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Abstract

In this doctoral thesis, we study the optimal investment and risk-sharing problems rele-
vant for decision makers who provide guarantees on the terminal value of their or their
clients’ portfolios, e.g., insurance companies offering equity-linked products with capital
guarantees at the end of the investment horizon. Working in the expected-utility frame-
work, we consider novel portfolio-optimization problems in continuous time, where the
financial risk is shared between the involved parties and/or the decision makers have con-
straints on the terminal portfolio value. We solve the corresponding portfolio-selection
problems by applying case-specific optimization methods. In the complete-market set-
ting, we use the martingale approach with suitable transformations of the original prob-
lems to tackle risk-sharing mechanisms and constraints on terminal wealth or investment
strategies. In the incomplete-market setting due to stochastic volatility as per Heston’s
model, we apply the stochastic control approach and derive the solution to the wealth-
constrained problem by linking it with the solution to the wealth-unconstrained problem
in the case of a power-utility function. The portfolio-optimization methodology we de-
velop in this thesis opens the door to solving new previously unsolved problems with
other constraints or in other financial markets. In all problems, we complement our
theoretical derivations with numerical studies, where we provide economic interpreta-
tions as well as implications, and elaborate on the properties of the determined optimal
investment and risk-sharing strategies.
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Zusammenfassung

In dieser Dissertation befassen wir uns mit Portfoliooptimierungs- und
Risikoaufteilungsproblemen, die für Entscheidungsträger relevant sind, die Garantien
für den Portfolioendwert beachten müssen. Ein Beispiel wäre ein Versicherungsun-
ternehmen, das ein kapitalmarktgebundenes Produkt mit Kapitalgarantien am Ende
des Anlagehorizonts anbietet. Im Rahmen der Erwartungsnutzen-Theorie betrachten
wir neuartige Portfoliooptimierungsprobleme in kontinuierlicher Zeit, bei denen das fi-
nanzielle Risiko zwischen den beteiligten Parteien geteilt wird und/oder die Entschei-
dungsträger Nebenbedingungen für den Portfolioendwert haben. Wir lösen die
entsprechenden Portfolioselektionsprobleme durch die Anwendung fallspezifischer Op-
timierungsmethoden. Im Fall von vollständigen Finanzmärkten verwenden wir den
Martingal-Ansatz mit geeigneten Transformationen der ursprünglichen Probleme, um
die Risikoaufteilungsmechanismen sowie die Nebenbedingungen für das Endvermögen
oder die Investitionsstrategien zu berücksichtigen. Im Fall von unvollständigen Fi-
nanzmärkten aufgrund stochastischer Volatilität nach dem Modell von Heston wen-
den wir den Ansatz der stochastischen Prozesskontrolle an und leiten die Lösung des
vermögensbeschränkten Problems ab, indem wir diese mit der Lösung des
vermögensunbeschränkten Problems verknüpfen, wenn der Investor eine
Power-Nutzenfunktion hat. Die in dieser Arbeit entwickelten Portfoliooptimierungsver-
fahren öffnen die Tür zur Lösung neuer, bisher ungelöster Probleme mit anderen Nebenbe-
dingungen und/oder in anderen Finanzmärkten. Bei allen Problemen ergänzen wir un-
sere theoretischen Herleitungen durch numerische Studien, in denen wir ökonomische
Interpretationen sowie Implikationen liefern und die Eigenschaften der ermittelten opti-
malen Investitions- und Risikoaufteilungsstrategien näher erläutern.
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1 Introduction

This chapter consists of three sections. First, in Section 1.1, we provide the motivation
for the general research topic and state the objectives we follow in each of the chapters.
Second, we describe in Section 1.2 how the dissertation is structured and provide an
overview of the content of each following chapter. For each chapter, we summarize the
research questions we answer and the core literature we use. Third, we state in Section
1.3 all research papers that were written during the doctoral research of the author of
this dissertation and list the corresponding scientific contributions.

1.1 Motivation and objectives

Capital protection plays an important role for people with various levels of income. As a
result, proper risk sharing and risk limitation are crucial for the success of the investment
strategies that aim at protecting the invested capital. One prominent example is the
limitation of risk of the investment portfolios related to pensions, which are managed
by pension funds, insurance companies or their asset managers. To limit their risk
exposure and be able to fulfill their liabilities, e.g., ensuring that the clients are protected
against losing their capital, those institutions can share risk with reinsurance companies.
Another example of risk sharing can be observed in the hedge-fund industry. Since hedge
funds require a fairly large minimum initial investment ranging from 100 thousand to 2
million US dollars, their clients are predominately high-net-worth individuals. Hedge-
fund managers, who decide how to invest money on behalf of the fund’s clients, can be
contractually obliged to cover potential losses of investors’ money. For instance, such
contractual agreements are a part of so-called first-loss compensation schemes of hedge-
funds managers. Under these compensation schemes, investors as well as hedge-fund
managers share financial risk, and managers are better incentivized to deliver positive
return on investments for their clients in comparison to the case when they have no
obligation to cover any incurred losses.

Even though many researchers have analyzed the problem of optimal asset allocation
and risk-sharing in the presence of capital guarantees, there are plenty of research ques-
tions that were either not answered or answered in a setting that we believe can be
made more realistic. This motivates us to investigate the topic deeper and answer some
of those open questions, in particular questions regarding investments in equity-linked
insurance products and hedge funds. Thus, in this dissertation, we formulate and solve
four novel portfolio optimization problems, where the decision maker has a constraint
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1 Introduction

on the terminal portfolio value and/or the financial risk is shared between the involved
parties, i.e., an insurance company and a reinsurance company or a manager and a rep-
resentative investor of a hedge fund. In each case, we also analyze the obtained solutions
from the economic perspective. At this stage, we forego naming the relevant literature,
but provide it in the four main chapters of this thesis.

Our objective is to answer the following open questions in the field of risk-sharing and
investment strategies with capital guarantees.

First, our goal is to contribute to the literature on the hedge-fund industry by answering
the question: Which first-loss compensation schemes can be seen as fair and optimal for
both a manager and an investor in a hedge fund, i.e., which management fee, performance
fee and first-loss coverage guarantee are mutually preferred by both parties?

Second, we aim at contributing to the actuarial literature by designing a framework for
finding optimal investment-reinsurance strategies for equity-linked insurance products
with capital guarantees and answering multiple related questions. When is reinsurance
needed in the management of such products? What are the optimal (equilibrium) invest-
ment strategies, amount of reinsurance and the price of reinsurance? Which potential
does reinsurance have in reversing the currently observed trend of falling capital guar-
antee levels in life insurance market of many countries including Germany?

Third, we strive for extending the class of portfolio optimization problems that can be
solved analytically or semi-analytically. Tackling the previously mentioned questions,
we model each situation as realistic as we can while maintaining analytical tractability
of each problem. As a result, we answer the following questions that push the bound-
aries of portfolio optimization literature. How to solve portfolio optimization problems
with simultaneous Value-at-Risk (VaR) constraint and no-short-selling constraint in a
Black-Scholes market with a traded option? How to solve bi-level portfolio optimization
problems with a fixed position in a put option and a no-trading constraint? How to de-
rive solutions to portfolio optimization problems with VaR constraints in an incomplete
market due to stochastic volatility?

1.2 Structure of the thesis

Next we provide an overview over the structure of the dissertation and give a brief
summary of the conducted research and innovations.

Chapter 2 contains results from continuous time finance and optimization theory, which
we use in subsequent chapters.

In Chapter 3, we focus on risk sharing in the hedge-fund industry. Specifically, we analyze
fee structures of hedge funds with first-loss compensation, according to which the hedge-
fund manager charges a management fee as well as a performance fee and guarantees
to cover a certain amount of investors’ potential losses. The very last element of the
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1 Introduction

compensation scheme is the risk sharing between the involved parties. The research
question we answer is which first-loss schemes can be seen as fair and optimal for both
parties, i.e., which management fee, performance fee and first-loss coverage guarantee are
mutually preferred by both, the manager and the investor. Within standard economics
paradigms of rational expectations and utility maximization, we solve the manager’s
non-concave utility maximization problem, calculate Pareto optimal first-loss schemes
and maximize a decision criterion on this set. In the numerical part, we study the impact
of parameters of the financial market and of the decision makers’ risk aversion on such
mutually preferred fee arrangements.

In Chapter 4, we examine both risk sharing and risk limitation in the context of an equity-
linked insurance product. The insurer guarantees a certain terminal wealth to the client
and can share part of his/her risk with the reinsurer. Risk sharing follows in the form of
a continuously traded put option on a portfolio that is acceptable for the reinsurer. This
portfolio is different from the individual investment portfolio of the insurer. To model
the product feature, we introduce to the asset universe an asset that cannot be reinsured
but is correlated with the asset that can be reinsured. We assume that the reinsurer can
sell a put option on a constant-mix portfolio containing the reinsurable risky asset and
a risk-free asset. The insurer’s objective is to maximize its expected utility of terminal
wealth by choosing optimally its investment and reinsurance strategies while satisfying
two types of constraints. The first constraint is a VaR constraint on terminal wealth
ensuring that the insurer’s terminal portfolio value is above its liability (capital guarantee
to the client) with high probability. The second constraint is a no-short-selling constraint
preventing the insurer from shorting its portfolio of assets and reinsurance. We solve the
insurer’s portfolio optimization problem in three steps. First, we tackle the continuously
traded reinsurance similarly to how CPPI-style fund is treated in Hambardzumyan and
Korn (2019). Second, we deal with the no-short-selling constraint by means of auxiliary
markets as per Cvitanic and Karatzas (1992). Third, we handle the VaR constraint
using the methodology of Basak and Shapiro (2001). In the corresponding numerical
studies, we parametrize our model in accordance with the German market and analyze
the sensitivity of the optimal strategies and the insurer’s value function with respect to
the market parameters as well as the insurer’s risk aversion. We introduce the concept
of guarantee-equivalent utility gain and use it to compare life insurance products with
and without reinsurance. Our numerical studies indicate that the optimally managed
reinsurance allows the insurer to offer significantly higher capital guarantees to clients
without any loss in the insurer’s expected utility.

In Chapter 5 we model the interaction between the insurer and the reinsurer in a more
realistic way than the one in Chapter 4. Here we focus primarily on the risk-sharing
aspect and model the interaction between the insurance and the reinsurance company
in the form of a Stackelberg game, which is a bi-level optimization problem. In con-
trast to Chapter 4, we do not consider no-short-selling or terminal-wealth constraints
in the main optimization problem in this project to make the overall Stackelberg game
more analytically tractable. The reinsurer is the leader in the game and maximizes
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1 Introduction

its expected utility by selecting its optimal investment strategy and a safety loading
in the reinsurance contract it offers to the insurer. The reinsurer can assess how the
insurer will rationally react on each action of the reinsurer. The insurance company
is the follower and maximizes its expected utility by choosing its investment strategy
and the amount of reinsurance the company purchases at the price offered by the rein-
surer. In this game, we derive the Stackelberg equilibrium for general utility functions
by combining and adapting the portfolio optimization techniques from Cvitanic and
Karatzas (1992), Desmettre and Seifried (2016), and Korn and Trautmann (1999). For
power-utility functions, we calculate the equilibrium explicitly and find that the rein-
surer selects the largest reinsurance premium such that the insurer may still buy the
maximal amount of reinsurance. Since in the equilibrium the insurer is indifferent in
the amount of reinsurance, in practice, the reinsurer should consider charging a smaller
reinsurance premium than the equilibrium one. Therefore, we propose several criteria
for choosing such a discount rate and investigate its wealth-equivalent impact on the
utilities of both parties.

In Chapter 6, we focus on risk limitation in an incomplete financial market based on
the Heston model. In that market, we solve the VaR-constrained utility maximiza-
tion problem. We do that by generalizing to the incomplete market of interest the
approach proposed in Kraft and Steffensen (2013), where the authors link the optimal
constrained portfolio to the optimal unconstrained one. Our extension of their result re-
lies on the Feynman-Kac formula and Fourier transforms of probability density functions.
We demonstrate that the value function in the constrained problem can be represented
as an expected modified utility function on a vega-neutral contingent claim on the op-
timal unconstrained wealth. The optimal wealth and the optimal investment strategy
in the constrained problem follow similarly. The case of a power-utility function and
a Value-at-Risk constraint is treated in detail. In numerical studies, we investigate the
sensitivity of the optimal investment strategy with respect to the model parameters.

In each chapter, we provide at its beginning the research motivation, concrete research
questions to be answered, a broad overview of the relevant literature, a more specific
description of the methodological part of the chapter, a more detailed summary of our
mathematical as well as practical contributions, and a more granular structure of the
chapter than it is done above.

1.3 Research articles and scientific contributions

The content of this thesis is based on the following research papers:

� Chapter 3:

Escobar-Anel, M., Havrylenko, Y. & Zagst, R. Optimal fees in hedge funds with
first-loss compensation. Journal of Banking & Finance, 2020, 118, 105884.
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https://doi.org/10.1016/j.jbankfin.2020.105884

The main scientific contributions of this chapter based on this paper are given
below:

1. We are first to analyze first-loss compensation schemes based on the crite-
rion of Pareto optimality and to investigate how hedge fund managers and
investors can reasonably select a mutually-preferred Pareto optimal first-loss
fee structure.

2. Our methodology yields a preferred Pareto optimal first-loss fee structure
that is fair to both parties and decreases significantly the hedge fund’s risk in
comparison to the traditional fee structure.

3. We find that the common traditional and first-loss fee structures are not
Pareto optimal.

4. We give a possible explanation for the current trend of decreasing management
fees in hedge funds.

� Chapter 4

Escobar-Anel, M. Havrylenko, Y.; Kschonnek, M. & Zagst, R. Decrease of capital
guarantees in life insurance products: Can reinsurance stop it? Insurance: Math-
ematics and Economics, 2022, 105, 14-40.
https://doi.org/10.1016/j.insmatheco.2022.03.009

The main research contributions of this paper-based chapter are provided below:

1. We design a framework for finding optimal investment-reinsurance strategies
for equity-linked insurance products with capital guarantees. The framework
combines put options, regulatory VaR and no-short-selling constraints, and a
separation between reinsurable and non-reinsurable funds.

2. We solve explicitly the portfolio optimization problem with simultaneous VaR
and no-short-selling constraints in a financial market with a traded put option.

3. We detect market conditions and the asset manager’s proficiency, for which
(partial) reinsurance of the capital guarantee is advantageous.

4. We establish that optimal reinsurance significantly increases capital guaran-
tees, while slightly decreasing product costs.
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� Chapter 5

Havrylenko, Y., Hinken, M. & Zagst, R. Risk sharing in equity-linked insurance
products Stackelberg equilibrium between an insurer and a reinsurer. Submitted
for publication, 2022.
https://doi.org/10.48550/arXiv.2203.04053

The main research contributions of this chapter based on the above-mentioned
paper are as follows:

1. We formulate and analyze a novel Stackelberg game between a reinsurer and
an insurer, which is more realistic than Stackelberg games previously studied
in the literature

2. We solve the bi-level portfolio-optimization problem that describes the for-
mulated Stackelberg game between a reinsurer and an insurer in the context
of an equity-linked product. To the best of our knowledge, this problem has
not been considered before in the literature and its challenges include the
simultaneous presence of a fixed-term investment opportunity in a put option
and a no-trading constraint on one of the risky assets.

3. We find that in the Stackelberg equilibrium the reinsurer selects the largest
reinsurance premium such that the insurer may buy the maximal amount of
reinsurance and conclude that, in practice, the reinsurer should charge a lower
(discounted) safety loading of the reinsurance premium than the equilibrium
one in order to secure a deal with the maximal amount of reinsurance.

� Chapter 6

Escobar-Anel, M., Havrylenko, Y. & Zagst, R. Constrained portfolios in incom-
plete markets: a dynamic programming approach to Heston’s model. Submitted
for publication, 2022.
https://doi.org/10.48550/arXiv.2208.14152

Next we provide the main scientific contributions of this paper-based chapter:

1. We extend to incomplete markets due to stochastic volatility the methodology
of Kraft and Steffensen (2013) of solving portfolio optimization problems with
terminal-wealth constraints.

2. Our methodology opens the door to solving many further portfolio opti-
mization problems with other incomplete market models and other types of
terminal-wealth constraints.
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We give an in-depth explanation of theoretical as well as practical contributions and
provide references to the corresponding Propositions, Theorems, Corollaries, etc., at the
beginning of each chapter. We also summarize all our mathematical contributions in the
concluding Chapter 7.

Parts of this thesis are identical with or a reproduction with minor changes of the four
articles mentioned above. In addition to these articles, the author of this dissertation
wrote another research paper, which is not related to the topic of this thesis. Since that
paper was written during the author’s time as a doctoral researcher, it is stated here for
completeness:

Havrylenko, Y. & Heger, J. Algorithmic detection of interacting variables for generalized
linear models via neural networks. Submitted for publication, 2022.
https://doi.org/10.48550/arXiv.2209.08030

The main scientific contribution of this paper is a novel methodology we suggest for
detecting the next-best pair of strongly interacting variables for generalized linear mod-
els via neural networks. This methodology is especially relevant and powerful for big
actuarial data sets with dozens of variables.
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2 Mathematical preliminaries

This chapter consists of 5 sections. First, we introduce the basic financial market and
mathematically describe the economic activities of decision makers in it. Second, we pro-
vide the basic results on pricing options, as they play an important role in risk sharing
and risk limitation. Third, we define utility functions and address their relevant prop-
erties. Fourth, we state a general portfolio optimization problem and give an overview
of various methods of solving that problem depending on the type of constraints and on
the peculiarities of traded assets. Finally, we conclude this chapter with useful results
from calculus, probability theory and deterministic non-linear optimization.

2.1 The basic financial market model

In this section, we introduce the basic financial market model and provide general defi-
nitions related to decision makers’ activities in it.

We assume that all investment and risk-sharing activities take place on a time horizon
[0, T ], where 0 < T < +∞ is the end of this period. Let WQ = (WQ(t))t∈[0,T ], W

Q(t) :=(
WQ

1 (t), . . . ,WQ
n (t)

)⊤
, n ∈ N, be an n-dimensional Wiener process on a filtered complete

probability space
(
Ω,F ,Q, (F(t))t∈[0,T ]

)
. Here, Ω is the sample space, F = F(T ) is a

sigma-algebra on Ω, Q is the real-world probability measure, F(t) with t ∈ [0, T ] is the
natural filtration generated by WQ(s), s ∈ [0, t], and augmented by the null sets.

The basic financial market is a Black-Scholes market. It has n + 1 assets that are
continuously traded without frictions, i.e., without transaction costs, without bid-ask
spreads, without taxes, etc. One asset is a risk-free asset whose price process we denote
by S0(t), t ∈ [0, T ]. Other assets are risky ones whose price processes at time t ∈ [0, T ]
we denote by S1(t), . . . , Sn(t).

Under the real-world probability measure Q, the price dynamics of the risk-free asset,
also referred to as a bank account, is given by

dS0(t) = rS0(t)dt, S0(0) = 1, (2.1)

where r ∈ R is a constant interest rate. Equation (2.1) is an ordinary differential equation
(ODE). Its solution is well-known and is given by S0(t) = exp (rt).
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Under Q, the price processes Si(t), i = 1, . . . , n, evolve according to the following stochas-
tic differential equations (SDEs):

dSi(t) = Si(t)
(
µidt+ σidW

Q(t)
)

= Si(t)

µidt+
n∑

j=1

σi,jdW
Q
j (t)

 , Si(0) = si, (2.2)

where µ := (µ1, . . . , µn)⊤ ∈ Rn with µ − r · 111n > 000n is the constant drift vector, 000n :=
(0, . . . , 0)⊤ ∈ Rn, 111n := (1, . . . , 1)⊤ ∈ Rn, σi = (σi,1, . . . , σi,n) ∈ [0,+∞)1×n denotes the
constant volatility vector of asset i = 1, . . . , n, and si > 0 is the asset’s initial price. The
solution to SDEs (2.2) are also well-known:

Si(t) = si exp

((
µi −

1

2
||σi||2

)
t+ σiW

Q(t)

)
,

where || · || denotes the Euclidean norm operator, i.e., ||σi||2 =

n∑
j=1

σ2i,j , i = 1, . . . , n.

We denote the volatility matrix by σ = (σi,j)i,j=1,...,n and the corresponding covariance

matrix of log-returns by Σ = σσ⊤, which is assumed to be strongly positive definite, i.e.,
there exists KΣ > 0 such that ∀x ∈ Rn x⊤Σx ≥ KΣ · ||x||2 holds. From Eq. (3.2), p. 45,
in Zagst (2002) it follows for all i = 1, . . . , n that:

sup
t∈[0,T ]

Si(t) < +∞ Q-a.s..

We denote the set of admissible unconstrained trading strategies by Aφ
u(v) and the set

of admissible unconstrained relative portfolio processes by Aπ
u(v). We also denote the

corresponding admissibility sets by Aφ
u(t, v) and Aπ

u(t, v) for the time frame [t, T ] and
given V (t) = v.

We denote the market price of risk by γ := σ−1(µ−r111n). According to Theorem 3.26 on
page 147 in Korn (2014), in the aforementioned market there exists a unique risk-neutral
probability measure that we denote by Q̃:

dQ̃
dQ

∣∣∣∣∣
F(t)

:= Z(t) := exp

(
−1

2
||γ||2t− γ⊤WQ(t)

)
. (2.3)

The measure Q̃ is also called an equivalent martingale measure (EMM), since the dis-
counted price processes of the basic risky assets, i.e., S̃i(t) := Si(t)/S0(t), t ∈ [0, T ], i =
1, . . . , n, are martingales with respect to (w.r.t.) Q̃.

Further, we define the associated pricing kernel by Z̃ =
(
Z̃(t)

)
t∈[0,T ]

, which is also
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known as the state price density or the deflator and is defined as follows:

Z̃(t) = exp

(
−
(
r +

1

2
||γ||2

)
t− γ⊤WQ(t)

)
, t ∈ [0, T ]. (2.4)

The pricing kernel will play a crucial rule in finding the present value of future cash
flows such as the payoff of a put option modeling a reinsurance contract. From (2.4) it
follows that Z̃(t) satisfies the following SDE:

dZ̃(t) = −Z̃(t)
(
rdt+ γ⊤dWQ(t)

)
, Z̃(0) = 1. (2.5)

Next we formally describe trading activities of decision makers in this basic market.

Definition 2.1.1 (Trading strategy, Def. 2.60 a, p. 105, Korn (2014)). A trading
strategy φ is an Rn+1-valued (F(t))t∈[0,T ]-progressively measurable stochastic process

φ(t) = (φ0(t), φ1(t), . . . , φn(t))⊤, t ∈ [0, T ], such that:

T∫
0

|φ0(t)| ds < +∞ and

T∫
0

φ2
i (t) ds < +∞ Q-a.s., ∀i = 1, . . . , n.

The value v := φ0(0)s0 +
∑n

i=1 φi(0)si is called the starting value of φ.

Definition 2.1.2 (Wealth process, Def. 2.60 b, p. 105, Korn (2014)). Let φ be a trading
strategy with a starting value v. The process:

V (φ, t) := φ0(t)S0(t) +
n∑

i=1

φi(t)Si(t)

is called the wealth process w.r.t. φ with the initial wealth V (φ, 0) = v.

We consider only self-financing trading strategies, i.e., strategies that satisfy the following
property:

V (φ, t) = V (φ, 0) +

t∫
0

φ0(s) dS0(s) +
n∑

i=1

t∫
0

φi(s) dSi(s) Q-a.s..

This property means that the only source of the change in portfolio value is the change
in the trading strategy and the asset prices, i.e., the decision maker does not inject
additional capital and does not take out his/her money from the portfolio during the
investment period.

The decision maker’s actions can be seen from a different angle – relative to the overall
portfolio value. We denote the proportion of the decision maker’s money invested in the
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asset Si at time t ∈ [0, T ] by πi(t), i = 0, 1, . . . , n. It holds that π0(t) = 1−
∑n

i=1 πi(t)∀t ∈
[0, T ]. The relative portfolio process π is related to the trading strategy φ as follows:

πi(t) =


φi(t) · Si(t)
V (φ, t)

, if V (φ, t) ̸= 0;

0, if V (φ, t) = 0,

(2.6)

for t ∈ [0, T ] and i = 0, 1, . . . , n.

For computational purposes and notational convenience, we name the relative portfolio
process π = (π1(t), . . . , πn(t))t∈[0,T ] only with respect to the risky assets, since π0(t) =
1 −

∑n
i=1 πi(t)∀t ∈ [0, T ] holds for a self-financing trading strategy. We will also write

V (t) := V (φ, t), where it does not lead to confusion. Using (2.6), we can write V (t) in
terms of π as follows:

dV (t) = V (t)
((
r + π(t)⊤(µ− r111n)

)
dt+ π(t)⊤σdWQ(t)

)
, V (0) = v. (2.7)

When we need to differentiate among wealth processes with different relative portfolio
processes we will write the corresponding π in the superscript of V , i.e., V π. If it is
important to keep track of the initial wealth too, we will write V v,π.

Definition 2.1.3 (Relative portfolio process, Def. 2.65, p. 107, Korn (2014)). The
(F(t))t∈[0,T ]-progressively measurable stochastic process π(t) is called a self-financing rel-
ative portfolio process, if (2.7) has a unique solution V (t) such that:

T∫
0

(V (t)πi(t))
2 dt < +∞ Q-a.s., ∀i = 1, . . . , n.

Definition 2.1.4 (Admissibility, Def. 2.67, p. 107, Korn (2014)). A self-financing
trading strategy φ and the corresponding relative portfolio process π are called admissible
for the initial wealth v, if ∀ t ∈ [0, T ] the following holds:

V (t) ≥ 0 Q-a.s.. (2.8)

We denote the set of admissible unconstrained trading strategies by Aφ
u(v) and the

set of admissible unconstrained relative portfolio processes by Aπ
u(v). We also denote

the corresponding admissibility sets by Aφ
u(t, v) and Aπ

u(t, v) for the time frame [t, T ]
and given V (t) = v. The ability to pick any admissible unconstrained trading strategy
allows the decision maker to reach any desired terminal wealth if he/she has a sufficiently
high initial wealth. This property of the considered financial market is called market
completeness and is formalized in the following theorem.

24



2 Mathematical preliminaries

Theorem 2.1.5 (Market completeness, Th. 2.68 b, p. 109, Korn (2014)). Let D ≥ 0

be an F-measurable random variable with v := E
[
Z̃(T )D

]
< +∞. Then there exists

π ∈ Aπ
u(v) such that V π(T ) = D Q-a.s..

Remark to Theorem 2.1.5. E [·] denotes the expectation under the real-world prob-
ability measure Q. When the expectation is taken under a different probability measure

M, we indicate that in the superscript EM[·]. For example, EQ̃ [·] is the expectation
operator under some EMM Q̃.

Theorem 2.1.5 plays a significant role in pricing financial contracts and in a so-called
martingale approach to portfolio optimization, which we will discuss in more detail in
Section 2.4. This theorem relies on the fact that the decision maker is not constrained
in choosing how to invest. However, in reality, decision makers may have constraints on
their actions. We will differentiate two types of constraints: terminal-wealth constraints
and allocation constraints. An example of the former type of constraint would be the
protection of the initial capital from loss at time T , i.e., Q (V (T ) ≥ V (0)) = 1. An in-
stance of the allocation constraint would be the prohibition of going short on risky assets,
i.e., πi(t) ≥ 0 ∀t ∈ [0, T ], i = 1, . . . , n. Therefore, we will consider the sets of admissible
constrained relative portfolio processes in different chapters, where such constraints play
a role. We will denote those admissibility sets by Aπ

c (v, CV , Cπ), where the set CV will
characterize the constraint on V (T ) and Cπ will characterize the constraint on π.

We complete this section with a few sentences on the usage of the aforementioned fi-
nancial market in the following chapters. It is used in Chapter 3, 4, 5. In Chapter 6,
we develop a methodology for finding the optimal investment strategies for a decision
maker in a financial market with stochastic volatility. In comparison with the basic
market model above, we will have n = 1 and the volatility σ of the risky asset S1 will
be a mean-reverting stochastic process. In particular, we will assume that the price S1
of the risky asset follows a Heston’s model. In that case, there will be infinitely many
EMMs. However, their role will remain the same, i.e., the discounted asset prices will
be martingales under each EMM. For each EMM, there will be a corresponding pricing
kernel, which will be of the exponential form, similarly to (2.4).

2.2 Basics of relevant financial options

Financial options, options for short, play a prominent role in risk sharing and risk lim-
itation. As we will use options extensively in Chapters 4–6, we provide in this section
relevant basic information about options.

An option is a contract that gives to the option holder the right (but not the obligation)
of a certain action. We consider European options, which is a class of options where the
action can be done (the option can be exercised) only at a specific time in the future,
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e.g., T . Although there are many types of European options, we use in the sequel only
so-called plain vanilla options and digital options, which we define next.

A plain vanilla call option (respectively put option) gives the holder the right to buy
(respectively sell) the underlying asset at a date T , also called the expiration date or
maturity, for a certain price K > 0, known as the exercise price or strike price. We
denote the payoff of an option by the name of the option. For example, if the option’s
underlying is S1, then:

Call(T ) = (S1(T ) −K)+, Put(T ) = (K − S1(T ))+, (2.9)

where (x)+ := max{x, 0}. Analogously, we also write (x)− = max{−x, 0}.

A digital call option (respectively digital put option) gives the holder the right to receive
a notional amount N > 0 at time T if the value of the underlying asset is above (respec-
tively below) the strike price K > 0. Without loss of generality we choose N = 1. For
instance, if the underlying of a digital option is S1, then:

DigCall(T ) = 1{S1(T )≥K}, DigPut(T ) = 1{S1(T )≤K}. (2.10)

Digital options are also called cash-or-nothing options and are one of the simplest exotic
options.

Options are a common type of financial derivatives, i.e., financial instruments whose
value is derived from the performance of some underlying asset. A decision maker can
buy (have a long position in) and sell (have a short position in) several options at the
same time. In this case, the payoff of the overall portfolio of options is more complex
than those of plain vanilla or digital options. However, it can still be regarded as a payoff
of one complex financial derivative, which we denote by D. The price of any financial
derivatives can be calculated using the following theorem.

Theorem 2.2.1 (Price of a financial derivative via pricing kernel, Th. 3.18, p. 135, Korn
(2014)). Let D := D(T ) ≥ 0 be an F-measurable random variable with E [Da] < +∞ for
some a > 1. Then the unique value (price) at time t ∈ [0, T ] of the financial derivative
with payoff D is given by:

D(t) =
1

Z̃(t)
E
[
Z̃(T )D(T )|F(t)

]
. (2.11)

As mentioned at the end of Section 2.1, we will consider in Chapter 6 an incomplete
financial market with infinitely many EMMs. In that case, the price of a financial deriva-
tive may not be unique. However, once a specific EMM is chosen, one can define the
price of the financial derivative in a way that ensures the absence of so-called arbitrage
opportunities, i.e., opportunities in which the investor with zero initial capital can gen-
erate money with positive probability and his/her terminal wealth is non-negative with
probability 1.
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Theorem 2.2.2 (Price of a financial derivative via EMM, Th. 1.42, p. 39, Desmettre
and Korn (2018)). Let Q̃ be an equivalent martingale measure. Let D := D(T ) ≥ 0
be an F-measurable random variable. Define the value (price) at time t ∈ [0, T ] of the
financial derivative with payoff D by:

DQ̃(t) = EQ̃
[
S0(t)

S0(T )
D(T )|F(t)

]
. (2.12)

Then there are no arbitrage opportunities in the financial market consisting of the orig-
inal financial market and the financial derivative.

Next we provide closed-form formulas for the prices of plain vanilla as well as digi-
tal options, denoting by Φ(·) the distribution function of the standard normal random
variable.

Proposition 2.2.3. Consider the basic financial market with n = 1, µ = µ1 > r,
σ = σ1,1 > 0. Let K > 0 be an option’s strike. Then the time-t prices of plain vanilla
and digital call options and put options are given by:

Call(t, S1(t),K, r, σ) = S1(t)Φ(d1(t, S1(t),K, r, σ))

− exp (−r(T − t))KΦ(d2(t, S1(t),K, r, σ)), (2.13)

Put(t, S1(t),K, r, σ) = exp (−r(T − t))KΦ(−d2(t, S1(t),K, r, σ))

− S1(t)Φ(−d1(t, S1(t),K, r, σ)), (2.14)

DigCall(t, S1(t),K, r, σ) = exp (−r(T − t)) Φ(d2(t, S1(t),K, r, σ)), (2.15)

DigPut(t, S1(t),K, r, σ) = exp (−r(T − t)) Φ(−d2(t, S1(t),K, r, σ)), (2.16)

where

d1(t, S1(t),K, r, σ) :=

ln

(
S1(t)

K

)
+

(
r +

1

2
σ2
)

(T − t)

σ
√
T − t

(2.17)

d2(t, S1(t),K, r, σ) := d1(t, S1(t),K, r, σ) − σ
√
T − t; (2.18)

Proof. For the derivation of (2.13) and (2.14) see Corollary 3.21 on page 136 in Korn
(2014). For the derivation of (2.15) see Example 3.29 on page 150 in Korn (2014),
whereas the formula (2.16) is provided on page 191 in Korn (2014) and is proven analo-
gously to (2.15).

Remark to Proposition 2.2.3. The option-pricing formulas (2.13)–(2.16) can be
applied whenever the terminal value of the option’s underlying asset is a log-normal
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random variable, i.e., it has the following density function:

fLN(µ,σ2)(x) =
1

x
√

2πσ2
exp

(
−(ln(x) − µ)2

2σ2

)
,

where π is the mathematical constant that is the ratio of a circle’s circumference to its
diameter, µ ∈ R and σ2 > 0 being the distribution parameters. For example, if the
relative portfolio process π in (2.7) is a constant-mix strategy, i.e., π(t) = πCM ∈ Rn

constant, ∀t ∈ [0, T ], then the corresponding terminal wealth V πCM (T ) given F(t) is
log-normally distributed with parameters µCM =

(
r + π⊤CM (µ− r111n) − ||γ||2/2

)
(T − t)

and σ2CM = ||π⊤CMσ||2 (T − t).

For exotic options or plain vanilla options but in more complex financial market models,
it may be very challenging to calculate the expectation of the discounted payoff of the
option under the EMM. In such cases, the option-pricing technique based on character-
istic functions can be very helpful. Although we provide those results under the measure
Q, they also hold for any probability measure.

Definition 2.2.4 (Characteristic function, Sec. 3.3.1, p. 108, Durrett (2019)). Let X
be an F-measurable random variable. The characteristic function under the probability
measure Q is defined by:

ϕX,Q(u) = EQ [exp (i · u ·X)] , (2.19)

where i :=
√
−1 is the imaginary unit.

If X has a density function fQX(·), then (2.19) can be written as:

ϕX,Q(u) =

+∞∫
−∞

exp (iux) fQX(x) dx. (2.20)

The characteristic function uniquely determines the distribution of X. The following
theorem shows how to recover the distribution function from the characteristic function.
We will frequently use it in Chapter 6.

Theorem 2.2.5 (The inversion formula, Theorem 3.3.14, p. 112, Durrett (2019)).

If
+∞∫
−∞

∣∣ϕX,Q(u)
∣∣ du <∞, then the density function of X is given by :

fQX(x) =
1

2π

+∞∫
−∞

exp (−iux)ϕX,Q(u) du. (2.21)
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Next we state an important result, which is useful for pricing financial derivatives. For
that we will use a more general setting, as we will apply this result both in the basic
market in Chapter 4 and in a market with stochastic volatility in Chapter 6.

Definition 2.2.6 (Strong solution of an SDE, Def. 3.34, p. 157, Korn (2014)). If on
(Ω,F ,Q) there exists an m-dimensional continuous process X = (X(t))t≥0 with

X(0) = x, x ∈ Rm constant, (2.22)

Xi(t) = xi +

t∫
0

µi(s,X(s)) ds+
n∑

j=1

t∫
0

σi,j(s,X(s)) dWQ
j (s) (2.23)

Q-a.s. for all t ≥ 0, i ∈ 1, . . . ,m, such that

t∫
0

|µi(s,X(s))| +
n∑

j=1

(σi,j(s,X(s)))2

 ds < +∞ (2.24)

Q-a.s. for all t ≥ 0, i ∈ 1, . . . ,m, holds, then X is called a strong solution of the SDE:

dX(t) = µ(t,X(t)) dt+ σ(t,X(t)) dWQ(t); (2.25)

X(0) = x (2.26)

for given functions µ : [0,+∞) × Rm → Rm, σ : [0,+∞) × Rm → Rm×n.

Definition 2.2.7 (Characteristic operator, Def. 3.39, p. 164, Korn (2014)). Let X be
the unique solution of SDE (2.25) such that µ(t, x) as well as σ(t, x) are continuous and
satisfy the following conditions:

||µ(t, x) − µ(t, y)|| + ||σ(t, x) − σ(t, y)|| ≤ K||x− y|| (2.27)

||µ(t, x)||2 + ||σ(t, x)||2 ≤ K2
(
1 + ||x||2

)
(2.28)

for all t ≥ 0, x ∈ Rm, y ∈ Rm and a constant K > 0. For a twice continuously
differentiable function f : RD → R, the operator Dt defined by

(Dtf) (x) :=
1

2

m∑
i=1

m∑
k=1

ai,k(t, x)
∂2f

∂xi∂xk
(x) +

m∑
i=1

µi(t, x)
∂f

∂xi
(x) (2.29)

with

ai,k(t, x) :=

n∑
j=1

σi,j(t, x)σk,j(t, x)

is called the characteristic operator for X.
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Theorem 2.2.8 (Feynman-Kac representation, Th. 3.41, p. 165, Korn (2014)). Let
f : Rm → R be a twice continuously differentiable function that satisfies the following
condition:

|f(x)| ≤ L
(

1 + ||x||2λ
)

or f(x) ≥ 0 (2.30)

for λ ≥ 1. Assume that there exists a solution u(t, x) : [0, T ] ×Rm → R to the following
Cauchy problem:

−ut + ku = Dtu on [0, T ) × Rm; (2.31)

u(T, x) = f(x) for x ∈ Rm, (2.32)

where k : [0, T ] ×Rm → [0,+∞) is a continuous function, u(t, x) is continuously differ-
entiable w.r.t. t and twice continuously differentiable w.r.t. x, Dt is the characteristic
operator for X that is a unique solution to SDE (2.25) with µ as well as σ being contin-
uous and satisfying conditions (2.27) and (2.28) respectively. If also u(t, x) satisfies the
following condition:

max
t∈[0,T ]

|u(t, x)| ≤M(1 + ||x||2η) for M > 0, η ≥ 1, (2.33)

then u(t, x) has the following representation:

u(t, x) = EQ

f(X(T )) · exp

−
T∫
t

k(s,X(s))

∣∣∣X(t) = x

 (2.34)

and is a unique solution to the Cauchy problem (2.31)-(2.32), which fulfills condition
(2.33).

2.3 Utility functions

In this section, we provide a general definition of a utility function as well as measures of
risk aversion of a decision maker. After that we define a specific class of utility functions
that we will frequently use in numerical studies.

We assume that decision makers choose their actions within the expected utility frame-
work. In particular, they maximize the expectation of their utility functions U(·) evalu-
ated at their wealth at the terminal time T . Next we provide a standard definition of a
utility function. Using the word “standard” in the previous sentence, we want to empha-
size that there can be more general definitions of a utility function, see, e.g., Definition
2.1 in Reichlin (2013).

Definition 2.3.1 (Utility function, adapted from Def. 5.1, p. 254, Korn (2014)). Let
v ∈ R. A function U : (v,+∞) → R, v 7→ U(v) that is continuously differentiable,
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strictly concave and satisfies conditions

lim
v↓v

U ′(v) = +∞ and lim
v↑+∞

U ′(v) = 0

is called a utility function.

The required properties of U(·) imply that a decision maker prefers a higher amount
of wealth to a lower one. However, his/her additional utility gained from an additional
unit of wealth decreases with the actual wealth amount.

Different utility functions describe different attitudes to risks. In particular, utility
functions indicate how risk averse (or risk seeking) a decision maker is. The most common
measures of risk aversion were proposed by Pratt (1964) and Arrow (1970).

Definition 2.3.2 (Absolute risk aversion, Eq. (2), p. 39, Korn (1997)). The Arrow-
Pratt measure of the absolute risk aversion (ARA) of a utility function U(·) is defined
as:

ARAU (v) = −U
′′(v)

U ′(v)
= − ∂

∂v
ln
(
U ′(v)

)
. (2.35)

Definition 2.3.3 (Relative risk aversion, Eq. (2), p. 39, Korn (1997)). The Arrow-Pratt
measure of the relative risk aversion (RRA) of a utility function U(·) is given by

RRAU (v) = −vU
′′(v)

U ′(v)
= vARAU (v). (2.36)

If an Arrow-Pratt measure is positive, then the decision maker is risk-averse. If it is
equal to zero, then the decision maker is risk-neutral. Finally, negative Arrow-Pratt
measures indicate that the decision maker is risk-seeking . In this thesis, we focus on
utility functions with positive ARA and RRA. Although we derive many results for
general utility functions, in numerical studies we will consider HARA-utility functions,
where HARA stands for hyperbolic absolute risk aversion. According to Ingersol 1987,
this is one of the most commonly used classes of utility functions.

Definition 2.3.4 (HARA-utility function). A function U(·) is called a HARA-utility
function if it admits a representation:

U(v) =
(v + a)p

p

for p < 1, p ̸= 0, v + a > 0, a ∈ R.
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Remark to Definition 2.3.4. In the academic literature the class of HARA-utility
functions can be defined in a more general way. For example, in Definition 3 on p. 40
in Korn (1997) a HARA-utility function is a function that can be written as

U(v) =
1 − p

p

(
β

1 − p
v + η

)p

(2.37)

for p < 1, p ̸= 0, β > 0, β
1−pv + η > 0. Our Definition 2.3.4 can be obtained from (2.37)

by choosing β = (1 − p)1−1/p and η = a(1 − p)−1/p.

The Arrow-Pratt measures for a HARA-utility function from Definition 2.3.4 are:

ARAU (v) =
1 − p

v + a
and RRAU (v) =

(1 − p)v

v + a
. (2.38)

When a = 0 in Definition 2.3.4, then the RRA measure is 1− p and, thus, constant and
independent of v. The corresponding utility function is called a CRRA-utility function,
where CRRA stands for constant relative risk aversion. It is also known as a Power-
utility function:

U(v) =
vp

p
(2.39)

for p < 1, p ̸= 0, v > 0.

Knowing his/her utility function1, the decision maker can find the best strategy that
maximizes his/her expected utility of terminal wealth. A natural question that may
arise: How good is the optimal strategy in comparison to suboptimal ones? To answer
this question, one could look at the difference of the corresponding expected utilities.
However, this distance is not stable with respect to positive affine transformations of the
utility function and is less economically informative than a comparison in terms of units
of wealth, e.g., see Section 5.4 in Munk (2017). Therefore, we will use the concept of a
wealth-equivalent utility loss to compare the optimal strategy with suboptimal ones to
better understand the monetary benefit of the optimal behavior of the decision maker.

Definition 2.3.5 (Wealth-equivalent utility loss, Eq. (14), p. 271, Larsen and Munk
(2012)). Let π∗ be the optimal strategy and πS be an admissible suboptimal strategy for
some portfolio optimization problem. Then the wealth-equivalent utility loss (WEUL) is
a number that is denoted by WEUL(π∗, πS) and solves the following equation:

E
[
U
(
V v·(1−WEUL(π∗,πS)),π

∗
(T ))

)
= E [U(V v,πS (T )]

]
. (2.40)

WEUL represents the proportion of the initial wealth “lost” when a suboptimal strategy
πS is followed instead of the optimal strategy π∗. The larger this number, the more

1The determination of the utility function that best characterizes the risk preferences of a decision
maker is a difficult question that is beyond the scope of this dissertation.
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money the decision maker could “save” if he/she switches from πS to π∗ while maintain-
ing the same as before expected utility level. In Chapter 4 we will calculate the monetary
benefit to the insurer if the insurer follows the optimal investment-reinsurance strategy
instead of implementing a suboptimal one. In Chapter 5 we will generalize WEUL to a
wealth-equivalent utility change (WEUC) that allows for comparing any two admissible
strategies.

2.4 Portfolio optimization techniques

In this section, first, we describe a general portfolio optimization problem as a building
block of the problems solved in this thesis. Second, we provide an overview of the portfo-
lio optimization techniques that are used to solve those problems. Since the optimization
concepts are application-specific, we refrain from covering them in detail here, but do
that in the corresponding chapters.

The building block of portfolio optimization problems in this thesis is the following basic
problem:

max
π

E
[
U(V π(T ))

]
s.t. π ∈

{
π ∈ Aπ

c (v, CV , Cπ)

∣∣∣∣ E
[
(U(V π(T )))−

]
< +∞

}
,

(BOP)

where π is the control process, V π(T ) is the controlled process, CV characterizes the
terminal-wealth constraint, Cπ characterizes the allocation constraint. The additional
condition regarding the finiteness of the negative part of the expected utility is needed
to ensure that the expectation exists and, thus, the utility-maximization problem is well-
defined. This condition is redundant, if the utility function is non-negative. We denote
the value function associated with Problem (BOP) as follows:

V(t, v) = max
π

{
E [U(V π(T ))]

∣∣∣ π ∈ Aπ
c (t, v, CV , Cπ) ,

E
[
(U(V π(T )))−

]
< +∞

}
.

(2.41)

In general, the process of solving (BOP) depends on the types of constraints CV , Cπ,
availability of continuously traded options, illiquid assets, etc. It often requires a com-
bination of various techniques. Therefore, we do not provide all the details on various
portfolio optimization techniques in this section. Instead, we aim at conveying the
intuition behind the two core approaches to optimizing portfolios and behind the ad-
ditional relevant application-specific portfolio optimization techniques. In the following
chapters, we will provide application-specific details on solving portfolio optimization
problems with those methods.
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2.4.1 Martingale approach

The martingale approach (MA) has been originally developed for solving expected-utility
maximization problems in complete financial markets without constraints on terminal
wealth or allocation. This approach is based on the theory of martingales and stochastic
integration. The main idea is to separate the derivation of the optimal terminal wealth
and the determination of the corresponding optimal investment strategy leading to this
terminal wealth. The former object is found by solving a static optimization problem,
whereas the latter object is derived by solving a representation problem. For further
details we refer readers to Pliska (1986), Karatzas et al. (1987), Cox and Huang (1989),
Korn (1997).

The martingale method has been extended in various directions: non-concave utility
functions, constraints on allocation, constraints on terminal wealth, continuously trading
options, availability of illiquid assets in the market, etc.

To maximize the expectation of a non-concave utility function, Carpenter (2000) con-
siders a modified problem where the original utility is replaced by its so-called concave
envelope, which is the smallest concave function that is equal to or larger than the orig-
inal utility. Under some technical conditions the solution to the modified problem and
the solution to the original problem coincide. The modified problem can be solved via
the classical MA with a few technical adjustments due to the presence of linear pieces
in the concave envelope. For more information, see Chapter 3 and references therein.

When a portfolio optimization problem has terminal-wealth constraints, in the first step
of the MA one derives the optimal terminal wealth by solving the constrained static
optimization problem via the Lagrange multipliers methodology or the Karush-Kuhn-
Tucker methodology, which we cover in the next section. Once the optimal terminal
wealth is found, the representation problem is solved. We provide further details and
relevant references in Chapter 4.

To tackle problems in the incomplete-market setting due to allocation constraints, Cvi-
tanic and Karatzas (1992) developed a methodology that links the allocation-constrained
problem in the original financial market with the allocation-unconstrained problems in
auxiliary financial markets. The researchers show that under specific technical condi-
tions the solution to the original problem coincides with the solution to the problem in
the optimal auxiliary market. Once the optimal auxiliary market is determined, the cor-
responding unconstrained portfolio optimization problem can be solved by the standard
MA. For more information, see Chapter 4 and references therein.

For decision makers who optimize portfolios of European options in a complete market,
Korn and Trautmann (1999) derive the optimal investment strategies by combining the
replication approach to option pricing and the martingale approach. As in the classical
MA, the first step is finding the optimal terminal wealth by solving a static optimization
problem. The second step is calculating the replicating strategy of the optimal terminal
wealth in terms of cash and stocks by solving the corresponding representation problem.
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The third step is transforming the previously found replicating strategy to the one in
terms of cash and options. This is possible due to market completeness. For further
details, see Chapter 5 and references therein.

To solve portfolio optimization problems with a fixed-term (illiquid) investment, Desmet-
tre and Seifried (2016) developed a generalized martingale approach. In contrast to the
classical MA, the process of finding the optimal terminal wealth is more complex. It has
two steps. First, the optimal terminal wealth is found for an arbitrary but fixed posi-
tion in the fixed-term asset. For that, the expected utility function conditioned on the
illiquid investment is maximized. Second, the optimal position in the fixed-term asset
is computed by maximizing the corresponding value function. Finally, the investment
strategy leading to the previously found optimal terminal wealth is determined. See
Chapter 5 and references therein for details.

2.4.2 Stochastic control approach

The stochastic control approach (SCA) to portfolio optimization, also known as Merton’s
approach or the dynamic programming approach, was introduced in Merton (1969) and
Merton (1971). The main idea of this method is to consider the SDE of the wealth process
of a decision maker as a controlled diffusion process and to find the optimal control by
solving a so-called Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE).
This HJB PDE comes from applying the Bellman’s principle of optimality to the value
function of the portfolio optimization problem. For further readings we refer to Bellman
(1957), Merton (1992), and Korn (1997).

In contrast to MA, the stochastic control method can be directly applied to portfolio
optimization problems in incomplete markets. However, the inclusion of constraints on
allocation or on wealth poses significant challenges to the solution process. To the best
of our knowledge, very few papers analytically derive solutions to allocation-constrained
portfolio optimization problems via SCA, see, e.g., Pham (2002), Mnif (2007). Moreover,
even fewer papers generalize SCA to solving wealth-constrained portfolio-optimization
problems. Kraft and Steffensen (2013) do it for a complete Black-Scholes market. In
particular, they demonstrate via SCA that for various terminal-wealth constraints the
optimal constrained terminal wealth can be represented as a financial derivative on the
optimal unconstrained terminal wealth. Thus, solving the terminal-wealth constrained
problem requires constructing the proper financial derivative for the constraint of inter-
est. In Chapter 6 we extend this methodology to incomplete markets due to stochastic
volatility and provide further details as well as references.
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2.5 Selected mathematical tools

In this final section of Chapter 2, we provide several helpful results from calculus, prob-
ability theory and non-linear optimization. First, we state the Leibniz integral rule
(LIR) and several useful results from calculus. Second, we state a dominated conver-
gence theorem. Third, we present the method of Lagrange multipliers and the method
of Karush-Kuhn-Tucker.

2.5.1 Calculus

Theorem 2.5.1 (Leibniz integral rule, Theorem 3, Chapter 8, p. 425, Protter and
Morrey (1985)). Let g(α, x), ∂g(α, x)/∂α be continuous functions and l(α),m(α) be con-
tinuously differentiable functions. Then it holds:

∂

∂α

m(α)∫
l(α)

g(α, x) dx = g(α,m(α))m′(α) − g(α, l(α))l′(α) +

m(α)∫
l(α)

(
∂

∂α
g(α, x)

)
dx. (LIR)

Theorem 2.5.2 (Mean-value theorem, Th. 4.12, p. 71, Protter (1998)). Suppose that
f(·) is continuous on a closed interval [a, b] ⊂ R and has a derivative ∀x ∈ (a, b). Then
∃c ∈ (a, b) such that

f ′(c) =
f(b) − f(a)

b− a
.

Theorem 2.5.3 (Weierstrass’ theorem, Cor. 2.35, p. 40, Aliprantis and Border (2006)).
Let f(·) be a continuous real-valued function defined on a closed and bounded set X ⊂ Rn.
Then f(·) achieves its maximum and minimum values, i.e., ∃c ∈ X, d ∈ X such that

f(c) ≤ f(x) ≤ f(d) ∀x ∈ X.

Theorem 2.5.4 (Berge’s maximum theorem, Th. 17.31, p. 570, Aliprantis and Border
(2006)). Let X ⊂ R and Y ⊂ R be intervals. Let c : X → R and f : Y × X → R be
continuous functions. Define the function m : X → R by

m(x) = max
y∈[0,c(x)]

f(y, x).

If m(x) is a function, i.e., the maximum is uniquely attained, then the following function
is continuous:

a(x) = argmax
y∈[0,c(x)]

f(y, x).
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Remark to Theorem 2.5.4. In Aliprantis and Border (2006), the Berge’s maximum
theorem is formulated and proven in a more general version for correspondences (“multi-
valued functions”). In their formulation the correspondence a(x) is upper hemicontinu-
ous, which is an extension of the concept of continuity from functions to correspondences.
By Lemma 17.6 on page 559 in Aliprantis and Border (2006), a singleton-valued corre-
spondence that is upper hemicontinuous is a continuous function.

2.5.2 Probability theory

Theorem 2.5.5 (Dominated convergence theorem, Th. 1.6.7, p. 26, Durrett (2019)).
Let {Xn}n∈N be a sequence of random variables such that Xn → X Q-almost surely, i.e.,

Q
({

ω ∈ Ω : lim
n→+∞

Xn(ω) = X(ω)

})
= 1.

If there exist a random variable Y such that |Xn| ≤ Y ∀n ∈ N and E[Y ] < +∞, then
limn→+∞ E[Xn] = E[X].

2.5.3 Non-linear optimization

Let f : Rn → R be a differentiable function. We denote by

∇f(x) := (∂f(x)/∂x1, . . . , ∂f(x)/∂xn)⊤ ∈ Rn

the gradient of f(·). For differentiable g : Rn → Rm we use the following notation:

∇g(x) := (∇g1(x), . . . ,∇gm(x)) ∈ Rn×m.

In the remainder of this section, when we write that a vector is equal to zero, it should
be understood component-wise, i.e., each component of the vector equals zero.

Now we introduce the method of Lagrange multipliers that is a powerful tool for static
optimization with equality constraints. It will be a helpful tool for dynamic portfolio
optimization in stochastic volatility environment under terminal-wealth constraints.

Theorem 2.5.6 (Method of Lagrange multipliers. Theorem 1.13, p. 285, Fuente
(2000)). Let x∗ be the optimal solution of a static optimization problem with equality
constraints:

max
x∈Rn

f(x) s.t. h(x) = 0,

where f : Rn → R and h : Rn → Rl are continuously differentiable functions, and rank
∇h(x∗) = l ≤ n. Then there exist unique Langrange multipliers λ∗ ∈ Rl such that

∇f(x∗) + ∇h(x∗)λ∗ = 0. (2.42)
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In the closing part of this section we provide an important result from convex optimiza-
tion. It plays a crucial role in static optimization problems with inequality constraints.
Consider a convex optimization problem:

min
x∈Rn

f(x) s.t. g(x) ≤ 0, h(x) = 0. (COP)

with continuously differentiable functions f : Rn → R, g : Rn → Rm, h : Rn → Rl, such
f(·), gi(·), i ∈ {1, . . . ,m}, are convex and h(·) is affine linear.

Definition 2.5.7 (Feasible region, Definition 15.1, p. 89, Ulbrich and Ulbrich (2012)).
The set Cx = {x ∈ Rn : g(x) ≤ 0, h(x) = 0} is called the feasible region of (COP).

Definition 2.5.8 (Slater’s condition, p. 110, Ulbrich and Ulbrich (2012)). Consider a
convex optimization problem (COP). It is said that Slater’s condition is satisfied if there
exists y ∈ Rn such that gi(y) < 0 for all i ∈ {1, . . . ,m} and h(y) = 0.

Slater’s condition is a so-called constraint qualification that guarantees that the Karush-
Kuhn-Tucker (KKT) conditions stated in the next theorem are necessary and sufficient
optimality conditions for convex problems.

Theorem 2.5.9 (KKT conditions for convex problems, Theorem 16.26, p. 101, Ulbrich
and Ulbrich (2012)). Let the optimization problem (COP) be convex and satisfy Slater’s
condition. Then:

1. Each local solution of (COP) is also a global solution.

2. If x̄ ∈ Cx is a global solution of (COP), then the KKT conditions hold at x̄, i.e.,
there exist λ̄ ∈ Rm and µ̄ ∈ Rl such that:

a) ∇f(x̄) + ∇g(x̄)λ̄+ ∇h(x̄)µ̄ = 0;

b) h(x̄) = 0;

c) λ̄ ≥ 0, g(x̄) ≤ 0, λ̄⊤g(x̄) = 0.

3. If the KKT conditions hold at x̄, then x̄ is a global solution of (COP).
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3 Risk sharing between a hedge-fund
manager and an investor

Being good is easy, what is difficult is
being just.

Victor Hugo

In this chapter, we focus on risk sharing in hedge funds. Here risk sharing means sharing
the loss of a fund’s value between the investor and the fund’s manager. We start this
chapter, which is a reproduction of Escobar-Anel et al. (2020) with minor changes, by
explaining what a hedge fund is and motivating our research thereafter.

A hedge fund is an asset-managing company that oversees pooled investment vehicles
and whose clients are solely accredited investors. It faces less regulation than pension
funds and mutual funds. Its investment strategies usually exploit rare opportunities and
the key determinant of its performance are the skills of the hedge fund managers. Tra-
ditionally, hedge funds’ managers charged for their service a fixed management fee and
a variable performance fee. These are often referred to as a traditional fee structure or a
traditional compensation scheme. The size of these fees frequently follows the so-called
“2 & 20” rule, i.e., 2% of the assets under management (AUM) was the management fee
and 20% of the fund’s profit above a set benchmark was the performance fee.

In 2010s, the hedge fund sector has faced a lot of criticism of its high fees and lukewarm
performance. According to the Financial Times1, investors pulled billions of dollars from
hedge funds in 2016 and resorted to passive or private equity strategies. As the investors
became more dissatisfied, some hedge funds introduced a risk-sharing component to their
fee structures, namely a so-called first-loss coverage guarantee, which is a promise by the
manager to cover the investor’s potential loss up to a specific percentage of the investor’s
endowment. To be concise, we call a traditional fee structure with a first-loss coverage
guarantee a first-loss fee structure or a first-loss scheme.

Let us consider an example of a first-loss coverage guarantee. If the manager offers a
10% first-loss coverage guarantee and the investor’s capital in the hedge fund became
15% smaller at the end of the investment horizon than it was at the beginning of the
horizon, then the manager refunds the first 10% of the investor’s loss, whereas the

1See https://www.ft.com/content/b8ca99da-9782-11e7-a652-cde3f882dd7b
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investor absorbs the remaining 5% loss. As a compensation for this first-loss coverage
guarantee, the manager may charge higher management and/or performance fees, e.g.,
3%&40%. Since there is a trade-off between the fees and the first-loss coverage guarantee
in the first-loss scheme, it is worth investigating what a “fair” or “well-balanced” first-loss
fee structure is.

So in this chapter, we answer the following questions:

1. Which first-loss schemes can be seen as fair and optimal for both parties, i.e., which
management fee, performance fee and first-loss coverage guarantee are mutually
preferred by both the manager and the investor?

2. What is the impact of the financial market parameters and of the decision makers’
risk-aversion coefficients on such a mutually preferred fee arrangement?

To solve the manager’s non-concave utility maximization problem, where non-concavity
arises due to his/her payoff profile, we combine the martingale approach (Karatzas et al.
(1987), Cox and Huang (1989)) and the concavification technique. The latter technique
is based on the construction of the concave envelope of a utility function. It dates
back to Aumann and Perles (1965). This technique was first used in the context of
managerial compensation in Carpenter (2000). Later this result was extended to more
general managerial compensation schemes (Larsen (2005), Bichuch and Sturm (2014)).
Reichlin (2013) proves the existence and several fundamental properties of the solution to
unconstrained portfolio optimization problems in a very general framework. However,
the author does not provide any specific payoffs. We take advantage of our specific
setting to derive explicitly the manager’s optimal terminal wealth without the need for
convex conjugates and sub-differentials.

The literature on managerial compensation in hedge funds mainly focuses on the tra-
ditional fee structure, in particular on the link between risk taking and performance
fees. Almost no papers can be found which search for an “equilibrium” fee structure.
Carpenter (2000) analyzes the impact of performance fees on the optimal investment
strategy of a manager holding an option on the fund’s assets and having preferences
modeled by a HARA utility function. The author finds that the performance fee causes
the manager to reduce the fund’s risk. Kouwenberg and Ziemba (2007) analyze how
the performance fee and the manager’s own investment in the fund influence the risk
aversion of a manager whose preferences are modeled using prospect theory. In contrast
to Carpenter (2000) the researchers find that performance fees increase the manager’s
risk appetite. In their broad empirical study, they find though, that for individual hedge
funds there is no significant relation between volatility and performance fees. Hodder
and Jackwerth (2007) consider a hedge fund manager with a power utility and a tradi-
tional compensation scheme. They come to the conclusion that although the manager’s
risk-taking may change drastically depending on the fund value within a one-year invest-
ment period, this effect is moderate over longer investment horizons. Guasoni and Ob lój
(2016) study hedge funds with traditional compensation schemes where performance fees
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are high-water marked. The researchers find that such performance fees increase risk-
taking for managers with typical levels of risk aversion. Zou (2017) analyzes traditional
fee structures and derives optimal investment strategies of a hedge fund manager with
a piecewise exponential utility and an S-shaped utility from the Cumulative Prospect
Theory (CPT) framework. The researcher concludes that the manager pursues less risky
investment strategies when his/her loss aversion, risk aversion, ownership in the fund
or the management fee ratio increases. When the performance fee increases, though,
the manager acts riskier. Escobar-Anel et al. (2018) is the only paper that studies the
question of how the manager and the investor can agree on a single mutually preferred
traditional fee structure. They propose two procedures on how to select a fair traditional
fee structure for both parties and conclude that for reasonable market parameters the
fee arrangement with 0.5% management and 30.7% performance fee stands out as a fair
one. We apply their approach based on Pareto optimality and Sharpe ratio maximization
in the context of first-loss schemes. The fee structure (0.5%, 30.7%, 0%) is not Pareto
optimal in the presence of first-loss coverage. It is almost twice more volatile and yields
to a Sharpe ratio of that fund that is about 20% lower in comparison to the preferred
first-loss fee structure.

There are two papers that analyze the novel first-loss fee structure, although from dif-
ferent angles. Djerroud et al. (2016) examine the first-loss scheme in the derivative
pricing framework, but do not optimize portfolios. They conduct a cost-benefit analysis
of particular fee structures and calculate “fair” performance fees, where the investor has
a payoff with present value equal to his/her initial cash injection. However, they do not
search for an optimal or an “equilibrium” fee structure. He and Kou (2018) consider a
hedge fund with a manager whose capital is invested in the fund, i.e., the manager’s and
the investor’s money is commingled. The authors refer to the proportion of the fund that
belongs to the manager as the managerial ownership ratio and consider the management
fee to be part of it. Working in the CPT framework, they conclude that the first-loss
scheme with 30% performance fee and 10% managerial ownership ratio used to cover
first loss is better for both the investor and the manager than the fee structure with
20% performance fee and 10% managerial ownership ratio that is not used to cover any
potential losses. However, the researchers do not investigate if the suggested first-loss fee
structure (0%, 30%, 10%) is Pareto optimal for representative managers and investors.
As opposed to He and Kou (2018), we consider the investors’ assets being segregated
from the managers’ money and follow the goal of finding Pareto optimal fee structures.

Next we summarize the scientific contributions of this chapter. To the best of our knowl-
edge, we are first to analyze first-loss schemes based on the criterion of Pareto optimality
and to investigate how hedge-fund managers and investors can reasonably select a sin-
gle Pareto optimal first-loss fee structure. Conducting extensive numerical studies for
HARA-utility functions with our model’s parameter values consistent with current risk
appetites in the hedge-fund sector, we find that the common 2% management and 20%
performance fees are not Pareto optimal in the traditional scheme. The “closest” Pareto
optimal fee structure in the traditional setting has a 0% management fee and a 20%
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performance fee, which may explain the current trend of decreasing management fees
in hedge funds that use traditional managerial compensation. Furthermore, the first-
loss fee structures typically used by hedge funds (with a performance fee around 40%
and a first-loss coverage guarantee around 10%, see Djerroud et al. (2016), He and Kou
(2018)) are not Pareto optimal either. The Pareto optimal first-loss fee structure that
maximizes the hedge-fund’s Sharpe ratio has a management fee of 5%, a performance
fee about 35% and a first-loss coverage guarantee around 25%. However, the manager
might not agree on this fee structure as his/her expected utility is lower than the one
for the (0%, 20%) traditional fee structure. Using the same criterion for the first-loss fee
structure selection but requiring that both parties are better off when the traditional
fee structure is replaced by the first-loss one, the decision makers should agree on a
management fee of 5%, a performance fee about 48% and a first-loss coverage guarantee
around 24%. The methodology we use yields a preferred Pareto optimal first-loss fee
structure that is fair to both parties and decreases significantly the hedge fund’s risk in
comparison to the traditional fee structure. Also to the best of our knowledge, we are
the first to study the trade-off between the parameters of the first-loss scheme in the
expected utility framework, which can be of great help in the fee-structure negotiation
process.

The majority of theoretical results stated in this chapter were obtained by the author
of this thesis in Havrylenko (2018). As part of his doctoral research, the author proved
the existence of a mutually preferred fee structure in Proposition 3.2.4 below. Further-
more, the author of this dissertation improved the algorithm for finding the preferred fee
(Substep 4 a on page 55 below) and conducted more comprehensive numerical studies.
In contrast to Havrylenko (2018), in this chapter the fund’s optimal terminal value is
compared with the fund’s terminal values related to suboptimal investment strategies
in terms of Sharpe ratio as well as expected utilities. Moreover, a broader sensitivity
analysis is conducted on a larger and more realistic grid of model parameters.

The remainder of the chapter is organized as follows. In Section 3.1 we specify the model
of a hedge fund with first-loss compensation. In Subsection 3.1.2 we state the portfolio
optimization problem of the hedge-fund manager and the problem of the preferred fee-
structure selection. Furthermore, we provide theoretical results necessary for solving
the former problem and present a rational methodology for determining a single first-
loss scheme that both parties can agree on. Considering the manager and the investor
equipped with HARA utility functions, we solve the manager’s optimization problem in
Subsection 3.2.2 and derive the value function of each party. In Section 3.3 we select
reasonable model parameters and conduct numerical studies. The proofs of the main
results are provided in Appendix A.1. Appendix A.2 contains auxiliary results and their
proofs.
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3.1 Problem setting

In this section, we explain how we model a hedge fund and the profit-and-loss sharing
between the manager and the investor. Second, we present our approach to determining
a mutually preferred fee structure that specifies the profit-and-loss sharing.

3.1.1 Hedge-fund model

Let us consider the basic financial market described in Section 2.1. In this market, we
set n = 1, since our focus is on profit-and-loss sharing in hedge funds in terms of first-loss
fee structures, not the investment strategies of the fund. The hedge-fund model we use
is the one introduced in Djerroud et al. (2016). There are two parties – the hedge-fund
manager and the investor. At time 0 the investor entrusts his/her initial capital I(0) > 0
to the hedge fund, so that the initial value of the fund equals V (0) = I(0) := v0. The
hedge-fund manager invests the investor’s capital and manages the money until the end
of the investment period T . At that time, the fund’s terminal value is split between the
manager and the investor:

V (T ) = I(V (T )) +M(V (T )),

where M(V (T )) is the terminal wealth of the manager and I(V (T )) is the terminal
wealth of the investor.

The manager’s payoff is determined by the compensation scheme, i.e., the fee structure.
In the first-loss compensation model, the manager

� charges a management fee;

� charges a performance fee on the investor’s net profit, if it is positive;

� guarantees to cover incurred loss up to a certain percentage of the initial capital.

There are two basic types of first-loss arrangements:

1. the investor’s assets and the manager’s deposit are commingled;

2. the investor’s assets and the manager’s deposit account are segregated.

The first type is usually better for the manager, as it gives the manager shareholder
rights. The second type is preferred by investors, as it removes shareholder rights from
managers. There are many other considerations dealing with how the deposit account
is securitized, they are usually variants of these two basic ones. We analyze the second
case, using the model of the first-loss fee structure from Djerroud et al. (2016).

We assume a single payment at the end of a fixed term T , which also implies that the
fees are not invested. Later in the case study, we set T = 1, which means that the fees
are charged at the end of the investment year. The assumption that the fees are charged
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once at time T is common in the literature (see e.g. Kouwenberg and Ziemba (2007),
He and Kou (2018), Zou (2017), Escobar-Anel et al. (2018)).

We denote by m ∈ [0, 1] the fixed share of v0 that is charged by the hedge fund manager
at time t = T . We call both m and mv0 the management fee. It will be clear from the
context which term is meant.

In case the wealth generated for the investor is greater than the initial endowment, i.e.,
V (T ) −mv0 > v0, the manager charges the share α ∈ (0, 1] of the capital surplus2. We
refer to both α and α(V (T ) −mv0 − v0)

+ as the performance fee. It will be clear from
the context which element is meant.

We denote by c ∈ [0, 1] the maximal share of v0 paid by the manager to the investor if
the latter faces a loss at time T . The loss occurs whenever the terminal portfolio value
less the management fee is lower than the investor’s initial investment. We refer to both
c and cv0 as the manager’s first-loss coverage guarantee.

Then the investor’s terminal wealth in the first-loss scheme is given by:

I(V (T )) =


V (T ) + v0(c−m), if V (T ) −mv0 < (1 − c)v0;

v0, if (1 − c)v0 ≤ V (T ) −mv0 < v0;

V (T ) −mv0 − α(V (T ) − (1 +m)v0), if V (T ) −mv0 ≥ v0.
(3.1)

Using (3.1) and the relation M(V (T )) = V (T ) − I(V (T )), we obtain the following
terminal payoff of the manager:

M(V (T )) =


v0(m− c), if V (T ) −mv0 < (1 − c)v0;

V (T ) − v0, if (1 − c)v0 ≤ V (T ) −mv0 < v0;

mv0 + α(V (T ) − (1 +m)v0), if V (T ) −mv0 ≥ v0.

(3.2)

When we need to emphasize the dependence of the parties’ terminal payoffs on the fee-
structure parameters, we write M(V (T )|m,α, c) and I(V (T )|m,α, c). Since we do not
want to overcomplicate the model and focus on the fair fee selection process, we do not
model the investments of the manager and of the investor outside of the hedge fund.
From (3.1) and (3.2) we see that the terminal wealth of each party is a continuous non-
decreasing piecewise linear function of the fund’s terminal value. Figure 3.1 illustrates
the payoffs of both parties.

Note that the terminal wealth of the investor and that of the manager can attain negative
values. For example, the manager’s payoff may be negative when the fund’s terminal

2We exclude α = 0 for several reasons. First, the performance fee is a distinct feature of the hedge fund
industry. Second, α = 0 requires special treatment in the derivation of the fund’s optimal terminal
value, as in this case the manager’s utility function is flat for v ≥ (1 + m)v0. This would make
the chapter longer without contributing much to our aims. Third, we need α > 0 for proving the
existence of first-best Pareto optimal fee structures, see Proposition 3.2.4 in Subsection 3.2.1
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(a) Investor’s payoff. (b) Manager’s payoff.

Figure 3.1: Parties’ payoffs for m = 2%, α = 40%, c = 10%.

value is sufficiently small and the first-loss guarantee offered by the manager is greater
than the charged management fee. The investor’s terminal wealth may be negative when
the fund’s terminal value is sufficiently small and the provided first-loss coverage is less
than the management fee the investor paid.

Theoretically, each parameter of the first-loss fee structure can attain values between
0% and 100%. A few hedge funds have experimented with negative management fees
to attract clients. In Section 3.3, where we present the results of our numerical studies,
we consider P = {(m,α, c) : m ∈ [0%, 5%], α ∈ [0.1%, 50%], c ∈ [0%, 30%]}, which is
motivated by practical considerations described later. We refer to this set as the set of
admissible fee structures.

