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Zusammenfassung

Diese Dissertation befasst sich mit verschiedenen Fragestellungen in der Theorie der offenen
Quantensysteme, welche alle auf der Idee des gerichteten Informationsflusses, welche im folgen-
den als Semikausalität bezeichnet wird, aufbauen.
In unserem ersten Beitrag benutzen wir Semikausalität um ein verallgemeinertes Modell für in-
teraktionsfreie Messungen nach Elitzur-Vaidman herzuleiten. Der wesentliche Beitrag hierbei ist
die vollständige Analyse des so entstandenen Modells. Das Hauptresultat ist die Antwort auf die
Frage, welche Objekte man mittels komplett interaktionsfreier Messungen unterscheiden kann.
Der zweite Beitrag ist motivert durch die Frage, wie man den Verfallsprozess von Quantengeräten
beschreiben kann. Als einfaches Modell untersuchen wir dynamische Halbgrupppen von sog.
Superkanälen. Diese gehen mathematisch aus semikausalen Kanälen durch eine Ähnlichkeit-
stransformation hervor. Wir charakterisieren diese dynamischen Halbgruppen indem wir eine
Normalform für die zugehörigen Generatoren ableiten. Diese ist analog zur GKSL Form von
Generatoren gewöhnlicher quantendynamischer Halbgruppen.
Als letzten Beitrag verallgemeinern wir die Techniken, welche wir für Superkanäle entwickelt
haben. Diese Verallgemeinerung führt zu einer Charakterisierung der Generatoren quantendy-
namischer Halbgruppen, welche eine atomare von Neumann Algebra invariant lassen.
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Abstract

This dissertation treats several topics in the theory of open quantum systems, all of which are
related to one-way information flow – a concept called semicausality.
In our first contribution, we use semicausality to derive a generalized model of “interaction-free"
measurements in the spirit of the Elitzur-Vaidman bomb-tester experiment. We subsequently
analyze that model, and provide a complete answer to the question of which objects can be
discriminated in an “interaction-free" manner.
Motivated by the question “How can we describe the decay-process of quantum devices over
time?", we study dynamical semigroups of superchannels, which are related to dynamical semi-
groups of semicausal channels by a similarity transform. We characterize these dynamical semi-
groups by providing a normal form for their generators – analogous to the GKLS-form for ordinary
quantum dynamical semigroups.
Finally, we extend the scope of the techniques developed for superchannels to characterize the
generators of quantum dynamical semigroups with an invariant atomic von Neumann algebra.

ix





List of contributed articles

Core articles as principal author

I) [1] Markus Hasenöhrl and Michael M. Wolf
“Interaction-Free” Channel Discrimination
Published in Ann. Henri Poincaré (2022); https://doi.org/10.1007/s00023-022-01175-z

II) [2] Markus Hasenöhrl and Matthias C. Caro
Quantum and classical dynamical semigroups of superchannels and semicausal channels
Published in J. Math. Phys. 63, 072204 (2022); https://doi.org/10.1063/5.0070635

Further articles as principal author under review

III) [3] Markus Hasenöhrl and Matthias C. Caro
On the generators of quantum dynamical semigroups with invariant subalgebras
Accepted in Open Syst. Inf. Dyn.; https://doi.org/10.48550/arXiv.2202.06812

I, Markus Hasenöhrl, am the principal author of the core articles I, II, and III.

xi

https://doi.org/10.1007/s00023-022-01175-z
https://doi.org/10.1063/5.0070635
 https://doi.org/10.48550/arXiv.2202.06812




Contents

1 Introduction 1
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Elements of the Mathematical Structure of Quantum Theory 3
2.1 Notation and Functional Analysis Basics . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 States and Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Transformations of States and Observables: Completely Positive Maps . . 5
2.2.3 The Choi–Jamiołkowski isomorphism . . . . . . . . . . . . . . . . . . . . . 7

3 Semicausality, Invariant Algebras and Superchannels 9
3.1 Semicausal CP-maps are semilocalizable . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 CP-maps with an invariant algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 von Neumann algebras in a nutshell . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Transformations of Quantum Channels: Superchannels . . . . . . . . . . . . . . . 15

4 “Interaction-Free" Measurements 19
4.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Dynamical Semigroups 25
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.1 Quantum Dynamical Semigroups . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.2 Quantum Dynamical Semigroups of Semicausal Maps . . . . . . . . . . . . 29
5.3.3 Quantum Dynamical Semigroups with Invariant Algebra . . . . . . . . . . 30
5.3.4 Semigroups of Superchannels . . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography 35

Appendices

xiii



CONTENTS Chapter 0

A Core Articles 43
A.1 “Interaction-Free” Channel Discrimination . . . . . . . . . . . . . . . . . . . . . . 43
A.2 Quantum and classical dynamical semigroups of superchannels and semicausal

channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B Further articles as principal author under review 143
B.1 On the generators of quantum dynamical semigroups with invariant subalgebras . 143

xiv



Chapter 1

Introduction

1.1 Outline

One-way processes are an important class of processes in many areas of science and technology.
The most fundamental one-way process is certainly the flow of time (and the related notion of
entropy). It is hard to imagine a world without the notion of cause and effect and without the
inherent assumption that actions at a later time do not influence actions at an earlier time.
Another class of one-way processes (which is, as we will see, directly related to the direction
of time) are one-communication processes. Quantum channels on a bipartite system that allow
for one-way communication only are called semicausal channels. In this thesis, we investigate
consequences of the structure of semicausal channels.
In our first contribution, semicausality is used to axiomatically derive a physical model that
generalizes the notion of “interaction-free" measurements, as intruduced by Elitzur and Vaidman
in their bomb-tester experiment [4]. In that work, we also use semicausality (in the form of
superchannels) as a technical tool in the analysis of the model. This led to a full characterization
for when totally “interaction-free" measurements are possible.
In our second contribution, we analyze the mathematical structure of semicausal channels and
superchannels directly. Here, one notes that the set of semicausal channels as well as the set
of superchannels becomes a semigroup under composition. This allows us to investigate the
dynamics of these classes of objects – an endeavor that can be physically motivated by the
question “How can we describe the decay-process of quantum devices over time?". The dynamics
is investigated by studying (continuous) one-parameter semigroups of these objects. Our result
is a characterization of the respective generators – analogous to the GKLS-form.
Finally, in our third contribution, we aim to find a more general mathematical setting such
that the techniques developed for superchannels and semicausal channels can be applied. This
leads us to the study of one-parameter semigroups of quantum channels that leave a given von
Neumann algebra invariant. Our main finding is a normal form for the corresponding generators.

This thesis is structured as follows: In the remaining section of Chapter 1, we briefly outline
the content of the contributed articles [1], [2] and [3]. In Chapter 2 we introduce the relevant
machinery of quantum mechanics with emphasis on the axiomatic justification of completely
positive maps as maps between quantum states. Chapter 3 formally introduces the notion of
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1.2. SUMMARY OF RESULTS Chapter 1

semicausality as well as the related notion of CP-maps with an invariant von Neumann algebra,
and superchannels. The later objects are motivated thoroughly, because they form the basis of
(the interpretation of) Article [2].
Chapter 4 is an introduction to Article [1] and gives a high-level summary of the results therein.
Chapter 5 is concerned with the theory of continuous one-parameter semigroups, also known as
dynamical semigroups. After motivating and summarizing some of the fundamental results in this
field, in particular the one-to-one relation between dynamical semigroups and their generators,
we move on to quantum dynamical semigroups, which are of special interest of us. This sets the
stage to discuss the results of Articles [2] and [3], where we characterize dynamical semigroups
of superchannels and quantum dynamical semigroups with an invariant von Neumann algebra.

1.2 Summary of Results

As outlined in the last section, our results use and investigate semicausality in several ways. In
the remainder of this section, we summarize our results.

• Article [1]: “Interaction-free" channel discrimination
In this work, we propose and investigate a new generalization of “interaction-free" mea-
surements. Namely, we view the Elitzur-Vaidman bomb-tester experiment as specific case
of a quantum channel discrimination problem – with the additional requirement that the
discrimination should be “interaction-free". Using semicausality, we derive a model that
gives a general meaning to the term “interaction-free". Subsequently, we analyze this model
thoroughly. Our main finding is a characterization for when totally “interaction-free" mea-
surements are possible or impossible.

• Article [2]: Quantum and classical dynamical semigroups of superchannels and semicausal
channels
In this work, we investigate (the generators of) one-parameter semigroups of quantum
superchannels, which are the most general admissible transformation between quantum
channels. On a physical level, this investigation promises to shine light on the question
“How do qunatum devices age?". On a mathematical level, we use the relation between
superchannels and semicausal channels and a newly developed technique to arrive at a
normal form for the generators of one-parameter semigroups – analogous to the famous
GKSL-form for ordinary quantum dynamical semigroups.

• Article [3]: On the generators of quantum dynamical semigroups with invariant subalgebras
In this work, we aim to generalize the techniques developed for superchannels and semi-
causal channels in Article [2]. We find that an appropriate generalization of quantum dy-
namical semigroups of semicausal channels are quantum dynamical semigroups that leave a
given von Neumann algebra invariant. Our main finding is a refinement of the GKSL-form
for the generators of quantum dynamical semigroups, if the invarinat von Neumann algebra
is atomic.
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Chapter 2

Elements of the Mathematical
Structure of Quantum Theory

In this chapter, we will review some elements of the mathematical structure of quantum theory
that are of particular relevance to our work. In terms of the level of abstraction and scope, we
will follow Ref. [5].

2.1 Notation and Functional Analysis Basics

We start by fixing the notation. Throughout, H with some subscript denotes a separable complex
Hilbert space, with an inner product denoted by ⟨·|·⟩, which is assumed to be linear in the second
argument and anti-linear in the first one. We will use Dirac-notation throughout. If X ,Y are
(complex) Banach spaces, then we denote by B(X ;Y) the Banach space of continuous linear
operators X → Y. We abbreviate B(X ,X ) by B(X ). We define the dual space X ∗ = B(X ;C).
In addition to the norm-topology, we can consider the weak-* topology on X ∗, which is the
weakest topology such that for all x ∈ X , the linear functional ℓx : X ∗ → C, x∗ 7→ x∗(x) is
continuous. The weak-* topology has several nice properties. First, the closed unit ball in X ∗

is weak-* compact (this is the famous Banach-Alaoglu theorem). Moreover, if X is separable,
then the weak-* topology is metrizable and hence the notions of compactness and sequential
compactness coincide. A map T : Y∗ → X ∗ is weak-* continuous if it is continuous when both
Y∗ and X ∗ are equipped with the weak-* topology. An important property of weak-* continuous
linear maps T ∈ B(Y∗;X ∗) that we will use repeatedly is that they have a predual map. More
precisely, we have the following:

Lemma 2.1.1. [6, Proposition 2.4.12] T ∈ B(Y∗;X ∗) is weak-* continuous if and only if
there exists a map T∗ ∈ B(X ;Y) such that (y∗ ◦T∗)(x) = T (y∗)(x) for all x ∈ X and all y∗ ∈ Y∗.

We will often call weak-* continuous linear maps normal1.
A Banach space of particular interest is the space of bounded linear operators on a Hilbert
space, which has a rich structure. The adjoint X† ∈ B(H) of X ∈ B(H) is uniquely defined

1Normality is often only defined for positive linear maps – and then in terms of bounded increasing nets of
operators. It can be shown that for positive maps, normality and weak-* continuity are equivalent properties.
Hence, we feel justified to drop this distinction altogether and use weak-* continuity and normality synonymously.

3



2.2. QUANTUM MECHANICS Chapter 2

by the relation ⟨ψ|Xϕ⟩ = ⟨X†ψ|ϕ⟩, for all |ψ⟩, |ϕ⟩ ∈ H. The †-operation turns B(H) into
a *-algebra (in fact a von Neumann algebra). An operator X ∈ B(H) is called self-adjoint (or
hermitian) if X† = X. A self-adjoint X ∈ B(H) is called positive semidefinite, denoted by X ≥ 0,
if ⟨ψ|Xψ⟩ ≥ 0 for all |ψ⟩ ∈ H. The square-root lemma [7, Theorem VI.9 ] (or the functional
calculus) says that for X ∈ B(H) with X ≥ 0, there exists a unique positive semidefinite operator√
X ∈ B(H) such that X =

√
X
√
X. For any operator X ∈ B(H), we define |X| =

√
X†X.

For some fixed orthonormal basis {|en⟩}n∈N of H, we define the set of trace-class operators
S1(H) = {ρ ∈ B(H) | ∑n∈N⟨en| |ρ| en⟩ < ∞}. In fact the definition of S1(H) does not depend
on the particular choice of the basis, nor does the linear functional tr : S1(H) → C, defined by
ρ 7→∑

n∈N⟨en|ρen⟩. The trace-class operators become a Banach space with norm ∥ρ∥ = tr [|ρ|].
The Riesz representation theorem tells us that for every ℓ ∈ (S1(H))∗ = B(S1(H);C) there exists
a unique L ∈ B(H) such that ℓ(ρ) = tr [Lρ] for all ρ ∈ S1(H). The corresponding mapping
ℓ 7→ L is an isometric isomorphism (S1(H))∗ → B(H). Thus we can identify B(H) as the dual
of S1(H). This identification allows us to define the weak-* topology on B(H) as the weakest
topology such that the mappings L 7→ tr [Lρ] are continuous for all ρ ∈ S1(H). Moreover, for
any T∗ ∈ B(S1(HA);S1(HB)) there is a normal map T ∈ B(B(HB);B(HA)) such that

tr [T (XB)ρA] = tr [XBT∗(ρA)]

for all ρA ∈ S1(H) and XB ∈ B(HB). By Lemma 2.1.1, this is a one-to-one correspondence and
the transition between Heisenberg and Schrödinger picture.
Let us further introduce two other topologies on B(H). The weak operator topology (WOT)
is the weakest topology such that the map X 7→ ⟨ψ|Xϕ⟩ is continuous for all |ψ⟩, |ϕ⟩ ∈ H.
The strong operator topology (SOT) is the weakest topology such that the map X 7→ X|ψ⟩ is
continuous for all |ψ⟩ ∈ H.
Finally, we define the commutator of a set S ⊆ B(H) as S ′ = {X ∈ B(H) | [X,S] = 0 for all S ∈
S}.

2.2 Quantum Mechanics

We are now ready to introduce the mathematical framework of quantum mechanics.

2.2.1 States and Observables

In operational quantum mechanics, physical experiments are usually described by a two-part
procedure consisting of a state preparation step and a measurement step. The goal here is to
predict the probability of certain measurement outcomes (or, equivalently, the expectation of
observables), given the description of the preparation and the measurement apparatus.
It is a postulate of quantum mechanics that for any experiment, the set of observables can be
associated with the self-adjoint elements of a C∗-algebra A. Since states and observables together
are supposed to predict expectation values of observables, it is natural to associate states with
continuous linear functionals on A. To comply with the probabilistic interpretation, every state
ω ∈ A∗ is then further required to be positive (in the sense that ω(A) ≥ 0 for all A ≥ 0) and to

4



Chapter 2 2.2. QUANTUM MECHANICS

have unit norm.
In this thesis, we will only consider the case A = B(H). Moreover, we assume all states to be
normal (in the sense of Section 2.1). Since S1(H)∗ ∼= B(H), Lemma 2.1.1 implies that for every
normal state ω ∈ B(H)∗, there is a unique ρ ∈ S1(H) such that ω(X) = tr [ρX] for all X ∈ B(H).
Moreover, the positivity of ω translates to ρ ≥ 0 and ∥ω∥ = 1 translates to tr [ρ] = 1. Thus,
we identify the set of states with the positive semidefinite trace-class operators with unit trace,
a.k.a. density operators:

D(H) = {ρ ∈ S1(H) | ρ ≥ 0, tr [ρ] = 1}.

2.2.2 Transformations of States and Observables: Completely Positive Maps

In this part, we will introduce and motivate very carefully completely positive maps as physical
transformations of states and observables. We do so in order to provide the analogy for the
axiomatization and interpretation of superchannels in Section 3.3. In the last section, we have
stated that in quantum mechanics, observables - associated to a measurement process - are
described by operators on a Hilbert space and that the state of a system - associated with a
preparation step - is described by a density operator. It is clear that the separation into these
two parts is not unique. After all one could regard the whole experiment as a preparation step
for reading a number off some display; or, equivalently, one can consider the whole process as
part of the measurement procedure and the preparation step just consists of doing nothing. In
this regard, it is essential to formalize the notion of “Doing something to a system", so that the
whole process of an experiment can be decomposed and analyzed in parts.
Assume that we have access to a physical system, whose preparation is described by a density
operator ρ ∈ D(H). Now suppose that we “do something" to the system. Certainly, the whole
process (preparation + “do something") can be regarded as a preparation step (e.g. by a third
party). Thus, the system will be described by a density operator ρ′ ∈ D(H). Since this sort
or reasoning holds independently of the initial preparation process, there must be a map TD :

D(H) → D(H) mapping ρ to ρ′. Not every such map is physical. To be physical it must comply
with the structure of quantum mechanics. Suppose that the inner workings of the preparation
process were such that with probability p, the system was prepared in state ρ1 ∈ D(H) and with
probability (1 − p) in state ρ2 ∈ D(H). Then, for us not knowing the inner workings, we will
describe the preparation step by the operator ρ = pρ1 + (1 − p)ρ2. If we now “do something",
then the state will be TD(ρ). On the other hand, if the state were ρ1, then the final state will
be TD(ρ1) and TD(ρ2) if the state were ρ2. However, for us not knowing the inner workings, we
will describe this situation by the state pTD(ρ1) + (1 − p)TD(ρ2). Thus, to reconcile these two
points of view, we must demand that

TD(pρ1 + (1− p)ρ2) = pTD(ρ1) + (1− p)TD(ρ2)

for all ρ1, ρ2 ∈ D(H) and 0 ≤ p ≤ 1. In conclusion, the probabilistic structure of quantum
mechanics implies that transformation maps are convex-linear. It can be shown that such map
TD can be uniquely extended to a (bounded) trace-preserving positive linear map T∗ : S1(H) →

5



2.2. QUANTUM MECHANICS Chapter 2

S1(H) (by first extending to positive traceclass operators via T∗(P+) = tr [P+]TD(
P+

tr[P+]) and then
to all of S1(H) by linearity - see e.g. [8, Page 175 and Proposition 2.30]). A further structure
of quantum mechanics is that composite systems are described by tensor products. That is, if
we have two systems A and B with associated Hilbert spaces HA and HB then the associated
Hilbert space of the combined system is HA ⊗ HB. If we “do something" on system B and do
nothing on system A then the transformation on the combined system is naturally given by
idA⊗T∗ : S1(HA⊗HB) → S1(HA⊗HB). Given that this map is associated with a transformation,
it has to be a (bounded) trace-preserving positive linear map. Clearly the argument just given
is valid for any choice of the system A. It turns out that the property (positivity) holding for
infinite-dimensional HA is already implied if positivity of idA⊗T∗ holds for all finite-dimensional
HA. We thus make the following definition:

Definition 2.2.1. (CP-map)
A linear map T∗ : S1(H) → S1(H) is called completely positive (CP), if (idn⊗T∗) : S1(Cn⊗H) →
S1(Cn ⊗H) is a positive linear map for all n ∈ N0.
A linear map T : B(H) → B(H) is called completely positive if (idn⊗T ) : B(Cn⊗H) → B(Cn⊗H)

is a positive linear map for all n ∈ N0.
A completely positive and trace-preserving (CPTP) linear map T∗ : S1(H) → S1(H) is called
(Schrödinger) quantum channel. A completely positive and unital (i.e., T (1) = 1) linear map
T : B(H) → B(H) is called (Heisenberg) quantum channel.

Remark 2.2.2. It is immediate from the definition that a normal linear map T : B(H) → B(H)

is completely positive if and only if the corresponding predual map T∗ : S1(H) → S1(H) is
completely positive. Moreover, T (1) = 1 is equivalent to tr [T∗(ρ)] = tr [ρ] for all ρ ∈ S1(H).
Thus Heisenberg quantum channels are precisely the dual maps of Schrödinger quantum channels.

Do we need further restrictions for physical “do something" maps? The answer to this question
appears to be no, because the following theorem due to Stinespring [9] shows that completely
positive maps can be dilated to a Hamiltonian evolution an a larger system - thus we recover
ordinary quantum theory.

Theorem 2.2.3. (Stinespring dilation theorem) Let T : B(HI) → B(HO) be a normal
CP-map. Then there exists a Hilbert space HE and an operator V ∈ B(HO;HI ⊗HE) such that

T (X) = V †(X ⊗ 1E)V (2.2.1)

for all X ∈ B(HI).
The pair (V,HE) can be chosen such that span{(X ⊗ 1E)V |ψ⟩ |X ∈ B(HI), |ψ⟩ ∈ HO} is dense
in HI ⊗HE. In that case, we call the pair (V,HE) minimal. Moreover, in that case, we have the
following uniqueness statement: If (Ṽ ,HẼ) is another pair satisfying (2.2.1), then there exists an
isometry U ∈ B(HE;HẼ) such that Ṽ = (1I ⊗ U)V .

Remark 2.2.4. Stinespring proved his dilation theorem for CP-maps on arbitrary C∗-algebras,
C [9]. More precisely he proved that there exists a Hilbert space K and a *-representation
π : C → B(K) such that T (X) = V †π(X)V for all X ∈ C. If C is a von Neuman algebra

6



Chapter 2 2.2. QUANTUM MECHANICS

(or even W ∗-algebra) and T is normal, then it can be shown that π can be chosen normal as
well [10, P. 137]. Moreover, normal *-representations have a special form [11, Proposition 2.7.4]:
namely, they can be written as a composition of an amplification, an induction and a spatial
isomorphism. If C = B(HI), then inductions are trivial and the spatial isomorphism can be
absorbed into the operator V , leading to the specialized form (2.2.1) for normal CP-maps. A
proof of the uniqueness statement can be found e.g. in [12, P. 46].

A well known corollary to the Stinespring dilation theorem is that normal CP-maps admit a
Kraus representation.

Theorem 2.2.5. Let T : B(H) → B(H) be a normal CP-map. Then there exists a family of
operators {Kn}n∈N ⊆ B(H) such that

T (X) =
∑

n∈N
K†
nXKn,

where the series SOT-converges for all X ∈ B(X ).

Proof. (sketch) Chose an orthonormal basis {|en⟩}n∈N of HE in Stinespring’s theorem and define
Kn = (1⊗ ⟨en|)V . The properties are then routinely verified.

2.2.3 The Choi–Jamiołkowski isomorphism

An important tool (not only when dealing with CP-map) in finite-dimensional quantum infor-
mation theory is the Choi–Jamiołkowski isomorphism (a.k.a. channel state duality). In this
part (and whenever we deal with the Choi–Jamiołkowski isomorphism) we will only consider
finite-dimensional Hilbert spaces.

Definition 2.2.6. (Choi–Jamiołkowski isomorphism) Let HA and HB be finite-dimensional
Hilbert spaces and let {|an⟩}dAn=1 be an orthonormal basis of HA.
The Choi–Jamiołkowski isomorphism is the linear map CA;B : B(B(HA);B(HB)) → B(HA ⊗ HB)

defined by

CA;B(T ) = (idA ⊗ T )(|Ω⟩⟨Ω|),

where |Ω⟩ =∑dA
n=1|an⟩ ⊗ |an⟩.

Remark 2.2.7. Note that the Choi–Jamiołkowski isomorphism depends on the choice of basis
{|an⟩}dAn=1. Throughout, we will assume some arbitrary but fixed choice.

The Choi–Jamiołkowski isomorphism is useful because of the following properties

Theorem 2.2.8. (Choi’s theorem, [13])

• CA;B is a bijective linear map with inverse given by

C−1
A;B(τ)(ρ) = trA

[
(ρT ⊗ 1B)τ

]
,

where T is the transpose w.r.t. {|an⟩}dAn=0.
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2.2. QUANTUM MECHANICS Chapter 2

• A linear map T : B(HA) → B(HB) is hermiticity preserving (i.e. T (H) is self-adjoint
whenever H is self-adjoint) if and only if CA;B(T ) self-adjoint.

• A linear map T : B(HA) → B(HB) is completely positive if and only if CA;B(T ) is positive
semidefinite.

• A linear map T : B(HA) → B(HB) is trace-preserving if and only if trB [CA;B(T )] = 1A.

• A linear map T : B(HA) → B(HB) is unital if and only if trA [CA;B(T )] = 1B.

Thus some relatively complex properties translate to much simpler properties when one looks at
them through the lens of the Choi–Jamiołkowski isomorphism. In later applications, it is also
useful to know how to do similarity transformations with the Choi–Jamiołkowski isomorphism.
Here is a helpful lemma, proven in [2, Lemma V.20].

Lemma 2.2.9. (Translation Lemma, [2, Lemma V.20]) Let T : B(HA⊗HB) → B(HA⊗HB)

be given by

T (X) = trE

[
(1A ⊗ LB)(LA ⊗ 1B)X(R†

A ⊗ 1B)(1A ⊗R†
B)
]
,

with Hilbert spaces HC and HE, operators LA, RA ∈ B(HA;HA⊗HC) and LB, RB ∈ B(HC⊗HB;HB⊗
HE). Then, for S ∈ B(B(HA);B(HB)) and ρ ∈ B(HA),

[
C−1
A;B ◦ T ◦ CA;B

]
(S)(ρ) = trE

[
VL(S ⊗ idC)

(
WLρW

†
R

)
V †
R

]
,

with VL = LBFB;C, VR = RBFB;C; and WL = LTAA , WR = RTAA . Here, the partial transpose on HA

is taken w.r.t. {|an⟩}dAn=0 and FB;C is the flip operator, flipping systems B and C.
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Chapter 3

Semicausality, Invariant Algebras and
Superchannels

In this chapter, we introduce the notion of semicausality and its most important applications.
Section 3.1 is devoted to the equivalence between semicausality and the more constructive no-
tion of semilocalizability for CP-maps. In Section 3.3, we introduce superchannels [14], that is
transformations between quantum channels. We study the relation between superchannels and
semicausal CP-maps and discuss the fundamental results [14].
The notion of semicausality was introduced by Beckman et al. [15]. It captures the intuition of
one-way communication A → B, or, more precisely the impossibility of communication from B to
A. In order to ensure this, we demand that for a semicausal CPTP-map T∗ : S1(HA ⊗ HB) →
S1(HA ⊗HB),

trB [T∗(ρAB)] = T A
∗ (trB [ρAB])

holds for some CPTP-map T A
∗ : S1(HA) → S1(HA) and all ρAB ∈ S1(HA ⊗ HB). That is to say

that the reduced evolution on system A does not depend on the B-part of the system. Formally,
we say that such a map is Schrödinger B ̸→ A semicausal.
We can also find the corresponding condition in the Heisenberg picture, which is useful for
technical reasons. If T∗ is a Schrödinger B ̸→ A semicausal map, with reduced map T A

∗ and
corresponding dual maps T and T A, then

tr
[
(T A(XA)⊗ 1B)ρAB

]
= tr

[
T A(XA)trB [ρAB]

]

= tr
[
XAT

A
∗ (trB [ρAB])

]

= tr [XAtrB [T∗(ρAB)]]

= tr [(XA ⊗ 1B)T∗(ρAB)]

tr [T (XA ⊗ 1B)ρAB]

9



3.1. SEMICAUSAL CP-MAPS ARE SEMILOCALIZABLE Chapter 3

holds for all XA ∈ B(HA) and all ρAB ∈ S1(HA⊗HB). Thus, if T∗ is Schrödinger B ̸→ A semicausal,
then

T (XA ⊗ 1B) = T A(XA)⊗ 1B. (3.0.1)

We call a map satisfying (3.0.1) Heisenberg B ̸→ A semicausal. Let us summarize the previous
discussion in the following definition, in which we replace that letter T by L, because we make
no assumptions such as complete positivity in general.

Definition 3.0.1. (Semicausal map)
A bounded linear map L∗ : S1(HA⊗HB) → S1(HA⊗HB) is called Schrödinger B ̸→ A semicausal,
if there exists LA

∗ : S1(HA) → S1(HA) such that trB [L∗(ρ)] = LA
∗(trB [ρ]) for all ρS1(HA ⊗HB).

A bounded linear map L : B(HA ⊗HA) → B(HA ⊗HA) is called Heisenberg B ̸→ A semicausal if
there exists LA : B(HA) → B(HA) such that L(XA ⊗ 1B) = LA(XA)⊗ 1B for all XA ∈ B(HA).

Remark 3.0.2. We have already seen that L∗ being Schrödinger B ̸→ A semicausal implies that
L is Heisenberg B ̸→ A semicausal. Moreover, a converse is also true, i.e. the predual-map of a
normal Heisenberg B ̸→ A semicausal map is Schrödinger B ̸→ A semicausal.

Remark 3.0.3. Requiring that a map L is Heisenberg B ̸→ A semicausal is equivalent to requiring
that L leaves the von-Neumann algebra B(HA) ⊗ 1B invariant - this was already noted in [16].
This observation, together with the realization that the techniques developed for semicausal
maps in Article 2 can be extended to capture the more general case of maps with an invariant
atomic von-Neumann algebra led to the investigations in Article 3.

In the next part we discuss an operational characterization of semicausal CP-maps.

3.1 Semicausal CP-maps are semilocalizable

The usefulness of semicausal CP-maps comes from the fact that they have an operational inter-
pretation in terms of a concept called semilocalizability (see Fig. 3.1 for a visual representation).

Definition 3.1.1. (Semilocalizable CP-map)
A CP-map T∗ : S1(HA ⊗ HB) → S1(HA ⊗ HB) is called Schrödinger B ̸→ A semilocalizable
if there exist Hilbert spaces HE and HF, an operator A ∈ B(HA;HA ⊗ HF) and an isometry
U : B(HF ⊗HB;HB ⊗HE) such that

T (ρ) = trE

[
(1A ⊗ U)(A⊗ 1B)ρ(A⊗ 1B)

†(1A ⊗ U)†
]

for all ρ ∈ S1(HA ⊗HB).
A normal CP-map T : B(HA ⊗ HB) → B(HA ⊗ HB) is called Heisenberg B ̸→ A semilocalizable
if the predual map is Schrödinger B ̸→ A semilocalizable. In particular, T is Heisenberg B ̸→ A

semilocalizable if it is given by

T (X) = V †(X ⊗ 1E)V, with V = (1A ⊗ U)(A⊗ 1B),

for all X ∈ B(HA ⊗HB).

10
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Figure 3.1: Interpretation of a Schrödinger B ̸→ A semilocalizable CP-map in terms of two
processes: 1) A CP-map G∗ : S1(HA) → S1(HA ⊗HF), defined by G∗(ρA) = AρAA

† that acts on
Alice’s side and sends a temporary system F to Bob; and 2) a CPTP-map F∗ : S1(HF ⊗HB) →
S1(HB), defined by F∗(ρFB) = trE

[
UρFBU

†] that acts on Bob’s side and processes the system F.

Remark 3.1.2. By using that U is an isometry, it is easy to see that semilocalizable maps are
semicausal.

Remark 3.1.3. If T∗ is trace-preserving, then A is an isometry. Hence the CP-maps F∗ and G∗,
defined in Fig. 3.1 are both trace-preserving.

Remark 3.1.4. A pivotal point in the definition above is that U is an isometry. In fact, if we drop
this requirement then every CP-map T∗ : S1(HA ⊗ HB) → S1(HA ⊗ HB) (for finite-dimensional
spaces) can be decomposed as

T∗ = (idA ⊗ F∗) ◦ (G⊗ idB), (3.1.1)

for CP-maps F∗ and G∗, with signature defined in Fig. 3.1, as the following teleportation-inspired
construction shows: Define HF = HA ⊗ HA and |Ω⟩ =

∑dA
i=1|aiai⟩ ∈ HF, where {|ai⟩}i is some

fixed orthonormal basis of HA and dA is the dimension of HA. We then define

F∗(ρAAB) = (⟨Ω| ⊗ 1B) [(idA ⊗ T )(ρAAB)] (|Ω⟩ ⊗ 1B), and G∗(ρA) = |Ω⟩⟨Ω| ⊗ ρA.

It is then easy to verify (3.1.1). Note also that the construction doesn’t depend on T∗ being
completely positive - however, then G∗ also wouldn’t be completely positive.

While semicausality is an axiomatic notion for the impossibility of communication B → A, semilo-
calizability explicitly gives a mechanism by which A communicates with B. The pleasing fact is
that these two notions are equivalent. This equivalence was conjectured in [15], first proven by
Eggeling et al. [16] and later rediscovered by Piani et al. [17]. Both proofs were in the finite-
dimensional setting. An extension to the infinite-dimensional setting can be found in Ref. [18].
We state the theorem as follows:

11



3.2. CP-MAPS WITH AN INVARIANT ALGEBRA Chapter 3

Theorem 3.1.5. (Semicausal CP-maps are semilocalizable) A CP-map T∗ : S1(HA ⊗
HB) → S1(HA ⊗ HB) is Schrödinger B ̸→ A semicausal if and only if it is Schrödinger B ̸→ A

semilocalizable. It follows that a normal CP-map T : B(HA ⊗HB) → B(HA ⊗HB) is Heisenberg
B ̸→ A semicausal if and only if it is Heisenberg B ̸→ A semilocalizable.

The proofs essential ingredient is the uniqueness of the Stinespring dilation up to unitaries. Since
the techniques involved play an important role in Articles [2] and [3], we paraphrase the proof
of references [16,18] .

Proof. For technical convenience, we prove the statement in the Heisenberg picture. Let T :

B(HA ⊗HB) → B(HA ⊗HB) be a normal CP-map satisfying the semicausality condition T (XA ⊗
1B) = T A(XA) ⊗ 1B. Clearly, T A : B(HA) → B(HA) is also a normal CP-map (take partial
trace w.r.t. some state). Applying Stinespring’s dilation theorem (Theorem 2.2.3) to both maps
yields that there exist Hilbert spaces HE,HF and operators V ∈ B(HA ⊗HB;HA ⊗HB ⊗HE) and
A ∈ B(HA;HA ⊗HE) such that

T (X) = V †(X ⊗ 1E)V, and T A(XA) = A†(XA ⊗ 1F)A

for all X ∈ B(HA ⊗ HB) and all XA ∈ B(HA) and such that S = span{(XA ⊗ 1F)A|ψA⟩ |XA ∈
B(HA), |ψA⟩ ∈ HA} is dense in HA ⊗HF. The semicausality relation then reads

V †(XA ⊗ 1B ⊗ 1E)V = [A†(AA ⊗ 1F)A]⊗ 1B

= (A⊗ 1B)
†(XA ⊗ 1F ⊗ 1B)(A⊗ 1B).

It follows form the density of S that span{(XA ⊗ 1F ⊗ 1B)(A ⊗ 1B)|ψAB⟩ |XA ∈ B(HA), |ψAB⟩ ∈
HA ⊗HB} is dense in HA ⊗HF ⊗HB. Hence (A⊗ 1B,HF ⊗HB) is a minimal dilation. Moreover,
(V,HB⊗HE) is another dilation of the same map (XA 7→ T A(XA)⊗1B). Thus, by the uniqueness-
part of Theorem 2.2.3, there exists and isometry U ∈ B(HF ⊗ HB;HB ⊗ HE) such that V =

(1A ⊗ U)(A⊗ 1B). This is the claim.

In the next section, we generalize the notion of semicausality and state a generalized semicausal-
ity, semilocalizability equivalence theorem that is an important result in Article [3].

3.2 CP-maps with an invariant algebra

In the last sections we introducted semicausal CP-maps and characterized them in terms of
semilocalizability. In this section, we are going to generalize the results of the previous sections.
To this end, note that saying that T : B(HA⊗HB) → B(HA⊗HB) is Heisenberg B ̸→ A semicausal is
equivalent to stating that T leaves the type-I factor von Neuman algebra B(HA)⊗1B invariant. In
view of the explicit representation of semicausal CP-maps, this observation immediately suggests
a generalized question: “How do (normal) CP-maps that leave a generic von Neuman algebra
invariant look like?".
The partial answer to this question (we were only able the question for atomic von Neuman
algebras – which does, however, include the important finite-dimensional case) is one of the main
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results of Article [3] (alongside answering the corresponding question for GKLS-generators).
Before stating the result, we review some von Neumann algebra theory.

3.2.1 von Neumann algebras in a nutshell

The main aim of this interlude is to define the relavant notions from the theory of von Neuman
algebras so that the results (which are presented in Sections 3.2.2 and 5.3.3) of Article [3] can
be readily understood. We start with the fundamental definition.

Definition 3.2.1. A subalgebra of B(H) that is closed under adjoints and (topologically) closed
w.r.t. the weak operator topology is called weakly closed *-algebra. If a weakly closed *-algebra
contains the identity, then it is called a von Neuman algebra.

Qualitatively, there is not a big difference between weakly closed *-algebras and von Neumann
algebras, since any weakly closed *-algebra is (unitarily equivalent to) the direct sum of the zero
matrix and a von Neuman algebra. On a technical level, we have

Lemma 3.2.2. [19, Proposition 5.1.8]
If A ⊆ B(H) is a weakly closed *-algebra, then there exists a projection P ∈ A such that P ≥ Q

for all projections Q ∈ A and PAP = A.

Let P be the projection given by the lemma above. Define H0 = range(P ) and H0 = H⊥
0
. Then

H is unitarily equivalent to H⊕ = H0 ⊕H0, i.e. H = UAH⊕ for some unitary UA ∈ B(H⊕;H).
Let P⊕

0 ∈ B(H⊕;H0) and P⊕
0

∈ B(H⊕;H0) be the projections onto the corresponding summands
and define P0 = P⊕

0 U
†
A and P0 = P⊕

0
U †
A. Then, A0 = P0AP †

0 is a von Neuman algebra and

A = UA(00 ⊕A0)U
†
A, (3.2.1)

where 00 is the zero operator in B(H0).
An important point that makes von Neuman algebras appealing is that there is a well-developed
representation theory. The fundamental result in that domain is that every von Neuman alge-
bra is unitarily equivalent to a direct integral of factors (see [20] Chapter 14 and in particular
Theorems 14.2.1 and 14.2.2 for in an introduction to direct integrals and the corresponding rep-
resentation theorems). Thus classifying von Neuman algebras can be reduced to the classification
of factors. Those are defined and categorized as follows:

Definition 3.2.3. A von Neuman algebra A ⊆ B(H) is called a factor if A ∩A′ = C1.

• A factor A is said to be of type-I, if it posesses a minimal non-zero projection P ∈ A. That
is, there is no projection Q ∈ A, with 0 < Q < P .

• A factor A is said to be of type-II, if it is not of type-I, but it posesses a non-zero finite
projection P ∈ A. That is, there is no projection Q ∈ A with 0 < Q < P such that
range(Q) = V range(P ) for some partial isometry V ∈ A.

• A factor A is said to be of type-III, if it does not posess any finite non-zero projection
P ∈ A. Hence, if and only if it is neither type-I nor type-II.

13
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Remark 3.2.4. If H is finite-dimensional and A ⊆ B(H) is a factor, then it is of type-I. To see
this, note that any non-zero projection P0 ∈ A is either minimal or there exists a projection
P1 ∈ A with 0 < P1 < P0. By repeating this conlcusion, we obtain a sequence of projections
P0 > P1 > P2 > · · · > 0. This sequence has to terminate for some n ∈ N0. This is so,
because dim(range(Pi)) ≥ dim(range(Pi+1)) + 1 and thus, if the sequence were infinite, then
dim(range(P0)) = ∞. This contradicts that H is finite-dimensional.

Classifying factors is a quite complicated (and still not fully completed) endeavor, easily filling
hundreds of pages [21–23]. However, for the case of type-I factors the theory is very clear-cut.

Theorem 3.2.5. Let A ⊆ B(H) be a type-I factor. Then there exist Hilbert spaces HA and HB

and a unitary UA ∈ B(HA ⊗HB;H) such that

A = UA(B(HA)⊗ 1B)U
†
A.

Remark 3.2.6. The previous theorem yields a concrete form for a type-I factor. It is easy to see
that saying that a linear map T is semicausal is essentially equivalent to saying that T (A) ⊆ A
for some type-I factor A.

In light of the previous remark and by taking into account that the representation theory for
type-II and type-III factors is incomplete, it seems necessary to restrict our attention to von
Neuman algebras whose direct integral decomposition consists only of type-I factors. However,
even that case turns out to be tricky in general (due to measure-theoretic complications), so
that we were unable (in Article [3]) to fully characterize CP-maps that leave a von Neumann
algebra of that kind invariant. Thus, we had to restrict to so-called atomic algebras. Atomic von
Neumann algebras are abstractly defined as follows.

Definition 3.2.7. [21, Definition 5.9]
A von Neumann algebra A ⊆ B(H) is called atomic if for every non-zero projection P ∈ A there
exists a non-zero minimal projection Q ∈ A such that Q ≤ P .

Remark 3.2.8. If H is finite-dimensional, then every von Neumann algebra A ⊆ B(H) is atomic.
Thus, our results cover the finite-dimensional case. This assertion can be seen by the same
argument given in Remark 3.2.4.

The crucial point in using atomic von Neumann algebras is that they are exactly those von
Neuman algebras that are unitarily equivalent to a direct sum of type-I factors. A proof of this
fact can be found e.g. in the appendix of [24]. Combining (3.2.1) with the previous fact and
Theorem 3.2.5, we arrive at the following (consistent and equivalent) definition for atomic weakly
closed *-algebras.

Definition 3.2.9. A weakly closed *-algebra A ⊆ B(H) is called atomic if

A = UA

(
00 ⊕

⊕

i∈I
(B(HAi)⊗ 1Bi)

)
U †
A,

for a Hilbert space H0, sequences of Hilbert spaces {HAi}i∈I and {HBi}i∈I indexed by a countable
index set I, and a unitary UA : H⊕ → H, where H⊕ = H0 ⊕

⊕
i∈I(HAi ⊗HBi).
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We further define for all i ∈ I the Hilbert space Hi = HAi ⊗ HBi . For all k ∈ I ∪ {0}, let
P⊕
k ∈ B(H⊕;Hk) be the orthogonal projection onto Hk and let us define Pk ∈ B(H;Hk) as
Pk = P⊕

k U
†
A.1 Hence, an arbitrary element XA ∈ A can be written as SOT-convergent series

XA =
∑

i∈I P
†
i (XAi ⊗ 1Bi)Pi, for some operators XAi ∈ B(HAi), with supi∈I ∥XAi∥ <∞.

3.2.2 Normal Form

We are finally prepared to state our normal form for (normal) CP-maps with an atomic invariant
weakly closed *-subalgebra - a central result in Article [3]. Slightly more generally, our result is
a normal form for normal CP-maps T with the property that T (A) ⊆ C, for two atomic weakly
closed *-algebras A and C. Since we are now dealing with two algebras, we need to distinguish
them in the notation in Definition 3.2.9. For the algebra A ⊆ B(HA): the index set is called
I; the Hilbert spaces {Hi}i∈I∪{0} are denoted by Hi:A, with Hi:A = HAi ⊗HBi (i ∈ I); and the
operators Pi are called Pi:A ∈ B(HA;Hi:A). For the algebra C ⊆ B(HC): the index set is called
J ; the Hilbert spaces {Hj}j∈J∪{0} are denoted by Hj:C , with Hj:C = HCj ⊗HDj (j ∈ J); and the
operators Pj are called Pj:C ∈ B(HC ;Hj:C). With this notation in place, we can state our result:

Theorem 3.2.10. (Normal form for CP-maps, [3, Theorem 5]) Let A ⊆ B(HA) and
C ⊆ B(HC) be two atomic weakly closed *-algebras. For a normal CP-map T : B(HA) → B(HC)

defined by T (X) = V †(X ⊗ 1E)V , with V ∈ B(HC ;HA ⊗HE), the following are equivalent

1. T (A) ⊆ C.

2. There exist an operator V0 ∈ B(HC ;H0:A ⊗HE); and for all i ∈ I and j ∈ J Hilbert spaces
HFij , operators Aij ∈ B(HCj ;HAi ⊗HFij ), and isometries Uij ∈ B(HFij ⊗HDj ;HBi ⊗HE),
such that

• V can be decomposed as

V = (P †
0:A ⊗ 1E)V0 +

∑

i∈I, j∈J
(P †

i:A ⊗ 1E)VijPj:C ,

with Vij = (1Ai ⊗ Uij)(Aij ⊗ 1Dj ), s.t. the series SOT-converges.

• The relation U †
ikUil = δkl1 holds for all i ∈ I and k, l ∈ J .

The representation in 2 can be chosen such that span{(X ⊗1Fij )Aij |ψ⟩ |X ∈ B(HAi), |ψ⟩ ∈ HCj}
is dense in HAi ⊗HFij .

3.3 Transformations of Quantum Channels: Superchannels

In this section, we introduce quantum superchannels. We will describe them axiomatically,
describe their relation to semicausality and state the fundamental representation theorem. His-
torically, superchannels were the first step towards higher-order quantum theory [25]. They were
introduced in [14], where also the fundamental representation theorem was proven. Although
superchannels can be treated in the infinite-dimensional setting [26], we restrict ourselves to the

1Note that this definition is consistent with the one introduced in the first paragraph above.
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finite-dimensional case.
In Chapter 2, we introduced quantum channels as the mathematical solution to the problem:
Suppose you are handed a quantum system, what’s is the most general thing that you can “do
with it". Now, suppose you are handed an (unknown) apparatus – mathematically described as
a quantum channel – what is the most general thing you can “do with it"? Superchannels are
the mathematical answer to this question. It is interesting to note at this point that one doesn’t
have to stop asking this question on the level for superchannels (i.e. one can ask, what’s the most
general transformation on superchannels), but that one can repeat this indefinitely. This leads
to the hierarchical framework of higher-order quantum theory [25]. To derive superchannels, we
proceed as for quantum channels. Denote by CPTP(H) the set CPTP maps on S1(H) = B(H).
To every “do something with a quantum channel" action there should be an associated map
STP : CPTP(H) → CPTP(H). Similar to quantum channels, STP has to comply with the prob-
abilistic structure of quantum theory - in that case with the probabilistic structure of quantum
channels, not that of density matrices. The probabilistic structure of quantum channels is richer
than just their convex structure. Suppose Eve implements a quantum channel by the following
procedure: First she lets the system interact with her system E, where the interaction is de-
scribed by an isometry U : H → H ⊗ HE (which, of course can be extended to a unitary on a
larger space). Then she perform an n-valued projective measurement on E where the associated
projections are denoted by P0, P2, . . . Pn. The resulting channel is then given by

T (ρ) =

n∑

i=0

Ti(ρ),

where Ti(ρ) = trE [(1⊗ Pi)UρU(1⊗ Pi)]. Suppose this channel is subject to our “do something"
action, then the resulting channel is STP(T ). Suppose that many experiments (with different
input states) are performed, using STP(T ). Moreover, suppose that Eve keeps a list of outcomes
of her measurement for each of these experiments. It should be possible – on physical grounds –
to predict the outcome statistics of the experiment conditional on Eve’s measurement outcome
(if we know Eves outcome). However, in general, this can’t be inferred from STP(T ) alone. So,
a full description of a “do something" operation must entail more than just a map on CPTP(H).
To take this into account, note that the map Ti has the generic form of a completely positive
trace non-increasing map, as a consequence of Ozawas theorem [27]. Thus in order to predict
outcomes of arbitrary settings we should really have a map S↓ : CP↓(H) → CP↓(H), where
CP↓(H) denotes the set of completely positive trace non-increasing maps. Moreover, if {Ti}ni=0

are trace non-increasing CP-maps such that T =
∑

i Ti is trace-preserving, then

S↓(
∑

i

Ti) =
∑

i

S↓(Ti). (3.3.1)
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My claim is now that S↓ can be uniquely extended to a linear map: First note that (3.3.1) holds,
even if the Ti’s only add up to a trace non-increasing map. This is because, by Ozawa’s theorem
in that case there is always a CP-map Q such that

∑
i Ti+Q is trace-preserving. Moreover, since

∑

i

S(Ti) + S(Q) = S(
∑

i

Ti +Q) = S(
∑

i

Ti) + S(Q),

it follows that S(
∑

i Ti) =
∑

i S(Ti) whenever Ti ∈ CP↓(H). Since CH;H(CP↓(H)) = {ρ ∈
H ⊗ H | ρ ≥ 0, tr [ρ] ≤ dim(H)}, we can extend S uniquely to a bounded linear map, by the
same arguments as for CPTP-maps. Thus our “do something" maps are bounded linear maps
S such that S(T ) is CP whenever T is CP and S(T ) is CPTP whenever T is CPTP. As for the
derivation of channels, we will also require that these maps are consistent with the tensor product
structure. If we have a bipartite system A + B and a channel T : S1(HA ⊗HB) → S1(HA ⊗HB)

and if we know how to do something to a channel acting only on B then it is natural to describe
its action on T by (idS1(HA) ⊗ S)(T ). By the same arguments as above, (idS1(HA) ⊗ S) should
also map CP-maps to CP-maps and channels to channels. Thus we arrive at the definition of a
superchannel.

Definition 3.3.1. A linear map Ŝ : B(B(H)) → B(B(H)) is called superchannel, if for all n ∈ N0,
the map (idS1(Cn)⊗ Ŝ) : B(S1(Cn⊗H)) → B(S1(Cn⊗H)) has the property that (idS1(Cn)⊗ Ŝ)(T )
is a CP-map whenever T is a CP-map and (idS1(Cn) ⊗ Ŝ)(T ) is CPTP whenever T is CPTP.

Remark 3.3.2. Note note that it is not enough to just require that Choi operators of channels
are mapped to Choi operators of channels to ensure the positivity of the transformation map.
To see this, let 0 < α < 1, let σB ∈ B(HB) and τB ∈ B(HB) be different density operators, and let
|a0⟩, |a1⟩ ∈ HA be orthogonal unit vectors. Define the linear map T : B(HA⊗HB) → B(HA⊗HB)

by

T (ρAB) =
α

dA
tr [ρAB] (1A ⊗ (σB − τB)) + tr [|a0⟩⟨a0|trB [ρAB]] (1A ⊗ τB).

For Choi operators of channels, i.e. if trB [ρAB] = 1A and ρAB ≥ 0, we have

T (ρAB) = 1A ⊗ (ασB + (1− α)τB)

This is a positive operator and trB [T (ρAB)] = 1A. Thus, T maps Choi operators of channels to
Choi operators of channels. However, T is not positive since

T (|a1⟩⟨a1| ⊗ τB) =
α

dA
1A ⊗ (σB − τB)

is not a positive semidefinite operator.

Remark 3.3.3. The reader might rightfully be surprised about the linearity of superchannels.
After all, what is wrong with the transformation T 7→ T ◦ T , which one might ascribe to the
action of letting the system go through some device twice. The assumption excluding this
transformation is that quantum channels provide a full description of the transformation. In
particular, the exact implementation of a channel via its Stinespring dilation must not matter
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– this is expressed in (3.3.1). But note that interpreting T ◦ T as invoking the same channel
twice assumes that the channel is implemented such that there are no memory effects. Since
knowledge about that fact is required, T alone does no longer describe the full behavior of the
transformation. This subtlety of course already exists for transformations of quantum states
(quantum channels), since there linearity is implied by the assumption that one cannot tell apart
different convex combinations that lead to the same quantum state – which may not always be
justified if one has a more refined knowledge of the preparation procedure.

At present, superchannels are abstract objects. The following theorem tells us that up to a
similarity transformation, superchannels are just a certain kind of CP-map.

Theorem 3.3.4. (Superchannels are similar to semicausal CP-maps, [14, Lemma 3])
For a finite-dimensional space HA = HB, let Ŝ : B(S1(HA);S1(HB)) → B(S1(HA);S1(HB)) be
a linear map and define S = CA;B ◦ Ŝ ◦ C−1

A;B. Then Ŝ is a superchannel if and only if S is a
Schrödinger B ̸→ A semicausal CP-map such that the reduced map SA satisfies SA(1A) = 1A.

Remark 3.3.5. In the previous theorem, complete positivity of S follows from the requirement
that (idS1(Cn) ⊗ Ŝ)(T ) is a CP-map whenever T is a CP-map. Semicausality follows from the
requirement to map trace-preserving CP-maps to trace-preserving CP-maps.
Intuitively, this equivalence comes about because the Choi–Jamiołkowski isomorphism transforms
temporal properties (here, trace-preservation) into spatial properties. Slightly more precisely,
since S[CA;B(T2◦T1)] = S[(idA⊗T2)(CA;B(T1))], the translated trace-preserving property (Theorem
2.2.8) implies trB [S[(idA ⊗ T2)(CA;B(T1))]] = 1A for all CPTP-maps T1 and T2. Thus the reduced
state on A is invariant under operations on B, which should tell us that we cannot communicate
from B → A.

Theorem 3.3.4 tells us that superchannels are related to Schrödinger B ̸→ A semicausal CP-maps.
But those maps are well understood in terms of semilocalizability (Theorem 3.1.5). Moreover,
Lemma 2.2.9 helps us with performing the similarity transformation. This leads to a very con-
venient, circuital form for superchannels:

Theorem 3.3.6. (Circuit form of superchannels, [14, Theorem 1])
A Ŝ : B(S1(H)) → B(S1(H)) is a superchannel, if and only if there exists a (finite-dimensional)
Hilbert sapce HE and two CPTP-maps E : S1(H) → S1(H⊗HE) and D : S1(H⊗HE) → S1(H)

such that

Ŝ(T ) = D ◦ (S ⊗ idE) ◦ E.

The theorem above tells us that superchannels are exactly those maps on channels that can
be implemented by a quantum circuit. Thus, similarly to the Stinespring dilation theorem for
CP-maps, the constructive and axiomatic approach yield the same results and the basic theory
is thus complete.
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Chapter 4

“Interaction-Free" Measurements

The purpose of this section1 is to give a high-level overview of the concepts and results of Arti-
cle [1]. It assumes some familiarity with the works of Elitzur and Vaidman [4] and of Kwiat et
al. [28]. For a comprehensive introduction to “interaction-free" measurements we refer the reader
to the introduction in Article [1].
Let’s start with a short recap: The notion “interaction-free" measurement was coined by Elitzur
and Vaidman in their bomb-tester experiment [4]. It is now commonly associated with the act of
inferring the presence or absence of an object without altering it. For an opaque object (usually
imagined to be a bomb), Kwiat et al. [28] showed that if the object can be tested multiple times,
then there is a protocol such that the probability for a successful “interaction-free" measurement
approaches one as the number of tests approaches infinity. The main idea behind the Kwiat et
al. protocol is that an opaque object can be interpreted as a measurement device and that one
can then take advantage of the quantum Zeno effect [29–33].
Since those two fundamental works, “interaction-free" measurements gained a lot of attention.
The theoretical literature (as opposed to experimental) can be divided into two categories. First,
since “interaction-free" measurements exploit one of the most fundamental properties of quan-
tum mechanics - superposition - it shouldn’t come as a surprise that this an interesting field for
researchers working on the foundations of quantum mechanics. Hence the focus of the first cate-
gory is on interpretational issues [34–37]. The second category concerns itself with the practical
applications of “interaction-free" measurements. These applications include applications include
“interaction-free" imaging [38, 39], counterfactual quantum computation [40–42], counterfactual
communication [43] and cryptography [44], and complexity theory [45]. An important result (in
particular for our purposes) is that it is possible to infer the presence or absence of on optically
semi-transparent object in a totally “interaction-free" manner (i.e. with probability approaching
one), but it is impossible to infer the transparency of such an object in that way [46,47].
Despite all those different applications, there was no general, practically oriented framework that
pinpoints which information can or cannot be inferred in a totally “interaction-free" manner. The
main purpose of our work is to address this problem.

1This section is based on an unpublished extended abstract written by the author and previously submitted
to various conferences.
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4.1 Concepts

An important observation leading to our generalized model is that we can interpret the task of
inferring the presence or absence of an object as a quantum channel discrimination problem,
where one channel models the object, and the identity channel models ‘no object’. The gen-
eralization then follows naturally, as we can now ask: Which channels can be discriminated in
a totally “interaction-free" manner? Note that an even more general question would be about
“interaction-free" channel tomography. However, as our no-go results will imply, “interaction-
free" channel tomography is mostly hopeless.
The biggest conceptual challenge now is to define what “interaction-free" should mean for quan-
tum channels. Before we look at that, let us be more precise about our setting for the quantum
channel discrimination problem. So, let us consider first the usual (i.e. non “interaction-free")
problem of discriminating between two channels TA and TB acting on a system I. The most gen-
eral (causally ordered) discrimination strategy is given by the sequential scheme, aka quantum
comb [48], depicted in Figure 4.1. Such a strategy is completely defined by specifying an initial
state s0 ∈ B(HI ⊗HZ) and intermediate channels Λ0,Λ1, . . . ,ΛN , acting on the bipartite system
I + Z, where Z denotes an arbitrarily large ancillary system. The output of such a protocol is
a quantum state ρTN , recursively defined via ρT0 := Λ0(s0); ρ

T
n := Λn((T ⊗ idZ)(ρ

T
n−1)), which

depends on the unknown channel T . Hence, for a fixed strategy D, the channel discrimination
problem reduces to the state discrimination problem. This allows us to define our first quantity of
merit, the error probability Pe(D,Π) :=

1
2

(
tr
[
πBρ

TA
N

]
+ tr

[
πAρ

TB
N

])
, which is defined relative

to the two-valued POVM Π := {πA, πB}.

Figure 4.1: Sequential scheme for quantum channel discrimination, with unknown channel T .

Let us now get to defining the term “interaction-free" for a given discrimination strategy D and
a channel T . In order to make an “interaction-free" discrimination not trivially impossible, we
need to assume that there is a way to use the channel such that no “interaction" occurs. To
this end, we assume that there exists a distinguished unit vector v ∈ HI , the vacuum vector,
such that no interaction occurs if the channel is applied to the vacuum state |v⟩⟨v|. We will also
assume that T (|v⟩⟨v|) is a pure state, because if T (|v⟩⟨v|) were mixed then this would mean that
the testing system I became entangled with the tested object, and hence an interaction must
have occurred. If T satisfies the latter condition, we will call T a channel with vacuum v. To
finally define the term “interaction-free", we imagine a Demon who has (for each of the individual
channel uses) access to the output of the conjugate channel [49] of T and to an arbitrarily large
quantum memory (see Figure 4.2). The Deamon’s goal is to determine, by a final measurement
on his quantum memory, if during the execution of the protocol, T was ever applied2 to any state
different from |v⟩⟨v|. If the Demon concludes that T was applied to a state different from |v⟩⟨v|,

2The states to which T is applied to are given by trZ
[
ρT0

]
, trZ

[
ρT1

]
, . . . , trZ

[
ρTN−1

]
.
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then we say that an “interaction" occurred. The probability that the Demon concludes that an
“interaction" occurred depends on the Demon’s strategy to store and processes the information
he gets and on his final measurement. We define our second quantity of merit, the “interaction"
probability P TI (D), by maximizing this probability over all possible strategies, with the constraint
that the Demon must not conclude that an “interaction" occurred, if the channel really was only
applied to |v⟩⟨v|. We can now properly define “interaction-free" channel discrimination: We say
that two channels with vacuum TA and TB can be discriminated in an “interaction-free" manner,
if for every ϵ, δ > 0, there exists a discrimination strategy D and a two-valued POVM Π such
that max(P TAI (D), P TBI (D)) < ϵ and Pe(D,Π) < δ.
It might be that you found the description above a little dense. Let us thus remark that the
model we have just described can be justified axiomatically by using, among other things, the
equivalence between semicausal and semilocalizable channels. The details of this derivation are
layed out in Section 3 of Article [1].

