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Zusammenfassung

Diese Dissertation untersucht variationelle Quanten-Algorithmen, welche wir dazu verwenden,
NP-vollständige kombinatorische Optimierungsprobleme wie das Max-Cut-Problem approxi-
mativ zu lösen. Unser Hauptaugenmerk liegt auf dem von Farhi, Goldstone, and Gutmann
eingeführten “Quantum Approximate Optimization Algorithm” (QAOA), welcher aufgrund seiner
potentiellen zeitnahen Anwendung auf echten Quanten-Computern erhebliches Interesse auf
sich gezogen hat. Insbesondere beweisen wir Leistungsgrenzen von QAOA. Darüber hinaus
schlagen wir zwei neue, von QAOA abgeleitete Algorithmen vor, welche darauf abzielen, diese
Beschränkungen zu umgehen: einer dieser Algorithmen, welchen wir “Recursive QAOA” nennen,
benutzt QAOA rekursiv als eine Subroutine, und der zweite Algorithmus, welchen wir “twisted
QAOA” nennen, macht sich Post-Processing zu nutze.
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Abstract

This thesis studies variational quantum algorithms applied to approximately solve NP-complete
combinatorial optimization problems such as the Max-Cut problem. Our main focus lies on the
“Quantum Approximate Optimization Algorithm” (QAOA) introduced by Farhi, Goldstone, and
Gutmann which has attracted considerable attention due to its potential applicability on near-
term real-world quantum devices. In particular, we prove performance limitations of QAOA.
Furthermore, we propose two new algorithms derived from QAOA which aim at bypassing
these limits: an algorithm using QAOA as a subroutine called “recursive QAOA” and a version
incorporating post-processing called “twisted QAOA”.
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Chapter 1

Introduction

The field of quantum computation, first envisioned in the early 1980s [4, 5], is currently in a
transitional phase in its development. On one hand, the capabilities of real-world devices are
continuously increasing as evidenced by the celebrated claims of quantum advantage by Google [6]
and subsequent introduction of devices capable of harnessing even more computational power [7]
as quantified by the number of fundamental quantum information units (generally called “qudits”
and more specifically “qubits” when in two-level form). On the other hand, the number of such
qubits in current devices is still not large enough to realize promising applications of algorithms
such as Shor’s factoring algorithm [8] and Grover’s search algorithm [9] due to the detrimental
effects of quantum decoherence. While the potential errors occurring in a quantum computation,
e.g., by decoherence or faulty gates and measurements, can be overcome in principle [10], the
advancements necessary to achieve scalable universal fault-tolerant quantum computation in the
lab are sufficiently challenging that this is not expected to be realizable in the near future.

This transitional phase has been called the “NISQ era” [11], where the abbreviation stands
for “Noisy Intermediate-Scale Quantum”. In the absence of universal fault-tolerant quantum
computation, the goal is instead to focus on quantum algorithms whose physical realizations as
quantum circuits take very little time such that the negative effects of decoherence are at least
reduced. Such algorithms are realized via so-called short-depth quantum circuits; they are the
focus of this thesis. Informally, a quantum circuit satisfies this requirement if the total time that
the quantum computation takes to finish all of its actions (i.e., its depth) does not grow too
strongly (e.g., at most logarithmically) with the size of the problem instance.

While quantum processing capabilities are limited at the current time, classical computational
resources are powerful and ubiquitous. Therefore, a feasible approach to enhance the capabilities
of short-depth quantum circuits is to supplement the quantum computation by classical compu-
tation. One way of doing this is by letting the quantum circuit depend on a set of real parameters
which are found via classical means. The analytical study of the performance of algorithms of
this type are the overarching topic of this thesis; they are called variational quantum algorithms.
In particular, we will focus on one specific variational quantum algorithm applied to combinato-
rial optimization problems, the Quantum Approximate Optimization Algorithm, abbreviated as
“QAOA” [12].
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Introduction

This algorithm is a so-called approximation algorithm, i.e., an efficient algorithm that outputs an
approximate solution to a combinatorial optimization problem (specified via a given cost function
whose value we wish to optimize), meaning that the obtained output is typically not optimal.
Such algorithms are motivated by the fact that many combinatorial optimization problems are
expected to be computationally hard to solve exactly. To measure the performance of approxi-
mation algorithms, we will use the so-called approximation ratio. This figure of merit is defined
as the (expected) value of the cost function applied to the output of the algorithm divided by
the actual optimum of the problem at hand; it is therefore always a quantity between 0 and 1

for maximization problems.
To use QAOA, one chooses a natural number called the “level” (usually denoted by p) before
applying the algorithm which we then denote by QAOAp. While increasing p improves the per-
formance of the algorithm, it also increases the depth of the quantum circuit and therefore makes
it more susceptible to the effects of decoherence. Furthermore, the number of real parameters
in the quantum circuit (which need to be determined via classical means) is equal to 2p and
therefore also determined by the level; both these p-dependent properties motivate a choice of
small p.
In this thesis, we focus on finding both performance guarantees and limitations of QAOAp

depending on the level p. In particular, we compare the performance of QAOA with the per-
formance of established classical algorithms. To overcome any limitations that we observe, we
propose enhancements of this algorithm which we hope might perform better and investigate
their performance as well.

1.1 Summary of results

We give an overview of the published research articles which constitute the backbone of this
thesis, where Article I) [1] and II) [2] are the core articles for which the author of this thesis is
the principal author, while the author does not claim principal authorship for Article III) [3].

Core articles as principal author

• Article I) [1]: Hybrid quantum-classical algorithms for approximate graph coloring

This core article has three main contributions to the study of variational quantum al-
gorithms. First, we apply techniques similar to the ones previously used in [13] for the
Max-Cut problem to establish worst-case bounds on the performance of QAOA applied
to the Max-k-Cut problem, where k ≥ 2 is a constant integer. In this combinatorial
optimization problem (which is intimately connected to the well-known graph coloring
problem), one attempts to color the vertices of a given graph using k colors such that as
many edges as possible connect vertices with different colors; choosing k = 2 yields the
Max-Cut problem. Our result implies that if one chooses the level of QAOA as a con-
stant, i.e., independently of the number of vertices in the graph, the performance of the
algorithm applied to almost all d-regular bipartite graphs with n vertices, where n and d

are large and suitably chosen, is comparable to simply randomly guessing colors.
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Summary of results

A crucial part of QAOAp is the choice of 2p real parameters. Typically, these parameters
are chosen such that the expected value of the so-called problem Hamiltonian in the input
state is maximized. Usually, this expectation value consists of a sum of terms of the form
⟨ψ (β, γ) |ZruZsv |ψ (β, γ)⟩, where |ψ (β, γ)⟩ is the output state of QAOAp with parameters
β, γ ∈ Rp and Ztw is the t-th power of the generalized Pauli-Z operator applied to subsystem
w. Being able to determine these quantities is important as the approximation ratio is
defined as a function of such expectation values. Therefore, as a second contribution, we
introduce a classical algorithm whose runtime on bounded-degree graphs scales linearly in
the number of vertices of the given graph and computes this expectation value for the case
p = 1. This algorithm can also be used to numerically study the performance of RQAOA1,
an algorithm introduced in Article III) [3], which recursively uses QAOA1 as a subroutine.

Third, we use this classical algorithm to compare the performance of three algorithms ap-
plied to the Max-3-Cut problem in terms of their approximation ratios, namely QAOA1,
RQAOA1, and the best classical algorithm for the problem given by Newman [14]. These
algorithms are applied to a variety of different graph ensembles. We see empirically that
RQAOA1 consistently outperforms QAOA1 for all ensembles, and moreover, for certain
ensembles, RQAOA1 is able to outperform Newman’s algorithm. However, there are also
certain regimes for which the classical algorithm outperforms RQAOA1.

• Article II) [2]: Twisted hybrid algorithms for combinatorial optimization

In the second core article, we use a different approach to enhance the capabilities of QAOA

applied to the Max-Cut problem by performing classical post-processing after the appli-
cation of a variational quantum algorithm. Inspired by the well-established techniques
for classical algorithms of Feige, Karpinski, and Langberg [15] and Halperin, Livnat, and
Zwick [16] which are suitable for the Max-Cut problem on 3-regular graphs, we use the
original level-p QAOA circuit family, but choose the parameters to maximize an altered
cost function that already takes the subsequent post-processing into account. This change
(or “twist”, hence the name of the algorithm) of the cost function is motivated by the
availability of provable improvement guarantees for both of these techniques.

Expressing these guarantees as expectation values of local Hamiltonians and exploiting the
well-known locality of QAOA, we are able to derive provable, analytical lower bounds on
the approximation ratio of twisted QAOA applied to Max-Cut on 3-regular graphs for
low levels of p. We see that twisted QAOA noticeably improves upon “bare” QAOA of the
same level while using the exact same amount of quantum resources. In fact, the obtained
results suggest that the performance of twisted QAOA with level p is comparable to the
performance of bare QAOA with level p + 1, meaning that using the twisted algorithm
decreases the total depth of the quantum circuit in comparison to the original algorithm.

Further article

• Article III) [3]: Obstacles to Variational Quantum Optimization from Symmetry Protection

In this article, we exploit the symmetry properties of QAOA to establish upper bounds
on the performance (as quantified by the approximation ratio) of low-level QAOA applied

3



Introduction

to the Max-Cut problem; in particular, our results hold for constant-level QAOA. Our
result is motivated by the observation that both the QAOA circuit family for the Max-Cut

problem and the input state of QAOA obey a special symmetry property with respect to
the operator X⊗n, where X is the Pauli-X operator and n is the input size of the circuit; we
call this property Z2-symmetry. Consider now a family of Max-Cut problem Hamiltonians
associated with a particularly chosen, infinite ensemble of graphs. We then show that there
is a positive constant ε and a natural number n0 such that if n ≥ n0, any n-qubit quantum
state that has an energy density lower than ε cannot be prepared purely by a applying a
short-depth Z2-symmetric quantum circuit to a Z2-symmetric input product state.

Using this result, we then establish upper bounds on the performance of logarithmic-depth
QAOA applied to Max-Cut on so-called Ramanujan graphs. In particular, the worst-case
approximation ratio of QAOA is strictly worse than the corresponding approximation ratio
achieved by the classical Goemans-Williamson algorithm [17]. This implies that constant-
level QAOA cannot achieve a higher approximation ratio than the best classical algorithms
in the worst case.

Furthermore, we introduce a recursive version of QAOA called “RQAOA” which recur-
sively uses QAOA to determine energetic (anti-)correlations between vertices in a given
graph to successively decrease the number of vertices, allowing a direct classical solution
followed by a reconstruction of a solution candidate of the original problem. We show
that for the Ising model defined on cycle graphs, level-1-RQAOA outperforms QAOA of
any level. We subsequently study the application of this algorithm for the Max-3-Cut

problem in Core Article I) [1].

1.2 Outline

In Chapter 2, we review some basics from classical computer science and quantum information
theory. In Chapter 3, we give a detailed introduction to the main topic of this thesis, the Quan-
tum Approximate Optimization Algorithm (QAOA). In Chapter 4, we present our results on
limitations of QAOA which – using different techniques – imply that the worst-case performance
of QAOA is insufficient, especially compared to classical algorithms. Lastly, in Chapter 5, we
give two proposals to enhance the QAOA ansatz by using a recursive and a post-processed
version of QAOA, respectively.

4



Chapter 2

Preliminaries

This chapter provides some background information necessary to understand the content of this
thesis. Conceptually, the topics addressed in this thesis lie at the intersection of computer science
and quantum physics, leading to quantum computation.
Let us first fix some mathematical notation that we will use. In this thesis, N = {1, 2, 3, . . .}
denotes the set of positive natural numbers, and we define N0 := N ∪ {0}. For n ∈ N, we set
[n] := {1, . . . , n} and use the expression Zn to denote both the set {0, . . . , n− 1} as well as the
additive cyclic group with n elements. Furthermore, we set R>0 := (0,∞) and R≥0 := [0,∞).
For any set A ⊂ N, we denote the set of all ordered tuples containing m elements of A by
Am, the set of all subsets of A with exactly m elements by

(
A
m

)
, and the set of all finite-length

strings consisting of elements of A by A∗. For x ∈ A∗, we denote its length by |x| and the
ℓ-th entry of x by xℓ. Given two strings x, y ∈ A∗, we denote the concatenation of x and y by
xy := x1 . . . x|x|y1 . . . y|y|, and if 0 ∈ A, we denote the Hamming weight of x, i.e., the number of
nonzero entries in x, by |x|H .

2.1 Classical Computation

Classical computer science is the formal study of classical computers and computational systems.
For a more extensive introduction to the relevant subfields of this thesis, see [18] and [19].

2.1.1 Computational Problems

In this thesis, we will concern ourselves with the study of computational problems.

Definition 2.1 (Computational Problem)
A computational problem is a triplet (I,F = {F(I)}I∈I ,S = {S(I)}I∈I), where

(i) I is the instance set,

(ii) for I ∈ I, F(I) is the feasible set associated with I, and

(iii) for I ∈ I, S(I) ⊆ F(I) is the solution set associated with I.

Given I ∈ I, the goal is to determine an element of S(I).

5



Preliminaries

Note that in this definition, there is freedom in choosing the feasible sets; adding elements to
any of them does not change the solution sets and therefore does not change the result of the
operational task at hand. In spirit, feasible sets can be thought of as the set of solution “guesses”
that the person posing the computational problem would deem reasonable, even if they are not
actual solutions to the problem.
One of the most basic computational problems models a Yes-or-No question. Recall that a
set L ⊆ {0, 1}∗ is called a language.

Definition 2.2 (Decision Problem)
Let L be a language. The decision problem associated with L is the computational
problem

(
{0, 1}∗, {F(x)}x∈{0,1}∗ , {S(x)}x∈{0,1}∗

)
, where F(x) = {0, 1} for all x ∈ {0, 1}∗

and

S(x) =




{1} for x ∈ L ,

{0} for x /∈ L .

For example, if we set L to be the set of all prime numbers represented by binary strings,
the associated decision problem models the task of determining whether a given binary string
represents a prime number.
For most of this thesis, however, we will focus on combinatorial optimization problems.

Definition 2.3 (Combinatorial Optimization Problem)
A combinatorial optimization problem is a quadruple

(I,F = {F(I)}I∈I ,S = {S(I)}I∈I , c = {cI}I∈I)

such that

(i) (I,F = {F(I)}I∈I ,S = {S(I)}I∈I) is a computational problem,

(ii) for all I ∈ I, |F(I)| <∞,

(iii) for all I ∈ I, cI is a function cI : F(I)→ R, and

(iv) for all I ∈ I, we have

S(I) = {z ∈ F(I) : cI(z) = max
y∈F(I)

cI(y)} .

We call c the objective function associated with the combinatorial optimization problem.

Note that we assume that every combinatorial optimization problem is a maximization problem.
This can be done without loss of generality since minimization of a real-valued function f is
equivalent to maximization of −f .
Combinatorial optimization problems have a wide range of practical applications. Let us give
examples for some of these problems, with the first two based on graphs. Recall that an
undirected, unweighted graph G = (V,E) is specified via its vertex set V and its edge

6



Classical Computation

set E ⊆
(
V
2

)
, whereas an undirected, weighted graph G = (V,E,w) is additionally equipped

with a weight function w : E → R. Any unweighted graph can be interpreted as a weighted
graph by setting w(e) = 1 for all e ∈ E. We call a k-tuple p = (p1, . . . , pk) ∈ Ek a path of
length k if for all ℓ ∈ [k − 1], we have |pℓ ∩ pℓ+1| ≥ 1; if additionally |p1 ∩ pk| ≥ 1 holds, we call
p a cycle of length k.

1. For the definition of the traveling salesperson problem (TSP), recall that a graph
G = (V,E) is called complete if E =

(
V
2

)
. Furthermore, a cycle h of length |V | is called a

Hamiltonian cycle of G if every u ∈ V is contained in exactly two entries of h. Then the
TSP is specified via

I := {G : G = (V,E,w) complete, undirected, weighted graph} ,

for G ∈ I, F(G) := {h : h is Hamiltonian cycle in G} ,

cG : F(G)→ R ,

h 7→ −
∑

k∈Z|V |

w (hk) .

The most commonly used real-world formulation of TSP is given via a traveler who starts
their journey in their hometown, wants to visit all cities on a given list exactly once before
returning home and asks which route they should take to minimize the total distance
traveled.

2. Let k ≥ 2 be an integer. Then the unweighted Max-k-Cut problem is a combinatorial
optimization problem with

I := {G : G = (V,E) undirected, unweighted graph} , (2.1)

for G ∈ I, F(G) := Z|V |
k ,

cG : F(G)→ R ,

x 7→
∑

{u,v}∈E
(1− δxu,xv) ,

where δab is the Kronecker delta, i.e., it evaluates to 1 if a = b and 0 else.

In other words, the task in the unweighted Max-k-Cut problem is to find an assignment
of the vertices of a given graph to the set Zk (a so-called “cut”) such that the cardinality
of the set of edges that connect two vertices with different assigned values is maximized.
In the following, such edges will be called satisfied, and given a cut C of a graph G,
we will call the number of satisfied edges in C the cutsize of C in G and denote it by
cutsizeG(C). A cut can be either specified via a function C : V → Zk or a string C ∈ Z|V |

k ;
we will use both specifications interchangeably in the following. Note that there is also a
weighted version of the Max-k-Cut problem, where each summand in the definition of
cG is multiplied by the corresponding edge weight; the goal there is to maximize the total
weight of satisfied edges.

If we set k = 2, we obtain the unweighted Max-Cut problem.

7
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3. The 0-1 knapsack problem is specified via

I := {(w, v,W ) : W ∈ R and ∃n ∈ N s. t. w, v ∈ Rn} ,

for (w, v,W ) ∈ I, F(w, v,W ) := {x ∈ {0, 1}|w| :
|w|∑

k=1

wkxk ≤W} ,

c(w,v,W ) : F(w, v,W )→ R ,

x 7→
|w|∑

k=1

vkxk .

One can interpret this problem as being given a container (such as a backpack) which has
a maximum weight capacity W together with a list of n items which have both a weight
(modeled by w) and a value (modeled by v). The task is then to decide which items
should be put into the container such that it contains the maximum possible value while
not exceeding the given maximum weight.

2.1.2 Algorithms and Turing machines

The question of how to solve computational problems concretely leads to the study of algorithms.
Loosely speaking, an algorithm A for a computational problem (I,F ,S) is a sequence of unam-
biguous instructions that, upon inputting x ∈ I, outputs an element y = A(x) ∈ F(x), and we
say that A solves the computational problem if A(x) ∈ S(x) for every x ∈ I. While it is well
known that some computational problems such as the halting problem [20] are uncomputable,
i.e., there is no algorithm that solves it, all the computational problems in this thesis will admit
such an algorithm.
To formalize the above notion of an algorithm, several models of computation have been proposed.
The two most commonly used models are the Turing machine model and the circuit model.
To rigorously define computation and computational complexity, we will exclusively work within
the Turing machine model in the classical setting while in the quantum algorithmic setting,
we will exclusively work within the circuit model as it is easier to work with in practice. Our
description of the Turing machine model will be rather brief; we refer to [18] for a more extensive
treatment.
A (deterministic) Turing machine M is specified by a triplet (Γ, Q, δ), where Γ ⊇ {0, 1,□, ▷}
(the alphabet) and Q ⊇ {qstart, qhalt} (the state set) are two finite sets and δ : Q × Γ →
Q × Γ × {−1, 0, 1} is called the transition function. The machine consists of a tape, i.e., an
infinite one-directional line of cells, where each cell holds one element of Γ, a tape head that
is pointing at one cell and is capable of reading and/or replacing the content of the cell that it
is currently pointing at with elements from Γ, and a register which holds one element of Q.
We call a tuple (q, k, t) a configuration of M , where q is the content of the register, k ∈ N
represents the position of the tape head, and t = t1t2 . . . is the content of the tape, where tℓ ∈ Γ

for all ℓ ∈ N.
To apply an algorithm specified by a given Turing machine to the binary input x ∈ {0, 1}∗, one
first initializes the machine in the configuration (qstart, 1, ▷x□□ . . .). Subsequently, the transi-
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tion function is repeatedly applied until the register contains the state qhalt; at this point, the
output M(x) is obtained by reading out the content of the tape and disregarding any □ or ▷.
If the configuration of the Turing machine before an application of δ was (q, k, t), the configu-
ration after an application is (δ1 (q, tk) ,max{1, k + δ3 (q, tk)}, t1 . . . tk−1δ2 (q, tk) tk+1 . . .), where
for ℓ ∈ {1, 2, 3}, the expression δℓ(q, tk) denotes the ℓ-th component of δ (q, tk) and the third
component of the configuration should be interpreted in the sense of string concatenation.

Extensions of the model described above exist. For example, one could define Turing machines
with several tapes, tapes which are infinite in both directions, or two-dimensional tapes. More-
over, the Turing machine model introduced above is deterministic, i.e., feeding the same input
to the Turing machine will always produce the same output, a property that is not shared
by so-called probabilistic Turing machines. These devices are specified by a quadruple(
Γ, Q, δ1, δ2

)
, where both δ1 and δ2 are transition functions as described in the deterministic

setting. The fundamental difference between deterministic and probabilistic Turing machines is
that during each computational step in the probabilistic version, one randomly picks one of the
transition functions and applies this function. Probabilistic Turing machines capture the notion
of probabilistic (also called randomized) algorithms which utilize randomness: in general,
if δ1 ̸= δ2, one run of the algorithm might produce an output that differs from the output of
another run.

2.1.3 Complexity of computational problems

Given two algorithms that solve the same computational problem, one can wonder whether one
of the algorithms is better suited for the task than the other according to some criterion, e.g.,
time or space needed to perform the algorithm. In general, we are not interested in an exact
expression for such quantities; instead, we care about the behaviour for large input sizes and
therefore use asymptotic notation which we briefly recall here.

Definition 2.4 (Asymptotic Notation [18])
Let f, g : N→ R≥0 be two functions.

(i) We say that f = O(g) if there exist a constant c and n0 ∈ N0 such that

f(n) ≤ c · g(n) for all n ≥ n0 .

(ii) We say that f = Ω(g) if g = O(f).

(iii) We say that f = Θ(g) if f = O(g) and g = O(f).

(iv) We say that f = o(g) if for every ε > 0, there exists n0 ∈ N0 such that

f(n) ≤ ε · g(n) for all n ≥ n0 .

(v) We say that f = ω (g) if g = o(f).

9
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We will follow the convention of including the input parameter n in the statement, e.g., we write
f(n) = O(g(n)) instead of f = O(g).

In terms of classical computation, we will only be interested in time as a resource, where we
measure time in terms of the number of applications of transition functions. We call a single
application of a transition function a computational step.

Definition 2.5 (Deterministic Time Complexity)
Let M = (Γ, Q, δ) be a deterministic Turing machine and T : N→ N.

(i) We say that M runs in time T if for every x ∈ {0, 1}∗, the register of the machine
is in the state qhalt after at most T (|x|) applications of δ.

(ii) We say that M is a deterministic polynomial-time algorithm if there is a poly-
nomial T such that M runs in time T .

We can now define the concept of complexity classes. Roughly speaking, a complexity class is a
set of computational problems that share certain features about the algorithms that solve them.
The most fundamental complexity classes concerning runtimes are captured in the following
definition.

Definition 2.6 (P, NP, Polynomial-Time Reducibility, NP-hard and NPC)
Let L be a language.

(i) We say that L ∈ P if there exists a deterministic polynomial-time algorithm that solves
the decision problem associated with L.

(ii) We say that L ∈ NP if there exists a deterministic polynomial-time algorithm M such
that for all x ∈ L, there exists y ∈ {0, 1}∗ such that M(x, y) = 1.

(iii) Let L̃ ∈ NP. We say that L̃ is (polynomial-time) reducible to L if there exists a
deterministic polynomial-time algorithm M such that, given input x ∈ {0, 1}∗,

x ∈ L̃⇔M(x) ∈ L .

(iv) We say that L is NP-hard if every language L̃ ∈ NP is reducible to L.

(v) We call L NP-complete if L is NP-hard and L ∈ NP. The complexity class of all
NP-complete languages is denoted by NPC.

By definition, it is clear that P ⊆ NP. However, it is not known whether P is in fact equal to
NP; this question is also known as the P-NP-problem and is considered to be one of the most
fundamental open problems of theoretical computer science. It is clear from the definition that
P ∩ NPC ̸= ∅ if and only if P = NP. This implication illustrates the importance of NP-complete
problems as the “hardest” problems within NP.

While combinatorial optimization problems themselves cannot be elements of P or NP by defini-
tion since they are not decision problems, we can transform them to equivalent decision problems.

10
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For example, the unweighted Max-Cut problem as defined in (2.1) with k = 2 can be formulated
as a decision problem associated with the following language:

LMax-Cut :={(G, ℓ) : ℓ ∈ Z and G = (V,E) undirected, unweighted graph such that

max
x∈{0,1}|V |

cG(x) ≥ ℓ} ,

where we assume that the elements of LMax-Cut are encoded as binary strings. In their decision
versions, the combinatorial optimization problems introduced in Section 2.1.1, i.e., TSP, Max-

Cut, Max-k-Cut for any integer k ≥ 3, and the 0 − 1 knapsack problem, all turn out to be
NP-complete [21], and many other NP-complete combinatorial optimization problems are known.
One can also define complexity classes using randomized algorithms. To do so, we extend the
concept of runtime to the probabilistic setting.

Definition 2.7 (Probabilistic Time Complexity)
Let M =

(
Γ, Q, δ1, δ2

)
be a probabilistic Turing machine and T : N→ N.

(i) We say that M runs in time T if for every x ∈ {0, 1}∗, the register of the machine
is in the state qhalt after at most T (|x|) applications of either δ1 or δ2.

(ii) We say that M is a probabilistic polynomial-time algorithm if there is a polyno-
mial T such that M runs in time T .

Given a specific run of a probabilistic Turing machine M applied to input x ∈ {0, 1}∗, we call the
sequence of applications of either δ1 or δ2 the computational path of the run. Note that if M
runs in polynomial time T , there are at most 2T (|x|) possible computational paths; in particular,
the number of computational paths is finite.
The most fundamental complexity class for randomized computation is called BPP which stands
for “bounded-error probabilistic polynomial time”.

Definition 2.8 (BPP)
The complexity class BPP consists of all languages L for which there exists a probabilistic
polynomial-time algorithm M such that the following holds:

• If x ∈ L, then Pr [M(x) = 1] ≥ 2
3 .

• If x /∈ L, then Pr [M(x) = 1] ≤ 1
3 .

In both cases, the probabilities are taken with respect to the uniform distribution on the finite
set of computational paths if M is applied to x.

2.1.4 Approximation Algorithms

Faced with the prospect that P ̸= NP and its consequences for efficient solvability of practically
highly relevant optimization problems such as Max-Cut or TSP, one might be inclined to lower
expectations in terms of polynomial-time solvability. The approach taken in this thesis is the
one studied in the research area called approximation algorithms (see [22] for an extensive intro-
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duction to the field): instead of looking for the actual solution of the combinatorial optimization
problem, we are already satisfied with a guess obtained in polynomial time if it is guaranteed to
satisfy a certain quality compared to the optimal solution.

Definition 2.9 (Approximation Algorithms and Approximation Ratios)
Let P = (I,F ,S, c) be a combinatorial optimization problem.

(i) An approximation algorithm for P is a randomized polynomial-time algorithm that,
given a problem instance I ∈ I, outputs z ∈ F(I).

(ii) Let A be an approximation algorithm for P and I ∈ I. Then if max
z∈F(I)

cI(z) ̸=
min
z∈F(I)

cI(z), the approximation ratio of A for I is defined as

αI (A) =
E [cI (A(I))]− min

z∈F(I)
cI(z)

max
z∈F(I)

cI(z)− min
z∈F(I)

cI(z)
(2.2)

and as αI (A) = 1 if max
z∈F(I)

cI(z) = min
z∈F(I)

cI(z).

(iii) Let A be an approximation algorithm for P and J ⊂ I. Then the worst-case ap-
proximation ratio of A on J is defined as

αJ (A) = inf
I∈J

αI (A) .

If J = I, we write α (A) instead of αI (A) and call this quantity the worst-case
approximation ratio of A.

It is obvious from this definition that αI (A) ∈ [0, 1] for all I ∈ I, with αI (A) = 1 corresponding
to the case of A outputting an exact solution; the goal is to find approximation algorithms that
provide approximation ratios close to 1.

In the following, we will discuss some classical approximation algorithms. Most relevant to
this thesis will be the Max-k-Cut problems, so we will put emphasis on the corresponding
algorithms; a short discussion of approximation algorithms for other combinatorial optimization
problems not extensively studied in this thesis follows to give an impression of the flavour and
richness of the field.

Classical approximation algorithms for the Max-Cut problem

In view of (2.2), note that for both the unweighted Max-Cut and Max-k-Cut problem, we
have min

x∈F(G)
cG(x) = 0 for any graph G since we can always assign the same value to all vertices

which leads to none of the edges being satisfied.

• For the unweighted Max-Cut problem applied to graphs G = (V,E), there are two clas-
sical, randomized approximation algorithms of general interest.

12
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The first algorithm is called the trivial approximation algorithm. It proceeds by
randomly assigning values 0 and 1 to the vertices of G. We denote this algorithm by T . It
produces an approximation ratio of

αG (T ) ≥ 1

2
.

This can be easily seen by combining two simple observations:

– every edge is satisfied with probability 1/2 independently from any other edges

– the Max-Cut value of a graph is trivially bounded from above by the number of
edges, i.e., max

z∈F(G)
cG(z) ≤ |E|.

Combining these two, we obtain

αG (T ) = E [cG (T (G))]

max
z∈F(G)

cG(z)
=

1/2 · |E|
max
z∈F(G)

cG(z)
≥ 1/2 · |E|

|E| =
1

2
.