3.1.2 Portfolio optimization and fee-structure preferences

We assume that the manager’s and the investor’s preferences are described by utility
functions UM (·) and UI(·) respectively in the sense of Defintion 2.3.1. Since the man-
ager’s minimal terminal payoff equals (m − c)v0 (for all V (T ) ∈ [0, (1 + m − c)v0)),
we impose the condition UM ((m − c)v0) > −∞. Since the investor’s minimal terminal
payoff is (c−m)v0, we impose the condition UI((c−m)v0) > −∞. For instance, these
inequalities are fulfilled for exponential utility functions or HARA-utility functions with
suitably chosen parameters.

We denote the parties’ utility functions as functions of the fund’s terminal value by

ŨM (V (T )) := UM (M(V (T ))), ŨI(V (T )) := UI(I(V (T ))).

In general, the manager solves the following portfolio optimization problem after fixing
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his/her first-loss fee structure:

max
π

E
[
ŨM (V (T ))

]
;

s.t. π ∈
{
π ∈ Aπ

u(v0)

∣∣∣∣ E [(ŨM (V (T ))
)−]

< +∞
}
,

where Aπ
u(v0) is defined in Definition 2.1.4.

As we focus on the fee-structure selection instead of the manager’s optimal investment
strategy, we consider only the related terminal portfolio value problem, which is also
called a static optimization problem in the martingale approach. This is possible due to
the completeness of the considered financial market (see Theorem 2.1.5).

The manager’s static optimization problem for finding his/her optimal terminal wealth
is given by:

max
V (T )

E[ŨM (V (T ))];

s.t.E[Z̃(T )V (T )] ≤ v0;

V (T ) ≥ 0.

(PM )

In accordance with Chapter 2, we denote by V ∗(T ) the solution to (PM ) and refer to it
as the fund’s optimal terminal value. Note that the only influence the investor has on
this value is the (first-loss) fee structure the parties negotiate at time 0. However, there
are infinitely many admissible fees. The crucial question is how the manager and the
investor can agree rationally on a single mutually preferred fee, such that the interests
of both parties are taken into account.

To emphasize the dependence of the fund’s optimal terminal value on the fee-structure
parameters, we adapt the notation V ∗(T |m,α, c). Obviously, various fee structures lead
to different optimal terminal values of the fund and, hence, different payoffs to the
parties’. Therefore, the way how the manager and the investor agree on the fee structure
is of high importance. In our view, it should lead to a fee structure that does not favor
one party over the other and has a positive impact on the fund’s overall performance.

We denote the parties’ expected utilities of the terminal payoffs for V ∗(T ) by

ṼM (m,α, c) := E
[
ŨM (V ∗(T |m,α, c)

]
and ṼI(m,α, c) := E

[
ŨI(V ∗(T |m,α, c)

]
,

and refer to them as value functions.

We examine optimal first-loss fee structures (m,α, c) ∈ P in an analogous way Filipović
et al. (2015) investigated optimal investment and premium policies.
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Definition 3.1.1 (First-best Pareto optimal fee structures). A fee structure (m∗, α∗, c∗)
is first-best Pareto optimal (FBPO) if it solves the optimization problem

max
m,α,c

ṼI(m,α, c);

s.t. ṼM (m,α, c) ≥ ṼRUL
M ;

(m,α, c) ∈ P;

(PI|M )

for some reservation utility level ṼRUL
M ∈ R of the manager. When we need to emphasize

the dependence of this problem on the parameter ṼRUL
M , we write PI|M (ṼRUL

M ).

We denote the set of all first-best Pareto optimal fee structures by PFBPO and refer to
the set of all pairs (ṼM (m∗, α∗, c∗), ṼI(m∗, α∗, c∗)) such that (m∗, α∗, c∗) ∈ PFBPO as
the Pareto frontier.

There are many ways how the manager and the investor can agree on a single FBPO fee
structure. We focus on the hedge-fund’s Sharpe ratio maximization as the criterion in
the fee selection process. The Sharpe ratio is defined as follows:

SR∗(m,α, c) := SR(V ∗(T |m,α, c)) =
E [R(V ∗(T ))] − r√
Var (R(V ∗(T )))

=
E [V ∗(T )] − v0(1 + r)√

Var (V ∗(T ))
,

where R(V ∗(T )) denotes the rate of return of the hedge fund under the optimal invest-
ment strategy:

R(V ∗(T )) =
V ∗(T ) − v0

v0
.

We use this criterion for several reasons: the Sharpe ratio is a popular performance
measure that can be observed in the hedge-fund sector, it is not based on utility functions
and does not favor exclusively any of the parties. So we consider the fee structure
selection as the process of solving the following optimization problem:

max
m,α,c

SR∗(m,α, c);

s.t. (m,α, c) ∈ PFBPO.
(PSR)

We denote the solution of Problem (PSR) as (m̂, α̂, ĉ) and call it the preferred fee struc-
ture.

3.2 Solution approach

In the first part of this section, we describe theoretical and numerical approaches to
finding the preferred fee structure in general. In the second part of this section, we
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provide specific formulas for the case when decision makers have HARA-utility functions.
All proofs can be found in the appendix.

3.2.1 General setting

Using (3.2), we can write the manager’s utility function in the following way:

ŨM (V (T )) :=UM (M(V (T ))) = ŨM,1(V (T ))1
[0,X̃1)

(V (T ))

+ ŨM,2(V (T ))1
[X̃1,X̃2)

(V (T )) + ŨM,3(V (T ))1
[X̃2,+∞)

(V (T )),
(3.3)

where X̃1 = (1 + m − c)v0, X̃2 = (1 + m)v0, ŨM,1(v) = UM ((m − c)v0)), ŨM,2(v) =

UM (V (T ) − v0), ŨM,3(v) = UM (mv0 + α(V (T ) −mv0 − v0)).

We denote Ũ ′
M (v̄−) and Ũ ′

M (v̄+) the left- and right-hand derivatives of ŨM at v̄ ∈ R,

and ŨM (v̄−) and ŨM (v̄+) for left- and right-hand limits of ŨM at v̄ ∈ R. To avoid any
ambiguity, we set ŨM (v) = −∞ for v < 0, ŨM (0) = ŨM (0+).

Obviously, ŨM is not concave, whence standard optimization tools cannot be applied to
solve Problem (PM ). Therefore, we use the concavification technique (Carpenter (2000),
Reichlin (2013), He and Kou (2018)). First, we construct the concave envelope of ŨM

and solve the resulting concavified problem defined below. Second, we show that the
corresponding fund’s optimal terminal value is also the solution of Problem (PM ).

There are several ways the concave envelope of a function may be defined. We follow
Reichlin (2013).

Definition 3.2.1. The concave envelope ũM (·) of ŨM (·) is the smallest concave function
ũM : R → R ∪ {−∞} such that ŨM (v) ≤ ũM (v) for all v ∈ R.

The next lemma shows in a constructive way that the concave envelope of ŨM exists
and is unique.

Lemma 3.2.2. Let ŨM (·) be defined according to (3.3). Assume that Ũ ′′
M,2(·) and Ũ ′′

M,3(·)
exist on (X̃1, X̃2) and (X̃2,+∞) respectively. Then there exists a unique χ̃1 ≥ X̃1 such
that the function

ũM (v) =


−∞, if v < 0;

ŨM (0) + s(χ̃1)v, if v ∈ [0, χ̃1);

ŨM (v), if v ≥ χ̃1.

(3.4)

is the concave envelope of ŨM (·), where s(χ̃1) = ŨM (χ̃1)−ŨM (0)
χ̃1

.
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Proof. See Appendix A.1.

For denoting the original function ŨM (·) and its change points (X̃1, X̃2) we use uppercase
letters, whereas we use the same but lowercase letters for the concave envelope ũM (·)
and its change points (χ̃1, χ̃2). We resort to such notation, since these functions coincide
in some parts but we still need to differentiate between them. Using (3.3) and (3.4), we
obtain that the concave envelope is a continuous concave function that be written as:

ũM (v) =

{
−∞, if v < 0;

ũM,1(v)1[χ̃0,χ̃1)(v) + ũM,2(v)1[χ̃1,χ̃2)(v) + ũM,3(v)1[χ̃2,χ̃3)(v), if v ≥ 0,
(3.5)

where 0 = χ̃0 < χ̃1 ≤ χ̃2 < χ̃3 = +∞, ũM,1(·) is a strictly increasing linear function,
ũM,i(·), i ∈ {2, 3}, are strictly increasing concave functions. In our setting, ũM (·) can

have between two or three pieces. According to the proof of Lemma 3.2.2, X̃2 ≤ χ̃1 = χ̃2

when ũM (·) consists of two pieces, otherwise X̃1 < χ̃1 < X̃2 = χ̃2.

Consider now the concavified version of Problem (PM ):

max
V (T )

E[ũM (V (T ))];

s.t.E[Z̃(T )V (T )] ≤ v0;

V (T ) ≥ 0.

(P conc
M )

In the next theorem, we show how to solve Problem (PM ) via Problem (P conc
M ).

Theorem 3.2.3. Let v∗(λv, z̃) be the solution to the following pointwise optimization
problem for any fixed λv > 0, z̃ > 0:

max
v≥0

{ũM (v) − λv · z̃ · v}, (3.6)

where ũM (·) is defined in (3.5). If the following integrability condition holds

h(λv) := E
[
Z̃(T ) · v∗(λv, Z̃(T ))

]
< +∞ ∀λv ∈ (0,+∞), (3.7)

then:

1. there exists a unique λ∗v ∈ (0,+∞) such that h(λ∗v) = v0;

2. V ∗(T ) = v∗(λ∗v, Z̃(T )) is the Q-a.s. unique optimal terminal value in the concavi-
fied Problem (P conc

M );

3. V ∗(T ) = v∗(λ∗v, Z̃(T )) is the Q-a.s. unique optimal terminal value in the original
Problem (PM ).

Proof. See Appendix A.1.
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For many utility functions ŨM (·) common in the literature (e.g., HARA, exponential),
the fund’s optimal terminal value V ∗(T ) can be found explicitly. Moreover, ṼP (m,α, c) =
E [UP (V ∗(T ))] for P ∈ {M, I} can be found in a semi-explicit form. The next step is
to obtain the set of the first-best Pareto optimal fee structures by solving the non-
linear optimization Problem (PI|M ). The solution to this optimization problem exists,
as proven in the following result.

Proposition 3.2.4. For any ṼRUL
M ∈

[
min

(m,α,c)∈P
ṼM (m,α, c), max

(m,α,c)∈P
ṼM (m,α, c)

]
there

exists (m∗, α∗, c∗) solving (PI|M ).

Proof. See Appendix A.1.

In Problem (PI|M ), the objective function ṼI(m,α, c) and the constraint function

ṼM (m,α, c) are in general quite complex and do not exhibit properties enabling us
to solve this problem in closed form. Therefore, we will resort to numerical techniques,
in particular, the Sequential Quadratic Programming (SQP) approach. For more infor-
mation on this optimization technique, the interested reader is referred to Nocedal and
Wright (2006).

3.2.2 Explicit solution for HARA-utility functions

In this section, we derive the fund’s optimal terminal value as well as the parties’ expected
utility functions at the fund’s optimal terminal value using the methodology from the
previous section and assuming that the involved decision makers have HARA-utility
functions. Let UM (·) be given by:

UM (v) =
1

pM
(v + aM )pM , UM : (−aM ,+∞) → R,

with aM ≥ v0(c−m) if pM ∈ (0, 1) and aM > v0(c−m) if pM ∈ (−∞, 0). In this case,
we have the following concretization of (3.3):

ŨM (V (T )) = UM (M(V (T ))) =
1

pM
(v0(m− c) + aM )pM︸ ︷︷ ︸

ŨM,1(V (T ))

·1[0,(1+m−c)v0)(V (T ))

+
1

pM
(V (T ) − v0 + aM )pM︸ ︷︷ ︸

ŨM,2(V (T ))

·1[(1+m−c)v0,(1+m)v0)(V (T ))

+
1

pM
(mv0 + α(V (T ) − (1 +m)v0) + aM )pM︸ ︷︷ ︸

ŨM,3(V (T ))

·1[(1+m)v0,+∞)(V (T )).

(3.8)
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We apply Lemma 3.2.2 to construct the concave envelope of ŨM (·)(·) and Theorem 3.2.3
to derive the optimal terminal value of the hedge fund.

Corollary 3.2.5 (Fund’s optimal terminal value).
Let ŨM (·) be as defined in (3.8). Denote:

H =
(mv0 + aM )pM − (v0(m− c) + aM )pM

pM (1 +m)v0
(3.9)

and

PA =

{
(m,α, c) ∈ P :H < α(mv0 + aM )pM−1

}
;

PB =

{
(m,α, c) ∈ P :α(mv0 + aM )pM−1 ≤ H ≤ (mv0 + aM )pM−1

}
;

PC =

{
(m,α, c) ∈ P : (mv0 + aM )pM−1 < H

}
.

(3.10)

Then, the fund’s optimal terminal value is given by
Case A, (m,α, c) ∈ PA:

V ∗(T ) =

(
α1/(1−pM )−1

(
λ∗vZ̃(T )

)−1/(1−pM )
+ (1 +m− α−1m)v0 − α−1aM

)
· 1{Z̃(T )∈(0, s(χ̃A

1 )/λ∗
v]},

(3.11)

where χ̃A
1 is the unique solution of the following equation w.r.t. v

(αv + (m− α(1 +m))v0 + aM )pM−1((1 − pM )αv + (m− α(1 +m))v0 + aM )

= (v0(m− c) + aM )pM

on v ∈ ((1 +m)v0,+∞), and s(χ̃A
1 ) = α(αχ̃A

1 + (m− α(1 +m))v0 + aM )pM−1.
Case B, (m,α, c) ∈ PB:

V ∗(T ) =

(
α1/(1−pM )−1

(
λ∗vZ̃(T )

)−1/(1−pM )
+ (1 +m− α−1m)v0 − α−1aM

)
· 1{Z̃(T )∈(0, α(mv0+aM )pM−1/λ∗

v)} + (1 +m)v0

· 1{Z̃(T )∈[α(mv0+aM )pM−1/λ∗
v , s(χ̃

B
1 )/λ∗

v)]},

(3.12)

where χ̃B
1 = (1 +m)v0 and s(χ̃B

1 ) = H.
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Case C, (m,α, c) ∈ PC :

V ∗(T ) =

(
α1/(1−pM )−1

(
λ∗vZ̃(T )

)−1/(1−pM )
+ (1 +m− α−1m)v0 − α−1aM

)
· 1{Z̃(T )∈(0, α(mv0+aM )pM−1/λ∗

v)}
+ (1 +m)v01{Z̃(T )∈[α(mv0+aM )pM−1/λ∗

v , (mv0+aM )pM−1/λ∗
v)]}

+

((
λ∗vZ̃(T )

)−1/(1−pM )
+ v0 − aM

)
1{Z̃(T )∈((mv0+aM )pM−1/λ∗

v , s(χ̃
C
1 )/λ∗

v]},

(3.13)
where χ̃C

1 is the unique solution of the following equation w.r.t. v

(v − v0 + aM )pM−1((1 − pM )v − v0 + aM ) = (v0(m− c) + aM )pM

on v ∈ ((1 +m− c)v0, (1 +m)v0), and s(χ̃
C
1 ) = (χ̃C

1 − v0 + aM )pM−1.

In all three cases, λ∗v > 0 is the unique solution of the equation E
[
Z̃(T )V ∗(T )

]
= v0.

Proof. See Appendix A.1.

Remark 3.2.6. Note that χ̃X
1 , X ∈ {A,B,C}, is the rightmost concavification point of

ŨM (·) in the corresponding concavification case, i.e., the rightmost point of the linear
part of the concave envelope of ŨM (·).

In the next two propositions we provide the semi-explicit formulas for the parties’ value
functions. These are needed for computing FBPO fee structures in Problem (PI|M ).

Proposition 3.2.7 (Manager’s value function).
Let the manager’s preferences be determined by ŨM (·) as per (3.8). Let λ∗v, χ̃

X
1 and

s(χ̃X
1 ), X ∈ {A,B,C}, be as defined in Corollary 3.2.5. Define:

ξ1 = exp
(
pM (1 − pM )−1

(
r + 0.5γ2

)
T + 0.5p2M (1 − pM )−2γ2T

)
.

Then the manager’s value function ṼM (m,α, c) is given by
Case A, (m,α, c) ∈ PA:

ṼM (m,α, c) = ŨM (0)Φ
(
dA2 (λ∗v)

)
+ p−1

M (λ∗v)−pM/(1−pM )αpM/(1−pM )ξ1

·
(

Φ
(
dA1 (λ∗v) + (1 − (1 − pM )−1)γ

√
T
)
− Φ

(
dA2 (λ∗v) + (1 − (1 − pM )−1)γ

√
T
))

,

where dA1 (λ∗v) = +∞, dA2 (λ∗v) =
log
(
λ∗v/s(χ̃

A
1 )
)
−
(
r + 0.5γ2

)
T

γ
√
T

;
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Case B, (m,α, c) ∈ PB:

ṼM (m,α, c) = ŨM (0)Φ
(
dB3 (λ∗v)

)
+ p−1

M (λ∗v)−pM/(1−pM )αpM/(1−pM )ξ1

·
(

Φ
(
dB1 (λ∗v) + (1 − (1 − pM )−1)γ

√
T
)
− Φ

(
dB2 (λ∗v) + (1 − (1 − pM )−1)γ

√
T
))

+ p−1
M (mv0 + aM )pM

(
Φ
(
dB2 (λ∗v)

)
− Φ

(
dB3 (λ∗v)

))
,

where dB1 (λ∗v) = +∞, dB2 (λ∗v) =
log
(
λ∗vα

−1(mv0 + aM )1−pM
)
−
(
r + 0.5γ2

)
T

γ
√
T

,

dB3 (λ∗v) =
log
(
λ∗v/s(χ̃

B
1 )
)
−
(
r + 0.5γ2

)
T

γ
√
T

;

Case C, (m,α, c) ∈ PC :

ṼM (m,α, c) = ŨM (0)Φ
(
dC4 (λ∗v)

)
+ p−1

M (λ∗v)−pM/(1−pM )αpM/(1−pM )ξ1

·
(

Φ
(
dC1 (λ∗v) + (1 − (1 − pM )−1)γ

√
T
)
− Φ

(
dC2 (λ∗v) + (1 − (1 − pM )−1)γ

√
T
))

+ p−1
M (mv0 + aM )pM

(
Φ
(
dC2 (λ∗v)

)
− Φ

(
dC3 (λ∗v)

))
+ p−1

M (λ∗v)−pM/(1−pM )ξ1

·
(

Φ
(
dC3 (λ∗v) + (1 − (1 − pM )−1)γ

√
T
)
− Φ

(
dC4 (λ∗v) + (1 − (1 − pM )−1)γ

√
T
))

,

where dC1 (λ∗v) = +∞, dC2 (λ∗v) =
log
(
λ∗vα

−1(mv0 + aM )1−pM
)
−
(
r + 0.5γ2

)
T

γ
√
T

,

dC3 (λ∗v) =
log
(
λ∗v(mv0 + aM )1−pM

)
−
(
r + 0.5γ2

)
T

γ
√
T

,

dC4 (λ∗v) =
log
(
λ∗v/s(χ̃

C
1 )
)
−
(
r + 0.5γ2

)
T

γ
√
T

.

Proof. See Appendix A.1.

Let the investor have a HARA-utility function:

UI(v) =
1

pI
(v + aI)pI , UI(v) : (−aI ,+∞) → R,

where aI ≥ v0(m − c) if pI ∈ (0, 1) and aI > v0(m − c) if pI ∈ (−∞, 0). Such choice
of aI guarantees that the function ŨI(V (T )) := UI(I(V (T ))) is real-valued for any
V (T ) ∈ [0,+∞).
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Proposition 3.2.8 (Investor’s value function).
Let λ∗v, χ̃

X
1 and s(χ̃X

1 ), X ∈ {A,B,C}, be as defined in Corollary 3.2.5. Let the investor’s

preferences be determined by ŨI(·) as defined above. Then the investor’s value function
is given in
Case A, (m,α, c) ∈ PA:

ṼI(m,α, c) = p−1
I (v0(c−m) + aI)pI Φ(dA2 (λ∗v))

+ p−1
I E

[(
k
(
Z̃(T )

)−1/(1−pM )
+ l

)pI

1{Z̃(T )∈(0,s(χ̃1)/λ∗
v ]}

]
;

Case B, (m,α, c) ∈ PB:

ṼI(m,α, c) = p−1
I (v0(c−m) + aI)pI Φ(dB3 (λ∗v))

+ p−1
I E

[(
k
(
Z̃(T )

)−1/(1−pM )
+ l

)pI

1{Z̃(T )∈(0,α(mv0+aM )pM−1/λ∗
v)}

]
+ p−1

I (v0 + aI)pI
(
Φ
(
dB2 (λ∗v)

)
− Φ

(
dB3 (λ∗v)

))
;

Case C, (m,α, c) ∈ PC :

ṼI(m,α, c) = p−1
I (v0(c−m) + aI)pIΦ(dC4 (λ∗v))

+ p−1
I E

[(
k
(
Z̃(T )

)−1/(1−pM )
+ l

)pI

1{Z̃(T )∈(0,α(mv0+aM )pM−1/λ∗
v)}

]
+ p−1

I (v0 + aI)pI
(
Φ
(
dC2 (λ∗v)

)
− Φ

(
dC4 (λ∗v)

))
,

where k = (1−α)α1/(1−pM )−1(λ∗v)−1/(1−pM ), l = (1 +m−α−1m)v0 + aM (1−α−1) + aI ,
and dA2 (·), dB2 (·), dB3 (·), dC2 (·), dC4 (·) are defined in Proposition 3.2.7.

Proof. See Appendix A.1.

In Appendix A.2, we provide several supplementary results related to the fund’s optimal
terminal value. In Proposition A.2.3 we derive the explicit form of the equations for
finding λ∗v. In Proposition A.2.4 we provide the explicit form of the the first and the
second moment of V ∗(T ). These are needed for computing the hedge-fund’s Sharpe ratio
in Problem (PSR).
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3.3 Numerical studies

3.3.1 Algorithm overview

The selection process for the preferred fee structure is an optimization problem that has
several nested optimization subproblems:

max
m,α,c

SR(V ∗(T |m,α, c));

s.t. V ∗(T |m,α, c) solves (PM )

∃ṼRUL
M s.t. (m,α, c) solves (PI|M ).

(PSR)

To solve some subproblems we resort to numerical techniques, as the analytical solution
is not available. Here we provide the algorithm we use in the next subsections to compute
the solution to Problem (PSR):

1. Initialize:

a) model parameters r, γ, T, v0, aM , pM , aI , pI ;

b) discretization steps ∆m, ∆α, ∆c, ∆ṼRUL
M ;

c) set PFBPO = ∅.

2. For each m ∈ {0%,∆m, 2∆m, . . . , 5%} =: Gm,
α ∈ {∆α, 2∆α, 3∆α, . . . , 50%} =: Gα,
c ∈ {0%,∆c, 2∆c, . . . , 30%} =: Gc calculate:

a) λ∗v using Proposition A.2.3 from Section A.2 in Appendix A and the bisection
method;

b) ṼM (m,α, c) using Proposition 3.2.7;

c) ṼI(m,α, c) using Proposition 3.2.8.

3. Calculate Ṽmin
M = min

(m,α,c)∈G
{ṼM (m,α, c)}, Ṽmax

M = max
(m,α,c)∈G

{ṼM (m,α, c)} , where

G := Gm ×Gα ×Gc.

4. For each ṼRUL
M ∈

{
Ṽmin
M , Ṽmin

M + ∆ṼRUL
M , Ṽmin

M + 2∆ṼRUL
M , . . . , Ṽmax

M

}
a) find a good initial fee structure (m0, α0, c0) by solving (PI|M ) on the discrete

set G;

b) calculate (m∗
ṼRUL
M

, α∗
ṼRUL
M

, c∗
ṼRUL
M

) that solves (PI|M ) with SQP starting from

(m0, α0, c0);

c) PFBPO = PFBPO ∪ (m∗
ṼRUL
M

, α∗
ṼRUL
M

, c∗
ṼRUL
M

).
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5. Find (m̂, α̂, ĉ) ∈ PFBPO that solves (PSR) using Proposition A.2.4 from Section
A.2 in Appendix A.

Note: Step 4 (a) speeds up the SQP algorithm and decreases the odds of getting to a
local optimum.

3.3.2 Model parametrization

The highest management fee we are aware of equals 5% and was charged at Renaissance
Technologies, according to an article published on March 7, 2016, on Investopedia3.
According to the same source, this hedge fund charged a 44% incentive fee. We find
it very improbable that an investor would be willing to pay a management fee of more
than 5% of his/her initial endowment or a performance fee greater than 50% of his/her
net profit. Therefore, we set the upper bound for m and α to 5% and 50% respectively.
Djerroud et al. (2016) examined first-loss coverage guarantees between 1% and 25%. To
be a bit more flexible, we consider c ∈ [0%, 30%].

We choose the same values of the financial market parameters as those considered in two
papers related to the first-loss scheme. He and Kou (2018) conduct numerical studies
for an interest rate of 5%, arguing that such choice is motivated by historical data.
However, they also investigate the case r = 2% due to the low interest-rate environment
and conclude that the results for the low interest rate are similar to those obtained for
r = 5%. Djerroud et al. (2016) consider r = 2%. To be in line with the mentioned papers
and consistent with the current economic conditions in Europe and North America, we
set r = 2%. We fix the market price of risk γ at 40%, as it is done in He and Kou (2018).
Since the majority of hedge funds charge fees annually, we set T = 1. We assume that
v0 = 1.

For many years the hedge-fund sector was asking for management fees around 2% and
performance fees around 20%. However, due to the investors’ concerns that such fees
might not be justified by the hedge-funds’ performance, the management fees have
been decreasing. In May 2018, the average management fee was traded around 1.58%4,
whereas some hedge funds had already canceled their management fees completely. We
believe that the hedge-fund sector will increase in transparency and charged fees will
approach the optimal ones. In our view, hedge funds that stick to the traditional fee
structure will thus gradually end up with a management fee close to 0% and a perfor-
mance fee around 20%. Therefore, we assume that these values of the traditional fee
structure parameters are optimal in the absence of the first-loss coverage guarantee and
best represent the risk preferences of an average investor and an average manager of a

3https://www.investopedia.com/articles/investing/030716/jim-simons-justifying-5-management-
fee.asp

4http://docs.preqin.com/newsletters/hf/Preqin-Hedge-Fund-Spotlight-May-2018.pdf
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hedge fund. Taking into account the technical conditions

aI
(3.1)

≥ max
m ∈ [0, 0.05]
c ∈ [0, 0.3]

{v0(m− c)} = 0.05, aM
(3.2)

≥ max
m ∈ [0, 0.05]
c ∈ [0, 0.3]

{v0(c−m)} = 0.3,

which guarantee that the utility function evaluated at the minimal terminal wealth of
the corresponding party is finite, we find the following parameters for our HARA-utility
functions that are consistent with the above mentioned intuition of the traditional fee
structure: aM = 0.3, pM = 0.35, aI = 0.3, pI = 0.35. For these parameters the investor’s
optimal fee structure without any first-loss coverage guarantee is:

argmax
m ∈ [0%, 5%]
α ∈ [0%, 50%]

ṼI(m,α, 0%) = (0%, 20.3%). (3.14)

Note that the investor’s value function does not appear in the manager’s portfolio op-
timization problem. ṼI(m,α, c) comes from Proposition 3.2.8 and equals the investor’s
expected utility for the terminal portfolio value optimal for the fund manager who solves
(PM ) for a certain fee structure (m,α, c) ∈ P. The obtained risk-aversion parameters are
consistent with Holt and Laury (2002). Analyzing power-utility functions, which are a
subclass of HARA-utility functions, the authors classify a decision maker as (moderately)
risk averse if pM (pI) ∈ (0.32, 0.59). We consider aM = aI = 0.3 and pM = pI = 0.35
as base case parameters in our analysis, i.e., the manager and the investor have the
same utility function. Later in the study we will vary these parameters for further
investigations.

Parameter specifications in the base case are summarized in Table 3.1.

Market Investment Utility functions

Parameters r γ v0 T aM pM aI pI

Value 2% 40% 1 1 0.3 0.35 0.3 0.35

Table 3.1: Values of the model parameters in the base case.

3.3.3 From traditional to first-loss fee structure

Let us first consider the traditional fee structure. Setting c = 0% in our model, we
plot in Figure 3.2 the investor’s indifference curves corresponding to several traditional
fee structures and the manager’s expected utility along these iso-utility curves of the
investor. The lines in Figure 3.2a show all parameter pairs (m,α) that lead to the same
expected utility of the investor. The iso-utility values originate from the fees common
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in the hedge-fund sector: 2% & 20% (violet line), 1.5% & 20% (yellow line), 1% & 20%
(red line), 0.5% & 20% (blue line). We use the same coloring structure in Figure 3.2b.
The trade-off between the management and the performance fees is also analyzed in
Goetzmann et al. (2003). However, the authors work in a valuation framework and
consider a hedge fund with two peculiarities – a liquidation boundary and a traditional
compensation structure where the performance fee is based on the hedge-fund’s high-
water mark.

(a) Investor’s iso-utility curves in the
traditional compensation scheme.

(b) Manager’s value function along the investor’s
iso-utility curves given c = 0.

Figure 3.2: Investor’s iso-utility curves in the traditional compensation scheme
for iso-utility values ṼI(2%, 20%, 0%) = 2.7987, ṼI(1.5%, 20%, 0%) = 2.8096,
ṼI(1%, 20%, 0%) = 2.8205, ṼI(0.5%, 20%, 0%) = 2.8312 and the manager’s expected
utility along them.

In Figure 3.2a, we observe that the lower the management fee, the more the iso-utility
curves approach the constrained maximal value of ṼI , which is marked in brown. Note
that any change in the fee structure changes ṼI indirectly: it influences first the man-
ager’s optimal portfolio allocation decision, which in turn has an impact on the value
function of the investor. Consider, for example, a manager who charged a 2%&20% fee
structure and wants to renegotiate the fee structure while keeping the client as happy
as before, i.e., the manager should choose a fee structure on the violet line. For per-
formance fees above 20%, we can easily see that the higher the performance fee, the
lower the management fee should be to keep the investor’s value function constant. For
example, an increase of the performance fee from 20% to 30% should be compensated
by a decrease of the management fee from 2% to 1.5%, so that the investor’s expected
utility stays at the same level as it has for the 2% & 20% fee structure. According to
Figure 3.2b, a rational manager will not negotiate a lower performance fee while keeping
the investor’s expected utility level constant, as the manager’s expected utility decreases
in this case.

In contrast to the investor’s value function, the manager’s value function is strictly
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increasing in both m and α. So if an investor insists on decreasing the management
fee, then the manager has to increase the performance fee to maintain his/her expected
utility constant.

Note that the Pareto optimal fees can be also calculated for the traditional fee structure,
namely by solving Problem (PI|M ) for fixed c = 0% and different ṼRUL

M ∈ R. In the
numerical studies done for various combinations of pM ∈ (0, 1) and pI ∈ (0, 1), we
observed that in the universe of traditional fees each Pareto optimal fee has either m∗ =
0% or α∗ = 50%. The fee (2%, 20%) is clearly not Pareto optimal and favors the manager
more than the investor. This is compatible with the investors’ concerns regarding high
fees that may not be justified by the hedge-funds’ performance and the push for a
decrease in management fees given a fixed 20% performance fee.

As already mentioned, in the traditional fee structure the manager always earns at least
the management fee, whereas the investor is not provided with any guarantee regarding
his/her minimal profit or maximal loss. This asymmetry, along with other reasons
such as poor performance of hedge funds in comparison to passive investment vehicles,
animated some hedge funds to start offering first-loss coverage guarantees along with
management and performance fees. But how much are investors better off under the
new fee structure? As market management fees are “converging” to 0%, what is the
trade-off between performance fees and the first-loss coverage guarantee levels?

Figure 3.3: Investor’s iso-utility curves in the first-loss compensation scheme with
m = 0% for iso-utility values ṼI(0%, 50%, 10%) = 2.9342, ṼI(0%, 30%, 10%) = 3.0421,
ṼI(0%, 30%, 20%) = 3.2147.

To get an intuition about answers to these questions, we fix m = 0% and plot several
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iso-utility curves of the investor in Figure 3.3. We see that the trade-off between the
performance fee and the first-loss coverage guarantee is intuitive – the higher performance
fee, the higher the first-loss coverage guarantee should be to maintain the investor’s
expected utility on the same level. Consider, for example, the violet line in Figure
3.3 which corresponds to a relatively popular first-loss fee structure (0%, 50%, 10%).
If the manager decides to decrease the first-loss coverage guarantee from 10% to 5%,
he/she should also decrease the performance fee from 50% to 35% in order to maintain
the investor’s utility level constant. Comparing with Figure 3.2a, we also see that the
percentage gain in the investor’s value function from switching to this fee from the
optimal traditional fee (0%, 20%, 0%) is about 3%. The blue line corresponds to the
performance fee 30% and the first-loss coverage guarantee 10%, which are recommended
for the first-loss scheme in He and Kou (2018). Under this first-loss fee structure, the
investor is further better off, although he/she is still far from his/her maximal expected
utility. Further increase in the first-loss coverage guarantee to 20%, while other fee
parameters are fixed, results in a significant increase in the investor’s value function.
The maximum of the investor’s value function (marked in brown) is attained at α =
13.2%, c = 16.4% and equals 3.2786, which is 15% larger than the expected utility for
the optimal fee in the traditional setting.

Figure 3.4 illustrates the contour plots of the investor’s value function. Each subfigure
contains 50 equidistant contours (thin lines). In each subfigure, two thick lines indicate
the constrained maximum of the investor’s value function w.r.t one of the variables as a
function of another variable given that the value of the third variable is fixed as indicated
in the legend. These lines are related to the constrained optimal m (red), α (purple) and
c (black) respectively. We see in Subfigure 3.4a that the risk-averse investor is willing
to pay a performance fee higher than the minimal one. This differs from the findings
in He and Kou (2018), who discover that the expected utility of a loss-averse investor
is decreasing in the performance fee. If α is low, the manager is not incentivized well
enough to generate attractive returns for the hedge fund. Consequently, the investor is
worse off. Obviously, high performance fees have also a negative impact on the investor’s
terminal wealth. All that leads to a moderate optimal α strictly positive and larger than
its minimal value.

We also observe in Subfigure 3.4a and in Subfigure 3.4b that the investor would negotiate
a moderate first-loss coverage guarantee. Low levels of the first-loss coverage guarantee
(or its absence) are good for the manager. For a fixed management fee, the first-loss
coverage guarantee is an increasing function of the performance fee and vice versa. See
Subfigure 3.4a. However, high levels of the first-loss coverage guarantee motivate the
manager to take less risks, as he/she is responsible for potential losses with his/her own
money. Lower risks are accompanied by lower returns, which, in turn, decrease the
investor’s terminal wealth as well.

In contrast to the investor’s expected utility, the manager’s value function is strictly
increasing in m and α, and strictly decreasing in c. So the manager’s highest expected
utility is attained at m = 5%, α = 50%, c = 0%. To see the trade-off between fee
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(a) m = 2%. (b) α = 20%.

(c) c = 0%. (d) c = 10%.

Figure 3.4: Investor’s value function in the base case.

constituents from the manager’s perspective, we illustrate his/her indifference regions in
Figure 3.5. In Subfigure 3.5a we plot the set of all first-loss fee structures for which the
manager has the same expected utility as he/she does for the fee structure (0%, 20%, 0%).
Consider a situation when the investor insists on having a 20% first-loss coverage guar-
antee. Then the manager has to increase m to 1% and α to 50% to get the same expected
utility as he/she has for the traditional fee structure. Subfigure 3.5b shows the iso-utility
curves of the manager for fixed m = 0%. The isovalues originate from fee structures
mentioned in Djerroud et al. (2016) and He and Kou (2018): ṼM (0%, 30%, 10%) =
2.2085, ṼM (0%, 20%, 0%) = 2.2489, ṼM (0%, 40%, 10%) = 2.3093, ṼM (0%, 50%, 10%) =
2.3983. We see that the traditional fee structure (0%, 20%, 0%) yields a higher expected
utility to the manager (in the base case) than the fee arrangement (0%, 30%, 10%)5.
However, it yields him/her a lower expected utility than the first-loss fee structures

5He and Kou (2018) find that this fee structure often yields higher expected utilities to both loss averse
managers and loss averse investors in a hedge fund with parties money being commingled

61



3 Risk sharing between a hedge-fund manager and an investor

(a) Manager’s iso-utility surface for isovalue

ṼM (0%, 20%, 0%) = 2.2489.
(b) Iso-utility curves of ṼM (0%, α, c) for various
isovalues.

Figure 3.5: Indifference regions of the manager.

(0%, 40%, 10%) and (0%, 50%, 10%). The manager’s expected utility can be improved
further by charging maximal performance fee and offering minimal first-loss coverage
guarantee (see the brown mark). For the manager, the lower the performance fee he/she
charges, the lower first-loss coverage guarantee he/she should offer to keep his/her utility
level constant. For example, assume that the investor being charged by the fee struc-
ture (0%, 50%, 10%) (yellow line) insists on a lower performance fee, for example 40%.
The manager, to preserve his/her expected utility, should decrease the first-loss coverage
guarantee from 10% to 4%.

3.3.4 First-best Pareto optimal fee structures and fee preferences

In Subsection 3.3.3 we have seen that each party has different preferences regarding
fee structures. Next we calculate FBPO fee structures and find the single optimal fee
structure that maximizes the hedge-fund’s Sharpe ratio. For each admissible ṼRUL

M , we
calculate the corresponding FBPO fee structure using the SQP approach with a good
starting point (see Step 4 in the algorithm in Subsection 3.3.1).

Figure 3.6 illustrates the set of FBPO fee structures, the parties’ attainable expected
utilities and the Pareto frontier in the base case. First, consider Subfigure 3.6a and in

particular the plot of the parametric curve K := K
(
ṼRUL
M

)
=

(
m∗

ṼRUL
M

, α∗
ṼRUL
M

, c∗
ṼRUL
M

)
showing FBPO fee structures depending on ṼRUL

M . The subfigure indicates that K(ṼRUL
M )

is continuous w.r.t. ṼRUL
M and has four regions where FBPO fee structures behave

differently w.r.t. changes in the manager’s reservation utility level. In the front end of
the plot of K we see the FBPO fee structure (0%, 14%, 17%) that corresponds to the
manager’s minimal reservation utility level ṼRUL

M = 1.925. We observe that for small
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(a) Set of first-best Pareto optimal
first-loss schemes.

(b) Attainable expected utilities and Pareto
frontier.

Figure 3.6: First best Pareto optimal fee structures and Pareto frontier in the base case.

ṼRUL
M , FBPO fee structures have zero management fee but non-trivial performance fee

and first-loss coverage guarantee. As the manager’s reservation utility level increases,
it is not possible to satisfy his/her participation constraint with zero management fee.
Consequently, FBPO fee structures for moderate values of ṼRUL

M are non-trivial in all
components. For high reservation utility levels of the manager, the optimal management
fee attains its maximal value of 5%. The optimal performance fee is growing and reaches
its maximum as well, whereas the first-loss coverage guarantee is still non-trivial. The
largest ṼRUL

M leads to the FBPO fee structure (5%, 50%, 0%), depicted in the back end
of the plot of K.

Let us now analyze the behavior of each component of FBPO fee structures separately.
Consider the projection (black dots) of the FBPO fee structures on the (m∗, α∗)–plane.
Looking at it from the front left to the rear right, we observe that for increasing ṼRUL

M

the optimal management fee is non-decreasing. In a similar way we verify that the
optimal performance fee is also non-decreasing w.r.t. ṼRUL

M . On the contrary, looking at
the whole plot of K, we find that the optimal first-loss coverage guarantee as a function
of ṼRUL

M is not monotonic. It is increasing up to a certain level that is strictly smaller
than the maximal possible one (c∗

ṼRUL
M

= 26.2% for moderate participation constraint

of the manager ṼRUL
M ≈ 2.2). After that, c∗

ṼRUL
M

decreases with increasing ṼRUL
M . When

ṼRUL
M is large, the highest management and performance fees along with some positive

first-loss coverage guarantee are not satisfactory for the manager. Hence, the only way
the investor could appease the manager’s appetite in such cases would be decreasing the
first-loss coverage guarantee.

We also observe that in the first-loss setting common fees used in the traditional fee
structure (i.e., m ∈ [0%, 2%], α ∈ [15%, 25%], c = 0%) are not Pareto optimal. The
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majority of FBPO fee structures have c∗ ∈ [15%, 25%] and they correspond to the
situations when the manager’s participation condition is moderate, i.e., it is neither too
restrictive nor too slack. The point marked red is the the preferred fee structure. It has a
management fee of 5%, a performance fee of 37.5% and a first-loss coverage guarantee of
26%. Interestingly, this first-loss coverage guarantee is slightly higher than the first-loss
coverage guarantee levels commonly used in the hedge-fund industry (10% − 20%).

Consider now Subfigure 3.6b showing the parties’ attainable expected utilities and the
Pareto frontier. The frontier is colored in accordance with Subfigure 3.6a. The point
marked yellow originates from the fee structure (0%, 20%, 0%), whereas the point colored
in black originates from the fee structure (0%, 30%, 10%), recommended in He and Kou
(2018). We observe that both fee structures are not Pareto optimal in our hedge-fund
model, although the latter scheme yields the parties’ expected utilities much closer to
the Pareto frontier. Note that our hedge-fund model differs from the one considered in
He and Kou (2018) (the manager’s and the investor’s money is commingled, the fund has
a liquidation boundary), which might explain why the black point is not on the efficient
frontier. As before, the red marker corresponds to the preferred fee structure, which the
manager and the investor should eventually agree on in the framework we consider.

3.3.5 Sensitivity analysis of preferred fee structures

In this subsection we explore the impact of various model parameters on the preferred
fee structures. First, we investigate the influence of the risk-aversion parameters pM
and pI on (m̂, α̂, ĉ). The preferred fee structures for pM and pI taking values in the set
{0.45, 0.35, 0.25, −0.25, −1.5, −4} are shown in Table 3.2. The calculated preferred fee
structures show clear patterns.

For a fixed value of pM and decreasing pI , we observe that m̂ is decreasing, α̂ is in-
creasing, ĉ is increasing. Recall from (2.38) that RRAUM

(v) = (1 − pM )v/(v + aM )
and RRAUI

(v) = (1 − pI)v/(v + aI). Hence, a more risk-averse investor prefers a lower
management fee, a higher performance fee, and a larger first-loss coverage guarantee.

For a fixed value of pI and decreasing manager’s risk-aversion parameter pM , we observe
that m̂ has an increasing, α̂ has a decreasing, ĉ has a decreasing trend. So the more
risk-averse the manager is, the higher the management fee, the lower the performance
fee and the lower first-loss coverage guarantee tend to be.

The majority of obtained m̂ are higher than the management fees usually seen in the
industry. The majority of obtained α̂ are close to actually traded performance fees
of 20% − 50% (as part of first-loss fee structures, see, e.g., Djerroud et al. (2016), He
and Kou (2018)). The computed ĉ are usually higher than industry-common first-loss
coverage guarantee levels of 10% − 20%6. This difference may be explained by practical
peculiarities: transaction costs, taxes, or more complex asset prices dynamics.

6See http://www.ogcap.com/benefits-first-loss-firlo-capital/
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,ĉ

)
(i

n
p

er
ce

n
t)

fo
r

va
ri

ou
s

in
te

re
st

ra
te

s
(r

).

γ
=

3
0%

γ
=

40
%

γ
=

50
%

γ
=

60
%

γ
=

70
%

p
M

=
p
I

=
0.

35
(5
.0

0,
3
4.

0
0,

26
.0

0
)

(5
.0

0,
37
.4

9
,2

6.
01

)
(5
.0

0
,4

0.
92
,2

5.
08

)
(5
.0

0,
44
.4

1,
23
.7

8)
(5
.0

0,
44
.0

4,
22
.5

2)
p
M

=
p
I

=
−

1.
5

(4
.9

9,
5
0.

00
,3

0.
0
0)

(4
.7

0
,5

0.
00
,3

0.
00

)
(5
.0

0,
50
.0

0,
20
.0

1)
(5
.0

0,
50
.0

0,
19
.5

1)
(5
.0

0,
50
.0

0,
20
.0

1)

T
a
b

le
3
.4

:
P

re
fe

rr
ed

fe
e

st
ru

ct
u

re
s

(m̂
,α̂
,ĉ
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3 Risk sharing between a hedge-fund manager and an investor

The impact of the interest rate r on the preferred fee structures is shown in Table 3.3.
Here we consider decision makers with the same level of risk aversion and consider two
cases: pM = pI = 0.35 ∈ (0, 1) and pM = pI = −1.5 ∈ (−∞, 0). The former value
of the risk-aversion parameter is motivated in Section 3.3. The latter level of the risk-
aversion parameter, i.e., −1.5, is a compromise between the following two papers. Koijen
(2014) finds that the median level of the RRA coefficient for mutual funds equals 2.43
(p = −1.43), and the mean one is equal to 5.72 (p = −4.72), under the assumption of
power-utility functions. Buraschi et al. (2010) conducts numerical studies with RRA
coefficients 1.5 and 2, which corresponds to p being equal to −0.5 and −1. We observe
that the preferred management fee tends to increase with the interest rate. The preferred
performance fee does not show any monotonic behavior with respect to r and fluctuates
between 35% and 50%. The preferred first-loss coverage guarantee exhibits a decreas-
ing trend. Constant γ along with increasing interest rates mean a better risk-return
profile of the risky asset S1

7. Therefore, with all market parameters being unchanged
but increasing interest rates the manager has higher chances to yield a decent return
for the investor, whence he/she requires a higher management fee for his/her job. Si-
multaneously, with high enough interest rates and good enough risk-return profile of
the hedge-fund’s risky investment opportunity, the investor tends to care less for the
first-loss coverage guarantee, which is why ĉ decreases.

Table 3.4 illustrates the influence of the market price of risk γ on the preferred fee
structures. We observe no trend for the preferred management fee or the preferred per-
formance fee. Interestingly, the preferred first-loss coverage guarantee tends to decrease.
So, the investor is willing to cut down on the first-loss coverage guarantee as the financial
market offers a higher excess return per unit of risk.

Finally, we also investigate numerically the fund’s Sharpe ratio for the manager’s op-
timal strategy corresponding to the preferred first-loss fee structure. In Table 3.5 we
compare the fund’s Sharpe ratio as well as the parties’ expected utilities for the op-
timal terminal fund value and the terminal values of different funds that follow spe-
cific constant-mix strategies. We write V πCM (T ), πCM ∈ {0.25, 0.5, 0.75, 1} for the
fund’s terminal value if the manager follows a constant-mix strategy, where the con-
stant proportion πCM of the budget is invested in the risky asset. We also write

V̂M (V ·(T )) := E
[
UM

(
M(V ·(T )|m̂, α̂, ĉ)

)]
and V̂I(V ·(T )) := E

[
UI

(
I(V ·(T )|m̂, α̂, ĉ)

)]
for some fund’s value V ·(T ) and the preferred fee structure (m̂, α̂, ĉ). In this table, we
also use the notation SR(V ·(T )) to emphasize that the fund’s Sharpe ratio explicitly
depends on the fund’s terminal value but does not explicitly depend on the preferred
fee structure. In contrast, the expected utilities of the parties depend on both the fee
scheme and the fund’s terminal value. We observe that the constant-mix strategies
yield a slightly higher Sharpe ratio than the manager’s optimal (in the sense of Problem
(PM )) trading strategy. However, as anticipated, due to the distribution of the fund’s
terminal value between the parties, the expected utility of the manager is much lower

7r ↑⇒ γσ + r = µ ↑, r ↑⇒ γ−1(µ− r) = σ ↓
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3 Risk sharing between a hedge-fund manager and an investor

for the constant-mix strategies than that of a manager following the optimal trading
strategy. Interestingly, when the manager executes a constant-mix strategy, the investor
has a slightly lower or a comparable expected utility compared to the investor’s expected
utility when the manager follows his/her optimal trading strategy.

Parameters Quantity V ∗(T ) V 1(T ) V 0.75(T ) V 0.5(T ) V 0.25(T )

pM = pI = 0.35 SR(V ·(T )) 34.06% 38.15% 38.73% 39.30% 39.97%

⇒ (m̂, α̂, ĉ) = V̂M (V ·(T )) 2.112 1.635 1.690 1.768 1.853

(5%, 35.5%, 26%) V̂I(V ·(T )) 3.190 3.130 3.137 3.138 3.134

pM = pI = −1.5 SR(V ·(T )) 37.80% 38.15% 38.72% 39.30% 39.97%

⇒ (m̂, α̂, ĉ) = V̂M (V ·(T )) −3.556 −18.988 −12.513 −6.760 −4.426

(4.8%, 50%, 30%) V̂I(V ·(T )) −0.449 −0.450 −0.446 −0.447 −0.449

Table 3.5: Comparison of the fund’s Sharpe ratios as well as parties’ value functions for
the optimal trading strategy and constant-mix trading strategies, given the preferred fee
structure choice.

The hedge-fund’s Sharpe ratio predominantly increases when the manager or the in-
vestor becomes more risk-averse. In each considered combination of the risk-aversion
parameters in Table 3.2, it is greater than the Sharpe ratio of the hedge fund with
the traditional fee structure (0%, 20%, 0%) by about 25 percentage points on average
and greater than the Sharpe ratio originating from the fee structure (0%, 30%, 10%)
by around 12 percentage points on average. The volatility of the hedge fund with the
preferred first-loss scheme is increasing in both pM and pI . On average, the volatility
of the hedge fund with the preferred first-loss fee structure is about 50% lower than
the volatility of the hedge fund with the fee structure (0%, 20%, 0%) and around 17%
lower than the volatility of the hedge fund with the fee structure (0%, 30%, 10%). So the
preferred first-loss schemes significantly decrease the fund’s risk and increase the fund’s
Sharpe ratio.

Pareto optimality of the preferred fee structures does, however, not ensure that both the
manager and the investor are better off when switching a traditional fee structure to a
preferred first-loss scheme. In fact, in all cases from Table 3.2 the investor’s expected
utility is considerably higher than it is for a traditional fee structure (0%, 20%, 0%),
whereas the manager’s expected utility is slightly worse than it is for a traditional
scheme (0%, 20%, 0%). If the hedge-fund manager wants to ensure that he/she only
offers first-loss fee structures yielding an expected utility that is not worse than that
at the traditional fee structure, we recommend to choose the constrained preferred fee
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3 Risk sharing between a hedge-fund manager and an investor

structure in the following way:

max
m,α,c

SR∗(m,α, c);

s.t. (m,α, c) ∈ P Ṽtrad.
M

FBPO;

(3.15)

where P Ṽtrad.
M

FBPO :=
{

(m,α, c) ∈ PFBPO : ṼM (m,α, c) ≥ Ṽtrad.
M

}
, Ṽtrad.

M := ṼM (m̄, ᾱ, 0%)

for a fixed management fee m̄ and a fixed performance fee ᾱ that the manager charged
in the traditional scheme.

Our numerical studies show that the preferred fee structures in the optimization (3.15)
usually have a slightly lower management fee as well as first-loss coverage guarantee and
higher performance fee than the corresponding components of the preferred fee structures
in the optimization (PSR).
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4 Optimal investment under risk
limitation and risk sharing in
insurance

Nobody can really guarantee the
future. The best we can do is size up
the chances, calculate the risks
involved, estimate our ability to deal
with them and then make our plans
with confidence.

Henry Ford II

The focus of this chapter is risk limitation and risk sharing for insurance companies.
They have to manage risks of different nature – financial, longevity-related, reputa-
tional, operational risks, etc. We consider only financial risks in the sequel. Managing
financial risks is of high importance, since insurers have liabilities, which can be long-
term and have a significant impact on the financial health of both policyholders and
insurance companies. Ensuring that assets match liabilities is a complex task where
proper risk limitation and risk sharing is crucial. When it becomes very challenging
for insurers to ensure liabilities, insurance companies tend to decrease liabilities in their
new contracts. This is what could be observed in equity-linked insurance products in
the previous decade. This chapter is a reproduction of Escobar-Anel et al. (2022) with
minor changes.

An equity-linked insurance is a product that has features of both a life insurance policy
and an investment vehicle, since it gives the buyer an opportunity to benefit from the
upside potential of equity markets while being protected against the downside risk. These
products usually have a so-called capital guarantee at the maturity of the contract and/or
at the time of death of the policyholder. Since the financial crisis of 2007-2008, ensuring
capital guarantees in such products has been arduous and problematic for insurance
companies due to low interest rates and strict regulations. As a consequence, global
insurers began decreasing guarantee levels embedded in their products. For instance,
starting in 2021, Allianz provides only 60% to 90% capital guarantee in their new life
insurance products1, although the company maintains old policies that have a non-
negative guaranteed rate of return on all client’s contributions.

1See, e.g., https://www.sueddeutsche.de/wirtschaft/lebensversicherung-allianz-kuenftig-ohne-
beitragsgarantie-1.5056917
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4 Optimal investment under risk limitation and risk sharing in insurance

In theory, the capital guarantee can be achieved via a Constant Proportion Portfolio
Insurance (CPPI) strategy or an Option-Based Portfolio Insurance (OBPI) strategy. In
a CPPI strategy, the capital guarantee is ensured via investing a large proportion of the
portfolio value in bonds. Also, a CPPI-fund can be combined with another riskier fund
to improve portfolio performance while still reaching the guarantee. This approach is
implemented, e.g., in the so-called Drei-Topf-Hybrid2 (DTH) products Hambardzumyan
and Korn (2019). In contrast to CPPI-investors, OBPI-investors secure the guarantee
on the invested capital by holding a put option on their portfolio. OBPI strategies
require the managed portfolio and the portfolio underlying the put option to be equal.
An example of an OBPI-based product is “ERGO Rente Garantie” launched in early
2010s. Purchasing this equity-linked product, clients can choose a guarantee of either
80% or 100% of their contributions. According to the product description3, clients’
contributions are invested in fixed-income assets as well as a target volatility fund (TVF)
and are reinsured by Munich Re4.

Declining capital guarantees and the scarcity of academic literature analyzing the role
of reinsurance in the design of life-insurance products with capital guarantees motivate
our research. In this chapter, we answer the following questions in the context of equity-
linked insurance products with capital guarantees:

1. When is it beneficial for an insurance company to share its financial risk with a
reinsurance company?

2. How to find the optimal investment and reinsurance strategy?

3. What is the impact of the optimal risk-sharing strategy on capital guarantee levels?

When answering these questions, we take into account an important practical aspect
of reinsurance – not any risk can be reinsured, but only the risk that is acceptable to
the reinsurance company. An insurance company may follow an individual investment
strategy that is quite risky, e.g., to deliver higher returns to their customers and share-
holders. However, the reinsurance company may not be willing to reinsure the insurer’s
individual investment strategy due to its high riskiness, because the insurer does not
want to disclose its strategy, or because the reinsurer only wants to sell reinsurance
based on a standard market index. To model this situation, we assume that reinsur-
ance is possible only for a subset of available financial assets and a subset of admissible
investment strategies of the insurer5. So the reinsurer sells protection only on specific
portfolios or indices whose risks it understands and/or can control sufficiently well. A
popular example is when the reinsurance is on a well-known index and the actual in-
vestment opportunity for the insurer is based on an own strategic portfolio or on an

2In English “Three-Pot-Hybrid”
3See Slide 13 in https://www.yumpu.com/de/document/view/22247401/expertenwissen-zur-ergo-r

ente-garantie
4See https://www.focus.de/finanzen/steuern/ergo-ergo-rente-garantie_id_3550999.html
5This is different from an OBPI strategy where the put option’s underlying is the actually managed
portfolio

70

https://www.yumpu.com/de/document/view/22247401/expertenwissen-zur-ergo-rente-garantie
https://www.yumpu.com/de/document/view/22247401/expertenwissen-zur-ergo-rente-garantie
https://www.focus.de/finanzen/steuern/ergo-ergo-rente-garantie_id_3550999.html


4 Optimal investment under risk limitation and risk sharing in insurance

exchange-traded fund that is not equal to the index. In another example, the insurer
would invest part of its money beyond the reinsured portfolio in a riskier fund to have
more upside potential.

For simplicity, we consider one insurance company and one reinsurance company. The
insurer can invest clients’ money in a riskless asset as well as a risky asset and can
purchase a reinsurance contract. The reinsurance contract is modelled as a put option
on a constant-mix portfolio consisting of a portfolio of bonds and a broad market index
that is highly correlated with but different from the individual portfolio of the insurer.
We assume that the reinsurance contract is continuously traded and liquid, as it is
written on a liquid asset like futures on a broad market index, not on the insurer’s
individual portfolio or investment strategy. This is more realistic than the assumption
of a continuously traded reinsurance on the portfolio of the insurer as assumed in most
other papers studying dynamic investment-reinsurance problems (e.g., Bai and Guo
(2010), Liang et al. (2011), Guan and Liang (2016), and others).

The insurer maximizes its expected utility from terminal wealth given two constraints.
First, the probability that the terminal portfolio value is below the capital guarantee to
the client must be less than or equal to some threshold probability, i.e., a Value-at-Risk
(VaR) constraint. Second, the insurer cannot have negative positions in risky assets and
reinsurance, i.e., a no-short-selling constraint.

The above-mentioned portfolio optimization problem has three aspects different from
standard settings: a traded put option (reinsurance), a no-short-selling constraint and
a VaR-constraint. We solve our optimization problem in three steps. First, we link the
problem in the original market with a reinsurance contract to a problem in the market
containing only basic assets without optional features. This approach is inspired by
Korn and Trautmann (1999), where it is applied to the optimal control of a portfolio
including stock options, and Hambardzumyan and Korn (2019), where it is used in
the optimal control of a DTH product. Second, we transform the optimization problem
with both VaR- and allocation constraints in the financial market with basic assets to the
one with only VaR-constraint but in an auxiliary financial market, following Cvitanic
and Karatzas (1992). Third, we transform that VaR-constrained problem to a VaR-
unconstrained one and solve the latter using ideas from Basak and Shapiro (2001) and
Kraft and Steffensen (2013).

After solving the original investment-reinsurance problem in a semi-closed form, we show
analytically when reinsurance is needed, i.e., when the investment in reinsurance of the
optimal strategy is positive. Next, we calibrate our model to the German market and
conduct a suboptimality analysis. There, we analyze the optimal investment-reinsurance
strategy, the optimal investment strategy without reinsurance and a constant-mix strat-
egy representative for an average life insurance company. First, we compare these strate-
gies with respect to wealth-equivalent utility loss studied in Larsen and Munk (2012).
Second, we introduce a novel suboptimality measure — the guarantee-equivalent utility
gain — and compare strategies with respect to it. After the suboptimality analysis, we
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investigate the impact of model parameters on the investment strategies and also give
insights into measuring the level of reinsurance in the insurer’s portfolio.

In the following overview of relevant literature sources, we distinguish between two
streams – more applied sources with focus on insurance and more theoretical ones with
focus on portfolio optimization. In the former stream of literature, Müller (1985) de-
rived the optimal investment-reinsurance strategy of a pension fund in a static portfolio-
optimization framework with an exponential utility function and no constraints on ter-
minal wealth or allocation. In a dynamic portfolio optimization setting, the literature on
reinsurance is mainly focused on the insurers’ overall surplus processes and not on spe-
cific products or investment portfolios (e.g., Luo et al. (2008), Bai and Guo (2010), Liang
et al. (2011), Li et al. (2014)). To the best of our knowledge, there are no publications on
the optimal dynamic investment-reinsurance strategies for life insurance products with
capital guarantees. Our research fills this gap.

Several papers study optimal investment strategies for life insurance products with capi-
tal guarantees in financial markets without reinsurance opportunities. We mention only
the most recent. Chen et al. (2019) analyze optimal investment strategies when the
capital guarantee is embedded in a piece-wise linear payoff of the decision maker such
that the whole payoff is fairly priced. Dong and Zheng (2019) and Dong and Zheng
(2020) consider loss-averse insurers and derive optimal investment strategies under both
no-short-selling and terminal portfolio value constraints. In the former paper, the capital
guarantee is modelled as a hard lower bound on the terminal portfolio value, whereas in
the latter paper the guaranteed amount is part of the VaR-constraint. Hambardzumyan
and Korn (2019) is centered around DTH products in the expected utility framework.
The researchers consider the insurer who can invest in a risk-free bank account, a CPPI-
fund as well as a free fund. Imposing also a capital guarantee as a hard lower bound
on the terminal portfolio value, the authors derive the optimal trading strategies. In
our framework, the insurer can purchase reinsurance instead of a CPPI fund, has a
no-short-selling constraint and a VaR-constraint, which is more general than the strict
lower bound constraint.

Within the literature focusing on portfolio optimization, Merton (1969) and Merton
(1971) are seminal papers where the classic continuous-time dynamic portfolio opti-
mization problem of a utility-maximizing investor in a Black-Scholes market was first
considered and solved in a setting without constraints on terminal wealth and invest-
ment strategies. Since then those papers have been extended in a myriad of different
ways. A fruitful branch is the addition of constraints restricting an investor’s portfolio
choice. One of the most natural constraints is a strict lower bound on the (terminal)
portfolio wealth, which was considered, e.g., in Teplá (2001) and Korn (2005) or a prob-
abilistic lower bound, also called a VaR constraint, which was considered, e.g., in Basak
and Shapiro (2001) and Boyle and Tian (2007). A combination of these two constraints
has been analyzed in Chen et al. (2018a), where the authors derive the optimal in-
vestment strategies for a utility maximization problem under a VaR constraint and a
minimum insurance constraint, relevant for life insurance companies. Regulations and
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product peculiarities in the insurance industry have motivated scientists to analyze other
practically relevant and mathematically interesting portfolio optimization problems with
terminal wealth constraints. For example, a utility maximization problem with multiple
VaR constraints has been solved in Chen et al. (2018b). Chen et al. (2019) derive the
optimal investment strategies for a portfolio optimization problem under a fair-pricing
constraint. This constraint ensures that neither the issuer of a life insurance contract (a
life insurance company maximizing its expected utility) nor the holder of a life insurance
contract (policyholder) systematically benefits from the contract of interest. All sources
on constrained portfolio optimization, mentioned in this paragraph, do not consider
allocation constraints but only terminal wealth constraints.

Constraints on the terminal wealth can be linked to a corresponding unconstrained port-
folio optimization problem through the addition of a suitable Lagrange multiplier to the
terminal utility, which is solvable via the martingale approach. This link was investi-
gated by Kraft and Steffensen (2013) using Hamilton-Jacobi-Bellman (HJB) equations
and Black-Scholes partial differential equations (PDEs), which allow them to express the
optimal terminal wealth as a function of the optimal unconstrained terminal wealth. The
methodology developed in Kraft and Steffensen (2013) is not designed for constraints
on portfolio allocation such as no-short-selling constraints, non-traded asset constraints,
no-borrowing constraints or other general convex constraints on the allocation. However,
by embedding an allocation-constrained portfolio optimization problem into a family of
unconstrained portfolio optimization problems in different auxiliary markets, Cvitanic
and Karatzas (1992) were able to derive closed-form solutions for constant relative risk
aversion (CRRA) utility functions by solving the HJB PDE for an associated dual opti-
mization problem.

Thus far, combinations of constraints on terminal wealth and portfolio allocation have
rarely been studied in the existing literature due to the increased complexity of the asso-
ciated HJB PDEs. Exceptions to this can be found in the work of Bardhan (1994), Dong
and Zheng (2019), Escobar et al. (2019) as well as Dong and Zheng (2020). Specifically,
in Dong and Zheng (2020) the authors consider a portfolio optimization problem of a
pension fund manager with S-shaped utility, convex cone allocation constraints as well
as VaR constraints motivated by a defined contribution pensions plan. They remove the
VaR constraint by adding a Lagrange multiplier to the utility function and concavify
the resulting function. For every Lagrange multiplier, the resulting portfolio optimiza-
tion problem is allocation-constrained and wealth-unconstrained and can thus be solved
via the HJB PDE of the associated dual problem, as shown in Bian et al. (2011). Fi-
nally, the authors of Dong and Zheng (2020) show that the optimal Lagrange-multiplier
exists such that the optimal solution for the original VaR-constrained problem can be
obtained by this methodology. The similarity of their and our optimization problems
lies in the simultaneous VaR constraint and allocation constraint, whereas the difference
lies in utility functions6 and traded assets. Although we consider a similar optimization

6Our solution approach is also applicable to an S-shaped utility used in Dong and Zheng (2020). In this
case, an additional step would be necessary – the construction of the concave envelope (see Definition
3.2.1) of the S-shaped utility. For more information on concave envelopes, see, e.g., Reichlin (2012).
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problem as in Dong and Zheng (2020), our solution approach is different, providing a
new path to solving these challenging problems. We build on the results in Basak and
Shapiro (2001) to show that in a class of allocation-unconstrained, but VaR-constrained
portfolio optimization problems the optimal solution can be expressed as a function of
the VaR-unconstrained optimal terminal wealth, which is in the spirit of the ideas pre-
sented in Kraft and Steffensen (2013). Then, we show that the same auxiliary market
as in Cvitanic and Karatzas (1992) admits the optimal solution to the original problem.
This way we avoid determining the solution to the dual HJB PDE explicitly, which in
some cases may not be viable. Further, we demonstrate that the optimal terminal port-
folio value of the allocation- and VaR-constrained portfolio optimization problem can
be expressed as a function of the optimal terminal wealth of the allocation-constrained
and wealth-unconstrained portfolio optimization problem, i.e., the derivative structure
proposed in Kraft and Steffensen (2013) is preserved under allocation constraints.

Next we summarize the scientific contributions of this chapter to the existing literature.
This summary is organized in two parts: contributions related to the actuarial strand of
literature and ones related to theoretical portfolio-optimization literature. In the realm
of actuarial literature, first, we design in Section 4.1 a realistic and workable framework
for finding optimal investment-reinsurance strategies for equity-linked insurance prod-
ucts with capital guarantees. The framework combines put options, regulatory VaR and
no-short-selling constraints, and a separation between insurable and reinsurable funds.
Second, we detect in Proposition 4.2.7 market conditions and the asset manager’s pro-
ficiency, for which (partial) reinsurance of the capital guarantee is advantageous. In
particular, we find that reinsurance is optimal when the risky asset in the insurer’s in-
vestment portfolio has a high correlation with and has a higher Sharpe ratio than the
reinsurable asset. Third, we establish in Subsection 4.3.2 that optimal reinsurance signif-
icantly increases capital guarantees, while slightly decreasing product costs. In a typical
example, a 10-year equity-linked insurance product that follows an optimal investment
strategy, uses no reinsurance and offers a terminal guarantee of 100% (equivalent to 0%
annualized guaranteed return) of the client’s initial endowment can be replaced by a
product that follows an optimal investment-reinsurance strategy with a terminal guar-
antee of 110% (i.e., 0.96% annualized guaranteed return) of the initial capital. This is
with no loss in the insurer’s expected utility. Moreover, our proposal allows the insurer
to guarantee 128% (equivalent to approximately 2.5% annualized guaranteed return) of
the client’s initial endowment without any decrease in the insurer’s expected utility in
comparison to the one obtained by a constant-mix 85% bonds and 15% stocks strategy,
which is representative of investment strategies of life insurers.

As for our contribution to portfolio-optimization literature, we explicitly solve the port-
folio optimization problem with simultaneous VaR-constraint and no-short-selling con-
straint in a financial market with a traded put option on a well-known portfolio. In
particular, we show in Propositions 4.2.1 and 4.2.2 how to deal with a traded put option
and in Proposition 4.2.6 how to solve the VaR-constrained and allocation-constrained
portfolio-optimization problem. The methodology we present can be adapted to other
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types of terminal-wealth constraints (e.g., an expected shortfall constraint), other types
of allocation constraints (e.g., specific assets are not allowed to be traded), and other
derivative-like traded assets (e.g., a call option, an OBPI fund). We also propose in
Equation (4.27) an intuitive way of quantifying the benefit of following the optimal
strategy instead of suboptimal ones in terms of the capital guarantee.

The remainder of this chapter is organized as follows. In Section 4.1 we describe for-
mally the optimization problem of the insurer selecting its investment and risk-sharing
strategies. The solution to this problem is presented in Section 4.2. In Section 4.3 we
calibrate our model parameters to the German market and conduct numerical studies.
First, we conduct a suboptimality analysis of the strategies with respect to the initial
wealth as well as the capital guarantee. Second, we calculate numerically the sensitivity
of the optimal investment-reinsurance strategy with respect to the model parameters.
In Appendix B.1, we provide the proofs of the main theoretical results. Appendix B.2
contains auxiliary theoretical results and their proofs.

4.1 Problem setting

We consider the basic market model that was introduced in Section 2.1 and set n = 2.
For convenience, we explicitly state the price dynamics of the basic assets:

dS0(t) = S0(t)rdt bank-account

dS1(t) = S1(t)(µ1dt+ σ1dW1(t)) non-reinsurable fund

dS2(t) = S2(t)(µ2dt+ σ2(ρdW
Q
1 (t) +

√
1 − ρ2dWQ

2 (t)) reinsurable fund

(4.1)

with ρ ∈ (−1, 1) and other parameters satisfying conditions stated in Section 2.1. In this
market, S1 models a risky fund in the individual investment strategy of an insurance
company, whereas S2 models a risky fund that a reinsurance company can sell protection
on. As mentioned in the motivation section, the fund in the insurer’s individual strategy
is not equal to what the reinsurer is willing to or is able to reinsure, e.g., because in
practice the insurer’s strategy can be considered too risky by the reinsurer.

We refer to this market as a linear market, since the value of any portfolio consisting of
S0, S1, S2 is linear with respect to the prices of basic assets.

Consider three parties in the market: a client, an insurance company (insurer), and
a reinsurance company (reinsurer). In this chapter, the main focus is on the insurer,
and the other two parties are considered implicitly without equipping them with utility
functions, investment strategies, etc. The insurance company receives at t = 0 an initial
endowment by v0 > 0 from a representative client, invests this money on the client’s
behalf, and promises to pay back to the client at time T at least the capital guarantee
GT > 0.
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We assume that only constant-mix (CM) portfolios can be reinsured. This choice is
motivated by the equivalence of constant-mix strategies and target-volatility strategies
in a Black-Scholes market. Recall that the reinsurable risky portfolio in “ERGO Rente
Garantie” is a target volatility fund. For CM strategies, the reinsurer can evaluate
sufficiently well the potential loss in advance and can easily price it. So for πCM

B ∈ [0, 1],
we denote by πB(t) = (0, πCM

B )⊤, t ∈ [0, T ], the relative portfolio process related to the
risky assets in the CM strategy that the reinsurer can reinsure via a put option. Under
this strategy, the proportion of wealth invested in S0 equals 1−πCM

B , t ∈ [0, T ], whereas
the proportion of wealth invested in S2 equals πCM

B , t ∈ [0, T ]. The dynamics of the
corresponding CM portfolio value is given by:

dV v0,πB (t) = (1 − πCM
B )V v0,πB (t)

dS0(t)

S0(t)
+ πCM

B V v0,πB (t)
dS2(t)

S2(t)

= V v0,πB (t)((r + πCM
B (µ2 − r))dt

+ πCM
B σ2(ρdW

Q
1 (t) +

√
1 − ρ2dWQ

2 (t)).

(4.2)

Let Put(t) be the fair price at time t, t ∈ [0, T ], of a put option with the payoff
(GT − V v0,πB (T ))+. Since the financial market of basic assets is complete and the price
of a put option is once continuously differentiable w.r.t. time and twice continuously
differentiable w.r.t. the initial price of the underlying asset, we can apply Theorem 2.6
in Korn and Trautmann (1999) and get that the SDE describing the price dynamics of
the put option:

dPut(t) =
∂Put(t)

∂V v0,πB (t)︸ ︷︷ ︸
delta hedge

dV v0,πB (t) +

Put(t)
S0(t)

−
V v0,πB (t) ∂Put(t)

∂V v0,πB (t)

S0(t)


︸ ︷︷ ︸

money left

dS0(t). (4.3)

The delta-hedge of the put option on the CM portfolio is well-know and given by:

∂Put(t)

∂V v0,πB (t)
= Φ(d+) − 1, (4.4)

where
d+ := d1(t, V

v0,πB (t), GT , r, π
CM
B σ2)

with d1(·) defined in (2.17).