Figure 4.2: Model to define P TI (D), where V̂ is any isometric channel such that T (·) = trE

[
V̂ (·)

]
.

Getting back to the model: Note that a vanishing “interaction" probability does not necessarily
mean that T was only applied to |v⟩⟨v|. For example, if T is a unitary channel, then the output of
the conjugate channel (what the Demon sees) is independent of the state to which T is applied
to. Hence, if T is unitary, then no “interaction" occurs, independently of the discrimination
strategy. Mathematically, this insight can be expressed by a slight variation of the concept of a
decoherence-free subspace. Let V be a subspace of the Hilbert space H. We say that a channel
T is isometric on V if there exists an isometry V : V → H, such that T |B(V)(·) = V · V †.3 These
are the concepts needed to understand our results.

4.2 Results

Our main result is a characterization for when it is possible to discriminate two channels in a
totally “interaction-free" manner. The details are as follows:

Theorem 4.2.1. Two channels TA, TB : B(H) → B(H) with vacuum v ∈ H can be discriminated
in an “interaction-free" manner, if and only if there exists a subspace V ⊆ H such that v ∈ V, at
least one of the two channels is isometric on V and TA|B(V) ̸= TB|B(V).

3In a slight abuse of notation, B(V) denotes the operators in B(H) with range and support in V.
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It turns out that for a channel T with vacuum v ∈ H, the union VT of all subspaces V ⊆ H such
that v ∈ V and T is isometric on V, is again a subspace with these two properties. Furthermore,
VT can be determined efficiently by linear algebraic methods. Since it is clearly enough to
check the conditions of Theorem 4.2.1 on VTA and on VTB , Theorem 4.2.1 provides an efficiently
verifiable criterion for the possibility of an “interaction-free" channel discrimination. For later
reference, we call VT the maximal vacuum subspace.

Theorem 4.2.1 is the qualitative combination of two quantitative results. For the case where
“interaction-free" channel discrimination is possible, it turns out that one does not need complete
information about the two channels to perform the discrimination task. To account for this, we
consider the more general task, where we want to know to which one of two known, disjoint
sets of channels the unknown channel belongs. Specifically we consider the following: Given a
channel T with vacuum v ∈ V that is isometric on V, we take as our first set (a subset of) the set
of channels that equal T , if we restrict their domains to B(V). The second set is less restricted
in that we only assume that all channels must be channels with (the same) vacuum vector v and
that the restrictions to B(V) must not equal T |B(V). We obtain the following result:

Theorem 4.2.2 (Discrimination strategy). Let CA, CB ⊆ B(S1(H)) be two closed sets of channels
and V be a subspace of H such that: for all T ∈ CA ∪ CB, T is a channel with vacuum v ∈ V;
for all T ∈ CA, T is isometric on V; the set CA|S1(V) :=

{
T |S1(V)

∣∣T ∈ CA
}

contains exactly
one element; and CA|S1(V) and CB|S1(V) :=

{
T |S1(V)

∣∣T ∈ CB
}

are disjoint. Then there exist a
constant C > 0, and for every N ∈ N, an N -step discrimination strategy D and a two-valued
POVM Π, such that

P TAI (D) = 0, P TBI (D) ≤ C

N
and Pe(D,Π) ≤

C

N2
,

for all TA ∈ CA and all TB ∈ CB. The error probability Pe(D,Π) is taken to be the maximum
over all choices of channels from CA and CB.

There are two major steps in proving Theorem 4.2.2: Firstly, one establishes, using techniques
from perturbation theory, that a strategy similar to the one used in the original paper by Kwiat
et al. works if CA = {id} and if the channels in CB jointly satisfy a certain spectral gap condition.
We establish this even for infinite-dimensional systems. Secondly, one reduces the general case
to the restricted case above by showing that there is a superchannel R [14] such that R(CA) =
{id} and such that the channels in R(CB) satisfy the spectral gap condition. We propose an
implementation for the superchannel R that requires only one ancillary qubit and might thus be
implementable in near-term experiments. Furthermore, we show that a superchannel with the
required properties cannot be implemented without an ancillary system.

The performance of the protocol underlying Theorem 4.2.2 is limited by the 1
N decay of the

“interaction" probability. A natural question is, if there are better protocols. That this is not
the case, except in very special circumstances, is shown by our next result:

Theorem 4.2.3 (Rate limit theorem). Let TA, TB : S1(H) → S1(H) be two channels with vacuum
v ∈ H and VTA and VTB be their maximal vacuum subspaces. Suppose that TA|S1(V) = TB|S1(V)
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and that V⊥ ∩ VTA and V⊥ ∩ VTB are orthogonal, where V := VTA ∩ VTB . Then there exists a
constant C > 0 such that

max(P TAI (D), P TBI (D)) ≥ C
(1− 2Pe(D,Π))

4

N
,

for all N -step discrimination strategies D, and any two-valued POVM, Π.

If one could remove the condition that V⊥∩VA and V⊥∩VB must be orthogonal, then Theorem
4.2.3 would tell us that the best achievable decay rate of the “interaction-probability" is 1

N ,
except in the trivial case, where the problem reduces to a discrimination between two isometries,
in which case a finite number of channel uses suffices [50]. If it is possible to remove this condition,
however, is an open problem.
Theorem 4.2.3 can be proven by an iterative application of a new kind of data processing in-
equality for the fidelity. A similar technique yields the converse for Theorem 4.2.1:

Theorem 4.2.4 (No-go). Let TA, TB : S1(H) → S1(H) be two channels with vacuum v ∈ H such
that no subspace satisfies the conditions in Theorem 4.2.1. Then there exists a constant C > 0,
such that

(1− 2Pe(D,Π))
2 ≤ Cmax(P TAI (D), P TBI (D)),

for all discrimination strategies D and all two-valued POVMs, Π.

To summarize, our work generalizes the notion of “interaction-free" measurements and we found
the exact conditions for when totally “interaction-free" discrimination is possible.
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Chapter 5

Dynamical Semigroups

5.1 Motivation

If we approach quantum theory through the operational path that we described in Chapter 2,
then there is no explicit reference to time. We have seen before that a transformation on density
matrices that respects the probabilistic structure of quantum theory and that is compatible with
tensor products must necessarily be a CPTP-map. Thus we should be able to describe the
time-evolution by a family of CPTP-maps {Tt}t≥0 ⊂ CP(H) (one for each point in time). If a
family of CPTP-maps describes an uninterrupted physical evolution, then the evolution should
be continuous in time (in some sense). It would be very nice to specify the type of continuity
that needs to be imposed such that the resulting evolution is physical. This, however, appears
to be an open problem. We might remark at this point that an old result by Davies [51] tells
us that if the map t 7→ Tt is strongly continuous, then Tt emerges out of a limiting process of
strongly continuous unitary evolutions on a larger system (by tracing out the environment). It
is unclear if one can get rid of the limiting process: see also [52] for a nice overview of related
results.
In the general setting we have just discussed, the channel Tt1 describes the evolution from time
t = 0 to time t = t1. However, for times t2 > t1 there is generally no CPTP-map, Qt2,t1 , such
that

Tt2 = Qt2,t1 ◦ Tt1 (5.1.1)

Thus, the system at time t is not solely described by its state ρt = Tt(ρ0), where ρ0 ∈ S1(H) is
the initial state, but the history of the evolution also needs to be taken into account. Physically,
this is due to “memory-effects". The general setting is therefore very challenging to analyze.
Luckily there are many physical systems (for example an atom in an excited state or any closed
system), whose time-evolution is described to a good approximation (see [53, Section 3.3] for
when) by a family of CPTP-maps such that for all t2 > t1 ≥ 0, Eq. (5.1.1) holds. Moreover,
more often than not, Qt2,t1 only depends on the difference ∆t = t2− t1: That is, the evolution is
time-homogenous and Qt2,t1 = Q̂t2−t1 . In that case, if we assume that T0 = id, we can conclude
that Tt+s = Q̂(t+s)−s ◦ Ts = Tt ◦ Ts (set t2 = t + s and t1 = s) for all s, t ≥ 0. This is what
is called the semigroup property. The study of families of maps with the semigroup property
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yields a very fruitful theory. The following section is devoted to the general theory of dynamical
semigroups.

5.2 General Theory

In this section we summarize the most important definitions and results in the theory of dynam-
ical semigroups, a.k.a. one-parameter semigroups. This section follows [54] and we start with
the definition of a dynamical semigroup.

Definition 5.2.1. (One-parameter semigroup) Let X be a Banach space. A family {Tt}t≥0 ⊆
B(X ) is called dynamical semigroup, or more precisely, one-parameter semigroup if

T0 = id

Tt+s = Tt ◦ Ts for all s, t ≥ 0.

A one-parameter semigroup is called strongly continuous if for every x ∈ X , the map

R≥0 ∋ t 7→ Ttx ∈ X

is continuous w.r.t. the norm topology on X .
A one-parameter semigroup is called uniformly-continuous or norm-continuous, if the map

R≥0 ∋ t 7→ Tt ∈ B(X )

is continuous w.r.t. the norm-topology on B(X ).

Dynamical semigroups appear in variety of contexts (see [54, Chapter 6]) due to their intimate
relation to first order linear differential equations – and those appear naturally. This relation
appears morally (but not technically), because every strongly continuous semigroup is if the form
Tt = etL for some operator L, called generator. We now go into the details of how a technically
correct version of this meta-theorem looks like. The main issue is that L is generally unbounded.
We define the generator of a strongly continuous one-parameter semigroup as follows:

Definition 5.2.2. (Generator of a strongly continuous one-parameter semigroup)
For a strongly continuous one-parameter semigroup {Tt}t≥0 ⊆ B(X ), define the “domain-set"
D(L) as

D(L) := {x ∈ X | lim
h↓0

1

h
(Th(x)− x) exists in X}.

The operator L : D(L) → X , defined by

Lx = lim
h↓0

1

h
(Th(x)− x)

for all x ∈ D(L) is called the generator of {Tt}t≥0.
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The following central theorem, whose ideas go back to Hille and Yoshida [55,56], gives a precise
relation between strongly continuous one-parameter semigroups and their generators (for a proof
see e.g. [54, Theorem II.3.8, Corollary III.5.5])

Theorem 5.2.3. (Hille-Yosida) For a Banach space X and a linear subspace D(L) ⊆ X , let
L : D(L) ⊆ X be a linear operator and let ω ∈ R, M ≥ 1 be constants. The following are
equivalent.

1. L is the generator of a strongly continuous one-parameter semigroup {Tt}t≥0 satisfying
∥Tt∥ ≤Meωt for all t ≥ 0.

2. L is closed, densely defined, and every λ > ω belongs to the resolvent set1 of L and for all
n ∈ N, we have

∥∥(λ1− L)−n
∥∥ ≤ M

(λ− ω)n
.

In that case, the semigroup can be recovered uniquely from the generator by the exponential
formula

Tt(x) = lim
n→∞

(
1− tA

n

)−n
x,

which converges for all x ∈ X and even uniformly for t in compact intervals.

Remark 5.2.4. To understand the meaning of the previous theorem, it should be noted that for
every strongly continuous one-parameter, there are ω ∈ R and M ≥ 1 such that ∥Tt∥ ≤Meωt for
all t ≥ 0 (see e.g. [54, Proposition 1.5.5]). So every strongly continuous one-parameter semigroup
satisfied the hypothesis of the Hille-Yosida theorem. However, not every closed, densely defined
operator is necessarily a generator of some semigroup.

Unbounded generators, as in Part 2 of Theorem 5.2.3 appear frequently in applications, e.g. in
the form of partial differential operators. However, the unboundedness is a technical obstacle
that is very hard to deal with. It should therefore not come as a surprise that only for very
special cases (such as for strongly continuous one-parameter unitary groups), a constructive
characterization of the generators is known. These cases, unfortunately, do not include the case
that is most interesting to us – the case of quantum dynamical semigroups.
The situation is much better, from an analytical point of view, if one restricts the attention
to norm-continuous one-parameter semigroups. As it turns out, those are exactly those one-
parameter semigroups for which the generator is bounded.

Lemma 5.2.5. [54, Corollary II.1.5] The generator of a strongly continuous one-parameter
semigroup {Tt}t≥0 is a bounded linear operator if and only if {Tt}t≥0 is norm-continuous.

As mentioned before, for norm-continuous dynamical semigroups, full characterizations for sev-
eral important cases are known. This will be the content of the next section.

1The resolvent set of L consists of those λ ∈ C for which (λ1−L) is invertible (with bounded inverse, but this
is already implied if L is closed.
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5.3 Special Cases

In the previous section, we have seen that there is a one-to-one correspondence between dynamical
semigroups and their generators. It is often the case that certain properties of the operators
comprising a dynamical semigroup are known. For example, the dynamical semigroup might
consist of stochastic matrices or completely positive maps. In that case it is a central task to
figure out how a certain property of the semigroup translates to a corresponding property of its
generator. That this is a non-trivial endeavor is hinted by the names attached to the respective
equations: “Lindblad equation", “Schrödinger equation", “Fokker-Plank equation".

5.3.1 Quantum Dynamical Semigroups

We have already motivated the use of quantum dynamical semigroups at the beginning of this
chapter. So, let us proceed here with a formal definition

Definition 5.3.1. A strongly/uniformly continuous one parameter semigroup {Tt}t≥0 ⊆ B(S1(H))

is called strongly/uniformly continuous Schrödinger quantum dynamical semigroup if Tt is a CP-
map for all t ≥ 0.
A strongly/uniformly continuous one parameter semigroup {Tt}t≥0 ⊆ B(B(H)) is called strongly/uniformly
continuous Heisenberg quantum dynamical semigroup if Tt is a normal CP-map for all t ≥ 0.

Remark 5.3.2. Clearly, Heisenberg and Schrödinger quantum dynamical semigroups are their
respective duals and preduals.

The central theorem in study of quantum dynamical semigroups is a characterization of the
generators of uniformly continuous quantum dynamical semigroups. The result was found inde-
pendently by Gorini, Kossakowski, Sudarshan [57] and Linbdlad [58] in 1976. The corresponding
normal form bears their name: the Gorini-Kossakowski-Sudarshan-Linbdlad-form or GKSL-form.

Theorem 5.3.3. (GLSK-form) A linear map L : B(H) → B(H) generates a uniformly con-
tinuous Heisenberg quantum dynamical semigroup if and only if there is a normal CP-map
Φ : B(H) → B(H) and an operator K ∈ B(H) such that

L(X) = Φ(X)−K†X −XK,

for all X ∈ B(H).

Remark 5.3.4. The GKSL-form can be written in several different (and more common) equivalent
ways: First, by Stinespring’s dilation theorem (Theorem 2.2.3), we have

L(X) = V †(X ⊗ 1E)V −K†X −XK

for all X ∈ B(X ), where V ∈ B(H;H⊗HE).
Second, if we write Φ in Kraus-form, then

L(X) =
∑

n

L†
nXLn −K†X −XK
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for all X ∈ B(X ) and some collection of operators {Ln}n ⊆ B(H) such that the series SOT-
converges. Moreover, by differentiation, we can see that Tt is a quantum channel (i.e., T (1) = 1)
for all t ≥ 0 if and only if L(1) = 0. This implies

Φ(1) = V †V =
∑

n

L†
nLn = K† +K.

So, we have a restriction for the real part of K. Let us thus define the self-adjoint operator
H ∈ B(H) as H = 1

2i

(
K −K†). After writing K = 1

2

(
K +K†)+ iH, we obtain

L(X) = i[H,X] + Φ(X)− 1

2
{Φ(1), X}

= i[H,X] + V †(X ⊗ 1E)V − 1

2

{
V †V,X

}

= i[H,X] +
∑

n

L†
nXLn −

1

2

{
L†
nLn, X

}
,

where the last form is the most widely used one.
All these results can easily be translated to the Schrödinger picture, because if {Tt}t≥0 is a uni-
formly continuous Heisenberg quantum dynamical semigroup with generator L (which is a normal
map), then {(Tt)∗}t≥0 is a uniformly continuous Schrödinger quantum dynamical semigroup with
generator L∗ : S1(H) → S1(H). For example, for Schrödinger channels, the GKLS-form reads

L∗(ρ) = −i[H, ρ] +
∑

n

LnρL
†
n −

1

2

{
L†
nLn, ρ

}
.

5.3.2 Quantum Dynamical Semigroups of Semicausal Maps

Suppose we have a uniformly continuous quantum dynamical semigroup {Tt}t≥0. Further, sup-
pose that for all t ≥ 0 the map Tt is semicausal. Thus, for every t ≥ 0 we can understand Tt in
terms of semilocalizability. Can we understand the generators of these semigroups in a similarly
explicit way? Is there a normal form for generators of uniformly continuous quantum dynamical
semigroups of semicausal maps? The answer to this question was the main technical contribution
in Article [2]. The answer reads as follows:

Theorem 5.3.5. (Normal form generators of semicausal CP-maps, [2, Theorem V.6])
Let L : B(HA ⊗ HB) → B(HA ⊗ HB) be defined by L(X) = Φ(X) −K†X −XK, with a normal
CP-map Φ ∈ B(HA ⊗ HB) → B(HA ⊗ HB) and K ∈ B(HA ⊗ HB). Then L is Heisenberg B ̸→ A

semicausal if and only if there exists a (separable) Hilbert space HE, a unitary U ∈ B(HE ⊗
HB;HB⊗HE), a self-adjoint operator HB ∈ B(HB), and arbitrary operators A ∈ B(HA;HA⊗HE),
B ∈ B(HB;HB ⊗HE) and KA ∈ B(HA), such that

Φ(X) = V † (X ⊗ 1E)V, with V = (1A ⊗ U)(A⊗ 1B) + (1A ⊗B),

K = (1A ⊗B†U)(A⊗ 1B) +
1

2
1A ⊗B†B +KA ⊗ 1B + 1A ⊗ iHB.

If HA and HB are finite-dimensional, with dimensions dA and dB, then HE can be chosen such
that dim(HE) ≤ (dAdB)

2.
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A very interesting property of the normal form in Theorem 5.3.5 is that the CP-part Φ does not
need to be semicausal. One way to think about the result is in terms of building blocks: It is
immediate that if the CP-part and the K-part of the GKSL-form are both semicausal, then the
generator will be semicausal. Since semicausal CP-maps are semilocalizable (Theorem 3.1.5),
for this building block the operator Vsc has the form (1A ⊗ U)(A ⊗ 1B). Moreover, it turns out
that K is then necessalily of the form K = KA ⊗ 1B + 1A ⊗ iHB. So, maps of that form are valid
semicausal GKSL-generators and are our first building block.
For our second building block, notice that if Φ is of the form idA ⊗ΦB so that (idA ⊗ΦB)(XAB) =

(1A ⊗ B)†(XAB ⊗ 1E)(1A ⊗ B), then the non-semicausality of the CP-part can be compensated
by choosing K = 1A ⊗B†B. Thus a GKSL-generator of this form is another building block. Of
course, a (convex) combination of these two building blocks yields also a GKSL-generator. The
crucial insight that lead to Theorem 5.3.5 is that convex combinations is not all there is, namely,
we can also let the Stinespring operator V be a linear combination of the Stinespring operators
of the building blocks. One might say that we put them into superposition. It is very interesting
to note that if one studies dynamical semigroups of semicausal stochastic maps (i.e. the classical
setting - see section IV in [2]) then all there is is the ‘obvious’ convex combination. This renders
this ‘superposition’ a purely quantum feature.
It is straight-forward to check that the normal form in Theorem 5.3.5 yields a semicausal gen-
erator. That the proposed way of construction generators from the two building blocks is the
only way one can construct semicausal generators is the main insight of Theorem 5.3.5. We have
already seen that a mathematical generalization of semicausal maps are maps that leave a weakly
closed *-algebra invariant. The next section deals with GKSL-generators with that property.

5.3.3 Quantum Dynamical Semigroups with Invariant Algebra

We have already seen in Section 3.2 that Heisenberg B ̸→ A semicausality is equivalent to the
invariance of the type-I factor von Neumann algebra B(HA) ⊗ 1B. Moreover, in Section 3.2.2
we provided a normal form for CP-maps with an invariant atomic weakly closed *-algebra. In
this section, we treat the following problem: given a uniformly continuous quantum dynamical
semigroup {Tt}t≥0 ⊆ B(B(H) such that for all t ≥ 0, Tt(A) ⊆ A for a given weakly closed
*-algebra, how do the corresponding generators look like?. The answer to this question is the
main result of Article [3]. By differentiation, we obtain that Tt(A) ⊆ A holds for all t ≥ 0 if and
only if the corresponding GKSL-generator L : B(H) → B(H) satisfies L(A) ⊆ A.
In Article [3], the main result is approached in two steps: first one shows that the problem of
finding a normal forms for invariant GKSL-generators is equivalent to finding normal forms for
invariant CP-maps. Then, as a second step, the result of Section 3.2.2 is readily applied. The
first result reads:

Theorem 5.3.6. (Reduction Theorem, [3, Theorem 4])
Let L : B(H) → B(H) be defined by L(X) = V †(X ⊗ 1E)V − K†X − XK, for some V ∈
B(H;H⊗HE) and K ∈ B(H), and let A ⊆ B(H) be an approximately finite-dimensional2 weakly
closed *-algebra. The following are equivalent

2A weakly closed *-algebra A is approximately finite-dimensional, if there exist an increasing sequence A1 ⊆
A2 ⊆ · · · ⊆ A of finite-dimensional *-subalgebras such that ∪n∈NAn is WOT-dense in A.
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1. L(A) ⊆ A.

2. There exist operators V0 ∈ B(H;H0 ⊗HE), A,B ∈ B(H;H⊗HE) and K0 ∈ B(H;H0); an
operator KA ∈ A; and a self-adjoint operator HA′ ∈ A′ such that

(a) A†(XA ⊗ 1E)A ∈ A and (XA ⊗ 1E)B = BXA, for all XA ∈ A.

(b) V and K have the following form:

V = (P †
0 ⊗ 1E)V0 +A+B,

K = B†A+
1

2
B†B +KA + iHA′ + P †

0K0.

Since for any vector |e⟩ ∈ HE, Part 2a implies (1⊗ ⟨e|)B ∈ A′, it is easy to decompose B w.r.t.
a direct integral decomposition of A. Thus the only thing that remains is to characterize the
normal CP-map ΦA : B(H) → B(H) defined by ΦA(X) = A†(X ⊗ 1E)A. If A is atomic, such a
characterization is given in Section 3.2.2. The final result is:

Theorem 5.3.7. (GKSL-generator with invariant algebra, [3, Theorem 6])
Let L : B(H) → B(H) be given by L(X) = V †(X⊗1E)V −K†X−XK with V ∈ B(H;H⊗HE) and
K ∈ B(H) and let A be an atomic *-subalgebra of B(H), with decomposition given by Definition
3.2.9. Then the following are equivalent

1. L(A) ⊆ A.

2. There exist operators V0 ∈ B(H;H0⊗HE) and K0 ∈ B(H;H0); for all i, j ∈ I a Hilbert space
HFij , operators Aij ∈ B(HAj ;HAi ⊗HFij ), and isometries Uij ∈ B(HFij ⊗HBj ;HBi ⊗HE);
and for every i ∈ I operators Bi ∈ B(HBi ;HBi ⊗ HE), KAi ∈ B(HAi), and self-adjoint
operators HBi ∈ B(HBi), such that

• V and K can be decomposed as

V = (P †
0 ⊗ 1E)V0 +

∑

i,j∈I
(P †

i ⊗ 1E)V
sc
ij Pj +

∑

i∈I
(P †

i ⊗ 1E)(1Ai ⊗Bi)Pi,

K =
∑

i∈I
P †
i (1Ai ⊗B†

i )V
sc
ii Pi +

1

2

∑

i∈I
P †
i (1Ai ⊗B†

iBi)Pi

+KA + iHA′ + P †
0K0,

with V sc
ij = (1Ai⊗Uij)(Aij⊗1Bj ), KA =

∑
i∈I P

†
i (KAi⊗1Bi)Pi, and HA′ =

∑
i∈I P

†
i (1Ai⊗

HBi)Pi, s.t. all series SOT-converge.

• The relation U †
ikUil = δkl1 holds for all i, k, l ∈ I.

This theorem proves useful in deriving and unifying several results in the literature. Among them
are the Koashi-Imoto theorem [59]; the refined form of the GKSL-generator due to the invariance
of the decoherence-free subalgebra [60–63] and the maximally abelian subalgebra [64–67]; as well
as the study of Markovian subsystems [68].
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5.3.4 Semigroups of Superchannels

In Section 3.3 we introduced superchannels as the description for “do something" to a channel.
Clearly, doing something to a channel and then doing something to the resulting channel also
does something to a channel. Thus, superchannels form a semigroup and hence we can study
continuous one-parameter semigroups of superchannels and their generators. Besides this being
an interesting mathematical endeavor, we propose to use dynamical semigroups of superchannels
as a description of quantum devices that are subject to due natural-decay due to “ageing".
Let us begin with the formal mathematical result. By Theorem 3.3.4, superchannels are related
to semicausal CP-maps via a simmilarity transformation with transformation matrix given by
the Choi–Jamiołkowski isomorphism. Moreover we have already characterized the generators of
semigroups of semicausal CP-maps in Theorem 5.3.5. Thus what remains to do is to explicitly
calculate the simmilarity transformation. Here, Lemma 2.2.9 comes in handy. The details of
the calculations involved can be found in [2]. The (slightly simplified) result reads [2, Theorem
V.18]:

Theorem 5.3.8. A linear map L̂ : B(B(HA);B(HB)) → B(B(HA);B(HB)) generates a semigroup
of superchannels if and only if it admits a decomposition L̂(T ) = D̂(T ) + Ĥ(T ) as follows: The
“Hamiltonian part” is of the form

Ĥ(T )(ρ) = −i[HB, T (ρ)]− iT ([HA, ρ]),

with local Hamiltonians HB ∈ B(HB) and HA ∈ B(HA).
The “dissipative part” is of the form D̂(T )(ρ) = trE

[
D̂′(T )(ρ)

]
, where

D̂′(T )(ρ) = U(T ⊗ idE)(A(ρ⊗ σ)A†)U † − 1

2
(T ⊗ idE)(

{
A†A , ρ⊗ σ

}
) (5.3.3a)

+B(T ⊗ idE)(ρ⊗ σ)B† − 1

2

{
B†B , (T ⊗ idE)(ρ⊗ σ)

}
(5.3.3b)

+
[
U(T ⊗ idE)(A(ρ⊗ σ)) , B†

]
+
[
B , (T ⊗ idE)((ρ⊗ σ)A†)U †

]
, (5.3.3c)

with unitary U ∈ B(HB ⊗ HE), density matrix σ ∈ B(HE) and arbitrary A ∈ B(HA ⊗ HE) and
B ∈ B(HB ⊗HE).

The “Hamiltonian part” generates a semigroup of invertible superchannels with the property
that the inverse is a superchannel as well. We discuss the three terms of the “dissipative part”:
Term (5.3.3a) generates a semigroup of superchannels such that the transformed channel, Ŝt(T ),
arises from a stochastic application of T 7→ trE

[
U(T ⊗ idE)(A(ρ⊗ σ)A†)U †] at different points

in time (Dyson series expansion). Term (5.3.3b) generates a semigroup of “post-processing” su-
perchannels of the form Ŝt(T ) = eLBt ◦ T , where LB generates a (trace-preserving) quantum
dynamical semigroup. Term (5.3.3c) stems from the fact that we superpose the building blocks
for the decomposition of the generators of semigroups of semicausal CP-maps, rather than simply
taking a convex combination. Although this term is hard to interpret directly, the interseting
point here is that such a term does not appear if one looks at semigroups of classical superchan-
nels (see [2, Section IV]). Its presence is thus a pure quantum feature and an important part of
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our findings.
Now back to the physical significance of this result: The main hypothesis here is that dynam-
ical semigroups of superchannels are a reasonable (first step) towards characterizing the decay-
processes that quantum devices are subject to due to “ageing".
Quantum channels have quantum states as inputs and outputs. They can thus be seen as the
mathematical description of a quantum device with a single input and a single output. Our
interpretation of superchannels was that they are the most general mathematical description of
a “do something" to a quantum channel action. Since decay processes certainly “do something"
to a quantum channel, there must be a superchannel Ŝt for each t ≥ 0 such that if the initial
device was described by a channel T , then the device will be described by Ŝt(T ) at time t. It is of
course not necessary that the set {Ŝt}t≥0 forms a semigroup. However, we believe that (similar
to quantum dynamical semigroups), this is a valid approximation in many cases. We refer the
reader who is interested in a concrete example to the introduction of Article [2].
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Appendix A

Core Articles

A.1 “Interaction-Free” Channel Discrimination

In this work we propose and analyze a generalized model for interaction-free measuremnets in
the spirit of the Elitzur-Vaidman bomb-tester experiment [4].
In the introduction we thoroughly review the bomb-tester experiment in its original form due to
Elitzur and Vaidman [4] and in its iterated form due to Kwiat et al. [28]. Moreover, we hint at
a possible reformulation as a quantum channel discrimination problem.
In Section 2 we outline the path to our main result: A characterization for when totally
“interaction-free" measurements are possible.
In Section 3, we axiomatically derive two models that capture what we believe that the term
“interaction-free" measurement should mean if we generalize the original bomb-tester experi-
ment as a quantum channel discrimination problem. We conclude this section by giving a formal
mathematical definition of “interaction-free" measurements in both cases and by comparing the
two models.
Our characterization of when totally “interaction-free" measurements are possible consists of two
parts: A protocol, which allows us (under the hypothesis of the main theorem) to discriminate
quantum channels in an “interaction-free" manner. And a converse which tells us that totally
“interaction-free" measurements are impossible in the remaining cases. The protocol and its
analysis is the main content of Section 4, while the no-go theorem is proven in Section 5.
Throughout, we aim to make our protocol as resource-efficient as possible. Our protocol uses
(in the worst case) one ancillary qubit (as does the original bomb-tester experiment) and we
show that one cannot get rid of such an ancillary qubit for a large class of protocols. Moreover,
the “interaction" probability of our protocol decays as 1

N where N is the number of channel
invocations, and we show that this asymptotic behavior is the best achievable one.
In Section 6, we conduct a thorough analysis of how our model and results relate to other mod-
els and results in the literature, with a particular emphasis on the Conterfactual Computation
scheme by Mitchison and Josza [69].

This article is a continuation and thorough extension of the authors master thesis [70]. Although
the objective to generalize “interaction-free" measurements is the same for the present article
and the author’s Master-thesis, most ideas and methods involved are different. In particular,
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this article axiomatically derives and uses the “interaction" model instead of the more ad-hoc
model used in [70]. This allowed us to fully characterize totally ‘interaction-free’ measurements
as opposed to some results for several special cases, as in [70].
The characteristics of the protocol we propose in Section 4 are vastly better then the one in
[70]. In particular, our new protocol a) has a wider scope - enabling a full characterization
b) uses at most a single ancillary qubit system - making it potentially feasible for experimental
implementation (this is achieved through a symmetrization step). c) has provably optimal decay-
rate for the ‘interaction’ probability d) can be implemented with almost every Hamiltonian
- not just a precisely tuned one e) works for infinite-dimensional systems (which requires a
much more sophisticated analysis) Moreover, we also improved the no-go results in order to
match the constructive case and proved that the 1

N decay-rate of the ‘interaction’ probability is
asymptotically optimal.
I was involved in all parts of the paper and wrote the entire manuscript.
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Abstract. In this work, we investigate the question of which objects can
be discriminated by totally “interaction-free” measurements. To this end,
we interpret the Elitzur–Vaidman bomb-tester experiment as a quantum
channel discrimination problem and generalize the notion of “interaction-
free” measurement to arbitrary quantum channels. Our main result is a
necessary and sufficient criterion for when it is possible or impossible
to discriminate quantum channels in an “interaction-free” manner (i.e.,
such that the discrimination error probability and the “interaction” prob-
ability can be made arbitrarily small). For the case where our condition
holds, we devise an explicit protocol with the property that both prob-
abilities approach zero with an increasing number of channel uses, N .
More specifically, the “interaction” probability in our protocol decays as
1
N

and we show that this rate is the optimal achievable one. Furthermore,
our protocol only needs at most one ancillary qubit and might thus be
implementable in near-term experiments. For the case where our condi-
tion does not hold, we prove an inequality that quantifies the trade-off
between the error probability and the “interaction” probability.
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1. Introduction

In 1993, Elitzur and Vaidman proposed their famous bomb-tester experiment
[1] to demonstrate that the arguably most intriguing property of quantum
theory—superposition—can be exploited to detect an ultra-sensitive bomb in
a black-box, in such a way that there is a non-vanishing probability that the
bomb will not explode. Only two years later, Kwiat et al. [2] showed how to
employ another fundamental phenomenon—the quantum Zeno effect [3]—to
boost the probability that the bomb will not explode as close to 1 as one
pleases. These powerful ideas found applications in “interaction-free” imaging
[4,5], counterfactual quantum computation [6,7], counterfactual communica-
tion [8] and cryptography [9], and even complexity theory [10]. Despite the
great success, it became apparent that the aforementioned techniques, which
we will generically call “interaction-free” measurements, are subject to some
fundamental limitations. Notably, it is impossible to learn the outcome of a
decision problem solved by a quantum computer [7] without “running” the
computer in at least one of the two cases, and two optically semi-transparent
objects cannot be discriminated in such a way that no photon gets absorbed
[11,12].

Despite the results mentioned above, there seems to be no framework
and analysis sufficiently general to pinpoint which objects can or cannot be
discriminated perfectly by “interaction-free” measurements. Encouraged by
recent results that generalize the quantum Zeno effect [13–16], we aim to rem-
edy these shortcomings. To this end, we interpret the Elitzur–Vaidman bomb-
tester experiment as a quantum channel discrimination problem and general-
ize the notion of “interaction-free” measurement to quantum channels via two
slightly different, but in the end largely equivalent models. The theory of quan-
tum supermaps [17] then provides the right framework to consider all possible
(causally ordered) discrimination strategies, allowing us to decide when it is
possible or impossible to discriminate two channels in an “interaction-free”
manner.

Organization of the Paper This article is structured as follows: In the remain-
der of this section, we review the bomb-tester experiment in its versions by
Elitzur and Vaidman and by Kwait et al. We also try to convey the idea of
how the general model should look. Armed with this rough understanding, we
will be able to state and discuss the major results of this work in Sect. 2. In
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Figure 1. Elitzur–Vaidman bomb-tester experiment

Sect. 3, we give a detailed derivation of our model. Our main result, a char-
acterization of what is possible and impossible to do with “interaction-free”
measurements, is the combination of two pillars: a no-go theorem, in the form
of an inequality, that tells us when it is impossible to discriminate two chan-
nels in an “interaction-free” manner; and a protocol that discriminates two
channels in those cases that are not touched by the no-go theorem. A quanti-
tative treatment of this protocol is given in Sect. 4, while the main content of
Sect. 5 is the no-go theorem. Also in Sect. 5, we prove fundamental limits for
the achievable decay rate of the “interaction” probability.

The Bomb-Tester Experiment In the following, we briefly review the bomb-
tester experiment in its original version by Elitzur and Vaidman and its it-
erative version by Kwiat et al. Suppose you have a box and you have been
told that inside of this box there is an ultra-sensitive bomb. By ultra-sensitive,
we mean that the bomb will explode even if only one photon hits it. As you
do not trust the deliverer, you want to check if there is a bomb inside the
box. For some reason, the only way to obtain information about the content
of the box is by shining light through it. Doing so, however, might trigger
the bomb, which is what we want to avoid. If photons were classical particles
our task seems to be an impossible one.1 To circumvent this problem, Elizur
and Vaidman proposed to put the box into the upper arm of a Mach–Zehnder
interferometer, as depicted in Fig. 1. If we work only with a single photon,
then this proposal can be stated abstractly as follows: The Hilbert space of
the problem is H = HU ⊗ HL, where HU = HL = span{v, p} are the Hilbert
spaces associated with the upper and lower arm, and the orthogonal unit vec-
tors v and p denote the vacuum and one-photon states, respectively. The 50/50
beamsplitter (BS) can be modeled as a unitary transformation U , defined by

Uv ⊗ v = v ⊗ v,

Up ⊗ v = cos(θ) v ⊗ p + sin(θ) p ⊗ v,

Uv ⊗ p = − sin(θ) v ⊗ p + cos(θ) p ⊗ v,

(1.1)

1Note that one needs to be careful about the notion of classicality, since the bomb-tester

experiment allows for a formulation in terms of Spekkens toy models [18,19].
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where θ = 45◦. Suppose we start with a photon in the lower input, then the
initial state is s0 := |v ⊗ p〉〈v ⊗ p|. There are two cases to analyze. On the one
hand, if there is no bomb in the box, then the two beamsplitters rotate the state
by 90◦. Hence, the photon ends up in the upper output. On the other hand,
if there is a bomb in the box, then the bomb acts as a measurement device in
the upper path. There are three possible outcomes of the experiment. The first
possibility is that the photon takes the upper path and thus causes the bomb
to explode. This happens with a probability of 50%. If the bomb does not
explode, then, by the measurement postulate, the state of the system is still
s0. Since the second beamsplitter has a 50/50 splitting ratio, the probability
that we measure the photon in the upper output equals the probability that
we measure the photon in the lower output, i.e., the probability for each of
them is 25%. The important point here is that in 25% of the cases the photon
ends up in the lower path. In that case, we can conclude that there is a bomb
in the box, but the bomb has not been triggered. However, we only get this
result in 25% of the cases.

Kwiat et al.’s Iterative Version To increase the efficiency of this protocol,
the crucial idea is to feed the output back to the input, (thus, to let the
photon go through the box many times) and to adjust the splitting ratio of
the beamsplitters sensibly (see [2] for the experimental realization). The easiest
way to analyze this proposal is to think of the feedback loop in a “rolled out”
way. That is, we look at this proposal as if we had N copies of the Mach–
Zehnder interferometer (where N is the number of times we let the photon go
through the box), in each of which the box is in the upper arm (see Fig. 2).

We further choose the angle θ := 90◦

N in (1.1), which defines the action
of the beamsplitters. Let us analyze this protocol: If there is no bomb in the
box and the photon starts in the lower path, then the photon travels through
N beamsplitters, each of which rotates the state by an angle of 90◦

N . So overall
the state is rotated by 90◦, which means that the photon will be in the upper
output. For the case where there is a bomb in the box, let us calculate the
probability that the photon always takes the lower path and therefore does not
hit the bomb. For each of the beamsplitters, if the photon is in the lower path
before the beamsplitter, then the probability that the photon will be in the
lower path after the beamsplitter is given by cos2(θ). Since the bomb can be
viewed as a measurement device, the probability that the photon always takes
the lower path is simply the product of the probabilities at each beamsplitter.
Hence, P (always lower path) = cos2N (θ). For N → ∞, we have

cos2N (θ) =

(
1 − π2

8N2
+ O(N−4)

)2N

= 1 − π2

4N
+ O(N−2)

N→∞−−−−→ 1.

This simple calculation has the remarkable consequence that (when N is large
enough) the photon will always end up in the lower path and the bomb will not
explode. Since the photon will always end up in the upper path if there is no
bomb in the box, this protocol enables us to tell (with probability approaching
1) whether there is a bomb in the box, while simultaneously ensuring that the
bomb will not be triggered.
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Figure 2. Kwiat et al.’s version of the bomb-tester experi-
ment

Figure 3. N -step discrimination strategy

Interpretation as a Channel Discrimination Problem We have seen in the pre-
vious paragraph how to discriminate between a completely transparent object
(empty box) and an opaque object (bomb) such that the probability that
a photon gets absorbed by the opaque object can be made as small as one
pleases. This problem can be reinterpreted as a channel discrimination prob-
lem as follows: The channel corresponding to the transparent object is simply
the identity channel (Tempty := id), while the action of the opaque object can
be identified with the channel2 Tbomb : B1(HU ) → B1(HU ), defined by

Tbomb(·) = tr [·] |v〉〈v|.

2B1(H) denotes the set of traceclass operators on the Hilbert space H and S(H) denotes

the set of density operators.
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According to the theory of quantum combs,3 the most general (causally
ordered) strategy to discriminate channels is given by the sequential scheme,
depicted in Fig. 3. That is, if the channels to be discriminated act on the
system I (I for interaction), then the most general discrimination strategy4

allowed by quantum theory can be described as follows: First, we choose an
ancillary system Z (which might be arbitrarily large) and an initial state s0 ∈
S(HI ⊗HZ). Then, we can apply a channel5 Λ0 : B1(HI ⊗HZ) → B1(HI ⊗HZ)
to s0. Afterwards, the unknown channel is applied to the system (i.e., if T :
B1(HI) → B1(HI) is the unknown channel, then its application transforms
the state Λ0(s0) to (T ⊗ id)(Λ0(s0))). Then, we can transform the system
by applying a channel Λ1 : B1(HI ⊗ HZ) → B1(HI ⊗ HZ). Afterwards, we
apply the unknown channel again, followed by an application of a channel
Λ2 : B1(HI ⊗ HZ) → B1(HI ⊗ HZ). We repeat this process N times overall.
In the end, our system is in a state ρT

N ∈ S(HI ⊗ HZ), which depends on T .
Hence, by measuring we can obtain information about the identity of T . Kwiat
et al.’s protocol can be integrated in this formalism as follows: We identify the
upper path with the system I and the lower path with the system Z and
choose s0 := |v ⊗ p〉〈v ⊗ p|. For 0 ≤ i ≤ N − 1, the channels Λi are defined by

Λi(·) := U · U† =: Û(·), with θ = 90◦

N and we set ΛN := id. It is then easy to
calculate that

ρ
Tempty

N = ÛN (|v ⊗ p〉〈v ⊗ p|) = |p ⊗ v〉〈p ⊗ v|,

ρTbomb

N =
(
(Tbomb ⊗ id) ◦ Û

)N

(|v ⊗ p〉〈v ⊗ p|)

= cos2N (θ)|v ⊗ p〉〈v ⊗ p| + (1 − cos2N (θ))|v ⊗ v〉〈v ⊗ v|,

(1.2)

where ρ
Tempty

N and ρTbomb

N denote the output states of the protocol when the
unknown channel is Tempty or Tbomb. An interesting aspect of the expressions
(1.2) is that one can read off the results of the last paragraph, since the states
are orthogonal and since the probability that the bomb explodes is simply
given by the coefficient of |v ⊗ v〉〈v ⊗ v|. To abstract from the bomb-tester ex-
periment, we want to allow for arbitrary quantum channels and for arbitrary
discrimination strategies (Fig. 3). In this more general setting, the concept of
the output state does not change. What is not a priori clear is what it means
that something was “interaction-free”. Since we want to allow for arbitrary
strategies (for example, involving many photons in arbitrary superpositions),
the output state does not, in general, contain the information if an interac-
tion occurred. Therefore, we need to model separately what “interaction-free”
means for general discrimination strategies. A derivation of such a model based
on some axioms takes some effort. We will, therefore, postpone this discussion
until Sect. 3. For now, let us just describe the essential constituents. First, for
the notion of “interaction-free” to have any meaning, there needs to be some

3Quantum combs: also known as quantum supermaps, quantum strategies, . . .
4This includes in particular coherent evolution, the use of entanglement, measurements,

adaptive strategies, channels used in parallel, . . .
5Of course, the application of Λ0 is redundant, since one could choose s0 differently. Allowing

to apply Λ0, however, will simplify the notation.
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way not to interact with the object in the box. We will thus assume, in analogy
to the bomb-tester experiment, the existence of a vacuum state. That is, we
assume that for the channels under consideration, there exists a pure state
|v〉〈v| ∈ S(HI) such that |v〉〈v| gets mapped to a pure state by the channel
and that if the channel is applied to |v〉〈v|, then there is no “interaction” with
the object in the box. This concept is formalized by the notion of a channel
with vacuum.

Definition 1.1 (Channel with vacuum). A channel with vacuum v ∈ H is
a channel T : B1(H) → B1(H) together with a unit vector v ∈ H such that
T (|v〉〈v|) is pure. The unit vector v is called the vacuum, and the state |v〉〈v| ∈
S(H) is called the vacuum state.

The notion of an object in the box already suggests that we should look
at the given channel in the open system picture. To this end, we imagine
a Demon sitting in the box and trying to figure out if something else than
the vacuum was sent through the box. To do so, we allow the Demon to
access the object in the box. In more mathematical terms, the Demon has
full access to the output of the conjugate channel [20]. An important implicit
assumption underlying the discussion above is that the channels we look at can
be applied several times (which means that the channel does not change)—
a Markovianity assumption. Given just this Markovianity assumption, it is
possible to determine the probability that, for a certain discrimination strategy,
the Demon will find out if at any point during the execution of the strategy,
the channel was applied to something else than the vacuum state. We will call
this probability the “interaction” probability (see Definition 3.3), denoted by
PT

I (D), where T denotes the channel and D the discrimination strategy. The
central notion of discrimination in an “interaction-free” manner, as formalized
in Definition 3.4, is then defined by demanding that the discrimination error
probability as well as the “interaction” probability can be made arbitrarily
small simultaneously. We finish this section by formalizing the notion of a
discrimination strategy6 and by fixing the notation.

Definition 1.2 (Discrimination strategy). An N -step discrimination strategy is
a tuple (H,HZ ,Hi,Ho, s0,Λ), where H, HZ , Hi, and Ho are Hilbert spaces,
s0 ∈ S(Hi) is the initial state and Λ := {Λ0,Λ1, . . . ,ΛN} is a set of channels,
with Λ0 : B1(Hi) → B1(H ⊗ HZ), Λn : B1(H ⊗ HZ) → B1(H ⊗ HZ) for
1 ≤ n ≤ N − 1, and ΛN : B1(H ⊗ HZ) → B1(Ho).
An N -step discrimination strategy induces the intermediate state map ρ :
B(B1(H)) × {0, 1, 2, . . . , N} → B1(H ⊗ HZ) ∪ B1(Ho), defined by

ρ(T, 0) = Λ0(s0),

ρ(T, n) = Λn ◦ (T ⊗ id) ◦ ρ(T, n − 1), for 1 ≤ n ≤ N.
(1.3)

We will always write7 ρT
n for ρ(T, n) and omit Hi and Ho if Hi = Ho = H⊗HZ .

6Note that in this definition, we allow the input and output spaces to be different from

H ⊗ HZ . This is solely for notational flexibility and has no physical significance.
7The superscript should not be confused with the transpose.
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Notation Throughout, H (with some subscript) denotes a separable complex
Hilbert space and in this paragraph, X and Y are Banach spaces. The range
of a map f : X → Y is denoted by ran(f) := {f(x) | x ∈ X}. The kernel of f
is ker(f) := {x ∈ X | f(x) = 0}. The dual space X ∗ of X is the set of bounded
linear functionals on X . The orthogonal complement of a linear subspace V ⊆
H is denoted by V⊥. The open ε-ball around x0 ∈ X is defined by Bε(x0) :=
{x ∈ X | ‖x − x0‖ < ε} and the closed δ-disc around z0 ∈ C is denoted by
Dδ(z0) := {z ∈ C | |z − z0| ≤ δ}.

The Banach space of bounded linear operators X → X is denoted by
B(X ). The space of trace-class operators B1(H) becomes a Banach space with
trace-norm ‖·‖1 := tr [|·|]. For A ∈ B(H), the adjoint is denoted by A† and the
support of A is defined by supp(A) := ker(A)⊥. If A† = A, then A is called
self-adjoint. A is called positive semi-definite, sometimes denoted by A ≥ 0, if
A is self-adjoint and 〈ψ|Aψ〉 ≥ 0 for all ψ ∈ H. For a closed subspace V ⊆ H,
we denote (in a slight abuse of notation) by B(V) ⊆ B(H) the bounded linear
operators with range and support in V and by B1(V) the trace-class operators
with range and support in V.

A linear operator T ∈ B(B1(H)) is called a quantum operation if it is com-
pletely positive and trace non-increasing. If T is in addition trace-preserving,
then T is called a (quantum) channel. If a quantum channel T is written in
the form T (·) = trE

[
V · V †], where V : H → HE ⊗ H is an isometry and

where trE is the partial trace, then V is called a Stinespring isometry. The set
of (quantum) states on H is given by S(H) := {ρ ∈ B1(H) | ρ ≥ 0, tr [ρ] = 1}.
The identity channel is denoted by id and the unit matrix by 1. For pos-
itive semi-definite trace-class operators ρ and σ, the fidelity is defined by√

F (ρ, σ) :=
∥∥√ρ

√
σ
∥∥

1
.

For B ∈ B(X ), the resolvent set is ρ(B) := {z ∈ C | z − B is invertible}
and the spectrum is σ(B) := C \ ρ(B). The discrete spectrum of B is the
subset of isolated points of σ(B) such that the corresponding Riesz projection
has finite rank.

2. Results

To state and discuss our main results, we need one more concept, which is
similar to that of a decoherence-free subspace.8

Definition 2.1 (Isometric subspace). Let V be a closed linear subspace of a
Hilbert space H. A channel T : B1(H) → B1(H) is said to be isometric on V
if there exists an isometry V : V → H, such that9

T |B1(V)(·) = V · V †. (2.1)

If T is isometric on V, we call V an isometric subspace w.r.t. T .

8An isometric subspace is a decoherence-free subspace if the range of the isometry is V.
9T |B1(V) denotes the restriction of T to the bounded linear operators with range and support

in V.
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The significance of channels that are isometric on V is that they are the ana-
logue to the identity channel in the bomb-tester case. To see why, note that
T |B1(V) satisfies the Knill–Laflamme error-correcting conditions [21]. Hence,
by composing T |B1(V) with an appropriate channel, we obtain the identity
channel on B1(V). Furthermore, as Lemma 3.10 proves in a language adapted
to our model, the output of the conjugate channel of T will be the same for all
ρ ∈ B1(V). In particular, if we have v ∈ V, where v is the vacuum, then even
though ρ ∈ B1(V) might be different from |v〉〈v|, the Demon (having access
to the conjugate channel only) has no chance of telling that something other
than the vacuum has been sent through the box.

We are now ready to state our main result, which is an easy to check
necessary and sufficient criterion that tells us when it is possible (or impossible)
to discriminate two quantum channels in an “interaction-free” manner.

Theorem 2.2 (Main result). Let dim(H) < ∞. Two channels TA, TB : B1(H) →
B1(H) with vacuum v ∈ H can be discriminated in an “interaction-free” man-
ner if and only if there exists a subspace V ⊆ H with the following three
properties:

1. v ∈ V.
2. At least one of the two channels is isometric on V.
3. TA|B(V) �= TB |B(V).

Note that the central notion “discrimination in an ‘interaction-free’ manner”
has only been defined informally in the paragraph following Definition 1.1.
The formal definition, as well as the one for the “interaction” probability, can
be found in Sect. 3.3, after a derivation of the mathematical form of these
quantities from first principles in Sect. 3.1.

Remark 2.3. At first glance it may seem to be hard to check whether such a
subspace exists. This is not so, as one only needs to consider two candidates
for V, the so-called maximal vacuum subspaces VTA

and VTB
, which we define

and study in 3.9 and 3.10.

Theorem 2.2 is a direct consequence of two results: a protocol to discriminate
two channels and a no-go theorem. We discuss these cases separately in the
following two subsections.

2.1. The Constructive Case

We consider the case where our main theorem says that we can discriminate
the two channels in an “interaction-free” manner. That is, where there is a
subspace V, such that V contains the vacuum and one of the two channels is
isometric on V and TA|B(V) �= TB|B(V). For this case, we propose a protocol (see
Sect. 4) that can discriminate two channels in an “interaction-free” manner.
We will discuss the properties of this protocol in the following. It turns out that
one does not need complete information about the two channels to perform the
discrimination task. To account for this, we consider the more general task,
where we want to know to which one of two known, disjoint, sets of channels
the unknown channel belongs. Of course, Theorem 2.2 puts some restrictions
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on how these sets may look like. Specifically, we consider the following: Given a
channel T with vacuum v ∈ V that is isometric on V, we take as our first set (a
subset of) the set of channels that equal T if we restrict their domains to B1(V).
The second set is less restricted in that we only assume that all channels must
be channels with (the same) vacuum v and that the restrictions to B1(V) must
not equal T |B1(V). It will then turn out that under these conditions, these two
sets can be discriminated in an “interaction-free” manner. Roughly speaking,
this tells us that we can test whether the unknown channel is T or some other
channel, whose identity is unknown. Putting it yet another way, if the identity
channel is interpreted as an empty box and every other channel as a non-empty
box, then our result says that one can always find out (in an “interaction-free”
manner) if there is something or nothing in the box. Before we state this in
mathematical terms, we need to define the discrimination error probability for
two sets.

Definition 2.4 (Error probability). Let CA, CB ⊆ B(B1(H)) be two sets of chan-
nels. For an N -step discrimination strategy D and a two-valued POVM Π =
{πA, πB}, the discrimination error probability is defined by

Pe(D,Π) :=
1

2

[
sup

T∈CA

tr
[
πBρT

N

]
+ sup

T∈CB

tr
[
πAρT

N

]]
. (2.2)

Theorem 2.5 (Discrimination strategy). For dim(H) < ∞, let CA, CB ⊆
B(B1(H)) be two closed sets of channels and V be a subspace of H, such that

1. For all T ∈ CA ∪ CB, T is a channel with vacuum v ∈ V.
2. For all T ∈ CA, T is isometric on V.
3. The set CA|B1(V) :=

{
T |B1(V)

∣∣T ∈ CA

}
contains exactly one element.

4. CA|B1(V) and CB |B1(V) :=
{
T |B1(V)

∣∣T ∈ CB

}
are disjoint.

Then there exist a constant C, and for every N ∈ N, an N -step discrimination
strategy D and a two-valued POVM Π, such that

Pe(D,Π) ≤ C

N2
, (2.3)

PTA

I (D) = 0 and PTB

I (D) ≤ C

N
, (2.4)

for all TA ∈ CA and all TB ∈ CB, where PI denotes the “interaction” proba-
bility. Thus, the sets CA and CB can be discriminated in an “interaction-free”
manner.

Remark 2.6. The strategy we propose that has the properties stated in Theo-
rem 2.5 only requires one ancillary qubit system in the worst-case scenario (as
does the Kwiat et al. protocol) and might thus be implementable in the near
future. We also show that one cannot get rid of the ancillary qubit in a naive
way.

Remark 2.7. Although Theorem 2.5 is formulated for finite-dimensional spaces,
a key part of the proof works also in infinite-dimensional spaces (Theorems 4.5
and 4.6).
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Remark 2.8. For two channels TA and TB with vacuum v ∈ H, we can define
the sets CA := {TA} and CB := {TB}. If there is a subspace V such that the
Conditions 1-3 in the main theorem are fulfilled (and, w.l.o.g, TA is isometric
on V), then clearly CA and CB satisfy the hypothesis of Theorem 2.5 and thus
TA and TB can be discriminated in an “interaction-free” manner. This proves
the direct part of Theorem 2.2.

Given the result of Theorem 2.5, it is natural to ask whether the bounds
on the error probability and the “interaction” probability have the optimal
dependence on N . This is clearly not the case for the error probability, as
is already evident from the bomb-tester experiment. For the “interaction”
probability, we were able to show (under a mild condition on CA and CB) that
N−1 is indeed the best possible rate. We state this as a meta theorem (see
Theorem 5.9).

Theorem. Subject to a condition stated in Theorem 5.9, there exists a constant
C > 0 such that

max(PTA

I (D), PTB

I (D)) ≥ C
(1 − 2Pe(D,Π))4

N
, (2.5)

for all N -step discrimination strategies D and all two-valued POVM’s Π.

The result above cannot hold unconditionally. If there is a subspace V such
that v ∈ V, and both channels are isometric on V and TA|B(V) �= TB |B(V),
then we can restrict ourselves to probing the channel only with states in ρ ∈
B1(V). Since the Demon cannot tell the difference between these states, the
“interaction” probability is zero and the remaining problem is to discriminate
two isometric channels. This problem can be solved with discrimination error
probability equal to zero, in a finite number of steps [22]. We were unable to
show that the case described above is the only one where the N−1-rule can be
violated, but this seems plausible.

2.2. The No-Go Case

In this section, we consider the case for which our main theorem tells us that
“interaction-free” channel discrimination is impossible; that is, if there exists
no subspace satisfying all three properties of Theorem 2.2. In this case the
channels TA and TB must be such that whenever there is a subspace V that
contains the vacuum and on which at least one of the two channels is isometric,
then the two channels must necessarily be the same on that subspace.10 In this
case, we were able to establish the following theorem that shows that there is
a trade-off between the error probability and the “interaction” probability, in
the sense that not both of them can go to zero simultaneously.

10Unfortunately, this case seems to be the generic case. Indeed, on physical grounds (think

of two semi-transparent objects) it is reasonable to assume that for both channels, the only

isometric subspace that contains the vacuum is simply span{v} and that |v〉〈v| is a fixed
point.
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Theorem 2.9 (No-go theorem). For dim(H) < ∞, let TA, TB : B1(H) → B1(H)
be two channels with vacuum v ∈ H. Suppose that no subspace satisfies the
properties 1, 2, and 3 of Theorem 2.2 simultaneously.

Then, there exists a constant C > 0, such that

(1 − 2Pe(D,Π))2 ≤ C max(PTA

I (D), PTB

I (D)), (2.6)

for all finite-dimensional N -step discrimination strategies D and all two-valued
POVMs, Π. Hence, TA and TB cannot be discriminated in an “interaction-
free” manner.

Clearly, this implies the converse in Theorem 2.2.
As a by-product, we obtained an inequality for the fidelity, which might

be of independent interest.

Proposition 2.10. For dim(H) < ∞, let T ↓
A, T ↓

B : B1(H) → B1(H) be quantum

operations and let V be a subspace of H such that T ↓
A|B1(V) = T ↓

B |B1(V) and

T ↓
A|B1(V) is trace-preserving. Then,

√
F (T ↓

A(ρ), T ↓
B(σ)) ≥

√
F (ρ, σ) − 2

√
F (P⊥ρP⊥, P⊥σP⊥), (2.7)

for all ρ, σ ≥ 0, where P⊥ is the orthogonal projection onto V⊥.

3. The Models

In this section, we propose two different, but in the end largely equivalent
models that generalize the notion of “interaction-free” measurement to quan-
tum channels. Since the sequential scheme, given in Fig. 3, is the most gen-
eral causally ordered strategy allowed in quantum theory [17], it suffices to
define our notions for this kind of strategy. In both models, we assume the
validity of Fig. 3. That is, we assume that the unknown channel T does not
change during the execution of the discrimination strategy—the Markovianity
assumption. This is a relatively weak assumption, since we are in control of
the duration between the individual channel invocations. This section consists
of four subsections. In the first two subsections, we derive our two models. The
third subsection summarizes the former two by properly defining the quanti-
ties of merit and thereby setting the stage for a rigorous analysis in the later
sections. In the fourth subsection, we compare the two models by deriving
some elementary properties, which will be used later on.

