
EMG-Based Volitional Torque Estimation in
Functional Electrical Stimulation Control

Hossein Kavianirad
Dep. of Electrical and
Computer Engineering

Technical University of Munich
Munich, Germany

hossein.kavianirad@tum.de

Satoshi Endo
Dep. of Electrical and
Computer Engineering

Technical University of Munich
Munich, Germany

s.endo@tum.de

Thierry Keller
TECNALIA

Basque Research and
Technology Alliance (BRTA)

San Sebastian, Spain
thierry.keller@tecnalia.com

Sandra Hirche
Dep. of Electrical and
Computer Engineering

Technical University of Munich
Munich, Germany

hirche@tum.de

Abstract—Functional electrical stimulation (FES) applies elec-
trical pulses to muscle fibers through the skin for assisting
functional movements in patients with motor disability. Muscle
activity feedback such as volitional Electromyography (vEMG)
can optimize the performance of the FES system in both
rehabilitation or activity of daily living (ADL), however, artifacts
caused by simultaneous use of FES and EMG on the same
muscles contaminate the EMG signal. This paper, using an
adaptive filter, aims to investigate the estimation of the volitional
torque from filtered vEMG. Based on this estimation, the
usability and performance of the adaptive filter for estimating
volitional torque are studied on 5 healthy participants and we
show that this filter can be used for volitional torque estimation.
In the next step, it is shown how this map can be used in closed-
loop FES control for estimating volitional torque.

Index Terms—FES, EMG, rehabilitation, human-machine
interaction, closed-loop control, human-in-the-loop.

I. INTRODUCTION

Functional electrical stimulation (FES) is a neuromuscular
stimulation technique that artificially activates muscles, for
assisting functional movements in patients with motor dis-
ability. By applying electrical stimulation to muscle fibers
through the skin, the muscles contract and produce a move-
ment and the technique can be applied for goal-directed
functional tasks. The simultaneous limb motion with the
electrical activation induced by FES is known to be beneficial
for rehabilitation of individuals who have had a stroke or
a spinal cord injury to regain their ability to walk, reach,
and grasp in their activities of daily living (ADL) [1], [2].
However, actuating the human neuromuscular system with
FES for functional tasks is non-trivial, and the FES control
design faces several challenges, such as being time-variant,
nonlinear, and participant-specific. For instance, activation
and contraction dynamics are nonlinear, and muscle fatigue
effect is time-variant. A part from that human voluntary
movement can affect the performance of the control system,
especially, if this involvement is considered as unknown
disturbance [3], [4]. Thus, predicting the intention of patients
and having feedback from muscle activities can alleviate
some of the control challenges and optimise the control
performance. Electromyography (EMG), for instance, can be
used to extract information about voluntary and involuntary
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muscle activities [5], [6], and it can be used for intention
estimation of movements, including the joint torque acting
on the limb [7]–[9]. Translationally, EMG signal can be used
to estimate the fatigue state of the muscle and it includes
information regarding the recruitment of different types of
muscle fibers [10].

To have access to the EMG-based user intention for FES
control, (near) real-time processing and analysis of EMG
signal are crucial. However, combining FES and EMG on
the same muscles introduces an additional challenge. For
instance, electrical artifact caused by FES stimulation con-
taminates the EMG reading [11]–[13]. The artifact obscures
the underlying EMG signal, namely volitional EMG (vEMG),
generated by the muscle itself. As a result, for efficiently
carrying out simultaneous use of FES and EMG in the system,
EMG signal in presence of the FES should be processed.

Various hardware- and software-based and offline and
online methods for extracting vEMG from raw EMG signal
contaminated by FES can be found in the literature [11],
[13]–[15]. Blanking windows, band-pass, and comb filters are
among commonly used methods [16]–[18]. These methods
are easy to implement and suitable for filtering out stationary
artifacts. However, due to FES characteristics change (i.e.
variation in amplitude, width, or frequency of the stimulation)
in most FES usage scenarios such as FES control, the artifact
contaminating the EMG signal is non-stationary. Moreover,
methods such as blanking window [16] which ignores the
transient stimulation part of artifacts, lasting only for a short
while, cause loss of data during filtering.