Using (4.2), (4.3) and (4.4), we get the dynamics of the value of the reinsurance (put
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option) in terms of its basic underlying assets:

dPut(t) = (Φ(d+) − 1)V v0,πB (t)((r + πCM
B (µ2 − r))dt+ πCM

B σ2(ρdW
Q
1 (t)

+
√

1 − ρ2dWQ
2 (t)))

+

(
Put(t)

S0(t)
− V v0,πB (t)(Φ(d+) − 1)

S0(t)

)
S0(t)rdt

=
(
(Φ(d+) − 1)V v0,πB (t)πCM

B (µ2 − r) + rPut(t)
)
dt

+ (Φ(d+) − 1)V v0,πB (t)πCM
B σ2ρdW

Q
1 (t)

+ (Φ(d+) − 1)V v0,πB (t)πCM
B σ2

√
1 − ρ2dWQ

2 (t).

To sum up, the insurer can invest in a risk-free asset S0, a risky asset S1, and a reinsur-
ance (put option) Put(t) with the underlying V v0,πB (t) and strike GT . We refer to the
market consisting of S0, S1, Put as a non-linear market, since herein the portfolio value
is in general a non-linear function w.r.t. the prices of the basic assets S0, S1, S2.

Let π̄(t) = (π̄1(t), π̄2(t))
⊤, t ∈ [0, T ], be the insurer’s relative portfolio process with

respect to assets S1(t), Put(t), with π̄0(t) = 1− π̄1(t)− π̄2(t), t ∈ [0, T ]. Let φ̄(t) be the
corresponding trading strategy at t ∈ [0, T ], i.e., number of bonds, shares or reinsurance
contracts. The portfolio value has the following dynamics:

dV̄ v0,π̄(t) = (1−π̄1(t)−π̄2(t))
V̄ v0,π̄(t)

S0(t)
dS0(t)+π̄1(t)

V̄ v0,π̄(t)

S1(t)
dS1(t)+π̄2(t)

V̄ v0,π̄(t)

Put(t)
dPut(t)

with V̄ v0,π̄(0) = v0. Note that this SDE is different from the SDE (2.7), because the
put option is continuously traded instead of S2. The bar in the expressions is used to
indicate this.

Similarly to the relation (2.6), the relative portfolio process and the trading strategy in
the insurer’s investment-reinsurance universe are linked in the following way:

φ̄0(t) =
π̄0(t)V̄

v0,π̄(t)

S0(t)
, φ̄1(t) =

π̄1(t)V̄
v0,π̄(t)

S1(t)
, φ̄2(t) =

π̄2(t)V̄
v0,π̄(t)

Put(t)
, (4.5)

where V̄ v0,π̄(t) is the value of the insurer’s portfolio at time t ∈ [0, T ].

Analogously, let π(t) = (π1(t), π2(t))
⊤, t ∈ [0, T ], be the relative portfolio processes

w.r.t. assets S1(t), S2(t), with π0(t) = 1−π1(t)−π2(t), t ∈ [0, T ], and φ(t), t ∈ [0, T ], be
the corresponding trading strategy. Then it follows from (2.7) that the portfolio value
in the financial market consisting of S0, S1, S2 has the following dynamics:

dV v0,π(t) = (1−π1(t)−π2(t))
V v0,π(t)

S0(t)
dS0(t)+π1(t)

V v0,π(t)

S1(t)
dS1(t)+π2(t)

V v0,π(t)

S2(t)
dS2(t)

with V v0,π(0) = v0.
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We assume that the insurer has a power-utility function as per (2.39). The insurer
has to fulfill a Value-at-Risk (VaR) constraint, which is widely used in the life insurance
literature (see, e.g., Dong and Zheng (2020), Guan and Liang (2016), Nguyen and Stadje
(2020)) and is motivated by solvency regulations and the management rules of insurance
companies. We denote by ε ∈ [0, 1] the probability of not achieving a guarantee by the
insurer.

We also add a no-short-selling constraint to the insurer’s optimization problem. The
motivation for it is twofold. First, shorting reinsurance is against the nature of the
reinsurance business. The no-short-selling constraint on the reinsurance prevents the
insurer from using reinsurance for speculation purposes. Second, shorting assets is quite
uncommon for insurance companies due to regulations (see Dong and Zheng (2020)).

Define:

Āπ̄
u(v0) :=

{
π̄ =

(
(π̄1(t), π̄2(t))

⊤
)
t∈[0,T ]

∣∣∣∣ π̄ is prog. meas. and self-financing,

V̄ v0,π̄(t) ≥ 0 Q-a.s.∀t ∈ [0, T ],

∫ T

0
||π̄(t)V̄ v0,π̄(t)||2 dt <∞Q-a.s.

}
;

C̄V̄ (ε) := {V̄ v0,π̄(T )|Q
(
V̄ v0,π̄(T ) < GT

)
≤ ε};

C̄π̄ := [0,+∞) × [0,+∞),

where “prog. meas.” stands for “progressively measurable”. Then the set of the insurer’s
admissible constrained relative-portfolio processes w.r.t. S1 and Put is given by:

Āπ̄
c

(
v0, C̄V̄ (ε), C̄π̄

)
:=
{
π̄ ∈ Āπ̄

u(v0) | V̄ v0,π̄(T ) ∈ C̄V̄ (ε), π̄(t) ∈ C̄π̄ Q-a.s. ∀ t ∈ [0, T ]
}
.

Note that Āπ̄
c

(
v0, C̄V̄ (1),R2

)
= Āπ̄

u(v0). The optimization problem of the insurer under
the no-short-selling constraint and VaR constraint is as follows:

max
π̄

E
[
U(V̄ v0,π̄(T ))

]
s.t. π̄ ∈ Āπ̄

c

(
v0, C̄V̄ (ε), C̄π̄

)
. (P̄ε,C̄π̄

)

The notation
(
P̄ε,C̄π̄

)
indicates that control variables in this optimization problem are

relative portfolio processes w.r.t. assets S0, S1, Put, there is a VaR-type terminal wealth
constraint with probability ε and there is an investment strategy constraint π̄ ∈ C̄π̄.
Special cases of this notation are

(
P̄1,C̄π̄

)
, i.e., the optimization problem does not have a

terminal wealth constraint, and
(
P̄0,C̄π̄

)
, i.e., the optimization problem has a hard lower

bound, also known as the portfolio insurance constraint.
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4.2 Solution to the optimization problem

In this section, we first provide an overview of our approach to solving (P̄ε,C̄π̄
). In the

solution procedure, we make several transformations of the problem eventually linking
the solution to the original problem and the solution to a simpler problem that has nei-
ther terminal-wealth constraints nor allocation constraints. After the general overview,
we describe the transformations in detail, each addressing a specific challenge of the op-
timization problem: reinsurance, no-short-selling constraint, VaR constraint. At the end
of this section, we answer one of the main questions of our chapter – in which situations
is it optimal for the insurer to buy reinsurance?

We solve Problem (P̄ε,C̄π̄
) as follows. First, we deal with reinsurance by transforming the

original problem with traded reinsurance to an allocation-constrained VaR-constrained
problem in the financial market with basic assets S0, S1, S2. Second, we tackle the no-
short-selling constraint by transforming the problem from the first step to an allocation-
unconstrained VaR-constrained problem in an auxiliary financial market of basic assets.
Third, we solve the allocation-unconstrained VaR-constrained problem from the second
step and use it to recover the solution to the original problem. Figure 4.1 schematically
illustrates our approach7.

Figure 4.1: Schematic representation of the solution procedure for Problem (P̄ε,C̄π̄
).

7New elements of notation are explained in the corresponding subsections of Section 4.2
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4.2.1 Relation between portfolios in non-linear and linear markets

The next proposition links the dynamics of a portfolio that consists of S0, S1, Put to the
dynamics of a portfolio of the basic assets S0, S1, S2.

Proposition 4.2.1. If π and π̄ satisfy the following relation:
π̄1(t) = π1(t);

π̄2(t) = π2(t)
Put(t)

πCM
B V v0,πB (t)(Φ(d+) − 1)

,
(4.6)

then:
V̄ v0,π̄(t) = V v0,π(t) ∀t ∈ [0, T ] Q− a.s.. (4.7)

Proof. See Appendix B.1.

For convenience, we denote:

Ψ(t) :=

(
1 0

0 Put(t)

πCM
B V v0,πB (t)(Φ(d+)−1)

)
, t ∈ [0, T ]. (4.8)

Observe that:

∀ t ∈ [0, T ], ∀
(
π̄1(t)
π̄2(t)

)
∈ C̄π̄ :

Ψ−1(t)

(
π̄1(t)
π̄2(t)

)
=

(
π̄1(t)

π̄2(t)πCM
B V v0,πB (t)(Φ(d+)−1)

Put(t)

)
∈ [0,∞) × (−∞, 0].

(4.9)

Therefore, we define:

CV (ε) := {V v0,π(T ) |Q (V v0,π(T ) < GT ) ≤ ε};

Cπ := [0,∞) × (−∞, 0];

Aπ
c (v0, CV (ε), Cπ) := {π ∈ Aπ

u(v0) |V v0,π(T ) ∈ CV (ε), π(t) ∈ Cπ Q-a.s. ∀ t ∈ [0, T ]} ,

where Aπ
u(v0) is the set of admissible unconstrained relative-portfolio processes for the

initial wealth v0, as per Definition 2.1.4. Consider the following optimization problem
in the market with basic assets S0, S1, S2:

max
π

E
[
U(V v0,π(T ))

]
s.t. π ∈ Aπ

c (v0, CV (ε), Cπ) (Pε,Cπ)
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The next proposition links the solution to the original Problem (P̄ε,C̄π̄
) and the solution

to the transformed Problem8 (Pε,Cπ).

Proposition 4.2.2. Let π∗ be the optimal solution to Problem (Pε,Cπ). Then the port-
folio process:

π̄∗(t) := Ψ(t)π∗(t)

is the solution to Problem (P̄ε,C̄π̄
), where Ψ(t) is the transformation matrix from (4.8).

Proof. See Appendix B.1.

Due to Proposition 4.2.2, we focus on solving (Pε,Cπ) in the sequel of this chapter.

4.2.2 Solving the transformed problem in the market with basic assets

We deal with the additional allocation constraints and VaR constraints on terminal
wealth by borrowing and combining two popular approaches from the literature: the
auxiliary market approach from Cvitanic and Karatzas (1992) as well as the idea of
using option-like terminal payoffs on the unconstrained terminal wealth to eliminate ter-
minal wealth constraints from Kraft and Steffensen (2013). This is how we are going to
proceed. First, we extend the auxiliary market framework from Cvitanic and Karatzas
(1992) to our setting and derive an optimality condition, which links the solutions of a
family of wealth-constrained and allocation-unconstrained portfolio optimization prob-
lems (P ν

ε ) to the solution of the wealth- and allocation-constrained portfolio optimization
problem (Pε,Cπ). Second, we use the results from Basak and Shapiro (2001) to derive the
solutions to the wealth-constrained and allocation-unconstrained portfolio optimization
problems (P ν

ε ). Third, we find the optimal auxiliary market Mν∗ , compute the corre-
sponding optimal portfolio and verify its optimality for the primal problem (Pε,Cπ) via
the previously derived optimality condition.

Auxiliary market with VaR- and allocation constraints

In the literature, the classic approach to portfolio optimization under the presence of al-
location constraints is the auxiliary market approach from Cvitanic and Karatzas (1992).
Despite the presence of the additional VaR-constraints, the concept of auxiliary market
proves to be vital in solving (Pε,Cπ). For setting up the auxiliary markets, we need to
introduce the support function

δ(x) = − inf
y∈Cπ

(
x⊤y

)
. (4.10)

8For other allocation constraints C̄π̄ in the original Problem (P̄ε,C̄π̄
), e.g., C̄π̄ = [0, a]× [0, a] with fixed

a > 0, the allocation constraint Cπ in the transformed Problem (Pε,Cπ ) may become stochastic.
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In our setting, with Cπ = [0,∞) × (−∞, 0], the infimum in (4.10) is attained by y = 0,
if x ∈ Cπ, and is −∞ otherwise. Hence, δ(x) = 0 ∀x ∈ Cπ.

Further, we introduce the class of R2-valued dual processes D:

D :=

{
ν =

(
(ν1(t), ν2(t))

⊤ )
t∈[0,T ]

∣∣∣ν progressively measurable,

E
[∫ T

0
∥ν(t)∥2 dt

]
<∞, E

[∫ T

0
δ(ν(t))dt

]
<∞

}
.

The second integrability condition implies that ν(t) ∈ Cπ Q⊗L[0, T ]-a.s., L[0, T ] denot-
ing the Lebesgue measure on t ∈ [0, T ]. In particular, every constant process with value
in Cπ, from now on referred to as dual vector, is contained in D.

For each ν ∈ D, we define the auxiliary market Mν , where the assets Sν
0 , S

ν
1 and Sν

2

follow the dynamics

dSν
0 (t) := Sν

0 (t)
(
r + δ(ν(t))

)
dt = Sν

0 (t)rdt;

dSν
1 (t) := Sν

1 (t)
((
µ1 + ν1(t) + δ(ν(t))

)
dt+ σ1dW

Q
1 (t)

)
= Sν

1 (t)
(
(µ1 + ν1(t))dt+ σ1dW

Q
1 (t)

)
;

dSν
2 (t) := Sν

2 (t)
((
µ2 + ν2(t) + δ(ν(t))

)
dt+ σ2(ρdW

Q
1 (t) +

√
1 − ρ2)dWQ

2 (t)
)

= Sν
2 (t)

(
(µ2 + ν2(t))dt+ σ2(ρdW

Q
1 (t) +

√
1 − ρ2)dWQ

2 (t)
)
.

(4.11)

In Mν , the market price of risk and the pricing kernel are stochastic processes given
by:

γν(t) = σ−1(µ+ ν(t) − r1112), t ∈ [0, T ]; (4.12)

Z̃ν(t) = exp

(
−rt− 0.5

∫ t

0
||γν(s)|2 ds−

∫ t

0
γ⊤ν (s) dWQ(s)

)
, t ∈ [0, T ]. (4.13)

As we will see later, it is sufficient for our problem to consider dual vectors ν ∈ Cπ
9.

For such cases the market price of risk and the pricing kernel are simplified to

γν = σ−1(µ+ ν − r1112), Z̃ν(t) = exp
(
−
(
r + 0.5||γν ||2

)
t− γ⊤ν W (t)

)
, t ∈ [0, T ] (4.14)

9Note that for any dual vector ν ∈ Cπ the market Mν is a two-dimensional Black-Scholes market
with deterministic market coefficients. In particular, M(0,0)⊤ is the standard market with assets
(S0, S1, S2).

82



4 Optimal investment under risk limitation and risk sharing in insurance

and Mν admits a unique risk-neutral probability measure Q̃ν
10 with density

dQ̃ν

dQ

∣∣∣∣∣
F(T )

:= Zν(T ) := exp
(
−0.5||γν ||2T − γ⊤ν W

Q(T )
)
.

The asset Sν
0 represents the bank account, whereas the assets Sν

1 and Sν
2 represent

the fund and market index from our original setting but with partially changed drift
coefficients. Clearly, changing the drift coefficients of the basic assets in Mν has an
effect on the wealth process of an investor trading in Mν . Indeed, it is straightforward
to show that the wealth process V v0,π

ν (T ), corresponding to trading in Mν according to
π with initial wealth v0, satisfies the SDE

dV v0,π
ν (t) = (1 − π(t)⊤1112)

V v0,π
ν (t)

Sν
0 (t)

dSν
0 (t) + π1(t)

V v0,π
ν (t)

Sν
1 (t)

dSν
1 (t) + π2(t)

V v0,π
ν (t)

Sν
2 (t)

dSν
2 (t)

= (1 − π(t)⊤1112)
V v0,π
ν (t)

S0(t)
dS0(t) + π1(t)

V v0,π
ν (t)

S1(t)
dS1(t) + π2(t)

V v0,π
ν (t)

S2(t)
dS2(t)

+ V v0,π
ν (t)

(
ν(t)⊤π(t)

)︸ ︷︷ ︸
≥0, if π(t)∈Cπ

dt,

(4.15)

which is the same SDE as in the original market, but with an additional drift term. Due
to ν(t) ∈ [0,∞)×(−∞, 0] = Cπ Q⊗L[0, T ]-a.e., the additional drift of the wealth process
V v0,π
ν in Mν is guaranteed to be non-negative if π(t) ∈ Cπ Q-a.s. ∀t ∈ [0, T ]. Hence,

the insurer always performs at least as good in Mν as it would have in the original
market, i.e., V v0,π

ν (T ) ≥ V v0,π(T ), provided that it abides by the allocation constraints
Cπ. The two wealth processes V v0,π

ν and V v0,π coincide if and only if ν(t)⊤π(t) = 0
Q⊗ L[0, T ]-a.e..

Since we have changed the dynamics of the wealth process V v0,π
ν of an investor trading

in Mν , we need to adjust the class of admissible portfolio processes as well. For this
purpose we define for every ν ∈ D

Aπ
u,ν(v0) :=

{
π =

(
(π1(t), π2(t))

⊤
)
t∈[0,T ]

∣∣∣∣π is prog. meas. and self-financing,

V v0,π
ν (t) ≥ 0 Q-a.s.∀t ∈ [0, T ],

∫ T

0
||π(t)V v0,π

ν (t)||2 dt <∞Q-a.s.

}
;

CVν (ε) := {V v0,π
ν (T )|Q (V v0,π

ν (T ) < GT ) ≤ ε};

Aπ
c,ν (v0, CVν (ε)) :=

{
π ∈ Aπ

u,ν(v0) |V v0,π
ν (T ) ∈ CVν (ε)

}
.

10One obtains the risk-neutral measure for the original market M as Q̃(0,0)⊤ = Q̃.
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Consider now the following portfolio optimization problem, which is an allocation-
unconstrained formulation in Mν :

max
π

E
[
U(V v0,π

ν (T ))

]
s.t.π ∈ Aπ

c,ν (v0, CVν (ε)) . (P ν
ε )

For any fixed dual control process ν ∈ D we see that every portfolio process admissible
for the original problem (Pε,Cπ) is also admissible for the optimization problem (P ν

ε ) in
the auxiliary market and yields at least the same terminal wealth (or expected utility)
as in the original problem. This leads to the following condition, which can be used to
verify that the optimal portfolio processes for (P ν∗

ε ) and (Pε,Cπ) coincide for a particular
dual process ν∗ ∈ D.

Lemma 4.2.3. Let ν ∈ D, πν be the optimal portfolio process for (P ν
ε ) in Mν and

V v0,πν
ν be the corresponding wealth process. If

πν(t)⊤ν(t) = 0 and πν(t) ∈ Cπ Q-a.s., ∀t ∈ [0, T ], (4.16)

then V v0,πν
ν (t) = V v0,πν (t) Q-a.s. ∀t ∈ [0, T ] and πν is admissible and optimal for the

original problem (Pε,Cπ).

Proof. See Appendix B.1

In the following, a dual process ν∗ and the corresponding auxiliary market Mν∗ are
referred to as optimal, if they satisfy (4.16). Unfortunately, Lemma 4.2.3 only provides
a convenient condition to verify optimality for a candidate dual process ν∗ ∈ D, but not
a constructive way of finding such a ν∗.

For a setting without additional terminal wealth constraints, i.e., for ε = 1, Cvitanic and
Karatzas (1992) were able to prove several equivalent optimality conditions that offer
a way of computing the optimal ν∗ for the case of an investor following a power-utility
function. They also derived an explicit form for ν∗ using stochastic control methods.
However, to solve (Pε,Cπ), we do not need to prove similar equivalencies, but we will
have the opportunity to use a selection of their results from the wealth-unconstrained
setting (P1,Cπ), when solving (Pε,Cπ). As a matter of fact, we show that the optimal ν∗

is the same for both settings. Interestingly, due to the market coefficients µ, r, and σ
being constant, it is sufficient to only consider constant dual vectors ν ∈ Cπ from the
start, as the optimal ν∗ is constant.

The required results from Cvitanic and Karatzas (1992) are summarized in the following
corollary.
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Corollary 4.2.4. Consider the optimization problems (P1,Cπ) and (P ν
1 ). Furthermore,

set

ν∗ := argmin
x∈Cπ

∥γ + σ−1x∥2. (4.17)

Then the optimal portfolio process π∗u,ν for (P ν
1 ), for any dual vector ν ∈ Cπ, is given as

π∗u,ν(t) := π∗u,ν :=
1

1 − p
Σ−1(µ+ ν − r1112) with Σ := σ · σ⊤. (4.18)

Furthermore, for the particular dual vector ν∗ ∈ Cπ, (P1,Cπ) and (P ν∗
1 ) have the same

optimal relative portfolio process π∗u,ν∗, which satisfies (4.16).

Proof. See Appendix B.1.

Remark

The optimal wealth corresponding to π∗u,ν solving the VaR-unconstrained problem (P ν
1 )

equals

V
v0,π∗

u,ν
ν (t) = v0 exp

((
r + (µ+ ν − r1112)

⊤π∗u,ν −
1

2
∥σ⊤π∗u,ν∥2

)
t+

(
π∗u,ν

)⊤
σW (t)

)
,

where t ∈ [0, T ]. If this optimal wealth satisfies

Q(V
v0,π∗

u,ν
ν (T ) < GT ) ≤ ε, (4.19)

then π∗u,ν also solves the VaR-constrained problem (P ν
ε ), i.e., the VaR constraint is non-

binding.

VaR-constrained and allocation-unconstrained portfolio optimization

As noted in Kraft and Steffensen (2013), the introduction of terminal wealth constraints
on a portfolio optimization problem with initial wealth v0 > 0 frequently results in
an optimal terminal portfolio value that is a derivative on the unconstrained optimal
portfolio value with a possibly lower initial capital vD, i.e., 0 < vD ≤ v0. In other words,
we can express the optimal terminal portfolio value in the constrained problem as some
financial derivative with payoff D(·) and the terminal optimal unconstrained portfolio
value V vD,π∗

u as the underlying, where π∗u is the corresponding optimal unconstrained
relative portfolio process. Notable examples include
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� Lower bound GT on terminal wealth (Teplá (2001), Korn (2005)):

D(V vD,π∗
u(T )) = GT + (V vD,π∗

u(T ) −GT )+;

� VaR constraint with boundary GT and level of confidence ε (Basak and Shapiro
(2001)):

D(V vD,π∗
u(T )) = V vD,π∗

u(T ) + (GT − V vD,π∗
u(T ))1[kε,GT ](V

vD,π∗
u(T ))

for appropriate parameters 0 ≤ kε ≤ GT , determined by the budget constraint and
the confidence level.

As long as the derivative payoff D(·) satisfies sufficient regularity conditions, we can
determine the optimal portfolio process via delta-hedging (see Lemma B.2.1 in Appendix
B.2 for details). Below we give a closed-form expression for the optimal portfolio process
π∗ν corresponding to (P ν

ε ) for a dual vector ν ∈ Cπ, provided that the solution exists
and the VaR-unconstrained solution does not satisfy the VaR constraint (4.19), i.e., the
VaR constraint is binding. The result below is a corollary from Propositions 1 and 3 in
Basak and Shapiro (2001). In Section 4.3, we use these sufficiency results for solution
optimality to solve examples of interest as well as analyze the role of reinsurance.

Corollary 4.2.5 (Solution to VaR-constrained allocation-unconstrained (P ν
ε )). Con-

sider the Black-Scholes market Mν for a dual vector ν ∈ Cπ and the portfolio optimiza-
tion problem (P ν

ε ) under the binding VaR constraint, i.e., the VaR-unconstrained solu-

tion to (P ν
1 ) violates Condition (4.19). Assume that v0 > EQ

[
Z̃ν(T )GT1{Z̃ν(T )<z̄εν}

]
,

where z̄εν solves Q
(
Z̃ν(T ) > z̄εν

)
= ε. Let π∗u,ν be the optimal portfolio process for

(P ν
1 ) as defined in (4.18). Let the parameters 0 < kεν < GT , 0 < vDν < v0 be determined

such that for

D(V ) := V +
(
GT − V

)
1[kεν ,GT ](V ),

the following system of equations with respect to (vDν , k
ε
ν) is satisfied

E
Q̃ν [exp (−rT )D(V

vDν ,π
∗
u,ν

ν (T ))] = v0;

Q(D(V
vDν ,π

∗
u,ν

ν (T )) < GT ) = ε.

Then, D
(
V

vDν ,π
∗
u,ν

ν (T )
)
is the optimal terminal wealth for (P ν

ε ).

The time-t value, t ∈ [0, T ], of D(V
vDν ,π

∗
u,ν

ν (T )) given V
vDν ,π

∗
u,ν

ν (t) = V can be expressed
as
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Dν(t, V ) = V −

[
V Φ(−dν1(GT , V, t)) −GT exp (−r(T − t)) Φ(−dν2(GT , V, t))

]

+

[
V Φ(−dν1(kεν , V, t)) −GT exp (−r(T − t)) Φ(−dν2(kεν , V, t))

]
,

(4.20)

where

Γν(t) =
p

1 − p

(
r +

∥γν∥2

2

)
(T − t) +

( p

1 − p

)2 ∥γν∥2
2

(T − t),

dν2(x, V, t) =
(p− 1) ln

(
x
V

)
+ (p− 1)Γν(t) +

(
r − ∥γν∥2

2

)
(T − t)

∥γν∥
√
T − t

,

dν1(x, V, t) = dν2(x, V, t) +
1

1 − p
∥γν∥

√
T − t.

(4.21)

Lastly, D
(
V

vDν ,π
∗
u,ν

ν (T )
)
is attained by the portfolio process

π∗ν(t) := π∗ν(t, V
vDν ,π

∗
u,ν

ν (t)) = βDν (t, V vDν ,π
∗
u,ν (t)) · π∗u,ν ,

with

βDν (t, V ) = 1 −
GT exp (−r(T − t))

(
Φ(−dν2(GT , V, t)) − Φ(−dν2(kεν , V, t))

)
Dν(t, V )

+
(1 − p)(GT − kεν) exp (−r(T − t))ϕ(dν2(kεν , V, t))

Dν(t, V ) ∥γν∥
√
T − t

≥ 0

(4.22)

Proof. See Appendix B.1.

Remarks to Corollary 4.2.5

Feasibility of the VaR constraint. As indicated in Footnote 5 in Basak and Shapiro
(2001), the VaR constraint is feasible in (P ν

ε ), i.e., there exists a solution that satisfies
the VaR constraint, if the following condition holds11:

11The correspondence between our notation and notation in Basak and Shapiro (2001): GT ↔ W , ε ↔ α,

v0 ↔ W (0), Z̃ν(t) ↔ ξ(t), zεν ↔ ξ, Q ↔ P. We denote by Q̃ the risk-neutral probability measure and

also use that EQ
[
Z̃ν(T )1{Z̃ν(T )<zεν}

]
= exp (−rT )EQ̃

[
1{Z̃ν(T )<zεν}

]
= exp (−rT ) Q̃

(
Z̃ν(T ) < zεν

)
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v0 ≥ vmin
0 := EQ

[
Z̃ν(T )GT1{Z̃ν(T )<z̄εν}

]
= GT exp (−rT ) Q̃ν

(
Z̃ν(T ) < z̄εν

)
,

where z̄εν solves Q
(
Z̃ν(T ) > z̄εν

)
= ε. When the initial capital equals the minimal

capital that ensures the existence of a solution to (P ν
ε ), i.e., v0 = vmin

0 , then the corre-
sponding optimal terminal portfolio value is given by GT1{Z̃ν(T )<z̄εν}. As indicated in

Remark 2 in Chen et al. (2018a), it can be seen as a limiting value of the case when
v0 > vmin

0 by sending the Lagrange multiplier corresponding to the budget constraint to
+∞. This is equivalent to sending vDν to 0, in which case also kεν → 0. When v0 < vmin

0 ,
then (P ν

ε ) does not admit a solution.

Bindingness of the VaR constraint. The assumption that the solution to (P ν
1 )

does not satisfy Condition (4.19) effectively means that the VaR constraint is binding
in (P ν

ε ).

Existence of (vDν , k
ε
ν). The existence of (vDν , k

ε
ν) solving the budget constraint and

the binding VaR constraint is related to the existence of the optimal Lagrange multiplier
corresponding to the budget constraint. This multiplier is denoted by y in Basak and
Shapiro (2001).

First, observe that:

D(V vDν ,π
∗
u,ν (T )) < GT ⇔ V vDν ,π

∗
u,ν (T ) < kεν

(B.9)⇔ vDν exp (−Γν(0))
(
Z̃ν(T )

) 1
p−1 < kεν

⇔ Z̃ν(T ) >

(
kεν
vDν

exp (Γν(0))

)p−1

,

for any fixed vDν > 0. Thus, the equation related to the binding VaR constraint yields:

ε = Q
(
D(V vDν ,π

∗
u,ν (T )) < GT

)
= Q

(
Z̃ν(T ) >

(
kεν
vDν

exp (Γν(0))

)p−1
)
.

However, z̄εν is by definition the unique solution to Q
(
Z̃ν(T ) > z̄εν

)
= ε. Thus, for each

given vDν , there is a unique value of kεν such that the VaR constraint is satisfied with
equality:

kεν = vDν exp (−Γν(0))
(
z̄εν)

1
p−1 .

The optimal vDν is found from the budget equation. As it can be seen in the proof of
Corollary 4.2.5, vDν is linked to the Lagrange multiplier y via the following continuous
bijection:

y =
(
vDν exp (Γν(0))

)p−1
.

Thus, the optimal vDν exists if and only if the optimal Lagrange multiplier y exists. The
existence of the optimal y is guaranteed by Lemma A.3 Point 3 in Chen et al. (2018a)
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with l = 0 in the authors’ notation12. The assumptions of that lemma obviously holds,

i.e., E
[
Z̃ν(T )

(
yZ̃ν(T )

) 1
p−1

]
< +∞ ∀y > 0, which follows from direct calculation.

Readers interested in the details of proving the existence of the optimal Lagrange multi-
plier in portfolio optimization problems with VaR constraints are referred to Chen et al.
(2018a), Dong and Zheng (2020), Nguyen and Stadje (2020).

VaR-constrained and allocation-constrained portfolio optimization

This section concludes the previous derivations by combining the results from Cvitanic
and Karatzas (1992) and Basak and Shapiro (2001) to solve (Pε,Cπ). In short, we prove
that the optimal payoff for (Pε,Cπ) is a derivative of the optimal payoff for (P1,Cπ) with
some initial wealth vDν∗ ≤ v0, by verifying (4.16) for ν = ν∗, as in Corollary 4.2.4.

Proposition 4.2.6. Set
ν∗ := argmin

x∈Cπ

∥γ + σ−1x∥.

Denote by π∗u,ν∗ the optimal portfolio process for (P ν∗
1 ), which is defined in (4.18). Let the

parameters 0 ≤ kεν∗ < GT , 0 < vDν∗ ≤ v0 be determined so that the financial derivative
on the optimal terminal wealth for (P1,Cπ) with payoff

D(V ) := V + (GT − V )1[kε
ν∗ ,GT ](V )

satisfies the system of equations with respect to (vDν∗ , k
ε
ν∗)

exp (−rT )EQ̃ν∗
[
D
(
V

vDν∗ ,π
∗
u,ν∗ (T )

)]
= v0;

Q(D(V
vDν∗ ,π

∗
u,ν∗ (T )) < GT ) = ε.

(4.23)

Then, D
(
V

vDν∗ ,π
∗
u,ν∗ (T )

)
is the optimal terminal wealth for (Pε,Cπ). The corresponding

optimal portfolio process π∗ for (Pε,Cπ) is given by

π∗(t) := π∗(t, V
vDν∗ ,π

∗
u,ν∗ (t)) = βDν∗(t, V

vDν∗ ,π
∗
u,ν∗ (t)) · π∗u,ν∗ , (4.24)

with βDν∗ > 0 as in Corollary 4.2.5.

Proof. See Appendix B.1.

The proof of Proposition 4.2.6 uses three facts:

12In Chen et al. (2018a), the Lagrange multiplier is denoted by ν. It should not be confused with our
notation of ν denoting the dual process characterizing an auxiliary market.
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� π∗u,ν∗ ∈ Cπ, according to Cvitanic and Karatzas (1992);

� π∗ν∗ = βDν∗ · π∗u,ν∗ according to Basak and Shapiro (2001);

� βDν∗ ≥ 0.

As it can be seen in Proposition 5 in Basak and Shapiro (2001), all of these three facts
are also true for a portfolio optimization problem with an expected shortfall constraint13.
Hence, our methodology can also be used to calculate the optimal portfolio process for
such an investor with a no-short-selling constraint.

Having obtained π∗ that solves (Pε,Cπ), we apply Proposition 4.2.2 to get the solution to
the original problem (P̄ε,C̄π̄

): π̄∗ := (Ψ(t)π∗(t))t∈[0,T ], where Ψ(t) is defined in (4.8).

4.2.3 Reinsurance optimality

We now want to answer the question when it is optimal for an insurer to buy reinsurance
in the product under consideration.

We denote by

SRν
i =

µi + νi − r

σi

the Sharpe ratio of the corresponding asset in the auxiliary market Mν with SRi :=

SR
(0,0)⊤

i , i ∈ {1, 2}.

Proposition 4.2.7. It is optimal for the insurer to buy partial reinsurance if and only
if:

SRν∗
2 < ρ · SRν∗

1 , (4.25)

where ν∗ is given by (4.17) in Corollary 4.2.4.

Proof. See Appendix B.1.

Condition (4.25) holds, e.g., when the correlation between the basic risky assets is suf-
ficiently high and the asset that is not reinsurable is performance seeking, i.e., has a
higher Sharpe ratio than the Sharpe ratio of the reinsurable risky asset.

Remark. Condition (4.25) indicates when the optimal unconstrained investment strat-
egy π∗u,ν∗,2 w.r.t. Sν∗

2 (reinsurable risky asset in the market Mν) is negative. Analogously,

the condition SRν∗
1 < ρ ·SRν∗

2 indicates when π∗u,ν∗,1 < 0. The optimal VaR-constrained

13Considering an expected shortfall constraint with a threshold GT and a tolerance level ε, we
would have D(V vD,π∗

u(T )) = GT
kε V vD,π∗

u(T )1[0,kε](V ) + (GT − V vD,π∗
u(T ))1(kε,GT ](V

vD,π∗
u(T )) +

V vD,π∗
u(T )1(GT ,∞)(V

vD,π∗
u(T )) and kε being determined through budget constraint and confidence

level.
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investment strategy π∗ is obtained via multiplying π∗u,ν∗ by a positive factor β(·), see
(4.24). So in general, π∗ can have both short and long positions. In case π∗ ̸∈ Cπ, the
allocation constraint is binding and ν∗ ̸= (0, 0)⊤.

Next we provide two explicit numerical examples – one example for which the allocation
constraint is binding and one example for which it is not.

Example 1 – base parameterization.

Using the parameter values from Table 4.1, we calculate:

SR1 = 69.74%, ρ · SR1 = 55.88%, SR2 = 51.64%, ρ · SR2 = 41.37%.

Then the optimal unconstrained solution in the market (S0, S1, S2) is, as expected with
respect to its signs, given by:

π∗u,1 = 27.84% (SR1 > ρ · SR2), π
∗
u,2 = −5.38% (SR2 < ρ · SR1).

The resulting optimal VaR-constrained solution satisfies the modified allocation con-
straint, i.e., β(0) · π∗u(0) ∈ Cπ = [0,+∞) × (−∞, 0]. Hence, ν∗ = (0, 0)⊤, i.e., the
(optimal) auxiliary market coincides with the original market. Multiplying the VaR-
constrained solution in the auxiliary market with the matrix Ψ(0) defined in (4.8), we
get the corresponding VaR-constrained solution in the market (S0, S1, Put):

π̄∗1(0) = 33.48%, π̄∗2(0) = 2.57%

with obviously π̄∗(0) ∈ C̄π̄ = [0,+∞) × [0,+∞). Hence, it is optimal to buy partial
reinsurance.

Example 2 – base parametrization with ρ = 70%.

In this case, we have the same Sharpe ratios as in Example 1 but:

ρ · SR1 = 48.82%, ρ · SR2 = 36.15%.

Then the optimal unconstrained solution in the market (S0, S1, S2) is, as expected with
respect to its signs, given by:

π∗u,1 = 27.84% (SR1 > ρ · SR2), π
∗
u,2 = 2.52% (SR2 > ρ · SR1).

The resulting optimal VaR-constrained solution does not satisfy the modified allocation
constraint, i.e., β(0) · π∗u(0) ̸∈ Cπ = [0,+∞) × (−∞, 0]. Hence, the allocation constraint
is binding and requires a transition from (S0, S1, S2) to the (optimal) auxiliary market
(Sν∗

0 , Sν∗
1 , Sν∗

2 ). The auxiliary market is characterized by ν∗ = (0, 0.0062)⊤ and yields:

π∗u,ν∗ = (29.47%, 0%)⊤.

91



4 Optimal investment under risk limitation and risk sharing in insurance

Multiplying the unconstrained solution by β(0) > 0, we get the optimal VaR-constrained
investment strategy π∗(0) in the auxiliary market. Multiplying this strategy by the
matrix Ψ(0) defined in (4.8), we get the corresponding VaR-constrained solution in the
market (S0, S1, Put):

π̄∗1(0) = 29.47%, π̄∗2(0) = 0%

with obviously π̄∗(0) ∈ C̄π̄ = [0,+∞) × [0,+∞). Hence, it is not optimal to buy
partial reinsurance. Note that (4.25) is violated in this case, as SRν∗

2 = 54.46% and
ρ · SRν∗

1 = 48.82%.

4.3 Numerical studies

First, we explain how we choose the model parameters. Second, we analyze the potential
benefits of reinsurance. In particular, we calculate how much capital can be saved and
how much higher a guarantee can be offered to the client when reinsurance is used in the
design of insurance products with capital guarantees. Finally, we address the question
of measuring how much of the insurer’s loss is covered by reinsurance and perform a
sensitivity analysis of this measure as well as the optimal investment-reinsurance strategy
w.r.t. the model parameters.

4.3.1 Model parametrization and numerical algorithms

We estimate our model parameters in accordance with the European market. We choose
the estimation period from January 1, 2003, till June 8, 2020, to include both bearish
(financial 2008-2009 crisis, COVID-19 pandemic in 2020) and bullish markets.

To estimate the risk-free rate we use Euro OverNight Index Average (EONIA) daily
quotes. Parameters of S1 are calibrated to the TecDAX daily data, whereas parameters of
S2 are estimated using DAX daily data. In this way we model the following situation:

1. the asset manager of a German insurer overweights the technological sector, the
corresponding portfolio is more performance-seeking than the overall market;

2. the reinsurer agrees to sell protection only on the overall market index, represented
by the DAX in our study.

In general, the asset manager of the insurer focuses on subindustries of its expertise. For
the reinsurer these industries may be too risky or it does not have enough expertise in
those areas. Therefore, it does not reinsure the specific portfolio of the insurer. Note
that in the US market a comparable example would be the S&P 500 Health Care Index
or the S&P 500 Consumer Discretionary Index as S1 and the S&P 500 Index as S2. For
estimating the risk-free rate in the US market, one could use the Effective Federal Funds
Rate (EFFR).
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In Table 4.1 we summarize model parametrization.

Parameter Value Explanation

r 1.02% EONIA
µ1 17.52% TecDAX rate of return
µ2 12.37% DAX rate of return
σ1 23.66% TecDAX volatility
σ2 21.98% DAX volatility
ρ 80.12% TecDAX and DAX correlation
S0(0) 1 For convenience
S1(0) 1 For convenience
S2(0) 1 For convenience
v0 100 For convenience
T 10 Long-term investment
GT 100 Representative guarantee in the German market
ε 0.5% High client’s confidence in the guarantee
p −9 Corresponds to an RRA coefficient of 10
πCM
B 29.47% Optimal initial proportion of money invested in the risky asset

in the case of no reinsurance

Table 4.1: Model parametrization summary.

We choose the capital guarantee GT as 100% of the initial investment to reflect the cur-
rent situation in the “German Market”. In the past decades, insurers offered a positive
guaranteed rate of return on clients’ paid contributions. Due to a low interest-rate en-
vironment and other challenges, insurers have recently started offering products with a
full guarantee on paid capital but without any positive rate of return. In some products
only a partial guarantee is embedded, e.g., the product ERGO Rente Guarantee allows
a customer to choose between 80% and 100% of the invested capital. Allianz offers poli-
cyholders a choice of guarantee levels between 60% and 90% of clients’ contributions.

Our choice of p = −9 leads to an insurer’s relative risk aversion (RRA) coefficient of 10,
which is motivated by several aspects. In general, the RRA coefficient is a compromise
between common RRA coefficients in theoretical research on long-term portfolio opti-
mization and empirical evidence on RRA of mutual funds. On the one hand, Broeders
et al. (2011) and Chen et al. (2018a), investigating longer-term investment strategies in
continuous time, set the RRA to 3 in the base case. Brandt et al. (2005), Garlappi and
Skoulakis (2010) and Cong and Oosterlee (2017), analyzing optimal asset allocation in
discrete time, consider higher RRA coefficients in their numerical studies, namely from
5 to 15. On the other hand, empirical research shows that the median and mean RRA
coefficient of mutual fund managers are 5.75 and 2.43 respectively, see Table I in Koijen
(2014). Since mutual funds have less restrictive regulatory constraints than insurers do,
it is reasonable to assume that RRA of the latter will be higher. Therefore, we set the
RRA coefficient to 10 in the base case and investigate a range of RRA coefficients from
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5 to 15 in the sensitivity analysis section. Note that the insurer’s optimal 1-year in-
vestment strategy without reinsurance — the solution to (P̄0.5%,[0,+∞)×{0}) for T = 1 —
has approximately 15% of portfolio value invested in the risky asset. This value belongs
to the range 10% − 15%, which is a representative range for the proportion of wealth
insurance companies invest in the risky assets such as listed and private equity according
to Gründl et al. (2016).

Appendix B.2 contains some propositions relevant for the numerical studies. In Proposi-
tion B.2.4 we provide the explicit formula of the left-hand side of the system of non-linear
equations (SNLE) from Corollary 4.2.5. In Proposition B.2.5 we calculate explicitly the
insurer’s value function, which is needed for Subsection 4.3.2. These two propositions use
auxiliary Lemma B.2.2 and Lemma B.2.3, which are also provided for completeness.

For solving the SNLE, we convert it to a minimization problem and apply the Sequential
Quadratic Programming approach. For finding the roots of standalone non-linear equa-
tions appearing in the welfare loss and the guarantee gain analysis, we use the bisection
method.

4.3.2 Monetary benefits of reinsurance

The first natural question is whether the insurer needs reinsurance at all. We assume that
the insurer chooses the constant-mix strategy πB = (0, πCM

B )⊤ = (0, π∗DN,1(0))⊤ that has
the same proportion of wealth invested in S2 as the proportion of wealth invested in S1 in
the insurer’s optimal investment strategy under the no-reinsurance constraint. Here π∗DN

solves (P̄0.5%,[0,+∞)×{0}) and DN stands for dynamic (strategy with) no reinsurance. In

the base case, this leads to πCM
B = π∗DN,1(0) = 29.47%. The insurer’s optimal relative

portfolio process at time t = 0 is given by:

π̄0(0) = 63.95%, π̄1(0) = 33.48%, π̄2(0) = 2.57%.

The optimal initial investment in terms of asset units is given by:

φ̄0(0) = 65.85, φ̄1(0) = 33.48, φ̄2(0) = 0.67,

and the price of one put is approximately equal to 3.85. We see that it is optimal for
the insurer to buy partial reinsurance, which costs about 2.5% of the initial portfolio
value. Interestingly, the optimal initial reinsured proportion of the benchmark portfolio
is 67%. As we will see in Section 4.3.3, this partial reinsurance still leads to a high level
of the insurer’s expected loss covered by the reinsurer.

Welfare loss analysis

In this subsection, we calculate the monetary benefit to the insurer if the insurer fol-
lows the optimal investment-reinsurance strategy instead of implementing a suboptimal
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one. We determine the wealth-equivalent utility loss (WEUL) as per Definition 2.3.5.
It is denoted by WEUL(π̄∗, πSS) and represents the proportion of the initial wealth
“lost” when a suboptimal strategy πS instead of the optimal strategy π̄∗ is followed. In
particular, WEUL(π̄∗, πS) is the solution to the following equation:

EQ
[
U
(
V̄ v0(1−WEUL(π̄∗,πS)),π̄

∗
(T )
)]

= EQ [U (V̄ v0,πS (T )
)]
. (4.26)

So if the insurance company would follow an optimal investment-reinsurance strategy,
the company would have needed 100 · WEUL(π̄∗, πS)% less initial capital to match
the expected utility from the suboptimal strategy πS . If the expected utility from a
suboptimal strategy is acceptable for both the insurer and the client, then switching to
the optimal strategy may decrease product costs due to the saved 100 ·WEUL(π̄∗, πS)%
of the initial investment.

We consider the following suboptimal strategies πS :

1. the optimal dynamic strategy of the insurer under the no-reinsurance constraint,
i.e., π∗DN that solves (P̄0.5%,[0,+∞)×{0}). If the VaR-constraint is non-binding, then
this is the optimal unconstrained investment strategy.

2. the (15%, 0%)⊤ constant-mix strategy that approximates the long-term investment
strategy of an average life insurer according to Gründl et al. (2016), which we
denote by πCN where CN stands for constant-mix (strategy with) no reinsurance.

We obtain the following WEULs:

1. WEUL(π̄∗, π∗DN ) = 25bp14, i.e., replacing a product with the optimal no-reinsurance
strategy with a product with the optimal investment-reinsurance strategy can make
the product 25bp cheaper to the customer without any loss in the insurer’s expected
utility;

2. WEUL(π̄∗, π∗CN ) = 588bp, i.e., a product with optimal investment-reinsurance
strategy requires 5.88% less initial capital to reach the same expected utility as
the suboptimal constant-mix (15%, 0%)⊤ strategy yields.

In Figure 4.2, we show the impact of the insurer’s risk aversion and investment horizon
on WEUL. The more risk averse the insurer, the less WEUL. For π∗DN , this measure
exhibits roughly linear dependence on RRA, whereas for πCN it shows a rather convex
behaviour w.r.t RRA. The longer the investment period, the larger the WEUL. For both
considered suboptimal strategies, WEUL shows approximately linear dependence on T .
For very risk-averse insurers and short investment horizons, product costs that can be
saved by using optimal reinsurance are relatively low. However, less risk-averse insurers
offering mid to long-term equity-linked products with capital guarantees can decrease
the corresponding product costs significantly, especially in comparison to products with

14bp stands for “basis point”, 1bp= 0.01% = 0.0001
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underlying strategy πCN . For example, for an insurer with RRA = 5 and T = 15 the
cost reduction is about 32%.

(a) WEUL w.r.t. π∗
DN . (b) WEUL w.r.t. πCN .

Figure 4.2: Impact of risk aversion and investment horizon on WEUL.

Overall, the results in this section indicate that the inclusion of dynamic reinsurance
in the design of equity-linked insurance products with a capital guarantee decreases the
product costs for the clients. The actual “loss” of capital from investing suboptimally
in practice may be different, as there are transaction costs, safety loadings in pricing
reinsurance contracts, discrete trading times, jumps in asset prices, etc.

For a broader view, we also provide for each of the these three strategies the correspond-
ing risk-return profile and the probability that the terminal portfolio value falls below
the guarantee GT in Table 4.2.

π̄∗ π∗DN πCN

Annualized return 6.11% 6.06% 3.56%
Annualized standard deviation of return 12.85% 12.71% 5.05%
Probability of not reaching GT 0.5% 0.5% 0.0011%

Table 4.2: Strategies’ risk-return profiles and probabilities of not reaching GT

We see that the optimal dynamic investment strategy with reinsurance and the one
without reinsurance have very similar risk-return profiles and fully use the available risk
budget in the optimization problem, i.e., the corresponding underperformance probabil-
ities are equal to the VaR probability 0.5%. The CN strategy, on the other side, does
not fully use the available risk budget and thus loses more than 2.5% in performance
(annualized return).
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Guarantee gain analysis

Here we measure the benefit of the optimal investment-reinsurance strategy in terms of a
potential increase in the capital guarantee. We calculate the guarantee-equivalent utility
gain (GEUG), denoted by GEUG(π̄∗, πS), that indicates the proportion by which the
terminal guarantee GT to the client can be increased such that the expected utility of the
insurer following π̄∗ and the correspondingly higher guarantee is equal to the expected
utility of the insurer following the suboptimal strategy πS with the original guarantee
GT . Denote by V̄ v0,π̄∗

(T |GT ) the portfolio value at time T with the initial capital v0,
relative portfolio process π̄∗ and guarantee GT . Then, GEUG(π̄∗, πS) is the solution to
the following equation:

EQ
[
U(V̄ v0,π̄∗

(T |(1 +GEUG(π̄∗, πS)) ·GT ))
]

= EQ [U(V̄ v0,πS (T |GT ))
]
. (4.27)

We obtain the following GEUGs:

1. GEUG(π̄∗, π∗DN ) = 10.08%, i.e., a product with optimal investment strategy with-
out reinsurance and with a guarantee of 100% of the client’s initial endowment at
product maturity (0% annualized guaranteed return) can be replaced — without
any loss in the insurer’s expected utility — by a product with optimal investment-
reinsurance strategy and a guarantee of 110% of the client’s initial endowment
(0.96% annualized guaranteed return);

2. GEUG(π̄∗, π∗CN ) = 28.09%, i.e., a product with a constant-mix (15%, 0%)⊤ in-
vestment strategy without reinsurance and a guarantee of 100% of the initial en-
dowment at product maturity can be replaced — without any loss in the insurer’s
expected utility — by a product with optimal investment-reinsurance strategy and
a guarantee of 128% of the client’s initial contribution (2.5% annualized guaranteed
return).

Figure 4.3 illustrates how the insurer’s risk aversion and investment horizon influence
GEUG. The more risk averse the insurer, the less GEUG. With increasing risk aversion,
the optimally behaving insurer invests more in bonds and less in stocks and reinsurance,
as it will be shown in Section 4.3.4. Since a risk-free investment has a comparably low
rate of return, GEUG decreases. We also observe that GEUG is convex w.r.t. RRA in
both cases, π∗DN and πCN . The longer the investment period, the larger the GEUG. This
dependence also illustrates convexity w.r.t. T for both considered suboptimal strategies.
We see that even very risk-averse insurers with short to mid-term equity-linked products
can significantly increase their guarantee levels without any loss in expected utility. For
RRA = 15 and T = 5, the guarantee in the product following the optimal investment-
reinsurance strategy is increased from 100% to 108% (1.55% guaranteed annualized
return) in comparison to a product with the strategy πCN

15. For less risk-averse insur-
ers and products with longer investment horizons, GEUG is even more prominent. For

15For T = 5, Q
(
V̄ v0,πCN (T ) < GT

)
≈ 1.5%.

97



4 Optimal investment under risk limitation and risk sharing in insurance

example, for RRA = 5 and T = 15, the insurer with the optimally managed reinsurance
can guarantee that the client’s terminal payoff equals at least 135% of the initial contri-
bution (about 2% annualized guaranteed return) and achieve the same expected utility
as for a product with the underlying strategy π∗DN and a guarantee of only 100% of the
initial contribution.

(a) GEUG w.r.t. π∗
DN . (b) GEUG w.r.t. πCN .

Figure 4.3: Impact of risk aversion and investment horizon on GEUG.

Overall, the inclusion of dynamic reinsurance in the design of equity-linked insurance
products with capital guarantees can lead to substantial increase in the guarantee levels
that insurance companies can offer to their clients. The actual guarantee gain in practice
may be different due to reasons mentioned at the end of the previous subsection.

4.3.3 Reinsurance proportion

In this section we briefly address a natural question about reinsurance: how much pro-
tection against the insurer’s loss does the reinsurance provide? The precise measurement
of the reinsurance level/proportion is challenging as:

1. the underlying portfolio in the reinsurable portfolio is not the same as the insurer’s
actual portfolio due to different assets (S1 ̸= S2);

2. the corresponding relative portfolio processes are different (πCM
B ̸= π̄∗1(0)/(1 −

π̄∗2(0))), where the former term is the proportion of money invested in S1 in the
benchmark portfolio and the latter term is the proportion of investment in S1 in
the insurer’s portfolio after subtracting money spent on reinsurance;

3. the initial capital of the reinsured benchmark portfolio is slightly higher than the
capital invested in S0 and S1 by the insurer due to the purchase of reinsurance.
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The first insight into the reinsurance level can be captured by the number of put options
in the insurer’s portfolio φ̄∗

2(0), i.e., 1 put approximately hedges the portfolio of the
insurer. Approximately because of the above-mentioned points 1 to 3. We could also
look at the number of puts adjusted by the correlation between the insurer’s portfolio
and the reinsured portfolio ρφ̄∗

2(0).

In the literature on reinsurance, two types of reinsurance are differentiated: proportional
reinsurance and excess-of-loss reinsurance. In the former reinsurance type, the insurer’s
total loss is shared proportionally between the insurer and the reinsurer. However, the
reinsurance is written on the exact portfolio the insurer has. Motivated by it, we consider
the proportion of expected loss coverage (PELC), which we define as follows:

PELCt =
Amount of reinsurance at t× Expected coverage from 1 reinsurance contract

Expected total loss of insurer

=
EQ [φ̄∗

2(t) (GT − V v0,πB (T ))+ |F(t)
]

EQ
[
(GT − V v0,π̄∗(T ))+ |F(t)

] =
φ̄∗
2(t)EQ [(GT − V v0,πB (T ))+ |F(t)

]
EQ
[
(GT − V v0,π̄∗(T ))+ |F(t)

] .

The calculation of PELC requires Monte-Carlo simulations due to the sophisticated
optimal investment-reinsurance strategy of the insurer, which is needed to estimate the
denominator of PELC.

For the base case we have:

φ̄∗
2(0) = 0.67, ρφ̄∗

2(0) = 0.54, PELC0 = 138.52%, ρPELC0 = 110.82%.

We see that the initial optimal reinsurance strategy implies buying 67% reinsurance,
which leads to a correlation-corrected PELC0 slightly higher than 100%. Taking into
account the above-mentioned challenges 1–3, we find these numbers reasonable.

4.3.4 Sensitivity analysis of optimal investment-reinsurance strategies

In this subsection, we summarize the impact of changes in model parameters on the
optimal investment-reinsurance strategy. Not to make the chapter unnecessarily longer,
we provide figures depicting the sensitivity analysis results only for the risk-aversion
parameter and the VaR probability threshold.

As mentioned in Subsection 4.3.1, we explore the risk-aversion parameter values 1− p =
RRA ∈ {5, 7.5, 10, 12.5, 15}. The higher the RRA coefficient, the less the optimally
behaving insurer invests in the risky assets and the less money is spent on reinsurance.
However, PELC0 increases as the put option becomes cheaper due to the decreasing
riskiness of the benchmark portfolio. This is illustrated in Subfigure 4.4a.

For the VaR probability ε ∈ {0%, 0.1%, 0.2%, ..., 1.5%}, we observe that the higher ε, the
more money is invested in both the risky asset and the reinsurance. However, the PELC0
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gradually decreases due to the increasing riskiness of the insurer’s optimal investment
strategy and the insurer’s inability to hedge out all the residual risk arising due to a
less risky reinsurable benchmark portfolio. Since for shorter investment horizons the
influence of the VaR constraint is more prominent, we illustrate for T = 5 the sensitivity
of π̄∗ and PELC0 w.r.t. ε in Subfigure 4.4b.

(a) Sensitivity of π̄∗ and PELC0 w.r.t. p. (b) Sensitivity of π̄∗ and PELC0 w.r.t. ε.

Figure 4.4: Sensitivity of the optimal strategy w.r.t. risk aversion and VaR probability.

Varying the weight of the risky asset in the benchmark portfolio πCM
B ∈ {π∗DN,1(0) −

15%, π∗DN,1(0) − 10%, ..., π∗DN,1(0) + 15%}, we find no change in the optimal investment
strategy with respect to the risky asset. However, more money is invested in reinsurance
and the PELC0 increases.

The higher the interest rate r ∈ {−2%,−1%, 0%, 1%, 2%}, the less money the optimally
behaving insurer invests in the risky asset. However, more money is invested in rein-
surance, which, in conjunction with a decreasing price for the reinsurance, leads to an
increase of PELC0.

For an increasing investment horizon T ∈ {1, 5, 10, 15, 20} we observe that both the
optimal initial investment in the risky assets as well as the proportion of initial wealth
invested in reinsurance increase. The PELC0 gradually increases too.

When the terminal capital guarantee GT ∈ {0.7 · v0 , 0.8 · v0, . . . , 1.1 · v0} increases, the
insurer’s optimal investment in stocks slightly decreases. Simultaneously, the insurer
invests more money in reinsurance, even though the price of the reinsurance contract
surges. The PELC0 gradually decreases.

In all numerical studies we also observe that the inclusion of reinsurance in the prod-
uct design increases the insurer’s optional initial risky asset exposure by up to 10% in
comparison to the optimal investment strategy in the no-reinsurance case.
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5 Optimal risk sharing between an
insurer and a reinsurer

For what you do to others, you do to
yourself.

Eckhart Tolle

In the previous chapter, we learned how an insurance company should optimally invest
and share with a reinsurance company the risk of not achieving the capital guarantee
in the context of an equity-linked insurance product. We had two assumptions on the
risk-sharing process, namely that the reinsurance can be continuously adjusted and it is
fairly priced. Even though the former assumption is common in the academic literature
on the optimal investment-reinsurance strategies, a reinsurance contract in practice is
not dynamically traded or adjusted. The latter assumption meant that the price of
reinsurance was equal to the fair price of the corresponding put option, i.e., the reinsurer
did not charge anything extra. However, reinsurance companies frequently include in the
reinsurance premium a so-called safety loading, in addition to the expected loss (see, e.g.,
page 219 in Albrecher et al. (2017)). Therefore, in this chapter, which is a reproduction
of Havrylenko et al. (2022) with minor changes, we revisit the problem from the previous
chapter and derive the optimal investment and risk-sharing strategies for an insurer and
a reinsurer in a model without the above-mentioned assumptions. Moreover, we model
the interaction between the parties in a more realistic way such that the actions of one
company directly influence the actions of the other. Thus, we mainly concentrate on the
optimal risk sharing between an insurer and a reinsurer in the context of equity-linked
insurance products.

Next we describe in more detail the practical problem we solve in this chapter. An insur-
ance company sells an equity-linked product with a capital guarantee to a customer. The
insurer is willing to execute its individual investment strategy in some sub-universe of a
global liquid market. It does not want to disclose its investment strategy to a third party
like other insurers or reinsurers. Focusing on its own investment strategy, the insurer can
buy (partial) reinsurance on a simple investment strategy in the global liquid market or
even another liquid sub-universe of the global market. To get a reasonable reinsurance
contract, the “simple” investment strategy to be reinsured should be transparent, easy
to understand as well as to implement and it should be sufficiently correlated with the
individual investment strategy of the insurer. A typical candidate is a constant-mix

102



5 Optimal risk sharing between an insurer and a reinsurer

strategy, as also used in Chapter 4. However, in contrast to that chapter, we model the
reinsurance contract as a long-maturity put option that is not continuously traded in the
market. Instead, it is bought from a reinsurance company at product inception1. Due
to the long maturity of the put option, which models the reinsurance contract, and the
impossibility to trade it on exchanges, the reinsurance company can charge an additional
safety loading, i.e., a price margin above the expected discounted loss of the contract.

Since a reinsurance contract is an agreement between a primary insurance company and
a reinsurance company, it implies an interaction (negotiation) between the parties of
the contract. The number of insurance companies in the world is significantly larger
than then number of reinsurance companies (e.g., see Albrecher et al. (2017), Chen
and Shen (2018)). Moreover, reinsurance companies are usually larger than primary
insurance companies and act internationally, whereas insurance companies often act on
a national level. Therefore, the reinsurance company has a stronger position in the
negotiation process about the terms of the reinsurance agreement (e.g., see Chen and
Shen (2018), Bai et al. (2022)), is likely to have more investment opportunities and is
able to assess the reaction of the insurance company to various terms of a reinsurance
contract, in particular, reinsurance premium. Due to the above aspects of the insurer-
reinsurer interaction, a hierarchical game is a reasonable framework to model risk-sharing
through reinsurance contracts.

The above-mentioned situation suits well to the concept of a Stackelberg game. Origi-
nally, it was introduced in Stackelberg (1934) in the context of two manufacturing com-
panies competing on the quantity of their product. Later this concept found applications
in many other economic situations with a leader-follower relationship between economic
agents. Stackelberg games have a hierarchical structure, where the leader “dominates”
the follower. This means that the leader moves first and selects its strategy knowing
the future optimal response of the follower, whereas the follower moves afterwards and
chooses its strategy depending on the choice of the leader. Therefore, in this chapter, we
set up and solve a Stackelberg game between an insurance company and a reinsurance
company in the context of an equity-linked insurance product with a capital guarantee.
The aim of each party is to maximize its expected utility of the total terminal wealth,
where the total terminal wealth consists of the terminal portfolio value including the
reinsurance payoff. However, the reinsurer (leader) moves first, knowing the optimal re-
sponse of the insurer (follower), and chooses its investment strategy as well as the price of
reinsurance, which consists of the fair price (pure reinsurance premium) of the put option
and a safety loading. Afterwards, the insurer (follower) selects its investment strategy
and the amount of reinsurance it buys, knowing the action of the reinsurer (leader). The
solution to a Stackelberg game is called the Stackelberg equilibrium. Sometimes it is
also called the Bowley solution, since a sequential game between a manufacturer and a
supplier of the material was considered in Bowley (1928).

1In practice, the reinsurance contract can be adjusted at regular intervals, e.g., annually. To solve the
corresponding problem with several discrete adjustments, our model can be applied sequentially.
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Intuitively, if the reinsurer takes into consideration only its own interests when negoti-
ating the terms of a reinsurance contract, the insurer may find the reinsurance premium
unfairly high and, therefore, may not buy as much reinsurance as the reinsurer expects.
On the other hand, if the reinsurance premium is too low, the insurer may share more
risk via reinsurance, but the profitability of this deal may be suboptimal for the reinsurer
due to the low price. Hence, the result for the reinsurer may be worse than expected.

Within the above-described framework considered in this chapter, we answer the follow-
ing research questions:

1. How can we analytically find the Stackelberg equilibrium, i.e., derive the optimal
investment and risk-sharing strategy of each party in the game?

2. What happens with expected utilities of parties in case they deviate from the
Stackelberg equilibrium, e.g., the insurance company does not buy reinsurance or
the reinsurance company offers a reinsurance contract at a price lower than the
equilibrium one?

3. Which impact do model parameters have on the Stackelberg equilibrium?

Next we provide an overview of the relevant literature and organize it in two groups.
The first stream of literature is related to modeling the investment and risk-sharing
dynamics for insurance and reinsurance companies. The second stream of literature is
related to advanced portfolio optimization techniques, which we combine to solve the
novel Stackelberg game considered in this chapter.

In actuarial literature, there are different ways of modeling financial risk sharing between
a reinsurer and an insurer in the presence of investment opportunities. For instance, Li
et al. (2016) considers a general insurance group that holds shares of a primary insurance
company and a reinsurance company. Maximizing the expected exponential utility of
the weighted sum of the terminal wealth of each company, the authors find the opti-
mal investment as well as proportional-reinsurance strategies via SCA. Gu et al. (2020)
formulate the interaction between the reinsurer and the insurer as a principal-agent prob-
lem. In this problem, the reinsurer maximizes the expected utility of its terminal wealth
assuming the worst-case scenario that depends on the insurer’s choice of its retention
level in the excess-of-loss reinsurance. The researchers derive the optimal investment and
risk-sharing strategies via SCA. To the best of our knowledge, Chen and Shen (2018) is
the first paper that formulated and solved a Stackelberg game between the insurer and
the reinsurer in the context of a reinsurance contract and with the presence of invest-
ment opportunities. The researchers assume that the reinsurer offers reinsurance on the
whole claim process of the insurer and the contract specifications, i.e., the reinsurance
premium and the amount of reinsurance, can be dynamically adjusted. Assuming the
leadership of the reinsurer and the followership of the insurer, the researchers derive the
solution to the game by means of SCA and backward SDEs. Further papers on Stack-
elberg games in the context of the insurer-reinsurer interaction are Chen et al. (2019),
Bai et al. (2022), Chen et al. (2020), Yuan et al. (2021), Yang et al. (2021), and Bai
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et al. (2021). In these literature sources, the authors assume that the whole portfolio
of aggregated insurance obligations is reinsured and that the specifications of the rein-
surance contract can be continuously adjusted over the investment horizon. Chen and
Shen (2018), Chen et al. (2019) and Chen et al. (2020) assume that the surplus process
of each party is fully invested in a risk-free asset. In contrast to them, Bai et al. (2022)
extend the investment universe of the parties by adding one risky asset.

Next we provide a few more remote literature sources in the area of Stackelberg games in
the insurance-reinsurance context. Gavagan et al. (2022) considers a Stackelberg game
between a reinsurer and an insurer with model uncertainty. Assuming that the rein-
surer minimizes a so-called Range-Value-at-Risk2 of its terminal payoff and the insurer
maximizes its expected utility of its terminal payoff, the researchers derive a Stackelberg
equilibrium consisting of the optimal static safety loading, the indemnity function3 and
the distribution function of the insurer’s loss, which comes from model uncertainty. As-
suming that the preferences of the reinsurer and the insurer are described by monotone
risk measures, Boonen and Ghossoub (2023) derive the optimal static reinsurance pre-
mium and indemnity function in a Stackelberg equilibrium, which they call the Bowley
solution. Asmussen et al. (2019) sets up and solves a Stackelberg game that models
the situation when two insurance companies compete for clients. Assuming that each
party maximizes its expected present discounted wealth and that the surplus processes
of each company is fully invested in a risk-free asset, the researchers derive the optimal
insurance premiums.

We would like to emphasize that we are not aware of any academic literature sources
that study optimal investment-reinsurance problems in the context of a Stackelberg game
where reinsurance is static and offered within an equity-linked insurance product. The
research results stated in this chapter fill this gap.

Since we have provided the overview of portfolio optimization literature in the previous
chapters, we mention now only three articles including the methods we use to derive the
equilibrium of the considered Stackelberg game. This game is bi-level and consists of
two utility-maximization sub-problems whose peculiarities do not allow direct usage of
standard solution methods.

In particular, when solving the insurer’s optimization problem, we are dealing with two
peculiarities. First, there is an additional static control variable, which represents the
fixed long position in the put option. Second, the put option is not spanned by the risky
assets that the insurer can continuously trade.

To solve such an optimization problem, we combine the ideas of Desmettre and Seifried
(2016) and Cvitanic and Karatzas (1992). Cvitanic and Karatzas (1992) solve a con-
strained optimization problem, where the constraint on the investor’s relative portfo-
lio process is given by a convex set. As also discussed in the previous chapter, their

2It is a risk measure that includes Value-at-Risk as a special case.
3An indemnity function is a function that quantifies the part of the insurer’s loss transferred to a
reinsurer.
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methodology is based on constructing a family of unconstrained optimization problems
in different auxiliary markets and on finding the unconstrained optimization problem
that models the required portfolio constraint in the original market. In our case, an
auxiliary market is the global market with changed drift coefficients, where the rein-
surance contract can be replicated by continuously traded assets. This way we make
the reinsurance contract spanned and derive closed-form solutions via the methodology
introduced in Desmettre and Seifried (2016). In Desmettre and Seifried (2016), the au-
thors generalize MA to solve optimization problems where the investor can additionally
invest in a fixed-term security (the reinsurance contract in our setting) at the beginning
of the investment period. In the first step of the generalized MA, one has to derive
the optimal investment in the risky asset for a fixed position in the fixed-term security,
which requires the inversion of conditional random utility functions4. In the second step
of the generalized MA, one has to determine the optimal investment in the fixed-term
security given the investment in the liquid risky assets by maximizing the corresponding
value function with respect to a fixed-term position.

When solving the optimization problem of the reinsurer, we face the following two chal-
lenges. First, the reinsurer has a fixed short position in the reinsurance contract (put
option), which is predetermined by the insurer. Second, the reinsurance safety loading
is an additional static control variable in the problem. In contrast to the insurer’s case,
we assume that the reinsurer can hedge its static position in the reinsurance contract
because the reinsurer is larger than the insurer and invests in the global market, as
motivated at the beginning of this chapter. Therefore, we use the concept of replicating
strategies in portfolio optimization with options, introduced in Korn and Trautmann
(1999). Using the financial market completeness, the authors establish the one-to-one
correspondence between the optimal portfolio in a market with options and the optimal
portfolio in a market without options by means of option-replicating strategies. There-
fore, one can apply the classic MA to solve the optimization problem in the latter market
and use the established correspondence to derive the optimal portfolio with options. To
find the optimal static safety loading, we follow a two-step procedure analogous to the
one we use for deriving the optimal amount of reinsurance in the insurer’s optimization
problem.

Now we summarize the scientific contributions of this chapter to the above-mentioned
literature sources. As in Chapter 4, we organize this summary in two parts: contribu-
tions to actuarial literature and contributions to the literature on portfolio optimization.
As for the scientific novelties we bring to the actuarial literature, first, we formulate in
Section 5.1 a novel Stackelberg game (SG) between a reinsurer and an insurer, which is
more realistic than Stackelberg games previously studied in the literature. In contrast
to them, in our model the reinsurance is written on potential losses within an insurance

4The process of inverting conditional random utility functions rarely leads to closed-form solutions when
the fixed-term investment is not spanned by continuously traded assets. We tackle this challenge
by treating the insurer’s problem as an allocation-constrained problem and transforming it to the
allocation-unconstrained one in an auxiliary market where the reinsurance contract is spanned by
continuously traded risky assets.
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product rather than the whole surplus process of an insurer, and is purchased at the
beginning of the investment period, not dynamically traded. Second, we establish in
Corollary 5.3.2 that in the Stackelberg equilibrium the power-utility maximizing rein-
surer selects the largest reinsurance premium such that purchasing the maximal amount
of reinsurance is in the set of the insurer’s best responses to the reinsurer’s action. How-
ever, as we established in Corollary 5.3.1, the set of the insurer’s best responses may
contain other choices of reinsurance amount. Therefore, in practice, the reinsurer should
charge a lower (discounted) safety loading of the reinsurance premium than the equilib-
rium one in order to secure a deal with the maximal amount of reinsurance. Third, we
provide in Subsection 5.4.3 different ways of how the reinsurer can determine a reason-
able discount on the equilibrium safety loading. In this case the optimally acting insurer
may significantly reduce its product costs without decreasing its expected utility, while
the reinsurer still profits from selling reinsurance.

As for our research contributions in the area of portfolio-optimization literature, first, we
solve in Proposition 5.2.1 and Proposition 5.2.2 a portfolio optimization problem (PI)
with an allocation constraint and a fixed-term investment in a put option. We combine
the concept of auxiliary markets from Cvitanic and Karatzas (1992) and the generalized
martingale approach from Desmettre and Seifried (2016). Although we consider a spe-
cific no-trading constraint, the methodology can be extended to other types of allocation
constraints considered in Cvitanic and Karatzas (1992). Second, we solve in Proposition
5.2.4 and Proposition 5.2.5 a portfolio optimization problem (P πR,ηR

R ) with a fixed po-
sition in a put option. We use the idea of replicating strategies in utility maximization
introduced in Korn and Trautmann (1999). The author’s of that paper show in their
Theorem 5.1 how to optimize a portfolio of options given that the investor holds fixed
positions in stocks and claim in Remark 5.2 that the reverse problem of optimizing a
portfolio of stocks given fixed positions in options can be tackled similarly, which is done
in Subsection 5.2.2 of this chapter.