3.1. The “Interaction” Model

In our first model, we interpret the term “interaction-free” in an information-
theoretic way. That is, we imagine a Demon sitting in the box trying to figure
out, if we interacted with the interior of the box. In more technical terms,
this means that the Demon has full access to the output of the conjugate
channel. Since our task would be trivially infeasible otherwise, there must be
a way not to interact with the box. Therefore, we only consider channels with
vacuum. That is, we assume that for all channels under consideration there
exists a distinguished pure state, the vacuum state, |v〉〈v|. This state is assumed
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Figure 4. General scenario

to have the following two important properties: First, if the vacuum state is
sent through the channel, then the Demon concludes that no interaction has
occurred. Second, we assume that the channels under consideration map the
vacuum state to a pure state. This assumption is physically reasonable as it
means that the state of the probe system does not become entangled with
the Demon’s system. If in contrast, the probe system becomes entangled with
the Demon’s system, then there must have been an interaction and the term
“interaction-free” measurement would be inappropriate. We should mention,
however, that the transmission model, which we are going to describe in the
next section does not use the ““vacuum maps to pure state”” assumption. This
comes at the cost that the transmission functional is no longer a property of
a channel (as the “interaction” functional will turn out to be) but rather an
object that has to be modeled separately. Together, these two assumptions
yield the definition of a channel with vacuum (Definition 1.1). For a given
channel T with vacuum v ∈ HI and an N -step discrimination strategy D =
(HI ,HZ ,Hi,Ho, s0,Λ), we want to define the “interaction” probability PT

I (D)
as the probability that the Demon in the box encounters that, during the
execution of D, something other than the vacuum state was sent through the
channel. To define this probability, we need to specify how the Demon can
obtain information about what was sent through the channel.

A natural way to model this is by assuming that for each of the N channel-
uses (indexed by n) in the discrimination strategy, the Demon is allowed to
implement the channel T via a channel Dn : B1(HI′ ⊗ HI) → B1(HI′ ⊗ HI),
where HI′ is the Hilbert space associated with a system I ′, which the Demon
controls. We further allow the Demon to keep an arbitrarily large memory
system M (with Hilbert space HM ) which he can manipulate freely (i.e., he can
choose the channels Mn, defined below). The most general (causally ordered)
scheme that can be obtained from the above description is depicted in Fig. 4.
Mathematically, the Demon’s strategy is completely determined by an initial
state sD

0 ∈ S(HM ⊗ HI′) and channels M0,M1, . . . ,MN : B1(HM ⊗ HI′) →
B1(HM ⊗ HI′) and D1,D2, . . . , DN : B1(HI′ ⊗ HI) → B1(HI′ ⊗ HI). Given
this data, the scheme in Fig. 4 produces the output (or final) state ρF ∈
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S(HM ⊗ HI′ ⊗ Ho), defined by

ρF := (MN ⊗ ΛN )(id ⊗ DN ⊗ id) . . . (M1 ⊗ Λ1)(id ⊗ D1 ⊗ id)(M0 ⊗ Λ0)(χ0),

where χ0 := sD
0 ⊗ s0. In the end, the Demon will measure his system (M + I ′)

and decide, based on the measurement outcome, if an interaction has occurred.
The “interaction” probability is then the probability that he detects such an
interaction if he chooses his strategy optimally within the given constraints.

Before we can analyze what the Demon’s optimal strategy is, we need
to formulate mathematically the assumption that Dn implements T , and that
T must be independent of the Demon’s strategy (Markovianity). Precisely,
we assume that Dn must be such that if the Demon’s system (I ′) and I are
uncorrelated, then the action on the system I must be independent of the state
of the system I ′. In formulas, we assume that

trI′ [Dn(ρI′ ⊗ ρI)] = T (ρI) (3.1)

for all ρI′ ∈ S(HI′), ρI ∈ S(HI), and n ∈ {1, 2, . . . , N}. We note that (3.1) is
exactly the definition of a semicausal channel, as introduced in [23]. A structure
theorem by Eggeling et al. [24] tells us that semi-causal channels are semi-
localizable. That is, Dn can be written in the form:

Dn(ρI′I) = trEn

[
(Xn ⊗ idI)(idI′ ⊗ V̂n)(ρI′I)

]
,

where V̂n : B1(HI) → B1(HEn
⊗ HI), defined by V̂n(·) = Vn · V †

n is the quan-
tum channel associated with a Stinespring isometry Vn : HI → HEn

⊗ HI of
T and Xn : B1(HI′ ⊗ HEn

) → B1(HI′ ⊗ HEn
) is some channel. To proceed

further in our search for the Demon’s optimal strategy, we make a few sim-
plifying observations and definitions. First, the unitary freedom in the Stine-
spring dilation V̂n can be absorbed into the channel Xi. We can therefore
assume, without loss of generality, that HE1

= HE2
= · · · = HEN

=: HE and

V̂1 = V̂2 = · · · = V̂N =: V̂ . Second, for ρ ∈ S(HM ⊗ HI′ ⊗ HI), we have

(Mn ⊗ idI)Dn(ρ) = trEn

[
([(Mn ⊗ idEn

)(idM ⊗ Xn)] ⊗ idI)(idMI′ ⊗ V̂n)(ρ)
]
,

which motivates the definition Xn := (Mn⊗idEn
)(idM ⊗Xn). In the following,

we adopt the convention that if some channel acts trivially on a tensor factor
(i.e., as the identity), then we omit these tensor factors in the notation (e.g.,
Xi ⊗ idI becomes just Xi). With the newly introduced notation, it follows
from the definition of σF that the state the Demon obtains is

trIZ [ρF ] = trIZ ΛN trEN
XN V̂NΛN−1trEN−1

XN−1 . . . Λ1trE1
X1V̂1M0Λ0(χ0).

We can commute the Xis and trEi
s to the left. Thus, upon defining the channel

Γ : B1(HEN
⊗ HEN−1

⊗ · · · ⊗ HE1
) → B1(HM ⊗ HI′) by

Γ(ρ) = trEN
XN trEN−1

XN−1 . . . trE1
X1M0(s

D
0 ⊗ ρ),

we have

trIZ [ρF ] = Γ(trIZ ΛN V̂NΛN−1V̂N−1 . . . Λ1V̂1Λ0(s0)).
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Figure 5. Scenario when the Demon’s strategy is optimal

To decide if the channel was ever applied to a state different from the vacuum
state, the Demon measures his state with a two-valued POVM, {Q1, Q2}. By
convention, he will conclude that an interaction occurred (something other
than the vacuum was sent through) if the event corresponding to Q2 occurs.
If the state sent through the channel is always the vacuum state, then the
Demon’s final state is

Γ(
[
trI

[
V |v〉〈v|V †]]⊗N

),

where the tensor power is in the space HEN
⊗ HEN−1

⊗ · · · ⊗ HE1
. Since the

Demon must not report an interaction, if the state was always the vacuum
state, we demand

0 = tr
[
Q2Γ(

[
trI

[
V |v〉〈v|V †]]⊗N

)
]

= tr
[
Γ∗(Q2)

[
trI

[
V |v〉〈v|V †]]⊗N

]
,

where Γ∗ denotes the channel Γ in the Heisenberg picture. Clearly, if Γ∗(Q2) =
1⊗N − P⊗N

v , where Pv is the orthogonal projection onto the support of
trI

[
V |v〉〈v|V †], then this requirement is fulfilled. Since we want to choose the

optimal strategy the Demon can pursue, we want to set Γ∗(Q2) := 1⊗N −P⊗N
v .

We can always choose Γ and Q2 to satisfy the last equation, because this corre-
sponds to the strategy where the Demon simply stores all the states he obtains
from the Stinespring dilation in each round. This justifies the graphical rep-
resentation in Fig. 5. Since we defined the “interaction” probability to be the
probability that the Demon concludes that an interaction occurred (if he acts
optimally), we have

PT
I (D) := tr

[
(1⊗N − P⊗N

v ) trIZ V̂NΛN−1V̂N−1 . . . Λ1V̂1(ρ
T
0 )
]
, (3.2)

where ρT
0 := Λ0(s0) is the first intermediate state. We remark that the defi-

nition of PT
I (D) does not depend on the particular choice of the Stinespring

dilation, since the unitary freedom in the Stinespring isometries is compen-
sated by the equal and opposite freedom in Pv.

We can simplify this expression a bit. We define P⊥
v := 1 − Pv and note

that

1⊗N − P⊗N
v =

N−1∑

n=0

1⊗N−n−1 ⊗ P⊥
v ⊗ P⊗n

v ,
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P⊥
v ⊗ P⊗K

v =
K−1∏

j=0

P⊥
v ⊗ 1⊗j ⊗ Pv ⊗ 1⊗K−j−1.

Using these two expressions and (several times) that Λn is trace-preserving,
we obtain our final version for PT

I (D),

PT
I (D) =

N−1∑

n=0

tr
[
1⊗N−n−1 ⊗ P⊥

v ⊗ P⊗n
v trIZ V̂NΛN−1V̂N−1 . . . Λ1V̂1(ρ

T
0 )
]

=

N−1∑

n=0

tr
[
P⊥

v ⊗ P⊗n
v trIZ V̂n+1ΛnV̂n . . . Λ1V̂1(ρ

T
0 )
]

=

N−1∑

n=0

tr
[
P⊥

v trIZ(V̂n+1(Λn(trEi
((Pv ⊗ 1)V̂n(..trE1

((Pv ⊗ 1)V̂1(ρ
T
0 )..)

]

=

N−1∑

n=0

tr
[
P⊥

v trI V̂ (trZ(ΛiT
↓Λn−1T

↓ . . . Λ1T
↓(ρT

0 )))
]

=

N−1∑

n=0

tr
[
P⊥

v trI V̂ (trZ

[
ρT ↓

n

]
)
]
.

In the second to last line, we defined T ↓(·) = trE

[
(Pv ⊗ 1)V · V †] and ρT ↓

n

is determined by the intermediate state map. We have thus succeeded in our
goal to define the “interaction” probability.

Remark 3.1. It is immediate from (3.2) that an alternative expression for
PT

I (D) is given by

PT
I (D) = 1 − tr

[
ρT ↓

N

]
. (3.3)

There are two reasons to prefer the lengthy version derived above. First, it
makes the connection between the “interaction” model and the transmission
model (defined below) explicit and thus allows us to treat these points of view
on an equal footing. Second, it suggests to approach the problem by looking
at the inputs of the individual channel uses, which turns out to be fruitful.

3.2. The Transmission Model

In our second model, we think of an interaction as something that does damage
to the system in the box. As a guiding example, we think of a biological
system—say a body cell. For the sake of argument, assume that we want to
use high-energetic radiation (e.g., X-ray) to resolve the inner structure of the
cell. Of course, radiation might damage the cell, which is usually undesirable.
A reasonable measure for how much damage has been done to a cell seems
to be the number of X-ray photons that were absorbed by the cell. In other
words, the damage is quantified by the amount of energy that got transmitted
from the probe system (X-ray) to the interior of the box (biological cell).
Furthermore, if the cell is exposed to radiation several times, then the damage
measure should be the sum of the number of photons that were absorbed each
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time. Let us now abstract away from this example. Assume that the system
in the box is modeled quantum mechanically on a Hilbert space HE and that
the probe system is modeled on HI . Assume that initially the system E is in
the state ρE ∈ S(HE). If we probe the system with a state ρI ∈ S(HI), then
the combined evolution is described by a (not necessarily unitary) channel
U : B1(HE ⊗ HI) → B1(HE ⊗ HI). Thus, the state of the combined system
after the evolution is given by

ρ′
EI = U(ρE ⊗ ρI).

Now assume that, in analogy to the number of absorbed photons in the example
above, there is some physical quantity (an observable) that got transmitted
from the probe system to the interior of the box by the above process, and
that this quantity is related to the damage done to the object in the box. We
further assume that the process above can only cause damage and cannot repair
the system in the box. Thus, the observable must be a positive semi-definite
operator Θ on the Hilbert space HE . Hence, for a single shot experiment, the
important object is the positive linear functional t : B1(HI) → C, defined by

t(ρI) = tr [Θ trI [U(ρE ⊗ ρI)]] .

For a general N -step discrimination strategy D (with intermediate state map
ρ), we assume that the transmitted quantity is extensive. Since the state
of the part of the probe system that interacts with the interior of the box
in the nth step is given by trZ

[
ρT

n

]
(T is the channel defined by T (ρI) =

trE [U(ρE ⊗ ρI)]), a good definition for the total transmission TT (D) is

TT (D) :=

N−1∑

n=0

tT
(
trZ

[
ρT

n

])
.

We raise this to a principle by assuming that for every channel T we have a
positive linear functional tT , which we call the transmission functional, that
models the damage done to the object. The total transmission then plays the
same role for the transmission model as the “interaction” probability does for
the “interaction” model.

3.3. Formal Definition

We cast the principles developed in the last sections into formal definitions.

Definition 3.2 (“Interaction” functional). Let T : B1(H) → B1(H) be a channel
with vacuum v ∈ H and let V : H → HE ⊗ H be any Stinespring isometry of
T . The positive linear functional iT : B1(H) → C, defined by

iT (·) := tr
[
P⊥

v trH
[
V · V †]] , (3.4)

is called the “interaction” functional of T , where P⊥
v is the orthogonal projec-

tion onto the kernel of trH
[
V |v〉〈v|V †].
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Definition 3.3 (“Interaction” probability). Let T : B1(H) → B1(H) be a chan-
nel with vacuum v ∈ H and let D = (H,HZ ,Hi,Ho, s0,Λ) be an N -step
discrimination strategy. The “interaction” probability is defined by

PT
I (D) :=

N−1∑

n=0

iT

(
trZ

[
ρT ↓

n

])
, (3.5)

where the quantum operation T ↓ : B1(H) → B1(H) is defined by

T ↓(·) = trE

[
(Pv ⊗ 1)V · V †] , (3.6)

and where V : H → HE ⊗ H is any Stinespring isometry of T and Pv is the
orthogonal projection onto the support of trH

[
V |v〉〈v|V †].

Definition 3.4 (“Interaction-free” discrimination). Let v ∈ H and CA, CB ⊆
B(B1(H)) be two sets of channels such that for all T ∈ CA ∪CB, T is a channel
with vacuum v. We say that CA and CB can be discriminated in an “interaction-
free” manner if for every ε, δ > 0 there exists an N -step discrimination strategy
D and a two-valued POVM Π such that

Pe(D,Π) < ε and PT
I (D) < δ, (3.7)

for all T ∈ CA ∪ CB .

Definition 3.5 (Channel with transmission functional). A channel with trans-
mission functional tT is a channel T : B1(H) → B1(H) together with a positive
linear functional tT ∈ (B1(H))

∗
. We call tT the transmission functional.

Definition 3.6 (Total transmission) Let T : B1(H) → B1(H) be a channel
with transmission functional tT . For an N -step discrimination strategy D =
(H,HZ ,Hi,Ho, s0,Λ), the total transmission is defined by

TT (D) :=

N−1∑

n=0

tT
(
trZ

[
ρT

n

])
. (3.8)

Definition 3.7 (Transmission-free discrimination). Let CA, CB ⊆ B(B1(H)) be
two sets of channels such that for all T ∈ CA ∪ CB, T is a channel with
transmission functional tT . We say that CA and CB can be discriminated in a
transmission-free manner if for every ε, δ > 0 there exists an N -step discrimi-
nation strategy D and a two-valued POVM Π such that

Pe(D,Π) < ε and TT (D) < δ, (3.9)

for all T ∈ CA ∪ CB .

3.4. Comparison of the Models and Elementary Properties

In this section, we clarify the relation between the transmission model and
the “interaction” model. As a rule of thumb, the transmission model can be
thought of as a generalization of the “interaction” model. Since we admit ar-
bitrary positive linear functionals as transmission functionals, we have a much
greater flexibility when modeling. For example, one could decide that out of
the two objects to be discriminated, it does not matter (or is even desirable) if
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the second one gets destroyed. We should therefore set the transmission func-
tional of the second channel to zero. This is something that is not possible in
the “interaction” model. On the other hand, the advantage of the “interaction”
model is that the “interaction” probability has a very clear interpretation and
that the “interaction” functional is an intrinsic property of the channel. For
the relation between these models, we note the following lemma.

Lemma 3.8. Let T : B1(H) → B1(H) be a channel with vacuum v ∈ H and let
iT be its “interaction” functional. If we interpret T as a channel with trans-
mission functional iT , then

PT
I (D) ≤ TT (D), (3.10)

for all N -step discrimination strategies D.

Proof. Immediate from the definition, since (by induction) ρT ↓
i ≤ ρT

i . �

The insight that should be gained from this lemma is that if we want to
prove that a certain discrimination task can be done in an “interaction-free”
or in a transmission-free manner, then it suffices to tackle the problem in the
transmission model. Thus, the results in Sect. 4 will be formulated in terms
of the transmission model. On the other hand, if we want to prove a no-go
theorem, then it is sufficient to work in the “interaction” model. At this point,
there is a little detail that we do not want to hide, which is that it is possible
that certain discrimination tasks can be performed with less resources, if one
works in the “interaction” model and not in the transmission model. We will
not investigate this possibility any further. We close this section by introducing
the concept of a maximal vacuum subspace.

Definition 3.9 (Maximal vacuum subspace). Let T : B1(H) → B1(H) be a
channel with vacuum v ∈ H and let V : H → HE ⊗ H be any Stinespring
isometry of T . The subspace VT of H, defined by11

VT := V −1
[
supp(trH

[
V |v〉〈v|V †]) ⊗ H

]
, (3.11)

is called the maximal vacuum subspace of T .

Lemma 3.10 (Properties of maximal vacuum subspaces). For dim(H) < ∞,
let T : B1(H) → B1(H) be a channel with vacuum v ∈ H. The maximal vacuum
subspace VT has the following properties:

1. v ∈ VT .
2. T is isometric on VT .
3. If T is isometric on a subspace V ′ ⊆ H, then either VT ∩ V ′ = {0} or

V ′ ⊆ VT .
4. VT is the union of all subspaces that contain v and on which T is isomet-

ric.
5. There exists a constant CT > 0 such that iT (ρ) ≥ CT tr

[
P⊥ρ

]
for all

ρ ≥ 0, where P⊥ is the projection onto V⊥
T .

11V −1[·] denotes the preimage operation.
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6. For all ρ ≥ 0, we have iT (ρ) ≤ tr
[
P⊥ρ

]
, where P⊥ is the projection onto

V⊥
T .

Remark 3.11. The Claims 1–4 and 6 remain true if one lifts the assumption
that H is finite-dimensional. Claim 5, however, would then be wrong.

Proof. We start with the following observation: Let V : H → HE ⊗ H be
any Stinespring isometry of T . Since T (|v〉〈v|) is pure, V v must be a tensor
product. Thus, there are two unit vectors v′ ∈ H and e ∈ HE such that

V v = e ⊗ v′.

Hence, trH
[
V |v〉〈v|V †] = |e〉〈e| and

supp(trH
[
V |v〉〈v|V †]) = span{e}. (3.12)

(1) Clearly, V v ∈ supp(trH
[
V |v〉〈v|V †]) ⊗ H. Thus, v ∈ V −1 [V v] ⊆ VT .

(2) For φ ∈ VT , we have V φ = e⊗ψφ for a uniquely defined ψφ ∈ H. We define
U : VT → H by Uφ := ψφ. It is easy to check that U is an isometry and that
T (|φ〉〈φ|) = U |φ〉〈φ|U†. Since this holds for all φ ∈ VT , T is isometric on VT .
(3) Suppose that T is isometric on V ′, with isometry U ′ : V ′ → H. If dim(V ′) ≤
1 then the claim is trivially true. So we can assume that dim(V ′) ≥ 2. Let v1

and v2 be two orthogonal unit vectors in V ′. By assumption,

T (|vi〉〈vi|) = trE

[
V |vi〉〈vi|V †] = U ′|vi〉〈vi|U ′†,

for i ∈ {1, 2}. As U ′|vi〉〈vi|U ′† is pure, there exists a pair of unit vectors
e1, e2 ∈ HE such that V vi = ei ⊗ U ′vi. By linearity, we have

0 = T (|v1 + v2〉〈v1 + v2|) − trE

[
V |v1 + v2〉〈v1 + v2|V †]

= U ′|v1 + v2〉〈v1 + v2|U ′† − U ′|v1〉〈v1|U ′†

− 〈e2|e1〉U ′|v1〉〈v2|U ′† − 〈e1|e2〉U ′|v2〉〈v1|U ′† − U ′|v2〉〈v2|U ′†

= (1 − 〈e2|e1〉)U ′|v1〉〈v2|U ′† + (1 − 〈e1|e2〉)U ′|v2〉〈v1|U ′†.

This can only be true if 〈e1|e2〉 = 1, which is true only if e1 = e2. Thus, by
transitivity, there is a unit vector e′ ∈ HE such that V v′ = e′ ⊗ U ′v′ for all
v′ ∈ V ′. With the definition of U in the proof of 2, we also have V φ = e ⊗ Uφ
for all φ ∈ VT . Assume that VT ∩ V ′ �= {0}. For a unit vector v̂ ∈ VT ∩ V ′, the
Cauchy–Schwarz inequality yields

1 = |〈v̂|v̂〉| = |〈V v̂|V v̂〉| = |〈e′|e〉| |〈U ′v̂|Uv̂〉|
≤ |〈e′|e〉| ‖U ′v̂‖ ‖Uv̂‖ = |〈e′|e〉| ≤ ‖e′‖ ‖e‖ = 1.

Hence, the Cauchy–Schwarz inequality is satisfied with equality, which implies
that the vectors e and e′ differ only by a phase factor. In particular, span{e} =
span{e′}. Using (3.12), we have for any v′ ∈ V ′ that V v′ = e′ ⊗ U ′v′ ∈
supp(trH

[
V |v〉〈v|V †]) ⊗ H. Consequently, v′ ∈ VT . As v′ was arbitrary, this

proves V ′ ⊆ VT as claimed.
4) If an isometric subspace V ′ contains v, then (by 1) the intersection with
VT is non-trivial. Thus, (by 3) V ′ is a subspace of VT . Hence, VT contains all
isometric subspaces and the claim follows as (by 2) VT is isometric itself.
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The following consideration is needed in the proof of 5 as well as in the proof
of 6. We define the projections P̂ := Pv ⊗ 1 and P̂⊥ := 1 − P̂ , where Pv :=
|v〉〈v|. We further denote by P , the orthogonal projection onto VT and define
P⊥ := 1 − P . In the following, let ρ ≥ 0. By definition, we have

iT (ρ) = tr
[
P⊥

v trH
[
V ρV †]]

= tr
[
P̂⊥V ρV †

]

= tr
[
P̂⊥V PρPV †

]
+ tr

[
P̂⊥V PρP⊥V †

]

+ tr
[
P̂⊥V P⊥ρPV †

]
+ tr

[
P̂⊥V P⊥ρP⊥V †

]
.

By definition, if ψ ∈ VT , then P̂⊥V ψ = 0. Thus, P̂⊥V P = 0 as an operator.
Hence, all summands except the last one vanish. Thus, we have

iT (ρ) = tr
[
P̂⊥V P⊥ρP⊥V †

]
= tr

[
V †P̂⊥V P⊥ρP⊥

]
. (3.13)

We can now prove 5. To this end, note that if tr
[
P⊥ρP⊥] = 0, then the claim

follows trivially. Otherwise, P ⊥ρP ⊥

tr[P ⊥ρP ⊥]
is a density matrix and the spectral

theorem implies that

P⊥ρP⊥

tr [P⊥ρP⊥]
=
∑

i

pi|ψ⊥
i 〉〈ψ⊥

i |,

with pi ≥ 0,
∑

i pi = 1 and ψ⊥
i ∈ V⊥

T . By convexity, we have

tr
[
P̂⊥V P⊥ρP⊥V †

]
= tr

[
P⊥ρ

]
tr

[
P̂⊥V

P⊥ρP⊥

tr [P⊥ρP⊥]
V †
]

≥ tr
[
P⊥ρ

]
inf

ψ⊥∈V⊥
T

‖ψ⊥‖=1

tr
[
P̂⊥V |ψ⊥〉〈ψ⊥|V †

]
.

If the infimum is strictly positive, then this is the CT we are looking for. To
see that this is indeed the case, note that the set {ψ⊥ ∈ V⊥

T | |
∥∥ψ⊥∥∥ = 1} is

compact. Thus, the infimum is actually a minimum. Assume for the sake of

contradiction that tr
[
P̂⊥V |ψ⊥〉〈ψ⊥|V †

]
= 0, for some unit vector ψ⊥ ∈ V⊥

T .

Then 〈P̂⊥V ψ⊥|P̂⊥V ψ⊥〉 = 0 and consequently P̂⊥V ψ⊥ = 0. Hence, V ψ⊥ ∈
supp(trH

[
V |v〉〈v|V †])⊗H and ψ⊥ ∈ VT . As this is a contradiction, the claim

follows.
To prove 6, we use Hölder’s inequality for Schatten norms. Applying this in-
equality to the RHS of (3.13) yields

iT (ρ) ≤
∥∥∥V †P̂⊥V

∥∥∥
∞

∥∥P⊥ρP⊥∥∥
1

= tr
[
P⊥ρ

]
.

The last equality follows, since V †P̂⊥V is an orthogonal projection (and thus
has norm 1) and since P⊥ρP⊥ ≥ 0. This proves the claim. �
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Remark 3.12. Since by the previous theorem, every subspace that is isometric
w.r.t. T and contains the vacuum is contained in VT , checking the conditions
in Theorem 2.2 reduces to checking whether

TA|B(VTA
) �= TB|B(VTA

) or TA|B(VTB
) �= TB |B(VTB

). (3.14)

This can be done efficiently, since VTA
and VTB

can be computed by simple
linear algebraic methods.

4. The Discrimination Protocol

The main goal of this section is to prove Theorem 2.5. This is done in two
steps. At first, we show how to discriminate between the identity channel and
a compact set of channels, where some additional conditions are imposed on the
channels under consideration. In particular, we obtain the following theorem.

Theorem 4.1. For dim(H) < ∞, let C ⊆ B(B1(H)) be a closed set of channels
and let v ∈ H be a unit vector such that for all T ∈ C, the state |v〉〈v| is the
only state that is a fixed point of T . Then, there exists a constant C and for
every N ∈ N an N -step discrimination strategy D and a two-valued POVM Π
such that

Pe(D,Π) ≤ C

N2
, (4.1)

where the discrimination error probability is w.r.t the sets {id} and C.
Furthermore, if T ∈ C is a channel with transmission functional tT and
tT (|v〉〈v|) = 0, then the total transmission TT (D) is bounded by

TT (D) ≤ C ‖tT ‖
N

. (4.2)

In particular, if tid = 0 and for all T ∈ C, T is a channel with transmission
functional tT , with tT (|v〉〈v|) = 0; and if supT∈C ‖tT ‖ < ∞, then the sets {id}
and C can be discriminated in a transmission-free manner.

Proof. This statement is a direct consequence of Theorem 4.10 and the dis-
cussion in the paragraph “Description of the discrimination strategy.” �

The second step then is to show how to reduce the general case to Theorem 4.1.
This is the main content of Sect. 4.2, in which we also prove Theorem 2.5.

4.1. Empty or Not?

In this section we study a special case of the general discrimination task. That
is, we study the case where we want to discriminate between the identity
channel (empty box) and a compact set of channels C ⊆ B(B1(H)), which
does not contain the identity channel. We show that under some conditions
on the spectrum of the channels in C and on the transmission functionals, a
Kwiat et al.-like strategy suffices to perform the task in a transmission-free
manner, even if the underlying Hilbert space is infinite-dimensional. In the
finite-dimensional case, our considerations reduce to Theorem 4.1. Before we
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Figure 6. General form of a Kwiat et al.-like strategy

go into detail on what we mean by a Kwiat et al.-like strategy, we give an
overview of the additional conditions we impose on the channels in C.

Outline of the Assumptions Our first assumption is that there is a pure state
|v〉〈v| ∈ S(H) (vacuum) that is a fixed point of all channels in C and that
the transmission functionals satisfy tT (|v〉〈v|) = 0 for all T ∈ C. As a remark,
note that if there were no state ρ ∈ S(H), with tT (ρ) = 0 for all T ∈ C,
then, of course, the discrimination task is impossible. On the other hand, if
there exists such a state ρ, then, by the spectral theorem and the linearity
and positivity of tT , there exists a pure state ρv ∈ S(H), with tT (ρv) = 0 for
all T ∈ C. But then, if ρv is not a fixed point of T , the discrimination task
becomes trivial. Thus, assuming a pure fixed point for the current setting is
not a strong assumption.

Our second assumption is that all channels in C have a spectral gap. That
is, if we exclude 1 from the spectrum of T , then the remaining part must be
contained in a disk of radius less than 1 (remember that since T is a channel,
its spectral radius is 1 and 1 is part of the spectrum). In Remark 4.11, we show
that the spectral gap assumption cannot be waived completely if a Kwiat et
al.-like protocol (defined below) should succeed.

Our third assumption is that the spectral gap assumption is compatible
in a certain sense with the discrimination strategy. Expression (4.9) in the
statement of Theorem 4.5 makes this statement precise. A sufficient condition
for the compatibility assumption to be fulfilled (given our second assumption)
is that 1 is a simple eigenvalue of every channel in C. This is the content of The-
orem 4.6. Furthermore, in the finite-dimensional case our second assumption
is automatically fulfilled (given our first assumption) if 1 is a simple eigenvalue
of every channel in C. This is the content of Theorem 4.10.

Our fourth assumption concerns the relation between the channels in
C and their associated transmission functionals. Note that the definition of
a transmission functional (Definition 3.5) does not impose such a relation.
For our current purpose, however, this is problematic since supT∈C ‖tT ‖ may
be infinite. We will thus assume that supT∈C ‖tT ‖ is finite. This is a very
mild assumption, since it is implied if tT depends continuously on T (which
is very reasonable on physical grounds). Furthermore, note that if tT is an
“interaction” functional, then, as a consequence of Claim 6 in Lemma 3.10, we
have supT∈C ‖tT ‖ ≤ 1.

Description of the Discrimination Strategy The next step is to design a strat-
egy that allows us to discriminate between the identity channel and C. An
important factor in designing a strategy is the amount of resources that are
needed to implement it. To this end, we show that only a bare minimum is



M. Hasenöhrl and M. M. Wolf Ann. Henri Poincaré

required. Let H ∈ B(H) be a self-adjoint operator such that v is not an eigen-
vector of e−iH . In other words, we assume that CH :=

∣∣〈v|e−iHv〉
∣∣ is strictly

less than 1. Then, our strategy is to repeat the N -step discrimination strat-
egy, depicted in Fig. 6, a total of K times. More precisely, upon defining the
1-parameter family of channels Ut : B1(H) → B1(H) by Ut(·) = e−iHt · eiHt,
the discrimination strategy is given by the initial state s0 := |v〉〈v| and the set
of channels Λ, with Λi := U 1

N
for 0 ≤ i ≤ N − 1 and ΛN := id. After each exe-

cution of the discrimination strategy, we perform a measurement described by
the two-valued POVM {P⊥, |v〉〈v|}, where P⊥ := 1−|v〉〈v|. If all K outcomes
correspond to the second event, then we decide that the unknown channel is
in C and if otherwise we decide that the unknown channel is the identity. Of
course, this protocol can be cast into the form of an NK-step discrimination
strategy by using an ancillary system and the principle of deferred measure-
ment (see [25], p. 186). We call this strategy DH,N,K . By Definition 2.4, the
error probability is then given by

Pe(DH,N,K ,Π) =
1

2

(
tr
[
|v〉〈v|ρid

N

]K
+ sup

T∈C

{
tr
[
P⊥ρT

N

]K−1∑

k=0

tr
[
|v〉〈v|ρT

N

]k
})

,

where ρ is the intermediate state map and where Π denotes the measurement
scheme described above. Explicitly, we have

ρid
N = UN

1
N

(|v〉〈v|) = e−iH |v〉〈v|eiH and ρT
N = (T ◦ U 1

N
)N (|v〉〈v|).

In general, this leads to the estimate

Pe(DH,N,K ,Π) ≤ 1

2

(
C2K

H + K sup
T∈C

tr
[
P⊥ρT

N

])
. (4.3)

Now suppose that PM := supT∈C tr
[
P⊥ρT

N

]
approaches zero as N → ∞ (we

show this below). Then, for given ε > 0, we can choose K :=
⌈

ln(ε)
ln(CH)

⌉
and N

such that KPM < ε. It follows from (4.3) that Pe(DH,N,K ,Π) < ε. In other
words, Pe(DH,N,K ,Π) approaches zero if and only if PM does. Furthermore,
for a channel T ∈ C, the total transmission is given by

TT (DH,N,K) = K

N−1∑

n=0

tT
(
ρT

n

)
= KTT (DH,N,1).

Thus, also TT (DH,N,K) approaches zero if and only if TT (DH,N,1) does. In
addition to that, we could always choose H such that 〈v|e−iHv〉 = 0. In that
case, it suffices to set K = 1, which yields the simple expression

Pe(DH,N,1,Π) =
1

2
tr
[
P⊥(T ◦ U 1

N
)N (|v〉〈v|)

]
,

for the error probability. Hence, in order to find a strategy that discriminates
between the identity channel and the set C, we only need to show that the
quantities PM and supT∈C TT (DH,N,1) approach zero for N → ∞. Moreover,
since tT can be written in the form tT (·) = tr [ΘT ·] for some positive semi-
definite operator ΘT ∈ B(H) and since, by assumption tT (|v〉〈v|) = 0, we can
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conclude that for ρ ≥ 0,

tT (ρ) ≤ ‖tT ‖ tr
[
P⊥ρ

]
.

The important conclusion that we draw from the discussion above is that
in order to prove Theorem 4.1, it suffices to show (under the hypotheses of
Theorem 4.1) that for any self-adjoint H ∈ B(H), there is a constant C such
that the inequalities

tr
[
P⊥ (T ◦ U 1

N
)N (|v〉〈v|)

]
≤ C

N2
, (4.4)

tr

[
P⊥

N−1∑

n=0

(U 1
N

◦ T )n(|v〉〈v|)
]

≤ C

N
, (4.5)

hold for all N ∈ N. This is precisely the statement of Theorem 4.10. Taking
the validity of Theorem 4.10 for granted, we conclude that Theorem 4.1 holds.

Technical Theorems The remainder of this section is devoted to the proof of
Theorem 4.10 and its infinite-dimensional versions. The following lemmas serve
this purpose.

Lemma 4.2 ([26], p. 202). Let T ∈ B(H), let z ∈ C be in the unbounded
component of the resolvent ρ(T ), and let X be a closed invariant subspace of
T . Then, X is an invariant subspace of (z − T )−1.

Lemma 4.3. Let T : B1(H) → B1(H) be a channel such that 1 is in the discrete
spectrum of T . Then, for any n ∈ N and any (rectifiable) path inside the
resolvent set of T that encloses 1, and separates 1 from σ(T ) \ {1}, we have

1

2πi

∮

Γ1

zn

z − T
dz =

1

2πi

∮

Γ1

1

z − T
dz. (4.6)

Proof. See “Appendix A”. �

Lemma 4.4 (Invariant subspace lemma). Let T : B1(H) → B1(H) be a chan-
nel, where H can be finite or infinite dimensional. Let v ∈ H be such that |v〉〈v|
is a fixed point of T and set Vv := span{v}. Then, the subspaces

Bv⊥ :=
{
|v〉〈φ|

∣∣φ ∈ V ⊥
v

}
, (4.7)

B⊥v :=
{
|φ〉〈v|

∣∣φ ∈ V ⊥
v

}
, (4.8)

are invariant under T .

Proof. We prove that Bv⊥ is invariant. The invariance of B⊥v follows as T is
Hermiticity-preserving. Let {Ki} be a set of (non-zero) Kraus-operators of T .
By assumption we have

|v〉〈v| = T (|v〉〈v|) =
∑

i

tr
[
K†

i Ki

] Ki|v〉〈v|K†
i

tr
[
K†

i Ki

] ,

where the series converges in trace norm. As the pure state |v〉〈v| is an extreme
point of the closed and convex set of quantum states and the RHS is a convex
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combination of states, we must have that Ki|v〉〈v|K†
i is proportional to |v〉〈v|.

Henceforth, v is an eigenvector of Ki for all i. We denote the corresponding
eigenvalue by λi. So for ψ ∈ V ⊥

v , we get

T (|v〉〈ψ|) =
∑

i

Ki|v〉〈ψ|K†
i = |v〉〈φ|,

where φ =
∑

i λiKi ψ. As T is trace-preserving, we have

0 = tr [|v〉〈φ|] = tr [T (|v〉〈ψ|)] = tr [|v〉〈φ|] = 〈φ|v〉.

Hence, φ ∈ V ⊥
v . This proves the claim. �

The following theorem is the main technical result. In fact, everything else in
this section can (to some extent) be regarded as a corollary to this theorem.

Theorem 4.5. Let T : B1(H) → B1(H) be a channel such that 1 is in the
discrete spectrum of T , and let v ∈ H be a unit vector such that |v〉〈v| is
a fixed point of T . Furthermore, let H ∈ B(H) be self-adjoint, τ > 0 and
0 < δ < 1 such that

σ(Ut ◦ T ) ⊆ D1−δ(0) ∪ {1}, (4.9)

for 0 ≤ t ≤ τ , where Ut : B1(H) → B1(H) is defined by Ut(·) := e−iHt · eiHt.
Then, the inequalities

tr
[
P⊥ (T ◦ U 1

N
)N (|v〉〈v|)

]
≤ C

N2
, (4.10)

tr

[
P⊥

N−1∑

n=0

(U 1
N

◦ T )n(|v〉〈v|)
]

≤ C

N
, (4.11)

hold for all N ∈ N. Here, P⊥ := 1 − |v〉〈v| and

C := max

⎧
⎨
⎩τ−2, 18δ−1 ‖H‖2

B(H) max
0≤t≤τ

z∈Γ

∥∥(z − T )−1
∥∥∥∥(z − UtT )−1

∥∥
⎫
⎬
⎭ < ∞,

where Γ :=
{
z ∈ C

∣∣ |z| = 1 − δ
2

}
∪
{
z ∈ C

∣∣ |z − 1| = δ
2

}
.

Proof. We need to calculate the quantities (4.10) and (4.11). To do so, we
employ the holomorphic functional calculus. For 0 ≤ t ≤ τ and n ∈ N, we have

(UtT )n =
1

2πi

∮

|z−1|= δ
2

zn

z − UtT
dz +

1

2πi

∮

|z|=1− δ
2

zn

z − UtT
dz (4.12)

=
1

2πi

∮

|z−1|= δ
2

1

z − UtT
dz +

1

2πi

∮

|z|=1− δ
2

zn

z − UtT
dz, (4.13)
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where we used Lemma 4.3 to obtain the second line. Under the trace, we can
(crudely) estimate this term as follows:

∣∣tr
[
P⊥(UtT )n(|v〉〈v|)

]∣∣ ≤ δ

2
max

|z−1|= δ
2

∣∣∣∣tr
[
P⊥ 1

z − UtT
(|v〉〈v|)

]∣∣∣∣

+

(
1 − δ

2

)n+1

max
|z|=1− δ

2

∣∣∣∣tr
[
P⊥ 1

z − UtT
(|v〉〈v|)

]∣∣∣∣

≤ max
z∈Γ

∣∣∣∣tr
[
P⊥ 1

z − UtT
(|v〉〈v|)

]∣∣∣∣ .
(4.14)

In everything that follows, we assume that z ∈ Γ. To proceed, we need two
auxiliary calculations. First, we use the second resolvent identity ([27], p. 84)
twice to obtain

1

z − UtT
=

1

z − T
+

1

z − T
(Ut − id)

T

z − T

+
1

z − UtT
(Ut − id)

T

z − T
(Ut − id)

T

z − T
.

(4.15)

Second, an elementary application of Taylor’s formula yields

‖Ut − id‖ ≤ 2 ‖H‖B(H) t, (4.16)

(Ut − id)(ρ) = i[ρ,H]t + Ut2, (4.17)

with ||U|| ≤ 2 ‖H‖2
B(H). When looking at (4.15), it is clear that the summands

are of zeroth, first and second order in t, as t → 0. The crucial step is to show
that under the trace, the second term is O(t2). Using (4.17), we get

1

z − T
(Ut − id)

T

z − T
(|v〉〈v|) =

1

z − 1

1

z − T
(Ut − id)(|v〉〈v|)

=
it

z − 1

1

z − T
(|v〉〈Hv| − |Hv〉〈v|)

+
t2

z − 1

1

z − T
(U(|v〉〈v|)). (4.18)

It is easily verified, using the self-adjointness of H, that |v〉〈Hv| − |Hv〉〈v| =
|v〉〈φ|−|φ〉〈v|, with φ := (H −〈v|Hv〉)v. Clearly, 〈φ|v〉 = 0. Thus, |φ〉〈v| ∈ B⊥v

and |v〉〈φ| ∈ Bv⊥, where B⊥v and Bv⊥ are both invariant subspaces of T (by
Lemma 4.4). As z is in the unbounded component of the resolvent set of T ,
Lemma 4.2 implies that also (z − T )−1(|φ〉〈v|) ∈ B⊥v and (z − T )−1(|v〉〈φ|) ∈
Bv⊥. Thus, the first term in (4.18) vanishes under the trace, and we get

∣∣tr
[
P⊥(4.18)

]∣∣ ≤ t2
2 ‖H‖2

B(H)

|z − 1|
∥∥(z − T )−1

∥∥ . (4.19)

So under the trace, this term is indeed quadratic in t. For the other two terms
in (4.15), we have

∣∣∣∣tr
[
P⊥ 1

z − T
(|v〉〈v|)

]∣∣∣∣ =
1

|z − 1| tr
[
P⊥|v〉〈v|)

]
= 0 (4.20)
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and ∣∣∣∣tr
[
P⊥ 1

z − UtT
(Ut − id)

T

z − T
(Ut − id)

T

z − T
(|v〉〈v|)

]∣∣∣∣

≤ 1

|z − 1|
∥∥(z − UtT )−1

∥∥ ‖Ut − id‖2

∥∥∥∥
T

z − T

∥∥∥∥

≤ t2
4 ‖H‖2

B(H)

|z − 1|
∥∥(z − UtT )−1

∥∥∥∥(z − T )−1
∥∥ , (4.21)

where we used the estimate (4.16) and ‖T‖ = 1 to obtain the last line. We
can now use the results obtained in (4.19), (4.20), and (4.21) to estimate the
quantity of interest, (4.14). We have

(4.14) ≤ 2t2 ‖H‖2
B(H) max

z∈Γ

∥∥(z − T )−1
∥∥ (1 + 2

∥∥(z − UtT )−1
∥∥)

|z − 1|

≤ t2

⎛
⎝18δ−1 ‖H‖2

B(H) max
0≤t′≤τ

z∈Γ

∥∥(z − T )−1
∥∥∥∥(z − Ut′T )−1

∥∥
⎞
⎠

=: t2C0. (4.22)

To obtain the second estimate, we used maxz∈Γ |z − 1|−1 = 2δ−1 and∥∥(z − UtT )−1
∥∥ ≥ ‖(z − UtT )‖−1 ≥ (|z| + 1)−1 ≥ 2

5 . Equation (4.22) is a
bound for t ≤ τ . To prove the theorem, we need a bound for all t ≥ 0. To this
end, we note that tr

[
P⊥(UtT )n(|v〉〈v|)

]
≤ 1, since the expression represents a

probability. We further define C := max(τ−2, C0). If t ≤ τ , then by Eq. (4.22),

tr
[
P⊥(UtT )n(|v〉〈v|)

]
≤ t2C0 ≤ Ct2.

And if t > τ , then

tr
[
P⊥(UtT )n(|v〉〈v|)

]
≤ 1 ≤ t2

τ2
≤ Ct2.

Hence,

tr
[
P⊥(UtT )n(|v〉〈v|)

]
≤ Ct2,

for all t ≥ 0. This is a bound independent of n. Inequality (4.11) is then easily
obtained by setting t := 1

N and summing over all n, which yields an additional
factor N . It remains to show inequality (4.10), in which Ut and T have switched
order. Since |v〉〈v| is a fixed point of T , we have tr

[
P⊥(TUt)

N (|v〉〈v|)
]

=

tr
[
P⊥T (UtT )N (|v〉〈v|)

]
. We set ρ := (UtT )N (|v〉〈v|) and φ := P⊥ρv and

write

ρ = 〈v|ρv〉|v〉〈v| + |v〉〈φ| + |φ〉〈v| + P⊥ρP⊥.

Clearly, |v〉〈φ| ∈ Bv⊥ and |φ〉〈v| ∈ B⊥v. Hence, by Lemma 4.4, we have
T (|v〉〈φ|) ∈ Bv⊥ and T (|φ〉〈v|) ∈ B⊥v. Thus,

tr
[
P⊥T (ρ)

]
= tr

[
P⊥T (P⊥ρP⊥)

]
≤ tr

[
T (P⊥ρP⊥)

]
= tr

[
P⊥ρ

]
.
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Hence,

tr
[
P⊥(TUt)

N (|v〉〈v|)
]

≤ C

N2
.

This finishes the proof. �

Theorem 4.6. Let C ⊆ B(B1(H)) be a compact set of channels, and let v ∈ H
be a unit vector. Assume that

1. For all T ∈ C, the quantity

rT := sup
z∈σ(T )\{1}

|z|

is strictly less than 1. In other words, the spectral gap is nonzero.
2. For each T ∈ C, the state |v〉〈v| is a fixed point of T .
3. For all T ∈ C, the algebraic multiplicity12 of the isolated point 1 ∈ σ(T )

is 1. In other words, 1 is a simple eigenvalue.

Furthermore, let H ∈ B(H) be self-adjoint and Ut : B1(H) → B1(H) be defined
by Ut(·) = e−iHt · eiHt. Then, there exists a constant CC < ∞, such that

tr
[
P⊥ (T ◦ U 1

N
)N (|v〉〈v|)

]
≤

CC ‖H‖2
B(H)

N2
, (4.23)

tr

[
P⊥

N−1∑

n=0

(U 1
N

◦ T )n(|v〉〈v|)
]

≤
CC ‖H‖2

B(H)

N
, (4.24)

for all N ∈ N, where P⊥ := 1 − |v〉〈v|.

Remark 4.7. The distinctive feature of the preceding theorems is the N−2

bound in (4.23). It seems that such a bound cannot be obtained directly from

the results in [13–16], because those results are of the form
(
U 1

N
◦ T
)N

≈ P +

O( 1
N ) for N → ∞, where P denotes the spectral projection on the eigenspace

with eigenvalue 1.

Proof. The basic strategy is to reduce the claim to an application of Theo-
rem 4.5. To this end, we basically need to show that Conditions 1–3 imply
that condition (4.9) can be satisfied uniformly, i.e., that there exist τ > 0 and
0 < δ < 1 such that (4.9) is satisfied for all T ∈ C. The main tool to show this
is the upper semi-continuity of the spectrum. To use that property, we import
the following two theorems.

Theorem 4.8 ([28], p. 208). For a Banach space X , let T, S ∈ B(X ), and let Γ
be a compact subset of the resolvent set ρ(T ).

If ‖T − S‖ < minz∈Γ

∥∥(z − T )−1
∥∥−1

, then Γ ⊆ ρ(S). Furthermore, for
any open set V ⊆ C, with σ(T ) ⊂ V , there exists γ > 0, such that σ(S) ⊆ V
whenever ‖S − T‖ < γ.

12For an isolated point λ ∈ σ(T ), the algebraic multiplicity is the dimension of the range of

the spectral projection.
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Theorem 4.9 ([29], p. 67). For a Banach space X , let P,Q ∈ B(X ) be bounded
projections with ‖P − Q‖ < 1. Then, there exists an invertible operator A ∈
B(X ), such that Q = APA−1. In particular ran(P ) and ran(Q) are isomorphic.

To start, we show that not only rT < 1 for all T ∈ C, but that supT∈C rT < 1.
To this end, we show that the function r : C → R, T �→ rT is upper semi-
continuous. That is, we need to show that for every T ∈ C and every ε > 0,
there is a set U ⊆ C, which is open in the relative topology on C, such that
rS ≤ rT + ε for all S ∈ U . For fixed T and ε > 0, define ε′ := min(ε, 1−rT

3 )
and the open set Vε′ := BrT +ε′(0) ∪ Bε′(1) ⊆ C. By construction, σ(T ) ⊆ Vε′ .
Thus, Theorem 4.8 implies that there exists γ > 0 such that σ(S) ⊆ Vε′ for all
S ∈ Bγ(T ). Thus, for S ∈ Bγ(T ) the projection PS onto the spectral subspace
associated with the spectral subset σ(S) ∩ Bε′(1) is given by

PS :=
1

2πi

∮

|z−1|= 1−rT
2

1

z − Tn
dz = PT +

1

2πi

∮

|z−1|= 1−rT
2

1

z − S
(S − T )

1

z − T
dz,

where we used the second resolvent identity to obtain the last equation. A
standard estimate yields

‖PS − PT ‖ ≤ 1 − rT

2
‖S − T‖ max

|z−1|= 1−rT
2

{∥∥(z − S)−1
∥∥∥∥(z − T )−1

∥∥} .

Since the set S0 := B γ
2
(T ) ∩ C is compact, the constant

C0 := max
|z−1|= 1−rT

2
S∈S0

{∥∥(z − S)−1
∥∥∥∥(z − T )−1

∥∥}

is finite. We set γ′ := min{γ
2 , 1

(1−rT )C0
} and U := Bγ′(T ) ∩ C. By construc-

tion, U is open in the relative topology on C and we have σ(S) ⊆ Vε′ and
‖PS − PT ‖ ≤ 1

2 < 1 for all S ∈ U . By Assumption 3, ran(PT ) is 1-dimensional.
Thus, by Theorem 4.9, also ran(PS) is one-dimensional, for S ∈ U . Thus, there
can be only one point in σ(S)∩Bε′(1), and this point must be 1, as 1 is in the
spectrum of every channel. Hence, for S ∈ U , we have σ(S) \ {1} ⊆ BrT +ε′(0).
So r(S) = rS ≤ rT + ε′ ≤ rT + ε = r(T ) + ε. In other words, r is upper
semi-continuous. The upper semi-continuous function r assumes its maximum
on the compact set C. This maximum cannot be equal to 1, as this would
contradict Assumption 1. Thus maxT∈C rT < 1, as claimed.
In preparation for the application of Theorem 4.5, we define the joint spectral
gap

δJ := 1 − max
T∈C

r(T ). (4.25)

We have 0 < δJ < 1 and

σ(T ) ⊆ D1−δJ
(0) ∪ {1},
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for all T ∈ C. We define Γ := D
1+

δJ
3

(0) \ (B δJ
3

(1) ∪ B
1− 2δJ

3

(0)), which is a

compact subset of ρ(T ) for all T ∈ C, and we set

τ :=
1

7 ‖H‖B(H)

min
T∈C
z∈Γ

∥∥(z − T )−1
∥∥−2

,

which is nonzero, as the minimization is over a strictly positive function on a
compact set. For this particular choice of τ , we show that

σ(UtT ) ⊆ D
1− 2δJ

3

(0) ∪ {1}

for 0 ≤ t ≤ τ and then use Theorem 4.5. From now on, let 0 ≤ t ≤ τ and
T ∈ C. Using the Taylor estimate (4.16) and the definition of τ yields

‖T − UtT‖ ≤ ‖Ut − id‖ ‖T‖ ≤ 2 ‖H‖B(H) t

≤ 2

7
min
T∈C
z∈Γ

∥∥(z − T )−1
∥∥−2

. (4.26)

This inequality has two important implications. First, for z ∈ Γ we have∥∥(z − T )−1
∥∥−1 ≤ ‖z − T‖ ≤ |z|+1 ≤ 7

3 . Hence, (4.26) < minT∈C
z∈Γ

∥∥(z − T )−1
∥∥−1

and we can apply Theorem 4.8, which tells us that Γ ⊆ ρ(UtT ) for all T ∈ C
and 0 ≤ t ≤ τ . Equivalently,

σ(UtT ) ⊆ D
1− 2δJ

3

(0) ∪ D δJ
3

(1).

Thus, we only have to show that σ(UtT ) ∩ D δJ
3

(1) = {1}.

Second,
∥∥(UtT − T )(z − T )−1

∥∥ ≤ 2
7 minT∈C

z∈Γ

∥∥(z − T )−1
∥∥−1 ≤ 2

3 . Thus,

the series

1

z − T

∞∑

k=0

[
(UtT − T )(z − T )−1

]k
= (z − UtT )−1

converges. A term-by-term estimate yields
∥∥(z − UtT )−1

∥∥ ≤ 3
∥∥(z − T )−1

∥∥ , (4.27)

Let Pt := 1
2πi

∮

|z−1|= δJ
3

1
z−UtT

dz be the spectral projection, then

‖Pt − P0‖ =

∥∥∥∥∥∥∥∥

1

2πi

∮

|z−1|= δJ
3

1

z − UtT
− 1

z − T
dz

∥∥∥∥∥∥∥∥

≤ δJ

3
max

|z−1|= δJ
3

∥∥(z − UtT )−1 − (z − T )−1
∥∥

=
δJ

3
max

|z−1|= δJ
3

∥∥(z − UtT )−1(UtT − T )(z − T )−1
∥∥

≤ δJ ‖UtT − T‖max
z∈Γ

∥∥(z − T )−1
∥∥2
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≤ 2δJ

7
< 1,

where we used the second resolvent identity to obtain the third line, (4.27)
for the fourth line and (4.26) for the fifth line. Hence, by Theorem 4.9, the
dimension of ran(Pt) equals the dimension of ran(P0) for all 0 ≤ t ≤ τ , and
the latter dimension is 1. Thus, σ(UtT ) ∩ D δJ

3

(1) contains exactly one point,

which must be 1, as UtT is a channel. In conclusion, we have

σ(UtT ) ⊆ D1−δ(0) ∪ {1},

for all T ∈ C and 0 ≤ t ≤ τ , with δ := 2δJ

3 . Finally, a direct application of
Theorem 4.5 proves the claim. We can also get an explicit bound for CC . To
this end, we need to bound the constant that appears in Theorem 4.5. We have

τ−2 = 49 ‖H‖2
B(H) max

T∈C
z∈Γ

∥∥(z − T )−1
∥∥4

and, by (4.27), the second term can be bounded by

36δ−1
J ‖H‖2

B(H) max
T∈C
z∈Γ

∥∥(z − T )−1
∥∥2 . (4.28)

Furthermore, by the spectral mapping theorem, the spectral radius of (z−T )−1

is given by (infs∈σ(T ) ‖z − s‖)−1 = (dist(z, σ(T )))−1. Since the norm of any
operator is an upper bound for the spectral radius, we have

max
T∈C
z∈Γ

∥∥(z − T )−1
∥∥ ≥ max

T∈C
z∈Γ

{
dist(z, σ(T ))−1

}
≥ 3δ−1

J ≥ 3.

By applying this bound to (4.28), we see that τ−2 ≥ (4.28). Thus, we can
choose

CC := 49max
T∈C
z∈Γ

∥∥(z − T )−1
∥∥4 < ∞. (4.29)

�

Theorem 4.10. For dim(H) < ∞, let C be a closed set of channels T : B1(H) →
B1(H) and let v ∈ H be a unit vector such that for every T ∈ C, the state |v〉〈v|
is the only state that is a fixed point of T .

Furthermore, let H ∈ B(H) be self-adjoint and Ut : B1(H) → B1(H) be
defined by Ut(·) = e−iHt · eiHt. Then, there exists a constant CC < ∞, such
that for all N ∈ N,

tr
[
P⊥ (T ◦ U 1

N
)N (|v〉〈v|)

]
≤

CC ‖H‖2
B(H)

N2
(4.30)

tr

[
P⊥

N−1∑

n=0

(U 1
N

◦ T )n(|v〉〈v|)
]

≤
CC ‖H‖2

B(H)

N
, (4.31)

where P⊥ := 1 − |v〉〈v|.
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Proof. The claim follows from Theorem 4.6 and from results by Burgarth and
Giovannetti [30]. In particular, in their terminology, a channel T is called
ergodic if there is a unique state that is a fixed point of T . And (according
to Theorem 7 in [30]), T is called mixing if 1 is the only eigenvalue with
modulus 1 and the eigenvalue 1 is simple. Thus, in particular, if T is mixing,
then the spectral gap is nonzero. Theorem 8 in [30] says that ergodic channels
are mixing if the unique state that is a fixed point is pure. By assumption,
every T ∈ C is ergodic and the only state that is a fixed point is the pure
state |v〉〈v|. Thus, all T ∈ C are mixing and the conditions in Theorem 4.6 are
automatically satisfied. This proves the claim. �

Remark 4.11. In the previous theorem, it is important that |v〉〈v| is the only
state that is a fixed point. To demonstrate this, we define the Hamiltonian
on a qubit system, HQ := span{v, q1}, as H := π

2 σy, where σy is the Pauli

matrix.13 So, Ut(·) := e−iHt · eiHt. The channel T : B1(HQ) → B1(HQ) is then
defined by

T (·) := tr [|v〉〈v| · ] |v〉〈v| + tr [|q1〉〈q1| · ] |q1〉〈q1|.

It is not hard to verify by induction that

(U 1
N

◦ T )n = U 1
N

(
1

2
(1 + cosn(2θ))|v〉〈v| +

1

2
(1 − cosn(2θ))|q1〉〈q1|

)
,

where θ := π
2N . The formula for the sum of the geometric progression yields

N−1∑

n=0

(U 1
N

◦ T )n(|v〉〈v|) = U 1
N

(
1

2
(N + λ) |v〉〈v| +

1

2
(N − λ) |q1〉〈q1|

)
,

with λ := 1−cosN (2θ)
2 sin2(θ)

. It is an exercise in elementary calculus (or a query in

your favorite computer algebra system) to show that

lim
N→∞

(N − λ) =
π2

4
. (4.32)

Since U 1
N

→ id, when N → ∞, it follows that the quantity on the RHS of

(4.31) does not vanish as N → ∞. In particular, our example shows that
the Kwiat et al.-like protocol cannot be applied naively. Thus, the reduction
process described in the next section is needed in some cases.

Remark 4.12. If the channel in Theorem 4.10 is a qubit channel (H = span{v, p}),
then one can determine the precise asymptotics in a rather tedious calculation.

13In coordinates, σy :=

(
0 −i
i 0

)
and e−iHt =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, with θ := πt

2
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We only state the result, which is that if H := π
2 σy, then

lim
N→∞

N2tr
[
P⊥ (T ◦ U 1

N
)N (|v〉〈v|)

]
= lim

N→∞
Ntr

[
P⊥

N−1∑

n=0

(U 1
N

◦ T )n(|v〉〈v|)
]

=
π2

4

1 − |τ0|2

(1 − τ) |1 − τ0|2
,

(4.33)

where τ := tr
[
P⊥T (P⊥)

]
and τ0 := tr [|p〉〈v|T (|v〉〈p|)].

This result contains as a special case the result for semi-transparent objects
[31,32].

Remark 4.13. It is a direct consequence of the results in the next section that
the N−1 form of the bound is optimal.

