
Technische Universität München
TUM School of Natural Sciences

Ab Initio Studies of the Activity and Selectivity of
Transition Metal Catalysts for CO Hydrogenation

Martin Maximilian Deimel

Dissertation





Technische Universität München
TUM School of Natural Sciences

Ab Initio Studies of the Activity and Selectivity of
Transition Metal Catalysts for CO Hydrogenation

Martin Maximilian Deimel

Vollständiger Abdruck der von der TUM School of Natural Sciences der Technischen Uni-
versität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigten Dissertation.

Vorsitz: Prof. Dr. Christopher Stein

Prüfer*innen der Dissertation:

1. Prof. Dr. Karsten Reuter

2. Assoc. Prof. Dr. Mie Andersen

Die Dissertation wurde am 29.11.2022 bei der Technischen Universität München eingereicht
und durch die TUM School of Natural Sciences am 04.01.2023 angenommen.





„Aber ich finde trotzdem immer Trost in Wissenschaft.
Mit jeder Frage, die man beantwortet, tun sich mindestens drei neue auf.

Man erklärt sich die Welt nicht weg, sondern ich finde, man macht sie immer wundervoller.“[1]

– Mai Thi Nguyen-Kim –





Preface

This thesis is publication-based, which means that its content provides both a framework
around as well as a summary of two peer-reviewed articles published in international sci-
entific journals. The original articles titled "Active Site Representation in First-Principles Mi-
crokinetic Models: Data-Enhanced Computational Screening for Improved Methanation Cat-
alysts"[2] and "Selectivity Trends and Role of Adsorbate–Adsorbate Interactions in CO Hy-
drogenation on Rhodium Catalysts"[3] are both published in ACS Catalysis and appended
to this thesis. They are accompanied by an introduction to the theoretical basics and corre-
sponding relevant literature.

The work presented was performed between March 2018 and November 2022 at the Chair
of Theoretical Chemistry and Catalysis Research Center of the Technical University of Mu-
nich, and the Theory Department of the Fritz Haber Institute of the Max Planck Society
under the supervision of Assoc. Prof. Dr. Mie Andersen and Prof. Dr. Karsten Reuter.

Munich, November 2022
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Abstract

First-principles (1p)-based computational modeling of surface chemical reactions has ma-
tured into a predictive-quality instrument for the study of heterogeneous catalysis. While
empirical observations of different catalyst materials could be successfully reconciled with
theoretical calculations on the macroscopic scale, the intricate processes and interactions
on the microscopic scale still pose a challenging field of research. Although important mile-
stones on the way to an in-depth understanding of a catalytic process have been accom-
plished, the growing availability of computational resources and the ongoing development of
algorithms and data-driven methods pave the way for the efficient computational modeling
of highly complex microkinetic reaction networks.

Based on the energetic input from density functional theory (DFT) and various scaling rela-
tions, an efficient, yet approximate method for the modeling of catalytic reactions is the mean
field approximation (MFA). In combination with a reductionist representation of the catalytic
surface under investigation, it served as a reliable and successful tool for the screening
and evaluation of activity trends of catalyst materials while keeping the computational cost
tractable. This cumulative thesis describes the basics of such an MFA-based approach
unveiling its shortcomings and the concomitant need for a more detailed active site rep-
resentation. Additionally, a data-driven approach to predict the adsorption energetics is
described, overcoming the inherent shortcomings of the linear scaling relations when ap-
plied to mixed-metal catalysts. Here, a comparison of models with different levels of active
site representation illustrates the importance of the active site resolution on binary alloy cat-
alysts and allows for the identification of possible improved methanation catalysts due to
synergistic effects, which cannot be described in a more coarse-grained description.

An MFA-based approach avoids an explicit spatially resolved surface representation and the
concomitant individual interactions between adsorbates, and consequently precludes an in-
depth understanding of the microscopic mechanisms on the catalyst surface. While such
an approach has successfully aided in the prediction of activities and activity trends among
different catalysts facilitating large-scale screening studies, it is not capable of accurately in-
cluding adsorbate interactions and often fails to explain selectivity trends. To capture these,
a more detailed description on the microscale is required. This is realized by a kinetic Monte
Carlo (KMC) approach, which properly accounts for the probabilistic character of microki-
netics by simulating the underlying Markov process. For the catalytic activity and selectivity
of the carbon monoxide (CO) hydrogenation reaction on Rh catalysts, a surprising depen-
dency of the activity and selectivity on correlations among the adsorbed species influencing
the coverage is found, caused by subtle variations in adsorption energetics originating from
attractive or repulsive interactions. This demonstrates the essential importance of accu-
rately describing interactions and local coverages on the atomic scale, as a catalyst usually
performs best in regions of intermediate coverages.
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Zusammenfassung

Die auf ersten Prinzipien (1p) basierende computergestützte Modellierung chemischer Ober-
flächenreaktionen hat sich zu einem vorhersagekräftigen Werkzeug für die Untersuchung
der heterogenen Katalyse entwickelt. Während empirische Beobachtungen unterschiedli-
cher Katalysatormaterialien erfolgreich auf makroskopischer Ebene mit theoretischen Be-
rechnungen in Einklang gebracht werden konnten, stellen auf mikroskopischer Ebene die
komplexen Prozesse und Wechselwirkungen nach wie vor ein herausforderndes Forschungs-
gebiet dar. Obwohl bereits wichtige Etappenziele zu einem tiefgreifenden Verständnis eines
katalytischen Prozesses erreicht wurden, ebnen die zunehmende Verfügbarkeit von Re-
chenressourcen sowie die kontinuierliche Entwicklung von Algorithmen und datengestütz-
ten Methoden den Weg für die effiziente computergestützte Modellierung hochkomplexer
mikrokinetischer Reaktionsnetzwerke.

Basierend auf dem energetischen Input aus der Dichtefunktionaltheorie (DFT) und verschie-
denen Skalierungszusammenhängen, stellt die Mean-Field-Approximation (MFA) eine effi-
ziente, aber dennoch approximative Methode für die Modellierung katalytischer Reaktionen
dar. Sie diente in Kombination mit einer reduktionistischen Darstellung der zu untersuchen-
den katalytischen Oberfläche als zuverlässiges und erfolgreiches Werkzeug für das Scree-
ning und die Evaluierung von Aktivitätstrends von Katalysatormaterialien bei gleichzeitig
tragbarem Rechenaufwand. In dieser kumulativen Dissertation werden die Grundlagen ei-
nes solchen MFA-basierten Ansatzes beschrieben sowie seine Schwächen und die damit
einhergehende Notwendigkeit einer detaillierteren Darstellung der aktiven Zentren aufge-
zeigt. Darüber hinaus wird ein datengestützter Ansatz zur Vorhersage der Adsorptionsener-
getik beschrieben, der die inhärenten Schwächen der linearen Skalierungszusammenhän-
ge bei der Anwendung auf Katalysatoren, welche aus verschiedenen Metallen bestehen,
überwindet. Ein Vergleich von Modellen mit unterschiedlicher Darstellungsgenauigkeit der
aktiven Zentren zeigt die Wichtigkeit dieser Darstellungsgenauigkeit bei Katalysatoren aus
binären Legierungen auf. Dieser Vergleich ermöglicht die Ermittlung leistungsfähigerer Ka-
talysatoren für die Methanisierung aufgrund von synergistischen Effekten, die mit einer ge-
ringeren Darstellungsgenauigkeit nicht beschrieben werden können.

Ein auf der MFA basierender Ansatz vermeidet eine explizite ortsaufgelöste Oberflächen-
darstellung und die damit einhergehenden spezifischen Wechselwirkungen zwischen Ad-
sorbaten. Folglich verhindert sie tiefgreifendere Erkenntnisse über die mikroskopischen Me-
chanismen auf der Katalysatoroberfläche. Obwohl ein solcher Ansatz erfolgreich zur Vor-
hersage von Aktivitäten und Aktivitätstrends zwischen verschiedenen Katalysatoren beige-
tragen und umfangreiche Screenings ermöglicht hat, kann er Wechselwirkungen zwischen
Adsorbaten nicht genau berücksichtigen und scheitert oft daran Selektivitätstrends zu er-
klären. Um diese Wechselwirkungen zu erfassen, ist eine detailliertere Darstellung auf mi-
kroskopischer Ebene erforderlich. Dies wird durch einen kinetischen Monte-Carlo (KMC)
Ansatz erreicht, der durch Simulation des zugrunde liegenden Markov-Prozesses den pro-
babilistischen Charakter der Mikrokinetik korrekt abbildet. Für die katalytische Aktivität und
Selektivität der Kohlenmonoxid (CO)-Hydrierungsreaktion auf Rh-Katalysatoren wird eine
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überraschende Abhängigkeit der Aktivität und Selektivität von Korrelationen zwischen den
adsorbierten Spezies ermittelt, die die Bedeckung beeinflussen und durch feine Änderungen
der Adsorptionsenergien verursacht werden, die auf attraktive oder abstoßende Wechsel-
wirkungen zurückzuführen sind. Dies demonstriert, wie wichtig es ist, Wechselwirkungen
und lokale Bedeckungen auf atomarer Ebene genau zu beschreiben, da ein Katalysator für
gewöhnlich in Bereichen mittlerer Bedeckung das beste Leistungspotenzial entfaltet.
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1 Introduction

In 1823, Johann Wolfgang Döbereiner discovered the ignition of hydrogen (H2) gas when
in contact with platinum powder and described his findings as a "highly curious property"
emphasizing the lack of knowledge about catalytic processes just two centuries ago.[4, 5]
Since then, catalysis research and catalytic processes emerged to be an essential part of
our society and economy. Not only do we owe economic and ecologic advances in tech-
nology to catalytic processes, but also the possibility to feed an ever growing population.[5]
As one intriguing success story, the later development was mainly made possible by the
research of Fritz Haber, Carl Bosch, and Alwin Mittasch to synthesize ammonia (NH3) from
atmospheric nitrogen (N2) and H2 on an Fe catalyst.[5, 6] Another important process from
the energy sector is the Fischer-Tropsch synthesis to produce hydrocarbons from synthe-
sis gas (syngas) – a mixture of carbon monoxide (CO) and H2.[7] However, fossil energy
carriers, such as coal or natural gas, serve as the main source materials for the production
of syngas. In order to shift from fossil feedstock to renewable energy carriers, such source
materials can also be produced more environmentally friendly from biological feed stock.[8]
Additionally, catalyst materials often consist of rare and/or problematic components. For that
reason, an important task is to develop improved catalysts with low ecologic and economic
adversarial impact.[9, 10]

Before the development of computational methods, catalyst development mainly comprised
of a trial and error approach of hypothetically assumed candidates in a laboratory setup.[5,
11] As the catalyst does not change the thermodynamics of a reaction but the kinetics,
methods and theories have been developed to qualitatively and quantitatively specify the
effect.[12] With the advent of in silico methods and their subsequent improvement, together
with the increasing availability of computational resources, the field of computational chem-
istry has turned into an accurate and predictive tool for the investigation of the properties and
characteristics of catalysts, supporting increasing efforts for rational catalyst design.[13–15]
One key aspect of computational modeling is the method on how to evaluate the microkinetic
behavior of a reaction network for which mainly two different approaches exist. These are
the mean field approximation (MFA) and kinetic Monte Carlo (KMC), and depending on the
problem at hand, each method has its advantages and disadvantages.[16] Another aspect
is the complexity of the reaction network, which entails the considered elementary steps,
interactions between adsorbates, as well as the different sites available on the catalyst sur-
faces. Neglecting an important factor, which is usually not known in advance, leads to wrong
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1 Introduction

results as the model does not represent the real mechanism and synergistic effects among
adsorbates are missed. Yet, each step toward a more detailed computational description of
a reaction network leads to a substantial amount of intricate computations necessary, which
hinder the efficient screening of a large amount of different possible catalyst materials.[17]
Especially, the energetics of adsorbates and transition states (TSs) are difficult to obtain.
To this end, thermochemical relationships provide remedy, as it was found that adsorption
energetics between a series of transition metals (TMs) scale linearly with respect to the kind
of base element interacting with the surface. This can be exploited to restrict the necessary
calculations with often reasonable accuracy.[18] Although such an approach works well for
pure metal catalysts, it can fail for more complex catalyst materials.[2, 19]

In the search for improved catalysts, alloys are a promising group of candidates.[19] Optimal
catalysts need to provide a balance between too strong and too weak adsorbate binding.
Too strong adsorption leads to a poisoning of the catalyst surface, while too weak adsorption
prevent surface reactions. Due to a variety of adsorption sites with different metal compo-
sitions, alloy surfaces hold the potential to provide superior adsorption strengths compared
to pure metal facets. However, such mixed-metal materials often pose a problem for ther-
mochemical relationships. Machine learning (ML) techniques might serve as a more flexible
replacement for the reliable predictions of adsorption energetics. These data-driven ap-
proaches are similarly based on a set of known properties for the prediction of unknown
ones, but the resulting description of the adsorption energy is more accurate and more gen-
eral compared to the scaling relations.[19] The advantage of alloy catalyst materials is also
its main drawback as the number of possibilities of different combinations is vast. Addi-
tionally, depending on the mixture ratio, different surface facets and crystal geometries are
possible. However, there is a gleam of hope: There usually exist only a limited amount of
stable or meta-stable bulk phases for a certain mixture ratio. To this end, databases which
contain information about formation enthalpies of different mixture ratios and phases serve
as an ideal starting point of further investigations.

Besides the efficient screening of possible novel catalyst materials and their active sites, a
second important issue is the implications resulting from the chosen modeling approach.
While the MFA only relies on a mean coverage, thereby neglecting the atomic scale resolu-
tion, KMC provides an in-depth view on the actual positions of the adsorbates.[16] Hence,
KMC allows for the straightforward inclusion of lateral interactions among neighboring ad-
sorbates. This effect is known to have a potentially decisive impact on the reaction energet-
ics [20] and consequently the potential to render elementary steps accessible or inacces-
sible. Although there exist workarounds such as coverage-dependent reaction rates within
the MFA,[21] these can not account for variations in the local coverages. On the other hand,
modelling large reaction networks with long ranging interactions with standard KMC is com-
putationally challenging. To this end, different schemes, i.e., temporal acceleration,[22, 23]
ML,[19] and cluster expansions (CEs) [24] have been applied to overcome this limitation.

The above challenges called for the investigations published in Refs. 2 and 3 this cumulative
thesis is centered around. In Ref. 2, data-driven material design methods for an efficient
catalyst screening for the methanation reaction are applied. Relying on simple properties
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of a bulk catalyst material, its surface, or the atomic species from literature and density
functional theory (DFT), ML provides a means to determine a relation to the respective ad-
sorption energy. The applied ML method Sure Independence Screening and Sparsifying
Operator (SISSO) boils down to generating a simple linear descriptor of non-linear features
using regularization schemes. Such schemes can be understood as a means for dimen-
sionality reduction to only extract the most important features with the largest correlations
to the quantity of interest – the adsorption energy. We used the so-obtained descriptor to
predict the adsorption energies on binary alloys, which in turn served as inputs to mean-field
microkinetic modeling (MKM) in order to evaluate the impact of the active site resolution on
the prediction of possible improved methanation catalysts. We found that, especially for lay-
ered alloy structures, simpler microkinetic models significantly underestimate the turnover
frequency (TOF) due to differences in the energetics of important intermediates. In Ref. 3,
the focus is directed toward the importance of lateral interactions and the used MKM method
to quantitatively reproduce experimental activity and selectivity trends for the CO hydrogena-
tion toward higher oxygenate species. Comparing the predictions of corresponding MFA and
KMC models, we found that the MFA – while providing reasonably accurate results under
certain circumstances – will fail to predict the correct selectivity trends due to the lack of
accurately described local changes in adsorbate coverage.

The following Chap. 2 is intended to provide a framework and overview to the theories and
methods around the publications this thesis is based on. Sec. 2.1 starts with the CO hydro-
genation and introduces the basics of establishing energetic data from DFT. In Sec. 2.2, the
concept of compressed sensing (CS) together with the SISSO method is addressed. The
following presentation of materials databases with their associated toolkits and in particular
the Automatic Flow (AFLOW) framework sets the stage for a detailed discussion of the fun-
damental concepts of MKM in Sec. 2.3. Lastly, Chap. 3 presents brief summaries and the
individual author contributions of the two articles, while Chap. 4 completes the thesis with a
summary and outlook.
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2 Theory

2.1 CO Hydrogenation: Experiment and Theoretical Modeling

The conversion of synthesis gas (syngas) – a mixture of carbon monoxide (CO) and hydro-
gen (H2) – is a common platform for the production of value added products.[8, 25] Espe-
cially the synthesis of hydrocarbons and oxygenates for the use as fine chemicals or fuels
from renewable feedstock is a great leap toward a more ecological value chain. Nowadays,
syngas is mainly produced from fossil resources like gaseous or liquid carbohydrates (here
saturated alkanes (CnH2n+2)) and water (H2O)

CnH2n+2 + n H2O −⇀↽− n CO + (2n + 1) H2 , (2.1)

or solid raw materials like coal, whose main constituent is C

C + H2O −⇀↽− CO + H2 , (2.2)

which renders its carbon footprint unfavorable.[26, 27] In order to make the transition toward
sustainability it can also be produced from other feed stock such as biomass, plastic, and
waste (cf. Eq. (2.1)) or carbon dioxide (CO2)

CO2 + H2O −⇀↽− CO + H2 + O2 . (2.3)

Subsequent utilization of the formed syngas usually requires a specific CO/H2 ratio.[8] This
ratio can be adjusted with appropriate conditions and catalysts via the water-gas shift reac-
tion

CO + H2O −⇀↽− H2 + CO2 . (2.4)

Within the Fischer-Tropsch process, the methanation reaction, methanol production, or
ethanol production, the CO of the syngas is transformed and hydrogenated to different
hydrocarbons and oxygenates.[8, 25, 28–46] Besides the dynamic interplay of reaction
conditions and the H2 activation ability, the main factor impacting product selectivity is the
character of CO adsorption. Generally speaking, if the catalyst allows for dissociative CO
adsorption, longer carbon chains are formed and if H2 is easily dissociated, hydrogenation
reactions will occur more frequently. The CO activation ability is correlated with the location
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of the catalyst transition metal (TM) in the periodic table of elements. Dissociative adsorp-
tion occurs in the left region leading to products such as methane (CH4), higher alcohols, or
C2+ oxygenates, while non-dissociative adsorption in the right, more noble region, e.g., Cu,
mainly produces methanol.[8, 47, 48]

Tuning, enhancing, and optimizing catalytic activity and product selectivity is one of the ma-
jor objectives in syngas conversion. One possibility is to make use of synergistic effects due
to mixing of different TMs to form alloys. In this work, one focus lies on the identification
of improved bimetallic methanation catalysts and the effect of bifunctional gains (vide infra)
within this reaction network due to the introduction of different active sites, which have been
reported to have a large impact on other reaction networks.[2, 8, 49, 50] The second fo-
cus lies on the detailed modeling of syngas conversion to CH4, acetaldehyde, and ethanol
on Rh catalysts. Shedding light on the microscopic scale and its connection and influence
on the macroscopic scale gives invaluable mechanistic understanding and insights into the
disputed cause of the observed structure activity relationships. The microscopic scale is
represented by the active sites, their individual occupation with adsorbates, as well as the
interaction between adsorbates. The macroscopic scale is represented by the observable
activity and selectivity.[21, 51] In the following, the theoretical foundations toward the com-
putational modeling of these two topics are introduced together with the related literature.

2.1.1 Density Functional Theory

The method of choice to obtain an understanding of the electronic structure of chemical sys-
tems – the atomistic scale – is density functional theory (DFT). Its advantage over Hartree–
Fock and post-Hartree–Fock methods is that the computational cost is lower. However, this
comes at a price: the exchange and correlation energy of the electrons are unknown and
only approximations to their true value exist. According to Jacob’s ladder of DFT functionals,
they are arranged in rungs with an increasing level of accuracy: local density approximation
(LDA), generalized gradient approximation (GGA), meta-generalized gradient approxima-
tion, hybrid functionals, and functionals including many-body terms.[52]

Besides the choice of the functional, the choice of basis functions to represent the elec-
tron density is an important factor and the best option depends on the problem.[53] The
three main basis sets are a localized, atom centered basis, a real-space basis, or plane-
waves.[53, 54] A localized basis set is usually a good choice for atoms or molecules, while
periodic structures like crystals or surfaces are best represented in a plane-wave basis. To
avoid an excessive amount of basis functions within a plane-wave approach due to the elec-
trons close to the nucleus, these electrons are modeled using effective pseudopotentials,
which decrease the computational burden. As the focus of this work lies on catalyst sur-
faces, we used the QUANTUM ESPRESSO plane-wave code [55] in combination with ultra
soft pseudopotentials.

One of the problems of commonly used functionals is that they have troubles with mod-
eling dispersion interactions.[56] To this end, several schemes exist to include dispersive
van-der-Waals interactions and to correct for these shortcomings. One example of such a
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2.1 CO Hydrogenation: Experiment and Theoretical Modeling

functional is the Bayesian error estimation functional with van der Waals correlation (BEEF-
vdW). Additionally, compared to the traditional approaches for developing functionals based
on simple fitting procedures to experimental data or constraints on analytic properties, the
development used ideas from Bayesian statistics and machine learning (ML) methods in the
fitting to avoid overfitting and yield a general-purpose exchange-correlation approximation
to reliably describe weak and strong interactions. This approach also provides an error es-
timate by determining the standard deviation for an ensemble of functionals around the fit
parameters. Throughout this thesis, the BEEF-vdW functional was used for the determina-
tion of adsorption energies and in Ref. 3 the general shortcoming that GGA functionals tend
to overbind CO on TM surfaces was investigated.[57–59]

2.1.2 Formation Energy Approach and Adsorption Energetics

The DFT-derived energy required or released upon an adsorption process is determined via
the formation energy approach. The basis to this approach is a common gas phase refer-
ence energy set consisting of an energetic reference Ri of each atomic species i involved in
the adsorption process to maintain thermodynamic consistency.[15] In order to calculate the
adsorption process of CO to a surface, a reference state for C and O is required. The choice
can be arbitrary but a common reference to this end are molecular H2, CH4, and H2O. The
atomic references Ri are then calculated as

RH =
1
2

EH2 , RC = ECH4 − 2EH2 , and RO = EH2O − EH2 , (2.5-2.7)

where Ex is the energy of the molecule x as it is calculated by the DFT code. With these gas
phase references, the formation energy E form

x of an adsorbate x can be calculated using

E form
x = Eslab+ads

x − Eslab −
∑

i∈x

nx ,iRi , (2.8)

with the total energy of the adsorbed species on the slab Eslab+ads
x , that of the clean slab

Eslab, and the occurrence nx ,i of atom i in the adsorbate x .