Finally, we give an overview of the remaining parts of this chapter. In Section 5.1 we
explain the general concept of a Stackelberg game and formulate a specific game between
the reinsurer and the insurer. The optimal solution to the Stackelberg game for utility
functions as per Definition 2.3.1 is derived in Section 5.2. It is divided into the sub-
sections devoted to the insurer’s optimization problem and the reinsurer’s optimization
problem, since the solution methods are different. In Section 5.3 we explicitly derive
the Stackelberg equilibrium when the parties’ preferences are described by power-utility
functions. In Section 5.4 we choose the values of model parameters in accordance with
the German market, as in Chapter 4, and conduct numerical studies. First, we in-
vestigate the sensitivity of the Stackelberg equilibrium w.r.t. the parties’ risk-aversion
coefficients and w.r.t. the model parameters influencing the fair price of the put option.
Second, we study the impact of deviating from the Stackelberg equilibrium on the ex-
pected utilities of each party. In Appendix C.1 we provide the proofs of the results from
Section 5.2. Appendix C.2 contains the proofs of the results from Section 5.3.
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5.1 Problem setting

We start by providing the definition of a Stackelberg game in a general sense. Afterwards
we will specify the concrete Stackelberg game that models the interaction between the
insurer and the reinsurer.

A Stackelberg game is a game with two players and a hierarchical structure. One player
is a called leader (L) and another one is called a follower (F). It is assumed that each
of them optimizes the corresponding objective function Ji(aL, aF ) : ΛL × ΛF → R for
i ∈ {L,F}, respectively, where aL is an action of the leader chosen from the set of
admissible actions ΛL and aF an action of the follower chosen from the set of admissible
actions ΛF . Without loss of generality, it is assumed that optimization here means
maximization. The aim of each player is the maximization of his/her objective function
with respect to his/her action. The hierarchical nature of the the game is reflected
in the information availability and the sequence of players’ moves. The leader of the
Stackelberg game chooses his/her action first, knowing the best response of the follower
on the leader’s action, and afterwards the follower acts depending on the action selected
by the leader.

The Stackelberg game can be formalized as follows:

max
aL∈ΛL

JL(aL, a
∗
F )

s.t. a∗F ∈ arg max
aF∈ΛF

JF (aL, aF ).

Stackelberg games are usually solved via backward induction. In the first step, one
solves the follower’s (inner) optimization problem given an arbitrary but fixed action
of the leader. In the second step, one solves the leader’s (outer) optimization problem
knowing the set of optimal (also called “best” in academic literature) responses of the
follower to each action of the leader.

A solution (a∗L, a
∗
F ) to a Stackelberg game is called a Stackelberg equilibrium if it satisfies

two conditions:

a∗F ∈ arg max
aF∈ΛF

JF (a∗L, aF ); (SEC1)

JL(aL, aF ) ≤ JL(a∗L, a
∗
F ) ∀(aL, aF ) ∈ ΛL × ΛF s.t. aF ∈ arg max

ãF∈ΛF

JF (aL, ãF ). (SEC2)

Condition (SEC1) means that a∗F is an optimal solution to the optimization problem of
the follower. Condition (SEC2) means that in case there are several optimal responses of
the follower to an action of the leader, the follower selects among them the response that
is most favorable for the leader, see, e.g., Bressan (2011)). Therefore, a Stackelberg game
is a so-called optimistic bi-level optimization problem. For more details on optimistic and
pessimistic bi-level optimization problems, see, e.g., Wiesemann et al. (2013), Zemkoho
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(2016), Liu et al. (2018). For more theoretical insights into Stackelberg games, see, e.g.,
Fudenberg and Tirole (1991), Bressan (2011), and references therein.

Having provided the intuition about a Stackelberg game in general, we will now con-
certize it in the insureance-reinsurance context. We consider the same financial-market
model as in Chapter 4 with a bank account, one risky asset that represents a non-
reinsurable fund (fund in the individual investment strategy of the insurer) and one
risky asset that represents a reinsurable fund. In the market, there are three parties:
one representative client, one insurer and one reinsurer. The representative client would
like to buy an equity-linked product from the insurer. Therefore, the client pays an
initial contribution vI > 0 to the insurer and expects to receive a capital guarantee
GT > 0 at product maturity. The insurer invests the initial capital vI in assets S0
and S1. To increase the chances of ensuring a capital guarantee GT to the client, the
insurance company can buy at t = 0 reinsurance from the reinsurer. At the end of the
investment period, the insurer receives the payment of the reinsurance contract. We
model reinsurance as a put option with a benchmark portfolio as the underlying asset
and GT as the option’s strike.

As in Chapter 4, we assume that the benchmark portfolio is a constant-mix (CM) port-
folio with respect to S0 and S2. We denote the benchmark-portfolio value at time t
by V vI ,πB (t), t ∈ [0, T ]. It satisfies SDE (4.2) with V vI ,πB (0) = vI . This benchmark
portfolio is in general not equal to the insurer’s individual portfolio but should have high
correlation so that the reinsurance indeed provides downside protection to the insurer.
The choice of the constant-mix investment strategy for the benchmark portfolio makes
the Stackelberg game analytically tractable, as for other benchmark strategies we may
not be able to analytically derive the fair price of the option, which should be deter-
mined at the product inception time t = 0. Estimating the option price via Monte-Carlo
simulations would be possible though.

According to Theorem 2.2.1, the fair price of the option Put at time t in the basic
financial market is given by

Put(t) = Z̃(t)−1E
[
Z̃(T )(GT − V vI ,πB (T ))+

∣∣F(t)
]
. (5.1)

In contrast to Chapter 4, the reinsurance contract can be settled only at time t = 0
(when the put option is issued) and is fixed. We assume that the insurer can buy ξI
reinsurance contracts (put options) and call ξI the reinsurance strategy of the insurer.
Furthermore, we assume that the price of the reinsurance contract at time t = 0 equals
(1+ηR)Put(0), where ηR ≥ 0 is the safety loading chosen by the reinsurer and Put(0) is
the fair price of the put option in the basic financial market. This resembles a so-called
expected value principle in reinsurance pricing, for which the reinsurance price is given
by (1 + η)E[X], where η is the safety loading and E[X] is the expected non-discounted
loss under the real-world measure. In our case, the reinsurance premium is given by
the expected discounted loss of the benchmark portfolio under the risk-neutral measure.
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Note that the expected loss of the benchmark portfolio is not equal to the expected loss
of the insurer.

We denote the insurer’s relative portfolio process by πI(t) = (πI,1(t), πI,2(t))
⊤, t ∈ [0, T ].

To model the insurer’s preference to follow an individual investment strategy that is
different from the strategy that can be reinsured, we impose an allocation constraint
πI ∈ R× {0} =: CπI . The wealth process of the insurer satisfies the following SDE:

dV
vI,0(ξI ,ηR),πI

I (t) =(1 − πI,1(t) − πI,2(t))V
vI,0(ξI ,ηR),πI

I (t)
dS0(t)

S0(t)
(5.2)

+ πI,1(t)V
vI,0(ξI ,ηR),πI

I (t)
dS1(t)

S1(t)
+ πI,2(t)V

vI,0(ξI ,ηR),πI

I (t)
dS2(t)

S2(t)
,

V
vI,0(ξI ,ηR),πI

I (0) =vI − ξI(1 + ηR)Put(0) =: vI,0(ξI , ηR).

The insurer’s total terminal wealth is given by the terminal value of the insurer’s invest-
ment portfolio plus the payment from the reinsurance:

V vI,0(ξI ,ηR),πI (T ) + ξIPut(T ).

Similarly, we denote the reinsurer’s relative portfolio process by πR = (πR,1(t), πR,2(t))
⊤,

t ∈ [0, T ]. The corresponding wealth process is given by

dV
vR,0(ξI ,ηR),πR

R (t) =(1 − πR,1(t) − πR,2(t))V
vR,0(ξI ,ηR),πR

R (t)
dS0(t)

S0(t)
(5.3)

+ πR,1(t)V
vR,0(ξI ,ηR),πR

R (t)
dS1(t)

S1(t)
+ πR,2(t)V

vR,0(ξI ,ηR),πR

R (t)
dS2(t)

S2(t)
,

V
vR,0(ξI ,ηR),πR

R (0) =vR + ξI(1 + ηR)Put(0) =: vR,0(ξI , ηR),

where vR > 0 is the initial wealth of the reinsurer before a reinsurance contract is
issued. The reinsurer’s total terminal wealth is given by terminal value of the reinsurer’s
investment portfolio less the payment of the reinsurance contract:

V vR,0(ξI ,ηR),πR(T ) − ξIPut(T ).

Further, we assume that the following condition holds:

0 ≤ ηR ≤ ηmax
R ;

0 ≤ ξI ≤ ξmax
I := min

{
vI

(1 + ηR)Put(0)
, ξ̄

}
,

where ηmax
R > 0, ξ̄ > 0 is a constant independent of ηR. The condition on ηR ensures

that the reinsurance company has an upper bound on the safety loading it can charge.
The condition on ξI ensures that the insurance company has enough money for buying
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reinsurance at t = 0 and that it does not speculate by buying an excessive amount of
reinsurance. For instance, we can choose ξ̄ to be close to 1.

We denote by UR(·) and UI(·) the utility functions of the reinsurer and the insurer
respectively as per Definition 2.3.1 with v̄ = 0.

The set of admissible strategies of the insurer is defined in the following way:

ΛI := {(πI , ξI)| πI ∈ Aπ
c (vI,0(ξI , ηR), CπI ), ξI ∈ [0, ξmax

I ],

E[UI(V
vI,0(ξI ,ηR),πI

I (T ) + ξIPut(T ))−] < +∞]},

where Aπ
c (vI,0(ξI , ηR), CπI ) := {πI |πI ∈ Aπ

u(vI,0(ξI , ηR)), πI ∈ CπI} with Aπ
u(vI,0(ξI , ηR))

being the set of unconstrained portfolio processes according to Definition 2.1.4.

The set of admissible strategies of the reinsurer is defined by

ΛR := {(πR, ηR)| πR ∈ Aπ
u(vR,0(ξI , ηR)), ηR ∈ [0, ηmax

R ],

E[UR(V
vR,0(ξI ,ηR),πR

R (T ) − ξIPut(T ))−] < +∞}.

Finally, we state the Stackelberg game between the reinsurer and the insurer:

sup
(πR,ηR)∈ΛR

E[UR(V
vR,0(ξ

∗
I (ηR),ηR),πR

R (T ) − ξ∗I (ηR)Put(T ))]; (SG)

s.t. (π∗I (·|ηR), ξ∗I (ηR)) ∈ arg max
(πI ,ξI)∈ΛI

E[UI(V
vI,0(ξI ,ηR),πI

I (T ) + ξIPut(T ))].

5.2 Solution to the Stackelberg game

In this section, we apply backward induction to solve the Stackelberg game (SG). First,
we solve the optimization problem of the insurance company

sup
(πI ,ξI)∈ΛI

E[UI(V
vI,0(ξI ,ηR),πI

I (T ) + ξIPut(T ))] (PI)

for each admissible safety loading ηR ∈ [0, ηmax
R ]. We denote by (π∗I (·|ηR), ξ∗I (ηR)) ∈ ΛI

the solution to (PI), which is the optimal response of the insurer to the reinsurer’s action
(πR, ηR).

Second, we solve the optimization problem of the reinsurance company, which knows for
each of its actions the best response(s) of the insurer:

sup
(πR,ηR)∈ΛR

E[UR(V
vR,0(ξ

∗
I (ηR),ηR),πR

R (T ) − ξ∗I (ηR)Put(T ))]. (P πR,ηR
R )
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We denote the solution to (P πR,ηR
R ) by (π∗R, η

∗
R) ∈ ΛR. Then the Stackelberg equilibrium

in the Stackelberg game (SG) is given by (π∗R(·), η∗R, π∗I (·|η∗R), ξ∗I (η∗R)), as it satisfies
Conditions (SEC1) and (SEC2).

5.2.1 Solution to the optimization problem of the insurer

In this subsection, we solve the insurer’s optimization problem (PI) given an arbitrary
but fixed admissible safety loading ηR ∈ [0, ηmax

R ]. Problem (PI) has two challenges in
comparison to standard portfolio optimization problems. First, there is a constraint
on the relative portfolio process, since the insurer prefers not to invest in S2 due to
its individual investment strategy. Second, there is a fixed-term investment in the put
option, which results in an additional control variable and influences the total terminal
wealth of the insurer.

We solve (PI) as follows. First, we consider a family of auxiliary financial markets as per
Cvitanic and Karatzas (1992). For each auxiliary market, we derive the corresponding
optimal allocation-unconstrained relative portfolio process and reinsurance amount via
the generalized MA as per Desmettre and Seifried (2016). Second, we find the optimal
auxiliary market and show that the optimal strategy in it coincides with the solution to
the original problem (PI).

The allocation constraint CπI is convex. Its support function is given by

δ(x) := − inf
y∈CπI

(x⊤y) = − inf
y1∈R

(x1y1) =

{
0, if x1 = 0;

+∞, otherwise.

As in Section 4.2, we introduce the class D of dual processes ν:

D :=

{
ν =

(
(ν1(t), ν2(t))

⊤ )
t∈[0,T ]

∣∣∣ν progressively measurable,

E
[∫ T

0
∥ν(t)∥2 dt

]
<∞, E

[∫ T

0
δ(ν(t))dt

]
<∞

}
.

It holds for ν ∈ D that ν1(t) = 0 Q-a.s. for all t ∈ [0, T ]. Each ν ∈ D corresponds to an
auxiliary market Mν as in (4.11) with the related auxiliary market price of risk γν(t)
defined in (4.12) and the pricing kernel Z̃ν(t) defined in (4.13).

In any Mν , we have an allocation-unconstrained utility-maximization problem with two
controls – the relative portfolio process and the amount of put options. To apply the
generalized MA as per Desmettre and Seifried (2016), we only need the terminal payoff of
the put option (fixed-term security in the terminology of Desmettre and Seifried (2016))
and its initial price, which can be any positive number, not necessarily the fair price as
per Theorem 2.2.1. Thus, we are only interested in Put(T ) and Put(0). Put(T ) is a
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random variable that is F(T )-measurable. By (5.1), Put(T ) = (GT − V vI ,πB (T ))+ and

Put(0) = E
[
Z̃(T )(GT − V vI ,πB (T ))+

]
. Note that in general we have:

Put(0)
(5.1)
= E[Z̃(T )Put(T )] ̸= E[Z̃ν(T )Put(T )].

The insurer’s wealth process V
vI,0(ξI ,ηR),πI
ν in the auxiliary market Mν is given by

dV
vI,0(ξI ,ηR),πI
ν (t) =(1 − πI,1(t) − πI,2(t))V

vI,0(ξI ,ηR),πI
ν (t)

dSν
0 (t)

Sν
0 (t)

+ πI,1(t)V
vI,0(ξI ,ηR),πI
ν (t)

dSν
1 (t)

Sν
1 (t)

+ πI,2(t)V
vI,0(ξI ,ηR),πI
ν (t)

dSν
2 (t)

Sν
2 (t)

=(1 − πI,1(t) − πI,2(t))V
vI,0(ξI ,ηR),πI
ν (t)

dS0(t)

S0(t)

+ πI,1(t)V
vI,0(ξI ,ηR),πI
ν (t)

dS1(t)

S1(t)
+ πI,2(t)V

vI,0(ξI ,ηR),πI
ν (t)

dS2(t)

S2(t)

+ V
vI,0(ξI ,ηR),πI
ν (t)

(
πI(t)⊤ν(t)

)
︸ ︷︷ ︸
≥0, if πI(t)∈CπI

dt,

V
vI,0(ξI ,ηR),πI
ν (0) = vI − ξI(1 + ηR)Put(0) = vI,0(ξI , ηR).

The unconstrained optimization problem of the insurer in Mν is given by

sup
(πI ,ξI)∈Λν

I

E[UI(V
vI,0(ξI ,ηR),πI
ν (T ) + ξIPut(T ))], (P ν

I )

where

Λν
I := {(πI , ξI)| πI ∈ Aπ

u(vI,0(ξI , ηR)), ξI ∈ [0, ξmax
I ],

E[UI(V
vI,0(ξI ,ηR),πI
ν (T ) + ξIPut(T ))−] <∞}.

For the optimal ν∗, which is to be found, the solution to the unconstrained problem (P ν
I )

will satisfy the constraint π2(t) = 0 Q-a.s. ∀t ∈ [0, T ]. We denote the solution to (P ν
I )

by (π∗ν , ξ
∗
ν) ∈ arg sup

(πI ,ξI)∈Λν
I

E[UI(V
vI,0(ξI ,ηR),πI
ν (T ) + ξIPut(T ))].

Next we define the random utility function by

ÛI(x) := UI(x+ ξIPut(T ))

for x ∈ [0,∞), where ξI ∈ [0, ξmax]. The utility function ÛI(·) is random, since Put(T )
is a random variable. Hence, ÛI : [0,+∞) → [UI(ξIPut(T )),+∞) and ÛI(·) is con-
tinuously differentiable, strictly increasing and strictly concave. Therefore, it holds
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Û ′
I : [0,+∞) → (0, U ′

I(ξIPut(T ))] and

Û ′
I(x) = U ′

I(x+ ξIPut(T )).

We denote the inverse of Û ′
I(·) by ÎI : (0,+∞) → [0,+∞). For λ ∈ (0, U ′

I(ξIPut(T ))],

we have ÎI(λ) = II(λ)−ξIPut(T ), where II(·) is the inverse of U ′
I(·). So ÎI(·) is bijective

on (0, U ′
I(ξIPut(T ))]. For convenience, we set ÎI(λ) := 0 for λ > U ′

I(ξIPut(T )).

In the next proposition we provide the solution to the insurer’s optimization problem in
each auxiliary market.

Proposition 5.2.1 (Optimal solution to (P ν
I )). Assume that for all λ ∈ (0,+∞)

E[Z̃ν(T )II(λZ̃ν(T ))] < +∞ and E[UI(II(λZ̃ν(T )))] < +∞ (5.4)

holds. Then, there exists a solution (π∗ν , ξ
∗
ν) to the unconstrained optimization problem

of the insurer (P ν
I ), where

ξ∗ν ∈ arg max
ξI∈[0,ξmax]

hI(ξI).

The function hI(·) is given by

hI(ξI) := E[UI(max{II(λ∗(ξI)Z̃ν(T )), ξIPut(T )})],

where the Lagrange multiplier λ∗ := λ∗(ξI) is given by the budget constraint

E[Z̃ν(T )ÎI(λ∗Z̃ν(T ))] = vI − ξI(1 + ηR)Put(0).

The optimal terminal wealth V ∗
ν (T ) := V

vI,0(ξ
∗
ν ,ηR),π∗

ν
ν (T ) is given by

V ∗
ν (T ) = ÎI(λ∗(ξ∗ν)Z̃ν(T )) = max{II(λ∗(ξ∗ν)Z̃ν(T )) − ξ∗νPut(T ), 0}.

and the optimal wealth process V ∗
ν is given by

V ∗
ν (t) = Z̃ν(t)−1E[Z̃ν(T )V ∗

ν (T )|F(t)]

for t ∈ [0, T ].

If Î(·) and dÎI
dλ (·) are polynomially bounded5 at 0 and +∞, the optimal relative portfolio

5As per Desmettre and Seifried (2016), a function f : (0,+∞) → R is called polynomially bounded at
0 and +∞, if there exist c, k ∈ (0,+∞) such that for all λ ∈ (0,+∞) the following holds:

|f(λ)| ≤ c

(
λ+

1

λ

)k
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process π∗ν is given by

π∗ν(t)V ∗
ν (t) = −(σ⊤)−1γνZ̃ν(t)−1E

[
Z̃ν(T )λ∗(ξ∗ν)Z̃ν(T )

dÎI
dλ

(
λ∗(ξ∗I )Z̃ν(T )

) ∣∣∣∣F(t)

]
(5.5)

Q-a.s. for all t ∈ [0, T ].

Proof. See Appendix C.1.

By Proposition 5.2.1 we know the solution (π∗ν , ξ
∗
ν) to the unconstrained optimization

problem of the insurer (P ν
I ), if some technical conditions hold. In the next proposition,

we show when the solution to the insurer’s original optimization problem (PI) and the
insurer’s unconstrained optimization problem (P ν

I ) coincide.

Proposition 5.2.2 (Optimal solution to (PI)). Suppose that there exists ν∗ ∈ D such
that for the optimal solution (π∗ν∗ , ξ

∗
ν∗) to (P ν∗

I ) we have π∗ν∗(t) ∈ CπI Q-a.s. for all
t ∈ [0, T ]. Then (π∗I , ξ

∗
I ) := (π∗ν∗ , ξ

∗
ν∗) is optimal for the constrained optimization problem

of the insurer (PI).

Proof. See Appendix C.1.

Remark to Proposition 5.2.2. For a deterministic utility function, ν∗ can be found
as in Example 15.1 of Cvitanic and Karatzas (1992). Since in our case Û(·) is a random
utility function, the search for the optimal ν∗ is a bit more involved. In Section 5.3, we
equip the insurer with a power-utility function and explicitly derive ν∗ that satisfies the
conditions in Proposition 5.2.2.

5.2.2 Solution to the optimization problem of the reinsurer

In Subsection 5.2.1, we learned about the optimal responses (investment strategy and
amount of reinsurance) of the insurer to an arbitrary admissible safety loading ηR. We
write (π∗I (t|ηR, ξ∗I (ηR)), ξ∗I (ηR)) to emphasize the dependence of the insurer’s optimal re-
sponse on ηR ∈ [0, ηmax

R ]. In this subsection, we solve the optimization problem (P πR,ηR
R )

of the reinsurer that knows how the insurer responds to different ηR.

Similarly to the insurer’s problem (PI), the reinsurer’s problem (P πR,ηR
R ) has two con-

trols, namely the relative portfolio process πR and the safety loading ηR. However, it
does not have a constraint on the relative portfolio process, since we assume that the
reinsurer has a larger investment universe in our model and can hedge the put option.
We solve the problem via the replicating-strategies approach introduced in Korn and
Trautmann (1999).
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We solve (P πR,ηR
R ) in the following way. First, we transform the optimization problem

(P πR,ηR
R ) into an optimization problem (PφR,ηR

R ) w.r.t. the trading strategy φR and ηR.
Second, we use the idea of Desmettre and Seifried (2016) and solve the optimization
problem (PφR,ηR

R ) given a fixed ηR ∈ [0, ηmax
R ]. For this, we transform the optimization

problem (PφR,ηR
R ) into the optimization problem (P

φR|ηR
R ) w.r.t. the trading strategy

φR given an arbitrarily fixed admissible ηR. Problem (P
φR|ηR
R ) is in its turn transformed

into the problem (P
φR|ηR,ξ(t)=−ξ∗I (ηR)
R ) w.r.t. the trading strategy φR given fixed ηR

and a fixed position ξ(t) = −ξ∗I (ηR) in Put. Then, we solve the optimization problem

(P
φR|ηR,ξ(t)=−ξ∗I (ηR)
R ) by applying the replicating-strategies approach as per Korn and

Trautmann (1999) and use Relation 2.6 to derive the optimal relative portfolio process

π∗R(·|ηR) from the optimal trading strategy φ∗
R(·|ηR). The optimization problem (P

φR|ηR
R )

is stated below in this subsection. However, we state problem (P
φR|ηR,ξ(t)=−ξ∗I (ηR)
R ) in

Appendix C.1 in the proof of Proposition 5.2.4 to keep this subsection concise. Lastly,
we solve the optimization problem (P πR,ηR

R ) with respect to ηR for the given optimal
portfolio process π∗R(·|ηR).

As mentioned above, the first step is the transformation of (P πR,ηR
R ) into the equivalent

optimization problem (PφR,ηR
R ) with respect to the trading strategy φR. Denoting by

V
vI,0(ξI ,ηR),φR

R the reinsurer’s wealth process controlled by the trading strategy φR :=

(φR,0(t), φR,1(t), φR,2(t))
⊤
t∈[0,T ], we state the corresponding transformed problem:

sup
(φR,ηR)∈ΛφR

R

E[UR(V
vR,0(ξ

∗
I (ηR),ηR),φR

R (T ) − ξ∗I (ηR)Put(T ))], (PφR,ηR
R )

where ΛφR
R is the set of all admissible trading strategies and safety loadings of the

reinsurer:

ΛφR
R := {(φR, ηR)| φR ∈ Aφ

u(vR,0(ξ
∗
I (ηR)), ηR ∈ [0, ηmax

R ],

E[UR(V
vR,0(ξ

∗
I (ηR),ηR),φR

R (T ) − ξ∗I (ηR)Put(T ))−] < +∞}.

We solve (PφR,ηR
R ) by first deriving the optimal trading strategy for any admissible ηR

and then by optimizing the ηR. So we fix an arbitrary ηR ∈ [0, ηmax
R ] and consider the

following optimization problem

sup
φR:(φR,ηR)∈ΛφR

R

E[UR(V
vR,0(ξ

∗
I (ηR),ηR),φR

R (T ) − ξ∗I (ηR)Put(T ))], (P
φR|ηR
R )

where ηR in (P
φR|ηR
R ) emphasizes that ηR is not a control variable there. To derive the

optimal trading strategy φ∗
R in (P

φR|ηR
R ), we need the following auxiliary lemma about

the put-replication strategy.

Lemma 5.2.3. The replicating strategy ψ(t), t ∈ [0, T ], of the put option Put is given

116



5 Optimal risk sharing between an insurer and a reinsurer

by

ψ(t) =

(
Put(t) − πCMV vI ,πB (t)(Φ(d+) − 1)

S0(t)
, 0,

πCMV vI ,πB (t)(Φ(d+) − 1)

S2(t)

)⊤
, (5.6)

where

d+ := d1(t, V
vI ,πB (t), GT , r, σ2π

CM )

and d1(·) is defined in (2.17).

Proof. See Appendix C.1.

In the next proposition, we provide the solution to (P
φR|ηR
R ). To prove it, we modify

Theorem 5.1 in Korn and Trautmann (1999) in accordance with Remark 5.2 in Korn
and Trautmann (1999) and apply the modified theorem to the case of a fixed position
in a put option.

Proposition 5.2.4 (Optimal solution to (P
φR|ηR
R )). Assume that for all λ ∈ (0,+∞) it

holds

E[Z̃(T )IR(λZ̃(T ))] < +∞,

where IR(·) is the inverse function of U ′
R(·).

(a) There exists an optimal trading strategy φ∗
R in the optimization problem (P

φR|ηR
R ).

The optimal total terminal wealth in the optimization problem (P
φR|ηR
R ) is given

by

V
vR,0(ξ

∗
I (ηR),ηR),φ∗

R
R (T ) − ξ∗I (ηR)Put(T ) = IR(λ∗R(ηR)Z̃(T )),

where λ∗R ≡ λ∗R(ηR) is the Lagrange multiplier determined by

E[Z̃(T )IR(λ∗RZ̃(T ))] = vR + ξ∗I (ηR)ηRPut(0). (5.7)

(b) Let ψ be the replicating strategy given by (5.6) and ζ∗R the optimal trading strategy
of the stock optimization problem, where the reinsurer only invests in the assets
S0, S1 and S2 (i.e., no investment in options). Then, the optimal trading strategy
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φ∗
R to the optimization problem (P

φR|ηR
R ) is given by

φ∗
R,0(t) =

V vR,0(ξ
∗
I (ηR),ηR),φ∗

R(t) −
∑2

i=1 φ
∗
R,i(t)Si(t)

S0(t)
;

φ∗
R,1(t) = ζ∗R,1(t);

φ∗
R,2(t) = ζ∗R,2(t) + ψ2(t)ξ

∗
I (ηR).

Proof. See Appendix C.1.

Remark to Proposition 5.2.4. The proof of the above proposition does not rely the
generalized MA, which we used to solve the insurer’s optimization problem. Instead, we
use a simpler method that does not require the inversion of random utilities and uses
the completeness of the financial market in which the reinsurer operates.

Proposition 5.2.4 yields the optimal terminal portfolio value V
vR,0(ξ

∗
I (ηR),ηR),φ∗

R
R (T ) and

the optimal trading strategy φ∗
R given an arbitrary but fixed admissible ηR in (PφR,ηR

R ).
The optimal ηR can be calculated using the following proposition.

Proposition 5.2.5 (Optimal safety loading). Let φ∗
R(·|ηR) be the optimal trading strat-

egy in the optimization problem (PφR,ηR
R ) for ηR ∈ [0, ηmax]. Then, the optimal safety

loading η∗R of the reinsurer is given by

η∗R = arg max
ηR∈[0,ηmax

R ]
E[UR(V

vR,0(ξ
∗
I (ηR),ηR),φ∗

R
R (T ) − ξ∗I (ηR)Put(T ))].

Proof. See Appendix C.1.

5.2.3 Stackelberg equilibrium

Proposition 5.2.6 (Stackelberg equilibrium). The Stackelberg equilibrium of the Stack-
elberg game (SG) is given by (π∗R(·|η∗R), η∗R, π

∗
I (·|η∗R), ξ∗I (η∗R)), where

� π∗R(·|η∗R) is given by

π∗R,i(t|η∗R) =
φ∗
R,i(t|η∗R) · Si(t)

V
vR,0(ξ

∗
I (η

∗
R),η∗R),φ∗

R
R (t)

,

where φ∗
R is given by Proposition 5.2.4,

� η∗R is given by Proposition 5.2.5, and
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� (π∗I (·|η∗R), ξ∗I (η∗R)) are given by Proposition 5.2.1 and Proposition 5.2.2, such that

ξ∗I (η∗R) = max{ξ∗I | E[UI(V
vI,0(ξ

∗
I ,η

∗
R),π∗

I
I (T ) + ξ∗IPut(T ))]

= sup
ξI :(πI ,ξI)∈ΛI

E[UI(V
vI,0(ξI ,η

∗
R),π∗

I
I (T ) + ξIPut(T ))]}. (5.8)

Proof. See Appendix C.1.

Remarks to Proposition 5.2.6.

First, Equation (5.8) ensures that Condition (SEC2) is fulfilled, i.e., if there exist more
than one best response of the insurer to the reinsurer’s optimal strategy, then in the
Stackelberg equilibrium the insurer’s best response is the one that is best also from the
reinsurer’s perspective.

Second, for the optimal portfolio processes of the reinsurer π∗R and the insurer π∗I , we get
analytical representations that depend on the optimal safety loading η∗R and the amount
of reinsurance ξ∗I (η∗R). Depending on the concrete utility function, η∗R and ξ∗I (η∗R) can be
analytically derived in a closed form, which we show below for a power-utility function,
or numerically calculated.

5.3 Explicit solutions for power utility functions

In this section, we explicitly derive the Stackelberg equilibrium when the preferences of
each party are described be a power-utility function as per (2.39), i.e., for v ∈ (0,+∞)

UR(v) :=
1

pR
vpR and UI(v) :=

1

pI
vpI (5.9)

with pR, pI ∈ (−∞, 1)\{0}. In addition, we assume that the upper limit ξmax
I is fixed

and equals ξ̄ > 0 with ξ̄ < vI/ ((1 + ηmax
R )Put(0)).

First, we derive the best response for the insurer (follower) given an arbitrary but fixed
admissible strategy of the leader. For that, we will use the optimal unconstrained relative
portfolio process of the insurer without reinsurance in an auxiliary market Mν . As in
the previous chapter, we denote this process by π∗u,ν . Recall from Corollary 4.2.4 that it
is given by:

π∗u,ν(t) := π∗u,ν(pI) :=
1

1 − pI
(σσ⊤)−1(µ+ ν − r1112). (5.10)

Corollary 5.3.1 (Best response of the insurer). Assume that the insurer has a power-
utility function UI(·) as in (5.9). Let ηR ∈ [0, ηmax

R ] be an arbitrary but fixed safety
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loading chosen by the reinsurer. Then the optimal response of the insurer is given by

ξ∗I (ηR) =


ξ̄, if ηR < E[Z̃ν∗ (T )Put(T )]−Put(0)

Put(0) ,

any ξ̃ ∈ [0, ξ̄], if ηR = E[Z̃ν∗ (T )Put(T )]−Put(0)
Put(0) ,

0, if ηR > E[Z̃ν∗ (T )Put(T )]−Put(0)
Put(0) ,

(5.11)

and π∗I := (π∗I (t))t∈[0,T ] such that for t ∈ [0, T ]

π∗I (t|ηR) =π∗u,ν∗(pI)
V

vI,0(ξ
∗
I (ηR),ηR),π∗

I
I (t) + ξ∗I (ηR)

(
Z̃ν∗(t)

)−1
E[Z̃ν∗(T )Put(T )|F(t)]

V
vI,0(ξ

∗
I (ηR),ηR),π∗

I
I (t)

,

(5.12)

where ν∗ ∈ D equals

ν∗ =

(
0,
σ2ρ

σ1
(µ1 − r) − µ2 + r

)⊤

and π∗u,ν∗(pI) is defined by (5.10) for ν = ν∗.

Proof. See Appendix C.2.

Remark to Corollary 5.3.1. We can write (5.10) and (5.12) for ν = ν∗ as follows:

π∗u,ν∗(pI) = π∗u(pI) +
1

1 − pI
(σσ⊤)−1ν∗︸ ︷︷ ︸

constraint correction

; (5.13)

π∗I (t|ηR) = π∗u(pI) +
1

1 − pI
(σσ⊤)−1ν∗︸ ︷︷ ︸

constraint correction

+π∗u,ν∗(pI)
ξ∗I (ηR)Z̃ν∗(t)−1E[Z̃ν∗(T )Put(T )|F(t)]

V
vI,0(ξ

∗
I (ηR),ηR),π∗

I
I (t)︸ ︷︷ ︸

reinsurance contract correction

,

(5.14)

where π∗u is the optimal unconstrained portfolio process in the original market M. If
the insurer has no constraint on πI , then ν∗ = (0, 0)⊤ the last term in (5.13) vanishes
and it holds that π∗u,ν∗(pI) = π∗u(pI). In addition, if ν∗ = (0, 0)⊤, then for any ηR > 0
we get ξ∗I (ηR) = 0 due to (5.11) and, thus, π∗I (t|ηR) = π∗u,ν∗(pI) = π∗u(pI).

Otherwise, the insurer’s optimal relative portfolio process π∗I equals the optimal un-
constrained relative portfolio process with two correction terms that account for the
availability of the reinsurance contract and the difference between the insurer’s individ-
ual portfolio and the reinsured portfolio.
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Denoting the reinsurer’s optimal unconstrained strategy without the put option by

π∗u(pR) =
1

1 − pR
(σσ⊤)−1(µ− r1112),

we provide in the next proposition the Stackelberg equilibrium for (SG).

Corollary 5.3.2 (Stackelberg equilibrium). Assume that the insurer and the reinsurer
have power-utility functions as in (5.9). Then the Stackelberg equilibrium in (SG) is
(π∗R(·|η∗R), η∗R, π

∗
I (·|η∗R), ξ∗I (η∗R)), where

η∗R = min

{
E[Z̃ν∗(T )Put(T )] − Put(0)

Put(0)
, ηmax

R

}
, (5.15)

π∗R(t|η∗R) = π∗u(pR)
V

vR,0(ξ
∗
I (η

∗
R),η∗R),φ∗

R
R (t) − ξ∗I (η∗R)Put(t)

V
vR,0(ξ

∗
I (η

∗
R),η∗R),φ∗

R
R (t)

(5.16)

+

 0
πCMV vI ,πB (t)(Φ(d+)−1)

V
vR,0(ξ

∗
I
(η∗

R
),η∗

R
),φ∗

R
R (t)

ξ∗I (η∗R)


︸ ︷︷ ︸

guarantee correction term

,

ξ∗I (η∗R) = ξ̄ is given by (5.11), π∗I (·|η∗R) is given by (5.12).

Proof. See Appendix C.2.

Remark to Corollary 5.3.2. If the insurer has no allocation constraint (i.e., ν∗ =
(0, 0)⊤), then ξ∗I (η∗R) = 0 for any ηR > 0 (see Remark to Corollary 5.3.1) and π∗R(t|η∗R) =
π∗u(pR) for all t ∈ [0, T ] (see (5.16)).

If the insurer offers no guarantee to its client (i.e., GT = 0), then d+ = +∞ and the
last term in (5.16) is equal to zero. Moreover, Put(t) = 0, t ∈ [0, T ]. Thus, π∗R(t|η∗R) =
π∗u(pR) for all t ∈ [0, T ] too.

5.4 Numerical studies

In this section, we describe the numerical studies for power-utility maximizing insur-
ance and reinsurance companies. We explain how the model parameters are selected
in Subsection 5.4.1. In Subsection 5.4.2, we calculate the Stackelberg equilibrium for
the base-case values of parameters from Subsection 5.4.1 and analyze the sensitivity
of the Stackelberg equilibrium w.r.t. the changes in the behavior of the parties and
the changes in the put option price. In Subsection 5.4.3, we investigate how the ex-
pected utilities of the parties change when one of the players decides not to follow the
Stackelberg-equilibrium strategy.
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5.4.1 Parameter selection

Parameter Symbol Values

Interest rate r 1.02%
Drift coefficient for S1 µ1 17.52%
Drift coefficient for S2 µ2 12.37%
Diffusion coefficient for S1 σ1 23.66%
Diffusion coefficient for S2 σ2 21.98%
Correlation coefficient ρ 80.12%
Benchmark CM strategy πB (0%, 29.48%)⊤

Initial value of S1 s1 1
Initial value of S2 s2 1
Guarantee GT 100
Initial wealth of insure vI 100
Initial wealth of reinsurer vR 100
Relative risk aversion of insurer (RRAI) 1 − pI 10
Relative risk aversion of reinsurer (RRAR) 1 − pR 10
Time horizon T 10
Maximal safety loading of reinsurer ηmax

R 50%
Maximal amount of reinsurance ξmax

I = ξ̄ 1.5

Table 5.1: Parameters for the numerical analysis.

For the majority of model parameters, we choose the same values as in Chapter 4,
compare with Table 4.1. We set the insurer’s initial wealth vI to 100. It is a reasonable
assumption that the reinsurer is a larger company that has more initial capital. If
reinsurance is offered on the company-aggregated level, then the reinsurer’s initial wealth
should be indeed larger than the insurer’s initial wealth of the insurer, as, e.g., in Chen
and Shen (2018). However, we model reinsurance within a single insurance product.
Thus, we assume that the initial product-related capital of the reinsurer coincides with
the initial wealth of the insurer, i.e., vR = vI = 100.

As for the risk-aversion coefficients, we set in the base case pI = pR = −9 . In our sensi-
tivity analysis, we explore the situations where the parties have different risk aversion.
In Chen and Shen (2018), the researchers also assume that both parties have the same
risk-aversion coefficient, whereas Bai et al. (2022) model the insurer as a more risk-averse
party than the reinsurer.

We set the maximal admissible safety loading ηmax
R to 50%. This choice is in line with

Chen and Shen (2018) and Chen et al. (2019), where the safety loading has an upper
bound of 45%. We do not allow that the insurer can speculate with the reinsurance
by holding a short position in it or by buying an excessive amount of it. Since the
underlying of the put option is not the insurer’s individual portfolio but a correlated
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benchmark portfolio, we set ξmax
I = ξ̄ = 1.5. In practice, a regulator may have to impose

this type of constraint.

5.4.2 Stackelberg equilibrium and its sensitivity

In the base case, the Stackelberg equilibrium is given by

π∗R(0) = (32.85%,−9.23%)⊤, η∗R = 20.86%;

π∗I (0) = (31.69%, 0%)⊤, ξ∗I (η∗R) = 1.5.

In the equilibrium, the insurer purchases the maximal amount of reinsurance (i.e.,
ξ∗I (η∗R) = ξmax

I ) and the reinsurer selects the maximal safety loading such that the
insurer may still buy reinsurance, in which case the price of reinsurance is about 20%
higher than the fair (risk-neutral) price of the corresponding put option.

Next, we conduct the sensitivity analysis. First, we check how the equilibrium changes
as we vary the RRA coefficients of the reinsurer and the insurer. Afterwards, we explore
the impact of the interest rate r, the time horizon T , and the capital guarantee GT on
the Stackelberg equilibrium.

Figure 5.1 shows the Stackelberg equilibrium for varying RRA coefficients of each party.
As expected from Corollary 5.3.2, a change of the companies’ RRA coefficients does not
influence the optimal reinsurance amount ξ∗I (η∗R) and the optimal safety loading η∗R. The
more risk averse a company is, the less it invests in or speculates with the risky assets.

Figure 5.1: Sensitivity of the Stackelberg equilibrium w.r.t. RRAR and RRAI .

As it can be seen in Figure 5.2, the higher the interest rate r ∈ {−2%,−1%, 0%, 1%, 2%},
the higher the optimal safety loading of the reinsurer. When r changes, the fair price of
the put option Put(0) in the basic market M decreases faster than the fair price of the
put option E[Z̃ν∗(T )Put(T )] in the auxiliary market Mν∗ (see (5.15)). The interest rate
has no influence on the reinsurance amount in the equilibrium, which is consistent with
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Corollary 5.3.2. The higher the interest rate, the less the insurer invests in the risky
asset. In contrast, due to the replication of the put-option position, the reinsurer invests
more in risky assets when the interest rate grows.

Figure 5.2: Sensitivity of the Stackelberg equilibrium w.r.t. r.

Figure 5.3 illustrates that the longer the investment period T ∈ {1, 5, 10, 15, 20}, the
higher the optimal safety loading. However, with varying T , the optimal reinsurance
strategy stays constant, whereas the optimal investment strategy of each party changes
very little.

Figure 5.3: Sensitivity of the Stackelberg equilibrium w.r.t. T .

Finally, we look at the impact of the guarantee GT ∈ {0.6 · vI , 0.7 · vI , 0.8 · vI , 0.9 · vI , 1 ·
vI , 1.1 · vI} in the equilibrium investment-reinsurance strategies. Recall that GT is the
strike of the put option that models the reinsurance contract. According to Figure 5.4,
the optimal safety loading is decreasing in GT . This follows from the fact that the put
option becomes more expensive as GT increases, which is why the maximal safety loading
(which increases the put option price) at which the insurer may still be willing to buy
reinsurance decreases. On the contrary, the equilibrium reinsurance amount is constant
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despite the changes of GT , namely ξI = ξmax
I = 1.5. This stems from the definition of

the Stackelberg equilibrium, according to which, in case the follower has more than one
best response to the leader’s action, it is assumed that the follower selects the action that
is also best from the leader’s point of view. As for the optimal investment strategies,
when GT increases, the reinsurer invests the less in S2 and more in the risk-free asset
due to the hedge of its put-option position. With increasing GT , the optimally behaving
insurer invests more in the risky asset S1.

Figure 5.4: Sensitivity of the Stackelberg equilibrium w.r.t. GT .

5.4.3 Impact of deviating from the Stackelberg equilibrium

According to (5.11) in Corollary 5.3.1, the insurer’s best response to any ηR ∈ [0, ηmax
R ]

is given by:

ξ∗I (ηR) =


ξ̄, if ηR < E[Z̃ν∗ (T )Put(T )]−Put(0)

Put(0) ;

any ξ̃ ∈ [0, ξ̄], if ηR = E[Z̃ν∗ (T )Put(T )]−Put(0)
Put(0) ;

0, if ηR > E[Z̃ν∗ (T )Put(T )]−Put(0)
Put(0) .

So if the reinsurer selects the safety loading η∗R =
(
E[Z̃ν∗(T )Put(T )] − Put(0)

)
/Put(0),

then the insurer becomes indifferent to the amount of reinsurance and can pick any
ξI ∈ [0, ξ̄] without changing its expected utility. The Stackelberg equilibrium assumes
that the insurer chooses ξI that is best from the perspective of the reinsurance company,
i.e., ξ∗I (η∗R) = ξ̄. However, in practice, the insurer could also decide to purchase a smaller
amount of reinsurance. Therefore, the reinsurance company should consider charging a
smaller safety loading than the equilibrium one η∗R in order to ensure that the insurance
company buys reinsurance. Two natural questions arise in this case. How the reinsurance
company can reasonably choose a smaller safety loading? What is the benefit of each
party in this case? These are the questions we answer in this subsection.
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Denote a discounted safety loading by ηR(l) = l · η∗R with l ∈ (0, 1). The reinsurance
company is always better off when selling reinsurance with a discounted safety loading
in comparison to not selling any reinsurance. This follows from the difference in the
initial budgets of the reinsurance company and the reinsurer’s ability to hedge its put-
option position when reinsurance is sold. If the reinsurer sells reinsurance at a price
(1+ηR(l))Put(0), the company needs only Put(0) capital to hedge its put-option position
and can follow any investment strategy with the remaining budget vR + ηR(l)Put(0),
which is larger than the initial budget vR available to the reinsurer in case no reinsurance
is sold.

Before providing several reasonable ways of how the reinsurer can choose the discounted
safety loading ηR(l), we introduce a tool for quantifying the monetary impact on each
participant of the game if one combination of actions is followed instead of another one.
“Combination of actions” means a specific choice of the safety loading as well as the
investment strategy, which are the reinsurer’s actions, and the amount of reinsurance
as well as the investment strategy, which are the insurer’s actions. For example, the
Stackelberg equilibrium is compared with the case of no reinsurance along with the
corresponding optimal investment strategies.

We generalize the concept of WEUL from Definition 2.3.5 to a wealth-equivalent utility
change (WEUC) by including static strategies in the comparison and by allowing the
comparison of any two strategy choices, not only the optimal one with a suboptimal
one. In the calculation of WEUC, the expected utility of a party in a so-called reference
combination of actions (e.g., the Stackelberg equilibrium with a discounted safety load-
ing) is compared to a so-called alternative combination of actions (e.g., no reinsurance
and the corresponding optimal investment strategy of each party). WEUC equals the
relative change of the party’s initial wealth that is required to bring the party in the
alternative action combination to the same expected utility as in the case of the reference
combination of actions.

We denote a reference combination of actions by (π̃R(·|η̃R, ξ̃I), η̃R, π̃I(·|η̃R, ξ̃I), ξ̃I) and an
alternative combination of actions by (π̂R(·|η̂R, ξ̂I), η̂R, π̂I(·|η̂R, ξ̂I), ξ̂I). Then the WEUC
of the reinsurer is denoted by

WEUCR(η̃R, ξ̃I , η̂R, ξ̂I) := WEUCR((π̃R(·|η̃R, ξ̃I), η̃R), (π̂R(·|η̂R, ξ̂I), η̂R))

and satisfies the relation

E
[
UR

(
V

vWEUC
R,0 (ξ̂I ,η̂R),π̂R

R (T )− ξ̂IPut(T )

)]
= E

[
UR

(
V

vR,0(ξ̃I ,η̃R),π̃R

R (T ) − ξ̃IPut(T )

)]
,

where

vWEUC
R,0 (ξ̂I , η̂R) = vR · (1 +WEUCR(η̃R, ξ̃I , η̂R, ξ̂I)) + ξ̂I(1 + η̂R)Put(0).
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Analogously, the WEUC of the insurer is denoted by

WEUCI(η̃R, ξ̃I , η̂R, ξ̂I) := WEUCI((π̃I(·|η̃R, ξ̃I), ξ̃I), (π̂I(·|η̂R, ξ̂I), ξ̂I))

and satisfies the relation

E
[
UI

(
V

vWEUC
I,0 (ξ̂I ,η̂R),π̂I

I (T ) + ξ̂IPut(T )

)]
= E

[
UI

(
V

vI,0(ξ̃I ,η̃R),π̃I

I (T ) + ξ̃IPut(T )

)]
,

where

vWEUC
I,0 (ξ̂I , η̂R) = vI · (1 +WEUCI(η̃R, ξ̃I , η̂R, ξ̂I)) − ξ̂I(1 + η̂R)Put(0).

The WEUC has an intuitive interpretation. If this quantity is positive, then the reference
combination of actions is better for the party of interest than the alternative combination
of actions. In this case, the WEUC indicates by which proportion the party has to
increase its initial capital in the case of the alternative combination of actions so that
it has the same expected utility as in the case of the reference combination of actions.
If the WEUC is negative, then the reference combination of actions is worse for the
considered party than the alternative combination of actions. In this case, the WEUC
indicates by which proportion the party can decrease its initial capital in the case of the
alternative combination of actions so that it has the same expected utility as in the case
of the reference combination of actions. In the plots below, we indicate WEUC either
in basis points or in percentage points.

Having introduced the concept of WEUC, we turn to the question how the reinsurer could
choose the discount on the equilibrium safety loading to ensure that the insurer buys
the maximal amount of reinsurance. One approach could be based on the reinsurer’s
WEUC. In this approach, the reinsurer calculates its WEUCs when the Stackelberg
equilibrium (as a reference combination of actions) is compared with various alternative
situations where all actions are the same as in the Stackelberg equilibrium but a safety
loading is ηR(l), l ∈ (0, 1). Then the reinsurer chooses the tolerance level of WEUC and
derives the corresponding l. For example, consider the dark-blue line on Figure 5.5. It
indicates that WEUCR > 0 for any l ∈ (0, 1), which means that the reference combina-
tion of actions (Stackelberg equilibrium) is better than any alternative combination of
actions with the discounted safety loading ηR(l), l ∈ (0, 1). Since the reinsurer cannot
guarantee in practice that in the Stackelberg equilibrium the insurer buys the maximal
amount of reinsurance, the reinsurer can consider the level WEUCR = 25bp (see the
turquoise dashed line) as the largest monetary loss it can tolerate when deviating from
the Stackelberg equilibrium by providing a discount on the equilibrium safety loading.
The corresponding parameter is l = 79.27% and defines the discounted safety loading
ηR(79.27%) = 79.27% · 20.86% ≈ 16.54% that the reinsurer is willing to offer.
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5 Optimal risk sharing between an insurer and a reinsurer

Figure 5.5: Comparison of WEUC: Stackelberg equilibrium (reference strategy) and the
same action combination but with a discounted safety loading (alternative strategy).

Figure 5.5 also indicates that the gain of the insurer is of the same amount as the loss
of the reinsurer when a discounted safety loading is offered instead of the equilibrium
one. This property remains valid also when for other RRA coefficients of the companies.
Hence, the insurer does not benefit more from deviating from the Stackelberg equilibrium
as the reinsurer loses. For example, a discount of 5% on η∗R would increase the WEUC
of the reinsurer by around 6bp of the initial capital and decrease the insurer’s WEUC
by the same amount.

The other ways of choosing l can be related to reinsurance profitability from the per-
spective of the reinsurer. This can be measured by determining the probability that the
reinsurer’s total terminal wealth is lower than its initial wealth:

Q(l) := Q(V
vR,0(ηR(l),ξ∗I ),π

∗
R(·|ηR(l),ξ∗I )

R (T ) − ξ∗IPut(T ) < vR).

This measure shows the product profitability of the reinsurance for the reinsurer and is
shown in Figure 5.6. The reinsurer can choose l in two different ways, which are based
on:

� a tolerance level for the increase of the probability of loss. For example, the
reinsurer is not willing to increase the probability of loss by more than 0.01%
compared to the probability of loss Q(1) = 0.4413% in the case of the Stackelberg
equilibrium. In this example, the reinsurer chooses l = 86.73% (see green line in
Figure 5.6).

128



5 Optimal risk sharing between an insurer and a reinsurer

� a maximal tolerable probability of loss. For example, if the reinsurer has a maximal
admissible probability of loss 0.5%, then it chooses l = 20.74% (see purple line in
Figure 5.6).

Figure 5.6: Probability of loss at time T for reinsurer.

The reinsurance company can also use other criteria for choosing l ∈ (0, 1), e.g., other risk
measures, as the standard deviation, or different performance measures, as the expected
return or the adjusted Sharpe ratio.

In the insurance industry, the analysis of the product profitability is a common pro-
cedure, which is also easier to communicate. Therefore, we select l = 86.73% for the
remaining part of the numerical studies. In this case, the reinsurer limits the increase of
the probability of loss (from the deal with the insurer) to 0.0001.

In the remaining analysis, we study how the insurer benefits from buying reinsurance
with a safety loading of ηR(86.73%) (reference combination of actions) instead of buying
no reinsurance (alternative combination of actions).

First, we determine the benefit of the insurance company if it follows the dynamic
portfolio strategy and buys reinsurance (π∗I (·|ηR(86.73%), ξ∗I ), ξ∗I ) (reference) instead of
the optimal investment strategy without reinsurance (π∗I (·|0, 0), 0) (alternative). We
compute WEUCI(ηR(86.73%), ξ∗I , 0, 0) for different RRA as well as T and plot the results
in Subfigure 5.7a. Since WEUCI(ηR(86.73%), ξ∗I , 0, 0) > 0, the insurance company needs
less initial capital if it follows the dynamic portfolio strategy with reinsurance instead
of the one without reinsurance. This means that the insurer can decrease the costs of
its equity-linked product by buying reinsurance. The more risk averse the insurer, the
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(a) WEUCs for the reference strategy
(π∗

I (·|ηR(86.73%), ξ∗I ), ξ∗I ) and the alternative
strategy (π∗

I (·|0, 0), 0).

(b) WEUCs for the reference strategy
(π∗

I (·|ηR(86.73%), ξ∗I ), ξ∗I ) and the alternative
strategy ((15%, 0)⊤, 0).

Figure 5.7: Impact of relative risk aversion of insurer and investment horizon on WEUCI .

lower WEUCI(ηR(86.73%), ξ∗I , 0, 0), and the longer the investment period, the higher
WEUCI(ηR(86.73%), ξ∗I , 0, 0). If RRAI = 5 and the product maturity is T = 20, then
WEUCI(ηR(86.73%), ξ∗I , 0, 0) = 60bp. If the insurer becomes more risk averse, then
WEUCI(ηR(86.73%), ξ∗I , 0, 0) decreases strongly. For RRAI = 15 and T = 20 we have
WEUCI(ηR(86.73%), ξ∗I , 0, 0) = 10bp.

Second, we consider the benefit of the insurance company if it follows the dynamic
investment strategy with reinsurance (π∗I (·|ηR(86.73%), ξ∗I ), ξ∗I ) (reference) instead of the
constant-mix (CM) strategy without reinsurance ((15%, 0)⊤, 0) (alternative). Recall
that we also considered the same CM strategy in Chapter 4, since it approximates the
long-term investment strategy of an average life-insurance company. So, we calculate
WEUCI(ηR(86.73%), ξ∗I , 0, 0) and analyze the impact of the relative risk aversion and
investment horizon, see Figure 5.7b. Similarly to Subfigure 5.7a, the insurer needs less
initial capital if it follows the dynamic investment strategy with reinsurance instead of
the CM strategy without reinsurance. The more risk averse the insurance company, the
lower WEUCI(ηR(86.73%), ξ∗I , 0, 0), and the longer the investment period, the higher
WEUCI(ηR(86.73%), ξ∗I , 0, 0). If the insurer’s RRA equals 5 and the company offers
an equity-linked product with T = 20, then WEUCI(ηR(86.73%), ξ∗I , 0, 0) = 7275bp.
If the insurance company becomes more risk averse, then WEUCI(ηR(86.73%), ξ∗I , 0, 0)
decreases substantially. For example, for RRAI = 15 and T = 20 we obtain that
WEUCI(ηR(86.73%), ξ∗I , 0, 0) = 287bp.
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6 Optimal investment under risk
limitation and stochastic volatility

Out of intense complexities, intense
simplicities emerge.

Sir Winston Churchill

So far we have considered the financial-market model described in Section 2.1. An
important advantage of this market is its analytical tractability, which heavily relies on
the assumption of constant market parameters and on the market completeness stated in
Theorem 2.1.5. However, these properties are not supported by the empirical evidence
of financial markets in real world, since interest rates, investment returns, volatility and
other parameters describing the price dynamics of risky assets can vary over time. In
this chapter, which is a reproduction of Escobar-Anel et al. (2022) with minor changes,
we relax the assumption of constant volatility. In a stochastic-volatility setting, which
implies the incompleteness of the financial market, we investigate the optimal investment
strategies of a decision maker with risk limitation in the form of a Value-at-Risk (VaR)
constraint. As described in detail later, the methodology we develop in this chapter
opens the door to solving many previously unsolved portfolio-optimization problems
with terminal-wealth constraints in incomplete markets.

Risk limitation using VaR plays a prominent role for both financial and insurance sectors
of the world economy. Regulated by Basel III, banks have to comply with minimum
capital reserve based on Expected Shortfall while the back-testing of bank-wide risk
models is based on VaR, see, e.g., Basel Committee on Banking Supervision (2019).
Regulated by Solvency II, insurance companies have to ensure that they hold enough
capital to limit the risk of not satisfying liabilities. This capital requirement is calculated
using a VaR measure at the confidence level of 99.5% on a 1-year period, see, e.g., Boonen
(2017). Many insurance products contain in their design minimum guarantees, which
implies effective constraints on the investment portfolios of insurance companies, see,
e.g., Basak (1995), Boyle and Tian (2007).

There is ample evidence of time-dependent volatility in financial markets, see, e.g., Wig-
gins (1987) and Taylor (1994). One of the most popular stochastic-volatility models is
the Heston model, introduced in the seminal paper Heston (1993). This model is highly
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6 Optimal investment under risk limitation and stochastic volatility

regarded in the financial industry and is often used for option pricing. This raised inter-
est in the optimal investment strategies in the setting of Heston’s model. Kraft (2005)
and Liu (2007) derived the optimal investment strategies for an investor in the setting
of Heston’s model without constraints on wealth or investment strategies.

Motivated by the above aspects and the absence of the results on the optimal VaR-
constrained asset allocation under the Heston model, we consider a decision maker who
maximizes his/her expected utility of terminal wealth while limiting the probability of
loss (VaR constraint) in an incomplete financial market with one risk-free asset and one
risky asset whose price-process dynamics is described by the Heston model. We answer
the following questions:

1. How to derive the optimal VaR-constrained investment strategy and the optimal
wealth process?

2. What is the impact of model parameters on the optimal VaR-constrained invest-
ment strategy?

As mentioned at the end of Section 2.1, the volatility of the risky asset is a mean-reverting
stochastic process in Heston’s model. We derive the optimal investment strategy by
demonstrating that the optimal terminal wealth in the constrained optimization problem
can be represented as a vega-neutral financial derivative on the optimal terminal wealth
in the unconstrained optimization problem. To prove the result, we use a convenient
financial derivative and match Hamilton-Jacobi-Bellman (HJB) equations under the real-
world probability measure as well as an EMM. This generalizes the approach suggested
by Kraft and Steffensen (2013) from the complete Black-Scholes financial market to the
incomplete financial market driven by the Heston model.

Next we give an overview of relevant literature sources and structure it in two parts.
First, we mention the sources on portfolio optimization with terminal-wealth constraints
in complete markets. Second, we state papers that study optimal asset allocation with
terminal-wealth constraints in incomplete markets.

In the case of market completeness, Basak and Shapiro (2001) and Kraft and Steffensen
(2013) are the most influential relevant sources for this chapter. Basak and Shapiro
(2001) solved a VaR-constrained portfolio optimization problem by embedding the con-
straint into utility maximization and relying on the martingale approach to derive the
optimal investment strategies. Kraft and Steffensen (2013) showed that the same prob-
lem can be solved using dynamic programming. This is done by representing the op-
timal constrained terminal wealth as a conjectured financial derivative on the optimal
unconstrained terminal wealth. Another relevant paper is Chen et al. (2018a), where
the authors consider a wealth-constrained utility-maximization problem in a stochastic-
volatility environment. The researchers complete the financial market with a traded
financial option and derive the optimal investment strategies via the martingale ap-
proach.
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6 Optimal investment under risk limitation and stochastic volatility

In the area of constrained portfolio optimization in incomplete markets, closed-form so-
lutions have remained elusive throughout the years, mostly due to the lack of techniques
to tackle the problem. As mentioned in Chapters 4 and 5, Karatzas et al. (1991) con-
sider an extension of the Black-Scholes market where the number of risk drivers is larger
than the number of traded stocks, placing constraints on investment strategies, rather
than wealth. Their idea is to complete the financial market by fictitious securities. This
completion is based on a suitably parameterized family of fictitious securities, which
correspond to exponential local martingales. The “right” completion should satisfy a
certain minimality property. Gundel and Weber (2007) study this approach only for the
optimal terminal wealth but do not derive the corresponding investment strategies. The
explicit representation of the optimal terminal portfolio value is derived via certain worst-
case measures, which can be characterized as minimizers of a dual problem. In parallel,
He and Pearson (1991) apply a martingale approach to solve a consumption-portfolio
problem in continuous time with incomplete markets and no-short-sale constraints on the
investment strategy. They introduce a notion of minimax local martingale, transforming
the dynamic problem into a static problem. Showing when the minimax local measure
exists and how it is characterized, they derive conditions when the optimization has a
solution, then linking the optimal strategies to the solution of a quasi-linear PDE.

Ntambara (2017) finds optimal trading strategies and portfolio values for the power-
utility maximization problem under present expected shortfall constraints (same as the
one considered in the context of a standard Black-Scholes market in Basak and Shapiro
(2001)) in the incomplete market consisting of a geometric Brownian motion stock and
a bank account where the interest rate follows a 1-factor Vasicek model. Assuming
the existence of Lagrange multipliers, the author considers the Lagrange function and
derives the optimal investment strategy as follows. First, for each fixed EMM Q̃, the
optimal terminal portfolio value V ∗

Q̃
(T ) as a function of the pricing kernel is found from

the primal problem using pointwise optimization. Second, V ∗
Q̃

(T ) is inserted into the

dual problem and the optimal market prices of risk are found. Third, the replicating
strategy is derived using Maliavin calculus. In order to find the optimal market prices of
risk, which is the second step in the above-mentioned approach, one needs to know the
distribution of the pricing kernel. When interest rates are modeled by a Cox-Ingersoll-
Ross (CIR) process, the distribution of the pricing kernel is not known and one needs a
numerical procedure for calculating it.

We contribute to the portfolio-optimization literature by generalizing the methodology of
Kraft and Steffensen (2013) to the incomplete market due to stochastic volatility. To the
best of our knowledge, we are first to derive the optimal investment strategies for a VaR-
constrained decision maker in the incomplete market driven by the Heston model. Our
methodology relies on the dynamic programming principle and, hence, can potentially
circumvent the challenges that the martingale approach cannot handle. As a result,
many previously unsolved portfolio-optimization problems may be finally solved.

The remainder of this chapter is organized as follows. In Section 6.1 we provide the
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problem setting and recapitulate the unconstrained utility-maximization problem under
the Heston model, as per Kraft (2005). Section 6.1.1 presents the main theorem. Sec-
tion 6.1.2 describes solutions to the power-utility maximization problem subject to VaR
constraints in a Heston-model-based financial market. Section 6.2.2 reports details on
numerical implementation and the results of numerical studies. Appendix D contains
four sections. In Appendix D.1 we provide the results for the unconstrained optimiza-
tion problem, which we need for solving the constrained one. In Appendix D.2, we prove
the main results stated in Section 6.1.1. In Appendix D.3, we derive explicit formulas
for computing the parameters of the synthetic financial derivative linking the solution
to the constrained problem and the solution to the unconstrained one in the case of
a power-utility function. In the last Appendix D.4, we provide an alternative way of
deriving the optimal solution to the constrained portfolio optimization problem in the
special case when the price process of the risky asset and the stochastic-volatility process
are uncorrelated.

6.1 Constrained portfolio optimization problem and its
solution

We consider the basic financial market from Chapter 2 for n = 1, but the risky asset S1
has now one modification, namely its volatility is modeled by an additional stochastic
mean-reverting process, as introduced in Heston (1993). The price dynamics of S1 under
the real-world measure Q is given by the following SDEs:

dS1(t) = S1(t)
[(
r + γS1v(t)

)
dt+

√
v(t) dWQ

1 (t)
]

; (6.1)

dv(t) = κ (θ − v(t)) dt+ σρ
√
v(t) dWQ

1 (t) + σ
√
v(t)

√
1 − ρ2dWQ

2 (t) (6.2)

with starting values S1(0) = s1 > 0 and v(0) = v0 > 0, premium for volatility γS1 > 0,
mean-reversion rate κ > 0, long-run mean θ > 0, volatility of the variance σ > 0 and
fulfilling Feller’s condition κθ > σ2

2 . The portfolio value process under the real-world
measure Q evolves according to:

dXx0,π(t) = Xx0,π(t)
[(
r + π(t)γS1v(t)

)
dt+ π(t)

√
v(t)dWQ

1 (t)
]
, Xx0,π(0) = x0 > 0,

where π(t) denotes the proportion of wealth invested in the risky asset at time t ∈ [0, T ],
1 − π(t) is the proportion of wealth invested in the cash account at time t ∈ [0, T ], and
x0 is the initial budget.

We consider the set of equivalent martingale measures that have the following Radon-
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Nikodym derivatives w.r.t. Q:

dQ̃(γS1 , γv(·))
dQ

= exp

(
−

T∫
0

γS1
√
v(s) dWQ

1 (s) −
T∫
0

γv(s)
√
v(s) dWQ

2 (s)

− 1

2

T∫
0

((
γS1
√
v(s)

)2
+
(
γv(s)

√
v(s)

)2)
ds

)
,

where Q̃(γS1 , γv(·)) denotes a specific EMM, γv(·) is assumed to satisfy the Novikov’s
condition:

EQ

exp

1

2

T∫
0

((
γS1
√
v(s)

)2
+
(
γv(s)

√
v(s)

)2)
ds

 < +∞.

To make notation concise, we will write only γv and Q̃(γv), since only γv is a degree
of freedom in the choice of the EMM. Moreover, we assume that γv is such that the
Feller’s condition is satisfied for the dynamics of v(t) under Q̃(γS1 , γv) (see (6.3) and
(6.4) below). Heston (1993) assumes that the price of volatility risk is linear in the
volatility process, i.e., in the square root of the variance process.

The Heston model under the EMM Q̃(γv) is given by

dS1(t) = S1(t)
[
rdt+

√
v(t)dW Q̃

1 (t)
]

; (6.3)

dv(t) = κ̃
(
θ̃ − v(t)

)
dt+ σρ

√
v(t)dW Q̃

1 (t) + σ
√
v(t)

√
1 − ρ2dW Q̃

2 (t), (6.4)

where S1(0) = s1 > 0, v(0) = v0 > 0, dWQ
1 (t) = −γS1

√
v(t)dt + dW Q̃

1 (t), dWQ
2 (t) =

−γv
√
v(t)dt+dW Q̃

2 (t), κ̃ = κ+σγS1ρ+σγv
√

1 − ρ2, θ̃ = κθ/κ̃. Once again we emphasize
that time could be impacting κ̃ and θ̃ due to γv.

The wealth process under the EMM Q̃(γv) evolves according to the SDE:

dXx0,π(t) = Xx0,π(t)
[
rdt+ π(t)

√
v(t)dW Q̃

1 (t)
]
, Xx0,π(0) = x0 > 0.

Let us define Aπ
u(x0, v0) to be the set of all admissible unconstrained relative portfolio
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processes:

Aπ
u(x0, v0) :=

{
π = (π(t))t∈[0,T ]

∣∣∣ π is progressively measurable, Xx0,π(0) = x0,

v(0) = v0,

∫ T

0
(π(t)Xx0,π(t))2 dt <∞Q-a.s.

}
.

Let ε ∈ [0, 1]. Denoting by CX(ε) := {Xx0,π(T ) | Q (Xx0,π(T ) < K) = ε} , we define
the set of all admissible constrained relative portfolio processes as follows:

Aπ
c (x0, v0, CX(ε)) := {π ∈ Aπ

u(x0, v0) |Xx0,π(T ) ∈ CX(ε)} .

Analogously, we denote by Aπ
u(t, x, v) and Aπ

c (t, x, v, CX(ε)) the corresponding sets of
admissible relative portfolio processes π when the controlled process Xx,π starts at time
t ∈ [0, T ] with value x > 0, i.e., Xx,π(t) = x, and v(t) = v.

We assume that the decision maker maximizes the expected utility from terminal wealth
with respect to a power-utility function U(·), defined in (2.39). The associated con-
strained value function is denoted by Vc (t, x, v). Hence, the main problem in this chapter
is:

Vc (t, x, v) = sup
π∈Aπ

c (t,x,v,CX(ε))
EQ
t,x,v [U (Xx,π(T ))]

= sup
π∈Aπ

c (t,x,v,CX(ε))
EQ
t,x,v

[
(Xx,π(T ))p

p

]
,

(6.5)

where we write EM
t,x,v [·] := EM [·|Xx,π(t) = x, v(t) = v] for M ∈ {Q, Q̃}. We denote

the optimal investment strategy for (6.5) by π∗c = (π∗c (s))s∈[t,T ] and the corresponding

optimal welath process by X∗(s) := Xx,π∗
c (s), s ∈ [t, T ].

Due to the type of constraints, this problem can be rewritten with no constraints using
a proper (optimal) Lagrange multiplier λε ∈ R:

Vc (t, x, v) = sup
π∈Aπ

c (t,x,v,CX(ε))
EQ
t,x,v [U (Xx,π(T ))]

= sup
π∈Aπ

u(t,x,v)
EQ
t,x,v

[
U (Xx,π(T ))

]
,

(6.6)

where U (x) is a modified utility function for the problem without constraints on terminal
wealth:

U (x) = U (x) − λε
(
1{x<K} − ε

)
.

We will solve (6.6) using the solution to the unconstrained optimization problem for a
power-utility function. As the latter would lead to a different optimal wealth process
and to gain in clarity, we denote the wealth process in the unconstrained problem by
Y y,π(t), t ∈ [0, T ], the optimal investment strategy for the unconstrained problem by
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π∗u = (π∗u(t))t∈[0,T ], and the optimal wealth process in the unconstrained problem by

Y ∗(t) := Y y,π∗
u(t), t ∈ [0, T ]. The value function corresponding to the unconstrained

optimization problem is given by:

Vu(t, y, v) = max
π∈Aπ

u(t,y,v)
EQ
t,y,v [U(Y π(T ))] = max

π∈Aπ
u(t,y,v)

EQ
t,y,v

[
(Y y,π(T ))p

p

]
. (Pu)

The problem (Pu) is well-studied in the literature. In particular, for Heston’s models
whose parameters satisfy the following condition1:

p

1 − p
γS1

(
κρ

σ
+
γS1

2

)
<

κ2

2σ2
. (6.7)

Kraft (2005) solve the unconstrained utility maximization problem. He uses the stochas-
tic control approach, which we briefly described in Subsection 2.4.2, to derive a candi-
date solution and then provides a verification result. Kallsen and Muhle-Karbe (2010)
combine the martingale approach (see Subsection 2.4.1), the concept of an opportunity
process and the calculus of semimartingale characteristics to derive the optimal invest-
ment strategies for a decision maker who maximizes his/her expected power utility of
terminal wealth in a market with one risky asset whose price dynamics follows a Heston
model with parameters that may violate Condition (6.7). As many realistic parameteri-
zations satisfy this condition, we focus on Heston’s model parametrizations that satisfy
Condition (6.7). For completeness of the exposition, we provide the optimal strategy,
the optimal wealth and the value function in (Pu) in the following proposition.

Proposition 6.1.1. Assume that (6.7) holds. Then the optimal investment strategy for
(Pu) is given by:

π∗u(t) = −
γS1Vu

y + σρVu
yv

xVu
yy

=
γS1

1 − p
+

σρ

1 − p
b(t) (6.8)

with k0 =
(
p
(
γS1
)2)

/(1 − p), k1 = κ −
(
pγS1σρ

)
/(1 − p), k2 = σ2 + (pσ2ρ2)/(1 − p),

k3 =
√
k21 − k0k2 and

b(t) = k0
exp (k3(T − t)) − 1

exp (k3(T − t)) (k1 + k3) − k1 + k3
. (6.9)

The value function is given by

Vu(t, y, v) =
yp

p
exp(a(t) + b(t)v), (6.10)

1Same as Condition (26) in Kraft (2005)
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where b(t) is defined by (6.9) and

a(t) = pr(T − t) +
2θκ

k2
ln

(
2k3 exp

(
1
2(k1 + k3)(T − t)

)
2k3 + (k1 + k3) (exp (k3(T − t)) − 1)

)
.

The optimal wealth Y ∗ has the following dynamics under Q:

dY ∗(t) = Y ∗(t)

[(
r +

(
γS1

1 − p
+
σρb(t)

1 − p

)
γS1v(t)

)
dt

+

(
γS1

1 − p
+
σρb(t)

1 − p

)√
v(t) dWQ

1 (t)

]
, Y ∗(0) = y > 0.

(6.11)

Proof. See Appendix D.1.

In the next proposition we provide the characteristic functions of the logarithm of the
optimal unconstrained wealth Z∗(t) := ln (Y ∗(t)) , t ∈ [0, T ], under Q and Q̃(γv).