The second algorithm of particular interest is the Goemans-Williamson algorithm [17],
from now on often abbreviated by “GW”. Given a graph G = ([n], E) with n ∈ N, this ran-
domized algorithm combines semidefinite programming with randomized rounding
and proceeds in three steps:

1. Relax the combinatorial optimization problem to a semidefinite program (SDP) which
is equivalent to the vector program

max
{vj}nj=1∈Sn−1

1

2

∑

{j,k}∈E
(1− ⟨vj , vk⟩) ,

where ⟨·, ·⟩ denotes the inner product on Rn (i.e., ⟨x, y⟩ :=
n∑
k=1

xkyk for x, y ∈ Rn) and

Sn−1 := {v ∈ Rn : ∥v∥2 :=
√
⟨v, v⟩ = 1}. Observe that the optimization is taken over

real-valued unit vectors.

2. Solve this SDP using one of the polynomial-time methods available such as interior
methods [23] or the ellipsoid algorithm [24] to obtain a solution v = {vj}nj=1 ∈ Sn−1.

3. Sample r ∈ Sn−1 with respect to the Haar measure on Sn−1 (see [25] for a definition)
and output the cut c : [n]→ {0, 1} via

c (j) =




0 if ⟨vj , r⟩ ≥ 0,

1 else.

The main result of [17] is to establish the lower bound

α (GW) ≥ 2

π
min

0≤θ≤π
θ

1− cos θ
≈ 0.8785 .
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Thus, the Goemans-Williamson algorithm significantly outperforms the trivial method.
Although this algorithm is probabilistic due to the sampling in the third step, it can be
derandomized, yielding a deterministic algorithm [26].

• However, better approximation ratios are achievable if we restrict our attention to certain
subsets of graphs, an assumption often well justified in practice. Given a graph G = (V,E)

and a vertex v ∈ V , we define the degree of v as the number of edges in G which contain v,
and we will denote this quantity by deg(v). We call a graph d-regular if deg(v) = d holds
for all v ∈ V , and we denote the family of all d-regular graphs by Dd.

As we will focus on (unweighted) 3-regular graphs in the Core Article II [2], we will briefly
mention some results concerning D3. Using a simple greedy post-processing technique,
Feige, Karpinski, and Langberg [15] exhibited an SDP-based approximation algorithm (in
the following abbreviated by FKL) which provably achieves αD3 (FKL) ≥ 0.924. Shortly
after, a refinement of this post-processing technique by Halperin, Livnat, and Zwick [16]
yielded an improved approximation algorithm (in the following abbreviated by HLZ); they
showed that αD3 (HLZ) ≥ 0.9326 which is the best currently known algorithm for 3-regular
graphs.

Approximation algorithms for the Max-k-Cut problem

• Similarly as in the case of unweighted Max-Cut, the unweighted Max-k-Cut problem
also has a trivial approximation algorithm with approximation ratio 1− 1

k ; it proceeds
by randomly assigning values from the set Zk to the vertices of a given graph.

• Frieze and Jerrum [27] gave an algorithm for Max-k-Cut using SDP relaxations similar to
the one in GW which achieves an approximation ratio of 1− 1

k + 2 log k/k2 for sufficiently
large k. For such values of k, the algorithm is optimal in terms of approximation ratio if
one assumes the “Unique Games Conjecture” [28] and P ̸= NP, meaning that in this case,
there is no approximation algorithm with a worst-case approximation ratio that is strictly
larger than this one.

• Let us now focus on the case k = 3. For this problem, three algorithms by (a) Klerk,
Pasechnik, and Warners (denoted by KPW3) [29], (b) Goemans and Williamson (denoted
by GW3) [30], and (c) Newman (denoted by Newman3) [14] achieve the same currently
known best approximation ratio of

α (KPW3) = α (GW3) = α (Newman3) ≥ 0.836008 .

In terms of analysis, Newman’s algorithm is the simplest one of the three. Furthermore, it
is generalizable to larger k, and it performs only slightly worse than the algorithm by Frieze
and Jerrum for large k [14]. Therefore, we will use this algorithm in Core article I) [1],
where we study approximation algorithms for the Max-3-Cut-problem.

14



Quantum Physics

A brief overview over classical approximation algorithms for other combinatorial
optimization problems

While all NP-complete combinatorial optimization problems are reducible to each other, they
exhibit striking differences in terms of their approximability. As we have seen for the Max-k-

Cut problems, it was possible to design deterministic approximation algorithms with constant
worst-case approximation ratios; such combinatorial optimization problems form the complexity
class APX. However, some combinatorial optimization problems such as the 0-1 KNAPSACK
problem exhibit even stronger approximability guarantees: for this problem, one can find a so-
called fully polynomial-time approximation scheme (FPTAS) which takes two inputs,
a problem instance and some parameter ε > 0, and outputs an approximate solution with
approximation ratio 1− ε in time O

(
p
(
1
ε , |x|

))
, where p is some polynomial, therefore allowing

arbitrarily good solutions in polynomial time [19]. The collection of such optimization problems
is the complexity class FPTAS; if one only requires the run time to be O (q (|x|)) with arbitrary
dependence on ε, where q is some polynomial, one obtains a polynomial-time approximation
scheme, the collection of which forms the class PTAS. It follows immediately from the definitions
that the inclusions FPTAS ⊆ PTAS ⊆ APX hold; furthermore, it is known that equalities hold if
and only if P = NP.
For combinatorial optimization problems not known to be in FPTAS such as Max-Cut, one
might wonder how well one can approximate them. For such problems, the PCP theorem [31,32]
yields techniques to establish upper bounds on the approximability, provided that P ̸= NP holds.
For example, for the Max-Cut problem, it is known that it is impossible to find a polynomial-
time algorithm with a worst-case approximation ratio exceeding 16

17 unless P = NP [33], and if
one additionally assumes the validity of the Unique Games Conjecture [28], it is known that
the Goemans-Williamson algorithm is, in fact, optimal [34, 35], meaning that in that case, it is
impossible to find a polynomial-time algorithm with a worst-case approximation ratio exceeding
α (GW). For more of such inapproximability results, we refer to [33]. Lastly, it is even possible
to show that some problems such as TSP cannot be approximated within a constant unless
P = NP [36].

2.2 Quantum Physics

Introduced in the 1920s as an attempt to answer fundamental physical questions that classical
physics was unable to, quantum physics established itself over time as one of the most precise
scientific disciplines. We will only state the very basics of quantum physics here; for a more
in-depth introductory text on quantum physics, we refer to the literature, e.g., [37]. Before we
dive into the foundations, we briefly introduce some Hilbert space terminology and notation.

2.2.1 Hilbert space essentials

Let H be a complex vector space. We call H a complex inner product space if it is equipped
with an inner product ⟨·, ·⟩ : H × H → C such that for all v1, v2, v3 ∈ H and λ ∈ C, we
have (i) ⟨v1, v1⟩ ≥ 0, (ii) ⟨v1, v2⟩ = ⟨v2, v1⟩, and (iii) ⟨v1, v2 + λv3⟩ = ⟨v1, v2⟩ + λ⟨v1, v3⟩. If
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H is additionally complete with respect to the induced norm ∥ · ∥ :=
√
⟨·, ·⟩, (i.e., all Cauchy

sequences in H converge with respect to the metric defined by ∥ · ∥), we call it a Hilbert space.
In the following, let H be a Hilbert space. A linear function F : H → C is called a functional
on H, and the set of bounded linear functionals on H, i.e.,

H∗ := {F |F : H → C linear and there exists C > 0 s. t. |Fx| ≤ C · ∥x∥ for all x ∈ H} ,

is called the dual space of H. The Riesz representation theorem [38] states that H and H∗ are
isometrically anti-isomorphic, implying that each functional F ∈ H∗ can be written uniquely as
F (x) = ⟨y, x⟩, where y ∈ H, so we can identify F with y. From now on, all Hilbert spaces in
this thesis will be assumed to be finite-dimensional and complex unless specified otherwise.

In the following, we will need the concept of tensor products of Hilbert spaces to describe
composite quantum systems. Given two (finite-dimensional) Hilbert spaces H1, H2 with as-
sociated inner products ⟨·, ·⟩1, ⟨·, ·⟩2 and two respective orthonormal bases B1 = {ej}dimH1

j=1 ,
B2 = {fj}dimH2

j=1 (i.e., ⟨ek, eℓ⟩ = δkℓ and ⟨fm, fn⟩ = δmn for all ek, eℓ ∈ B1, fm, fn ∈ B2), we
define the tensor product of H1 and H2 as the Hilbert space H1 ⊗ H2 that is characterized by
the orthonormal basis

{ej ⊗ fk}j∈[dimH1],
k∈[dimH2]

and the inner product

⟨ϕ1 ⊗ ϕ2, ψ1 ⊗ ψ2⟩ = ⟨ϕ1, ψ1⟩1 · ⟨ϕ2, ψ2⟩2 ,

where ϕ1, ψ1 ∈ B1, ϕ2, ψ2 ∈ B2. The inner product of two general elements of H1 ⊗ H2 is
then fully determined due to linearity; it can be shown that this definition of the inner product
does not depend on the particular choice of the orthonormal basis. Note that the symbol ⊗
denotes both the tensor product of vector spaces and vectors. Concretely, the general tensor
product of two vectors (also known as the Kronecker product) is defined as follows: given

x =
dimH1∑
j=1

xjej ∈ H1 and y =
dimH2∑
k=1

ykfk ∈ H2, where {xj}j∈[dimH1], {yk}k∈[dimH2] ⊂ C, we

define

x⊗ y :=

dimH1∑

j=1

dimH2∑

k=1

(xjyk) ej ⊗ fk .

It is straightforward to extend the definitions to tensor products of more than two Hilbert spaces.

The definition of the tensor product implies directly that dim
n⊗
k=1

Hk =
n∏
k=1

dimHk for n Hilbert

spaces H1, . . . ,Hn; in particular, the dimension grows exponentially with the number of Hilbert
spaces.
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2.2.2 Operator terminology

For a Hilbert spaceH with inner product ⟨·, ·⟩, a linear function A : H → H is called an operator
on H, and the space of bounded linear operators on H is defined as

B (H) := {A|A : H → H linear and there exists C > 0 s. t. ∥Ax∥ ≤ C · ∥x∥ for all x ∈ H}.

We denote the identity operator on H by I or, if context requires it, by IH.
Let A ∈ B (H) and M be the matrix representation of A with respect to some orthonormal basis
O of H. The trace of A is defined as tr [A] =

∑
k

Mkk, i.e., the sum of the elements on the

diagonal of M . The adjoint of A is defined as the unique linear operator A† ∈ B (H) for which
⟨A†x, y⟩ = ⟨x,Ay⟩ holds for all x, y ∈ H. We call A Hermitian or an observable if A† = A,
unitary if A†A = I, positive semidefinite if ⟨x,Ax⟩ ≥ 0 for all x ∈ H, or a projector if
A2 = A. The dimension of the image of A is called the rank of A. We denote the set of all
unitary operators by U(H); it forms a group under composition. For two operators A,B ∈ B (H),
we write that A ≤ B if B−A is positive semidefinite. Note that A† is represented by the matrix
M † with respect to the basis O, where M †

jk =Mkj . This also extends the definition of an adjoint
to linear maps which have different finite-dimensional domains and codomains.
Now let H1, H2 be two (finite-dimensional) Hilbert spaces and A ∈ B (H1), B ∈ B (H2). Then
we define the operator tensor product of A and B as the operator A⊗B ∈ B (H1 ⊗H2) that
acts as

(A⊗B) (x⊗ y) = Ax⊗By

for any x ∈ H1, y ∈ H2. Due to linearity, this definition fully determines the action for general
elements of H1 ⊗H2. The definition of tensor products of operators extends in the natural way
to more than two operators, and a notational convention for such tensor products is to omit
the symbols ⊗ and identities and use indices to indicate the label of the Hilbert space that
the operator is acting on nontrivially; for example, instead of writing A ⊗ B ⊗ I ⊗ C ⊗ I, one
writes A1B2C4, where the fact that the operator is acting on a tensor product of five Hilbert
spaces has to be made clear in context. We define the support of an operator O (denoted
by supp (O)) to be the set of labels of Hilbert spaces on which O is acting on nontrivially; for
example, supp (A1B2C4) = {1, 2, 4}.
We will also need the notion of complete positivity. A map A ∈ B (B (H1)) is called completely
positive if A⊗ IB(H2) is positive semidefinite for any finite-dimensional Hilbert space H2.

2.2.3 Dirac notation

The quantum physics community makes extensive use of the so-called Dirac or bra-ket no-
tation instead of the mathematical notation used so far. To introduce it, let H be a complex
Hilbert space with inner product ⟨·, ·⟩ and u, v, w ∈ H. In Dirac notation, we write |u⟩ and |v⟩
instead of u and v; furthermore, as mentioned in Subsection 2.2.1, w defines an element of H∗

denoted by ⟨w| via the Riesz isomorphism, i.e., (⟨w|) (v) = ⟨w, v⟩. The expression ⟨w| is called
a bra and the expression |u⟩ is called a ket. Furthermore, we denote the inner product of |u⟩
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and |v⟩ as ⟨u|v⟩ instead of ⟨u, v⟩, and we denote the outer product of |v⟩ and ⟨w| by |v⟩⟨w| and
define it as the operator on H acting as |v⟩⟨w| (|u⟩) := ⟨w|u⟩ · |v⟩. Concerning tensor products,
we will often write either |u⟩ ⊗ |v⟩, |u⟩|v⟩, or |uv⟩ to denote the tensor product of |u⟩ and |v⟩
in Dirac notation, and if necessary, we will use subscripts to indicate the label of the associated
Hilbert space (e.g., |u⟩1 ⊗ |v⟩2, |u, v⟩1,2, |uv⟩1,2, or |u⟩1|v⟩2).
We will mostly work with the Hilbert space H = Cd, where d ∈ N; we then say that H models
a qudit of level d, or a qubit if d = 2. For this Hilbert space, the canonical basis is also called
the computational basis, i.e., it is given by {|j⟩}j∈Zd

, where for k ∈ Zd, the (k + 1)-st entry
of |j⟩ is given by |j⟩k+1 = δjk. This notion extends to the tensor product case H =

(
Cd
)⊗n with

n ∈ N: the computational basis is then given by {|j⟩}j∈Zn
d
, i.e., each basis element is labeled by

a d-ary string of length n. For example, |0⟩ ∈ C2, |1⟩ ∈ C2, and |2001⟩ ∈
(
C3
)⊗4 represent in

conventional notation the vectors

|0⟩ =
(

1

0

)
, |1⟩ =

(
0

1

)
, and |2001⟩ =




0

0

1


⊗




1

0

0


⊗




1

0

0


⊗




0

1

0


 .

2.2.4 The postulates of quantum physics

In general, quantum systems are described by complex Hilbert spaces, so-called state spaces.
In this thesis, all state spaces will be of finite dimension, and all quantum systems will be closed,
i.e., they fully describe the physical experiment or computation that we are interested in and
we, the experimenter, have full control over the system. A quantum state is described by a
linear, positive semidefinite operator ρ with tr [ρ] = 1, where ρ acts on the state space H; such
operators are called density operators. If ρ is a rank-1 projector onto a space spanned by a
vector |ψ⟩ ∈ H with ⟨ψ|ψ⟩ = 1, we call ρ = |ψ⟩⟨ψ| a pure state and will instead work directly
with |ψ⟩; if ρ is not pure, we will call it a mixed state. Note that there is some ambiguity
for pure states |ψ⟩ as all vectors of the form eiφ|ψ⟩ with φ ∈ R will give rise to the same den-
sity operator and are therefore physically indistinguishable; for this reason, we identify all such
states with each other and call the respective multiplicative prefactor a global phase. One can
interpret mixed states as ensembles of pure states in the following way: the spectral theo-

rem [38] implies that we can write ρ =
dimH∑
k=1

λk|ψk⟩⟨ψk|, where λ1, . . . , λdimH are the eigenvalues

of ρ with associated orthonormal eigenvectors {|ψk⟩}dimH
k=1 ⊂ H. Since ρ is positive semidefinite,

we know that {λk}dimH
k=1 ∈ R≥0, and since tr [ρ] = 1, we know that

dimH∑
k=1

λk = 1. Operationally,

we can interpret this as preparing the quantum system in the pure state |ψk⟩ with probability λk.

To model the physical evolution of a quantum system, we will exclusively work within the
quantum channel framework. To this end, let H1 and H2 be two state spaces. A quantum
channel is a completely positive map E : B (H1) → B (H2) with tr [E (ρ)] = tr [ρ] for all ρ ∈
B (H1). It is well known [39] that every completely positive map E can be described via Kraus
operators {Ek}k, where the Ek : H1 → H2 are linear maps which satisfy

∑
k

E†
kEk = IH1 ; we can
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then express the associated action of E as E (ρ) =∑
k

EkρE
†
k. Of utmost importance in this thesis

will be unitary evolutions, where the Kraus representation consists of a single unitary Kraus
operator U ∈ U(H); applied to a system in the mixed state ρ, the resulting state will therefore
be UρU †, while for a pure state |ψ⟩, the resulting state will be U |ψ⟩. Note that for a unitary
evolution, domain and codomain of the map must be the same Hilbert space H. Another way
to describe the unitary evolution of a closed quantum system is via the Schrödinger equation
which is the initial value problem

i
d

dt
|ψ(t)⟩ = H(t)|ψ(t)⟩ , |ψ(t0)⟩ = |ψ0⟩

where t0 ∈ R is the initial time of the system, T ∈ R is the maximal evolution time, |ψ(t)⟩ is
the state of the system at time t ∈ [t0, T ], |ψ0⟩ is some given initial state of the system, and
H : [t0, T ]→ B (H) is a map with the property that H(t) is Hermitian for all t ∈ [t0, T ]. This map
is called the Hamiltonian of the system. Solving this differential equation means to determine
the unitary evolution operator U : [t0, T ]→ U(H) such that |ψ (t)⟩ = U(t)|ψ0⟩ for all t ∈ [t0, T ]

and all |ψ0⟩ ∈ H. For a time-independent Hamiltonian H, it is easy to see that

U(t) = exp (−iH(t− t0))

is the corresponding unitary evolution operator, while for time-dependent Hamiltonians, finding
this operator involves so-called time-ordered integrals [40].

Besides unitary evolutions, the most used quantum channels in this thesis are measurements.
These are described by Kraus operators {Mm}m satisfying

∑
m
M †
mMm = I, where the index of

the measurement corresponds to the outcome of the measurement which can be read out by the
experimenter. For mixed states, if the quantum system is in the state ρ and it is measured with
respect to {Mm}m, the measurement result m is obtained with probability tr

[
M †
mMmρ

]
and the

resulting post-measurement state of the system is MmρM
†
m

tr
[
M†

mMmρ
] . For pure states, this implies that

if the quantum system is in the state |ψ⟩ and it is measured with respect to {Mm}m, the mea-
surement result m is obtained with probability ⟨ψ|M †

mMm|ψ⟩ and the post-measurement state
of the system is Mm|ψ⟩√

⟨ψ|M†
mMm|ψ⟩

. We can define a set of measurement operators via an observable

O ∈ B (H) by writing O =
∑
m∈E

λmMm, where {λm}m∈E ⊂ R is the set of distinct eigenvalues of

O with label set E and {Mm}m∈E are the projectors onto the associated eigenspaces.

The last basic postulate of quantum physics describes how one can combine quantum systems to
obtain a composite quantum system. This is done via the tensor product: for n subsystems
H1, . . . ,Hn, the state space of the combined quantum system is given by H1 ⊗ . . .⊗Hn.

2.2.5 Further remarks

1. While it is obvious that for two states |ψ1⟩ ∈ H1 and |ψ2⟩ ∈ H2, the tensor product
|ψ1⟩ ⊗ |ψ2⟩ is in H⊗H, not every element of the tensor product space is of this form. In
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general, we call |ψ⟩ ∈
n⊗
j=1
Hj a product state if |ψ⟩ can be written as |ψ⟩ =

n⊗
j=1
|ψj⟩,

where |ψj⟩ ∈ Hj for all j ∈ [n]. If it cannot be written in this way, we call |ψ⟩ entangled
with respect to this decomposition. By a counting argument, it is easy to see that most
states are, in fact, entangled. Probably the most famous example for an entangled state is
the EPR pair |ψ⟩ = 1√

2
(|00⟩+ |11⟩).

2. In this thesis, all state spaces will be of the form H =
(
Cd
)⊗n for some d, n ∈ N, and if

d = 2, all measurements will be with respect to the computational basis, i.e., we measure
each qudit with respect to the observable Z defined as

Z = |0⟩⟨0| − |1⟩⟨1| =
(

1 0

0 −1

)
,

where the matrix representation on the right hand side is with respect to the computa-
tional basis. The eigenvalues of Z are λ0 = 1 and λ1 = −1, and we denote the possible
measurement outcomes by 0 and 1.

3. Another commonly used observable for single-qubit measurements is the operator X, where
– in the qubit case – X can be expressed as the matrix

X =

(
0 1

1 0

)

with respect to the computational basis. After such a measurement with outcome m ∈
{+,−}, the system after the measurement is in the state |m⟩, where

|+⟩ = 1√
2
(|0⟩+ |1⟩) and |−⟩ = 1√

2
(|0⟩ − |1⟩)

are the +1 and −1 eigenstates of X.

4. In the general qudit case with d ∈ N, X and Z can be expressed as

X =
∑

k∈Zd

|k + 1⟩⟨k| and Z =
∑

k∈Zd

e2πki/d|k⟩⟨k| ;

however, they are Hermitian if and only if d = 2. These operators together with Y = iXZ

are called Pauli operators, and together with the identity ICd , they form a basis of B
(
Cd
)
.

2.3 Quantum Computation

Finally, we discuss the main topic of interest in this thesis, namely quantum computation. For a
more in-depth introduction, we recommend the standard textbook by Chuang and Nielsen [39],
but other texts are also available such as [41].
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2.3.1 Quantum Circuits

While it is possible to define quantum versions of Turing machines [5], we will instead work
exclusively with the quantum circuit model. We will also restrict our treatment to quantum
circuits which implement unitary operations, i.e., there will be no measurements except at the
very end of the circuit; the “principle of deferred measurement” [39] allows us to do so without
loss of generality. Furthermore, in this section, we will work exclusively with pure states and
focus on the qubit model (i.e., the state space will be H =

(
C2
)⊗m for m ∈ N), but the gener-

alization to mixed states and/or qudits of higher dimension is rather straightforward.

In general, a quantum algorithm is implemented by first applying a unitary operator U ∈
U
((

C2
)⊗m) to a (pure) input state |ψ⟩ ∈

(
C2
)⊗m, where m is the input size, and then measur-

ing the resulting state U |ψ⟩ with respect to an observable; this yields a classical output string.
Note that the first of these steps (i.e., the application of U to |ψ⟩) is sometimes also called state
preparation. However, a direct application of U is often not possible; in practice, one only has
access to a specific set (called gate set) of unitary operators (called gates) that one can apply
to the system, often with each gate acting nontrivially only on a small set of qubits. A popular
example for a gate set on m qubits is given by

Gm = {CNOTj,k}mj,k=1
j ̸=k
∪ {Hj , Tj , Sj}mj=1 , (2.3)

where the subscripts denote the label(s) of the qubit(s) that the gate is acting on nontrivially,
and the actions of the operators on computational basis states |x⟩j , |y⟩k ∈ {|0⟩, |1⟩}, where
j ̸= k ∈ [m], are defined as follows:

CNOTj,k|x⟩j |y⟩k = |x⟩j |x⊕ y⟩k ,

Hj |x⟩j =
1√
2
(|0⟩j + (−1)x|1⟩j) ,

Sj |x⟩j = ix|x⟩j ,

Tj |x⟩j = ei
π
4
x|x⟩j .

Concerning terminology, we call the first qubit in the definition of the CNOT gate the control
qubit and the second qubit the target qubit. This terminology is borrowed from classical
computation since the value of the first bit determines the output of the second bit; however,
note that this classical behaviour does not necessarily transfer to the quantum setting if one
works in bases other than the computational basis [39].
The popularity of this gate set originates in the fact [39] that it is an universal gate set, i.e.,
Gm is a finite subset of U

((
C2
)⊗m) such that for every ε > 0 and every U ∈ U

((
C2
)⊗m),

there exist k ∈ N and a finite sequence g1, · · · , gk ∈ Gm such that ∥U − g1 · · · gk∥ < ε, where
∥ · ∥ denotes the operator norm defined as ∥A∥ := sup

x∈H
∥Ax∥
∥x∥ for a linear operator A acting on a

Hilbert space H.
Let us assume that we are given some gate set Gm and that we can write the unitary operator that
we want to implement as U = g1 . . . gk, where k ∈ N and g1, . . . , gk ∈ Gm. To define quantum
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circuits in the qubit models, we will use directed graphs. Recall that a directed graph is a
graph G = (V,E) in which E ⊆ V × V , i.e., each edge e = (u, v) is equipped with a direction
and pointing from vertex u to vertex v. The in-degree of a vertex u is the number of edges
that end in u while the out-degree of u is the number of edges that start in u; these quantities
are denoted by indeg(u) and outdeg(u), respectively. A vertex is called a source if its in-degree
is 0 and a sink if its out-degree is 0. Furthermore, we call a k-tuple p = (p1, . . . , pk) ∈ Ek a
directed path of length k if for any ℓ ∈ [k− 1], the second entry of pℓ is equal to the first entry
of pℓ+1; if additionally the second entry of pk is equal to the first entry of p1, we call p a cycle
of length k. We call G acyclic if it does not contain any cycles.

With these definitions, we can now define quantum circuits in the qubit model as follows:

Definition 2.10 (Quantum Circuits)
Let m ∈ N and Gm be a gate set on m qubits. We call a directed, acyclic graph an m-qubit
quantum circuit if it satisfies the following conditions:

(i) The graph contains m sources u1, . . . , um with outdeg (uk) = 1 for all k ∈ [m], and
each uk is labeled with k.

(ii) The graph contains m sinks v1, . . . , vm with indeg (vk) = 1 for all k ∈ [m], and each
vk is labeled with a single-qubit observable.

(iii) Each nonsource, nonsink vertex w satisfies indeg (w) = outdeg (w) and is labeled with
an indeg(w)-qubit gate g ∈ Gm.

To use a quantum circuit to perform computation on a pure input state |ψ⟩ ∈
(
C2
)⊗m, one follows

the edges of the graph starting in the sources and performs at each nonsource, nonsink vertex
the unitary action specified by the label to the appropriate qubits. At the end of the circuit, the
single-qubit measurements at the sinks are performed, yielding the result of the computation.

Figure 2.1(a) shows an example for the directed, acyclic graph associated with a quantum circuit;
however, in practice, one rather uses so-called quantum circuit diagrams to visualize the
circuits rather than graphs. An example for such a diagram is given in Figure 2.1(b).

Just as in the classical case, we want to quantify the performance of a quantum algorithm in
terms of the resources it uses. In the quantum circuit model, there are two main quantities of
interest to us. Given two directed paths p, q in G, we say that p is longer than q if the length
of p is greater than the length of q.

Definition 2.11 (Circuit Size and Circuit Depth)
Let C be a quantum circuit and G be the directed, acyclic graph describing C.

(i) We call the number of nonsource, nonsink vertices in G (i.e., the number of gates in
C) the size of C and denote it by |C|.

(ii) We call the number of gates on a longest directed path from a source to a sink the
depth of C and denote it by d(C).
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Figure 2.1: An example for a quantum circuit acting on m = 5 qubits using the gate set G5
defined in (2.3). (a) The directed, acyclic graph associated with the circuit, where the vertices
are indicated by circles. The sources are situated on the left side of the graph and labeled
with the numbers of the associated qubits; they are followed by gates which are labeled by the
respective gate names, where CT denotes the CNOT gate such that the label of the control qubit
is smaller than the one of the target qubit and TC denotes the CNOT gate in which those roles
are reversed. The sinks are situated on the right side of the graph; each of them is labeled with
the single-qubit observable Z. We indicate an application of the circuit to the product input
state |0⟩⊗5 by writing |0⟩ to the left of each associated source. A longest directed path in the
graph is indicated in red. (b) The associated circuit diagram of the circuit. CNOT gates are
indicated by the symbols connecting a dot (the control) and a ⊕ symbol (the target). The meter
symbols at the end of the circuit indicate a measurement with respect to the computational
basis.

In the circuit C shown in Figure 2.1, we have |C| = 6 and d(C) = 3, with a longest directed
path from a source to a sink indicated in red.

2.3.2 Quantum Algorithms

Let P = (I,F = {F(I)}I∈I ,S = {S(I)}I∈I) be a computational problem. To apply a quantum
algorithm to a problem instance I ∈ I of size n, one first encodes I into an appropriately
chosen quantum circuit on m qubits, where m ≥ n, and then applies this quantum circuit to an
appropriately chosen input state |ψ⟩ ∈

(
C2
)⊗m to obtain a classical output {0, 1}m.

In this description, we did not require that m = n. The reason for this is that one might be
interested in performing auxiliary computations as part of the circuit which might require more
than n qubits. These m− n qubits are called auxiliary qubits.

Furthermore, note that for inputs of different sizes, the dimensions of the state spaces used
typically differ, so one has to use different quantum circuits for the computation. In contrast, the
classical Turing machine model introduced in Section 2.1.2 is capable of performing an algorithm
on any input size; it is therefore a uniform model of computation, while the general circuit
model is a nonuniform model of computation. To describe an algorithm in the quantum circuit
model, we therefore need to provide a quantum circuit for every input size n; such a collection
of quantum circuits is called a circuit family and is usually denoted by C = {Cn}n∈N.

There is another subtlety in the circuit model that is not present in uniform computational mod-
els: given an input size n, one first has to build the circuit before one can apply the quantum
algorithm. This means that one could “cheat” by hiding most of the complexity of a computa-
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tional problem in building the circuit, leaving a very low-depth or small quantum circuit. To
circumvent this, one imposes a restriction on the procedure used to build the circuits.

Definition 2.12 (Uniform Quantum Circuit Families)
We call a set C = {Cn}n∈N a uniform quantum circuit family if each Cn is an m(n)-
qubit quantum circuit (i.e., m ∈ N depends on n), and there is a classical deterministic
polynomial-time algorithm that computes the mapping n 7→ Cn.

