , lim_mag , H):
827 R = 6371
828 d_1 = H # meteor level
829 h = alt /1000
830 alpha_0 = 1.3
831 wave_len = 0.51 # lambda in mircrons
832
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833 A_ray = 0.1451 * math.exp(-h/7.996)
834 A_aer = 0.05 * wave_len **(- alpha_0) * math.exp(-h/1.5)
835 A_oz = 0.016
836 A_star = A_ray + A_aer + A_oz
837 z = 85
838 mag_red = 99
839 while mag_red > 4:
840 X = 1/( math.cos(math.radians(z)) +

0.025* math.exp(-11* math.cos(math.radians(z))))
841 A = X * A_star
842
843 epsilon = 90 - z
844 beta = math.degrees(math.acos(R *

math.cos(math.radians(epsilon))/(R+H))) - epsilon
845 d_2 = (R + H) *

math.sin(math.radians(beta))/math.cos(math.radians(epsilon))
846 mag_dist = 5 * math.log10(d_2/d_1)
847 mag_delta = mag_dist + A
848 mag_red = lim_mag + mag_delta
849 z -= 1
850 return(epsilon)
851
852 def remove_nan(data):
853 nan_removed = 0
854 for element in data:
855 if math.isnan(element [0]) or math.isnan(element [1]):
856 data.remove(element)
857 nan_removed += 1
858 return(data)
859
860 def get_active_stations(station_ids):
861 active = []
862 notactive = []
863 missing = []
864 for station_id in station_ids:
865 days = get_system_health(station_id)
866 if days is not None:
867 if days < 30:
868 active.append(station_id)
869 else:
870 notactive.append(station_id)
871 continue
872 else:
873 missing.append(station_id)
874 continue
875 return(active , notactive , missing)
876
877 def stations_to_text(data , name):
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878 f = open(r’/home/ams/amscams/pipeline/Horizon/’ + name +
’.txt’, ’w’)

879 for station in data:
880 f.write(str(station) + ’\n’)
881 f.close()
882
883 # station_ids = [’AMS80 ’]
884 # json_file = ’/home/ams/amscams/conf/as6.json’
885 id_path = ’/mnt/archive.allsky.tv/’
886 station_ids = get_station_ids(id_path)
887 remove_list = [’AMS1’, ’AMS41’, ’AMS42’, ’AMS48’, ’AMS129 ’]
888 station_ids = [x for x in station_ids if x not in remove_list]
889
890 act_stations , nact_stations , miss_stations =

get_active_stations(station_ids)
891 stations_to_text(act_stations , ’active_stations ’)
892 stations_to_text(nact_stations , ’non_active_stations ’)
893 stations_to_text(miss_stations , ’missing_stations ’)
894
895 # Create Error File
896 error = open(r’/home/ams/amscams/pipeline/Horizon/error.txt’, ’w’)
897 processed_stations =

open(r’/home/ams/amscams/pipeline/Horizon/processed_stations.txt’,
’w’)

898
899 #mode = get_mode ()
900 mode = ’optimist ’
901 mag_zenith = -3
902 H = 100 # meteor level
903
904 for station_id in station_ids:
905 # Get station information
906 station_inf = get_station_information(station_id)
907 if station_inf is not None:
908 station_lat , station_lon , alt , cams_id , id0 , json_conf =

station_inf
909 else:
910 continue
911
912 # Create station folder if it does not exist
913 file_path = ’/home/ams/amscams/pipeline/Horizon/’ + station_id