Proposition 6.1.2. The logarithm of the optimal unconstrained wealth has character-
istic functions of the form:

ϕZ
∗(T ),M(u; t, z, v) = EM

t,z,v [exp(iuZ∗(T ))] = exp
(
AM(T − t, u) +BM(T − t, u)v + iuz

)
,

where M ∈ {Q, Q̃} and AM and BM satisfy ordinary differential equations (ODEs):

0 = −BQ
τ (τ, u) + (π∗(τ)σρiu− κ)BQ(τ, u) +

1

2
σ2
(
BQ(τ, u)

)2
− 1

2
(π∗(τ))2

(
u2 + iu

)
+ π∗(τ)γS1iu;

0 = −AQ
τ (τ, u) + riu+ κθBQ(τ, u).

(6.12)

and

0 = −BQ̃
τ (τ, u) + (π∗(τ)σρiu− κ̃)BQ̃(τ, u) +

1

2
σ2
(
BQ̃(τ, u)

)2
− 1

2
(π∗(τ))2

(
u2 + iu

)
;

0 = −AQ̃
τ (τ, u) + riu+ κ̃θ̃BQ̃(τ, u).

(6.13)

respectively, where τ := T − t and π∗ := π∗u as per (6.8).

Proof. See Appendix D.1.

Remarks to Proposition 6.1.2
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1. The characteristic function of ln (Y ∗(t)) has the same structural form as the struc-
tural form of the characteristic function of ln (S1(t)). The latter function is known
in closed form.

2. The ODEs for BQ and BQ̃ are of Riccati type, as in the case of the characteristic
function of ln (S∗(T )). However, here the coefficients of these Riccati ODEs are
time-dependent. The analytical solutions of these ODEs are not known. Therefore,
one has to compute them numerically.

The above proposition is needed for solving the constrained portfolio optimization prob-
lem in semi-closed form. In particular, we will use it for calculating expected values
using Theorem 2.2.5, in particular:

EM
t,z,v [g (Z∗(T ))] =

∫
g(x)fMZ∗(T )(x) dx

Th. 2.2.5
=

∫
g (x)

(
1

2π

∫
exp (−iux)ϕZ

∗(T ),M(u; t, z, v)du

)
dx (6.14)

Pr. 6.1.2
=

1

2π

∫ ∫
g (x) exp

(
−iu (x− z) +AM(T − t, u) +BM(T − t, u)v

)
dudx,

where g(·) is such that the expectation exists and is finite, and fMZ∗(T )(·) is the conditional

probability density function of Z∗(T ) given Z∗(t) = z.

6.1.1 Solution to the constrained problem

The optimal wealth X∗ for the constrained problem (6.5) will be obtained using a fi-
nancial derivative on the optimal wealth Y ∗ from the unconstrained problem (Pu). As
per Proposition 6.1.1, we have the following SDEs of the optimal unconstrained wealth
process and variance process under the EMM Q̃(γv):

dY ∗(t) = Y ∗(t)rdt+ Y ∗(t)π∗u(t)
√
v(t)dW Q̃

1 (t); (6.15)

dv(t) = κ̃
(
θ̃ − v(t)

)
dt+ σ

√
v(t)ρdW Q̃

1 (t) + σ
√
v(t)

√
1 − ρ2dW Q̃

2 (t).

So we want to find a financial derivative (contingent claim) whose payoff is D(·) and
the underlying portfolio is Y ∗(T ). We denote the price of the contingent claim at time

t ∈ [0, T ] by DQ̃(γv)(t, y, v) such that DQ̃(γv)(T, y, v) = D(y). This financial derivative
should fulfill the budget constraint and the terminal-wealth constraint, i.e., D(Y ∗(T )) ∈
Aπ

c (x0, v0) and DQ̃(γv)(0, y0, v0) = x0.

By Theorem 2.2.2, the price of D(Y ∗(T )) is given by

DQ̃(γv)(t, y, v) = EQ̃(γv)
t,y,v [exp (−r(T − t))D(Y ∗(T ))] . (6.16)
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Applying Theorem 2.2.8, we get the corresponding Feynman-Kac PDE for (6.16):

D
Q̃(γv)
t = rDQ̃(γv) − ryDQ̃(γv)

y − κ̃
(
θ̃ − v

)
DQ̃(γv)

v

− 1

2
v

[
y2(π∗u)2DQ̃(γv)

yy + 2σρyπ∗uD
Q̃(γv)
yv + σ2DQ̃(γv)

vv

]
; (6.17)

DQ̃(γv)(T, y, v) = D(y).

The expected utility of the financial derivative, based on the modified utility function
U(·), is:

U
D,Q

(t, y, v) = EQ
t,y,v

[
U(D(Y ∗(T )))

]
, (6.18)

where the optimal wealth process under the real-world measure Q comes from Propo-
sition 6.1.1. Again via Feynman-Kac Theorem 2.2.8, the investor’s expected modified

utility of the contingent claim (U
D,Q

(t, y, v)) satisfies the following PDE:

0 = U
D,Q
t +

(
r + π∗uγ

S1v
)
yU

D,Q
y + κ (θ − v)U

D,Q
v

+
1

2
v

[
y2(π∗u)2U

D,Q
yy + 2σρyπ∗uU

D,Q
yv + σ2U

D,Q
vv

]
; (6.19)

U
D,Q

(T, y, v) = U(D(y)). (6.20)

We show next that the wealth of the constrained problem (6.5) can be represented by

the price DQ̃(γv)(t, y, v) of a financial derivative on Y ∗, and the value function Vc(t, y, v)

by the expected modified utility on the financial derivative U
D,Q

(t, y, v). The theorem
next provides three conditions such that the PDEs and terminal conditions associated

to Vc (t, x, v) and U
D,Q

(t, y, v) coincide, with x = DQ̃(γv) (t, y, v).

Theorem 6.1.3 (Main theorem). Assume that Condition (6.7) holds and the VaR con-
straint is feasible in (6.5). Let D(·), y, γv(·) and λε be such that Q

(
D(Y y,π∗

u(T )) < K
)

=
ε, D(·) is non-decreasing on (0,+∞) and strictly increasing on a non-empty open sub-
interval of (0,+∞) and the following three conditions are satisfied at time t ∈ [0, T ]:

A :=
U

D,Q
yy (t, y, v)

U
D,Q
y (t, y, v)

− D
Q̃(γv)
yy (t, y, v)

D
Q̃(γv)
y (t, y, v)

= −1 − p

y
; (6.21)

B :=
U

D,Q
yv (t, y, v)

U
D,Q
y (t, y, v)

− D
Q̃(γv)
yv (t, y, v)

D
Q̃(γv)
y (t, y, v)

= b(t); (6.22)

DQ̃(γv)
v (t, y, v) = 0, (6.23)
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where DQ̃(γv) is given by (6.16), U
D,Q

is defined in (6.18), Y ∗(t) = y, v(t) = v. Then
the candidate for the optimal terminal wealth is:

Xx,π∗
c (T ) = D(Y y,π∗

u(T )) (6.24)

with x = EQ̃(γv)
t,y,v

[
exp (−r(T − t))D(Y y,π∗

u(T ))
] (

=: DQ̃(γv)(t, y, v)
)

and the candidates for the value function and the optimal relative portfolio process in
(6.5) at time t ∈ [0, T ] are:

(Vc (t, x, v) :=)EQ
t,x,v

[
U
(
Xx,π∗

c (T )
)]

= EQ
t,y,v

[
U(D(Y y,π∗

u(T )))
] (

=: U
D,Q

(t, y, v)
)

;

(6.25)

π∗c (t) = π∗u(t) · y · D
Q̃(γv)
y (t, y, v)

DQ̃(γv)(t, y, v)
. (6.26)

If ρ = 0, solely Conditions (6.21) and (6.23) are required.

Proof. See Appendix D.2.

Remarks to Theorem 6.1.3

1. We do not impose any condition on γv. Along with the parameters of the payoff
function D(·), it is an important degree of freedom for ensuring Conditions (6.21)
– (6.23), as we will see in following corollaries.

2. Condition (6.21) is the same as in Kraft and Steffensen (2013). Moreover, in the
absence of stochastic volatility we recover their results for the complete Black-
Scholes market.

3. Condition (6.23) means that the financial derivative with terminal payoff D(·)
has to be vega-neutral at time t and the value v of the variance process2. The
complexity lies in crafting this payoff function D(·).

4. If the optimal terminal wealth in the unconstrained problem with the initial capital
x0 satisfies the VaR constraint, then it is obviously the optimal wealth in the VaR-
constrained optimization problem. In this case, D(y) = y, λε = 0 and:

� (6.21) ⇐⇒ U
D,Q
y (t, y, v) = yp−1GA(t, v) for some function GA(t, v), which

holds for Vu(t, y, v) from (6.10);

� (6.22) ⇐⇒ U
D,Q
y (t, y, v) = exp (b(t)v)GB(t, y) for some function GB(t, y),

which holds for Vu(t, y, v) from (6.10);

2 ∂
∂v

DQ̃ = ∂DQ̃

∂
√
v

∂
√
v

∂v
= ∂DQ̃

∂
√
v

1
2
√
v
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� (6.23) holds;

� (6.25) becomes Vc (t, y, v) = U
D,Q

(t, y, v)
λε=0= Vu (t, y, v);

� (6.26) π∗c (t) = y
(

γS1

1−p + σρ
1−pb(t)

)
1
y = π∗u(t).

Next we provide convenient sufficient conditions to facilitate the applications of our main
theorem.

Lemma 6.1.4 (Sufficient condition for (6.21) and (6.22)). Condition (6.21) is satisfied
at time t ∈ [0, T ] given Y ∗(t) = y and v(t) = v, if there exists a function H(t, v) such
that the following sufficient condition holds:

U
D,Q
y (t, y, v) = yp−1H(t, v)DQ̃(γv)

y (t, y, v). (SC0)

Both Condition (6.21) and Condition (6.22) are satisfied at time t ∈ [0, T ] given Y ∗(t) =
y and v(t) = v, if (SC0) holds with H(t, v) = h(t) exp (b(t)v) for some function h(t),
i.e.:

U
D,Q
y (t, y, v) = yp−1h(t) exp (b(t)v)DQ̃(γv)

y (t, y, v). (SC)

Proof. See Appendix D.2.

Remarks to Lemma 6.1.4

1. In contrast to the sufficient condition in Kraft and Steffensen (2013), Condition
(SC) has an additional term exp (b(t)v).

2. As we will see later, h(t) = exp(a(t)) with a(t) from Proposition 6.1.1.

6.1.2 Explicit formulas

Solving a VaR-constrained power-utility maximization problem in a complete Black-
Scholes market, Kraft and Steffensen (2013) use a contingent claim DBS(·) with the
following payoff:

X∗(T ) = Y ∗(T ) + (K − Y ∗(T ))1{kε<Y ∗(T )≤K}

= Y ∗(T ) + (K − Y ∗(T )) 1{Y ∗(T )≤K}

− (kε − Y ∗(T ))1{Y ∗(T )<kε} − (K − kε)1{Y ∗(T )<kε} =: DBS(Y ∗(T )), (6.27)

where 0 ≤ kε ≤ K.

The payoff (6.27) is illustrated in Figure 6.1a. It consists of a long position in the optimal
unconstrained wealth, a long put option, a short put option with a lower strike and a
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binary put option. Our conjecture about the contingent claim D(·) can be seen as an
extension of (6.27) with an additional degree of freedom that is needed to ensure the
vega neutrality in (6.23):

X∗(T ) = Y ∗(T ) + (K − Y ∗(T )) 1{kε≤Y ∗(T )≤K} − (Y ∗(T ) − kv)1{kv≤Y ∗(T )<kε}

= Y ∗(T ) + (K − Y ∗(T ))1{Y ∗(T )≤K}

− (kv − Y ∗(T ))1{Y ∗(T )<kv} − (K − kv)1{Y ∗(T )<kε} =: D (Y ∗(T )) , (6.28)

with 0 ≤ kv ≤ kε ≤ K. The values of parameters kv and kε are selected to ensure that
Condition (6.23) and the VaR constraint are satisfied. Note that Q (X∗(T ) < K) = ε⇔
Q (Y ∗(T ) < kε) = ε and D(·) has enough flexibility to ensure Condition (6.23), which
means vega-neutrality of the financial derivative. This payoff is illustrated in Figure
6.1b.

(a) Example of Payoff (6.27), complete
Black-Scholes market.

(b) Example of Payoff (6.28), incomplete
stochastic volatility market.

Figure 6.1: Illustration of the payoffs D(·) for the Black-Scholes model and the Heston
model.

The next corollary of our main theorem provides the solution to (6.5).

Corollary 6.1.5 (Solution to (6.5)). Assume that Condition (6.7) holds and the VaR
constraint is feasible in (6.5). Set γv(t) = −σ

√
1 − ρ2b(t), and let D(·) be given by (6.28)

such that its degrees of freedom (y, kv, kε)t satisfy the system of non-linear equations and
inequalities (NLS):

hB(y, kv, kε) :=DQ̃(γv)(t, y, v) = xt

hV N (y, kv, kε) :=DQ̃(γv)
v (t, y, v) = 0

hV aR(y, kv, kε) :=Q (Y ∗(T ) < kε|Y ∗(t) = y, v(t) = v) = ε

(NLS(y, kv, kε))
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for the Lagrange multiplier

λε = yp−1 exp (a(t) + b(t)v) (K − kv) exp (−r(T − t))
f Q̃Z∗(T )(ln kε)

fQZ∗(T )(ln kε)
− Kp − kpv

p
, (6.29)

where fMZ∗(T )(·) is the conditional density function of Z∗(T ) := ln(Y ∗(T )) under the

measure M ∈ {Q, Q̃} given Y ∗(t) = y and v(t) = v. Then the candidate for the optimal
terminal portfolio value is given by (6.24), the candidate for the value function is given
by (6.25) and the candidate for the solution to (6.5) is given by (6.26).

Proof. See Appendix D.2

Remarks to Corollary 6.1.5

1. The tuple (y, kv, kε)t needs to be updated at every t in order to produce the right
strategy.

2. The conditional density functions fMZ∗(T )(·) can be calculated using the inversion

of the characteristic functions of Z∗(T ) provided in Proposition 6.1.2.

3. The investor’s value function Vc (t, x, v), the price of the derivative DQ̃(γv) (t, y, v)

and its Greeks D
Q̃(γv)
y as well as D

Q̃(γv)
v can be computed using the Carr-Madan ap-

proach to pricing options. We provide the corresponding formulas for hB(y, kv, kε),
hV aR(y, kv, kε), hV N (y, kv, kε) in Appendix D.3.

6.2 Numerical studies

In this section, first, we explain how we choose the model parameters and provide de-
tails on the solution procedure for the system of non-linear equations and inequalities
(NLS(y, kv, kε)). Second, we explore how the correlation coefficient and the volatility of
the variance process influence the constrained optimal investment strategy. The latter
can be considered as proxy for the magnitude of the market incompleteness.

6.2.1 Model parameterization and numerical procedure

We choose the Heston model parameters as in Table 4 in Escobar and Gschnaidtner
(2016), the row corresponding to the average case of mentioned table. Note that the
authors provide there parameterization under the EMM. In particular, we set: κ =
3.6129, θ = 0.0291, σ = 0.3, ρ = −0.4, v0 = 0.03. γS1 = 1 and r = 3%. Under these
parameters, γv = 0.0238, which leads to κ̃ = 3.5, θ̃ = 0.03. We set p = −2, which
corresponds to the relative risk aversion coefficient of 3, as also considered in Chen et al.
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(2018a). We assume that the investor’s time horizon is T = 3, his/her initial wealth
is x0 = 100, and the VaR constraint is specified by K = 100 and ε = 1% in the base
case.

Solving a system of non-linear equations NLS(y, kv, kε) requires numerical methods.
First, we need to AM, BM, M ∈ {Q, Q̃} appearing in the characteristic functions of
Z∗(T ). As we mentioned in Remark 2 to Propostion 6.1.2, the ODEs for BM have time-
dependent complex-valued coefficients and are of Riccati type. To compute the solutions
to those equations, we use a Matlab function ode45 that is based on an explicit Runge-
Kutta (4,5) formula. We choose a time grid of 10001 points, which corresponds to a time
discretization step of 3 · 10−4). Second, we compute the LHS of (NLS(y, kv, kε)) using
the Carr-Madan approach, see Appendix D.3 for explicit formulas. As for dampening
factors in this approach, we use α = 2 for plain vanilla put options (the 2-nd and 3-
rd terms in the financial derivative D) and α = 0.5 for a digital put option (the 4-th
term in D). Finally, the solution of NLS(y, kv, kε) is computed by minimizing the sum
of squared absolute errors, which is done with the help of a Matlab function fmincon

with the sequential quadratic programming as the underlying non-linear optimization
algorithm.

6.2.2 Numerical results

In this subsection, we first compute and interpret the optimal constrained investment
strategy in the base case of ε = 1%. Second, we conduct a sensitivity analysis of π∗c (0)
and the optimal parameters of the synthetic derivative D with respect to ε. Third, we
examine the impact of the RRA coefficient and the investment horizon on the optimal
constrained investment strategy. Fourth, we examine the influence of the correlation
coefficient ρ on π∗c (0). Finally, we examine the sensitivity of π∗c (0) with respect to
the volatility σ of the variance process and the mean-reversion rate κ of the variance
process.

In the base case, the optimal unconstrained investment strategy at time t = 0 is equal
to 33.71%. The optimal constrained investment strategy at time t = 0 equals to 31.72%.
The optimal terminal wealth in the constrained problem equals a financial derivative on
the optimal unconstrained wealth with the following parameters: y∗(0) = 99.5, k∗v(0) =
68.55, k∗ε(0) = 87.96. It means that the optimal terminal wealth in the constrained
optimization problem given the starting value x0 = 100 is equal to a financial derivative
that consists of:

1. a long position in the optimal unconstrained wealth Y ∗(T ) with a starting value
of Y ∗(0) = y∗(0) = 99.5;

2. a long position in one put option on the optimal unconstrained wealth Y ∗(T ) and
with strike K = 100;
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3. a short position in one put option on the optimal unconstrained wealth Y ∗(T ) and
with strike k∗v(0) = 68.55;

4. a short position in K − k∗v(0) = 31.45 digital-put options on the optimal uncon-
strained wealth Y ∗(T ) and with strike k∗ε(0) = 87.96.

Next, we analyze the impact of ε. Denote by εu := Q
(
Y x0,π∗

u(T ) < K
)
≈ 12% the proba-

bility that the optimal terminal unconstrained portfolio value is below K. Consider now
Figure 6.2, which consists of two subfigures. In Subfigure 6.2a we see that for increasing
ε the constrained optimal investment strategy becomes closer to the unconstrained one.
This is intuitive, as the closer ε is to εu , the more the optimal constrained investment
strategy should resemble the optimal unconstrained one. As Subfigure 6.2b indicates,
the larger ε < εu, the larger the optimal initial capital of the underlying of the financial
derivative D (the optimal unconstrained portfolio) and the higher are the thresholds kε
and kv. This is consistent with our previous finding that ε closer to εu leads to the opti-
mal constrained investment strategy that is closer to the unconstrained one. The same
holds for the optimal terminal wealth, as increasing kε and kv mean that the optimal
payoff of the derivative D is closer to the identity function (see Remark 4 to Theorem
6.1.3).

(a) π∗
c (0) vs ε. (b) DQ̃ parameters vs ε.

Figure 6.2: The impact of VaR-probability threshold on the solution to Problem (6.5).

Next, we investigate the influence of the investor’s risk aversion and time horizon on
the optimal investment strategies. Consider Figure 6.3. On the left, Figure 6.3a, we
see that both constrained and unconstrained investment strategies are decreasing in the
RRA coefficient 1−p. For example, a more risk averse investor with the RRA coefficient
of 4, allocates only 25% of the capital into the risky asset. We also observe that the
difference between those strategies shrinks as the investor becomes more risk averse. For
the RRA coefficient of 5 (p = −4), the probability of the optimal terminal unconstrained
wealth being smaller than K = 100 is slightly higher than 1%, which is why the optimal
unconstrained strategy and the optimal constrained strategy for ε = 1% almost coincide.
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On the right, Figure 6.3b, we notice than the optimal constrained strategy is increasing
in the time horizon and approaches the unconstrained one. A decision maker with 1-year
investment horizon will allocate 28% of his/her money into the risky asset. However,
over a longer time period, e.g., 5 years, the investor put more money into the risky asset
while still ensuring the desired VaR constraint, i.e., he/she will invest 33% of the money
into S1. For T = 10, the probability of the optimal terminal unconstrained wealth being
smaller than K = 100 is around 1%, which is why the optimal unconstrained strategy
and the optimal constrained strategy for ε = 1% almost coincide.

(a) π∗
c (0) and π∗

u(0) vs RRA = 1 − p. (b) π∗
c (0) and π∗

u(0) vs T .

Figure 6.3: The impact of risk aversion and time horizon on the optimal investment
strategies.

Now we check the impact of the correlation coefficient on the optimal constrained in-
vestment strategy. We plot π∗c (0) for ρ ∈ {−1,−0.8,−0.6,−0.4,−0.2, 0, 0.2} in Fig-
ure 6.4a, since the literature on the calibration of the Heston model suggests that the
correlation coefficient is mainly negative3, see, e.g., Liu and Pan (2003), Escobar and
Gschnaidtner (2016). We see that an increasing correlation coefficient decreases the
optimal initial proportion of the money invested in the risky asset. This is consis-
tent with the optimal unconstrained problem. Indeed, recall from (6.26) that π∗c (0) =

π∗u(0) · y · DQ̃(γv)
y (0, y, v)/DQ̃(γv)(0, y, v). For p = −2 < 0, π∗u(0) =

(
γS1

1−p + σρ
1−pb(0)

)
is decreasing in ρ, as b(0) < 0 and σ > 0. Deriving analytically the impact of ρ on

yD
Q̃(γv)
y (0, y, v)/DQ̃(γv)(0, y, v) is quite challenging, as the optimal parameters of D are

determined numerically by solving (NLS(y, kv, kε)).

Finally, we investigate how the simultaneous decrease of parameters σ and κ influences
the optimal constrained investment strategy. These parameters can be considered as
a measure for the magnitude of the market incompleteness, since the lower σ, the less
influence WQ

2 has on S1. We fix ε = 1% and plot in Figure 6.4b π∗c (0) for decreasing

3This is the so-called “leverage effect”, i.e., the empirical observation that rising asset prices are fre-
quently accompanied by declining volatility and vice versa.
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σδ := σ · δ and κδ := κ · δ with δ ∈ {1, 0.75, 0.5, 0.25, 0.001}. We see that the smaller σδ
and κδ, the larger the optimal initial constrained investment strategy. As we can see,
the impact of ρ, σ, κ on π∗c (0) is quite small. For instance, a decrease in the correlation
coefficient from −40% to −60% leads to an increase of the optimal initial constrained
investment strategy only by 20 basis points, namely from 31.7% to 31.9%. Such a low
sensitivity can be explained by the fact that the model parameterization, which we
used so far, corresponds to a non-turbulent market and an investor with a moderate
risk-aversion coefficient.

(a) π∗
c (0) and π∗

u(0) vs ρ. (b) π∗
c (0) and π∗

u(0) vs δ.

Figure 6.4: The impact of ρ, σ, κ on the optimal investment strategies.

Consider now the same time horizon T = 3, but a decision maker with a smaller relative-
risk aversion and who invests in a more turbulent market than we had before, i.e., higher
initial value of the variance process, higher long-term average variance and lower mean
reversion rate. In particular, we set p = −1 and use the values of the parameters of the
Heston model such that they are consistent with Schoutens et al. (2004): v0 = 0.0654,
θ̃ = 0.0707, κ̃ = 0.6067, σ = 0.2928, ρ = −0.7571. Next, we plot in Figure 6.5 the
sensitivity of the optimal constrained investment strategy w.r.t. ρ, σ, and κ. In con-
trast to Figure 6.4, the sensitivity of the optimal constrained investment strategies w.r.t.
the correlation coefficient, mean-reversion rate and the volatility of the variance process
is higher in a more volatile market. For example, according to the Subfigure 6.5a, a
decrease of the correlation coefficient from −40% to −60% leads to an increase of the
initial optimal constrained investment strategy by more than 1%, namely from 42.7%
to approximately 44%. Looking at δ = 1 and δ = 0.75 in Subfigure 6.5b, we see that
a decrease of the volatility from 29.28% to 21.96% and the real-world-measure mean-
reversion rate of the variance process from 0.8171 to 0.6128 would require a rational
investor to decrease his/her initial constrained investment strategy by approximately
0.7%, namely from 45.2% to 44.5%. The behavior is similar to the one of the optimal
unconstrained investment strategy. It can have the following economic interpretation.
The infinitesimal Sharpe ratio of the risky asset is γS1

√
v(t). It is negatively correlated
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with the Wiener process WQ
1 (t) driving the stock returns. As a result, low return “to-

day” tend to happen when dWQ
1 (t) is negative and dWQ

2 (t) is positive, which, in turn,
pushes the “tomorrow’s” Sharpe ratio higher and may give hope to the investor for good
investment in the risky asset. Consequently, an investor increases his/her position in
the risky asset in comparison to the Black-Scholes market. The “more” incompleteness
an investor sees in the market, the more chances he/she sees for making profit with the
risky asset investment and the corresponding correction term will be larger.

(a) π∗
c (0) and π∗

u(0) vs ρ. (b) π∗
c (0) and π∗

u(0) vs δ.

Figure 6.5: The impact of ρ, σ, κ on the optimal investment strategies in the setting of
a more turbulent market and a less risk-averse investor.
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7 Summary and conclusions

In this dissertation, we derived and analyzed the optimal investment and risk-sharing
strategies for financial institutions that provide guarantees on their investment services,
e.g., a guarantee to achieve a specific performance or a promise to cover a part of po-
tential losses. Working in the context of the expected-utility framework and dynamic
investment strategies, we contributed to the methodology of dynamic portfolio optimiza-
tion, the design of equity-linked insurance products, and the discussion on the optimal
risk-sharing in hedge funds. Below we review the structure of the thesis and summarize
its main components. Moreover, we highlight the most important results obtained in
this dissertation and provide an outlook for further research.

In Chapter 3, we analyzed the risk sharing between the manager of a hedge fund and a
representative investor. Risk sharing followed via the first-loss fee schemes for which the
investor’s assets and the manager’s deposit account are segregated. In Theorem 3.2.3,
we derived the optimal fund’s value by solving the optimization problem of the manager,
whose utility function is non-concave due to his/her first-loss scheme. We tackled the
non-concavity of the objective function using the concept of a concave envelope. Af-
terwards, we proved the existence of first-best Pareto optimal first-loss fee structures
and computed the set of such Pareto optimal fee schemes. We proposed to maximize
the fund’s Sharpe ratio on this set to select the mutually preferred fee structure. The
resulting single first-loss fee structure can be considered fair by both the hedge-fund
manager and the investor.

In our numerical studies, we chose the model parameters that account for the historic
popularity of the traditional 2%&20% arrangement in the hedge-fund sector and are
consistent with the relevant literature as well as the current interest-rate environment.
For the calibrated model, we found that the Pareto optimal fee structure that is closest
to the 2%&20% scheme has a 0% management fee and a 20.3% performance fee. This
is a possible explanation to the recently observed trend of decreasing management fees
in hedge funds that still use the traditional scheme. According to our results, the tra-
ditional fee recommended in Escobar-Anel et al. (2018) (0% management fee and 30.7%
performance fee) is not Pareto optimal in the presence of the first-loss coverage guaran-
tee. The fee structure recommended in He and Kou (2018) (30% performance fee and
10% first-loss coverage guarantee) is not Pareto optimal either. The reason for that may
be that we considered a different type of the first-loss scheme in comparison with He and
Kou (2018). In our numerical studies, the preferred fee structures had the management
fee usually close to 5%, the performance fee mainly in the range 30% − 50% and the
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first-loss coverage in the range 15% − 30%. We observed that if this fee structure was
replaced by the traditional 2%&20% fee arrangement, the manager would be worse off in
terms of his/her expected utility, whereas the investor would be much better off. Thus,
we also considered only those Pareto optimal fee structures that yielded both parties at
least the utility he/she had with a reasonable traditional fee structure. In that setting,
the preferred management fee was 5%, performance fee was about 48%, and first-loss
coverage guarantee was around 24%. All these findings shed light on the first-loss scheme
that maturing hedge funds with first-loss compensation might be using in the future.

The sensitivity analysis showed that the more risk-averse the investor, the higher the
preferred performance fee and the preferred first-loss coverage guarantee. For increasing
risk aversion of the manager, the preferred performance fee and the first-loss coverage
guarantee tend to decrease. This is different to the findings in He and Kou (2018). How-
ever, in contrast to our setting, the authors assume that the manager’s preferences are
modeled by a so-called S-shaped utility (see, e.g., Tversky and Kahneman (1992)) and
consider hedge funds with commingled assets of investors and managers. We observed
that the preferred first-loss coverage guarantee is decreasing in the market price of risk
and increasing in the interest rates. We also found that the derived preferred fee struc-
tures substantially decrease the hedge fund’s volatility in comparison to the traditional
schemes as well as other reported first-loss fee structures. Possible future research could
deal with investigating the preferred fee structures in a more realistic financial-market
model with transaction costs and jumps in the risky-asset price process.

In Chapter 4, we shifted our focus from risk sharing in hedge funds to the optimal invest-
ment and risk-sharing strategies of insurance companies in the context of equity-linked
insurance products with capital guarantees. Reinsurance in these products, if present,
usually constrained the insurance companies in the investment strategies. Therefore,
we considered an original modification of such products such that the insurer may fol-
low an individual investment strategy and buy only a standardized reinsurance on some
benchmark strategy. For an insurer offering such equity-linked products, we derived and
analyzed its optimal investment and risk-sharing strategies in the presence of a Value-at-
Risk constraint and a no-short-selling constraint on the risky fund as well as dynamically
adjusted reinsurance. In particular, we showed in Propositions 4.2.1 and 4.2.2 how to
transform the problem with a dynamically traded put option modeling reinsurance to an
equivalent problem in terms of basic assets. Next in Lemma 4.2.3 we used the concept
of auxiliary markets from Cvitanic and Karatzas (1992) and provided a condition under
which the solution to an allocation-constrained and wealth-constrained portfolio opti-
mization problem coincides with the allocation-unconstrained and wealth-constrained
problem in the “right” auxiliary market. Using this lemma and the methodology of
Basak and Shapiro (2001), we derived in Proposition 4.2.6 the solution to the equiva-
lent problem of the insurer with a VaR constraint on terminal wealth and constraints
on risky-assets allocations. The methodology we used for solving the insurer’s prob-
lem allows for solving utility-maximization problems with other types of simultaneous
terminal-wealth and allocation constraints in presence of continuously traded options,
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if the solution to the wealth-constrained and allocation-unconstrained problem has a
multiplicative form of some positive (random) variable times the wealth-unconstrained
and allocation-unconstrained solution. Finally, in Proposition 4.2.7, we derived the con-
ditions under which it is optimal for the insurer to buy reinsurance in the management
of equity-linked products.

In our numerical studies, we calibrated the model to the German market and found
that fairly priced dynamically-adjusted reinsurance can allow insurers – without loss
in their expected utility – decrease product costs and offer significantly higher capital
guarantees to their clients. We reached the former conclusion by analyzing the wealth-
equivalent utility loss. We inferred the latter benefit of reinsurance from the analysis
of the guarantee-equivalent utility gain. In a numerical example, we showed that the
inclusion of the optimally managed reinsurance to an equity-linked insurance product
running for 10 years can allow the insurer to guarantee (at product maturity with 99.5%
probability) that the client will receive at least 110% of the client’s initial contribution
without any loss of the insurer’s expected utility. Moreover, such a product with op-
timal reinsurance can allow the insurer to guarantee (at product maturity with 99.5%
probability) that the client will receive at least 128% of the client’s initial endowment
without any loss of the insurer’s expected utility in comparison to the one obtained by a
constant-mix strategy with 85% bonds and 15% stocks. We believe that our results may
motivate a closer cooperation among insurers and reinsurers towards reversing the trend
of decreasing capital guarantees embedded in equity-linked products, which is currently
observed in insurance markets in many countries.

Our inference in Chapter 4 relies on the model assumptions. Therefore, possible future
research could deal with the exploration of the optimality and economic implications of
reinsurance in the design of equity-linked insurance products when more complex models
or reinsurable portfolios are considered. For instance, reinsurance could be modeled as
a passport option on the insurer’s actual portfolio. A passport option would give the
insurer the right to follow any admissible trading strategy, while the reinsurer would be
obliged to cover any net losses on the strategy. Usually, such options are quite expensive
due to the flexibility of the underlying portfolio.

In Chapter 5, we made the model from Chapter 4 more realistic with respect to the
insurer-reinsurer interaction. In particular, we considered a Stackelberg game where
the reinsurance company is the leader maximizing its expected utility by selecting its
optimal investment strategy as well as a safety loading in the reinsurance contract.
The insurance company is the follower maximizing its expected utility by selecting its
investment strategy and the amount of reinsurance the company purchases at the price
offered by the reinsurer. In contrast to Chapter 4, we assumed that the reinsurance
is only purchased at the beginning of the investment horizon and is not continuously
adjusted. We analytically derived the equilibrium of the Stackelberg game via backward
induction. First, we derived in Propositions 5.2.1 and 5.2.2 the optimal action of the
insurer by combining in a novel way the concept of auxiliary markets by Cvitanic and
Karatzas (1992) and the generalized martingale approach by Desmettre and Seifried
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(2016). Second, we derived in Propositions 5.2.4 and 5.2.5 the optimal action of the
reinsurer via the replicating-strategies approach by Korn and Trautmann (1999). We
found that in the Stackelberg equilibrium the reinsurer selects the largest safety loading
of the reinsurance contract such that the insurer may still be willing to sign it. However,
for this equilibrium value of the safety loading, the insurer becomes indifferent to the
amount of reinsurance due to its high price. Thus, in practice, the reinsurer should
consider offering a reinsurance contract with a safety loading that is lower than the
equilibrium one. It is still beneficial for the reinsurer as long as the safety loading is
positive.

In the corresponding numerical studies, we equipped each party with a power-utility func-
tion and calibrated the model similarly to Chapter 4. After computing the Stackelberg
equilbrium, we presented several possible ways of rationally choosing the final discounted
safety loading by the reinsurer. Moreover, if the reinsurance company offers a discount
on the safety loading, the insurance company can substantially decrease product costs for
the client when switching from an old investment strategy, e.g., a constant-mix strategy,
without reinsurance to the new dynamic investment strategy with static reinsurance. In
our numerical studies, the cost benefits for the insurer varied from a few basis points to
126.68%, depending on the investment horizon, the insurer’s risk aversion and the old
strategy used in comparison.

In practice, some equity-linked insurance products may have a death benefit or a sur-
render guarantee for the policyholder. Therefore, potential research could deal with
including these actuarial risks into the model and exploring the analytical tractability
of the corresponding Stackelberg game as well as the economic implications of its equi-
librium. Including stochastic interest rates or no-short-selling and VaR constraints into
the game and exploring the corresponding equilibrium could be another interesting line
of research.

In Chapter 6, we abstracted away from specific institutional investors and studied the
optimal investment problem under risk limitation via a VaR constraint in the incomplete
Heston-model-based financial market. In our main Theorem 6.1.3 we solved this problem
by generalizing the methodology of Kraft and Steffensen (2013) from the complete market
to the incomplete market. In particular, we demonstrated that the value function in
the constrained problem can be represented as an expected modified utility of a vega-
neutral (synthetic) financial derivative on the optimal unconstrained wealth, and the
optimal wealth and the optimal investment strategy in the constrained problem are
similarly linked to those in the unconstrained problem. Using HJB PDEs, Feynman-
Kac theorem, and Fourier transforms, we proved in Corollary 6.1.5 that the synthetic
financial derivative consists of plain-vanilla put options and a digital-put option in the
case of a VaR constraint.

Our numerical studies in Chapter 6 required solving PDEs of Riccatti type with complex-
valued time-dependent coefficients, since we had to price the option on the optimal un-
constrained wealth instead of the stock, in contrast to Heston (1993). Moreover, we
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derived and used option-pricing formulas in the spirit of Carr-Madan to make the calcu-
lation of the Greeks more stable for a digital-put option. In the sensitivity analysis of the
optimal investment strategies, we found that the closer is the probability threshold in the
VaR constraint to the probability of the optimal unconstrained portfolio to fall below the
VaR capital threshold, the closer is the payoff of the synthetic financial derivative to the
identity function, i.e., the payoff from holding just the optimal unconstrained portfolio
as the underlying asset of the synthetic financial derivative. The risky investment of the
optimal investment strategy is decreasing in the correlation coefficient. Furthermore, we
varied the volatility as well as the mean-reversion rate of the variance process, which can
be seen as a proxy for the magnitude of the market incompleteness. As these parame-
ters increased, the risky investment of the optimal constrained investment strategy also
increased. Finally, we observed that the optimal investment strategy is more sensitive to
the changes of the above-mentioned parameters in case of less risk-averse investors acting
in more turbulent markets, i.e., markets with large initial variance as well as long-term
variance level and a low mean-reversion rate.

The methodology in Chapter 6 has a huge potential for future research and enlarging the
class of analytically tractable portfolio optimization problems. For example, our results
can be further extended to solving portfolio optimization problems in other incomplete
markets, e.g., with stochastic market price of risk. Another topic for future research could
be the investigation of other types of terminal-wealth or intermediate-wealth constraints,
e.g., limiting the expected shortfall of terminal wealth or bounding from below the
intermediate wealth of the investor. Last but not least, other types of utility functions
are also worth exploring in the future.

To sum up, we contributed to the academic literature by solving novel optimal invest-
ment and risk-sharing problems, analyzing the optimal strategies from the economic
perspective, and by pushing the boundaries of portfolio optimization methods that lead
to closed-form solutions.
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A Appendix to Chapter 3

In this appendix, we provide the proofs of theoretical results stated in Chapter 3. Section
A.1 contains the proofs of main results. In Section A.2 we provide auxiliary theoretical
results and their proofs.

A.1 Proofs of main results

Proof of Lemma 3.2.2. We show how to construct for ŨM (·) its concave envelope ũM (·),
the uniqueness of χ̃1 will follow. For ũM (·), four cases are possible, which are illustrated
in Figure A.1. Note that ŨM (·) has the following properties:

(i) ŨM,1 : (0, X̃1) → R is constant1;

(ii) ŨM,2 : (X̃1, X̃2) → R is strictly increasing, strictly concave, continuously differen-
tiable;

(iii) ŨM,3 : (X̃2,+∞) → R is strictly increasing, strictly concave and continuously

differentiable with limv↑+∞ Ũ ′
M,3(v) = 0;

(iv) Ũ ′
M,2(X̃2−) ≥ Ũ ′

M,3(X̃2+);

(v) UM,i(X̃i−) = UM,i+1(X̃i+) for i ∈ {1, 2}.

Denote s(v) := (ŨM (v) − ŨM (0))/v the slope of a line that passes through the points
(0, ŨM (0)) and (v, ŨM (v)). Since ŨM is nondecreasing, s(v) ≥ 0 ∀v > 0.

Due to properties (ii)-(v) Ũ ′
M,2(X̃2−) ≥ Ũ ′

M,3(X̃2+), ŨM,2(·) and ŨM,3(·) are strictly

concave on (X̃1; X̃2) and (X̃2,+∞) respectively, ŨM,2(X̃2−) = ŨM,3(X̃2+), we conclude

that ŨM (v) is strictly concave on (X̃1,+∞).

Since ŨM,1(v) is convex (see property (i)), we get:

ŨM,1(v) ≤ ŨM,1(0) + s(X̃1)v, ∀v ∈ [0, X̃1]. (A.1)

Therefore, χ̃1 ≥ X̃1. Next we partition the set of functions ŨM (·), satisfying the assump-
tions of this lemma, into four subsets, depending on the values of s(X̃1) ≥ 0, s(X̃2) > 0.

1The proof is also valid, if (i) is less restrictive, i.e., ŨM,1 : (0, X̃1) → R is convex and non-decreasing
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(a) Case 1. (b) Case 2.

(c) Case 3. (d) Case 4.

Figure A.1: Utility functions and their concave envelopes.

We show that in each case there is a unique χ̃1 – the change point between the linear
part of the concave envelope and ŨM (·).

Case 1: s(X̃1) ∈ [Ũ ′
M,2(X̃1+),+∞) and any s(X̃2).

Since the linear function g(v) = ŨM (0) + s(X̃1)v is obviously concave on [0, X̃1], ŨM (·)
is strictly concave on [X̃1,+∞) and g(X̃1−) = s(X̃1) ≥ ŨM (X̃1+) = ŨM,2(X̃1+), we
conclude that the function

(ŨM (0) + s(X̃1)v)1
[0,X̃1)

(v) + ŨM (v)1
[X̃1,+∞)

(v)
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is concave. The candidate for the concave envelope of ŨM (·) is

ũM (v) =


−∞, v < 0;

ŨM (0) + s(X̃1)v, v ∈ [0, X̃1);

ŨM,2(v), v ∈ [X̃1, X̃2);

ŨM,3(v), v ∈ [X̃2,+∞).

Take any concave function g(·) such that g(v) ≥ ŨM (v) ∀ v ∈ R. We get that g(v) ≥
ŨM (v) = ũM (v) for v ∈ (−∞, 0] ∪ [X̃1,+∞). Since ũM (·) is linear on (0, X̃1) and g(·) is
concave, we get for any v = λX̃1 with λ ∈ (0, 1):

g(v) = g(λX̃1 + (1 − λ)0) ≥ λg(X̃1) + (1 − λ)g(0) ≥ λŨM (X̃1) + (1 − λ)ŨM (0)

= λũM (X̃1) + (1 − λ)ũM (0) = ũM (λX̃1 + (1 − λ)0) = ũM (v).

Then according to Definition 3.2.1, ũM (·) is the concave envelope of ŨM (·). Writing it
down in the form (3.5) is straightforward setting χ̃1 = X̃1 and χ̃2 = X̃2. Figure A.1a
provides graphical illustration to this case. Red markers stand for the change points of
ŨM (·), i.e., X̃1, X̃2. The blue marker corresponds to the point χ̃1.

Case 2: s(X̃1) ∈ [0, Ũ ′
M,2(X̃1+)) and s(X̃2) ∈ (Ũ ′

M,2(X̃2−),+∞).

Note that:

s(X̃1) < Ũ ′
M,2(X̃1+) ⇔ ŨM,2(X̃1) − ŨM,1(0) − Ũ ′

M,2(X̃1+)X̃1 < 0;

s(X̃1) > Ũ ′
M,2(X̃2−) ⇔ ŨM,2(X̃2) − ŨM,1(0) − Ũ ′

M,2(X̃2−)X̃2 > 0.
(A.2)

Using (A.2) and property (ii), it is easy to show that there exists a unique χ̃1 ∈ (X̃1, X̃2),
such that s(χ̃1) = Ũ ′

M,2(χ̃1).

Now we show that s(v) is strictly increasing on (X̃1, χ̃1). Consider the derivative of s(v)
on (X̃1, X̃2):

s′(v) =
Ũ ′
M,2(v)v − ŨM,2(v) + ŨM,1(0)

v2
=

−a2(v)

v2
.

Since a2(v) is strictly increasing on (X̃1, X̃2) and a2(χ̃1) = 0, we conclude that a2(v) < 0

for v ∈ (X̃1, χ̃1). Therefore, s′(v) = −a2(v)
v2

> 0 for v ∈ (X̃1, χ̃1), whence s(X̃1) < s(χ̃1).

Using s(X̃1) < s(χ̃1) and strict concavity and differentiability of ŨM,2(·) on (X̃1, X̃2) (see
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property (ii)), we obtain:

ŨM,1(v) ≤ ŨM (0) + s(X̃1)v < ŨM (0) + s(χ̃1)v, ∀v ∈ [0, X̃1);

ŨM,2(v) < ŨM,2(χ̃1) + Ũ ′
M,2(χ̃1)︸ ︷︷ ︸
=s(χ̃1)

(v − χ̃1)

= ŨM,2(χ̃1) +
ŨM,2(χ̃1) − ŨM,1(0)

χ̃1
(v − χ̃1)

= ŨM,2(χ̃1) + s(χ̃1)v − (ŨM,2(χ̃1) − ŨM (0))

= ŨM (0) + s(χ̃1)v, ∀v ∈ [X̃1, χ̃1).

Finally, we can check similarly to Case 1 that the function:

ũM (v) =


−∞, v < 0;

ŨM (0) + s(χ̃1)v, v ∈ [0, χ̃1);

ŨM,2(v), v ∈ [χ̃1, X̃2);

ŨM,3(v), v ∈ [X̃2,+∞)

is indeed the concave envelope of ŨM (·) in the sense of Definition 3.2.1. In terms of
(3.5), we have a unique χ̃1 ∈ (X̃1, X̃2) and can set χ̃2 = X̃2. Figure A.1b corresponds to
Case 2.

Case 3: s(X̃1) ∈ [0, Ũ ′
M,2(X̃1+)], s(X̃2) ∈ [Ũ ′

M,3(X̃2+), Ũ ′
M,2(X̃2−)]. This case is similar

to Case 1 and is illustrated in Figure A.1c. In terms of (3.5), we have χ̃1 = χ̃2 = X̃2.

Case 4: s(X̃1) ∈ [0, Ũ ′
M,2(X̃1+)], s(X̃2) ∈ (0, Ũ ′

M,3(X̃2+)). This case is analogous to Case

2 and is illustrated in Figure A.1d. In terms of (3.5), we have a unique χ̃1 ∈ (X̃2,+∞)
and can set χ̃2 = χ̃1.

We have covered all possible cases, i.e., classified all possible values of s(X̃1) ≥ 0, s(X̃2) >
0. Any ŨM (·) that has properties (i)-(v) is related to exactly one of the four described
cases.

Proof of Theorem 3.2.3.
1. The equation h(λv)− v0 = 0 has a unique solution λ∗v ∈ (0,+∞) due to the fact that
under the integrability assumption (3.7) the function h(λv) − v0 is continuous, strictly
decreasing, limλv↑+∞(h(λv) − v0) = −v0 < 0 as well as limλv↓0(h(λv) − v0) = +∞.
2. Denote V ∗(T ) := v∗(λ∗v, Z̃(T )). Take any admissible solution V̄ (T ) of problem
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(P conc
M ). It must satisfy the budget constraint E[Z̃(T )V̄ (T )] ≤ v0. Then:

E[ũM (V ∗(T ))] − E[ũM (V̄ (T ))] = E[ũM (V ∗(T ))] − λ∗vv0 − E[ũM (V̄ (T )] + λ∗vv0

≥ E[ũM (V ∗(T ))] − λ∗vv0 − E[ũM (V̄ (T ))] + λ∗vE[Z̃(T )V̄ (T )]

= (E[ũM (V ∗(T ))] − λ∗vE[Z̃(T )V ∗(T )]) − (E[ũM (V̄ (T ))]

− λ∗vE[Z̃(T )V̄ (T )])

= E[(ũM (V ∗(T )) − λ∗vZ̃(T )V ∗(T )) − (ũM (V̄ (T ))

− λ∗vZ̃(T )V̄ (T ))]
Lem.A.2.2

≥ 0.

Hence, V ∗(T ) is optimal. It is Q-a.s. unique, since Q(Z̃(T ) = ũ′M,1(χ̃1−)/λ∗v) = 0.

3. Observe that the initial utility function ŨM (v) and its concave envelope ũM (v) satisfy
the following properties:

{v ∈ R : ŨM (v) < ũM (v)} = (0, χ̃1);

{v ∈ R : ŨM (v) = ũM (v)} = R \ (0, χ̃1).
(A.3)

Let V ∗(T ) be the optimal solution of Problem (P conc
M ). Since the feasible regions in

Problem (PM ) and Problem (P conc
M ) coincide, V ∗(T ) is feasible in the former (original,

non-concave) problem. Note that Q(V ∗(T ) ∈ {0} ∪ [χ̃1,+∞)) = 1 due to the definition
of χ̃1. Denote V (T ) any other feasible wealth in Problem (PM ) such that Q(V (T ) =
V ∗(T )) ̸= 1. Then:

E[ŨM (V ∗(T ))] − E[ŨM (V (T ))]
(A.3)
= E

[
(ũM (V ∗(T )) − ũM (V (T ))1{V ∗(T )̸∈(0,χ̃1)}

]︸ ︷︷ ︸
≥0, due to optimality of V ∗(T ) in Problem (P conc

M )

+ E
[(
ŨM (V ∗(T )) − ŨM (V (T )

)
1{V ∗(T )∈(0,χ̃1)}

]
︸ ︷︷ ︸

=0, since Q(V ∗(T )∈(0,χ̃1))=0

≥ 0.

Hence, V ∗(T ) is the Q-a.s. unique optimal solution of Problem (PM ).

Proof of Proposition 3.2.4. From Theorem 3.2.3, we know that V ∗(T ) = v(λ∗v, Z̃(T ))

for λ∗v such that E
[
V ∗(T )Z̃(T )

]
= v0 and v(λv, z̃) solving (3.6). The function v(λv, z̃),

derived in the supplementary Lemma A.2.2, Appendix A.2, is continuous w.r.t. (m,α, c).
Hence, the function ṼM (m,α, c) is continuous w.r.t. (m,α, c) ∈ P as a superposition of
continuous functions.

Fix ṼRUL
M ∈

[
min

(m,α,c)∈P
ṼM (m,α, c), max

(m,α,c)∈P
ṼM (m,α, c)

]
. Then the set

160



A Appendix to Chapter 3

R =
{

(m,α, c) : ṼM (m,α, c) ≥ ṼRUL
M

}
is non-empty due to the choice of ṼRUL

M and

closed due to the continuity of ṼM (m,α, c). The set P is non-empty, closed and bounded.
Hence, R∩ P is a non-empty, closed and bounded set.

The function ṼI(m,α, c) is also continuous for (m,α, c) ∈ P as a superposition of con-
tinuous functions. Therefore, by Theorem 2.5.3, there exists (m∗, α∗, c∗) ∈ R ∩ P such
that ṼI(m∗, α∗, c∗) ≥ ṼI(m,α, c)∀(m,α, c) ∈ R ∩ P.

Proof of Corollary 3.2.5. This corollary is a direct application of Lemma 3.2.2 (the con-
struction of the concave envelope of the manager’s utility function) and Theorem 3.2.3.

Recall that X̃1 = (1 +m− c)v0, X̃2 = (1 +m)v0, s(v) = (ŨM (v) − ŨM (0))/v. Then:

Ũ ′
M (X̃1+) = lim

v↓X̃1

Ũ ′
M,2(v) = lim

v↓X̃1

(v − v0 + aM )pM−1 = ((m− c)v0 + aM )pM−1;

Ũ ′
M (X̃2−) = lim

v↑X̃2

Ũ ′
M,2(v) = lim

v↑X̃2

(v − v0 + aM )pM−1 = (mv0 + aM )pM−1;

Ũ ′
M (X̃2+) = lim

v↓X̃2

Ũ ′
M,3(v) = lim

v↓X̃2

(αv +mv0 − α(1 +m)v0 + aM )pM−1α

= α(mv0 + aM )pM−1.

(A.4)

Since it holds that s(X̃1) = 0 < Ũ ′
M,2(X̃1+), we can easily verify that Case 2, Case 3 and

Case 4 from Lemma 3.2.2 correspond to PA (Case A), PB (Case B) and PC (Case C)
respectively, where PX , X ∈ {A,B,C}, is defined in (3.10).

Consider Case A, (m,α, c) ∈ PA. According to Lemma 3.2.2, there exists a unique
χ̃1 > X̃2 solving:

s(v) = Ũ ′
M (v) ⇔ (αv + (m− α(1 +m))v0 + aM )pM − (v0(m− c) + aM )pM

pMv
= Ũ ′

M,3(v)

⇔ (αv + (m− α(1 +m))v0 + aM )pM−1((1 − pM )αv + (m− α(1 +m))v0 + aM )

= (v0(m− c) + aM )pM .

As per Corollary 46 in Havrylenko (2018), the concave envelope of ŨM (·) in this case
has the following form:

ũM (V (T )) =



−∞, V (T ) < 0;

1

pM
(v0(m− c) + aM )pM + s(χ̃1)V (T ), V (T ) ∈ [0, χ̃1);

1

pM
(αV (T ) + (m− α(1 +m))v0 + aM )pM︸ ︷︷ ︸
=ŨM (V (T ))=ŨM,3(V (T )) ∀V (T )∈[χ̃1,+∞)

, V (T ) ∈ [χ̃1,+∞).
(A.5)
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Denote by I2(·), I3(·) the inverse functions of the marginal utilities Ũ ′
M,2(·), Ũ ′

M,3(·):

I2(v) = v
− 1

1−pM + v0 − aM , I3(v) = α
1

1−pM
−1
v
− 1

1−pM + (1 +m− α−1m)v0 − α−1aM .

Then for v ∈ [0,+∞) the concave envelope ũM (v) has the form of (3.5) for ũM,2(·) =
ũM,3(·) and χ̃2 = χ̃1. Using that ũM,2(·) = ũM,3(·), ũ′M,1(χ̃1−) = ũ′M,2(χ̃1+) = s(χ̃1) =

α(αχ̃1+(m−α(1+m))v0+aM )pM−1 and setting ṽ1 = χ̃1, we obtain by applying Lemma
A.2.2 that

v∗(λv, z̃) =
(
α1/(1−pM )−1(λv z̃)−1/(1−pM ) + (1 +m− α−1m)v0 − α−1aM

)
1(0, s(χ̃1)/λv ](z̃)

solves maxv≥0{ũM (v) − λv · z̃ · v}.

Using the supplementary Lemma A.2.1 in Appendix A.2, one can easily show that the
integrability condition in Theorem 3.2.3 holds for ∀λv > 0. Therefore, we may apply
Theorem 3.2.3 and conclude that:

V ∗(T ) = v∗(λ∗v, Z̃(T )) =

(
α1/(1−pM )−1(λ∗vZ̃(T ))−1/(1−pM ) + (1 +m− α−1m)v0

− α−1aM

)
1{Z̃(T )∈(0, s(χ̃A

1 )/λ∗
v]},

where λ∗v ∈ (0,+∞) is the unique solution of the equation E
[
Z̃(T )v∗(λv, Z̃(T ))

]
= v0

and χ̃A
1 := χ̃1 to emphasize the correspondence of this concavification to Case A.

Case B and Case C are proven analogously to Case A. For details see Corollary 46 and
Corollary 47 in Havrylenko (2018).

Proof of Proposition 3.2.7. In the proof we mainly use Corollary 3.2.5.

Case A: (m,α, c) ∈ PA. Denote E1 =
(
0, s(χ̃A

1 )/λ∗v
]
. According to (3.11)

V ∗(T ) =
(
α1/(1−pM )−1(λ∗vZ̃(T ))−1/(1−pM ) + (1 +m− α−1m)v0 − α−1aM

)
1{Z̃(T )∈E1}.

Using that s(χ̃A
1 ) = α(αχ̃A

1 + (m − α(1 + m))v0 + aM )pM−1 and the fact that V ∗(T ) =

v∗(λ∗v, Z̃(T )) is a non-increasing function of Z̃(T ), one can easily verify that:

V ∗
T (ω) ≥ χ̃A

1 > (1 +m)v0 ∀ω ∈
{
ω ∈ Ω : Z̃T (ω) ∈ E1

}
;

V ∗
T (ω) = 0 ∀ω ∈

{
ω ∈ Ω : Z̃T (ω) ̸∈ E1

}
,

(A.6)
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where we write V ∗
T (ω) for the value of the random variable V ∗(T ) given ω ∈ Ω and

Z̃T (ω) for the value of Z̃(T ) given ω ∈ Ω. Therefore, it holds:

Q
(
ω ∈ Ω :V ∗

T (ω) ∈
{
v ∈ R : ũM (v) ̸= ŨM (v)

})
= Q

(
ω ∈ Ω : V ∗

T (ω) ∈ (0, χ̃A
1 )
)

= 0.
(A.7)

Then:

ṼM (m,α, c) = E
[
ŨM (V ∗(T ))

]
(A.7)
= E [ũM (V ∗(T ))]

(A.5)
=

V ∗(T )≥0
E
[(
ŨM (0) + s(χ̃A

1 )V ∗(T )
)
1{V ∗(T )∈[0,χ̃A

1 )}
]

+ E
[
p−1
M (αV ∗(T ) + (m− α(1 +m))v0 + aM )pM

· 1{V ∗(T )∈[χ̃A
1 ,+∞)}

]
(A.6)
=

(3.11)
E
[
(ŨM (0) + s(χ̃A

1 ) · 0)1{ZT /∈E1}

]
+ p−1

M

· E
[(
α
(
α1/(1−pM )−1(λ∗vZ̃(T ))−1/(1−pM ) + (1 +m− α−1m)v0

−α−1aM
)

+ (m− α(1 +m))v0 + aM

)pM
1{Z̃(T )∈E1}

]
= ŨM (0)E

[
1{Z̃(T )/∈E1}

]
+ p−1

M (λ∗v)1−1/(1−pM ) α1/(1−pM )−1

· E
[
Z̃(T )1−1/(1−pM )

1{Z̃(T )∈E1}
]

Lem.A.2.1
=

Z̃(T )>0
ŨM (0)(Φ(dA2 ) − Φ(−∞)) + (λ∗v)1−1/(1−pM ) α1/(1−pM )−1

· exp
(
(1/(1 − pM ) − 1)

(
r + 0.5γ2

)
T + 0.5(1/(1 − pM ) − 1)2γ2T

)
·
(

Φ
(
dA1 + (1 − (1 − pM )−1)γ

√
T
)
− Φ

(
dA2 + (1 − (1 − pM )−1)γ

√
T
))

· p−1
M ,

where

dA1 = +∞, dA2 =
log
(
λ∗v/s(χ̃

A
1 )
)
−
(
r + 0.5γ2

)
T

γ
√
T

.

Case B and Case C follow similarly. For details, see Proposition 52 in Havrylenko
(2018).

Proof of Proposition 3.2.8. In the proof of this proposition we mainly use Corollary
3.2.5.
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Case A: (m,α, c) ∈ PA. Denote E1 =
(
0, s(χ̃A

1 )/λ∗v
]
. We obtain:

ṼI(m,α, c) = E
[
p−1
I (I(V ∗(T )) + aI)pI

]
(3.1)
= p−1

I E
[(

(V ∗(T ) + v0(c−m))1{V ∗(T )∈[0,(1+m−c)v0)}

+ v01{V ∗(T )∈[(1+m−c)v0,(1+m)v0)} +
(
V ∗(T ) −mv0

− α(V ∗(T ) − (1 +m)v0)
)
1{V ∗(T )∈[(1+m)v0,+∞)} + aI

)pI]
(3.11)

=
(A.6)

p−1
I E

[(
(0 + v0(c−m))1{Z̃(T )/∈E1} + v01∅ +

(
(1 − α)

·
(
α1/(1−pM )−1(λ∗vZ̃(T ))−1/(1−pM ) + (1 +m− α−1m)v0 − α−1aM

)
+ (α(1 +m) −m)v0

)
1{Z̃(T )∈E1} + aI

)pI]
= p−1

I E
[
(v0(c−m) + aI)pI 1{Z̃(T )/∈E1}

]
+ p−1

I

· E
[(

(1 − α)α1/(1−pM )−1(λ∗v)−1/(1−pM )Z̃(T )−1/(1−pM )

+ (1 +m− α−1m)v0 − α−1aM − (α(1 +m) −m)v0

+ aM + (α(1 +m) −m)v0 + aI

)pI
1{Z̃(T )∈E1}

]
= p−1

I (v0(c−m) + aI)pI E
[
1{Z̃(T )/∈E1}

]
+ p−1

I

· E
[(

(1 − α)α1/(1−pM )−1(λ∗v)−1/(1−pM )Z̃(T )−1/(1−pM ) + (1 +m− α−1m)v0

+ aM (1 − α−1) + aI

)pI
1{Z̃(T )∈E1}

]
Lem.A.2.1

=
Z̃(T )>0

p−1
I (v0(c−m) + aI)pI

(
Φ(dA2 ) − Φ(−∞)

)
+ p−1

I E
[(

(1 − α)α1/(1−pM )−1(λ∗v)−1/(1−pM )Z̃(T )−1/(1−pM )

+ (1 +m− α−1m)v0 + aM (1 − α−1) + aI

)pI
1{Z̃(T )∈E1}

]
= p−1

I (v0(c−m) + aI)pI Φ(dA2 )

+ p−1
I E

[(
kZ̃(T )−1/(1−pM ) + l

)pI
1{Z̃(T )∈E1}

]
,

where k = (1−α)α1/(1−pM )−1(λ∗v)−1/(1−pM ) and l = (1+m−α−1m)v0+aM (1−α−1)+aI ,
and dA2 (·) is defined in Proposition 3.2.7.

The derivation of ṼI(m,α, c) for (m,α, c) ∈ PB and for (m,α, c) ∈ PC is done similarly

164



A Appendix to Chapter 3

to Case A. For details, see Proposition 53 in Havrylenko (2018).

A.2 Auxiliary results with proofs

Lemma A.2.1. Let Z̃(T ) be the state price density process at time T , a > 0, b > 0 such
that a < b. Then for any k ∈ R it holds:

E
[(
Z̃(T )

)k
1{a<Z̃(T )<b}

∣∣F(t)

]
=
(
Z̃(t)

)k
exp

(
−k
(
r +

γ2

2

)
(T − t) +

k2γ2

2
(T − t)

)
·
(

Φ(d1 + kγ
√
T − t) − Φ(d2 + kγ

√
T − t)

)
,

where

d1 =
log
(
Z̃(t)
a

)
−
(
r + γ2

2

)
(T − t)

γ
√
T − t

, d2 =
log
(
Z̃(t)
b

)
−
(
r + γ2

2

)
(T − t)

γ
√
T − t

. (A.8)

Proof. Let d1 and d2 be as defined above. Then:

E
[(
Z̃(T )

)k
1{a<Z̃(T )<b}

∣∣∣F(t)

]
=
(
Z̃(t)

)k
E

( Z̃(T )

Z̃(t)

)k

1{a<Z̃(T )<b}

∣∣∣∣F(t)


=
(
Z̃(t)

)k
E

( Z̃(T )

Z̃(t)

)k

1{ a

Z̃(t)
<

Z̃(T )

Z̃(t)
< b

Z̃(t)

}∣∣∣∣F(t)


(2.4),(A.8)

=
(
Z̃(t)

)k
E

( Z̃(T )

Z̃(t)

)k

1{
d2<

W (T )−W (t)√
T−t

<d1
}∣∣∣∣F(t)


=
(
Z̃(t)

)k ∫ d1

d2

exp

(
−kγ

√
T − tx− k

(
r +

γ2

2

)
(T − t)

)
1√
2π

exp

(
−x

2

2

)
dx

=
(
Z̃(t)

)k
exp

(
−k
(
r +

γ2

2

)
(T − t)

)
·
∫ d1

d2

1√
2π

exp

(
−1

2
(x+ kγ

√
T − t)2 +

1

2
k2γ2(T − t)

)
dx
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=
(
Z̃(t)

)k
exp

(
−k
(
r +

γ2

2

)
(T − t) +

k2γ2

2
(T − t)

)
·
∫ d1

d2

1√
2π

exp

(
−1

2
(

=z︷ ︸︸ ︷
x+ kγ

√
T − t)2

)
dx

=
(
Z̃(t)

)k
exp

(
−k
(
r +

γ2

2

)
(T − t) +

k2γ2

2
(T − t)

)
·
∫ d1+kγ

√
T−t

d2+kγ
√
T−t

1√
2π

exp

(
−z

2

2

)
dz

=
(
Z̃(t)

)k
exp

(
−k
(
r +

γ2

2

)
(T − t) +

k2γ2

2
(T − t)

)
·
(

Φ(d1 + kγ
√
T − t) − Φ(d2 + kγ

√
T − t)

)
.

Lemma A.2.2 (Solution to pointwise optimization problem). Let λv ∈ (0,+∞) be any
fixed number. Then the expression

v∗ := v∗(λv, z̃) =



I3(λv z̃), if z̃ ∈ (ũ′M,3(χ̃3−)/λv, ũ
′
M,3(χ̃2+)/λv),

χ̃2, if z̃ ∈ [ũ′M,3(χ̃2+)/λv, ũ
′
M,2(χ̃2−)/λv],

I2(λv z̃), if z̃ ∈ (ũ′M,2(χ̃2−)/λv, ũ
′
M,2(χ̃1+)/λv),

χ̃1, if z̃ ∈ [ũ′M,2(χ̃1+)/λv, ũ
′
M,1(χ̃1−)/λv),

ṽ1, if z̃ = ũ′M,1(χ̃1−)/λv,

χ̃0, if z̃ ∈ (ũ′M,1(χ̃1−)/λv,+∞),

(A.9)

solves for all z̃ ∈ (0,+∞) the problem

max
v≥0

{ũM (v) − λv · z̃ · v}, (A.10)

where ũM is defined in (3.5), Ii(·) := (ũ′M,i)
−1(·) for i ∈ {2, 3}, ṽ1 is any number from

[χ̃0, χ̃1].

Proof of Lemma A.2.2. The piecewise structure of the objective function (A.10) moti-
vates us to consider three subproblems, which are derived from the initial optimization
problem by restricting the feasibility region to [χ̃0, χ̃1], [χ̃1, χ̃2] and [χ̃2, χ̃3). Note that
if we allow χ̃0 < 0, then the first subproblem will be restricted to [0, χ̃1] due to the
constraint v ≥ 0 in (3.6). We derive optimal solutions of the subproblems depending on
parameters λv ∈ (0,+∞) and z̃ ∈ (0,+∞). Then for any fixed λv and z̃ we compare
the solutions of the three subproblems to find the global optimizer of the initial problem
(3.6). Finally, we write the global maximizer as a function of λv and z̃.
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Consider the optimization problem:

max
v∈[χ̃0,χ̃1]

{ũM,1(v) − λv z̃v}. (P1)

According to (3.5), we ũM,1(v) is linear and strictly increasing, whence we write ũM,1(v) =
a1v+ b1 with a1 > 0. Hence, the first subproblem is maxv∈[0,χ̃1]{(a1v+ b1)−λv z̃v}. Due
to linearity of the objective function, we easily get the optimal solution depending on
parameter values:

v∗1 =


0, if z̃ > a1/λv;

ṽ1 if z̃ = a1/λv;

χ̃1, if z̃ < a1/λv,

where ṽ1 is any number from the interval [0, χ̃1]. So the optimum of this subproblem is
unique for z̃ ̸= a1/λv = ũ′M,1(0+)/λv = ũ′M,1(χ̃1−)/λv.

Consider the second optimization subproblem:

max
v∈[χ̃1,χ̃2]

{ũM,2(v) − λv z̃v} ⇔ min
v∈[χ̃1,χ̃2]

{−ũM,2(v) + λv z̃v}. (P2)

The minimum exists because the objective function is continuous and the feasible set
is compact. Constraints are linear and the objective function is strictly convex. The
latter property follows from the fact that the function −ũM,2(v) is strictly convex due to
strict concavity of ũM,3(v). The Slater condition from Definition 2.5.8 obviously holds.
Therefore, the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for
optimality by Theorem 2.5.9. Due to strict convexity, the minimum is unique.

Using KKT conditions, we obtain the following optimal solution of the problem (P2)
depending on the value of λv z̃:

v∗2(λv, z̃) =


χ̃1, if λv z̃ ≥ ũ′M,2(χ̃1+);

I2(λv z̃), if ũ′M,2(χ̃2−) < λv z̃ < ũ′M,2(χ̃1+);

χ̃2, if ũ′M,2(χ̃2−) ≥ λv z̃.

(A.11)

Consider the optimization subproblem:

max
v∈[χ̃2,+∞)

{ũM,3(v) − λv z̃v} ⇔ min
v∈[χ̃2,+∞)

{−ũM,3(v) + λv z̃v}. (P3)

Analogously to the previous case, the optimal solution exists and is unique for any
λv z̃ > 0. Using the corresponding KKT conditions, we obtain the optimal solution of
(P3):

v∗3 := v∗3(λv, z̃) =

{
χ̃2, if λv z̃ ≥ ũ′M,3(χ̃2+);

I3(λv z̃), if ũ′M,3(χ̃2+) > λv z̃.
(A.12)

167



A Appendix to Chapter 3

λv z̃ ∈ v∗1 v∗2 v∗3

(0, ũ′M,3(χ̃2+)) χ̃1 χ̃2 I3(λv z̃)

[ũ′M,3(χ̃2+), ũ′M,2(χ̃2−)] χ̃1 χ̃2 χ̃2

(ũ′M,2(χ̃2−), ũ′M,2(χ̃1+)) χ̃1 I2(λv z̃) χ̃2

[ũ′M,2(χ̃1+), ũ′M,1(χ̃1−)) χ̃1 χ̃1 χ̃2

{ũ′M,1(χ̃1−)} ṽ1 χ̃1 χ̃2

(ũ′M,1(χ̃1−),+∞) 0 χ̃1 χ̃2

Table A.1: Optimal solutions of (P1), (P2), (P3) depending on the value of λv z̃.

Now we show that the optimal solution of the problem maxv∈[0;+∞){ũM (v) − λv z̃v} is
given by (A.9).

Denote f(v) = ũM (v) − λv z̃v and fi(v) = ũM,i(v) − λv z̃v, i ∈ {1, 2, 3}. We distinguish
between 6 cases, depending on the value of λv z̃ and prove only the first two of them, as
the remaining cases are analogous.

1) If z̃ > ũ′M,1(χ̃1−)/λv = a1/λv, then v∗1 = 0, v∗2 = χ̃1, v
∗
2 = χ̃2. We show now that

v∗1 = 0 maximizes f(v) on v ≥ 0.

Take any v̄ ∈ [0, χ̃1). Then:

f(v∗1) − f(v̄) = f1(v
∗
1) − f1(v̄) ≥ f1(v

∗
1) − max

v∈[0,χ̃1]
f1(v) = f1(v

∗
1) − f1(v

∗
1) = 0

Take any v̄ ∈ [χ̃1, χ̃2). Then:

f(v∗1) − f(v̄) = f1(v
∗
1) − f2(v̄) ≥ f1(v

∗
1) − max

v∈[χ̃1,χ̃2]
f2(v) = f1(v

∗
1) − f2(v

∗
2)

= f1(v
∗
1) − f2(χ̃1) = f1(v

∗
1) − f1(χ̃1) ≥ f1(v

∗
1) − max

v∈[0,χ̃1]
f1(v)

= f1(v
∗
1) − f1(v

∗
1) = 0.

We used optimal solutions of problems (P1) and (P2) for the corresponding values of z̃
as well as the fact that f1(χ̃1) = f2(χ̃1).

Take any v̄ ∈ [χ̃2,+∞) and obtain:

f(v∗1) − f(v̄) = f1(v
∗
1) − f3(v̄) ≥ f1(v

∗
1) − max

v∈[χ̃2,+∞)
f3(v) = f1(v

∗
1) − f3(v

∗
3)

= f1(v
∗
1) − f3(χ̃2) = f1(v

∗
1) − f2(χ̃2) ≥ f1(v

∗
1) − max

v∈[χ̃1,χ̃2]
f2(v)

= f1(v
∗
1) − f1(χ̃1) ≥ f1(v

∗
1) − max

v∈[0,χ̃1]
f1(v) = f1(v

∗
1) − f1(v

∗
1) = 0.
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We used optimal solutions of problems (P1), (P2), (P3) for the corresponding values of
z̃ as well as the fact that f1(χ̃1) = f2(χ̃1), f2(χ̃2) = f3(χ̃2).

We conclude that for any λv > 0 and z̃ > ũ′M,1(χ̃1−)/λv the optimal solution of the
problem maxv≥0{ũM (v) − λv z̃v} is 0.

2) If z̃ = ũ′M,1(χ̃1−)/λv = a1/λv, then according to Table A.1 v∗1 = ṽ1, v
∗
2 = χ̃1, v

∗
2 = χ̃2,

where ṽ1 ∈ [0, χ̃1]. In this case v∗1 = ṽ1 solves maxv≥0 f(v). It can be concluded from
the fact that z̃ = ũ′M,1(χ̃1−)/λv ≥ ũ′M,2(χ̃1+)/λv > ũ′M,2(χ̃2−)/λv ≥ ũ′M,3(χ̃2+)/λv and
the following relations

f(v∗1) = f1(v
∗) = f1(χ̃1) = f2(χ̃1) = f2(v

∗
2) = max

v∈[χ̃1,χ̃2]
f2(v) > f2(χ̃2) = f3(χ̃2) = f3(v

∗
3)

= max
v∈[χ̃2,+∞)

f3(v).