2.1.3 Free Energy and Vibrations

In a chemisorption process, the reactant molecule goes from the gas phase to adsorb to
a solid by forming a bond to the catalyst active site. The energetics obtained from DFT
only represent the electronic energy at T = 0 K and p = 0 bar. For the effect of finite
temperatures and pressures, the free energy of the gas phase molecules and adsorbates
needs to be determined. The most simple approximation for gaseous species is the ideal
gas approximation in which the individual particles do not interact and all degrees of freedom
(DOFs) are independent of each other.[60, 61] The Gibbs free energy of such a particle is
calculated via

G = H − TS = U + pV − TS , (2.9)
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with the enthalpy H, temperature T , entropy S, internal energy U, pressure p, and volume
V . The enthalpy H in turn is obtained via

H = E + EZPE +
∫ T

0
Cp dT , (2.10)

with the electronic energy E , the zero-point energy EZPE, and the heat capacity at constant
pressure Cp. The latter two terms require knowledge about the vibrational frequencies of
the gaseous species. These can be obtained from DFT by evaluating the force constants
as derivatives of the forces around the optimized structure. With the calculated vibrational
frequencies, the zero-point vibrational energy is calculated by

EZPE =
Nmodes∑

i

hνi

2
, (2.11)

with the Planck constant h and the vibrational frequency νi of mode i . For N atoms, the
number of modes Nmodes is 3N − 5 for a linear species and 3N − 6 for a nonlinear species.
The heat capacity at constant pressure is

Cp = kB + CV , (2.12)

with the Boltzmann constant kB and the heat capacity at constant volume CV . This, in turn,
is comprised of a translational, a rotational, a vibrational, and an electronic part:

CV = Ctrans
V + Crot

V + Cvib
V + Cel

V . (2.13)

Their contributions are
∫ T

0
Ctrans

V dT =
3
2

kBT , (2.14)

∫ T

0
Crot

V dT =





0 (monatomic)

kBT (linear)
3
2kBT (nonlinear)

, and (2.15)

∫ T

0
Cvib

V dT =
Nmodes∑

i

hνi

e
hνi
kBT − 1

, (2.16)

while the electronic component is assumed to be zero. The entropy S of an ideal gas sim-
ilarly contains a translational, rotational, vibrational, and electronic contribution at pressure
p and a reference pressure p◦:

S = Strans + Srot + Svib + Sel − kB ln
(

p
p◦

)
. (2.17)

8
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Each contribution is calculated by the following expressions:

Strans = kB

{
ln

[(
2πmkBT

h2

) 3
2 kBT

p◦

]
+

5
2

}
, (2.18)

Srot =





0 (monatomic)

kB

[
ln
(

8π2IkBT
σh2

)
+ 1
]

(linear)

kB

{
ln
[√

πIaIb Ic
σ

(
8π2kBT

h2

) 3
2

]
+ 3

2

}
(nonlinear)

, (2.19)

Svib = kB

Nmodes∑

i

hνi
kBT

exp
(

hνi
kBT

)
− 1

− ln
(

1 − exp
(
− hνi

kBT

))
, and (2.20)

Sel = kB ln (2s + 1) . (2.21)

Here, m is the mass of the particle, Ia, Ib, and Ic the principle moments of inertia of a
nonlinear molecule, I the moment of inertia of a linear molecule, σ the symmetry number,
and s the total spin. With these contributions, the free energy in Eq. (2.9) for an ideal gas
can be determined.[60, 61]

A similar approach can be employed for adsorbates by assuming that the translational and
rotational DOFs get converted to vibrational DOFs upon chemisorption and treating them
harmonically. Additionally, assuming the pV term of the enthalpy in Eq. (2.9) to be negligible
leads to

G ≈ U − TS = E + EZPE +
∫ T

0
Cvib

V dT − TSvib . (2.22)

Although this approximation is quite rough, as the associated vibrations are hindered trans-
lations or rotations, it is widely and successfully applied as a good estimate.[60, 61]

2.1.4 Phase Stability

The thermodynamic stability of a certain bulk phase is determined by the Gibbs free energy
G (Eq. (2.9)) of the material.[62] For a binary phase AxABxB to be stable, its formation Gibbs
free energy ∆G needs to be exergonic:

∆G = GAxA BxB
− (xAGA + xBGB) < 0 , (2.23)

with the atomic fraction xA (xB) of element A (B) and the free energies GAxA BxB
of the alloy

as well as of its components GA and GB. At zero temperature, the Gibbs free energy equals
the enthalpy:

Hf = HAxA BxB
− (xAHA + xBHB) , (2.24)

9
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with the enthalpies HAxA BxB
of the alloy and its components HA and HB. Neglecting vibrational

contributions, which is a valid assumption for heavier elements such as TMs, the energy
obtained from DFT is equivalent to the formation enthalpy Hf. The normalization of the alloy
formation enthalpies by the enthalpies of the stable pure elemental phases gives a measure
of relative stability. While a positive value indicates a thermodynamically unstable phase,
negative values reflect stable and metastable phases.[62]

2.1.5 Transition States and How to Obtain Them

Finding transition states (TSs) is an essential but demanding task for determining energetic
barriers for chemical reactions.[61] They do not represent a minimum on the potential energy
surface (PES) but rather reflect a saddle point along the minimum energy path (MEP) from
an initial state (IS) to a final state (FS), which is discerned by a maximum in one dimension
of the PES and corresponds to a Hessian with only a single negative eigenvalue. Conse-
quently, well-known minimization algorithms are not applicable and two widely employed
examples of algorithms to locate saddle points are the dimer method [63] and the nudged
elastic band (NEB) [64, 65] method, in particular in its climbing image (CI) variant.[66] The
dimer method only requires an IS as starting point, from which it iteratively follows the lowest
curvature mode until it reaches a saddle point. On the other hand, the NEB method needs
both, IS and FS, defined. Interpolating between the two states and defining a number of in-
termediate structures (images) along this interpolation yields a starting point. The different
images are then relaxed, tied together by a spring constant. The one image closest to the
maximum will go upwards on the PES in the CI method, making sure the segment around
the maximum is sufficiently represented and this image ends up close the maximum. Hence,
the energies of TSs and activation barriers can be calculated, and the contributions to the
free energy can be determined in the same way as for adsorbates, with the only difference
that the one imaginary mode refers to the reaction coordinate.[61]

2.1.6 Linear Scaling Relationships and Transition State Scaling

DFT calculations for the required energetics of a complex reaction network or different cata-
lyst materials are the limiting factor for an ab initio study.[67] To circumvent this issue, these
energetics can be predicted with semi-empirical linear scaling relationships,[68] which ex-
ploit the observation that adsorbates and intermediates with the same binding atom or even
different ones respond similarly to changes in the metal surface. These relationships are
based on the d-band model [18, 69] as the chemisorption strength depends on the d-band
center of the TM. For hydrogenation reactions such relationships have been extensively
studied and successfully applied for the determination of volcano plots, which lead to a
drastic reduction of first-principles (1p) calculations. These plots represent the adsorption
energy (or energies) of an adsorbate at an active site of different materials as descriptor that
leads to the optimal catalyst activity. For the case of AHx (A = C, N, O) such a relationship is
of the form

∆Eads
AHx

= γ∆Eads
A + ξ , (2.25)

10



2.1 CO Hydrogenation: Experiment and Theoretical Modeling

with the adsorption energy of the atomic adsorbate ∆Eads
A , and the fit constants γ and ξ.[11,

67, 68, 70, 71]

Similarly, such relationships exist for TSs. The so-called Brønsted-Evans-Polanyi (BEP)
relationships correlate the activation energy Ea, i.e., the difference between the energy of
the TS and that of the IS, with the reaction energy ∆E rxn, i.e., the difference between the
energy of the FS and that of the IS:[67, 72–74]

Ea = ETS − EIS = nBEP∆E rxn + mBEP = nBEP(EFS − EIS) + mBEP , (2.26)

with the fit constants nBEP and mBEP. Additionally, TS scaling relations correlate the TS
energy with the IS or FS.[67, 75] Depending on the similarity of the TS to the reactants or the
products, it was found that different linear scaling formulations perform differently accurate.
For a reactant-like TS the best linear free energy relation will be obtained by correlating the
TS energy with the IS energy together with the constants nIS and mIS:[76]

ETS = nIS · EIS + mIS . (2.27)

If the TS is product-like, scaling with the FS energy yields the best correlation:

ETS = nFS · EFS + mFS , (2.28)

with the fit constants nFS and mFS.

2.1.7 Lateral Interactions

Interactions between adsorbed species are often neglected in microkinetic studies due to
large computational requirements attached to their inclusion.[19, 77] However, such interac-
tions can have a decisive impact on the modeling result.[24, 78–81] These differences arise
due to changes in the underlying PES and, consequently, the energetic barriers depending
on the individual neighboring adsorbates. Such interactions may stabilize or destabilize an
adsorbed species and alter the energetics of a process in various nuances, possibly leading
to island formation (attractive) or uniform adlayers (repulsive) due to maximization of ad-
sorbate distances. Since the energetic term enters the transition probability in the exponent
(vide infra), even small variations can have a large impact on the whole reaction network.[19,
82]

Computationally, such energetic effects within a mean field approximation (MFA) approach
can be taken into account with a coverage dependent adsorption energy function. To this
end the formation energies of different coverages are fit to an, e.g., piece-wise linear func-
tion.[21] However, because of the approximation of an average coverage, this can lead to
inaccuracies due to the neglect of local differences in surface configurations.[3, 24, 83, 84]

Within kinetic Monte Carlo (KMC), lateral interactions can be modeled using a cluster ex-
pansion (CE) approach of a lattice-gas Hamiltonian.[85–88] For a single adsorbate and one
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Figure 2.1: Energy profiles of a reaction coordinate at the zero coverage limit (blue) and with
repulsive lateral interactions (orange) with the corresponding energetics for the calculation
of the quantities in Eqs. (2.30) to (2.33). Adapted from J. Chem. Phys. 2013, 139, 224706
under the terms of the CC BY 3.0 license. © 2013 Nielsen, d’Avezac, Hetherington, and
Stamatakis. Published by AIP Publishing.

site, the individual energetic contributions due to lateral interactions are fit to a set of DFT
calculations with varying amounts of adsorbed species using the ansatz

E(v ) = E
∑

s

ns +
b∑

a=1

V p
a

∑

(s<t)a

nsnt +
c∑

a=1

V t
a

∑

(s<t<u)a

nsntnu + ... , (2.29)

where E(v ) denotes the energy of lattice state v , which is determined by the sum of the
binding energy E , the pairwise interaction energies V p

a , and the triplet interaction energies
V t

a of the adsorbates on the sites s, t , and u. The n represent the occupation number on the
sites with one of the adsorbates and can have the values 0 or 1. Considering a total of b
different pair interaction patterns and c different triplet interaction patterns on the ath nearest
neighbor sites, the summation over the sites adds each unique pattern only once if the
occupied sites form such a pattern. Larger interaction ranges are incorporated in the same
way,[77, 88] but typically CEs only consider nearest neighbor interactions, especially for
more complex models, in order to keep the computational requirements manageable.[89, 90]
TSs pose an additional challenge when including lateral interactions. In order to determine
the interaction parameters (Eq. (2.29)) a set of TS calculations with different adsorbates
and different coverages need to be performed. However, as this is mostly out of reach
except for simple reaction mechanisms the effect of lateral interactions on TS energies are
approximated using BEP relations according to Nielsen et al.[91] (cf. Fig. 2.1):

Erxn(v ) = EFS(v ) − EIS(v ) (2.30)

and

Erxn,0 = EFS,0 − EIS,0 , (2.31)
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with the reaction energy Erxn(v ) (Erxn,0), the energy of the IS EIS(v ) (EIS,0), and the energy of
the FS EFS(v ) (EFS,0) at state v (zero coverage). The energies of interest are the activation
energies E+

a (v ) and E−
a (v ) of the forward and backward reaction, respectively:

E+
a (v ) = max(0, Erxn(v ), E+

a,0 + nBEP(Erxn(v ) − Erxn,0)) (2.32)

and

E−
a (v ) = max(0,−Erxn(v ), E−

a,0 + (1 − nBEP)(Erxn(v ) − Erxn,0)) , (2.33)

with the BEP factor nBEP, which is bound by [0, 1] and is a measure of how reactant-like
(0) or product-like (1) the TS is. This factor is determined by fitting the activation energy of
different lattice states v to Erxn(v ) − Erxn,0.

2.2 Machine Learning

With the constant increase of computational resources and the concomitant ability to gen-
erate larger and larger amounts of data, the field of cheminformatics – among all other
sciences – started to enter the 4th paradigm.[92–94] Entailing the first three paradigms of
experiment, theory, and simulation, it describes data-driven science. In combination with
artificial intelligence (AI) and its sub-field machine learning (ML), it was then also possi-
ble to handle the vast amount of big-data, which represents the key for all ML techniques
to extract and predict valuable information and patterns from the spaces spanned by the
data in silico. The amount of data, on the other hand, imposes tight requirements on, e.g.,
the required storage space, the heterogeneity, or the organization of the database. Efforts
to combine and create searchable databases for different applications and properties are,
therefore, undertaken and still ongoing in various fields of science, public administration,
and industry.[95–99]

ML is mainly classified in four groups on how an algorithm obtains the final model or de-
scriptor.[100–102] The first type is called supervised learning in which the algorithm learns
from known examples. To this end, it is provided with a data set containing the desired
inputs and outputs, commonly referred to as labeled data. The outputs represent certain
properties and the inputs are features to describe these properties by finding an accurate
relationship to predict unknown outputs or patterns. Common applications of supervised
learning algorithms, i.e., linear regression, support vector machines, or neural networks, are
classification for discrete outputs or regression for continuous outputs.[100] If only features
serve as input and commonalities are subject to identification it is called unsupervised learn-
ing: the algorithm needs to determine patterns within the presented unlabeled data for the
purpose of, e.g., clustering, dimensionality reduction, or association. Common algorithms
for this task are principal component analysis or K-means clustering.[102] The so-called
semi-supervised learning falls in between the first two types. Both, labeled and unlabeled
data is used and the algorithm is trained to classify the unlabeled data and provide a better
model than solely relying on supervised learning. In the fourth category – the reinforcement
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learning – the algorithm performs a recurrent dynamic feedback loop to maximize a reward,
which involves an action on the presented data and monitoring the response.[100–102]

This work is based on the supervised learning algorithm Sure Independence Screening
and Sparsifying Operator (SISSO) from the field of compressed sensing (CS) introduced in
Sec. 2.2.1 for the prediction of adsorption energies.[103, 104] For a supervised approach,
the database, which is used to train the ML algorithm and derive a mathematical descriptor,
needs to be representative for the entire chemical space of interest to make accurate pre-
dictions. Not performed properly, this might lead to overfitting, which means that the model
will be accurate within the provided set but not for unseen data. Therefore, a valid approach
is to set aside a test set from all available samples and repeatedly split the remaining data
into a training and a validation set. The model is built upon the training set, evaluated and
refined on the validation set and finally evaluated on the test set by means of comparing
a suitable metric like the root mean squared error (RMSE) or mean absolute error (MAE)
for a continuous quantity or, e.g., precision for classification models. In a next stage, such
a forward approach to predict certain properties can be reversed to obtain models for the
discovery of materials from a set of optimal properties.[94]

2.2.1 Compressed Sensing

CS originates from the field of signal processing. Given a small set of measurements, the
aim of CS is to recover the original signal by identifying its characteristic components.[2, 103]
Mathematically speaking, this represents an under-determined system of linear equations

Ax = b , (2.34)

with the coefficient or sensing matrix A, the measurements b, and the unknowns x . Each
row in A holds the different hypothetical components or features of a signal sample. As there
are infinite solutions to such a system, CS requires sparse solutions, i.e., a small number
of non-zero entries in x , representing the characteristic components. Effectively, this yields
a dimensionality reduction. Up until now, everything is linear algebra. Non-linearity can be
included by creating candidate features, which are non-linear functions.[2, 103]

Sure Independence Screening and Sparsifying Operator

SISSO constructs the feature space Φn of rung n, which are the hypothetical components
contained in A, based on a hierarchical approach by iteratively combining the features ϕ of
the previous iteration (rung) n starting from assumed primary features via

Φn ≡
n⋃

i=1

Ĥ (m)
[ϕ1,ϕ2] , ∀ϕ1,ϕ2 ∈ Φn−1 (2.35)

to generate a wide range of possible components and finally arrive at models with better
accuracy. The size of the feature space grows rapidly depending on the size and choice of
the (non-linear) mathematical operators in the operator set

Ĥ (m) ≡ {I, +,−,×,÷, exp, log,√ , ... } (2.36)
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Class Name Abbreviation Unit
Electron affinity EA eV

Atomic Ionization potential IP eV
Pauling electronegativity PE −
Coupling matrix element squared V2

ad −
Bulk Nearest neighbor distance bulknnd Å

Radius of d-orbitals rd Å
Coordination number CN #atoms
d-band center εd eV
d-band filling fd #states

Site d-band width Wd eV
Density of d-states at Fermi level DOSd eV−1

Density of sp-states at Fermi level DOSsp eV−1

Nearest neighbor distance sitennd Å
Number of atoms in ensemble siteno #atoms
sp-band filling fsp #states

Surface Work function W eV

Table 2.1: Properties of a clean catalyst surface used as primary features for the feature
construction within SISSO as in Ref. 2.

as well as the user-defined rung n. As features can be quantities carrying units, only appro-
priate feature combinations are subject to binary operators as indicated by the superscript
m.[103]

To obtain the best sparse solution to the linear system in Eq. (2.34), SISSO adds the regu-
larization term λ∥x∥0 and minimizes with respect to x via

arg min
x

(
∥b − Ax∥2

2 + λ∥x∥0
)

. (2.37)

∥x∥0 is the ℓ0 "norm", which is the number of non-zero entries in x and the parameter λ
controls this number of entries within x . Within the SISSO framework this regularization
is the so-called sparsifying operator. As the ℓ0 "norm" regularization is non-deterministic
polynomial-time hard,1 the feature space is previously reduced to a user-defined value by
applying sure independence screening, i.e., pre-screening the features with the largest cor-
relation to the quantity of interest. The larger this value, the higher the probability of finding
the best descriptor, however, at the expense of an increase in computational cost. A logical
extension to this algorithm termed multi-task learning is to jointly learn from multiple differ-
ent input sets A simultaneously and then arriving at a joint solution containing all mutually
important features. Hence, the generalization of the identified model is increased and the
risk of overfitting is decreased compared to the single-task.[2, 103, 104]

1The computational cost grows exponentially with the size of the feature (sub)space rendering regularization
impossible for large such spaces.
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The study on the identification of improved methanation catalysts published in Ref. 2 investi-
gates the influence of the active site representation within microkinetic modeling (MKM) (cf.
Sec. 2.3). The missing link to obtain a descriptor for the prediction of adsorption energies
is a training set consisting of primary features and the corresponding adsorption energet-
ics as well as the retrieval of possible candidate catalyst surfaces. For the training set, we
used and extended the features and density functional theory (DFT)-calculated database
from Ref. 19 (cf. Tab. 2.1). We then fit the respective adsorption energetics using multi-task
SISSO with each of the different adsorbates assigned to a single task. The primary fea-
tures list only contains properties of the clean catalyst surfaces, in order to obtain a general
and adsorbate-independent descriptor for the prediction of the energetics on alloy candidate
catalysts. How these candidate catalysts were obtained is the topic of the following.

2.2.2 The AFLOW Framework

Large repositories consisting of a variety of ab initio data from DFT and high-throughput
methods provide the ideal starting point for screening studies. Examples of such databases
are the Materials Project,[105, 106] the Novel Materials Discovery (NOMAD) repository,[98]
the Open Quantum Materials Database (OQMD),[107, 108] the Citrination database,[109]
the Computational Materials Repository (CMR),[110] or the Automatic Flow (AFLOW)
database.[111] Often, these databases are combined with automated generation, analy-
sis, and characterization tools to provide an independent framework, which allows for the
implementation of new structure discovery and optimization applications. In our search for
improved methanation catalysts, we aim to identify suitable crystal phases of binary transi-
tion metal (TM) alloys to predict their respective adsorption energetics on the various sites
on their exposed facets.[2] The reason why we focus on such binary alloys is that they hold
the potential to break the scaling relations, which linearly correlate binding energies with
corresponding activation energies, by introducing a bifunctionality through the mixed-metal
site types. These relations were initially identified for various TMs as they are usually well
performing catalysts for a variety of different reactions. However, only a few TMs fall into the
region of an ideal catalyst in which the binding energy is large enough to bind the adsor-
bate while not hindering product formation.[49, 50, 112] The different adsorption energetics
can enhance catalytic activity via synergistic effects. In a volcano plot, such materials pose
"outliers" and are interesting candidates for further experimental investigations.

The AFLOW Database

As of July 2022 this database contains – besides properties of ternary and quaternary sys-
tems – properties of about 1,700 binary bulk crystal systems.[113] The information on the
respective space group defining all possible symmetry operations of the lattice forms the
basis of our screening study.[2] Hence, the AFLOW framework is especially suited for this
purpose as it contains data on the formation enthalpies of such crystal phases and an ap-
plication programming interface for their straightforward retrieval.[62, 111, 114, 115]

From a computational standpoint, alloys pose a big problem: which mixing ratios are ther-
modynamically stable and what is the arrangement of the elements within the bulk, that
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translates to the space group the crystal structure belongs to. There are a total of 230 dif-
ferent space groups and combining two TMs enlarges the range of possible space groups
dramatically compared to pure TMs. From these 230 unique groups 27 (with the numbers
168-194) are of the hexagonal and 36 (with the numbers 195-230) are of the cubic crystal
system. Additionally, also meta-stable, i.e., kinetically "trapped" crystal structures might play
a role. In a pure solid the face-centered cubic (fcc) structure corresponds to the space group
225 and is representative for most of the TMs within the training set. One exemption is Co,
which crystallizes in a hexagonal close packed (hcp) structure with the space group 194, but
the energetic difference to an fcc lattice is quite small so that at standard conditions both
lattices may coexist. Another exemption is Fe, which crystallizes in a body-centered cubic
(bcc) lattice, which has the space group 229.[116]

As a first step toward binary alloy catalyst screening, we performed a database search of
a variety of different TM combinations in order to find fcc and bcc like (meta)stable bulk
phases. The plethora of obtained information on different TM combinations and their re-
spective space groups within the repository required a thorough pre-screening of the ab
initio phase stability data.

Convex Hull

With the convex hull (CHULL) module of AFLOW,[62] phase diagrams of the bulk formation
enthalpies Hf of binary alloys contained in the database can be generated. Figure 2.2 shows
such a diagram of the binary Fe-Pt system. Each of the crosses and dots represent the
formation enthalpy of an alloy within the repository on the ordinate with a certain mixing
ratio on the abscissa. Referenced to the pure metals as the zero points, all phases with a
negative Hf are either stable or metastable. The phases marked with dots are the stable
ones at thermodynamic equilibrium, which define the convex hull (lines). The crosses mark
metastable phases and depending on the kinetics of their formation they might reconstruct
and/or separate into the closest thermodynamically stable phases.

The next step is the generation of the surface facets. As the SISSO training set contains the
fcc(211) facet, we require space groups that show the same or a similar facet. Depending
on the mixing ratio and the symmetry of the alloy, each direction as well as multiples of the
hkl cut might expose a different atomic arrangement. From the different phases obtained
from the convex hull data, we chose the two fcc space groups 221 and 225, and the two hcp
space groups 187 and 164, which led to two or four different slab models per alloy phase.
The respective adsorption energetics from the SISSO descriptor were subsequently used
in combination with Brønsted-Evans-Polanyi (BEP) relations [72, 73] and transition state
(TS) scaling [75] within MKM (cf. Sec. 2.3) to predict and compare the catalyst activity from
models with increasing active site resolution.[2]
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Figure 2.2: Convex hull plot of the binary Fe-Pt system as in Ref. 2 and as obtained by
AFLOW-CHULL.[62] Phases of different mixing ratios on the convex hull line (dots) are sta-
ble, whereas the phases with formation enthalpies Hf between zero and the convex hull are
metastable (crosses).