4.2. The Reduction Protocol

In this section, in which we assume that all Hilbert spaces are finite-dimensional,
we want to transform our given channel in such a way that the Kwiat et
al.-like strategy, which was described in the previous section, can be ap-
plied. The general idea is that instead of inserting the unknown channel di-
rectly into the circuit of Fig. 6, we preprocess and postprocess the states
that go in and out of the channel. In other words, we replace the channel
T in Fig. 6 by the construction that is depicted on the RHS of Fig. 7. In
Fig. 7, HQ and HA are Hilbert spaces and R0 : B1(HQ) → B1(H ⊗ HA)
and R′

0 : B1(H ⊗ HA) → B1(HQ) are channels. The resulting transformation
can be viewed as a map R : B(B1(H)) → B(B1(HQ)), defined by R(T ) :=
R′

0(T ⊗ id)R0. Maps of this kind are usually called superchannels [33]. Clearly,
if T is a channel with transmission functional tT , then R(T ) is a channel
with transmission functional tR(T ) := tT ◦ trA ◦ R0. We say that the super-
channel R transforms the transmission functional tT to tR(T ). For consistency
reasons, we also remark the following: As is shown in [33], for any super-
channel S : B(B1(H)) → B(B1(HQ)), there exists a Hilbert space HA′ and
channels S0 : B1(HQ) → B1(H ⊗ HA′) and S′

0 : B1(H ⊗ HA′) → B1(HQ)
such that S(T ) = S′

0(T ⊗ id)S0 for all T ∈ B(B1(H)). Of course, the choice
of HA′ , S0, and S′

0 is not unique. The transformation of the transmission
functional, however, is unique. To see this, assume that we apply S to the
map TB , defined by TB(·) = tr [B · ] ρ0, where ρ0 ∈ S(H) and B ∈ B(H)
are arbitrary. Since S′

0 is trace-preserving, we have for σ ∈ B(HQ), that
tr [S(T )(σ)] = tr [(T ⊗ id)S0(σ)] = tr [BtrA′ [S0(σ)]]. Since B and σ were
arbitrary, it follows that trA′ ◦ S0 is independent of the choice of HA′ , S0,
and S′

0. Hence, the transformation of the transmission functional is indepen-
dent of the particular implementation of a superchannel. Formally, the re-
placement described above yields a transformation of the discrimination strat-
egy. That is, given a discrimination strategy D = (HQ,HZ ,Hi,Ho, s0,Λ),
with Λ = {Λ1,Λ2, . . . ,ΛN}, then we obtain the transformed discrimination
strategy DR := (H,HA ⊗ HZ ,Hi,Ho, s0,ΛR), with ΛR

0 := (R0 ⊗ idZ)Λ0,
ΛR

N := ΛN (R′
0 ⊗ idZ), and ΛR

n := (R0 ⊗ idZ)Λn(R′
0 ⊗ idZ), for 1 ≤ n ≤ N − 1.
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Figure 7. General transformation scheme: a superchannel

The task of this section is to show the existence of a superchannel such
that the general discrimination task reduces to the one described in the last
section. It will be evident from the proof of the following theorem that such
a superchannel can be implemented by using only one ancillary qubit and
classical resources. Furthermore, we show in Remark 4.18 that in general the
implementation of such a superchannel is impossible without using an ancillary
qubit.

Theorem 4.14 (Reduction superchannel). For dim(H) < ∞, let T : B1(H) →
B1(H) be a channel and let V ⊆ H be a subspace such that T is isometric
on V. Furthermore, let v ∈ V be a unit vector. Then, there exists a two-
dimensional Hilbert space HQ, with orthonormal basis {q0, q1} and a super-
channel R : B(B1(H)) → B(B1(HQ)) with the following properties:

1. If T ′ ∈ B(B1(H)) satisfies T |B1(V) = T ′|B1(V), then R(T ′) = id.
2. If T ′ ∈ B(B1(H)) is a channel such that T |B1(V) �= T ′|B1(V), then the only

state that is a fixed point of R(T ′), is |q0〉〈q0|.
3. If T ′ ∈ B(B1(H)) is a channel with transmission functional tT ′ and

tT (|v〉〈v|) = 0, then the transformed transmission functional tR(T ′) is
given by

tR(T ′)(·) =

{
1
2 tT ′( P ⊥

d−1 )tr [|q1〉〈q1| · ] if d > 1

0 if d = 1
, (4.34)

where d := dim(V) and where P⊥ denotes the orthogonal projection onto
{ψ ∈ V | 〈ψ|v〉 = 0}.

Before we prove the theorem, let us explore its consequences. First, we establish
the analog of Theorem 2.5 for the transmission functional model.

Corollary 4.15. For dim(H) < ∞, let CA, CB ⊆ B(B1(H)) be two closed sets of
channels. Furthermore, let V be a subspace of H and let v ∈ V be a unit vector
such that

1. For all T ∈ CA ∪ CB, T is a channel with transmission functional tT .
2. For all T ∈ CA, T is isometric on V.
3. For all T ∈ CA, tT |B1(V) = 0.
4. For all T ∈ CB, tT (|v〉〈v|) = 0.
5. supT∈CB

∥∥tT |B1(V)

∥∥ < ∞
6. The set CA|B1(V) :=

{
T |B1(V)

∣∣T ∈ CA

}
contains exactly one element.

7. CA|B1(V) and CB |B1(V) :=
{
T |B1(V)

∣∣T ∈ CB

}
are disjoint.
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Then, there exist a constant C and for every N ∈ N, an N -step discrimination
strategy D and a two-valued POVM Π such that

Pe(D,Π) ≤ C

N2
, (4.35)

TTA
(D) = 0 and TTB

(D) ≤ C

N
, (4.36)

for all TA ∈ CA and all TB ∈ CB, where the discrimination error probability is
w.r.t. the sets CA and CB. Hence, the sets CA and CB can be discriminated in
a transmission-free manner.

Proof. We combine Theorems 4.1 and 4.14. Let us fix some TA ∈ CA. From
Theorem 4.14 (with T = TA), we obtain the map R, with the properties (1),
(2), and (3). We want to apply Theorem 4.1 with C := R(CB). Since CB is (as
a closed subset of the compact set of channels) compact and R is continuous,
C is compact and hence closed. Furthermore, since by Assumption 7, the sets
CA|B1(V) and CB |B1(V) are disjoint, we have T ′|B1(V) �= TA|B1(V) for all T ′ ∈ CB .
Hence, property (2) implies that for all T ∈ C, the state |q0〉〈q0| is the only
state that is a fixed point of T . In particular, id /∈ C. Furthermore, Assumption
6 implies that T ′|B1(V) = TA|B1(V), for all T ′ ∈ CA. Hence, by property (1),

R(CA) = {id}. Thus, Theorem 4.1 yields a discrimination strategy D̃ and a

two-valued POVM such that Pe(D̃,Π) ≤ C̃N−2, for some constant C̃. By con-

struction, Pe(D̃,Π) is the discrimination probability w.r.t. the sets C and {id},
but since we have for T ′ ∈ CA∪CB that R(T ′) ∈ {id} iff T ′ ∈ CA and R(T ′) ∈ C
iff R(T ′) ∈ CB , it follows that Pe(D̃

R,Π) = Pe(D̃,Π), where D̃R is the trans-
formed discrimination strategy, as defined in the main text. For T ′ ∈ CA, con-
dition 3 and property (3) imply that the transformed transmission functional

tR(T ′) = 0. Thus, TT ′(D̃R) = 0. Furthermore, for T ′ ∈ CB with transmission
functional tT ′ , property (3) implies that the norm of the transformed transmis-

sion functional satisfies
∥∥tR(T ′)

∥∥ = 1
2 tT ′

(
P ⊥

d−1

)
≤ 1

2

∥∥tT ′ |B1(V)

∥∥. Since we have

TT ′(D̃R) = TR(T ′)(D̃), Theorem 4.1 implies that TT ′(DR) ≤ C̃‖tT ′ |B1(V)‖
2N . We

finish the proof by identifying D with D̃R and defining

C := max

[
C̃,

C̃

2
sup

T ′∈CB

∥∥tT ′ |B1(V)

∥∥
]

< ∞. (4.37)

�

As a direct consequence of the previous result, we get the validity of
Theorem 2.5.

Proof. (Theorem 2.5) We interpret every channel T with “interaction” func-
tional iT as channel with transmission functional iT . By Lemma 3.8, it suffices
to check Conditions 1-7 of Corollary 4.15. 1, 2, 6, and 7 follow by assumption
and 3, 4, and 5 follow directly from Lemma 3.10 (6). �

The remainder of this section is devoted to the proof of Theorem 4.14. We
show that the transformation depicted in Fig. 8 has the desired properties. We
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Figure 8. The reduction superchannel for dim(V) > 1

define this superchannel precisely in the proof of Theorem 4.14. An important
part is the so-called twirling operation, which we study here for a special group.

Lemma 4.16 (Twirling). For 2 ≤ d := dim(H) < ∞, let v ∈ H be a unit
vector and set Vv := span{v}. We define the group

G :=
{
g = 1Vv

⊕ Ug ∈ B(Vv ⊕ V ⊥
v )
∣∣Ug ∈ B(V ⊥

v ) is unitary
}

(4.38)

and the twirling superchannel S : B(B1(H)) → B(B1(H)) by

S(T ) =

∫
Ûg ◦ T ◦ Û−1

g dμG(g), (4.39)

where μG is the Haar measure on G and Ûg : B1(H) → B1(H) is the quantum

channel obtained by conjugation with the group element g ∈ G, i.e., Ûg(·) =
g · g−1. Then, the following statements hold.

• Let ψ ∈ V ⊥
v be any unit vector and φ := 1√

2
(v + ψ). If T : B1(H) →

B1(H) is a channel and |φ〉〈φ| is a fixed point of S(T ), then T = id.
Conversely, S(id) = id and thus |φ〉〈φ| is a fixed point of S(id).

• For a functional t : B1(H) → C, we have
∫

t ◦ Û−1
g dμG(g) = t

(
P⊥

d − 1

)
tr
[
P⊥ ·

]
+ t(|v〉〈v|) tr [|v〉〈v| · ] . (4.40)

Remark 4.17. The integration over the Haar measure can be replaced by a
unitary t-design [34]. We can thus implement the superchannel S without
using an ancillary quantum system.

Proof. We start by showing that the range of S is spanned by the following
seven operators:

tr [|v〉〈v| · ] |v〉〈v|, tr
[
P⊥ ·

]
|v〉〈v|, tr [|v〉〈v| · ] P⊥

d − 1
,

tr
[
P⊥ ·

] P⊥

d − 1
, P⊥ · |v〉〈v|, |v〉〈v| · P⊥,

P⊥ · P⊥ − tr
[
P⊥ ·

] P⊥

d − 1
.

(4.41)

Using the definition of the Haar measure, we obtain that the range of S consists
of precisely those operators T : B1(H) → B1(H) that commute with Ûg for all
g ∈ G. We calculate the commutant on the level of Choi matrices. To this end,
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we identify B1(H) with H ⊗ H via the Choi isomorphism (|hi〉〈hj | ↔ hi ⊗ hj),
where h0, h1, . . . hd−1 is an orthonormal basis of H such that h0 = v. The

operator corresponding to Ûg is g ⊗ g, where the complex conjugation is w.r.t
the aforementioned basis. We can rewrite this operator as:

g ⊗ g = (1Vv
⊕ Ug) ⊗ (1Vv

⊕ Ug)

= (1Vv
⊗ 1Vv

) ⊕ (1Vv
⊗ Ug) ⊕ (Ug ⊗ 1Vv

) ⊕ (Ug ⊗ Ug).

The maps g �→ 1Vv
⊗ 1Vv

, g �→ 1Vv
⊕ Ug, and g �→ Ug ⊗ 1Vv

are inequivalent

irreducible representations of G. If d = 2, the representation g �→ (Ug ⊗ Ug)
is the trivial 1-dimensional representation. A simple consequence of Schur’s
lemma is that the commutant then is 22 + 12 + 12 = 6 dimensional (see [35],
p. 60 for the dimension formula). For d = 2, the span of the operators in

(4.41) is also 6-dimensional (P⊥ · P⊥ − tr
[
P⊥·
]

P ⊥

d−1 = 0). So in this case, we

have proven the claim. If d ≥ 3, then the representation g �→ (Ug ⊗ Ug) is
the direct sum of the trivial 1-dimensional representation and an irreducible
((d − 1)2 − 1)-dimensional representation (see [36]). Hence, the dimension of
the commutant is 22 +12 +12 +12 = 7. Also, the dimension of the span of the
operators in (4.41) is 7-dimensional. This proves that the range of S is indeed
given by the span of the operators in (4.41).

For our first claim, we clearly have S(id) = id. Conversely, let T be a
channel such that |φ〉〈φ| is a fixed point of S(T ). Let α1, α2, . . . , α7 be the
coefficients of an expansion of S(T ) in terms of the operators in (4.41). Note
that for d = 2, this expansion is not unique but can be made that way by
demanding α7 := 1. As |φ〉〈φ| is a fixed point of S(T ), we have

|φ〉〈φ| =
1

2
(|v〉〈v| + |v〉〈ψ| + |ψ〉〈v| + |ψ〉〈ψ|)

= S(T )(|φ〉〈φ|)

=
1

2

(
(α1 + α2)|v〉〈v| + (α3 + α4 − α7)

P⊥

d − 1
+ α5|ψ〉〈v| + α6|v〉〈ψ|

+ α7|ψ〉〈ψ|
)

.

By comparing the second and the last expression, it follows that α1 + α2 = 1
and α5 = α6 = 1. If d = 2, then P⊥ = |ψ〉〈ψ| and α3 + α4 = 1. Otherwise, we
have α7 = 1 and α3 + α4 − α7 = 0, hence also α3 + α4 = 1. Furthermore,

S(T )(|v〉〈v|) = α1|v〉〈v| + α3
P⊥

d − 1
,

S(T )(|ψ〉〈ψ|) = α2|v〉〈v| + (α4 − α7)
P⊥

d − 1
+ α7|ψ〉〈ψ|. (4.42)

As S(T ) is trace-preserving, we obtain α1 + α3 = 1 and α3 + α4 = 1. Our
equations imply that α2 = 1 − α1, α3 = 1 − α1, and α4 = α1. Positivity of
S(T ) in (4.42) implies that α1 ≥ 0 and α3 ≥ 0. Thus, 0 ≤ α1 ≤ 1. We want
to show that complete positivity of S(T ) even implies α1 = 1. To this end, we
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define HA := span{v, ψ} and Ω+,Ω− ∈ HA ⊗ H by

Ω+ := v ⊗ v + ψ ⊗ ψ, Ω− := v ⊗ v − ψ ⊗ ψ.

As S(T ) is completely positive, we have

0 ≤ 〈Ω−|(idA ⊗ S(T ))(|Ω+〉〈Ω+|) Ω−〉

= 〈Ω−|
(

|v〉〈v| ⊗
(

α1|v〉〈v| + (1 − α1)
P⊥

d − 1

))
Ω−〉

+ 〈Ω−| (|ψ〉〈v| ⊗ |ψ〉〈v|) Ω−〉 + 〈Ω−| (|v〉〈ψ| ⊗ |v〉〈ψ|) Ω−〉

+ 〈Ω−|
(

|ψ〉〈ψ| ⊗
(

(1 − α1)|v〉〈v| + α1
P⊥

d − 1
+ |ψ〉〈ψ| − P⊥

d − 1

))
Ω−〉

= α1 − 2 +
α1 − 1

d − 1
+ 1

= d
α1 − 1

d − 1
.

Thus, α1 ≥ 1. This further implies that α1 = 1, α2 = 0, α3 = 0, and α4 = 1.
Together with the earlier result that α5 = α6 = α7 = 1, we obtain

S(T ) = tr [|v〉〈v| · ] |v〉〈v| + tr
[
P⊥ ·

] P⊥

d − 1
+ P⊥ · |v〉〈v| + |v〉〈v| · P⊥

+ P⊥ · P⊥ − tr
[
P⊥ ·

] P⊥

d − 1
= id.

Thus, we have shown that if |φ〉〈φ| is a fixed point of S(T ), then S(T ) = id. To
see that this also implies that T = id, we note that S(T ) is a convex combina-

tion of the channels Ûg ◦ T ◦ Û−1
g . But as the identity is an extremal element

of the convex set of quantum channels, Ûg ◦ T ◦ Û−1
g must be proportional to

the identity μG-almost everywhere. In particular, Ûg ◦ T ◦ Û−1
g = id, for some

g ∈ G. Thus, T = id. This proves the first claim.

It remains to prove the second claim. For t(·) = tr [L · ] and ρ ∈ B1(H),
we have

S′(t)(ρ) :=

∫
t ◦ Û−1

g (ρ) dμG(g) = tr

[∫
gLg−1 dμG(g) ρ

]
.

By the definition of the Haar measure, the integral must commute with all
g ∈ G. The representation g �→ 1Vv

⊕ Ug is the sum of two inequivalent
irreducible representations of G. Thus, the commutant is 2-dimensional. It is
easy to check that P⊥ and |v〉〈v| are in the commutant. Thus,

∫
gLg−1 dμG(g) = λ1P

⊥ + λ2|v〉〈v|,

for some λ1, λ2 ∈ C. Therefore, we can write

S′(t)(ρ) = λ1tr
[
P⊥ρ

]
+ λ2tr [|v〉〈v|ρ] .
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Substituting P⊥ and |v〉〈v| for ρ yields λ1 = (d − 1)−1 S′(t)(P⊥) and λ2 =
S′(t)(|v〉〈v|). As P⊥ and |v〉〈v| commute with all g ∈ G, we have

S′(t)(P⊥) = t

(∫
g−1P⊥g dμG(g)

)
= t(P⊥),

S′(t)(|v〉〈v|) = t

(∫
g−1|v〉〈v|g dμG(g)

)
= t(|v〉〈v|).

We plug this into (4.43) and obtain the desired result, Eq. (4.40). Thus, we
have proven our last claim. �

We are now ready to prove Theorem 4.14.

Proof. As already mentioned, the proof consists of an explicit construction
of the superchannel R. The construction is depicted in Fig. 8. We start by
defining the components of this circuit from left to right. For the definition
of the first component, we define HA to be a two-dimensional Hilbert space
with orthonormal basis {a0, a1}. The channel Ŵ : B1(HQ) → B1(V ⊗ HA) is

defined by Ŵ (·) = W · W †, with isometry W : HQ → V ⊗ HA defined by

Wq0 = v ⊗ a0,

Wq1 =

{ 1√
2

(v + ψ) ⊗ a1, if dim(V) > 1

v ⊗ a1, if dim(V) = 1
,

where ψ ∈ V is any unit vector that is orthogonal to v. This channel is designed
in order to exhibit the second conclusion of Lemma 4.16.

The second component is the twirling operation S : B(B1(V)) → B(B1(V)),
which is a superchannel on its own and which we only define for dim(V) > 1.

This operation is depicted by the two unitary channels Ûg and Û−1
g connected

by a dashed line and acts as

S(·) :=

∫
Ûg ◦ (·) ◦ Û−1

g dμG(g), (4.43)

where μG is the Haar measure on the compact group G, defined by (cf.
Lemma 4.16)

G :=
{
g = 1Vv

⊕ Ug ∈ B(Vv ⊕ V ⊥
v )
∣∣Ug ∈ B(V ⊥

v ) is unitary
}

,

with Vv := span{v}. The channels Ûg, Û
−1
g : B1(V) → B1(V) are defined by

Ûg(·) := (1Vv
⊕ Ug)(·)(1Vv

⊕ U†
g ) and Û−1

g (·) := (1Vv
⊕ U†

g )(·)(1Vv
⊕ Ug).

The channel idV→H : B1(V) → B1(H), ρ �→ ρ embeds B1(V) into B1(H).

To define the channel V̂ −1 : B1(H) → B1(H), we use that by assumption,

T is isometric on V. This means that there exists an isometry Ṽ : V → H such
that T |B1(V)(·) = Ṽ · Ṽ †. This isometry can be extended (in a non-unique way)
to a unitary and therefore invertible operation V : H → H. We then define

V̂ −1(·) := V † · V.
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We define the channel P̂V : B1(H) → B1(V) by

P̂V(·) := PV · P †
V + tr

[
(1 − P †

VPV)(·)
]
|v〉〈v|,

where PV : H → V is the orthogonal projection onto V. To finish the channel
definitions, we define the channel PW : B1(V ⊗ HA) → B1(HQ) by

PW (·) := W † · W + tr
[
(1 − WW †)(·)

]
|q0〉〈q0|.

We can now define the superchannel R. If dim(V) > 1, we define

R(·) := PW ◦
([∫

Ûg ◦ P̂V ◦ V̂ −1 ◦ (·) ◦ idV→H ◦ Û−1
g dμG(g)

]
⊗ idA

)
◦ Ŵ ,

(4.44)

and if dim(V) = 1, we define

R(·) := PW ◦ V̂ −1 ◦ (·) ◦ idV→H ◦ Ŵ . (4.45)

With the definition in place, it only remains to show that the superchan-
nel R has the claimed properties. To prove the first claim, let T ′ ∈ B(B1(H))
such that T |B1(V) = T ′|B1(V). For dim(V) > 1, we use that by construction

V̂ −1 ◦ T ′|B1(V) = idV and that operators in B1(V) are fixed points of PV . We
get

R(T ′) = PW ◦
([∫

Ûg ◦ idV ◦ Û−1
g dμG(g)

]
⊗ idA

)
◦ Ŵ

= PW ◦ Ŵ

= idQ.

By means of a similar argument, it follows that the claim also holds for
dim(V) = 1. To prove the second claim, we start by showing that |q0〉〈q0|
is a fixed point of R(T ′), for every channel T ′. For dim(V) > 1, we have

R(T ′)(|q0〉〈q0|) = PW ◦
(
S(P̂V ◦ V̂ −1 ◦ T ′ ◦ idV→H) ⊗ idA

)
◦ W (|q0〉〈q0|)

= PW

(
S(P̂V ◦ V̂ −1 ◦ T ′ ◦ idV→H)(|v〉〈v|) ⊗ |a0〉〈a0|

)

= |q0〉〈q0|,
where the last line follows as PW maps every state of the form σ ⊗ |a0〉〈a0|
to |q0〉〈q0|. An analogous argument yields that |q0〉〈q0| is also a fixed point of
R(T ′) if dim(V) = 1. Conversely, assume that T ′ ∈ B(B1(H)) is a channel such
that T |B1(V) �= T ′|B1(V) and ρ ∈ S(HQ) is a fixed point of R(T ′). We prove
that ρ = |q0〉〈q0|. We do so by first showing that if ρ �= |q0〉〈q0|, then |q1〉〈q1|
is also a fixed point of R(T ′), which will lead to a contradiction. By part 1 of
the theorem, |q0〉〈q0| is a fixed point of R(T ′). Hence, Lemma 4.4 implies that
span{|q0〉〈q1|} and span{|q1〉〈q0|} are invariant subspaces of R(T ′). Thus,

〈q0|R(T ′)(|q0〉〈q1|) q0〉 = 〈q0|R(T ′)(|q1〉〈q0|) q0〉 = 0.



M. Hasenöhrl and M. M. Wolf Ann. Henri Poincaré

We then have

〈q0|ρ q0〉 = 〈q0|R(T ′)(ρ) q0〉

=

1∑

i,j=0

〈qi|ρ qj〉〈q0|R(T ′)(|qi〉〈qj |) q0〉

=

1∑

i=0

〈qi|ρ qi〉〈q0|R(T ′)(|qi〉〈qi|) q0〉

= 〈q0|ρ q0〉 + 〈q1|ρ q1〉〈q0|R(T ′)(|q1〉〈q1|) q0〉.
Hence,

〈q1|ρ q1〉〈q0|R(T ′)(|q1〉〈q1|) q0〉 = 0.

If 〈q1|ρ q1〉 = 0, then positivity of ρ implies that ρ = |q0〉〈q0|, which contradicts
the assumption that ρ �= |q0〉〈q0|. It follows that

〈q0|R(T ′)(|q1〉〈q1|) q0〉 = 0.

Positivity of R(T ′)(ρ) yields R(T ′)(|q1〉〈q1|) = |q1〉〈q1|, which shows that
|q1〉〈q1| is a fixed point of R(T ′). We now show that this leads to a contradic-

tion. With the abbreviations S̃ := S(P̂V ◦V̂ −1◦T ′◦idV→H) and φ := 1√
2
(v+ψ),

we get

|q1〉〈q1| = R(T ′)(|q1〉〈q1|)

= PW

(
S̃(|φ〉〈φ|) ⊗ |a1〉〈a1|

)

= tr
[
|φ〉〈φ| S̃(|φ〉〈φ|)

]
|q1〉〈q1| + tr

[
(1 − WW †) S̃(|φ〉〈φ|)

]
|q0〉〈q0|.

Comparing the last with the first line implies that tr
[
|φ〉〈φ| S̃(|φ〉〈φ|)

]
= 1. We

observe the latter equation says that the Cauchy–Schwarz inequality (w.r.t. the

Hilbert–Schmidt inner product) is satisfied with equality. Thus, S̃(|φ〉〈φ|) =
|φ〉〈φ|. Lemma 4.16 then implies

P̂V ◦ V̂ −1 ◦ T ′ ◦ idV→H = idV .

Note that PV is the sum of the two completely positive trace non-increasing

maps, P1(·) := PV · PV and P2(·) := tr
[
(1 − P †

VPV)(·)
]
|v〉〈v|. Thus, with the

appropriate normalization, the extremal point of the convex set of completely
positive maps, idV , can be written as a convex combination of Pi ◦ V̂ −1 ◦ T ′ ◦
idV→H. Thus,

V̂ −1 ◦ T ′ ◦ idV→H = idV→H. (4.46)

As V̂ −1 is invertible and T ′ ◦ idV→H, identity (4.46) is equivalent to

T ′|B1(V) = V̂ |B1(V).

By construction of V̂ , the RHS equals T |B1(V). But this contradicts the as-
sumption that T |B1(V) �= T ′|B1(V). Thus, |q1〉〈q1| cannot be a fixed point of
R(T ′). Consequently, ρ = |q0〉〈q0|, which proves that |q0〉〈q0| is the only state
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that is a fixed point of R(T ′). This proves the second claim. To prove the
third claim, we must calculate how our protocol transforms the transmission
functional. For dim(V) = 1, we get directly from the definition (4.45) that
tR(T )(·) = tr [·] tT (|v〉〈v|) = 0. For dim(V) > 1, the transmission functional tT
transforms to tR(T ), given by

tR(T ) :=

∫
tT ◦ idV→H ◦ Û−1

g ◦ trA ◦ Ŵ dμG(g). (4.47)

To evaluate (4.47), we use (4.40) and get

tR(T )(·) = tT ◦ idV→H

(
P⊥

d − 1

)
tr
[
P⊥trA

[
Ŵ (·)

]]
.

A direct calculation then yields the claim. �

Remark 4.18. With our protocol, we achieved a transformation from chan-
nels on H to qubit channels with certain properties. This was achieved by
using classical communication and one ancillary qubit. To demonstrate that
our implementation of this transformation uses the quantum resources in the
most economic way possible, we show that in general one cannot use only
classical communication to implement a transformation which has the desired
properties. To this end, we consider the following procedure. First, we use an
instrument to transform the state and to obtain classical information. Then,
we apply the channel, which should be transformed. Afterwards, we apply
some quantum channel, where the choice of the channel may depend on the
classical information that we obtained in the first step. Our instrument de-
scribed by a collection of nonzero quantum operations I1, I2, . . . , IN , such that∑

i Ii is trace-preserving. We denote the associated channels that are applied
in the last step by Λ1,Λ2, . . . ,ΛN . Our protocol then implements the following
transformation:

T �→
∑

i

Λi ◦ T ◦ Ii. (4.48)

Assume that the channel T of the Theorem 4.14 is the identity and dim(H) =
dim(V) = 2. Our first requirement is that id �→ id. Thus,

id =
∑

i

Λi ◦ Ii. (4.49)

Since id is an extreme point of the convex set of quantum operations, there
must be non-negative coefficients p1, p2, . . . , pN , such that

Λi ◦ Ii = pi · id, for i = 1, 2, . . . , N. (4.50)

This implies that Λi and Ii must be proportional to a unitary conjugation,

i.e., Λi(·) = U†
i · Ui and Ii(·) = piUi · U†

i , for some unitary operator Ui. Our
second requirement is that (since V = H) every channel except id must be
transformed to a state whose only fixed point is |q0〉〈q0| =: P0. In particular,
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for the pinching channel, defined by TP (·) = P0 ·P0+P1 ·P1, with P1 := 1−P0,
we have

P0 =
∑

i

1∑

j=0

pi(U
†
i PjUi)P0(U

†
i PjUi). (4.51)

Since P0 is an extremal point of the convex set {ρ ≥ 0 | tr [ρ] ≤ 1}, we get that

(U†
i PjUi)P0(U

†
i PjUi) = λijP0, (4.52)

for some λij ≥ 0. From this, we conclude that either U†
i PjUi = P0 or U†

i PjUi =
P1. But then the application of the transformed channel to P1 yields

∑

i

1∑

j=0

pi(U
†
i PjUi)P1(U

†
i PjUi) = P1. (4.53)

Thus, P0 is not the only state that is a fixed point of the transformed channel.
Hence, to achieve our transformation, an ancillary system is needed.

5. No-Go Results

In this section, we consider the case for which we claimed in our main theorem
that it is impossible to discriminate two channels in an “interaction-free” man-
ner. There are two major results in this section: Theorem 5.7 which claims an
inequality between the error probability and the “interaction” probability; and
Theorem 5.9, which claims that, under a certain condition, the best achievable
rate (in terms of the number of channel uses, N) for the “interaction” prob-
ability is proportional to N−1. Both theorems are consequences of our main
technical results: Propositions 5.2 and 5.3. The proof techniques for these re-
sults are inspired by the techniques used in two papers by Mitchison, Massar,
and Pironio [11,12], who proved an analogous no-go result for the special case
of a semitransparent object. Before we state the first proposition, we define
a quantity that will appear as proportionality constant in the results of this
section. As this may seem complicated, we want to stress that in all relevant

cases, C
(T ↓

A,T ↓
B)

V,W can be bounded by 2.

Definition 5.1. For dim(H) < ∞, let T ↓
A, T ↓

B : B1(H) → B1(H) be two linear
maps, let V be a linear subspace of H, and let W = {W1,W2, . . . ,WK} be
a collection of mutually orthogonal subspaces of V⊥ with the property that
V⊥ = W1 ⊕ W2 ⊕ · · · ⊕ WK . Furthermore, let P and P1, P2, . . . , PK be the
orthogonal projections onto V and W1,W2, . . . WK .

We define the quantity C
(T ↓

A,T ↓
B)

V,W to be the infimum of the (possibly empty)
set of real numbers r with the property that there exists a finite-dimensional
Hilbert space HE , isometries VA, VB : H → HE ⊗ H, and orthogonal projec-
tions PA, PB : HE → HE such that14

r = max
1≤k≤K

∥∥∥Pk(VA
†(PAPB ⊗ 1)VB − 1)Pk

∥∥∥ , (5.1a)

14 ‖·‖ is the operator norm on B(H).
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VAP = VBP, (5.1b)

T ↓
X(·) = trE

[
(PX ⊗ 1)VX · V †

X

]
, (5.1c)

for X ∈ {A,B}.

We are now ready to state the first important proposition, which estab-
lishes, for a single channel use, an uncertainty relation between the “information-
gain” (RHS of (5.2)) about the identity of the channel (is it TA or TB?) and a
quantity that depends on the probability that if we would measure the input
states, we would find that they are supported in the orthogonal complement of
a subspace V. Later on, this subspace will be chosen to be a maximum vacuum
subspace.

Proposition 5.2 (Information-interaction tradeoff). For dim(H) < ∞, let T ↓
A,

T ↓
B : B1(H) → B1(H) be quantum operations and let V be a subspace of H

such that T ↓
A|B1(V) is trace-preserving and T ↓

A|B1(V) = T ↓
B |B1(V). Let W =

{W1,W2, . . . ,WK} be a collection of mutually orthogonal subspaces of V⊥,
such that V⊥ = W1 ⊕ W2 ⊕ · · · ⊕ WK . Denote the orthogonal projections onto

these subspaces by P1, P2, . . . , PK . Then, C
(T ↓

A,T ↓
B)

V,W ≤ 2 and

√
F (ρ, σ) −

√
F (T ↓

A(ρ), T ↓
B(σ)) ≤ C

(T ↓
A,T ↓

B)
V,W

K∑

k=1

√
tr [Pkρ] tr [Pkσ], (5.2)

for all ρ, σ ≥ 0.

Before proving the proposition, let us remark that Proposition 2.10 is a
direct consequence thereof.

Proof. (Proposition 2.10) This follows directly from the fact that the fidelity
can be characterized in terms of the minimum over measurements of expres-
sions of the form given on the RHS of (5.2) (see [25], p. 412). �

Proof. (Proposition 5.2) We first establish that C
(T ↓

A,T ↓
B)

V,W ≤ 2. Let P , P⊥ be the

orthogonal projections onto V and V⊥. By applying the triangular inequality

and the sub-multiplicativity of the operator norm to the definition of C
(T ↓

A,T ↓
B)

V,W ,
it follows that if there exist HE , VA, VB , PA, and PB with the properties of

Definition 5.1, then C
(T ↓

A,T ↓
B)

V,W ≤ 2. Therefore, we start our proof by showing the
existence of the aforementioned quantities. It is a basic property of completely
positive trace non-increasing maps (see [25], p. 365) that there exist finite-

dimensional Hilbert spaces HEA
and HEB

, isometries ṼA : H → HEA
⊗ H

and ṼB : H → HEB
⊗ H, and orthogonal projections P̃A : HEA

→ HEA
and

P̃B : HEB
→ HEB

, such that T ↓
A(·) = trEA

[
(P̃A ⊗ 1)ṼA · Ṽ †

A

]
and T ↓

B(·) =

trEB

[
(P̃B ⊗ 1)ṼB · Ṽ †

B

]
. By enlarging the smaller of the two ancillary Hilbert

spaces and identifying two orthonormal basis, we can achieve that HEA
and

HEB
are the same space, HE . By assumption, TA|B1(V) and TB |B1(V) are trace-

preserving. It follows that (P̃A ⊗1)ṼA|V and (P̃A ⊗1)ṼB |V are isometries and
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thus (P̃A ⊗ 1)ṼA|V = ṼA|V and (P̃B ⊗ 1)ṼB |V = ṼB |V . Hence, ṼA|V and ṼB |V
are Stinespring isometries of the same channel and thus are related by a unitary
operator on HE . Precisely, there exists a unitary operator W : HE → HE

such that ṼB |V = (W ⊗ 1)ṼA|V . Equivalently, ṼBP = (W ⊗ 1)ṼAP . It is

then easy to verify that the operators VA := (W ⊗ 1)ṼA, VB := ṼB and

PA := WP̃AW−1, PB := P̃B satisfy the requirements (5.1c) and (5.1b). In
particular, we have

(PA ⊗ 1)VAP = VAP = VBP = (PB ⊗ 1)VBP. (5.3)

This finishes the proof of the first part of the proposition. For the second
part, we fix VA, VB , PA, and PB such that the Conditions (5.1c) and (5.1b) are
satisfied. In particular, this implies that (5.3) holds. To prove the inequality,
we proceed as follows: for two positive operators ρ, σ ≥ 0, Uhlmann’s theorem
implies that there exists a finite-dimensional Hilbert space HQ and two vectors
ψ, φ ∈ HQ ⊗ H (purifications) such that trQ [|ψ〉〈ψ|] = ρ and trQ [|φ〉〈φ|] = σ

and
√

F (ρ, σ) = |〈ψ|φ〉|. We further note that (1Q ⊗ (PA ⊗ 1)VA)|ψ〉 and

(1Q ⊗ (PB ⊗1)VB)|φ〉 are purifications of T ↓
A(ρ) and T ↓

B(σ). Hence, Uhlmann’s
theorem implies that

√
F (T ↓

A(ρ), T ↓
B(σ)) ≥ |〈(1Q ⊗ (PA ⊗ 1)VA)ψ|(1Q ⊗ (PB ⊗ 1)VB)φ〉| . (5.4)

By inserting 1Q ⊗P +1Q ⊗P⊥ (which is equal to the identity) and expanding
the scalar product, we obtain

RHS of (5.4) = |〈(1Q ⊗ (PA ⊗ 1)VAP )ψ|(1Q ⊗ (PB ⊗ 1)VBP )φ〉 (5.5a)

+ 〈(1Q ⊗ (PA ⊗ 1)VAP⊥)ψ|(1Q ⊗ (PB ⊗ 1)VBP )φ〉 (5.5b)

+ 〈(1Q ⊗ (PA ⊗ 1)VAP )ψ|(1Q ⊗ (PB ⊗ 1)VBP⊥)φ〉 (5.5c)

+ 〈(1Q ⊗ (PA ⊗ 1)VAP⊥)ψ|(1Q ⊗ (PB ⊗ 1)VBP⊥)φ〉|.
(5.5d)

It is not hard to see from (5.3) that the terms (5.5b) and (5.5c) vanish. Ex-
plicitly, we have

(5.5b) = 〈(1Q ⊗ (PA ⊗ 1)VAP⊥)ψ|(1Q ⊗ (PB ⊗ 1)VBP )φ〉
= 〈(1Q ⊗ (PA ⊗ 1)VAP⊥)ψ|(1Q ⊗ (PA ⊗ 1)VAP )φ〉
= 〈(1Q ⊗ VAP⊥)ψ|(1Q ⊗ (PA ⊗ 1)VAP )φ〉
= 〈(1Q ⊗ VAP⊥)ψ|(1Q ⊗ VAP )φ〉
= 〈ψ|(1Q ⊗ P⊥P )φ〉
= 0,

and similarly for (5.5c). Adding and subtracting 〈(1Q ⊗ P⊥)ψ|(1Q ⊗ P⊥)φ〉
and using the inverse triangular inequality yields

(5.5) ≥ |〈(1Q ⊗ P )ψ|(1Q ⊗ P )φ〉 + 〈(1Q ⊗ P⊥)ψ|(1Q ⊗ P⊥)φ〉|
− |〈(1Q ⊗ (PA ⊗ 1)VAP⊥)ψ|(1Q ⊗ (PB ⊗ 1)VBP⊥)φ〉
− 〈(1Q ⊗ P⊥)ψ|(1Q ⊗ P⊥)φ〉|.

(5.6)
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We further use P⊥P = 0 (thus
√

F (ρ, σ) = |〈(1Q ⊗ P )ψ|(1Q ⊗ P )φ〉 + 〈(1Q ⊗
P⊥)ψ|(1Q ⊗ P⊥)φ〉|) and some rearrangement to arrive at

(5.6) =
√

F (ρ, σ) − |〈(1Q ⊗ P⊥)ψ|(1Q ⊗ P⊥(V †
A(PAPB ⊗ 1)VB − 1)P⊥)φ〉|.

(5.7)

As by assumption, P⊥ =
∑

k Pk and PkPl = 0 for k �= l, we get

(5.7) ≥
√

F (ρ, σ) −
K∑

k=1

|〈(1Q ⊗ Pk)ψ|(1Q ⊗ Pk(V †
A(PAPB ⊗ 1)VB − 1)Pk)φ〉|

≥
√

F (ρ, σ) −
K∑

k=1

{∥∥∥Pk(V †
A(PAPB ⊗ 1)VB − 1)Pk

∥∥∥

‖(1Q ⊗ Pk)ψ‖ ‖(1Q ⊗ Pk)φ‖
}

=
√

F (ρ, σ) −
K∑

k=1

∥∥∥Pk(V †
A(PAPB ⊗ 1)VB − 1)Pk

∥∥∥
√

tr [Pkρ] tr [Pkσ],

(5.8)

where we used the Cauchy–Schwarz inequality and the sub-multiplicativity of
the matrix norm to get from the first to the second line. For the last line, we
used

‖1Q ⊗ Pkψ‖2
= 〈ψ|(1Q ⊗ Pk)ψ〉 = tr [(1Q ⊗ Pk)|ψ〉〈ψ|] = tr [PktrQ [|ψ〉〈ψ|]]
= tr [Pkρ] .

As the only constraints that VA, VB , PA, PB , and HE have to satisfy are the
ones of Definition 5.1, we conclude that

(5.8) ≥
√

F (ρ, σ) − C
(T ↓

A,T ↓
B)

V,W

K∑

k=1

√
tr [Pkρ] tr [Pkσ].

This proves the claim. �

Proposition 5.2 does not allow for ancillary systems. In the following
proposition, which is an iterated refinement of the preceding one, we show
that this problem can be solved by applying Proposition 5.2 to T ↓ ⊗ id.

Proposition 5.3 (Technical no-go theorem). For dim(H) < ∞, let T ↓
A, T ↓

B :
B1(H) → B1(H) be two completely positive trace non-increasing maps. Let V be

a subspace of H such that T ↓
A|B1(V) is trace-preserving and T ↓

A|B1(V) = T ↓
B |B1(V).

Let W = {W1,W2, . . . ,WK} be a collection of mutually orthogonal subspaces of
V⊥, such that V⊥ = W1⊕W2⊕· · ·⊕WK . We denote the orthogonal projections
onto these subspaces by P1, P2, . . . , PK . Furthermore, let TA, TB : B1(H) →
B1(H) be completely positive maps such that TA − T ↓

A and TB − T ↓
B are also

completely positive. Then, for every finite-dimensional N -step discrimination
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strategy D = (H,HZ , s0,Λ), we have

1 −
√

F (ρTA

N , ρTB

N ) ≤ C
(T ↓

A,T ↓
B)

V,W

N−1∑

i=0

K∑

k=1

√
tr
[
PktrZ

[
ρ

T ↓
A

i

]]
· tr
[
PktrZ

[
ρ

T ↓
B

i

]]
,

(5.9)

where ρ is the intermediate state map of D. Furthermore, C
(T ↓

A,T ↓
B)

V,W ≤ 2.

Corollary 5.4. For dim(H) < ∞, let T ↓
A, T ↓

B : B1(H) → B1(H) be two com-
pletely positive trace non-increasing maps. Let V be a subspace of H such that

T ↓
A|B1(V) is trace-preserving and T ↓

A|B1(V) = T ↓
B |B1(V). Then,

1 −
√

F (ρTA

N , ρTB

N ) ≤ C
(T ↓

A,T ↓
B)

V,W

N−1∑

i=0

K∑

k=1

√
tr
[
PktrZ

[
ρ

T ↓
A

i

]]
· tr
[
PktrZ

[
ρ

T ↓
B

i

]]
.

(5.10)

Proof. To reduce the overhead in notation, we define ρi := ρTA
i , ρ↓

i := ρ
T ↓

A
i and

σi := ρTB
i , σ↓

i := ρ
T ↓

B
i . We start to prove the proposition by showing that

1 −
√

F (ρN , σN ) ≤ 1 −
√

F (ρ↓
N , σ↓

N ). (5.11)

This inequality follows from the strong concavity of the fidelity and the ob-

servation that ρN − ρ↓
N ≥ 0 and σN − σ↓

N ≥ 0. The latter statement follows

inductively, as ρ0 − ρ↓
0 = 0 ≥ 0 and

ρi+1 − ρ↓
i+1 = Λi((TA ⊗ id)(ρi) − (T ↓

A ⊗ id)(ρ↓
i ))

= Λi((TA ⊗ id)(ρi − ρ↓
i ) + ((TA − T ↓

A) ⊗ id)(ρ↓
i ))

≥ 0.

The last line follows, as by induction ρi−ρ↓
i ≥ 0 and TA−T ↓

A is, by assumption,
completely positive. Replacing ρ by σ and A by B in the argument above shows

that also σN − σ↓
N ≥ 0. We write Δρ := ρN − ρ↓

N and Δσ := σN − σ↓
N and use

the strong concavity (see [25], p. 414) and the non-negativity of the fidelity,
to obtain the following inequality:

√
F (ρN , σN ) =

√
F (ρ↓

N + Δρ, σ↓
N + Δσ)

≥
√

F (ρ↓
N , σ↓

N ) +
√

F (Δρ,Δσ)

≥
√

F (ρ↓
N , σ↓

N ),

which is equivalent to (5.11). To prove (5.9), it remains to show that

1 −
√

F (ρ↓
N , σ↓

N ) ≤ C
(T ↓

A,T ↓
B)

V,W

N−1∑

i=0

K∑

k=0

√
tr
[
PktrZ

[
ρ↓

i

]]
· tr
[
PktrZ

[
σ↓

i

]]
.

(5.12)

To this end, notice that if T ↓
A|B1(V) = T ↓

B |B1(V), then (T ↓
A ⊗ id)|B1(V⊗HZ) =

(T ↓
B ⊗id)|B1(V⊗HZ). Hence, T ′

A := (T ↓
A⊗id), T ′

B := (T ↓
B ⊗id), V ′ := V⊗HZ and
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W ′ := {W1 ⊗ HZ , . . . ,WK ⊗ HZ} satisfy the assumptions of Proposition 5.2.
Furthermore, as the fidelity is non-decreasing under the action of the channel
Λi (see [25], p. 414), we have
√

F (ρ↓
i , σ

↓
i ) −

√
F (ρ↓

i+1, σ
↓
i+1) =

√
F (ρ↓

i , σ
↓
i ) −

√
F (Λi ◦ T ′

A(ρ↓
i ),Λi ◦ T ′

B(σ↓
i ))

≤
√

F (ρ↓
i , σ

↓
i ) −

√
F (T ′

A(ρ↓
i ), T

′
B(σ↓

i )).

We want to apply Proposition 5.2 to the RHS of this expression. To do this
correctly, we should notice that the projections, appearing in (5.2), project
onto Wk ⊗ HZ , and hence are equal to Pk ⊗ 1. Also, if VA, VB , PA, and PB

satisfy Conditions (5.1b) and (5.1c), then VA ⊗ 1, VB ⊗ 1, PA ⊗ 1, and PB ⊗ 1
satisfy the Conditions (5.1b) and (5.1c) for T ′

A and T ′
B . If we plug this into

(5.1a) and use that in general ‖X ⊗ 1‖ = ‖X‖, we obtain

C
(T ↓

A⊗id,T ↓
B⊗id)

V′,W′ ≤ C
(T ↓

A,T ↓
B)

V,W .

Using these observations, we get

√
F (ρ↓

i , σ↓
i ) −

√
F (ρ↓

i+1, σ
↓
i+1) ≤ C

(T ↓
A,T ↓

B)
V,W

K∑

k=1

√
tr
[
(Pk ⊗ 1)ρ↓

i

]
tr
[
(Pk ⊗ 1)σ↓

i

]

= C
(T ↓

A,T ↓
B)

V,W

K∑

k=1

√
tr
[
PktrZ

[
ρ↓

i

]]
tr
[
PktrZ

[
σ↓

i

]]
.

Equivalently,

√
F (ρ↓

i+1, σ
↓
i+1) ≥

√
F (ρ↓

i , σ↓
i ) − C

(T ↓
A,T ↓

B)
V,W

K∑

k=1

√
tr
[
PktrZ

[
ρ↓

i

]]
tr
[
PktrZ

[
σ↓

i

]]
.

If we iterate this inequality, we obtain

√
F (ρ↓

N , σ↓
N ) ≥

√
F (ρ↓

0, σ↓
0) − C

(T ↓
A,T ↓

B)
V,W

N−1∑

i=0

K∑

k=1

√
tr
[
PktrZ

[
ρ↓

i

]]
tr
[
PktrZ

[
σ↓

i

]]
.

Using
√

F (ρ↓
0, σ

↓
0) =

√
F (s0, s0) = 1 and some rearrangement establishes (5.12)

and completes the proof of the theorem. �

To connect this technical result with the main results of this section, we
need two auxiliary lemmas.

Lemma 5.5. For dim(H) < ∞, let TA, TB : B1(H) → B1(H) be two channels
and let D be a finite-dimensional N -step discrimination strategy and Π be a
two-valued POVM. Then,

(1 − 2Pe(D,Π))2

2
≤ 1 −

√
F (ρTA

N , ρTB

N ), (5.13)

where ρ is the intermediate state map of D.

Proof. By definition,

Pe(D,Π) =
1

2

[
tr
[
πBρTA

N

]
+ tr

[
πAρTB

N

]]
. (5.14)
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If we minimize over the possible two-valued POVMs Π′, the famous Holevo-
Helstrom formula reads

Pm
e (D) := min

Π′
Pe(D,Π′) =

1

2

[
1 − 1

2

∥∥∥ρTA

N − ρTB

N

∥∥∥
1

]
.

Since 0 ≤ Pe(D,Π) ≤ 1
2 , we have 1 − 2Pe(D,Π) ≥ 0. Thus,

(1 − 2Pe(D,Π))2

2
≤ (1 − 2Pm

e (D))2

2
. (5.15)

By the Fuchs–van de Graaf inequality (see [25], p. 416),

1

2
‖ρ − σ‖1 ≤

√
1 −

√
F (ρ, σ)2.

Thus,

(1 − 2Pm
e (D))2

2
=

(
1
2

∥∥∥ρTA

N − ρTB

N

∥∥∥
1

)2

2

≤ 1 −
√

F (ρTA

N , ρTB

N )2

2

= (1 −
√

F (ρTA

N , ρTB

N ))
1 +

√
F (ρTA

N , ρTB

N )

2

≤ 1 −
√

F (ρTA

N , ρTB

N ).

Together with (5.15), this proves the claim. �

Lemma 5.6. For dim(H) < ∞, let TA, TB : B1(H) → B1(H) be two chan-
nels with vacuum v ∈ H. Let VTA

and VTB
be the respective maximal vac-

uum subspaces and let T ↓
A and T ↓

B be as in Definition 3.3 (Eq. 3.6). Fur-
thermore, let V be a subspace such that v ∈ V and V ⊆ VTA

∩ VTB
. Let

W = {W1,W2, . . . ,WK} be a collection of mutually orthogonal subspaces of
V⊥, such that V⊥ = W1 ⊕ W2 ⊕ · · · ⊕ WK . Denote the orthogonal projections
onto these subspaces by P1, P2, . . . , PK . Then,

(1 − 2Pe(D,Π))2

2
≤ C

(T ↓
A,T ↓

B)
V,W

N−1∑

i=0

K∑

k=1

√
tr
[
PktrZ

[
ρ

T ↓
A

i

]]
· tr
[
PktrZ

[
ρ

T ↓
B

i

]]
,

(5.16)

for all finite-dimensional N -step discrimination strategies D = (H,HZ , s0,Λ)
and all two-valued POVMs, Π.

Proof. By Lemma 5.5, we have for any finite-dimensional N -step discrimina-
tion strategy D and any two-valued POVM, Π, that

(1 − 2Pe(D,Π))2

2
≤ 1 −

√
F (ρTA

N , ρTB

N ). (5.17)

We want to apply Proposition 5.3 to the RHS of this inequality. To this end,
we have to define the quantities appearing in that proposition. We identify
TA, TB ,V, and W with the objects that bear the same name. In the following

let X ∈ {A,B}. We define T ↓
X as in Definition 3.3 and need to check that



“Interaction-Free” Channel Discrimination

TX − T ↓
X is completely positive and that T ↓

X |B1(V) is trace-preserving. To this

end, we fix a Stinespring isometry VX : H → HE ⊗ H of TX . Then, T ↓
X is

defined by

T ↓
X(·) = trE

[
(P (X)

v ⊗ 1)VX · V †
X

]
,

where P
(X)
v is the projection onto the support of trH

[
VX |v〉〈v|V †

X

]
. It follows

immediately from this expression that TX − T ↓
X is completely positive. To see

that T ↓
X |B1(VTX

) is trace-preserving, note that by Definition 3.9

VTX
= V −1

X

[
supp(trH

[
VX |v〉〈v|V †

X

]
) ⊗ H

]
.

Thus, for any15 ρ ∈ B1(VTX
),

VXρV †
X ∈ B1(supp(trH

[
VX |v〉〈v|V †

X

]
) ⊗ H).

As P
(X)
v ⊗ 1 is the projection onto supp(trH

[
VX |v〉〈v|V †

X

]
) ⊗ H, we have

T ↓
X |B1(VTX

)(·) = trE

[
(P (X)

v ⊗ 1)VX · V †
X

]
= trE

[
VX · V †

X

]
= TX |B1(VTX

)(·).

Thus, T ↓
X |B1(VTX

) is trace-preserving, as TX |B1(VTX
) is. As V is a subspace of

VTX
, also T ↓

X |B1(V) is trace-preserving. This is what we have claimed. As all
assumptions are satisfied, we can invoke Proposition 5.3, which directly yields
the desired inequality. �

The next result has already been stated in the results section.

Theorem 5.7 (No-go theorem). For dim(H) < ∞, let TA, TB : B1(H) →
B1(H) be two channels with vacuum v ∈ H. If there exists no subspace V ⊆ H
such that v ∈ V, at least one of the channels TA or TB is isometric on V and
TA|B1(V) �= TB |B1(V), then there exists a constant C < ∞, such that

(1 − 2Pe(D,Π))2 ≤ C

√
PTA

I (D) · PTB

I (D) ≤ C max(PTA

I (D), PTB

I (D)),

(5.18)

for all finite-dimensional N -step discrimination strategies D and all two-valued
POVMs, Π. Hence, TA and TB cannot be discriminated in an “interaction-
free” manner.

Remark 5.8. The assumption “The statement that TA or TB is isometric on
a subspace V, with v ∈ V, already implies that TA|B1(V) = TB |B1(V)” can be
rephrased in two equivalent ways. The first one is that the Conditions 1, 2,
and 3 in the Main Theorem (Sect. 2) cannot be fulfilled simultaneously. The
second reformulation is that for the maximum vacuum subspaces VTA

and
VTB

, we have VTA
= VTB

and TA|B1(VTA
) = TB |B1(VTB

). The equivalence
follows directly from the characterization of maximal vacuum subspaces in

15Remember that for a subspace V0 ⊆ H, the operators in B1(V0) are those that can be

written in the form
∑

i,j αij |ψi〉〈ψi|, with αij ∈ C and ψi ∈ V0.
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Lemma 3.10 4. This second reformulation is not only important in the proof,
but also if one wants to check this criterion, as VTA

and VTB
are efficiently

computable directly from Definition 3.9.

Proof. We use the second characterization in Remark 5.8. That is, VTA
= VTB

and TA|B1(VTA
) = TB |B1(VTB

). We set V := VTA
and let T ↓

A and T ↓
B be as in

Definition 3.3. Furthermore, we define W := {W1}, with W1 := V⊥. Then, by
Lemma 5.6, we have

(1 − 2Pe(D,Π))2 ≤ 2C
(T ↓

A,T ↓
B)

V,W

N−1∑

i=0

√
tr
[
P⊥trZ

[
ρ

T ↓
A

i

]]
· tr
[
P⊥trZ

[
ρ

T ↓
B

i

]]
,

(5.19)

where P⊥ is the orthogonal projection onto W1 = V⊥. As V is the maximum
vacuum subspace of TA and TB , Lemma 3.10 5 implies that for X ∈ {A,B},
there is a constant CTX

> 0 such that iTX
(ρ) ≥ CTX

tr
[
P⊥ ρ

]
for all ρ ≥ 0. As

trZ

[
ρ

T ↓
X

i

]
≥ 0, we get

(5.19) ≤
2C

(T ↓
A,T ↓

B)
V,W√

CTA
CTB

N−1∑

i=0

√
iTA

(
trZ

[
ρ

T ↓
A

i

])
iTB

(
trZ

[
ρ

T ↓
B

i

])

≤
2C

(T ↓
A,T ↓

B)
V,W√

CTA
CTB

√√√√
(

N−1∑

i=0

iTA

(
trZ

[
ρ

T ↓
A

i

])) (N−1∑

i=0

iTB

(
trZ

[
ρ

T ↓
B

i

]))

=
2C

(T ↓
A,T ↓

B)
V,W√

CTA
CTB

√
PTA

I (D) · PTB

I (D),

where we used the Cauchy–Schwarz inequality (on CN ) to obtain the second
line and the definition of the “interaction” probability in the last line. We note
that the last inequality in the statement of the theorem is trivial. Thus, by

setting C :=
2C

(T
↓
A,T

↓
B)

V,W√
CTA

CTB

, we have proven the claim. �

The following theorem is the technical version of the result stated in the
results section.

Theorem 5.9 (Rate limit theorem). For dim(H) < ∞, let TA, TB : B1(H) →
B1(H) be two channels with vacuum v ∈ H. Let VTA

and VTB
be the respective

maximal vacuum subspace of TA and TB. Set V := VTA
∩ VTB

. Suppose that
TA|B1(V) = TB |B1(V) and that V⊥ ∩ VTA

and V⊥ ∩ VTB
are orthogonal.

Then there exists a constant C > 0 such that

max(PTA

I (D), PTB

I (D)) ≥ C
(1 − 2Pe(D,Π))4

N
, (5.20)

for all finite-dimensional N -step discrimination strategies D, and any two-
valued POVM Π.
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Proof. The proof is similar to the one of the no-go theorem. Let T ↓
A and T ↓

B

be as in Definition 3.3 and set V := VTA
∩ VTB

. Furthermore, define W :=
{W1,W2,W3} with W1 := V⊥ ∩ VTA

, W2 := V⊥ ∩ VTB
and W3 := (W1 ⊕

W2)
⊥ ∩V⊥. Clearly, W1,W2, and W3 are mutually orthogonal and their direct

sum is V⊥. Furthermore, W2 ⊕ W3 = V⊥
TA

and W1 ⊕ W3 = V⊥
TB

. Thus, by
Lemma 5.6, we have

(1 − 2Pe(D,Π))2 ≤ 2C
(T ↓

A,T ↓
B)

V,W

N−1∑

i=0

3∑

k=1

√
tr
[
PktrZ

[
ρ

T ↓
A

i

]]
· tr
[
PktrZ

[
ρ

T ↓
B

i

]]
,

(5.21)

where for k ∈ {1, 2, 3}, Pk is the orthogonal projection onto Wk. Using the
Cauchy–Schwarz inequality (on C3), and the fact that probabilities are less
than one, and afterwards the Cauchy–Schwarz inequality on CN , we get

(5.21) ≤
√

12C
(T ↓

A,T ↓
B)

V,W

N−1∑

i=0

√
tr
[
(P2 + P3)trZ

[
ρ

T ↓
A

i

]]
+ tr

[
(P1 + P3)trZ

[
ρ

T ↓
B

i

]]

≤
√

12NC
(T ↓

A,T ↓
B)

V,W

√√√√
N−1∑

i=0

tr
[
P⊥

VTA
trZ

[
ρ

T ↓
A

i

]]
+ tr

[
P⊥

VTB
trZ

[
ρ

T ↓
B

i

]]
,

(5.22)

where P⊥
VTA

and P⊥
VTB

are the projections onto V⊥
TA

and V⊥
TB

. Lemma 3.10, 5

implies that for X ∈ {A,B}, there is a constant CTX
> 0 such that iTX

(ρ) ≥
CTX

tr
[
P⊥

VTX
ρ
]

for all ρ ≥ 0. As trZ

[
ρ

T ↓
X

i

]
≥ 0, we get

(5.22) ≤
√

12NC
(T ↓

A,T ↓
B)

V,W

√√√√C−1
TA

N−1∑

i=0

iTA

(
trZ

[
ρ

T ↓
A

i

])
+ C−1

TB

N−1∑

i=0

iTB

(
trZ

[
ρ

T ↓
B

i

])

≤ C
(T ↓

A,T ↓
B)

V

√
24

min(CTA
, CTB

)

√
N max(PTA

I (D), PTB

I (D)).