We can now adapt Definitions 2.5 and 2.7 to the circuit setting.

Definition 2.13 (Quantum Circuit Complexity and Depth)
Let C = {Cn}n∈N be uniform quantum circuit family and T,D : N→ N.

(i) We say that C has circuit complexity T if |Cn| = T (n) for all n ∈ N.

(ii) We say that C has circuit depth D if d (Cn) = D(n) for all n ∈ N.

(iii) We say that C is a polynomial-time quantum algorithm if there is a polynomial T
such that C has circuit complexity T .

As discussed in Section 2.2.4, quantum theory is probabilistic in its nature due to the measure-
ment postulate. This suggests defining quantum complexity classes via probabilistic means, so
it is more natural to adapt BPP to the quantum setting instead of P. We therefore define the
following complexity class in the spirit of Definition 2.8.

Definition 2.14 (BQP)
The complexity class BQP is the set of all languages L for which there exists a polynomial-
time quantum algorithm specified by a uniform circuit family C = {Cn}n∈N, where each
m(n)-qubit circuit Cn is specified in terms of the gate set Gm(n) defined in (2.3), such that
the following holds:

• If x ∈ L, then Pr [Cn(x)1 = 1] ≥ 2
3 .

• If x /∈ L, then Pr [Cn(x)1 = 1] ≤ 1
3 .

Here, Cn(x)1 ∈ {0, 1} denotes the measurement result of the first qubit obtained by applying
the quantum circuit Cn with input x ∈ {0, 1}n.

It is evident that BPP ⊆ BQP, and it is conjectured that the inclusion is indeed proper with the
decision problem associated with factoring being known to be in BQP due to Shor’s algorithm [8]
while no classical, probabilistic, efficient algorithm has been found for the problem. However, it
is also conjectured that NP ̸⊆ BQP, so the power of quantum computation presumably does not
allow solving NP-complete problems.
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Chapter 3

The Quantum Approximate
Optimization Algorithm (QAOA)

In this chapter, we give a detailed overview over the main quantum algorithm studied in this
thesis: the Quantum Approximate Optimization Algorithm (abbreviated “QAOA”) introduced
by Edward Farhi, Jeffrey Goldstone, and Sam Gutmann in [12].

3.1 Definition of QAOA

3.1.1 The Quantum Adiabatic Algorithm (QAA)

The core underlying motivation for QAOA comes from Quantum Adiabatic Computa-
tion [42] which itself is derived from the concept of adiabatic evolution. The setting is
as follows: we are given a Hamiltonian H0 on a finite-dimensional quantum system H that is
in the state |ψ0⟩, where |ψ0⟩ is a ground state of H0, i.e., it is an eigenstate of H0 with the
property that its associated eigenvalue is the minimum of all eigenvalues of H0. Now let T > 0

and define the time-dependent Hamiltonian HT : [0, T ]→ B (H) as

HT (t) = (1− t/T )H0 + (t/T )H1 , (3.1)

where H1 is another Hamiltonian on H. As we obviously have HT (0) = H0 and HT (T ) = H1, we
ask whether there are sufficient conditions such that the state |ψT ⟩ of the system after unitary
evolution governed by HT is close to a ground state of H1.
This question is answered by the adiabatic theorem [43]. To state it, let Ek(s) be the k-th
smallest eigenvalue of HT (s), where k ∈ {1, . . . ,dim (H)} and s ∈ [0, T ] (i.e., E1(s) ≤ E2(s) ≤
. . . ≤ Edim(H)(s)). Now define the minimum spectral gap ∆ as

∆ := min
s∈[0,T ]

(E2(s)− E1(s)) .

The adiabatic theorem now states that if ∆ > 0, then

lim
T→∞

|⟨ψ0|ψT ⟩| = 1 .
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Quantitatively, the proof of the result shows that T needs to grow quadratically with ∆−1 to
make |⟨ψ0|ψT ⟩| close to 1. The adiabatic theorem motivates the following quantum algorithmic
approach to find solutions of combinatorial optimization problems: first, we choose H0 to be a
Hamiltonian whose ground state |ψ0⟩ is simple to prepare (e.g., a product state). In the follow-
ing, this Hamiltonian will be called the mixing Hamiltonian and denoted by HM . If we now
manage to encode a solution of an instance I of a combinatorial optimization problem P as the
ground state of a Hamiltonian H1, which we call the problem Hamiltonian and denote by
HP
I from now on, we can adiabatically evolve this system according to the Hamiltonian (3.1)

with initial state |ψ0⟩; if we choose the evolution time T large enough, a subsequent measure-
ment then yields a solution to our problem with high probability. This algorithm is called the
Quantum Adiabatic Algorithm (QAA). However, depending on the problem, it might take
an unreasonably large evolution time to solve the problem at hand with high probability, making
the algorithm potentially inefficient, and in some cases, the algorithm might even fail due to the
minimum spectral gap not being strictly positive; see [42].

3.1.2 Examples for encodings of combinatorial optimization problems

Before we derive QAOA from QAA, let us first briefly discuss the formulation of the NP-complete
problems Max-Cut and Max-k-Cut (see Subsection 2.1.1) as problem Hamiltonians. A wide
variety of formulations for, e.g., all of Karp’s 21 NP-complete problems [21], can be found in [44].

Let P = (I,F = {F(I)}I∈I ,S = {S(I)}I∈I , c = {cI}I∈I) be a combinatorial optimization prob-
lem, where we assume that for every I ∈ I, there are k, n ∈ N such that F (I) = Znk . In this
thesis, we require every problem Hamiltonian HP

I to satisfy

HP
I |z⟩ = cI(z)|z⟩ (3.2)

for any z ∈ Znk . This implies that the eigenspace associated with the largest eigenvalue corre-
sponds to the solutions of the combinatorial optimization problem rather than the groundspace;
the adiabatic theorem can be formulated analogously in this setting.

Max-Cut

Given an undirected unweighted graph G = (V,E), we first associate a qubit to every vertex of
the graph, i.e., the state space of the quantum system is

(
C2
)⊗|V |. We then define the Max-Cut

Hamiltonian associated with G as

HMC
G =

1

2

∑

{u,v}∈E
(I − ZuZv) . (3.3)

The eigenspace associated with the largest eigenvalue of this Hamiltonian is equal to

span{|z⟩ ∈ {|0⟩, |1⟩}⊗|V | : z ∈ {0, 1}|V | achieves the maximum cutsize} .
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Max-k-Cut

Let k ≥ 2 be an integer. Given an undirected unweighted graph G = (V,E), we first associate a
k-dimensional qudit to every vertex of the graph, i.e., the state space of the quantum system is(
Ck
)⊗|V |. We then define the Max-k-Cut Hamiltonian associated with G as

HMkC
G =

1

k

∑

{u,v}∈E

∑

b∈Zk

(1− δb,0)Πu,v(b) ,

where Πu,v(b) =
∑
a∈Zk

|a, a+b mod k⟩⟨a, a+b mod k|u,v is a projector onto the subspace spanned

by the two qudits u and v. Similarly to the Max-Cut case, the eigenspace associated with the
largest eigenvalue of this Hamiltonian is equal to

span{|z⟩ ∈ Z⊗|V |
k : z ∈ Z|V |

k achieves the maximum cutsize} .

Note that for k = 2, we obtain the Max-Cut Hamiltonian HMC
G .

Families of Max-Cut and Max-k-Cut Hamiltonians are examples for so-called local Hamil-
tonians. Letting N denote some index set, a family of Hamiltonians {Hn}n∈N , where each Hn

is acting on a tensor product of n subsystems, is called local if one can write each member of
the family as Hn =

∑
j∈Mn

Hn,j , where Mn is a finite index set for every n ∈ N , and each local

term Hn,j is acting non-trivially on at most a constant number of subsystems independent of
the total number of subsystems in the state space. For example, the family {HMC

G }G∈G , where
G denotes the set of all undirected unweighted graphs, is local since we can write

HMC
G =

∑

e={u,v}∈E
HMC
G,e , where (3.4)

HMC
G,e =

1

2
(I − ZuZv)

(see (3.3)) and each HMC
G,e acts non-trivially on exactly two subsystems independent of the size

of the graph. Note that for e1, e2 ∈ E, the local terms HMC
G,e1

and HMC
G,e2

commute, meaning that
{HMC

G }G∈G is a family of commuting, local Hamiltonians.
We call a family of local Hamiltonians ℓ-local if each of its local terms acts non-trivially on
exactly ℓ subsystems, where ℓ ∈ N. Given an index set N and a family of 2-local Hamiltonians
{Hn}n∈N , we define the interaction graph of Hn by associating a vertex with each subsystem
of the state space and connecting two vertices via an edge if there exists a local term acting non-
trivially on precisely those two subsystems. For example, the family of Max-Cut Hamiltonians
is 2-local, and the interaction graph of HMC

G is the unweighted version of G.

3.1.3 From QAA to the QAOA ansatz

The ansatz for QAOA is now obtained by approximating the unitary evolution that the quan-
tum adiabatic algorithm implements. The Hamiltonian HT defined in (3.1) is time-dependent,
and as mentioned in Subsection 2.2.4, it is in general difficult to obtain the associated unitary
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evolution operator if the Hamiltonian governing the evolution is time-dependent as it involves
evaluating a time-ordered integral. However, for a time-independent Hamiltonian Hconst, the
evolution operator is given by U(t) = exp (−iHconst(t− t0)). If a time-dependent Hamiltonian
H is continuous in t, it is approximately constant and therefore approximately equal to H(s) on
any interval [s, s+ δ] ⊂ [t0, T ] if δ is small. These observations suggest the approximation

U(T ) ≈
p∏

m=1

exp (−iH(tm−1)(tm − tm−1)) , (3.5)

where p ∈ N and {t0, t1, . . . , tp} ⊂ [t0, T ] with tp = T is a discretization of the interval [t0, T ], i.e.,
tk < tk+1 for all k ∈ Zp. In the case of adiabatic evolution, i.e., H(t) = (1− t/T )HM +(t/T )HP

I ,
we therefore obtain

U(T ) ≈
p∏

m=1

exp

(
−i
((

1− tm−1

T

)
HM +

tm−1

T
HP
I

)
(tm − tm−1)

)
.

The final step to obtain QAOA is Trotterization, a technique inspired by the Lie-Trotter
product formula [45] which implies that

lim
δ→0
∥ exp ((A+B) δ)− exp (δA) exp (δB) ∥ = 0

for all A,B ∈ B (Cn), where δ ∈ R. Applying this observation non-asymptotically with A :=

−i
(
1− tm

T

)
HM , B := −i

(
tm−1

T

)
HP
I and δ := tm − tm−1, we therefore obtain

U (T ) ≈
p∏

m=1

exp

(
−i (tm − tm−1)

(
1− tm−1

T

)
HM

)
exp

(
−i (tm − tm−1)

tm−1

T
HP
I

)
.

To state the QAOA ansatz for the qubit setting with problem Hamiltonian HP
I with state space(

C2
)⊗n, where n ∈ N, we choose the so-called transversal field as the mixing Hamiltonian, i.e.,

HM =
∑

u∈[n]
Xu ,

and we choose the so-called level of QAOA, i.e., a number p ∈ N which quantifies the degree of
discretization in (3.5): the larger we choose p, the finer the discretization becomes. The input
state for the algorithm is |+n⟩ := |+⟩⊗n (see (3.1)) which is the unique eigenstate associated
with the largest eigenvalue of HM . Furthermore, we choose so-called angles β, γ ∈ Rp; these
parameters represent the concrete time discretization that has been chosen. Note that in the
QAOA ansatz, we have 2p real parameters instead of only p such parameters as suggested
by (3.5). Then the level-p QAOA state |ψP

I (β, γ)⟩ is defined as

|ψP
I (β, γ)⟩ := UP

I (β, γ) |+n⟩ , where (3.6)

UP
I (β, γ) :=

p∏

m=1

[
exp (−iβmHM ) exp

(
−iγmHP

I

)]
. (3.7)
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(a)

|+⟩ γ1 γ1 γ1 e−iβ1X · · · γp γp γp e−iβpX

|+⟩ γ1 γ1 γ1 e−iβ1X · · · γp γp γp e−iβpX

|+⟩ γ1 γ1 γ1 e−iβ1X · · · γp γp γp e−iβpX

|+⟩ γ1 γ1 γ1 e−iβ1X · · · γp γp γp e−iβpX

(b)

Figure 3.1: (a) K4 = (V,E) :=
(
{1, 2, 3, 4},

(
[4]
2

))
, the unweighted complete graph on four

vertices. (b) Circuit diagram associated with the QAOA unitary UMC
K4

(β, γ). Since |V | = 4,
the circuit acts on four qubits and each QAOA layer contains four one-qubit gates (single boxes
labeled with e−iβkX , where k ∈ {1, . . . , p}), and since |E| = 6, each QAOA layer contains six
two-qubit gates (two connected boxes, both labeled with γk, where k ∈ {1, . . . , p}).

The unitary operator UP
I (β, γ) is called the QAOA unitary. As an example, consider the

application of this unitary operator for the Max-Cut problem, i.e., we choose the problem
Hamiltonian HMC

G =
∑

{u,v}∈E
HMC
G,{u,v} as defined in (3.4) for an unweighted undirected graph

G = (V,E). This Hamiltonian acts on the state space
(
C2
)⊗|V |, so the mixing Hamiltonian is

given by HM =
∑
u∈V

Xu. Since the local terms of the problem Hamiltonian HMC
G,e1

and HMC
G,e2

commute for all e1, e2 ∈ E and the local terms of the mixing Hamiltonian Xu and Xv commute
for all u, v ∈ V , we can write

UMC
G (β, γ) =

p∏

m=1

[
exp (−iβmHM ) exp

(
−iγmHMC

G

)]

=

p∏

m=1


exp

(
−iβm

∑

u∈V
Xu

)
exp


−iγm

∑

{u,v}∈E
HMC
G,{u,v}






=

p∏

m=1


∏

u∈V
exp (−iβmXu)

∏

{u,v}∈E
exp

(
−iγmHMC

G,{u,v}
)

 .

The operators in the product
∏
u∈V

exp (−iβmXu) all act on single qubits while the operators in

the product
∏

{u,v}∈E
exp

(
−iγmHMC

G,{u,v}

)
all act on two qubits. The associated quantum circuit

for the unweighted complete graph on four vertices is depicted in Figure (3.1).
The QAOA ansatz can also be generalized to the qudit setting with problem Hamiltonians with
state space

(
Ck
)⊗n, where n, k ∈ N; see Core Article I) [1] for the explicit form of the ansatz

and the application of QAOA to the Max-k-Cut problem.

3.1.4 Using QAOA for combinatorial optimization

Given p ∈ N and angles β, γ ∈ Rp, we can use the QAOA unitary UP
I (β, γ) associated with

a problem Hamiltonian HP
I to define an approximation algorithm for the problem instance I

with problem size n (e.g., the number of vertices in a graph) of the combinatorial optimization
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1: function QAOAP
p (I ∈ I)

2: Determine (β∗, γ∗) ∈ arg max
β,γ∈Rp

⟨ψP
I (β, γ) |HP

I |ψP
I (β, γ)⟩

3: Measure ψP
I (β

∗, γ∗) in the computational basis → measurement outcome C
4: return C

Figure 3.2: Pseudocode for QAOAP
p , where p ∈ N and P = (I,F ,S, c) is a combinatorial

optimization problem. Note that in practice, Line 2 consists of finding β∗, γ∗ ∈ Rp satisfying (3.8)
by using a quantum device.

problem P by preparing the level-p QAOA state UP
I (β, γ) |+n⟩ and subsequently measuring this

state in the computational basis to obtain a solution candidate z ∈ {0, 1}n.
Now let p be the chosen level of QAOA. It is natural to use angles β∗, γ∗ ∈ Rp such that the
expectation value of HP

I under the level-p QAOA state with angles β∗, γ∗ is made as large as
possible, i.e., one wants to find β∗, γ∗ such that

fPI (β∗, γ∗) := ⟨ψP
I (β∗, γ∗) |HP

I |ψP
I (β∗, γ∗)⟩ ≈ sup

β,γ∈Rp
⟨ψP

I (β, γ) |HP
I |ψP

I (β, γ)⟩ . (3.8)

This is motivated by (3.2), where we required problem Hamiltonians to be diagonal with respect
to the computational basis; if |ψP

I (β∗, γ∗)⟩ is a computational basis state that represents a
solution of the problem instance, then the supremum on the right-hand side of (3.8) is in fact
equal to the optimal value of the cost function since QAOA concludes with a measurement in
the computational basis.

Note that the supremum on the right-hand side of (3.8) is always finite due to the Cauchy-
Schwarz inequality and the fact that ∥|ψP

I (β, γ)⟩∥ = 1. The function fPI is continuous, and if
the associated problem Hamiltonian HP

I has only integer eigenvalues for all I ∈ I, we have

fPI (β, γ) = fPI (β + kπ, γ + 2πℓ)

for all β, γ ∈ Rp and all binary, p-dimensional vectors k, ℓ. This implies that fPI (Rp × Rp) =

fPI ([0, 2π]p × [0, 2π]p) and since [0, 2π]p × [0, 2π]p is compact, the supremum in (3.8) is attained
on this compact set. This assumption on the eigenvalues of HP

I is satisfied by both unweighted
Max-Cut and Max-k-Cut problems and many other combinatorial optimization problems.

Since we will only apply QAOA to such combinatorial optimization problems in this thesis, we
from now on assume that the supremum on the right-hand side of (3.8) is attained on [0, 2π]p ×
[0, 2π]p. Therefore, the goal is to find

(β∗, γ∗) ∈ arg max
β,γ∈[0,2π]p

⟨ψP
I (β, γ) |HP

I |ψP
I (β, γ)⟩ . (3.9)

We now have everything to state the algorithm QAOAP
p , where p ∈ N and P is a combinatorial

optimization problem; see Figure 3.2.

To quantify the performance of the algorithm, we extend the definition of an approximation ratio
(Definition 2.9) to QAOAP

p in a straightforward way.
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Definition 3.1 (Approximation Ratio of QAOAP
p )

Let P = (I,F ,S, c) be a combinatorial optimization problem and p ≥ 1 be an integer.

(i) Let I ∈ I. Then if max
z∈F(I)

cI(z) ̸= min
z∈F(I)

cI(z), the approximation ratio of QAOAP
p

for I is defined as

αI
(
QAOAP

p

)
:=

sup
β,γ∈Rp

⟨ψP
I (β, γ) |HP

I |ψP
I (β, γ)⟩ − min

z∈F(I)
cI(z)

max
z∈F(I)

cI(z)− min
z∈F(I)

cI(z)

and as αI
(
QAOAP

p

)
= 1 if max

z∈F(I)
cI(z) = min

z∈F(I)
cI(z).

(ii) Let J ⊂ I. Then the worst-case approximation ratio of QAOAP
p on J is

defined as

αJ
(
QAOAP

p

)
= inf

I∈J
αI
(
QAOAP

p

)
.

If J = I, we write α
(
QAOAP

p

)
instead of αJ

(
QAOAP

p

)
and call this quantity the

worst-case approximation ratio of QAOAP
p .

Finding suitable variational parameters

In this thesis, we will be mostly concerned with the performance of QAOA as quantified by its
approximation ratio defined in Definition 3.1. However, this assumes that one has found optimal
angles β∗, γ∗ as specified in (3.9), a problem that has been shown to be NP-hard in general [46].
Therefore, optimizing this expected value is typically done using heuristic methods. In practice,
a quantum device is used to find good angles in Line 2 of Figure 3.2.
One of the most popular methods to do so is gradient descent (see [47, 48] for introductory
treatments). Given n ∈ N and f : D → R with D ⊂ Rn being compact and f being smooth on
the interior of D, the goal of gradient descent is to find an element of argmax

x∈D
f(x). Gradient

descent is an iterative procedure, i.e., it produces a sequence (xk)k∈N such that hopefully, f (xk) ≈
max
x∈D

f(x) for sufficiently large k. For gradient descent, this sequence is defined by

x0 ∈ D ,

xk+1 := xk + γk∇f (xk) ,

where γk ∈ R>0 is a suitably chosen stepsize. While there are sufficient criteria under which
gradient descent converges to a global maximum (e.g., concavity), in general, convergence of the
method is not guaranteed. In particular, if f is not concave, it may have several local, but non-
global maxima, in which case the method might converge to such a local maximum instead. Since
the function (β, γ) 7→ fPI (β, γ) = ⟨ψP

I (β, γ) |HP
I |ψP

I (β, γ)⟩ is not concave, this may happen for
the optimization within QAOA. Another obstacle is a well known phenomenon known as “barren
plateau” [49]: the optimization may get stuck in a “flat” region of R2p, i.e., a region for which
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∇fPI ≈ 0. This problem has been extensively studied in several works [50–53] where techniques to
avoid such convergence issues are explored. Furthermore, each step of gradient descent requires
an evaluation of the cost function as well as the computation and evaluation of the gradient of
the cost function, both of which are done using the quantum device in practice. This has the
consequence that the larger the chosen level p, the more expensive these evaluations become and
the more computationally intractable gradient descent becomes.
A more primitive heuristic to find suitable angles is grid search, where one chooses a finite
subset T ⊂ R and determines arg max

(β,γ)∈T p×T p
fPI (β, γ) to approximate the maximum. Since

|T p × T p| grows exponentially with the level p, this method is only tractable if p is very small.
While gradient descent and grid search are two heuristic methods for the optimization within
QAOA, there are in fact classes of problems for which one can find analytic expressions for
the optimal angles. For example, [54] gives an explicit expression for the optimal angles for
QAOAMC

1 on triangle-free regular graphs.
Finally, it was numerically argued in [55] for Max-Cut that if the angles β, γ are fixed and
problem instances G ∈ D3 are sampled from a sufficiently well-behaved distribution of 3-regular
graphs, then the value of fMC

G (β, γ) is almost constant independent of the instance G. This
implies that once one has found optimal or near-optimal angles for a typical instance, they will
with high probability also yield high expectation values for other, randomly drawn instances.

3.2 Properties of the QAOA ansatz

3.2.1 Locality

Let P be a combinatorial optimization problem with instance set I and assume that the family
of problem Hamiltonians {HP

I }I∈I is a family of 2-local Hamiltonians, so we can write HP
I =∑

e∈E
HP
e with 2-local terms He, where G = (V,E) is the interaction graph of HP

I . The locality

of HP
I implies that its expected value under a QAOA ansatz state |ψP

I (β, γ)⟩ can be written as

⟨ψP
I (β, γ) |HP

I |ψP
I (β, γ)⟩ =

∑

e∈E
⟨ψP

I (β, γ) |HP
e |ψP

I (β, γ)⟩ . (3.10)

Focusing on a single term HP
e , one can see that ⟨ψP

I (β, γ) |HP
e |ψP

I (β, γ)⟩ does not depend on all
subsystems of the state space, but only on a certain so-called p-neighborhood of e; QAOAp

is therefore a local ansatz. This property follows from the fact that terms in the QAOAp

unitary (3.7) which do not have support on this p-neighborhood commute through HP
e and

cancel with their adjoints since they are unitary [12]. For the Max-Cut Hamiltonian, such
p-neighborhoods are illustrated in Figure 3.3.
While we illustrated this property in terms of the expectation value (3.10), it can be formulated
more generally for other local operators and ℓ-local operators where ℓ ̸= 2, see Section 3.2 of
Core Article II) [2].
The locality of QAOA allows to numerically evaluate expectation values such as (3.10) by a
classical algorithm as long as p is a small constant and the interaction graph has a small maximum
degree. In that case, only a small constant number of subsystems actually contributes nontrivially
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u v

Figure 3.3: Illustration of 1- and 2-neighborhoods of an edge e = {u, v} in an interaction graph.
The 1-neighborhood of e consists of all vertices colored blue since each of these vertices is either
incident to u or v. The 2-neighborhood of e consists of all vertices colored blue or red since
each of these vertices is either an element of the 1-neighborhood of {u, v} or is incident to an
element in the 1-neighborhood. The vertex colored black is neither of those and is therefore not
an element of either of the two neighborhoods.

to each summand, so the dimension of the corresponding Hilbert space is small enough such that
a classical evaluation is computationally tractable. The locality of QAOA has been exploited
previously in the literature [12,56] to establish lower bounds on the approximation ratio, and we
also heavily make use of this technique in Core Article II) [2]. However, we emphasize that in
practice, a quantum device would be used to evaluate (3.10) in the angle optimization of QAOA.

3.2.2 Uniformity

Again, let P be a combinatorial optimization problem with instance set I and assume again
that the family of problem Hamiltonians {HP

I }I∈I is a family of 2-local Hamiltonians, so we can
write HP

I =
∑
e∈E

HP
e with 2-local terms He, where G = (V,E) is the interaction graph of HP

I .

Now let e1, e2 ∈ E be two edges such that the p-neighborhoods of e1 and e2 are isomorphic, i.e.,
there is an edge-preserving bijection between their vertex sets. It follows immediately from the
definition of QAOAp that then

⟨ψP
I (β, γ) |HP

e1 |ψP
I (β, γ)⟩ = ⟨ψP

I (β, γ) |HP
e2 |ψP

I (β, γ)⟩

holds, meaning that the QAOA ansatz is uniform: for fixed angles β, γ, the values of the
summands in (3.10) only depend on the isomorphism classes of the p-neighborhoods of the edge
associated with the summand.
Focusing on the unweighted Max-Cut problem, the uniformity of QAOA means that one can,
e.g., rewrite the expectation value of HMC

G of a QAOA state |ψMC
G (β, γ)⟩ as

⟨ψMC
G (β, γ) |HMC

G |ψMC
G (β, γ)⟩ =

∑

S∈N
nS (G) ⟨ψMC

S (β, γ) |HMC
S |ψMC

S (β, γ)⟩ , (3.11)

where N is the set of isomorphism classes of p-neighborhoods, nS(G) denotes the number of
times that an edge e ∈ E has the p-neighborhood S and HMC

S is the Hamiltonian acting on the
subgraph S. For small values of p and bounded-degree graphs, this property allows us to simply
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list all possible p-neighborhoods, classically evaluate the cost functions on these neighborhoods
and then evaluate the expected value using (3.11) by counting the number of occurrences of each
isomorphism class in G. For larger values of p, there may be too many p-neighborhoods which
are too large, preventing a brute-force enumeration of such values. For a demonstration of this
technique, see [56].
The uniformity of QAOA also motivates to study the performance of QAOAp on graphs of
high girth, i.e., graphs which do not have cycles with less than 2p + 2 pairwise distinct entries.
For such graphs, all p-neighborhoods are isomorphic to the same symmetric tree (e.g., G1 in
Figure 3 of Core Article II) [2] for p = 1). Exploiting the symmetry of the tree, one can use
tensor network methods to evaluate the expected value of a local term of a QAOA state on such
a tree which allows to compute expectation values for such graphs; we use such techniques in
Core Article II) [2]. There, one can also find a more general treatment of uniformity for general
local operators.

3.2.3 Circuit Depth for two-local Hamiltonians

For 2-local Hamiltonians such as the Max-k-Cut Hamiltonians, the circuit depth of the QAOA

circuit depends linearly on the product of two quantities: the chosen level p and the maximum
degree of the underlying interaction graph. This follows from the commutativity of the local
terms in the Hamiltonians and the fact that we can arrange the associated gates according to
edge colorings, see [3] for a more detailed argument for Max-Cut.
This depth dependency of the circuit on the level is one of the main points that make QAOA

interesting for the NISQ era: one can choose the level of QAOA depending on the capabilities
of the real-world quantum device at hand.

3.3 Performance guarantees for QAOA

As a first demonstration of the capabilities of QAOA, it was shown in the seminal paper [12] that
applied to the Max-Cut problem restricted to 3-regular graphs, QAOAMC

1 achieves a worst-
case approximation ratio of αD3

(
QAOAMC

1

)
≥ 0.6924 which has been confirmed to be tight

in [56]. Compared to classical algorithms (see Subsection 2.1.4), QAOAMC
1 provides a significant

improvement over the trivial algorithm with αD3 (T ) = 0.5, but does not compare favorably in
terms of provable lower bounds to the Goemans-Williamson algorithm with αD3 (GW) ≥ 0.878

or the HLZ algorithm with αD3 (HLZ) ≥ 0.9326.
The proof of the result for QAOAMC

1 exploits the locality and uniformity of QAOA. A similar
analysis was then used in subsequent work to establish provable lower bounds on approximation
ratios for p > 1 [56]; there, the authors show that αD3

(
QAOAMC

2

)
≥ 0.7559 and conjecture

αD3

(
QAOAMC

3

)
≥ 0.7923. Furthermore, this technique was also applied to other combinatorial

optimization problems [57].
From the definition of QAOA, it is clear that given a problem instance x of a combinatorial
optimization problem P, we have αx

(
QAOAP

p+1

)
≥ αx

(
QAOAP

p

)
for any p ∈ N. Furthermore,

for problems such as Max-Cut, it is known that lim
p→∞

αx
(
QAOAP

p

)
= 1 [12], i.e., QAOAMC

p

achieves the actual optimum (i.e., an approximation ratio of 1) if one chooses p sufficiently large.
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Chapter 4

Performance limitations of QAOA

For QAOAp applied to the Max-Cut problem, an arbitrarily high approximation ratio can be
achieved by choosing the level p large enough [12]. However, it might happen that the circuit
depth (which depends linearly on p) needed to achieve a result deemed sufficiently accurate might
grow with the number of vertices in the given graph, in the worst case even exponentially as is
the case for the runtime of classical brute-force algorithms. Furthermore, a larger level of QAOA

implies a higher dimensionality of the parameter space which makes optimization methods such
as gradient descent computationally impractical.
We therefore hope for good performance of QAOAp with low, ideally constant values of p,
especially in the light of the NISQ era. In this chapter, however, we will outline two of our
results [1,3] which imply that for constant p, the worst-case approximation ratios of QAOAp for
both the Max-Cut problem as well as the Max-k-Cut problem are upper bounded by constants
which are smaller than the worst-case approximation ratios of the best classical algorithms; in
order to surpass this threshold, p has to grow at least logarithmically in the number of vertices
in the given graph.