2.3 Microkinetic Modeling

In order to provide the framework for an analysis and to make predictions on the activity
and selectivity of a catalyst within a computational approach, a microkinetic description is
necessary. The overall process is modeled by a set of differential equations representing the
elementary steps of a reaction mechanism – the master equation. In essence, this equa-
tion is a complete, high-dimensional description of a reaction network and no assumptions
on important steps or the coverage and spatial arrangement of the adsorbed species are
made. To perform a simulation the thermodynamic and kinetic parameters are required, i.e.,
the energetics of the adsorbates and transition states (TSs) involved in the mechanism to
be modeled. In bottom-up multiscale modeling of the kinetics of catalytic processes, the
most common tool for the determination of these parameters is density functional theory
(DFT).[117] Explicitly solving the components of the master equation is at least a compu-
tationally very demanding task – especially if interactions between the different adsorbed
species and surface nonidealities are included. These correlations are often neglected and
idealized surface facets are used to avoid computational overhead. The master equation
is then solved using the mean field approximation (MFA) (cf. Sec. 2.3.5) or kinetic Monte
Carlo (KMC) (cf. Sec. 2.3.6). The so-obtained results give valuable insights into the reac-
tion mechanism, structure-property relationships, and assist in reactor design. However, a
word of caution must be mentioned here: depending on the true mechanism and the chosen
microkinetic modeling (MKM) approach, the result may qualitatively deviate from the true so-
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lution.[118] In the following, the above two main theories, by which heterogeneous catalytic
reactions are modeled, and their prerequisites are introduced.[15, 19]

2.3.1 Reaction Networks

To describe a heterogeneously catalyzed chemical reaction on the microscopic scale, the
overall reaction is subdivided into elementary steps forming a reaction network. This net-
work encodes the elementary transformations of the reactants toward the products via all
intermediates. A common example is the coupling of two species A and B into a third species
C:

A + B → C , (2.38)

which can be represented by a Langmuir-Hinshelwood mechanism:

A + ∗
k+

A−−⇀↽−−
k−

A

A∗ (2.39a)

B + ∗
k+

B−−⇀↽−−
k−

B

B∗ (2.39b)

A∗ + B∗ kC−→ C + 2 ∗ (2.39c)

This sequence describes the adsorption of the two species A and B to the surface
(Eqs. (2.39a) and (2.39b)) leading to the adsorbed species A∗ and B∗ with the rate con-
stants of the forward direction k+

A and k+
B as well as the backward direction k−

A and k−
B , and a

subsequent associative desorption of the product C (Eq. (2.39c)) with the rate constant kC.
For each of these elementary steps, the thermodynamic and kinetic parameters involved
need to be determined. In combination with the reaction network, these inputs form the
most basic information required, in order to perform microkinetic simulations.[117]

In an ab initio microkinetics study, the determination of the kinetic parameters is the bottle-
neck as it requires the most computational time. A common approach is to investigate pre-
conceived mechanisms based on experimental results, heuristics, reaction rules, or readily
available first-principles (1p) data. However, it is usually not known in advance whether a
proposed step is important or not, i.e., whether this step plays a role in the true reaction
mechanism. To make matters worse, one overall pathway might be the correct one for one
catalyst material and certain reaction conditions but not for others, which poses a problem
for screening studies. Omission of a path or reaction step might result in wrong activities
and selectivities, and thus predict unsuitable catalysts.[117]

In order to avoid this eventuality and to make meaningful and precise predictions, it is im-
portant to consider all possible paths within the reaction network. With such an approach,
no possible elementary reaction steps are missed. Only then, one can reliably decode the
mechanism, focus on the dominant pathway,2 and screen a large amount of possible cata-
lyst materials. Such exhaustive reaction networks can be developed based on generation

2Assuming this pathway holds true for the other considered materials and conditions.
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schemes relying on available data or reaction rules.[117, 119–123] Alternatively, the main
reaction pathway can be generated adaptively on-the-fly without the need to define a fixed
mechanism in advance. Based on the possible identified elementary steps from each lattice
configuration, those with the lowest barriers are chosen. The reason for this is the high
probabilities of occurrence associated with these processes. The drawback of such an ap-
proach, on the other hand, is its large computational cost, due to the vast number of 1p
calculations needed. This can be reduced significantly by using approximate potentials for
a first filtering of the possible transformations.[124–126] In this context, it is worth mention-
ing that only the rate-determining step (RDS) or the steps that are partly rate determining
need to be calculated accurately (cf. Sec. 2.3.7) as they dictate the activity and selectivity.
All other steps only play a subordinate role and inaccuracies do not have an effect on the
overall outcome of the simulation. Since there is usually no prior knowledge, a hierarchical
approach can significantly increase the simulation efficiency. Such an approach would start
with a low level of accuracy and then iteratively improve the kinds of methods used only for
the important transformations. Additionally, coarse graining by lumping less important steps
together is an effective means to reduce the computational effort.[15, 117]

2.3.2 Lattice and Active Sites

Within a microscopic reaction network the intermediates bind to the surface at certain struc-
tural motifs, which correspond to local minima on the potential energy surface (PES) – the
active sites. In Eqs. (2.39a) to (2.39c), this information is simply hidden behind the asterisk
"∗". Most studies assume a static crystalline surface with the active sites mapped onto a
periodic lattice.[127–137] The connections between the different PES basins are the ele-
mentary steps. On an idealized surface, i.e., a face-centered cubic (fcc) (111) facet, there is
only a small number of such motifs per unit cell, which are one on-top site, one bridge site,
as well as the fcc and the hexagonal close packed (hcp) three-fold coordinated sites. How-
ever, species adsorbed to nearby sites influence the appearence of the PES. Due to this
effect, the same elementary step is formally many different steps from an energetic point
of view. Depending on the interactions, the energies of the initial state (IS), TS, and final
state (FS) differ and lead to different probabilities of occurrence for the same transformation.
Analogous to the discussion on reaction networks in Sec. 2.3.1, the active sites need to be
identified and set in advance in order to determine the microscopic thermodynamic and ki-
netic parameters. One of the major challenges is that, under real operating conditions, there
exists a large variety of such sites due to the structural complexity, i.e., the composition and
geometry of the sites are dependent on the temperature and adsorbate concentrations. The
latter are in turn dynamically dependent on the proceeding surface reactions and transport
phenomena.[48]

In general, the larger the number of different active sites is, the higher is the number of possi-
ble reaction pathways and thus the simulation cost, primarily resulting from the concomitant
number of 1p calculations. This poses a large problem for the simulation of real catalysts
due to the mere number of possible active sites and the interplay between them. The lack
of knowledge about the appearance as well as the effect of interactions between adsorbed
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species themselves and their effect on the active sites are an ongoing field of research.[11,
15, 19, 117]

2.3.3 The Master Equation

The basis of MKM is to model chemical reactions as rare events. This entails the coarse-
graining of vibrationally excited system states around the PES basins into metastable states,
mapped to the aforementioned lattice sites. In this description, the dynamics is given by
stochastic transitions between these discrete states. Those transitions are in particular ad-
sorption, desorption, diffusion, and reactive processes. The coarse-graining of the intra-
basin vibrational dynamics is, however, an approximation commonly employed and might
not always hold.[138] Within a simulation, they do not contribute to the advancement of
chemical transitions and – due to the considerably smaller time scale on which the move-
ment takes place – would only introduce a major computational overhead. The long time
span the system stays within such a basin vibrating around its minimum vindicates the as-
sumption of a Markov process, i.e., the system forgot the preceding history rendering the
inter-basin jumps independent of each other. The mathematical representation to find the
system in any state v at time t is the master equation

dPv (t)
dt

=
∑

w ̸=v

kwv Pw (t) −
∑

w ̸=v

kvwPv (t) , (2.40)

with the probability Pv (t) of the system being in state v at time t and the transition probability
rate kvw of transitioning from state v to state w . The sum terms in the first sum express
the transition rates of entering state v from any basin w , while the ones in the second sum
express the respective rates of leaving state v toward any other basin w . For usual systems,
however, the spanned space of the master equation is very high dimensional and this so-
called curse of dimensionality precludes a straightforward solution.[19, 82, 118, 139]

2.3.4 Rate Constants

The transition probabilities or rate constants kvw of all elementary steps need to be estimated
to be used as input for MKM. The most common approach is to use typical empirical values
fit to experimental results, which, however, might prevent an atomistic interpretation. For 1p
modelling these probabilities are often based on DFT in combination with transition state
theory (TST).[82, 140]

Within harmonic TST the rate constants for an exemplary process shown in Fig. 2.3 are
approximated assuming harmonic vibrational modes leading to simple rate constant expres-
sions of the form

kTST
IS→FS = f TST

IS→FS
kBT

h
exp

(
− E+

a

kBT

)
, (2.41)

with the activation energy in forward direction E+
a and the factor f TST

IS→FS, which contains the
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Figure 2.3: Energy profiles of a reaction coordinate for an activated (blue) and a non-
activated reaction (orange) with the corresponding energetics for the calculation of rate con-
stants.

partition functions Q of the IS and the TS:

f TST
IS→FS =

QTS

QIS
. (2.42)

The factor f TST
IS→FS is a measure of the fraction of particles being reflected3 due to deviations

from the minimum energy path (MEP), which is the connection of two basins with the small-
est energetic barrier. For more than one component in either state, these Q are the products
of the individual partition functions. At steady-state, the probability for each state remains
constant over time and the sum of all transitions into one state v is equal to the sum of
transitions out of state v . Hypothetically turning off all processes except one single pair be-
tween two states w and v will lead to a relaxation into thermodynamic equilibrium between
the two states, and the forward (kwv Pw ) and backward transition flows (kvwPv ) balance each
other. This is the so-called detailed balance and applies to each pair of forward and reverse
transition within the reaction network. The probabilities Pw and Pv are proportional to the re-
spective Boltzmann weights, which leads to the expression for the reversed process kTST

FS→IS
via

kTST
IS→FS

kTST
FS→IS

= exp
(

GFS − GIS

kBT

)
, (2.43)

with the free energy GIS (GFS) of the IS (FS). The small pV term from the enthalpy H in
Eq. (2.9) is commonly neglected for adsorbed species. Furthermore, for reactions involving
gaseous species, their free energy is replaced with the respective chemical potentials µ.[11,
15, 89, 132, 137, 141]

At the beginning of a catalytic cycle, an atom or molecule needs to adsorb to the catalyst
surface. For an impinging gaseous species i onto the surface site s leading to adsorbate j

3The crossing of the barrier is considered a purely classical event. Quantum mechanical tunneling is not
possible.
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in the case of an activated process (cf. blue line in Fig. 2.3) the partition functions are

QIS = qvib
i qrot

i qtrans3D
i (2.44)

and

QTS = qvib
TS , (2.45)

with the vibrational, rotational, and translational components. The TS is assumed to be
close to the adsorbed state and, therefore, only contains vibrational components. For the
approaching gas particle, its distance from the surface serves as the reaction coordinate.
This particular degree of freedom (DOF) is thus separated within the three-dimensional
translational partition function leading to

qtrans3D
i = qtrans2D

i d
√

2πmikBT
h

, (2.46)

with the mass mi of species i and its distance d from the surface. Inserting Eqs. (2.42)
and (2.44) to (2.46) into Eq. (2.41), and multiplying with the number Ni of molecules i in the
gas phase, yields the rate constant for adsorption onto site s:

kad
i ,s =

qvib
TS

qvib
i qrot

i qtrans2D
i

NikBT
d
√

2πmikBT
exp

(
− E+

a

kBT

)
. (2.47)

Assuming an ideal gas (piV = NikBT and V = dA) impinging onto the active site leads to

kad
i ,s =

qvib
TS

qvib
i qrot

i qtrans2D
i

piAs√
2πmikBT

exp
(
− E+

a

kBT

)
= S̃i ,s

piAuc√
2πmikBT

, (2.48)

with the the partial pressure pi of species i , the surface area Auc (As) of the unit cell (site s),
temperature T , and the sticking coefficient

S̃i ,s =
qvib

TS

qvib
i qrot

i qtrans2D
i

As

Auc
exp

(
− E+

a

kBT

)
. (2.49)

This coefficient contains the statistical average of the positions, velocities, and internal DOFs
of the impinging gaseous species i onto the surface and describes the fraction of how many
particles successfully adsorb on a vacant site s. The free energy of a TS or adsorbate is
given by

Gi ,s = Ei ,s − kBT ln(qvib
i ,s ) (2.50)

and the chemical potential of a gaseous species by

µi = Egas,i − kBT ln
(
qtrans3D

i qvib
i qrot

i
)

. (2.51)

Assuming an ideal gas and replacing qtrans3D
i with the expression in Eq. (2.46), divided by

Ni particles within the entire volume, leads to

µi = Egas,i − kBT ln
(

qvib
i qrot

i qtrans2D
i

√
2πmikBT

h
kBT
piAuc

)
. (2.52)
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Figure 2.4: (a) Pie chart of the coverages θ of species A (blue), species B (orange), and
empty sites (black) of an MFA model with a single active site type. (b) Occupation of a
discrete KMC lattice with different species and empty sites using the same color coding and
average coverages as in (a).

Inserting the difference between the adsorbed state in Eq. (2.50) and the chemical potential
in Eq. (2.52) in Eqs. (2.48) and (2.49) for an activated adsorption process yields

kad,act
i ,s =

As

Auc

kBT
h

exp
(
− G+

a

kBT

)
. (2.53)

In case of a non-activated adsorption the TS is assumed to be an early 2D gas-like TS (cf.
orange line in Fig. 2.3). Consequently, the partition function in Eq. (2.49) of the TS is equal
to the one of the IS and E+

a = 0 leading to

kad,non-act
i ,s =

piAs√
2πmikBT

. (2.54)

Surface-bound processes, like reactions and diffusion, are derived analogously using

Eq. (2.41) with f TST
IS→FS = qvib

TS
qvib

i
leading to

kbound
i ,s =

kBT
h

exp
(
− G+

a

kBT

)
. (2.55)

The rate constants for the reversed reactions are determined using Eq. (2.43). Finally, this
leads to a full set of rate constants for a reaction network. Note that typical errors of DFT
originating from an incomplete basis or an approximate functional, or due to free energy
extrapolations are of the order of 0.2-0.3 eV. As the energetic barriers enter the exponent,
this can lead to errors of two or three orders of magnitude in the rate constants depending
on the temperature at play.[11, 15, 89, 117, 132, 137, 141, 142]

2.3.5 Mean Field Approximation

The MFA is one method to solve the master equation (Eq. (2.40)). Within this approach
the occupancy of any surface site type s with an adsorbate i is abstracted to an average
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coverage θi ,s. This assumption entails a random distribution of all species and the loss of a
spatially resolved picture (cf. Fig. 2.4a). Consequently, diffusion processes are infinitely fast
and no lateral interactions between adsorbates are considered but only indirect interactions
due to blocking of a specific site type.[19, 118]

Putting this into a mathematical form leads to the rate expression

rvw (t) = Nvwkvw

∏

s∈v

θi ,s(t) , (2.56)

with the site connectivity Nvw between the sites in basin v and w and the coverage θi ,s(t) of
species i on site s at time t . The reaction network of Eqs. (2.39a) to (2.39c) with only one
site type is then a set of coupled differential equations:

d
dt
θA(t) = k+

Aθ∗(t) − k−
A θA(t) − kCθA(t)θB(t) , (2.57a)

d
dt
θB(t) = k+

Bθ∗(t) − k−
B θB(t) − kCθA(t)θB(t) , and (2.57b)

d
dt
θC(t) = kCθA(t)θB(t) , (2.57c)

with the only inputs being the rate constants k±
i and the constraint

∑
i θi = 1. These equa-

tions are solved toward a steady state solution which leads to the coverages θi and conse-
quently a model agnostic to the actual spatial composition. Within this approximation the
adsorbed species do not interact with each other. However, it is known that such interac-
tions might play a decisive role and depending on the nature of the different interactions
ordered patterns might be formed on the surface, thereby, influencing the interplay between
the explicit species and possibly leading to a break down of the MFA.[19, 118, 143]

2.3.6 Kinetic Monte Carlo

KMC is another method to solve the master equation. In contrast to the MFA, it is a nu-
merical approach, which allows to handle the curse of dimensionality to reach an arbitrarily
accurate solution by describing the system as a Markov chain of independent events, i.e.,
the system loses its memory about the preceding events.[139] These events are the pos-
sible elementary processes on the basis of the current lattice configuration and represent
discrete transitions from one lattice configuration to another. One possible lattice configu-
ration for the two species A (blue) and B (orange) of the elementary steps in Eqs. (2.39a)
to (2.39c) is shown in Fig. 2.4b, which is one of several configurations of the mean coverage
shown in Fig. 2.4a. To obtain the probability Pv (t) of a system to be in state v at time t within
the master equation (Eq. (2.40)), an ensemble of generated stochastic trajectories or – if the
system is in steady state and ergodic – a sufficiently long trajectory is averaged.

Variable Step-Size Method

The variable step-size method (VSSM) is one approach for the implementation of KMC,
which belongs to the rejection-free algorithms (cf. Fig. 2.5 blue background).[144–146] Com-
pared to rejection approaches for which execution of a process might be rejected, the
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Figure 2.5: Flow chart of the VSSM KMC algorithm (blue) and the additional acceleration
steps (orange) with the corresponding variables and parameters as described in the text.

rejection-free algorithm always executes an event and the lattice needs to be updated in
each iteration. In this algorithm, the event list is updated at each iteration together with the
associated rate constants.[19, 82, 147]

The starting point of a VSSM KMC simulation can be any lattice configuration v . At first, all
possible events M that can occur from v to lattice configuration w are detected and the total
rate constant

ktot =
M∑

w=1

kvw (2.58)

for which the transition probabilities are given by the rate constants kvw is calculated. Then
one event l leading to lattice configuration n is selected by generating a uniformly distributed
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random number ρ1 ∈ ]0, 1] fulfilling

n∑

w=1

kvw ≥ ρ1ktot ≥
n−1∑

w=1

kvw . (2.59)

The probability distribution of such a process within time ∆t to go from the PES basin v into
basin w decays exponentially and follows a Poisson distribution

pvw (∆tvw ) = kvw exp(−kvw∆tvw ) , (2.60)

which is centered around the average escape time ∆tvw = k−1
vw . The probability of first

escape from basin v to any other state is described by

pescape(∆t) = ktot exp(−ktot∆t) (2.61)

and the corresponding escape time ∆t for advancing the simulation t → t + ∆t needs to be
weighted by the probability distribution pescape(∆t) to arrive at

∆t = − ln (ρ2)
ktot

, (2.62)

with a second uniformly distributed random number ρ2 ∈ ]0, 1].[19, 82, 147]

Acceleration Algorithm

The drawback of KMC is a consequence of its statistical nature, which requires a sufficient
sampling within simulations to obtain statistically significant results. Compared to the MFA,
this leads to larger computational requirements with growing reaction networks. One of the
culprits responsible for these performance issues is the time-scale disparity problem, which
is the discrepancy between fast and slow processes.[23] Due to the exponential dependence
of the rate constants on the activation barriers, processes like diffusion and adsorption,
which often have low such barriers, occur at vastly different time scales than surface bound
processes with larger barriers (cf. Eq. (2.41)). Consequently, the fast reactions are sampled
much more frequently (cf. Eq. (2.59)) than slow processes, which requires a longer overall
run time for a sufficient sampling. Artificially raising certain barriers of fast processes or
a grouping into slow and fast processes previous to the simulation mitigates the problem,
but care has to be taken to maintain ergodicity and still achieve equilibration of the adlayer
ordering between the slower processes.[23, 135, 136, 148–150] Other methods to speed
up KMC simulations also involve parallelization of a KMC algorithm, which is, however, not
subject of this work.[23, 91]

The extended phenomenological kinetics (XPK) method couples KMC for equilibrating diffu-
sion and the MFA for evolving reaction processes to avoid the time-scale disparity problem.
This approach may, however, influence the kinetic behaviour within the simulation as diffu-
sion processes are always equilibrated in the MFA step and resulting diffusion limitations
cannot be captured.[3, 16, 118, 150, 151] A different approach to speed up KMC simula-
tions was introduced by Chatterjee and Voter [22] and adapted by Dybeck et al.[23] It uses
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Figure 2.6: (a) Unscaled and (b) scaled hypothetical rates r±q of the Langmuir-Hinshelwood
mechanism shown in Eqs. (2.39a) to (2.39c). Each step (forward and backward event)
represents a reaction channel. (c) Superbasin S (all quasi-equilibrated processes, see
Eq. (2.63)), which is the union of the blue region SA of locally equilibrated channels
(n+

c +n−
c ≥ ne) and the gray region SB of not locally equilibrated channels. Quasi-equilibrated

channels QA stay within SA, while locally equilibrated channels QB explore new regions in
SB within the superbasin S. Non-equilibrated channels N lead to the exploration of a new
superbasin. Adapted with permission from J. Chem. Theory Comput. 2017, 13, 1525–1538.
© 2017 American Chemical Society.

reaction channels and superbasins to achieve a temporal acceleration of a KMC simula-
tion without the need to resort to the MFA or prior knowledge via scaling of fast processes
while not affecting slower processes. This concept is shown in Figs. 2.6a and 2.6b as well
as Fig. 2.6c. The respective additional steps for a KMC simulation are shown in Fig. 2.5
(orange background). A reaction channel q entails the forward and backward direction of
a process to maintain detailed balance. For the case of the Langmuir-Hinshelwood mech-
anism (Eqs. (2.39a) to (2.39c)) in Fig. 2.6a, each of the three channels q is represented
by their respective rates r±q . The two fast processes (Eqs. (2.39a) and (2.39b)) are scaled
by the algorithm to rmax = Nf reff, where the buffer parameter Nf is a measure of how of-
ten on average the forward and backward events are sampled before the slow process (r3,
Eq. (2.39c)) is executed. In the following the mathematical derivation of the algorithm is de-
scribed. The starting point is to partition the individual channels according to the reversibility
condition

|n+
q − n−

q |
ne

≤ δ (2.63)

into quasi-equilibrated (Q) and non-equilibrated (N) channels depending on whether the
inequality is fulfilled or not. Here, n+

q and n−
q are the counts of forward and backward exe-
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cutions of channel q over the last ne executions, which is an adjustable parameter, and δ is
the threshold parameter. A superbasin S is defined by all lattice states reachable via quasi-
equilibrated processes Q. Starting a simulation with not locally equilibrated channels, which
means that n+

q + n−
q < ne, each channel is subsequently classified according to Eq. (2.63).

Fast channels will be classified as quasi-equilibrated and subject to scaling according to

k ′
l = αqkl , (2.64)

with the scaled (k ′
l ) and non-scaled rate constant (kl ) of event l ∈ q as well as the scaling

factor αq ∈ [0, 1]. The scaling is performed in intervals of NS of the total simulation steps
Ntot, where αq is evaluated via

αq = Nf
2rS

rq,S
, (2.65)

with the buffer parameter Nf and the effective superbasin escape rate

rS =
∑

q∈N,QB

rq,S . (2.66)

N is the set of non-equilibrated channels and QB the set of quasi-equilibrated but not locally
equilibrated channels, which take the system from the explored region SA in the unexplored
region SB of the superbasin S. The reaction channels QA in Fig. 2.6c on the other hand
resemble quasi-equilibrated and locally equilibrated channels, which are confined to the
explored region SA. The average rate rq,S of reaction channel q is determined via

rq,S =
1∑

n∈S ∆tn

∑

n∈S

kq(n)∆tn , (2.67)

with the sum going over all steps n performed in superbasin S and the time ∆tn of each
step. The rate of channel q is obtained via the sum over all rate constants kl of event l ∈ q
that can occur at step n:

kq(n) =
∑

l∈q

kl (n) . (2.68)

If the chosen event is non-equilibrated (l ∈ N), the network is assumed to have left a su-
perbasin, which implies that a slow process was executed. Consequently, all scaling factors
αq are reset to unity, all execution counts ne are reset to zero, i.e., all channels are not
locally equilibrated, and the partitioning into quasi- and non-equilibrated persists within the
new superbasin. From this point on the algorithm re-enters the standard VSSM loop.[22, 23,
137]

2.3.7 Degree of Rate Control

The interplay of adsorption and desorption processes of atoms or molecules onto the sur-
face as well as surface bound processes of adsorbed species forms the reaction network,
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which contains all possible pathways from one state to another. In order to analyze the pe-
culiarities of such a reaction network, the limiting factors within the different possible reaction
mechanisms can be determined. As described above, the rate of a certain transformation
is based on the energetics of the involved species as activated steps going from the IS to
the FS require to overcome a TS, which determines the energy barriers for the forward and
backward process. Usually only one or a small subset of elementary steps limit the overall
transformation and impact the product selectivities. These steps are the (partly) RDSs. A
convenient tool to identify RDSs is sensitivity analysis, which relates the change of the over-
all turnover frequency (TOF) of the formation of product i with a change in the speed of a
single elementary reaction resembled by the free energy of formation Gj of a TS j :[152, 153]

Xij =

(
∂ ln (ri )

∂
(
−Gj/kBT

)
)

Gj ̸=o

, (2.69)

with the degree of rate control (DRC) matrix Xij , the production (consumption) rate ri of
product (reactant) i , the Boltzmann constant kB, and the temperature T . All o other for-
mation energies Gj ̸=o are kept constant leading to a measure of the influence of a single
elementary reaction step on the TOF. If the DRC is positive (negative), the TOF is increased
by a more strongly (weakly) bound species j . Consequently, the network needs to contain
the correct elementary reactions and accurate energetics for these steps as the remaining
steps are unimportant once the RDSs are identified for a certain set of reaction conditions.
This renders sensitivity analysis also usually much more robust compared to DFT due to its
associated errors. However, one has to keep in mind that this concept neglects the interde-
pendence among adsorption energetics exploited, e.g., by scaling relations. In essence the
virtue of screening studies is that relative activities are much more meaningful than single
absolute TOFs due to the correlations inherent in the energetics predicted by DFT func-
tionals, which in most cases lead to error cancellation. Finally, the success of such studies
predicting the well known activity volcanos rely on relative activities. However, it is important
to point out that the common approach is to use a predefined reaction network – based on
the insights obtained from catalysts around the top of the volcano – for all transition metals
(TMs) under consideration, which might not be a valid assumption.[133, 152–157]

2.3.8 Comparison Between the MFA and KMC

The averaging of the surface coverage within the MFA simulations leads to the problem that
the individual interactions between adsorbates can not be accounted for. As described in
Sec. 2.3.5, the only possibility to include adsorbate correlations is to introduce coverage-
dependent adsorption energies, which only affect the respective average coverages. KMC
studies, however, have shown that differences in the local environment due to spatial corre-
lations can have a significant influence on the catalytic predictions.[3, 16, 118]

Especially second-order processes are associated with the differences in the simulation re-
sults. Based on a KMC simulation the pair probability N2(A, B) resembles the probability
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of two reacting species A and B residing in a state where a reaction is possible. It is ob-
tained by counting these states over the whole simulation and normalizing by the simulation
time and the system size. On the other hand, based on the average coverage of these
two species θA and θB within the KMC simulation and the site connectivity NA,B, the MFA-
assumed probability is given by NA,BθA(t)θB(t) (cf. Eq. (2.56)). In case the ratio of the pair
probability divided by the MFA-assumed probability

N2(A, B)
NA,BθA(t)θB(t)

(2.70)

deviates substantially from unity, the assumptions within the MFA lead to errors and it breaks
down. A value lower than one denotes that the reaction is less likely to occur in KMC,
while a larger value denotes the opposite. This can be translated into a lower (higher)
configurational entropy in the MFA-assumed well-mixed state, which in turn influences the
free energy landscape.[3, 137]
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3.1 Active Site Representation in First-Principles Microkinetic
Models: Data-Enhanced Computational Screening for Im-
proved Methanation Catalysts

Martin Deimel, Karsten Reuter,
and Mie Andersen
ACS Catal. 10, 13729 (2020).
DOI: 10.1021/acscatal.0c04045

Summary

The goal of this work is to investigate the effect of the active site representation of potential
transition metal (TM) catalyst surfaces for the carbon monoxide (CO) methanation reaction.
With the help of machine learning (ML) techniques, we overcome the bottleneck of electronic
structure theory, which is especially crucial for computational screening studies. The catalyst
surfaces used within the article entailed pure elements as well as binary alloys, which offer –
due to their different atom composition – a larger variety of diverse active site patterns. This
is resembled by a larger spectrum of different adsorption energies available for the reaction
intermediates and the potential for a benign catalytic pathway. To simulate the effect of such
an active site resolution the activity predictions from three mean-field microkinetic models
of different complexity were compared and differences and similarities analyzed. Based on
a Sure Independence Screening and Sparsifying Operator (SISSO) descriptor, which was
fit to density functional theory (DFT) data and was based only on properties of the clean
surface, the required energetic input of the whole surface could be obtained with a single
DFT calculation per catalyst material.