Taking the square and defining C :=
min(CTA

,CTB
)

24C
(T

↓
A,T

↓
B)

V,W

2 proves the claim. �

6. Related Work

In this section we compare our setup and results to selected other works in the
literature.16 We start with a detailed comparison with the work on counterfac-
tual computation (CFC) by Mitchison and Josza [7]. CFC aims to determine
the outcome of a quantum computation without switching on the computer.
Expressed in a language closer to ours, CFC aims to discriminate (counterfac-
tually, the term analogous to “interaction-free”) between two unitaries U0 and

16Although we tried to make the discussion as self-contained as possible, this section is

intended for the reader who is at last partially familiar with the referenced works.
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U1 defined on a bipartite system HO ⊗ HS (where “O” stands for output and
“S” for switch).

Before defining what counterfactual means, we need to discuss the al-
lowed discrimination strategies. Here, it is allowed to use the unknown unitary
many times while performing unitary operations and measurements in be-
tween. It is also allowed to add an ancillary system HZ of arbitrary size and
to let the unitary operations act on the space HO ⊗ HS ⊗ HZ . This implies
that measurements can be deferred until the unknown unitary was applied for
the last time. Thus, if the unknown unitary Ur, r ∈ {0, 1} is used N times,
the initial state is ψI ∈ HO ⊗ HS ⊗ HZ and the intermediary unitaries are
V1, V2, . . . , VN−1 ∈ B(HO ⊗HS ⊗HZ), then the (r-dependent) state before the
final measurement is

ψr
F = (Ur ⊗ 1Z)VN−1(Ur ⊗ 1Z)VN−2 · · · (Ur ⊗ 1Z)V1(Ur ⊗ 1Z)ψI . (6.1)

In preparation for defining the term counterfactual, one assumes that for
each r ∈ {0, 1} we can split the switch space into two orthogonal spaces HS =

Hr,off
S ⊕Hr,on

S , called the off and on subspaces, respectively. The interpretation

here is that if we apply Ur to a state in HO ⊗ Hr,off
S , then the computer does

not run. Consistent with this interpretation, it is also assumed that

Urψ = ψ, for all ψ ∈ HO ⊗ Hr,off
S . (6.2)

One then introduces a decomposition into so-called histories. To this end, one
imagines that after each application of Ur a measurement was performed,

projecting either onto HO ⊗ Hr,off
S ⊗ HZ or onto HO ⊗ Hr,on

S ⊗ HZ . We denote
the corresponding projections by P r

off and P r
on. On can then decompose ψr

F as:

ψr
F =

∑

h∈{on,off}N

vr
h, with

vr
h = P r

hN
(Ur ⊗ 1Z)VN−1 · · · P r

h2
(Ur ⊗ 1Z)V1P

r
h1

(Ur ⊗ 1Z)ψI .

(6.3)

Each of the on/off sequences h in (6.3) is called a history.
Suppose we perform a projective measurement on the final state with pos-

sible outcomes m ∈ {1, 2, . . . ,M} and associated projections {Q1, Q2, . . . , QM}.
Mitchison and Josza (Definition 5.1 in [7]) then define an outcome m to be a
counterfactual outcome of type r ∈ {0, 1}, if

1. Qmvr
h = 0, if h is not the all-off history,

2. Qmψ1−r
F = 0.

The first condition says that the only history consistent with the outcome m
must be the all-off history and the second condition demands that the outcome
m can only occur if the unknown unitary is Ur (and not U1−r).

Now, how does CFC relate to “interaction-free” channel discrimination?
First, one can interpret “interaction-free” channel discrimination in terms of
CFC after some modifications, as follows. Consider a channel T with vacuum
v ∈ HI , given by T (·) = trE

[
V · V †]. In Sect. 3.1, we determined that the

Demon’s optimal strategy is to perform a two-outcome measurement on E
(with corresponding projections Pv and P⊥

v ). After extending V to a unitary
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U , we can interpret the whole space HE ⊗ HI as the switch space HS and
set HO := C. A natural way to introduce the splitting of HS into on and off
subspace is then to define Hoff

S = range(Pv) ⊗ HI and Hon
S = range(P⊥

v ) ⊗
HI . Note, however, that this definition does not satisfy (6.2).17 A violation
of assumption (6.2) does not prevent us from defining histories, nor does it
interfere with the definition of a counterfactual outcome as above. So, one
might consider broadening the definition of CFC by dropping it. However, upon
close investigation one finds that (the proofs of) all theorems in [7] rely crucially
on that assumption. In any case, even after dropping that assumption, the
definition of a counterfactual outcome above is still too restrictive to fully cover
“interaction-free” channel discrimination, since we do not require that the
“interaction” probability or the error probability are exactly zero (as demanded
by CFC) but rather that they can be made arbitrarily small. This requires a
probabilistic modification of the definition of a counterfactual outcome, such
as the one suggested in the discussion section in [7]. We therefore conclude
that “interaction-free” channel discrimination is consistent with a sufficiently
broadened definition of CFC. Unfortunately, however, we do not think that
this point of view has any important direct implications for the feasibility of
the “interaction-free” channel discrimination task. The main reasons for this
belief are that even after reformulation into the language of CFC, the allowed
discrimination strategies differ considerably and that the only result in [7] that
goes beyond the qubit case is that the number of insertions of Ur must tend
to infinity for an optimal success probability.18

What about implications of our results for CFC? We believe that a
conceptual weakness of CFC is that there are (in general) no observable
consequences—in the sense that (the surroundings of) the apparatus changes—
regardless of whether a computation was performed counterfactually or not.
This is so because the imagined measurements after each application of the
unknown unitary are not actually performed. We think that the question
about a change of (the surroundings of) the apparatus is the relevant one
for technical applications, which is our main focus. If one demands that the
imaginary measurements are actually performed, then CFC becomes a special
case of “interaction-free” channel discrimination by assigning to the unitary
Ur ∈ B(HO ⊗ HS) the channel Tr : B(HO ⊗ HS) given by

Tr(ρ) = (1O ⊗ P r,off
S )UρU†(1O ⊗ P r,off

S ) + (1O ⊗ P r,on
S )UρU†(1O ⊗ P r,on

S ),
(6.4)

for all ρ ∈ B1(HO ⊗ HS), where P r,off
S and P r,on

S are the projections according
to the splitting of HS into on and off subspace. It follows from (6.2) that Tr

17For example, if U is defined on C2 ⊗ C2 by U |00〉 = |00〉, U |01〉 = 1√
2
(|01〉+ 〈10|), U |10〉 =

1√
2
(|10〉 − |01〉), U |11〉 = |11〉 and |0〉 is the vacuum, then Pv = |0〉〈0|. However, the corre-

sponding off subspace Hoff
S = span{|00〉, |01〉} is not even left invariant by U .

18Note that this conclusion does not apply to all cases of our setting, since the number of

applications for a perfect discrimination of two unitaries is finite.
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is a channel with vacuum, where the vacuum can be taken to be any vector in

HO ⊗ Hr,off
S . Hence, our results apply to this setting.

From our technological point of view, some interpretational discussions
in the literature can be avoided. For example, in [37], Hosten et. al claimed
that they could discriminate counterfactually between four unitaries associated
with the result of a Grover search. We agree with [38,39] that the proposal in
[37] does not constitute a CFC for all possible outcomes in the sense of [7].
However, from the point of view of our model, this is a rather artificial debate.
Since a unitarily evolving system does not interact with its surroundings (the
Demon), there is no way to tell whether a computation has been performed
or not by looking at the surroundings. In that sense, the task in [37] was (as
every other discrimination task involving only unitary operations) performed
in an “interaction-free” manner.

A work with a title similar to ours is “Interaction-free measurement as
quantum channel discrimination” by Zhou and Yung [32]. The objective of
their work was to determine if the Kwiat et. al protocol for detecting a semi-
transparent object can be enhanced by using an entangled initial state. The
study was conducted by employing tools from quantum channel theory, but
no attempts were made to generalize the notion of “interaction-free” mea-
surements. Generalizing this notion, however, is the main focus of the present
work.

7. Conclusion and Open Problems

In our work, we have characterized when it is possible and impossible to dis-
criminate quantum channels in an “interaction-free” manner. This answers the
question, what can be done perfectly with “interaction-free” measurements.
However, there are still some open questions. One question that is in direct
succession of our work is, under which conditions two channels can be discrim-
inated such that the “interaction” probability decays faster than N−1. An-
other question would ask for a more quantitative treatment, i.e., even though
one might not be able to discriminate two channels in an “interaction-free”
manner, there still might be a significant quantum advantage over classical
strategies. A related question suggested to us by an anonymous reviewer is
what kind of information about the discriminator’s strategy the Demon can
obtain. In this context, we showed that the Demon cannot distinguish (under
our conditions) between a strategy that always sends the vacuum through the
channels and our proposed one. However, the more general question remains
open. A big question concerns the influence of noise and decoherence. We note
that noise may influence what can or cannot be done in both directions, since
the noise can also be on the Demon’s side and hence make his detection skills
weaker. Before the no-go results for semitransparent objects were established
[11,12], one anticipated application of “interaction-free” measurement was to
eliminate the exposure of humans to radiation in medical applications such as
X-ray scans. This is not possible. However, our no-go theorem does not touch
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the case of asymmetric “interaction-free” discrimination. That is, we may allow
that one of the two objects to be discriminated gets destroyed (for example,
by simply setting its transmission functional to zero). This might even be a
desirable effect. For example, in a medical context, we would love to design
a procedure such that a tumor gets destroyed, while the healthy tissue stays
intact.
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Appendix A.

Lemma A.1 (Semi-simplicity of the peripheral spectrum). Let T : B1(H) →
B1(H) be a channel such that 1 is in the discrete spectrum of T . Then, for any
n ∈ N and any (rectifiable) path inside the resolvent set of T that encloses 1,
and separates 1 from σ(T ) \ {1}, we have

1

2πi

∮

Γ1

zn

z − T
dz =

1

2πi

∮

Γ1

1

z − T
dz. (A.1)

Proof. For brevity, we denote the Riesz-Projection on the RHS of (A.1) by
P . As 1 is in the discrete spectrum of T , Corollary 2.3.6 in [29] says that
TP = 1

2πi

∮
Γ1

z
z−T dz = P +N , where N is a nilpotent operator that commutes
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with P . Hence T = P +N +T0, where T0 := (id−P )T (id−P ). By the analytic
functional calculus, we have

(P + N)n =

⎛
⎝ 1

2πi

∮

Γ1

z

z − T
dz

⎞
⎠

n

=
1

2πi

∮

Γ1

zn

z − T
dz.

If N = 0, then the claim follows, since P is a projection (Pn = P ). To this
end, assume that N �= 0. Since N is nilpotent, there exists an integer D such
that ND �= 0 and ND+1 = 0. As N �= 0, we have D ≥ 1. Choose ρ ∈ B1(H)
such that ND(ρ) �= 0 and P (ρ) = ρ. Note that PT0 = T0P = 0. Thus,
Tn(ρ) = (P + N)n(ρ) + Tn

0 (ρ) = (P + N)n(ρ). In particular, since T is a
channel, ‖Tn‖ = 1 and thus

‖(P + N)n(ρ)‖ ≤ ‖ρ‖ . (A.2)

For n ≥ D, we have

(P + N)n(ρ) =
D∑

i=0

(
n

i

)
N i(ρ).

Furthermore, the vectors ρ,N(ρ), N2(ρ), . . . ND(ρ) are linearly independent.
The coordinate function of N(ρ) is

(
n
1

)
, which is unbounded for n → ∞. Since

the coordinate function can be extended to a continuous linear functional on
B1(H) (Hahn–Banach), the unboundedness contradicts (A.2). Hence, N = 0.

�
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Chapter 1
A.2. QUANTUM AND CLASSICAL DYNAMICAL SEMIGROUPS OF SUPERCHANNELS

AND SEMICAUSAL CHANNELS

A.2 Quantum and classical dynamical semigroups of superchan-
nels and semicausal channels

In this work, we investigate dynamical semigroups of superchannels and the related semicausal
CP-maps in the quantum as well as in the classical setting. Superchannels are the most general
transformation, transforming quantum channels into quantum channels, while preserving the
probabilistic structure, in the same vein as quantum channels are the most general transforma-
tion of quantum states.
In the introduction, we motivate the use of dynamical semigroups as a model for the decay-
processes that physical devices are subject to while they “age".
The main part is then concerned with the mathematical description of dynamical semigroups of
superchannels in terms of their generators. That part of the paper is divided into two parts: One
covering dynamical semigroups of classical superchannels and classical semicausal maps, and a
part covering dynamical semigroups of quantum superchannels. Although the main focus is on
the quantum part, the classical part is important, because its treatment allows us to tell which
features we found in the quantum case have a classical counterpart and which features are purely
quantum. We found indeed that in the quantum case the most general form for generators of
normal CP-maps admit a superposition structure that does not have a classical counterpart.
Both the classical and the quantum sections are subdivided into three parts, where part one intro-
duces the relevant notions of superchannels and semicausal maps (and in the classical case estab-
lishes the fundamental representation theorems - analogous to those of the quantum case [14,16]);
part two studies dynamical semigroups of semicausal maps. We provide a full characterization
of the generators of dynamical semigroups of semicausal maps. The characterization has two
pillars: first a computationally efficient method that allows one to tell if a given generator gen-
erates a semigroup of semicausal CP-maps; and second a normal form - which in the quantum
case is a refinement of the famous GKLS-form - that allows us to list all possible generators of
semicausal CP-maps. This is accomplished by using a certain symmetrisation procedure that
allows us to transfer parts of the known characterization of semicausal CP-maps (known under
the name semilocalizability [15, 16]) to the corresponding generator. Moreover, we provide an
algorithm that allows us to compute the various components of our normal form. In part three of
the classical and the quantum part, we use that semicausal CP-maps and superchannels are re-
lated via a similarity transformation, where the transformation matrix is the Choi–Jamiołkowski
isomorphism. This allows us to obtain a full characterization of the generators of dynamical
semigroups of superchannels by translating the corresponding results from the generators of dy-
namical semigroups of semicausal CP-maps.

The study of dynamical semigroups of superchannels was suggested independently to both au-
thors by Prof. Michael M. Wolf. It was subsequently decided to join forces to work on the
problem together. I am the principal author of this paper. In particular, I came up with the idea
for how to reduce the problem of characterizing semicausal maps in GKSL-form to characterizing
semicausal CP-map – an insight ultimately leading to our main technical contribution, Theorem
V.6. The formulation of the resulting proof, as structured by Lemmas V.9, V.10, V.11, V.12
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and V.13 was also my responsibility. In the quantum part section, I also contributed Lemma
V.17 and Theorem V.18 and the translation Lemmas V.20 and V.21. In the classical part of
the paper, I developed the details of the prove strategy for Theorems IV.4 and IV.10 and I was
heavily involved in Theorem IV.3. I was involved in all parts of the paper and did the majority
of the writing.
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ABSTRACT

Quantum devices are subject to natural decay. We propose to study these decay processes as the Markovian evolution of quantum chan-
nels, which leads us to dynamical semigroups of superchannels. A superchannel is a linear map that maps quantum channels to quantum
channels while satisfying suitable consistency relations. If the input and output quantum channels act on the same space, then we can con-
sider dynamical semigroups of superchannels. No useful constructive characterization of the generators of such semigroups is known. We
characterize these generators in two ways: First, we give an efficiently checkable criterion for whether a given map generates a dynamical
semigroup of superchannels. Second, we identify a normal form for the generators of semigroups of quantum superchannels, analogous to the
Gorini-Kossakowski-Lindblad-Sudarshan form in the case of quantum channels. To derive the normal form, we exploit the relation between
superchannels and semicausal completely positive maps, reducing the problem to finding a normal form for the generators of semigroups
of semicausal completely positive maps. We derive a normal for these generators using a novel technique, which applies also to infinite-
dimensional systems. Our work paves the way for a thorough investigation of semigroups of superchannels: Numerical studies become feasible
because admissible generators can now be explicitly generated and checked. Analytic properties of the corresponding evolution equations are
now accessible via our normal form.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0070635

I. INTRODUCTION AND MOTIVATION

Anybody who has ever owned an electronic device knows that these devices have a finite lifespan after which they stop working properly.
At least from a consumer perspective, a long lifespan is a desirable property for such devices. Thus, it is important for an engineer to know
which kind of decay processes can affect a device in order to suppress them by an appropriate design. Certainly, these considerations will
also become important for the design of quantum devices. We, therefore, propose to systematically study the decay processes that quantum
devices can be subject to.

In this work, we take a first step in this direction by deriving the general form of linear time-homogeneous master equations that govern
how quantum channels behave when inserted into a circuit board at different points in time. This leads to the study of dynamical semigroups
of superchannels. Here, superchannels are linear transformations between quantum channels.1

Let us consider a concrete example (see Fig. 1). Suppose we are trying to estimate the optical transmissivity of some material (M), which
we assume to depend on the polarization of the incident light. A simple approach is to send photons from a light source (S) through the
material and to count how many photons arrive at the detector (D). We model the material by a quantum channel TM , acting on the states of
photons described as three-level systems, with the levels corresponding to vacuum, horizontal, and vertical polarization. In an idealized world,
with a perfect vacuum in the regions between the source, the material, and the detector, we can infer the transmissivity from the measurement
statistics of the state TM(σ), where σ is the state of the photon emitted from the source. However, in a more realistic scenario, even though we
might have created an (almost) perfect vacuum between the devices at construction time, some particles are leaked into that region over time.
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FIG. 1. Estimating the transmissivity of a material under the influence of an influx of particles into the regions between the components.

FIG. 2. If the particle density is low, then the incident photon interacts with the particles in the region sequentially and independently. The effect of a single interaction can
be described by a channel ΔQ. Hence, the state after the first interaction is ΔQ(σ), the state after the second interaction is ΔQ(ΔQ(σ)), and so forth. The number of
interactions is given by the product of the particle density δ and the volume V . Hence, the effect of an region with fixed volume is described by the channel Qδ = (ΔQ)δV . It
follows that if δ = δ1 + δ2, then Qδ1+δ2

= (ΔQ)δ1V(ΔQ)δ2V = Qδ1
○ Qδ2

. The semigroup property for real δ can then be obtained in the continuum limit.

Then, interactions between the photons and these particles might occur, causing absorption or a change in polarization. Hence, the situation
is no longer described accurately by TM alone but also requires a description of the particle-filled regions.

To find such a description, we argue that the effect of particles in some region (here, either between S and M, or M and D) can be
modeled by a quantum dynamical semigroup, parameterized by the particle density δ. If the particle density is reasonably low and Qδ is the
quantum channel describing the effect of the particles on the incident light at a given δ, then, as explained in Fig. 2, Qδ satisfies the semigroup
property Qδ1+δ2 = Qδ1 ○Qδ2 . Furthermore, if there are no particles, then there should be no effect. Hence, Q0 = id. After adding continuity in
the parameter δ as a further natural assumption, the family {Qδ}δ≥0 forms a quantum dynamical semigroup. That is, we can write Qδ = eLδ

for some generator L in Gorini-Kossakowski-Lindblad-Sudarshan (GKLS)-form.
If we assume in our example that particles of type A are leaked into the region between S and M at a rate γA and that particles of type

B are leaked into the region between M and D at a rate γB, then the overall channel describing the transformation that emitted photons
undergo at time t is given by

Ŝt(TM) = eγBLBt ○ TM ○ eγALAt ,

where LA and LB are the generators of the dynamical semigroups describing the effect of the particles in the respective regions.
We note that at any fixed time, Ŝt interpreted as a map on quantum channels is a superchannel written in “circuit”-form. This means

that Ŝt describes a transformation of quantum channels implemented via pre- and post-processing. Furthermore, Ŝt(TM) can be determined
by solving the time-homogenous master equation

d
dt

T(t) = L̂(T(t)),
where L̂(T) = γALA ○ T + γBT ○ LB, with the initial condition T(0) = TM . In other words, we have

Ŝt = eL̂ t ,

and thus, the family {Ŝt}t≥0 forms a dynamical semigroup of superchannels.
By inductive reasoning, we, thus, arrive at our central physical hypothesis: Decay-processes of quantum devices with some sort of influx

are well described by dynamical semigroups of superchannels. It follows that such decay-processes can be understood by characterizing
dynamical semigroups of superchannels. Such a characterization is the main goal of our work.

In particular, we aim to understand dynamical semigroups of superchannels in terms of their generators. We characterize these genera-
tors fully by providing two results: First, we give an efficiently checkable criterion for whether a given map generates a dynamical semigroup of
superchannels. Second, we identify a normal form for the generators of semigroups of quantum superchannels, analogous to the GKLS form
in the case of quantum channels. Interestingly, we find that the most general form of dynamical semigroups of superchannels goes beyond the
simple introductory example above.

We arrive at these results through a path (see Fig. 3) that also illuminates the connection to the classical case. We start by studying dynam-
ical semigroups of classical superchannels, which (analogously to quantum superchannels being transformations between quantum channels)
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FIG. 3. Schematic of the concepts studied in this work.

are transformations between stochastic matrices. We do so by establishing a one-to-one correspondence between classical superchannels and
certain classical semicausal channels, that is, stochastic matrices on a bipartite system (AB) that do not allow for communication from B to A
(see Definition IV.2). We can then obtain a full characterization of the generators of semigroups of classical superchannels by characterizing
generators of semigroups of classical semicausal maps first and then translating the results back to the level of superchannels. The study of
(dynamical semigroups of) classical superchannels and classical semicausal channels is the content of Sec. IV.

Armed with the intuition obtained from the classical case, we then go on to study the quantum case. We start by characterizing the
generators of semigroups of semicausal2 completely positive maps (CP-maps)—our main technical result and one of independent inter-
est. This characterization can be obtained from the classical case by a “quantization”-procedure that allows us to see exactly which features
of semigroups of semicausal CP-maps are “fully quantum.” Dynamical semigroups of semicausal CP-maps are discussed Sec. V B. Finally,
in Sec. V C, we use the one-to-one correspondence (via the quantum Choi–Jamiołkowski isomorphism) between certain semicausal CP-
maps and quantum superchannels to obtain a full characterization of the generators of semigroups of quantum superchannels. While
the classical section (Sec. IV) and the quantum section (Sec. V) are heuristically related, they are logically independent and can be read
independently.

This work is structured as follows: In the remainder of this section, we discuss results related to ours. Section II contains an overview
over our main results. In Sec. III, we recall relevant notions from functional analysis and quantum information, as well as some notation. The
(logically) independent sections (Secs. IV and V) comprise the main body of our paper, containing complete statements and proofs of our
results on dynamical semigroups of superchannels and semicausal channels. We study the classical case in Sec. IV and the quantum case in
Sec. V. Finally, we conclude with a summary and an outlook to future research in Sec. VI.

A. Related work

The study of quantum superchannels goes back to Ref. 1 and has since evolved to the study of higher-order quantum maps.3–5 A peculiar
feature of higher-order quantum theory is that it allows for indefinite causal order.6,7 However, it was recently discovered that the causal order
is preserved under (certain) continuous evolutions.8,9 It, therefore, seems interesting to study continuous evolutions of higher-order quantum
maps systematically. Our work can be seen as an initial step into his direction.

The study of (semi-)causal and (semi-)localizable quantum channels goes back to Ref. 2. By proving the equivalence of semicausality and
semilocalizability for quantum channels, the authors of Ref. 10 resolved a conjecture raised in Ref. 2 (and attributed to DiVincenzo). Later,
the authors of Ref. 11 provided an alternative proof for this equivalence and further investigated causal and local quantum operations.

II. RESULTS

We give an overview over our answers to the questions identified in Sec. I. In our first result, we identify a set of constraints that a linear
map satisfies if and only if it generates a semigroup of quantum superchannels.

Result 1.1 (Lemma V.17—informal). Checking whether a linear map L̂ : B(B(HA);B(HB))→ B(B(HA);B(HB)) generates a semi-
group of quantum superchannels can be phrased as a semidefinite constraint satisfaction problem.

Therefore, we can efficiently check whether a given linear map is a valid generator of a semigroup of quantum superchannels. We can
even solve optimization problems over such generators in terms of semidefinite programs. Thereby, this first characterization of generators
of semigroups of quantum superchannels facilitates working with them computationally.

As our second result, we determine a normal form for generators of semigroups of quantum superchannels. Similar to the GKLS-form, we
decompose the generator into a “dissipative part” and a “Hamiltonian part,” where the latter generates a semigroup of invertible superchannels
such that the inverse is a superchannel as well.
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Result 1.2 (Theorem V.18—informal). A linear map L̂ : B(B(HA);B(HB))→ B(B(HA);B(HB)) generates a semigroup of quantum
superchannels if and only if it can be written as L̂(T) = D̂(T) + Ĥ(T), where the “Hamiltonian part” is of the form

Ĥ(T)(ρ) = −i[HB, T(ρ)] − iT([HA, ρ]),
with local Hamiltonians HB and HA, and where the “dissipative part” is of the form D̂(T)(ρ) = trE[D̂ ′(T)(ρ)], where

D̂ ′(T)(ρ) = U(T ⊗ idE)(A(ρ⊗ σ)A†)U† − 1
2
(T ⊗ idE)({A†A , ρ⊗ σ}) (1a)

+ B(T ⊗ idE)(ρ⊗ σ)B† − 1
2
{B†B , (T ⊗ idE)(ρ⊗ σ)} (1b)

+ [U(T ⊗ idE)(A(ρ⊗ σ)), B†] + [B , (T ⊗ idE)((ρ⊗ σ)A†)U†], (1c)

with unitary U and arbitrary A and B.

The “dissipative part” consists of three terms: Term (1a) itself generates a semigroup of superchannels (for B = 0), with the interpretation
that the transformed channel [Ŝt(T)] arises due to the stochastic application of T ↦ trE[U(T ⊗ idE)(A(ρ⊗ σ)A†)U†] at different points in
time (Dyson series expansion). Term (1b) itself generates a semigroup of superchannels (for A = 0) of the form Ŝt(T) = eLBt ○ T, where LB is
a generator of a quantum dynamical semigroup (and hence in GKLS-form). Term (1c) is a “superposition” term, which is harder to interpret.
It will become apparent from the path taken via the “quantization” of semicausal semigroups that this term is a pure quantum feature with
no classical analog. Therefore, the presence of (1c) can be regarded as one of our main findings. It is also worth noting that the normal form
in Result 1.2 is more general than the form of the generator we found in our introductory example. Hence, nature allows for more general
decay-processes than the simple ones with an independent influx of particles before and after the target object. We also complement this
structural result by an algorithm that determines the operators U, A, B, HA, and HB if the conditions in Result 1.1 are met.

The proof of these results relies on the relation (via the Choi–Jamiołkowski isomorphism) between superchannels and semicausal
CP-maps. Our next findings—and from a technical standpoint our main contributions—are the corresponding results for semigroups of
semicausal CP-maps.

Result 2.1 (Lemma V.5—informal). Checking whether a linear map L : B(HA ⊗HB)→ B(HA ⊗HB) generates a semigroup of B→/ A
semicausal CP-maps can be phrased as a semidefinite constraint satisfaction problem for its Choi-matrix.

Based on this insight, we can efficiently check whether a given linear map is a valid generator of a semigroup of semicausal CP-maps.
Since semigroups of semicausal CP-maps are, in particular, semigroups of CP-maps, our normal form for generators giving rise to

semigroups of semicausal CP-maps is a refining of the GKLS-form.

Result 2.2 (Theorem V.6—informal). A linear map L : B(HA ⊗HB)→ B(HA ⊗HB) generates a semigroup of B→/ A semicausal CP-
maps (in the Heisenberg picture) if and only if it can be written as L(X) = Φ(X) − K†X − XK, where the CP part Φ is of the form

Φ(X) = V†(X ⊗ 𝟙E)V , with V = (𝟙A ⊗U)(A⊗ 𝟙B) + (𝟙A ⊗ B),
with a unitary U ∈ B(HE ⊗HB;HB ⊗HE) and arbitrary A ∈ B(HA;HA ⊗HE) and B ∈ B(HB;HB ⊗HE), and the K in the non-CP part is of
the form

K = (𝟙A ⊗ B†U)(A⊗ 𝟙B) + 1
2
𝟙A ⊗ B†B + KA ⊗ 𝟙B + 𝟙A ⊗ iHB,

with a self-adjoint HB and an arbitrary KA.

This characterization has both computational and analytical implications: On the one hand, it provides a recipe for describing semicausal
GKLS generators in numerical implementations. On the other hand, the constructive characterization of semicausal GKLS generators makes
a more detailed analysis of their (e.g., spectral) properties tractable. It is also worth noting that in Result 2.2, we can allow for (separable)
infinite-dimensional spaces. In the finite-dimensional case, we also provide an algorithm to compute the operators U, A, B, KA, and HB, if the
conditions of Result 2.1 are met.

Let us now turn to the corresponding results in the classical case. Here, instead of looking at (semigroups of) CP-maps and quantum
channels, we look at (entry-wise) non-negative matrices and row-stochastic matrices (see Secs. III and IV for details) that we assume to act on
RX for (finite) alphabets X ∈ {A,B,E}.
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The following result is the classical analog of Result 2.2:

Result 3 (Corollary IV.8—informal). A linear map Q : RA ⊗RB → RA ⊗RB generates a semigroup of (Heisenberg) B→/ A semicausal
non-negative matrices if and only if it can be written as

Q = (A⊗ 𝟙B)(𝟙A ⊗U) − KA ⊗ 𝟙B + ∣A∣∑
i=1
∣ai⟩⟨ai∣⊗ B(i),

with a row-stochastic matrix U ∈ B(RB;RE ⊗RB), a non-negative matrix A ∈ B(RA ⊗RE;RA), a diagonal matrix KA, and maps B(i) ∈ B(RB)
that generate semigroups of row-stochastic matrices.

We will discuss in detail how Result 2.2 arises as the “quantization” of Result 3 in the paragraph following the Proof of Lemma V.5.
Here, we highlight that in both the quantum and the classical case, the generators of semicausal semigroups are constructed from two basic
building blocks. In the quantum case, these are a B→/ A semicausal CP-map Φsc, with Φsc(X) = V†

sc(X ⊗ 𝟙E)Vsc and Vsc = (𝟙A ⊗U)(A⊗ 𝟙B)
and a GKLS generator of the form idA ⊗ B̂. In the classical case, they are a B→/ A semicausal non-negative map Φsc = (𝟙A ⊗U)(A⊗ 𝟙B)
and operators of the form ∣ai⟩⟨ai∣⊗ B(i), where B(i) generates a semigroup of row-stochastic maps. The difference between the quantum
case and the classical case then lies in the way the general form is constructed from the building blocks. While we simply take convex combi-
nations of the building-blocks in the classical case, we have to take superpositions of the building-blocks, by which we mean that we need to
combine the corresponding Strinespring operators, in the quantum case.

As our last result, we present the normal form for generators of semigroups of classical superchannels.

Result 4. A linear map Q̂ : B(RA;RB)→ B(RA;RB) generates a semigroup of classical superchannels if and only if it can be written as

Q̂(M) = U(M ⊗ 𝟙E)A − ∣A∣∑
i=1
⟨1AE∣Aai⟩M∣ai⟩⟨ai∣ + ∣A∣∑

i=1
B(i)M∣ai⟩⟨ai∣,

with a column-stochastic matrix U ∈ B(RE ⊗RB;RB), a non-negative matrix A ∈ B(RA;RA ⊗RE), a diagonal matrix KA, and a collection of
generators of semigroups of column-stochastic matrices B(i) ∈ B(RB).

As in the quantum case, we have two kinds of evolutions: a stochastic application of M ↦ U(M ⊗ 𝟙E)A at different points in time and a
conditioned post-processing evolution of the form∑ie

B(i)tM∣ai⟩⟨ai∣. Note that there are no “superposition” terms, such as (1c).

III. NOTATION AND PRELIMINARIES

In this section, we review basic notions from functional analysis, quantum information theory, and the theory of dynamical semigroups.
We also fix our notation for these settings as well as for a classical counterpart of the quantum setting.

A. Functional analysis

Throughout this paper, H (with some subscript) denotes a (in general, infinite-dimensional) separable complex Hilbert space. Whenever
H is assumed to be finite-dimensional, we explicitly state this assumption. We denote the Banach space of bounded linear operators with
domain HA and codomain HB, equipped with the operator norm, by B(HA;HB) and write B(H) for B(H;H). For X ∈ B(HA;HB), the
adjoint X† ∈ B(HB;HA) of X is the unique linear operator such that ⟨ψB∣XψA⟩ = ⟨X†ψB∣ψA⟩ for all ∣ψA⟩ ∈ HA and all ∣ψB⟩ ∈ HB. Here, and
throughout this paper, we use the standard Dirac notation.

An operator Y ∈ B(H) is called self-adjoint if Y† = Y . A self-adjoint Y ∈ B(H) is called positive semidefinite, denoted by Y ≥ 0, if there
exists an operator Z ∈ B(H) such that Y = Z†Z. If Y is positive semidefinite, then there exists a unique positive semidefinite operator

√
Y

such that Y =√Y
√

Y (Ref. 12, p. 196). The operator
√

Y is called the square-root of Y . The absolute value ∣Y ∣ ∈ B(H) of Y is defined by∣Y ∣ =√Y†Y .
We define the set of trace-class operators S1(HA;HB) = {ρ ∈ B(HA;HB) ∣ tr[∣ρ∣] <∞}, which becomes a Banach space when endowed

with the norm ∥ρ∥1 ∶= tr[∣ρ∣]. We write S1(H) for S1(H;H). The set S1(HA;HB) satisfies the two-sided∗-ideal property: If ρ ∈ S1(HA;HB)
and Y ∈ B(HA;HB), then ρ† ∈ S1(HB;HA), ρ†Y ∈ S1(HA), and Yρ† ∈ S1(HB).

Besides the norm topology, we will use the strong operator topology and the ultraweak topology. The strong operator topology is the
smallest topology on B(HA;HB) such that for all ∣ψA⟩ ∈ HA, the map B(HA;HB) ∋ Y ↦ Y ∣ψA⟩ ∈ HB is continuous, where HB is equipped
with the norm topology. The ultraweak topology on B(HA;HB) is the smallest topology such that the map B(HA;HB) ∋ Y ↦ tr[ρ†Y] ∈ C is
continuous for all ρ ∈ S1(HA;HB). Since HA and HB are separable, so is S1(HB;HA). Hence, the sequential Banach Alaoglu theorem implies
that every bounded sequence in B(HA;HB) has an ultraweakly convergent subsequence. Here, we view B(HA;HB) as the continuous dual of
S1(HB;HA). The aforementioned results can be found in many books, e.g., Ref. 12 (ch. VI.6), however, usually only for the case HA = HB.

J. Math. Phys. 63, 072204 (2022); doi: 10.1063/5.0070635 63, 072204-5

© Author(s) 2022



Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

The general results stated above can be obtained from this case by considering B(HA;HB) and S1(HA;HB) as subspaces of B(HA ⊕HB) and
S1(HA ⊕HB), respectively.

An operator V ∈ B(HA;HB) is called an isometry if ∥V ∣ψA⟩∥ = ∥∣ψA⟩∥ for all ∣ψA⟩ ∈ HA. The (possibly empty) set of unitaries, the
surjective isometries, is denoted by U(HA;HB), and we write U(H) for U(H;H). As a special notation, if H ′

A and H ′
B are closed linear

subspaces of HA and HB, with (canonical) isometric embeddings 𝟙A′→A ∈ B(H ′
A;HA) and 𝟙B′→B ∈ B(H ′

B;HB), respectively, then we will
write UP(H ′

A;H ′
B) = {𝟙B′→BU𝟙†

A′→A ∈ B(HA;HB) ∣U ∈ U(H ′
A;H ′

B)} and UP(H) for UP(H;H). That is, this is the set of partial isometries.

B. Flip operator, partial trace, complete positivity, and duality

The flip operator FA;B ∈ B(HA ⊗HB;HB ⊗HA) is the unique operator satisfying FA;B(∣ψA⟩⊗ ∣ψB⟩) = ∣ψB⟩⊗ ∣ψA⟩ for all ∣ψA⟩ ∈ HA and
all ∣ψB⟩ ∈ HB.

The partial trace with respect to the space HA is the unique linear map trA : S1(HA ⊗HB;HA ⊗HC)→ S1(HB;HC) that satisfies
tr[XtrA[ρ]] = tr[(𝟙A ⊗ X)ρ] for all ρ ∈ S1(HA ⊗HB) and all X ∈ B(HC;HB). If the spaces involved have subscripts, the partial trace will
always be denoted with the corresponding subscript. The partial trace with respect to ρ ∈ S1(HA) is the unique linear map trρ : B(HA⊗HB;HA ⊗HC)→ B(HB;HC) that satisfies tr[σtrρ[X]] = tr[(ρ⊗ σ)X] for all σ ∈ S1(HC;HB) and all X ∈ B(HA ⊗HB;HA ⊗HC). Proofs
of existence and uniqueness can be found in Ref. 13 (Theorem 2.28 and Theorem 2.30), where we used again the observation that the results
above follow from the usual ones for HB = HC, by looking at the operators on HA ⊗ (HB ⊕HC).

Let T ∈ B(B(HB);B(HA)). The map T is called positive if T(XB) is positive semidefinite whenever XB ∈ B(HB) is positive semidefi-
nite. For n ∈ N0, the map Tn : B(Cn ⊗HB)→ B(Cn ⊗HA) is uniquely defined by the requirement that Tn(Xn ⊗ XB) = Xn ⊗ T(XB) for all
Xn ∈ B(Cn) and all XB ∈ B(HB). The map T is completely positive (CP) if the map Tn is positive for all n ∈ N0. A CP-map T is called nor-
mal if T is continuous when B(HA) and B(HB) are both equipped with the ultraweak topology. We denote the set of normal CP-maps by
CPσ(HB;HA) and write CPσ(H) for CPσ(H;H). By the Stinespring dilation theorem (in its form for normal CP-maps), T is a normal CP-
map if and only if there exist a (separable) Hilbert space HE and an operator V ∈ B(HA;HB ⊗HE) such that for all XB ∈ B(HB), we have
T(XB) = V†(XB ⊗ 𝟙E)V . Furthermore, the Stinespring dilation can be chosen to be minimal, that is, the pair (V ,HE) can be chosen such that
span{(XB ⊗ 𝟙E)V ∣ψA⟩ ∣XB ∈ B(HB), ∣ψA⟩ ∈ HA} is norm-dense in HB ⊗HE. Furthermore, if (V′,H ′

E) is another Stinespring dilation, then
there exists an isometry U ∈ B(HE;H ′

E) such that V′ = (𝟙B ⊗U)V . Another equivalent characterization is the so-called Kraus form: T is a
normal CP-map if and only if there exists a countable set of operators {Li}i ⊂ B(HA;HB), the Kraus operators, such that for all XB ∈ B(HB),
we have T(XB) = ∑iL

†
i XBLi, where the series converges in the strong operator topology. One can obtain Kraus operators from a Stinespring

dilation (V ,HE) by choosing an orthonormal basis {∣ei⟩}i of HE and defining Li = (𝟙B ⊗ ⟨ei∣)V . A map T is unital if T(𝟙B) = 𝟙A, and a unital
normal CP-map is called a Heisenberg (quantum) channel.

Let S ∈ B(S1(HA);S1(HB)). The dual map S∗ ∈ B(B(HB);B(HA)) is the unique linear map that satisfies tr[X†
BS(ρ)] = tr[(S∗(XB))†ρ]

for all XB ∈ B(HB) and all ρ ∈ S1(HA). We call S the Schrödinger picture map and S∗ the Heisenberg picture map. The map S is called com-
pletely positive if S∗ is completely positive in the sense defined above. In that case, S∗ is automatically normal. In fact, T is a normal CP-map
if and only if there exists S ∈ B(B(HA);B(HB)) such that S∗ = T. It follows that S is completely positive if and only if there exist a separable
Hilbert space HE and an operator V ∈ B(HA;HB ⊗HE) such that S(ρ) = trE[VρV†] for all ρ ∈ S1(HA). Furthermore, S is completely positive
if and only if there exist a countable set of operators {Li}i ⊂ B(HA;HB) such that S(ρ) = ∑iLiρL†

i and the series converges in trace-norm. A
map S is trace-preserving if tr[S(ρA)] = tr[ρA] for all ρA ∈ S1(HA). A trace-preserving CP-map is called a (quantum) channel. The facts in
this section are contained or follow directly from the results in Refs. 14 and 15.

C. Choi–Jamiołkowski isomorphism, partial transposition

In this section, let HA, HB, and HC be finite-dimensional Hilbert spaces with fixed orthonormal bases {∣ai⟩}i, {∣bj⟩}j, and {∣ck⟩}k,
respectively. The transpose (with respect to {∣ai⟩}i and {∣bj⟩}j) of an operator X ∈ B(HA;HB) is the unique linear operator XT ∈ B(HB;HA)
such that ⟨bj∣Xai⟩ = ⟨ai∣XTbj⟩ for all elements of the orthonormal bases. The partial transposition (with respect to {∣ai⟩}i) of an
operator X ∈ B(HA ⊗HB;HA ⊗HC) is the unique linear operator XTA ∈ B(HA ⊗HB;HA ⊗HC) such that (⟨ai∣⊗ 𝟙C)X(∣aj⟩⊗ 𝟙B)= (⟨aj∣⊗ 𝟙C)XTA(∣ai⟩⊗ 𝟙B) for all elements of the orthonormal basis.

The (quantum) Choi–Jamiołkowski isomorphism,16,17 defined with respect to an orthonormal basis {∣ai⟩}i of HA, is the bijective lin-
ear map CA;B : B(B(HA);B(HB))→ B(HA ⊗HB), CA;B(T) = (idA ⊗ T)(∣Ω⟩⟨Ω∣), and its inverse is given by C−1

A;B(τ)(ρ) = trA[(ρT ⊗ 𝟙)τ],
where ∣Ω⟩ ∶= ∑ i∣ai⟩⊗ ∣ai⟩. A map S ∈ B(B(HA);B(HB)) is completely positive if and only if CA;B(S) ≥ 0; S is trace-preserving if and
only if trB[CA;B(S)] = 𝟙A, and we have the identity trA[CA;B(S)] = S(𝟙A). We will occasionally call elements of the image of CA;B
Choi matrices.

D. Non-negative matrices and duality

As we provide characterizations for both the quantum and the classical case, we now also introduce the notation and definitions required
for the latter. With a classical system A, we associate a finite alphabet A = {a1, a2, . . . , a∣A∣} and a “state-space” RA, with the orthonormal basis
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{∣ai⟩}∣A∣i=1. We define by ∣1A⟩ ∶= ∑ i∣ai⟩ the all-one-vector. A vector ∣x⟩ ∈ RA is called non-negative if ⟨a∣x⟩ ≥ 0 for all a ∈ A. A linear operator
M ∈ B(RA;RB) is called non-negative if M∣x⟩ is non-negative whenever ∣x⟩ is non-negative (equivalently, all matrix elements are non-
negative). A non-negative M is called column-stochastic if ⟨1B∣M = ⟨1A∣, column-sub-stochastic if there exists a non-negative P such that
M + P is column-stochastic, row-stochastic if M∣1A⟩ = ∣1B⟩, and row-sub-stochastic if there exists a non-negative P such that M + P is row-
stochastic. Given ∣x⟩ or ⟨x∣, we denote by diag(∣x⟩) = diag(⟨x∣) the diagonal matrix with the components of x on the diagonal. Finally, we
will use the “classical Choi–Jamiołkowski isomorphism” (also known as vectorization), which is a convenient notation to make the con-
nection to the quantum case more transparent. The classical Choi–Jamiołkowski isomorphism, defined with respect to {∣ai⟩}i, is the linear
map CC

A;B : B(RA;RB)→ B(RA ⊗RB) defined by CC
A;B(M) = (𝟙A ⊗M)∣Ω⟩, where ∣Ω⟩ ∶= ∑ i∣ai⟩⊗ ∣ai⟩. The inverse (CC

A;B)−1 is then given by(CC
A;B)−1(∣x⟩) = (⟨Ω∣⊗ 𝟙B)(𝟙A ⊗ ∣x⟩)We will sometimes refer to elements of the range of CC

A;B as Choi vectors.

E. Dynamical semigroups

Let X be a Banach space. A family of operators {Tt}t≥0, with Tt ∈ B(X) for all t ≥ 0, is called a norm-continuous one-parameter
semigroup on X or, short, dynamical semigroup if T0 = 𝟙, Ts+t = TsTt for all t, s ≥ 0 and the map R≥0 ∋ t ↦ Tt is norm-continuous. Norm-
continuous dynamical semigroups are automatically differentiable and have bounded generators, that is, there exists L ∈ B(X) such that
Tt = etL for all t ≥ 0 and L = d

dt ∣t=0+Tt (Ref. 18, Theorem I.3.7).

Lindblad19 proved that Tt ∈ CPσ(H) for all t ≥ 0 if and only if there exist Φ ∈ CPσ(H) and K ∈ B(H) such that Tt = etL, with L(X)= Φ(X) − K†X − XK. In this case, we refer to {Tt}t≥0 as a CP semigroup. We call the corresponding form of the generator L the GKLS form19,20

and Φ its CP part. If H is finite-dimensional, then Tt = etL ∈ CPσ(H) for all t ≥ 0 if and only if the operator L ∶= CA;B = (id⊗ L)(∣Ω⟩⟨Ω∣) is
self-adjoint and P�LP� ≥ 0, where ∣Ω⟩ = ∑ i∣ai⟩⊗ ∣ai⟩ for some orthonormal basis {ai} of H and P� ∈ B(H⊗H) is the orthogonal projection
onto the orthogonal complement of {∣Ω⟩}.21,22 The corresponding classical result is as follows: {Tt}t≥0 ⊆ B(RA) is a dynamical semigroup of
non-negative linear maps if and only if there exist a non-negative linear map Φ ∈ B(RA) and a diagonal map K ∈ B(RA) (with respect to the
basis orthogonal basis {∣ai⟩}i) such that the generator L has the form Φ − K.23

IV. THE CLASSICAL CASE

Before studying the quantum scenario, we consider the classical version of our main question. That is, we study continuous semigroups
of classical superchannels and their generators. On the one hand, this allows us to develop an intuition that we can build upon for the quantum
case. On the other hand, a comparison between the classical and the quantum case elucidates which features of the latter are actually quantum.
For the purpose of this section, A, B, and E denote finite alphabets as in Subsection III D.

A classical superchannel is a map that maps classical channels, i.e., stochastic matrices, to classical channels while preserving the prob-
abilistic structure of the classical theory. To achieve the latter requirement, we require that a classical superchannel is a linear map and that
probabilistic transformations, i.e., sub-stochastic matrices, are mapped to probabilistic transformations. Expressed more formally, we have
the following definition:

Definition IV.1 (classical superchannels). A linear map Ŝ : B(RA;RB)→ B(RA;RB) is called a classical superchannel if Ŝ(M)∈ B(RA;RB) is column sub-stochastic whenever M ∈ B(RA;RB) is column sub-stochastic and Ŝ(M) ∈ B(RA;RB) is column stochastic
whenever M ∈ B(RA;RB) is column stochastic.

A related concept is that of a classical semicausal channel, which is a stochastic matrix on a bipartite space A × B such that no
communication from B to A is allowed. We formalize this as follows:

Definition IV.2 (classical semicausality). An operator M ∈ B(RA ⊗RB) is called column B→/ A semicausal if there exists MA ∈ B(RA)
such that (𝟙A ⊗ ⟨1B∣)M =MA(𝟙A ⊗ ⟨1B∣).

Similarly, N ∈ B(RA ⊗RB) is called row B→/ A semicausal if there exists NA ∈ B(RA) such that N(𝟙A ⊗ ∣1B⟩) = NA ⊗ ∣1B⟩.
Clearly, M is column B→/ A semicausal if and only if MT is row B→/ A semicausal. To emphasize the analogy to the quantum case, we will

often refer to a column B→/ A semicausal map as a Schrödinger B→/ A semicausal map and to a row B→/ A semicausal map as a Heisenberg
B→/ A semicausal map. In both cases, the maps MA and NA will be called the reduced maps.

The structure of this section is as follows: We start by establishing the connection between classical superchannels and classical non-
negative semicausal maps, followed by a characterization of classical non-negative semicausal maps as a composition of known objects; such
a characterization is known in the quantum case as the equivalence between semicausality and semilocalizability. We then turn to the study of
the generators of semigroups of semicausal and non-negative maps and finally use the correspondence between superchannels and semicausal
channels to obtain the corresponding results for the generators of semigroups of superchannels.

A. Correspondence between classical superchannels and semicausal non-negative linear maps

We first show, with a proof inspired by the one given in Ref. 1 for the analogous correspondence in the quantum case, that we can
understand classical superchannels in terms of classical semicausal channels. To concisely state this correspondence, we use the classical
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version of the Choi–Jamiołkowski isomorphism. Let us mention here once again that we assume all alphabets (A,B, . . . ) to be finite for our
treatment of the classical case.

Theorem IV.3. Let Ŝ : B(RA;RB)→ B(RA;RB) be a linear map and define S ∈ B(RA ⊗RB) via S = CC
A;B ○ Ŝ ○ (CC

A;B)−1. Then, Ŝ is a
classical superchannel if and only if S is non-negative and (Schrödinger B→/ A) semicausal such that the reduced map SA satisfies SA∣1A⟩ = ∣1A⟩.
In this case, SA is automatically non-negative.

Proof. We first show the “if”-direction, i.e., that if S is non-negative and (Schrödinger B→/ A) semicausal, then Ŝ = (CC
A;B)−1 ○ S ○ CC

A;B
is a superchannel. Suppose M is a non-negative matrix. Then, Ŝ(M) is non-negative, since CC

A;B maps non-negative matrices to non-negative
vectors, S maps non-negative vectors to non-negative vectors, and (CC

A;B)−1 maps non-negative vectors to non-negative matrices.
Furthermore, if M is column stochastic, then

⟨1B∣Ŝ(M) = ⟨1B∣(CC
A;B)−1 ○ S ○ CC

A;B(M)
= (⟨Ω∣⊗ ⟨1B∣)(𝟙A ⊗ S(CC

A;B(M)))
= ⟨Ω∣(𝟙A ⊗ SA((𝟙A ⊗ ⟨1B∣)CC

A;B(M)))
= ⟨Ω∣(𝟙A ⊗ SA((𝟙A ⊗ (⟨1B∣M))∣Ω⟩))
= ⟨Ω∣(𝟙A ⊗ SA∣1A⟩)= ⟨Ω∣(𝟙A ⊗ ∣1A⟩)= ⟨1A∣,

so Ŝ(M) is stochastic. In the preceding calculation, we used that S is semicausal in the third line, that M is stochastic in the fifth line, and that
SA∣1A⟩ = ∣1A⟩ in the sixth line.

Now suppose that M is sub-stochastic such that M +Q is stochastic, with Q being non-negative. Then, Ŝ(M +Q) = Ŝ(M) + Ŝ(Q) is
stochastic, and since Ŝ(Q) is non-negative, Ŝ(M) is sub-stochastic. This proves that Ŝ is a superchannel. The claim about the non-negativity
of SA now follows directly from the semicausality condition.

For the converse, suppose Ŝ is a superchannel. Since for all a ∈ A and all b ∈ B, the matrix ∣b⟩⟨a∣ is sub-stochastic, it follows by linearity
of Ŝ that Ŝ(M) is non-negative whenever M is non-negative. Thus, since (CC

A;B)−1 maps non-negative vectors to non-negative matrices, Ŝ
maps non-negative matrices to non-negative matrices, and CC

A;B maps non-negative matrices to non-negative vectors, it follows that S is
non-negative.

Next, we want to show that S is Schrödinger B→/ A semicausal. Since Ŝ is a superchannel, S maps Choi vectors of stochastic matrices to
Choi vectors of stochastic matrices, that is, (𝟙A ⊗ ⟨1B∣)S∣x⟩ = ∣1A⟩ for all non-negative vectors ∣x⟩ ∈ RA ⊗RB that satisfy (𝟙A ⊗ ⟨1B∣)∣x⟩ = ∣1A⟩.
As a tool, we define the set of scaled differences of Choi vectors of stochastic matrices by

C0 ∶= {λ(∣p⟩ − ∣n⟩) ∣ λ ∈ R; ∣p⟩, ∣n⟩ ∈ RA ⊗RB non − negative, with (𝟙A ⊗ ⟨1B∣)∣p⟩ = (𝟙A ⊗ ⟨1B∣)∣n⟩ = ∣1A⟩}. (2)

We claim that
C0 = C′0 ∶= {∣x′⟩ ∈ RA ⊗RB ∣ (𝟙A ⊗ ⟨1B∣)∣x′⟩ = 0}.

To see this, first note that C0 ⊆ C′0 follows directly from the definition. For the other inclusion, C0 ⊇ C′0, we decompose ∣x′⟩ ∈ C′0 as ∣x′⟩= ∣p′⟩ − ∣n′⟩ for two non-negative vectors ∣p′⟩, ∣n′⟩ ∈ RA ⊗RB. It follows that (𝟙A ⊗ ⟨1B∣)∣p′⟩ = (𝟙A ⊗ ⟨1B∣)∣n′⟩. Furthermore, for ε > 0 small
enough, we have that ∣y′⟩ ∶= ∣1A⟩ − ε(𝟙A ⊗ ⟨1B∣)∣p′⟩ is non-negative. However, for any non-negative unit ∣v⟩ ∈ RB, with ⟨1B∣v⟩ = 1, the vectors∣p⟩ ∶= ε∣p′⟩ + ∣y′⟩⊗ ∣v⟩ and ∣n⟩ ∶= ε∣n′⟩ + ∣y′⟩⊗ ∣v⟩ are Choi vectors of stochastic matrices. Hence, ∣x′⟩ = 1

ε (∣p⟩ − ∣n⟩) ∈ C0.
We define P� ∈ B(RA ⊗RB) by P�∣x⟩ = 1∣B∣ [(𝟙A ⊗ ⟨1B∣)∣x⟩]⊗ ∣1B⟩ and P ∶= 𝟙AB − P�. Then, since (𝟙A ⊗ ⟨1B∣)P∣x⟩ = (𝟙A ⊗ ⟨1B∣)∣x⟩− (𝟙A ⊗ ⟨1B∣)∣x⟩ = 0, we have that P∣x⟩ ∈ C0 for all ∣x⟩ ∈ RA ⊗RB. We define SA ∈ B(RA) by SA∣xA⟩ = 1∣B∣(𝟙A ⊗ ⟨1B∣)P�S(∣xA⟩⊗ ∣1B⟩)= 1∣B∣(𝟙A ⊗ ⟨1B∣)S(∣xA⟩⊗ ∣1B⟩) and calculate

(𝟙A ⊗ ⟨1B∣)S∣x⟩ = (𝟙A ⊗ ⟨1B∣)S(P∣x⟩) + (𝟙A ⊗ ⟨1B∣)S(P�∣x⟩)
= (𝟙A ⊗ ⟨1B∣)S(P�∣x⟩)
= (𝟙A ⊗ ⟨1B∣)S( 1∣B∣ [(𝟙A ⊗ ⟨1B∣)∣x⟩]⊗ ∣1B⟩)
= SA((𝟙A ⊗ ⟨1B∣)∣x⟩),

where we used in the second line that C0 is invariant under S, a fact that follows directly from (2). This calculation exactly shows that S is
Schödinger A→/ B semicausal.
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It remains to show that SA∣1A⟩ = ∣1A⟩. This follows easily, since

SA∣1A⟩ = 1∣B∣ (𝟙A ⊗ ⟨1B∣)S(∣1A⟩⊗ ∣1B⟩)
= 1∣B∣ (𝟙A ⊗ ⟨1B∣)CC

A;B ○ Ŝ ○ (CC
A;B)−1(∣1A⟩⊗ ∣1B⟩)

= 𝟙A ⊗ [⟨1B∣Ŝ( 1∣B∣ ∣1B⟩⟨1A∣)]∣Ω⟩
= (𝟙A ⊗ ⟨1A∣)∣Ω⟩= ∣1A⟩,

where we used that 1∣B∣ ∣1B⟩⟨1A∣ is stochastic and that thus Ŝ( 1∣B∣ ∣1B⟩⟨1A∣) is stochastic. ◻
In summary, Theorem IV.3 tells us that, via the classical Choi–Jamiołkowski isomorphism, we can view classical superchannels

equivalently also as suitably normalized semicausal non-negative maps.

B. Relation between classical semicausality and semilocalizability

The goal of this section is to get a better understanding of the structure of semicausal maps. For non-negative semicausal maps, we have
the following structure theorem:

Theorem IV.4. A non-negative map N ∈ B(RA ⊗RB) is row B→/ A semicausal if and only if there exist a (finite) alphabet E, a (non-
negative) row-stochastic matrix U ∈ B(RB;RE ⊗RB), and a non-negative matrix A ∈ B(RA ⊗RE;RA) such that

N = (A⊗ 𝟙B)(𝟙A ⊗U). (3)

In that case, we can choose ∣E∣ = ∣A∣2.

Borrowing the terminology from the quantum case,2,10 the preceding theorem tells us that non-negative semicausal maps are
semilocalizable. We formally define the latter notion for the classical case as follows:

Definition IV.5. A non-negative map N ∈ B(RA ⊗RB) is called Heisenberg B→/ A semilocalizable if it can be written in the form of
Eq. (3).

Similarly, a non-negative map M ∈ B(RA ⊗RB) is called Schrödinger B→/ A semilocalizable if it can be written as M = (𝟙A ⊗U)(A⊗ 𝟙B)
for a (non-negative) column-stochastic matrix U ∈ B(RE ⊗RB;RB) and a non-negative matrix A ∈ B(RA;RA ⊗RE).

The requirement that U is stochastic and A is non-negative in the decomposition above is essential. In fact, if one drops these
requirements, then a decomposition M = (𝟙A ⊗U)(A⊗ 𝟙B) can be found for any matrix M ∈ B(RA ⊗RB).

Due to Theorem IV.4, a non-negative Schrödinger B→/ A semicausal and column-stochastic map M admits an operational interpretation.
First, note that if M is not only semicausal but also stochastic, then also the matrix A in Eq. (3) is stochastic. Thus, the interpretation of the
decomposition is as follows: First, Alice applies some probabilistic operation (A) to the composite system A × E. Then, she transmits the
E-part to Bob, who now applies a stochastic operation (U) to his part of the system.

Given this interpretation, the idea behind the construction in the Proof of Theorem IV.4 is that Alice first looks the input of system A
and generates the output of system A according to the distribution given by the matrix NA. Then, she copies the input as well as her generated
output and sends this information to Bob, who is then able to complete the operation by generating an output conditional on his input and
the information he got from Alice. Given that this construction requires copying, it might be considered surprising that a quantum analog is
true nevertheless.10

Proof (Theorem IV.4). If N is Schrödinger B→/ A semilocalizable, then

N(𝟙A ⊗ ∣1B⟩) = (A⊗ 𝟙B)(𝟙A ⊗U∣1B⟩) = (A⊗ 𝟙B)(𝟙A ⊗ ∣1EB⟩) = (A(𝟙A ⊗ ∣1E⟩))⊗ ∣1B⟩.
Hence, N is row B→/ A semicausal.
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Conversely, if N is row B→/ A semicausal, we choose E ∶= A ×A and define

A ∶=∑
i,j,k
⟨aj∣NAak⟩ ∣aj⟩⟨ak∣⊗ ⟨ak ⊗ aj∣,

U ∶= ∑
m,n,r,s⟨an ∣NAam⟩≠0

⟨an ⊗ br ∣N am ⊗ bs⟩⟨an∣NAam⟩ ∣am ⊗ an ⊗ br⟩⟨bs∣ +
⎡⎢⎢⎢⎢⎢⎢⎣
∑
m,n⟨an ∣NAam⟩=0

∣am ⊗ an⟩
⎤⎥⎥⎥⎥⎥⎥⎦
⊗ 𝟙B.