More advanced methods such as Empirical Mode Decom-
position with Notch filtering for removing FES artifacts and
data-driven vEMG extraction algorithm are studied in [19]
and [15], respectively. [11] and [13] suggested an adaptive
filter which is able to filter out the non-stationary artifact and
extract the vEMG. [11] combined hardware-based shut-down
circuit alongside a software-based adaptive filter to eliminate
artifacts (transient stimulation and FES-induced muscle re-
sponse) from the EMG signal. [13] investigated software-
based adaptive filtering capable of removing artifacts and
extracting vEMG from raw EMG signal. For showing the
performance of the proposed filter, they artificially added
the artifact to the vEMG in simulation and used Comb and
the proposed adaptive filter and they showed that the vEMG
extracted from raw EMG by adaptive filter in comparison
with comb filter is more coherent with original vEMG.
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Following this evaluation, the authors designed and tested
a proportional EMG-controlled FES system in which FES
intensity is proportional to extracted vEMG.

In this paper, we will investigate the estimation of voli-
tional torque (τv) generated by the muscles from the EMG
signal. For this, we use the adaptive filter to remove artifacts
and extract the vEMG from raw EMG signal, then we will
evaluate τv-vEMG map. In recent works, such as [13], the
performance of the filter is evaluated based on artificially
adding and then filtering out the FES artifact, however, in
this paper we will evaluate the performance of the adaptive
filter by investigating the accuracy of the volitional torque
estimation based on the learned τv-vEMG map. In the afore-
mentioned paper [13], extracted vEMG is used in proportional
FES control. However, in the current paper, we estimate
the volitional human torque based on filtered EMG signal
(vEMG) and this map will be used in the FES control system
to estimate the volitional torque of the participants.

II. ADAPTIVE FILTER

A. Filtering FES Artifacts on EMG

When using the FES and EMG simultaneously on the same
group of muscles, artifacts generated directly or indirectly
by the FES contaminate the EMG signal and obscure the
underlying vEMG signal. These artifacts include transient
stimulation, post-stimulus voltage decay, and m-wave.

Transient stimulation
FES applies low-current electrical pulses to muscles, and
these pulses directly affect the EMG signal recording and
cause sharp and large spikes after each stimulation.

Post-stimulus voltage decay
After the initial spike from the transient stimulation, the
leftover dissipating charge is called post-stimulus voltage
decay. This affects a few signal samples and corrupts
readings of the true muscle activities.

M-wave
M-wave is an indirect result of the FES stimulation.
Electrical stimulation sent by FES to the muscle fibers
evokes neurons innervating them and this coordinated
evoked response causes the so-called M-wave artifact. As
M-wave is the evoked response from neurons, it includes
some useful information such as the number of active motor
units, dispersion of their innervation zones, fatigue, etc.
Filtering out the m-waves presents some difficulties, as these
waves are non-stationary.

Given the effect of these artifacts in presence of the FES,
the raw EMG signal requires signal processing for control
applications. Fig. 1 depicts the EMG signal with and without
FES artifacts after high-pass filtered to remove the drift. The
top figures illustrate the EMG signal without any artifacts
(vEMG) during volitional wrist movement while the bottom
ones show one during wrist movement with active FES. Fig. 1
clearly shows how FES can change the EMG signal: for
instance, it changes the order of signal in this test ten times.

Fig. 1. High-pass filtered EMG signals with and without FES. Top left:
voluntary activity without FES (one second), top right: voluntary activity
without FES (one window), bottom left: voluntary activity with FES (one
second), bottom right: voluntary activity with FES (one window including
just one FES stimulation).