The insight obtained from this project is that a more reductionist active site representation
has a tendency to overestimate the activity of pure TMs compared to a more detailed model
while the opposite is the case for layered bimetallic alloys. This discrepancy is traced back
to shortcomings in an adequate representation of the variety of accessible active sites and
energetic ordering for the adsorbates involved in the rate-determining step (RDS) within the
simpler models. For most of the potential catalyst surfaces the RDS is the H-assisted CO
dissociation. In particular a weak interaction of the surface with the emerging OH adsorbate
within this step on layered alloys causes a smaller activation barrier and a larger turnover
frequency (TOF), which can not be resolved with a coarser active site representation and
would be missed. Using ML for the fast and inexpensive prediction of adsorption energies
opens up the possibility to use detailed microkinetic models, which require a much larger
number of input energetics, for large screening studies and gain a better mechanistic under-
standing of the catalytic process.
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Individual Contributions

Following the idea of Mie Andersen, I extended the DFT calculated data set published in
Ref. 19 by the adsorption energetics on the high symmetry sites and the respective primary
features of the adsorbates CH2 and CH3 and the TMs Co and Fe. The original database
entailed the energetics of H, C, CH, CO, O, and OH on the face-centered cubic (fcc) (211)
facets of pure Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au as well as the four single-atom alloys
Ag@Cu, Pt@Rh, Pd@Ir, and Au@Ni, and the four AB bimetallic alloys AgPd, IrRu, PtRh,
and AgAu. The two additional TMs and species are relevant catalyst materials and interme-
diates for the methanation reaction. As the most stable phase of Fe is a body-centered cubic
(bcc) crystal, I determined the adsorption energies on the bcc(210) facet and, similarly, cal-
culated in addition to the fcc(211) facet of Co, the energetics for a stepped hexagonal close
packed (hcp) (0001) facet. On the basis of this data set I fit and evaluated a SISSO [103,
104] descriptor based on a training and validation set, which consisted of a random se-
lection of 80% and 20%, respectively, of the available data of each individual adsorbate. I
then used this descriptor to predict the adsorption energies of a selection of binary alloy
surfaces of all the mentioned TMs within the space groups 164 and 187 (hcp-like) as well
as 221 and 225 (fcc-like) obtained by careful selection of bulk phases from Automatic Flow
(AFLOW)-convex hull (CHULL) database searches to model their catalytic activity. To this
end, simulations of three mean-field microkinetic models with an increased active site res-
olution were conducted and compared by me. The most detailed model was taken from
Ref. [137], the intermediate one from Ref. [71], while the reductionist model was introduced
in this work. The manuscript was collectively written and edited by all authors.
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3.2 Selectivity Trends and Role of Adsorbate–Adsorbate Inter-
actions in CO Hydrogenation on Rhodium Catalysts

Martin Deimel, Hector Prats, Michael Seibt,
Karsten Reuter, and Mie Andersen
ACS Catal. 12, 7907 (2022).
DOI: 10.1021/acscatal.2c02353

Summary

This project on the carbon monoxide (CO) hydrogenation reaction on the Rh(111) and
Rh(211) facets investigates the activity and selectivity trends employing accelerated first-
principles kinetic Monte Carlo (KMC) simulations. The focus lies on the influence of lateral
interactions parametrized from a cluster expansion (CE) model and a comparison of our
results with and without lateral interactions to the theoretical work on these surfaces by
Yang et al.[21] using a mean field approximation (MFA) approach with coverage dependent
reaction rates as well as the experimental results of Schumann et al.[51] for Rh nanoparticles
of different sizes. The acceleration algorithm is crucial due to the large reaction networks
for both our Rh(211) model, which consists of 34 reaction and 19 diffusion steps, and the
Rh(111) model with 16 reaction and 5 diffusion steps, and the concomitant time-scale dis-
parity problem usually occurring due to fast diffusion and slow reaction steps described in
2.3.6. On Rh(111) it can be seen from the MFA data that lateral interactions have a huge
impact on the activity and selectivity. We rationalize this by the differences in the cover-
ages. The secondary reaction step of CHOH dissociation – the rate-limiting step (RLS) on
the Rh(111) facet – requires a free neighboring terrace site, which is more probable when
the repulsive CO-CO interactions cause a lower coverage of the dominant CO adsorbate.
A comparison between KMC and the MFA including lateral interactions reveals that the se-
lectivity differs below ∼580 K. The MFA predicts selectivity toward acetaldehyde while KMC
predicts methane (CH4) selectivity in agreement with the experimental findings on large
nanoparticles. On the other hand, there is only a small influence on the activity on Rh(211)
with and without lateral interactions. The coverages are less affected by the interactions and
the effective barrier of the RLS, which is the water (H2O) formation at the terrace site, re-
mains similar. From an analysis of the pair probabilities without interactions, localized lattice
inhomogeneities are identified, which can only be seen within KMC due to the average cov-
erage used in the MFA. These cause lower turnover frequencies (TOFs) and different RLSs
in the KMC than the MFA model. In an attempt to identify the reason for the differences of
the KMC activities and selectivities to the experimental results, we found that a correction
to the common CO overbinding of generalized gradient approximation (GGA) functionals
leads to an overall better agreement. This can be traced back to the larger influence on the
acetaldehyde species – containing two C atoms – as two individual CO species are involved
in the formation as opposed to CH4, where only one CO is involved.
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Individual Contributions

Based on the initial idea of Mie Andersen of combining the acceleration algorithm introduced
by Dybeck et al.[23] for KMC simulations with the on-the-fly calculation of rate constants for
the treatment of lateral interactions, the project resulted from the work by Michael Seibt,[150]
who implemented and tested the algorithm in kmos.[147] Michael Seibt implemented the
Bayesian error analysis and with Hector Prats jointly developed the KMC reaction networks
for the Rh(111) and Rh(211) facets based on the networks and energetics by Yang et al.[21]
Some additional calculations for intermediates and transition states (TSs) as well as for
the CE were required for these networks, which have been performed by Hector Prats. I
updated and adapted these networks. All KMC simulations were performed by me including
a sensitivity analysis, calculations for the impact of errors in the calculated CO adsorption
energy, as well as the determination of the KMC and MFA-assumed pair probabilities. I
used the Rh(111) and adapted the Rh(211) MFA reaction networks by Yang et al.[21] to
match the KMC networks in order to be able to compare the results from my Catalysis
Microkinetic Analysis Package (CatMAP) [143] simulations and trace back differences solely
to the different approaches and approximations. The manuscript was collectively written and
edited by Mie Andersen, Hector Prats, Karsten Reuter, and myself.
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3.3 Further Work

Additionally to the publications above two articles have been published during the course
of my time at the Chair for Theoretical Chemistry and Catalysis Research Center. These
articles are not directly related to the topic of this thesis and therefore are solely mentioned
for the sake of completeness.

• Interface between graphene and liquid Cu from molecular dynamics sim-
ulations
Juan Santiago Cingolani, Martin Deimel, Simone Köcher, Christoph Scheurer,
Karsten Reuter, and Mie Andersen
J. Chem. Phys. 153, 074702 (2020).
DOI: 10.1063/5.0020126

• Generalized molecular solvation in non-aqueous solutions by a single
parameter implicit solvation scheme
Christoph Hille*, Stefan Ringe*, Martin Deimel, Christian Kunkel, William E.
Acree, Karsten Reuter, and Harald Oberhofer
J. Chem. Phys. 150, 041710 (2019).
DOI: 10.1063/1.5050938
* These authors contributed equally to the work.
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4 Summary, Conclusions, and Outlook

Microkinetic modeling (MKM) advanced to a very important tool to aid in understanding
heterogeneous catalytic processes and promoting catalysis research.[15, 19, 82] The un-
derlying high-dimensional potential energy surface (PES) forms the basis to such modeling,
as it describes the entire system and the transitions between different states on a catalyst
surface. Using first-principles (1p) quantum mechanical methods such as density functional
theory (DFT) to obtain single points on the PES allow to describe the system in terms of
rare events, the so-called elementary reactions. These points represent minima (adsorbed
species) and saddle points (transition states (TSs)) at and between specific active sites.
In combination with the mean field approximation (MFA), this forms the basis of catalyst
screening studies. Such studies take advantage of methods to approximate the PESs of
possible catalyst materials from the information on other PESs. These methods include
linear scaling relations and more advanced machine learning (ML) methods.[19] Despite
the approximations included in such theoretical studies, the overall trend is captured quite
well.[21] The MFA approach proved to be very helpful in explaining experimental observa-
tions and such calculations could guide further towards promising catalyst materials at a
fraction of the cost associated with experimental setups. Refining the models itself as well
as the approximations for obtaining the data will naturally lead to a better description of the
processes under investigation. However, the assumption of a mean coverage without any
interactions between adsorbates leads to problems especially when in regions with the high-
est activity. Realizing that the surface within these regions is simultaneously covered with
different species and exhibiting very different local environments, it turned out that such a
neglect of interactions and a site resolved picture is too crude for an atomic-scale under-
standing of the important surface processes. In this regard, kinetic Monte Carlo (KMC) in
combination with a cluster expansion (CE) approach to model lateral interactions between
adsorbed species is the method of choice for in-depth mechanistic insight at the cost of
more intricate calculations.

In our investigations on the methanation reaction on binary alloy catalysts we realized that
the choice of active sites has a decisive impact on the simulation results.[2] It is essential
to include all high symmetry sites to obtain an accurate description of the catalytic process.
This was illustrated by comparing the catalytic activities obtained from different MFA models
with increasing active site resolutions. As a key aspect for the determination of novel cata-
lyst materials with improved performance is efficiency, we predicted the required extensive
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energetic data with the ML method Sure Independence Screening and Sparsifying Operator
(SISSO). While this approach provides the necessary performance and narrows down the
space of possible catalyst materials to just a few promising ones, the results preclude in-
sight on the atomic-scale, which contains possibly decisive factors. In this regard, the KMC
study of the carbon monoxide (CO) hydrogenation reaction toward C2+ oxygenates revealed
such factors. Overcoming the time-scale disparity problem using the acceleration algorithm
by Dybeck et al.[23] together with on-the-fly (otf) rate constants within kmos [147] allows to
reach out to such large reaction networks. The local coverages impacting initial states (ISs),
TSs, and final states (FSs) via different lateral interactions can influence the energetics and
limit diffusion. Consequently, reaction channels are enabled or disabled, leading to states
with immobile adsorbates. The detailed understanding gained about the micro-scale factors
influencing selectivity and activity, which is mostly not possible in an experimental setup,
sets the stage for targeted catalyst design and upscaling approaches.

As insightful the results of the two publications are, there are also some issues to be ad-
dressed in future research. While it is possible to tackle large and complex systems, it is
important to keep in mind that the quality of the MKM simulations severely depend on the
accuracy of the input energetics due to the exponential dependency of the rate constants on
the barriers. The prominent failure of generalized gradient approximation (GGA) functionals
in accurately calculating CO adsorption [57–59] is highlighted in Ref. 3. As a result, the
calculated activities and selectivities can vary greatly. To this end, ML approaches for the
prediction of the energetic input are a suitable means for even more reliable energetics with-
out largely impacting computational demands.[158, 159] Moreover, ML can also be used to
obtain possible catalyst materials in a bottom-up procedure by mapping ideal parameters to
a structure.[94] Another, yet already tackled topic is the appearance of multidentate species,
especially when dealing with larger adsorbates. The established approach uses graph the-
ory to treat these cases. Such graph-theoretical ideas are also used to model a system con-
sisting of different lattices like nanoparticles.[89] While these concepts have already been
applied, kmos currently does not implement them, which might be a valuable contribution in
the future. Lastly, topological information of real catalytic systems at operando conditions
is scarce. Consequently, and due to the sheer number of possibilities, theoretical studies
focus on idealized facets, which neglect the influence of dynamical phenomena and phase
transitions. All in all, it will be very interesting to see how the field of MKM will develop with
these and other daunting challenges in the years to come.
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ABSTRACT: Computational screening based on first-principles
microkinetic modeling has evolved into a widespread tool for
catalyst discovery. Efficiently exploiting various scaling relations,
this approach draws its predictive character from reliable
adsorption energies, typically calculated with density-functional
theory (DFT). In prevalent screening approaches, the concomitant
computational costs are kept tractable through the use of
reductionist microkinetic models that only resolve a minimalistic
amount of active site motifs at the catalyst surface. Here, we
scrutinize this common practice by systematically comparing the
screening predictions for the CO methanation reaction when using
microkinetic models that resolve an increasing amount of sites, up
to the full consideration of all high-symmetry sites at stepped
transition metal (TM) and binary TM alloy catalysts. Apart from generally overestimating the catalytic activity, the simplified models
fail to identify a most promising class of layered bimetallic alloys as their insufficient representation of the catalyst surface does not
allow them to correctly capture the rate-determining step. Only the full microkinetic model provides this proper mechanistic basis
for the screening. The excessive amount of predictive-quality adsorption energetics required for this model is obtained from a
compressed sensing descriptor that once trained readily provides these data for a new material from a single DFT calculation of the
clean surface. With the current methodological advances in areas such as compressed sensing and machine learning, and the
concurrent availability of cheap adsorption energetics for a wide range of possible catalyst materials, there is thus no reason to
continue to use simplistic microkinetic models in computational catalyst screening.

KEYWORDS: computational screening, heterogeneous catalysis, active site representation, density functional theory, microkinetic modeling,
compressed sensing, machine learning

■ INTRODUCTION

The development of improved heterogeneous catalysts from
abundant and unproblematic materials plays a crucial role for
the efficient and environmentally friendly conversion of
feedstock to basic and fine chemicals. Traditionally, this task
comprises a vast amount of laborious laboratory tests.1,2 With
the ascent of predictive-quality theoretical methods, computa-
tional screening is increasingly used to aid in this procedure by
narrowing down possible candidates for subsequent detailed
testing.3,4 In a prevalent realization, the key quantities for such
computational catalyst screening are the adsorption energetics
of the involved species and reaction intermediates at specific
active sites on the surface. These, together with Brønsted−
Evans−Polanyi relationships4−8 for the activation energies, are
the basis for the construction of microkinetic models that
evaluate the kinetics of the process and predict the intrinsic
catalytic activity for a candidate material.9−12

So far, the active site representation in such models has been
limited. On the one hand, this practice arises from the desire to

arrive at reductionist models that maximally condense the
relevant physics. On the other hand, one also has to
acknowledge that for complex reactions a wealth of new
adsorption energies is needed for each additional site that is
taken into account.13,14 Since computationally demanding first-
principles calculations, typically within DFT, are generally used
to provide these adsorption energies at the required predictive
quality, a consideration of more active sites can quickly
become intractable.
With the rapid developments in advanced data science and

machine learning (ML) methods, the latter limitation no
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longer holds true as these techniques can substitute the DFT
calculations and provide computationally undemanding and
accurate energetics.12,15−18 As an example, we here revisit the
industrially important methanation reaction19−23 and use the
established Sure Independence Screening and Sparsifying
Operator (SISSO) approach to identify a descriptor that
allows the efficient generation of reliable adsorption energetics
data for all methanation reaction intermediates at all possible
adsorption sites at a wide range of TM alloy surfaces.17,24,25

We focus here on alloys since the wealth of possible active sites
offered by their surfaces provides a known means to tune the
adsorption energies in order to maximize the catalytic
activity.26−29 Simultaneously, precisely this wealth of sites
and the importance to properly represent it constitutes a key
example of the challenges for conventional computational
screening with simplified microkinetic models.
The SISSO approach instead allows us to employ a much

more detailed active site representation at no additional cost.
In this work, we use this to perform a theory−theory
comparison on how such fine-grained microkinetic models
compare with more reductionist models typically employed in
the literaturenot only in terms of providing the correct
mechanistic understanding but also specifically with respect to
the designated screening task to identify promising materials.
We note that the active site representation is a choice to make
in both mean-field and kinetic Monte Carlo (KMC)
microkinetic models.30,31 Our work is therefore of fundamental
importance for both strands of microkinetic modeling, even if
we here focus only on mean-field models. The latter are more
convenient for screening purposes, as the computational cost
to solve the coupled differential equations is completely
negligible compared to KMC simulations or DFT calculations.
We find that models with a simpler active site representation

have a general tendency to overestimate the catalytic activity.
At the same time, they grossly underestimate the activity of
interesting active site motifs made up of layered alloys. Alloys
exhibiting these motifs would thereby be completely missed in
the standard screening approach. We trace this deficiency back
to the problematic approximation of reductionist microkinetic
models to only consider adsorption at the most stable site of
each species. In the present methanation example, this
provides the wrong energetics for the rate-determining step
(RDS). By also including metastable adsorption sites, a more
faithful representation of the actual geometry of the RDS can
be achieved.

■ METHODS

DFT Calculations. The DFT data set used for the SISSO
descriptor identification is taken from ref 17 and enlarged to
consider also the adsorbates CH2 and CH3 and the TMs Fe
and Co, which are of relevance for the methanation reaction.
The combined data set then includes adsorption energies of H,
C, CH, CH2, CH3, CO, O, and OH on the fcc(211) facets of
Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au as well as of the four
single-atom (SA) alloys Ag@Cu, Pt@Rh, Pd@Ir, and Au@Ni
and the four AB bimetallic alloys AgPd, IrRu, PtRh, and AgAu.
Figure 1 shows all considered high-symmetry sites at the
stepped fcc(211) facet. Additionally, the respective adsorption
energies are calculated on the bcc(210) facet of Fe and the
stepped hcp(0001) facet of Co, which have similar adsorption
sites to those of the fcc(211) facet (see Supporting
Information Figure S1).

As in ref 17, the adsorption energies were calculated using
the plane-wave DFT code Quantum ESPRESSO32 with the
Bayesian error estimation functional with van der Waals
correlation (BEEF-vdW).33 All fcc surface slabs are modeled
using a (1 × 3) supercell with a thickness of 15 metal layers
except for the alloys, which use a (1 × 1) supercell. The
stepped Co hcp(0001) facet is modeled in a five-layer (1 × 3)
supercell and the Fe bcc(210) facet in a 15-layer (1 × 3)
supercell. The alloys generated for screening and associated
primary feature determination (see below) use a (1 × 1)
supercell. All calculations involving Fe, Co, and Ni include spin
polarization. The plane-wave (charge density) cutoff is 500 eV
(5,000 eV) except for calculations with Fe for which the cutoff
is 1,000 eV (10,000 eV). The Brillouin zone of the (1 × 3)
supercell was sampled with a (4 × 4) k-point grid, and
equivalent k-point densities were employed for the other
supercells. Further details are given in Supporting Information
section S1.

Sure Independence Screening and Sparsifying Oper-
ator (SISSO). Within signal processing, compressed sensing is
a tool to recover a signal from only a limited number of
measurements. This methodology relies on the identification of
the essential characteristics of the signalthe features.34

SISSO24 is such a compressed sensing method. When this is
applied to a materials science problem, one is searching for the
specific features that describe a physical quantity like the
adsorption energy. The basis of this approach is formed by
preselected primary features, e.g., coordination numbers, d-
band moments, or density of states at the Fermi level, which
are believed to play a role in describing the quantity of interest.
Descriptors are then expressed as linear combinations of
features, where the features are themselves nonlinear functions
of the primary features. There are two hyperparameters in the
method: one is the dimension (the number of linearly
combined features), and the other is the rung (the complexity
of features determined by the number of iterations in which
the primary features are combined by applying algebraic/
functional operators). SISSO is able to tackle huge feature
spaces and to identify the best sparse solution (the solution
with a certain, small number of linearly combined features) by
l0 regularization carried out in a smaller feature space selected
by sure independence screening.