(4)

To show that N = (A⊗ 𝟙B)(𝟙A ⊗U), we calculate

(A⊗ 𝟙B)(𝟙A ⊗U) = ∑
i,j,k

m,n,r,s⟨an ∣NAam⟩≠0

⟨aj∣NAak⟩⟨an ⊗ br ∣N am ⊗ bs⟩⟨an∣NAam⟩ [(∣aj⟩⟨ak∣⊗ ⟨ak ⊗ aj∣⊗ 𝟙B)(𝟙A ⊗ ∣am ⊗ an ⊗ br⟩⟨bs∣)]

+ ∑
i,j,k
m,n⟨an ∣NAam⟩=0

⟨aj∣NAak⟩(∣aj⟩⟨ak∣⊗ ⟨ak ⊗ aj∣⊗ 𝟙B)(𝟙A ⊗ ∣am ⊗ an⟩⊗ 𝟙B)

= ∑
i,j,k,r,s⟨aj ∣NAak⟩≠0

⟨aj∣NAak⟩⟨aj ⊗ br ∣N ak ⊗ bs⟩⟨aj∣NAak⟩ ∣aj⟩⟨ak∣⊗ ∣br⟩⟨bs∣
+ ∑

i,j,k⟨aj ∣NAak⟩=0

⟨aj∣NAak⟩∣aj⟩⟨ak∣⊗ 𝟙B

= N.

For the last step, observe that the second sum vanishes and that one can drop the constraint that ⟨aj∣NAak⟩ ≠ 0 in the first sum (after
cancellation) because ⟨aj ⊗ br ∣N ak ⊗ bs⟩ = 0 if ⟨aj∣NAak⟩ = 0. To see this last claim, note that, since N is non-negative and semicausal, we
have

0 ≤ ⟨aj ⊗ br ∣N ak ⊗ bs⟩ ≤ ⟨aj ⊗ br ∣N ak ⊗ 1B⟩ = ⟨aj∣NAak⟩⟨br ∣1B⟩ = 0.

It is clear that A and U are non-negative since N and, thus, also NA are non-negative by assumption. It remains to show that U is row-
stochastic. We have

U∣1B⟩ = ∑
m,n,r,s⟨an ∣NAam⟩≠0

⟨an ⊗ br ∣N am ⊗ bs⟩⟨an∣NAam⟩ ∣am ⊗ an ⊗ br⟩ + ∑
m,n,s⟨an ∣NAam⟩=0

∣am ⊗ an ⊗ bs⟩
= ∑

m,n,r⟨an ∣NAam⟩≠0

⟨an ⊗ br ∣N am ⊗ 1B⟩⟨an∣NAam⟩ ∣am ⊗ an ⊗ br⟩ + ∑
m,n,s⟨an ∣NAam⟩=0

∣am ⊗ an ⊗ bs⟩
= ∑

m,n,r⟨an ∣NAam⟩≠0

∣am ⊗ an ⊗ br⟩ + ∑
m,n,s⟨an ∣NAam⟩=0

∣am ⊗ an ⊗ bs⟩
= ∣1EB⟩,

where we used the condition that N is semicausal to obtain the third line. This finishes the proof. ◻
Remark IV.6. Theorem IV.4 can be extended to weak − ∗ continuous non-negative maps on the Banach space of bounded real sequences,

but this requires extra care and does not yield additional insight beyond the previous proof.

C. Generators of semigroups of classical semicausal non-negative maps

The main goal of this section is to establish a structure theorem for the generators of semigroups of non-negative semicausal maps. First,
recall that a (norm)-continuous semigroup {Nt}t≥0 ⊆ B(RA ⊗RB) has a generator Q ∈ B(RA ⊗RB) such that Nt = etQ. A classical result states
that Nt is non-negative for all t ≥ 0 if and only if the generator Q can be written in the form Q = Φ − K, where Φ is non-negative and K is
a diagonal matrix with respect to the canonical basis.24 A second, crucial observation is that Nt is Heisenberg B→/ A semicausal for all t ≥ 0
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if and only if Q is Heisenberg B→/ A semicausal. To see this, let us first show that the reduced maps {NA
t }t≥0

also form a norm-continuous
semigroup of non-negative maps. Since non-negativity is clear, we derive the semigroup properties (NA

0 = 𝟙A, NA
t+s = NA

t NA
s , and continuity)

from the corresponding ones of {Nt}t≥0,

NA
0 = (𝟙A ⊗ ⟨b1∣)(NA

0 ⊗ ∣1B⟩) = (𝟙A ⊗ ⟨b1∣)N0(𝟙A ⊗ ∣1B⟩) = (𝟙A ⊗ ⟨b1∣)(𝟙A ⊗ ∣1B⟩) = 𝟙A,

NA
t+s = (𝟙A ⊗ ⟨b1∣)(NA

t+s ⊗ ∣1B⟩) = (𝟙A ⊗ ⟨b1∣)Nt+s(𝟙A ⊗ ∣1B⟩) = (𝟙A ⊗ ⟨b1∣)NtNs(𝟙A ⊗ ∣1B⟩)
= (𝟙A ⊗ ⟨b1∣)Nt(𝟙A ⊗ ∣1B⟩)NA

s = (𝟙A ⊗ ⟨b1∣)(𝟙A ⊗ ∣1B⟩)NA
t NA

s = NA
t NA

s ,

∥NA
t −NA

s ∥ = sup∥x∥∞=1
∥(NA

t −NA
s )∣x⟩∥∞ = sup∥x∥∞=1

∥((NA
t −NA

s )∣x⟩)⊗ ∣1B⟩∥∞ = sup∥x∥∞=1
∥(Nt −Ns)(∣x⟩⊗ ∣1B⟩)∥∞

≤ sup∥y∥∞=1
∥(Nt −Ns)∣y⟩∥ = ∥Nt −Ns∥.

Thus, we conclude that NA
t = etQA

for some generator QA ∈ B(RA). We further have

Q(𝟙A ⊗ ∣1B⟩) = d
dt
∣
t=0

Nt(𝟙A ⊗ ∣1B⟩)
= d

dt
∣
t=0
(𝟙A ⊗ ∣1B⟩)NA

t

= (𝟙A ⊗ ∣1B⟩)QA.

Thus, Q is semicausal if Nt is semicausal for all t ≥ 0. Conversely, if Q is semicausal, then Nt is semicausal, since

Nt(𝟙A ⊗ ∣1B⟩) = etQ(𝟙A ⊗ ∣1B⟩)
= ∞∑

k=0

tk

k!
Qk(𝟙A ⊗ ∣1B⟩)

= ∞∑
k=0

tk

k!
(𝟙A ⊗ ∣1B⟩)(QA)k

= (𝟙A ⊗ ∣1B⟩)etQA

.

Therefore, our task reduces to characterizing semicausal maps of the form Q = Φ − K. Let us first remark that it is straight-forward to check
(numerically) whether a given map satisfies these two conditions: We just need to check for non-negativity of the off-diagonal elements
and whether (𝟙A ⊗ ⟨b∣)Q∣ai ⊗ 1B⟩ = 0 for all ai ∈ A and all b ∈ {∣1B⟩}�. That is, semicausality can be checked in terms of ∣A∣(∣B∣ − 1) linear
equations and ∣A∣∣B∣(∣A∣∣B∣ − 1) linear inequalities. Thus, a desirable result would be a normal form for all Heisenberg B→/ A semicausal
generators Q, which allows for generating such maps rather than checking whether a given maps is of the desired form. The main result of
this section is exactly such a normal form.

To understand our normal form below, note that there are two natural ways of constructing a generator (remember that the matrix
elements are interpreted as transition rates) that does not transmit information from system B to system A. First, we can leave system A
unchanged and have transitions only on system B. The most basic form of such a map is ∣ai⟩⟨ai∣⊗ B(i) for some 1 ≤ i ≤ ∣A∣ and for some
B(i) ∈ B(RB) that is itself a valid generator of a semigroup of row-stochastic maps. That means that B(i) = Φ(i) − diag(Φ(i)∣1B⟩) for some non-
negative matrix Φ(i) ∈ B(RB). Second, if we want to act non-trivially on system A, we can make both the two parts of a generator Q = Φ − K,
the non-negative partΦ ∈ B(RA ⊗RB) and the diagonal part K ∈ B(RA ⊗RB), semicausal separately. Such a map has the formΦsc − KA ⊗ 𝟙B,
where Φsc is semicausal non-negative and KA ∈ B(RA) is diagonal. The fact that (convex) combinations of these basic building blocks already
give rise to the most general form of semicausal generators for semigroups of non-negative bounded linear maps is the content of our next
theorem, which establishes the desired normal form.

Theorem IV.7 (generators of classical semigroups of semicausal non-negative maps). A map Q ∈ B(RA ⊗RB) is the generator of a
(norm-continuous) semigroup of Heisenberg B→/ A semicausal non-negative linear maps if and only if there exist a non-negative Heisenberg
B→/ A semicausal map Φsc ∈ B(RA ⊗RB), a diagonal map KA ∈ B(RA ⊗RB), and linear maps B(i) ∈ B(RB) that generate (norm-continuous)
semigroups of row-stochastic maps, for 1 ≤ i ≤ ∣A∣, such that

Q = Φsc − KA ⊗ 𝟙B + ∣A∣∑
i=1
∣ai⟩⟨ai∣⊗ B(i).

In that case, Φsc can be chosen “block-off-diagonal,” i.e., Φsc = ∑i≠j∣ai⟩⟨aj∣⊗Φ(ij)sc for some collection of (non-negative) maps Φ(ij)sc ∈ B(RB).
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Proof. It is straight-forward to check that a generator Q of the given form has non-negative off-diagonal entries with respect to the
standard basis and is Heisenberg B→/ A semicausal. By the above discussion, this means that such a generator indeed gives rise to a semigroup
of semicausal non-negative maps.

We prove the converse. Suppose Q is the generator of a semigroup of non-negative linear maps. Then, we can expand it as
Q = ∑∣A∣i, j=1∣ai⟩⟨aj∣⊗Q(ij), where the operators Q(ij) ∈ B(RB) are non-negative for i ≠ j and of the form of a generator of a non-negative
semigroup (i.e., non-negative minus diagonal) for i = j. This decomposition, together with semicausality, implies that for all 1 ≤ i, j ≤ ∣A∣,

Q(ij)∣1B⟩ = (⟨ai∣⊗ 1B)Q(∣aj⟩⊗ ∣1B⟩) = ⟨ai∣QA∣aj⟩ ⋅ ∣1B⟩.
In other words, ∣1B⟩ is an eigenvector of every Q(ij), with the corresponding eigenvalue λ(ij) = ⟨ai∣QA∣aj⟩. Hence, if we define B(i) ∈ B(RB)
as B(i) ∶= Q(ii) − λ(ii)𝟙B, then Bi generates a semigroup of non-negative maps (since Q(ij) does and λ(ii)𝟙B is diagonal) and satisfies (by
construction) B(i)∣1B⟩ = 0. Hence, B(i) generates a semigroup of row-stochastic maps.

With this notation, we can rewrite Q as

Q =∑
i≠j
∣ai⟩⟨aj∣⊗Q(ij)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=:Φsc

− ∣A∣∑
i=1
− λ(ii)∣ai⟩⟨ai∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=:KA

⊗ 𝟙B + ∣A∣∑
i=1
∣ai⟩⟨ai∣⊗ B(i).

Note that Φsc is semicausal, since it can be written as the linear combination of the three semicausal maps Q, KA ⊗ 𝟙B, and ∑ i∣ai⟩⟨ai∣⊗ B(i).
Thus, we have reached the claimed form. ◻

By applying Theorem IV.4, we can further expand the Φ part.

Corollary IV.8. A map Q ∈ B(RA ⊗RB) is the generator of a (norm-continuous) semigroup of Heisenberg B→/ A semicausal non-negative
linear maps if and only if there exist a (finite) alphabet E, a (non-negative) row-stochastic matrix U ∈ B(RB;RE ⊗RB), a non-negative
matrix A ∈ B(RA ⊗RE;RA), a diagonal matrix KA ∈ B(RA ⊗RB), and maps B(i) ∈ B(RB) that generate (norm-continuous) semigroups of
(row-)stochastic maps, for 1 ≤ i ≤ ∣A∣, such that

Q = (A⊗ 𝟙B)(𝟙A ⊗U) − KA ⊗ 𝟙B + ∣A∣∑
i=1
∣ai⟩⟨ai∣⊗ B(i).

In that case, we can choose ∣E∣ = ∣A∣2.

One should also note that with the notation of Corollary IV.8, the reduced map is given by QA = (A(𝟙A ⊗ ∣1B⟩)) − KA. Hence, the reduced
dynamics only depends on the operators A and KA. Further note that if we require the semigroup to consist of non-negative semicausal
maps that are also row-stochastic, then we obtain the additional requirement that KA∣1A⟩ = A∣1AE⟩, which completely determines KA. For
completeness and later use, we write down the form of the generators non-negative semigroups that are Schrödinger B→/ A semicausal.

Corollary IV.9. A map Q ∈ B(RA ⊗RB) is the generator of a (norm-continuous) semigroup of Schrödinger B→/ A semicausal non-negative
linear maps if and only if there exist a (finite) alphabet E, a (non-negative) column-stochastic matrix U ∈ B(RE ⊗RB;RB), a non-negative
matrix A ∈ B(RA;RA ⊗RE), a diagonal matrix KA ∈ B(RA ⊗RB), and maps B(i) ∈ B(RB) that generate (norm-continuous) semigroups of
column-stochastic maps, for 1 ≤ i ≤ ∣A∣, such that

Q = (𝟙A ⊗U)(A⊗ 𝟙B) − KA ⊗ 𝟙B + ∣A∣∑
i=1
∣ai⟩⟨ai∣⊗ B(i).

In that case, we can choose ∣E∣ = ∣A∣2.

Similar to the row-stochastic case, B(i) generates a semigroup of column-stochastic maps if and only if B(i) = Φ(i) − diag(⟨1B∣Φ(i)) for
some non-negative matrix Φ(i) ∈ B(RB).
D. Generators of semigroups of classical superchannels

We finally turn to semigroups of classical superchannels, that is, a collection of classical superchannels {Ŝt}t≥0
, such that Ŝ0 = id,

Ŝt+s = Ŝt Ŝs, and the map t ↦ Ŝt is continuous (with respect to any and, thus, all of the equivalent norms in finite dimensions). To formu-
late a technically slightly stronger result, we call a linear map Ŝ a preselecting supermap if CC

A;B ○ Ŝ ○ (CC
A;B)−1 is a non-negative Schrödinger
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B→/ A semicausal map. Theorem IV.3 then tells us that a superchannel is a special preselecting supermap. The result of this section is the
following theorem:

Theorem IV.10. A linear map Q̂ : B(RA;RB)→ B(RA;RB) generates a semigroup of classical preselecting supermaps if and only if there
exist a (finite) alphabet E, a column-stochastic matrix U ∈ B(RE ⊗RB;RB), a non-negative matrix A ∈ B(RA;RA ⊗RE), a diagonal matrix
KA ∈ B(RA), and a collection of generators of semigroups of column-stochastic matrices B(i) ∈ B(RB) such that

Q̂(M) = U(M ⊗ 𝟙E)A −MKA + ∣A∣∑
i=1

B(i)M∣ai⟩⟨ai∣. (5)

Furthermore, Q̂ generates a semigroup of classical superchannels if and only if Q̂ generates a semigroup of preselecting supermaps and ⟨ai∣KAai⟩= ⟨1AE∣Aai⟩ for all 1 ≤ i ≤ ∣A∣. In this case, Q̂ is given by

Q̂(M) = U(M ⊗ 𝟙E)A − ∣A∣∑
i=1
⟨1AE∣Aai⟩M∣ai⟩⟨ai∣ + ∣A∣∑

i=1
B(i)M∣ai⟩⟨ai∣. (6)

Proof. The main idea is to relate the generators of superchannels to those of semicausal maps. This relation is given by definition for
preselecting supermaps and by Theorem IV.3 for superchannels. For a generator Q̂ of a semigroup of preselecting supermaps {Ŝt}t≥0, we have

Q̂ = d
dt
∣
t=0

Ŝt = (CC
A;B)−1 d

dt
∣
t=0
[CC

A;B ○ Ŝt ○ (CC
A;B)−1]CC

A;B.

Thus, Q̂ generates a semigroup of preselecting supermaps if and only if Q̂ can be written as Q̂ = (CC
A;B)−1 ○Q ○ CC

A;B for some generator Q of a
semigroup of non-negative Schrödinger B→/ A semicausal maps. Thus, to prove the first part of our theorem, we simply take the normal form
in Corollary IV.9 and compute the similarity transformation above.

For ∣Ω⟩ = ∑i∣ai⟩⊗ ∣ai⟩ ∈ RA ⊗RA and an operator XA ∈ B(RA), the well-known identity (XA ⊗ 𝟙A)∣Ω⟩ = (𝟙A ⊗ XT
A)∣Ω⟩ can be proven

by a direct calculation. Similarly, it is easy to show that for XA ∈ B(RA;RA ⊗RE), the slightly more general identity (XA ⊗ 𝟙A)∣Ω⟩ = (𝟙A⊗ FA;EXTA
A )∣Ω⟩ holds, where FA;E is the flip operator that exchanges systems A and E. We use these two identities in the following calculations.

For Ã ∈ B(RA;RA ⊗RE) and Ũ ∈ B(RE ⊗RB;RB), we have, for any M ∈ B(RA;RB),
(CC

A;B)−1(𝟙A ⊗ Ũ)(Ã⊗ 𝟙B)CC
A;B(M) = (CC

A;B)−1(𝟙A ⊗ Ũ)(Ã⊗ 𝟙B)(𝟙A ⊗M)∣Ω⟩
= (CC

A;B)−1(𝟙A ⊗ (Ũ(𝟙E ⊗M)))(Ã⊗ 𝟙A)∣Ω⟩
= (CC

A;B)−1(𝟙A ⊗ (Ũ(𝟙E ⊗M)))(𝟙A ⊗ FA;EÃ TA)∣Ω⟩
= (CC

A;B)−1(𝟙A ⊗ (Ũ(𝟙E ⊗M)FA;EÃ TA))∣Ω⟩
= (CC

A;B)−1
C

C
A;B(Ũ(𝟙E ⊗M)FA;EÃ TA)

= Ũ(𝟙E ⊗M)FA;EÃ TA

= (ŨFB;E)(M ⊗ 𝟙E)Ã TA.

For K̃A ∈ B(RA), we get, for any M ∈ B(RA;RB),
(CC

A;B)−1(KA ⊗ 𝟙B)CC
A;B(M) = (CC

A;B)−1(K̃A ⊗ 𝟙B)(𝟙A ⊗M)∣Ω⟩
= (CC

A;B)−1(𝟙A ⊗M)(K̃A ⊗ 𝟙A)∣Ω⟩
= (CC

A;B)−1(𝟙A ⊗M)(𝟙A ⊗ K̃T
A)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗MK̃T

A)∣Ω⟩
= (CC

A;B)−1
C

C
A;B(MK̃T

A)
=MK̃T

A.

Finally, for an operator B̃ (i) ∈ B(RB) and for any 1 ≤ i ≤ ∣A∣, we have, for any M ∈ B(RA;RB),
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(CC
A;B)−1(∣ai⟩⟨ai∣⊗ B(i))CC

A;B(M) = (CC
A;B)−1(∣ai⟩⟨ai∣⊗ B(i))(𝟙A ⊗M)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗ B(i)M)(∣ai⟩⟨ai∣⊗ 𝟙A)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗ B(i)M)(𝟙A ⊗ ∣ai⟩⟨ai∣)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗ B(i)M∣ai⟩⟨ai∣)∣Ω⟩

= (CC
A;B)−1

C
C
A;B(B(i)M∣ai⟩⟨ai∣)

= B(i)M∣ai⟩⟨ai∣.
Applying the results of these calculations term by term to the normal form in Corollary IV.9 yields the first claim, where we defined A = Ã TA ,
U = ŨFB;E, KA = K̃T

A, and B(i) = B̃ (i).
If the semigroup {Ŝt}t≥0 consists of superchannels, that is, preselecting maps such that (by Theorem IV.3) the reduced maps SA

t of the
semigroup of semicausal maps St ∶= CC

A;B ○ Ŝt ○ (CC
A;B)−1 (which are defined by the requirement that (𝟙A ⊗ ∣1B⟩)St = SA

t (𝟙A ⊗ ∣1B⟩)) satisfy
SA

t ∣1A⟩ = ∣1A⟩, then differentiating this relation yields

QA∣1A⟩ = d
dt
∣
t=0

SA
t ∣1A⟩ = d

dt
∣
t=0
∣1A⟩ = 0.

We conclude that Q̂ generates a semigroup of superchannels if and only if Q generates a semigroup of semicausal maps and QA∣1A⟩ = 0. We
obtain directly from Corollary IV.9 that QA = (𝟙A ⊗ ∣1E⟩)Ã − K̃A. It follows that

⟨ai1E∣Ã1A⟩ = ⟨ai1E∣ATA 1A⟩ = ⟨1AE∣Aai⟩ = ⟨ai∣K̃A1A⟩ = ⟨ai∣KAai⟩, (7)

where we used that K̃A = KA is diagonal in the last step. This is the condition claimed in the theorem. Finally, (6) is obtained by combining
this condition with (5). ◻
V. THE QUANTUM CASE

We now turn to the quantum case. As introduced and described in more detail in Ref. 1, a quantum superchannel is a map that maps
quantum channels to quantum channels while preserving the probabilistic structure of the theory. To achieve the latter, it is usually required
that a quantum superchannel is a linear map and that probabilistic transformations, i.e., trace non-increasing CP-maps, should be mapped
to probabilistic transformations even if we add an innocent bystander. When dealing with superchannels, we will restrict ourselves to the
finite-dimensional case and leave the infinite-dimensional case25 for future work. We follow1 and define superchannels as follows:

Definition V.1 (superchannels). A linear map Ŝ : B(S1(HA);S1(HB))→ B(S1(HA);S1(HB)) is called a superchannel if for all n ∈ N the
map Ŝn = idB(S1(Cn)) ⊗ Ŝ satisfies that Ŝn(T) is a probabilistic transformation whenever T ∈ B(S1(Cn ⊗HA);S1(Cn ⊗HB)) is a probabilistic
transformation and that Ŝn(T) is a quantum channel whenever T ∈ B(S1(Cn ⊗HA);S1(Cn ⊗HB)) is a quantum channel.

A related concept is that of a semicausal quantum channel, which is a quantum channel on a bipartite space HA ⊗HB such that no
communication from B to A is allowed. Following Refs 2 and 10, we formalize this as follows:

Definition V.2 (semicausality). A bounded linear map L∗ : S1(HA ⊗HB)→ S1(HA ⊗HB) is called Schrödinger B→/ A semicausal if
there exists LA∗ : S1(HA)→ S1(HA) such that trB[L∗(ρ)] = LA∗(trB[ρ]), for all ρ ∈ S1(HA ⊗HB). Similarly, L : B(HA ⊗HB)→ B(HA ⊗HB)
is called Heisenberg B→/ A semicausal if there exists LA : B(HA)→ B(HA) such that L(XA ⊗ 𝟙B) = LA(XA)⊗ 𝟙B for all XA ∈ B(HA).

The map L∗ is Schrödinger B→/ A semicausal if and only if the dual map L ∶= L∗∗ is normal and Heisenberg B→/ A semicausal. We will
often omit the Schrödinger or Heisenberg attribute if it is clear from the context. This section is structured analogously to the section about
the classical case. In particular, we will start by reminding the reader of the connection between semicausal maps and superchannels as well
as the characterization of semicausal CP-maps in terms of semilocalizable maps, as schematically shown in Fig. 4. We then turn to the study
of the generators of semigroups of semicausal CP-maps and finally use the correspondence between superchannels and semicausal channels
to obtain the corresponding results of the generators of semigroups of superchannels.

A. Superchannels, semicausal channels, and semilocalizable channels

We first state the characterization of superchannels in terms of semicausal maps, obtained in Ref. 1.

Theorem V.3. For finite-dimensional spaces HA and HB, let Ŝ : B(S1(HA);S1(HB))→ B(S1(HA);S1(HB)) be a linear map and define
S = CA;B ○ Ŝ ○ C−1

A;B. Then, Ŝ is a superchannel if and only if S is CP and Schrödinger B→/ A semicausal such that the reduced map SA satisfies
SA(𝟙A) = 𝟙A.
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FIG. 4. Visualization of the relation between the notions of superchannels, semicausal maps, and semilocalizable maps. Superchannels and semicausal maps are related
via a similarity transform with the Choi–Jamiołkowski isomorphism. Schrödinger B→/ A semicausal maps are those maps whose output, after tracing out system 4, does not
depend on input 2 (ρ or ρ̃). Semicausal maps are precisely those maps that allow for one-way communication only. This is called semilocalizability.

The next result is due to Eggeling, Schlingemann, and Werner,10 who proved it in the finite-dimensional setting. The following form,
which is a generalization of Ref. 10 to the infinite-dimensional case and which has previously been shown in (Ref. 26, Theorem 4), can be
obtained from our main result (Theorem V.6) by setting K = 0.

Theorem V.4. A map Φ ∈ CPσ(HA ⊗HB) is Heisenberg B→/ A semicausal if and only if there exist a (separable) Hilbert space HE, a
unitary operator U ∈ U(HE ⊗HB;HB ⊗HE), and an arbitrary operator A ∈ B(HA;HA ⊗HE) such that

Φ(X) = V†(X ⊗ 𝟙E)V , with V = (𝟙A ⊗U)(A⊗ 𝟙B). (8)

If HA and HB are finite-dimensional, with dimensions dA and dB, then HE can be chosen such that dim(HE) ≤ (dAdB)2.

We call a normal CP-map Φ ∈ CPσ(HA ⊗HB) semilocalizable if its Stinespring dilation can be written in the form of Eq. (8). With that
nomenclature, the above theorem is exactly the quantum analog of Theorem IV.4.

B. Generators of semigroups of semicausal CP maps

The main goal of this section is to establish a structure theorem for the generators of semigroups of semicausal CP-maps, the proof-
structure of which is highlighted in Fig. 5. This is our main technical contribution. To get started, recall that a generator L ∈ B(B(HA ⊗HB))
generates a norm-continuous semigroup {Tt}t≥0 ⊆ CPσ(HA ⊗HB) of CP-maps (i.e., Tt = etL) if and only if L can be written in GKLS-form,
i.e., if and only if there exist Φ ∈ CPσ(HA ⊗HB) and K ∈ B(HA ⊗HB) such that

L(X) = Φ(X) − K†X − XK, X ∈ B(HA ⊗HB). (9)

As in the classical case, we continue by showing that Tt is Heisenberg B→/ A semicausal for all t ≥ 0 if and only if L is Heisenberg B→/ A
semicausal. We start by showing that the family of reduced maps {TA

t }t≥0 also forms a norm-continuous semigroup of normal CP-maps. That
TA

t is normal and CP follows, since for any density operator ρB ∈ S1(HB), we have

TA
t = trρB ○ Tt ○D,

where D ∈ CPσ(HA;HA ⊗HB) is defined by D(XA) = XA ⊗ 𝟙B. Hence, TA
t is a normal CP-map as composition of normal CP-maps. It remains

to check the semigroup properties (TA
0 = idA, TA

t+s = TA
t TA

s , and norm-continuity). We have

TA
0 (XA) = trρB[T0(XA ⊗ 𝟙B)] = trρB[XA ⊗ 𝟙B] = XA,

TA
t+s(XA) = trρB[Tt+s(XA ⊗ 𝟙B)] = trρB[Tt(Ts(XA ⊗ 𝟙B))] = trρB[Tt(TA

s (XA)⊗ 𝟙B)] = trρB[(TA
t TA

s (XA))⊗ 𝟙B] = TA
t TA

s (XA),
∥TA

t − TA
s ∥ = sup∥XA∥B(HA)=1

∥TA
t (XA) − TA

s (XA)∥B(HA) = sup∥XA∥B(HA)=1
∥(TA

t (XA) − TA
s (XA))⊗ 𝟙B∥B(HA⊗HB)

= sup∥XA∥B(HA)=1
∥Tt(XA ⊗ 𝟙B) − Ts(XA ⊗ 𝟙B)∥B(HA⊗HB) ≤ sup∥X∥B(HA⊗HB)=1

∥Tt(X) − Ts(X)∥B(HA⊗HB) = ∥Tt − Ts∥.
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FIG. 5. Overview of the proof structure leading to the normal form for semicausal Lindblad generators (Theorem V.6). We first observe that semicausality of the CP semigroup
is equivalent to semicausality of the corresponding GKLS generator L. The insight is then that we can construct a CP-map Φ0 that is closely related to the CP-part of L
and that is semicausal (Lemma V.13). From the semilocalizable form of Φ0, we then obtain an explicit form for the CP-part of L. This, together with the observation that a
semicausal non-CP part has to have a local form, yields the desired normal form.

Thus, we conclude that TA
t = etLA

for some generator LA ∈ B(B(HA)) of normal CP-maps. We further have

L(XA ⊗ 𝟙B) = d
dt
∣
t=0

Tt(XA ⊗ 𝟙B) = d
dt
∣
t=0

TA
t (XA)⊗ 𝟙B = LA(XA)⊗ 𝟙B.

Thus, L is semicausal if Tt is semicausal for all t ≥ 0. Conversely, if L is semicausal, then Tt is semicausal for all t ≥ 0, since

Tt(XA ⊗ 𝟙B) = etL(XA ⊗ 𝟙B)
= ∞∑

k=0

tk

k!
Lk(XA ⊗ 𝟙B)

= ∞∑
k=0

tk

k!
(LA)k(XA)⊗ 𝟙B

= etLA(XA)⊗ 𝟙B.

Therefore, our task reduces to characterizing semicausal maps in the GKLS-form, i.e., we want to determine the corresponding Φ and K. Our
main result (Theorem V.6) is a normal form, which allows us to list all semicausal generators L.

Before we delve into this, we treat the inverse question: Given some L ∈ B(B(HA ⊗HB)), is it a semicausal generator? A computa-
tionally efficiently chackable criterion can be constructed via the Choi–Jamiołkowski isomorphism. If HA and HB are finite-dimensional
and L ∈ B(B(HA ⊗HB)) is given, then we define L = CAB;AB(L) ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2), where the Choi–Jamiołkowski isomor-
phism is defined with respect to the orthogonal bases {∣ai⟩}dim(H A)

i=1 and {∣bj⟩}dim(H B)
j=1 of HA and HB, respectively, and where the spaces

HA1 = HA2 = HA and HB1 = HB2 = HB are introduced for notational convenience. Furthermore, define P� ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2) to
be the orthogonal projection onto the orthogonal complement of {∣Ω⟩}, where ∣Ω⟩ = ∑ i,j∣ai⟩⊗ ∣bj⟩⊗ ∣ai⟩⊗ ∣bj⟩.

Lemma V.5. A linear map L : B(HA ⊗HB)→ B(HA ⊗HB) is the generator of a semigroup of Heisenberg B→/ A semicausal CP-maps if
and only if

● L is self-adjoint and P�LP� ≥ 0, and● trB1[L] = LA ⊗ 𝟙B2 for some (then necessarily self-adjoint) LA ∈ B(HA1 ⊗HA2).
The generated semigroup is unital (i.e., Tt(𝟙AB) = 𝟙AB for t ≥ 0) if and only if trA1[LA] = 0.
Furthermore, a linear map L : B(HA ⊗HB)→ B(HA ⊗HB) is the generator of a semigroup of Schrödinger B→/ A semicausal CP-maps if

and only if

J. Math. Phys. 63, 072204 (2022); doi: 10.1063/5.0070635 63, 072204-16

© Author(s) 2022



Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

● L is self-adjoint and P�LP� ≥ 0 and● (FA1 ;B1 ⊗ 𝟙A2)trB2[L](FA1 ;B1 ⊗ 𝟙A2) = 𝟙B1 ⊗ LA for some (then necessarily self-adjoint) LA ∈ B(HA1 ⊗HA2).
The generated semigroup is trace-preserving (i.e., tr[Tt(ρ)] = tr[ρ] for ρ ∈ B(HA ⊗HB) and t ≥ 0) if and only if trA2[LA] = 0.

Thus, checking whether a map L is the generator of a semigroup of semicausal CP-maps reduces to checking several semidefinite
constraints. In particular, the problem to optimize over all semicausal generators is a semidefinite program.

Proof. It is known (see, e.g., the appendix in Ref. 21) that L generates a semigroup of CP-maps if and only if L is self-adjoint and
P�LP� ≥ 0. This criterion goes by the name of conditional complete positivity.22 Thus, it remains to translate the other criteria to the level of
Choi–Jamiołkowski operators. If L is Heisenberg B→/ A semicausal, then

trB1[L] = trB1[(idA1B1 ⊗ L)(∣Ω⟩⟨Ω∣)]= (idA1 ⊗ L)(∣ΩA⟩⟨ΩA∣⊗ 𝟙B2)= (idA1 ⊗ LA)(∣ΩA⟩⟨ΩA∣)⊗ 𝟙B2= LA ⊗ 𝟙B2 ,

where we defined ∣ΩA⟩ = ∑i∣ai⟩⊗ ∣ai⟩ ∈ HA1 ⊗HA2 and LA = (idA1 ⊗ LA)(∣ΩA⟩⟨ΩA∣). Conversely, if trB1[L] = LA ⊗ 𝟙B2 , define LA

= C−1
A;A(LA). Then,

L(XA ⊗ 𝟙B1) = trA1B1[((XT
A ⊗ 𝟙B1)⊗ 𝟙A2B2)L]

= trA1[(XT
A ⊗ 𝟙A2B2)trB1[L]]

= trA1[(XT
A ⊗ 𝟙A2B2)(LA ⊗ 𝟙B2)]

= trA1[(XT
A ⊗ 𝟙A2)LA]⊗ 𝟙B2

= C−1
A;A(LA)(XA)⊗ 𝟙B2= LA(XA)⊗ 𝟙B.

Finally, it is known that a semigroup of CP-maps is unital if and only if L(𝟙A2B2) = 0. However, this is equivalent to our criterion, since a
simple calculation shows that

trA1B1[L] = L(𝟙A2B2).
This finishes the proof for the Heisenberg picture case. The Schrödinger case can be proven along similar lines or be obtained directly from
the Heisenberg case via the identity CAB;AB(L∗) = FA1B1 ;A2B2[CAB;AB(L)]TFA1B1 ;A2B2 . ◻

Let us now return to the main goal of this section: finding a normal form for semicausal generators in GKLS-form. We motivate (and
interpret) our normal form as the “quantization” of the normal form for generators of classical semicausal semigroups (Theorem IV.7). In the
classical case, the normal form had two building blocks: an operator of the form Q1 = Φsc − KA ⊗ 𝟙B, whereΦsc is non-negative and semicausal,
and an operator of the form Q2 = ∑∣A∣i=1∣ai⟩⟨ai∣⊗ B(i), where the B(i)’s are generators of row-stochastic maps, (i.e., B(i) generates a non-negative
semigroup and B(i)∣1B⟩ = 0). It is straightforward to guess a quantum analog for the first building block: a generator L1 ∈ B(B(HA ⊗HB))
defined by

L1(X) = Φsc(X) − (KA ⊗ 𝟙B)†X − X(KA ⊗ 𝟙B), (10)

where Φsc ∈ CPσ(HA ⊗HB), given in the Stinespring form by Φsc(X) = V†
sc(X ⊗ 𝟙E)Vsc, is semicausal. One readily verifies that L1 defines a

semicausal generator. To “quantize” the second building block, note that Q2 does not induce any change on system A. Indeed, since

etQ2(𝟙A ⊗ ∣1B⟩) = ∣A∣∑
i=1
∣ai⟩⟨ai∣⊗ (etB(i) ∣1B⟩) = ∣A∣∑

i=1
∣ai⟩⟨ai∣⊗ ∣1B⟩ = 𝟙A ⊗ ∣1B⟩, (11)

the generated semigroup looks like the identity on system A. In the quantum case, semigroups that do not induce any change on system A are
more restricted, since any information-gain about system A inevitably disturbs system A—so there can be no conditioning as in the classical
case. Indeed, if one requires that Tt ∈ CPσ(HA ⊗HB) satisfies the quantum analog of Eq. (11), namely,
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Tt(XA ⊗ 𝟙B) = XA ⊗ 𝟙B (12)

for all XA ∈ B(HA), then Tt = idA ⊗Θt for some unital map Θt ∈ CPσ(HB) (see Appendix B for a proof). Differentiation of Tt = idA ⊗Θt at
t = 0 now implies that the generator of a semigroup of CP-maps that satisfy (12) are of the form idA ⊗ B̂, where B̂ generates a semigroup of
unital CP-maps [i.e., B̂(𝟙B) = 0]. To conclude, the two building blocks are operators of the form of L1 in Eq. (10) and maps L2 of the form

L2(X) = (𝟙A ⊗ B)†(X ⊗ 𝟙E)(𝟙A ⊗ B) − 1
2
{𝟙A ⊗ B†B , X} + i[𝟙A ⊗HB , X],

with B ∈ B(HB;HB ⊗HE) and a self-adjoint HB ∈ B(HB).
In the classical case, we obtained the normal form (Theorem IV.7) by taking a convex combination of the basic building blocks. This

corresponds to probabilistically choosing one or the other. In quantum theory, there is a more general concept: superposition. To account for
this, we construct our normal form not as a convex combination of the maps L1 and L2 but by taking a linear combination (superposition) of
the Stinespring operators V sc and 𝟙A ⊗ B as the Stinespring operator of the CP-part of the GKLS-form (note here that the coefficients can be
absorbed into V sc and 𝟙A ⊗ B, respectively). This means that if L is given by Eq. (9) withΦ(X) = V†(X ⊗ 𝟙E)V , then we take V = Vsc + 𝟙A ⊗ B.
It turns out that K can then be chosen such that L becomes semicausal. Also note that we can further decompose Vsc = (𝟙A ⊗U)(A⊗ 𝟙B), as
in Theorem V.4.

Our main technical result is that the heuristics employed in the “quantization” procedure above is sound, i.e., that the generators
constructed in that way are the only semicausal generators in the GKLS-form.

Theorem V.6. Let L : B(HA ⊗HB)→ B(HA ⊗HB) be defined by L(X) = Φ(X) − K†X − XK, with Φ ∈ CPσ(HA ⊗HB) and K∈ B(HA ⊗HB). Then, L is Heisenberg B→/ A semicausal if and only if there exist a (separable) Hilbert space HE, a unitary U ∈ U(HE⊗HB;HB ⊗HE), a self-adjoint operator HB ∈ B(HB), and arbitrary operators A ∈ B(HA;HA ⊗HE), B ∈ B(HB;HB ⊗HE), and KA ∈ B(HA)
such that

Φ(X) = V†(X ⊗ 𝟙E)V , with V = (𝟙A ⊗U)(A⊗ 𝟙B) + (𝟙A ⊗ B), (13a)

K = (𝟙A ⊗ B†U)(A⊗ 𝟙B) + 1
2
𝟙A ⊗ B†B + KA ⊗ 𝟙B + 𝟙A ⊗ iHB. (13b)

If HA and HB are finite-dimensional, with dimensions dA and dB, then HE can be chosen such that dim(HE) ≤ (dAdB)2.

Remark V.7. Note that the characterization in Theorem V.6 is for generators of Heisenberg B→/ A semicausal dynamical semigroups. There
are two special cases of interest: First, if we want the dynamical semigroup to be unital, then we need to further impose L(𝟙A ⊗ 𝟙B) = 0 in the
normal form above, which is equivalent to A†A = KA + K†

A—a constraint that also appears in the usual Linblad form. Second, if the dynamical
semigroup corresponds (in the sense of Theorem V.3) to a semigroup of superchannels, then we additionally require that the reduced generator
satisfies LA∗(𝟙A) = 0. We will use this in the “translation step” in Theorem V.18.

Remark V.8. In the finite-dimensional case, the Proof of Theorem V.6 is constructive. In Appendix C, we discuss in detail how to obtain the
operators A, U, KA, B, and HB starting from the conditions in Lemma V.5.

The remainder of this section is devoted to the Proof of Theorem V.6, whose structure is highlighted in Fig. 5.
We begin with a technical observation about certain Haar integrals.

Lemma V.9. Let Hn be an n-dimensional subspace of HA with orthogonal projection Pn ∈ B(HA), and let V ∈ B(HA ⊗HB;HA ⊗HC).
Then,

∫
UP(Hn)(U ⊗ 𝟙C)V (U† ⊗ 𝟙B) dU = Pn ⊗ 1

n
trPn[V], (14)

where the integration is with respect to the Haar measure on UP(Hn). It follows that ∥Pn ⊗ 1
n trPn[V]∥ ≤ ∥V∥. Furthermore, if H is separable

infinite-dimensional, with orthonormal basis {∣ei⟩}i∈N and Hn = span{∣e1⟩, ∣e2⟩, . . . , ∣en⟩}, then there exist B ∈ B(HB;HC) and an ultraweakly
convergent subsequence of (Pn ⊗ 1

n trPn[V])n∈N with the limit 𝟙A ⊗ B.

Proof. To calculate the integral, we employ the Weingarten formula,27–29 which for the relevant case reads

∫
UP(Hn)Ui jU†

j ′ i′ dU = 1
n
δi i′δj j ′ ,
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where U ij = ⟨ fi∣Uf j⟩ and U†
j ′ i′ = ⟨ fj ′ ∣U† fi′⟩ for some orthonormal basis {∣ f1⟩, ∣ f2⟩, . . . , ∣ fn⟩} of Hn. A basis expansion then yields

∫
UP(Hn)(U ⊗ 𝟙C)V (U† ⊗ 𝟙B) dU = n∑

i,j,i′ ,j ′=1
[∣ fi⟩⟨ fi′ ∣⊗ ((⟨ fj∣⊗ 𝟙C)V (∣ fj ′⟩⊗ 𝟙B))∫

UP(Hn)Ui jU†
j ′ i′ dU] = Pn ⊗ 1

n
trPn[V].

For the second claim, we note that a standard estimate of the integral yields ∥ 1
n trPn[V]∥ = ∥Pn ⊗ 1

n trPn[V]∥ ≤ ∥V∥. Thus, the sequence( 1
n trPn[V])n∈N is bounded and hence, by Banach–Alaoglu, has an ultraweakly convergent subsequence, whose limit we call B. The claim

then follows by observing that under the separability assumption, (Pn)n∈N converges ultraweakly to 𝟙A and that the tensor product of two
ultraweakly convergent sequences converges ultraweakly. ◻

As a first step toward our main result, we provide a characterization of those semicausal Lindblad generators that can be written with the
vanishing CP part.

Lemma V.10. Let L : B(HA ⊗HB)→ B(HA ⊗HB), L(X) ∶= −K†X − XK, with K ∈ B(HA ⊗HB). Then, L is Heisenberg B→/ A semi-
causal if and only if there exist KA ∈ B(HA) and a self-adjoint HB ∈ B(HB), with K = KA ⊗ 𝟙B + 𝟙A ⊗ iHB.

Proof. If K = KA ⊗ 𝟙B + 𝟙A ⊗ iHB, then L(XA ⊗ 𝟙B) = (−K†
AXA − KAXA)⊗ 𝟙B + XA ⊗ (iHB − iHB) = (−K†

AXA − XAKA)⊗ 𝟙B. Hence, L
is semicausal. Conversely, suppose L is semicausal with L(XA ⊗ 𝟙B) = LA(XA)⊗ 𝟙B. Let Hn be an n-dimensional subspace of HA and
U∈ UP(Hn). Then,

(L(U ⊗ 𝟙B))(U† ⊗ 𝟙B) = −K†(Pn ⊗ 𝟙B) − (U ⊗ 𝟙B)K(U† ⊗ 𝟙B) = (LA(U)U†)⊗ 𝟙B,

where Pn ∈ B(HA) is the orthogonal projection onto Hn. We integrate both sides with respect to the Haar measure on UP(Hn). Lemma V.9
and some rearrangement and taking the conjugate yields

(Pn ⊗ 𝟙B)K = −Pn ⊗ 1
n

trPn[K†] − LA
n ⊗ 𝟙B (15)

for some operator LA
n ∈ B(HA). If HA is finite-dimensional, we can take Hn = HA so that Pn = 𝟙A. Hence, K = −K̃A ⊗ 𝟙B − 𝟙A ⊗ B, with

B = 1
n trA[K†] and K̃A = LA

n . If HA is separable infinite-dimensional, we obtain the same result via a limiting procedure n→∞ as follows:
Let {∣ei⟩}i∈N be an orthonormal basis of HA and set Hn = span{∣e1⟩, ∣e2⟩, . . . , ∣en⟩}. Then, the second part of Lemma V.9 allows us to pass to
a subsequence of (Pn ⊗ 1

n trPn[K†])
n∈N that converges ultraweakly to a limit 𝟙A ⊗ B. The corresponding subsequence of ((Pn ⊗ 𝟙B)K)n∈N

converges ultraweakly to K, and hence, that subsequence of (LA
n ⊗ 𝟙B)n∈N converges ultraweakly to a limit K̃A ⊗ 𝟙B. That is, we get

K = −K̃A ⊗ 𝟙B − 𝟙A ⊗ B. Therefore,

0 = L(XA ⊗ 𝟙B) − L(XA ⊗ 𝟙B) = (LA(XA) − K̃†
AXA − XAK̃A)⊗ 𝟙B − XA ⊗ (B + B†),

which can only be true for all XA if B + B† is proportional to 𝟙B. Since B + B† is self-adjoint, we have B + B† = 2r𝟙B for some r ∈ R. We can
then set iHB ∶= r𝟙B − B and KA ∶= −K̃A − r𝟙 so that HB is self-adjoint and K = KA ⊗ 𝟙 + 𝟙⊗ iHB. ◻

If we had restricted our attention to Hamiltonian generators and unitary groups in finite dimensions, an analog of this lemma would
have already followed from the fact that semicausal unitaries are tensor products, which was proved in Ref. 2 (and reproved in Ref. 11).

As another technical ingredient, the following lemma establishes a closedness property of the set of semicausal maps:

Lemma V.11. Let (Vm)m∈N and (Wn)n∈N be ultraweakly convergent sequences in B(HA ⊗HB;HA ⊗HB ⊗HE), with limits V and W.
Suppose that for all m, n ∈ N, the map Φm,n : B(HA ⊗HB)→ B(HA ⊗HB), defined by Φm,n(X) = V†

m(X ⊗ 𝟙E)Wn, is Heisenberg B→/ A
semicausal. Then, the map Φ : B(HA ⊗HB)→ B(HA ⊗HB), defined by Φ(V) = V†(X ⊗ 𝟙E)W, is also Heisenberg B→/ A semicausal.

Proof. For XA ∈ B(HA) and ρ ∈ S1(HA ⊗HB), we have that ρV†
m(XA ⊗ 𝟙B ⊗ 𝟙E) ∈ S1(HA ⊗HB ⊗HE;HA ⊗HB), since the trace-class

operators are an ideal in the bounded operators. Hence, by definition of the ultraweak topology,

tr[ρV†
m(XA ⊗ 𝟙B ⊗ 𝟙E)W] = lim

n→∞tr[ρV†
m(XA ⊗ 𝟙B ⊗ 𝟙E)Wn] = lim

n→∞tr[ρ (ΦA
m,n(XA)⊗ 𝟙B)].

Since tr[ρΦA
m,n(XA)⊗ 𝟙B] converges as n→∞ for every ρ ∈ S1(HA ⊗HB), the sequence (ΦA

m,n(XA)⊗ 𝟙B)n∈N converges ultraweakly.30 We
call the limit ΦA

m(XA)⊗ 𝟙B. It is then easy to see that ΦA
m(XA), viewed as a map on B(HA), is linear and continuous. This tells us that

the map Φm : B(HA ⊗HB)→ B(HA ⊗HB), defined by Φm(X) = V†
m(X ⊗ 𝟙E)W, is semicausal for all m ∈ N. Furthermore, we have that

ρ† W†(X†
A ⊗ 𝟙B ⊗ 𝟙E) ∈ S1(HA ⊗HB ⊗HE;HA ⊗HB) for all XA ∈ B(HA) and ρ ∈ S1(HA ⊗HB), and thus,
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tr[ρV†(XA ⊗ 𝟙B ⊗ 𝟙E)W] = tr[ρ†W†(X†
A ⊗ 𝟙B ⊗ 𝟙E)V] = lim

m→∞tr[ρ†W†(X†
A ⊗ 𝟙B ⊗ 𝟙E)Vm] = lim

m→∞tr[ρV†
m(XA ⊗ 𝟙B ⊗ 𝟙E)W]

= lim
m→∞tr[ρ (ΦA

m(XA)⊗ 𝟙E)].
Repeating the argument above then shows that Φ is semicausal. ◻

As a final preparatory step, we observe that, given a semicausal Lindblad generator, we can use its CP part to define a family of semicausal
CP-maps.

Lemma V.12. Let L : B(HA ⊗HB)→ B(HA ⊗HB) be defined by L(X) ∶= V†(X ⊗ 𝟙E)V − K†X − XK, with V ∈ B(HA ⊗HB;HA ⊗HB⊗HE) and K ∈ B(HA ⊗HB). If L is Heisenberg B→/ A semicausal, then the map SY ,Z : B(HA ⊗HB)→ B(HA ⊗HB), defined by

SY ,Z(X) = [V(Z ⊗ 𝟙B) − (Z ⊗ 𝟙B ⊗ 𝟙E)V]† (X ⊗ 𝟙E) [V(Y ⊗ 𝟙B) − (Y ⊗ 𝟙B ⊗ 𝟙E)V],
is Heisenberg B→/ A semicausal for every Y , Z ∈ B(HA).

Proof. For every M ∈ B(HA ⊗HB), we define the map ΨM : B(HA ⊗HB)→ B(HA ⊗HB) by

ΨM(X) = L(M†XM) −M†L(XM) − L(M†X)M +M†L(X)M
= [(M ⊗ 𝟙E)V − VM]†(X ⊗ 𝟙E)[(M ⊗ 𝟙E)V − VM].

This map has already been used, for a different purpose, in Lindblad’s original work [Ref. 19, Eq. (5.1)]. It follows from the semicausality of L
that if we choose M =MA ⊗ 𝟙B for some MA ∈ B(HA), then ΨM is semicausal. Furthermore, a calculation shows that

1
4

3∑
k=0

ikΨM+ikN(X) = [VN − (N ⊗ 𝟙E)V]† (X ⊗ 𝟙E) [VM − (M ⊗ 𝟙E)V].
By choosing N = Z ⊗ 𝟙B and M = Y ⊗ 𝟙B, it follows that SY ,Z is the linear combination of four semicausal maps and, hence, is itself
semicausal. ◻

We now combine this lemma with an integration over the Haar measure to obtain the key lemma in our proof.

Lemma V.13. Let L : B(HA ⊗HB)→ B(HA ⊗HB) be defined by L(X) ∶= V†(X ⊗ 𝟙E)V − K†X − XK, with V ∈ B(HA ⊗HB;HA ⊗HB ⊗
HE) and K ∈ B(HA ⊗HB). If L is Heisenberg B→/ A semicausal, then there exists B ∈ B(HB;HB ⊗HE) such that the map S : B(HA ⊗HB)→ B(HA ⊗HB), defined by

S(X) = [V − 𝟙A ⊗ B]†(X ⊗ 𝟙E)[V − 𝟙A ⊗ B],
is also Heisenberg B→/ A semicausal.

Furthermore, if HA is finite-dimensional, then we can choose B = trA[V]/dim(HA).
Proof. Let Hn and Hm be n and m dimensional subspaces of HA with respective orthogonal projections Pn ∈ B(HA) and Pm ∈ B(HA).

Since for every U∈ UP(Hn) and W∈ UP(Hm), the map SU,W , defined in Lemma V.12, is semicausal and also the map S : B(HA ⊗HB)→ B(HA ⊗HB), defined by

S(X) ∶= ∫
UP(Hn)∫UP(Hm)(U ⊗ 𝟙B)SU,W(X)(W† ⊗ 𝟙B) dWdU,

is semicausal. Writing out the definition of SU,W yields

S(X) = [V(Pn ⊗ 𝟙B) − ∫
U P(H n)(U ⊗ 𝟙B ⊗ 𝟙E)V(U† ⊗ 𝟙E)dU]†(X ⊗ 𝟙E)[V(Pm ⊗ 𝟙B) − ∫

UP(Hm)(W ⊗ 𝟙B ⊗ 𝟙E)V(W† ⊗ 𝟙B)dW]
= [V(Pn ⊗ 𝟙B) − Pn ⊗ 1

n
trPn[V]]†(X ⊗ 𝟙E)[V(Pm ⊗ 𝟙B) − Pm ⊗ 1

m
trPm[V]],

where the last line was obtained by using Lemma V.9. If HA is finite-dimensional, we can choose Hn = Hm = HA so that
Pn = Pm = 𝟙A and obtain the desired result immediately. If HA is separable infinite-dimensional and {∣ei⟩}i∈N is an orthonormal basis
and Hk ∶= span{∣e1⟩, ∣e2⟩, . . . , ∣ek⟩}, then by Lemma V.9, the sequence (Pk ⊗ 1

k trPk[V])k∈N has an ultraweakly convergent subsequence
with a limit 𝟙A ⊗ B, where B ∈ B(HB;HB ⊗HE). Furthermore, since (Pk)k∈N converges ultraweakly to 𝟙A, we have that the sequence(V(Pk ⊗ 𝟙B) − Pk ⊗ 1

k trPk[V])k∈N has a subsequence that converges ultraweakly to V − 𝟙A ⊗ B. Hence, by passing to subsequences, we can
apply Lemma V.11, which yields that S is semicausal. ◻
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Remark V.14. The previous two lemmas are at the heart of our result. They illustrate a (to the best of our knowledge) novel technique that
allows to characterize GKLS generators with a certain constraint if this constraint is well understood for completely positive maps. It seems useful
to develop this method more generally, but this is beyond the scope of the present work.

With these tools at hand, we can now prove our main result.

Proof (Theorem V.6). A straightforward calculation shows that L, defined via (22a) and (22b), is semicausal. To prove the converse,
note that by the Stinespring dilation theorem, there exist a separable Hilbert space H̃E and Ṽ ∈ B(HA ⊗HB;HA ⊗HB ⊗ H̃E) such that
Φ(X) = Ṽ †(X ⊗ 𝟙E)Ṽ . It is well known [see, e.g., Ref. 31 (Theorems 2.1 and 2.2)] that if HA and HB are finite-dimensional with dimen-
sions dA and dB, then H̃E can be chosen such that dim(H̃E) ≤ (dAdB)2. By Lemma V.13, there exists B̃ ∈ B(HB;HB ⊗ H̃E) such that the map
Φ0 ∈ CPσ(HA ⊗HB), defined by Φ0(X) = [Ṽ − 𝟙A ⊗ B̃]†(X ⊗ 𝟙E)[Ṽ − 𝟙A ⊗ B̃], is semicausal. We define Vsc = Ṽ − 𝟙⊗ B̃ and obtain

Φ(XA ⊗ 𝟙B) = Φ0(XA ⊗ 𝟙B) + κ†(XA ⊗ 𝟙B) + (XA ⊗ 𝟙B)κ,

where κ = (𝟙A ⊗ B̃ †)Vsc + 1
2(𝟙A ⊗ B̃ †B̃). Since L and Φ0 are semicausal, we can write L(XA ⊗ 𝟙) = LA(XA)⊗ 𝟙B and Φ0(XA ⊗ 𝟙B)= ΦA

0 (XA)⊗ 𝟙B for all XA ∈ B(HA). Hence,

L(XA ⊗ 𝟙B) −Φ0(XA ⊗ 𝟙B) = (LA(XA) −ΦA
0 (XA))⊗ 𝟙B = −(K − κ)†(XA ⊗ 𝟙B) − (XA ⊗ 𝟙B)(K − κ). (16)

It follows that the map defined by X ↦ −(K − κ)†X − X(K − κ) is semicausal. Thus, Lemma V.10 implies that there exist KA ∈ B(HA) and a
self-adjoint HB ∈ B(HB) such that K − κ = KA ⊗ 𝟙 + 𝟙⊗ iHB.

What we have achieved so far is that Ṽ = Vsc + 𝟙⊗ B̃ and K = (𝟙A ⊗ B̃ †)Vsc + 1
2𝟙⊗ B̃ †B̃ + KA ⊗ 𝟙 + 𝟙⊗ iHB. Hence, if we can decom-

pose Vsc = (𝟙A ⊗U)(A⊗ 𝟙B), then we are basically done. However, this decomposition is given (up to details) by the equivalence between
semicausal and semilocalizable channels.10 Since the conclusion in Ref. 10 was in the finite-dimensional setting, we will repeat the argu-
ment here, showing that it goes through also for infinite-dimensional spaces while paying special attention to the dimensions of the spaces
involved. Since Φ0 ∈ CPσ(HA ⊗HB) and Φ0(XA ⊗ 𝟙B) = ΦA

0 (XA)⊗ 𝟙B, we also have ΦA
0 ∈ CPσ(HA). By the Stinespring dilation theorem

(for normal CP-maps), there exist a separable Hilbert space HF and W ∈ B(HA;HA ⊗HF) such that ΦA
0 (XA) =W†(XA ⊗ 𝟙F)W and such

that span{(XA ⊗ 𝟙F)W∣ψ⟩∣XA ∈ B(HA), ∣ψ⟩ ∈ HA} is dense in HA ⊗HF . The last condition is called the minimality condition. We then get

V†
sc(XA ⊗ 𝟙B ⊗ 𝟙Ẽ)Vsc = (W ⊗ 𝟙B)†(XA ⊗ 𝟙F ⊗ 𝟙B)(W ⊗ 𝟙B).

Clearly, span{(XA ⊗ 𝟙F ⊗ 𝟙B)(W ⊗ 𝟙B)∣ψ⟩∣XA ∈ B(HA), ∣ψ⟩ ∈ HA ⊗HB} is dense in HA ⊗HF ⊗HB. Thus, by minimality, there exists an
isometry Ũ ∈ B(HF ⊗HB;HB ⊗ H̃E) such that Vsc = (𝟙A ⊗ Ũ)(W ⊗ 𝟙B). In the finite-dimensional case, the fact that Ũ is an isometry then
implies that dim(HF) ≤ dim(H̃E) such that we can think of HF as a subspace of H̃E. Thus, Ũ can be extended to a unitary operator
ˆ̃U ∈ U(H̃E ⊗HB;HB ⊗ H̃E). Then, defining HE = H̃E, U = ˆ̃U, B = B̃, and A =W proves the claim in this case. In the infinite-dimensional
case, we can take HE = HF ⊕ H̃E. We can now view both H̃E ⊗HB and HF ⊗HB as closed subspaces of HE ⊗HB. Then, (Ũ (H F ⊗H B))�
and (H F ⊗H B)� are isomorphic. Hence, Ũ can be extended to a unitary operator ˆ̃U ∈ U(HE ⊗HB;HB ⊗HE). We finish the proof by defin-
ing U = ˆ̃U, B = (𝟙B ⊗ 𝟙Ẽ→E)B̃, and A = (𝟙A ⊗ 𝟙F→E)W, where 𝟙Ẽ→E and 𝟙F→E denote the isometric embeddings of H̃E and HF into HE,
respectively. ◻

As a first consequence, we obtain the analogous theorem for semigroups of Schrödinger B→/ A semicausal CP-maps.