4.1 Limitations obtained by exploiting locality and symmetry

In [3], we showed the following limitations of QAOAp applied to Max-Cut.

Theorem 4.1 (Limitations of QAOA for Max-Cut [3])
Let D ≥ 3 be an integer. Then there exists an infinite family of bipartite D-regular graphs
GD = {GDn }n∈ND

, where ND ⊂ N and GDn is a graph on n vertices, such that if p <
1
3
log2(n)−4

D+1 , we have

αGD
n

(
QAOAMC

p

)
≤ 5

6
+

√
D − 1

3D
. (4.1)

In particular,

α
(
QAOAMC

p

)
≤ 5

6
+ ε (4.2)

for any fixed p ∈ N and any ε > 0.
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Equation (4.2) follows directly from (4.1) by taking the limit D → ∞. Apart from special,
heavily restricted cases such as the “ring of disagrees” [58], i.e., the application of QAOAp to the
Max-Cut problem on 2-regular graphs, this was – to the best of our knowledge – the first result
giving a provable upper bound on the achievable approximation ratio of QAOAp for Max-Cut

for p > 1. It quantitatively shows that for a constant level p, one always has Max-Cut problem
instances in which QAOA performs worse than the best classical algorithm by Goemans and
Williamson [17], since 5

6 ≈ 0.8333 < α (GW) ≈ 0.8785 (see Subsection 2.1.4).

The key properties of QAOA that lead to this result are the symmetry and locality of both the
input state |+n⟩ (which is an eigenvector of X⊗n associated with eigenvalue +1) as well as the
QAOA unitary U (β, γ) for Max-Cut which commutes with X⊗n, where n is the number of
vertices of the graph. In both cases, we say that Z2-symmetry is satisfied. In particular, these
relations are true for any choice of angles β, γ, meaning that we do not have to deal with finding
optimal angles or establishing that particular angles are indeed optimal.

The most important step in the proof is to establish the fact that there exists a family of bipartite,
D-regular graphs GD = {GDn }n∈ND

on n vertices such that the Max-Cut Hamiltonian associated
with those graphs has ground state energy 0, but their energy density ⟨ψ|HMC

GD
n
|ψ⟩/n is lower

bounded by a constant for sufficiently large n if the state |ψ⟩ was obtained by applying a low-
depth, Z2-symmetric circuit to a Z2-symmetric product state.

This result is reminiscent of and motivated by the so-called NLTS conjecture [59], where NLTS
is an abbreviation for “No Low-Energy Trivial States”. There, the goal was to show the existence
of a constant ε > 0 and a family of local Hamiltonians {Hn}n on n qubits with ground state
energy 0 such that for sufficiently large n, any n-qubit state |ψn⟩ that has an energy density lower
than ε cannot be obtained by applying a constant-depth circuit consisting of one- and two-qubit
gates to a product state. Note that the result of [60], where the NLTS conjecture was finally
positively resolved, does not imply our result or vice-versa. The positive resolution of the NLTS
conjecture was a significant result in complexity theory as its validity was known to be necessary
for a potential quantum analogue of the classical PCP theorem [31,32] to hold [61].

A key ingredient in establishing our version of the NLTS conjecture restricted to Z2-symmetric
circuits is the following upper bound on the separation of output sets obtained from shallow
quantum circuits by Eldar and Harrow:

Lemma 4.2 (Separation of Output Sets from Shallow Quantum Circuits [62])
Let d ∈ N, U be an n-qubit unitary implemented by a depth-d quantum circuit consisting of
one- and two-qubit gates, |φ⟩ be an n-qubit product state and define p : {0, 1}n → [0, 1],
x 7→ p(x) = |⟨x|U |φ⟩|2 and p(T ) =

∑
x∈T

p(x) for T ⊆ {0, 1}n. Then

dist
(
S, S′) ≤ 4

√
n · 23d

min {p(S), p(S′)}

for any S, S′ ⊆ {0, 1}n, where dist (T1, T2) := min
x∈T1,y∈T2

|x − y|H , and |z|H is the Hamming

weight of z ∈ {0, 1}n.
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This result implies that output distributions of low-depth quantum circuits cannot assign a non-
negligible probability weight to subsets of bit strings which are highly separated with respect
to Hamming weight. Since the Max-Cut Hamiltonians are Z2-symmetric (which can be seen
from the fact that flipping the bits in a given cut does not change the cutsize), we can choose
two bitflip-symmetric sets which are far apart to give a logarithmic lower bound on the level of
QAOA needed to achieve a certain approximation ratio; for further details, see Article III) [3].
We note that the bound in Lemma 4.2 has been further investigated and strengthened in [63]
and was also used in the proof of the NLTS conjecture [60]. Furthermore, our proof technique
to establish Theorem 4.1 has been further applied in the literature [64].

4.2 Limitations obtained by exploiting locality and uniformity

Shortly after the publication of [3], the authors of [13] showed that the worst-case performance
of QAOA is even worse than shown in our work: choosing D ∈ N large enough, QAOAp with
p = O (log(n)) can only achieve an expected approximation ratio of 1

2 for the Max-Cut problem
on random bipartite D-regular graphs with n vertices, i.e., the algorithm performs no better than
the trivial algorithm for Max-Cut described in Section 2.1.4. We note, however, that our result
in [3] not only holds for QAOA, but can be generalized for any variational quantum circuits
exhibiting Z2-symmetry; furthermore, we state an explicit family of graphs for which our upper
bounds hold.

In [1], we use the proof technique of [13] to show the following analogous no-go results for the
Max-k-Cut problem introduced in Section 2.1.4.

Theorem 4.3 (Limitations of QAOA for Max-k-Cut [1])
Let k ≥ 2 be an integer. For n, d ∈ N, denote the set of bipartite d-regular graphs on n

vertices by Gbi
n,d. Then there exist a constant ζ > 0 and two functions f, g : N → R>0 with

f(d), g(n) ∈ o(1) such that

PrG

[
αG

(
QAOAMkC

p

)
≥
(
1− 1

k

)
+ f(d) + g(n)

]
= o(1)

for all d ≥ ζ and d = o (
√
n) and all levels p < 1

2 logd(n), where the probability is taken with
respect to the uniform distribution on Gbi

n,d.

This result implies in particular that for suitably chosen (n, d, p), there are graphs in Gbi
n,d for

which QAOAp is incapable of achieving an approximation ratio that significantly outperforms
the trivial algorithm of random guessing.
The proof of this result exploits two key characteristics of QAOA, namely its locality and
uniformity (see Subsections 3.2.1 and 3.2.2). The central observation of [13] is that for uniformly
random d-regular graphs on n vertices, where d and n are suitably chosen, most p-neighborhoods
(see Subsection 3.2.1) in those graphs are isomorphic to the same tree with high probability,
and moreover, this observation also holds for the corresponding ensemble of bipartite, d-regular
graphs. By uniformity, this allows us to focus on trees as subgraphs. We then observe that for
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Performance limitations of QAOA

graphs whose p-neighborhoods almost all look like a tree, the choice of optimal angles for one
such graph will be nearly optimal for any other such graph. Finally, we obtain the result by
exploiting a known upper bound on the typical maximum k-cutsize of graphs in such ensembles
and by using that for bipartite, d-regular graphs on n vertices, the optimal k-cutsize is equal to
the number of edges, i.e., equal to nd/2. For the precise argument, we refer to Core Article I) [1].

4.3 Further known limitations of QAOA in the literature

As already mentioned, the very first limitations of QAOA were shown in [58], where the au-
thors looked at the performance of QAOAp applied to the Max-Cut problem on the fam-
ily of cycle graphs G = {Gn}n∈N , where N is the set of even natural numbers and Gn =

(Zn, {{k, k + 1} : k ∈ Zn}). In this case, a simple classical efficient greedy procedure achieves
optimality while αGn

(
QAOAMC

p

)
≤ 2p+1

2p+2 if p ≤ n
2 .

Furthermore, the authors of [56] use a simple argument exploiting the locality of QAOA to
show that α

(
QAOAMC

p

)
≤ 2p+2

2p+3 by observing its behaviour on graphs without small cycles. In
particular, it follows that α

(
QAOAMC

p

)
≤ α (GW) for p < 6.

On the more heuristic side, Hastings [65] studied the performance of local classical algorithms
and found evidence that such algorithms outperform QAOA1 for virtually every regularity of
graphs. This analysis was then extended in [66] to QAOA2 and has since then spawned more
work in that direction, resulting in both negative and positive evidence for the performance of
QAOA [67].

All of the results established in this chapter assume a perfect, noiseless execution of the QAOA

circuits. This is motivated by the fact that by assuming a constant level of QAOA and bounded
degree of the underlying graphs, the depth of the circuit is constant as well. However, it was
found in [68] that even for low levels of QAOA, decoherence and noise will drive the output
state of QAOA to a Gibbs state that is efficiently simulable on a classical computer.
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Chapter 5

Enhancements of QAOA

In the previous chapter, we outlined several results showing that QAOA has severe shortcomings
in terms of worst-case approximation ratios for both Max-Cut and Max-k-Cut compared to
known classical approximation algorithms. Naturally, one may ask how to circumvent these
limitations. In this chapter, we propose two approaches towards enhancing QAOA: a recursive
version of QAOA called “recursive QAOA” which was introduced in [3] and further investigated
in Core Article I) [1], and a post-processed version of QAOA called “twisted QAOA” which was
proposed in Core Article II) [2].

5.1 Recursive QAOA

In [3] and [13], the locality of QAOA was exploited to demonstrate its shortcomings in terms of
approximation ratios. A natural approach to sidestep these limitations is to make the algorithm
more non-local. For this purpose, we introduced a recursive version of QAOA called “RQAOA”
in [3] which uses QAOA as a subroutine. This algorithm was then further investigated in Core
Article I) [1] where it is also stated in its most general form. We explain the procedure applied
to the so-called Ising model [69] which we will abbreviate by Is. This is a combinatorial opti-
mization problem specified via the 4-tuple Is = (I,F = {F(I)}I∈I ,S = {S(I)}I∈I , c = {cI}I∈I),
where

I := {G : G = (V,E,w) undirected, weighted graph with w : E → Z} ,

for G ∈ I, F(G) := {0, 1}|V | ,

cG : F(G)→ R ,

x 7→
∑

e={u,v}∈E
w(e)δxu,xv .

Given a graph G = (V,E,w), the associated problem Hamiltonian is given by

HIs
G =

∑

e={u,v}∈E
w(e)ZuZv .
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It is natural to analyze the performance of a quantum approximation algorithm applied to the
Ising model since many important problem Hamiltonians can be expressed in terms of HIs

G ; for
example, we have for Max-Cut

HMC
G =

1

2

(
|E| I −HIs

G

)

for any unweighted graph G = (V,E).
Let p ≥ 1 be the level of QAOA used in the procedure. On a high level, RQAOAIs

p works as
follows: we use the quantum device and apply QAOAIs

p to determine pairs of vertices which are
highly correlated or anti-correlated by computing

Mu,v := ⟨ψIs
G (β∗, γ∗) |ZuZv|ψIs

G (β∗, γ∗)⟩

for every edge {u, v} ∈ E, where |ψIs
G (β∗, γ∗)⟩ is the level-p QAOA state as defined in (3.6) with

optimal angles β∗, γ∗ ∈ Rp as defined in (3.9). Next, one determines an edge

{u∗, v∗} ∈ argmax
{u,v}∈E

|Mu,v|

and then substitutes

Zv∗ = sgn (Mu∗,v∗)Zu∗ (5.1)

into HIs
G . This eliminates the variable v∗ from the Hamiltonian at the cost of an additional,

additive identity term in the resulting Hamiltonian which only contributes an additive constant
to the cost function. The resulting interaction graph then contains one fewer vertex.
This procedure (preparing the QAOA state on the current interaction graph, determining the
strongest correlation/anticorrelation, eliminating a variable to obtain a new Hamiltonian with
smaller associated interaction graph) is then repeated, see Figure 5.1 for an illustration of two
successive variable elimination steps. We stop when the resulting interaction graph is sufficiently
small such that the problem can be solved directly via, e.g., brute-force. After that, one obtains
a candidate solution to the problem on the original graph by iteratively labeling the vertices
according to (5.1), see Figure 5.2.
For the set of cycle graphs, we obtain the following result in [3]:

Theorem 5.1 (RQAOAIs
1 on Cycle Graphs [3])

Let G := {Gn = (Vn, En, wn)}n∈N be an infinite family of undirected, weighted graphs with
Vn = Zn, En = {{k, k + 1 mod n} : k ∈ Zn} and wn : En → {−1, 1}. Then

αG
(
RQAOAIs

1

)
= 1 .

Note that it was shown in [58] that for even n, we have αGn

(
QAOAIs

p

)
≤ 2p+1

2p+2 if p ≤ n
2 , meaning

that RQAOAIs
1 strictly outperforms QAOAIs

p in this setting. Furthermore, we note that there is
a simple, classical procedure starting at one vertex which then greedily chooses the assignment
of one of the two neighboring vertices and proceeds iteratively until no vertices are left; it is

40



Recursive QAOA

1 2

3 4

5 6

HIs
G = −Z1Z2 − Z1Z3 − Z1Z5 − Z2Z4 − Z2Z6

−Z3Z4 − Z3Z5 − Z4Z6 − Z5Z6

{5, 6} ∈ argmax
{u,v}∈E

|Mu,v|, where M5,6 < 0

1 2

3 4

5

HIs
G = −Z1Z2 − Z1Z3 − Z1Z5 − Z2Z4 − sgn (M5,6)Z2Z5

−Z3Z4 − Z3Z5 − sgn (M5,6)Z4Z5 − sgn (M5,6)Z5Z5

= −Z1Z2 − Z1Z3 − Z1Z5 − Z2Z4 + Z2Z5

−Z3Z4 − Z3Z5 + Z4Z5 + I

{1, 2} ∈ argmax
{u,v}∈E′

|Mu,v|, where M1,2 < 0

1

3 4

5

HIs
G = − sgn (M1,2)Z1Z1 − Z1Z3 − Z1Z5 − sgn (M1,2)Z1Z4

+sgn (M1,2)Z1Z5 − Z3Z4 − Z3Z5 + Z4Z5 + I

= −Z1Z3 − 2Z1Z5 + Z1Z4 − Z3Z4

−Z3Z5 + Z4Z5 + 2I

Figure 5.1: Variable elimination in RQAOA. The original graph and the associated problem
Hamiltonian with w(e) = −1 for each e ∈ E are given at the top left and right, respectively. In
the first step of RQAOAIs

1 , the highest correlations/anticorrelations are measured on the edges
{1, 2}, {3, 4}, and {5, 6}, with all the pairs being anticorrelated; we choose the edge {5, 6} which
is then contracted and leads to the vertex 6 being eliminated by an appropriate substitution into
the problem Hamiltonian (middle); note the identity appearing in the new problem Hamiltonian.
This procedure is repeated with the new Hamiltonian in the second step; in this case, the highest
correlations/anticorrelations are measured on the edges {1, 2} and {3, 4}, with all the pairs being
anticorrelated; we choose the edge {1, 2} which is then contracted and leads to the vertex 2 being
eliminated (bottom).

easy to see that this local and efficient procedure outputs an optimal solution. To show that
RQAOAIs

1 solves the problem perfectly, we exploit that in the variable elimination step for cycle
graphs, we have only two options which permits a case distinction to determine the vertex which
is eliminated next.

Unfortunately, the variable elimination step cannot be as easily analyzed when looking at general
graphs. One reason for this is that during an execution of the algorithm, the maximum degree in
the resulting interaction graph can grow; see e.g. Figure 5.1 where the maximum degree of the
interaction graph grows by one when the first variable elimination is performed. This observation
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1

0 1

0

(a)

1 0

0 1

0 1

(b)

Figure 5.2: Obtaining the candidate solution for the original graph in Figure 5.1 after the two
variable eliminations specified there were performed. (a) An optimal solution for the classical
problem instance associated with HIs

G = −Z1Z3 − 2Z1Z5 + Z1Z4 − Z3Z4 − Z3Z5 + Z4Z5 + 2I,
i.e., the final Hamiltonian in Figure 5.1. This solution was obtained via brute-force calculation.
(b) The final output of RQAOAIs

1 applied to the original graph in Figure 5.1. We assign 0 to
the vertex 2 since it was negatively correlated with vertex 1 which had been assigned the value
1 in the solution in (a). After that, we assign 1 to the vertex 6 since it was negatively correlated
with vertex 5 which had been assigned the value 0 in the solution in (a).

has the negative consequence that the circuit depth of QAOA used in each recursive step may
grow as well.

Because of the difficulty of a rigorous analysis, we study the performance of RQAOA applied
to the Max-3-Cut problem in Core Article I) [1] empirically instead of proving rigorous results.
We introduce a classical simulation routine that allows us to efficiently compute expectation
values of Ising type terms, i.e., terms of the form ZuZv, under QAOA1 states. We then use
this algorithm to empirically compare the performance of QAOA1, RQAOA1, and the best
known classical algorithm by Newman [14] on 3-colorable, d-regular graphs on up to n = 300

vertices. We find that for some combinations of n and d, RQAOA1 is able to outperform the
classical algorithm while the converse is true for other combinations. It is an open problem to
characterize the regimes for which RQAOA1 outperforms Newman’s algorithm; note, however,
that RQAOA1 is itself a classical algorithm due to its aforementioned simulability. We also note
that RQAOA1 consistently significantly outperforms QAOA1 in our simulations. We refer to
the paper [1] for figures corroborating these claims.

RQAOA has been extensively applied on real-world devices and in simulations for benchmarking
in the literature (see, e.g., [70, 71]).

5.2 Twisted QAOA

The second proposed modification of QAOA in this thesis is inspired by classical post-processing
techniques and is introduced in Core Article II) [2]. For this modification, we focus on the Max-

Cut problem on unweighted 3-regular graphs; however, the techniques of the article can be
extended to bounded-degree graphs and are in principle applicable to any variational quantum
algorithm, not just QAOA.
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Twisted QAOA

Recall from Section 2.1.4 that for 3-regular graphs, it is possible to surpass the approximation
ratio of the Goemans-Williamson algorithm by an efficient classical algorithm. Both results
mentioned there, i.e., the method by Feige, Karpinski and Langberg (FKL) [15] as well as the one
by Halperin, Livnat, and Zwick (HLZ) [16], first solve a slightly modified semidefinite program
similar to the one in the Goemans-Williamson algorithm to obtain a cut by randomized rounding
before using simple post-processing techniques to increase the size of the cut even further. The
key to their established approximation ratios is that for both of these techniques, there are
functions IG : {0, 1}n → R≥0, where G is a 3-regular graph on n vertices, such that

cutsizeG
(
C ′) ≥ cutsizeG (C) + IG (C)

holds, where cutsizeG (D) denotes the number of satisfied edges in a cut D of G, C is the cut of G
on which we perform the post-processing and C ′ is the final cut of G after the post-processing.
Crucially, IG can be explicitly efficiently computed in both cases and therefore quantifies the
guaranteed improvements of these procedures. For example, for FKL, we have

IG (C) =
1

3
|SG (C)| , (5.2)

where SG(C) is the set of all three-tuples (c, j, k) ∈ V 3 such that {c, j}, {c, k} ∈ E and C(c) =

C(j) = C(k). The main idea in our proposal to improve QAOA is to realize that in both cases,
we can “quantize” the improvement functions IG; as a result, we obtain a corresponding positive
semidefinite operator IqG for which one can then show that

E
[
cutsize

(
C ′)] = ⟨ψ|

(
HMC
G + IqG

)
|ψ⟩ , (5.3)

where |ψ⟩ ∈
(
C2
)⊗n and C ′ is the final cut that one obtains after applying the chosen post-

processing procedure to the result that one obtains after measuring |ψ⟩ in the computational
basis. For example, the quantized version of IG in (5.2) is given by

IqG =
∑

(c,j,k)∈TG
Πc,j,k , where Πc,j,k := (|000⟩⟨000|+ |111⟩⟨111|)c,j,k ,

where TG denotes the set of all three-tuples of distinct vertices lying on a path of length 2

(so-called triplets) in G.

We note that the corresponding operators for both procedures are local, hence the observable
HMC
G + IqG is local as well. Since we would like to maximize (5.3), we propose the following

modification of QAOA: we first optimize the angles of the QAOAMC
p ansatz with respect to

the observable HMC
G + IqG instead of HMC

G to obtain angles β∗, γ∗ ∈ [0, 2π]p. Then, we prepare
the QAOAMC

p state |ψMC
G (β∗, γ∗)⟩ which we measure with respect to the computational basis,

obtaining a cut C to which we then apply the respective post-processing procedure.

We call this algorithm “twisted QAOA”. Crucially, the circuit used in the algorithm is exactly
the same as in regular QAOA, but with different angles; therefore, the algorithm uses exactly the
same quantum resources. Furthermore, this algorithm is not restricted to QAOA; in principle,
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any variational quantum algorithm can be used. In order to obtain provable lower bounds,
however, one needs to be able to establish expressions similar to Eq. (5.3).
We can use the techniques from [12,56] which exploit the locality of QAOA to obtain the results
depicted in Figure 1 in [2]. We empirically observe that for low levels p of QAOA, the twisted
versions of the algorithm perform similarly to QAOAp+1, therefore effectively saving one level
of QAOA and reducing both the circuit depth and the number of parameters.

5.3 Other proposals for enhancing QAOA in the literature

In addition to the proposals introduced in the two previous sections, there have been other sug-
gestions for improving QAOA. Most prominently, the usage of different mixing Hamiltonians
other than the transversal field Hamiltonian has been proposed in [72], an ansatz which the au-
thors call “Quantum Alternating Operator Ansatz” (also abbreviated as QAOA since it includes
the “standard QAOA” as a special case). One motivation for this proposal is the fact that for
some combinatorial optimization problems, the standard QAOA is not capable of producing
certain states. This may lead to inaccurate solutions of the combinatorial optimization problem.
On the other hand, a different mixing Hamiltonian may be useful for combinatorial optimization
problems with hard constraints such as the Maximum Independent Set problem [21], where the
goal is to find a set of vertices of maximum cardinality in a given graph such that no vertices in
the set share an edge. Using the standard binary encoding where membership of a vertex in a
set is indicated by 1 while 0 denotes that the vertex is not an element of the set, not every com-
putational basis state corresponds to a feasible solution of the problem. Here, a different mixing
Hamiltonian could ensure that the output of the algorithm always satisfies such constraints.
Another, potentially complementary approach is to use a different initial state for QAOA instead
of the uniform superposition; this approach is called “warm-starting QAOA”. In [71], the authors
use a different mixing Hamiltonian and apply this version of QAOA to a product state obtained
by encoding the output of a classical approximation algorithm such as the Goemans-Williamson
algorithm (GW). This ansatz has the attractive feature that one is guaranteed to achieve α (GW)

since one can simply discard the output of the algorithm if the cut obtained by the quantum
algorithm is not good enough. In another approach, the authors of [73] do not change the
QAOA unitary, but apply the algorithm to a biased superposition of computational basis states
corresponding to possible cuts in a given graph which have also been obtained by classical means.
However, the most naive warm-start, i.e., simply using a computational basis state as input
state while not changing the QAOA unitary at all, very likely does not lead to improvements
of the performance of the algorithm as was argued in [74]. Furthermore, it is not expected
that these proposals are capable of strictly outperforming the Goemans-Williamson algorithm
in terms of worst-case approximation ratio as this would have far-reaching complexity theoretic
consequences: in that case, the Unique Games Conjecture [28] would be false or NP ⊂ BQP

which is not expected to be true.
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Hybrid quantum-classical algorithms for approximate graph
coloring

Sergey Bravyi, Alexander Kliesch, Robert Koenig, Eugene Tang

In the unweighted Max-k-Cut problem, where k ≥ 2 is an integer, the goal is to find a max-
imal k-coloring of a given graph G = (V,E), i.e., a function C : V → Zk that maximizes the
number of edges whose endpoints have been assigned different values. In Core Article I), we
study the performance of two variational quantum approximation algorithms – QAOA [12] and
RQAOA [3] – applied to this NP-complete combinatorial optimization problem and compare
them with classical algorithms, both heuristically and mathematically rigorously, in terms of
their approximation ratios.

A.1.1 Main Results

We first show that on the families of bipartite, regular graphs on n vertices, the probability of
level-p QAOA (from now on denoted by QAOA1) outperforming the trivial algorithm (where
we randomly assign values to each vertex) vanishes for n going to infinity and a suitable choice
of the degree of the graphs if p does not grow at least logarithmically with n.
Faced with such limitations, we then compare the performance of RQAOA with QAOA and
investigate whether it performs better. To do so, we introduce a classical, time-efficient algorithm
which computes the expectation value of Ising-type terms – which typically appear in the problem
Hamiltonians of combinatorial optimization problems – under QAOA1 output states. This allows
us to numerically evaluate the performance of both QAOA1 and RQAOA1; in particular, we are
able to determine high-quality variational parameter in practice, making a case study possible.
We generate random, d-regular, 3-colorable connected graphs on n vertices, where (n, d) ∈
{30, 60, 150, 300}×{4, 6, 8, 10}, and determine the achieved approximation algorithms of QAOA1,
RQAOA1, and the best classical algorithm by Newman [14] for the Max-3-Cut problem on
these graphs. We observe that RQAOA1 consistently outperforms QAOA1 and that for certain
regimes (n, d), RQAOA1 even outperforms Newman’s algorithm. However, for other families of
graphs, Newman’s algorithm is capable of outputting near-optimal solutions, therefore outper-
forming RQAOA1.

A.1.2 Individual Contribution

I am the principal author of this article. The idea for this work came after Article III) [3] in this
thesis, where we introduced RQAOA to circumvent the limitations of QAOA that were found
in this article. I was in charge of the numerical methods used in this article, with the exception
of the angle optimization outlined in Appendix A, and was significantly involved in proving the
main result (Theorem 3.1.) and the write-up of the article, with the exception of Section 4.
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Hybrid quantum-classical algorithms for
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We show how to apply the recursive quantum approximate optimiza-
tion algorithm (RQAOA) to MAX-k-CUT, the problem of finding an
approximate vertex k-coloring of a graph. We compare this proposal to
the best known classical and hybrid classical-quantum algorithms. First,
we show that the standard (non-recursive) QAOA fails to solve this op-
timization problem for most regular bipartite graphs at any constant
level p: the approximation ratio achieved by QAOA is hardly better than
assigning colors to vertices at random. Second, we construct an efficient
classical simulation algorithm which simulates level-1 QAOA and level-1
RQAOA for arbitrary graphs. In particular, these hybrid algorithms give
rise to efficient classical algorithms, and no benefit arising from the use
of quantum mechanics is to be expected. Nevertheless, they provide a
suitable testbed for assessing the potential benefit of hybrid algorithm:
We use the simulation algorithm to perform large-scale simulation of
level-1 QAOA and RQAOA with up to 300 qutrits applied to ensembles
of randomly generated 3-colorable constant-degree graphs. We find that
level-1 RQAOA is surprisingly competitive: for the ensembles considered,
its approximation ratios are often higher than those achieved by the best
known generic classical algorithm based on rounding an SDP relaxation.
This suggests the intriguing possibility that higher-level RQAOA may
be a potentially useful algorithm for NISQ devices.

1 Introduction
Combinatorial optimization is currently considered one of the most promising areas
of application of near-term quantum devices. One of the primary restrictions of
such devices is the fact that they may only execute short-depth circuits with rea-
sonable fidelity. This is a consequence of the lack of sophisticated fault-tolerance
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mechanisms. Variational quantum algorithms such as the quantum approximate op-
timization algorithm (QAOA) [7] can deal with this restriction because parameters
such as the circuit depth/architecture can be chosen according to existing experi-
mental restrictions. This is in contrast to more involved quantum algorithms e.g.,
for algebraic problems: these may involve circuit depths scaling with the problem
size and have additional requirements on the connectivity of available inter-qubit
operations.

QAOA and similar proposals are hybrid algorithms: Here we envision opera-
tions on the quantum device to be supplemented by efficient, that is, polynomial-
time classical processing. As a result, the algorithmic capabilities of such a hybrid
setup should be compared to the class of efficient (polynomial-time) classical prob-
abilistic algorithms. This means that corresponding proposals face stiff competition
against decades of algorithms research in classical computer science. While there
are complexity-theoretic arguments underscoring the power of e.g., constant-depth
quantum circuits, the jury is still out on whether hybrid algorithms for near-term
devices can indeed provide a provable computational advantage over comparable
classical algorithms.

Recent no-go results show limitations of variational quantum algorithms for the
well-studied MAX-CUT problem: in [3], we showed that the Goemans-Williamson-
algorithm – the best known classical algorithm for this problem – outperforms
QAOA for any constant level p (which amounts to constant-depth for bounded-
degree graphs) in terms of the achieved approximation ratio. This result extends to
more general, possibly non-uniform Z2-symmetric hybrid local quantum algorithms,
and shows that corresponding circuits will need a circuit depth growing at least
logarithmically with the problem size to yield a better approximatio ratio. More
recently, Farhi, Gamarnik and Gutmann [6] exploited the spatial uniformity of the
QAOA algorithm to give an extremely elegant argument demonstrating a similar
logarithmic-depth lower bound for QAOA for random d-regular graphs. The title of
reference [6] aptly summarizes this conclusion using the words “the QAOA needs to
see the whole graph”.

To go beyond these negative results, one could attempt to simply use logarithmic-
depth circuits with the reasoning that for small to intermediate problem sizes, the
corresponding circuit depths may still be amenable to realization by a near-term
device. In addition to the problem of fault-tolerance, the potential merits of this
idea are unfortunately difficult to assess by means of classical simulation. Indeed, the
very idea that this approach yields computational benefits over classical algorithms
is in tension with efficient classical simulability of corresponding quantum processes.