Figure 1. Top view of the stepped fcc(211) facet showing all
considered high-symmetry adsorption sites. The dashed lines divide
the surface area into the three coarse-grained groups: terrace (t),
upper step (s) edge, and lower 4-fold (f) step edge. The colored
circles indicate bridge (orange), 4-fold (gray), top (green), hcp
(blue), and fcc (white) sites.
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As detailed in Supporting Information section S2, we here
follow the approach developed in ref 17 regarding primary
features, feature construction, and the use of multitask
learning25 to identify a common descriptor for all adsorbates
simultaneously. The latter allows the capture of mutually
relevant features and a significant increase of the size of the
training database used for descriptor identification compared
to single-task learning.
Microkinetic Mean-Field Simulations. The microkinetic

mean-field simulations are carried out in the steady state using
the CatMAP software package.35 In accordance with previous
methanation works,30,36 the reaction conditions are set to T =
523 K and p = 1 bar with a gas composition of 1% CO, 97%
H2, 1% CH4, and 1% H2O, which resembles typical reactor
operation conditions. The thermochemistry of the gas-phase
molecules (H2, CO, CH4, and H2O) is determined within the
ideal gas approximation and that of the adsorbed species and
TSs within the harmonic approximation using the vibrational
frequencies for Rh(211) calculated in ref 30 and the ASE
thermochemistry module.37,38 TS energies are determined
using the TS- and Brønsted−Evans−Polanyi-type scaling
relations established in ref 30.
In creating the reaction mechanism for a microkinetic

model, there are mainly two types of coarse graining to adjust
the complexity. The first one is the number of possible
elementary reaction steps going from the reactants to the
products. In order to obtain meaningful results, this reaction
network needs to contain the major components contributing
to the real pathway. The second one is the number of sites to
consider in this network. As a larger number of sites naturally
leads to more possible reaction steps, it is closely related to the
former. Often, high-symmetry sites located within certain areas
of a surface are abstracted to a site group, e.g., all sites located
at a step edge or at a terrace (see Figure 1). The entire group is
then represented as one effective site with adsorption
energetics corresponding to the most favorable adsorption
energetics of each given species at any site within the group. At
the microkinetic level, only this effective site contributes to the
coverage of the group and blocks the remaining high-symmetry
sites within the group for adsorption. The latter site blocking is
thus a crude description of lateral interactions between the
adsorbates.11,39 As detailed below, we here analyze three
microkinetic models that differ in the number of groups and
high-symmetry sites considered for each adsorbate at the alloy
surfaces to be screened. Thereby, varying degrees of
constraints are imposed on the available reaction pathways.
Note that the presented turnover frequency (TOF) is

normalized to per step site. This eliminates the normalization
issue to account for relative concentrations of various site types
and makes all three kinetic models directly comparable to each
other. In the more general case, e.g., the “tiling” model40 could
allow a rigorous normalization.
Screened Alloy Surfaces. The alloy surfaces used for

screening are constructed with the help of the AFLOW
database.41 Using the CHULL module, we obtain formation
enthalpies of bulk bimetallic alloy structures from all possible
binary combinations of the used TMs (Fe, Co, Ni, Cu, Ru, Rh,
Pd, Ag, Ir, Pt, Au).42 The resulting convex hull plot (see
Supporting Information Figure S3 for an example) shows the
formation enthalpy against the TM mixing ratio and allows the
identification of stable and metastable phases. As detailed in
Supporting Information section S3, one challenge in
determining the alloys used for the screening is the variety

of different space groups to which the structures belong. A
careful analysis of the convex hull plots led to the choice of the
space groups 221 and 225 (fcc structure) and 187 and 164
(hcp structure). Of these, only stable and metastable structures
are considered to enable a meaningful screening. Images of the
different slab models used can be found in Supporting
Information Figure S4.

■ RESULTS AND DISCUSSION
The aim of this work is to study the influence of the active site
representation employed in the microkinetic model on the
predicted catalyst activity and the concomitant ability to
properly identify promising candidate materials in a screening
procedure. The objective is thereby to scrutinize prevalent
reductionist approaches and establish a best practice. To
enable a systematic unbiased comparison, all microkinetic
models tested draw on the same, identical pool of adsorption
energetics provided by SISSO, as well as the same scaling
relations for the activation energies. Differences, consequently,
arise solely from the active site choices within the microkinetic
models. For this theory−theory comparison, the actual
accuracy of the SISSO adsorption energy predictions plays in
principle only a subordinate role. Nevertheless, in order to
generate a most realistic test case and simultaneously arrive at
direct insights into the methanation reaction, we carefully
optimize the SISSO descriptor following the approach of ref 17
and using the here established enlarged DFT data set. As
detailed in Supporting Information section S2, we randomly
partition each task (adsorbate) of this data set into 80%
training data and 20% validation data using the scikit-learn
software package43 and optimize the two hyperparameters in
the SISSO method (dimension and rung). The best prediction
of the validation data set is obtained using rung 3 descriptors
and levels out at dimension 5. This trend is indicative of
overfitting at higher dimensions. The optimal five-dimensional
rung 3 descriptor has a prediction root-mean-square error of
0.183 eV and maximum absolute error of 0.565 eV, which is
fully comparable to the accuracy reached in our previous work
for a smaller range of TM catalysts and reaction intermediates.
The final descriptor used in the screening, see Supporting
Information section S2, is obtained by fixing the hyper-
parameters to these optimal values and retraining the SISSO
descriptor based on the entire DFT data set.
With the energetics at hand, we now introduce the

microkinetic models that are used to determine the catalyst
activity. Here, we compare three different models taken from
published work.30,36 According to their level of detail, they are
labeled in decreasing order as complex, simple, and
reductionist. For all models the surface area of the catalyst is
coarse grained into specific groups indicated by the vertical
dashed lines in Figure 1. Each high-symmetry site is assigned
to one of these three groups termed upper step (s) edge,
terrace (t), or lower 4-fold (f) step edge. The models differ in
the way they resolve the true high-symmetry sites of the
catalyst surface and adsorption to them in these three groups.
Following refs 30 and 36, the behavior of hydrogen is
approximated by adsorption on a separate “hydrogen reservoir”
site (h) having the adsorption energy of the terrace site group.
The complex microkinetic model is taken from Andersen et

al.30 Here, C and CH adsorb within all three groups, whereas
the other adsorbates (CO, O, OH, CH2, CH3, H) prefer lower
coordinated sites provided in the t- and s-groups. Furthermore,
all high-symmetry sites highlighted in Figure 1 are explicitly
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tested to find the most stable adsorption site for each
adsorbate within each group. As each adsorbate may adsorb
in more than one site group, the respective diffusion processes
are also included. This leads to a total of 35 different
elementary steps (see Supporting Information section S4).
The simple microkinetic model is taken from Lausche et

al.36 In contrast to the complex model, each adsorbate can only
adsorb in one site group. Additionally, the pool of high
symmetry sites within each group does not include all
possibilities. C and CH adsorb exclusively on the f-group
site; CO, OH, and O on bridge or hcp sites of the s-group; and
H, CH2, and CH3 on top, hcp, or fcc sites of the t-group.
Consequently, the number of elementary steps is reduced to
10, and no diffusion processes are included.
The reductionist model further reduces the site representa-

tion within each group. As Ni-based catalysts are the most
important methanation catalysts for industrial applications,
only the one high-symmetry site of each group with the highest
stability on Ni is considered in the reductionist model. These
are the f-group site for C and CH; the hcp s site for CO and O;
the bridge s site for OH, CH2, and CH3; and the hcp t site for
H.
An overview of the groups and high-symmetry sites

employed in each model can be found in Table 1. Note that
in a DFT-based computational screening study, the different
models would imply significantly different computational costs,
as they require largely different numbers of first-principles
energetic data. As the most stable adsorption sites for the
different reaction intermediates are not known a priori for a
new catalyst material to be screened, this cost is particularly
low for the reductionist model. Here, the adsorption sites on
Ni are simply taken for all tested materials, thereby completely
circumventing any costly calculation at different active sites.
The cost of solving the complex mean-field model is also
significantly higher (about 30 times) than the cost of solving
the simpler models because the differential equations to be
solved are stiffer in this case due to the inclusion of fast
diffusion processes. However, the absolute cost is extremely
low (about 0.06 core hours), which is thus negligible compared
to the cost of obtaining the first-principles energetic data.
We also note that alloys contain more distinct high-

symmetry sites than pure metals since sites that are identical
by symmetry at the pure metal surfaces may differ in the
elemental composition at alloy surfaces. For the complex and
simple models, the adsorption energies were predicted at all of
the possible realizations of the considered sites, and the most
favorable of these sites within each site group was then used in
the screening. For the reductionist model, however, the

adsorption energetics were predicted at only one fixed site
for all surfaces.
Using the SISSO energetics, the three microkinetic models

are now employed to predict the catalytic activity for the 149
TM and TM alloy surfaces contained in our screening set.
Figure 2 plots the corresponding TOFs from the complex

microkinetic model against the TOFs of the simple and
reductionist model in blue and orange, respectively. The
apparent gross correlation demonstrates that all three micro-
kinetic models predict the same qualitative trends. Obviously,
the high activity of the industrial Ni catalyst (see Supporting
Information Tables S5 and S6)20−22 is essentially identically
predicted by all three models, as the site consideration of the
simpler models was explicitly motivated by this material.
Notwithstanding these achievements, at a closer inspection, the
linear fits to the data for the simple and reductionist models
reveal an overall overestimation of the catalyst activity as
compared to the complex model. The correlation coefficients
R2 are about 0.6−0.7 for both regressions, and the spreads of

Table 1. Accessible High-Symmetry Sites within Each Site Group for the Various Methanation Reaction Intermediates in the
Three Microkinetic Models (See Figure 1 for an Explanation of the Different Sites and Site Groups)

complex simple reductionist

adsorbate j s t f s t f s t f

C all but top all but top ff ff ff

CH all but top all but top ff ff ff

CO all all br, hcp hcp
H all but top top, hcp, fcc hcp
O all but top all but top br, hcp hcp
OH all all br, hcp br
CH2 all all top, hcp, fcc br
CH3 all all top, hcp, fcc br

Figure 2. Correlation plot of the TOFs (product molecules per
second and step site) obtained for the screened TMs and TM alloys
in the complex microkinetic model against those of the simpler
models (blue, simple; orange, reductionist). The solid black line
represents perfect correlation. The dashed blue and orange lines are
linear fits that reveal a general overestimation of the TOFs in the two
simpler models. The industrial Ni catalyst and selected outliers are
highlighted.
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the data points around the fitted lines are more than 3 orders
of magnitude. In other words, the reduced resolution of active
sites in these models leads to an overall uncertainty in the
predicted catalytic activity that exceeds the typical uncertainty
due to the approximate DFT adsorption energetics, which is
frequently discussed as a primary limitation of computational
screening approaches. Even more importantly, there are also
some highly active outliers like FePt3 or FePd3 (see their
structure in Figure 3a), for which the catalytic activity is

underestimated by the simpler models by about 8 orders of
magnitude and which would correspondingly be dismissed in a
screening approach based on these models. The similar
performance of the reductionist and simple model in these
respects (see Supporting Information Figure S5) reveals that
they have a similar relationship to the complex model. As they
do not differ in the number of elementary steps considered, but
only in the choice of the active site representation, this is a
strong indication that both models lack similar information,
which is included in the complex model and which is
particularly pronounced for the outliers.
In order to analyze why the activities from the complex

model are different from the simpler models, we determine the
RDSs for each screened alloy and for each applied model by
calculating Campbell’s degree of rate control,44 Xj:
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∂ −
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Here, Gj is the free energy of formation of an intermediate or
transition state j, kB is the Boltzmann constant, and T is the
temperature. All other formation energies n ≠ j are kept
constant, leading to a measure of the influence of the formation
energy of a single species on the TOF. Here, we define the
RDSs as those where the TS has a high DRC. The RDSs play
the most important role for the TOF, and thus any difference
in the energetics of the RDSs employed in the three
microkinetic models (due to the varying active site
representation) will directly influence the TOF. In contrast,
differences in the energetics of all other reaction steps are less
likely to influence the TOF. Note, though, that influences are
in principle possible since microkinetic models are highly
nonlinear, whereas the DRC is formulated as a linear response
theory, meaning that the result is only valid locally in
parameter space.
For the vast majority of the screened catalysts, we identify

the H-assisted CO dissociation

* + * − * + * → * + *CO H C OH C OHF

to be the dominant RDS. The full DRC analysis can be found
in Supporting Information Figure S6. The geometry of the TS
in this step (Figure 3b) is very similar to that of the final state;
i.e., the C is adsorbed near the f site and the OH is adsorbed
near the t site. However, in the simple and reductionist models,
adsorption of OH at a t site is not included, since for the pure
metals the s site is generally the more favorable OH adsorption
site. As an example, we show in Table 2 the SISSO adsorption
energies of the species involved in the RDS for Ni, which as
mentioned above is one of the materials for which the activity
is only slightly overestimated by the simpler models. For this
material, OH adsorption at the s site is by 0.5 eV more
favorable than adsorption at the t site. The overestimated TOF
in the simpler models is thus caused by the limitation to
consider only the more favorable energetics of OH at an s site,
which in turn also influences the energetics of the TS, since it
scales with the final state energetics through the employed TS
scaling relation. The resulting decreased activation energy of
the RDS in the simpler models can also be seen in the energy
diagrams in Figure 4a. Note that also the CO adsorption sites
are different in the three compared models, but this plays a
smaller role since the t and s sites have generally rather similar
CO adsorption energies, cf. the example of Ni in Table 2.
Having understood the general trend, we finally analyze why

certain materials are prominent outliers with a significantly
underestimated TOF in the simpler models. This analysis turns
out to be identical for the two outliers highlighted in Figure 2,
and we therefore focus here only on the FePt3 alloy. Compared
to the pure metals and most other alloys, the layered structure

Figure 3. (a) Perspective view of the structure of the layered outliers
FePt3 and FePd3, see Figure 2. The second layer is composed of Fe,
while the top-most and lower-lying layers are composed of Pt or Pd,
respectively. (b) Perspective view of the rate-determining C−OH
transition state for the H-assisted CO dissociation as obtained by
DFT.30 The spatial proximity of the carbon and oxygen moieties in
this late TS indicates dissociation into OH* at the t-group and C* at
the f-group adsorption sites, see text.

Table 2. SISSO-Predicted Adsorption Energies (in eV) of CO*, H*, C−OH*, C*, and OH* at Ni and FePt3 at the Sites
Involved in the RDS in the Three Compared Models, Together with the Correspondingly Predicted TOFs, See Texta

aFor the Ni catalyst, the different site resolution in the three models leads only to a modest variation of the predicted activity. In contrast, for the
layered FePt3 catalyst, the activity is dramatically underestimated by about eight orders of magnitude by the simpler models.
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of the FePt3 alloy (see Figure 3a) inverts the energetic ordering
of the considered OH adsorption sites. Whereas for Ni, OH
adsorption is more favorable at the undercoordinated s site, it
is more favorable at the t site for the FePt3 alloy, cf. Table 2.
The reason for this is that Fe (which makes up the majority of
the considered high-symmetry t sites) interacts much more
strongly with OH than Pt (which makes up the considered s
sites) in the FePt3 alloy. This structural motif, which is unique
to the layered alloys, thus allows for a particularly favorable
final state (and thereby also TS) in the RDS, leading to a
lowered activation energy (cf. Figure 4b) and concomitantly to
an increased TOF. In general, such insight into the most stable
adsorption sites for a particular catalyst surface is not available
before the screening but only becomes apparent once all of the
different site possibilities have been assessed, as is done here in
the complex model based on the cheap energetics provided by
the SISSO descriptor.
It is worth noting that the promising aspects of layered

bimetallic catalysts for CO methanation have already been
discussed based on DFT and microkinetic simulations.45

However, this previous study investigated only (nine) layered
bimetallic catalysts and did not consider the stability of these
materials. Here, we considered a large pool of different alloy
surfaces, taking care to include only materials with a stable or
metastable bulk structure. There is thus no bias for a particular
structural motif. In contrast, it is an intrinsic outcome of the
screening that layered structures are identified as promising
CO methanation catalysts. Furthermore, this result is only
found when using a complex reaction model that takes into
account all possible adsorption sites for the reaction
intermediates.

■ CONCLUSIONS
We analyzed the impact of the active site representation within
mean-field microkinetic models of CO methanation on
elemental TMs and bimetallic TM alloys. For this, we
compared the results obtained from three models of different
complexity. The required energetic input was obtained from a
descriptor identified using the compressed sensing method
SISSO. To this end, a DFT-calculated data set of adsorption
energies at elemental TM surfaces and selected alloy surfaces
served as training for the descriptor identification. The
descriptor is a function of properties of the clean alloy surface
only and thus allows for obtaining adsorption energies of all
reaction intermediates at all high-symmetry sites of the
complex, stepped alloy surfaces, at the cost of a single DFT
calculation of the clean surface. In the here considered

example, all reaction intermediates are monodentate species.
However, we see no fundamental obstacles preventing the
generalization to consider also more complex adsorbates with
possible bidentate adsorption motifs, as long as the calculation
of the primary features entering the descriptor are appropri-
ately defined and a sufficiently diverse training data set is
employed.
The main result of our theory−theory comparison is that

simpler microkinetic models previously employed in the
literature generally tend to overestimate the TOF of elemental
TMs and most bimetallic TM alloys due to an overly simplified
representation of the adsorption sites of the reaction
intermediates involved in the RDS. In contrast, the simpler
models significantly underestimate the TOFs of active site
motifs made up of layered bimetallic alloys, in which the
energetic ordering of the considered adsorption sites for the
crucial OH intermediate is reversed. These structures would
thereby be completely missed if carrying out the screening
using simple literature microkinetic models. The right
mechanistic understanding andconsequentlyaccurate
screening results can only be obtained using the complex
model. On the basis of its detailed active site representation,
we find that layered bimetallic alloys are particularly promising
catalysts when the lower layer is made up of a TM that
interacts strongly with OH such as Fe and the upper layer is
made up of a less reactive metal such as Pd or Pt.
Overall, our results demonstrate that advanced data science

and machine learning methods render the use of reductionist
microkinetic models obsolete, as the cost to obtain the
required adsorption energetics is no longer a bottleneck. The
approach demonstrated here allows for accurate screening of
complex catalyst materials at very low computational cost. We
considered here the important CO methanation reaction as an
example, but in general our approach is not limited to a specific
reaction or materials class.
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S1 Additional DFT computational details

In enlarging the DFT data set from ref 1, the following settings were used in full compliance

with the existing calculations. We employed ultrasoft pseudopotentials and a vacuum region

of 16 Å perpendicular to the surface as well as a dipole correction.2 Pseudopotentials for

Fe, Ni, Cu, Rh, Pd, Ag, and Ir were generated using the ”atomic” code by A. Dal Corso

(v.5.0.2 svn rev. 9415), for Co using the Vanderbilt code version 7.0.0, and for Ru using

the Vanderbilt code version 7.3.5. Surface relaxations with and without an adsorbate used

supercell sizes of (1×3) for the pure metal slabs and (1×1) for all alloys. Depending on the

supercell size, we used k -point grids of (4×4) for the pure metal fcc, SA alloy fcc, and bcc

slabs, (2×6) for the SG225 fcc alloys, (4×6) for the SG221 and AB fcc alloys, (2×4) for the

Co hcp slab, and (2×12) for the hcp alloy structures to ensure an equivalent k -point density.

For the relaxations of the fcc(211) and bcc(210) facets the bottom nine layers and for the

stepped hcp(0001) the bottom three layers were fixed in their bulk truncated positions, while

the layers above were relaxed until reaching a maximum force threshold of 0.03 eV/Å.

In compliance with ref 1, initial adsorption geometries of CH2 and CH3 were created on

the basis of optimized unit cells by placing the C atom perpendicularly above the local surface

plane of a relaxed slab at a distance of about 2 Å from the TM atoms comprising the site.

For CH2 (CH3) an H was placed at a distance of about 1.1 Å from the base atom C on the

prolonged perpendicular axis. This axis was tilted at the C atom about 60◦ and the remaining

H atoms were placed equally distanced from each other by rotating the tilted vector about

180◦ (120◦) around the perpendicular axis. In case the surface slab reconstructed during

the relaxation, an adsorbate moved from the initial site, or decomposed, the calculation was

discarded. A slab was considered reconstructed if any atom moved more than 1 Å from its

initial position and an adsorbate was considered decomposed if the distance of the adsorbing

atom to any other atom exceeded 1.7 Å. Finally, an adsorbate was considered to have moved

if any distance of the coordinating adsorbate atom to the coordinating site atoms deviated

by more than 10% (in the case where all metal atoms are of the same element) or 20%
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(in the case where the site is comprised of more than one element), or if any distance to

a neighboring metal atom became smaller than 110% of any of the adsorbate / site atom

distances. All high-symmetry sites shown in Figure S1 were tested. Furthermore, a series

of different orientations of the H atoms in CH2 and CH3 were tested for each site, and the

most stable configuration was chosen for the data set. An overview of the data set is shown

in Table S1. The resulting adsorption energies correspond to formation energies referenced

to gaseous CH4, H2, and H2O.

a) c) e)

b) d) f)

Figure S1: Depiction of the different surface facets with the corresponding tested high-
symmetry sites for CH2 and CH3. a) and b) show the top and side view of the fcc(211) facet,
c) and d) of the bcc(210) facet, and e) and f) of the stepped hcp(0001) facet. The colored
circles indicate bridge (orange), 4-fold (gray), top (green), hcp (blue), and fcc (white) sites.
Note that the site labels hcp and fcc of the bcc(210) facet are adapted from the fcc(211)
facet.

For constructing the SISSO descriptors (see next section) we used the same list of primary

features as in ref 1 (see Table S2). Details on how these primary features are calculated can

be found in the original publication. For the new TMs Co and Fe we list the primary features

of the classes ”Atomic”, ”Bulk”, and ”Surface” in Table S3. The bulknnd of alloy structures

is calculated as the average nearest neighbor distance of all atoms in the bulk unit cell and

the work function is determined by the maximum average potential in the vacuum region

between the periodic images. V2
ad, PE, IP, EA, and rd are calculated as the average of the

atoms within the site ensemble. The calculation of the projected density of states used k -
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Table S1: Overview of the number of stable and metastable adsorption sites identified for
the enlarged data set.

Material class Site Class C O H CH CO OH CH2 CH3 Total

top 2 4 3 3 24 23 23 23 105
bridge 5 14 15 13 42 52 39 29 209

Metals fcc & hcp 40 47 45 40 33 34 31 16 286
4-fold 12 3 5 12 5 - 8 1 46
total 59 68 68 68 104 109 101 69 646
top - - - - 16 14 15 15 60
bridge 4 7 8 8 28 43 35 19 152

SA alloys fcc & hcp 26 28 25 25 20 14 23 4 165
4-fold 7 - 2 6 1 - 3 - 19
total 37 35 35 39 65 71 76 38 396
top - - - - 16 10 13 16 55
bridge 3 7 8 7 23 52 41 6 147

AB alloys fcc & hcp 20 30 17 29 6 9 8 - 119
4-fold 8 - 2 8 2 - 4 - 24
total 31 37 27 44 47 71 66 22 345

point grids of (14×14) for the pure metal fcc and bcc slabs, (7×21) for the SG225 fcc alloys,

(14×21) for the SG221 fcc alloys, (7×14) for the Co hcp slab, and (7×42) for the hcp alloy

structures.
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Table S2: Primary features for the feature construction within SISSO taken from ref 1.

Class Name Abbreviation Unit

Pauling electronegativity PE −
Atomic Ionization potential IP eV

Electron affinity EA eV

Nearest neighbor distance bulknnd Å
Bulk Radius of d -orbitals rd Å

Coupling matrix element squared V2
ad −

Surface Work function W eV
Number of atoms in ensemble siteno #atoms
Coordination number CN #atoms
Nearest neighbor distance sitennd Å
d -band center εd eV

Site d -band width Wd eV
d -band filling fd #states
sp-band filling fsp #states
Density of d -states at Fermi level DOSd eV−1

Density of sp-states at Fermi level DOSsp eV−1

Table S3: Primary features of the classes ”Atomic”, ”Bulk” and ”Surface” for the added
TMs Co and Fe.

PEa IPb EAb rd
c V2

ad
d bulknnd W

Cohcp 1.88 7.881 0.662 0.76 1.34 2.504 4.819
Cofcc 1.88 7.881 0.662 0.76 1.34 2.509 4.828
Febcc 1.83 7.902 0.153 0.80 1.59 2.476 4.430

a From ref 3 b From ref 4 c From ref 5 d From ref 6
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S2 Additional SISSO computational details

All calculations for the descriptor identification were performed with version 3.0 of the SISSO

code.7 The primary features used are given in Table S2 and the set of algebraic/functional

operations for constructing the feature spaces of rung 1, 2, and 3 is

Ĥ(m) = {I,+,−,×,÷, exp, exp−1, log,−1 ,2 ,3 ,
√

, 3
√

, scd},

with the standard Cauchy distribution scd(x) = 1
π(1+x2)

. The feature spaces of higher rungs

are constructed consecutively from the previous rung. In order to obtain physically mean-

ingful features, application of a binary operator from the above set is only performed on

dimensionally suitable (primary) feature combinations. Sure independence screening (SIS)

narrows down the created feature space to a user-defined value as the subsequent `0 regular-

ization step is NP-hard, leading to an exponential increase in computational cost with the

size of the feature (sub)space. Here we used an SIS value of 150 for the lower dimensions,

which are anyway uninteresting in terms of the accuracy of the predictions of the resulting

descriptors. Beyond 4 dimensions we used the highest SIS value that is still computationally

tractable (SIS value of 50 for 5 dimensions and SIS value of 20 for 6 dimensions).