First, we used that f1(v) = (a1v + b1) − λv(a1/λv)v = b1 is constant. Then we used the
continuity of f(·) and the optimal solutions v∗2 and v∗3 of the corresponding subproblems
for z̃ = ũ′M,1(χ̃1−)/λv.

The remaining cases are proven analogously to the previous two. For details, see Lemma
37 in Havrylenko (2018). Taking all six cases into consideration, we conclude that v∗(y, z̃)
given by (A.9) solves Problem (3.6).

Proposition A.2.3 (Equations for computing λ∗v). Let χ̃1 and s(χ̃1) be as defined in
Corollary 3.2.5 depending on cases. Let ξ1, d

A
1 (·), dA2 (·), dB1 (·), dB2 (·), dB3 (·), dC1 (·), dC2 (·),

dC3 (·), dC4 (·) be as defined in Proposition 3.2.7. Denote:

ξ2 = exp
(
−
(
r + 0.5γ2

)
T + 0.5γ2T

)
.

Then the explicit equation for computing the unique λ∗v is given in
Case A:

λ−1/(1−pM )
v αpM/(1−pM )ξ1

(
Φ

(
dA1 (λv) − pM

1 − pM
γ
√
T

)
− Φ

(
dA2 (λv) − pM

1 − pM
γ
√
T

))
+
(
(1 +m− α−1m)v0 − α−1aM

)
ξ2

(
Φ
(
dA1 (λv) + γ

√
T
)
− Φ

(
dA2 (λv) + γ

√
T
))

= v0;

Case B:

λ−1/(1−pM )
v αpM/(1−pM )ξ1

(
Φ

(
dB1 (λv) − pM

1 − pM
γ
√
T

)
− Φ

(
dB2 (λv) − pM

1 − pM
γ
√
T

))
+
(
(1 +m− α−1m)v0 − α−1aM

)
ξ2

(
Φ
(
dB1 (λv) + γ

√
T
)
− Φ

(
dB2 (λv) + γ

√
T
))

+ (1 +m)v0ξ2

(
Φ
(
dB2 (λv) + γ

√
T
)
− Φ

(
dB3 (λv) + γ

√
T
))

= v0;
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Case C:

λ−1/(1−pM )
v αpM/(1−pM )ξ1

(
Φ

(
dC1 (λv) − pM

1 − pM
γ
√
T

)
− Φ

(
dC2 (λv) − pM

1 − pM
γ
√
T

))
+
(
(1 +m− α−1m)v0 − α−1aM

)
ξ2

(
Φ
(
dC1 (λv) + γ

√
T
)
− Φ

(
dC2 (λv) + γ

√
T
))

+ (1 +m)v0ξ2

(
Φ
(
dC2 (λv) + γ

√
T
)
− Φ

(
dC3 (λv) + γ

√
T
))

+ λ−1/(1−pM )
v ξ1

(
Φ

(
dC3 (λv) − pM

1 − pM
γ
√
T

)
− Φ

(
dC4 (λv) − pM

1 − pM
γ
√
T

))
+ (v0 − aM )ξ2

(
Φ
(
dC3 (λv) + γ

√
T
)
− Φ

(
dC4 (λv) + γ

√
T
))

=v0.

Proof. By Proposition 3.2.3, there exists a unique λ∗v solving E
[
Z̃(T )V ∗(T )

]
= v0. With

the help of Corollary 3.2.5 and Lemma A.2.1, the explicit form of E
[
Z̃(T )V ∗(T )

]
can be

obtained via straightforward but lengthy calculations. For details, see Proposition 48 in
Havrylenko (2018).

Proposition A.2.4 (First and second moment of the hedge-fund’s optimal terminal
value). Let the manager’s preferences be determined by ŨM as per (3.8). Let λ∗v be as
defined in Corollary 3.2.5 and dA1 (·), dA2 (·), dB1 (·), dB2 (·), dB3 (·), dC1 (·), dC2 (·), dC3 (·), dC4 (·)
be as defined in Proposition 3.2.7. Denote:

ξ3 = exp
(
(1 − pM )−1

(
r + 0.5γ2

)
T + 0.5(1 − pM )−2γ2T

)
;

ξ4 = exp
(
2(1 − pM )−1

(
r + 0.5γ2

)
T + 2(1 − pM )−2γ2T

)
.

The first two moments of the fund’s optimal terminal value equal in
Case A:

E [V ∗(T )] = (λ∗v)
− 1

1−pM α
pM

1−pM ξ3

(
Φ

(
dA1 − γ

√
T

1 − pM

)
− Φ

(
dA2 − γ

√
T

1 − pM

))
+
(
(1 +m− α−1m)v0 − α−1aM

) (
Φ
(
dA1
)
− Φ

(
dA2
))

;

E
[
(V ∗(T ))2

]
= α

2
pM

1−pM (λ∗v)
− 2

1−pM ξ4 ·

(
Φ

(
dA1 − 2γ

√
T

1 − pM

)
− Φ

(
dA2 − 2γ

√
T

1 − pM

))
+ 2α

pM
1−pM (λ∗v)

− 1
1−pM

(
(1 +m− α−1m)v0 − α−1aM

)
ξ3

·
(

Φ

(
dA1 − 1

1 − pM
γ
√
T

)
− Φ

(
dA2 − 1

1 − pM
γ
√
T

))
+
(
(1 +m− α−1m)v0 − α−1aM

)2 (
Φ
(
dA1
)
− Φ

(
dA2
))

+ (1 +m)2v20
(
Φ
(
dA2
)
− Φ

(
dA3
))

;
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Case B:

E [V ∗(T )] = (λ∗v)
− 1

1−pM α
pM

1−pM ξ3

(
Φ

(
dB1 (λ∗v) − γ

√
T

1 − pM

)
− Φ

(
dB2 (λ∗v) − γ

√
T

1 − pM

))
+
(
(1 +m− α−1m)v0 − α−1aM

) (
Φ
(
dB1 (λ∗v)

)
− Φ

(
dB2 (λ∗v)

))
+ (1 +m)v0

(
Φ
(
dB2 (λ∗v)

)
− Φ

(
dB3 (λ∗v)

))
;

E
[
(V ∗(T ))2

]
= α

2pM
1−pM (λ∗v)

− 2
1−pM ξ4

·
(

Φ

(
dB1 (λ∗v) − 2

1 − pM
γ
√
T

)
− Φ

(
dB2 (λ∗v) − 2

1 − pM
γ
√
T

))
+ 2α

pM
1−pM (λ∗v)−1/(1−pM )

(
(1 +m− α−1m)v0 − α−1aM

)
ξ3

·
(

Φ
(
dB1 (λ∗v) − (1 − pM )−1γ

√
T
)
− Φ

(
dB2 (λ∗v) − (1 − pM )−1γ

√
T
))

+
(
(1 +m− α−1m)v0 − α−1aM

)2 (
Φ
(
dB1 (λ∗v)

)
− Φ

(
dB2 (λ∗v)

))
+ (1 +m)2v20

(
Φ
(
dB2 (λ∗v)

)
− Φ

(
dB3 (λ∗v)

))
;

Case C:

E [V ∗(T )] = (λ∗v)
− 1

1−pM α
pM

1−pM ξ3

(
Φ

(
dC1 (λ∗v) − γ

√
T

1 − pM

)
− Φ

(
dC2 (λ∗v) − γ

√
T

1 − pM

))
+
(
(1 +m− α−1m)v0 − α−1aM

) (
Φ
(
dC1 (λ∗v)

)
− Φ

(
dC2 (λ∗v)

))
+ (1 +m)v0

(
Φ
(
dC2 (λ∗v)

)
− Φ

(
dC3 (λ∗v)

))
+ (λ∗v)

− 1
1−pM ξ3

(
Φ
(
dC3 (λ∗v) − (1 − pM )−1γ

√
T
)
− Φ

(
dC4 (λ∗v) − (1 − pM )−1γ

√
T
))

+ (v0 − aM )
(
Φ
(
dC3 (λ∗v)

)
− Φ

(
dC4 (λ∗v)

))
;

E
[
(V ∗(T ))2

]
= α

2pM
1−pM (λ∗v)

− 2
1−pM ξ4

·
(

Φ

(
dC1 (λ∗v) − 2

1 − pM
γ
√
T

)
− Φ

(
dC2 (λ∗v) − 2

1 − pM
γ
√
T

))
+ 2α

pM
1−pM (λ∗v)

− 1
1−pM

(
(1 +m− α−1m)v0 − α−1aM

)
ξ3

·
(

Φ
(
dC1 (λ∗v) − (1 − pM )−1γ

√
T
)
− Φ

(
dC2 (λ∗v) − (1 − pM )−1γ

√
T
))

+
(
(1 +m− α−1m)v0 − α−1aM

)2 · (Φ (dC1 (λ∗v)
)
− Φ

(
dC2 (λ∗v)

))
+ (1 +m)2v20

(
Φ
(
dC2 (λ∗v)

)
− Φ

(
dC3 (λ∗v)

))
+ (λ∗v)

− 2
1−pM ξ4

(
Φ

(
dC3 (λ∗v) − 2

1 − pM
γ
√
T

)
− Φ

(
dC4 (λ∗v) − 2

1 − pM
γ
√
T

))
+ 2(λ∗v)

− 1
1−pM (v0 − aM )ξ3
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·
(

Φ
(
dC3 (λ∗v) − (1 − pM )−1γ

√
T
)
− Φ

(
dC4 (λ∗v) − (1 − pM )−1γ

√
T
))

+ (v0 − aM )2
(
Φ
(
dC3 (λ∗v)

)
− Φ

(
dC4 (λ∗v)

))
.

Proof. With the help of Corollary 3.2.5 and Lemma A.2.1, the explicit form of E [V ∗(T )]

and E
[
(V ∗(T ))2

]
can be obtained via straightforward but lengthy calculations. For the

complete derivation of E [V ∗(T )] see Proposition 49 in Havrylenko (2018). The complete

derivation of E
[
(V ∗(T ))2

]
is provided in Proposition 50 in Havrylenko (2018).
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Here we provide proofs to theoretical results from Chapter 4. Appendix B.1 contains the
proofs of the main results. Appendix B.2 contains auxiliary results and their proofs.

B.1 Proofs of main results

Proof of Proposition 4.2.1. The dynamics of the insurer’s portfolio with respect to S0,
S1, Put is given by:

dV̄ v0,π̄(t) = φ̄0(t)dS0(t) + φ̄1(t)dS1(t) + φ̄2(t)dPut(t)

= φ̄0(t)S0(t)rdt+ φ̄1(t)S1(t)(µ1dt+ σ1dW
Q
1 (t))

+ φ̄2(t)
(
((Φ(d+) − 1)V v0,πB (t)πCM

B (µ2 − r) + rPut(t))dt

+ (Φ(d+) − 1)V v0,πB (t)πCM
B σ2

(
ρdWQ

1 (t) +
√

1 − ρ2dWQ
2 (t)

))
=
(
φ̄0(t)S0(t)r + φ̄1(t)S1(t)µ1 + φ̄2(t)

(
(Φ(d+) − 1)V v0,πB (t)πCM

B (µ2 − r)

+ rPut(t)
))
dt+

(
φ̄1(t)S1(t)σ1 + φ̄2(t)(Φ(d+) − 1)V v0,πB (t)πCM

B σ2ρ
)
dWQ

1 (t)

+
(
φ̄2(t)(Φ(d+) − 1)V v0,πB (t)πCM

B σ2
√

1 − ρ2
)
dWQ

2 (t).

(B.1)

The dynamics of a portfolio with respect to S0, S1, S2 is given by:

dV v0,π(t) = φ0(t)dS0(t) + φ1(t)dS1(t) + φ2(t)dS2(t)

= φ0(t)S0(t)rdt+ φ1(t)S1(t)(µ1dt+ σ1dW
Q
1 (t))

+ φ2(t)S2(t)(µ2dt+ σ2(ρdW
Q
1 (t) +

√
1 − ρ2dWQ

2 (t)))

= (φ0(t)S0(t)r + φ1(t)S1(t)µ1 + φ2(t)S2(t)µ2) dt

+ (φ1(t)S1(t)σ1 + φ2(t)S2(t)σ2ρ) dWQ
1 (t)

+
(
φ2(t)S2(t)σ2

√
1 − ρ2

)
dWQ

2 (t).

(B.2)

Equating the coefficients next to the terms dt, dWQ
1 (t) and dWQ

2 (t) in (B.1) and (B.2),
we get the following link:
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
φ̄0(t) = φ0(t) + φ2(t)

S2(t)

S0(t)

(
1 − Put(t)

πCM
B V v0,πB (t)(Φ(d+) − 1)

)
;

φ̄1(t) = φ1(t);

φ̄2(t) =
φ2(t)S2(t)

πCM
B V v0,πB (t)(Φ(d+) − 1)

.

(B.3)

Using (B.3) and the relation (4.5) between the investment strategies φ(φ̄) and the relative
portfolio processes π(π̄), we conclude that the claim of the proposition follows.

Proof of Proposition 4.2.2. We prove the claim of the proposition by contradiction.

Let π∗ be the solution to (Pε,Cπ). Then π̄∗ = (Ψ(t)π∗(t))t∈[0,T ] ∈ Āπ̄
c

(
v0, C̄V̄ (ε), C̄π̄

)
according to (4.9).

Assume that ∃ π̄∗∗ ∈ Āπ̄
c

(
v0, C̄V̄ (ε), C̄π̄

)
such that:

EQ
[
U
(
V̄ v0,π̄∗∗

(T )
)]

> EQ
[
U
(
V̄ v0,π̄∗

(T )
)]
. (B.4)

Then π∗∗ :=
(
Ψ−1(t)π̄∗∗(t)

)
t∈[0,T ]

∈ Aπ
c (v0, CV (ε), Cπ) and:

EQ
[
U
(
V v0,π∗∗

(T )
)]

Prop.4.2.1
= EQ

[
U
(
V̄ v0,π̄∗∗

(T )
)] (B.4)

> EQ
[
U
(
V̄ v0,π̄∗

(T )
)]

Prop.4.2.1
= EQ

[
U
(
V v0,π∗

(T )
)]
,

which contradicts the optimality of π∗ for (Pε,Cπ). The claim follows.

Proof of Lemma 4.2.3. Due to Condition (4.16), namely πν(t)⊤ν(t) = 0 Q-a.s., ∀t ∈
[0, T ], the SDEs for the wealth processes V v0,πν

ν and V v0,πν coincide. Since both processes
start from the same initial wealth v0, we conclude that

V v0,πν
ν (t) = V v0,πν (t) Q-a.s. ∀t ∈ [0, T ]. (B.5)

Next we prove the admissibility of πν for the original problem (Pε,Cπ). Obviously, the
budget constraint is satisfied. The allocation constraint is satisfied due to the second
part of Condition (4.16). The VaR constraint is satisfied, since:

ε
(i)

≥ Q (V v0,πν
ν (t) < GT )

(B.5)
= Q (V v0,πν (t) < GT ) ,

where we used in (i) that πν ∈ Aπ
c,ν (v0, CVν (ε)). The remaining technical conditions for

πν ∈ Aπ
c (v0, CV (ε)) immediately follow from the admissibility of πν ∈ Aπ

c,ν (v0, CVν (ε)).
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Finally, we prove by contradiction the optimality of πν for the original problem (Pε,Cπ).
Assume that there exists π̃ ∈ Aπ

c (v0, CV (ε)) such that

EQ [U (V v0,πν (T ))] < EQ [U (V v0,π̃(T )
)]
. (B.6)

Then we obtain:

EQ [U (V v0,πν (T ))]
(B.5)
= EQ [U (V v0,πν

ν (T ))]

(B.6)
< EQ [U (V v0,π̃(T )

)] (i)

≤ EQ [U (V v0,π̃
ν (T )

)]
,

(B.7)

where we used in (i) the strict increasingness of U(·) and the fact that V v0,π̃(T ) ≤
V v0,π̃
ν (T ), which follows from ν ∈ D and SDE (4.15).

As (B.7) contradicts the optimality of πν for (P ν
ε ), the assumption regarding the existence

of the above-mentioned π̃ is false. Therefore, πν is the optimal relative portfolio process
for the original problem (Pε,Cπ).

Proof of Corollary 4.2.4. Recall that we are considering a power-utility function U(x) =
1
px

p with p < 1, p ̸= 0 and the set of allocation constraints Cπ is a convex cone.

For the case 0 < p < 1, the statement of Corollary 4.2.4 is an immediate consequence of
Theorem 10.1 and Theorem 15.3 from Cvitanic and Karatzas (1992).

For the case p < 0, we momentarily emphasize the explicit dependence of π∗u,ν as in
(4.18) on p as “π∗u,ν(p)”. Let p = p− < 0 and p+ ∈ (0, 1) be arbitrary but fixed.

Then, π∗u,ν(p+) solves (P1,Cπ) with risk aversion parameter p+, and π∗u,ν(p+) satisfies
equations (4.16). Clearly, this implies

π∗u,ν∗(p−) =
1 − p+

1 − p−︸ ︷︷ ︸
≥0

π∗u,ν∗(p+)︸ ︷︷ ︸
∈Cπ

∈ Cπ,

because Cπ is a convex cone, as well as

π∗u,ν∗(p−)⊤ν∗ =
1 − p+

1 − p−
π∗u,ν∗(p+)⊤ν∗

(4.16)
= 0.

Moreover, π∗u,ν∗(p−) is the optimal portfolio process for (P ν∗
1 ) with power utility with

p = p−. Hence, π∗u,ν∗(p−) satisfies (4.16) and is the optimal relative portfolio process for
the primal problem (P1,Cπ).

Proof of Corollary 4.2.5. The problem considered in Corollary 4.2.5 is precisely as in

Section 2 of Basak and Shapiro (2001). Thus, we relate (y, Z̃ν(t)) and (vDν , V
vDν ,π

∗
u,ν

ν (t))
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for arbitrary vDν , y ≥ 0 in such a way that the statements of Corollary 4.2.5 follow
directly from Basak and Shapiro (2001).

For any vDν ≥ 0, the optimal unconstrained wealth process V
vDν ,π

∗
u,ν

ν (t), t ∈ [0, T ], is
given as

V
vDν ,π

∗
u,ν

ν (t) = vDν exp
((
r + (µ+ ν − r1112)

⊤π∗u,ν︸ ︷︷ ︸
= 1

1−p
∥γν∥2

− 1

2
∥σ⊤π∗u,ν∥2︸ ︷︷ ︸

= 1
2(1−p)2

∥γν∥2

)
t+

(
π∗u,ν

)⊤
σ︸ ︷︷ ︸

= 1
1−p

γν

WQ(t)
)

= vDν exp
((
r − 1

p− 1
∥γν∥2 −

1

2(p− 1)2
∥γν∥2

)
t− 1

p− 1
γ⊤ν W

Q(t)
)

= vDν

(
Z̃ν(t)

) 1
p−1 exp

((
r − 1

p− 1
∥γν∥2 −

1

2(p− 1)2
∥γν∥2 +

1

p− 1
(r +

1

2
∥γν∥2)

)
t
)

= vDν

(
Z̃ν(t)

) 1
p−1 exp

( p

p− 1

(
r +

1

2
∥γν∥2

)
t−

(
1

2
+

1

p− 1
+

1

2(p− 1)2

)
︸ ︷︷ ︸

= p2

(p−1)2

∥γν∥2t
)

= vDν

(
Z̃ν(t)

) 1
p−1 exp

( p

p− 1

(
r +

1

2
∥γν∥2

)
t−

(
p

p− 1

)2 1

2
∥γν∥2t︸ ︷︷ ︸

(4.21)
= Γν(t)−Γν(0)

)

= vDν

(
Z̃ν(t)

) 1
p−1 exp

(
Γν(t) − Γν(0)

)
.

Since Γν(T )
(4.21)

= 0, the optimal unconstrained terminal wealth that started from the
initial capital vDν is equal to

V
vDν ,π

∗
u,ν

ν (T ) = vDν

(
Z̃ν(T )

) 1
p−1 exp

(
−Γν(0)

)
.

Comparing it with the optimal unconstrained wealth
(
yZ̃ν(T )

) 1
p−1 written in terms of a

Lagrange multiplier y > 0, we identify the following link:

y :=
(
vDν exp (Γν(0))

)p−1
, (B.8)

which is a continuous bijective function from (0,+∞) to (0,+∞).

According to Equation (9) in Basak and Shapiro (2001), the optimal VaR-constrained
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terminal wealth is given by:

V v0,π∗
ν

ν (T ; y) = I(yZ̃ν(T ))1{Z̃ν(T )<U ′(GT )/y} +GT1{U ′(GT )/y≤Z̃ν(T )<z̄εν}
+ I(yZ̃ν(T ))1{z̄εν≤Z̃ν(T )}

y>0
= I(yZ̃ν(T ))1{yZ̃ν(T )<U ′(GT )} +GT1{U ′(GT )≤yZ̃ν(T )<yz̄εν}

+ I(yZ̃ν(T ))1{yz̄εν≤yZ̃ν(T )}
I(·)↓
= I(yZ̃ν(T ))1{I(U ′(GT ))<I(yZ̃ν(T ))} +GT1{I(yz̄εν)<I(yZ̃ν(T ))≤I(U ′(GT ))}

+ I(yZ̃ν(T ))1{I(yZ̃ν(T ))≤I(yz̄εν)}
(B.8)
= V vDν (y),π

∗
u,ν (T )1{

GT<V vDν
(y),π∗

u,ν (T )
} +GT1

{
I(yz̄εν)<V vDν

(y),π∗
u,ν (T )≤GT

}
+ V vDν (y),π

∗
u,ν (T )1{

V vDν
(y),π∗

u,ν (T )≤I(yz̄εν)
}

kεν :=I(yz̄εν)= V vDν (y),π
∗
u,ν (T ) +

(
GT − V vDν (y),π

∗
u,ν (T )

)
1(kεν ,GT ]

(
V vDν (y),π

∗
u,ν (T )

)
,

where I(·) is the inverse function of U ′(·), z̄εν is such that Q
(
Z̃ν(T ) > z̄εν

)
= ε, and the

Lagrange multiplier y ≥ 0 solves the budget constraint EQ
[
Z̃ν(T )V

v0,π∗
ν

ν (T ; y)
]

= v0.

Using (B.8), we also get the relation

V
vDν ,π

∗
u,ν

ν (t) = vDν

(
Z̃ν(t)

) 1
p−1 exp

(
Γν(t) − Γν(0)

)
=
(
yZ̃ν(t)

) 1
p−1 exp (Γν(t)) . (B.9)

By plugging these results into Proposition 1 and Proposition 3 from Basak and Shapiro
(2001) and rewriting their definitions of d1 and d2 in terms of kεν and GT , the statements
of Corollary 4.2.5 follow immediately.

Proof of Proposition 4.2.6. According to Corollary 4.2.5, π∗ν∗ is optimal for
(
P ν∗
ε

)
and

has multiplicative structure

π∗(t) = βDν∗(t, V
vDν∗ ,π

∗
u,ν∗ (t)) · π∗u,ν∗ , t ∈ [0, T ]. (B.10)

We continue by verifying that this candidate portfolio π∗ := πν∗ satisfies (4.16) and is,
therefore, optimal for (Pε,Cπ) by Lemma 4.2.3.

For this purpose, Corollary 4.2.4 provides us with useful information about π∗u,ν∗ as well
as ν∗:

π∗u,ν∗ ∈ Cπ and (ν∗)⊤π∗u,ν∗ = 0 Q-a.s.. (B.11)
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The multiplicative structure1 (B.10) of π∗ and (B.11) imply that

(ν∗)⊤π∗(t) = βDν∗(t, V
vDν∗ ,π

∗
u,ν∗ (t)) · (ν∗)⊤π∗u,ν∗ = 0 ∀t ∈ [0, T ], Q-a.s.,

which means the first part of Condition (4.16) is fulfilled.

Since π∗u,ν∗ ∈ Cπ, Cπ = [0,∞)× (−∞, 0] is a convex cone and βDν∗(t, V ) ≥ 0 from (4.22),
we obtain that π∗(t) ∈ Cπ Q-a.s. ∀t ∈ [0, T ]. So the second part of Condition (4.16) is
satisfied.

In summary, we have shown that π∗ = (π∗(t))t∈[0,T ] is optimal for (P ν
ε ), π∗(t) ∈ Cπ

∀t ∈ [0, T ] Q-a.s., and (ν∗)⊤π∗(t) = 0 ∀t ∈ [0, T ] Q-a.s.. Hence, π∗ and ν∗ satisfy (4.16)
and π∗ is optimal for the primal problem (Pε,Cπ) according to Lemma 4.2.3.

Proof of Proposition 4.2.7. Observe that:

π̄∗2(t) > 0
Prop.4.2.2⇐⇒

(4.8)

Put(t)

πCM
B V v0,πB (t)(Φ(d+) − 1)︸ ︷︷ ︸

<0

π∗2(t) > 0 ⇐⇒ π∗2(t) < 0

(4.24)⇐⇒ β
Dν∗
ν∗ (t, V

νf ,π
∗
u,ν∗ (t)) · π∗u,ν∗,2(t) < 0

Prop.4.2.6⇐⇒
β>0

π∗u,ν∗,2(t) < 0

(4.18)⇐⇒
(

1

1 − p
Σ−1(µ+ ν∗ − r · 1112)

)⊤(
0
1

)
< 0.

The inverse of the volatility matrix is given by:

σ−1 =
1

σ1σ2
√

1 − ρ2

(
σ2
√

1 − ρ2 0
−σ2ρ σ1

)
and thus:

Σ−1(µ+ ν∗ − r1112) =
(
σ−1

)⊤
σ−1(µ+ ν∗ − r1112)

=
1

σ1σ2
√

1 − ρ2

(
σ2
√

1 − ρ2 −σ2ρ
0 σ1

)
1

σ1σ2
√

1 − ρ2

(
σ2
√

1 − ρ2 0
−σ2ρ σ1

)
· (µ+ ν∗ − r1112)

=
1

σ21σ
2
2(1 − ρ2)

(
σ22 −σ1σ2ρ

−σ1σ2ρ σ21

)(
µ1 + ν∗1 − r
µ2 + ν∗2 − r

)
=

1

σ21σ
2
2(1 − ρ2)

(
σ22(µ1 + ν∗1 − r) − σ1σ2ρ(µ2 + ν∗2 − r)
σ21(µ2 + ν∗2 − r) − σ1σ2ρ(µ1 + ν∗1 − r)

)

1In general, allocation constraints that lead to δ(x) ̸= 0 in (4.10) do not satisfy the multiplicative
property of π∗, e.g., C̄π̄ = [0, a]× [0, a] with a > 0, and need special treatment.
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Hence, we obtain:(
1

1 − p
Σ−1(µ+ ν∗ − r · 1112)

)⊤(
0
1

)
< 0

1−p>0⇐⇒
σ2
1σ

2
2(1−ρ2)>0

σ21(µ2 + ν∗2 − r) − σ1σ2ρ(µ1 + ν∗1 − r) < 0

⇐⇒ µ2 + ν∗2 − r

σ2
< ρ · µ1 + ν∗1 − r

σ1
⇐⇒ SRν∗

2 < ρ · SRν∗
1 .

B.2 Proofs of auxiliary results

This appendix contains the proofs of auxiliary lemmas and propositions needed for Sec-
tions 4.2 and 4.3.

Lemma B.2.1 (Delta-hedging in Mν). Fix a dual vector ν ∈ Cπ and consider in Mν a
financial derivative with payoff D(V vD,π

ν (T )), where D : [0,∞) → [0,∞), vD > 0 is the
initial wealth of V vD,π

ν and π ∈ R2 is a constant-mix strategy. Denote by

Dν(t, V ) := exp (−r(T − t))EQ̃ν [D(V vD,π
ν (T ))| V vD,π

ν (t) = V ]

the time-t value of D(V vD,π
ν (T )), provided that V vD,π

ν (t) = V . Furthermore, assume that
Dν(t, V ) is once continuously differentiable w.r.t. t and twice continuously differentiable
w.r.t. V . Then D(V vD,π

ν (T )) can be attained by trading in Mν according to the relative
portfolio process

π∗ν(t) := π∗ν(t, V vD,π
ν (t)) =

d
dV Dν(t, V vD,π

ν (t)) · V vD,π
ν (t)

Dν(t, V vD,π
ν (t))︸ ︷︷ ︸

=:βD
ν (t,V

vD,π
ν (t))

·π = βDν (t, V vD,π
ν (t)) · π

with the necessary initial wealth satisfying

v0 = Dν(0, vD).

Proof. Since π is a constant-mix strategy, the corresponding wealth process V vD,π
ν in

Mν has the dynamics of a geometric Brownian motion:
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dV vD,π
ν (t)

V vD,π
ν (t)

= [r + (µ+ ν − r · 1112)⊤π]dt+ π⊤σdWQ(t)

= rdt+ π⊤σ (dWQ(t) + [γ + σ−1ν]dt)︸ ︷︷ ︸
=:dW Q̃ν (t)

, V vD,π
ν (0) = vD,

where W Q̃ν is a Wiener process with respect to Q̃ν .

Since Dν ∈ C(1,2)([0, T ) × [0,∞)) is once continuously differentiable w.r.t. t and twice
continuously differentiable w.r.t. V , we can use Itô’s formula to determine the hedging
portfolio for D(V vD,π

ν (T )). Furthermore, we get by applying Feynman-Kac Theorem
2.2.8 that Dν(t, V ) satisfies the following PDE:

0 =
d

dt
Dν +

1

2
∥σ⊤π∥2 · V 2 · d2

d2V
Dν + r · V · d

dV
Dν − r ·Dν ;

D(V ) = Dν(T, V ).

(B.12)

Let π∗ν be the portfolio process that replicates the payoff D(V vD,π
ν (T )) in Mν . The

existence of π∗ν is guaranteed by the market completeness of Mν . Then, for no-arbitrage

reasons, V
v0,π∗

ν
ν (t)

!
= Dν(t, V vD,π

ν (t)) L[0, T ) ⊗ Q − a.e.. In particular, v0 is determined
through

v0 = Dν(0, V vD,π
ν (0)) = Dν(0, vD).

Further, V
v0,π∗

ν
ν (t) and Dν(t, V vD,π

ν (t)) follow the dynamics

dV v0,π∗
ν

ν (t) = V v0,π∗
ν

ν (t) · [rdt+ π∗ν(t)⊤σdW Q̃ν (t)]

= Dν(t, V vD,π
ν (t)) · [rdt+ π∗ν(t)⊤σdW Q̃ν (t)]

and

dDν(t, V vD,π
ν (t))

Itô
=

d

dt
Dν(t, V vD,π

ν (t))dt+
d

dV
Dν(t, V vD,π

ν (t))dV vD,π
ν (t)

+
1

2

d2

d2V
Dν(t, V vD,π

ν (t))d⟨V vD,π
ν , V vD,π

ν ⟩(t)

=
d

dt
Dν(t, V vD,π

ν (t))dt+ r · V vD,π
ν (t) · d

dV
Dν(t, V vD,π

ν (t))dt

+
d

dV
Dν(t, V vD,π

ν (t)) · V vD,π
ν (t) · (π)⊤σdW Q̃ν (t)

+
1

2
∥σ⊤π∥2 · (V vD,π

ν (t))2 · d2

d2V
Dν(t, V vD,π

ν (t))dt

(B.12)
= r ·Dν(t, V vD,π

ν (t))dt+
d

dV
Dν(t, V vD,π

ν (t)) · V vD,π
ν (t) · (π)⊤σdW Q̃ν (t).
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Matching the diffusion coefficients provides the condition

Dν(t, V vD,π
ν (t)) · σ⊤π∗ν(t)

!
=

d

dV
Dν(t, V vD,π

ν (t)) · V vD,π
ν (t) · σ⊤π L[0, T ] ⊗Q− a.e.

⇔ π∗ν(t)
!

=
d
dV Dν(t, V vD,π

ν (t)) · V vD,π
ν (t)

Dν(t, V vD,π
ν (t))︸ ︷︷ ︸

=: βD
ν (t,V

vD,π
ν (t))

·π = βDν (t, V vD,π
ν (t)) · π L[0, T ] ⊗Q− a.e..

Lemma B.2.2. Let p ∈ R, −∞ ≤ l ≤ u ≤ +∞, X
d
= N(0, 1). Then:

EQ [epX1(l,u] (X)
]

= exp

(
p2

2

)
(Φ(u− p) − Φ(l − p)).

In particular, the moment generating function of X is given by:

fX(p) := EQ [epX] = exp

(
1

2
p2
)
. (B.13)

Proof.

EQ [epX1(l,u] (X)
]

=

∫ u

l
epx exp

(
−x

2

2

)
1√
2π

dx

=

∫ u

l
epx exp

(
−1

2
(x2 − 2px+ p2 − p2)

)
1√
2π

dx

= exp

(
p2

2

)∫ u

l
exp

(
−1

2
(x− p)2

)
1√
2π

dx

= exp

(
p2

2

)∫ u−p

l−p
exp

(
−y

2

2

)
1√
2π

dy

= exp
(
p2/2

)
(Φ(u− p) − Φ(l − p)).

The claim about the moment generating function follows, since:

lim
l↓−∞

Φ(l − p) = 0, lim
u↑+∞

Φ(u− p) = 1.

Lemma B.2.3. Let 0 < l ≤ u < +∞. Then:

l < V
vDν∗ ,π

∗
u,ν∗ (T ) ≤ u

⇐⇒ −dν∗2 (l, vDν∗ , 0) − ||γν∗ ||
√
T <

γ⊤ν∗W
Q(T )

||γν∗ ||
√
T

≤ −dν∗2 (u, vDν∗ , 0) − ||γν∗ ||
√
T .
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Proof. Using (B.9), we get:

l < vDν∗ exp (−Γν∗(0))
(
Z̃ν∗(T )

) 1
p−1 ≤ u

(4.14)⇐⇒ l < vDν∗ exp (−Γν∗(0))
(

exp
(
−
(
r + 0.5||γν∗ ||2

)
T − γ⊤ν∗W

Q(T )
)) 1

p−1 ≤ u

vDν∗
exp(Γν∗ (0))

>0

⇐⇒ l exp (Γν∗(0))

vDν∗
< exp

(
1

1 − p

(
r + 0.5||γν∗ ||2

)
T +

1

1 − p
γ⊤ν∗W

Q(T )

)
≤ u exp (Γν∗(0))

vDν∗

ln(·)↑⇐⇒ ln

(
l exp (Γν∗(0))

vDν∗

)
−
(
r + 0.5||γν∗ ||2

)
T

1 − p
<
γ⊤ν∗W

Q(T )

1 − p

≤ ln

(
u exp (Γν∗(0))

vDν∗

)
−
(
r + 0.5||γν∗ ||2

)
T

1 − p

||γν∗ ||
√

T

1−p
>0

⇐⇒
(1 − p) ln

(
l exp(Γν∗ (0))

vDν∗

)
−
(
r + 0.5||γν∗ ||2

)
T

||γν∗ ||
√
T

<
γ⊤ν∗W

Q(T )

||γν∗ ||
√
T

≤
(1 − p) ln

(
u exp(Γν∗ (0))

vDν∗

)
−
(
r + 0.5||γν∗ ||2

)
T

||γν∗ ||
√
T

(4.21)⇐⇒ −dν∗2 (l, vDν∗ , 0) − ||γν∗ ||
√
T <

γ⊤ν∗W
Q(T )

||γν∗ ||
√
T

≤ −dν∗2 (u, vDν∗ , 0) − ||γν∗ ||
√
T .

Proposition B.2.4 (Explicit form of equations for calculation of vDν∗ , k
ε
ν∗).

The explicit form of the budget constraint in (4.23) is given by:

vDν∗ ·
(

1 + Φ(dν
∗

1 (GT , vDν∗ , 0)) − Φ(dν
∗

1 (kεν∗ , vDν∗ , 0))
)

+ exp (−rT )GT

(
Φ(dν

∗
2 (kεν∗ , vDν∗ , 0)) − Φ(dν

∗
2 (GT , vDν∗ , 0))

)
− v0 = 0;

The explicit form of the probability constraint in (4.23) is given by:

Φ(dν
∗

2 (kεν∗ , vDν∗ , 0)) + ε− 1 = 0.
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Proof. First, we simplify the budget constraint:

exp (−rT )EQ̃ν∗ [f(V
vDν∗ ,π

∗
u,ν∗ (T ))]

∂Q̃ν∗/∂Q
= EQ[Z̃ν∗(T )f(V

vDν∗ ,π
∗
u,ν∗ (T ))]

f def.
= EQ

[
Z̃ν∗(T )

(
V

vDν∗ ,π
∗
u,ν∗ (T ) +

(
GT − V

vDν∗ ,π
∗
u,ν∗ (T )

)
· 1[kε

ν∗ ,GT ](V
vDν∗ ,π

∗
u,ν∗ (T ))

)]
(B.9)
= EQ

[
Z̃ν∗(T )vDν∗ exp (−Γν∗(0))

(
Z̃ν∗(T )

) 1
p−1

1(0,kε
ν∗ )

(
vDν∗ exp (−Γν∗(0))

·
(
Z̃ν∗(T )

) 1
p−1

)]
+ EQ

[
Z̃ν∗(T )GT1[kε

ν∗ ,GT ]

(
vDν∗ exp (−Γν∗(0))

·
(
Z̃ν∗(T )

) 1
p−1

)]
+ EQ

[
Z̃ν∗(T )vDν∗ exp (−Γν∗(0))

(
Z̃ν∗(T )

) 1
p−1

· 1(GT ,+∞)

(
vDν∗ exp (−Γν∗(0))

(
Z̃ν∗(T )

) 1
p−1

)]
=: E1 + E2 + E3.

Take 0 < l < kεν∗ and calculate:

E1(l) = EQ

[
Z̃ν∗(T )vDν∗ exp (−Γν∗(0))

(
Z̃ν∗(T )

) 1
p−1

· 1(l,kε
ν∗ )

(
vDν∗ exp (−Γν∗(0))

(
Z̃ν∗(T )

) 1
p−1

)]
(4.14)

= vDν∗ exp (−Γν∗(0))EQ

[(
exp

(
−
(
r + 0.5||γν∗ ||2

)
T − γ⊤ν∗W

Q(T )
)) p

p−1

· 1(l,kε
ν∗ )

(
vDν∗ exp (−Γν∗(0))

(
Z̃ν∗(T )

) 1
p−1

)]
Lem.B.2.3

= vDν∗ exp (−Γν∗(0)) exp

(
p

1 − p

(
r + 0.5||γν∗ ||2

)
T

)
· EQ

[
exp

(
p

1 − p
||γν∗ ||

√
T
γ⊤ν∗W

Q(T )

||γν∗ ||
√
T

)
· 1(−dν

∗
2 (l,vDν∗ ,0)−||γν∗ ||

√
T ,−dν

∗
2 (kε

ν∗ ,vDν∗ ,0)−||γν∗ ||
√
T ]

(
γ⊤ν∗W

Q(T )

||γν∗ ||
√
T

)]
(i)
= vDν∗ exp (−Γν∗(0)) exp

(
p

1 − p

(
r + 0.5||γν∗ ||2

)
T

)
EQ
[
exp

(
p

1 − p
||γν∗ ||

√
TX

)
· 1(−dν

∗
2 (l,vDν∗ ,0)−||γν∗ ||

√
T ,−dν

∗
2 (kε

ν∗ ,vDν∗ ,0)−||γν∗ ||
√
T ] (X)

]
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(ii)
= vDν∗ exp (−Γν∗(0)) exp

(
p

1 − p

(
r + 0.5||γν∗ ||2

)
T

)
· exp

(
1

2

(
p

1 − p
||γν∗ ||

√
T

)2
)(

Φ

(
−dν∗2 (kεν∗ , vDν∗ , 0) − ||γν∗ ||

√
T

− p

p− 1
||γν∗ ||

√
T

)
− Φ

(
−dν∗2 (l, vDν∗ , 0) − ||γν∗ ||

√
T − p

1 − p
||γν∗ ||

√
T

))
(iii)
= vDν∗ ·

(
1 − Φ

(
dν

∗
2 (kεν∗ , vDν∗ , 0) +

1

1 − p
||γν∗ ||

√
T

)
−
(

1 − Φ

(
dν

∗
2 (l, vDν∗ , 0) +

1

1 − p
||γν∗ ||

√
T

)))
(4.21)

= vDν∗ ·
(

Φ
(
dν

∗
1 (l, vDν∗ , 0)

)
− Φ

(
dν

∗
1 (kεν∗ , vDν∗ , 0)

))
,

where we use in (i) X
d
= N(0, 1)

d
=

γ⊤
ν∗W

Q(T )

||γν∗ ||
√
T

, in (ii) Lemma B.2.2, and in (iii) Φ(−x) =

1 − Φ(x) as well as (4.21). Hence, we get:

E1 = lim
l↓0

E1(l) = lim
l↓0

(
vDν∗

(
Φ
(
dν

∗
1 (l, vDν∗ , 0)

)
− Φ

(
dν

∗
1 (kεν∗ , vDν∗ , 0)

)))
Φ is cts.

= vDν∗

(
Φ

(
lim
l↓0

dν
∗

1 (l, vDν∗ , 0)

)
− Φ

(
dν

∗
1 (kεν∗ , vDν∗ , 0)

))
(4.21)

=
p<1

vDν∗

(
1 − Φ

(
dν

∗
1 (kεν∗ , vDν∗ , 0)

))
,

where we also used in the last equality liml↓0 ln(l) = −∞ and limu↑+∞ Φ(u) = 1.

Replacing 0 by GT and kεν∗ by u and considering limu↑+∞ we obtain:

E3 = lim
u↑+∞

E3(u) = vDν∗ ·
(

Φ
(
dν

∗
1 (GT , vDν∗ , 0)

)
− Φ

(
lim

u↑+∞
dν

∗
1 (u, vDν∗ , 0)

))
(4.21)

=
p<1

vDν∗ · Φ
(
dν

∗
1 (GT , vDν∗ , 0)

)
,

where we also used in the last equality limu↑+∞ ln(u) = +∞ and liml↓0 Φ(l) = 0.

Next we calculate E2:

E2 = EQ

[
Z̃ν∗(T )GT1[kε

ν∗ ,GT ]

(
vDν∗ exp (−Γν∗(0))

(
Z̃ν∗(T )

) 1
p−1

)]
(4.14)

= GTEQ

[
exp

(
−
(
r + 0.5||γν∗ ||2

)
T − γ⊤ν∗W

Q(T )
)

· 1[kε
ν∗ ,GT ]

(
vDν∗ exp (−Γν∗(0))

(
Z̃ν∗(T )

) 1
p−1

)]
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Lem.B.2.3
= GT exp

(
−
(
r + 0.5||γν∗ ||2

)
T
)
EQ
[
exp

(
−||γν∗ ||

√
T
γ⊤ν∗W

Q(T )

||γν∗ ||
√
T

)
· 1(−dν

∗
2 (kε

ν∗ ,vDν∗ ,0)−||γν∗ ||
√
T ,−dν

∗
2 (GT ,vDν∗ ,0)−||γν∗ ||

√
T ]

(
γ⊤ν∗W

Q(T )

||γν∗ ||
√
T

)]
Lem.B.2.2

= GT exp
(
−
(
r + 0.5||γν∗ ||2

)
T
)

exp
(
0.5||γν∗ ||2T

)
·
(

Φ
(
−dν∗2 (GT , vDν∗ , 0) − ||γν∗ ||

√
T −

(
−||γν∗ ||

√
T
))

− Φ
(
−dν∗2 (kεν∗ , vDν∗ , 0) − ||γν∗ ||

√
T −

(
−||γν∗ ||

√
T
)))

Φ(−x)=1−Φ(x)
= exp (−rT )GT

(
Φ
(
dν

∗
2 (kεν∗ , vDν∗ , 0)

)
− Φ

(
dν

∗
2 (GT , vDν∗ , 0)

))
,

where we used in the fourth equality X
d
= N(0, 1)

d
=

γ⊤
ν∗W

Q(T )

||γν∗ ||
√
T

.

Finally, we obtain the explicit form of the left-hand side of the budget constraint:

E1 + E2 + E3 = vDν∗ ·
(

1 − Φ(dν
∗

1 (kεν∗ , vDν∗ , 0)) + Φ(dν
∗

1 (GT , vDν∗ , 0))
)

+ exp (−rT )GT ·
(

Φ
(
dν

∗
2 (kεν∗ , vDν∗ , 0)

)
− Φ

(
dν

∗
2 (GT , vDν∗ , 0)

))
.

Second, we simplify the left-hand side of the VaR-constraint:

Q
(
V

vDν∗ ,π
∗
u,ν∗ (T )) < GT

)
f def.
= Q

(
V

vDν∗ ,π
∗
u,ν∗ (T ) +

(
GT − V

vDν∗ ,π
∗
u,ν∗ (T )

)
1[kε

ν∗ ,GT ](V
vDν∗ ,π

∗
u,ν∗ (T )) < GT

)
= Q

(
V

vDν∗ ,π
∗
u,ν∗ (T ) < kεν∗

)
(i)
= Q

(
γ⊤ν∗W

Q(T )

||γν∗ ||
√
T

< −dν∗2 (kεν∗ , vDν∗ , 0) − ||γν∗ ||
√
T

)
(ii)
= Φ

(
−dν∗2 (kεν∗ , vDν∗ , 0) − ||γν∗ ||

√
T
)

(iii)
= 1 − Φ

(
dν

∗
2 (kεν∗ , vDν∗ , 0) + ||γν∗ ||

√
T
)
,

where we use in (i) Lemma B.2.3, in (ii)
γ⊤
ν∗W

Q(T )

||γν∗ ||
√
T

d
= N(0, 1), in (iii) Φ(−x) = 1 − Φ(x).

The claim of the proposition follows.

Remark to Proposition B.2.4: As argued in the proof of Proposition 4.2.6, the
optimal portfolio for (Pε,Cπ) is also the optimal portfolio for (P ν∗

ε ). Moreover, both
corresponding wealth processes coincide according to (4.16) and, therefore, the present
value of the optimal terminal payoff coincides in both M and Mν∗ . This means, in
Equation (4.23) we can use either the budget equation in M or in Mν∗ to determine
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the parameters (vDν∗ , k
ε
ν∗).

Proposition B.2.5. The value function is given by:

EQ[U(V̄ v0,π̄∗
(T ))

]
=

1

p

(
vDν∗

)p
exp (Γν∗(0)(1 − p))

·
(

1 − Φ(dν
∗

1 (kε, vDν∗ , 0)) + Φ(dν
∗

1 (GT , vDν∗ , 0))
)

+
1

p
(GT )p

(
Φ
(
dν

∗
2 (kεν∗ , vDν∗ , 0) + ∥γν∗∥

√
T
)
− Φ

(
dν

∗
2 (GT , vDν∗ , 0) + ∥γν∗∥

√
T
))

.

Proof.

E
[
U
(
V̄ v0,π̄∗

(T )
)] Pr.4.2.1

= EQ
[
U
(
V̄ v0,π∗

(T )
)]

Pr.4.2.6
= EQ

[
U

(
Dν∗(V

vDν∗ ,π
∗
u,ν∗

ν∗ (T )

)]
f def.

= EQ
[
U

(
V

vDν∗ ,π
∗
u,ν∗

ν∗ (T ) +
(
GT − V

vDν∗ ,π
∗
u,ν∗

ν∗ (T )
)
1[kε

ν∗ ,GT ](V
vDν∗ ,π

∗
u,ν∗

ν∗ (T ))

)]
= EQ

[
U

(
V

vDν∗ ,π
∗
u,ν∗

ν∗ (T )

)
1(0,kεν∗)

(
V

vDν∗ ,π
∗
u,ν∗

ν∗ (T )

)]
+ EQ

[
U (GT )1[kε

ν∗ ,GT ]

(
V

vDν∗ ,π
∗
u,ν∗

ν∗ (T )

)]
+ EQ

[
U

(
V

vDν∗ ,π
∗
u,ν∗

ν∗ (T )

)
1(GT ,+∞)

(
V

vDν∗ ,π
∗
u,ν∗

ν∗ (T )

)]
=: E1 + E2 + E3.

Take 0 < l < kε and calculate:

E1(l) = EQ

[
1

p

(
vDν∗ exp (−Γν∗(0))

(
Z̃ν∗(T )

) 1
p−1

)p

· 1(l,kε
ν∗ )

(
vDν∗ exp (−Γν∗(0))

(
Z̃ν∗(T )

) 1
p−1

)]
(4.14)

=
vpDν∗

p
exp (−pΓν∗(0))EQ

[(
exp

(
−
(
r + 0.5||γν∗ ||2

)
T − γ⊤ν∗W

Q(T )
)) p

p−1

· 1(l,kε
ν∗ )

(
vDν∗ exp (−Γν∗(0))

(
Z̃ν∗(T )

) 1
p−1

)]
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Lem.B.2.3
=

vpDν∗

p
exp (−pΓν∗(0)) exp

(
p

1 − p

(
r + 0.5||γν∗ ||2

)
T

)
· EQ

[
exp

(
p

1 − p
||γν∗ ||

√
T
γ⊤ν∗W

Q(T )

||γν∗ ||
√
T

)
· 1(−dν

∗
2 (l,vDν∗ ,0)−||γν∗ ||

√
T ,−dν

∗
2 (kε

ν∗ ,vDν∗ ,0)−||γν∗ ||
√
T ]

(
γ⊤ν∗W

Q(T )

||γν∗ ||
√
T

)]
(i)
=
vpDν∗

p
exp (−pΓν∗(0)) exp

(
p

1 − p

(
r + 0.5||γν∗ ||2

)
T

)
· EQ

[
exp

(
p

1 − p
||γν∗ ||

√
TX

)
1(−dν

∗
2 (l,vDν∗ ,0)−||γν∗ ||

√
T ,−dν

∗
2 (kε

ν∗ ,vDν∗ ,0)−||γν∗ ||
√
T ] (X)

]
Lem.B.2.2

=
vpDν∗

p
exp (−pΓν∗(0)) exp

(
p

1 − p

(
r + 0.5||γν∗ ||2

)
T

)
· exp

(
1

2

(
p

1 − p
||γν∗ ||

√
T

)2
)(

Φ

(
−dν∗2 (kεν∗ , vDν∗ , 0) − ||γν∗ ||

√
T

− p

1 − p
||γν∗ ||

√
T

)
− Φ

(
−dν∗2 (l, vDν∗ , 0) − ||γν∗ ||

√
T − p

1 − p
||γν∗ ||

√
T

))
(ii)
=

vpDν∗

p
exp ((1 − p)Γν∗(0)) ·

(
1 − Φ

(
dν

∗
2 (kεν∗ , vDν∗ , 0) +

1

1 − p
||γν∗ ||

√
T

)
−
(

1 − Φ

(
dν

∗
2 (l, vDν∗ , 0) +

1

1 − p
||γν∗ ||

√
T

)))
(4.21)

=
vpDν∗

p
exp ((1 − p)Γν∗(0)) ·

(
Φ
(
dν

∗
1 (l, vDν∗ , 0)

)
− Φ

(
dν

∗
1 (kεν∗ , vDν∗ , 0)

))
,

where we use in (i) that X
d
= N(0, 1)

d
=

γ⊤
ν∗W

Q(T )

||γν∗ ||
√
T

, in (ii) Φ(−x) = 1 − Φ(x) as well as

(4.21). Hence, we get:

E1 = lim
l↓0

E1(l)

= lim
l↓0

(
vpDν∗

p
exp ((1 − p)Γν∗(0))

(
Φ
(
dν

∗
1 (l, vDν∗ , 0)

)
− Φ

(
dν

∗
1 (kεν∗ , vDν∗ , 0)

)))
Φ is cts.

=
vpDν∗

p
exp ((1 − p)Γν∗(0))

(
Φ

(
lim
l↓0

dν
∗

1 (l, vDν∗ , 0)

)
− Φ

(
dν

∗
1 (kεν∗ , vDν∗ , 0)

))
(4.21)

=
p<1

vpDν∗

p
exp ((1 − p)Γν∗(0))

(
1 − Φ

(
dν

∗
1 (kεν∗ , vDν∗ , 0)

))
,

where we also used in the last equality liml↓0 ln(l) = −∞ and limu↑+∞ Φ(u) = 1.
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Replacing 0 by GT and kεν∗ by u and considering limu↑+∞ we obtain:

E3 = lim
u↑+∞

E3(u) =
vpDν∗

p
exp ((1 − p)Γν∗(0))

·
(

Φ
(
dν

∗
1 (GT , vDν∗ , 0)

)
− Φ

(
lim

u↑+∞
dν

∗
1 (u, vDν∗ , 0)

))
(4.21)

=
p<1

vpDν∗

p
exp ((1 − p)Γν∗(0)) · Φ

(
dν

∗
1 (GT , vDν∗ , 0)

)
,

where we also used in the last equality limu↑+∞ ln(u) = +∞ and liml↓0 Φ(l) = 0.

Next we calculate E2:

E2 = EQ
[

(GT )p

p
1[kε

ν∗ ,GT ]

(
vDν∗ exp (−Γν∗(0))

(
Z̃ν∗(T )

) 1
p−1

)]
(4.14)

=
(GT )p

p
EQ

[
1[kε

ν∗ ,GT ]

(
vDν∗ exp (−Γν∗(0))

(
exp

(
−
(
r + 0.5||γν∗ ||2

)
T

− γ⊤ν∗W
Q(T )

)) 1
p−1

)]
(i)
=

(GT )p

p
EQ
[
1(−dν

∗
2 (kε

ν∗ ,vDν∗ ,0)−||γν∗ ||
√
T ,−dν

∗
2 (GT ,vDν∗ ,0)−||γν∗ ||

√
T ]

(
γ⊤ν∗W

Q(T )

||γν∗ ||
√
T

)]
(ii)
=

(GT )p

p

(
Φ
(
−dν∗2 (GT , vDν∗ , 0) − ||γν∗ ||

√
T
)

− Φ
(
−dν∗2 (kεν∗ , vDν∗ , 0) − ||γν∗ ||

√
T
))

(iii)
=

(GT )p

p

(
Φ
(
dν

∗
2 (kεν∗ , vDν∗ , 0) + ∥γν∗∥

√
T
)

− Φ
(
dν

∗
2 (GT , vDν∗ , 0) + ∥γν∗∥

√
T
))

,

where we use in (i) Lemma B.2.3, in (ii) Lemma B.2.2 and
γ⊤
ν∗W

Q(T )

||γν∗ ||
√
T

∼ N(0, 1), in (iii)

Φ(−x) = 1 − Φ(x).

The claim of the proposition follows.
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Here we provide proofs of theoretical results from Chapter 5. Appendix C.1 contains the
proofs of theoretical results for general utility functions. In Appendix C.2 we provide
the derivation of explicit formulas for power-utility functions.

C.1 Proofs for general utility functions

Proof of Proposition 5.2.1. The proof of this proposition is based on Corollary 3.4 and
Theorem 4.1 in Desmettre and Seifried (2016). In Mν , the reinsurance contract Put
(“fixed-term investment” in Desmettre and Seifried (2016)) is spanned. Due to Assump-
tion (5.4), we can apply Corollary 3.4 in Desmettre and Seifried (2016) and obtain ξ∗ν
(ψ⋆), hI(·) (ν(·)), the optimal Lagrange multiplier λ∗ (γ⋆), and the optimal terminal
wealth V ∗

ν (T ) (X⋆
T ), where we indicated in brackets the notation for the corresponding

object in Desmettre and Seifried (2016).

Since also ÎI(·) and dÎI(·)/dλ are polynomially bounded by the assumption of the propo-
sition we prove, we can use Theorem 4.1 in Desmettre and Seifried (2016) and get the
optimal relative portfolio process π∗ν(t), denoted by π⋆t , t ∈ [0, T ], in Desmettre and
Seifried (2016).

Proof of Proposition 5.2.2. The proof of this proposition is based on the proof of Propo-
sition 8.3 in Cvitanic and Karatzas (1992) and consists of two parts. First, we fix
ξI ∈ [0, ξmax] and prove that π∗ν∗ := π∗ν∗(ξI) is optimal for (PI) given the fixed ξI . Sec-
ond, we prove that ξ∗ν∗ from Proposition 5.2.1 is optimal for (PI) given the optimal
portfolio process π∗I ≡ π∗ν∗(ξ∗I ).

First part. Take an arbitrary but fixed ξI ∈ [0, ξmax]. For the initial wealth it holds that

V
vI,0(ξI ,ηR),πI
ν (0) = V

vI,0(ξI ,ηR),πI

I (0). (C.1)

Furthermore, let πI be such that (πI , ξI) ∈ ΛI , i.e., it holds that πI(t) ∈ CπI Q-a.s. for
all t ∈ [0, T ]. Then for all ν ∈ D and t ∈ [0, T ] we have πI(t)⊤ν(t) = 0, whence

V
vI,0(ξI ,ηR),πI
ν (t) = V

vI,0(ξI ,ηR),πI

I (t) ≥ 0 Q a.s., (C.2)
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where the equality follows from πI(t)⊤ν(t) = 0 and Equation (C.1). Using (C.2) for
t = T , we obtain that

E[UI(V
vI,0(ξI ,ηR),πI
ν (T ) + ξIPut(T ))−]

= E[UI(V
vI,0(ξI ,ηR),πI

I (T ) + ξIPut(T ))−] < +∞.

Therefore, (πI , ξI) ∈ Λν
I . It follows that ΛI ⊂ Λν

I and

sup
πI :(πI ,ξI)∈ΛI

E[UI(V
vI,0(ξI ,ηR),πI

I (T ) + ξIPut(T ))]

(a)
= sup

πI :(πI ,ξI)∈ΛI

E[UI(V
vI,0(ξI ,ηR),πI
ν (T ) + ξIPut(T ))]

(b)

≤ sup
πI :(πI ,ξI)∈Λν

I

E[UI(V
vI,0(ξI ,ηR),πI
ν (T ) + ξIPut(T ))], (C.3)

where (a) follows from Equation (C.2), and (b) from ΛI ⊂ Λν
I . Let ν∗ ∈ D and the

optimal portfolio process π∗ν∗ of the unconstrained optimization problem of the insurer
(P ν∗

I ) given a fixed ξI be such that (π∗ν∗ , ξI) ∈ Λν∗
I and π∗ν∗(t) ∈ CπI Q-a.s. for all

t ∈ [0, T ]. Then for all t ∈ [0, T ] it holds

V
vI,0(ξI ,ηR),π∗

ν∗
ν∗ (t)

(C.2)
= V

vI,0(ξI ,ηR),π∗
ν∗

I (t). (C.4)

Hence, (π∗ν∗ , ξI) ∈ ΛI and

sup
πI :(πI ,ξI)∈Λν∗

I

E[UI(V
vI,0(ξI ,ηR),πI

ν∗ (T ) + ξIPut(T ))]

(a)
=E[UI(V

vI,0(ξI ,ηR),π∗
ν∗

ν∗ (T ) + ξIPut(T ))] (C.5)

(b)
=E[UI(V

vI,0(ξI ,ηR),π∗
ν∗

I (T ) + ξIPut(T ))]

(c)

≤ sup
πI :(πI ,ξI)∈ΛI

E[UI(V
vI,0(ξI ,ηR),πI

I (T ) + ξIPut(T ))], (C.6)

where (a) follows from the definition of π∗ν∗ , (b) from Equation (C.4), and (c) from
(π∗ν∗ , ξI) ∈ ΛI .
All in all, we have

E
[
UI(V

vI,0(ξI ,ηR),π∗
ν∗

ν∗ (T ) + ξIPut(T ))
]

(a)
= sup

πI :(πI ,ξI)∈Λν∗
I

E
[
UI(V

vI,0(ξI ,ηR),πI

ν∗ (T ) + ξIPut(T ))
]

(b)
= sup

πI :(πI ,ξI)∈ΛI

E
[
UI(V

vI,0(ξI ,ηR),πI

I (T ) + ξIPut(T ))
]
,
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where (a) follows from Equation (C.5) and (b) from Inequalities (C.3) and (C.6). There-
fore, π∗ν∗ is optimal for the optimization problem of the insurer (PI) given a fixed ξI .

Second part. Denote by ξ∗ν∗ the optimal reinsurance amount in the unconstrained opti-
mization problem of the insurer (P ν∗

I ) given π∗ν∗ = π∗ν∗(ξ∗ν∗) ∈ CπI , i.e.:

ξ∗ν∗ ∈ argmax
ξI∈[0,ξmax]

E
[
UI(V

vI,0(ξI ,ηR),π∗
ν∗ (ξI)

ν∗ (T ) + ξIPut(T ))
]
. (C.7)

Observe that:

{ξI | (π∗ν∗ , ξI) ∈ Λν∗
I } = [0, ξmax] = {ξI | (π∗ν∗ , ξI) ∈ ΛI}. (C.8)

Then:

E
[
UI(V

vI,0(ξ
∗
ν∗ ,ηR),π∗

ν∗
I (T )+ξ∗ν∗Put(T ))

]
(a)
= E

[
UI(V

vI,0(ξ
∗
ν∗ ,ηR),π∗

ν∗
ν∗ (T ) + ξ∗ν∗Put(T ))

]
(b)
= sup

ξI :(π
∗
ν∗ ,ξI)∈Λ

ν∗
I

E
[
UI(V

vI,0(ξI ,ηR),π∗
ν∗

ν∗ (T ) + ξIPut(T ))
]

(c)
= sup

ξI :(π
∗
ν∗ ,ξI)∈ΛI

E
[
UI(V

vI,0(ξI ,ηR),π∗
ν∗

I (T ) + ξIPut(T ))
]
,

where we use in (a) Equation (C.4) for t = T , in (b) Equation (C.7), and in (c) Equations
(C.2) and (C.8). Therefore, ξ∗ν∗ is optimal for the optimization problem of the insurer
(PI) given the portfolio process π∗ν∗(ξ∗ν∗) ∈ CπI .

Thus, we conclude that (π∗I , ξ
∗
I ) := (π∗ν∗ , ξ

∗
ν∗) is optimal for the optimization problem of

the insurer (PI).

Proof of Lemma 5.2.3. Using Equation (2.14) and the fact that V vI ,πB (t) is a geometric
Brownian motion, we get the following price of the put option Put at time t ∈ [0, T ]:

Put(t) =Z̃(t)−1E[Z̃(T )Put(T )|F(t)]

= exp (−r(T − t))GTΦ(−d−) − V vI ,πB (t)Φ(−d+), (C.9)

where Φ(·) is the cumulative distribution function of the standard normal distribution
and

d+ = d1(t, V
vI ,πB (t), GT , r, π

CMσ2), d− = d2(t, V
vI ,πB (t), GT , r, π

CMσ2),

where d1(·) and d2(·) are defined in (2.17) and (2.18) respectively.

Since the put-price function is continuously differentiable w.r.t. t and twice continuously
differentiable w.r.t. V = V vI ,πB (t), we can apply delta-hedging Lemma B.2.1 for ν =
(0, 0)⊤ and get that the relative portfolio process replicating the put option value is given
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by:

πPut(t) =
∂Put(t,V vI ,πB (t))

dV V vI ,πB (t)

Put(t, V vI ,πB (t))
·
(

0
πCM

)
(i)
=

(
0

(Φ(d+)−1)·V vI ,πB (t)·πCM

Put(t,V vI ,πB (t))

)
, t ∈ [0, T ], (C.10)

where we use in (i) the well-known formula of the delta of a put option ∂Put(t, V )/∂V =
Φ(d+) − 1.

The corresponding relative investment in the risk-free asset is given by:

πPut
0 (t) = 1 − πPut(t)⊤1112

=
Put(t, V vI ,πB (t)) − (Φ(d+) − 1) · V vI ,πB (t) · πCM

Put(t, V vI ,πB (t))
, t ∈ [0, T ]. (C.11)

Applying Relation (2.6), we get:

ψ0(t) := φPut
0 (t)

(2.6)
=

πPut
0 (t)Put(t, V vI ,πB (t))

S0(t)

(C.11)
=

Put(t, V vI ,πB (t)) − (Φ(d+) − 1) · V vI ,πB (t) · πCM

S0(t))
, t ∈ [0, T ];

ψ1(t) := φPut
1 (t)

(2.6)
=

πPut
1 (t)Put(t, V vI ,πB (t))

S1(t)

(C.10)
= 0, t ∈ [0, T ];

ψ2(t) := φPut
2 (t)

(2.6)
=

πPut
2 (t)Put(t, V vI ,πB (t))

S1(t)

(C.10)
=

(Φ(d+) − 1) · V vI ,πB (t) · πCM

Put(t, V vI ,πB (t))

Put(t, V vI ,πB (t))

S2(t)

=
(Φ(d+) − 1) · V vI ,πB (t) · πCM

S2(t)
, t ∈ [0, T ],

which is exactly the replicating strategy in (5.6).

Proof of Proposition 5.2.4. The proof is based on the proof of Theorem 4.1 in Korn and
Trautmann (1999).

First, we define a new wealth process of the reinsurer with investment in the assets S0,
S1 and S2, and additionally in the put option Put. We denote by ξ(t) ≡ −ξ∗I (ηR) the

trading strategy with respect to Put. The wealth process V
v̄R,0(ξ

∗
I (ηR),ηR),(φR,ξ)

R is given
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by

dV
v̄R,0(ξ

∗
I (ηR),ηR),(φR,ξ)

R (t) =φR,0(t)dS0(t) + φR,1(t)dS1(t) + φR,2(t)dS2(t)

+ ξ(t)dPut(t), (C.12)

V
v̄R,0(ξ

∗
I (ηR),ηR),(φR,ξ)

R (0) =vR + ξ∗I (ηR)ηRPut(0) =: v̄R,0(ξ
∗
I (ηR), ηR).

Note that v̄R,0(ξ
∗
I (ηR), ηR) is not equal to vR,0(ξ

∗
I (ηR), ηR):

v̄R,0(ξ
∗
I (ηR), ηR) =vR + ξ∗I (ηR)ηRPut(0)

=vR + ξ∗I (ηR)(1 + ηR)Put(0) − ξ∗I (ηR)Put(0)

=vR,0(ξ
∗
I (ηR), ηR) − ξ∗I (ηR)Put(0).

Since

V
v̄R,0(ξ

∗
I (ηR),ηR),(φR,ξ)

R (T ) =φR,0(T )S0(T ) + φR,1(T )S1(T ) + φR,2(T )S2(T )

+ ξ(T )Put(T )

and the reinsurer has a short put position −ξ∗I (ηR), the optimization problem (P
φR|ηR
R )

is equivalent to the optimization problem given by

sup

φR∈Λ
φR|ηR,ξ(t)=−ξ∗

I
(ηR)

R

E[UR(V
v̄R,0(ξ

∗
I (ηR),ηR),(φR,ξ)

R (T ))] (P
φR|ηR,ξ(t)=−ξ∗I (ηR)
R )

s.t. ξ(t) ≡ −ξ∗I (ηR) ∀t ∈ [0, T ],

where Λ
φR|ηR,ξ(t)=−ξ∗I (ηR)
R is the set of all admissible trading strategies φR for the opti-

mization problem (P
φR|ηR,ξ(t)=−ξ∗I (ηR)
R ):

Λ
φR|ηR,ξ(t)=−ξ∗I (ηR)
R :=

{
φR ∈ R3 | φR progressively measurable, self-financing,

T∫
0

|φ0(t)| ds < +∞,

T∫
0

φ2
i (t) ds < +∞Q-a.s., i ∈ {1, 2},

V
v̄R,0(ξ

∗
I (ηR),ηR),(φR,ξ)

R (t) ≥ 0 Q-a.s. ∀t ∈ [0, T ],

E[UR(V
v̄R,0(ξ

∗
I (ηR),ηR),(φR,ξ)

R (T ))−] < +∞
}
.
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Next we insert the replicating strategy (5.6) of Put to (C.12) and get:

V
v̄R,0(ξ

∗
I (ηR),ηR),(φR,ξ)

R (t) = φR,0(t)S0(t) + φR,1(t)S1(t) + φR,2(t)S2(t) + ξ(t)Put(t)

(5.6)
= φR,0(t)S0(t) + φR,1(t)S1(t) + φR,2(t)S2(t) + ξ(t)ψ0(t)S0(t) + ξ(t)ψ2(t)S2(t)

= (φR,0(t) + ξ(t)ψ0(t))S0(t) + φR,1(t)S1(t) + (φR,2(t) + ξ(t)ψ2(t))S2(t)

=: ζR,0(t)S0(t) + ζR,1(t)S1(t) + ζR,2(t)S2(t),

where

ζR(t) = (ζR,0(t), ζR,1(t), ζR,2(t))
⊤

:= (φR,0(t) + ξ(t)ψ0(t), φR,1(t), φR,2(t) + ξ(t)ψ2(t))
⊤ (C.13)

is a self-financing trading strategy. Hence, the dynamics is given by

dV
v̄R,0(ξ

∗
I (ηR),ηR),(φR,ξ)

R (t) =ζR,0(t)dS0(t) + ζR,1(t)dS1(t) + ζR,2(t)dS2(t).

The wealth process V
v̄R,0(ξ

∗
I (ηR),ηR),(φR,ξ)

R equals the wealth process of the reinsurer with
respect to the trading strategy ζR (i.e., only an investment in the assets S0, S1 and S2
without an investment in the put option Put). If the trading strategy φR is admissible for

the optimization problem (P
φR|ηR,ξ(t)=−ξ∗I (ηR)
R ), then the trading strategy ζR is admissible

for the portfolio optimization problem (P
ζR|ηR,ξ(t)=0
R ):

V v̄R,0(ξ
∗
I (ηR),ηR),(ζR,0)(t) = V

v̄R,0(ξ
∗
I (ηR),ηR),(φR,ξ)

R (t) ≥ 0 Q-a.s. ∀t ∈ [0, T ]

and

E[UR(V v̄R,0(ξ
∗
I (ηR),ηR),(ζR,0)(T ))−] = E[UR(V

v̄R,0(ξ
∗
I (ηR),ηR),(φR,ξ)

R (T ))−] < +∞.

Now we can use the standard martingale method, since the reinsurer has only an in-
vestment in the assets S0, S1 and S2, and conclude that the optimal terminal wealth

V
v̄R,0(ξ

∗
I (ηR),ηR),(ζ∗R,0)

R for the problem (P
ζR|ηR,ξ(t)=0
R ) is given by

V
v̄R,0(ξ

∗
I (ηR),ηR),(ζ∗R,0)

R (T ) = IR(λ∗R(ηR)Z̃(T )),

where λ∗R ≡ λ∗R(ηR) is determined by the budget constraint

E[Z̃(T )IR(λ∗RZ̃(T ))] = vR + ξ∗I (ηR)ηRPut(0), (C.14)

and there exists the corresponding optimal trading strategy ζ∗R. Therefore, there exists

an optimal trading strategy φ∗
R for the optimization problem (P

φR|ηR,ξ(t)=−ξ∗I (ηR)
R ) and

the optimal wealth process V
v̄R,0(ξ

∗
I (ηR),ηR),(φ∗

R,ξ)
R is given by

V
v̄R,0(ξ

∗
I (ηR),ηR),(φ∗

R,ξ)
R (T ) = V

v̄R,0(ξ
∗
I (ηR),ηR),(ζ∗R,0)

R (T ) = IR(λ∗R(ηR)Z̃(T )).
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From Relation (C.13), we get for the optimal trading strategy φ∗
R the following repre-

sentation:

φ∗
R,1(t) =ζ∗R,1(t); (C.15)

φ∗
R,2(t) =ζ∗R,2(t) − ξ(t)ψ2(t) = ζ∗R,2(t) + ξ∗I (ηR)ψ2(t); (C.16)

φ∗
R,0(t) =ζ∗0R(t) − ξ(t)ψ0(t)

=
V v̄R,0(ξ

∗
I (ηR),ηR),(φ∗

R,ξ)(t) −
∑2

i=1 φ
∗
R,i(t)Si(t) + ξ∗I (ηR)Put(t)

S0(t)
. (C.17)

Since the optimization problems (P
φR|ηR
R ) and (P

φR|ηR,ξ(t)=−ξ∗I (ηR)
R ) are equivalent, it

holds that there exists an optimal trading strategy φ∗
R for the optimization problem

(P
φR|ηR
R ) given by (C.17), (C.15) and (C.16). The optimal terminal wealth of the rein-

surer is given by

V
vR,0(ξ

∗
I (ηR),ηR),φ∗

R
R (T ) = V

v̄R,0(ξ
∗
I (ηR),ηR),(φ∗

R,ξ)
R (T ) + ξ∗I (ηR)Put(T )

= IR(λ∗R(ηR)Z̃(T )) + ξ∗I (ηR)Put(T )

and the optimal wealth process by

V
vR,0(ξ

∗
I (ηR),ηR),φ∗

R
R (t) =Z̃(t)−1E

[
Z̃(T )(V

v̄R,0(ξ
∗
I (ηR),ηR),(φ∗

R,ξ)
R (T ) + ξ∗I (ηR)Put(T ))|F(t)

]
=V

v̄R,0(ξ
∗
I (ηR),ηR),(φ∗

R,ξ)
R (t) + ξ∗I (ηR)Put(t).