An alternative to this necessarily limited approach is to try to find new ways of
leveraging the information-processing capabilities of short-depth circuits by intro-
duction of non-local (classical) pre- and post-processing steps, thereby sidestepping
the key assumption of locality in the aforementioned no-go results. As long as one
restricts to procedures where these additional processing steps can be executed effi-
ciently (e.g., in polynomial time) and the quantum device is used only a polynomial
number of times, the resulting hybrid algorithm still has the feature of being ef-
ficiently executable with near-term hardware. At the same time, it may provide
additional descriptive power, ultimately (hopefully) resulting in improved approxi-
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mation ratios.
The recursive quantum approximate optimization algorithm (RQAOA) is a pro-

posal of this kind which makes use of QAOA (with a constant level p) in a recur-
sive fashion with the goal of improving approximation ratios. Numerical evidence
obtained for MAX-CUT on random graphs indicates that even level-1 RQAOA sig-
nificantly improves upon QAOA (at the same level) for the MAX-CUT problem [3].
While the problem of establishing a rigorous lower bound on the approximation ra-
tio achieved by this hybrid algorithm remains open (except for very special families
of instances), this indicates that RQAOA – especially at higher levels p – has the
potential to yield results competitive with the best known classical algorithms.

Here we consider the MAX-k-CUT problem, an optimization version of the graph
k-coloring problem. Suppose G = (V,E) is a graph with n = |V | vertices and
e = |E| edges. Given an integer k ≥ 2, the goal is to find an approximate k-coloring
of vertices of G which maximizes the number of edges whose endpoints have different
colors. For each vertex j ∈ V , introduce a variable xj ∈ Zk which represents a color
assigned to j. The k-coloring cost function to be maximized is defined as

C(x) =
∑

(i,j)∈E
(1− δxi,xj

) for x ∈ Znk . (1)

The performance of a k-coloring algorithm on a given graph G is usually quantified
by its approximation ratio α, that is, the ratio between the expected value of the
cost function C(x) on a coloring x produced by the algorithm and the maximum
value maxxC(x).

The MAX-k-CUT problem can also be viewed as an anti-ferromagnetic k-state
Potts model. The standard MAX-CUT problem corresponds to k = 2. The prob-
lem is well-studied. Consider first the special case where G is a k-colorable graph.
Clearly, a uniformly random assignment of colors x achieves an approximation ra-
tio of 1 − 1/k on average. For the case where k is a power of two, Cho, Raje
and Sarrafzadeh [11] constructed an O((e+ n) log k)-time algorithm which achieves
an approximation ratio of 1 − 1/k(1 − 1/n)log k, improving upon a deterministic
O(enk)-time algorithm [21] achieving the same ratio 1 − 1/k as random coloring
(and obtained by derandomizing the latter). In the general case, when G may not
be k-colorable, Frieze and Jerrum [8] gave an algorithm achieving an approximation
ratio 1 − 1/k + 2 log k/k2 for arbitrary sufficiently large k. This is known to be
close to optimal since no polynomial-time algorithm can achieve an approximation
ratio better than 1 − 1/(34k) unless P = NP [12], and is indeed optimal if one
assumes the Unique Games Conjecture [13]. Frieze and Jerrum’s algorithm is based
on an SDP relaxation and a randomized rounding scheme inspired by Goemans and
Williamson’s algorithm for MAX-CUT [10] and comes with detailed estimates of the
approximation ratio αk achieved by the algorithm, namely

α2 ≥ 0.878567
α3 ≥ 0.800217
α4 ≥ 0.850304
α5 ≥ 0.874243
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Here the bound on α2 matches the Goemans-Williamson algorithm for MAX-CUT.
This was further improved by a new algorithm by Klerk et al. [14] with a guaranteed
approximation ratio of

α3 ≥ 0.836008 (2)
α4 ≥ 0.857487 .

Their algorithm is based on the properties of the Lovasz ϑ-function and achieves
the best currently known approximation ratio (for polynomial-time algorithms) for
k = 3. Goemans and Williamson themselves [9] independently introduced an al-
gorithm based on so-called “complex semidefinite programming” that matches this
ratio for k = 3. Unfortunately, the analysis involved in establishing the bound (2)
is significantly more complicated than the MAX-CUT case and is not known to be
generalizable to arbitrary k. Fortunately, Newman [17] describes a simple rounding
procedure that leads to an algorithm provably matching the bound (2) while only
being slightly worse than Frieze/Jerrum for larger values of k. Finally, it should also
be noted that dense 3-colorable graphs can be 3-colored in (randomized) polynomial
time [1].

Here we study approximation ratios achieved by QAOA and RQAOA, respec-
tively for MAX-k-CUT with k > 2, and compare these to those achieved by the best
known classical approximation algorithms for this problem discussed above.

Outline In Section 2, we discuss how to formulate QAOA and RQAOA for the
MAX-k-CUT-problem. In Section 3, we establish limitations on constant-level
QAOA. In Section 4, we describe an efficient classical simulation algorithm for sim-
ulating level-1 QAOA and level-1 RQAOA. In Section 5 , we discuss our numerical
findings comparing level-1 QAOA and level-1 RQAOA with the best known classical
algorithm for MAX-k-CUT.

2 Hybrid algorithms for MAX-k-CUT
Here we give a brief description of how QAOA and RQAOA can be adapted to apply
to MAX-k-CUT for any k ≥ 2.

2.1 QAOA to MAX-k-CUT
Solving MAX-k-CUT by level-p QAOA (in the following denoted by QAOAp) pro-
ceeds in an established fashion as in the case of MAX-CUT (i.e., k = 2). One
notable feature is that in the MAX-k-CUT problem, it is natural to work with n qu-
dits of dimension k each instead of qubits (all quantum circuits considered below can
be simulated on a standard qubit-based quantum computer with a constant-factor
overhead). We use the n-qudit cost function Hamiltonian

C =
∑

1≤i<j≤n

∑

b∈Zk

Ji,j(b)Πi,j(b) (3)
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where Ji,j(b) are real coefficients and

Π(b) =
∑

a∈Zk

|a, a+ b〉〈a, a+ b|

is a diagonal projector acting on Ck ⊗ Ck. Here and below the addition of color
indices is performed modulo k. The subscripts i, j in Πi,j(b) indicate which pair of
qudits is acted upon by Π(b). By definition, Πi,j(b) = Πj,i(−b).

Equation (3) defines a general class of cost function Hamiltonians. The MAX-
k-CUT problem on a graph G = (V,E) associated with the cost function (1) corre-
sponds to the choice of coefficients

Ji,j(b) =




0 , (i, j) /∈ E
1− δb,0 , (i, j) ∈ E .

(4)

The Hamiltonian C defined Eq. (3) commutes with the symmetry operator X⊗n,
where

X =
∑

c∈Zk

|c+ 1〉〈c|

is the generalized Pauli-X operator. This is analogous to the Z2-symmetry of the
Ising model exploited in [3]. Motivated by the corresponding ansatz for MAX-CUT,
we generalize the level-p QAOA ansatz to qudits as

|ψ(β, γ)〉 = U(β, γ)|+n〉 , (5)
where the level-p QAOA unitary is given by

U(β, γ) =
p∏

t=1
B(β(t))⊗ne−iγ(t)C ,

with β = (β(1), . . . , β(p)) ∈ (Rk)p, γ = (γ(1), . . . , γ(p)) ∈ Rp and where for β ∈ Rk,
the unitary B(β) : Ck → Ck is diagonal in the eigenbasis of X and given by

B(β) =
∑

a∈Zk

eiβa|φa〉〈φa| , |φa〉 ≡ Za|+〉 . (6)

In this expression,

Z =
∑

a∈Zk

ωa|a〉〈a| , ω ≡ e2πi/k

is the generalized Pauli-Z operator, whereas |+〉 ∈ Ck is the +1 eigenvector of X,
that is, |+〉 = k−1/2∑

b∈Zk
|k〉. Level-p QAOA for MAX-k-CUT proceeds by

(i) first maximing the expected value 〈ψ|C|ψ〉 where |ψ〉 ≡ |ψ(β, γ)〉 over (β, γ) ∈
(Rk)p × Rp.

(ii) then measuring an energy-maximizing state |ψ∗〉 = |ψ(β∗, γ∗)〉 in the compu-
tational basis.

The output of this process is a coloring x ∈ Znk achieving an expected approximation
ratio

max
β,γ
〈ψ|C|ψ〉/max

x
C(x) .

This concludes the description of QAOAp.
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2.2 Adapting RQAOA to MAX-k-CUT
The RQAOA proceeds by successively reducing the size of the problem, eliminat-
ing a single variable in each step by a procedure called correlation rounding. To
formulate RQAOA for MAX-k-CUT, we begin by noting that the family of Hamil-
tonians defined by (3) is closed under variable eliminations (up to irrelevant additive
constants).

Level-p RQAOA proceeds by iterative applications of several single variable elim-
ination steps as described by (i) and (ii) described below. We note that in the very
first variable elimination step, the scalar Mi,j(b) (for a fixed pair of vertices (i, j))
computed in (i) depends only on whether or not b is non-zero. This is a consequence
of the specific form (4) of the coefficients Ji,j(b) in the (initial) MAX-k-CUT cost
function Hamiltonian C (Eq. (3)). However, this is no longer necessarily the case
after one or more variable elimination steps have been completed since the cost
function Hamiltonian is updated according to (ii).

A single variable elimination step of level-p RQAOA works as follows:

(i) First, maximize the expected value 〈ψ|C|ψ〉 with |ψ〉 = |ψ(β, γ)〉 over (β, γ) ∈
(Rk)p × Rp. Then compute the mean value

Mi,j(b) = 〈ψ|Πi,j(b)|ψ〉 for all pairs of vertices (i, j) .

Note that 0 ≤Mi,j(b) ≤ 1 since Πi,j(b) is a projector.

(ii) Next, find a pair of vertices (i, j) and a color b ∈ Zk with the largest magnitude
of Mi,j(b) (breaking ties arbitrarily). Then impose the constraint

xj = xi + b (mod k) , (7)

restricting the search space to the span of computational basis vectors |x〉 as-
sociated with colorings x ∈ (Zk)n satisfying (7). Observe that |ψ〉 has support
on such basis states if and only if Mi,j(b) = 1. To eliminate the variable xi,
the constraint (7) is inserted into the cost function Hamiltonian as follows: use
the identity

Πi,j(b)Πj,h(a− b) = Πi,j(b)Πi,h(a)

which holds for all h 6∈ {i, j} and all a ∈ Zk. Thus Πi,h(a) = Πj,h(a− b) on the
subspace satisfying the constraint. Replacing Πi,h(a) by Πj,h(a− b) in the cost
function Hamiltonian for all h 6∈ {i, j} one gets a new Hamiltonian C ′ of the
form (3) (up to an additive constant) acting on n − 1 variables, i.e., C ′ acts
trivially on the i-th qudit. The cost function C ′ is defined on a graph G′ with
n− 1 vertices obtained from G by identifying the vertices i and j.

By construction, the maximum energy of C ′ coincides with the maximum energy
of C over the subset of assignments satisfying the constraints (7). Since the new
Hamiltonian C ′ acts trivially on the qudit i, this qudit can be removed from the
simulation. This completes the variable elimination step.

RQAOAp executes several variable elimination steps in succession, eliminating
one variable in each recursion until the number of variables reaches a predefined
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cutoff value nc. The remaining Hamiltonian then only depends on nc variables is
minimized by a purely classical algorithm, for example brute-force search. An (ap-
proximate) solution x ∈ Znk of the original problem can then be obtained recursively
by reconstructing eliminated variables using the constraints (7).

Since the introduction of RQAOA in [3], other modifications of QAOA involv-
ing iterated rounding procedures have been proposed, see e.g., [16, Section V.A]. In
contrast to the variant discussed there, RQAOA’s rounding procedure is determin-
istic and relies on rounding correlations between qudits rather than individual spin
polarizations.

Further variations of RQAOA have been proposed and studied in [5, 20]. There,
the authors consider “warm-starting” the algorithm by beginning with a solution re-
turned by an efficient classical algorithm (for the case of MAX-CUT, the Goemans-
Williamson algorithm) instead of the standard product state. They provided numer-
ical evidence that both QAOA and RQAOA can achieve better performance when
supplemented with “warm-starting”, making this a promising potential avenue for
future investigations.

3 Limitations of QAOAp applied to MAX-k-CUT
Limitations for level-p QAOA with p = O(log n) applied to MAX-CUT were ob-
tained for ensembles of random d-regular graphs in [6]. Here we show analogous
results for QAOA applied to MAX-k-CUT for k > 2. Our main result is the
following theorem. It shows that unless the level p of QAOA grows at least log-
arithmically with n, QAOA cannot be more than marginally better (for large n
and d) than randomly guessing a coloring, for most d-regular bipartite graphs. We
denote by Gbin,d the ensemble of uniformly random d-regular bipartite graphs on n
vertices. For a graph G, we denote by MCk(G) = maxx∈Zn

k
C(x) the maximum

k-cut of G. Note that MCk(G) = nd/2 for any d-regular bipartite graph G. Let
αMCk
p (G) be the approximation ratio of MAX-k-CUT QAOAp applied to G, that

is, αMCk
p (G) = 〈ψ(θ∗))|C(G)|ψ(θ∗)〉/MCk(G) where θ∗ = (β∗, γ∗) ∈ (Rk)p × Rp is

an optimal set of angles, and where C(G) is the cost function Hamiltonian for G
defined by Eq. (3).

Theorem 3.1. There is a constant ζ > 0 such that

Pr
G∼Gbi

n,d

[
αMCk
p (G) ≥ (1− 1/k) + od(1) + on(1)

]
≤ o(1)

for all degrees d satisfying d ≥ ζ and d = o(
√
n) and all levels p < 1

2 logd n.

Our approach generally follows the basic idea of [6] and also exploits the fact
that QAOA is a local, and furthermore uniform algorithm. In contrast to the main
result of [6], which is expressed as an upper bound on the expected approximation
ratio (over the choice of graph) achieved by QAOA, Theorem 3.1 shows that the
approximation ratio is upper bounded for almost all graphs in the considered en-
semble. Analogous to the setting of [6], where it is shown that the approximation
ratio converges to 1/2 in the limit of large d, we show that the limiting value is
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the approximation ratio achieved by random guessing. In the analysis of [6], the
explicitly known expected maximal cut size for random d-regular graphs is used.
The analogous value for MAX-k-CUT is not known for random d-regular graphs.
Instead, we rely on an upper bound on the size of the maximum k-cut for typical
d-regular random graphs obtained in the analysis of an SDP-relaxation from [4].
In our analysis, we pay special attention to the graph-dependence of the optimal
QAOA angles when computing QAOA approximation ratios: here we make use of
the fact that the figure of merit (the average energy) for different typical graphs
differs only by a negligible amount for any fixed angles.

Given a graph G = (V,E), let (i, j) = e ∈ E be an edge in G. We write Np(e)
to denote the p-local neighborhood of e, i.e., the subgraph induced by the set of
all vertices h such that d(h, i) ≤ p or d(h, j) ≤ p. Let Tp,d denote the tree such
that all vertices except the leaves are d-regular and such that there exists an edge
(i, j) such that all leaves are distance p from either i or j. Let nTp,d

(G) denote the
number of edges e in a graph G such that Np(e) 6∼= Tp,d. The key insight of [6] is the
fact that for p sufficiently small compared to n, it holds with high probability that
almost all p-local neighborhoods of a random d-regular graph look like Tp,d. This is
expressed by the following lemma, where we denote by Gn,d the uniform distribution
over d-regular graphs on n vertices.

Lemma 3.2. [6] Let n, d and A ∈ (0, 1) be given. Suppose that

(d− 1)2p < nA . (8)

Then there exists some constant A′ ∈ (A, 1) such that

EG∼Gn,d

[
nTp,d

(G)
]

= O(nA′) .

In particular, by Markov’s inequality,

Pr
G∼Gn,d

[nTp,d
(G) ≥ nB] = O(nA′−B) = o(1) for all B ∈ (A′, 1) . (9)

Moreover, the same result also holds for the ensemble Gbin,d of random d-regular bi-
partite graphs.

The proof of Lemma 3.2 relies on the fact that the number of cycles of length
` in a random d-regular graph is Poisson distributed, allowing an upper bound to
be established on the expected number of cycles below a certain length [23]. This
latter bound applies to both random d-regular graphs as well as random bipartite
d-regular graphs. Both ensembles will be of relevance in the proof of Theorem 3.1.

Let us now fix some B ∈ (A′, 1). We will say that a graph G on n vertices
is T -typical if nTp,d

(G) < nB. Lemma 3.2 says that a random (possibly bipartite)
d-regular graph G is T -typical with high probability. Since QAOA is a local, and
moreover uniform, algorithm, the performance of QAOAp on any given graph can be
related to the performance of QAOAp on the induced p-neighborhood of each edge.
Lemma 3.2 therefore suggests that to study QAOAp for generic d-regular graphs, it
suffices to consider the behavior of QAOAp on Tp,d.

Let now C(G) be the cost function Hamiltonian for the MAX-k-CUT problem
associated with G (see Eq. (3)), and let ψ(θ) denote the level-p QAOA state defined

Accepted in Quantum 2022-03-23, click title to verify. Published under CC-BY 4.0. 8



by Eq. (5), where we use the shorthand θ = (β, γ) for the collection of all angles.
Then the expectation value for MAX-k-CUT QAOAp on G = (V,E) can be written
as

〈ψ(θ)|C(G)|ψ(θ)〉 =
∑

(i,j)∈E
〈ψ(θ)|Ci,j|ψ(θ)〉 ,

where Ci,j is the term in the Hamiltonian (3) acting non-trivially on both qudits i
and j. Note that due to the locality of the QAOA unitary, each of the individual
terms 〈ψ(θ)|Ci,j|ψ(θ)〉 in this expression a function of the subgraph Np(ij) and θ.

Now, letG be a d-regular T -typical graph. Each of the local terms 〈ψ(θ)|Ci,j|ψ(θ)〉
is bounded above by 1 since Ci,j is a projection. Since for a T -typical graph G, all
but nTp,d

(G) < nB of the edges satisfy Np(e) ∼= Tp,d, it follows that

〈ψ(θ)|C(G)|ψ(θ)〉 =
(
nd

2 − nTp,d
(G)

)
CT (θ) +

∑

(i,j):Np(ij) 6∼=Tp,d

〈ψ(θ)|Ci,j|ψ(θ)〉

= nd

2 CT (θ) +O(nB) . (10)

In this expression, the function CT (θ) = 〈ψ(θ)|Ci′,j′|ψ(θ)〉 is the local term associated
with any one edge (i′, j′) such that Np(i′j′) ∼= Tp,d. Importantly, the function CT (·)
depends on (p, d) only, i.e., it is universal for all T -typical graphs G.

An important consequence is that the maximal expectation value achieved by
level-p QAOA is roughly identical for all T -typical graphs G: if G1 and G2 are
T -typical, then

∣∣∣∣max
θ
〈ψ(θ)|C(G1)|ψ(θ)〉 −max

θ
〈ψ(θ)|C(G2)|ψ(θ)〉

∣∣∣∣ = O(nB) . (11)

This follows from the fact that
∣∣∣〈ψ(θ)|C(G1)|ψ(θ)〉 − 〈ψ(θ)|C(G2)|ψ(θ)〉

∣∣∣ = O(nB) for any set of angles θ(12)

as a consequence of (10), and the inequality
∣∣∣‖f‖∞−‖g‖∞

∣∣∣ ≤ ‖f−g‖∞. Specializing
Eq. (12) to θ = arg maxθ〈ψ(θ)|C(G1)|ψ(θ)〉 also shows that a choice of optimal angles
for any given T -typical graph G1 will also be nearly optimal for all other T -typical
graphs G2.

We are going to establish an upper bound on the performance of QAOA on T -
typical graphs. To this end, we use the following upper bound on the typical size
of the maximum k-cut of a graph G in the ensemble Gn,d of d-regular graphs. Then
the following holds:

Theorem 3.3. [4, Theorem 19] There exists constants λ, ζ > 0 such that

Pr
G∼Gn,d

[
MCk(G) ≤

(
1− 1

k

)
nd

2 + λn
√
d

]
≥ 1− e−2n

for all degrees d satisfying d ≥ ζ and d = o(
√
n).

Accepted in Quantum 2022-03-23, click title to verify. Published under CC-BY 4.0. 9



This implies that for all degrees d satisfying the hypotheses of Theorem 3.3, we
have

EG∼Gn,d
[MCk(G)] ≤

(
1− 1

k

)
nd

2 + λn
√
d+ o(n) . (13)

Lemma 3.4. Let n, d satisfy the hypotheses of Theorem 3.3 and let p, A be such
that Eq. (8) holds. Then there exists a constant B′ ∈ (0, 1) such that the following
holds for sufficiently large n: There exists a T -typical d-regular graph G satisfying

MCk(G) < EG∼Gn,d
[MCk(G)] + nB

′
. (14)

Proof. Let T denote the set of T -typical graphs, and let us abbreviate
E = EG∼Gn,d

[MCk(G)]. We show that a randomly chosen d-regular graph G ∼ Gn,d
satisfies the desired properties (i.e., G ∈ T and Eq. (14)) with non-zero probability.
Indeed, we have by the union bound

Pr
G∼Gn,d

[
G 6∈ T or MCk(G) ≥ E + nB

′] ≤ Pr
G∼Gn,d

[G 6∈ T ] + Pr
G∼Gn,d

[
MCk(G) ≥ E + nB

′]
.

(15)

We show that sum on the rhs is strictly less than 1 for a suitable choice of B′ ∈ (0, 1)
in the limit n→∞, implying the claim. Indeed, by Eq. (9) of Lemma 3.2, there is
some A′ ∈ (A, 1) such that

Pr
G∼Gn,d

[G 6∈ T ] = O(nA′−B) whenever B ∈ (A′, 1) . (16)

On the other hand, we have with Markov’s inequality

Pr
G∼Gn,d

[
MCk(G) ≥ E + nB

′] = 1
1 + nB′/E

≤ 1− 1
2n

B′/E

by Taylor series expansion. Note that the latter is well-defined, i.e., nB′/E → 0
for n → ∞ for all B′ ∈ (0, 1), since we have E = Ω(n). This is because a max
k-cut is at least as large as a max 2-cut, and the expected max 2-cut scales as Θ(n).
Inserting (13), we conclude that

Pr
G∼Gn,d

[
MCk(G) ≥ E + nB

′] ≤ 1− 1
2



((

1− 1
k

)
d

2 + λ
√
d

)−1

nB
′−1 + o(nB′−1)


 .

(17)

Combining Eqs. (15), (16), (17) and comparing exponents of n, we conclude that

Pr
G∼Gn,d

[
G 6∈ T or MCk(G) ≥ E + nB

′]
< 1 for sufficiently large n

whenever A′ −B < B′ − 1.

The Lemma therefore holds for any choice of B′ ∈ (1−B + A′, 1).
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Now, let us fix a T -typical graph G∗ from Lemma 3.4 with some chosen constant
B′. Then we have

max
θ
〈ψ(θ)|C(G∗)|ψ(θ)〉 ≤ MCk(G∗) < EG∼Gn,d

[MCk(G)] + nB
′
.

The first inequality follows from the fact that the expected value of the MAX-k-CUT
cost function for colorings returned by QAOA cannot exceed the actual maximum.
From inequality (13), we then have the bound

max
θ
〈ψ(θ)|C(G∗)|ψ(θ)〉 ≤

((
1− 1

k

)
d

2 + λ
√
d

)
· n+ o(n). (18)

From the uniform bound Eq. (11) between the maxima of T -typical graphs, the
same bound holds for any T -typical graph G with the same n and d as G∗, that is

∣∣∣∣max
θ
〈ψ(θ)|C(G)|ψ(θ)〉 −max

θ
〈ψ(θ)|C(G∗)|ψ(θ)〉

∣∣∣∣ = o(n).

To obtain a bound on the approximation ratio, we can focus our attention on
d-regular bipartite graphs, which are guaranteed to have a maximum k-cut of size
nd/2 for any k. Since Lemma 3.2 applies equally to random bipartite graphs, so
that a random bipartite d-regular graph is also T -typical with probability 1− o(1).
Letting G be a T -typical bipartite graph with n and d satisfying the hypothesis of
Theorem 3.3, the bound (18) holds for G. Dividing through by nd/2, the approxi-
mation ratio αMCk

p (G) is therefore bounded above by

αMCk
p (G) = 2

nd
max
θ
〈ψ(θ)|C(G)|ψ(θ)〉 ≤

(
1− 1

k

)
+ od(1) + on(1).

This concludes the proof of Theorem 3.1.

4 Classical simulation of level-1 RQAOA
A polynomial-time classical algorithm for computing expectation values
〈ψ(β, γ)|ZjZk|ψ(β, γ)〉 for level-1 QAOA states |ψ(β, γ)〉 and the MAX-CUT cost
function was given by Wang et al. [22]. Our work [3] describes a generalized version
of this algorithm applicable to any Ising-type cost function.

In this section, we consider the k-coloring cost function Hamiltonian (3) and more
generally Hamiltonians of the form (3) and give a classical algorithm for computing
expectation values 〈ψ|Zr

uZ
s
v |ψ〉, where |ψ〉 = |ψ(β, γ)〉 is the level-1 QAOA state

defined in Eq. (5) and Zu is the generalized Pauli-Z operator acting on a qudit u ∈
[n]. The algorithm has runtime O(k5(du + dv)), where dj is the degree of a vertex
j. For a constant number of colors k, this scales at most linearly with n. For
constant-degree graphs, the computation requires a constant amount of time.

A natural application of our algorithm is finding optimal angles (β, γ) for level-
1 QAOA states. Indeed, since the variational energy is a linear combination of
the expected values 〈ψ|Zr

uZ
s
v |ψ〉, it can be efficiently computed classically using

our algorithm. This eliminates the need to prepare the variational state |ψ〉 on
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a quantum device for each intermediate choice of the angles (β, γ) in the energy
optimization subroutine. In fact, the technique discussed here can easily be adapted
to also efficiently compute partial derivatives ∂

∂γ
〈ψ|Zr

uZ
s
v |ψ〉 and ∂

∂βj
〈ψ|Zr

uZ
s
v |ψ〉, thus

sidestepping the need of using a quantum device even if the latter is used to estimate
the gradient of the cost function. However, once the optimal angles (β, γ) are found,
a quantum device would be needed to prepare the optimal variational state and
perform a measurement to obtain a classical solution of the problem. Since the final
measurement is not used in the recursive version of QAOA, our algorithm enables
efficient classical simulation of level-1 RQAOA in its entirety.

4.1 General algorithm for level-1 QAOA-type expectation values
Our formulation extends beyond our QAOA Ansatz for MAX-k-CUT and could
be used in other contexts. Specifically, let C be a 2-local Hamiltonian on n k-
dimensional qudits given by

C =
∑

1≤u<v≤n
Cu,v ,

where we assume that the terms Cu,v and Cu′,v′ acting on different qudits u < v
and u′ < v′ commute pairwise. We will also write Cv,u ≡ SWAPCu,vSWAP† for
the interaction term Cu,v acting on qudits (v, u) (in this order) when u < v. Let
|+〉 ∈ Ck be a qudit state. We are interested in generalized QAOA states of the
form

|Ψ(β, γ)〉 = B(β)⊗neiγC |+〉⊗n (19)

where B(β) : Ck → Ck is a unitary on Ck for any β ∈ Rk. We assume that
B(−β) = B(β)† is the adjoint of B(β). The states defined by Eq. (5) are a special
case.

Let O be any two-qudit observable. Our goal is to compute the expectation value

µu,v(O) = 〈ψ(β, γ)|Ou,v|ψ(β, γ)〉 , (20)

where the subscripts u, v indicate the pair of qudits acted upon by O. Define the
density matrix

ρu,v = Trw 6∈{u,v}
(
eiγC |+〉〈+|⊗ne−iγC

)
.

One can compute ρu,v in time O(n) by initializing the pair of qudits u, v in the state
eiγHu,v |+〉⊗2 and sequentially coupling {u, v} to each of the remaining qudits w in
the following way: qubit w is initialized in the state |+〉 and then coupled to {u, v}
by the respective terms in the cost function C, namely eiγ(Cu,w+Cv,w). Finally, w is
traced out.

The algorithm for computing ρu,v can be summarized as follows:
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η ← eiγCu,v |+〉〈+|⊗2e−iγCu,v

for w ∈ [n]\{u, v} do
η ← Ew(η)

end for
return η

where Ew is a two-qudit quantum channel defined as

Ew(η) = Tr2
[
eiγ(Cu,w+Cv,w)(η ⊗ |+〉〈+|)e−iγ(Cu,v+Cv,w))

]
. (21)

The final state ρu,v involves n− 2 applications of Ew in general. By restriction to w
which interact non-trivially with {u, v}, this can be reduced to fewer than du + dv
applications, where du is the degree of u in the interaction graph associated with
C (i.e., (u,w) is an edge if and only if Cu,w 6= 0). This improvement applies for
example to the MAX-k-CUT cost function Hamiltonian (3) for a bounded-degree
graph.

Finally, the definition (19) of |ψ(β, γ)〉 together with the assumed commutativity
of the terms Cu,v in the Hamiltonian give that the expectation value (20) can be
computed according to

µu,v(O) = Tr
(
ρu,vB(−β)⊗2Ou,vB(β)⊗2

)
. (22)

This computation is illustrated in Fig. 1. To find the k-dependence of the overall
complexity of this algorithm, we need to consider the evaluation of the superopera-
tors Ew defined by (21) and the expression (22) for the problem at hand.

4.2 Simulating QAOA1 for MAX-k-CUT
Here we specialize the algorithm from Section 4.1 to the MAX-k-CUT problem. For
this problem, B(β) is given by Eq. (6) whereas C (cf. Eq. (3)) is a diagonal 2-local
Hamiltonian commuting with X⊗n. The most general diagonal 2-local Hamilto-
nian C commuting with X⊗n has the following form: Let {h(a)}a∈Zk

be a family of
n× n-matrices satisfying

hu,v(r) = hv,u(r) = hu,v(−r) (23)

for all u, v ∈ [n] and r ∈ Zk. Then C can be written as

C =
∑

1≤u<v≤n
Cu,v , Cu,v =

∑

a∈Zk

hu,v(a)Za
uZ
−a
v =

∑

a∈Zk

hv,u(a)Za
vZ
−a
u . (24)

From Eq. (23) one gets Cv,u = Cu,v and C†u,v = Cu,v. Let us agree that Cu,u = 0 for
all u. The Hamiltonian Eq. (3) takes the form (24) with hu,v(a) = 1

k

∑
b∈Zk

Ju,v(b)ωab
since

Πu,v(b) = 1
k

∑

a∈Zk

ωabZa
uZ
−a
v .
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(a) The expression of interest.