+ ’/’
914 os.makedirs(os.path.dirname(file_path), exist_ok=True)
915
916 # Open mask files and search for horizon
917 HorDat = get_horizon_data(cams_id , station_id , json_conf , id0 ,

mode)
918 if HorDat is not None:
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919 remove_nan(HorDat)
920
921 if HorDat is not None:
922 # Save horizon data in text file
923 write_data_to_txt(HorDat , ’HorDat ’, [’az’, ’al’],

station_id)
924 else:
925 if len(os.listdir(file_path)) == 0:
926 os.rmdir(file_path)
927 continue
928
929 #height = get_height ()
930
931 min_elevation = get_limiting_angle(alt , mag_zenith , H)
932 #min_elevation = 0
933 print(min_elevation)
934
935 # Distance at H km height
936 Distance = calc_distance(HorDat , H, min_elevation)
937 # Distance at 50 km height
938 Distance50 = calc_distance(HorDat , 50, min_elevation)
939 # Distance at 1500 km height
940 Distance150 = calc_distance(HorDat , 150, min_elevation)
941
942 write_data_to_txt(Distance , ’Distance ’,
943 [’az’, ’dist’, ’dist_h ’, ’dist_g ’, ’beta’],

station_id)
944
945 plot_distance(Distance , station_id)
946
947 Area = calc_area(Distance)
948 print(Area)
949 Area2 = int_pol(Distance)
950 print(Area2)
951 Area3 , Volume3 = int_pol_sphere(Distance , H, H-20, H+20)
952 print(Area3 , Volume3)
953 Area50 , Volume50 = int_pol_sphere(Distance50 , 50, 30, 70)
954 Area150 , Volume150 = int_pol_sphere(Distance150 , 150, 130, 170)
955 f = open(r’/home/ams/amscams/pipeline/Horizon/’ + station_id
956 + ’/area.txt’, ’w’)
957 f.write(’area␣=␣’ + str(Area3) + ’²km␣␣␣␣␣’ + str(Area50) +

’²km␣␣␣␣␣’
958 + str(Area150) + ’²km’ + ’\n’)
959 f.write(’volume␣=␣’ + str(Volume3) + ’³km␣␣␣␣␣’ + str(Volume50)
960 + ’³km␣␣␣␣␣’ + str(Volume150) + ’³km’)
961 f.close()
962
963 LonLat = AzEltoLonLat(Distance , station_lon , station_lat , H)
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964 write_data_to_txt(LonLat , ’LonLat ’, [’az’, ’lon’, ’lat’],
station_id)

965 plot_hor_line(HorDat , station_id)
966 plot_LonLat_cart(LonLat , station_id , station_lon , station_lat)
967 processed_stations.write(station_id + ’\n’)
968 processed_stations.close
969 error.close()

Coverage.py

1 from asyncore import write
2 import math
3 import numpy as np
4 import os
5 import matplotlib.pyplot as plt
6 from mpl_toolkits.axes_grid1 import make_axes_locatable
7 import cartopy.crs as ccrs
8 import cartopy.feature as cfeature
9 from mpl_toolkits.axes_grid1 import make_axes_locatable

10 from cartopy.mpl.ticker import (LongitudeFormatter ,
LatitudeFormatter ,

11 LatitudeLocator , LongitudeLocator)
12 from lib.PipeUtil import load_json_file
13
14 # Load config file , extract cam ids , get device position
15 def get_station_information(station_id):
16 json_file = ’/mnt/archive.allsky.tv/’ + station_id +

’/CAL/as6.json’
17 if os.path.exists(json_file):
18 if os.stat(json_file).st_size > 0:
19 json_conf = load_json_file(json_file)
20 cams = json_conf[’cameras ’]
21 cams_id = []
22 lat = float(json_conf[’site’][’device_lat ’])
23 lon = float(json_conf[’site’][’device_lng ’])
24 alt = float(json_conf[’site’][’device_alt ’])
25 else:
26 print(’conf␣file␣empty ’)
27 return(None)
28 else:
29 print(’conf␣file␣not␣found’)
30 return(None)
31
32
33 # Create list of cam ids
34 for cam in cams:
35 cam_id = json_conf[’cameras ’][cam][’cams_id ’]
36 cams_id.append(cam_id)
37
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38 id0 = cams_id [0] # first cam id
39 return(lat , lon , alt , cams_id , id0 , json_conf)
40
41 # Calculate the distance and horizontal distance at a specific