Hence, it follows for the optimal trading strategy φ∗
R from (C.17), (C.15) and (C.16)

φ∗
R,1(t) =ζ∗R,1(t);

φ∗
R,2(t) =ζ∗R,2(t) + ξ∗I (ηR)ψ2(t);

φ∗
R,0(t) =

V vR,0(ξ
∗
I (ηR),ηR),φ∗

R(t) −
∑2

i=1 φ
∗
R,i(t)Si(t)

S0(t)
.

Proof of Proposition 5.2.5. From Proposition 5.2.4 we know the optimal strategy φ∗
R =

φ∗
R(·|ηR) for Problem (P

φR|ηR
R ) given an arbitrary but fixed ηR ∈ [0, ηmax]. Therefore,

the original optimization problem reduces to the maximization of the help function hR(·)
defined by

hR(ηR) :=E[UR(V
vR,0(ξ

∗
I (ηR),ηR),φ∗

R
R (T ) − ξ∗I (ηR)Put(T ))]

=E[UR(IR(λ∗R(ξ∗I (ηR), ηR)Z̃(T )))],

where λ∗R ≡ λ∗R(ξ∗I (ηR), ηR) is the Lagrange multiplier determined by Equation (C.14).
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We show now that the maximum of this help function exists by showing the continuity
of the map ηR 7→ hR(ηR) and applying Theorem 2.5.3.

The first sub-step in proving the continuity is showing that ξ∗I (ηR) is continuous w.r.t. ηR.
In the second sub-step, we address the continuity of λ∗R(ξ∗I (ηR), ηR), and the continuity
of hR(ηR) will follow.

According to Proposition 5.2.1, the map ξ∗I (·) is given by

ξ∗I (ηR) = arg max
ξI∈[0,ξmax(ηR)]

hI(ξI , ηR)

with ξmax(ηR) = min{ξ̄, vI
(1+ηR)Put(0)} and

hI(ξI , ηR) := E[UI(max{II(λ∗I(ξI , ηR)Z̃ν∗(T )), ξIPut(T )})],

where the Lagrange multiplier λ∗I ≡ λ∗I(ξI , ηR) is given by the budget constraint of the
insurer

E[Z̃ν∗(T )ÎI(λ∗I Z̃ν∗(T ))] = vI − ξI(1 + ηR)Put(0).

The Lagrange multiplier λ∗I(ξI , ηR) is continuous with respect to ξI and ηR, since ÎI(·)
is a continuous function and vI − ξI(1 + ηR)Put(0) is continuous with respect to ξI and
ηR. Since the functions II(·), max and UI(·) are also continuous, hI(·) is continuous with
respect to ξI and ηR. Moreover, the strict concavity of hI(·) with respect to ξI follows
from the strict concavity of UI(·) and the application of Lemma A.3 in Desmettre and
Seifried (2016). Furthermore, the function ηR 7→ ξmax

I (ηR) is continuous. Therefore, the
application of Theorem 2.5.4 yields that the function ηR 7→ ξ∗I (ηR) is continuous too.

The Lagrange multiplier λ∗R(ξ∗I (ηR), ηR) is continuous, since IR(·) is a continuous function
and vR,0 + ξ∗I (ηR)ηRPut(0) is continuous with respect to ηR. Furthermore, we have that
the functions IR(·) and UR(·) are continuous. Therefore, the function hR(·) is continuous
with respect to ηR.

Having shown the continuity of hR(·) and using the compactness of [0, ηmax
R ], we apply

Theorem 2.5.3 and conclude that there exists η∗R such that

η∗R = arg max
ηR∈[0,ηmax

R ]
hR(ηR).

Proof of Proposition 5.2.6. We show that Condition (SEC1) and (SEC2) are fulfilled:

(SEC1) By Proposition 5.2.1 and Proposition 5.2.2, the optimal response (π∗I (·|η∗R), ξ∗I (η∗R))
solves the optimization problem of the insurer. Thus, (SEC1) holds by definition.
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(SEC2) By Proposition 5.2.4 and Proposition 5.2.5, the optimal strategy (π∗R(·), η∗R) solves
the optimization problem of the reinsurer. If the insurer has more than one best
response to the reinsurer’s strategy (π∗R, η

∗
R), then we need to find (π∗I (·|η∗R), ξ∗I (η∗R))

such that

E
[
UR(V

vR,0(ξI ,η
∗
R),π∗

R
R (T ) − ξIPut(T ))

]
≤ E[UR(V

vR,0(ξ
∗
I (η

∗
R),η∗R),π∗

R
R (T ) − ξ∗I (η∗R)Put(T ))]

(C.18)

for all ξI in the set of best responses of the insurer. Note that the reinsurer’s value
function does not depend on πI . Thus, we focus only on ξI and show now that the
reinsurer’s value function is increasing in ξI .

For the total terminal wealth of the reinsurer it holds for ξI ∈ [0, ξmax]

V
vR,0(ξI ,η

∗
R),π∗

R
R (T ) − ξIPut(T ) = IR(λ∗RZ̃(T )), (C.19)

where λ∗R solves the budget constraint

E[Z̃(T )IR(λ∗RZ̃(T ))] = vR + ξIη
∗
RPut(0). (C.20)

It holds

E
[
UR(V

vR,0(ξI ,η
∗
R),π∗

R
R (T ) − ξIPut(T ))

]
increasing w.r.t. ξI

(a)⇔ V
vR,0(ξI ,η

∗
R),π∗

R
R (T ) − ξIPut(T ) increasing w.r.t. ξI

(C.19)⇔ IR(λ∗RZ̃(T )) increasing w.r.t. ξI
(b)⇔ λ∗R decreasing w.r.t. ξI ,

where we use in (a) that UR(·) is an increasing function and in (b) that IR(·) is
decreasing due to the concavity of UR(·) is a decreasing function and from Equation
(C.19). By Equation (C.20), the Lagrange multiplier λ∗R decreases if and only if
ξI increases, since IR(·) is a decreasing function. Hence, the value function of the
reinsurer increases if ξI increases. Therefore, the Inequality (C.18) is fulfilled if the
optimal reinsurance strategy of the insurer in the Stackelberg equilibrium is given
by

ξ∗I (η∗R) = max{ξ∗I | E[UI(V
vI,0(ξ

∗
I ,η

∗
R),π∗

I
I (T ) + ξ∗IPut(T ))]

= sup
ξI :(ξI ,πI)∈ΛI

E[UI(V
vI,0(ξI ,η

∗
R),π∗

I
I (T ) + ξIPut(T ))]}.
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C.2 Explicit equilibrium for power-utility functions

Lemma C.2.1. Let ξmax = ξ̄ with ξ̄ < vI
(1+ηR)Put(0) for all ηR ∈ [0, ηmax]. Then the

function hI(·) from Proposition 5.2.1 is given by

hI(ξ) = E[UI(II(λ∗ν(ξ)Z̃ν∗(T )))] (C.21)

for ξ ∈ [0, ξmax], where II(·) is the inverse function of U ′
I(·) and λ∗ν(ξ) is the Lagrange

multiplier given by

E[Z̃ν(T )ÎI(λ∗ν(ξ)Z̃ν(T ))] = vI − ξ(1 + ηR)Put(0),

where ÎI(·) is the inverse function of Û ′
I(·)

Proof. Recall from Proposition 5.2.1:

hI(ξ) := E[UI(max{II(λ∗ν(ξ)Z̃ν∗(T )), ξPut(T )})],

where the Lagrange multiplier λ∗ν(ξ) is given by

E[Z̃ν(T )ÎI(λ∗ν(ξ)Z̃ν(T ))] = vI − ξ(1 + ηR)Put(0).

ÎI(·) is the random inverse function of the insurer, which is bijective on (0, U ′
I(ξPut(T ))]

and equals

ÎI(λ) = II(λ) − ξPut(T )

for λ ∈ (0, U ′
I(ξPut(T ))]. From this, it holds

ÎI(λ) > 0 ⇔ λ ∈ (0, U ′
I(ξPut(T ))). (C.22)

For the Lagrange multiplier λ∗ν(ξ) it follows

E[Z̃ν(T )ÎI(λ∗ν(ξ)Z̃ν(T ))] = vI − ξ(1 + ηR)Put(0)︸ ︷︷ ︸
>0

⇔ ÎI(λ∗ν(ξ)Z̃ν(T )) > 0 Q-a.s.

⇔ λ∗ν(ξ)Z̃ν(T ) < U ′
I(ξPut(T )) Q-a.s. ⇔ II(λ∗ν(ξ)Z̃ν(T )) > ξPut(T ) Q-a.s.,

where the second equivalence holds from C.22 and the third from the fact that II(·) is
strictly decreasing. Hence, we get:

hI(ξ) = E[UI(max{II(λ∗ν(ξ)Z̃ν∗(T )), ξPut(T )})] = E[UI(II(λ∗ν(ξ)Z̃ν∗(T )))].

Proof of Corollary 5.3.1. For ν ∈ D, the optimal unconstrained relative portfolio process
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π∗u,ν in the auxiliary market Mν is given by

π∗u,ν(pI) := π∗u,ν(t) =
1

1 − pI
(σσ⊤)−1(µ+ ν(t) − r1112).

For the optimal portfolio process of the insurer π∗ν in the auxiliary market Mν it holds
by Proposition 5.2.1

π∗ν(t)V ∗
ν (t) = π∗u,ν(pI)(V ∗

ν (t) + ξ∗ν

(
Z̃ν(t)

)−1
E[Z̃ν(T )Put(T )1{V ∗

ν (T )>0}|F(t)]),

where V ∗
ν is the optimal wealth process of the insurer in the auxiliary market Mν . Since

ξmax = ξ̄ with ξ̄ < vI
(1+ηR)Put(0) for all ηR ∈ [0, ηmax] and ξ∗ν ≤ ξ̄, it holds vI,0(ξ

∗
ν , ηR) > 0

and, therefore, V ∗
ν (t) > 0 for all t ∈ [0, T ]. It follows that

π∗ν(t) = π∗u,ν(pI)
V ∗
ν (t) + ξ∗ν

(
Z̃ν(t)

)−1
E[Z̃ν(T )Put(T )|F(t)]

V ∗
ν (t)

.

We find now ν∗ ∈ D such that π∗ν∗(t) ∈ CπI = R× {0} for all t ∈ [0, T ].

Since π∗ν is given by π∗u,ν multiplied by a random variable bigger than zero, it is sufficient
to find ν∗ ∈ D such that π∗u,ν∗ ∈ CπI . Hence,

π∗u,ν∗(pI) ∈ CπI ⇔ 1

1 − pI
(σσ⊤)−1

(
µ1 − r

µ2 + ν∗2(t) − r

)
∈ CπI .

Since ν∗ ∈ D has to hold we have ν∗1(t) = 0. It follows

ν∗(t) ≡ ν∗ =

(
0

σ2ρ
σ1

(µ1 − r) − µ2 + r

)
.

From Lemma C.2.1, we get for the function hI(·) in the special case of a power-utility
function with pI ∈ (−∞, 1)\{0} that

hI(ξ) = E
[

1

pI

(
λ∗I(ξ)Z̃ν∗(T )

) pI
pI−1

]
,

where the Lagrange multiplier λ∗I(ξ) is determined by the budget constraint

E
[
Z̃ν∗(T )

(
(λ∗I(ξ)Z̃ν∗(T ))

1
pI−1 − ξPut(T )

)]
= vI − ξ(1 + ηR)Put(0).

Hence, we have:

λ∗I(ξ) = (vI − ξ(1 + ηR)Put(0) + ξE[Z̃ν∗(T )Put(T )])pI−1E
[
Z̃ν∗(T )

pI
pI−1

]1−pI
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and, therefore,

hI(ξ) = E
[

1

pI
(λ∗I(ξ)Z̃ν∗(T ))

pI
pI−1

]
=

1

pI
(vI − ξ(1 + ηR)Put(0) + ξE

[
Z̃ν∗(T )Put(T )

]
)pIE

[
Z̃ν∗(T )

pI
pI−1

]1−pI
.

It follows for the optimal reinsurance strategy ξ∗I = ξ∗I (ηR):

ξ∗I =arg max
ξI∈[0,ξ̄]

(
1

pI
(vI − ξI(1 + ηR)Put(0) + ξIE[Z̃ν∗(T )Put(T )])pIE

[
Z̃ν∗(T )

pI
pI−1

]1−pI
)

=


ξ̄, if − (1 + ηR)Put(0) + E[Z̃ν∗(T )Put(T )] > 0;

any ξ̃ ∈ [0, ξ̄], if − (1 + ηR)Put(0) + E[Z̃ν∗(T )Put(T )] = 0;

0, if − (1 + ηR)Put(0) + E[Z̃ν∗(T )Put(T )] < 0;

=


ξ̄, if ηR < E[Z̃ν∗ (T )Put(T )]−Put(0)

Put(0) ;

any ξ̃ ∈ [0, ξ̄], if ηR = E[Z̃ν∗ (T )Put(T )]−Put(0)
Put(0) ;

0, if ηR > E[Z̃ν∗ (T )Put(T )]−Put(0)
Put(0) .

Proof of Corollary 5.3.2. For the optimal reinsurance strategy ξ∗I (ηR), it holds by Corol-
lary 5.3.1

ξ∗I (ηR) =


ξ̄, if ηR < E[Z̃ν∗ (T )Put(T )]−Put(0)

Put(0) ;

any ξ̃ ∈ [0, ξ̄], if ηR = E[Z̃ν∗ (T )Put(T )]−Put(0)
Put(0) ;

0, if ηR > E[Z̃ν∗ (T )Put(T )]−Put(0)
Put(0) .

It follows from Proposition 5.2.5 and (C.19) for the optimal safety loading η∗R

η∗R =arg max
ηR∈[0,ηmax]

E
[

1

pR
(λ∗R(ηR)Z̃(T ))

pR
pR−1

]
(5.7)
= arg max

ηR∈[0,ηmax]

1

pR
(vR + ξ∗I (ηR)ηRPut(0))pRE

[
Z̃(T )

pR
pR−1

]1−pR

=arg max
ηR∈[0,ηmax]

ξ∗I (ηR)ηR.

Hence, the reinsurer chooses the largest ηR ∈ [0, ηmax] such that ξ∗I (ηR) = ξ̄, i.e.,

η∗R = min

{
E[Z̃ν∗(T )Put(T )] − Put(0)

Put(0)
, ηmax

}
.
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According to the definition of the Stackelberg equilibrium (see Conditions (SEC1) and
(SEC2)), the optimal reinsurance strategy of the insurer is given by ξ∗I (η∗R) = ξ̄ (i.e.,
the insurer chooses the response to the optimal safety loading, which is the best for the
reinsurer).
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D Appendix to Chapter 6

Here we provide the proofs of the results from Chapter 6. Appendix D.1 is related
to the results for unconstrained optimization problem (Pu), namely Propostions 6.1.1
and 6.1.2. Appendix D.2 contains the proofs of the main results stated in Section
6.1.1. Appendix D.3 has explicit formulas for computing the LHS of (NLS(y, kv, kε))
needed for determining the parameters of the synthetic financial derivative linking the
solution to the constrained problem and the solution to the unconstrained one. Finally,
in Appendix D.4, we provide an alternative derivation of the optimal solution to the
constrained problem in the special case of ρ = 0.

D.1 Solution to the unconstrained optimization problem

Proof of Proposition 6.1.1. We denote for readability of this proof V := Vu. We face a
two-dimensional control problem (Pu) with state process (Y, v) and consider the HJB
equation:

0 = Vt +
1

2
σ2vVvv + κ(θ − v)Vv + sup

π

{
y(r + πγS1v)Vy +

1

2
π2y2vVyy + πyσvρVyv︸ ︷︷ ︸
g(π)

}

and boundary condition V(T, y, v) = yp

p . Eliminating the sup results in a first-order
condition for π:

π∗u = −yγ
S1vVy + yσvρVyv

y2vVyy
= −γ

S1Vy + σρVyv

yVyy
= −γS1

Vy

yVyy
− σρ

Vyv

yVyy
(D.1)

under the assumption that Vyy < 0. Substituting the expression for π∗u back into the
HJB equation leads to the following non-linear PDE for the value function.

0 = Vt +
1

2
σ2vVvv + κ(θ − v)Vv + yrVy − y

γS1Vy + σρVyv

yVyy
γS1vVy

+
1

2

(γS1Vy + σρVyv)2

y2V2
yy

y2vVyy −
γS1Vy + σρVyv

yVyy
yσvρVyv

= Vt + κθVv + yrVy + v

(
1

2
σ2Vvv − κVv −

1

2

(
γS1Vy + σρVyv

)2
Vyy

)
. (D.2)
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To find the solution, we use the separation ansatz

V(t, y, v) =
yp

p
h(t, v) with h(T, v) = 1.

In this case, π∗u(t) = γS1

1−p + σρ
1−p

hv
h . We substitute the ansatz into the HJB equation and

conclude that:

0 = ht + κθhv + prh+ v

(
1

2
σ2hvv − κhv +

1

2

p(γS1h+ σρhv)2

(1 − p)h

)
. (D.3)

The structure implies that h(t, v) is exponentially affine

h(t, v) = exp(a(τ(t)) + b(τ(t))v) =: h,

with time horizon τ(t) = T − t and, therefore, using boundary condition h(T, v) =
1 ∀v ∈ R we get that:

a(0) = a(τ(T )) = 0, b(0) = b(τ(T )) = 0.

Using this structure of h(t, v) and rearranging to emphasize the linearity in v leads to

0 = − a′(τ)h+ b(τ)κθh+ prh+ v
[
− b′(τ)h+ b2(τ)

(
1

2
σ2h+

pσ2ρ2h

2(1 − p)

)
+ b(τ)

(
−κh+

pγS1σρh

1 − p

)
+
p
(
γS1
)2
h

2(1 − p)

]
.

Cancelling h out leads to Riccati equations for a and b:

a′(τ) = κθb(τ) + pr; (D.4)

b′(τ) =
1

2

(
σ2 +

pσ2ρ2

1 − p

)
︸ ︷︷ ︸

k2

b2(τ) −
(
κ− pγS1σρ

1 − p

)
︸ ︷︷ ︸

k1

b(τ) +
1

2

p
(
γS1
)2

1 − p︸ ︷︷ ︸
k0

=
1

2
k2b(τ)2 − k1b(τ) +

1

2
k0 (D.5)

and boundary conditions a(0) = 0, b(0) = 0 with constants k0, k1, k2 that have to satisfy
k21 − k0k2 > 0. Then according to Kraft (2005) and Kallsen and Muhle-Karbe (2010)
the solution is given by:

a(τ) =prτ +
2θκ

k2
ln

(
2k3 exp

(
1
2(k1 + k3)τ

)
2k3 + (k1 + k3) (exp (k3τ) − 1)

)
; (D.6)

b(τ) = k0
exp (k3τ) − 1

exp (k3τ) (k1 + k3) − k1 + k3
(D.7)
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with k3 =
√
k21 − k0k2 . For the system to be well-defined, we have to check whether

our constants fulfill k21 − k0k2 > 0. Therefore, we formulate the following requirement
on the parameters:

k21 − k0k2 = κ2 − 2κ
p

1 − p
γS1σρ+

p2

(1 − p)2
(
γS1
)2
σ2ρ2 − p

1 − p

(
γS1
)2
σ2

− p2

(1 − p)2
(
γS1
)2
σ2ρ2 = κ2 − p

1 − p
γS1σ(2κρ+ γS1σ) > 0

⇔ p

1 − p
γS1

(
κρ

σ
+
γS1

2

)
<

κ2

2σ2
,

which is exactly what Kraft (2005) requires in his Equation (26). Note that the ansatz
satisfies the assumption Vyy < 0, since for p < 1 we have:

(p− 1)︸ ︷︷ ︸
<0

yp−2h(t, v)︸ ︷︷ ︸
>0

< 0.

Proof of Proposition 6.1.2. Applying Itô’s lemma to the wealth process Y ∗ and the log-
arithmic function, we obtain the dynamics of Z∗ under the measure Q:

dZ∗(t) =

(
r +

(
π∗u(t)γS1 − 1

2
(π∗u(t))2

)
v(t)

)
dt+ π∗u(t)

√
v(t) dWQ

1 (t);

dv(t) = κ (θ − v(t))dt+ σρ
√
v(t) dWQ

1 (t) + σρ
√
v(t)

√
1 − ρ2 dWQ

2 (t).

To make the notation within the proof concise, we write π∗(t) for π∗u(t). According to
Feynman-Kac Theorem 2.2.8, the characteristic function

ϕZ
∗(T ),Q (u; t, z, v) = EQ

t,z,v [exp(iuZ∗(T ))]

satisfies the following relations under Q:

0 = ϕ
Z∗(T ),Q
t + (r +

(
π∗(t)γS1 − 1

2
(π∗(t))2

)
v)ϕZ

∗(T ),Q
z + κ(θ − v)ϕZ

∗(T ),Q
v

+
1

2
(π∗(t))2vϕZ

∗(T ),Q
zz + π∗(t)vσρϕZ

∗(T ),Q
zv +

1

2
σ2vϕZ

∗(T ),Q
vv

exp (iuz) = ϕZ
∗(T ),Q(u;T, z, v).

Using the ansatz for the characteristic function:

ϕZ
∗(T ),Q(u; t, z, v) = exp

(
AQ(T − t, u) +BQ(T − t, u)v + iuz

)
,
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changing the variable τ = T − t, substituting and grouping under Q,we receive

0 = −AQ
τ (τ, u) −BQ

τ (τ, u)v +

(
r +

(
π∗(τ)γS1 − 1

2
(π∗(τ))2

)
v

)
iu

+κ(θ − v)BQ(τ, u) − 1

2
(π∗(τ))2 vu2 + π∗(τ)vσρiuBQ(τ, u) +

1

2
σ2v

(
BQ(τ, u)

)2
and thus

0 = −BQ
τ (τ, u) + (π∗(τ)σρiu− κ)BQ(τ, u) +

1

2
σ2
(
BQ(τ, u)

)2
− 1

2
(π∗(τ))2

(
u2 + iu

)
+ π∗(τ)γS1iu;

0 = −AQ
τ (τ, u) + riu+ κθBQ(τ, u).

Analogously, we obtain the dynamics of Z∗ under the measure Q̃ := Q̃(γv) is given by

dZ∗(t) =

(
r − 1

2
(π∗u(t))2 v(t)

)
dt+ π∗u(t)

√
v(t) dW Q̃

1 (t);

dv(t) = κ̃
(
θ̃ − v(t)

)
dt+ σρ

√
v(t) dW Q̃

1 (t) + σ
√
v(t)

√
1 − ρ2 dW Q̃

2 (t)

with κ̃ = κ+ σγS1ρ+ σγv
√

1 − ρ2 and θ̃ = κθ/κ̃. Recall these parameters may be time
dependent due to γv.

Again using Theorem 2.2.8 and the ansatz

ϕZ
∗(T ),Q̃(u; t, z, v) = exp

(
AQ̃(T − t, u) +BQ̃(T − t, u)v + iuz

)
we obtain

0 = −AQ̃
τ (τ, u) −BQ̃

τ (τ, u)v +

(
r − 1

2
(π∗(τ))2 v

)
iu+ κ̃(θ̃ − v)BQ̃(τ, u)

−1

2
(π∗(τ))2 vu2 + π∗(τ)vσρiuBQ̃(τ, u) +

1

2
σ2v

(
BQ̃(τ, u)

)2
Hence:

0 = −BQ̃
τ (τ, u) + (π∗(τ)σρiu− κ̃)BQ̃(τ, u) +

1

2
σ2
(
BQ̃(τ, u)

)2
− 1

2
(π∗(τ))2

(
u2 + iu

)
;

0 = −AQ̃
τ (τ, u) + riu+ κ̃θ̃BQ̃(τ, u).

205



D Appendix to Chapter 6

D.2 Proofs of main results

Proof of Theorem 6.1.3. Our proof is based on the fact that two functions are equal if
they satisfy the same PDEs with the same terminal conditions. In the following, we:

1. use the dynamic programming approach to derive the HJB PDE of Vc(t, x, c), sim-
plify it under the assumption that Vc

xx(t, x, v) < 0 and get the optimal investment
strategy π∗c in terms of the (to be found) function Vc(t, x, v);

2. consider the PDE of U
D,Q

(t, y, v) obtained via the Feynman-Kac (FK) formula and

change of variables from (t, y, v) to (t, x, v) via x = DQ̃(γv)(t, y, v), i.e.,

V̂c(t, x, v) := U
D,Q

(t,
(
DQ̃(γv)

)−1
(t, x, v), v) is our ansatz for the value function

in the constrained optimization problem;

3. simplify the PDE from Step 2 using the assumption (6.23) that DQ̃
v (t, y, v) = 0

and using the PDE of DQ̃(t, y, v) obtained via the FK formula;

4. show that the resulting PDE in Step 3 coincides with the PDE of Vc(t, x, c):

a) for case ρ = 0 if Condition (6.21) holds;

b) for case ρ ̸= 0 if both Conditions (6.21), (6.22) hold;

5. show that the terminal conditions in the PDEs from Step 1 and Step 4 coincide
and that V̂c

xx(t, x, v) < 0, which implies that V̂c(t, x, v) solves the HJB PDE of
Vc(t, x, c) and enables the calculation of π∗c from Step 1.

To make derivations in this proof more readable, we omit the arguments of the functions

Vc(t, x, v), DQ̃(γv)(t, y, v), U
D,Q

(t, y, v). We also omit the parameter γv of the EMM
Q̃(γv).

Step 1. HJB PDE of Vc. Similarly to the unconstrained Problem (Pu), we face a
two-dimensional control problem with state process (X, v) and consider the HJB PDE:

0 = Vc
t +

1

2
σ2vVc

vv+κ(θ−v)Vc
v+sup

π

{
x(r + πγS1v)Vc

x +
1

2
π2x2vVc

xx + πxσvρVc
xv

}
(D.8)

and the boundary condition Vc(T, x, v) = U(x). Eliminating the sup results in a first-
order condition for π:

π∗c = −xγ
S1vVc

x + xσvρVc
xv

x2vVc
xx

= −γ
S1Vc

x + σρVc
xv

xVc
xx

(D.9)

under the assumption that Vc
xx < 0. Analogous to (D.2), we substitute the expression

for π∗c back into the HJB PDE (D.8) and get the following PDE for the value function
Vc:
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Vc
t + xrVc

x + κθVc
v + v

(
1

2
σ2Vc

vv − κVc
v −

1

2

(γS1Vc
x + σρVc

xv)2

Vc
xx

)
= 0; (D.10)

Vc(T, x, v) = U (x) . (D.11)

Steps 2-4. PDE of U
D,Q

and a change of variables. Recall from (6.19) and (6.20)

that the Feynman-Kac representation of U
D,Q

is given by:

0 = U
D,Q
t +

(
r + π∗uγ

S1v
)
yU

D,Q
y + κ (θ − v)U

D,Q
v

+
1

2
v

[
y2(π∗u)2U

D,Q
yy + 2σρyπ∗uU

D,Q
yv + σ2U

D,Q
vv

]
;

U
D,Q

(T, y, v) = U(D(y)).

We change variables as follows:

t = t, x = DQ̃(t, y, v), v = v. (D.12)

This change of variables leads to an equivalent PDE ∀ (t, y, v) ∈ [0, T ] × (0,+∞) ×
(0,+∞), since:

∣∣∣∣∣∣∣
∂t
∂t

∂t
∂y

∂t
∂v

∂x
∂t

∂x
∂y

∂x
∂v

∂v
∂t

∂v
∂y

∂v
∂v

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 0 0

DQ̃
t DQ̃

y DQ̃
v

0 0 1

∣∣∣∣∣∣∣ = DQ̃
y ̸= 0 ∀ (t, y, v) ∈ [0, T ] × (0,+∞) × (0,+∞)

under the assumption of D(·) being non-decreasing on (0,+∞) with a strictly increasing
part.1

Using the ansatz

U
D,Q

(t, y, v) = V̂c(t,DQ̃(t, y, v), v), (D.13)

we compute the corresponding derivatives that appear in the PDE of U
D,Q

:

1We can even show that DQ̃
y > 0.
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U
D,Q
t = V̂c

t + V̂c
xD

Q̃
t ;

U
D,Q
y = V̂c

xD
Q̃
y ;

U
D,Q
v = V̂c

xD
Q̃
v + V̂c

v
(6.23)

= V̂c
v ;

U
D,Q
yy = V̂c

xx(DQ̃
y )2 + V̂c

xD
Q̃
yy;

U
D,Q
yv = V̂c

xvD
Q̃
y + V̂c

xD
Q̃
yv + V̂c

xxD
Q̃
y D

Q̃
v

(6.23)
= V̂c

xvD
Q̃
y + V̂c

xD
Q̃
yv;

U
D,Q
vv = 2V̂c

xvD
Q̃
v + V̂c

xD
Q̃
vv + V̂c

vv + V̂c
xx

(
DQ̃

v

)2 (6.23)
= V̂c

xD
Q̃
vv + V̂c

vv.

(D.14)

Next we substitute these derivatives into the PDE of U
D,Q

, also use the PDE for DQ̃
t

to simplify the equation, and then we cancel out terms and insert the assumption

DQ̃(t, y, v) = x.

0
(6.19)

= U
D,Q
t + yrU

D,Q
y + κθU

D,Q
v + v

(
1

2
σ2U

D,Q
vv − κU

D,Q
v + yγS1π∗uU

D,Q
y

+
1

2
y2(π∗u)2U

D,Q
yy + σρyπ∗uU

D,Q
yv

)
(D.14)

= V̂c
t + V̂c

xD
Q̃
t + yrV̂c

xD
Q̃
y + κθV̂c

v + v

[
1

2
σ2
(
V̂c
xD

Q̃
vv + V̂c

vv

)
− κV̂c

v + yγS1π∗uV̂c
xD

Q̃
y

+
1

2
y2(π∗u)2

(
V̂c
xx(DQ̃

y )2 + V̂c
xD

Q̃
yy

)
+ σρyπ∗u

(
V̂c
xvD

Q̃
y + V̂c

xD
Q̃
yv

)]
(6.23)

=
(6.17)

V̂c
t + V̂c

xrx+ κθV̂c
v + v

(
1

2
σ2V̂c

vv − κV̂c
v + yγS1π∗uV̂c

xD
Q̃
y

+
1

2
y2(π∗u)2

(
V̂c
xx(DQ̃

y )2
)

+ σρyπ∗u

(
V̂c
xvD

Q̃
y

))
(i)
= V̂c

t + xrV̂c
x + κθV̂c

v + v

[
1

2
σ2V̂c

vv − κV̂c
v −

1

2

(γS1V̂c
x + σρV̂c

xv)2

V̂c
xx

]

+ v

(
yγS1π∗uV̂c

xD
Q̃
y +

1

2
y2(π∗u)2V̂c

xx

(
DQ̃

y

)2
+ σρyπ∗uV̂c

xvD
Q̃
y +

1

2

(γS1V̂c
x + σρV̂c

xv)2

V̂c
xx

)
,

where in (i) we added and subtracted the term −v 1
2
(γS1 V̂c

x+σρV̂c
xv)

2

V̂c
xx

.

We show now that under Conditions (6.21) and (6.22), the term

C := yγS1π∗uV̂c
xD

Q̃
y +

1

2
y2(π∗u)2V̂c

xx

(
DQ̃

y

)2
+ σρyπ∗uV̂c

xvD
Q̃
y +

1

2

(γS1V̂c
x + σρV̂c

xv)2

V̂c
xx
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is zero. Expanding the brackets in the last term of C we get:

C = yγS1π∗uV̂c
xD

Q̃
y +

1

2
y2(π∗u)2V̂c

xx

(
DQ̃

y

)2
+ σρyπ∗uV̂c

xvD
Q̃
y +

1

2

(
γS1
)2 (V̂c

x

)2
V̂c
xx

+ γS1σρ
V̂c
xV̂c

xv

V̂c
xx

+
1

2
σ2ρ2

(
V̂c
xv

)2
V̂c
xx

.

Using (D.14), we obtain:

V̂c
x =

U
D,Q
y

DQ̃
y

, V̂c
xx =

U
D,Q
yy DQ̃

y − U
D,Q
y DQ̃

yy(
DQ̃

y

)3 ,

V̂c
xv =

1

DQ̃
y

(
U

D,Q
yv − V̂c

xD
Q̃
yv

)
=
U

D,Q
yv DQ̃

y − U
D,Q
y DQ̃

yv(
DQ̃

y

)2 .

(D.15)

Inserting these expressions in C, we get:

C = yγS1π∗uU
D,Q
y +

1

2
y2(π∗u)2

U
D,Q
yy DQ̃

y − U
D,Q
y DQ̃

yy

DQ̃
y

+ σρyπ∗u
U

D,Q
yv DQ̃

y − U
D,Q
y DQ̃

yv

DQ̃
y

+
1

2

(
γS1
)2 (

U
D,Q
y

)2
DQ̃

y

U
D,Q
yy DQ̃

y − U
D,Q
y DQ̃

yy

+ γS1σρU
D,Q
y

U
D,Q
yv DQ̃

y − U
D,Q
y DQ̃

yv

U
D,Q
yy DQ̃

y − U
D,Q
y DQ̃

yy

+
1

2
σ2ρ2

(
U

D,Q
yv DQ̃

y − U
D,Q
y DQ̃

yv

)2
DQ̃

y

(
U

D,Q
yy DQ̃

y − U
D,Q
y DQ̃

yy

)
= yγS1π∗uU

D,Q
y +

1

2
y2(π∗u)2U

D,Q
y

(
U

D,Q
yy

U
D,Q
y

−
DQ̃

yy

DQ̃
y

)
+ σρyπ∗uU

D,Q
y

(
U

D,Q
yv

U
D,Q
y

−
DQ̃

yv

DQ̃
y

)

+
1

2

(
γS1
)2 U

D,Q
y(

U
D,Q
yy

U
D,Q
y

− DQ̃
yy

DQ̃
y

) + γS1σρU
D,Q
y

(
U

D,Q
yv

U
D,Q
y

− DQ̃
yv

DQ̃
y

)
(

U
D,Q
yy

U
D,Q
y

− DQ̃
yy

DQ̃
y

)

+
1

2
σ2ρ2U

D,Q
y

(
U

D,Q
yv

U
D,Q
y

− DQ̃
yv

DQ̃
y

)2

(
U

D,Q
yy

U
D,Q
y

− DQ̃
yy

DQ̃
y

) .
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Denoting

A =

(
U

D,Q
yy

U
D,Q
y

−
DQ̃

yy

DQ̃
y

)
and B =

(
U

D,Q
yv

U
D,Q
y

−
DQ̃

yv

DQ̃
y

)
,

we get:

C = U
D,Q
y

(
yγS1π∗u +

1

2
y2(π∗u)2A+ σρyπ∗uB +

1

2

(
γS1
)2 1

A
+ γS1σρ

B

A

+
1

2
σ2ρ2

B2

A

)
.

(D.16)

If ρ = 0, the term B disappears (i.e., no condition on B is required) and (D.16) becomes:

C = U
D,Q
y

(
yγS1π∗u +

1

2
y2(π∗u)2A+

1

2

(
γS1
)2 1

A

)
!

= 0
U

D,Q
y >0
⇐⇒ 1

2A

(
γS1 + yπ∗uA

)2 !
= 0

(6.8)⇐⇒ A
!

= −1 − p

y
,

i.e., Condition (6.21) of this theorem. Thus, V̂c satisfies the PDE (D.10).

If ρ ̸= 0, we insert A = −1−p
y into (D.16) and get:

C = U
D,Q
y

(
yγS1π∗u +

1

2
y2(π∗u)2

(
−1 − p

y

)
+ σρyπ∗uB +

1

2

(
γS1
)2(− y

1 − p

)

+γS1σρB

(
− y

1 − p

)
+

1

2
σ2ρ2B2

(
− y

1 − p

))
(6.8)
=

U
D,Q
y y

1 − p

(
γS1(γS1 + σρb(t)) − 1

2
(γS1 + σρb(t))2 + σρ(γS1 + σρb(t))B

−1

2

(
γS1
)2 − γS1σρB − 1

2
σ2ρ2B2

)

=
U

D,Q
y y

1 − p

((
γS1
)2

+ γS1σρb(t) − 1

2

(
γS1
)2 − γS1σρb(t) − 1

2
(σρb(t))2 + σργS1B

+(σρ)2b(t)B − 1

2

(
γS1
)2 − γS1σρB − 1

2
σ2ρ2B2

)

=
U

D,Q
y y

1 − p

(
−1

2
(σρb(t))2 + (σρ)2b(t)B − 1

2
σ2ρ2B2

)
=

U
D,Q
y y

1 − p

σ2ρ2

2
(b(t) −B)2 .
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Hence, if ρ ̸= 0, A = −1−p
y and B = b(t), i.e. Conditions (6.21) and (6.22) hold, then

C = 0. Thus, we conclude that V̂c satisfies PDE (D.10).

Step 5. Concluding the value function and the optimal investment strategy.
Having shown that V̂c satisfies the HJB PDE of Vc for any ρ ∈ [−1, 1], we show now
that V̂c satisfies the terminal condition of the HJB PDE of Vc:

V̂c(T,DQ̃(T, y, v), v)
(D.13)

= U
D,Q

(T, y, v)
(6.20)

= U(D(y))
(6.16)

= U(DQ̃(T, y, v)),

i.e., (D.11) holds with x = DQ̃ (T, y, v).

Next we prove that V̂c satisfies the assumption of concavity in x. Observe that:

V̂c
xx

(D.15)
=

U
D,Q
yy DQ̃

y − U
D,Q
y DQ̃

yy(
DQ̃

y

)3 Def.A
=

(
DQ̃

y

)−3
AU

D,Q
y DQ̃

y

(6.21)
=

(
DQ̃

y

)−2

︸ ︷︷ ︸
>0

(
−1 − p

y

)
︸ ︷︷ ︸

<0

U
D,Q
y ,

(D.17)

since y > 0, p < 1. If U
D,Q
y > 0, then V̂c

xx < 0.

Take any y > 0 and ∆y > 0. Obviously, Y ∗(T )(ω)|Y ∗(t)=y+∆y > Y ∗(T )(ω)|Y ∗(t)=y ∀ω ∈
Ω. By assumption of the theorem, D(·) is non-decreasing on (0,+∞) with a strictly
increasing part. Denote by (d, d) ⊂ (0,+∞) the subinterval where D(·) is strictly in-
creasing. Denote S(y) =

{
ω ∈ Ω : Y ∗(T )(ω) ∈ (d, d)|Y ∗(t)(ω) = y

}
. Then, according to

(6.1) and (6.2), Q(S(y)) > 0 ∀y > 0. Using that U(·) is strictly increasing due to the
strict increasingness of U , EQ

t,y,v

[
1{D(Y ∗(T ))<K} − ε

]
= 0 by the construction of D, we

obtain that U
D,Q

is strictly increasing in y as follows:

U
D,Q

(t, y + ∆y, v) = EQ
t,y+∆y,v

[
U(D(Y ∗(T )))

]
= EQ

t,y+∆y,v

[
U(D(Y ∗(T )))1{S(y+∆y)}

]
+ EQ

t,y+∆y,v

[
U(D(Y ∗(T )))1{Ω\S(y+∆y)}

]
> EQ

t,y,v

[
U(D(Y ∗(T )))1{S(y+∆y)}

]
+ EQ

t,y,v

[
U(D(Y ∗(T )))1{Ω\S(y+∆y)}

]
= EQ

t,y,v

[
U(D(Y ∗(T )))

]
= U

D,Q
(t, y, v).

So U
D,Q

is strictly increasing in y. Therefore, U
D,Q
y > 0, and via (D.17) we obtain that

V̂c
xx < 0.

Since V̂c satisfies the PDE of Vc, the corresponding terminal condition, and V̂c
xx < 0,

we conclude that it is a candidate for the value function in the constrained optimization
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problem. Thus, we can now calculate the candidate for the optimal investment strategy.
Plugging

V̂c
xv

V̂c
xx

(D.15)
=

U
D,Q
yv DQ̃

y − U
D,Q
y DQ̃

yv(
DQ̃

y

)2
(
DQ̃

y

)3
U

D,Q
yy DQ̃

y − U
D,Q
y DQ̃

yy

=
B

A
DQ̃

y = − yb(t)

1 − p
DQ̃

y .

and V̂c
x as well as V̂c

xx from (D.15) into (D.9), we obtain the optimal control in the
constrained portfolio optimization problem:

π∗c (t) = −γ
S1V̂c

x

xV̂c
xx

− σρV̂c
xv

xV̂c
xx

=
yγS1

1 − p

DQ̃
y

DQ̃
+

yσρ

1 − p
b(t)

DQ̃
y

DQ̃
= π∗u(t)

yDQ̃
y

DQ̃
.

Remark The above proof uses D(·) to ensure a matching of the terminal condition
and the necessary Conditions (6.21)–(6.23). The choice of γv is crucial for ensuring the
Conditions (6.21)–(6.23).

Proof of Lemma 6.1.4. If U
D,Q
y = yp−1H(t, v)DQ̃

y , then:

A =
U

D,Q
yy

U
D,Q
y

−
DQ̃

yy

DQ̃
y

=
(p− 1)H(t, v)DQ̃

y y
p−2 +H(t, v)DQ̃

yyy
p−1

H(t, v)DQ̃
y yp−1

−
DQ̃

yy

DQ̃
y

= −1 − p

y
, (D.18)

i.e., Condition (6.21) holds.

If H(t, v) = h(t) exp(b(t)v), where H(t, v) does not depend on y, then we have in addi-
tion:

B =
U

D,Q
yv

U
D,Q
y

−
DQ̃

yv

DQ̃
y

=
b(t)DQ̃

y y
p−1H(t, v) +DQ̃

yvy
p−1H(t, v)

DQ̃
y yp−1H(t, v)

−
DQ̃

yv

DQ̃
y

= b(t),

i.e., both Conditions (6.21) and (6.22) are satisfied.

Proof of Corollary 6.1.5. Here we prove that for the Heston model and power-utility
function conditions (6.21), (6.22) and (6.23) in Theorem 6.1.3 hold for a specific choice
of D(·) and γv(·). Then we apply Theorem 6.1.3 to derive the optimal solution to (6.5)
and provide more explicit formulas for computing the optimal solution and the value
function.
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Recall that D(·) has the form:

D (Y ∗(T )) =Y ∗(T ) + (K − Y ∗(T )) 1{kε≤Y ∗(T )≤K} − (Y ∗(T ) − kv) 1{kε≤Y ∗(T )<kε}

with kv ≤ kε ≤ K. Hence, we can rewrite D(·) and U
D

(y) := U(D(y)) as follows:

D(y) = y + (K − y) 1{y≤K} − (K − y) 1{y<kε} + (kv − y) 1{y<kε}

− (kv − y) 1{y<kv}

= y + (K − y) 1{y≤K} − (kε − y) 1{y<kv} − (K − kε) 1{y<kε}

=: D1(y) +D2(y) −D3(y) −D4(y) (D.19)

U(D(y)) = U(D(y)) − λε
(
1{D(y)<K} − ε

)
=

1

p

(
y + (K − y) 1{y<K} − (kv − y) 1{y<kv} − (K − kv) 1{y<kε}

)p
−λε1{y<kε} + λεε

=
yp

p
+

1

p
(Kp − yp) 1{y≤K} −

1

p
(kpv − yp) 1{y<kv}

−1

p

(
(Kp − kpv) 1{y<kε} + pλε1{y<kε}

)
+ λεε

=: U
D
1 (y) + U

D
2 (y) − U

D
3 (y) − U

D
4 (y) + λεε (D.20)

Note:

{y ∈ R : D(y) < K} =
{
y ∈ R : y + (K − y) 1{kε≤y≤K} + (kv − y) 1{kε≤y<kε} < K

}
= {y ∈ R : y < kε}

The proof contains three parts.

Part 1. Show that Conditions (6.21) and (6.22) hold. By Lemma 6.1.4, it is sufficient
to show that (SC) holds:

U
D,Q
y = yp−1h(t) exp (b(t)v)DQ̃

y .

This involves checking three cases, as the second and third terms are structurally
the same, whereas the fifth term is independent of y:

Term 1 D1 and U
D
1 ,

Terms 2 and 3 D2 and U
D
2 , D3 and U

D
3 . This involves writing the sufficient con-

dition in terms of expectations leading to a new representation (ESC Put),
then proving the equality via four steps:
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Step 1 use FK theorem to derive the PDE of LHS of (ESC Put);

Step 2 use FK theorem to derive the PDE of expectation term in the RHS
of (ESC Put);

Step 3 show that the terminal value of the LHS is equal to the value of the
RHS, i.e., check that the terminal conditions of the corresponding PDEs
are equal;

Step 4 show that RHS of (ESC Put) solves the PDE for LHS of
(ESC Put).

Term 4 D4 and U
D
4 .

Part 2. Addressing Condition (6.23).

Part 3. Application of Theorem 6.1.3.

We write for i ∈ {1, 2, 3, 4}:

U
(i)

(t, y, v) := EQ
t,y,v

[
U

D
i (Y ∗(T ))

]
;

D(i)(t, y, v) := EQ̃
t,y,v [exp (−r(T − t))Di (Y ∗(T ))] .

Part 1. Term 1.
For the first term of the modified utility function and the corresponding first piece of
the financial derivative on the unconstrained optimal wealth, we can check the sufficient
condition (SC) by explicitly calculating its LHS and RHS.

In LHS, U
(1)

is the optimum of the objective function in (Pu), which is known due to
Proposition 6.1.1:

U
(1)

=
yp

p
exp(a(t) + b(t)v) ⇒ U

(1)
y = yp−1 exp(a(t) + b(t)v).

As for RHS, D1(y) = y and exp(−rt)Y (t) is a martingale under any EMM Q̃. Thus, we

have D(1) = y ⇒ D
(1)
y = 1.

We conclude that for any ρ ∈ [−1, 1] and any EMM Q̃ the following holds:

U
(1)
y = yp−1 exp(a(t) + b(t)v) · 1 = yp−1 exp (a(t))︸ ︷︷ ︸

=h(t)

exp (b(t)v)D(1)
y .

Part 1. Terms 2 and 3.
We show now that the same relation holds for the second and third terms of the modified
utility function, i.e., the utility of a put option on the unconstrained optimal wealth is

214



D Appendix to Chapter 6

linked to a price under a convenient EMM Q̃(γv) of a put option on the unconstrained
optimal wealth. For simplicity of presentation we will write Q̃ instead of Q̃(γv).

Recall from (6.14) that the expected values under M ∈ {Q, Q̃} can be computed as

EM
t,z,v [g (Z∗(T ))] =

∫
g (x)

(
1

2π

∫
exp (−iux)ϕZ

∗(T ),M(u; t, z, v)du

)
dx

=
1

2π

∫ ∫
g (x) exp

(
−iu (x− z) +AM(T − t, u) +BM(T − t, u)v

)
dudx,

where ϕZ
∗(T ),M is the characteristic function of Z∗(T ) given in Proposition 6.1.2.

Changing variables, Z∗(T ) = ln (Y ∗(T )), z = x − ln y, and using the inverse Fourier
transform of Z∗(T ), we obtain ∀ i ∈ {1, 2, 3, 4}:

U
(i)

= EQ
t,y,v

[
U

D
i (Y ∗(T ))

]
=

∫
U

D
i (exp (x))

(
1

2π

∫
exp (−iux)ϕZ

∗(T ),Q(u; t, ln y, v)du

)
dx

=
1

2π

∫ ∫
U

D
i (exp (x)) exp

(
−iu (x− ln y) +AQ(T − t, u)

+BQ(T − t, u)v
)
du dx

=
1

2π

∫ ∫
U

D
i (y exp (z)) exp

(
−iuz +AQ(T − t, u) +BQ(T − t, u)v

)
du dz (D.21)

D(i) = exp (−r(T − t))EQ̃
t,y,v [Di(Y

∗(T ))]

=

∫ ∫
Di(y exp (z)) exp

(
−iuz +AQ̃(T − t, u) +BQ̃(T − t, u)v

)
du dz (D.22)

· exp (−r(T − t))

2π
.

For U
D
2 (y) = 1

p (Kp − yp) 1{y<K} with any K > 0 fixed, we receive, using (D.21):

U
(2)

=
1

2π

1

p

∫ ∫
(Kp − exp (p(z + ln y))) 1{z<lnK−ln y}

· exp
(
−iuz +AQ(T − t, u) +BQ(T − t, u)v

)
dudz

=
1

2π

Kp

p

∫ ∫
1{z<lnK−ln y} exp

(
−iuz +AQ(T − t, u) +BQ(T − t, u)v

)
dudz

− 1

2π

1

p

∫ ∫
1{z<lnK−ln y} exp

(
p ln y + pz − iuz +AQ(T − t, u)

+BQ(T − t, u)v
)
dudz

215



D Appendix to Chapter 6

=
1

2π

Kp

p

ln(K/y)∫
−∞

+∞∫
−∞

exp
(
−iuz +AQ(T − t, u) +BQ(T − t, u)v

)
dudz

− 1

2π

1

p

ln(K/y)∫
−∞

+∞∫
−∞

yp exp
(
pz − iuz +AQ(T − t, u) +BQ(T − t, u)v

)
dudz.

Taking the derivative of U
(2)

yields:

U
(2)
y =

∂

∂y

(
1

2π

Kp

p

ln(K/y)∫
−∞

+∞∫
−∞

exp
(
−iuz +AQ(T − t, u) +BQ(T − t, u)v

)
du

︸ ︷︷ ︸
=:g1(y,z)

dz

)

− ∂

∂y

(
1

2π

1

p

ln(K/y)∫
−∞

+∞∫
−∞

yp exp
(
pz − iuz +AQ(T − t, u) +BQ(T − t, u)v

)
du

︸ ︷︷ ︸
=:g2(y,z)

dz

)

(a)
=

1

2π

Kp

p

(
g1(y, ln (K/y))

(
−1

y

)
− lim

c↓−∞

(
g1(y, c)

∂c

∂y︸︷︷︸
=0

)
+

ln(K/y)∫
−∞

∂

∂y
g1(y, z)︸ ︷︷ ︸
=0

dz

)

− 1

2π

1

p

(
g2(y, ln (K/y))

(
−1

y

)
− lim

c↓−∞

(
g2(y, c)

∂c

∂y︸︷︷︸
=0

)
+

ln(K/y)∫
−∞

∂

∂y
g2(y, z)dz

)

= − 1

2π

Kp

p

1

y

+∞∫
−∞

exp
(
−iu ln (K/y) +AQ(T − t, u) +BQ(T − t, u)v

)
du

+
1

2π

1

p
yp−1

+∞∫
−∞

exp
(
p ln (K/y) − iu ln (K/y) +AQ(T − t, u) +BQ(T − t, u)v

)
du

− 1

2π

1

p

ln(K/y)∫
−∞

+∞∫
−∞

pyp−1 exp
(
pz − iuz +AQ(T − t, u) +BQ(T − t, u)v

)
du dz
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(b)
=

(((((((((((((((((((((((((((((((((

− 1

2π

Kp

p

1

y

+∞∫
−∞

exp
(
−iu ln (K/y) +AQ(T − t, u) +BQ(T − t, u)v

)
du

+

((((((((((((((((((((((((((((((((

1

2π

Kp

p

1

y

+∞∫
−∞

exp
(
−iu ln (K/y) +AQ(T − t, u) +BQ(T − t, u)v

)
du

− 1

2π �
�
�1

p

ln(K/y)∫
−∞

+∞∫
−∞

�py
p−1 exp

(
pz − iuz +AQ(T − t, u) +BQ(T − t, u)v

)
du dz

= −y
p−1

2π

∫ ∫
1{z<lnK−ln y} exp

(
pz − iuz +AQ(T − t, u) +BQ(T − t, u)v

)
dudz,

where in (a) we use Theorem 2.5.1 and in (b) we use exp (p ln(K/y)) = Kp/yp.

Next we reconstruct the stochastic representation of U
(2)
y :

U
(2)
y

x=z+ln(y)
= −y

p−1

2π

∫ ∫
1{x<lnK} exp

(
p(x− ln(y)) − iu(x− ln(y))

+AQ(T − t, u) +BQ(T − t, u)v
)
dudx

−p ln(y)=ln(y−p)
= −y

p−1y−p

2π

∫ ∫
1{x<lnK} exp (px− iux) exp

(
iu ln(y)

+AQ(T − t, u) +BQ(T − t, u)v
)
dudx

= −y−1

∫
1{x<lnK} exp (px)

(
1

2π

∫
exp (−iux)ϕZ

∗(T ),Q(u; t, ln(y), v)du

)
︸ ︷︷ ︸

density ofZ∗(T ) evaluated atx given Z∗(t)=ln(y)

dx

= −y−1EQ [exp (pZ∗(T )) 1{Z∗(T )<lnK}|Z∗(t) = ln(y), v(t) = v
]

Z∗(t):=ln(Y ∗(t))
= −y−1EQ [(Y ∗(T ))p1{Y ∗(T )<K}|Y ∗(t) = y, v(t) = v

]
.

Applying the previous result for p = 1 under the measure Q̃ instead of Q, we receive the
following expression for D2(x) = (K − y) 1{y<K} with K > 0 a given parameter:

D(2) =
1

2π

∫ ∫
D2(y exp (z)) exp

(
−iuz +AQ̃(T − t, u) +BQ̃(T − t, u)v

)
dudz

· exp (−r(T − t))

= −y−1EQ̃ [exp (−r(T − t))Y ∗(T )1{Y ∗(T )<K}|Y ∗(t) = y, v(t) = v
]
.

Therefore, proving Condition (SC) for the second and the third terms of the auxiliary
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utility function is equivalent to proving the following condition:

−y−1EQ [(Y ∗(T ))p 1{Y ∗(T )<K}|Y ∗(t) = y, v(t) = v
] !

= yp−1 exp(a(t) + b(t)v)
(
−y−1

)
· EQ̃ [exp (−r(T − t))Y ∗(T )1{Y ∗(T )<K}|Y ∗(t) = y, v(t) = v

]
,

which, in turn, is equivalent to the following one:

EQ
t,y,v

[
(Y ∗(T ))p 1{Y ∗(T )<K}

]︸ ︷︷ ︸
=:gQ(t,y,v)

!
= yp−1 exp(a(t) + b(t)v)EQ̃

t,y,v

[
exp (−r(T − t))Y ∗(T )1{Y ∗(T )<K}

]︸ ︷︷ ︸
=:gQ̃(t,y,v)

,
(ESC Put)

where ESC stands for equivalent sufficient condition.

We prove now (ESC Put) via four steps.

Part 1. Terms 2 and 3. Step 1. FK PDE for LHS of (ESC Put) Recall that

π∗u(t) = γS1

1−p + σρb(t)
1−p and under the measure Q we have:

dY ∗(t) = Y ∗(t)
[(
r + π∗u(t)γS1v(t)

)
dt+ π∗u(t)

√
v(t)dWQ

1 (t)
]

;

dv(t) = κ (θ − v(t)) dt+ σρ
√
v(t) dWQ

1 (t) + σ
√
v(t)

√
1 − ρ2dWQ

2 (t).

Then EQ
t,y,v

[
(Y ∗(T ))p 1{Y ∗(T )<K}

]
= gQ(t, y, v) has the following FK representation:

0 = gQt + y(r + π∗u(t)γS1v)gQy + κ (θ − v) gQv +
1

2
vy2 (π∗u(t))2 gQyy

+
1

2
vσ2gQvv + ρσyvπ∗u(t)gQyv;

yp1{y<K} = gQ(T, y, v).

Part 1. Terms 2 and 3. Step 2. FK PDE for Q̃-expectation in RHS of
(ESC Put)

Recall that under the measure Q̃ we have:

dY ∗(t) = Y ∗(t)rdt+ Y ∗(t)π∗u(t)
√
v(t)dW Q̃

1 (t)

dv(t) = κ̃
(
θ̃ − v(t)

)
dt+ σ

√
v(t)ρdW Q̃

1 (t) + σ
√
v(t)

√
1 − ρ2dW Q̃

2 (t)

Then

EQ̃ [exp (−r(T − t))Y ∗(T )1{Y ∗(T )<K}|Y ∗(t) = y, v(t) = v
]

= gQ̃(T, y, v)
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has the following FK representation:

0 = gQ̃t − rgQ̃ + yrgQ̃y + κ̃
(
θ̃ − v

)
gQ̃v +

1

2
vy2 (π∗u(t))2 gQ̃yy

+
1

2
vσ2gQ̃vv + ρσyvπ∗u(t)gQ̃yv;

y1{y<K} = gQ̃(T, y, v).

Part 1. Terms 2 and 3. Step 3. Equality of terminal conditions

Consider the ansatz gQ(t, y, v) = yp−1 exp(a(t) + b(t)v)gQ̃(t, y, v) with a(T ) = b(T ) = 0.
Then:

gQ(T, y, v) = yp1{y<K} = yp−1y1{y<K} = yp−1y1{y<K} exp(a(T ) + b(T )v)

= yp−1 exp(a(T ) + b(T )v)gQ̃(T, y, v),

i.e., the LHS and RHS coincide at time t = T .

Part 1. Terms 2 and 3. Step 4. Verifying gQ(t, y, v) = yp−1 exp(a(t)+b(t)v)gQ̃(t, y, v)
via PDEs

Let us calculate the necessary partial derivatives of gQ, which appear in its FK PDE:

gQt =
∂

∂t

(
yp−1 exp(a(t) + b(t)v)gQ̃(t, y, v)

)
= yp−1 exp(a(t) + b(t))

(
a′(t) + b′(t)v

)
gQ̃ + yp−1 exp(a(t) + b(t))gQ̃t

= yp−1 exp(a(t) + b(t))
((
a′(t) + b′(t)v

)
gQ̃ + gQ̃t

)
;

gQy = exp(a(t) + b(t)v)
(

(p− 1)yp−2gQ̃ + yp−1gQ̃y

)
= yp−2 exp(a(t) + b(t)v)

(
(p− 1)gQ̃ + ygQ̃y

)
;

gQv = yp−1

(
∂ exp(a(t) + b(t)v)

∂v
gQ̃ + exp(a(t) + b(t)v)gQ̃v

)
= yp−1 exp(a(t) + b(t)v)

(
b(t)gQ̃ + gQ̃v

)
;

gQyy =
∂

∂y

(
gQy

)
= exp(a(t) + b(t)v)

∂

∂y

(
(p− 1)yp−2gQ̃ + yp−1gQ̃y

)
= exp(a(t) + b(t)v)

(
(p− 1)

(
(p− 2)yp−3gQ̃ + yp−2gQ̃y

)
+
(

(p− 1)yp−2gQ̃y

)
+ yp−1gQ̃yy

)
= yp−3 exp(a(t) + b(t)v)

(
(p− 1)(p− 2)gQ̃ + 2(p− 1)ygQ̃y + y2gQ̃yy

)
;
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gQvv =
∂

∂v

(
gQv

)
=

∂

∂v

(
yp−1 exp(a(t) + b(t)v)

(
b(t)gQ̃ + gQ̃v

))
= yp−1

(
exp(a(t) + b(t)v)b(t)

(
b(t)gQ̃ + gQ̃v

)
+ exp(a(t) + b(t)v)

(
b(t)gQ̃v + gQ̃vv

))
= yp−1 exp(a(t) + b(t)v)

(
(b(t))2 gQ̃ + 2b(t)gQ̃v + gQ̃vv

)
;

gQyv =
∂

∂y

(
gQv

)
=

∂

∂y

(
yp−1 exp(a(t) + b(t)v)

(
b(t)gQ̃ + gQ̃v

))
= exp(a(t) + b(t)v)

(
(p− 1)yp−2

(
b(t)gQ̃ + gQ̃v

)
+ yp−1

(
b(t)gQ̃y + gQ̃yv

))
= yp−2 exp(a(t) + b(t)v)

(
(p− 1)b(t)gQ̃ + (p− 1)gQ̃v + yb(t)gQ̃y + ygQ̃yv

)
.

We plug those partial derivatives in the LHS PDE, i.e., FK PDE of gQ, and get:

0 = yp−1 exp(a(t) + b(t))
((
a′(t) + b′(t)v

)
gQ̃ + gQ̃t

)
+ y(r + π∗u(t)γS1v)yp−2 exp(a(t) + b(t)v)

(
(p− 1)gQ̃ + ygQ̃y

)
+ κ (θ − v) yp−1 exp(a(t) + b(t)v)

(
b(t)gQ̃ + gQ̃v

)
+

1

2
vy2 (π∗u(t))2 yp−3 exp(a(t) + b(t)v)

(
(p− 1)(p− 2)gQ̃ + 2(p− 1)ygQ̃y + y2gQ̃yy

)
+

1

2
vσ2yp−1 exp(a(t) + b(t)v)

(
(b(t))2 gQ̃ + 2b(t)gQ̃v + gQ̃vv

)
+ ρσyvπ∗u(t)yp−2 exp(a(t) + b(t)v)

(
(p− 1)b(t)gQ̃ + (p− 1)gQ̃v + yb(t)gQ̃y + ygQ̃yv

)
.

Since ∀ y > 0, v > 0, we have yp−1 exp(a(t) + b(t)v) > 0 and can divide by this term
both sides of the PDE:

0 =
(
a′(t) + b′(t)v

)
gQ̃ + gQ̃t + (r + π∗u(t)γS1v)

(
(p− 1)gQ̃ + ygQ̃y

)
+ κ (θ − v)

(
b(t)gQ̃ + gQ̃v

)
+

1

2
v (π∗u(t))2

(
(p− 1)(p− 2)gQ̃ + 2(p− 1)ygQ̃y + y2gQ̃yy

)
+

1

2
vσ2

(
(b(t))2 gQ̃ + 2b(t)gQ̃v + gQ̃vv

)
+ ρσvπ∗u(t)

(
(p− 1)b(t)gQ̃ + (p− 1)gQ̃v + yb(t)gQ̃y + ygQ̃yv

)
,

where we underlined terms related to the gQ̃ PDE.
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Collecting the underlined terms in the previous equation, we get:

0 =
(
a′(t) + b′(t)v

)
gQ̃ + rγgQ̃ + π∗u(t)γS1v

(
(p− 1)gQ̃ + ygQ̃y

)
+ κ (θ − v) b(t)gQ̃

+
1

2
v (π∗u(t))2

(
(p− 1)(p− 2)gQ̃ + 2(p− 1)ygQ̃y

)
+

1

2
vσ2

(
(b(t))2 gQ̃ + 2b(t)gQ̃v

)
+ ρσvπ∗u(t)

(
(p− 1)b(t)gQ̃ + (p− 1)gQ̃v + yb(t)gQ̃y

)
+

[
gQ̃t − rgQ̃ + rygQ̃y + κ (θ − v) gQ̃v +

1

2
v (π∗u(t))2 y2gQ̃yy +

1

2
vσ2gQ̃vv

+ρσvπ∗u(t)ygQ̃yv

]
.

Next we use the link between the variance process parameters under the different mea-
sures according to (6.4):

κ (θ − v)
(i)
= κ̃θ̃ − κv

(ii)
= κ̃θ̃ −

(
κ̃− σγS1ρ− σγv

√
1 − ρ2

)
v

= κ̃
(
θ̃ − v

)
+ σγS1ρv + σγv

√
1 − ρ2v,

where (i) refers to θ̃ = θκ/κ̃, (ii) refers to κ̃ = κ+ σγS1ρ+ σγv
√

1 − ρ2. Taking this as

well as PDE of gQ̃ into account, we get:

0 =
(
a′(t) + b′(t)v

)
gQ̃ + rγgQ̃ + π∗u(t)γS1v

(
(p− 1)gQ̃ + ygQ̃y

)
+ κ (θ − v) b(t)gQ̃

+
1

2
v (π∗u(t))2

(
(p− 1)(p− 2)gQ̃ + 2(p− 1)ygQ̃y

)
+

1

2
vσ2

(
(b(t))2 gQ̃ + 2b(t)gQ̃v

)
+ ρσvπ∗u(t)

(
(p− 1)b(t)gQ̃ + (p− 1)gQ̃v + yb(t)gQ̃y

)
+ σγS1ρvgQ̃v + σγv

√
1 − ρ2vgQ̃v .

Using the ODEs for a(τ), b(τ) from (D.4) (D.5) and the relation τ = T − t, we conclude
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that:

a′(t) = −κθb(t) − pr;

b′(t) = −1

2

(
σ2 +

pσ2ρ2

1 − p

)
︸ ︷︷ ︸

k2

b2(t) +

(
κ− pγS1σρ

1 − p

)
︸ ︷︷ ︸

k1

b(t) − 1

2

p
(
γS1
)2

1 − p︸ ︷︷ ︸
k0

.

Plugging the representation of a′(t) and b′(t) in the key relation we want to prove, we
get:

0 =

(
−κθb(t) − pr + v ·

(
−1

2

(
σ2 +

pσ2ρ2

1 − p

)
(b(t))2 +

(
κ− pγS1σρ

1 − p

)
b(t)

− 1

2

p
(
γS1
)2

1 − p

))
gQ̃ + rγgQ̃ + π∗u(t)γS1v

(
(p− 1)gQ̃ + ygQ̃y

)
+ κ (θ − v) b(t)gQ̃

+
1

2
v (π∗u(t))2

(
(p− 1)(p− 2)gQ̃ + 2(p− 1)ygQ̃y

)
+

1

2
vσ2

(
(b(t))2 gQ̃ + 2b(t)gQ̃v

)
+ ρσvπ∗u(t)

(
(p− 1)b(t)gQ̃ + (p− 1)gQ̃v + yb(t)gQ̃y

)
+ σγS1ρvgQ̃v + σγv

√
1 − ρ2vgQ̃v .

Next we indicate terms to be cancelled out directly and plug in the representation of

π∗u(t) = γS1

1−p + σρb(t)
1−p :

0 =

(
−����κθb(t) −��pr + v ·

(
−1

2

(
��σ
2 +

pσ2ρ2

1 − p

)
(b(t))2 +

(
�κ − pγS1σρ

1 − p

)
b(t)

− 1

2

p
(
γS1
)2

1 − p

))
gQ̃ + �

��rγgQ̃ +

(
γS1

1 − p
+
σρb(t)

1 − p

)
γS1v

(
(p− 1)gQ̃ + ygQ̃y

)
+ κ (�θ − �v) b(t)gQ̃

+
1

2
v

(
γS1

1 − p
+
σρb(t)

1 − p

)2 (
(p− 1)(p− 2)gQ̃ + 2(p− 1)ygQ̃y

)
+

1

2
vσ2

(
�����
(b(t))2 gQ̃ + 2b(t)gQ̃v

)
+ ρσv

(
γS1

1 − p
+
σρb(t)

1 − p

)(
(p− 1)b(t)gQ̃ + (p− 1)gQ̃v + yb(t)gQ̃y

)
+ σγS1ρvgQ̃v + σγv

√
1 − ρ2vgQ̃v .
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Next we use that −p
1−p = 1− 1

1−p ,
p−1
1−p = −1, (p−1)(p−2)

(1−p)(1−p) = 1+ 1
1−p , expand several brackets

with multiple summation terms and move y, v to the beginning of the corresponding
product where they appear2:

0 = v ·
(

1

2

(
1 − 1

1 − p

)
σ2ρ2(b(t))2 +

(
1 − 1

1 − p

)
γS1σρb(t) +

1

2

(
1 − 1

1 − p

)(
γS1
)2)

· gQ̃ − v
(
γS1 + σρb(t)

)
γS1gQ̃ + vyγS1(1 − p)−1

(
γS1 + σρb(t)

)
gQ̃y

+ v
1

2

(
1 +

1

1 − p

)(
γS1 + σρb(t)

)2
gQ̃ + vy(p− 1)−1

(
γS1 + σρb(t)

)2
gQ̃y

+ vσ2b(t)gQ̃v − vσρ
(
γS1 + σρb(t)

)
b(t)gQ̃

− vσρ
(
γS1 + σρb(t)

)
gQ̃v + vyσρ(1 − p)−1

(
γS1 + σρb(t)

)
b(t)gQ̃y + vγS1σρgQ̃v

+ σγv
√

1 − ρ2vgQ̃v .

The above equality is true for any y > 0, v > 0 if the the terms next to vgQ̃, vgQ̃v , vygQ̃y
are 0.

Coefficient next to vgQ̃

Collecting all terms next to vgQ̃ yields:

0 =
1

2

(
1 − 1

1 − p

)
σ2ρ2(b(t))2 +

(
1 − 1

1 − p

)
γS1σρb(t) +

1

2

(
1 − 1

1 − p

)(
γS1
)2

−
(
γS1 + σρb(t)

)
γS1 +

1

2

(
1 +

1

1 − p

)(
γS1 + σρb(t)

)2 − σρ
(
γS1 + σρb(t)

)
b(t)

=
1

2

(
1 − 1

1 − p

)
σ2ρ2(b(t))2 +

(
1 − 1

1 − p

)
γS1σρb(t) +

1

2

(
1 − 1

1 − p

)(
γS1
)2

−
(
γS1
)2 − γS1σρb(t) +

1

2

(
1 +

1

1 − p

)((
γS1
)2

+ 2γS1σρb(t) + (σρb(t))2
)

− γS1σρb(t) − σ2ρ2(b(t))2.

We show that the above equality is true by showing that the coefficients next to (b(t))2,
b(t)1 and b(t)0 are all equal to 0.

2For a better overview of the relation to be shown
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For the coefficient next to (b(t))2 we obtain:

1

2

(
1 − 1

1 − p

)
σ2ρ2 +

1

2

(
1 +

1

1 − p

)
σ2ρ2 − σ2ρ2

= σ2ρ2
(

1

2
− 1

2(1 − p)
+

1

2
+

1

2(1 − p)
− 1

)
= 0.

For the coefficient next to (b(t))1 we obtain:(
1 − 1

1 − p

)
γS1σρ− γS1σρ+

1

2

(
1 +

1

1 − p

)
2γS1σρ− γS1σρ

= γS1σρ

(
1 − 1

1 − p
− 1 +

(
1 +

1

1 − p

)
− 1

)
= 0.

For the coefficient next to (b(t))0 we obtain:

1

2

(
1 − 1

1 − p

)(
γS1
)2 − (γS1

)2
+

1

2

(
1 +

1

1 − p

)(
γS1
)2

=
(
γS1
)2(1

2
− 1

2

1

1 − p
− 1 +

1

2
+

1

2

1

1 − p

)
= 0.

Hence, the coefficient next to vgQ̃ is 0, i.e., vgQ̃ vanishes in the relation we are proving.

Coefficient next to vygQ̃y The coefficient next to vygQ̃y is equal to:

γS1(1 − p)−1
(
γS1 + σρb(t)

)
+ (p− 1)−1

(
γS1 + σρb(t)

)2
+ σρ(1 − p)−1

(
γS1 + σρb(t)

)
· b(t) = (1 − p)−1

(
γS1

(
γS1 + σρb(t)

)
−
(
γS1 + σρb(t)

)2
+ σρb(t)

(
γS1 + σρb(t)

))
= (1 − p)−1

((
γS1 + σρb(t)

)2 − (γS1 + σρb(t)
)2)

= 0.

Hence, the coefficient next to vygQ̃y is 0, i.e., vygQ̃y vanishes in the relation we are proving.