(b) Single-qubit unitaries B(β) not acting on the qudits
{1, 2} cancel.

(c) The two unitaries e±iγC1,2 can be moved to the left and
right. Unitaries e±iγCp,q acting on qudits p, q 6∈ {1, 2} can
be moved to the center.

(d) where they cancel with their adjoints.

(e) Again using commutativity of the operators Cp,q, the
remaining unitaries can be grouped into pairs of the form
e±iγ(C1,w+C2,w) where w 6∈ {1, 2}.

(f) The resulting expression can be interpreted as the result
of applying a sequence of superoperators Ew to the state
eiγC1,2 |+〉〈+|⊗2e−iγC1,2 , and then taking the expectation
of B(−β)⊗2C1,2B(β)⊗2.

Figure 1: An expression of the form 〈ψ(β, γ)|Cu,v|ψ(β, γ)〉. Here we assumed that n = 4 and
(u, v) = (1, 2). Single-qudit operators of the form B(β) are represented by circles, and their
adjoints B(β)† by filled circles. Similarly, gates of the form e−iγCp,q respectively eiγCp,q for
qudits p < q are represented by connecting lines between the corresponding qudits with empty
respectively filled circles.
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Note that

〈a, b|e−iγCp,q |a, b〉 = exp
[
−iγĥp,q(a− b)

]
(25)

where the Fourier transform ĥ(b) of h is defined as a hermitian n × n matrix with
entries

ĥp,q(b) =
∑

a∈Zk

hp,q(a)ωab , ω ≡ e2πi/k .

A straightforward computation using (25) then gives that the superoperator Ew (cf.
Eq. (21)) is equal to

Ew(η) = 1
k

∑

a∈Zk

Dw(a)ηDw(a)†

with diagonal Kraus operators

Dw(a)|c, d〉 = exp
[
−iγĥu,w(c− a)− iγĥv,w(d− a)

]
|c, d〉 .

A general two-qudit mixed state can be classically described by a Hermitian matrix
of size k2 × k2. Multiplying this matrix by a diagonal Kraus operator Dw(a) takes
time O(k4). Thus a single application of the quantum channel Ew can be simulated
classically in time O(k5). In total, the matrix ρu,v can thus be computed in fewer
than O(k5(du + dv)) steps, where du and dv are the degrees of u and v in the
interaction graph defined by C.

Finally, we claim that the expectation value µu,v(O) in (22) can be computed in
time O(k5). Indeed, we have

µu,v(O) = Tr(ηOu,v) where η = B(β)⊗2ρu,vB(−β)⊗2.

Let us write
ρu,v =

∑

a,b∈Zk

M(a, b)⊗ |a〉〈b|

for some k × k matrices M(a, b). Accordingly,

(B(β)⊗ I)ρu,v(B(−β)⊗ I) =
∑

a,b∈Zk

M ′(a, b)⊗ |a〉〈b| ≡ η′

where M ′(a, b) = B(β)M(a, b)B(−β) can be computed in time O(k3) for each pair
a, b by multiplying k × k matrices. Thus one can compute the matrix of η′ in the
Z-basis in time O(k5). Rewrite this matrix as

η′ =
∑

a,b∈Zk

|a〉〈b| ⊗ L(a, b)

for some k × k matrices L(a, b). Then

η = (I ⊗B(β))η′(I ⊗B(−β)) =
∑

a,b∈Zk

|a〉〈b| ⊗ L′(a, b),

where L′(a, b) = B(β)L(a, b)B(−β) can be computed in time O(k3) for each pair
a, b by multiplying k × k matrices. Thus one can compute the matrix of η in time
O(k5), as claimed. Finally µu,v(O) = Tr(ηOu,v) can be computed in time O(k5).
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5 Comparison of QAOA, RQAOA and classical algorithms
With the algorithm proposed in Section 4, we have simulated level-1 QAOA and
level-1-RQAOA on large problem instances of MAX-k-CUT. Our focus is on (ap-
proximate) 3-colorability, i.e., k = 3. To compare these hybrid algorithms to classical
algorithms, we have also applied the best known efficient classical approximation al-
gorithm (as measured by the approximation ratio) to each problem instance, see
Section 1 for an overview of these algorithms.

Concretely, we generate random d-regular, 3-colorable connected graphs on n
vertices according to an ensemble G[d, n] defined as follows. Here we assume d <
2n/3 to be even, and n to be a multiple of 3. A graph G is drawn from G[d, n] as
follows:

1. Define a partition [n] = V1∪V2∪V3 into three pairwise disjoint subsets of each
size |Vj| = n/3 for j = 1, 2, 3.

2. For each pair r < s with r, s ∈ {1, 2, 3}, generate a random bipartite d-regular
graph with vertex set Vr ∪ Vs and bipartition Vr : Vs. This graph is generated
by iteratively going through each v ∈ Vr, and adding edges (v, w1), . . . , (v, wd)
where {w1, . . . , wd} ⊂ Vs are chosen uniformly at random among those vertices
in Vs that (currently) have degree less than d. If at some point during this
process, no such vertices are available, the generation of the bipartite graph is
restarted.

3. Check whether the obtained graph contains a complete graph on 3 vertices
(i.e., a triangle) and is connected. If either of these properties is not satisfied,
start over.

By definition, a graph G = (V,E) drawn from G[d, n] is 3-colorable and thus the
cutsize of the maximum 3-cut is equal to Cmax = |E| = nd/2. In particular, ex-
pected approximation ratios for QAOA1 can be immediately computed from the
expectation 〈ψ|C|ψ〉 of the cost function Hamiltonian. Similarly, for any approxi-
mate coloring x ∈ Zn3 produced by RQAOA1 (or any algorithm, for that matter),
the achieved approximation ratio is C(x)/Cmax. We use the efficient classical algo-
rithm by Newman [17] for comparison, as it has the best approximation guarantee
(worst-case bound) among all known efficient classical algorithms for k = 3, see
Section 1. Note that the theoretical lower bound 0.836008 on the expected approx-
imation ratio of the classical algorithm [17] used here matches the one established
for the algorithm in [14] in the case k = 3 and the algorithm in [9].

Details for implementation. We empirically observed that the energy landscape
contains local maxima and stationary points which often prevent gradient descent
in QAOA and RQAOA from finding the optimal solution. The presence of many
points with a negligible gradient is a well-studied phenomenon under the name of
barren plateaus [15]. Several promising strategies for alleviating this problem have
been previously explored [18, 24, 19].

For the specific case of level-1 RQAOA applied to MAX-3-CUT, the energy
function to be optimized depends on four arguments, three of which can be efficiently
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computed if the fourth one is known. This makes grid search an attractive and
cheap alternative to gradient descent as there is only one dimension to be searched.
It allows us to sidestep potential convergence problems with gradient descent and
to study large graphs. In more detail, the energy E(β, γ) = 〈ψ(β, γ)|C|ψ(β, γ)〉 of
the cost function Hamiltonian is a function of β = (β0, β1, β2) ∈ R3 and γ ∈ R.
However, as we show in Appendix A, for any fixed value γ ∈ R, parameters β ∈ R3

maximizing the function β 7→ E(β, γ) can be found efficiently by computing roots
of a degree-4 polynomial and performing a binary search on the unit circle. This
significantly reduces the dimensionality of the optimization problem: only an interval
of values γ ∈ R needs to be searched. Because the function to be optimized further
satisfies E((β0, β1, β2), γ) = E((−β0,−β2,−β1)),−γ) as C is self-adjoint and real,
and B((β0, β1, β2)) = B((−β0,−β1,−β2)), it further suffices to restrict the grid
search to the interval γ ∈ [0, π).

We thus chose 50 equidistant grid points γ1, . . . , γ50 in the interval [0, π] for γ.
After finding the grid point γs that minimizes the cost function (see Appendix A),
we performed another refined grid search with 50 additional equidistant grid points
on the interval [γs−1, γs+1].

In our numerical experiments we find that optimal angles for QAOA1 for the
considered random ensembles of graphs concentrate around certain values. This
is in line with the analytical findings of [2] for QAOA: there it is shown that for
random ensembles of 3-regular graphs, frequencies of certain local subgraphs con-
centrate, yielding a simple dependence of the figure of merit on the angles. Similar
observations are also used in the proof of our Theorem 3.1.

Choice of parameters. For each pair of parameters (n, d) ∈ {30, 60, 150, 300} ×
{4, 6, 8, 10}, we generated 20 graphs from G[d, n].

Numerical results. In Figures 2, 3, 4 and 5, we illustrate obtained achieved ap-
proximation ratios of QAOA1, RQAOA1 and the best approximation ratio of the
classical algorithm by Newman [17] over 100 samples generated in the correlation
rounding step (magenta, green and blue bars). For Newman’s algorithm, we addi-
tionally provide the empirical average and standard deviation of the samples, which
are indicated through error bars. Also, the theoretically expected approximation
ratio of αNewman = 0.836008 for Newman’s algorithm is shown.

As expected, we find that RQAOA1 significantly outperforms QAOA1 for the
considered family of graphs. Their performance deteriorates with increasing degree d
(although RQAOA1 is less susceptible to this). This is consistent with our no-
go result (Theorem 3.1), which applies to random d-regular graphs of sufficiently
large (but also constant) degree d. We note, however, that Theorem 3.1 does not
immediately pertain to the numerical examples considered here because of the (non-
explicit) lower bound on d and its asymptotic nature (as a function of n).

More interesting is the comparison to Newman’s classical algorithm. Being a
randomized algorithm, it is natural to consider the empirical means and variance
of the achieved approximation ratio (although in practice, only the best coloring
among a constant number of runs would be used). An analytic understanding of
the exact behavior of Newman’s algorithm appears to be a difficult problem. As
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already pointed out by Goemans and Williamson in their seminal paper [10], even
computing the variance analytically appears to be challenging.

In our numerical experiments we find that the variance of Newman’s algorithm
increases with d and decreases with n. In cases where the variance is large, among
the 100 trials considered, we typically find an essentially optimal solution1. We note,
however, that the empirical average approximation ratio appears to be close to the
theoretical worst-case guarantee αNewman.

With the observations above we can distinguish two regimes when comparing
the performance of RQAOA to Newman’s algorithm:

In the first regime (see e.g., Figs. 3c and 4d), where Newman’s algorithm has high
variance, we find that the optimal solution returned is superior to the one provided
by RQAOA. Nevertheless and perhaps surprisingly, the coloring output by RQAOA
(which is a deterministic algorithm up to estimation errors for expectation values
when used in practice) outperforms the average approximation ratio of Newman’s
algorithm.

In the second regime (see e.g., Figs. 2a and 5a), Newman’s algorithm is strongly
concentrated about its average. In this case, RQAOA1 outperforms virtually all
instances returned by Newman’s algorithm. This regime includes instances with a
large number of vertices, indicating that RQAOAmay be a useful heuristic algorithm
for problems of practical interest.

Larger levels p > 1 may further increase achieved approximation ratios of RQAOA.
Unfortunately, exploring this may require new ideas or actual quantum devices. This
is suggestive of RQAOA being a promising candidate for NISQ applications.

1Let us mention that the 3-coloring problem for dense 3-colorable graphs admits an efficient
algorithm [1], although this is not directly connected to the performance of Newman’s algorithm.
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(a) n = 30, d = 4 (b) n = 30, d = 6

(c) n = 30, d = 8 (d) n = 30, d = 10

Figure 2: Comparison of approximation ratios between QAOA1, RQAOA1 and the algorithm
by Newman for MAX-3-CUT, where we took the best approximation ratio over 100 samples
of graphs with n = 30 vertices. The expected approximation ratio of Newman’s algorithm is
indicated by the horizontal line at α = 0.836008. For each graph, the empirical mean and
standard deviation of Newman’s algorithm are indicated through the error bars.
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(a) n = 60, d = 4 (b) n = 60, d = 6

(c) n = 60, d = 8 (d) n = 60, d = 10

Figure 3: Comparison of approximation ratios between QAOA1, RQAOA1 and the algorithm
by Newman for MAX-3-CUT, where we took the best approximation ratio over 100 samples
of graphs with n = 60 vertices. The expected approximation ratio of Newman’s algorithm is
indicated by the horizontal line at α = 0.836008. For each graph, the empirical mean and
standard deviation of Newman’s algorithm are indicated through the error bars.
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(a) n = 150, d = 4 (b) n = 150, d = 6

(c) n = 150, d = 8 (d) n = 150, d = 10

Figure 4: Comparison of approximation ratios between QAOA1, RQAOA1 and the algorithm
by Newman for MAX-3-CUT, where we took the best approximation ratio over 100 samples
of graphs with n = 150 vertices. The expected approximation ratio of Newman’s algorithm
is indicated by the horizontal line at α = 0.836008. For each graph, the empirical mean and
standard deviation of Newman’s algorithm are indicated through the error bars.
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(a) n = 300, d = 4 (b) n = 300, d = 6

(c) n = 300, d = 8 (d) n = 300, d = 10

Figure 5: Comparison of approximation ratios between QAOA1, RQAOA1 and the algorithm
by Newman for MAX-3-CUT, where we took the best approximation ratio over 100 samples
of graphs with n = 300 vertices. The expected approximation ratio of Newman’s algorithm
is indicated by the horizontal line at α = 0.836008. For each graph, the empirical mean and
standard deviation of Newman’s algorithm are indicated through the error bars.
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6 Discussion and Outlook
We formulated a variation of QAOA using qudits which is applicable to non-binary
combinatorial optimization. We study its applicability by considering the MAX-
k-CUT problem with k > 2. We show that this version of QAOA shares certain
limitations with the original proposal for qubits: its expected performance on ran-
dom d-regular k-colorable graphs (for d = o(

√
n)) approaches random guessing in

the limit of large d. We give an efficient classical simulation algorithm for its level-1
version. This method extends to problem Hamiltonians with pairwise commuting
2-local terms. The algorithm can also be used to simulate level-1 recursive QAOA
(RQAOA), a hybrid classical-quantum algorithm designed to overcome the limita-
tions of standard QAOA.

While efficient simulability precludes the possibility of a quantum advantage
compared to the best efficient classical algorithm, it offers a crucial window into the
performance of QAOA and RQAOA. We use our simulation algorithm to perform
numerical experiments on graphs with up to 300 vertices, obtaining approximation
ratios for MAX-3-CUT achieved by level-1 QAOA and RQAOA. We compare these
results to the best known efficient classical algorithms for MAX-3-CUT, specifically
the recent algorithm by Newman [17]. Our experiments show that RQAOA1 (which
significantly outperforms QAOA1) is competitive with Newman’s classical algorithm
for generic k-colorable graphs. See Section 5 for a detailed discussion.

Our observations suggest that RQAOA may be a viable application for NISQ de-
vices combined with efficient classical computation: it may be applicable to problem
sizes of real-world relevance. Our results are indicative of the potential of RQAOA
at larger levels p, which may no longer be simulable classically, and which hold
promise. Future work may seek to establish performance guarantees for RQAOAp

akin to the rigorous results available for existing classical algorithms. As an exam-
ple, we proved in [3] that for the “ring of disagrees”, RQAOA1 achieves the optimal
approximation ratio. A next step in the analysis of RQAOA would be to find more
interesting classes of graphs for which achievability results can be established.
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A MAX-3-CUT angle optimization without gradient descent
First let us write the expectation value (22) in the form that makes its dependence on
β more explicit. Recall from (6) that for each a ∈ Zk, the X-eigenstate |φa〉 ≡ Za|+〉
is an eigenvector of the unitary B(β) to eigenvalue eiβa . Since the vectors {|φa〉}a∈Zk

form an orthonormal basis of Ck, one gets

µu,v(O) =
∑

p,q∈Zk

ei(βp+βq)
〈
φp ⊗ φq

∣∣∣ρu,vB(−β)⊗2Ou,v

∣∣∣φp ⊗ φq
〉
.

Consider the special case O = Zr ⊗ Z−r. The identity Zr |φp〉 = |φp+r〉 gives

µu,v
(
Zr ⊗ Z−r

)
=

∑

p,q∈Zk

ei(βp+βq−βp+r−βq−r) 〈φp ⊗ φq |ρu,v|φp+r ⊗ φq−r〉 (26)

For (β, γ) ∈ R3 × R, let E(β, γ) = 〈ψ(β, γ)|C|ψ(β, γ)〉 denote the energy in the
level-1 QAOA state, where the cost function Hamiltonian C is given by Eq. (24)
with k = 3. Let γ ∈ R be fixed in the following. Let us write E(β) = E(β, γ). Here
we consider the problem of finding maxβ E(β).

With Eq. (26) we have

E(β) =
∑

1≤p<q≤n

∑

a,b,c∈Z3

hp,q(c)ei(βa+βb−βa+c−βb−c) 〈φa ⊗ φb |ρp,q|φa+c ⊗ φb−c〉 .

Clearly, the terms with c = 0 do not depend on β and the sum over p, q gives
Tr (ρp,q) = 1. For each p < q the sum of all terms with c = −1 and the sum of
all terms with c = 1 are complex conjugates of each other. Indeed, these sums are
expected values of hp,q(1)ZpZ−1

q and hp,q(1)∗Z−1
p Zq. Here we noted that hp,q(−1) =

hp,q(1)∗. Thus

E(β) =
∑

1≤p
<q≤n

hp,q(0) +
∑

a,b
∈Z3

2 Re
(
hp,q(1)ei(βa+βb−βa+1−βb−1) 〈φa ⊗ φb |ρp,q|φa+1 ⊗ φb−1〉

)

Let β̄ ≡ β0 + β1 + β2. Some simple algebra gives

E(β) = C + Re
∑

a∈Z3

gae
i(3βa−β̄)

where

C =
∑

1≤p<q≤n
hp,q(0) + 2 Re

∑

a∈Z3

hp,q(1) 〈φa ⊗ φa+1 |ρp,q|φa+1 ⊗ φa〉 ,

and

ga = 2
∑

1≤p
<q≤n

hp,q(1) 〈φa ⊗ φa |ρp,q|φa+1 ⊗ φa−1〉+ hp,q(1)∗ 〈φa ⊗ φa |ρp,q|φa−1 ⊗ φa+1〉 ,
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Define θa = 3βa − β̄. Then θ0 + θ1 + θ2 = 0. Thus it suffices to maximize a function

F ′(θ) = Re
∑

a∈Z3

gae
iθa

over θ ∈ R3 subject to a constraint

θ0 + θ1 + θ2 = 0.

For fixed θ0 the maximum over θ1 can be computed analytically using the identity

max
θ1

Re
(
g1e

iθ1 + g2e
−iθ0−iθ1

)
= max

θ1
Re

(
eiθ1

(
g1 + g∗2e

iθ0
))

=
∣∣∣g1 + g∗2e

iθ0
∣∣∣ .

The maximum is achieved at θ1 = − arg
(
g1 + g∗2e

iθ0
)
. Let z ≡ eiθ0 . It remains to

maximize a function

F ′′(z) = maxθ∈R3 F ′(θ) = Re (g0z) + |g1 + g∗2z|
θ0 + θ1 + θ2 = 0

eiθ0 = z

over the unit circle {z ∈ C : |z| = 1}. Fix some f ∈ R. One can easily check that
conditions F ′′(z) = f, |z| = 1 imply pf (z) = 0, |z| = 1, where pf (z) is a degree- 4
polynomial

pf (z) =
(
−g

2
0
4

)
z4 + (g∗1g∗2 + fg0) z3 + z2

(
|g1|2 + |g2|2 − f 2 − (1/2) |g0|2

)

+ z (g1g2 + fg∗0)− (g∗0)2

4
For a given f one can analytically compute roots of pf (z), select roots lying on the
unit circle, and check whether at least one of those roots z satisfies F ′′(z) = f. Thus
one can check whether an equation F ′′(z) = f has solutions z on the unit circle. Now
one can maximize F ′′(z) over the unit circle using the binary search over f . Given the
optimal value θ0 = arg maxθ F ′′(eiθ), one computes θ1 = − arg

(
g1 + g∗2e

iθ0
)
, θ2 =

−θ0 − θ1, and solves a linear system θa = 3βa − β̄ to find β0, β1, β2.
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Twisted hybrid algorithms for combinatorial optimization

Libor Caha, Alexander Kliesch, Robert Koenig

The two currently best known classical approximation algorithms for the Max-Cut problem
restricted to 3-regular graphs by Feige, Karpinski, and Langberg (FKL) [15] and Halperin,
Livnat, and Zwick (HLZ) [16] both utilize post-processing: they first produce an intermediate
cut (in their case, by relaxing the combinatorial optimization problem to a semidefinite program)
and then improve upon it via classical, efficient methods. In Core Article II), we investigate the
effect of their respective post-processing methods on QAOA applied to the Max-Cut problem
and use them to modify (“twist”) the algorithm. We note that our techniques are, in principle,
applicable to any variational quantum algorithm.

A.2.1 Main Results

A naive application of post-processing would consist of running the standard QAOA and then
applying the corresponding techniques on the resulting cut. However, both the FKL and HLZ

post-processing techniques allow for a rigorous, analytical lower bound on the approximation
ratio achieved by the total algorithm. The key idea is to realize that these improvements can be
modeled in terms of additional terms in the cost Hamiltonian used in the description of QAOA.
We therefore optimize the angles in QAOA with respect to this modified Hamiltonian instead
of the usual problem Hamiltonian to account for the post-processing that we apply to the cut
resulting from preparing and measuring the QAOA state. In particular, the new Hamiltonian
is still a local Hamiltonian for both post-processing methods, allowing us to use established
techniques exploiting the locality of QAOA to derive provable, analytical lower bounds on the
approximation ratio of the twisted version of QAOA. We observe that, despite not using any
more quantum resources, twisted QAOA of level p improves upon standard QAOA of level p
and is in fact competitive with the performance of standard QAOA of level p+ 1.

A.2.2 Individual Contribution

I am the principal author of this article. The idea for this work came after discussions with
my doctoral advisor Robert Koenig and Libor Caha, who was then visiting our department M5
before accepting a position at the chair a few months later; we then started to investigate the
potential of the idea more thoroughly. I was significantly involved in finding the ideas of the
article, in particular in establishing the lower bounds, and was also significantly involved in
writing the article with the exception of Section 3.
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Abstract
Proposed hybrid algorithms encode a combinatorial cost function into a problem Hamiltonian
and optimize its energy by varying over a set of states with low circuit complexity. Classical
processing is typically only used for the choice of variational parameters following gradient
descent. As a consequence, these approaches are limited by the descriptive power of the associated
states. We argue that for certain combinatorial optimization problems, such algorithms can be
hybridized further, thus harnessing the power of efficient non-local classical processing.
Specifically, we consider combining a quantum variational ansatz with a greedy classical
post-processing procedure for the MaxCut-problem on three-regular graphs. We show that the
average cut-size produced by this method can be quantified in terms of the energy of a modified
problem Hamiltonian. This motivates the consideration of an improved algorithm which
variationally optimizes the energy of the modified Hamiltonian. We call this a twisted hybrid
algorithm since the additional classical processing step is combined with a different choice of
variational parameters. We exemplify the viability of this method using the quantum approximate
optimization algorithm (QAOA), giving analytic lower bounds on the expected approximation
ratios achieved by twisted QAOA. We observe that for levels p = 1, . . . , 5, these lower bounds are
comparable to the known lower bounds on QAOA at level p + 1 for high-girth graphs. This
suggests that using twisted QAOA can reduce the circuit depth by 4 and the number of variational
parameters by 2.

1. Introduction

Due to their real-world interest, problems and algorithms for combinatorial optimization figure
prominently in present-day theoretical computer science. For theoretical physics, the profound and

immediate connections to the physics, e.g., of Ising or Potts models are particularly appealing.
Combinatorial optimization also provides an intriguing potential area of application of near-term quantum

devices with clear figures of merit such as approximation ratios. Yet the study of quantum algorithms for
these problems is still in its infancy, especially when compared to the intensely studied area of classical
algorithms. For example, for classical algorithms, an established bound [13, 14] on efficiently achievable

approximation ratios for MaxCut under the unique games conjecture matches that achieved by the
celebrated Goemans–Williamson algorithm [10] (see also [4]). It appears rather unlikely that under the
unique games conjecture an efficient quantum algorithm can outperform the Goemans–Williamson

algorithm for generic graphs. Even the more modest goal of identifying special families of instances for
which a quantum algorithm outperforms comparable efficient classical algorithms appears to be out of
reach. Independently of whether or not one can find a provable real-world quantum advantage in the

setting of combinatorial optimization, or ends up using quantum devices as a heuristic to efficiently find
approximate solutions, or finds novel classical algorithms inspired by quantum ones (as has happened

before), it is natural to study to what extent existing proposals can be improved in a systematic manner with

© 2022 The Author(s). Published by IOP Publishing Ltd
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associated performance guarantees. This is what we pursue here in the context of hybrid classical-quantum
algorithms.

For the problem of finding (or approximating) the maximum of a combinatorial cost function
C : {0, 1}n → R (given by polynomially many terms), typical hybrid algorithms proceed by defining the cost
function Hamiltonian

HC =
∑

z∈{0,1}n

C(z)|z〉〈z|

in terms of local terms, and a parametrized family {UG(θ)}θ∈Θ of n-qubit unitary circuits. The later might
be parametrized by the underlying graph of the cost function or in case of hardware-efficient algorithms
tailored to the physical device [12]. The parametrized family gives rise to variational ansatz states

|Ψ(θ)〉 = UG(θ)|0〉⊗n,

that can be prepared with UG(θ) from a product state |0〉⊗n. Measuring Ψ(θ) in the computational basis
then provides a sample z ∈ {0, 1}n from the distribution p(z) = |〈z|Ψ(θ)〉|2 such that the expectation value
of the associated cost function is equal to the energy E[C(z)] = 〈Ψ(θ)|HC|Ψ(θ)〉 of the state Ψ(θ) with
respect to HC. Thus the problem of maximizing C is translated to that of finding a value of the (vector of)
parameters θ maximizing the energy of Ψ(θ). The latter step is envisioned to be performed e.g., by
numerical gradient descent or a similar classical procedure prescribing (iteratively) what parameters θ to
try. The computation of this prescription (according to obtained measurement results) is the classical
processing part of the quantum algorithm leading to the term hybrid. We will refer to this form of algorithm
as a ‘bare’ hybrid algorithm in the following.

The potential utility of this approach hinges on a number of factors. Of primary importance—beyond
questions of convergence or efficiency—is whether the family {Ψ(θ)}θ∈Θ of states is sufficiently rich to
variationally capture the (classical) correlations of high-energy states of HC. There is an inherent tension
here between the requirement of applicability using near-term devices, and the descriptive power, i.e.,
required complexity of these states: on the one hand, each unitary UG(θ) is supposed to be realized by a
low-depth circuit with local gates (making it amenable to experimental realization on a near-term device),
and the dimensionality of the parameter or ‘search’ space Θ should be low to guarantee fast convergence
e.g., of gradient descent. On the other hand, states having high energy with respect to HC and belonging to
the considered family of variational states may have intrinsically high circuit complexity, and,
correspondingly, may also require a large number of variational parameters to approximate. The
unavoidability of this issue has been demonstrated using the MaxCut-problem on expander graphs with n
vertices and the quantum approximate optimization algorithm (QAOA) at level p: here the parameter space
is Θ = [0, 2π)2p and the corresponding circuits UG(θ) have depth O(pd). Locality and symmetry of the
ansatz imply that achievable expected approximation ratios are upper bounded by a constant (below that
achieved by Goemans–Williamson) unless p = Ω(log n) [3]. In fact, the locality of the ansatz alone implies
that for smaller values of p, the achieved expected approximation ratio is not better than of a random
guessing for random bipartite graphs, as shown in [6].

These fundamental limitations of ‘standard’ hybrid algorithms are tied to the assumption that an
increased complexity of the required quantum operations is unacceptable and/or infeasible in the near
term. Under these circumstances, the only way forward appears to be to use alternative, possibly more
powerful (e.g., non-local) efficient classical processing which could exploit the limited available quantum
resources more effectively. One example where a classical post-processing is used is [7], where QAOA is
combined with a greedy ‘pruning’ method to produce an independent set of large size. Here post-processing
is needed, in particular, to ensure that the output is indeed an independent set. Another proposal in this
direction is the idea of ‘warm-starting’ QAOA with a solution provided by the Goemans–Williamson
algorithm [5] (see also [16]). The warm-starting approach has the appeal that—by construction—the
Goemans–Williamson approximation ratio can be guaranteed in this approach (assuming convergence of
the energy optimization). An alternative is the recursive QAOA (RQAOA) method [2, 3] which uses QAOA

states to iteratively identify variables to eliminate. This effectively reduces the problem size but increases the
connectivity and thus the circuit complexity of the iteratively obtained subproblems. Furthermore,
analytical bounds on the expected approximation ratios are unknown except for very special examples [3].
For both warm-starting QAOA as well as RQAOA, one deviates from the original QAOA ansatz, leading to
different variational states and corresponding quantum circuits.

1.1. Our contribution
Basic idea. Here we consider arguably more minimal adaptions of hybrid variational algorithms for the
MaxCut-problem on three-regular graphs. For a given bare hybrid algorithm A involving a family

2
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{Ψ(θ)}θ∈Θ of variational ansatz states as described above, we show how to construct a modified algorithm
A+ which uses the same family of states {Ψ(θ)}θ∈Θ. The algorithm A+ will be called twisted-A. Our
modified algorithms are directly motivated by the work of Feige, Karpinski, and Langberg [9] (referred to as
FKL in the following). These authors propose an algorithm for the MaxCut problem on three-regular graphs
which proceeds by solving a semidefinite program relaxation (similar to Goemans and Williamson), and
subsequently improving the rounded solution by a simple greedy post-processing technique. We also
consider the improved version by Halperin, Livnat, and Zwick [11] (referred to as HLZ below) which
involves a more non-local greedy procedure. For some motivation, see the following example.