height
42 def get_distance(data , H, min_elevation):
43 Distance = []
44 R = 6371
45 r = R + H
46 for point in data:
47 if point [1] < min_elevation:
48 point [1] = min_elevation
49 phi = point [1]
50 alpha = math.radians (90 + phi)
51 beta = 90 - phi -

math.degrees(math.asin(R*math.sin(alpha)/(r)))
52 distance = math.radians(beta)*r
53 distance_h = math.sin(math.radians(beta))*r
54 distance_g = math.radians(beta)*R
55 az = point [0]
56 distance = round_half_up(distance , 3)
57 distance_h = round_half_up(distance_h , 3)
58 distance_g = round_half_up(distance_g , 3)
59 beta = round_half_up(beta , 3)
60 Distance.append ([az, distance , distance_h , distance_g ,

beta])
61 return(Distance)
62
63 # Calculates the longitude and latitude with given camera position ,
64 # azimuth and distance
65 def AzEltoLonLat(data , station_lon , station_lat , H):
66 LonLat = []
67 R = 6371 + H
68
69 for element in data:
70 az_deg = element [0]
71 dist = element [1]
72 beta = element [4]
73 b = dist/R
74 c = math.radians (90 - station_lat)
75 az = math.radians(az_deg)
76 a = math.acos(math.cos(b)*math.cos(c) + math.sin(c)*\
77 math.sin(b)*math.cos(az))
78 B = math.asin(math.sin(b)*math.sin(az)/math.sin(a))
79 Lat = 90 - math.degrees(a)
80 Lon = math.degrees(B) + station_lon
81 LonLat.append ([az_deg , round_half_up(Lon , 3),
82 round_half_up(Lat , 3), dist , beta])

Page 74



First Appendix

83
84 return(LonLat)
85
86 def round_half_up(n, decimals =0):
87 multiplier = 10 ** decimals
88 return math.floor(n*multiplier + 0.5) / multiplier
89
90 def write_data_to_txt(data , name , var , station_id):
91 f = open(r’/home/ams/amscams/pipeline/Horizon/’ + station_id
92 + ’/’ + name + ’.txt’, ’w’)
93 for name in var:
94 f.write(name + ’␣␣’)
95 f.write(’\n’)
96 for point in data:
97 for element in point:
98 f.write(str(element) + ’␣’)
99 f.write(’\n’)