B. Adaptive Filter

Real-time processing, filtering, and analysis of EMG signal
are required for EMG-based FES control. Furthermore, a
closed-loop FES control design entices variable FES intensity
(i.e. pulse amplitude, width, and frequency of the stimula-
tion). Therefore, adaptive filtering can be utilised to cope
with non-stationary behavior of the artifact. In this part, the
adaptation law for the EMG filter based on [11], [13] will
be investigated and the experimental results which show the
performance of the filter will be shown in the next section.

In adaptive filtering, apart from considering Ns recent EMG
samples which we call it current window of data, we consider
Nw previous windows (each of which has Ns sample) in order
to drive an adaptive law for the filter based on the history of
the signal. To align the muscle responses in each frame (one
window of data), Ns is considered as the number of sampling
between each FES pulse (ratio of EMG frequency to FES
frequency). Moreover, different Nw can be considered in this
method to investigate the effect of this parameter; indeed,
this parameter shows the history of the signal taken into
account in adaptive filtering. It should be noted that if the
only previous window is taken into account (Nw=1) then the
result of the adaptive filter is identical to the Comb filter.

The filter is designed to predict the present frame arti-
facts (EMG signal without volitional activity) from a linear
combination of foregoing Nw frames. Fig. 2 illustrates the
prediction of the current frame based on previous signal
frames. Therefore, subtracting this predicted frame from the
current frame will leave a residual signal which shows vEMG.

Filtered signal can be written as (1)

yf = y − yp (1)

where yf, y, and yp are the filtered, raw, and predicted signal
in the current frame, respectively (Ns × 1 vector).

As described before, we predict the present frame artifacts
based on the linear combination of foregoing Nw frames
(Fig. 2)
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Fig. 2. Adaptive filter schematic diagram. In adaptive filter Nw frames each
of which includes Ns sample are considered, based on these frames, artifacts
of the current frame are predicted and the difference between the current
frame and prediction of the artifacts of the current frame is considered as a
vEMG.

yp = Y Ta (2)

where a is weight of previous frames or adaptive vector (Nw×
1 vector) and Y is history matrix (Nw ×Ns matrix including
all Nw previous frame raw data).

Given (1) and (2), filtered data can be written as

yf = y − Y Ta (3)

Consider cost function as

Jw = yTf yf (4)

Based on literature [11], [13], [20], when the number of
active motor units exceeds 15, vEMG is assumed to be zero
mean band-limited Gaussian signal. Given this characteristic
of vEMG, for deriving the adaptive law, we try to minimize
this Jw

dJw/da = d(yTf yf )/da = 0 (5)

Combining (3) and (5), and calculating the derivative, we can
write

yTY T + aTY Y T = 0 (6)

By transposing the last line in (6), the adaptation law will be
derived as follow

a = (Y Y T )−1Y y (7)

Therefore, given (3) and (7), the filtered signal can be
described as

yf = y − Y T (Y Y T )
−1
Y y (8)

III. TORQUE-EMG MAP

A. Experiment Setup

Filtering the EMG signal may effects the accuracy of the
muscle torque estimation and performance of the controlled
system as some artifacts may remain in the resulting signal or
the filter may erroneously remove volitional muscle activities.
Thus, it is important to investigate whether the filtered data
can accurately represent the underlying muscle activities. In
this paper, therefore, the map between filtered EMG signal
and volitional wrist torque will be analysed. This map can
then be used for volitional torque estimation in FES control.

The experiment setup including a 16-electrode array FES
(Tecnalia Research Innovation, Spain), EMG (Noraxon,
USA), and the HRX-1 robot which applies torque to the user
at the wrist (HumanRobotiX, United Kingdom) as shown in
Fig. 3. The HRX-1 robot is used for providing a predefined
random sequence of torque levels at the wrist, while it
measures the angle of the handle and the interaction torque
between the user and the robot at the handle. During the
experiment, the participant sat on a chair and placed his/her
forearm on the HRX-1 robot as elbow naturally flexed about
90 degrees. The task of the participant was to maintain
this pose while FES stimulated the lower arm with specific
FES intensity and a robot applied a prescribed constant
torque to the wrist for 20 seconds at a time. FES intensity
was modulated by means of stimulation amplitude and the
pulse frequency and width were set as 30 Hz and 300µs,
respectively. For this experiment, there were 6 levels of robot
torque and 4 levels of FES intensity, giving a total of 24
conditions. The 6 reference torque levels were chosen evenly
from zero to 1.4 N.m and the 4 FES intensity levels were
zero (FES 0), 3 mA (FES I), 5 mA (FES II), and 7 mA (FES
III). Each condition lasted for 16 second each, 4 seconds was
used to ramp to the next torque level.