If the measurements can be split into sets of common origin, multitask learning enhances

generalization of the resulting model by solving all tasks simultaneously. Here, a single task

is the prediction of the adsorption energetics of one adsorbate. Multitask learning leads

to a common model that captures mutually relevant features and increases the size of the

effective training data set for each adsorbate compared to single-task learning. At a given

dimension, this thereby reduces the risk of overfitting. In order to obtain a representative

training and validation set of all available data, a stratified approach was applied, splitting

the data set of each adsorbate randomly into 80% training and 20% validation data using

the function model selection.StratifiedKFold of the scikit-learn software package.8

The resulting root-mean-square error (RMSE) for each rung and dimension is plotted in
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Figure S2. The best prediction of the validation data set is obtained using rung 3 descriptors

and levels out at dimension 5. This trend is indicative of overfitting at higher dimensions.

The optimal five-dimensional rung 3 descriptor has a prediction root-mean-square error of

0.183 eV and maximum absolute error of 0.565 eV. Having established the optimal hyperpa-

rameters, we used these to retrain a new descriptor based on the entire data set. The final

descriptor is of the form

Ej
ads = cj1 ·

(
V2

ad · (Wd + εd)

W
− scd(DOSd) · CN

siteno

)

+ cj2 ·
(

V2
ad · fsp · bulknnd

rd
− PE · fd · log(DOSsp)

)

+ cj3 ·
(EA + 2 ·Wd − IP) ·Wd · log(siteno)

IP

+ cj4 ·
(scd(siteno)− scd(rd)) · εd

f3d · siteno
+ cj5 ·

IP · siteno
exp(siteno) ·

(
εd
EA
− CN

siteno

)

+ cj0,

where j denotes the adsorbate. The fitting coefficients cj0 · · · cj5 are specific to each adsorbate

(see Table S4) with units ensuring that the result (the predicted adsorption energy) is in eV.

Table S4: Fitting coefficients for each of the adsorbates (tasks) of the final SISSO descriptor
trained on the entire DFT data set. The units of the fitting coefficients cj depend on the
respective feature units and ensures that the unit of the predicted adsorption energy is eV.
The root-mean-square error (RMSE) and maximum absolute error (MaxAE) given for each
adsorbate are the training errors of the final descriptor. All values are rounded to three
decimal digits of a common order of magnitude.

Adsor- c1 c2 c3 c4 c5 c0 RMSE MaxAE

bate j [eV] [ eV
#states ] [-] [#states3 ·#atoms] [ 1

#atoms ] [eV] [eV] [eV]

C −1.264 −0.178·10−2 1.486 8.005·103 1.154 2.522 0.211 0.547
CH −1.102 −0.970·10−2 1.223 0.645·103 1.264 2.857 0.173 0.601
CO −0.446 0.813·10−2 −0.054 2.970·103 0.657 0.500 0.182 0.602
H −0.234 0.670·10−2 0.385 1.018·103 1.130 −0.036 0.092 0.214
O −0.744 5.699·10−2 0.618 −0.801·103 0.413 −0.996 0.159 0.506
OH −0.231 4.969·10−2 0.168 0.839·103 1.316 −1.364 0.149 0.413
CH2 −0.515 0.868·10−2 0.545 1.187·103 3.200 2.116 0.177 0.503
CH3 −0.173 2.083·10−2 0.042 3.130·103 1.851 0.206 0.161 0.419
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Figure S2: Training and validation results for a grid search of the two hyperparameters in the
SISSO method (rung and dimension) using SIS values of 150 or the highest computationally
tractable value for higher dimensions.
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S3 Additional details on the screened alloy surfaces

Alloy phase diagrams can be constructed with the help of calculated thermodynamic de-

scriptors like the bulk formation enthalpy Hf , which is available for a wide range of alloy

structures in the AFLOW database.9 Such a phase diagram for the case of the binary system

Fe-Pt generated with the AFLOW-CHULL module is shown in Figure S3.10 The envelope

curtailing the different mixing ratios represents the convex hull, which is formed by the sta-

ble phases. The pure metals, thereby, serve as the reference with a formation enthalpy of

zero. All other structures with an enthalpy between zero and the convex hull are metastable

phases. The challenge is the variety of different space groups the structures belong to. In

order to obtain reliable predictions we need to use structures that are similar to the training

set, and we thereby need space groups that exhibit the same or a similar stepped facet. As

the size of the supercell used for the DFT calculations limits the efficiency of the screening,

only certain space groups are suitable for this purpose. These space groups need to preserve

the symmetry of the alloy while not forming excessively large supercells. Note that due to

alloying most space groups are not spherically symmetric. The atom arrangement of the

facet depends on the orientation of the unit cell in three-dimensional space. Additionally,

different atom arrangements of the same phase are possible depending on multiples of the

chosen hkl plane. A careful analysis of the convex hull plots led to the choice of the space

groups 221 and 225 (fcc structure) and 187 and 164 (hcp structure). Each of the fcc-like

space groups has two different slab models, while the hcp-like groups are layered in the z-

direction and show four (187 and 164) or two (187) different slab models depending on the

TM ratio.
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a)

b) c)

d)

e)

Figure S4: Depiction (top and side view) of the different alloy slab models. a) hcp alloy 3:1
SG187. b) hcp alloy 1:1 SG187. c) fcc alloy 3:1 SG221. d) hcp alloy 1:1 SG164. e) fcc alloy
7:1 SG225.
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S4 Additional details on the compared microkinetic

models

S4.1 Complex microkinetic model

The complex microkinetic model is taken from Andersen et al.11 It consists of 24 reaction

and 11 diffusion steps outlined in the following. It was found in ref 11 that within a mean-

field model the barriers for the diffusion steps are not important. Therefore we adopted the

same approximate diffusion barriers as used in the original work.

S4.1.1 Reaction Steps

H2(g) + 2 ∗h → 2 H∗h (S1.1)

CO(g) + ∗s → CO∗s (S1.2)

CO(g) + ∗t → CO∗t (S1.3)

CO∗s + H∗h + ∗f + ∗t 
 C-OH∗f + ∗h + ∗s + ∗t → C∗f + OH∗t + ∗h + ∗s (S1.4)

CO∗t + H∗h + ∗f 
 C-OH∗f + ∗h + ∗t → OH∗t + C∗f + ∗h (S1.5)

C∗f + H∗h 
 C-H∗f + ∗h → CH∗f + ∗h (S1.6)

C∗s + H∗h 
 C-H∗s + ∗h → CH∗s + ∗h (S1.7)

C∗t + H∗h 
 C-H∗t + ∗h → CH∗t + ∗h (S1.8)

CH∗f + H∗h + ∗t 
 CH-H∗f + ∗h + ∗t → CH∗t
2 + ∗f + ∗h (S1.9)

CH∗f + H∗h + ∗s 
 CH-H∗f + ∗h + ∗s → CH∗s
2 + ∗f + ∗h (S1.10)

CH∗s + H∗h 
 CH-H∗s + ∗h → CH∗s
2 + ∗h (S1.11)

CH∗t + H∗h 
 CH-H∗t + ∗h → CH∗t
2 + ∗h (S1.12)

CH∗s
2 + H∗h 
 CH2-H

∗s + ∗h → CH∗s
3 + ∗h (S1.13)

CH∗t
2 + Hh 
 CH2-H

∗t + ∗h → CH∗t
3 + ∗h (S1.14)
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CH∗s
3 + H∗h 
 CH3-H

∗s + ∗h → CH4(g) + ∗h + ∗s (S1.15)

CH∗t
3 + H∗h 
 CH3-H

∗t + ∗h → CH4(g) + ∗h + ∗t (S1.16)

OH∗s + H∗h 
 H-OH∗s + ∗h → H2O(g) + ∗h + ∗s (S1.17)

OH∗t + H∗h 
 H-OH∗t + ∗h → H2O(g) + ∗h + ∗t (S1.18)

2 OH∗s 
 H2O-O∗s + ∗s → H2O(g) + O∗s + ∗s (S1.19)

2 OH∗t 
 H2O-O∗t + ∗t → H2O(g) + O∗t + ∗t (S1.20)

OH∗s + OH∗t 
 H2O-O-∗s + ∗t → H2O(g) + O∗s + ∗t (S1.21)

OH∗t + OH∗s 
 H2O-O-∗t + ∗s → H2O(g) + O∗t + ∗s (S1.22)

O∗s + H∗h 
 O-H∗s + ∗h → OH∗s + ∗h (S1.23)

O∗t + H∗h 
 O-H∗t + ∗h → OH∗t + ∗h (S1.24)

S4.1.2 Diffusion Steps

CO∗s + ∗t 
 CO∗t + ∗s (S1.25)

C∗f + ∗s 
 C∗s + ∗f (S1.26)

C∗s + ∗t 
 C∗t + ∗s (S1.27)

C∗t + ∗f 
 C∗f + ∗t (S1.28)

CH∗f + ∗s 
 CH∗s + ∗f (S1.29)

CH∗s + ∗t 
 CH∗t + ∗s (S1.30)

CH∗t + ∗f 
 CH∗f + ∗t (S1.31)

CH∗s
2 + ∗t 
 CH∗t

2 + ∗s (S1.32)

CH∗s
3 + ∗t 
 CH∗t

3 + ∗s (S1.33)

OH∗s + ∗t 
 OH∗t + ∗s (S1.34)

O∗s + ∗t 
 O∗t + ∗s (S1.35)
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S4.2 Simple model

The simple microkinetic model is adopted from Lausche et al.12 It is composed of 10 reaction

steps.

S4.2.1 Reaction Steps

H2(g) + 2 ∗h → 2 H∗h (S2.1)

CO(g) + ∗s → CO∗s (S2.2)

CO∗s + H∗h + ∗f 
 C-OH∗f + ∗s + ∗h → OH∗s + C∗f + ∗h (S2.3)

C∗f + H∗h 
 C-H∗f + ∗h → CH∗f + ∗h (S2.4)

CH∗f + H∗h + ∗t 
 CH-H∗f + ∗h + ∗t → CH∗t
2 + ∗f + ∗h (S2.5)

CH∗t
2 + H∗h 
 CH2-H

∗t + ∗h → CH∗t
3 + ∗h (S2.6)

CH∗t
3 + H∗h 
 CH3-H

∗t + ∗h → CH4(g) + ∗h + ∗t (S2.7)

O∗s + H∗h 
 O-H∗s + ∗h → OH∗s + ∗h (S2.8)

OH∗s + H∗h 
 H-OH∗s + ∗h → H2O(g) + ∗h + ∗s (S2.9)

2 OH∗s 
 H2O-O∗s + ∗s → H2O(g) + O∗s + ∗s (S2.10)

S4.3 Reductionist Microkinetic Model

The reaction steps of the reductionist microkinetic model are the same as in the simple model

(c.f. section S4.2). It differs from the latter only by which adsorption sites are considered.

For each adsorbate this pool is restricted to the most stable site on Ni as determined with

DFT. Consequently, steps S3.5–S3.7 differ from steps S2.5–S2.7 by the site group involved

in CH2 and CH3 adsorption.
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S4.3.1 Reaction Steps

H2(g) + 2 ∗h → 2 H∗h (S3.1)

CO(g) + ∗s → CO∗s (S3.2)

CO∗s + H∗h + ∗f 
 C-OH∗f + ∗s + ∗h → OH∗s + C∗f + ∗h (S3.3)

C∗f + H∗h 
 C-H∗f + ∗h → CH∗f + ∗h (S3.4)

CH∗f + H∗h + ∗s 
 CH-H∗f + ∗h + ∗s → CH∗s
2 + ∗f + ∗h (S3.5)

CH∗s
2 + H∗h 
 CH2-H

∗s + ∗h → CH∗s
3 + ∗h (S3.6)

CH∗s
3 + H∗h 
 CH3-H

∗s + ∗h → CH4(g) + ∗h + ∗s (S3.7)

O∗s + H∗h 
 O-H∗s + ∗h → OH∗s + ∗h (S3.8)

OH∗s + H∗h 
 H-OH∗s + ∗h → H2O(g) + ∗h + ∗s (S3.9)

2 OH∗s 
 H2O-O∗s + ∗s → H2O(g) + O∗s + ∗s (S3.10)

Figure S5: Correlation plot of the predicted TOFs obtained with the simple (x-axis) and
reductionist (y-axis) microkinetic models.
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S4.4 Degree of rate control

Figure S6: Fractional occurrence of a TS with an absolute DRC larger than 0.1 for the entire
set of screened alloy surfaces, differentiating the compared microkinetic models (orange:
reductionist, blue: simple, black: complex).
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S4.5 Catalyst activities

Table S5: TOFs of those elemental TM catalysts and selected alloy surfaces that form the
training data set, comparing the predictions from the three different microkinetic models.
The adsorption energetics used for calculating the TOF is that predicted by the SISSO
descriptor.

Catalyst log10(TOFcomplex) log10(TOFsimple) log10(TOFreductionist)

AgPd −19.825 −18.661 −18.657
Cu −15.899 −14.509 −14.509
Ag@Cu −15.626 −13.993 −19.741
Pt −13.154 −8.448 −7.709
PtRh −11.910 −5.117 −4.964
Ir −8.826 −1.604 −1.617
Pd −8.756 −6.151 −5.578
IrRu −8.532 −0.305 −0.579
Pd@Ir −8.383 −1.528 −2.871
Pt@Rh −8.031 −2.827 −3.527
Rh −7.900 −2.482 −3.030
Ru −5.440 −0.428 −1.155
Ni −3.542 −1.305 −1.810
Au@Ni −3.366 −1.328 −7.120
Cofcc −2.278 0.051 0.074
Febcc −0.892 −0.952 −2.968
Cohcp −0.752 0.214 0.198
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Table S6: TOFs of those elemental TM catalysts and selected alloy surfaces that form the
training data set, comparing the predictions from the three different microkinetic models.
The adsorption energetics used for calculating the TOF is from the DFT training data (with
a few highlighted exceptions).

Metal log10(TOFDFT
complex) log10(TOFDFT

simple) log10(TOFDFT
reductionist)

AgPd −16.789 −13.301* −13.372*
Cu −16.363 −13.121 −13.121*
Ag@Cu −15.823 −13.664 −18.570*
Pt −12.275 −10.078 −7.621*
Pd@Ir −9.696 −4.290 −3.575*’
Ir −9.525 −3.597 −2.304*’
PtRh −8.891 −4.695 −4.967
Pd −8.530 −5.554 −5.846
IrRu −5.067 0.792 −1.492
Rh −4.137 −1.285 −3.343
Pt@Rh −3.963 −1.421 −2.820*’
Ni −2.769 −0.531 −2.253
Ru −2.540 −0.231 −1.431
Au@Ni −2.245 −0.653 −7.552*’
Cohcp −1.232 0.467 0.101
Febcc −1.085 −2.797* −5.146*’
Cofcc −0.886 0.307 0.220
* using one or more energetics from the SISSO descriptor due to lack of

appropriate DFT energetics for the model

’ sensitive to SISSO substitute energetics

S18



References

(1) Andersen, M.; Levchenko, S. V.; Scheffler, M.; Reuter, K. Beyond Scaling Relations for

the Description of Catalytic Materials. ACS Catal. 2019, 9, 2752–2759.

(2) Bengtsson, L. Dipole correction for surface supercell calculations. Phys. Rev. B 1999,

59, 12301–12304.

(3) Winter, M. J. WebElements. https://www.webelements.com, accessed: 2020-06-04.

(4) Li, Z.; Wang, S.; Chin, W. S.; Achenie, L. E.; Xin, H. High-throughput screening of

bimetallic catalysts enabled by machine learning. J. Mater. Chem. A 2017, 5, 24131–

24138.

(5) Harrison, W. A. Electronic Structure and the Properties of Solids: The Physics of the

Chemical Bond ; Dover Publications, 1989.

(6) Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H.; Nørskov, J. Surface electronic structure

and reactivity of transition and noble metals. J. Mol. Catal. A: Chem. 1997, 115, 421–

429.

(7) Ouyang, R. SISSO: A data-driven method based on compressed-sensing for iden-

tifying descriptors for materials properties and functions. https://github.com/

rouyang2017/SISSO, 2019; accessed: 2020-05-12.

(8) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blon-

del, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Courna-

peau, D.; Brucher, M.; Perrot, M.; Duchesnay, É. Scikit-learn: Machine Learning in
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ABSTRACT: Predictive-quality computational modeling of het-
erogeneously catalyzed reactions has emerged as an important tool
for the analysis and assessment of activity and activity trends. In
contrast, more subtle selectivities and selectivity trends still pose a
significant challenge to prevalent microkinetic modeling ap-
proaches that typically employ a mean-field approximation
(MFA). Here, we focus on CO hydrogenation on Rh catalysts
with the possible products methane, acetaldehyde, ethanol, and
water. This reaction has already been subjected to a number of
experimental and theoretical studies with conflicting views on the
factors controlling activity and selectivity toward the more valuable
higher oxygenates. Using accelerated first-principles kinetic Monte
Carlo simulations and explicitly and systematically accounting for
adsorbate−adsorbate interactions through a cluster expansion approach, we model the reaction on the low-index Rh(111) and
stepped Rh(211) surfaces. We find that the Rh(111) facet is selective toward methane, while the Rh(211) facet exhibits a similar
selectivity toward methane and acetaldehyde. This is consistent with the experimental selectivity observed for larger, predominantly
(111)-exposing Rh nanoparticles and resolves the discrepancy with earlier first-principles MFA microkinetic work that found the
Rh(111) facet to be selective toward acetaldehyde. While the latter work tried to approximately account for lateral interactions
through coverage-dependent rate expressions, our analysis demonstrates that this fails to sufficiently capture concomitant
correlations among the adsorbed reaction intermediates that crucially determine the overall selectivity.

KEYWORDS: heterogeneous catalysis, CO hydrogenation, microkinetic modeling, kinetic Monte Carlo, density functional theory

■ INTRODUCTION

The conversion of syngas (CO and H2) into hydrocarbons and
oxygenates is attractive as an alternative source of fuels and
chemicals. However, selectivity toward the more useful higher
oxygenates such as ethanol and acetaldehyde remains
challenging, with methane being a common undesired
product.1−4 Many theoretical and experimental works have
focused on understanding and tuning especially the selectivity
of Rh catalysts, as Rh is generally recognized as one of the most
promising elemental catalysts for the direct synthesis of higher
oxygenates. It has now become clear that pure Rh catalysts are
intrinsically selective toward primarily methane and acetalde-
hyde,5,6 whereas ethanol synthesis requires promoters such as
Fe and Mn.5,7−11

Recent experimental works have suggested that there is an
inverse relationship between activity and selectivity for pure Rh
catalysts, where an overall higher activity (CO conversion)
correlates with a lower selectivity toward acetaldehyde.
Explanations offered for this trend are, however, conflicting.
Yang et al. have suggested, on the basis of density functional
theory (DFT) and mean-field microkinetics, that it is the
nature of the active sites exposed by the catalyst nanoparticles

that is the deciding factor, with step sites being highly active
and selective toward methane and terrace sites being less active
and selective toward acetaldehyde.5 This view was recently
challenged by Schumann et al.6 They synthesized Rh
nanoparticles of different sizes and found that it is primarily
small particles below 2 nm that exhibit high acetaldehyde
selectivity and low activity, while the larger particles above 5
nm are the most active and selective toward methane. The
surface fraction of edge/corner sites increases for smaller
particles and was found to closely follow the selectivity trends.
While this could indicate that step or corner sites are the active
sites for acetaldehyde synthesis, Schumann et al. proposed
instead that the smaller particles support a much higher local
CO coverage at both terrace and step sites, which limits the
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activity due to poisoning but increases the acetaldehyde
selectivity by driving C + CO coupling reactions.
The conflicting views offered in the literature clearly call for

more thorough theoretical investigations and improved
microkinetic models that can account for the effects of high
surface coverages and concomitantly increased lateral
adsorbate−adsorbate interactions. In the mean-field study
carried out by Yang et al., coverage-dependent rate equations
were parametrized and employed to mimic such interactions.
However, it is well recognized in the literature that mean-field
kinetics cannot properly account for the effects of correlations
and fluctuations, including fluctuations in the local cover-
age.12−15 A more accurate approach is kinetic Monte Carlo
(KMC) simulations using a cluster expansion (CE) to treat
lateral interactions.16−20 Unfortunately, this can become very
expensive for complex lateral interaction models and large
disparities in the time scales of the different processes. In a
recent work by Chen et al. on syngas conversion at the
Rh(111) surface,21 some of these challenges were avoided by
applying their hybrid XPK method,22 which is based on the
assumption that there is a clear time scale separation between
fast diffusion processes and slow reactions such that the system
can be solved by alternating between separate KMC and mean-
field models. By comparing the hybrid method to a static
mean-field model parametrized to include lateral interactions,
Chen et al. were able to show that the dynamic account of
fluctuations in the local coverage achieved in the XPK model is
crucial to correctly capture experimental selectivity trends,

where higher total pressures have been shown to lead to higher
acetaldehyde selectivity.21 Their assumption that diffusion
limitations do not cause any spatial correlations in the
distribution of adsorbates on the surface may, however, not
always be applicable, as we will show in this work and has also
been demonstrated in previous literature works.12,23

In this work we revisit the question of the role played by step
and terrace sites for activity and selectivity trends in syngas
conversion over Rh catalysts. We consider the pristine
Rh(211) and Rh(111) facets, which are representative of
step and terrace sites found at larger nanoparticles where finite-
size effects no longer play a large role. Due to recent
methodological developments in our in-house KMC code
kmos24 concerning the efficient modeling of lateral interactions
and the implementation of an acceleration algorithm25,26 to
tackle the time-scale disparity problem, we are able to carry out
full-blown KMC simulations employing a CE model for lateral
interactions. The results with and without an account of lateral
interactions are compared to the corresponding mean-field
kinetics.
The main finding of our work is thatin contrast to

previously parametrized coverage-dependent mean-field mod-
elsKMC simulations that explicitly and systematically
account for lateral interactions are able to correctly capture
the experimental selectivity trends for large nanoparticles. We
show and rationalize why in some cases the lateral interactions
have a huge effect on the results (Rh(111) facet), whereas in
other cases the effects are negligible (Rh(211) facet). The

Figure 1. Reaction networks of (a) the Rh(211) and (b) the Rh(111) KMC models, excluding diffusion steps (these connect e.g., *OH t and *OH s).