Example. Consider a simple motivational example of a greedy post-processing procedure that can improve
a given cut. The input will be a three-regular graph G = (V, E) and a cut C. We say that a vertex is
unsatisfied when all three of its neighbours lie in the same partition of the cut as it does. The algorithm will
repeatedly run through the vertices and check whether some of them are unsatisfied. If it finds an
unsatisfied vertex it moves it to the opposite side of the cut and repeats the process with the updated cut
until none of the vertices is unsatisfied. Since moving one vertex increases the cut size by 3 and potentially
lowers the number of unsatisfied vertices by 4, one can show that this procedure improves the cut size by at
least 3

4 times the number of unsatisfied vertices in the initial cut. Let us apply this greedy procedure to a
random cut, which has an expected approximation ratio of 1/2. A vertex will be unsatisfied with probability
2−3. From the linearity of expectation we have that the greedy procedure will improve the cut by at least

3
4·8 |V|. Since |V| = 2

3 |E|, we achieve approximation ratio at least 1
2 + 1

16 = 0.5625 in expectation.

The algorithm A+ proceeds by using the variational family of states defined by the algorithm A to
obtain an approximate cut, but this step is modified or ‘twisted’, as discussed below. The algorithm A+

then attempts to enlarge the cut size of the obtained cut by applying a classical post-processing procedure:
we perform either the FKL post-processing procedure (obtaining an algorithm FKL-A+) or the HLZ
post-processing procedure (giving an algorithm HLZ-A+).

Let us now describe the sense in which A+ is a ‘twisted’ form of A and not merely a hybrid algorithm
augmented by a subsequent classical post-processing step. This terminology stems from the fact that in the
quantum subroutine of the algorithm, the variational parameters (angles) are not optimized with respect to
the original problem Hamiltonian HG. Instead, one can express the expected cut size produced by
measuring a state Ψ(θ) and using classical post-processing by the expectation value of a modified
Hamiltonian H+

G (for both FKL and HLZ) in the variational state Ψ(θ). The twisted algorithm A+ thus
optimizes the angle θ with respect to the modified Hamiltonian H+

G . Importantly, this does not change the
ansatz/variational family of states used. This allows us to make a fair comparison (in terms of quantum
resources and, especially, the number of variational parameters) to the original algorithm A.

Improved hybrid algorithms. The modified algorithm A+ requires a set of quantum operations that are
comparable (in number and complexity) to that of A. In particular, it involves preparing the states
{Ψ(θ)}θ∈Θ. In addition, A+ uses extra local measurements because the hybrid optimization step is
modified: the energy to be optimized is given by a modified problem Hamiltonian H+

G rather than the
MaxCut-problem Hamiltonian HG associated with the considered graph G. The modified Hamiltonian H+

G

is either a three- or four-local Hamiltonian and (as HG) diagonal in the computational basis. In particular,
this means that measurements of up to 4 qubits at a time in the computational basis are sufficient to
determine the (expected) cost function. We note that while this can also be achieved by measuring each
qubit in the computational basis and taking appropriate marginals, locality properties can be exploited at
the optimization stage, see e.g. [15].

By construction, the algorithms A and A+ achieve (expected) cut sizes (for any fixed instance G) related
by the inequalities

E [cutsize (A(G))] � E
[
cutsize

(
A+(G)

)]
(1)

for any (bare) hybrid algorithm A, assuming that the optimal parameters are found in the optimization
step. Indeed, (1) follows because, denoting with

θ∗ = arg max
θ

〈Ψ(θ)|HG|Ψ(θ)〉

the optimal parameters for the Hamiltonian HG, we have by definition of the algorithms that

E [cutsize(A(G))] = 〈Ψ(θ∗)|HG|Ψ(θ∗)〉
E

[
cutsize

(
A+(G)

)]
= max

θ
〈Ψ(θ)|H+

G |Ψ(θ)〉,
(2)

and

3
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H+
G = HG + ΔG,

where ΔG is a sum of non-negative local operators. These considerations apply to any bare hybrid
algorithm A.

Lower bounds on approximation ratios. We specialize our considerations to QAOAp and establish lower
bounds on the approximation ratio for bare and twisted QAOA, i.e., we consider the algorithms QAOAp and
QAOA+

p . Specifically, we consider low values of p for three-regular graphs, triangle-free three-regular graphs
and high girth three-regular graphs. We denote the expected approximation ratio achieved by an algorithm
A on a graph G with maximum cut size MC(G) by

αG(A) := MC(G)−1 · E[cutsize(A(G))].

In the following, we will refer to the expected approximation ratio achieved by an algorithm A simply as the
approximation of A (omitting the term ‘expected’) unless specified otherwise. In the case of A = QAOAp,
E[cutsize(A(G))] is defined as in (2), but with the level-p QAOA trial function ΨG(β, γ), β, γ ∈ [0, 2π)p

instead of Ψ(θ).
Our results are summarized in figure 1, which gives our lower bounds on the approximation ratio for

each of these methods. For comparison, we also state the following known bounds on bare QAOA for any
three-regular graph G,

αG(QAOA1) � 0.6924
αG(QAOA2) � 0.7559
αG(QAOA3) � 0.792 39

established in [8]
conjectured in [8], established in [18]

conjectured in [18].

Also shown in figure 1 are the guaranteed approximation ratios of the best-known classical algorithms: this
includes the Goemans–Williamson algorithm (GW) for general graphs (which is optimal when assuming the
unique games conjecture [13]) which achieves

αG(GW) � 0.8785 for any graph G (see [10]).

For three-regular graphs, the best efficient classical algorithms are the algorithm by Feige et al [9] which
relies on a semidefinite program whose solution is then improved by a simple greedy post-processing
technique, and a refinement of this technique by Halperin et al [11]. They achieve

αG(FKL) � 0.924
αG(HLZ) � 0.9326

for any three − regular graph G
see [9]

see [11].

According to the table given in figure 1, the established lower bounds on the expected approximation
ratios for twisted versions of QAOA at level p = 1, . . . , 5 are comparable to the lower bounds on QAOAp+1

at the higher level p + 1. This suggests that by using these twisted versions, the level p can be reduced by
one while roughly maintaining the approximation ratio. We emphasize, however, that this conclusion can
only be drawn when it is known that the corresponding bound on QAOAp+1 is tight.

Let us conclude by mentioning a few open problems. One potential avenue to obtaining improved
approximation ratios with hybrid algorithms is to use a different variational family of ansatz states. Here
our work gives clear guidance when this is combined with classical post-processing: for a graph G, the
energy of a modified cost function Hamiltonian H+

G = HG + ΔG should be optimized instead of that of HG.
In particular, since ΔG is a sum of three-local terms in the case of FKL and a sum of four-local terms in the
case of HLZ, this motivates introducing new terms (e.g., proportional to these terms) in the ansatz. Such a
modification of the algorithm is superficially related to the fact that the classical (randomized
rounding-based) algorithms of [9, 11] also use additional (three-variable) constraints in the semidefinite
program (SDP) compared to the Goemans–Williamson algorithm. We note, however, that using different
variational ansatz states will require a different accounting of resources (e.g., circuit depth). In contrast, our
twisted algorithms use the same circuits to prepare ansatz states as their bare version.

Another promising approach may be to combine warm-starting-type ideas with classical
post-processing. Here one could consider algorithms that first solve the SDP underlying the classical
algorithms [9, 11], and subsequently prepare a corresponding quantum state. One may hope that—similar
to [5]—suitably designed approaches give a guaranteed approximation ratio matching that of these classical
algorithms.

Moving beyond combinatorial optimization problems, it is natural to ask if variational quantum
algorithms for many-body quantum Hamiltonian problems (e.g., quantum analogues of MaxCut as
considered in [1]) can be improved by similar greedy (quantum) post-processing procedures.
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Figure 1. The main results of this work. We compare the provably guaranteed approximation ratios of bare QAOAp,
FKL − QAOA+

p and HLZ − QAOA+
p for three-regular graphs with girth greater than 2p + 2. Numbers written in boldface also

apply to general three-regular graphs. All quantities are rounded down to four decimals. Guaranteed approximation ratios which
have been established in other work are indicated with citations.

1.1.1. Outline

In section 2, we review the relevant classical post-processing methods that—in combination with
randomized rounding of the solution of certain SDP relaxations—yield the best known efficient classical
algorithms for MaxCut on three-regular graphs. In section 3, we review the QAOA and state a few properties
relevant to our subsequent analysis. In section 4, we motivate and define the algorithm A+ obtained from a
hybrid algorithm A. Finally, in section 5, we establish our lower bounds on the achieved approximation
ratio achieved by the twisted algorithm QAOA+.

2. Classical post-processing methods for MAXCUT

In this section, we describe the two classical post-processing procedures which we build on to define twisted
versions of a given hybrid algorithm for the MaxCut problem on three-regular graphs. These
post-processing procedures are subroutines of the classical algorithms for MaxCut on bounded degree
graphs and graphs with maximum degree 3 by Feige et al [9], and Halperin et al [11], respectively.

Recall the definition of the MaxCut problem: we are given an (undirected, simple) graph G = (V, E) and
are asked assign two colors to vertices C : V → {0, 1}, which we refer to as a cut of G, that maximizes the
number cutsize(C) of satisfied edges. Here we say that an edge e = {u, v} is satisfied by C if and only if
C(u) �= C(v). The maximal size cutsize(C) of a cut C of G is denoted MC(G).

The Goemans–Williamson algorithm [10] for MaxCut proceeds by solving an SDP relaxation [4] of the
MaxCut problem, and subsequently uses a randomized hyper-plane rounding to obtain a cut.
The algorithms of [9, 11] also proceed by first solving certain SDPs and applying randomized rounding.
The obtained candidate cut is then further processed in a greedy manner in order to improve the cut
size.

Here we review these post-processing procedures and corresponding performance guarantees. One of
their key features is that they can be applied to any candidate cut C irrespective of whether it is produced
e.g., by rounding the solution of an SDP, random guessing, or starting with a fixed cut. This means that they
can also be applied to the output of a hybrid algorithm. We emphasize, however, that our modified hybrid
algorithms require a modification going beyond simple post-processing of the classical measurement result,
see section 4 for details.
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Figure 2. The main motivation behind FKL. On the left, the closed neighborhood of a vertex c is shown. Now assume that we
assign a cut C to G and that (c, j, k) is a good triplet for C. We distinguish two cases, depending on whether the edge {c, �} is
satisfied (dashed line) or unsatisfied (straight line). Top row: if {c, �} is unsatisfied, flipping the value of c increases the size of the
cut by three (no satisfied edges are destroyed, three satisfied edges are created). Bottom row: if {c, �} is satisfied, flipping the value
of c increases the size of the cut by one (one satisfied edge is destroyed, two satisfied edges are created).

Although the guaranteed approximation ratio achieved by HLZ is better than the one achieved by FKL, we
investigate both algorithms. The reason for this lies in the locality of the procedures: while FKL considers
only the direct neighborhood of a vertex in a single step and is therefore local, HLZ also considers paths and
cycles of lengths in the given graph whose lengths might potentially be unbounded and is therefore not
necessarily local. We emphasize, however, that the performance of both procedures in the quantum case can
be quantified by considering local operators.

Both post-processing procedures take as input a cut C. They iteratively work towards (ideally)
improving the cutsize by modifying the cut. A single iteration proceeds by identifying a suitable subset
W ⊂ V of vertices whose assigned color is flipped, i.e., replacing C by the modified cut

CW (v) :=

{
C(v) for v /∈ W

1 − C(v) otherwise
.

2.1. The Feige–Karpinski–Langberg (FKL) post-processing method
The main idea of this post-processing step is the following observation: if there are three vertices c, j, k such
that one of them (say, c) is connected to both the other ones and all three vertices are assigned the same
color by the cut C, then flipping the value at c, i.e., considering C{c}, will increase the size of the cut, see
figure 2.

To formalize this, we assume that the set V of vertices of the graph G = (V, E) is ordered. Without loss
of generality, set V = [n] = {1, . . . , n}. The following definitions will be central:

Definition 2.1 (triplets).

(a) A three-tuple (c, j, k) ∈ V3 of pairwise distinct vertices with j < k is called a triplet if {c, j} ∈ E and
{c, k} ∈ E. We call the vertex c the central vertex of the triplet. The set of all triplets in G will be
denoted TG.

(b) Let C be a cut of G and (c, j, k) ∈ TG. Then (c, j, k) is called a good triplet for C if

C(c) = C(j) = C(k).

The set of all good triplets for C will be denoted GoodG(C).

(c) Let C be a cut of G, (c, j, k) ∈ GoodG(C) and v ∈ V. We say that (c, j, k) is destroyed by flipping v if
(c, j, k) is not a good triplet for the cut C{v}.

We now formulate the post-processing procedure by FKL. While the observations above show that
flipping the center of a good triplet (c, j, k) will increase the cutsize, we might get even better results by
flipping j or k. Furthermore, it is in our interest that the flipping does not destroy too many good triplets.
Taking all this into account motivates the procedure given in algorithm 1.
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Algorithm 1. The FKL improvement procedure for three-regular
graphs [9].

1: function FKL(three-regular graph G = (V, E), cut C)
2: S ← GoodG(C)
3: while S �= ∅ do
4: VGood ← set of all vertices in S

5: v ← arg max
σ∈VGood

cutsize
(

C{σ}
)

−cutsize(C)∣∣∣S\GoodG

(
C{σ}

)∣∣∣

6: C ← C{v}

7: S ← triplets in S that are good for C{v}

8: return C

The following result is proven in [9].

Lemma 2.2 (lemma 3.2 in [9]). Let G be a three-regular graph and let C be a cut of G. Then the cut
C

′
= FKL(G, C) satisfies

cutsize(C′) � cutsize(C) +
1

3
|GoodG(C)|.

Let us exemplify this improvement by using two simple examples with a three-regular graph G = (V, E).
Consider first the trivial constant cut Cconst which assigns the same color to all vertices. The cutsize of Cconst

is 0, hence the approximation ratio vanishes as well, i.e.,

cutsize(Cconst)

MC(G)
= 0.

Now consider the cut C′ := FKL(G, Cconst) obtained by applying the FKL-post-processing procedure to the
trivial cut. This cut achieves approximation ratio at least

cutsize(C′)

MC(G)
� 2/3.

This can be seen as follows: for a constant cut, every triplet is a good triplet and it is easy to see that
|TG| = 2|E| for a three-regular graph. Lemma 2.2 then implies that the resulting cut C satisfies
cutsize(C′) � 2

3 |E| and we obtain the claim with MC(G) � |E|.
As another example, consider a uniformly random cut Crandom of G. For such a cut, the expected

approximation ratio is

E
[

cutsize(Crandom)

MC(G)

]
= 1/2.

Let C′′ := FKL(G, Crandom) be the result of applying the FKL-procedure to Crandom. Then

E
[

cutsize(C′′)

MC(G)

]
� 2/3.

To see this, note that the probability of a fixed triplet being good is equal to 1
4 . By linearity of expectation,

we have E[|GoodG(C′′)|] = 1
4 |TG| = 1

2 |E|. Lemma 2.2 then implies that the resulting cut C′′ satisfies
E[cutsize(C′′)] �

(
1
2 + 1

3 · 1
2

)
|E| = 2

3 |E| � 2
3 MC(G).

2.2. The Halperin–Livnat–Zwick (HLZ) post-processing method
In 2004, Halperin et al [11] improved upon the algorithm of [9], giving an algorithm for MaxCut achieving
an expected (provable) approximation ratio of at least 0.9326 on graphs with vertex degree at most 3. To the
best of our knowledge3, this is the best currently known efficient classical algorithm. Although their
algorithm works for graphs of maximum degree 3, we will discuss a restricted and thus simpler version for
triangle-free three-regular graphs. Unlike the FKL-post-processing this method employs more non-local
improvement procedure. The main point here is to illustrate the use of another post-processing method in
the construction of twisted hybrid algorithms. We will refer to this procedure simply as
HLZ-post-processing.

3 There is supposedly a slightly improved algorithm in Doror Livnat’s M.Sc. Thesis having an approximation ratio 0.9328 [11].
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Algorithm 2. The HLZ improvement procedure simplified to three-regular
triangle free graphs.

1: function HLZ(triangle-free three-regular graph G = (V, E), cut C)
2: V3 ← vertices in V with three unsatisfied edges by cut C
3: V2 ← vertices in V with two unsatisfied edges by cut C
4: while V3 ∪ V2 �= ∅ do
5: if V3 �= ∅ then
6: v ← vertex in V3 with the smallest number of neighbours in V3

7: C ← C{v}

8: else if V2 �= ∅ then
9: v ← vertex in V2

10: {v1, . . . , vk} ← the longest path or cycle in G[V2] containing v
11: M ← {vi ∈ {v1, . . . , vk}|i is odd}
12: C ← CM

13: V3 ← vertices in V with three unsatisfied edges by cut C
14: V2 ← vertices in V with two unsatisfied edges by cut C
15: return C

Given a cut C of a triangle-free graph G, this post-processing method proceeds as specified in
algorithm 2. Specializing the results of [11] to the triangle-free case considered here gives the following
statement:

Lemma 2.3 (lemma 3.1 in [11]). Let G be a three-regular triangle-free graph, C be a cut of G and V2 and V3

be the sets of vertices with two and three unsatisfied edges adjacent to them in the cut C. Then the cut
C

′
= HLZ(G, C) satisfies4

cutsize(C′) � cutsize(C) +
2

5
|V2| +

17

15
|V3|.

Again, let us get a feel for the impact of the procedure like we did for FKL in certain simple scenarios,
this time for a triangle-free three-regular graph G = (V, E). Once again, consider first the trivial constant
cut Cconst which assigns the same color to all vertices and therefore has cutsize 0, so the approximation ratio
is 0 as well. Considering C′ := HLZ(G, Cconst), i.e., the cut obtained by applying the HLZ-post-processing
procedure, this cut achieves an approximation ratio of at least

cutsize(C′)

MC(G)
� 0.7555. (3)

To see this, note that for a constant cut, all vertices belong to V3 = V and none to V2 = ∅. Lemma 2.3
implies that cutsize(C′) � 17

15 |V| and using that |E| = 3/2|V| � MC(G), we obtain
cutsize(C′)

MC(G) � cutsize(C′)
|E| � 17·2

15·3 ≈ 0.7555.
As another example, consider a uniformly random cut Crandom of G. For such a cut, the expected

approximation ratio is 1
2 , i.e., E[cutsize(C)] = 1

2 |E|. Considering the cut C′′ := HLZ(G, C), the
approximation ratio of this cut is

E
[

cutsize(C′′)

MC(G)

]
� 0.6611

which can be seen as follows: the probability of a vertex being in V3 and V2 are 2−3 and 2−2, respectively. By
linearity of expectation, we have E

[
|V3|

]
= 2−3|V| and E

[
|V2|

]
= 2−2|V|. Lemma 2.3 implies that

E[cutsize(C′′)] � |E|
2 + 2

5·4 |V| + 17
15·8 |V|. Using that |V| = 2

3 |E|, we see that the approximation ratio is
lower-bounded by 1

2 + 29
180 ≈ 0.6611 in expectation value.

3. Quantum approximate optimization and MaxCut

Here we briefly state the relevant definition for QAOA applied to the MaxCut problem. In section 3.2, we
then discuss basic features of QAOA that we exploit to find lower bounds on approximation ratios.

3.1. Definition of the MaxCut Hamiltonian and QAOAp

Recall that the MaxCut problem Hamiltonian for a graph G = (V, E) is given by

HG =
1

2

∑

{u,v}∈E

(I − ZuZv) (4)

4 Note that there is a typo in the lemma 3.1 [11].
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where a single qubit is associated with each vertex u ∈ V. Measurement of a state Ψ ∈ (C2)⊗|V | in the
computational basis yields a string C ∈ {0, 1}|V | specifying a cut C of expected size

〈Ψ|HG|Ψ〉 = E[cutsize(C)]. (5)

The variational family used in QAOA is specified by a natural number p called the level of QAOA. For a
given graph G = (V, E), the level-p variational state with parameters (β, γ) ∈ [0, 2π)p × [0, 2π)p is

|ψG(β, γ)〉 = UG(β, γ)
∣∣∣+|V |

〉
(6)

where |+〉 = 1√
2
(|0〉 + |1〉),

∣∣+|V |〉 := |+〉⊗|V | and where

UG(β, γ) :=
p∏

m=1

[
exp

(
−iβm

∑

u∈V

Xu

)
exp(−iγmHG)

]

is the QAOA unitary. In the following, we analyze the performance of twisted algorithms derived from
QAOAp.

3.2. Locality and uniformity of QAOA
The analysis of QAOA typically exploits its locality and uniformity, see e.g., [8, 17, 18]. Similar arguments
apply to our modified versions of QAOA. Here we state these properties in a form that will be used below to
establish lower bounds on the achieved approximation ratios.

Locality of QAOA. One of the defining features of this ansatz is its locality: the reduced density operator
of ψG(β, γ) on some subset S ⊂ [n] of qubits is uniquely determined by (β, γ) and the ‘p-environment’ of
S, a certain subgraph of G. For the following analysis, it will be convenient to express this dependence in a
more detailed form.

Let A be a local operator supported on a subset supp(A) ⊂ [n] of qubits. Conjugation of A by an
operator of the form exp(−iβmXu) does not change the support of A and leaves the operator invariant
unless u ∈ supp(A). Similarly, conjugation of A by an operator of the form exp(iγmZuZv) leaves A invariant
unless {u, v} ∩ supp(A) �= ∅, in which case the support generically becomes {u, v} ∪ supp(A). Applying
this reasoning iteratively shows the following: conjugating A by the QAOA unitary UG(β, γ) is equivalent to
conjugation by a cost function unitary UG(p)[supp(A)](β, γ) associated with a subgraph G(p)[supp(A)] of G.
The latter is defined as follows, for any fixed subset S ⊂ V vertices corresponding to the support of A. A
length-� path starting in S is a sequence (u0, . . . , u�) of vertices such that u0 ∈ S and {uj−1, uj} ∈ E for all
j = 1, . . . , �. The subgraph G(p)[S] of G is the result of taking the union of all paths of length at most p
starting in S. We call G(p)[S] the p-environment of S. Succinctly, this shows that

〈ψG(β, γ)|A|ψG(β, γ)〉 =
〈
ψG(p)[supp(A)](β, γ)

∣∣∣A
∣∣∣ψG(p)[supp(A)](β, γ)

〉
.

In other words, to evaluate the expectation of A, it suffices to consider the QAOA-state associated with the
p-environment of the support of A.

Uniformity of QAOA. For a generic local operator A with support S = supp(A), the quantity〈
ψG(p)[S](β, γ)

∣∣A
∣∣ψG(p)[S](β, γ)

〉
depends on the underlying graph G only through the p-environment G(p)[S]

of S and the subgraph G[S] of G induced by S. In fact, for a fixed induced subgraph K := G[S], only the
equivalence class of the p-environment G(p)[S] matters. Here two graphs G1 and G2 (that both contain K as
a subgraph) are called equivalent if and only if they are isomorphic with an isomorphism fixing K. This
property of QAOA is an immediate consequence of its definition.

This motivates considering equivalence classes of p-environments associated with a graph G̃. We denote
this set by E (p)(G̃) and call this the set of p-environments of G̃. Modulo isomorphisms fixing G̃, every
element of E (p)(G̃) is a graph that appears as a p-environment G(p)[S] for a graph G, where S is a subset of
vertices of G with the property that the induced subgraph is G̃ = G[S]. We will use individual

representatives of each equivalence class to denote elements of E (p)(G̃). For example, the set is

depicted in figure 4 found in appendix A. These observations allow to reorganize expectation values that are
uniform. For example,

(7)

9
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where nG(G̃) is the number of times the p-environment G̃ appears in G.
Of special interest to us will be so-called p-trees. Given a graph G̃ and p ∈ N, T(p)

(
G̃

)
is defined as the

sole tree in E (p)
(
G̃

)
, see figures 6 and 7 in appendix A for examples.

4. Twisted variational hybrid algorithms for MaxCut

In this section, we define our twisted algorithm A+ given a hybrid algorithm A. We first show in section 4.1
that the effect of classical post-processing can be quantified in terms of the expectation value of a modified
problem Hamiltonian. We then give the definition of the twisted algorithm A+ in section 4.2.

4.1. Lifting performance guarantees to hybrid algorithms
Lemmas 2.2 and 2.3 provide performance guarantees for the improvement obtained by applying the
(classical) FKL- and the HLZ-algorithm to any cut C. Here we show that these results easily translate to the
context of hybrid algorithms.

Concretely, consider a graph G = (V, E) with V = [n] and a variational ansatz state Ψ ∈ (C2)⊗n.
Measuring Ψ in the computational basis provides a cut C ∈ {0, 1}n to which we can apply either the FKL or
the HLZ procedure.

Let us first consider the simpler case of FKL, i.e., suppose that C
′
= FKL(G, C) is the cut obtained by

applying the FKL-post-processing to the cut C. To make lemma 2.2 applicable to this setting, we need an
operator that accounts for good triplets. Such an operator is

NG :=
∑

(c,j,k)∈TG

Πc,j,k, where Πc,j,k :=
(
|000〉〈000| + |111〉〈111|

)
c,j,k

with TG denoting the set of triplets in G. Observe that Πc,j,k is a projector onto the subspace spanned by
computational basis states |C〉 describing a cut C ∈ {0, 1}n such that (c, j, k) is a good triplet in C. This
implies that the expectation 〈Ψ|NG|Ψ〉 of NG in a state Ψ is equal to the expected number of triplets in a cut
C obtained by measuring Ψ in the computational basis, i.e.,

〈Ψ|NG|Ψ〉 =
∑

C∈{0,1}n

|〈C|Ψ〉|2 · |GoodG(C)| = E
[
|GoodG(C)|

]
. (8)

Correspondingly, we call NG the good triplet number operator.
Combining (8) with (5), we obtain the following ‘quantum version’ of lemma 2.2:

Lemma 4.1. Let G = (V, E) be a three-regular graph with V = [n] and Ψ ∈ (C2)⊗n. Let C ∈ {0, 1}n be the
result of measuring Ψ in the computational basis and C

′
:= FKL(G, C). Then

E
[
cutsize (C′)

]
= 〈Ψ|

(
HG +

1

3
NG

)
|Ψ〉.

This lemma shows that the ‘target Hamiltonian’ HG should be modified by introducing the
improvement operator

ΔFKL
G :=

1

3
NG. (9)

A similar treatment applies to the HLZ-procedure. Suppose that C′ = HLZ(G, C) is the cut obtained by
applying the HLZ-post-processing to the cut C. We now want to ‘quantify’ lemma 2.3 and therefore need
two operators that account for the number of vertices with two and three unsatisfied edges adjacent to
them, respectively. To define these operators, let A(c) be the ordered three-tuple of neighbors of c ∈ V and
A(c) denote the closed neighbourhood A(c) := (c, A(c)1, A(c)2, A(c)3). Then we set

M(2)
G =

∑

c∈V

Π(2)
c,A(c) and M(3)

G =
∑

c∈V

Π(3)
c,A(c),

where

Π(2)
c,A(c) :=

∑

b∈{0,1}
|b〉〈b|c ⊗ P(b)

A(c) with P(b)
A(c) :=

∑

{x,y,z}∈{0,1}3,
b⊕x+b⊕y+b⊕z=1

|xyz〉〈xyz|A(c) and

Π(3)
c,A(c) :=

(
|0000〉〈0000| + |1111〉〈1111|

)
A(c)

.

10
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Algorithm 3. The twisted algorithm Post-A+ where Post ∈ {FKL, HLZ}
and where A = {|ΨG(θ)〉}θ∈Θ is a variational algorithm. The measurement
result C ∈ {0, 1}n obtained in step 3 defines a cut of G.

1: function Post-A+(three-regular graph G = (V, E) with V = [n])
2: Compute θ∗ = arg maxθ∈Θ〈ΨG(θ)|(HG + ΔPost

G )|ΨG(θ)〉
3: Measure ΨG(θ∗) in the computational basis getting outcome C ∈ {0, 1}n

4: Compute C′ = Post(G, C)
5: return C′

Observe that P(b)
A(c) is a projector onto the sum of computational basis states that contain exactly two bits

equal to b. Furthermore, Π(2)
c,A(c) is a projector onto the subspace spanned by computational basis states

which are associated with exactly two unsatisfied edges adjacent to c. Similarly, Π(3)
c,A(c) is a projector onto the

subspace spanned by computational basis states which are associated with exactly three unsatisfied edges
adjacent to c. By abuse of notation, we use Π(2)

c and Π(3)
c whenever the graph is known from the context.

Using the same reasoning as for lemma 4.1, we obtain the following:

Lemma 4.2. Let G = (V, E) be a three-regular triangle-free graph with V = [n] and Ψ ∈ (C2)⊗n. Let
C ∈ {0, 1}n be the result of measuring Ψ in the computational basis and C

′
:= HLZ(G, C). Then

E
[
cutsize(C′)

]
= 〈Ψ|

(
HG +

2

5
M(2)

G +
17

15
M(3)

G

)
|Ψ〉.

Therefore, HG should be modified by introducing the improvement operator

ΔHLZ
G :=

2

5
M(2)

G +
17

15
M(3)

G . (10)

4.2. Definition of the twisted algorithm A+

Here we present our modified variational algorithm A+ which we call twisted-A. We formalize a
variational quantum algorithm A as follows: it is given by a family of states

A = {Ψx(θ)}θ∈Θ,

where x is an input to the algorithm, i.e., a problem instance and Θ ⊂ Rk for some k ∈ N. Once one has
chosen θ, the state Ψx(θ) is measured to obtain the output of the algorithm.

In the case of the MaxCut problem, a problem instance is given by a graph G. A good hybrid algorithm
for this problem specifies a variational family {ΨG(θ)}θ∈Θ whose elements can be efficiently prepared (e.g.,
by a low-depth circuit) and which—ideally—contains elements with large energy (corresponding to the
expected cut size) with respect to the MaxCut problem Hamiltonian HG (see equation (4)). Given such an
algorithm A, we obtain a twisted algorithm Post-A+ by the following modifications, where
Post ∈ {FKL, HLZ} denotes the chosen classical post-processing involved (see section 2):

(a) In the angle optimization step, the modified cost function Hamiltonian H+
G = HG + ΔPost

G is used.
Here ΔFKL

G and ΔHLZ
G are the corresponding operators defined in equations (9) and (10), respectively.