Corollary V.15. Let L : S1(HA ⊗HB)→ S1(HA ⊗HB) be defined by L(ρ) = ΦS(ρ) − Kρ − ρK†, where ΦS ∈ CPS(HA ⊗HB), with
ΦS(ρ) = trE[VρV†] and K ∈ B(HA ⊗HB). Then, L is Schrödinger B→/ A semicausal if and only if K, V , and HE can be chosen as in (22a)
and (22b).

As a further corollary, we translate the results above to the familiar representation in terms of jump-operators (by going from Stinespring
to Kraus).

Corollary V.16. A map L : S1(HA ⊗HB)→ S1(HA ⊗HB) generates a (trace-)norm-continuous semigroup of trace-preserving
Schrödinger B→/ A semicausal CP-maps if and only if there exist {ϕj}j ⊂ B(HA ⊗HB), {Bj}j ⊂ B(HB), HA ∈ B(HA), and HB ∈ B(HB) such
that {ϕj}j is a set of Kraus operators of a Schrödinger B→/ A semicausal CP-map and {Bj}j is a set of Kraus operators of some CP-map such that

L(ρ) = −i[HA ⊗ 𝟙B + 𝟙A ⊗HB , ρ]
+∑

j
(ϕj + 𝟙A ⊗ Bj)ρ(ϕj + 𝟙A ⊗ Bj)† − 1

2
{𝟙A ⊗ B†

j Bj + ϕ†
j ϕj , ρ} − (𝟙A ⊗ B†

j )ϕjρ − ρϕ†
j (𝟙A ⊗ Bj).
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Proof. A simple calculation by defining the Kraus operators as (𝟙AB ⊗ ∣ei⟩)V , with {∣ej⟩}j being an orthonormal basis of HE and V given
by Theorem V.6. ◻

We conclude this section about semicausal semigroups with an example that uses our normal form in full generality.

Example. We consider the scenario of two 2-level atoms that can interact according to the processes specified in Fig. 6. We can describe
this process either via a dilation (as in Theorem V.6) or via the Kraus operators (as in Corollary V.16). In the dilation picture, we introduce an
auxiliary Hilbert space HE ∶= H1 ⊗H2, where Hi is for the ith photon. Then, the process is described by V = (𝟙A ⊗U)(A⊗ 𝟙B) + (𝟙A ⊗ B),
with

A ∈ B(HA;HA ⊗HE), A = ∣0⟩⟨1∣A ⊗ ∣11⟩E,
B ∈ B(HB;HB ⊗HE), B = ∣10⟩E ⊗ ∣0⟩⟨1∣B,

U ∈ U(HE ⊗HB;HB ⊗HE), U = FE;B(𝟙H1 ⊗ Ũ),
where Ũ ∈ U(H2 ⊗HB) is determined by

Ũ∣00⟩H2B = ∣00⟩H2B, Ũ∣10⟩H2B = ∣01⟩H2B, Ũ∣11⟩H2B = ∣11⟩H2B.

The crucial feature of this example is that the CP-part of the generator (trE[V ⋅ V†]) cannot be written as a convex combination of the two
building blocks (Φsc and idA ⊗ B̂). As mentioned also in the quantization procedure before, this is a pure quantum feature and stems from the
fact that it cannot be determined if a photon arriving at the detector D1 came from B or A. Hence, the system remains in a superposition state.

We can also look at the usual representation via jump operators. This can be achieved by switching from dilations to Kraus operators.
We obtain the two jump-operators

L1 ∶= Le ⊗ La´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶=:ϕ1

+ 𝟙A ⊗ Le®
B1

, L2 ∶= Le ⊗ ∣1⟩⟨1∣´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=:ϕ2

,

where Le = ∣0⟩⟨1∣ and La = L†
e describe emission and absorption of a photon, respectively. Thus, the usual Lindblad equation reads

dρ
dt
= (Le ⊗ La + 𝟙A ⊗ Le)ρ(Le ⊗ La + 𝟙A ⊗ Le) + (𝟙A ⊗ Le)ρ(𝟙A ⊗ Le) − 1

2
{𝟙A ⊗ L†

e Le + L†
e Le ⊗ 𝟙B , ρ}.

It is also possible and instructive to consider the reduced dynamics on system A, which can also be described by a Lindblad equation, since B
does not communicate to A (this is not true otherwise),

dρA

dt
= LeρAL†

e − 1
2
{L†

e Le , ρA},

where ρA(t) = trB[ρ(t)]. Not surprisingly (given our model), this describes an atom emitting photons.

C. Generators of semigroups of quantum superchannels

We finally turn to semigroups of quantum superchannels (on finite-dimensional spaces), that is, a collection of quantum superchannels{Ŝt}t≥0 ⊆ B(B(B(HA);B(HB))), such that Ŝ0 = id, Ŝt+s = Ŝt Ŝs, and the map t ↦ Ŝt is continuous [with respect to any and, thus, all of the
equivalent norms on the finite-dimensional space B(B(B(HA);B(HB)))]. To formulate a technically slightly stronger result, we call a map
Ŝ ∈ B(B(B(HA);B(HB))) a preselecting supermap if CA;B ○ Ŝ ○ C−1

A;B is a Schrödinger B→/ A semicausal CP-map. Theorem V.3 then tells us
that a superchannel is a special preselecting supermap. Again, as for semicausal CP-maps, we characterize the generators of semigroups of
preselecting supermaps and superchannels in two ways: First, we answer how to determine if a given map L̂ ∈ B(B(B(HA);B(HB))) is such
a generator. Second, we provide a normal form for all generators.

The answer to the first question is really a corollary of Lemma V.5 together with Theorem V.3. To this end, define
L̂ ∶= CAB;AB(CA;B ○ L̂ ○ C−1

A;B) ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2), where we fix some orthonormal bases {∣ai⟩}dim(H A)
i=1 and {∣bj⟩}dim(H B)

j=1 of HA and

HB such that CA;B is defined with respect to {∣ai⟩}dim(H A)
i=1 and CAB;AB is defined with respect to the product of the two bases. Furthermore, we

introduced the spaces HA1 = HA2 = HA and HB1 = HB2 = HA for notational convenience. Finally, we define P� ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2)
to be the orthogonal projection onto the orthogonal complement of {∣Ω⟩}, where ∣Ω⟩ = ∑ i,j∣ai⟩⊗ ∣bj⟩⊗ ∣ai⟩⊗ ∣bj⟩. We then have the following
lemma:

Lemma V.17. A linear map L̂ ∈ B(B(B(HA);B(HB))) generates a semigroup of quantum superchannels if and only if

● L̂ is self-adjoint and P�L̂P� ≥ 0,
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FIG. 6. Systems A and B describe 2-level systems, respectively. The allowed interactions are infinitesimally described as follows: If A is in its excited state, it can emit a
photon. Through parametric down-conversion, the photon is converted into two photons (of lower energy). One of those two photons, k1, is sent to a detector D1. The other,
k2, is sent to B. If B is in its ground state, it absorbs k2. If B is in its excited state, it cannot absorb k2, so k2 passes through B and travels to a detector D2. Additionally, in this
case, B can emit a photon, indistinguishable from k1, to D1.

● (FA1 ;B1 ⊗ 𝟙A2)trB2[L̂](FA1 ;B1 ⊗ 𝟙A2) = 𝟙B1 ⊗ L̂A for some (then necessarily self-adjoint) L̂A ∈ B(HA1 ⊗HA2), and● trA1[L̂A] = 0.L̂ is preselecting if and only if the first two conditions hold.

Proof. Theorem V.3 tells us that {Ŝt}t≥0 forming a semigroup of superchannels is eqiuvalent to St = CA;B ○ Ŝt ○ C−1
A;B forming a semigroup

of Schrödinger B→/ A semicausal CP-maps and that the reduced map SA
t satisfies SA

t (𝟙A) = 𝟙A. By Lemma V.5, the semicausal semigroup
property is equivalent to the first two conditions in the statement. This proves the claim about preselecting L̂.

By differentiation, it follows that SA
t (𝟙A) = 𝟙A is satisfied if and only if LA, the generator of {SA

t }t≥0, satisfies LA(𝟙A) = 0. However, since
trA1[L̂A] = LA(𝟙A), the claim follows. ◻

We finally turn to a normal form for generators of semigroups of preselecting supermaps and superchannels.

Theorem V.18. A linear map L̂ : B(B(HA);B(HB))→ B(B(HA);B(HB)) generates a semigroup of hyper-preselecting supermaps if and
only if there exist a Hilbert space HE, a state σ ∈ B(HE), a unitary U ∈ U(HB ⊗HE), a self-adjoint operator HB ∈ B(HB), and arbitrary opera-
tors A ∈ B(HA ⊗HE), B ∈ B(HB ⊗HE), and KA ∈ B(HA) such that L̂ acts on T ∈ B(B(HA);B(HB)) as L̂(T) = Φ̂(T) − κ̂L(T) − κ̂R(T) with

Φ̂(T)(ρ) = trE[U (T ⊗ idE)(A(ρ⊗ σ)A†) U†] + trE[B (T ⊗ idE)((ρ⊗ σ)A†) U†]
+ trE[U (T ⊗ idE)(A(ρ⊗ σ)) B†] + trE[B (T ⊗ idE)((ρ⊗ σ)) B†], (17)

κ̂L(T)(ρ) = trE[B†U (T ⊗ idE)(A(ρ⊗ σ))] + 1
2

trE[B†B(T ⊗ idE)(ρ⊗ σ)] + T(KA ρ) + iHB T(ρ), (18a)

κ̂R(T)(ρ) = trE[(T ⊗ idE)((ρ⊗ σ)A†) U†B] + 1
2

trE[(T ⊗ idE)(ρ⊗ σ)B†B] + T(ρK†
A) − T(ρ) iHB. (18b)

We can choose σ to be pure and HE with dim(HE) ≤ (dAdB)2, where dA and dB are the dimensions of HA and HB, respectively. Furthermore, L̂
generates a semigroup of superchannels if and only if L̂ generates a semigroup of preselecting supermaps and trσ[A†A] = KA + K†

A. In that case,
we can split L̂ into a dissipative part D̂ and a “Hamiltonian” part Ĥ, i.e., a part that generates a (semi-)group of invertible superchannels whose
inverses are superchannels as well. We have L̂(T) = D̂(T) + Ĥ(T), with

D̂(T)(ρ) = trE[D̂ ′(T)(ρ)] and Ĥ(T)(ρ) = −i[HB , T(ρ)] − iT([HA , ρ]),
where HA is the imaginary part of KA, where
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D̂ ′(T)(ρ) = U(T ⊗ idE)(A(ρ⊗ σ)A†)U† − 1
2
(T ⊗ idE)({A†A , ρ⊗ σ}) (19a)

+ B(T ⊗ idE)(ρ⊗ σ)B† − 1
2
{B†B , (T ⊗ idE)(ρ⊗ σ)} (19b)

+ [U(T ⊗ idE)(A(ρ⊗ σ)) , B†] + [B , (T ⊗ idE)((ρ⊗ σ)A†)U†] (19c)

and where [⋅, ⋅] and {⋅, ⋅} denote the commutator and anticommutator, respectively.

Remark V.19. Similar to Theorem V.6, the Proof of Theorem V.18 is constructive. In Appendix D, we discuss in detail how to obtain the
operators A, U, KA, B, HA, and HB starting from the conditions in Theorem V.17.

As in the classical case, the proof strategy is to use the relation between superchannels and semicausal channels and Theorem V.6. As
this translation process is more involved than in the classical case, we need two auxiliary lemmas.

Lemma V.20. Let S : B(HA ⊗HB)→ B(HA ⊗HB) be given by

S(X) = trE[(𝟙A ⊗ LB)(LA ⊗ 𝟙B)X(R†
A ⊗ 𝟙B)(𝟙A ⊗ R†

B)], (20)

with Hilbert spaces HC and HE, operators LA, RA ∈ B(HA;HA ⊗HC), and LB, RB ∈ B(HC ⊗HB;HB ⊗HE). Then, for T ∈ B(B(HA);B(HB))
and ρ ∈ B(HA),

[C−1
A;B ○ S ○ CA;B](T)(ρ) = trE[VL(T ⊗ idC)(WLρW†

R)V†
R], (21)

with VL = LBFB;C, VR = RBFB;C, and WL = LTA
A , WR = RTA

A . Here, the partial transpose on HA is taken with respect to the basis used to define the
Choi–Jamiołkowski isomorphism.

Proof. The proof is a direct calculation. We present it in detail in Appendix A. ◻
Lemma V.21. Let X ∈ B(HA ⊗HC;HA ⊗HB), Y ∈ B(HA ⊗HB;HA ⊗HC), ρ ∈ S1(HB). Then, trρ[XY]T = trC[YTA(𝟙A ⊗ ρ)XTA].
Proof. The proof is a direct calculation. We present it in detail in Appendix A. ◻
We are finally ready to prove Theorem V.18

Proof (Theorem V.18). The idea is to relate the generators of superchannels to semicausal maps. This relation is given by definition for
preselecting supermaps and by Theorem V.3 for superchannels. For a generator L̂ of a semigroup of preselecting supermaps {Ŝt}t≥0, we have

L̂ = C−1
A;B ○ d

dt
∣
t=0
[CA;B ○ Ŝt ○ C−1

A;B] ○ CA;B.

Thus, L̂ generates a semigroup of preselecting supermaps if and only if L̂ can be written as L̂ = C−1
A;B ○ L ○ CA;B for some generator L of a semi-

group of Schrödinger B→/ A semicausal CP-maps. Thus, to prove the first part of our theorem, we can take the normal form in Corollary
V.15 and compute the similarity transformation above. We now execute this in detail. To start with, Corollary V.15 tells us that L(ρ)= ΦS(ρ) − Kρ − ρK†, where

ΦS(ρ) = trE[VρV†], with V = (𝟙A ⊗ Ũ)(Ã⊗ 𝟙B) + (𝟙A ⊗ B̃), (22a)

K = (𝟙A ⊗ B̃ †Ũ)(Ã⊗ 𝟙B) + 1
2
𝟙A ⊗ B̃ †B̃ + K̃A ⊗ 𝟙B + 𝟙A ⊗ iH̃B, (22b)

for some unitary Ũ ∈ U(HE ⊗HB;HB ⊗HE), some self-adjoint H̃B ∈ B(HB), and some operators Ã ∈ B(HA;HA ⊗HE), B̃ ∈ B(HB;HB⊗HE), and K̃A ∈ B(HA). In order to apply Lemma V.20, we fix a unit vector ∣ξ⟩ ∈ HE and define ΞA ∶= 𝟙A ⊗ ∣ξ⟩ ∈ B(HA;HA ⊗HE) and
ΞB ∶= ∣ξ⟩⊗ 𝟙B ∈ B(HB;HE ⊗HB) so that 𝟙A ⊗ B̃ = (𝟙A ⊗ B̃Ξ†

B)(ΞA ⊗ 𝟙B). We can then write

ΦS(ρ) = trE[(𝟙A ⊗ Ũ)(Ã⊗ 𝟙B)ρ(Ã † ⊗ 𝟙B)(𝟙A ⊗U†)] + trE[(𝟙A ⊗ B̃Ξ†
B)(ΞA ⊗ 𝟙B)ρ(Ξ†

A ⊗ 𝟙B)(𝟙A ⊗ ΞBB̃ †)]
+ trE[(𝟙A ⊗ Ũ)(Ã⊗ 𝟙B)ρ(Ξ†

A ⊗ 𝟙B)(𝟙A ⊗ ΞBB̃ †)] + trE[(𝟙A ⊗ B̃Ξ†
B)(ΞA ⊗ 𝟙B)ρ(Ã † ⊗ 𝟙B)(𝟙A ⊗U†)],
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which is an expression suitable for a term by term application of Lemma V.20. Doing so yields

Φ̂(T)(ρ) ∶= (C−1
A;B ○ΦS ○ CA;B)(T)(ρ)

= trE[U (T ⊗ idE)(A(ρ⊗ σ)A†) U†] + trE[B (T ⊗ idE)((ρ⊗ σ)A†) U†]
+ trE[U (T ⊗ idE)(A(ρ⊗ σ)) B†] + trE[B (T ⊗ idE)((ρ⊗ σ)) B†],

where we defined U ∶= ŨFB;E, B ∶= B̃Ξ†
BFB;E, A ∶= Ã TAΞ†

A, and σ ∶= ∣ξ⟩⟨ξ∣. This proves Eq. (17). Similarly, upon defining κL(ρ) ∶= Kρ, we can
write32

κL(ρ) = trE[(𝟙A ⊗ FE;BΞBB̃ †Ũ)(Ã⊗ 𝟙B)ρ(Ξ†
A ⊗ 𝟙B)(𝟙A ⊗ FB;E)] + trE[(𝟙A ⊗ FE;BΞBB̃ †B̃Ξ†

B)(ΞA ⊗ 𝟙B)ρ(Ξ†
A ⊗ 𝟙B)(𝟙A ⊗ FB;E)]

+ trC[(𝟙A ⊗ 𝟙B)(K̃A ⊗ 𝟙B)ρ(𝟙A ⊗ 𝟙B)(𝟙A ⊗ 𝟙B)] + trC[(𝟙A ⊗ iHB)(𝟙A ⊗ 𝟙B)ρ(𝟙A ⊗ 𝟙B)(𝟙A ⊗ 𝟙B)]
and apply Lemma V.20 term by term, which yields

κ̂L(T)(ρ) ∶= (C−1
A;B ○ κL ○ CA;B)(T)(ρ)

= trE[B†U (T ⊗ idE)(A(ρ⊗ σ))] + 1
2

trE[B†B(T ⊗ idE)(ρ⊗ σ)] + T(KA ρ) + iHB T(ρ),
where U, A, and B are defined as above and KA ∶= (K̃ A)T and HB ∶= H̃B. An analogous calculation with κR(ρ) ∶= ρK† and κ̂R(T) ∶= (C−1

A;B ○
κR ○ CA;B)(T) finishes the proof of the first part, since the claim about the dimension of HE follows form the corresponding statements in
Theorem V.6.

To prove the second part, first remember that we have observed above that Theorem V.3 implies that L is Schrödinger B→/ A semi-
causal, with trB[L(ρ)] = LA(trB[ρ]). Furthermore, if we write St = CA;B ○ Ŝt ○ C−1

A;B, then Theorem V.3 implies that St is Schrödinger B→/ A
semicausal for all t ≥ 0, with trB[St(ρ)] = SA

t (trB[ρ]), and also SA
t (𝟙A) = 𝟙A holds. Differentiating that expression at t = 0 yields the equivalent

condition LA(𝟙A) = 0. Hence, our goal is to incorporate the last condition into the form of (22). To do so, we determine LA by calculating
trB[L(ρ)], where L is in the form of (22). We obtain trB[L(ρ)] = trE[Ã trB[ρ] Ã †] − K̃AtrB[ρ] − trB[ρ]K̃†

A. Thus, the condition LA(𝟙) = 0 holds
if and only if trE[ÃÃ †] = K̃A + K̃†

A. Transposing both sides of this equation and using that the definition of A implies that Ã = ATAΞA yield

(trE[ATA(𝟙A ⊗ σ)(A†)TA])T = KA + K†
A. However, the left-hand side is, by Lemma V.21, equal to trσ[A†A]. This proves the claim that L̂ gen-

erates a semigroup of superchannels if and only if L̂ is hyper-preselecting and trσ[A†A] = KA + K†
A. Finally, defining HA ∶= 1

2i(KA − K†
A) and a

few rearrangements lead to (19). ◻
VI. CONCLUSION

A. Summary

The underlying question of this work is as follows: How can we mathematically characterize the processes that describe the aging of
quantum devices? We have argued that, under a Markovianity assumption, such processes can be modeled by continuous semigroups of
quantum superchannels. Therefore, the goal of this work was to provide a full characterization of such semigroups of superchannels.

We have derived such a general characterization in terms of the generators of these semigroups. Crucially, we have exploited that super-
channels correspond to certain semicausal maps and that, therefore, it suffices to characterize generators of semigroups of semicausal maps.
We have demonstrated both an efficient procedure for checking whether a given generator is indeed a valid semicausal GKLS generator and
a complete characterization of such valid semicausal GKLS generators. The latter is constructive in the sense that it can be used to describe
parametrizations of these generators. Aside from the theoretical relevance of these results, they will be valuable in studying properties of these
generators numerically. Finally, we have translated these results back to the level of superchannels, thus answering our initial question.

We have also posed and answered the classical counterpart of the above question. That is, we have characterized the generators semi-
groups of classical superchannels and of semicausal non-negative maps. These results for the classical case might be of independent interest.
From the perspective of quantum information theory, they provide a comparison helpful to understand and interpret the characterizations in
the quantum case.

B. Outlook and open questions

We conclude by presenting some open questions raised by our work. First, in our proof of the characterization of semicausal GKLS
generators, we have described a procedure for constructing a semicausal CP-map associated with such a generator. We believe that this
method can be applied to a wide range of problems. Determining the exact scope of this method is currently work in progress.

Second, there is a wealth of results on the spectral properties of quantum channels and, in particular, semigroups of quantum channels.
With the explicit form of generators of semigroups of superchannels now known, we can conduct analogous studies for semigroups of quan-
tum superchannels. Understanding such spectral properties, and potentially how they differ from the properties in the scenario of quantum
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channels, would, in particular, lead to a better understanding of the asymptotic behavior of semigroups of superchannels, e.g., with respect to
entropy production,33,34 the thermodynamics of quantum channels,35 or entanglement-breaking properties.36

A further natural question would be a quantum superchannel analog of the Markovianity problem: When can a quantum superchannel
Ŝ be written as eL̂ for some L̂ that generates a semigroup of superchannels? Several works have investigated the Markovianity problem for
quantum channels21,37–39 and a divisibility variant of this question, both for quantum channels and for stochastic matrices.40–42 It would be
interesting to see how these results translate to quantum or classical superchannels. Similarly, we can now ask questions of reachability along
Markovian paths. Yet another question aiming at understanding Markovianity is as follows: If we consider master equations arising from a
Markovianity assumption on the underlying process formalized not via semigroups of channels but instead via semigroups of superchannels,
what are the associated classes of (time-dependent) generators and corresponding CPTP evolutions?

Two related directions, both of which will lead to a better understanding of Markovian structures in higher order quantum operations,
are as follows: support our mathematical characterization of the generators of semigroups of superchannels by a physical interpretation,
similar to the Monte Carlo wave function interpretation of Lindblad generators of quantum channels, and extend our characterization from
superchannels to general higher order maps.

This work has focused on generators of general semigroups of superchannels, without further restrictions. For quantum channels and
their Lindblad generators, there exists a well-developed theory of locality, at the center of which are Lieb–Robinson bounds.43 If we put locality
restrictions on generators of superchannels, how do these translate to the generated superchannels?

Finally, an important conceptual direction for future work is to identify further applications of our theory of dynamical semigroups
of superchannels. In the Introduction, we gave a physical meaning to semigroups of superchannels by relating them to the decay process
of quantum devices. This, however, is only one possible interpretation. For example, semigroups of superchannels might also describe a
manufacturing process, where a quantum device is created layer-by-layer. We hope that other use-cases will be found in the future.
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APPENDIX A: PROOF OF LEMMAS V.20 AND V.21

In this appendix, we provide a complete proof of Lemmas V.20 and V.21.

Lemma A.1 (restatement of Lemma V.20). Let S : B(HA ⊗HB)→ B(HA ⊗HB) be given by

S(X) = trE[(𝟙A ⊗ LB)(LA ⊗ 𝟙B)X(R†
A ⊗ 𝟙B)(𝟙A ⊗ R†

B)],
with Hilbert spaces HC and HE, operators LA, RA ∈ B(HA;HA ⊗HC), and LB, RB ∈ B(HC ⊗HB;HB ⊗HE). Then, for T ∈ B(B(HA);B(HB))
and ρ ∈ B(HA),

[C−1
A;B ○ S ○ CA;B](T)(ρ) = trE[VL(T ⊗ idC)(WLρW†

R)V†
R],

with VL = LBFB;C, VR = RBFB;C and WL = LTA
A , WR = RTA

A . Here, the partial transpose on HA is taken with respect to the basis used to define the
Choi–Jamiołkowski isomorphism.

Proof. Let {∣ei⟩}i be the orthonormal basis of HA with respet to which the Choi–Jamiołkowski isomorphism is defined. Let {∣cn⟩}n be an
orthonormal basis of HC. Then, the formal calculation, which is an algebraic version of drawing the corresponding tensor-network pictures,
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can be executed as follows:

[C−1
A;B ○ S ○ CA;B](T)(ρ) = trA[(ρT ⊗ 𝟙B) trE[(𝟙A ⊗ LB)(LA ⊗ 𝟙B)CA;B(T)(R†

A ⊗ 𝟙B)(𝟙A ⊗ R†
B)]]

= trE[LB trA[(ρT ⊗ 𝟙C ⊗ 𝟙B)(LA ⊗ 𝟙B)CA;B(T)(R†
A ⊗ 𝟙B)]R†

B]
=∑

i,j
trE[LB (trA[(ρT ⊗ 𝟙C)LA∣ei⟩⟨ej∣R†

A]⊗ T( ∣ei⟩⟨ej∣)R†
B]

= ∑
i,j,k,m,n

⟨ek cn∣((ρT ⊗ 𝟙C)LA∣ei⟩⟨ej∣R†
A) ek cm⟩ trE[LB (∣cn⟩⟨cm∣⊗ T(∣ei⟩⟨ej∣))R†

B]
= ∑

i,j,m,n
⟨ei∣(LT

A(ρ⊗ ∣cn⟩⟨cm∣)RA) ej⟩ trE[LB (∣cn⟩⟨cm∣⊗ T(∣ei⟩⟨ej∣))R†
B]

=∑
m,n

trE[LB (∣cn⟩⟨cm∣⊗ T(LT
A(ρ⊗ ∣cn⟩⟨cm∣)RA))R†

B]
= trE

⎡⎢⎢⎢⎢⎣LBFB;C(T ⊗ idC)⎛⎝[∑n (𝟙A ⊗ ∣cn⟩)LT
A(𝟙A ⊗ ∣cn⟩)] ρ [∑

m
(𝟙A ⊗ ∣cm⟩)RT

A(𝟙A ⊗ ∣cm⟩)]†⎞⎠FB;CR†
B

⎤⎥⎥⎥⎥⎦= trE[VL(T ⊗ idC)(WLρW†
R)V†

R].
◻

Lemma A.2. Let X ∈ B(HA ⊗HC;HA ⊗HB), Y ∈ B(HA ⊗HB;HA ⊗HC), ρ ∈ S1(HB). Then, trρ[XY]T = trC[YTA(𝟙A ⊗ ρ)XTA].
Proof. Let {∣ai⟩}i be the orthonormal basis with respect to which the transposition is taken. Using the general identity tr[MT] = tr[M],

the definition of the trace with respect to a trace-class operator, and the cyclicity of the trace, we obtain, for every σ ∈ S1(HA),
tr[σtrρ[XY]T] = tr[σT trρ[XY]]

= tr[(σT ⊗ ρ)XY]
=∑

i,j,k
tr[(⟨ai∣⊗ 𝟙B)(σT ⊗ ρ)(∣aj⟩⟨aj∣⊗ 𝟙B)X(∣ak⟩⟨ak∣⊗ 𝟙C)Y(∣ai⟩⊗ 𝟙B)]

=∑
i,j,k

tr[(⟨aj∣⊗ 𝟙B)(σ ⊗ ρ)(∣ai⟩⟨ak∣⊗ 𝟙B)XTA(∣aj⟩⟨ai∣⊗ 𝟙C)YTA(∣ak⟩⊗ 𝟙B)]
=∑

k
tr
⎡⎢⎢⎢⎢⎣ρ(⟨ak∣⊗ 𝟙B)XTA

⎛⎝⎛⎝∑i,j ⟨aj∣σ ai⟩∣ai⟩⟨aj∣⎞⎠⊗ 𝟙C
⎞⎠YTA(∣ak⟩⊗ 𝟙B)⎤⎥⎥⎥⎥⎦= tr[(𝟙A ⊗ ρ)XTA(σ ⊗ 𝟙C)YTA]

= tr[σtrC[YTA(𝟙A ⊗ ρ)XTA]].
This proves the claim. ◻
APPENDIX B: NO INFORMATION WITHOUT DISTURBANCE

Here, we prove a “no information without disturbance”-like lemma that yielded a useful interpretation in the main text.

Lemma B.1. Let T ∈ CPσ(HA ⊗HB) be such that

T(XA ⊗ 𝟙B) = XA ⊗ 𝟙B (B1)

for all XA ∈ B(HA). Then, T(X) = (𝟙A ⊗W†)(X ⊗ 𝟙E)(𝟙A ⊗W) for all X ∈ B(HA ⊗HB) and some isometry W ∈ B(HB;HB ⊗HE), where
HE is some Hilbert space.

Proof. This claim follows from the uniqueness of the minimal Stinespring dilation in the same way as the “semicausal = semilocalizable”
theorem. Write Eq. (B1) in the Stinespring form as

V†(XA ⊗ 𝟙B ⊗ 𝟙E)V = XA ⊗ 𝟙B
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for some V ∈ B(HA ⊗HB;HA ⊗HB ⊗HC). Then, V and 𝟙AB are the Stinespring operators of the same CP-map (XA ↦ XA ⊗ 𝟙B) and the
latter clearly belongs to a minimal dilation. Thus, there exists an isometry W ∈ B(HB;HB ⊗HE) such that V = (𝟙A ⊗W)𝟙AB. This is the
claim. ◻

Note that the lemma above is just a formulation of the “obvious” fact that if system A undergoes a closed system evolution (idA), then
there is no interaction with an external system B.

APPENDIX C: CONSTRUCTIVE APPROACH TO THEOREM V.6

In this appendix, we are going to describe in detail how one can computationally construct the operators A, U, B, KA, and HB in Theorem
V.6 if the conditions of Lemma V.5 are met.

Since it is important for an actual implementation on a computer, let us be very precise about notation. We introduce indexed copies
of HA and HB, i.e., HA0 = HA1 = HA2 = HA and HB0 = HB1 = HB2 = HB. Furthermore, we fix orthonormal bases {∣ai⟩}dA

i=1 and {∣bi⟩}dB
i=1 of

HA and HB, respectively. We use the symbol Ω with some subscript to denote the maximally entangled state on various systems. For
example, ∣ΩA1 ;A2⟩ ∶= ∑i∣ai⟩⊗ ∣ai⟩ ∈ HA1 ⊗HA2 and ∣ΩA1B1 ;A2B2⟩ = ∑i,j∣ai⟩⊗ ∣bj⟩⊗ ∣ai⟩⊗ ∣bj⟩ ∈ HA1 ⊗HB1 ⊗HA2 ⊗HB2 . We further reserve
P ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2) for the orthogonal projection onto span{∣ΩA1B1 ;A2B2⟩} (i.e., P = (dAdB)−1∣ΩA1B1 ;A2B2⟩⟨ΩA1B1 ;A2B2 ∣) and take
P� = 𝟙A1B1A2B2 − P.

Now, let L ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2) be given as in Lemma V.5, then we can compute the operators A, U, B, KA, and HB via the
following 15 steps:

1. Compute τ = P�LP�.
2. Compute V = (𝟙A0B0 ⊗√τ)(∣ΩA0B0 ;A1B1⟩⊗ 𝟙A2B2).
3. Define HE ∶= HA1 ⊗HB1 ⊗HA2 ⊗HB2 so that V ∈ B(HA ⊗HB;HA ⊗HB ⊗HE) (identification).
4. Compute B = 1

dA
trA[V].

5. Compute Vsc = V − 𝟙A ⊗ B.
6. Compute τsc = (𝟙A1B1 ⊗ Vsc)†(∣ΩA1B1 ;AB⟩⟨ΩA1B1 ;AB∣⊗ 𝟙E)(𝟙A1B1 ⊗ Vsc) ∈ B(HA1 ⊗HB1 ⊗HA ⊗HB).
7. Choose any unit vector ∣β⟩ ∈ HB.
8. Compute τA

sc = (𝟙A1A2 ⊗ ⟨β∣)trB1[τsc](𝟙A1A2 ⊗ ∣β⟩).
9. Compute HF = range(√τA

sc) so that
√
τA

sc ∈ B(HA1 ⊗HA2 ;HF) is surjective.
10. Compute A = (𝟙A0 ⊗√τA

sc)(∣ΩA0 ;A1⟩⊗ 𝟙A2).
11. Compute U as the solution of the system of linear equations M(U) = Vsc, where the d2

Ad2
BdE × dFd2

BdE-matrix M : B(HF ⊗HB;HB⊗HE)→ B(HA ⊗HB;HA ⊗HB ⊗HE) is defined by M(U) = (𝟙A ⊗U)(A⊗ 𝟙B). Clearly, we must first represent M with respect to
some basis.

12. Compute K = −trA1B1[PLP� + 1
2 tr[PL]P], where we identify HA2 ⊗HB2 = HA ⊗HB so that K ∈ B(HA ⊗HB).

13. Compute Ksc = K − (𝟙A ⊗ B†)Vsc − 1
2𝟙A ⊗ B†B.

14. Compute KA = 1
dB

trB[Ksc].
15. Compute HB = −i

dA
trA[Ksc − KA ⊗ 𝟙B].

Note that the procedure above computes an isometry U ∈ B(HF ⊗HB;HB ⊗HE), which can then be extended to a unitary, if necessary. In
that case, we also have to embed HF into HE and redefine A accordingly. More precisely, we need to execute the following additional steps:

16. Compute 𝟙F→E = 𝟙A1 ⊗ ∣β⟩B1 ⊗ 𝟙A2 ⊗ ∣β⟩B2 .
17. Redefine A← (𝟙A0 ⊗ 𝟙F→E)A.
18. Extend U via the following steps:

(a) Compute Û = U(𝟙†
F→E ⊗ 𝟙B).

(b) Compute an orthonormal basis {∣ f �i ⟩}N
i=1 of range(𝟙EB − Û †Û).

(c) Compute an orthonormal basis {∣r�i ⟩}N
i=1 of range(𝟙BE − ÛÛ †).

(d) Redefine U ← Û +∑N
i=1∣r�i ⟩⟨ f �i ∣.

Let us comment on why the steps above give the right result. In general, we have

L = P�LP� + PLP� + P�LP + PLP = τ + (PLP� + 1
2

tr[PL]P) + (P�LP + 1
2

tr[PL]P).
Thus, the maps Φ and K appearing in the GKLS-form in Theorem V.6 can be extracted from the previous equation by applying the inverse of
the Choi–Jamiołkowski isomorphism. One readily obtains Φ = C−1

AB;AB ○ τ and K = −trA1B1[PLP� + 1
2 tr[PL]P].
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● Step 2 computes the Stinespring dilation of a CP-map whose Choi–Jamiołkowski operator is τ. A direct computation shows that
τ = (𝟙A1B1 ⊗ V)†(∣ΩA1B1 ;A2B2⟩⟨ΩA1B1 ;A2B2 ∣⊗ 𝟙E)(𝟙A1B1 ⊗ V).● Step 4 computes the operator B in the representation. In the Proof of Theorem V.6, B was obtained from B̃, which, in turn, was
obtained from V and Lemma V.13. In the finite-dimensional setting, Lemma V.13 constructs B exactly as is written down above.● Steps 6, 7, and 8 define τsc as the Choi–Jamiołkowski operator of a CP-map with the Stinespring operator V sc. Thus, according to the
Proof of Theorem V.6, τ is the Choi–Jamiołkowski of a Heisenberg B→/ A semicausal map. Semicausality is expressed on the level
of Choi–Jamiołkowski operators by the existence of an operator τA

sc such that trB1[τsc] = τA
sc ⊗ 𝟙B2 (compare with the Proof of Lemma

V.5). Using this relation makes clear that step 8 extracts τA
sc from τsc and that the result is independent of the choice of ∣β⟩.● Step 10 defines A as the Stinespring dilation of the (reduced) map whose Choi–Jamiołkowski operator is τA

sc. The dilation constructed
in this way is minimal. This is exactly the way in which the operator W = A was constructed in the Proof of Theorem V.6.● Step 11 obtains U by solving the defining relation (for Ũ) in the Proof of Theorem V.6. One might wonder why the solution to
this system of equations is unique (even though M is not a square matrix). Uniqueness follows from the minimality of A⊗ 𝟙B,
that is, vectors of the form (XA ⊗ 𝟙FB)(A⊗ 𝟙B)∣ψ⟩ span HA ⊗HB ⊗HE. In detail, if U and U′ satisfy M(U) =M(U′), then
0 = (𝟙A ⊗ (U −U′))(A⊗ 𝟙B) and hence 0 = (𝟙A ⊗ (U −U′))(XA ⊗ 𝟙FB)(A⊗ 𝟙B)∣ψ⟩. By linearity, this implies U −U′ = 0.● Step 12 computes the operator K in the GKLS-form according to the discussion above.● Step 13 defines an operator Ksc, which according the statement of Theorem V.6 and also due to the discussion below Eq. (16) is of the
form KA ⊗ 𝟙B + 𝟙A ⊗ iHB.● Steps 14 and 15 extract KA and HB from Ksc. Note that such a decomposition is not unique, since for any λ ∈ R, the transformation
KA → KA + iλ𝟙A, HB → HB − λ𝟙B leaves Ksc invariant. This transformation, however, allows us to choose HB traceless. In that case,
steps 14 and 15 determine KA and HB.

APPENDIX D: CONSTRUCTIVE APPROACH TO THEOREM V.18

In this appendix, we are going to describe in detail how one can computationally construct the operators A, U, B, HA, and HB in Theorem
V.18 if the conditions of Lemma V.17 are met. We use the notation from Appendix C.

Given the operator L̂ ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2) as in Lemma V.17, then we can compute the operators A, U, B, HA, and HB via the
following eight steps:

1. Apply steps 1–18 in the protocol in Appendix C to L̂. This yields HE = HA1 ⊗HB1 ⊗HA2 ⊗HB2 , Ã ∈ B(HA2 ;HA0 ⊗HE), Ũ ∈ B(HE⊗HB;HB ⊗HE), K̃A ∈ B(HA), and H̃B ∈ B(HB).
2. Choose any unit vector ∣ξ⟩ ∈ HE.
3. Compute σ = ∣ξ⟩⟨ξ∣.
4. Compute A = (𝟙A−1 ⊗ 𝟙E ⊗ ⟨ΩA0 ;A3 ∣)(𝟙A−1 ⊗ FA0 ;EÃ⊗ 𝟙A3)(∣ΩA−1 ;A2⟩⊗ 𝟙A3 ⊗ ⟨ξ∣).
5. Compute B = B̃(𝟙B ⊗ ⟨ξ∣).
6. Compute U = ŨFB;E.
7. Set HB = H̃B.
8. Calculate HA = 1

2i(K̃T
A − K̃†T

A ), where the transposition is with respect to the {∣ai⟩} basis defined in Appendix C.

Let us comment on why the steps above yield the right result:

● Step 1 can be executed, since the assumptions of Lemma V.5 are the first two assumptions in Lemma V.17.● Steps 2 and 3 define σ as in the Proof of Theorem V.18.● Step 4 is a more explicit expression for Ã TAΞ†
A in the Proof of Theorem V.18.● Steps 5, 6, and 7 are exactly the definitions of B, U, and HB, respectively, in the Proof of Theorem V.18.● For step 8, we note that the condition trA1[L̂A] = 0 implies LA(𝟙) = 0 so that we can follow the last few sentences in the Proof of

Theorem V.18.
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23A. Bátkai, M. Fijavž, and A. Rhandi, Positive Operator Semigroups: From Finite to Infinite Dimensions, Operator Theory: Advances and Applications (Springer
International Publishing, 2017).
24T. M. Liggett, Continuous Time Markov Processes: An Introduction (American Mathematical Society, 2010), Vol. 113.
25G. Chiribella, A. Toigo, and V. Umanità, Open Syst. Inf. Dyn. 20, 1350003 (2013).
26D. Kretschmann and R. F. Werner, Phys. Rev. A 72, 062323 (2005).
27B. Collins, Int. Math. Res. Not. 2003, 953.
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Appendix B

Further articles as principal author
under review

B.1 On the generators of quantum dynamical semigroups with
invariant subalgebras

In this article, we consider quantum dynamical semigroups with an invariant algebra. More pre-
cisely, we look at uniformly continuous one-parameter semigroups {Tt}t≥0 ∈ B(B(H)) that have
the property that for every t ≥ 0, the map Tt is a normal CP-map that leaves an (atomic) weakly
closed *-algebra A invariant. The generators of quantum dynamical semigroups are known to
be representable in GKSL-form. That is, every generator L : B(H) → B(H) can be written as
L(X) = V †(X ⊗ 1E)V −K†X −XK, for some V ∈ B(H;H ⊗HE) and K ∈ B(H). Moreover,
the invariance assertion Tt(A) ⊆ A for all t ≥ 0 is equivalent to L(A) ⊆ A. So, the real question
is, what can we say about V and K if we know that L(A) ⊆ A?
This research question has its origin in the days I was finalizing Article [2] and is the answer
to the question “How can the techniques developed in Article [2] (where they were specifically
targeted at semicausal and superchannels) be generalized". To see that the current question is
a generalization, note that a linear map T : B(HA ⊗ HB) → B(HA ⊗ HB) is Heisenberg B ̸→ A

semicausal if and only if T (B(HA)⊗ 1B) ⊆ B(HA)⊗ 1B. We further remark that B(HA)⊗ 1B has
the canonical form of a type-I factor von Neumann algebra.
Our result consists of two parts. First, we show that for approximately finite-dimensional alge-
bras A, the question: “How do GKSL-generators L with L(A) ⊆ A look like?" can be reduced to
“How do CP-maps T with T (A) ⊆ A look like?". This is the content of Theorem 4 in [3]. In the
second part, we show how to characterize CP-maps that leave an atomic weakly closed *-algebra
A invariant (Theorem 5). This result is a generalization of the equivalence of semicausal and
semilocalizable CP-maps [16].
Combining the two partial results leads to a normal form for GKSL-generators with invariant
atomic weakly closed *-algebra (Theorem 6). As a further result, we characterize the gauge-
freedom in our normal form (Theorem 7).
Our result can be seen as a unifying approach to derive several important results in the litera-
ture. Among those are the normal form for quantum dynamical semigroups with an invariant
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INVARIANT SUBALGEBRAS Chapter 2

decoherence-free subalgebra [60, Theorem 3.2(1)], quantum dynamical semigroups with an in-
variant maximally abelian subalgebra [66, 67] and the Koashi-Imoto theorem [59, Eq. (85) and
Theorem 3].
Let me reiterate that the idea for the article originates from the request to generalize the tech-
niques of Article [2]. I am the principal author of this article. My main contributions include
(but are not limited to) the ideas and the technical write-ups of Theorems 4, 5, 6 and 7.
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Abstract. The problem of characterizing GKLS-generators and CP-maps with an invariant von
Neumann subalgebra A appeared in different guises in the literature. We prove two unifying results:
First, we show how to construct a normal form for A-invariant GKLS-generators, if a normal form
for A-invariant CP-maps is known — rendering the two problems essentially equivalent. Second, we
provide a normal form forA-invariant CP-maps ifA is atomic (which includes the finite-dimensional
case). As an application we reproduce several results from the literature as direct consequences of
our characterizations and thereby point out connections between different fields.

1. Introduction

Quantum dynamical semigroups play in important role in many areas of physics.
A (norm-continuous) quantum dynamical semigroup is a collection of normal com-
pletely positive maps (Tt)t≥0 on L(H) such that T0 = id, Ts+t = Ts ◦ Tt for all
s, t ≥ 0 and the map t 7→ Tt is norm-continuous. By the general theory of contin-
uous one-parameter semigroups [9, Theorem 3.7], there exists a bounded operator
L, called generator, such that Tt = etL for all t ≥ 0. The fundamental result due
to Gorini, Kossakowski, Sudarshan [12] and Lindblad [17] is that L generates a
norm-continuous quantum dynamical semigroup if and only if L is of the form

L(X) = V †(X ⊗ 1E)V −K†X −XK, X ∈ L(H), (1)

∗Supported by the Bavarian excellence network enb via the International PhD Programme of
Excellence Exploring Quantum Matter.

†Supported by the TopMath Graduate Center of the TUM Graduate School at the Technische
Universität München, Germany, the TopMath Program at the Elite Network of Bavaria, and the
German Academic Scholarship Foundation (Studienstiftung des deutschen Volkes).
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for some V ∈ L(H;H⊗HE) and K ∈ L(H).
In the past, special cases of the following question on restricted GKLS-generators

arose in the literature: Suppose A ⊆ L(H) is a von Neumann algebra such that
Tt(A) ⊆ A for all t ≥ 0 or, equivalently, such that L(A) ⊆ A. How does this
condition constrain the operators V and K? In this work, we provide an answer to
this question, if A is atomic — thus covering many interesting cases, in particular
the finite-dimensional case. It should be noted here that Tt(A) ⊆ A for all t ≥ 0 is
equivalent to L(A) ⊆ A.

Among the results for which the answer to the question posed above is useful
are: The Koashi-Imoto theorem [16], an important result in the theory of quantum
communication, giving the general form of a quantum channel leaving a certain
set of density matrices invariant; the form of the GKLS-generator imposed by the
invariance of the decoherence-free subalgebra [1, 7, 10, 24]; general questions about
decoherence, where the form of the GKLS-generator imposed by the invariance of
a maximally abelian subalgebra is important [5, 11, 21–23]; the study of Markovian
subsystems [26] and the study of the aging process of quantum devices via dynamical
semigroups of superchannels [13].

This paper is structured as follows: In Section 2., we introduce the notation and
remind the reader of several facts related to completely positive (CP) maps, GKLS-
generators, and weakly closed *-algebras. In Section 3.1., we show how to reduce
the general problem of classifying GKLS-generators with an invariant approximately
finite-dimensional algebra to the one of classifying normal CP-maps with the same
invariant algebra. In Section 3.2. we classify normal completely positive maps
with an invariant atomic algebra. Section 3.3. combines the results from Sections
3.1. and 3.2. to obtain a classification of GKLS-generators with invariant atomic
algebras. In Section 4., we use our results to reproduce several results from the
literature discussed above. Finally, in Section 5., we conclude our work and outline
possible further lines of research.

2. Preliminaries and Notation

Functional analysis: Throughout, H (with some subscript) denotes a separable
complex Hilbert space. For Banach spaces X and Y, we denote by L(X ;Y) the
set of bounded linear operators from X to Y, which becomes a Banach space when
equipped with the operator norm. We abbreviate L(X ;X ) by L(X ). The strong
operator topology (SOT) on L(HA;HB) is the smallest topology such that for all
|ψA⟩ ∈ HA, the map X 7→ X|ψA⟩ is continuous. The weak operator topology (WOT)
on L(HA;HB) is the smallest topology such for all |ψA⟩ ∈ HA and |ψB⟩ ∈ HB, the map
X 7→ ⟨ψB|XψA⟩ is continuous. The ultraweak (or weak-*) topology on L(HA;HB)
is the smallest topology such that for all ρ ∈ S1(HB;HA), the map X 7→ tr [Xρ]
is continuous. Here, tr denotes the trace and S1(HB;HA) the set of trace-class
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operators, that is those ρ ∈ L(HB;HA) for which tr
[√

ρ†ρ
]
<∞. A subset T ⊆ H

is total in H if its linear span is dense in H. An operator V ∈ L(HA;HB) is called an
isometry if ∥V |ψ⟩∥ = ∥|ψ⟩∥ for all |ψ⟩ ∈ HA. A surjective isometry is called unitary.

CP-maps and GKLS-generators: A linear map Φ : L(HA) → L(HB) is a nor-
mal CP-map if there exists a Hilbert space HE and an operator V ∈ L(HB;HA⊗HE)
such that Φ(X) = V †(X ⊗ 1E)V . We denote the set of such normal CP-maps by
CPσ(HA;HB) and abbreviate CPσ(H;H) by CPσ(H). The pair (V,HE) is called
a Stinespring representation of Φ. An equivalent characterization of normal CP-
map is that they admit a Kraus representation. That is, there exist operators
{vi}i ⊂ L(H) such that Φ(X) =

∑
i v

†
iXvi for all X ∈ L(H), where the series is

SOT-convergent. The choice of (V,HE) representing Φ is not unique. However, the
following well-known theorem (see e.g. [19, Theorem 29.6]) quantifies the freedom.

THEOREM 1. Let Ṽ ∈ L(HB;HA ⊗ HẼ) and define Φ(X) = Ṽ †(X ⊗ 1Ẽ)Ṽ for all
X ∈ L(HA). Then there exist HE and V ∈ L(HB;HA ⊗ HE) such that a) Φ(X) =
V †(X⊗1E)V for all X ∈ L(HA) and such that b) {(X⊗1E)V |ψ⟩ |X ∈ L(HA), |ψ⟩ ∈
HB} is total in HA ⊗HE.
If (HE, V ) is any pair such that a) and b) are satisfied, and if (HẼ, Ṽ ) is another
pair such that a) is satisfied, then there exists an isometry W ∈ L(HE;HẼ) such that
Ṽ = (1A ⊗W )V . If b) is also satisfied for (HẼ, Ṽ ), then W is unitary.

If V satisfies condition b) above, then it is called minimal.
A linear map L : L(H) → L(H) is called GKLS-generator (or generator in

GKLS-form) if there exists Φ ∈ CPσ(H) and K ∈ L(H), such that L(X) = Φ(X)−
K†X − XK for all X ∈ L(X ). As for normal CP-maps, the representation is not
unique. The following characterization of the freedom can be extracted from [19,
Chapter 30], in particular from the proof of Proposition 30.14. We give a complete
proof in Appendix B.

THEOREM 2. Let Ṽ ∈ L(H;H⊗HẼ) and K̃ ∈ L(H) and define L(X) = Ṽ †(X ⊗
1Ẽ)Ṽ − K̃†X −XK̃ for all X ∈ L(H). Then there exist HE, V ∈ L(H;H⊗HE) and
K ∈ L(H) such that a) L(X) = V †(X ⊗ 1E)V −K†X −XK for all X ∈ L(H) and
such that b) {((X ⊗ 1E)V − V X)|ψ⟩ |X ∈ L(H), |ψ⟩ ∈ H} is total in H⊗HE.
If (HE, V,K) is any triplet such that a) and b) are satisfied, and if (HẼ, Ṽ , K̃) is an-
other triplet such that a) is satisfied, then there exists an isometry W ∈ L(HE;HẼ),
a vector |ψ̃⟩ ∈ HẼ, and a number µ ∈ R such that

Ṽ = (1⊗W )V + 1⊗ |ψ̃⟩, K̃ = K + (1⊗ ⟨ψ̃|W )V +
1

2
∥ψ̃∥2 + iµ. (2)

If b) is also satisfied for (HẼ, Ṽ , K̃), then W is unitary.
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Weakly closed *-algebras: We introduce several conventions that will be useful
in simplifying the notation throughout. A weakly closed *-algebra A ⊆ L(H) is
a subalgebra of L(H) that is closed w.r.t. the WOT1 and w.r.t. taking adjoints.
A weakly closed *-algebra does not necessarily contain the identity — if it does
then it is called a von Neumann-algebra (abbr. vN-algebra). Every weakly closed
*-algebra A is (unitarily equivalent to) the direct sum of a zero-dimensional algebra

00 and a vN-Algebra [14, Proposition 5.1.8]. That is, A = UA (00 ⊕A0)U
†
A, where

UA : H⊕ → H is a unitary on H⊕ = H0 ⊕ H0, 00 = {0} ⊆ L(H0) and A0 is a
vN-algebra in L(H0). If P

⊕
0 ∈ L(H⊕;H0) and P

⊕
0

∈ L(H⊕;H0) are the orthogonal
projections onto H0 and H0, then we define P0 ∈ L(H;H0) and P0 ∈ L(H;H0) by

P0 = P⊕
0 U

†
A and P0 = P⊕

0
U †
A.

Two special types of weakly closed *-algebras are of particular importance to us:
the approximately finite-dimensional ones and the atomic ones. A weakly closed *-
algebra A ⊆ L(H) is called approximately finite-dimensional (AFD) if there exists
an increasing sequence A1 ⊆ A2 ⊆ A3 ⊆ · · · ⊆ A of finite-dimensional (hence
weakly closed) sub-*-algebras of A such that ∪n∈NAn is WOT-dense in A. Atomic
weakly closed *-algebras are usually defined by the requirement that every non-zero
projection in A majorizes a non-zero minimal projection [25, Definition 5.9] — a
property always fulfilled in finite dimensions. For our purposes, it is more convenient
to think of them as those weakly closed *-algebras that are the direct sum of type-I
factors. A proof of this equivalence can be found in the appendix of [7].

DEFINITION 3. A weakly closed *-algebra A ⊆ L(H) is called atomic if

A = UA

(
00 ⊕

⊕

i∈I
(L(HAi)⊗ 1Bi)

)
U †
A, (3)

for a Hilbert space H0, sequences of Hilbert spaces {HAi}i∈I and {HBi}i∈I indexed
by a countable index set I, and a unitary UA : H⊕ → H, where H⊕ = H0 ⊕⊕

i∈I(HAi ⊗HBi).
We further define for all i ∈ I the Hilbert space Hi = HAi ⊗ HBi . For all

k ∈ I ∪ {0}, let P⊕
k ∈ L(H⊕;Hk) be the orthogonal projection onto Hk and let us

define Pk ∈ L(H;Hk) as Pk = P⊕
k U

†
A.

2 Hence, an arbitrary element XA ∈ A can be

written as SOT-convergent series XA =
∑

i∈I P
†
i (XAi ⊗ 1Bi)Pi, for some operators

XAi ∈ L(HAi), with supi∈I ∥XAi∥ <∞.

For A ⊆ L(H), we denote by A′ := {X ∈ L(H) |XXA = XAX, ∀XA ∈ A} its
commutant. If A is an atomic weakly closed *-algebra with decomposition given

1Equivalently, one can use the SOT or the ultraweak topology.
2Note that this definition is consistent with the one introduced in the first paragraph above.
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above, then as a special case of general theory of direct integral decompositions of
vN-algebras (see e.g. [15, Proposition 14.1.24, Theorem 11.2.16])), A′ is given by

A′ = UA

(
L(H0)⊕

⊕

i∈I
(1Ai ⊗ L(HBi))

)
U †
A. (4)

Hence, an arbitrary element X ′
A ∈ A′ can be written as SOT-convergent series

XA′ = P †
0X0P0 +

∑
i∈I P

†
i (1Ai ⊗XBi)Pi, for some operators X0 ∈ L(H0) and XBi ∈

L(HBi), with supi∈I ∥XBi∥ < ∞. And XA′ is self-adjoint if and only if all the
operators in the decomposition are self-adjoint [15, Proposition 14.1.8].

3. Results

3.1. GKLS-generators with invariant *-algebra

In this section we state and prove our first main result, namely a theorem that
allows us to reduce the problem of characterizing GKLS-generators with invariant
weakly closed *-algebras to characterizing CP-maps with invariant weakly closed
*-algebras. Since CP-maps are special GKLS-generators (for K = 0), this renders
these problems essentially equivalent. For technical reasons, we need to restrict our-
selves to AFD algebras. The notation in the following theorem and the subsequent
proof follows Section 2..

THEOREM 4. Let L : L(H) → L(H) be defined by L(X) = Φ(X) −K†X −XK,
for some Φ ∈ CPσ(H) and K ∈ L(H), and let A ⊆ L(H) be an AFD weakly closed
*-algebra. The following are equivalent

1. L(A) ⊆ A.

2. (Stinespring) Suppose Φ is given in Stinespring representation Φ(X) = V †(X⊗
1E)V , where V ∈ L(H;H ⊗HE). Then there exist operators V0 ∈ L(H;H0 ⊗
HE), A,B ∈ L(H;H ⊗HE) and K0 ∈ L(H;H0); an operator KA ∈ A; and a
self-adjoint operator HA′ ∈ A′ such that

(a) A†(XA ⊗ 1E)A ∈ A and (XA ⊗ 1E)B = BXA, for all XA ∈ A.

(b) V and K have the following form:

V = (P †
0 ⊗ 1E)V0 +A+B, (5a)

K = B†A+
1

2
B†B +KA + iHA′ + P †

0K0. (5b)

3. (Kraus) Suppose Φ is given in Kraus representation Φ(X) =
∑

n∈N ϕ
†
nXϕn.

Then there exists a countable index set N ; collections of operators {vn}n∈N ⊂
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L(H;H0) and {an}n∈N , {bn}n∈N ⊂ L(H) such that
∑

n∈N v
†
nvn,

∑
n∈N a

†
nan

and
∑

n∈N b
†
jbj SOT-converge; an operator K0 ∈ L(H;H0); an operator KA ∈

A; and a self-adjoint operator HA′ ∈ A′ such that

(a)
∑

n∈N a
†
nXAan ∈ A for all XA ∈ A and bn ∈ A′ for all n ∈ N .

(b) {ϕn}n∈N and K have the following form:

ϕn = P †
0vn + an + bn, for all n ∈ N, (6a)

K =
∑

n∈N
b†nan +

1

2

∑

n∈N
b†nbn +KA + iHA′ + P †

0K0. (6b)

Proof. We prove 1 ⇐⇒ 2 and obtain 3 as a corollary. For the implication 2 =⇒
1, let XA ∈ A be arbitrary. We have

Φ(XA) = (V †
0 (P0 ⊗ 1E) +A† +B†)(XA ⊗ 1E)((P

†
0 ⊗ 1E)V0 +A+B)

P0XA=0=XAP
†
0= (A† +B†)(XA ⊗ 1E)(A+B)

(XA⊗1E)B=BXA
= A†(XA ⊗ 1E)A+ (B†A+

1

2
B†B)†XA +XA(B†A+

1

2
B†B)

and

K†XA +XAK = (B†A+
1

2
B†B)†XA +XA(B†A+

1

2
B†B) +K†

AXA +XAKA

− iHA′XA + iXAHA′︸ ︷︷ ︸
=0, since HA′∈A′

+ K†
0P0XA +XAP

†
0K0︸ ︷︷ ︸

=0, since P0XA=0=XAP
†
0

.

Combining the calculations above yields

L(XA) = A†(XA ⊗ 1E)A−K†
AXA −XAKA,

which belongs to A since by assumption A†(XA⊗1E)A ∈ A, KA ∈ A and K†
A ∈ A.