Coefficient next to vgQ̃v The coefficient next to vgQ̃v is equal to:

σ2b(t)−σρ
(
γS1 + σρb(t)

)
+ γS1σρ+ γvσ

√
1 − ρ2

= σ2b(t) − σργS1 − σ2ρ2b(t) + γS1σρ+ γvσ
√

1 − ρ2

= b(t)σ2
(
1 − ρ2

)
+ γvσ

√
1 − ρ2.

The coefficient next to vgQ̃v is equal to zero if γv = −σ
√

1 − ρ2b(t). This is equivalent
to picking a convenient change of measure on the variance process.
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So for γv = −σ
√

1 − ρ2b(t) (ESC Put) holds also for the second and third piece of the
modified utility function:

∂

∂y
EQ
t,y,v

[
1

p
(Kp − (Y ∗(T ))p) 1{Y ∗(T )<K}

]
= yp−1 exp (a(t) + b(t)v)

· ∂
∂y

EQ̃
t,y,v

[
exp(−r(T − t)) (K − Y ∗(T )) 1{Y ∗(T )<K}

]
∀K > 0, p < 1.

Part 1. Term 4. i.e. binary option
Now we show that for a specific choice of λε, the last piece of the modified utility function

also satisfies the same (SC), in particular U
(4)
y = yp−1 exp (a(t) + b(t)v)D

(4)
y .

For U4(y) = 1
p (Kp − kpε + pλε) 1{y<kε} in (D.21) we get:

U
(4)

=
1

2π

1

p

∫ ∫
(Kp − kpv + pλε) 1{z<ln kε−ln y} exp

(
−iuz +AQ(T − t, u)

+BQ(T − t, u)v
)
dudz

=
1

2π

Kp − kpv + pλε
p

ln(kε/y)∫
−∞

+∞∫
−∞

exp
(
−iuz +AQ(T − t, u) +BQ(T − t, u)v

)
du

︸ ︷︷ ︸
=:g(y,z)

dz.

Taking the partial derivative w.r.t. y, we obtain:

U
(4)
y

(i)
=

1

2π

Kp − kpv + pλε
p

(
g(y, ln(kε/y))

(
−1

y

)
− lim

c↓−∞

(
g(y, c)

∂c

∂y︸︷︷︸
=0

)

+

ln(kε/y)∫
−∞

∂

∂y
g(y, z)︸ ︷︷ ︸
=0

dz

)

g
= −1

y

Kp − kpv + pλε
p

1

2π

+∞∫
−∞

exp
(
−iu (ln kε − ln y) +AQ(T − t, u)

+BQ(T − t, u)v
)
du

= −1

y

Kp − kpv + pλε
p

1

2π

+∞∫
−∞

exp (−iu ln kε) exp
(
iu ln y +AQ(T − t, u)

+BQ(T − t, u)v
)
du
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= −1

y

Kp − kpv + pλε
p

1

2π

+∞∫
−∞

exp (−iu ln kε)ϕ
Z∗(T ),Q(u; t, ln(y), v)du

︸ ︷︷ ︸
=:fQ

Z∗(T )
(ln kε)

= −1

y

Kp − kpv + pλε
p

fQZ∗(T )(ln kε),

where fQZ∗(T )(·) denotes the Q-density of Z∗(T ) given Z∗(t) = ln(y) and we use in (i)
Theorem 2.5.1.

Applying the previous result for p = 1, λε = 0 and working under the measure Q̃ instead
of Q, we get for D4(y) = (K − kv) 1{y<kε} in (D.22) the following:

D(4) =
1

2π
exp (−r(T − t))

∫ ∫
(K − kε) 1{z<ln kε−ln y} exp

(
−iuz +AQ̃(T − t, u)

+BQ̃(T − t, u)v
)
dudz

= −1

y
(K − kv) exp (−r(T − t)) f Q̃Z∗(T )(ln kε),

where f Q̃Z∗(T ) denotes the Q̃-density of Z∗(T ) = ln(Y ∗(T )).

Hence, the condition equivalent to (SC) in the context of the fourth piece is given by:

�
�
��

(
−1

y

)
Kp − kpv + pλε

p
fQZ∗(T )(ln kε)

!
= yp−1 exp (a(t) + b(t)v)

�
�

��
(
−1

y

)
· (K − kv) exp (−r(T − t)) f Q̃Z∗(T )(ln kε)

⇐⇒ Kp − kpv + pλε
p

fQZ∗(T )(ln kε)
!

= yp−1 exp (a(t) + b(t)v) (K − kv) (ESC Binary)

· exp (−r(T − t)) f Q̃Z∗(T )(ln kε).

Condition (ESC Binary) is satisfied if λε is chosen as follows:

λε = yp−1 exp (a(t) + b(t)v) (K − kv) exp (−r(T − t))
f Q̃Z∗(T )(ln kε)

fQZ∗(T )(ln kε)
− Kp − kpv

p
.

We have shown that for specific γv, λε, kε, kv as above it holds that ∀i ∈ {1, 2, 3, 4}
U

(i)
y = yp−1 exp (a(t) + b(t)v)D

(i)
y . Thus, U

D,Q
y = yp−1 exp (a(t) + b(t)v)DQ̃

y and, by
Lemma 6.1.4, both Conditions (6.21) and (6.22) in Theorem 6.1.3 are satisfied.

Part 2. Condition (6.23) is satisfied due to the assumption that (y, kv, kε) solves
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(NLS(y, kv, kε)):
DQ̃(t, y, v) = x, Vc

(
t,DQ̃ (t, y, v) , v

)
= U

D,Q
(t, y, v);

Q (Y ∗(T ) < kε|Y ∗(t) = y, v(t) = v) = ε, VaR-constraint;

DQ̃
v (t, y, v) = 0, Condition (6.23),

in particular the third equation. Note that there are three variables and three equations.

Part 3. In summary, Conditions (6.21) – (6.23) are satisfied as argued in Parts 1 and
2. Thus, we can apply Theorem 6.1.3 for γv = −σ

√
1 − ρ2b(t) and conclude that

Xx,π∗
c (T ) = D(Y y,π∗

u(T )) with x =

DQ̃(t,y,v)=︷ ︸︸ ︷
EQ̃(γv)
t,y,v

[
exp (−r(T − t))D(Y y,π∗

u(T ))
]
;

Vc (t, x, v) = U
D,Q

(t, y, v);

π∗c (t) = π∗u(t) · y ·
DQ̃

y (t, y, v)

DQ̃(t, y, v)
.

D.3 Explicit formulas for the left-hand side of NLS(y, kv, kε)

In this section of the appendix, we provide the representation of the equations in
(NLS(y, kv, kε)) in the spirit of Carr and Madan (1999).

Budget equation. First, we provide a formula for the price of a plain vanilla put
option. Second, we derive the formula for the price of a digital put option. Afterwards,
we will provide the formula for the LHS of the budget equation, which combines the
obtained formulas in the previous two steps.

Put option. Take any αP > 1 and any strike K > 0. Denote k = ln (K). Analogously
to Equation (3.50) in Fabrice (2013), pages 82-83, we can get:

Put(k) := Put(Y ∗(T ),K) = EQ̃
t,y,v

[
exp (−r(T − t)) (K − Y ∗(T ))+

]
=

exp (αk)

π

+∞∫
0

Real

(
exp (−r(T − t)) exp (−iuk)

α2
P − αP − u2 + iu(1 − 2αP )

(D.23)

· ϕZ∗(T ),Q̃(u+ (αP − 1)i; t, ln y, v)

)
du.
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Digital put option. Let K > 0 be an arbitrary but fixed strike of a digital put option
with the nominal payment of 1 monetary unit. Denote k = ln (K). Then the price of
such a digital put option is given by:

DigPut(k) := DigPut(Y ∗(T ),K) = EQ̃
t,y,v

[
exp (−r(T − t))1{Y ∗(T )<K}

]
Def
= EQ̃ [exp (−r(T − t))1{Z∗(T )<k}|Z∗(t) = ln (y) , v(t) = v

]
= exp (−r(T − t)) Q̃ (Z∗(T ) < k|Z∗(t) = ln (y) , v(t) = v)

= exp (−r(T − t))

k∫
−∞

f Q̃Z∗(T )(z) dz. (D.24)

Take any αDP > 0 and consider the following dampened price of a digital put option:

DigPut(αDP )(k) = exp (−αDPk)DigPut(k). (D.25)

Then the Fourier transform of DigPut(αDP )(k) is given by:

ϕDigPut(αDP )
(k) =

+∞∫
−∞

exp (iuk)DigPut(αDP )(k) dk

(D.25)
=

+∞∫
−∞

exp (iuk) exp (−αDPk)DigPut(k) dk

(D.24)
=

+∞∫
−∞

exp (iuk) exp (−αDPk) exp (−r(T − t))

k∫
−∞

f Q̃Z∗(T )(z) dz dk

(i)
=

+∞∫
−∞

+∞∫
z

exp (iuk) exp (−αDPk) exp (−r(T − t)) f Q̃Z∗(T )(z) dk dz

=

+∞∫
−∞

exp (−r(T − t)) f Q̃Z∗(T )(z)

 +∞∫
z

exp (iuk) exp (−αDPk) dk

 dz

αDP>0
=

+∞∫
−∞

exp (−r(T − t)) f Q̃Z∗(T )(z)
exp (iuz − αDP z)

αDP − iu
dz

=
exp (−r(T − t))

αDP − iu

+∞∫
−∞

exp (iz(u− αDP /i)) f
Q̃
Z∗(T )(z) dz
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=
exp (−r(T − t))

αDP − iu
ϕZ

∗(T ),Q̃(u− αDP /i; t, ln y, v)

=
exp (−r(T − t))

αDP − iu
ϕZ

∗(T ),Q̃(u+ αDP i; t, ln y, v), (D.26)

where in (i) we change the order of integration.

Therefore, the price of a digital put option is given by:

DigPut(k) = exp (αDPk) exp (−αDPk)DigPut(k)

(D.25)
= exp (αDPk)DigPut(αDP )(k)

(2.21)
= exp (αDPk)

1

2π

+∞∫
−∞

Real
(

exp (−iuk)ϕDigPut(αDP )
(u)
)
du

(D.26)
= exp (αDPk)

1

2π

+∞∫
−∞

Real

(
exp (−iuk)

exp (−r(T − t))

αDP − iu

· ϕZ∗(T ),Q̃(u+ αDP i; t, ln y, v)

)
du

= exp (αDPk)
1

π

+∞∫
0

Real

(
exp (−iuk)

exp (−r(T − t))

αDP − iu
(D.27)

· ϕZ∗(T ),Q̃(u+ αDP i; t, ln y, v)

)
du.

Therefore, the budget equation in (NLS(y, kv, kε)) can be written as follows:

DQ̃(γv)(t, y, v) = y +
exp (αP ln(K))

π

+∞∫
0

Real

(
exp (−r(T − t)) exp (−iu ln(K))

α2
P − αP − u2 + iu(1 − 2αP )

· ϕZ∗(T ),Q̃(u+ (αP − 1)i; t, ln y, v)

)
du− exp (αP ln(kv))

π

·
+∞∫
0

Real

(
exp (−r(T − t)) exp (−iu ln(kv))

α2
P − αP − u2 + iu(1 − 2αP )

ϕZ
∗(T ),Q̃(u+ (αP − 1)i; t, ln y, v)

)
du

− (K − kv) exp (αDP ln (kε))
1

π

+∞∫
0

Real

(
exp (−iu ln (kε))

exp (−r(T − t))

αDP − iu

· ϕZ∗(T ),Q̃(u+ αDP i; t, ln y, v)

)
du.
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VaR equation. The LHS of the VaR equation can be obtained from Equation (D.27)
by considering the measure Q instead of Q̃ and setting r = 0.

Q (Y ∗(T ) < kε|Y ∗(t) = y, v(t) = v) = exp (αDP ln (kε))

· 1

π

+∞∫
0

Real

(
exp (−iu ln (kε))

αDP − iu
ϕZ

∗(T ),Q(u+ αDP i; t, ln y, v)

)
du.

Vega equation. Differentiating the budget equation w.r.t v, we get:

DQ̃(γv)
v (t, y, v) =

exp (αP ln(K))

π

+∞∫
0

Real

(
ϕZ

∗(T ),Q̃(u+ (αP − 1)i; t, ln y, v)

· exp (−r(T − t)) exp (−iu ln(K))BQ̃(T − t, u+ (αP − 1)i)

α2
P − αP − u2 + iu(1 − 2αP )

)
du− exp (αP ln(kv))

π

·
+∞∫
0

Real

(
exp (−r(T − t)) exp (−iu ln(kv))BQ̃(T − t, u+ (αP − 1)i)

α2
P − αP − u2 + iu(1 − 2αP )

· ϕZ∗(T ),Q̃(u+ (αP − 1)i; t, ln y, v)

)
du

− (K − kv) exp (αDP ln (kε))
1

2π

+∞∫
−0

Real

(
exp (−iu ln (kε))

· exp (−r(T − t))BQ̃(T − t, u+ αDP i)

αDP − iu
ϕZ

∗(T ),Q̃(u+ αDP i; t, ln y, v)

)
du.

D.4 Alternative proof for the case ρ = 0

In this section, we present a corollary to Theorem 6.1.3, which provides the solution to
Problem (6.5) for the case ρ = 0. We consider this special case, as it is simpler due to
fewer conditions from Theorem 6.1.3 to be verified. To prove the corollary, we will need
the following lemma.

Lemma D.4.1. Let X be a random variable on (Ω,F ,M), f : R×R → R be a function.
Let y∗ ∈ R, δ > 0, and I(y∗, δ) := (y∗ − δ, y∗ + δ). Suppose that the following conditions
hold:

1. EM [f(ỹ, X)] < +∞ ∀ ỹ ∈ I(y∗, δ);
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2.
∂f(y,X)

∂y

∣∣∣∣
y=ỹ

=:
∂

∂y
f(ỹ, X) exists and is continuous at each ỹ ∈ I(y∗, δ);

3. there exists a random variable B on (Ω,F ,M) such that

∣∣∣∣ ∂∂yf(ỹ, X)

∣∣∣∣ ≤ B M-a.s.

∀ ỹ ∈ I(y∗, δ).

Then:
∂

∂y

(
EM [f(y,X)]

)∣∣∣
y=y∗

= EM
[
∂

∂y
f(y∗, X)

]
. (D.28)

Proof. First, we transform the LHS of (D.28) using Theorem 2.5.2. Second, we apply
Theorem 2.5.5.

Take any sequence {hn}n∈N such that lim
n→+∞

hn = 0, e.g., hn = 1/n ∀n ∈ N. Then the

LHS of (D.28) can expressed as:

∂

∂y

(
EM [f(y,X)]

)∣∣∣
y=y∗

(i)
= lim

n→+∞

EM [f(y∗ + hn, X)] − EM [f(y∗, X)]

y∗ + hn − y∗

(ii)
= lim

n→+∞
EM
[
f(y∗ + hn, X) − f(y∗, X)

hn

]
(iii)
= lim

n→+∞
EM
[
∂

∂y
f(yn, X)

]
,

where yn ∈ (y∗, y∗+hn), we use in (i) the definition of a derivative and the differentiability
of f(y,X) w.r.t. y, in (ii) the linearity of expectation, in (iii) Theorem 2.5.2.

By the last assumption of the lemma we know that ∃δ > 0 such that ∀ ỹ ∈ I(y∗, δ)∣∣∣∣ ∂∂yf(ỹ, X)

∣∣∣∣ ≤ B

for some random variable B with E [B] < +∞.

Therefore, ∃n∗ ∈ N such that ∀n ≥ n∗:∣∣∣∣ ∂∂yf(yn, X)

∣∣∣∣ ≤ B.

Thus, we obtain:

lim
n→+∞

EM
[
∂

∂y
f(yn, X)

]
= lim

n∗≤n→+∞
EM
[
∂

∂y
f(yn, X)

]
(i)
= EM

[
lim

n∗≤n→+∞

∂

∂y
f(yn, X)

]
(ii)
= EM

[
∂

∂y
f(y∗, X)

]
,
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where we use in (i) Theorem 2.5.5 for the sequence
{

∂
∂yf(yn, X)

}
n≥n∗

and the dominat-

ing variable B, in (ii) the definition of a derivative and lim
n∗≤n→+∞

yn = y∗.

Corollary D.4.2 (Solution to (6.5) for ρ = 0). Assume that ρ = 0, p
1−p

(
γS1
)2
< κ2

2σ2

holds3 and the VaR constraint is feasible in (6.5). If π∗u ∈ Aπ
c (x0, v0), then π∗u solves

(6.5). If π∗u ̸∈ Aπ
c (x0, v0), set γ

v = 0 and let D(·) be given by (6.28) such that its degrees
of freedom (y, kv, kε)t satisfy the system of non-linear equations (SNLE):

hB(y, kv, kε) :=DQ̃(γv)(t, y, v) = xt;

hV N (y, kv, kε) :=DQ̃(γv)
v (t, y, v) = 0;

hV aR(y, kv, kε) :=Q (Y ∗(T ) < kε|Y ∗(t) = y, v(t) = v) = ε;

for the Lagrange multiplier

λε = (K − kv) kp−1
ε − Kp − kpv

p
. (D.29)

Then the candidate for the value function is given by (6.25) and the candidate for the
solution to (6.5) is given by (6.26).

Proof of Corollary D.4.2. Before stating the proof outline and the corresponding details,

we remind the reader the form of D(·) as per (D.19) and the form of U
D

(·) as per (D.20):

D(y) = y + (K − y) 1{y≤K} − (kε − y) 1{y<kv} − (K − kε) 1{y<kε}

= D1(y) +D2(y) −D3(y) −D4(y);

U(D(y)) =
yp

p
+

1

p
(Kp − yp) 1{y<K} −

1

p
(kpv − yp) 1{y<kv}

−1

p

(
(Kp − kpv) 1{y<kε} + pλε1{y<kε}

)
+ λεε

= U
D
1 (y) + U

D
2 (y) − U

D
3 (y) − U

D
4 (y) + λεε.

Next we provide the overview of the proof, which consists of three parts.

Part 1. Show analytically that Condition (6.21) holds for our choice of D by proving
Sufficient Condition (SC0). This involves three steps:

3This is a slightly stronger version of Condition (6.7)
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Step (a) We first condition on the path of the variance process and prove:

∂

∂y
EQ
t,y,v

[
U(D(Y ∗(T )))|Fv

]
= yp−1 ∂

∂y
EQ̃
t,y,v

[
h(t, {v(s)}) exp(−r(T − t))

·D(Y ∗(T ))|Fv

]
,

where Fv is the σ-algebra generated by the process (v(s))s∈[t,T ],

h(t, {v(s)}) := exp

(
T∫
t

p
(
r + 0.5

(
γS1
)2
v(s)/(1 − p)

)
ds

)
. This step con-

tains three cases:

Term 1 D1 and U
D
1 ,

Terms 2 and 3 D2 and U
D
2 , D3 and U

D
3 ,

Term 4 D4 and U
D
4 ,

Step (b) Via iterated expectations, we derive:

∂

∂y
EQ
t,y,v

[
U(D(Y ∗(T )))

]
= yp−1 ∂

∂y
EQ̃
t,y,v

[
h(t, {v(s)}) exp(−r(T − t))

·D(Y ∗(T ))
]
.

Step (c) The previous representation can be expressed as per (SC0):
∂
∂yE

Q
t,y,v

[
U(D(Y ∗(T )))

]
= yp−1H(t, v) ∂

∂yE
Q̃
t,y,v [exp(−r(T − t))D(Y ∗(T ))].

Part 2. Addressing Condition (6.23).

Part 3. Application of Theorem 6.1.3

Part 1.

The expectations of D and U
D

are equal, when the expectations of each one of the

four terms Di and U
D
i , i = 1, .., 4, are equal. In the matching of the terms, we have

three types of financial derivative components: the underlying portfolio (the optimal
unconstrained portfolio, D1), a put on the underlying portfolio (D2 and D3), and a
binary option on the underlying portfolio (D4).

Next we show that for the suggested D we can choose the right λε and γv, such that

each component of the financial derivative DQ̃ satisfies (SC0). To make the formulas
more readable, we write Q̃ instead of Q̃(γv). We write LHS for the “left-hand side”,
RHS for the “right-hand side”.
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Part 1. Step (a) We prove here

∂

∂y
EQ
t,y,v

[
U(D(Y ∗(T )))|Fv

]
︸ ︷︷ ︸

=:Ũy(t,y,{vs})

= yp−1 exp

(∫ T

t

(
pr +

(
γS1
)2
v(s)p

2(1 − p)

)
ds

)
︸ ︷︷ ︸

=:h(t,{v(s)})

· ∂
∂y

EQ̃
t,y,v [exp (−r(T − t))D(Y ∗(T ))|Fv]︸ ︷︷ ︸

=:D̃y(t,y,{vs})

,

(D.30)

where {v(s)} := (v(s))s∈[t,T ].

To prove (D.30), it is sufficient to show that the equality holds term-wise:

Ũ (i)
y (t, y, {vs}) = yp−1h(t, {v(s)})D̃(i)

y (t, y, {vs}), i = 1, . . . , 4. (D.31)

Using (6.8) and the assumption in the corollary ρ = 0, we get π∗u(t) = γS1/(1−p). Hence,
according to (6.11) and (6.15), the dynamics of the optimal unconstrained wealth under
the real-world measure and any EMM:

dY ∗(t) = Y ∗(t)

[(
r +

(
γS1
)2

1 − p
v(t)

)
dt+

γS1

1 − p

√
v(t)dWQ

1 (t)

]
under Q;

dY ∗(t) = Y ∗(t)

[
rdt+

γS1

1 − p

√
v(t)dW Q̃

1 (t)

]
under Q̃.

Denote the volatility coefficient of Y ∗(t) by:

σ̂(t) :=
γS1

1 − p

√
v(t). (D.32)

Applying Itô’s lemma to the process Y ∗ (under Q) and the function f(x) = xp, we get:

d ((Y ∗(t))p) = p (Y ∗(t))p−1 d(Y ∗(t)) +
1

2
p(p− 1) (Y ∗(t))p−2 d

〈
Y ∗(•), Y ∗(•)

〉
(t)

= p (Y ∗(t))p−1 Y ∗(t)

((
r +

(
γS1
)2

1 − p
v(t)

)
dt+

γS1

1 − p

√
v(t)dWQ

1 (t)

)

+
1

2
p(p− 1) (Y ∗(t))p−2 (Y ∗(t))2

(
γS1

1 − p

√
v(t)

)2

dt
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= (Y ∗(t))p
(
p

(
r +

(
γS1
)2

1 − p
v(t) +

1

2
(p− 1)

(
γS1
)2

(1 − p)2
v(t)

)
dt

+ p
γS1

1 − p

√
v(t)dWQ

1 (t)

)

= (Y ∗(t))p
((

pr +

(
γS1
)2
p

2(1 − p)
v(t)︸ ︷︷ ︸

(D.32)
= 1

2
p(1−p)(σ̂(t))2

)
dt+ p

γS1

1 − p

√
v(t)︸ ︷︷ ︸

(D.32)
= pσ̂(t)

dWQ
1 (t)

)
. (D.33)

Denote the drift coefficient of (Y ∗(t))p by:

r̂(t) := pr +
p(1 − p)

2
(σ̂(t))2 (D.34)

Define:

r̄ :=
1

T − t

∫ T

t
r̂(s) ds , σ̄2 :=

1

T − t

∫ T

t
(σ̂(s))2 ds. (D.35)

Part 1. Step (a). Term 1 – the unconstrained optimal portfolio. Let us first

calculate Ũ
(1)
y (t, y, {v(s)}) = ∂

∂yE
Q
t,y,v

[
(Y ∗)p

p |Fv

]
.

First, we show that exp

(
−

t∫
0

r̂(s)ds

)
(Y ∗(t))p is a martingale under Q. Indeed, it is

F(t)-measurable and satisfies an SDE:

d

(
exp

(
−

t∫
0

r̂(s)ds

)
(Y ∗(t))p

)
Itô
= exp

−
t∫

0

r̂(s)ds

 d ((Y ∗(t))p)

+ (Y ∗(t))p d

exp

−
t∫

0

r̂(s)ds

+ d

〈
exp

−
•∫

0

r̂(s)ds

 , (Y ∗(•))p
〉

(t)

= exp

−
t∫

0

r̂(s)ds

 (Y ∗(t))p
(
r̂(t)dt+ pσ̂(t)dWQ

1 (t)

)

− r̂(t) exp

−
t∫

0

r̂(s)ds

 (Y ∗(t))p dt

= exp

−
t∫

0

r̂(s)ds

 (Y ∗(t))p pσ̂(t)dWQ
1 (t). (D.36)
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The quadratic covariation term is equal to 0, since

d

exp

−
t∫

0

r̂(s)ds

 = −r̂(t) exp

−
t∫

0

r̂(s)ds

 dt

is without dWQ
1 (t) term. Denote by Ỹ (t) := exp

(
−

t∫
0

r̂(s)ds

)
(Y ∗(t))p , t ∈ [0, T ]. Using

Itô’s lemma for the process Ỹ (t), t ∈ [0, T ], and the function f(x) = ln(x), we get:

d ln
(
Ỹ (t)

)
Itô
=

∂

dx
ln
(
Ỹ (t)

)
dỸ (t) +

1

2

∂2

dx2
ln
(
Ỹ (t)

)
d
〈
Ỹ (•), Ỹ (•)

〉
(t)

(D.36)
=

1

Ỹ (t)
Ỹ (t)pσ̂(t) dWQ

1 (t) − 1

2

1(
Ỹ (t)

)2 (Ỹ (t)
)2
p2 (σ̂(t))2 dt

= pσ̂(t) dWQ
1 (t) − 1

2
p2 (σ̂(t))2 dt.

Integrating and taking exp(·) on both sides of the equality, we obtain:

Ỹ (t) = Ỹ (0) exp

(
−1

2

t∫
0

p2 (σ̂(s))2 ds+

t∫
0

pσ̂(s) dWQ
1 (s)

)
.

Using the definition of Ỹ and (D.32), we conclude that:

Ỹ (t) = exp

(
−

t∫
0

r̂(s)ds

)
(Y ∗(t))p

= (Y (0))p exp

(
−1

2

t∫
0

p2
(
γS1
)2

(1 − p)2
v(s) ds+

t∫
0

pγS1

1 − p

√
v(s) dWQ

1 (s)

)
. (D.37)

The stochastic exponential term in (D.37) is a martingale, which is proven identically
to the proof of Theorem A.34 on page 248 in Kruse and Nögel (2005) with a minor

adjustment due to the factor pγS1

1−p . Thus, exp

(
−

t∫
0

r̂(s)ds

)
(Y ∗(t))p is a martingale. In

4The proof relies on Novikov’s condition and the (known) conditional density function of v(s) given
v(t), 0 ≤ t ≤ s ≤ T , which is closely related to a non-central Chi-squared distribution.
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particular, we have:

EQ
t,y,v

exp

−
T∫
0

r̂(s)ds

 (Y ∗(T ))p

 = exp

−
t∫

0

r̂(s)ds

 yp. (D.38)

Therefore, we obtain:

EQ
t,y,v

[
(Y ∗(T ))p

p

∣∣∣∣Fv

]
= EQ

t,y,v

exp

 T∫
0

r̂(s)ds

 exp

 T∫
0

−r̂(s)ds

 (Y ∗(T ))p

p

∣∣∣∣∣∣Fv


(i)
= exp

 T∫
0

r̂(s)ds

 1

p
EQ
t,y,v

exp

 T∫
0

−r̂(s)ds

 (Y ∗(T ))p

∣∣∣∣∣∣Fv


(D.38)

= exp

 T∫
0

r̂(s)ds

 exp

 t∫
0

−r̂(s)ds

 yp

p

= exp

 T∫
t

r̂(s)ds

 yp

p
= exp (r̄(T − t))

yp

p
, (D.39)

where we use in (i) Fv-measurability of exp

(
T∫
0

r̂(s)ds

)
. Hence, we get that:

∂

∂y
EQ
t,y,v

[
(Y ∗(T ))p

p
|Fv

]
= yp−1 exp (r̄(T − t)) . (D.40)

Consider now the process exp(−rt)Y ∗(t). Using p = 1 in the previous calculation, we
can easily verify that this process is a martingale under the measure Q̃:

D̃(1)(t, y, {v(s)})
Def.D̃(1)

= EQ
t,y,v [ exp(−r(T − t))D1(Y

∗(T ))| Fv]

(D.19)
= EQ

t,y,v [ exp(−r(T − t))Y ∗(T )| Fv]

= exp(−r(T − t))EQ
t,y,v [Y ∗(T )| Fv]

(D.39)
=

(D.34)
exp(−r(T − t)) exp(r(T − t))y = y.

Therefore, D̃
(1)
y (t, y, {v(s)}) = 1 and we conclude that

Ũ (1)
y (t, y, {v(s)}) = yp−1h(t, {v(s)})D̃(1)

y (t, y, {v(s)})
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holds with h(t, {v(s)}) = exp (r̄(T − t)).

Part 1. Step (a). Terms 2 and 3 – put options on the unconstrained optimal
portfolio. Here we show that the following holds:

Ũ (i)
y (t, y, {v(s)}) = yp−1h(t, {v(s)})D̃(i)

y (t, y, {v(s)}) for i ∈ {2, 3}.

We do that by proving the following relation ∀k > 0:

∂

∂y
EQ
t,y,v

[
1

p
(kp − (Y ∗(T ))p)1{Y ∗(T )<k}

∣∣∣∣Fv

]
= yp−1 exp (r̄(T − t))

· ∂
∂y

EQ̃
t,y,v

[
exp (−r̄(T − t)) (k − Y ∗(T ))1{Y ∗(T )<k}

∣∣Fv

]
,

(D.41)

which has as special cases Ũ
(i)
y (t, y, {v(s)}) = yp−1h(t, {v(s)})D̃

(i)
y (t, y, {v(s)}) for i = 2

(k = K) and i = 3 (k = kv).

To prove (D.41), we show for an arbitrary constant k > 0:

1. ∂
∂yE

Q
t,y,v

[
exp(−r(T − t)) (k − Y ∗(T ))1{Y ∗(T )<k}

∣∣Fv

]
= Φ (d1 (t, y, k, r, σ̄)) − 1

2. EQ
t,y,v

[
1
p (kp − (Y ∗(T ))p)1{Y ∗(T )<k}

∣∣∣Fv

]
= exp (r̄(T − t)) 1

pPut (t, yp, kp, r̄, pσ̄) for

any p ∈ (0, 1) and

EQ
t,y,v

[
1
p (kp − (Y ∗(T ))p)1{Y ∗(T )<k}

∣∣∣Fv

]
= − exp (r̄(T − t)) 1

pCall (t, y
p, kp, r̄, pσ̄)

for any p ∈ (−∞, 0)

3. d1 (t, yp, kp, r̄, pσ̄) = d1 (t, y, k, r, σ̄)

4. the results of Steps 1, 2, 3 yield (D.41),

where d1, Put, Call are defined in (2.17), (2.14), (2.13) respectively.

Part 1. Step (a) 1. We get:

∂

∂y
EQ
t,y,v

[
exp(−r(T − t)) (k − Y ∗(T ))1{Y ∗(T )<k}

∣∣Fv

]
(i)
=

∂

∂y
Put (t, y, k, r, σ̄)

(ii)
= Φ (d1 (t, y, k, r, σ̄)) − 1, (D.42)

where we use in (i) the put-pricing formula due to the measurability of {v(s)} w.r.t. Fv,
in (ii) the formula for the put-option’s delta.
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Part 1. Step (a) 2. For p ∈ (0, 1), we have:

EQ
t,y,v

[
1

p
(kp − (Y ∗(T ))p)1{Y ∗(T )<k}

∣∣∣∣Fv

]
= EQ

t,y,v

[
exp (r̄(T − t)) exp (−r̄(T − t))

1

p
(kp − (Y ∗(T ))p)1{Y ∗(T )<k}

∣∣∣∣Fv

]
(i)
= exp (r̄(T − t))

1

p
EQ
t,y,v

[
exp (−r̄(T − t)) (kp − (Y ∗(T ))p)1{(Y ∗(T ))p<kp}

∣∣Fv

]
(ii)
= exp (r̄(T − t))

1

p
Put (t, yp, kp, r̄, pσ̄) , (D.43)

where in (i) we use that exp (r̄(T − t)) is Fv-measurable and the function xp is increasing

for p ∈ (0, 1), in (ii) we use that exp

(
−

t∫
0

r̂(s)ds

)
(Y ∗(t))p is a Q-martingale and given

Fv we can apply Formula (2.14) for pricing put options in a Black-Scholes market.

For p ∈ (−∞, 0), we have:

EQ
t,y,v

[
1

p
(kp − (Y ∗(T ))p)1{Y ∗(T )<k}

∣∣∣∣Fv

]
= EQ

t,y,v

[
exp (r̄(T − t)) exp (−r̄(T − t))

1

p
(kp − (Y ∗(T ))p)1{Y ∗(T )<k}

∣∣∣∣Fv

]
(i)
= − exp (r̄(T − t))

1

p
EQ
t,y,v

[
exp (−r̄(T − t)) ((Y ∗(T ))p − kp)1{(Y ∗(T ))p>kp}

∣∣Fv

]
(ii)
= − exp (r̄(T − t))

1

p
Call (t, yp, kp, r̄, pσ̄) , (D.44)

where in (i) we use that exp (r̄(T − t)) is Fv-measurable and the function xp is decreasing

for p ∈ (−∞, 0), in (ii) we use that exp

(
−

t∫
0

r̂(s)ds

)
(Y ∗(t))p is a Q-martingale and

given Fv we can apply Formula 2.13 for pricing call options in a Black-Scholes market.

Part 1. Step (a) 3. We obtain:

d1 (t, yp, kp, r̄, pσ̄)
(2.17)

=
ln(yp/kp) +

(
r̄ + 1

2 (pσ̄)2
)

(T − t)√
(pσ̄)2(T − t)

(D.34)
=

ln ((y/k)p) +
∫ T
t

(
pr + p(1−p)

2 (σ̂(s))2
)
ds+ 1

2p
2σ̄2(T − t)√

(pσ̄)2(T − t)

(D.35)
=

p ln(y/k) + pr(T − t) + 1
2

(
p− p2 + p2

)
σ̄2(T − t)

|p|σ̄
√
T − t
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=
p ln(y/k) + pr(T − t) + 1

2pσ̄
2(T − t)

|p|σ̄
√

(T − t)

= sign(p)
ln(y/k) + (r + 1

2 σ̄
2)(T − t)

σ̄
√

(T − t)

= sign(p)d1 (t, y, k, r, σ̄) . (D.45)

Step (a) 4. We obtain for p ∈ (0, 1):

∂

∂y
EQ
t,y,v

[
1

p
(kp − (Y ∗(T ))p)1{Y ∗(T )<k}

∣∣∣∣Fv

]
(D.43)

=
∂

∂y

(
exp (r̄(T − t))

1

p
Put (t, yp, kp, r̄, pσ̄)

)
(i)
= exp (r̄(T − t))

1

p

∂

∂ (yp)
(Put (t, yp, kp, r̄, pσ̄))

∂

∂y
(yp)

(ii)
= exp (r̄(T − t))

1

p
(Φ (d1 (t, yp, kp, r̄, pσ̄)) − 1) pyp−1

(D.45),p>0
= exp (r̄(T − t)) (Φ (d1 (t, y, k, r, σ̄)) − 1) yp−1

(D.42)
= exp (r̄(T − t)) yp−1 ∂

∂y
EQ̃
t,y,v

[
exp (−r(T − t)) (k − Y ∗(T ))1{Y ∗(T )<k}

∣∣Fv

]
,

where we use in (i) the Chain rule, in (ii) the delta of a put option.

We obtain for p < 0:

∂

∂y
EQ
t,y,v

[
1

p
(kp − (Y ∗(T ))p)1{Y ∗(T )<k}

∣∣∣∣Fv

]
(D.44)

=
∂

∂y

(
− exp (r̄(T − t))

1

p
Call (t, yp, kp, r̄, pσ̄)

)
(i)
= − exp (r̄(T − t))

1

p

∂

∂ (yp)
(Call (t, yp, kp, r̄, pσ̄))

∂

∂y
(yp)

(ii)
= − exp (r̄(T − t))

1

p
Φ (d1 (t, yp, kp, r̄, pσ̄))

∂

∂y
(yp)

(D.45),p<0
= − exp (r̄(T − t)) Φ (−d1 (t, y, k, r, σ̄)) yp−1

(iii)
= − exp (r̄(T − t)) (1 − Φ (d1 (t, y, k, r, σ̄))) yp−1

= exp (r̄(T − t)) (Φ (d1 (t, y, k, r, σ̄)) − 1) yp−1

(D.42)
= exp (r̄(T − t)) yp−1 ∂

∂y
EQ̃
t,y,v

[
exp (−r(T − t)) (k − Y ∗(T ))1{Y ∗(T )<k}

∣∣Fv

]
,

where we use in (i) the Chain rule, in (ii) the delta of a call option, in (iii) the property
Φ(−x) = 1 − Φ(x).
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So for any p ∈ (−∞, 0) ∪ (0, 1) we have shown that (D.31) holds for i ∈ {2, 3}.

Part 1. Step (a). Term 4 – binary option on the optimal unconstrained
portfolio. Here we show that the following holds for the proper Lagrange multiplier:

Ũ (4)
y (t, y, {v(s)}) = yp−1h(t, {v(s)})D̃(4)

y (t, y, {v(s)})

Def.⇐⇒ ∂

∂y
EQ
t,y,v

[
1

p
(Kp − kpv + pλε)1{Y ∗(T )<kε}|Fv

]
= yp−1h(t, {v(s)})

· ∂
∂y

EQ̃
t,y,v

[
exp (−r(T − t)) (K − kv)1{Y ∗(T )<kε}|Fv

]
⇐⇒ 1

p
(Kp − kpv + pλε)

∂

∂y
Qt,y,v(Y ∗(T ) < kε|Fv) = yp−1h(t, {v(s)})(K − kv)

· exp (−r(T − t))
∂

∂y
Q̃t,y,v(Y ∗(T ) < kε|Fv). (D.46)

To prove (D.46), we use the relation5:

∂

∂y
Qt,y,v(Y ∗(T ) < k|Fv) = yp−1 exp (r̄(T − t))︸ ︷︷ ︸

=h(t,{v(s)})

1

kp−1

· exp (−r(T − t))
∂

∂y
Q̃t,y,v(Y ∗(T ) < k|Fv),

(D.47)

which we show by calculating explicitly conditional probabilities on both sides of the
relation.

First, we calculate RHS of (D.47). Recall that under the EMM Q̃ we have:

dY ∗(t) = Y ∗(t)
[
rdt+ σ̂(t)dW Q̃

1 (t)
]
.

Since σ̂(t) is Fv-measurable, as per (D.32), we get:

Y ∗(T )|Y ∗(t) = y,Fv
d.
= y exp

 T∫
t

(
r − 1

2
(σ̂(s))2

)
ds+

T∫
t

σ̂(s) dW Q̃
1 (s)

 , (D.48)

where
d.
= stands for “equal in distribution”.

5This is an extension of Equation (34) in Kraft and Steffensen (2013) to a Black-Scholes market with
time-dependent coefficients
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Therefore, we get:

exp (−r(T − t))
∂

∂y
Q̃t,y,v(Y ∗(T ) < k|Fv)

(D.48)
=

∂

∂y
Q̃
(
y exp

(∫ T

t

(
r − 1

2
(σ̂(s))2

)
ds+

∫ T

t
σ̂(s) dW Q̃

1 (s)

)
< k

∣∣∣∣Fv

)
· exp (−r(T − t))

(D.35)
= exp (−r(T − t))

∂

∂y
Q̃
(∫ T

t
σ̂(s) dW Q̃

1 (s) < ln (k/y) −
(
r − 1

2
σ̄2
)

(T − t)

∣∣∣∣Fv

)

= exp (−r(T − t))
∂

∂y
Q̃

 ∫ T
t σ̂(s) dW Q̃

1 (s)

σ̄
√
T − t

<
ln (k/y) −

(
r − 1

2 σ̄
2
)

(T − t)

σ̄
√
T − t

∣∣∣∣∣∣Fv


(i)
= exp (−r(T − t))

∂

∂y
Φ

(
ln (k/y) −

(
r − 1

2 σ̄
2
)

(T − t)

σ̄
√
T − t

)

= exp (−r(T − t))
1√
2π

exp

−1

2

(
ln (k/y) −

(
r − 1

2 σ̄
2
)

(T − t)

σ̄
√
T − t

)2


· 1

σ̄
√
T − t

(
−1

y

)
= exp (−r(T − t)) exp

(
−1

2

(
ln

(
k

y

)2

− 2 ln

(
k

y

)(
r − 1

2
σ̄2
)

(T − t)

+

((
r − 1

2
σ̄2
)

(T − t)

)2)
/
(
σ̄2(T − t)

))
·

(
− 1√

2π

1

y
√
σ̄2(T − t)

)

= exp

(
−1

2

(
ln

(
k

y

)2

− 2 ln

(
k

y

)(
r +

1

2
σ̄2 − σ̄2

)
(T − t) + 2rσ̄2(T − t)2

+

((
r − 1

2
σ̄2
)

(T − t)

)2)
/
(
σ̄2(T − t)

))
·

(
− 1√

2π

1

y
√
σ̄2(T − t)

)

= exp

(
−1

2

(
ln

(
k

y

)2

− 2 ln

(
k

y

)(
r +

1

2
σ̄2
)

(T − t) + 2 ln

(
k

y

)
σ̄2(T − t)

+

((
r +

1

2
σ̄2
)

(T − t)

)2)
/
(
σ̄2(T − t)

))
·

(
− 1√

2π

1

y
√
σ̄2(T − t)

)
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= exp

−1

2

ln
(
k
y

)2
− 2 ln

(
k
y

) (
r + 1

2 σ̄
2
)

(T − t) +
((
r + 1

2 σ̄
2
)

(T − t)
)2

σ̄2(T − t)


· exp

(
− ln

(
k

y

))
·

(
− 1√

2π

1

y
√
σ̄2(T − t)

)

= exp

−1

2

 ln
(
k
y

)
−
(
r + 1

2 σ̄
2
)

(T − t)√
σ̄2(T − t)

2
 y

k

(
− 1√

2π

1

y
√
σ̄2(T − t)

)
,

where we use in (i)
∫ T
t σ̂(s) dW Q̃

1 (s)

σ̄
√
T−t

∣∣∣∣Fv
d.
= N(0, 1).

Thus, we get:

exp (−r(T − t))
∂

∂y
Q̃t,y,v(Y ∗(T ) < k|Fv)

(2.17)
=

y

k
fN(0,1) (d1 (t, y, k, r, σ̄))

∂

∂y
d1 (t, y, k, r, σ̄) ,

(D.49)

where fN(0,1) is the probability density function of a standard normal random variable.

Next we calculate the LHS in (D.46). Recall that under the Q-measure (see also (D.32)):

dY ∗(t) = Y ∗(t)
[(
r + (1 − p) (σ̂(t))2

)
dt+ σ̂(t)dWQ

1 (t)
]
.

Since σ̂(t) is Fv-measurable, as per (D.32), we get under the Q-measure:

Y ∗(T )|Y ∗(t)=y,Fv

d.
= y exp

( T∫
t

(
r + (1 − p) (σ̂(s))2 − 1

2
(σ̂(s))2

)
ds

+

T∫
t

σ̂(s) dWQ
1 (s)

)
.

(D.50)

So:

∂

∂y
Qt,y,v(Y ∗(T ) < k|Fv)

(D.50)
=

∂

∂y
Q

(
y exp

( T∫
t

(
r + (1 − p) (σ̂(s))2 − 1

2
(σ̂(s))2

)
ds

+

T∫
t

σ̂(s) dWQ
1 (s)

)
< k

)
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(D.35)
=

∂

∂y
Q
(∫ T

t
σ̂(s) dWQ

1 (s) < ln (k/y) −
(
r + (1 − p)σ̄2 − 1

2
σ̄2
)

(T − t)

∣∣∣∣Fv

)
=

∂

∂y
Q

( ∫ T
t σ̂(s) dWQ

1 (s)√
σ̄2(T − t)

<
ln (k/y) −

(
r + 1

2 σ̄
2 − pσ̄2

)
(T − t)√

σ̄2(T − t)

∣∣∣∣∣Fv

)
(i)
=

∂

∂y
Φ

(
ln (k/y) −

(
r + 1

2 σ̄
2 − pσ̄2

)
(T − t)√

σ̄2(T − t)

)
(D.51)

=
1√
2π

exp

−1

2

(
ln (k/y) −

(
r + 1

2 σ̄
2 − pσ̄2

)
(T − t)√

σ̄2(T − t)

)2
 1√

σ̄2(T − t)

(
−1

y

)

= exp

(
−1

2

1

σ̄2(T − t)

(
ln

(
k

y

))2

− 2 ln

(
k

y

)(
r +

1

2
σ̄2 − pσ̄2

)
(T − t)

+

((
r +

1

2
σ̄2 − pσ̄2

)
(T − t)

)2
)(

− 1√
2π

1

y
√
σ̄2(T − t)

)

= exp

(
−1

2

1

σ̄2(T − t)

((
ln

(
k

y

))2

− 2 ln

(
k

y

)(
r +

1

2
σ̄2
)

(T − t)

+

((
r +

1

2
σ̄2
)

(T − t)

)2

+ 2p ln

(
k

y

)
σ̄2(T − t) − 2

(
r +

1

2
σ̄2
)

(T − t)pσ̄2

· (T − t) +
(
pσ̄2(T − t)

)2))(− 1√
2π

1

y
√
σ̄2(T − t)

)

= − 1√
2π

exp

−1

2

 ln
(
k
y

)
−
(
r + 1

2 σ̄
2
)

(T − t)√
σ̄2(T − t)

2
 exp

(
−p ln

(
k

y

))

· exp

((
pr +

1

2
pσ̄2
)

(T − t) − 1

2
p2σ̄2(T − t)

)(
1

y
√
σ̄2(T − t)

)
(2.17)

=
(D.34)

fN(0,1) (d1 (t, y, k, r, σ̄))
(y
k

)p
exp (r̄(T − t))

∂

∂y
d1 (t, y, k, r, σ̄) (D.52)

(D.49)
= yp−1 exp (r̄(T − t))

1

kp−1
exp (−r(T − t))

∂

∂y
Q̃t,y,v(Y ∗(T ) < k|Fv),

where we use in (i) that
∫ T
t σ̂(s) dWQ

1 (s)√
σ̄2(T−t)

∣∣∣∣Fv
d.
= N(0, 1). So (D.47) is proven.
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Plugging (D.47) for k = kε in the left-hand side of (D.46), we obtain:

1

p
(Kp − kpv + pλε) y

p−1 exp (r̄(T − t))
1

kp−1
ε

exp (−r(T − t))
∂

∂y
Q̃t,y,v(Y ∗(T ) < kε|Fv)

= yp−1h(t, {v(s)})(K − kv) exp (−r(T − t))
∂

∂y
Q̃t,y,v(Y ∗(T ) < kε|Fv).

Since h(t, {v(s)}) = exp (r̄(T − t)), we conclude that (D.46) holds when λε satisfies the
following equation:

1

p
(Kp − kpv + pλε)

1

kp−1
ε

!
= (K − kv)

p̸=0⇔ λε
!

= (K − kv) kp−1
ε − Kp − kpv

p
.

So for any p ∈ (−∞, 0) ∪ (0, 1), we can find λε that ensures that (D.31) holds for i = 4.

Since we have shown that for D and λε as above

Ũ (i)
y (t, y, {v(s)}) = yp−1h(t, {v(s)})D̃(i)

y (t, y, {v(s)})i ∈ {1, 2, 3, 4},

we conclude that (D.30) holds, i.e.:

Ũy(t, y, {v(s)}) =
∂

∂y
EQ
t,y,v

[
U(D(Y ∗(T )))|Fv

]
= yp−1 ∂

∂y
EQ̃
t,y,v [h(t, {v(s)}) exp(−r(T − t))D(Y ∗(T ))|Fv]

= yp−1h(t, {v(s)})D̃y(t, y, {v(s)}).

Part 1. Step (b) We take on both sides of the above equality expectation w.r.t. Q
and get:

EQ
t,y,v

[
∂

∂y
EQ
t,y,v

[
U(D(Y ∗(T )))|Fv

]]
= EQ

t,y,v

[
yp−1 ∂

∂y
EQ̃
t,y,v [h(t, {v(s)}) exp(−r(T − t))D(Y ∗(T ))|Fv]

]
.

Since the variance process has the same dynamics under both Q and Q̃ = Q̃(0) for ρ = 0
and γv = 0, we obtain that:

EQ
t,y,v

[
∂

∂y
EQ
t,y,v

[
U(D(Y ∗(T )))|Fv

]]
= EQ̃

t,y,v

[
yp−1 ∂

∂y
EQ̃
t,y,v [h(t, {v(s)}) exp(−r(T − t))D(Y ∗(T ))|Fv]

]
.

(D.53)
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Next we show that the following holds by applying Lemma D.4.1:

∂

∂y
EQ
t,y,v

[
EQ
t,y,v

[
U(D(Y ∗(T )))|Fv

]]
= yp−1 ∂

∂y
EQ̃
t,y,v

[
EQ̃
t,y,v [h(t, {v(s)}) exp(−r(T − t))D(Y ∗(T ))|Fv]

]
.

(D.54)

We will use the following equality:

EQ
t,y,v [exp (r̄(T − t))] = EQ

t,v

exp

 T∫
t

r̂(s) ds

 = exp(a(t) + b(t)v), (D.55)

which follows from the definition of the value function, Equation (6.10) and Equation
(D.39).

Consider the first term of the LHS in (D.53) with U(D(y)) as in (D.20). We want to
show that

∂

∂y
EQ
t,y=y∗,v

[
EQ
t,y=y∗,v

[
U

D
1 (Y ∗(T ))|Fv

]]
= EQ

t,y=y∗,v

[
∂

∂y
EQ
t,y=y∗,v

[
U

D
1 (Y ∗(T ))|Fv

]] (D.56)

holds for any y∗ ∈ (0,+∞). Take an arbitrary but fixed y∗ ∈ (0,+∞). The inner
conditional expectation in (D.56) equals:

EQ
t,y=y∗,v

[
U

D
1 (Y ∗(T ))|Fv

]
(i)
= EQ

t,y=y∗,v

[
(Y ∗(T ))p

p
|Fv

]
(D.39)

= exp (r̄(T − t))
yp

p

∣∣∣∣
y=y∗

,

where we use in (i) the definition of U
D
1 (·) as per (D.20). Therefore, we can rewrite

(D.56) as:

∂

∂y
EQ
t,v

[
exp (r̄(T − t))

yp

p

∣∣∣
y=y∗

]
= EQ

t,v

[
∂

∂y
exp (r̄(T − t))

yp

p

∣∣∣
y=y∗

]
. (D.57)

We want to use now Lemma D.4.1. Take δ ∈ (0, y∗) and denote by I(y∗, δ) := (y∗ −
δ, y∗ + δ). Set f(y, r̄) := exp (r̄(T − t)) · yp/p, i.e., r̄ is a random variable that plays the
role of X in the statement of Lemma D.4.1. Next we verify that all conditions of the
lemma are satisfied. The first condition holds, since ∀ ỹ ∈ I(y∗, δ):

EQ
t,v [f(ỹ, r̄)]

Def.
= EQ

t,v

[
exp (r̄(T − t))

ỹp

p

]
(D.55)

=
ỹp

p
exp(a(t) + b(t)v) < +∞.

The second condition, obviously, holds, i.e., ∂f(ỹ, r̄)/∂y exists and is continuous at
any ỹ ∈ I(y∗, δ). As for the third condition, we can choose the dominating variable
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B := (y∗ − δ)p−1 exp (r̄(T − t)), since for any ỹ ∈ I(y∗, δ):∣∣∣∣ ∂∂yf(ỹ, r̄)

∣∣∣∣ Def.
=

∣∣∣∣∣ ∂∂y exp (r̄(T − t))
yp

p

∣∣∣∣
y=ỹ

∣∣∣∣∣ =
∣∣ỹp−1 exp (r̄(T − t))

∣∣
p<1
<

y∗−δ<ỹ
(y∗ − δ)p−1 exp (r̄(T − t)) = B

and EQ
t,v [B] < +∞ due to y∗ − δ > 0 and (D.55). Thus, we can apply Lemma D.4.1

and conclude that (D.56) holds for y∗ ∈ (0,+∞) chosen at the beginning. Since it was
arbitrarily chosen, (D.56) is fulfilled for all y∗ ∈ (0,+∞).

Consider now the second term of the LHS in (D.53) and assume that p ∈ (0, 1)6. We
aim at proving

∂

∂y
EQ
t,y=y∗,v

[
EQ
t,y=y∗,v

[
U

D
2 (Y ∗(T ))|Fv

]]
= EQ

t,y=y∗,v

[
∂

∂y
EQ
t,y=y∗,v

[
U

D
2 (Y ∗(T ))|Fv

]] (D.58)

for all y∗ ∈ (0,+∞). Take an arbitrary but fixed y∗ ∈ (0,+∞). The inner conditional
expectation in (D.58) equals:

EQ
t,y=y∗,v

[
U

D
2 (Y ∗(T ))|Fv

]
(i)
= EQ

t,y=y∗,v

[
1

p
(Kp − (Y ∗(T ))p)1{Y ∗(T )<K}

∣∣∣∣Fv

]
(ii)
= exp (r̄(T − t))

1

p
Put (t, yp,Kp, r̄, pσ̄) |y=y∗ ,

where we use in (i) the definition of U
D
2 (·) as per (D.20), in (ii) (D.43) for k = K.

Therefore, we can rewrite (D.58) as:

∂

∂y
EQ
t,v

[
exp (r̄(T − t))

1

p
Put (t, yp,Kp, r̄, pσ̄) |y=y∗

]
= EQ

t,v

[
∂

∂y
exp (r̄(T − t))

1

p
Put (t, yp,Kp, r̄, pσ̄) |y=y∗

]
.

(D.59)

Again we plan to use Lemma D.4.1 to justify the interchangeability of the partial deriva-
tive and the expectation operators. Take δ ∈ (0, y∗) and let I(y∗, δ) := (y∗ − δ, y∗ + δ).
Since r̄ can seen as a function of σ̄ according to (D.35), we set

f(y, σ̄) := exp (r̄(T − t))
1

p
Put (t, yp,Kp, r̄, pσ̄)

6The case of p ∈ (−∞, 0) is analogous, call options are considered instead of the put options
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and verify that all three conditions of the lemma hold. The first condition is satisfied:

EQ
t,v [f(ỹ, σ̄)]

Def.
= EQ

t,v

[
exp (r̄(T − t))

1

p
Put (t, ỹp,Kp, r̄, pσ̄)

]
(i)

≤ 1

p
KpEQ

t,v [exp (r̄(T − t))]

(D.55)
=

1

p
Kp exp(a(t) + b(t)v) < +∞ ∀ ỹ ∈ I(y∗, δ),

where we use in (i) that the price of a put option is not higher than its strike. The
second condition, obviously, holds, i.e., ∂f(ỹ, σ̄)/∂y exists and is continuous at each
ỹ ∈ I(y∗, δ). As for the third condition, we can choose the dominating random variable
B := (y∗ − δ)p−1 exp (r̄(T − t)), since for any ỹ ∈ I(y∗, δ):∣∣∣∣ ∂∂yf(ỹ, σ̄)

∣∣∣∣ Def.
=

∣∣∣∣∣ ∂∂y
(

exp (r̄(T − t))
1

p
Put (t, yp,Kp, r̄, pσ̄)

) ∣∣∣∣
y=ỹ

∣∣∣∣∣
(i)
=
∣∣exp (r̄(T − t)) (Φ (d1 (t, ỹ,K, r, σ̄)) − 1) ȳp−1

∣∣
(ii)

≤ (y∗ − δ)p−1 exp (r̄(T − t)) |Φ (d1 (t, ȳ,K, r, σ̄)) − 1|
(iii)

≤ (y∗ − δ)p−1 exp (r̄(T − t)) = B,

where we use in (i) the result from Part 1, Step (a) 4 above, in (ii) p < 1 and exp(·) > 0,
in (iii) Φ(·) ∈ [0, 1] as a distribution function. Since EQ

t,v [B] < +∞ due to y∗ − δ > 0
and (D.55), we can apply Lemma D.4.1 and conclude that (D.58) holds for chosen
y∗ ∈ (0,+∞). As y∗ was arbitrarily fixed, we conclude that (D.58) is satisfied for any
y∗ ∈ (0,+∞).

The third term is of the same form as the second one but with a different strike. Thus,
the interchangeability of the partial derivative and the expectation operators in this case

follows analogously, i.e., (D.58) holds also for U
D
3 (·).

Finally, we consider the fourth term and prove that for any y∗ ∈ (0,+∞) the following
holds:

∂

∂y
EQ
t,y=y∗,v

[
EQ
t,y=y∗,v

[
U

D
4 (Y ∗(T ))|Fv

]]
= EQ

t,y=y∗,v

[
∂

∂y
EQ
t,y=y∗,v

[
U

D
4 (Y ∗(T ))|Fv

]]
.

(D.60)
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Take an arbitrary but fixed y∗. The inner conditional expectation in (D.60) equals:

EQ
t,y=y∗,v

[
U

D
4 (Y ∗(T ))|Fv

]
(i)
= EQ

t,y=y∗,v

[
1

p
(Kp − kpv + pλε)1{Y ∗(T )<kε}|Fv

]
=

1

p
(Kp − kpv + pλε)Qt,y=y∗,v (Y ∗(T ) < kε)

(ii)
=

1

p
(Kp − kpv + pλε) Φ

(
ln (kε/y) −

(
r + 1

2 σ̄
2 − pσ̄2

)
(T − t)√

σ̄2(T − t)

)∣∣∣∣
y=y∗

,

where we use in (i) the definition of U
D
4 (·) as per (D.20), in (ii) (D.51). Taking also into

account that (Kp − kpv + pλε) /p is a constant independent of y, we conclude that (D.60)
is equivalent to:

∂

∂y
EQ
t,v

[
Φ

(
ln (kε/y) −

(
r + 1

2 σ̄
2 − pσ̄2

)
(T − t)√

σ̄2(T − t)

)∣∣∣∣
y=y∗

]

= EQ
t,v

[
∂

∂y
Φ

(
ln (kε/y) −

(
r + 1

2 σ̄
2 − pσ̄2

)
(T − t)√

σ̄2(T − t)

)∣∣∣∣
y=y∗

]
.

(D.61)

As before, we want to use Lemma D.4.1 to justify the interchangeability of the partial
derivative and the expectation operators. Take δ ∈ (0, y∗) and let I(y∗, δ) := (y∗ −
δ, y∗ + δ). Since r̄ can seen as a function of σ̄ according to (D.35), we set

f(y, σ̄) := Φ

(
ln (kε/y) −

(
r + 1

2 σ̄
2 − pσ̄2

)
(T − t)√

σ̄2(T − t)

)

and verify that all three conditions of the lemma hold. The first condition is satisfied:

EQ
t,v [f(ỹ, σ̄)]

Def.
= EQ

t,v

[
Φ

(
ln (kε/y) −

(
r + 1

2 σ̄
2 − pσ̄2

)
(T − t)√

σ̄2(T − t)

)]
(i)

≤ 1 ∀ ỹ ∈ I(y∗, δ),

where we use in (i) Φ(·) ∈ [0, 1]. The second condition, obviously, holds, i.e., ∂f(ỹ, σ̄)/∂y
exists and is continuous at each ỹ ∈ I(y∗, δ). As for the third condition, we can choose
the dominating random variable

B := (y∗ − δ)p−1kε
−p
(√

2π
)−1

exp (r̄(T − t))

(
1√

σ̄2(T − t)

)
,

since for any ỹ ∈ I(y∗, δ):

∣∣∣∣ ∂∂yf(ỹ, σ̄)

∣∣∣∣ Def.
=

∣∣∣∣∣∣ ∂∂yΦ

(
ln (kε/y) −

(
r + 1

2 σ̄
2 − pσ̄2

)
(T − t)√

σ̄2(T − t)

)∣∣∣∣∣
y=ỹ

∣∣∣∣∣∣
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(i)
=

∣∣∣∣∣fN(0,1) (d1 (t, ỹ, kε, r, σ̄))

(
ỹ

kε

)p

exp (r̄(T − t))

(
1

ỹ
√
σ̄2(T − t)

)∣∣∣∣∣
(ii)
= ỹp−1kε

−pfN(0,1) (d1 (t, ỹ, kε, r, σ̄)) exp (r̄(T − t))

(
1√

σ̄2(T − t)

)
(iii)

≤ (y∗ − δ)p−1kε
−p
(√

2π
)−1

exp (r̄(T − t))

(
1√

σ̄2(T − t)

)
= B,

where we use in (i) Equations (D.52) and (2.17), in (ii) the fact that each multiplication
term in the previous line is positive, in (iii) p < 1 and fN(0,1)(·) ≤ 1/

√
2π.

The dominating variable B is integrable:

EQ
t,v [B]

Def.
= EQ

t,v

[
(y∗ − δ)p−1kε

−p
(√

2π
)−1

exp (r̄(T − t))

(
1√

σ̄2(T − t)

)]

= (y∗ − δ)p−1kε
−p
(√

2π
)−1

EQ
t,v

[
exp (r̄(T − t))

(
1√

σ̄2(T − t)

)]

(i)

≤ (y∗ − δ)p−1kε
−p
(√

2π
)−1

√√√√√EQ
t,v

[
(exp (r̄(T − t)))2

]
EQ
t,v

( 1√
σ̄2(T − t)

)2


(D.34)
=

(D.32)
(y∗ − δ)p−1kε

−p
(√

2π
)−1

∣∣∣∣1 − p

γS1

∣∣∣∣
EQ

t,v


 T∫

t

v(s) ds

−1



1
2

·

EQ
t,v

exp

2

T∫
t

(
pr +

p(1 − p)

2

(
γS1

1 − p

√
v(s)

)2
)
ds


1
2

= (y∗ − δ)p−1kε
−p
(√

2π
)−1

∣∣∣∣1 − p

γS1

∣∣∣∣︸ ︷︷ ︸
(ii)
< +∞

(
EQ
t,v


 T∫

t

v(s) ds

−1


︸ ︷︷ ︸
(iii)
< +∞

) 1
2

· exp (2pr(T − t))︸ ︷︷ ︸
<+∞

(
EQ
t,v

exp

p (γS1
)2

1 − p

T∫
t

v(s) ds


︸ ︷︷ ︸

(iv)
< +∞

) 1
2

,

where we use in (i) the Cauchy-Schwartz inequality, in (ii) the inequality y∗ − δ > 0 due
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to the choice of δ, in (iii) we use Theorem 4.1a7 for r = −1 in Dufresne (2001), in (iv)

we use the assumption of our corollary p
1−p

(
γS1
)2 ≤ κ2

2σ2 and Proposition 5.18 in Kraft
(2005).

Since all three conditions of Lemma D.4.1 hold, we conclude that (D.60) holds at y∗ ∈
(0,+∞). As y∗ was arbitrarily fixed, we conclude that (D.60) is satisfied for any y∗ ∈
(0,+∞).

So far we have shown that the LHS of (D.53) equals the LHS of (D.54) by showing the
equality for each of the four pieces of the modified utility. Analogously, we can show
via Lemma D.4.1 that the RHS of the (D.53) equals the RHS (D.54) holds, and, thus,
(D.54) is equivalent to (D.53).

Applying to (D.54) the tower property of conditional expectation, we obtain:

∂

∂y
EQ
t,y,v

[
U(D(Y ∗(T )))

]
= yp−1 ∂

∂y
EQ̃
t,y,v [h(t, {v(s)}) exp(−r(T − t))D(Y ∗(T ))] .

Part 1. Step (c) we show that there exists a function H(t, v) such that:

EQ̃
t,y,v [h(t, {v(s)}) exp(−r(T − t))D(Y ∗(T ))]︸ ︷︷ ︸

=:D̂(t,y,v)

= H(t, v)DQ̃(t, y, v).

Recall that the function (where Q̃ is Q̃(γv = 0))

DQ̃(t, y, v) = EQ̃
t,y,v [exp (−r(T − t))D(Y ∗(T ))]

has the following FK representation given ρ = 0 and γv = 0:

DQ̃
t = rDQ̃ − ryDQ̃

y − κ (θ − v)DQ̃
v − 1

2
v
(
y2(π∗u)2DQ̃

yy + σ2DQ̃
vv

)
;

DQ̃(T, y, v) = D(y).

The function D̂(t, y, v) has the following FK representation:

D̂t = (r − r̂(t, v)) D̂ − ryD̂y − κ (θ − v) D̂v −
1

2
v
(
y2(π∗u)2D̂yy + σ2D̂vv

)
;

D̂(T, y, v) = D(y),

7It states that expectation of the integrated square-root process raised to any finite power is finite

8This proposition provides conditions under which the expression EQ
t,v

[
exp

(
−av(T )− b

T∫
t

v(s) ds

)]
is

well-defined
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where r̂(t, v) = p
(
r +

(γS1)
2
v

2(1−p)

)
.

We plug the ansatz D̂(t, y, v) = DQ̃(t, y, v)H (t, v) into the FK PDE for D̂ :

DQ̃
t H +DQ̃Ht = (r − r̂(t, v))DQ̃H − ryDQ̃

y H − κ (θ − v)
(
DQ̃

v H +DQ̃Hv

)
−1

2
vy2(π∗u(t))2DQ̃

yyH − 1

2
vσ2

(
DQ̃Hvv +DQ̃

vvH + 2DQ̃
v Hv

)
.

Collecting the terms related to the PDE for DQ̃, we get:

H

(
DQ̃

t − rDQ̃ + ryDQ̃
y + κ (θ − v)DQ̃

v +
1

2
v
(
y2(π∗u)2DQ̃

yy − σ2DQ̃
vv

))
︸ ︷︷ ︸

=0

= −DQ̃Ht − r̂(t, v)DQ̃H − κ (θ − v)DQ̃Hv −
1

2
vσ2DQ̃Hvv − vσ2 DQ̃

v︸︷︷︸
=0

Hv.

Using the PDE for DQ̃, Condition (6.23) DQ̃
v = 0 and DQ̃ > 0, we obtain a PDE for

H (t, v), which is independent of y:

0 = −Ht − r̂(t, v)H − κ (θ − v)Hv −
1

2
vσ2Hvv;

H (T, v) = 1.

Plugging the explicit form of r̂(t, v) = p(r +
(γS1)

2
v

2(1−p) ) in the above PDE for H(t, v) and

collecting the terms multiplied by v, we obtain the same PDE as (D.3) for ρ = 0, namely:

0 = Ht + κθHv + prH + v

(
1

2
σ2Hvv − κHv +

1

2

p
(
γS1
)2

1 − p
H

)
.

Thus, we conclude that H(t, v) = exp (a(τ(t)) + b(τ(t))v), where a(τ(t)) and b(τ(t)) are
given by (D.6) and (D.7) respectively for ρ = 0.

Hence, D̂(t, y, v) = H(t, v)DQ̃(t, y, v) = exp (a(t) + b(t)v)DQ̃(t, y, v), which completes
the proof that (SC0) holds for ρ = 0 and γv = 0. By Lemma 6.1.4, Condition (6.21)
holds.

Part 2. Condition (6.23) is satisfied due to the assumption that (y, kv, kε) solve SNLE
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(NLS(y, kv, kε)):
DQ̃(t, y, v) = x, Vc

(
t,DQ̃ (t, y, v) , v

)
= U

D,Q
(t, y, v);

Q (Y ∗(T ) < kε|Y ∗(t) = y, v(t) = v) = ε, VaR-constraint;

DQ̃
v (t, y, v) = 0, Condition (6.23),

in particular the third equation. Note that there are three variables and three equations.

Part 3. Since ρ = 0 by assumption in this Corollary, Condition (6.21) holds as per Part
1, and Condition (6.23) is satisfied as per Part 2, we can apply Theorem 6.1.3 for γv = 0
and conclude that

Xx,π∗
c (T ) = D(Y y,π∗

u(T )) with x =

DQ̃(t,y,v)=︷ ︸︸ ︷
EQ̃(γv)
t,y,v

[
exp (−r(T − t))D(Y y,π∗

u(T ))
]
;

Vc (t, x, v) = U
D,Q

(t, y, v);

π∗c (t) = π∗u(t) · y ·
DQ̃

y (t, y, v)

DQ̃(t, y, v)
.
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Teplá, L. (2001). Optimal investment with minimum performance constraints. Journal
of Economic Dynamics and Control 25 (10), 1629 – 1645.

Tversky, A. and D. Kahneman (1992). Advances in prospect theory: Cumulative repre-
sentation of uncertainty. Journal of Risk and Uncertainty 5, 297–323.

Ulbrich, M. and S. Ulbrich (2012). Nichtlineare Optimierung. Basel: Birkhauser Verlag.

Wiesemann, W., A. Tsoukalas, P.-M. Kleniati, and B. Rustem (2013). Pessimistic bilevel
optimization. SIAM Journal on Optimization 23 (1), 353–380.

Wiggins, J. B. (1987). Option values under stochastic volatility: Theory and empirical
estimates. Journal of financial economics 19 (2), 351–372.

Yang, L., C. Zhang, and H. Zhu (2021). Robust Stochastic Stackelberg Differential Rein-
surance and Investment Games for an Insurer and a Reinsurer with Delay. Methodology
and Computing in Applied Probability , 1–24.

Yuan, Y., Z. Liang, and X. Han (2021). Robust reinsurance contract with asymmet-
ric information in a stochastic Stackelberg differential game. Scandinavian Actuarial
Journal , 1–28.

Zagst, R. (2002). Interest-Rate Management. Springer Berlin, Heidelberg.

Zemkoho, A. B. (2016). Solving ill-posed bilevel programs. Set-Valued and Variational
Analysis 24 (3), 423–448.

Zou, B. (2017). Optimal investment in hedge funds under loss aversion. International
Journal of Theoretical and Applied Finance 20 (03), 1750014.

262


	Introduction
	Motivation and objectives
	Structure of the thesis
	Research articles and scientific contributions

	Mathematical preliminaries
	The basic financial market model
	Basics of relevant financial options
	Utility functions
	Portfolio optimization techniques
	Martingale approach
	Stochastic control approach

	Selected mathematical tools
	Calculus
	Probability theory
	Non-linear optimization


	Risk sharing between a hedge-fund manager and an investor
	Problem setting
	Hedge-fund model
	Portfolio optimization and fee-structure preferences

	Solution approach
	General setting
	Explicit solution for HARA-utility functions

	Numerical studies
	Algorithm overview
	Model parametrization
	From traditional to first-loss fee structure
	First-best Pareto optimal fee structures and fee preferences
	Sensitivity analysis of preferred fee structures


	Optimal investment under risk limitation and risk sharing in insurance
	Problem setting
	Solution to the optimization problem
	Relation between portfolios in non-linear and linear markets
	Solving the transformed problem in the market with basic assets
	Reinsurance optimality

	Numerical studies
	Model parametrization and numerical algorithms
	Monetary benefits of reinsurance
	Reinsurance proportion
	Sensitivity analysis of optimal investment-reinsurance strategies


	Optimal risk sharing between an insurer and a reinsurer
	Problem setting
	Solution to the Stackelberg game
	Solution to the optimization problem of the insurer
	Solution to the optimization problem of the reinsurer
	Stackelberg equilibrium

	Explicit solutions for power utility functions
	Numerical studies
	Parameter selection
	Stackelberg equilibrium and its sensitivity
	Impact of deviating from the Stackelberg equilibrium


	Optimal investment under risk limitation and stochastic volatility
	Constrained portfolio optimization problem and its solution
	Solution to the constrained problem
	Explicit formulas

	Numerical studies
	Model parameterization and numerical procedure
	Numerical results


	Summary and conclusions
	Appendix to Chapter 3
	Proofs of main results
	Auxiliary results with proofs

	Appendix to Chapter 4
	Proofs of main results
	Proofs of auxiliary results

	Appendix to Chapter 5
	Proofs for general utility functions
	Explicit equilibrium for power-utility functions

	Appendix to Chapter 6
	Solution to the unconstrained optimization problem
	Proofs of main results
	Explicit formulas for the left-hand side of NLS( y,kv,k)
	Alternative proof for the case =0

	Bibliography