The participants saw the wrist angle and the target in a
simple game (see Fig. 4) on a computer screen (red circle
which shows the wrist angle should follow the blue circle
which is the desired angle in Fig. 4. The angle of the
hand, interaction torque and EMG signals were recorded for
analyses.

Fig. 3. Experiment setup including FES, EMG, and 1-DoF robot. The below
figure depicts the main muscle groups targeted by FES.

Fig. 4. Experiment game used for filter evaluation and torque-EMG map
(blue circle shows the desired target and the red circle shows the current
position).
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Five healthy individuals participated in this test, their
demographic data are summarised in Table I.

TABLE I
PARTICIPANT AGE, GENDER, AND HANDEDNESS

Test No. Participant∗ Gender Age
1 P1 Female 25
2 P2 Female 22
3 P3 Male 28
4 P4 Male 27
5 P5 Male 25

∗All right-handed.

B. Volitional Torque-vEMG Map

To evaluate the performance of the adaptive filter and
investigate the possibility and accuracy of the volitional
torque estimation based on filtered EMG signal (vEMG),
we analyze the map between volitional torque and extracted
EMG signal based on five participants’ data that we collected
in the experiment. As an example, Fig 5 illustrates raw EMG,
filtered EMG, and RMS of EMG for healthy participant No.1,
FES III. It should be noted that for the adaptive filter 10
previous windows are considered in this section. Furthermore,
Fig 6 depicts the RMS of filtered EMG signal and torque for
the same person (healthy participant No.1, FES III). To find

Fig. 5. EMG signal (raw EMG, filtered EMG, and RMS of EMG) for healthy
participant No.1, FES III.

Fig. 6. EMG signal magnitude and τv; healthy participant No.1, FES III.

the appropriate map between volitional torque and vEMG,
after implementing the adaptive filter and extracting vEMG
from raw signal for all tests and participants, generalized
linear regression model with different polynomial degrees for
mapping volitional torque and vEMG are compared. Fig 7
compares goodness of fit (based on normalized mean squared
error which is equivalent to 1-R2) and Akaike Information
Criterion (AIC) for different polynomial approximations (the
average of five participants is considered). Although goodness
of fit enhances by increasing the polynomial degree (from
0.098 to 0.062 when the polynomial degree increases from
one to nine), AIC, on the other hand, increases. Given the
acceptable goodness of fit for the linear model, its simplicity,
and lowest AIC, a linear model between volitional torque and
vEMG is considered as an acceptable approximation. There-
fore, in the next parts, the characteristics of the linear map
will be described. It should be noted that, in evaluating the
τv-vEMG map, just the constant part of each torque tracking
is considered, to do this 10 percent of the start and end of
each constant part is not taken into account. Fig 8 illustrates

Fig. 7. Goodness of fit (based on normalized mean squared error which
is equivalent to 1-R2) and AIC for different polynomial approximations
(average of five participants are considered).

the mean and standard deviation of volitional torque and
filtered EMG signal (vEMG) alongside linear approximation
for the τv-vEMG map. Five different cases are illustrated
in Fig 8; linear approximations are considered for volitional
wrist movement (no FES), and wrist movement with FES
I, FES II, FES III, and finally one linear approximation for
all the EMG signal recorded in FES I, FES II, and FES III.
When the filter is active, a correction coefficient which is the
fraction of FES 0 and sub-threshold FES (FES I) line slope
is considered (for this, line slope in FES 0 and FES I tests
are similar in Fig 9).