The proof of the converse proceeds in two main steps: First we show that there are
operators V0, A and B such that the conditions in 2a and Eq. (5a) hold. Second,
we derive the form of K. As a first step, we construct a family of linear maps on
L(H) each of which is closely related to L and leaves A invariant. Since L(A) ⊆ A,
and since A is a *-algebra,

Ψ(X,Y, Z) := L(Y †XZ)− Y †L(XZ)− L(Y †X)Z + Y †L(X)Z (7)

is an element of A whenever X,Y, Z ∈ A. A direct calculation using the represen-
tation Φ(X) = V †(X ⊗ 1E)V reveals that

Ψ(X,Y, Z) = [V Y − (Y ⊗ 1E)V ]† (X ⊗ 1E) [(V Z − (Z ⊗ 1E)V ] . (8)
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With the notation introduced in Section 2.: Since A is AFD, so is U †
AAUA = 00⊕A0

and so is the vN-algebra A0 ⊆ L(H0). Let Ã1 ⊆ Ã2 ⊆ Ã3 ⊆ · · · be an increasing
sequence of finite-dimensional *-subalgebras of A0, such that ∪n∈NÃn is WOT-dense
in A0. For every n ∈ N, define An := span{Ãn ∪ C10}. Clearly, also ∪n∈NAn is
WOT-dense in A0, but now An is a vN-algebra for every n ∈ N. In the following,
we will often need to assign to operators in A0 the corresponding ones in A. For

notational convenience, we define for each X ∈ A0 the operator X̂ = P †
0
XP0 ∈

L(H). We denote by U(An) the unitary group in An. As An is finite-dimensional,
U(An) is a compact group, so there exists a unique Haar probability measure on
U(An). For any n,m ∈ N and X ∈ L(H), we obtain the following Haar average

∫

U(Am)

∫

U(An)
Ψ(ÛnXŴ

†
m, Û

†
n, Ŵm) dUndWm

=
(
(1̂0 ⊗ 1E)V − En(V )

)†
(X ⊗ 1E)

(
(1̂0 ⊗ 1E)V − Em(V )

)
,

(9)

where

Ek(V ) :=

∫

U(Ak)
(Û †

k ⊗ 1E)V Ûk dUk, k ∈ N.

Since we integrate over a probability measure, ∥Ek(V )∥ ≤ ∥V ∥ and hence the (se-
quential) Banach–Alaoglu theorem implies that the sequence (Ek(V ))k∈N has an
ultraweakly convergent subsequence whose limit we denote by E(V ). For XA ∈ A,
the RHS of Eq. (9) is an element of A for all n,m ∈ N, since the integrand is in A
and the Bochner integral converges in norm. Furthermore, since A is ultraweakly
closed, passing to subsequences and taking the limit n→ ∞ and thenm→ ∞ yields
that

Ψ(XA) :=
(
(1̂0 ⊗ 1E)V − E(V )

)†
(XA ⊗ 1E)

(
(1̂0 ⊗ 1E)V − E(V )

)
(10)

is an element of A for all XA ∈ A. In other words, Ψ interpreted as a CP-map
satisfies Ψ(A) ⊆ A. We now define V0, B and A as follows: V0 = (P0 ⊗ 1E)V ,

B = E(V ) and A = V − (P †
0 ⊗ 1E)V0 − B. Thus V = A + B + (P †

0 ⊗ 1E)V , which
is precisely Eq. (5a). It follows directly from Eq. (10) that A†(XA ⊗ 1E)A ∈ A
for all XA ∈ A — verifying the first part of condition 2a. By the definition of
the Haar measure and since (Ak)k∈N is an increasing sequence, we have (Ûk ⊗
1E)E(V ) = E(V )Ûk for all Uk ∈ U(Ak). But since every Xk ∈ Ak can be written as
a finite linear combination of elements in U(Ak) (see [14, Theorem 4.1.7]), we have
(X̂k ⊗ 1E)E(V ) = E(V )X̂k, for all Xk ∈ Ak and hence (X̂ ⊗ 1E)E(V ) = E(V )X̂ for
all X ∈ ∪n∈NAn. Evidently, this equation is also preserved under ultraweak limits.
Thus (XA ⊗1E)E(V ) = E(V )XA, for all XA ∈ A. Since B = E(V ), this implies the
second part of condition 2a.
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It remains to show that K has the desired form. To this end, note that for any
XA ∈ A, we have L(XA) ∈ A by assumption, but since V = (P †

0 ⊗ 1E)V0 + A+B,
(XA ⊗ 1E)B = BXA and P0XA = 0, we also have

L(XA) = [A+B]† (XA ⊗ 1E) [A+B]−K†XA −XAK

= A†(XA ⊗ 1E)A− (K −B†A− 1

2
B†B)†XA −XA(K −B†A− 1

2
B†B).

Since A†(XA ⊗ 1E)A ∈ A, this implies that

−κ†XA −XAκ ∈ A, (11)

for all XA ∈ A, where κ = K−B†A− 1
2B

†B. For Un ∈ U(An), we choose XA = Ûn,

multiply Eq. (11) from the left by Û †
n and integrate over the Haar measure. Thus,

we see that

−
∫

U(An)
Û †
nκÛn dUn − 1̂0κ (12)

belongs to A. By the same arguments as above, we can pass to a subsequence such
that for n→ ∞, expression Eq. (12) converges to

−κA′ − 1̂0κ, (13)

for some κA′ ∈ A′ and such that the whole expression belongs to A. We now
define the self-adjoint operator HA′ = − 1

2i(κA′ − κ†A′) ∈ A′, the operator KA :=

1̂0κ − iHA′ = κ − P †
0P0κ − iHA′ and K0 = P0κ. By the definition of K0 and KA

we thus get κ = KA + iHA′ +P †
0K0, which is the desired form if KA ∈ A. This last

assertion can be seen as follows:

KA =
1

2

(
KA +K†

A

)
+

1

2

(
KA −K†

A

)

=
1

2

(
κ†1̂0 + 1̂0κ

)

︸ ︷︷ ︸
∈A, by 1̂0∈A and Eq. (11)

+
1

2

(
(1̂0κ+ κA′)︸ ︷︷ ︸
∈A, by Eq. (13)

− (1̂0κ+ κA′)†︸ ︷︷ ︸
∈A, by Eq. (13)

)
.

This finishes the proof of 1 ⇐⇒ 2.
Part 3 is a matter of going from the Stinespring representation of normal CP-

maps to their Kraus representation and back. This is a standard procedure and a
very nice account can be found in [3]. We just mention here that after choosing an
orthonormal basis {|en⟩}n∈N of HE, the collections {vn}n∈N , {an}n∈N and {bn}n∈N
and the operators V0, A and B are related via vn := (1 ⊗ ⟨en|)V0, an := (1 ⊗
⟨en|)A and bn := (1 ⊗ ⟨en|)B. The corresponding properties are then routinely
verifiable.
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3.2. CP-maps with invariant atomic algebra

In this section, we study the problem of finding a normal form for (normal) CP-
maps with an atomic invariant subalgebra. Slightly more generally, we aim to find
normal a normal form for normal CP-maps Φ with the property that Φ(A) ⊆ C,
for two atomic weakly closed *-algebras A and C. Since we are now dealing with
two algebras, we need to distinguish them in the notation in Definition 3. For the
algebra A ⊆ L(HA): the index set is called I; the Hilbert spaces {Hi}i∈I∪{0} are
denoted by Hi:A, with Hi:A = HAi ⊗ HBi (i ∈ I); and the operators Pi are called
Pi:A ∈ L(HA;Hi:A). For the algebra C ⊆ L(HC): the index set is called J ; the
Hilbert spaces {Hj}j∈J∪{0} are denoted by Hj:C , with Hj:C = HCj ⊗ HDj (j ∈ J);
and the operators Pj are called Pj:C ∈ L(HC ;Hj:C). With this notation in place, we
can state our second main result:

THEOREM 5. Let A ⊆ L(HA) and C ⊆ L(HC) be two atomic weakly closed *-
algebras. For Φ ∈ CPσ(HA;HC) defined by Φ(X) = V †(X ⊗ 1E)V , with V ∈
L(HC ;HA ⊗HE), the following are equivalent

1. Φ(A) ⊆ C.
2. There exist an operator V0 ∈ L(HC ;H0:A ⊗ HE); and for all i ∈ I and j ∈ J

Hilbert spaces HFij , operators Aij ∈ L(HCj ;HAi ⊗HFij ), and isometries Uij ∈
L(HFij ⊗HDj ;HBi ⊗HE), such that

• V can be decomposed as

V = (P †
0:A ⊗ 1E)V0 +

∑

i∈I, j∈J
(P †

i:A ⊗ 1E)VijPj:C , (14)

with Vij = (1Ai ⊗ Uij)(Aij ⊗ 1Dj ), s.t. the series SOT-converges.

• The relation U †
ikUil = δkl1 holds for all i ∈ I and k, l ∈ J .

The representation in 2 can be chosen such that {(X⊗1Fij )Aij |ψ⟩ |X ∈ L(HAi), |ψ⟩ ∈
HCj} is total in HAi ⊗HFij .

Remark. The theorem above tells us that if V is written as a block matrix (w.r.t.
a basis determined by the structure of A and C), then all the blocks are necessarily
of the “semicloalizable” form (1⊗U)(A⊗1) — and that the U ’s need to satisfy an
orthogonality relation.

Proof. Let us start by showing that 2 =⇒ 1. We know that XA ∈ A if and
only if it can be decomposed as SOT-convergent series XA =

∑
i∈I P

†
i:A(XAi ⊗

1Bi)Pi:A, for XAi ∈ L(HAi) with
∑

i∈I ∥XAi∥ < ∞. Since A and C are ultra-
weakly closed, Φ is ultraweakly continuous, and the operators in AF := {XA |XAi ̸=
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0 only for finitely many i ∈ I } are ultraweakly dense in A, it suffices to show the
claim for XA ∈ AF so that convergence issues (w.r.t. the I-summation) play no role
in the following calculation (where the J-summation SOT-converges):

Φ(XA) =
∑

i∈I
[(Pi:A ⊗ 1E)V ]† (XAi ⊗ 1Bi ⊗ 1E) [(Pi:A ⊗ 1E)V ]

=
∑

i∈I

∑

k,l∈J
P †
k:CV

†
ik(XAi ⊗ 1Bi ⊗ 1E)VilPl:C

=
∑

i∈I

∑

k,l∈J
P †
k:C(A

†
ik ⊗ 1Dk)(XAi ⊗ U †

ikUil)(Ail ⊗ 1Dl)Pl:C

=
∑

i∈I

∑

j∈J
P †
j:C(A

†
ij ⊗ 1Dj )(XAi ⊗ 1Fij ⊗ 1Dj )(Aij ⊗ 1Dj )Pj:C

=
∑

j∈J
P †
j:C

[(∑

i∈I
A†
ij(XAi ⊗ 1Fij )Aij

)
⊗ 1Dj

]
Pj:C ,

where we used the expansion of XA in the first line, Eq. (14) in the second line
(in particular the orthogonality of the projections), the explicit form Vij = (1Ai ⊗
Uij)(Aij ⊗ 1Dj ) in the third line, the orthogonality relation U †

ikUil = δkl1 in the
fourth line and algebraic manipulations in the fifth line. But the last line is just the
decomposed form of an element of C. Thus we have shown that Φ(A) ⊆ C.

For the converse, suppose that Φ, defined by Φ(X) = V †(X ⊗ 1E)V satisfies

Φ(A) ⊆ C. Let I0 = I ∪ {0} and J0 = J ∪ {0}. Then
∑

i0∈I0 P
†
i0:APi0:A = 1A and∑

j0∈J0 P
†
j0:CPj0:C = 1C , where the series SOT-converge. Hence, we can expand

V = (P †
0:A ⊗ 1E)V0 +

∑

i∈I
(P †

i:A ⊗ 1E)Vi0P0:C +
∑

i∈I,j∈J
(P †

i:A ⊗ 1E)VijPj:C , (15)

where we defined V0 = (P0:A ⊗ 1E)V and for all i ∈ I and j0 ∈ J0 the operator

Vij0 = (Pi:A⊗1E)V P
†
j0:C . Thus it remains to show that Vi0 = 0 and that Vij has our

specific form.
By definition, every XC ∈ C is of the form XC =

∑
j∈J P

†
j:C(XCj ⊗1Dj )Pj:C . Thus,

in particular Φ(XA) assumes that form for all XA ∈ A. This has the following three
implications: First, for every i ∈ I, j ∈ J and every XAi ∈ L(HAi), there exists
XCj ∈ L(HCj ) such that

Pj:CΦ
(
P †
i:A(XAi ⊗ 1Bi)Pi:A

)
P †
j:C = V †

ij(XAi ⊗ 1Bi ⊗ 1E)Vij = XCj ⊗ 1Dj . (16)

Second, for every i ∈ I and XAi ∈ L(HAi), we have

P0:C Φ
(
P †
i:A(XAi ⊗ 1Bi)Pi:A

)
P †
0:C = V †

i0(XAi ⊗ 1Bi ⊗ 1E)Vi0 = 0. (17)
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Third, for every i ∈ I and k, l ∈ J with k ̸= l and all XAi ∈ L(HAi), we have

Pk:C Φ
(
P †
i:A(XAi ⊗ 1Bi)Pi:A

)
P †
l:C = V †

ik(XAi ⊗ 1Bi ⊗ 1E)Vil = 0. (18)

It is a direct consequence of Eq. (17), by choosing XAi = 1Ai , that Vi0 = 0 for
all i ∈ I. Hence the second term in Eq. (15) vanishes as desired.

We will now see that Eq. (16) implies that Vij = (1 ⊗ Uij)(Aij ⊗ 1). This
is due to the equivalence between semicausal and semilocalizable CP-maps, estab-
lished for finite-dimensional systems in [8]. We reproduce the argument here for
the infinite-dimensional case. Choose some unit vector |ψ⟩ ∈ HDj and define the
normal CP-maps Φij ∈ CPσ(Hi:A;Hj:C) and Ψij ∈ CPσ(HAi ;HCj ) by Φij(Xi) =

Pj:CΦ
(
P †
i:AXiPi:A

)
P †
j:C and Ψij(XAi) = (1Cj⊗⟨ψ|)Φij(XAi⊗1Bi)(1Cj⊗|ψ⟩). Eq. (16)

then implies that

Φij(XAi ⊗ 1Bi) = Ψij(XAi)⊗ 1Dj , (19)

for all XAi ∈ L(HAi). By Stinespring’s dilation theorem (see Theorem 1), there
exists a minimal dilation given by HFij and Aij ∈ L(HCj ;HAi ⊗ HFij ) such that

Ψij(XAi) = A†
ij(XAi ⊗ 1Fij )Aij . It follows that Aij ⊗ 1Dj is a minimal dilation for

XAi 7→ Ψij(XAi)⊗ 1Dj . But Eqs. (19) and (16) then imply that

V †
ij(XAi ⊗ 1Bi ⊗ 1E)Vij = (Aij ⊗ 1Dj )

†(XAi ⊗ 1Fij ⊗ 1Dj )(Aij ⊗ 1Dj ), (20)

for all XAi ∈ L(HAi). In other words, Vij and Aij ⊗ 1Dj are Stinespring operators of
the same map. Since Aij ⊗ 1Dj is minimal, there exists an isometry Uij ∈ L(HFij ⊗
HDj ;HBi ⊗HE) such that Vij = (1Ai ⊗ Uij)(Aij ⊗ 1Dj ). This is the desired form.

It remains to show that U †
ikUil = δkl1 for all i ∈ I and k, l ∈ J . Since the Uij ’s

are isometries, this condition is fulfilled for k = l. For k ̸= l, we choose arbitrary
|ψk⟩ ∈ Hk:C and |ψl⟩ ∈ Hl:C and XL, XR ∈ L(HAi). Eq. (18), with XAi = X†

LXR

implies

0 = ⟨(XL ⊗ 1Bi ⊗ 1E)Vikψk|(XR ⊗ 1Bi ⊗ 1E)Vilψl⟩
= ⟨(XL ⊗ 1Fik ⊗ 1Dk)(Aik ⊗ 1Dk)ψk|

[
1Ai ⊗ U †

ikUil

]
(XR ⊗ 1Fil ⊗ 1Dl)(Ail ⊗ 1Dl)ψl⟩.

Since {(XL ⊗ 1Fik ⊗ 1Dk)(Aik ⊗ 1Dk)|ψk⟩ |XL ∈ L(HAi), |ψk⟩ ∈ Hk:C} being total
and {(XR ⊗ 1Fil ⊗ 1Dl)(Ail ⊗ 1Dl)|ψl⟩ |XR ∈ L(HAi), |ψl⟩ ∈ Hl:C} being total is the
definition of minimality of Aik⊗1Dk and Ail⊗1Dl , respectively, we can conclude from

the equation above (using sesquilinearity of the inner product) that 1Ai ⊗U †
ikUil = 0

and hence that U †
ikUil = 0, as desired. Finally, note that the claim about the

totality of {(X ⊗ 1Fij )Aij |ψ⟩ |X ∈ L(HAi), |ψ⟩ ∈ HCj} in HAi ⊗ HFij follows by
construction.
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3.3. GKLS-generators with invariant atomic algebra

The notation in the following theorem and its proof follows Section 2..

THEOREM 6. Let L : L(H) → L(H) be given by L(X) = V †(X ⊗ 1E)V −K†X −
XK with V ∈ L(H;H⊗HE) and K ∈ L(H) and let A be an atomic *-subalgebra of
L(H), with decomposition given by Definition 3. Then the following are equivalent

1. L(A) ⊆ A.

2. There exist operators V0 ∈ L(H;H0 ⊗HE) and K0 ∈ L(H;H0); for all i, j ∈ I
a Hilbert space HFij , operators Aij ∈ L(HAj ;HAi ⊗HFij ), and isometries Uij ∈
L(HFij ⊗HBj ;HBi ⊗HE); and for every i ∈ I operators Bi ∈ L(HBi ;HBi ⊗HE),
KAi ∈ L(HAi), and self-adjoint operators HBi ∈ L(HBi), such that

• V and K can be decomposed as

V = (P †
0 ⊗ 1E)V0 +

∑

i,j∈I
(P †

i ⊗ 1E)V
sc
ij Pj +

∑

i∈I
(P †

i ⊗ 1E)(1Ai ⊗Bi)Pi,

K =
∑

i∈I
P †
i (1Ai ⊗B†

i )V
sc
ii Pi +

1

2

∑

i∈I
P †
i (1Ai ⊗B†

iBi)Pi

+KA + iHA′ + P †
0K0,

with V sc
ij = (1Ai ⊗ Uij)(Aij ⊗ 1Bj ), KA =

∑
i∈I P

†
i (KAi ⊗ 1Bi)Pi, and

HA′ =
∑

i∈I P
†
i (1Ai ⊗HBi)Pi, s.t. all series SOT-converge.

• The relation U †
ikUil = δkl1 holds for all i, k, l ∈ I.

Proof. The basic strategy is to use Theorem 4 to reduce the problem to CP-maps
with invariant algebra A, followed by an application of Theorem 5. In detail: Part
2 of Theorem 4 provides us with operators Ã, B̃, Ṽ0, K̃0, KA and H̃A′ such that

V = (P †
0 ⊗ 1E)Ṽ0 + Ã+ B̃, (21a)

K = B̃†Ã+
1

2
B̃†B̃ +KA + iH̃A′ + P †

0 K̃0. (21b)

We observe the following:

• Since KA ∈ A, it can be decomposed as KA =
∑

i∈I P
†
i (KAi ⊗ 1Bi)Pi for

operators KAi ∈ L(HAi).

• Since Φ(XA) := Ã†(XA ⊗ 1E)Ã ∈ A for all XA ∈ A, we can apply Theorem
5, which implies that there exist A0 ∈ L(H;H0 ⊗ HE); and for all i, j ∈ I, a
Hilbert space HFij , operators Aij ∈ L(HAj ;HAi ⊗HFij ), and isometries Uij ∈
L(HFij ⊗HBj ;HBi ⊗HE) such that Ã = (P †

0 ⊗ 1E)A0 +
∑

i,j∈I(P
†
i ⊗ 1E)V

sc
ij Pj ,

where V sc
ij = (1Ai ⊗ Uij)(Aij ⊗ 1Bj ) and U

†
ikUil = δkl1 for all i, k, l ∈ I.
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• Since B̃ satisfies (XA ⊗ 1E)B̃ = B̃XA for all XA ∈ A, a calculation executed
in Lemma 11 shows that there exist B0 ∈ L(H0;H0⊗HE) and operators Bi ∈
L(HBi ;HBi ⊗HE) such that B̃ = (P †

0 ⊗1E)B0P0 +
∑

i∈I(P
†
i ⊗1E)(1Ai ⊗Bi)Pi.

• Since H̃A′ ∈ A′, the discussion around Eq. (4) yields that it can be decomposed

as H̃A′ = P †
0H0P0 +

∑
i∈I P

†
i (1Ai ⊗ HBi)Pi, for self-adjoint H0 ∈ L(H0) and

HBi ∈ L(HBi).

Each of the points above provides an explicit representation of the operators in
Eqs. (21a) and (21b). Plugging them in yields

V = (P †
0 ⊗ 1E)Ṽ0 + (P †

0 ⊗ 1E)A0 + (P †
0 ⊗ 1E)B0P0

+
∑

i,j∈I
(P †

i ⊗ 1E)V
sc
ij Pj +

∑

i∈I
(P †

i ⊗ 1E)(1Ai ⊗Bi)Pi,

which has the desired form after defining V0 = Ṽ0 +A0 +B0P0. And

K = P †
0 K̃0 + P †

0B
†
0A0P0 +

1

2
P †
0B

†
0B0P0 + iP †

0H0P0

+
∑

i∈I
P †
i (1Ai ⊗B†

i )V
sc
ii Pi +

1

2

∑

i∈I
P †
i (1Ai ⊗B†

iBi)Pi +KA + iHA′ ,

which has the desired form after definingK0 = K̃0+B
†
0A0P0+

1
2B

†
0B0P0+iH0P0.

The representation in Part 2 of Theorem 6 is not unique. The following theorem
quantifies the freedom in that representation.

THEOREM 7. The operators and spaces in Part 2 of Theorem 6 can be cho-
sen to satisfy the following minimality conditions: a) For all i ∈ I, the set
{(XAi ⊗ 1Fii)Aii −AiiXAi |ψ⟩ |XAi ∈ L(HAi), |ψ⟩ ∈ HAi} is total in HAi ⊗ HFii, and
b) the set

{
(XAi ⊗ 1Fij )Aij |ψ⟩ |XAi ∈ L(HAi), |ψ⟩ ∈ HAj

}
is total in HAi ⊗ HFij for

all i, j ∈ I with i ̸= j.
Let L : L(H) → L(H) and L̃ : L(H) → L(H) be given by L(X) = V †(X ⊗ 1E)V −
K†X−XK and L̃(X) = Ṽ †(X⊗1Ẽ)Ṽ − K̃†X−XK̃, with V ∈ L(H;H⊗HE), Ṽ ∈
L(H;H⊗HẼ), and K, K̃ ∈ L(H), and let A be an atomic *-subalgebra of L(H), with
decomposition given by Definition 3. Suppose that L(A) ⊆ A and L̃(A) ⊆ A and let
the corresponding representations (Theorem 6) (V0,K0, {HFij}, {Uij}, {Aij}, {Bi},
{KAi}, {HBi}) and (Ṽ0, K̃0, {HF̃ij

}, {Ũij}, {Ãij}, {B̃i}, {K̃Ai}, {H̃Bi}) both satisfy con-

ditions a) and b) above. Then, the following hold:

1. If L(XA) = L̃(XA) for all XA ∈ A, then, for every i ∈ I, there exist a unitary
Wii ∈ L(HFii ;HF̃ii

), vectors |ψ̃i⟩ ∈ HF̃ii
with supi∈I ∥ψ̃i∥ < ∞, and numbers

µi ∈ R, with supi∈I |µi| < ∞, such that Ãii = (1Ai ⊗Wii)Aii + 1Ai ⊗ |ψ̃i⟩ and
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K̃Ai = KAi + (1Ai ⊗ ⟨ψ̃i|Wii)Aii +
1
2∥ψ̃i∥2 + iµi. Moreover, for all i, j ∈ I with

i ̸= j there exists a unitaryWij ∈ L(HFij ;HF̃ij
) such that Ãij = (1Ai⊗Wij)Aij.

2. If Ṽ = V and K̃ = K, then Ṽ0 = V0, K̃0 = K0, B̃i = Bi − Uii(|W †
iiψ̃i⟩ ⊗ 1Bi),

and H̃Bi = HBi+
i
2(G−G†)−µi1Bi, where G = B†

iUii(|W
†
iiψ̃i⟩⊗1Bi). Moreover,

for all i, j ∈ I, we have Ũij = Uij(W
†
ij ⊗ 1Bi).

Remark It is the matter of a straightforward calculation to show that the (simul-
taneous) substitutions in 1 and 2 above leave the operators V and K invariant.
Thus Theorem 7 quantifies exactly the freedom in our representation. Moreover,
Theorem 2 quantifies the freedom in the choice of (HE, V,K).

Proof. We start with proving the possibility of a reduction to minimality, as claimed
in the first part of the theorem. Suppose L is given according to Part 2 of Theorem
6, with data (Ṽ0, K̃0, {HF̃ij

}, {Ũij}, {Ãij}, {B̃i}, {K̃Ai}, {H̃Bi}). For any i ∈ I, XAi ∈
L(HAi), we have PiL(P

†
i (XAi⊗1Bi)Pi)P †

i =
[
Ã†
ii(XAi ⊗ 1F̃ii)Ãii − K̃†

Ai
XAi −XAiK̃Ai

]
⊗

1Bi =: L↓
ii(XAi)⊗1Bi . By Theorem 2, there exists (HFii , Aii,KAi) such that L↓

ii(XAi) =

A†
ii(XAi⊗1Fii)Aii−K†

Ai
XAi−XAiKAi , Aii satisfies condition a), Ãii = (1Ai⊗Wii)Aii+

1Ai ⊗ |ψ̃i⟩, and K̃Ai = KAi + (1Ai ⊗ ⟨ψ̃i|Wii)Aii +
1
2∥ψ̃i∥2 + iµi, for an isometry

Wii ∈ L(HFii ;HF̃ii
), a vector |ψ̃i⟩ ∈ HF̃ii

, and a number µi ∈ R. We define Uii =

Ũii(Wii⊗1Bi), so that Uii is an isometry. Furthermore, we define Bi = B̃i+|ψ̃i⟩⊗1Bi
andHBi = H̃Bi+

i
2(G̃−G̃†)+µi1Bi , where G̃ = B̃†

i Ũii(|ψ̃i⟩⊗1Bi). A direct calculation
shows that replacing the operators with ‘tilde’ by the ones without, does not change
V and K, but now Aii satisfies condition a). The claim that supi∈I ∥ψ̃i∥ < ∞ and
supi∈I |µi| <∞ follows, since L would be unbounded otherwise. For i, j ∈ I with i ̸=
j, we have PjL(P

†
i (XAi ⊗1Bi)Pi)P

†
j =

[
Ã†
ij(XAi ⊗ 1F̃ij )Ãij

]
⊗1Bj =: L↓

ij(XAi)⊗1Bj .

By Theorem 1, there exists (HF̃ij
, Aij) such that L↓

ij(XAi) = A†
ij(XAi ⊗1Fij )Aij , con-

dition b) holds, and Ãij = (1Ai ⊗Wij)Aij , for some isometry Wij ∈ L(HFij ;HF̃ij
).

We define Uij = Ũij(Wij ⊗ 1Bj ). It follows that Uij is an isometry and also that

U †
ikUil = δkl1. Again, a calculation shows that replacing the operators with ‘tilde’

by the ones without, does not change K and V .
Next, we want to prove 1. Since L(XA) = L̃(XA) for all XA ∈ A, we have

in particular PiL(P
†
i (XAi ⊗ 1Bi)Pi)P

†
i = PiL̃(P

†
i (XAi ⊗ 1Bi)Pi)P

†
i for all i ∈ I.

This is equivalent to A†
ii(XAi ⊗ 1Fii)Aii −K†

Ai
XAi −XAiKAi = Ã†

ii(XAi ⊗ 1F̃ii)Ãii −
K̃†

Ai
XAi −XAiK̃Ai . Since a) holds for L and L̃, Theorem 2 implies the existence of

unitaries Wii ∈ L(HFii ;HF̃ii
), vectors |ψ̃i⟩ ∈ HF̃ii

, and numbers µi ∈ R s.t. Ãii =

(1Ai⊗Wii)Aii+1Ai⊗|ψ̃i⟩ and K̃Ai = KAi+(1Ai⊗⟨ψ̃i|Wii)Aii+
1
2∥ψ̃i∥2+iµi. The claim

that supi∈I ∥ψ̃i∥ < ∞ and supi∈I |µi| < ∞ follows, since L̃ would be unbounded
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otherwise. For i, j ∈ I with i ̸= j we have PjL(P
†
i (XAi ⊗1Bi)Pi)P

†
j = PjL̃(P

†
i (XAi ⊗

1Bi)Pi)P
†
j , which is equivalent to A†

ij(XAi ⊗ 1Fij )Aij = Ã†
ij(XAi ⊗ 1F̃ij )Ãij for all

XAi ∈ L(HAi). Since b) holds for L and L̃, Theorem 1 implies the existence of a
unitary Wij ∈ L(HFij ;HF̃ij

) s.t. Ãij = (1Ai ⊗Wij)Aij . This is claim 1.

For part 2, we first notice that Ṽ = V and K̃ = K immediately implies (by
projecting into the respective subspace) that Ṽ0 = V0 and K̃0 = K0. Moreover, for
any i ∈ I,

Vii := (1Aii⊗Uii)(Aii⊗1Bii)+1Ai⊗Bi = (1Aii⊗Ũii)(Ãii⊗1Bii)+1Ai⊗B̃i =: Ṽii . (22)

Thus,

(XAi ⊗ 1BiE)Ṽii − Ṽii(XAi ⊗ 1Bi) = (1Ai ⊗ Ũii)([(XAi ⊗ 1F̃ii)Ãii − ÃiiXAi ]⊗ 1Bi)

= (1Ai ⊗ (Ũii(Wii ⊗ 1Bi)))([(XAi ⊗ 1Fii)Aii −AiiXAi ]⊗ 1Bi)

= (1Ai ⊗ Uii)([(XAi ⊗ 1Fii)Aii −AiiXAi ]⊗ 1Bi) , (23)

where the second line was obtained by using the relation between Aii and Ãii in
Part 1. From the equality of the last two lines and the totality implied by a), we
conclude Uii = Ũii(Wii ⊗ 1Bi). Using this relation, the relation between Aii and

Ãii, and Eq. (22) yields B̃i = Bi − Uii(|W †
iiψ̃i⟩ ⊗ 1Bi). Moreover, from PiKP

†
i =

(1Ai ⊗ B†
i )(1Ai ⊗ Uii)(Aii ⊗ 1Bi) +

1
2(1Ai ⊗ B†

iBi) + (KAi ⊗ 1Bi) + (1Ai ⊗ iHBi) =

(1Ai ⊗ B̃†
i )(1Ai ⊗ Ũii)(Ãii⊗1Bi)+

1
2(1Ai ⊗ B̃

†
i B̃i)+(K̃Ai ⊗1Bi)+(1Ai ⊗ iH̃Bi) = PiK̃P

†
i

and the already established relations between the operators with and without ’tilde’,
we obtain H̃Bi = HBi +

i
2(G − G†) − µi1Bi . Finally, for i, j ∈ I with i ̸= j we get

(XAi ⊗1BiE)Vij = (1Ai ⊗Uij)([(XAi ⊗1Fij )Aij ]⊗1Bj ) = (1Ai ⊗ Ũij)([(XAi ⊗1Fij )Ãij ]⊗
1Bj ) = (1Ai ⊗ (Ũij(Wij ⊗ 1Bj )))([(XAi ⊗ 1Fij )Aij ] ⊗ 1Bj ). By the totality condition

b), we can conclude Uij = Ũij(Wij ⊗ 1Bj ). Since Wij is unitary, this finishes the
proof.

For later convenience, we also note the following.

COROLLARY 8. Let L : L(H) → L(H) be given by L(X) = −K†X − XK, with
K ∈ L(H), and let A be an atomic *-subalgebra of L(H), with decomposition given
by Definition 3. If L(A) ⊆ A, then we can choose Aij = 0 and Bi = 0, for
all i, j ∈ I in the corresponding representation of Part 2 of Theorem 6. Thus,
K = KA + iHA′ + P †

0K0.

Proof. If V = 0 andK are given via (V0,K0, {HFij}, {Uij}, {Aij}, {Bi}, {KAi}, {HBi})
such that a) and b) in Theorem 7 hold, 0 = Vij = (Pi ⊗ 1E)V Pj implies (1Ai ⊗
Uij)([(XAi ⊗1Fij )Aij ]⊗1Bj ) = 0 for i ̸= j and (1Ai ⊗Uii)([(XAi ⊗1Fii)Aii−AiiXAi ]⊗
1Bi) = 0 for all i ∈ I (compare Eqs. (22) and (23)). Thus by the totality condi-
tions a) and b), we conclude Uij = 0 for all i, j ∈ I, which implies that HFij is
zero-dimensional. Hence, Aij = 0 and consequently also Bi = 0 for all i ∈ I.
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4. Applications

4.1. Semicausal quantum dynamical semigroups

As a first application of our results, we use them to reprove the main result of [13],
namely the characterization of GKLS generators of semicausal quantum dynamical
semigroups, a crucial step towards characterizing the generators of continuous one-
parameter semigroups of quantum superchannels. Here, we call a CP-map Φ :
L(HA ⊗HB) → L(HA ⊗HB) semicausal if there is a CP-map ΦA : L(HA) → L(HA)
such that Φ(XA ⊗ 1B) = ΦA(XA) ⊗ 1B holds for all XA ∈ L(HA). That is, Φ is
semicausal if and only if Φ(Asc) ⊆ Asc holds for the atomic vN-subalgebra Asc :=
L(HA)⊗ 1B ⊆ L(HA ⊗HB).

Using Theorem 6, we see that a GKLS generator L : L(HA⊗HB) → L(HA⊗HB),
L(X) = V †(X ⊗ 1E)V − K†X − XK, satisfies L(Asc) ⊆ Asc if and only if there
exist a Hilbert space HF, an operator A ∈ L(HA;HA ⊗ HF), and an isometry U ∈
L(HF ⊗ HB;HB ⊗ HE); operators B ∈ L(HB;HB ⊗ HE), KA ∈ L(HA), and a self-
adjoint operator HB ∈ L(HB), such that V = (1A ⊗ U)(A ⊗ 1B) + 1A ⊗ B and
K = (1A ⊗ B†U)(A⊗ 1B) +

1
21A ⊗ B†B +KA ⊗ 1B + 1A ⊗ iHB. This is exactly [13,

Theorem V.6].

4.2. Quantum dynamical semigroups with an atomic decoherence-free
subalgebra

For our second application, we first recall that for a uniformly continuous and
unital quantum dynamical semigroup T = (Tt)t≥0 acting on L(H) the decoherence-
free subalgebra N (T ) is the largest vN-subalgebra of L(H) on which every Tt acts
as a ∗-automorphism [10, Theorem 3] or, equivalently, such that Tt(XN (T )) =

eiH̃tXN (T )e
−iH̃t for all XN (T ) ∈ N (T ), where H̃ ∈ L(H) is self-adjoint [10, Propo-

sition 2]. In particular, note that every Tt leaves N (T ) invariant. As shown in [7],
a quantum dynamical semigroup inherits structure from its decoherence-free subal-
gebra. This is the content of the following:

THEOREM 9. [7, Theorem 3.2(1)] Let T and N (T ) be as above, and assume that
N (T ) is atomic, with normal form as in Definition 3. Then, for any GKLS-

generator L, given in Kraus form by L(X) =
∑

n∈N ϕ
†
nXϕn −K†X − XK, where

K = 1
2

∑
n∈N ϕ

†
nϕn + i Im(K), we have

ϕn =
∑

i∈I
P †
i (1Ai ⊗ βn;i)Pi, Im(K) =

∑

i∈I
P †
i (κAi ⊗ 1Bi + 1Ai ⊗ κBi)Pi, (24)

for some βn;i ∈ L(HBi) and some self-adjoint κAi ∈ L(HAi) and κBi ∈ L(HBi).
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We can recover Theorem 9 as a special case of our results as follows. By
the characterization of the decoherence-free subalgebra described above, we have
L(XN (T )) = i[H̃,XN (T )] ∈ N (T ) for all XN (T ) ∈ N (T ). Therefore, if we de-

fine L̃(X) := −(iH̃)†X − X(iH̃) for all X ∈ L(H), then Corollary 8 implies H̃ =∑
i∈I P

†
i (H̃Ai ⊗ 1Bi + 1Ai ⊗ H̃Bi)Pi for self-adjoint H̃Ai ∈ L(HAi) and H̃Bi ∈ L(HBi).

This already provides a normal form representation of L̃ as in Theorem 6, and
the minimality conditions of Theorem 7 are satisfied, since Ãij = 0. Now, if L is
w.l.o.g. also minimal, Part 1 of Theorem 7 (with the roles of the operators with
and without ‘tilde’ interchanged) implies that Aii = 1Ai ⊗ |ψi⟩ for some vectors
|ψi⟩ ∈ HFii and that Aij = 0 for i ̸= j. On the level of the Kraus operators, this

yields ϕn = (1⊗⟨en|)
(∑

i∈I(P
†
i ⊗1E)(1Ai ⊗Uii(|ψi⟩⊗1Bi)+1Ai ⊗Bi)Pi

)
, which has

the desired form with βn;i = (1Bi ⊗ ⟨en|)(Uii(|ψi⟩ ⊗ 1Bi) + Bi). (Note: If L is not
already minimal, we can first follow the steps in the proof of Theorem 7 to reduce
to a minimal generator and then apply the above reasoning.) Moreover, using the
representation of Theorem 6 and again Part 1 of Theorem 7,

Im(K) =
∑

i∈I
P †
i

(
Im((1Ai ⊗B†

iUii)(Aii ⊗ 1Bi)) + Im(KAi)⊗ 1Bi + 1Ai ⊗HBi

)
Pi

=
∑

i∈I
P †
i

(
1Ai ⊗ Im(B†

iUii(|ψi⟩ ⊗ 1Bi)) + Im(K̃Ai)⊗ 1Bi + µi + 1Ai ⊗HBi

)
Pi,

which has the desired form with κAi := Im(K̃Ai) and κBi := HBi + Im(B†
iUii(|ψi⟩ ⊗

1Bi)) + µi.
As a final remark on our short discussion of the decoherence-free subalgebra, we

point out that [24, Corollary 21] showed that N (T ) is atomic whenever the quantum
dynamical semigroup T admits a normal faithful invariant state. In many situations
of interest, we can therefore focus on N (T ) being atomic, as in Theorems 6 and 9.

4.3. Quantum dynamical semigroups and CP-maps with an invariant
maximal abelian subalgebra

Our third application is concerned with the following question: Given a maximal
abelian vN-subalgebra C of L(H), that is C′ = C, what is the most general form of
a GKLS-generator that leaves C invariant? According to Theorem 4, we can reduce
the above question to characterizing CP-maps with an invariant maximal abelian
vN-subalgebra. The latter question was previously investigated in [11, 23]. More
precisely, [23, Theorem 1] gave an abstract characterization of such GKLS-generators
in terms of a commutation relation and a sufficient condition on the Kraus operators
of the CP part of the GKLS-generator. Ref. [11] extended these deliberations and,
in particular, gave a necessary and sufficient condition for a normal CP-map to leave
a maximal abelian vN-subalgebra invariant:
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THEOREM 10. [11, Corollary 3.4] Let Φ be a normal CP-map on L(H) with Kraus

decomposition Φ(X) =
∑

n∈N ϕ
†
nXϕn. Let C be a maximal abelian vN-subalgebra of

L(H). Then, Φ leaves C invariant if and only if for every c ∈ C there exist cmn =
cmn(c) ∈ C for m,n ∈ N s.t. 1) cmn(c

†) = cnm(c)
† and 2) [c, ϕm] =

∑
n∈N cmnϕn.

The “if”-direction in Theorem 10 can be seen using the von Neumann bicom-
mutant theorem. We can recover the “only if”-direction, albeit only for atomic C,
as a consequence of Theorem 5 as follows: If C is a maximal abelian and atomic
vN-subalgebra of L(H), then its decomposition as in Definition 3 becomes partic-
ularly simple, with dim(HAi) = 1 = dim(HBi) for all i ∈ I. Thus, for any i ∈ I,
there exists |pi⟩ ∈ H such that Pi = ⟨pi| ∈ L(H;C) such that {|pi⟩}i∈I forms an
orthonormal basis of H. The decomposition of V in Theorem 5 in this case simplifies
to V =

∑
i,j∈I |pi⟩⟨pj | ⊗ |ψij⟩ for some vectors |ψij⟩ ∈ HE satisfying ⟨ψij |ψik⟩ = 0 for

all i, j, k ∈ I with j ̸= k. Accordingly, the Kraus operators of Φ can be written as
ϕn =

∑
i,j∈I⟨en|ψij⟩|pi⟩⟨pj | for some orthonormal basis {|en⟩}n∈N of HE.

Since any c ∈ C can be decomposed as c =
∑

i∈I ci|pi⟩⟨pi|, we obtain for any
m ∈ N :

[c, ϕm] =
∑

i,j∈I
(ci − cj)⟨em|ψij⟩|pi⟩⟨pj | . (25)

As ⟨ψij |ψik⟩ = 0 for j ̸= k, we can define Ci ∈ L(HE) by linearly extending

Ci|ψij⟩ = (ci − cj)|ψij⟩, for all i, j ∈ I . (26)

We consider a basis expansion Ci :=
∑

m,n∈N cmn;i|em⟩⟨en| and define cmn =∑
i∈I cmn;i|pi⟩⟨pi| ∈ C. Then, we get

∑

n∈N
cmnϕn =

∑

n∈N

∑

i,j∈I
⟨en|ψij⟩cmn;i|pi⟩⟨pj |

=
∑

i,j∈I
|pi⟩⟨pj | ·

∑

n∈N
⟨en|ψij⟩cmn;i

︸ ︷︷ ︸
=⟨em|Ci|ψij⟩

(26)
= (ci−cj)⟨em|ψij⟩

=
∑

i,j∈I
(ci − cj)⟨em|ψij⟩|pi⟩⟨pj | ,

which equals [c, ϕm] by Eq. (25). Thus, 2) is satisfied. Also 1) holds, since the
replacement c 7→ c† in the above reasoning leads to ci 7→ c̄i, which in turn gives
Ci 7→ C†

i , finally implying cmn;i 7→ c̄nm;i and thus cmn 7→ c†nm.
We note that our Theorem 5 not only gives rise to Theorem 10, but also provides

a concrete characterization of the most general CP-maps satisfying the criterion of
Theorem 10 for the atomic case. Similarly, we can reproduce and concretize [21,
Theorem 1.2] for atomic C.
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4.4. Completely positive and trace-preserving maps with fixed points

In this section, we look at the Koashi-Imoto Theorem [16, Eq. (85) and Theorem
3] and restrict ourselves to finite-dimensional systems. The Koashi-Imoto Theorem
characterizes the form of CP-maps T ∈ CPσ(H) that are trace-preserving and state-
preserving, in the sense that T (ρs) = ρs for some set of density matrices {ρs}s∈S .
If T (ρ) = trE

[
V ρV †], with V ∈ L(H;H ⊗ HE); FT is the set of fixed points of

T ; HFT
:= ∪ρ∈FT

supp(ρ) ⊆ H is the support of a maximal rank fixed point; and
Q : H → HFT

is the corresponding projection, then the Koashi-Imoto Theorem
states that there is a decomposition of HFT

= UFT̃∗ (
⊕

i∈I(HAi ⊗ HBi)) for some
unitary UFT̃∗ (the notation will soon make sense) and an index set I such that

V̂ =
⊕

i∈I
(1Ai ⊗ Vi) and FT = Q†UFT̃∗

⊕

i∈I
(L(HAi)⊗ σi)U

†
FT̃∗Q, (27)

where V̂ = (UFT̃∗⊗1E)
[
(Q⊗ 1E)V Q

†]U †
FT̃∗ , all Vi ∈ L(HBi ;HBi⊗HE) are isometries

and all σi ∈ L(HBi) are density matrices.
We can reproduce this result as follows: By elementary considerations (exploiting

the positivity of T ), the map T̃ : L(HFT
) → L(HFT

), T̃ (X) = QT (Q†XQ)Q† is
a trace-preserving CP-map (see [27, Proof of Lemma 6.4] for details), which, by
construction, has a full-rank fixed-point. Since Lindblad [18, Section 3] we know
that if T̃ has a full rank fixed-point, then the set of fixed points of the (unital)
dual map T̃ ∗ forms a vN-algebra, FT̃ ∗ . As dim(H) < ∞, FT̃ ∗ it is atomic and

can be decomposed according to Definition 3. Moreover, T̃ ∗(X) = W †(X ⊗ 1E)W
with W = (Q ⊗ 1E)V Q

† and T̃ ∗(FT̃ ∗) ⊆ FT̃ ∗ . Hence, W decomposes according to

Theorem 5. This implies PiT̃
∗(P †

i (XAi ⊗ 1Bi)Pi)P
†
i =

[
A†
ii(XAi ⊗ 1Fii)Aii

]
⊗ 1Bi =

XAi ⊗1Bi for i ∈ I and XAi ∈ L(HAi). Since we can choose Aii minimal, this implies

HFii = C and Aii = 1Ai . For i, j ∈ I with i ̸= j, we have Pj T̃
∗(P †

i (XAi⊗1Bi)Pi)P †
j =[

A†
ij(XAi ⊗ 1Fij )Aij

]
⊗1Bi = 0 for allXAi ∈ L(HAi). Thus Aij = 0. In conclusion, we

have W =
∑

i∈I P
†
i (1Ai ⊗Uii)Pi, with Pi given by Definition 3. From the definition

of Pi this is exactly the first part of Eq. (27), if we identify Vi with Uii.
For the second part, first note that by construction, FT = Q†FT̃Q. By the

Brouwer fixed-point theorem, there exists a density matrix σi such that trE

[
ViσiV

†
i

]
=

σi. With that choice, it is easy to see that operators of the form of the second part
in Eq. (27) are fixed-points. But since, as a general property of linear maps on
finite-dimensional spaces, the dimension of the fixed-point space of T̃ equals the
dimension the fixed-point space of T̃ ∗, the claim follows. Thus we have arrived at
the Koashi-Imoto Theorem.
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5. Conclusion

In this work, we have fully characterized the generators of quantum dynamical
semigroups with an invariant vN-subalgebra. We have provided a constructive nor-
mal form for such restricted GKLS-generators and determined the freedom in their
representation. In particular, these results encompass corresponding characteriza-
tions for CP-maps with invariant vN-subalgebras.

The assumption of an invariant atomic vN-subalgebra implies that the restriction
of the quantum dynamical semigroup to that subalgebra is again a valid quantum
dynamical semigroup. This means that we can also interpret Theorem 6 as pro-
viding, given a GKLS generator on a vN-subalgebra, a complete characterization
of the possible extensions to a GKLS generator on L(H). In particular, Theorem 5
can be regarded as a constructive version of Arveson’s extension theorem [2, 20],
describing the most general CP extension on L(H) of a given CP-map defined on a
vN-subalgebra, if that subalgebra is atomic.

As demonstrated in Section 4., our characterization of GKLS-generators with an
invariant vN-subalgebra provides a unifying perspective on the results of different
prior works. We expect that this point of view can be useful for further scenarios,
such as the study of dynamical semigroups of higher-order quantum maps [4, 6],
generalizing dynamical semigroups of quantum superchannels [13].

Acknowledgements: M.H. and M.C.C. thank Michael M. Wolf, Andreas Bluhm,
Li Gao, and Zahra Baghali Khanian for insightful and encouraging discussions.
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Classics. Birkhäuser Verlag, 1992.

20. Vern Paulsen. Completely bounded maps and operator algebras. Number 78 in Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 2002.



22

21. BV Rajarama Bhat, Franco Fagnola, and Michael Skeide. Maximal commutative subalgebras
invariant for cp-maps:(counter-)examples. Infinite Dimensional Analysis, Quantum Probability
and Related Topics, 11(04):523–539, 2008.

22. Rolando Rebolledo. Decoherence of quantum markov semigroups. Annales de l’Institut Henri
Poincare (B) Probability and Statistics, 41(3):349–373, 2005. En hommage a Paul André
Meyer.

23. Rolando Rebolledo. A view on decoherence via master equations. Open Systems & Information
Dynamics, 12(01):37–54, 2005.
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A Auxiliary Lemma

In this appendix, we provide a full statement and a complete proof of a lemma
useful in proving Theorem 6. Here, we use the notation from Section 3.

LEMMA 11. Let A ⊆ L(H) be an atomic weakly closed *-algebra. An operator
B ∈ L(H ⊗ HẼ;H ⊗ HE) satisfies (XA ⊗ 1E)B = B(XA ⊗ 1Ẽ) for all XA ∈ A if
and only if there exist B0 ∈ L(H0 ⊗HẼ;H0 ⊗HE) and for every i ∈ I an operator
Bi ∈ L(HBi ⊗HẼ;HBi ⊗HE) such that B is given by the SOT-convergent series

B = (P †
0 ⊗ 1E)B0(P0 ⊗ 1Ẽ) +

∑

i∈I
(P †

i ⊗ 1E)(1Ai ⊗Bi)(Pi ⊗ 1Ẽ).

Proof. We fix orthonormal bases {|en⟩}n∈N and {|ẽm⟩}m∈M of HE and HẼ, respec-
tively. Since (XA ⊗ 1E)B = B(XA ⊗ 1Ẽ) for all XA ∈ A, it follows that the opera-
tors βnm := (1H ⊗ ⟨en|)B(1H ⊗ |ẽm⟩) belong to A′. Thus (following the discussion
around Eq. (4)), there are operators βnm;0 ∈ L(H0) and βnm;i ∈ L(HBi) such that

βnm = P †
0βnm;0P0 +

∑
i∈I P

†
i (1Ai ⊗ βnm;i)Pi. We define B0 =

∑
n∈N,m∈M (10 ⊗

|en⟩)βnm;0(10 ⊗ ⟨ẽm|) ∈ L(H0 ⊗ HẼ;H0 ⊗ HE) and for all i ∈ I the operator
Bi =

∑
n∈N,m∈M (1Bi ⊗ |en⟩)βnm;i(1Bi ⊗ ⟨ẽm|) ∈ L(HBi ⊗ HẼ;HBi ⊗ HE). We then

have

B =
∑

n∈N,m∈M
(1H ⊗ |en⟩)βnm(1H ⊗ ⟨ẽm|)

=
∑

n∈N,m∈M
(1H ⊗ |en⟩)P †

0βnm;0P0(1H ⊗ ⟨ẽm|)

+
∑

n∈N,m∈M,
i∈I

(1H ⊗ |en⟩)P †
i (1Ai ⊗ βn;i)Pi(1H ⊗ ⟨ẽm|)

=
∑

n∈N,m∈M
(P †

0 ⊗ 1E)(10 ⊗ |en⟩)βnm;0(10 ⊗ ⟨ẽm|)(P0 ⊗ 1Ẽ)

+
∑

n∈N,m∈M,
i∈I

(P †
i ⊗ 1E) (1Ai ⊗ [(1Bi ⊗ |en⟩)βnm;i(1Bi ⊗ ⟨ẽm|)]) (Pi ⊗ 1Ẽ)

= (P †
0 ⊗ 1E)B0(P0 ⊗ 1Ẽ) +

∑

i∈I
(P †

i ⊗ 1E)(1Ai ⊗Bi)(Pi ⊗ 1Ẽ).

This is the claimed result.

B Proof of Theorem 2

LEMMA 12. Two operators K, K̃ ∈ L(HA⊗HB) satisfy a) (XA⊗1B)K
† +K(XA⊗

1B) = (XA ⊗ 1B)K̃
† + K̃(XA ⊗ 1B) for all XA ∈ L(HA) if and only if there exists a

self-adjoint HB ∈ L(HB) such that b) K̃ = K + 1A ⊗ iHB.
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Proof. If K̃ = K + 1A ⊗ iHB, then a) holds trivially. For the converse, decompose
K and K̃ into real and imaginary part as K = R + iH and K̃ = R̃ + iH̃. By
choosing XA = 1A, we obtain R̃ = R. The relation a) the simplifies to iH(XA ⊗
1B) − (XA ⊗ 1B)iH = iH̃(XA ⊗ 1B) − (XA ⊗ 1B)iH̃. In terms of the commutator,

this reads
[
i(H − H̃), XA ⊗ 1B

]
= 0 for all XA ∈ L(HA). Thus i(H − H̃) is in the

commutant of L(HA) ⊗ 1B, which is 1A ⊗ L(HB). Hence, there exists a self-adjoint
HB ∈ L(HB) such that H̃ = H +1A⊗HB. With K̃ = R+ iH̃, the claim follows.

We provide a proof of Theorem 2. The proof follows Chapter 30 in [19], in
particular the proof of Proposition 30.14 therein.

Proof. For any triplets (HE, V,K) and (HẼ, Ṽ , K̃), we introduce the shorthand
π(X) := (X⊗1E)V −V X and π̃(X) := (X⊗1Ẽ)Ṽ − Ṽ X. For the triplet (HẼ, Ṽ , K̃)
given in the statement of the theorem, the space S̃ := span{π̃(X)|ψ⟩ |X ∈ L(H), |ψ⟩ ∈
H} is invariant under the action of Y ⊗1Ẽ for all Y ∈ L(H), since for any S̃ ∋ |ϕ⟩ =∑

i π̃(Xi)|ψi⟩, we have

(Y ⊗ 1Ẽ)|ϕ⟩ =
∑

i

(Y ⊗ 1Ẽ)π̃(Xi)|ψi⟩

=
∑

i

π̃(Y Xi)|ψi⟩︸ ︷︷ ︸
∈S̃

− π̃(Y )Xi|ψi⟩︸ ︷︷ ︸
∈S̃

∈ S̃.

Thus, the closure of S̃ is of the form H⊗HE, for some subspace HE ⊆ HẼ. Denote
by P ∈ L(HẼ;HE) the associated orthogonal projection onto HE. We define V :=
(1⊗P )Ṽ . By construction, V satisfies b). So, to prove the first part of the theorem,
it remains to construct a suitableK. Since 1⊗P †P is the projection onto the closure
of S̃, we obtain

(X ⊗ 1Ẽ)Ṽ − Ṽ X = (1⊗ P †P )((X ⊗ 1Ẽ)Ṽ − Ṽ X)

= (1⊗ P †)((X ⊗ 1E)V − V X)

for all X ∈ L(H). A rearrangement yields

(X ⊗ 1Ẽ)(Ṽ − (1⊗ P †)V ) = (Ṽ − (1⊗ P †)V )X

By Lemma 11 (with A = L(H)), this implies that there exists |ϕ̃⟩ ∈ HẼ such that
Ṽ − (1⊗P †)V = 1⊗ |ϕ̃⟩. We define K := K̃ − (1⊗ ⟨ϕ̃|)Ṽ + 1

2∥ϕ̃∥2, and notice that
PP † = 1E. Thus,

V †(X ⊗ 1E)V =
[
(1⊗ P †)V

]†
(X ⊗ 1Ẽ)

[
(1⊗ P †)V

]

=
[
Ṽ − 1⊗ |ϕ̃⟩

]†
(X ⊗ 1Ẽ)

[
Ṽ − 1⊗ |ϕ̃⟩

]
.
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From here, it is easy to see that V †(X ⊗ 1E)V − K†X − XK = Ṽ †(X ⊗ 1Ẽ)Ṽ −
K̃†X −XK̃ = L(X) for all X ∈ L(H). This is our first claim.

For the second claim suppose that for (HE, V,K), a) and b) are satisfied, and
that for (HẼ, Ṽ , K̃), a) is satisfied. A direct calculation reveals that

Ψ(X,Y ) := L(X†Y )−X†L(Y )− L(X†)Y +X†L(1)Y

= π(X)†π(Y ) = π̃(X)†π̃(Y ), (28)

for all X,Y ∈ L(H). On S := span{π(X)|ψ⟩ |X ∈ L(H), |ψ⟩ ∈ H}, we define a map
W0 by linear extension of the relation W0π(X)|ψ⟩ := π̃(X)|ψ⟩. This is well-defined,
since if

∑
i π(Xi)|ψi⟩ =

∑
j π(Yj)|ψj⟩, then

∥
∑

i

π̃(Xi)|ψi⟩ −
∑

j

π̃(Yj)|ψj⟩∥2

=
∑

i,i′
⟨ψi|π̃(Xi)

†π̃(Xi′)ψi′⟩+
∑

i,j′
⟨ψi|π̃(Xi)

†π̃(Yj′)ψj′⟩

+
∑

j,i′
⟨ψj |π̃(Yj)†π̃(Xi′)ψi′⟩+

∑

j,j′
⟨ψj |π̃(Yj)†π̃(Yj′)ψj′⟩

(28)
=
∑

i,i′
⟨ψi|π(Xi)

†π(Xi′)ψi′⟩+
∑

i,j′
⟨ψi|π(Xi)

†π(Yj′)ψj′⟩

+
∑

j,i′
⟨ψj |π(Yj)†π(Xi′)ψi′⟩+

∑

j,j′
⟨ψj |π(Yj)†π(Yj′)ψj′⟩

= ∥
∑

i

π(Xi)|ψi⟩ −
∑

j

π(Yi)|ψj⟩∥2 = 0.

Furthermore, W0 can be extended to an isometry W 0 on the closure of S, since for
any |ϕ⟩ =∑i π(Xi)|ψi⟩ ∈ S, we have

∥W0|ϕ⟩∥2 =
∑

i,i′
⟨ψi|π̃(Xi)

†π̃(Xi′)ψi′⟩

(28)
=
∑

i,i′
⟨ψi|π(Xi)

†π(Xi′)ψi′⟩ = ∥ϕ∥2 .

Moreover, from

(X ⊗ 1Ẽ)W 0π(Y )|ψ⟩ = (X ⊗ 1Ẽ)π̃(Y )|ψ⟩ = π̃(XY )|ψ⟩ − π̃(X)Y |ψ⟩
=W 0π(XY )|ψ⟩ −W 0π(X)Y |ψ⟩ =W 0(X ⊗ 1E)π(Y )|ψ⟩

and totality of S, we conclude that (X ⊗ 1Ẽ)W 0 = W 0(X ⊗ 1E). Lemma 11 (with
A = L(H) and the roles of HE and HẼ interchanged) yields that there is an isometry



26

W ∈ L(HE;HẼ) such that W 0 = 1⊗W . We note that W0 maps S surjectively onto
S̃. Thus, (since isometries have closed ranges) if S̃ is dense, W 0 is surjective and
hence W is a unitary. This is the claim of the last sentence in the theorem.

It remains to verify Eq. (2). To this end, note that by definition (1⊗W )((X ⊗
1E)V − V X) = (X ⊗ 1Ẽ)Ṽ − Ṽ X, which can be expressed as

(X ⊗ 1Ẽ)((1⊗W )V − Ṽ ) = ((1⊗W )V − Ṽ )X.

Since this holds for all X ∈ L(H), Lemma 11 (with A = L(H)) tells us that there
exists a vector |ψ̃⟩ ∈ HẼ such that (1 ⊗W )V − Ṽ = −1 ⊗ |ψ̃⟩. This is the first
part of Eq. (2). To find the relation between K and K̃ we equate versions two of
L(X) in a) (with and without the tilde) and substitute Ṽ = (1 ⊗W )V + 1 ⊗ |ψ̃⟩
After expanding the quadratic term and some cancellations and rearrangements, we
arrive at

K̂†X +XK̂ = K̃†X +XK̃, for all X ∈ L(H),

with K̂ = K +(1⊗⟨ψ̃|W )V + 1
2∥ψ̃∥2. By Lemma 12 (with HB = C), there is µ ∈ R

such that K̃ = K̂ + iµ. This finishes the proof.



Chapter 2
B.1. ON THE GENERATORS OF QUANTUM DYNAMICAL SEMIGROUPS WITH

INVARIANT SUBALGEBRAS

The end
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