For hydrogenation reactions an additional *H S/T species is implied. On the right side of the dashed line in (a) are shown the elementary steps
occurring on the s sites (orange) and on the left side are shown the corresponding reactions on the t sites (blue). Adsorbates on f sites are shown in
white and gaseous molecules are shown in gray. Images of the corresponding Rh(211) and Rh(111) facets with the respective sites are shown in (c)
and (d), respectively.
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finding of a breakdown of mean-field kinetics is not restricted
to models with lateral interactions. In fact, we show that, also
in the absence of lateral interactions, reaction-induced
inhomogeneities and diffusion limitations can cause the
mean-field-predicted activities to deviate substantially from
the KMC results (Rh(211) facet). Finally, we show that, in
order to reach a quantitative agreement with both the
selectivity and the activity trends observed in experiments,
we need to correct for well-known errors in DFT-predicted
adsorption energies such as the persistent overbinding of CO
with standard semilocal DFT functionals.27−29

■ METHODS
Reaction Model and Parametrization. The reaction

networks employed for the Rh(211) and Rh(111) facets are
shown in Figure 1 and were inspired by the work of Yang et
al.5 As in our previous works on CO hydrogenation over
stepped metal surfaces,26,30 and extending over the work of
Yang et al., we use a highly resolved active site representation
for the Rh(211) facet consisting of a terrace site t, an upper
step site s, and a lower 4-fold coordinated step site f. Only the
last two sites were considered by Yang et al. The full reaction
networks we employed can be found in Section S1 of the
Supporting Information, together with a discussion of why
other reaction steps considered previously in the literature1,2,31

are less plausible than those considered here. DFT data
calculated at both low and high CO coverages were taken from
Yang et al. and used to parametrize a CE model, which was
used in connection with the KMC simulations. Some
additional DFT calculations were carried out by us using the
Quantum Espresso code32 with the BEEF-vdW functional33

and the exact same numerical settings as used by Yang et al.
(see Section S2 of the Supporting Information).
Adsorption energies are referenced to CO, H2O and

CH3OH using the formation energy approach

∑ μ= − −+
∈

E E E nx x

i x
i
x

iform slab ads slab

with the formation energy Eform
x of adsorbate x, the total energy

of the adsorbed species on the slab Eslab+ads
x , that of the clean

slab Eslab, and the gas-phase reference energy μi of atom i as
well as the occurrence ni

x of atom i in the adsorbate x.
Adsorbate−adsorbate interactions are incorporated using a CE
that is terminated after the first term corresponding to pairwise
nearest neighbor interactions

∑ ∑ ε= +
∈

E n E kM

x M
x
M x

j
j
M

jform form

with the occurrence nx
M and formation energies Eform

x of the
individual adsorbates x in structure M and the occurrence kj

M

and interaction energy εj of the pairwise interaction j. The
interaction energies (cf. Table S2 in the Supporting
Information) are obtained by solving a set of linear equations
for a number of different structuresM. As the surface under the
investigated conditions is mostly covered with CO, we
consider only self-interactions between the CO molecules,
interactions between CO and the remaining adsorbates (except
H), and selected other interactions (e.g., between C and CH at
the f site) following Yang et al. All other interactions are
neglected due to their low probability of occurrence. Following
common practice,5,34 H is adsorbed at special “hydrogen
reservoir” sites, which reflects the assumption that it can

intercalate into sublattice sites because of its smaller size in
comparison to the other adsorbates. In the KMC models, we
implement this by treating H in a mean-field ansatz, following
our previous work.26 This means that it is not an actual species
but is only represented via an effective H coverage. We use
different energetics (and thereby coverage) depending on
whether the H atom is involved in reactions taking place at an s
or a t site (for H we denote these reservoir sites as S and T
sites in both the KMC and mean-field models). Our treatment
thereby implicitly assumes that there are no spatial correlations
in the distribution of H at the surface, which should be a good
approximation when it is taken into account that H diffusion
and adsorption/desorption are fast processes. Note, however,
that the assumption that H does not block any surface sites or
interact with the other adsorbates would most likely break
down under high-pressure reaction conditions.
For the rate constants of elementary steps corresponding to

adsorption, desorption, reaction, and diffusion, we used
standard expressions, including zero-point energies and other
enthalpy/entropy corrections within the harmonic approx-
imation (adsorbates and transition states) or the ideal gas
approximation (gas species) from the thermochemistry module
of the Atomic Simulation Environment software package35,36

(cf. our previous work26). Vibrational frequencies are taken
from Yang et al.5 In our previous work,26 diffusion steps of CO,
O, OH, CH, CH2, and CH3 were found to not be rate-limiting
and therefore we stick to approximate barriers calculated for
Re(0001) from Hahn et al.37 For same-site diffusion of C at f
sites and CH at t sites we use values calculated for Rh(211)
from our previous work.26 Diffusion of all other species is
neglected. To allow for comparison of our simulations to those
of Yang et al.,5 we use the same reaction conditions of pCO =
13.33 bar, pH2

= 6.66 bar, and pH O2
= pCH4

= pCH CHO3
=

pCH CH OH3 2
= 0 bar at the three different temperatures 523, 585,

and 650 K.
In order to model the effect of lateral interactions on the

reaction kinetics during the simulations, the energy barriers Ea

of the elementary steps for the possible lattice configurations
are linearly approximated using Brønsted−Evans−Polanyi
(BEP) relations38,39

α= Δ − Δ +E E E E( )a a
FS IS 0

with the energy shift ΔEFS (ΔEIS) of the final (initial) state due
to lateral interactions, the zero-coverage barrier E0

a, and the
parameter α with values in the interval [0, 1] representing a
reactant-like (0) or product-like (1) transition state. DFT-
calculated energetics for determining the α parameters shown
in Table S3 are taken from Yang et al. and Andersen et al.5,26

Although BEP relations entail some energetic uncertainty, the
magnitude is on the order of the error introduced by semilocal
DFT.16 The approach of combining CE with BEP relations is
used across different KMC frameworks and effectively reduces
the computational burden for the inclusion of lateral
interactions. Previous studies employing this approach were
able to quantitatively capture experimental observations
without the need to explicitly calculate all possible lattice
configurations, which is especially critical with an increasing
number of sites and adsorbates in the reaction network under
consideration.16,40−42

Kinetic Monte Carlo. The KMC simulation technique
allows for a numerical solution to the time evolution of the
spatial distribution of the adsorbates on the coarse-grained
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sites of the catalytic surface, along with related properties such
as the occurrence of individual reaction pathways and the
catalytic activity and selectivity in terms of the turnover
frequencies (TOFs) for the formation of the reaction products.
Since individual elementary steps are executed step by step
with probabilities reflected by their rate constants, KMC can
suffer from a performance bottleneck in the case of processes
that occur on disparate time scales: e.g., fast diffusion and slow
reactions. This time scale disparity challenge is tackled here
through an acceleration algorithm developed by Dybeck et al.25

In a recent work26 we implemented this algorithm in the kmos
code24 and used it to study trends in CO methanation activity
over stepped transition metals. While some challenging cases
were observed, the algorithm was found to work well for the
mainly CO-covered Rh(211) facet. Our previous work
disregarded lateral interactions, however, and these can play
an important role in the outcome of a reaction, as shown in
this work. Both repulsive and attractive interactions with
neighboring adsorbates can alter the energetics of elementary
steps and lead to changes in their individual rates. In this work
we used the acceleration algorithm in connection with the
recently developed on-the-fly backend in kmos.43,44 This
backend features increased performance and reduced memory
requirements for models with many lateral interactions in
comparison to the original backend, since the rates of
processes affected by lateral interactions are calculated at
runtime according to the aforementioned CE model and BEP
relations.
The error bars for the TOFs are obtained from a Bayesian

error analysis. Reactions in KMC follow the Poisson
distribution

| = !
−

P n v
v

n
( )

e v n

where P(n|v) is the probability for observing n turnovers
during a fixed simulation time t, given the expected value v.
Here, we are rather interested in calculating the probability
distribution for v, given a (possibly small or even zero) number
of observed turnover events n. This posterior distribution can
be obtained via Bayes’ theorem

∫ ∫| = |
| =∞

−
∞ −P v n

P n v P v

P n v P v v

v P v

v P v v
( )

( ) ( )

( ) ( ) d
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v n

v n
0

0 0

0

0 0

with the prior probability distribution P0(v), which we assume
to be a constant C as there is no a priori information on the
TOF. To normalize P0(v), we set vmax, i.e., C = 1/vmax, to a
value high enough that the following approximation holds:
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This gives the posterior probability distribution

| = !
−

P v n
v

n
( )

e v n

which is also a Poisson distribution. Note that this also gives us
the probability distribution for the TOF, since the TOF is
simply v divided by the simulation time t. The most likely value
of the TOF is determined from the maximum of the posterior
distribution, and the upper and lower bounds of the error bars
are obtained as the smallest credible interval that contains 99%
of the total probability mass.
Sensitivity analysis was carried out by calculating the degree

of rate control (DRC) proposed by Campbell and co-
workers45 for each TS i (XRC,i)

= ∂
∂ −

≠

i

k

jjjjjjjjj

y

{
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with the rate r, the free energy Gi of TS i, the universal gas
constant R, and the absolute temperature T. In KMC the
derivative was approximated by the finite-difference expression

= −+ −
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≠
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{
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r r

G
RC,

ln ln

RT
j i

0.2 eV with r+ (r−) being the rate for an

increase (decrease) of the TS energy by 0.1 eV. For the
determination of the associated error bars, the respective upper
v+ and lower bounds v− of the 99% credible interval for the two
energy modifications are combined to contain v+ of one and v−
of the other simulation and vice versa. The upper (lower) limit
of the selectivities of methane, acetaldehyde, and ethanol are
obtained by considering the v+ (v−) value of the 99% credible
interval of one product and the respective v− (v+) values of the
other two products.
The pair probabilities of second-order processes are

obtained by storing the time-integrated counts of lattice

Figure 2. TOFs as a function of the temperature for the (a) Rh(211) and (b) Rh(111) facets for CH4 (blue), CH3CHO (orange), and
CH3CH2OH (black). The MFA results without (with) lateral interactions are shown with solid lines (dotted lines), and the KMC results are shown
at 523, 585, and 650 K (dashed vertical lines) without (left offset) and with (right offset) lateral interactions. The blue diamonds at 523 K represent
the experimentally measured total TOF (primarily methane) of the largest nanoparticles with diameters above 5 nm from Schumann et al.6
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configurations, in which the process can be executed over the
entire simulation, and the counts are then normalized by the
total simulation time and the size of the system. All simulations
were run for 5 × 107 steps to reach a steady state and
subsequently until 11 (Rh(111)) or 26 turnovers (Rh(211)) of
acetaldehyde were observed or the total KMC simulation time
reached 1 week. The simulations were carried out using a 10 ×
10 lattice for Rh(211) and a 25 × 25 lattice for Rh(111) with
periodic boundary conditions. Further details about the KMC
simulation settings and the convergence tests carried out for
both the lattice size as well as the parameters employed in the
acceleration algorithm can be found in Section S3 of the
Supporting Information.
Mean-Field Microkinetic Modeling. For comparison to

the KMC simulations, we also carried out microkinetic
simulations using the CatMAP software package.46 CatMAP
employs the mean-field approximation (MFA), meaning that
the spatial distribution of the adsorbates is further coarse-
grained into a mean coverage of each site type, thereby also
neglecting coverage fluctuations around the mean. This results
in a set of coupled rate equations, which are solved at the
steady state. All of our MFA simulations were performed
without lateral interactions, as the parametrization of coverage-
dependent rate equations is not a topic of this work. We
emphasize that the MFA simulations used exactly the same
reaction network and adsorption energetics as our KMC
simulations, so that differences between both simulation
approaches are entirely due to the MFA employed.

■ RESULTS AND DISCUSSION
We begin by presenting MFA and KMC results for the
Rh(211) facet in Figure 2a. The KMC results are reported at
three different temperatures without (left offset) and with
(right offset) lateral interactions. Without lateral interactions, a
comparison of our MFA results (solid lines) and KMC results
(left offset) reveals that the activities are slightly overestimated
in the MFA model by about a factor of 2.7−6.0 and that both
models show similar selectivity trends toward methane rather
than acetaldehyde. Ethanol turnovers are not observed in the
KMC simulationshence the large error barswhich is
consistent with the very low TOFs obtained in the MFA
model. We will come back to the reason for the differences in
actual TOF prediction between MFA and KMC below.
Turning to the effect of lateral interactions, we can observe

from the KMC results that they do not influence the TOFs
much. Our MFA results are only presented without lateral
interactions, as the parametrization of these are not available
for our modified active site representation. However, in the
original Rh(211) MFA model from Yang et al. (see Figure S1
in the Supporting Information), lateral interactions do
influence the TOFs, especially at lower temperatures. At 523
K the difference ranges from a factor of about 300 for ethanol
to about 4000 for acetaldehyde.
Before diving into a deeper analysis of the differences

between the different models for the Rh(211) facet, we present
also the TOFs for the Rh(111) facet (see Figure 2b). This
facet contains only a terrace site, and thus the active site
representation and reaction network we employ (cf. Section
S1.3 in the Supporting Information) is in this case completely
identical with that of Yang et al. Comparing the MFA results
with and without interactions (dotted and solid lines), we can
see that for this facet the influence of the lateral interactions is
hugeat all temperatures the catalyst is essentially inactive if

lateral interactions are not taken into account. Furthermore, it
is surprising to note that the lateral interactions in the MFA
model, which were parametrized using a second-order
expansion in the coverage, give rise to a change in the
selectivity trends. That is, without interactions the catalyst is
always selective toward methane, but with interactions the
catalyst is selective toward acetaldehyde at the experimentally
relevant temperature below about 600 K. We recall that the
MFA results for Rh(211) and Rh(111) with interactions were
used by Yang et al. to propose that the activity−selectivity
trends obtained with experimentally synthesized Rh nano-
particles are caused by varying amounts of step and terrace
sites at these particles, where step (terrace) sites would then be
the active sites for methane (acetaldehyde) formation,
respectively.5

However, as discussed in the Introduction, this explanation
was recently challenged by Schumann et al.6 on the basis of
new and more detailed experiments which showed that large
particles above 5 nm, which are expected to predominantly
expose the Rh(111) facet, are actually selective toward
methane and not acetaldehyde. Interestingly, we can fully
confirm this from our KMC simulations with lateral
interactions, where at all simulated temperatures we find that
the Rh(111) facet is indeed selective toward methane (see
Figure 2b). Without interactions we do not observe any
meaningful TOFs for any of the products (not shown), which
is consistent with the very low TOFs obtained in the MFA
model without interactions. Thus, our KMC results confirm
that lateral interactions are of paramount importance for the
Rh(111) facet but the CE used to parametrize these
interactions in KMC gives results qualitatively different from
those of the MFA-parametrized lateral interaction model.
Importantly, only the explicit site-resolving KMC results are
able to reproduce the experimentally observed selectivity
trends for large particles. The case of small particles is outside
the scope of the present work, as the low-index Rh(211) and
Rh(111) surfaces mainly represent step and terrace sites at
larger particles free from finite-size effects.
We believe that the shortcomings of the MFA models for

both Rh(211) and Rh(111) are caused by the well-known
problems of these models with accounting for effects of
correlations and fluctuations, including fluctuations in the local
coverage.12−15 In the following we exemplarily analyze this for
the Rh(211) surface without interactions. This analysis starts
by performing a sensitivity analysis to identify the rate-limiting
steps (RLSs) of the two models. As shown in Figure 3, the RLS
for both the methane and the acetaldehyde pathways is mainly
water formation at the t site in the KMC model, whereas for
the MFA model it is mainly methane formation and CH−CO
coupling at the s site. The sensitivity analysis for the KMC
model with interactions (see Figure S3 in the Supporting
Information) is very similar to that of the KMC model without
interactions.
Since a breakdown of the MFA is typically associated with

second-order reaction steps where correlations in the spatial
distribution of the two reacting species at the surface occur,26

we next evaluate the pair probabilities for selected elementary
steps from our KMC simulations. In Figure 4 we plot the ratio
between the KMC-simulated pair probability to find the
reacting species A and B at neighboring sites and the MFA-
assumed probability equal to c[A][B], where c is a geometric
factor (the site connectivity) and [A] ([B]) is the surface
coverage of species A (B). It is seen that the MFA indeed
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breaks down for several of these steps: i.e., the ratio is
significantly different from 1. In particular, we note that the
MFA breaks down for the reaction between C at the f site and
OH at the t site to form CO at the t site and H. This is the
reverse of the CO dissociation step, which is executed just
before the RLS in the KMC model, where OH at the t site is
further hydrogenated to form water. The probability of finding

the two reactant species, *C f and *OH t, next to each other is
about 57 times larger in KMC than in MFA. This is caused by
the high barrier for C to diffuse along the step and the high CO
coverage at the t site, which effectively hinders OH diffusion at
the t sites (cf. our previous work on the comparison of MFA
and KMC models for CO hydrogenation at stepped metals26).

As a consequence of this persistent correlation, it becomes

more probable for *C f and *OH t to react back to form *CO t

and H in the KMC model in comparison to the MFA model.
In a free energy diagram (cf. orange and black lines in Figure
5a), this change in pair probability can be represented as an
increase in the free energy barrier for the reverse reaction step

of * + *C OHf t in the MFA model (orange line) caused by a

decrease in the free energy of the * + *C OHf t state (i.e., a
higher configurational entropy in the MFA-assumed well-
mixed state). Since the free energy barrier for further reaction

out of the * + *C OHf t state (i.e., water formation at the t site)
is unchanged, the effective barrier in the MFA free energy

landscape (difference between − *H OH t transition state and
*CO t state) is smaller than the effective barrier in the KMC

free energy landscape. This explains the larger TOF obtained
in the MFA model and the change of the RLS from water
formation at the t site to methane formation and CH−CO
coupling at the s site (the latter steps are not shown in Figure
5a).
From the free energy diagram in Figure 5a we can also

explain why the KMC TOF and RLS for both methane and
acetaldehyde formation at the Rh(211) facet does not change
much upon inclusion of lateral interactions. As seen by a
comparison of the black curve (without interactions) and the
blue curve (with interactions), the free energies of the states

that determine the effective barrier ( − *H OH t transition state

and *CO t state) move up in energy by a similar amount as a
consequence of interactions, causing the effective barrier and
TOF to remain at a similar value. The detailed lateral
interaction parameters at play in the two states are illustrated
in Figure S4 in the Supporting Information.
While they are unimportant for the Rh(211) model, we

already mentioned above that lateral interactions do have a
huge effect on the Rh(111) model, and we will next analyze
why this is the case. The free energy diagram with and without
lateral interactions for the Rh(111) facet is shown in Figure 5b.
The greatest difference in comparison to the Rh(211) facet is
that here lateral interactions actually push the free energy of

the *CO t state up close to the free energy of gas-phase CO.
Thereby, the average CO coverage decreases from around
100% without interactions to about 62% with interactions at
the analyzed temperature of 650 K (cf. Section S3.3 in the

Supporting Information). In Figure 5b the *CO t state is split
into two levels, since CO desorption primarily happens from a
local high-coverage state where on average 5.1 out of 6
neighboring sites are occupied by CO, whereas hydrogenation
of CO primarily happens from a lower-coverage state where
only 3 neighboring sites are occupied by CO. The average
coverage pattern with about 2

3
CO coverage resembles a

honeycomb lattice of CO molecules, as illustrated in Figure S5
in the Supporting Information. The RLS for both methane and
acetaldehyde formation in the model with interactions is
primarily dissociation of CHOH to form CH and OH (and for
acetaldehyde also the CH2CO hydrogenation step) (cf. Figure
S6 in the Supporting Information).
For Rh(111), the profound effect of lateral interactions on

the simulation results cannot be explained by a change to the
effective free energy barrier (i.e., the difference between the

Figure 3. Sensitivity analysis of the KMC (blue points) and MFA
(orange points) models for Rh(211) without lateral interactions,
showing the DRC for CH4(g) (bottom) and CH3CHO(g) (top) of
selected transition states. The analysis is performed at 650 K.

Figure 4. Ratio between KMC and MFA probabilities to find the pair
of reacting species in selected second-order reaction steps at
neighboring sites in the Rh(211) model without lateral interactions.
The analysis is performed at 650 K.
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rate-limiting − *CH OH t TS and the *CO t state in Figure 5b),
since this barrier decreases with only around 132 meV upon
inclusion of lateral interactions. Rather, the important point is
that, for CHOH to dissociate, a neighboring t vacancy is
required. Without lateral interactions, the surface is completely
poisoned with an average CO coverage of close to 100%. Thus,
the probability for CHOH dissociation to occur is negligible,

which explains why no product formation could be observed in
the KMC simulations. With interactions, however, a formed
CHOH will on average have 3 CO and 3 vacancy neighbors
(see Figure S5 in the Supporting Information), which makes
the dissociation reaction possible. For the Rh(211) facet a
similar CO poisoning is not observed, since here CO
dissociation relies on a vacant f site, and the vacancy coverage

Figure 5. Free energy diagrams for the CO dissociation and water formation pathways in the (a) Rh(211) and (b) Rh(111) KMC model without
(black) and with (blue) lateral interactions. In (a) the orange curve represents the modified probability for the reverse CO activation step in the
MFA model without interactions (see text). The energy levels with lateral interactions for Rh(211) and CO desorption for Rh(111) are determined
by the average barriers of the up to 10000 last executed events of each process. For the remaining levels at Rh(111) we do not have enough
statistics: e.g., the back-reaction of CH and OH to form CHOH never occurs. Since these steps are mostly executed from the surface configuration
illustrated in Figure S5, where each CO has three neighboring CO molecules, we instead determined the energy levels and barriers specifically for
this surface configuration. The analyses are performed at 650 K.

Figure 6. Variations in predicted KMC TOFs for the (a) Rh(211) and (b) Rh(111) facets and corresponding carbon selectivities for the (c)
Rh(211) and (d) Rh(111) facets with modifications to the DFT parameters in the models with lateral interactions (see text). Results are shown for
CH4 (blue), CH3CHO (orange), and CH3CH2OH (black). “base” represents the unmodified results also shown in Figure 2a,b. The dashed
horizontal lines represent the experimentally measured total TOF (primarily methane, (a) and (b)) and selectivities ((c) and (d)) of the largest
nanoparticles with diameters above 5 nm from Schumann et al.6 Both the theoretical and the experimental results are obtained at 523 K.
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of the f sites remains high even without lateral interactions (cf.
Table S4).
Up until now, we have shown that the MFA can break down

both in the absence of lateral interactions (analyzed for the
Rh(211) facet where the TOFs are overestimated in the MFA
model compared to KMC) and in the presence of lateral
interactions (analyzed for the Rh(111) facet where wrong
selectivity trends are obtained in the MFA model in
comparison to experiments). However, even if the KMC
model does recover the experimental selectivity trends, the
absolute TOFs predicted by both the KMC model and the
MFA model are not in good agreement with the experiments.
In Figure 2a,b we mark with a blue diamond the total TOF

(primarily methane) measured for the largest Rh nanoparticles
investigated by Schumann et al.6 It is larger by about 5 orders
of magnitude in comparison to the Rh(211) KMC simulation
with lateral interactions (cf. Figure 2a) and by about 5−6
orders of magnitude for the Rh(111) KMC and MFA
simulations with lateral interactions (cf. Figure 2b). The
consistent, gross underestimation of the TOF by both KMC
and MFA and for both investigated facets leads us to suspect
that this discrepancy has its origin in the DFT calculations
used to parametrize the kinetic models. In particular, it is well-
known that generalized gradient approximation (GGA)
functionals tend to overbind CO on transition metals:29 e.g.,
the CO adsorption energy obtained with the BEEF-vdW
functional employed here for Rh(111) (−1.7 eV) is about 0.25
eV stronger than the experimental value (−1.45 eV28,47,48).
Since the state with CO adsorbed at a terrace site directly
influences the effective barrier of the reaction (cf. Figure 5),
this error directly influences the obtained TOF.
In order to assess the possible implications of this error, we

show in Figure 6 the TOFs and selectivities obtained for the
Rh(211) and Rh(111) facets for both the hitherto discussed
base model and a model where the CO adsorption energies are
increased by 0.25 eV (ECO

ads↑). This already improves the
agreement with experiments significantly: i.e., the TOF
predicted for the Rh(211) facet (Rh(111) facet) is now only
about 2 (3) orders of magnitude lower than that of the
experiment. Of course, this analysis neglects the fact that there
could also be errors associated with other rate-controlling
parameters in our kinetic model: e.g., the transition state for
water formation at the terrace site or lateral interaction
parameters affecting either the latter transition state or the CO
adsorption energy. Since we do not know in which direction
such other errors might point, we show as examples in Figure
6a,b also results where the interaction parameter for self-
interactions between the CO molecules at t and s sites are
increased (εCO↑) or decreased (εCO↓) by 50 meV from their
base values. An error of this magnitude seems quite reasonable,
since we use an approximate CE that is terminated after
pairwise nearest-neighbor interactions. Taking these results as
plausible “error bars” on the theoretical results, we can now
reconcile theory with experiment to the extent that the
experimental TOF lies within (admittedly rough) error bars on
the theoretical values for the Rh(211) facet. In reality, the
experimentally used nanoparticles of course contain both step
and terrace sites, and the actual TOF measured might be the
result of an interplay between reaction steps taking place at
both site types. Such bifunctional effects have been previously
discussed in the literature49,50 and have indeed recently been
demonstrated theoretically for e.g., CO oxidation at Pt
nanoparticles51 and the hydrogen evolution reaction at jagged

Pt nanowires.52 The finding here that the TOF is largest, and
in best agreement with experiment, on the Rh(211) facet is
related to the facile hydrogen-assisted CO dissociation at the
step sites exposed by this facet.31 However, the subsequent
rate-controlling water formation step takes place at the terrace
site; thus, both types of sites are required for a high activity.
We would here again like to emphasize that the modeling
carried out in this work is only applicable to larger
nanoparticles that can be reliably represented through
extended bulk-cut facets. In order to describe small particles
where finite-size effects play a large role, realistic nanoparticle
geometries would have to be employed both at the DFT and
KMC level. This is computationally very challenging with
currently available methods but would be an interesting
addition for future work in order to understand also the
experimentally observed activity and selectivity trends for small
particles.
Comparing the experimental selectivities shown as dashed

horizontal lines in Figure 6c,d with the theoretical selectivities
reveals that for both facets variations in the adsorption energies
and interaction energies (as well as combinations) bring the
selectivities closer to the experimental measurements. The
observed trend of an increase in the acetaldehyde selectivity
with a destabilization of adsorbed CO for both Rh(211) and
Rh(111) is caused by a decrease in the effective barriers in the
acetaldehyde pathways involving the RLSs of CH−CO
coupling (for Rh(211) as shown in Figure 3) and CH2CO
hydrogenation (for Rh(111) as shown in Figure S6).
Nevertheless, for all parameter modifications, our results
robustly indicate that the Rh(111) facet is selective to
methane. For the Rh(211) facet the selectivity trends fluctuate
between methane selectivity or a similar methane and
acetaldehyde selecitivity, depending on the exact parameter
values. Given that the 5 nm nanoparticles studied by
Schumann et al. will dominantly expose the Rh(111) facet,
as well as step and corner sites to a smaller extent, the sum of
the theoretical selectivity trends should overall result in a
methane selectivity in quite good agreement with the
experimental measurements.