100 f.close()
101
102 # Create an empty grid
103 def get_grid(lat_range , lon_range , steps):
104 lon_start = lon_range [0]
105 lat_start = lat_range [0]
106 lon_end = lon_range [1]
107 lat_end = lat_range [1]
108 n = 3
109 step = 1/steps
110 width = (lon_end - lon_start)*steps + 1
111 height = (lat_end - lat_start)*steps + 1
112 grid = [[[0 for k in range(n)] for j in range(width)]
113 for i in range(height)]
114
115 lat = lat_end
116 for latitude in grid:
117 lon = lon_start
118 for longitude in latitude:
119 longitude [0] = lat
120 longitude [1] = lon
121 if lon < lon_end:
122 lon += step
123 if lat > lat_start:
124 lat -= step
125 return(grid)
126
127 def get_az_and_dist(station_lat , station_lon , lat , lon , H):
128 R = 6371 + H
129 a = math.radians (90 - lat)
130 c = math.radians (90 - station_lat)
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131 B = math.radians(lon - station_lon)
132 b = math.acos(math.cos(a) * math.cos(c)
133 + math.sin(a) * math.sin(c) * math.cos(B))
134 az = math.acos((math.cos(a)-(math.cos(b)*math.cos(c)))
135 /(math.sin(c)*math.sin(b)))
136 az_deg = math.degrees(az)
137 dist = b * R
138 if lon < station_lon:
139 az_deg = 360 - az_deg
140 return(round_half_up(az_deg , 2),round_half_up(dist , 3))
141
142 # Calculate average
143 def get_average(data , value):
144 lat_sum = 0
145 lon_sum = 0
146 dist_sum = 0
147 length = len(data)
148 for element in data:
149 lon_sum = lon_sum + element [1]
150 lat_sum = lat_sum + element [2]
151 dist_sum = dist_sum + element [3]
152 lat_avg = lat_sum/length
153 lon_avg = lon_sum/length
154 dist_avg = dist_sum/length
155 average = [value , lon_avg , lat_avg , dist_avg]
156 return(average)
157
158 # Get nearest point
159 def get_minimum(value , points):
160 minimum = 1000
161 nearest_points = []
162 for element in points:
163 difference = abs(value - element [0])
164 difference = round_half_up(difference , 2)
165 if difference < minimum:
166 minimum = difference
167 nearest_point = element
168 elif difference == minimum:
169 nearest_points.append(nearest_point)
170 nearest_point = element
171 nearest_points.append(nearest_point)
172 nearest_point = get_average(nearest_points , value)
173 return(nearest_point)
174
175 # Get coverage of cam
176 def get_coverage(data , grid , station_lat , station_lon , H):
177 for latitude in grid:
178 for longitude in latitude:
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179 az, dist_gp = get_az_and_dist(station_lat , station_lon ,
180 longitude [0],

longitude [1], H)
181 nearest_points = []
182 for element in data:
183 if int(az) == int(element [0]):
184 nearest_points.append(element)
185 if nearest_points:
186 nearest_point = get_minimum(az, nearest_points)
187 else:
188 for element in data:
189 if abs(int(az) - int(element [0])) < 6:
190 nearest_points.append(element)
191 if nearest_points:
192 nearest_point = get_minimum(az, nearest_points)
193 else:
194 print(’Point:␣[’ + str(longitude [0]) + ’,␣’
195 + str(longitude [1]) + ’]␣is␣not␣in␣range␣

5’)
196 continue
197 if dist_gp < nearest_point [3]:
198 longitude [2] += 1
199 return(grid)
200
201 # Plot longitude and latitude on scatter plot with cartopy
202 def plot_LonLat_cart(data , station_id , station_lon , station_lat):
203 lon = []
204 lat = []
205
206 for point in data:
207 lon.append(point [1])
208 lat.append(point [2])
209
210 fig = plt.figure ()
211 ax = fig.add_subplot (1, 1, 1, projection=ccrs.PlateCarree ())
212 ax.plot(lon , lat , ’g.-’, linewidth=1, markersize =1)
213 ax.plot(station_lon , station_lat , ’go’, markersize =3)
214 ax.gridlines ()
215 ax.add_feature(cfeature.BORDERS)
216 ax.add_feature(cfeature.COASTLINE)
217 ax.add_feature(cfeature.OCEAN , facecolor =(0.5 ,0.5 ,0.5))
218 plt.savefig(’/home/ams/amscams/pipeline/Horizon/’ + station_id
219 + ’/Coverage_cart.pdf’)
220 #plt.show()
221
222 # Plot heatmap of coverage grid
223 def plot_heatmap(grid):
224 # generate 2 2d grids for the x & y bounds
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225 lat_start = grid [ -1][0][0]
226 lat_end = grid [0][0][0]
227 lon_start = grid [0][0][1]
228 lon_end = grid [0][ -1][1]
229 width = len(grid [0])
230 height = len(grid)
231
232 x = np.linspace(lon_start , lon_end , width)
233 y = np.linspace(lat_start , lat_end , height)
234 X, Y = np.meshgrid(x,y)
235 Z = np.zeros((height , width))
236
237 for i in range(height):
238 for j in range(width):
239 Z[i,j] = grid[-i][j][2]
240
241 # x and y are bounds , so z should be the value *inside* those