Finally, Fig 9 compares the slope of the linear approxima-
tion line in different participants and different FES intensities,
This figure shows that the τv-vEMG map is participant-
specific as the slope of the linear map is different between
different participants. Given the effect of FES intensity on the
τv-vEMG map, although for different FES intensity the map
is not constant, however, in most of the cases, the variation
is subtle in comparison to line slope variation in the different
participants.
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Fig. 8. The τv-vEMG map; the mean and standard deviation of EMG signal
alongside linear approximation for the map; healthy participant No.1.

Fig. 9. Comparison of linear approximation line slope in different partici-
pants and different FES intensities.

IV. FES CONTROL WITH EMG-BASED VOLITIONAL
TORQUE ESTIMATION

A. FES Control

In FES system, joint torque producing functional move-
ment is either a response to the FES stimulation or a
result of volitional muscle activity, therefore, apart from
having knowledge about neuromuscular response to FES,
estimation of the volitional human muscle activity and joint
torque can optimize control performance. Fig 10 depicts
the control architecture that considered in this study. This
control architecture includes calibration, online adaptive filter,
volitional torque estimation, and combination of feedforward
and feedback FES control. In calibration, for each participant,
the static nonlinear function of the discrete-time Hammerstein
model [21], [22] and τv-vEMG map are learned. They
are used in feedforward FES control and volitional torque
estimation, respectively.

The setup used for FES control is the same as torque-EMG
map experimental setup (Fig 4). In calibration part, different
FES intensities in a random sequence are applied to the hand
and for each FES intensity, three parts each of which five
seconds are considered. In the first part, participant is asked

Fig. 10. Control architecture; FES control with EMG-based τv estimation.

to be passive while the wrist torque and EMG signal are
measured, in the next two five seconds, he/she is asked to
follow two desired torque levels (in this test, 0.5 and 1.0
N.m more than measured torque in the first part). Then,
the FES-torque and τv-vEMG maps are learned which are
used in control loop. For showing the effect of τv-vEMG
map and volitional torque estimation in the control, two
possibilities are considered in the test, in one, participant is
asked to be passive while the controller try to follow the
desired torque (small volitional activity), and in the other
part of the test, participant is asked to voluntarily follow
the desirable torque as best as possible through the game
(considerable volitional activity). The result of the described
control architecture tested on participant No.3 in Table I
is depicted in Fig 11. Desirable torque (τdtotal), measured
torque (τtotal), estimated volitional torque based on filtered
EMG (τev ), and control input are shown in this figure. Result
with the white background (first and last 40 seconds) shows
FES control result while the participant did not get feedback
from measured torque and was asked to do not voluntary
movement as much as possible, the result also confirms this
passive aspect as in these parts the estimated volitional torque
is relatively small which means the participant was almost
voluntary passive.

On the other hand, in the grey area (mid-40 seconds), the
participant got feedback about the desirable and measured
torque through a game similar to Fig 11 and was asked to
voluntarily follow the desired torque as best as possible. As
it can be seen in this part, the estimated volitional torque
as predicted is increased and as a result, the control input
(normalized FES amplitude) reaches the minimum amount
while the tracking error is still small.

Fig. 11. Control result (P3, Table I): desirable torque (τdtotal), measured
torque (τtotal), estimated volitional torque based on filtered EMG (τev ), and
control input (normalized FES amplitude).
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V. CONCLUSION

This paper investigates volitional torque estimation from
EMG signal in the combined FES-EMG system. By employ-
ing the online adaptive filter, FES artifacts are predicted and
removed from raw EMG signal providing filtered vEMG.
Then, using the online adaptive filter, the volitional torque-
vEMG map is investigated and the usability and performance
of the filter for estimating volitional torque are shown. More-
over, it is shown that the linear model is an acceptable approx-
imation for estimating volitional torque from filtered vEMG
(average of the goodness of fit for 5 participants=0.098).
Finally, FES closed-loop control architecture using the on-
line adaptive filter and the volitional torque-vEMG map for
volitional torque estimation is described and tested.
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