■ CONCLUSIONS
We investigated the CO hydrogenation reaction on Rh(111)
and Rh(211) using accelerated first-principles KMC simu-
lations with and without lateral interactions parametrized from
a cluster expansion model. The results are compared to MFA
simulations from Yang et al.5 with and without coverage
dependence in the rate expressions. The coverage-dependent
MFA model predicts acetaldehyde selectivity for the Rh(111)
facet below ∼580 K, which is in contrast to the KMC
simulations with lateral interactions that predict methane
selectivity at all temperatures. Importantly, only the KMC
results are in agreement with recent detailed experimental
investigations on selectivity trends of Rh nanoparticles from
Schumann et al.6

The inclusion of lateral interactions is found to have a huge
effect on the Rh(111) simulations. We explain this by the fact
that the RLS in this model (CHOH dissociation) requires a
neighboring vacant terrace site, which is a probable lattice
configuration only when the reduction of the surface CO
coverage caused by repulsive CO−CO interactions is taken
into account. In contrast, for the Rh(211) model we find that
the TOF and RLS (water formation at the terrace site) are only
weakly affected by lateral interactions. This is explained by
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similar surface coverages with and without lateral interactions
and by the fact that interactions shift the two states controlling
the effective barrier in the dominant reaction pathway by
similar amounts, leading to net similar effective barriers with
and without interactions. For Rh(211) we furthermore show
that the MFA also breaks down in the absence of interactions
due to diffusion limitations and reaction-induced lattice
inhomogeneities. This leads to higher TOFs and changes in
the RLSs in the MFA model in comparison to the KMC
model.
Finally, we compare the overall activities (methane and

acetaldehyde TOFs) to the experimental measurements from
Schumann et al. We find that we need to correct for the well-
known CO overbinding of GGA functionals (about 0.25 eV for
the here applied BEEF-vdW functional) in order to approach
agreement with the experiments. This correction also improves
the quantitative agreement with the carbon selectivities
obtained by Schumann et al. In particular, it leads to a larger
increase in the acetaldehyde TOFs in comparison to the
methane TOFs for both Rh(211) and Rh(111), since the
effective barrier of the acetaldehyde pathway involves CO both
in the CO activation step leading to CHx species at the surface
(i.e., the step shared with the methane pathway) and in the
subsequent step where the formed CH species reacts with
another CO.
Overall, the insights obtained in this work could be relevant

for further tailoring heterogeneous catalysts to improve their
selectivity toward the desired higher oxygenates acetaldehyde
and ethanol. The methodological advances demonstrated here,
i.e., the combination of acceleration algorithms in KMC with
an efficient modeling of lateral interactions, open up
possibilities for also treating complex reaction networks at a
level of detail beyond the hitherto applied approximate MFA
models. This is important in order to achieve reliable
mechanistic insights as a solid basis for the rational design of
selective catalysts.
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S1 Additional Details on the Microkinetic Models

S1.1 KMC Reaction Network on Rh(211)

The KMC Rh(211) model is adopted from Yang et al.1 and extended by expanding their

step site into a separate step (s) and terrace (t) site. It is composed of 34 reaction and 19

diffusion steps. For this network, the C-C coupling is assumed to only occur via the reaction

of CH+CO either on the s or on t sites. Other C-C coupling reactions were not included for

the following reasons:

• C-CO coupling to CCO

On s sites, this step has an energy barrier of 1.16 eV.2 However, it is very endothermic,

leading to an energy barrier for the reverse direction of only 0.28 eV.2 This cannot

compete with the C hydrogenation reaction to produce CH, which has an energy barrier

of 1.04 eV1 and is almost thermoneutral. To our knowledge, this step has never been

considered on t sites.

• CH2-CO coupling to CH2CO

On s sites, this step has an energy barrier of 1.07 eV.2 However, this would hardly

compete with CH2 hydrogenation to CH3, which has an energy barrier of only 0.42 eV.1

On t sites, this step has been reported to be highly activated,3 with a barrier of

1.34 eV,4 which cannot compete with CH2 hydrogenation.

• CH3-CO coupling to CH3CO

On s sites, this step has an energy barrier of 1.38 eV. However, this would hardly

compete with CH3 hydrogenation to methane, which has an energy barrier of only

0.55 eV.1 On t sites, this step was included by Choi et al.4 in their mechanistic study,

finding this process cannot compete with the production of CH4 unless its energy

barrier is significantly decreased.

Regarding CO hydrogenation to CHO or COH, both possibilities have been considered for the

S1



Rh(211) facet in the present study (see steps 1.20 and 1.3/1.4, respectively, in Section S1.1.1

below). Note that, in the case of COH, the COH formation step and subsequent dissociation

step have been coarse-grained into a single elementary step (CO + H ⇀↽ C + OH) to speed

up the KMC simulation. This is expected to be a good approximation, since the COH

intermediate is very high in energy and thus expected to be short-lived compared to the

initial and final states in step 1.3/1.4. The energy of the transition state is taken as that of

the COH dissociation, since it is the highest in energy. This approximation was already used

in a previous study.5 For the Rh(111) facet (see Section S1.3.1 below) we include only the CO

dissociation pathway going through the intermediates CHO, CHOH and finally dissociating

to CH and OH. The reason is that Yang et al.1 found that for Rh(111) this pathway has

an overall lower barrier at high CO coverage conditions than the pathway going through

the COH intermediate and dissociating to C and OH, which is the dominant pathway for

Rh(211).

Finally, another pathway that was not included here is the hydrogenation of CHO to

CH2O, CH3O, and CH3OH. The reason for this choice is that the selectivity of Rh catalysts

towards methanol is very low.1 Therefore, we believe all the above-mentioned alternative

reaction pathways are less plausible than those investigated here, and that we can extract

solid mechanistic understanding from our simplified reaction model, where comparison with

experimental results can be done.

S1.1.1 Reaction Steps

CO(g) + ∗s ⇀↽ CO∗s (1.1)

CO(g) + ∗t ⇀↽ CO∗t (1.2)

CO∗s + H∗T + ∗f + ∗t ⇀↽ C-OH∗f + ∗s + ∗t ⇀↽ C∗f + OH∗t + ∗s (1.3)

CO∗t + H∗T + ∗f ⇀↽ C-OH∗f + ∗t ⇀↽ C∗f + OH∗t (1.4)

C∗f + H∗S ⇀↽ C-H∗f ⇀↽ CH∗f (1.5)
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CH∗f + H∗S + ∗s ⇀↽ CH-H∗s + ∗f ⇀↽ CH∗s2 + ∗f (1.6)

CH∗f + H∗S + ∗t ⇀↽ CH-H∗f + ∗t ⇀↽ CH∗t2 + ∗f (1.7)

CH∗s2 + H∗S ⇀↽ CH2-H∗s ⇀↽ CH∗s3 (1.8)

CH∗s3 + H∗S ⇀↽ CH3-H∗s ⇀↽ CH4(g) + ∗s (1.9)

O∗s + H∗S ⇀↽ O-H∗s ⇀↽ OH∗s (1.10)

OH∗s + H∗S ⇀↽ H-OH∗s ⇀↽ H2O(g) + ∗s (1.11)

CH∗f + CO∗s ⇀↽ CH-CO∗s + ∗f ⇀↽ CHCO∗s + ∗f (1.12)

CHCO∗s + H∗S ⇀↽ H-CHCO∗s ⇀↽ CH2CO∗s (1.13)

CH2CO∗s + H∗S ⇀↽ H-CH2CO∗s ⇀↽ CH3CO∗s (1.14)

CH3CO∗s + H∗S ⇀↽ H-CH3CO∗s ⇀↽ CH3CHO∗s (1.15)

CH3CHO∗s + H∗S ⇀↽ CH3CHO-H∗s ⇀↽ CH3CHOH∗s (1.16)

CH3CHO∗s ⇀↽ CH3CHO(g) + ∗s (1.17)

CH3CHO∗t ⇀↽ CH3CHO(g) + ∗t (1.18)

CH3CHOH∗s + H∗S ⇀↽ CH3CHOH-H∗s ⇀↽ CH3CH2OH(g) + ∗s (1.19)

CO∗t + H∗T ⇀↽ H-CO∗t ⇀↽ CHO∗t (1.20)

CHO∗t + H∗T ⇀↽ HCO-H∗t ⇀↽ CHOH∗t (1.21)

CHOH∗t + ∗t ⇀↽ CH-OH∗t + ∗t ⇀↽ CH∗t + OH∗t (1.22)

CH∗t + H∗T ⇀↽ CH-H∗t ⇀↽ CH∗t2 (1.23)

CH∗t2 + H∗T ⇀↽ H-CH∗t2
⇀↽ CH∗t3 (1.24)

CH∗t3 + H∗T ⇀↽ H-CH∗t3
⇀↽ CH4(g) + ∗t (1.25)

OH∗t + H∗T ⇀↽ H-OH∗t ⇀↽ H2O(g) + ∗t (1.26)

CH∗t + CO∗t ⇀↽ CH-CO∗t + ∗t ⇀↽ CHCO∗t + ∗t (1.27)

CHCO∗t + H∗T ⇀↽ H-CHCO∗t ⇀↽ CH2CO∗t (1.28)

CH2CO∗t + H∗T ⇀↽ H-CH2CO∗t ⇀↽ CH3CO∗t (1.29)
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CH3CO∗t + H∗T ⇀↽ H-CH3CO∗t ⇀↽ CH3CHO∗t (1.30)

CH3CHO∗t + H∗T ⇀↽ CH3CHO-H∗t ⇀↽ CH3CHOH∗t (1.31)

CH3CHOH∗t + H∗T ⇀↽ CH3CHOH-H∗t ⇀↽ CH3CH2OH∗t (1.32)

CH3CH2OH∗t ⇀↽ CH3CH2OH(g) + ∗t (1.33)

OH∗t ⇀↽ O-H∗t ⇀↽ O∗t + H∗T (1.34)

S1.1.2 Diffusion Steps

CO∗t + ∗t ⇀↽ CO∗t + ∗t (1.35)

CO∗t + ∗s ⇀↽ CO∗s + ∗t (1.36)

CO∗s + ∗s ⇀↽ CO∗s + ∗s (1.37)

C∗f + ∗f ⇀↽ C∗f + ∗f (1.38)

CH∗t + ∗t ⇀↽ CH∗t + ∗t (1.39)

CH∗t + ∗f ⇀↽ CH∗f + ∗t (1.40)

CH∗f + ∗f ⇀↽ CH∗f + ∗f (1.41)

CH∗t2 + ∗t ⇀↽ CH∗t2 + ∗t (1.42)

CH∗t2 + ∗s ⇀↽ CH∗s2 + ∗t (1.43)

CH∗s2 + ∗s ⇀↽ CH∗s2 + ∗s (1.44)

CH∗t3 + ∗t ⇀↽ CH∗t3 + ∗t (1.45)

CH∗t3 + ∗s ⇀↽ CH∗s3 + ∗t (1.46)

CH∗s3 + ∗s ⇀↽ CH∗s3 + ∗s (1.47)

O∗t + ∗t ⇀↽ O∗t + ∗t (1.48)

O∗t + ∗s ⇀↽ O∗s + ∗t (1.49)

O∗s + ∗s ⇀↽ O∗s + ∗s (1.50)
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OH∗t + ∗t ⇀↽ OH∗t + ∗t (1.51)

OH∗t + ∗s ⇀↽ OH∗s + ∗t (1.52)

OH∗s + ∗s ⇀↽ OH∗s + ∗s (1.53)

S1.2 MFA Reaction Network on Rh(211)

The reaction and diffusion steps of the MFA model are identical to the ones of the KMC

model except that the hydrogen adsorption to hydrogen reservoir sites with t and s energetics

is included

H2(g) + 2∗S ⇀↽ 2H∗S (2.1)

H2(g) + 2∗T ⇀↽ 2H∗T (2.2)

and same site diffusions are not required. Note that in the KMC model the MFA rate

equations for H adsorption/desorption are used to compute an effective H coverage of the T

and S sites, which is used instead of treating H as an actual species.
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S1.2.1 Original MFA Model by Yang et al. on Rh(211)

Figure S1: Comparison of the original Rh(211) MFA model by Yang et al.1 with (dotted)
and without lateral interactions (solid). The model with interactions is reproduced from
their publication and the one without by disabling interactions within the former.

S1.3 KMC Reaction Network on Rh(111)

The KMC Rh(111) model is adopted from Yang et al. It is composed of 16 reaction and 5

diffusion steps.

S1.3.1 Reaction Steps

CO(g) + ∗t ⇀↽ CO∗t (3.1)

CO∗t + H∗T ⇀↽ H-CO∗t ⇀↽ CHO∗t (3.2)

CHO∗t + H∗T ⇀↽ HCO-H∗t ⇀↽ CHOH∗t (3.3)

CHOH∗t + ∗t ⇀↽ CH-OH∗t + ∗t ⇀↽ CH∗t + OH∗t (3.4)

CH∗t + H∗T ⇀↽ CH-H∗t ⇀↽ CH∗t2 (3.5)

CH∗t2 + H∗T ⇀↽ H-CH∗t2
⇀↽ CH∗t3 (3.6)
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CH∗t3 + H∗T ⇀↽ H-CH∗t3
⇀↽ CH4(g) + ∗t (3.7)

OH∗t + H∗T ⇀↽ H-OH∗t ⇀↽ H2O(g) + ∗t (3.8)

CH∗t + CO∗t ⇀↽ CH-CO∗t + ∗t ⇀↽ CHCO∗t + ∗t (3.9)

CHCO∗t + H∗T ⇀↽ H-CHCO∗t ⇀↽ CH2CO∗t (3.10)

CH2CO∗t + H∗T ⇀↽ H-CH2CO∗t ⇀↽ CH3CO∗t (3.11)

CH3CO∗t + H∗T ⇀↽ H-CH3CO∗t ⇀↽ CH3CHO∗t (3.12)

CH3CHO∗t ⇀↽ CH3CHO(g) + ∗t (3.13)

CH3CHO∗t + H∗T ⇀↽ CH3CHO-H∗t ⇀↽ CH3CHOH∗t (3.14)

CH3CHOH∗t + H∗T ⇀↽ CH3CHOH-H∗t ⇀↽ CH3CH2OH∗t (3.15)

CH3CH2OH∗t ⇀↽ CH3CH2OH(g) + ∗t (3.16)

S1.3.2 Diffusion Steps

CO∗t + ∗t ⇀↽ CO∗t + ∗t (3.17)

CH∗t + ∗t ⇀↽ CH∗t + ∗t (3.18)

CH∗t2 + ∗t ⇀↽ CH∗t2 + ∗t (3.19)

CH∗t3 + ∗t ⇀↽ CH∗t3 + ∗t (3.20)

OH∗t + ∗t ⇀↽ OH∗t + ∗t (3.21)

S1.4 MFA Reaction Network on Rh(111)

Like in the Rh(211) model the reaction steps of the MFA model are identical to the KMC

model and hydrogen adsorption to hydrogen reservoir sites with t energetics is included

H2(g) + 2∗T ⇀↽ 2H∗T (4.1)
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This model is identical to the one by Yang et al.

S2 Additional DFT Computational Details

DFT calculations were performed as in Yang et al.1 using Quantum Espresso,6 ultrasoft

pseudopotentials, and the BEEF-vdW exchange-correlation functional7 with a plane wave

cutoff of 500 eV and a density cutoff of 5000 eV. The Brillouin zone was sampled with a

4×4×1 Monkhorst-Pack k -point grid. The Rh(211) surface slab was modelled using a (2×1)

supercell with nine layers and the bottom six layers fixed in their bulk truncated positions

and the Rh(111) surface slabs were modelled using a (3×3) supercell with four layers and

the bottom two layers fixed in their bulk truncated positions. The slabs were relaxed until

reaching a maximum force threshold of 0.05 eV/Å. A vacuum region of at least 15 Å perpen-

dicular to the surface was used and a dipole correction was applied to all surfaces.8 Transition

state geometries were calculated with the CI-NEB method9 analogous to Yang et al.1 Vi-

brational frequencies of adsorbed species below 56 cm−1 are set to 56 cm−1 to approximate

the entropic contribution from pseudotranslational/rotational degrees of freedom.

Table S1: Additional DFT calculations for the modified Rh(211) reaction model.

Species Surface
Formation Vibrational
energy [eV] frequencies [cm−1]

O∗t Rh(111) −0.19 359.5, 393.3, 507.0
O-H∗t Rh(111) 1.13 130.2, 179.5, 293.7, 497.8, 975.7

CH-H∗f Rh(211) 0.36 247.4, 286.7, 460.4, 579.8, 794.5, 958.4,
1325.6, 2936.3
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Table S2: Nearest neighbor interaction energies (ε) in eV.

Interaction ε [eV]

C∗f−CO∗s 0.46
CH∗f−CO∗t 0.39

CH2CO∗s−CO∗s 0.35
C∗f−CH∗f 0.31

CO∗s−O∗s 0.29
CH3CHOH∗s−CO∗s 0.27

C∗f−C∗f 0.25
CH∗f−CH∗f 0.25
CO∗s−OH∗s 0.24

CH3CO∗s−CO∗t 0.20
CO∗t−CO∗t 0.19

CH2CO∗t−CO∗t 0.15
CH3CHOH∗t−CO∗t 0.12

CH∗t3 −CO∗t 0.10
CO∗s−CO∗s 0.10

O∗t−CO∗t 0.10
O∗t−CO∗s 0.09

CHOH∗t−CO∗t 0.09
CH3CHO∗s−CO∗s 0.09

CHCO∗t−CO∗t 0.09
CH∗s3 −CO∗s 0.08
CH∗t−CO∗t 0.07

Interaction ε [eV]

CH3CO∗s−CO∗s 0.07
OH∗t−CO∗t 0.06

CH2CO∗s−CO∗t 0.06
CH∗t3 −CO∗s 0.05

CHO∗t−CO∗t 0.05
CHCO∗s−CO∗t 0.05

CH∗s3 −CO∗t 0.04
CH∗f−CO∗s 0.04

CHCO∗s−CO∗s 0.03
OH∗t−CO∗s 0.03
CH∗t−CO∗s 0.02
CH∗t2 −CO∗s 0.01

CH3CO∗t−CO∗t 0.01
CO∗t−CO∗s −0.01

CH3CHO∗s−CO∗t −0.03
CO∗t−O∗s −0.05

CH3CHOH∗s−CO∗t −0.07
CH3CHO∗t−CO∗t −0.08

CH3CH2OH∗t−CO∗t −0.09
CO∗t−OH∗s −0.11

C∗f−CO∗t −0.17

Table S3: Brønsted-Evans-Polanyi scaling parameter (α) values.

α forward reverse

αadsorption 0.000 1.000
αdiffusion 0.500 0.500
αCO+H→C+OH 0.792 0.208
αCHOH→CH+OH 0.792 0.208
αC+H→CH 0.363 0.637
αCH+H→CH2 0.239 0.761
αCH2+H→CH3 0.243 0.757
αCH3+H→CH4 0.211 0.789
αC hydrogenation 0.264 0.736
αO+H→OH 0.563 0.437
αOH+H→H2O 0.350 0.650
αO hydrogenation 0.456 0.544
αCO+CH→CHCO 0.204 0.796
αH+CO→CHO 0.562 0.438
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S3 Additional KMC Computational Details

All KMC simulations were performed with kmos10 using the on-the-fly (otf) backend11 and

the acceleration algorithm described by Dybeck et al. as implemented in kmos.5,12,13 Start-

ing with a random seed of 1 for all simulations the systems were relaxed for 5 · 107 steps

and subsequently checked every 5 · 107 steps until either the runtime exceeded one week

of simulation or 11 molecules of CH3CHO(g) for the Rh(111) facet (26 molecules for the

Rh(211) facet) were formed. In the acceleration algorithm there are several parameters to

set. Two of the parameters, ne and δ, were fixed to the same values as used in our previous

work.5 That is, reaction channels need to be executed ne = 200 times to be considered lo-

cally quasi-equilibrated and the threshold parameter is set to δ = 0.2. Furthermore, to yield

converged results different buffer parameters Nf and lattice sizes have been tested as shown

in Figure S2. Based on these results, we chose a 10×10 lattice with Nf = 25 for Rh(211)

and a 25×25 lattice with Nf = 50 for Rh(111).

a) b)

Figure S2: Acceleration parameter analysis for the formation of CH4 and CH3CHO on (a)
Rh(211) and (b) Rh(111) with lateral interactions at 523 K. Left plots: Different buffer
parameters Nf for (a) a 30×30 Rh(211) lattice and (b) a 25×25 Rh(111) lattice. Right
plots: Different lattice sizes for (a) Nf = 25 and (b) Nf = 50.
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S3.1 Sensitivities of the Rh(211) KMC Model with Lateral Inter-

actions

Figure S3: Sensitivity analysis of the KMC model for Rh(211) with lateral interactions,
showing the DRC for CH4,(g) (bottom) and CH3CHO(g) (top) of selected TSs. The analysis
is performed at 650 K
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S3.2 Lateral Interaction Contributions Within the CO Activation

Step

a) b)

Figure S4: Most probable configurations for the IS (a) and FS (b) of the CO activation
reaction on the Rh(211) facet.
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S3.3 Effect of Lateral Interactions on Coverage within KMC

a) b)

Figure S5: (a) Coverage pattern of CO in the Rh(111) KMC model with lateral interactions.
Due to the interactions a honeycomb-like adsorption pattern is formed with 2/3 coverage of
CO and 1/3 empty t sites. (b) Free energy levels of the CO∗t state with 0–6 neighboring sites
occupied by other CO molecules. The analysis is performed at 650 K.

Table S4: Coverages of the different Rh(211) and Rh(111) KMC models.

Model Temperature Site
Coverage [%]

CO C empty rest

Rh(211)
w/ lateral
interactions

523 t 100.0 – 0.0 0.0
s 100.0 – 0.0 0.0
f – 5.1 94.9 0.0

585 t 100.0 – 0.0 0.0
s 100.0 – 0.0 0.0
f – 0.1 99.9 0.0

650 t 99.9 – 0.1 0.0
s 100.0 – 0.0 0.0
f – 0.0 100.0 0.0

Rh(211)
w/o lateral
interactions

523 t 100.0 – 0.0 0.0
s 100.0 – 0.0 0.0
f – 0.8 99.0 0.2

585 t 100.0 – 0.0 0.0
s 100.0 – 0.0 0.0
f – 0.7 99.2 0.1

650 t 100.0 – 0.0 0.0
s 100.0 – 0.0 0.0
f – 0.6 99.3 0.1

Rh(111)
w/ lateral
interactions

523 t 67.8 – 32.2 0.0
585 t 65.9 – 34.1 0.0
650 t 62.0 – 38.0 0.0
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S3.4 Sensitivities of the KMC and MFA Models for Rh(111) with

Lateral Interactions

Figure S6: Sensitivity analysis of the KMC (blue points) and MFA (orange points) models
for Rh(111) with lateral interactions, showing the DRC for CH4,(g) (bottom) and CH3CHO(g)

(top) of selected TSs. The analysis is performed at 650 K.
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