bounds.
242 # Therefore , remove the last value from the z array.
243 Z = Z[:-1, :-1]
244 z_min , z_max = 0, np.abs(Z).max()
245
246 fig , ax = plt.subplots ()
247
248 c = ax.pcolormesh(X, Y, Z, cmap=’Reds’, vmin=z_min , vmax=z_max)
249 #ax.set_title(’pcolormesh ’)
250 # set the limits of the plot to the limits of the data
251 ax.axis([x.min(), x.max(), y.min(), y.max()])
252 fig.colorbar(c, ax=ax)
253
254 plt.savefig(’/home/ams/amscams/pipeline/Horizon/Coverage/Coverage.pdf’)
255 plt.show()
256
257 # Plot heatmap of coverage grid on map
258 def plot_heatmap_cart(grid):
259 # generate 2 2d grids for the x & y bounds
260 lat_start = grid [ -1][0][0]
261 lat_end = grid [0][0][0]
262 lon_start = grid [0][0][1]
263 lon_end = grid [0][ -1][1]
264 width = len(grid [0])
265 height = len(grid)
266
267 x = np.linspace(lon_start , lon_end , width)
268 y = np.linspace(lat_start , lat_end , height)
269 X, Y = np.meshgrid(x,y)
270 Z = np.zeros((height , width))
271
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272 for i in range(height):
273 for j in range(width):
274 # if grid[-i][j][2] > 2:
275 # grid[-i][j][2] = 2
276 # elif grid[-i][j][2] <= 5:
277 # grid[-i][j][2] = 5
278 # elif grid[-i][j][2] <= 10:
279 # grid[-i][j][2] = 10
280 # elif grid[-i][j][2] <= 15:
281 # grid[-i][j][2] = 15
282 # elif grid[-i][j][2] <= 20:
283 # grid[-i][j][2] = 20
284 # elif grid[-i][j][2] <= 25:
285 # grid[-i][j][2] = 25
286 # elif grid[-i][j][2] > 25:
287 # grid[-i][j][2] = 27
288 Z[i,j] = grid[-i][j][2]
289
290 # x and y are bounds , so z should be the value *inside* those

bounds.
291 # Therefore , remove the last value from the z array.
292 Z = Z[:-1, :-1]
293 z_min , z_max = 0, np.abs(Z).max()
294
295 proj = ccrs.PlateCarree ()
296 fig , ax = plt.subplots(1, 1, subplot_kw=dict(projection=proj))
297
298 c = ax.pcolormesh(X, Y, Z, cmap=’plasma_r ’, vmin=z_min ,

vmax=z_max)
299 #ax.set_title(’pcolormesh ’)
300 # set the limits of the plot to the limits of the data
301 ax.axis([x.min(), x.max(), y.min(), y.max()])
302 ax.add_feature(cfeature.BORDERS)
303 ax.add_feature(cfeature.COASTLINE)
304 divider = make_axes_locatable(ax)
305 ax_cb = divider.new_horizontal(size="5%", pad=0.1,

axes_class=plt.Axes)
306
307 fig.add_axes(ax_cb)
308 plt.colorbar(c, cax=ax_cb)
309
310 ax.yaxis.tick_left ()
311 ax.set_xticks ([-10,0, 10, 20, 30], crs=ccrs.PlateCarree ())
312 ax.set_yticks ([35, 40, 45, 50, 55, 60], crs=ccrs.PlateCarree ())
313 lon_formatter = LongitudeFormatter(zero_direction_label=True)
314 lat_formatter = LatitudeFormatter ()
315 ax.xaxis.set_major_formatter(lon_formatter)
316 ax.yaxis.set_major_formatter(lat_formatter)
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317
318 gl = ax.gridlines(crs=ccrs.PlateCarree (), draw_labels=False ,
319 linewidth=1, color=’gray’, alpha =0.5,

linestyle=’--’)
320 ax.set_xlabel(’Longitude ’)
321 ax.set_ylabel(’Latitude ’)
322 plt.savefig(’/home/ams/amscams/pipeline/Horizon/Coverage/Coverage.pdf’)
323 plt.show()
324
325 # Load station list from stations.txt
326 def get_stations_list ():
327 station_ids = []
328 with

open(r’/home/ams/amscams/pipeline/Horizon/processed_stations.txt’,
’r’) as f:

329 for line in f:
330 station_ids.append(line.rstrip(’\n’))
331 f.close()
332 return(station_ids)
333
334 # Calculate area and volume by integration of sphere volume in

polar coordinates
335 def int_pol_sphere(h, h0, h1, phi , theta1 , theta2):
336 R = 6371
337 r = R + h
338 r0 = R + h0
339 r1 = R + h1
340 phi = math.radians(phi)
341 theta1 = math.radians(theta1)
342 theta2 = math.radians(theta2)
343 dA = r*r * phi * (math.cos(theta1) - math.cos(theta2))
344 dV = 1/3 * phi * (
345 r0*r0*r0 * (math.cos(theta2) -

math.cos(theta1))
346 + r1*r1*r1 * (math.cos(theta1) -

math.cos(theta2)))
347 return(dA, dV)
348
349 # Calculate area of AllSky7 coverage by integration of sphere

volume
350 def get_coverage_area(grid , steps , h, h0, h1):
351 A = 0
352 V = 0
353 for lat in grid:
354 for lon in lat:
355 if lon[2] > 1:
356 phi = 1/steps
357 theta1 = 90 - lon [0] - (1/ steps /2)
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358 theta2 = 90 - lon [0] + (1/ steps /2)
359 dA, dV = int_pol_sphere(h, h0, h1, phi , theta1 ,

theta2)
360 A = A + dA
361 V = V + dV
362 return(A, V)
363
364 # Calculate the minimum angle for the limiting magnitude and the

meteor level H
365 def get_limiting_angle(alt , lim_mag , H):
366 R = 6371
367 d_1 = H # meteor level
368 h = alt /1000
369 alpha_0 = 1.3
370 wave_len = 0.51 # lambda in mircrons
371
372 A_ray = 0.1451 * math.exp(-h/7.996)
373 A_aer = 0.05 * wave_len **(- alpha_0) * math.exp(-h/1.5)
374 A_oz = 0.016
375 A_star = A_ray + A_aer + A_oz
376 z = 89
377 mag_red = 99
378 while mag_red > 4:
379 X = 1/( math.cos(math.radians(z)) +
380 0.025* math.exp(-11* math.cos(math.radians(z))))
381 A = X * A_star
382
383 epsilon = 90 - z
384 beta = math.degrees(math.acos(R *

math.cos(math.radians(epsilon)) \
385 /(R+H))) - epsilon
386 d_2 = (R + H) * math.sin(math.radians(beta)) \
387 /math.cos(math.radians(epsilon))
388 mag_dist = 5 * math.log10(d_2/d_1)
389 mag_delta = mag_dist + A
390 mag_red = lim_mag + mag_delta
391 z -= 1
392 return(epsilon)
393
394
395 station_ids = get_stations_list ()
396 remove_list = [’AMS1’, ’AMS41’, ’AMS42’, ’AMS48’, ’AMS117 ’,

’AMS129 ’, ’AMS153 ’,
397 ’AMS154 ’, ’AMS157 ’, ’AMS159 ’, ’AMS160 ’, ’AMS20’,

’AMS44’, ’AMS52’,
398 ’AMS61’, ’AMS66’, ’AMS7’, ’AMS76’, ’AMS83’, ’AMS9’,

’AMS95’]
399 station_ids = [x for x in station_ids if x not in remove_list]
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400 lat_range = [27, 67]
401 lon_range = [-20, 37]
402 steps = 4 # step size = 1/n
403 H = 120 # meteor level
404 H_1 = H - 20
405 H_2 = H + 20
406 mag_zenith = -3
407 grid = get_grid(lat_range , lon_range , steps)
408 file_exists =

os.path.exists(’/home/ams/amscams/pipeline/Horizon/Coverage/Coverage.txt’)
409 if file_exists:
410 coverage = []
411 with

open(r’/home/ams/amscams/pipeline/Horizon/Coverage/Coverage.txt’,
’r’) as f:

412 for line in f:
413 line_list = [elt.strip("[]") for elt in

line.split(’,’)]
414 lat_list = []
415 if ’’ not in line_list:
416 for element in line_list:
417 lon_list = []
418 if element != ’\n’:
419 point_list = element.split(’␣’)
420 for value in point_list:
421 lon_list.append(float(value))
422 lat_list.append(lon_list)
423 coverage.append(lat_list)
424 f.close()
425 else:
426 for station_id in station_ids:
427 print(’Processing␣’ + station_id)
428 station_lat , station_lon , alt , _, _, _ =

get_station_information(station_id)
429 az_el = []
430
431 with open(r’/home/ams/amscams/pipeline/Horizon/’ +

station_id
432 + ’/HorDat.txt’, ’r’) as f:
433 next(f)
434 for line in f:
435 inner_list = [elt.strip () for elt in line.split(’␣

’)]
436 az_el.append(inner_list)
437 f.close()
438
439 HorDat = []
440 for element in az_el:
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441 if element [0] and element [1] != ’nan’:
442 HorDat.append ([ float(element [0]),

float(element [1])])
443
444 #min_elevation = 0
445 min_elevation = get_limiting_angle(alt , mag_zenith , H)
446 Distance = get_distance(HorDat , H, min_elevation)
447 write_data_to_txt(Distance , ’Distance ’,
448 [’az’, ’dist’, ’dist_h ’, ’dist_g ’, ’beta’],

station_id)
449
450 LonLat = AzEltoLonLat(Distance , station_lon , station_lat ,

H)
451 write_data_to_txt(LonLat , ’LonLat ’, [’az’, ’lon’, ’lat’],

station_id)
452
453 coverage = get_coverage(LonLat , grid , station_lat ,

station_lon , H)
454
455 f =

open(r’/home/ams/amscams/pipeline/Horizon/Coverage/Coverage.txt’,
’w’)

456 f.write(’[’)
457 for lat in coverage:
458 f.write(’[’)
459 for lon in lat:
460 f.write(’[’)
461 for element in lon[:-1]:
462 f.write(str(element) + ’␣’)
463 f.write(str(lon[-1]) + ’],’)
464 f.write(’]\n’)
465 f.write(’]’)
466 f.close()
467
468 plot_heatmap_cart(coverage)
469 A, V = get_coverage_area(coverage , steps , H, H_1 , H_2)
470 phi = lon_range [1] - lon_range [0]
471 theta1 = 90 - lat_range [1]
472 theta2 = 90 - lat_range [0]
473 A_grid , V_grid = int_pol_sphere(H, H_1 , H_2 , phi , theta1 , theta2)
474 print(’Coverage␣Area:␣’ + str(A))
475 print(’Coverage␣Volume:␣’ + str(V))
476 print(’Grid␣Area:␣’ + str(A_grid))
477 print(’Grid␣Volume:␣’ + str(V_grid))
478 f =

open(r’/home/ams/amscams/pipeline/Horizon/Coverage/CoverageArea.txt’,
’w’)

479 f.write(’CoverageArea␣=␣’ + str(A) + ’\n’)
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480 f.write(’GridArea␣=␣’ + str(A_grid) + ’\n’)
481 f.write(’CoverageVolume␣=␣’ + str(V) + ’\n’)
482 f.write(’GridVolume␣=␣’ + str(V_grid)+ ’\n’)
483 f.close()
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