(b) The classical post-processing procedure Post is applied to the measurement result obtained by
measuring the optimal state.

Algorithm 3 shows the general procedure.

5. Lower bounds on approximation ratios of QAOA+

Here we analyze the twisted versions of QAOA in detail. For a graph G and p ∈ N, let HG be the Hamiltonian
(4) and ψG(β, γ) the level-p trial wavefunction defined by (6). The twisted algorithms FKL − QAOA+

p and

HLZ − QAOA+
p proceed as described in algorithm 4. We prove lower bounds on the approximation ratios

αG

(
FKL − QAOA+

p

)
and αG

(
HLZ − QAOA+

p

)
for certain families of three-regular graphs G.

A remark on the proof technique is in order here: while we rely on numerical gradient descent to
determine good candidate parameters, these are used to optimize our lower bounds only. In particular, the
validity of the established bounds is independent of the correctness of these numerical methods. This is
especially important because we consider high-dimensional optimization problems and gradient descent
may or may not converge.

11
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Algorithm 4. The twisted algorithm Post-QAOAp for Post ∈ {FKL, HLZ}.

1: function Post-QAOAp(three-regular graph G = (V, E) with V = [n])
2: Compute (β∗, γ∗) = arg max(β,γ)∈[0,2π)p×[0,2π)p 〈ψG(β,γ)|(HG + ΔPost

G )|ψG(β, γ)〉
3: Measure ψG(β∗ , γ∗) in the computational basis getting outcome C ∈ {0, 1}n

4: Compute C′ = Post(G, C)
5: return C′

5.1. Approximation ratios of FKL-QAOA+ for three-regular graphs
We denote the girth of a graph G, i.e., the size of the smallest cycle in G, by g(G). We present two kinds of
results: for FKL − QAOA+

1 , we give a bound applicable to all three-regular graphs. For higher levels p, we
give bounds applicable to three-regular graphs with high girth.

Proposition 5.1. Let G be a three-regular graph. Then

(a) αG

(
FKL − QAOA+

1

)
� 0.7443.

(b) If g(G) � 7, then αG

(
FKL − QAOA+

2

)
� 0.7887.

(c) If g(G) � 9, then αG

(
FKL − QAOA+

3

)
� 0.8146.

(d) If g(G) � 11, then αG

(
FKL − QAOA+

4

)
� 0.8323.

(e) If g(G) � 13, then αG

(
FKL − QAOA+

5

)
� 0.8457.

(f ) If g(G) � 15, then αG

(
FKL − QAOA+

6

)
� 0.8564.

Proof.

(a) For brevity, let us write ψG(θ) for the QAOA1 state with parameters θ = (β, γ) ∈ [0, 2π)2. Recall
from lemma 4.1 that the expected approximation ratio obtained from such a state using the
FKL-post-processing procedure is given by

〈ψG(θ)|
(
HG + ΔFKL

G

)
|ψG(θ)〉

MC(G)
. (11)

We follow and simplify the approach of [8, 18] and bound the ratio (11) in terms of its local
contributions.

We first rearrange and express the numerator of (11) as a sum over triplets. Notice that since
the graph is three-regular, any edge lies in exactly four triplets. Hence

HG + ΔFKL
G =

∑

(c,j,k)∈TG

T(c,j,k) (12)

where T(c,j,k) is the triplet operator defined as

T(c,j,k) :=
Hc,j + Hc,k

4
+

1

3
Πc,j,k for (c, j, k) ∈ TG

and where Ha,b := 1
2 (I − ZaZb) is term in the MaxCut-problem Hamiltonian HG associated with the

edge {a, b}.
Next consider the denominator in the expression (11), i.e., the maximum size MC(G) of a cut.

We can bound this term by the expression

(13)

where is the set of isolated triangles (triangles that do not share an edge with another

triangle) in G and is the set of crossed squares (consisting of two triangles sharing an edge).
Inequality (13) follows immediately from the expression that in any cut of G, there is at least one
unsatisfied (i.e., ‘uncut’) edge in each isolated triangle because of frustration. Similarly, there is at
least one unsatisfied edge in each crossed square. We note that the bound (13) applies to any
three-regular graph G with more than four vertices because in these graphs, any triangle is either
isolated or part of a crossed squared. (Observe that for the remaining graph, the complete graph
G = K4 on four vertices, we have MC(K4) = 4, and equation (13) does not hold for this graph. In
our argument, we will replace equation (13) by the relaxed equation (14) below which applies also
to K4.)

12
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We can bound MC(G) further starting from (13) by expressing the right-hand side as a sum
over edges. Since every isolated triangle has three edges, we can express the number of isolated
triangles as

where is 1 if the edge e is part of an isolated triangle in the graph G and 0 otherwise.
Similarly, we have

for crossed squares, where is 1 if the edge e is part of a crossed square in the graph G and
0 otherwise.

To establish our bound, we only consider the one-environment of each edge e ∈ E, i.e., G(1)[e].
For an edge e ∈ E which belongs to a triangle, the one-environment G(1)[e] is not necessarily
sufficient to distinguish whether the triangle is isolated or belongs to a crossed square: for example,
this is the case for an edge e that belongs to a crossed square but is not shared by both triangles.
The fraction of uncut edges (in any cut) is 1/3 for an isolated triangle, and 1/5 for a crossed
square. Using the smaller of these two contributions per edge, i.e., pretending that each triangle is
in a crossed square, yields the bound

(14)

Here indicates whether the edge e is part of a triangle, i.e., equals 1 whenever

the edge e is part of a triangle in graph G and 0 otherwise. Notice that ,
therefore it is enough to examine the one-environments of edges to obtain the bound (the possible
environments are showcased in figure 3 in the appendix A). We note that while we have excluded
G = K4 in the proof of inequality (14), it is easy to check directly that this graph also satisfies (14).

Expression (14) motivates defining the local averaged MaxCut fraction of an edge e in G as

Using that every edge appears in four triplets, we can reexpress the upper bound (14) as

MC(G) � 1

4

∑

(c,j,k)∈TG

(
LG

{c,j} + LG
{c,k}

)

=
∑

(c,j,k)∈TG

LG
(c,j,k), (15)

where

LG
(c,j,k) :=

1

4

(
LG

{c,j} + LG
{c,k}

)

denotes the local averaged MaxCut fraction of a triplet (c, j, k) ∈ TG.
Inserting the upper bound (15) on MC(G) and expression (12) into (11) gives

〈ψG(θ)|
(
HG + ΔFKL

G

)
|ψG(θ)〉

MC(G)
�

∑
(c,j,k)∈TG

〈ψG(θ)|T(c,j,k)|ψG(θ)〉∑
(c,j,k)∈TG

LG
(c,j,k)

. (16)

Recall that for any triplet (c, j, k) ∈ TG, the expectation value 〈ψG(θ)|T(c,j,k)|ψG(θ)〉 is equal to the
local expectation 〈ψG̃(θ)|T(c,j,k)|ψG̃(θ)〉, where G̃ is the (appropriate) graph environment of the

triplet. By its definition as a local quantity, the combinatorial quantity LG
(c,j,k) = LG̃

(c,j,k) also depends
only on the corresponding graph environment. The set of equivalence classes

of possible graph environments consists of 11 (equivalence classes of)

graphs, see figure 4 in appendix A. Denoting—as in (7)—by nG(Gr) the number of times the

13
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environment Gr appears in G, we can restate (16) as

〈ψG(θ)|
(
HG + ΔFKL

G

)
|ψG(θ)〉

MC(G)
�

∑11
r=1nG(Gr)〈ψGr (θ)|T(c,j,k)|ψGr (θ)〉∑11

r=1nG(Gr)LGr
(c,j,k)

. (17)

Equation (17) is valid for any choice of θ ∈ [0, 2π)2. Suppose now that we have found some angles
θ ∈ [0, 2π)2 such that

〈
ψGs (θ)

∣∣T(c,j,k)

∣∣ψGs (θ)
〉

LGs
(c,j,k)

�
〈
ψG1 (θ)

∣∣T(c,j,k)

∣∣ψG1 (θ)
〉

LG1
(c,j,k)

for all s = 2, . . . , 11. (18)

An example of such a pair is

θ = (β, γ) = (1.130 565, 5.667 705) (19)

as can be verified by straightforward computation. The mediant inequality a+b
c+d � min{ a

c , b
d }

implies (inductively) that ∑11
r=1nrtr∑11
r=1nr�r

� min
r=1,...,11

tr

�r

for any integers {nj}11
j=1 ⊂ N0 and non-negative scalars {tr}11

r=1, {�r}11
r=1. Combining this with (18),

we conclude that
∑11

r=1nG(Gr)〈ψGr (θ)|T(c,j,k)|ψGr (θ)〉∑11
r=1nG(Gr)LGr

(c,j,k)

�
〈
ψG1 (θ)

∣∣T(c,j,k)

∣∣ψG1 (θ)
〉

LG1
(c,j,k)

� 0.7443. (20)

From (17) and (20) we obtain

〈ψG(θ)|
(
HG + ΔFKL

G

)
|ψG(θ)〉

MC(G)
� 0.7443

and the claim follows by taking the maximum over θ ∈ [0, 2π)2.
Let us briefly elaborate on the choice (19) of parameters θ in this proof. By direct computation,

we numerically observe that the quantity maxθ∈[0,2π)2
〈ψGr (θ)|T(c,j,k)|ψGr (θ)〉

LGr
(c,j,k)

is minimal for r = 1. The

parameters θ ∈ [0, 2π)2 in equation (19) are the numerically obtained angles achieving the
maximum for r = 1. We note that their only required feature in our argument is property (18).
This can be verified immediately. A proof that these values θ indeed correspond to some maximum
is not required.

(b)–(f) Let ψG(θ) for θ ∈ [0, 2π)2p be the QAOAp-wave function. We again consider the expected
approximation ratio given by the expression ratio (11). We can use the trivial lower bound
MC(G) � |E| on the size of the maximum cut, giving

αG

(
FKL − QAOA+

p

)
� |E|−1 · 〈ψG(θ)|

(
HG + ΔFKL

G

)
|ψG(θ)〉 (21)

for any choice of θ ∈ [0, 2π)2p. The assumptions on the girth can be expressed as g(G) > 2p + 2 for
p = 2, 3, 4, 5, 6, i.e., the level of QAOA. For such high-girth graphs, all relevant graph environments

of an arbitrary triplet in G are isomorphic to the tree , see figure 6 in appendix A.

Therefore, using (12), the bound (21) becomes

(22)

for any choice of θ ∈ [0, 2π)2p. We can evaluate the right-hand side of this inequality using a tensor
network algorithm and gradient descent to maximize the angles. In particular, in each of the cases
(b)–(f) we found a set of angles θ such that the right-hand side of (22) is equal to the value stated
in the proposition. These angles are listed in figure 8. This completes the proof.

For sake of comparison, we also obtained the guaranteed approximation ratios of bare QAOA for
p = 4, 5, and 6 for high girth graphs. These were computed in a similar fashion as explained at the end of
the proof of proposition 5.1:

(23)

The witness angles proving the lower bounds are listed in figure 8.
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5.2. Approximation ratios of HLZ-QAOA+ for three-regular graphs

Proposition 5.2. Let G = (V, E) be a three-regular graph. Then

(a) If G is triangle-free (i.e. g(G) � 4), then αG

(
HLZ − QAOA+

1

)
� 0.7548.

(b) If g(G) � 7, then αG

(
HLZ − QAOA+

2

)
� 0.7954.

(c) If g(G) � 9, then αG

(
HLZ − QAOA+

3

)
� 0.8191.

(d) If g(G) � 11, then αG

(
HLZ − QAOA+

4

)
� 0.8358.

(e) If g(G) � 13, then αG

(
HLZ − QAOA+

5

)
� 0.8482.

(f ) If g(G) � 15, then αG

(
FKL − QAOA+

6

)
� 0.8582.

Proof.

(a) Recall from lemma 4.2 that the expected approximation ratio obtained using the
HLZ-post-processing procedure is given by

〈ψG(θ)|
(
HG + ΔHLZ

G

)
|ψG(θ)〉

MC(G)
, (24)

where we again use ψG(θ) for the QAOA1 state.
We rearrange and express the numerator (24) as a sum over three-star subgraphs, as they are

underlying graphs of local terms of the improvement operator ΔHLZ
G . The three-star graph with the

central vertex c has vertices {c, j, k, �} and edges {{c, j}, {c, k}, {c, �}} and we depict it by .

Since the graph G is three-regular, any edge {a, b} ∈ E lies in exactly two stars with central vertices
a and b. Hence

HG + ΔHLZ
G =

∑

c∈V

Sc, (25)

where Sc is the three-star operator

Sc :=
Hc,j + Hc,k + Hc,�

2
+

2

5
Π(2)

c +
17

15
Π(3)

c for c ∈ V ,

(j, k, �) is the ordered neighbourhood of c in G and Ha,b is again the MaxCut term on edge {a, b}.
Inserting the trivial upper bound on MC(G) � |E| and (25) into (24) gives:

〈ψG(θ)|
(
HG + ΔHLZ

G

)
|ψG(θ)〉

MC(G)
�

∑
c∈V〈ψG(θ)|Sc|ψG(θ)〉

|E| . (26)

We can restate (26) as a sum over the local expectation values over the graph environments from

the set (listed in figure 5 in appendix A):

〈ψG(θ)|
(
HG + ΔHLZ

G

)
|ψG(θ)〉

MC(G)
�

∑8
r=1nG(Gr)〈ψGr (θ)|Sc|ψGr (θ)〉

|E| , (27)

where nG(Gr) is number of times the environment Gr appears in graph G.
Suppose now that we have found some angles θ ∈ [0, 2π)2 such that

〈
ψGs (θ)

∣∣Sc

∣∣ψGs (θ)
〉

�
〈
ψG1 (θ)

∣∣Sc

∣∣ψG1 (θ)
〉

for all s = 2, . . . , 8. (28)

An example of such a pair is

θ = (β, γ) = (0.102 870, 5.669 319)

as can be verified by straightforward computation.
We combine (27) with (28) and use the fact that

∑8
r=1nG(Gr) = |V| = 2/3|E| for three-regular

graphs:
〈ψG(θ)|

(
HG + ΔHLZ

G

)
|ψG(θ)〉

MC(G)
� 2

3

〈
ψG1 (θ)

∣∣Sc

∣∣ψG1 (θ)
〉

� 0.7548

and the claim follows.
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(b)–(f) We will follow a similar line of reasoning as in (a) and proposition 5.1(b)–(f). The assumptions
again guarantee that the considered graphs are of girth greater than 2p + 2 with p being the level of
QAOA. For such high-girth graphs, all graph environments of an arbitrary star in G are isomorphic

to . Therefore,

αG

(
HLZ − QAOA+

p

)
� 2

3
〈ψG̃(θ)|Sc|ψG̃(θ)〉,

where ψG̃(θ) for θ ∈ [0, 2π)2p be the QAOAp-wave function. We obtain witness angles by numerical
optimization (listed in figure 8) and the claim follows.

We note that the proven lower bound proposition 5.2(a) on the approximation ratio
αG(HLZ − QAOA+

1 ) of the twisted algorithm QAOA1 is below the value 0.7555 resulting from the
application of HLZ to a constant partition (see (3)). An improvement over this trivial (classical) algorithm
can only be observed starting from level p � 2 (cf proposition (5.2)(b)–(f)). This is not surprising given the
fact that the QAOA-ansatz is very restricted, especially for small values of p. In particular, for any angles
(β, γ), the QAOA-state ψG(β, γ) (cf (6)) with the usual cost function Hamiltonian HG for MaxCut is
different from both the all-zero state |0〉⊗n and the all-one state |1〉⊗n. This is the case for any level p since
because of the Z2-symmetry of the ansatz: every state ψG(β, γ) is an eigenstate of the
operator X⊗n.
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Figure 3. The edge environments as described in section 3.2.

Figure 4. The triplet environments as described in section 3.2.
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Figure 5. Triangle-free star environments in as described in section 3.2.

Figure 6. The triplet trees and constructed as described in section 3.2.
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Figure 7. The star trees and constructed as described in section 3.2.

Appendix B. Witness angles

Figure 8. Witness angles β = β1, β2, . . . and γ = γ1, γ2, . . . certifying the approximation ratios of QAOAp, FKL − QAOA+
p and

HLZ − QAOA+
p on graphs of girth greater than 2p + 2 for p ∈ {2, . . . , 6}.
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Obstacles to Variational Quantum Optimization from Symmetry
Protection

Sergey Bravyi, Alexander Kliesch, Robert Koenig, Eugene Tang

While already the seminal paper on QAOA [12] provides a non-trivial lower bound on the
worst-case approximation ratio achieved by QAOA applied to Max-Cut on 3-regular graphs,
little was known about upper bounds on this quantity in any setting. In particular, it was not
rigorously known whether constant-level QAOA might be able to outperform the best classical
approximation algorithms in the general case. In Article III) [3], we give a negative answer to
this question.

B.1.1 Main Results

We show that the worst-case approximation ratio achievable by QAOA applied to Max-Cut,
where the level of QAOA is growing at most logarithmically in the size of the considered graphs,
is upper bounded by a constant arbitrarily close to 5

6 ≈ 0.8333. In particular, this implies that
the worst-case approximation ratio of constant-level QAOA is worse than the one achieved by the
best classical approximation algorithm for Max-Cut, the Goemans-Williamson algorithm [17],
which achieves an approximation ratio of 0.8785. To establish this result, we utilize that the
QAOA circuits and the Max-Cut Hamiltonians commute with the symmetry operator X⊗n,
where n is the number of vertices, while the QAOA input state is a +1 eigenstate of this operator;
we therefore call the resulting QAOA state Z2-symmetric.
As a second result, we prove a general upper bound on the performance of geometrically local
variational algorithms producing Z2-symmetric states by considering the family of cycle graphs.
Our results make it clear that all local variational quantum algorithms suffer from restrictions;
we therefore introduce a more non-local version of QAOA which we call “recursive QAOA”
(RQAOA) which uses QAOA as a subroutine to determine correlations between vertices of a
given graph. For the family of cycle graphs, we then show that RQAOA with level 1 produces
a maximum cut for any member of the family, strictly surpassing the worst-case performance of
constant-level QAOA.

B.1.2 Individual Contribution

Eugene Tang is the principal author of this article. The idea for working on proving limitations
of QAOA first came after discussions with my doctoral advisor Robert Koenig and Eugene
Tang who was then visiting our department M5. The concrete idea to show these limitations by
exploiting symmetry considerations was conceived while Robert Koenig visited Sergey Bravyi at
IBM in New York. I was involved in the scientific work and the write-up of the article.
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The quantum approximate optimization algorithm (QAOA) employs variational states generated by a
parameterized quantum circuit to maximize the expected value of a Hamiltonian encoding a classical cost
function. Whether or not the QAOA can outperform classical algorithms in some tasks is an actively
debated question. Our work exposes fundamental limitations of the QAOA resulting from the symmetry
and the locality of variational states. A surprising consequence of our results is that the classical Goemans-
Williamson algorithm outperforms the QAOA for certain instances of MaxCut, at any constant level. To
overcome these limitations, we propose a nonlocal version of the QAOA and give numerical evidence that
it significantly outperforms the standard QAOA for frustrated Ising models.

DOI: 10.1103/PhysRevLett.125.260505

Variational quantum optimization (VQO) has recently
received significant attention as a candidate application of
near-term quantum processors. The basic proposal is appeal-
ingly simple: The output state of a parameterized quantum
circuit is used as a variational wave function to minimize the
expected energy of a given Hamiltonian [1]. Depending on
the envisioned application, the Hamiltonian may govern
electronic interactions in amolecule ormaterial of interest [2]
or encode a classical cost function whose minimum is to be
approximated [3]. Rotation angles that define individual
gates in the state preparation circuit serve as variational
parameters. These parameters are adjusted via a classical
feedback loop that aims to minimize the expected energy.
The central question common to all VQO proposals is

whether the chosen variational class of states is expressive
enough to provide a good ground state approximation. Let
us point out two factors that can limit the expressive power
of VQO. First, the state preparation quantum circuit must
have a small depth to enable reliable implementation on
near-term noisy devices lacking error correction. This
means that highly entangled states such as the ground
state of Kitaev’s toric code [4] may be out of scope for near-
term VQO using gate-based devices and low-depth circuits
[5,6]. Second, the number of variational parameters in the
state preparation circuit must be small enough to enable
efficient energy minimization. While this is not a serious
concern for proof-of-principle experiments with a handful
of qubits, it is anticipated that large-scale VQO with an
extensive number of variational parameters may give rise to
intractable optimization problems, for example, due to the
barren plateau (vanishing gradient) effect [7].
In this Letter, we elaborate on the limitations of

VQO and establish formal no-go results for the quantum

approximate optimization algorithm (QAOA) [3]. Recall
that the QAOA aims to approximate the maximum
of a classical cost function CðxÞ that depends on
n binary variables, x ¼ ðx1;…; xnÞ. The cost function is
encoded into an n-qubit diagonal Hamiltonian C ¼P

x∈f0;1gn CðxÞjxihxj. The QAOA variationally maximizes
the expected energy of C over n-qubit quantum states of the
form [3]

jψðβ; γÞi ¼
Yp

a¼1

eiβaBeiγaCjþni; ð1Þ

where βa and γa are variational parameters, jþni is the
tensor product of n single-qubit states jþi¼ðj0iþj1iÞ= ffiffiffi

2
p

,
and B ¼ P

n
j¼1 Xj is the transverse magnetic field operator.

The integer p, called the QAOA level, controls the
expressive power of the variational ansatz. Finally, the
QAOA outputs a bit string x obtained by preparing
the optimal variational state jψðβ; γÞi and measuring each
qubit in the standard basis. The expected value of CðxÞ
coincides with the variational energy hψðβ; γÞjCjψðβ; γÞi.
The performance of the QAOA is commonly quantified by
an approximation ratio defined as the ratio between the
maximum variational energy and the maximum value of the
cost function Cmax ¼ maxx CðxÞ.
A paradigmatic test case for the QAOA is the maximum

cut (MaxCut) problem [3]. Suppose G ¼ ðV; EÞ is a graph
with a set of n vertices V labeled by integers j ¼ 1;…; n
and a set of edges E. Given an n-bit string x, let cutðxÞ be
the set of edges ðj; kÞ ∈ E such that xj ≠ xk. The cost
function to be maximized is the cut size, CðxÞ ¼ jcutðxÞj.
The corresponding n-qubit Hamiltonian is
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C ¼ 1

2

X

ðj;kÞ∈E
ðI − ZjZkÞ: ð2Þ

Here, Zj is the Pauli Z operator applied to a qubit j, and I is
the identity. The state preparation circuit defined in Eq. (1)
has depth ≈pD, where D is the maximum vertex degree of
the graph G and p is the QAOA level [8]. To keep the
circuit depth and the number of variational parameters
small, below, we focus on the regime when p and D are
constants or slowly growing functions of n.
Our first result is an upper bound on the maximum

variational energy attained by level-p states. Namely, we
show that for any constant D ≥ 3 and all large enough n
there exists a degree-D graph G with n vertices such that

hψðβ; γÞjCjψðβ; γÞi
Cmax

≤
5

6
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p

3D
ð3Þ

for any β; γ ∈ Rp as long as p<ð1=3log2n−4ÞðDþ1Þ−1.
This result severely limits the performance of the QAOA
with any constant level p independent of n. Indeed, the
right-hand side of Eq. (3) is approximately 5=6 ≈ 0.833 for
large vertex degree D. For comparison, the best-known
classical algorithm for MaxCut due to Goemans and
Williamson [9] achieves the approximation ratio ≈0.878
on an arbitrary graph. Thus, the QAOAwith a constant level
p cannot outperform classical algorithms. We note that
upper bounds on the QAOA approximation ratio were
previously known only for p ¼ 1 [3]. We refer to Ref. [10]
for numerical studies of the QAOA applied to MaxCut.
Similar concerns about limitations of the QAOA have

previously been voiced by Hastings [11], who showed
analytically that certain local classical algorithms match
the performance of the level-1 QAOA for Ising-like cost
functions with multispin interactions. Hastings also
gave numerical evidence for the same phenomenon for
MaxCut with p ¼ 1 and argued that this should extend to
p > 1 [11].
QAOA states possess a certain symmetry that plays a

crucial role in our analysis. Namely, the state jψðβ; γÞi is
invariant under a global spin flip:

X⊗njψðβ; γÞi ¼ jψðβ; γÞi:

Indeed, the Hamiltonians B and C commute with the
symmetry operator X⊗n, while the initial state jþni is a
þ1 eigenvector of X⊗n. More generally, let us say that an
n-qubit state jψi isZ2 symmetric if it is aþ1 eigenvector of
X⊗n. Our proof of Eq. (3) combines two observations:
(i) The symmetry forces good variational states to be highly
entangled, and (ii) low-depth circuits are not capable of
preparing highly entangled states.
To elaborate on the role of the Z2 symmetry, suppose

x ∈ f0; 1gn is an optimal cut such that Cmax ¼ CðxÞ. Let x̄
be the bitwise negation of x. Note that Cðx̄Þ ¼ CðxÞ.

Although the state jxi has no entanglement whatsoever, its
Z2-symmetric version ðjxiþjx̄iÞ= ffiffiffi

2
p

is a highly entangled
state, locally equivalent to the n-qubit Greenberger-Horne-
Zeilinger (GHZ) state ðj0ni þ j1niÞ= ffiffiffi

2
p

, which cannot be
prepared by a low-depth circuit [5].
The fact that symmetry may prevent one from preparing

ground states of certain Hamiltonians by low-depth circuits
is well known in the theory of topological quantum order
under the name symmetry protection [12–14]. The bound
Eq. (3) asserts that the Hamiltonian C exhibits a strong
form of symmetry protection that extends to all states with
energy density above a certain constant threshold.
We shall now argue that for a suitable family of graphsG

all good variational states are qualitatively similar to the
GHZ state. Specifically, the results of Refs. [15–17] show
that for any constantD ≥ 3 there exists an infinite family of
bipartite degree-D graphs G such that

CðxÞ≡ jcutðxÞj ≥ hmin fjxj; n − jxjg ð4Þ

for any x ∈ f0; 1gn, where h is a constant satisfying

h ≥
D
2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p
ð5Þ

and jxj is the Hamming weight of x. Such graphs, known
as Ramanujan expander graphs, maximize the spectral gap
of their adjacency matrices among all D-regular graphs.
Random D-regular bipartite graphs are known to approach
the bound Eq. (5) with high probability [18].
Let G be a bipartite graph as above and xopt ∈ f0; 1gn be

an optimal solution of the MaxCut problem. For a bipartite
graph, Cmax ¼ CðxoptÞ ¼ jEj. Moreover, the optimal sol-
ution xopt is unique up to the bitwise negation and

CðxÞ þ Cðxopt ⊕ xÞ ¼ jEj ð6Þ

for all x ∈ f0; 1gn. Here, ⊕ denotes the bitwise XOR. Set
ϵ ¼ h=6 and consider a level-p QAOA state such that

hψðβ; γÞjCjψðβ; γÞi ≥ jEj − ϵn: ð7Þ

Let x be a random n-bit string sampled from the distribution
PðxÞ ¼ jhxjψðβ; γÞij2. Markov’s inequality and Eq. (7)
show that CðxÞ ≥ jEj − 2ϵn with a probability of at least
1=2. From Eq. (6), one infers that Cðxopt ⊕ xÞ ≤ 2ϵnwith a
probability of at least 1=2. Let distðx; yÞ ¼ jx ⊕ yj be the
Hamming distance between bit strings x and y. Combining
Eq. (4) and the bound Cðxopt ⊕ xÞ ≤ 2ϵn, one gets

min fdistðxopt; xÞ; distðxopt; xÞg ≤
2ϵn
h

¼ n
3

ð8Þ

with a probability of at least 1=2. This shows that the state
jψðβ; γÞi has a non-negligible weight on bit strings close to
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xopt and on those close to xopt. Here, closeness means being
within a Hamming distance of at most n=3.
Finally, we employ a fascinating result by Eldar and

Harrow stated as Corollary 43 in Ref. [19]. It asserts that the
output distribution of a low-depth circuit cannot assign a
non-negligible weight to subsets of bit strings that are far
apart in Hamming distance. Namely, suppose jψi is an
n-qubit state that can be prepared starting from a product
state by a depth-d quantum circuit composed of one- and
two-qubit gates. The state jψi does not have to be symmetric
in any sense. Define a distribution PðxÞ ¼ jhxjψij2. Given a
subset S ⊆ f0; 1gn, let PðSÞ ¼ P

x∈S PðxÞ. Reference [19]
showed that for any subsets S; S0 ⊆ f0; 1gn one has

distðS; S0Þ ≤ 4n1=223d=2

min fPðSÞ; PðS0Þg : ð9Þ

Here, distðS; S0Þ ¼ minx∈Sminy∈S0 distðx; yÞ is the mini-
mum number of bit flips required to get from S to S0.
Choose S and S0 as the sets of n-bit strings x such that
distðxopt; xÞ ≤ n=3 and distð ¯xopt; xÞ ≤ n=3, respectively.
Then distðS; S0Þ ¼ n=3. Choose jψi≡ jψðβ; γÞi. The Z2

symmetry of QAOA states gives PðxÞ ¼ Pðx̄Þ and, thus,
PðSÞ ¼ PðS0Þ. We have already shown that PðS ∪ S0Þ ≥
1=2 [see Eq. (8)]; that is, PðSÞ ¼ PðS0Þ ≥ 1=4. Combining
this andEq. (9), one arrives at 1 ≤ 48n−1=223d=2. This gives a
lower bound on the depth d required to approximate the
maximum value Cmax ¼ jEj within a ratio

1 −
ϵn
jEj ¼ 1 −

h
3D

≤
5

6
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p

3D
:

Here, we recalled that ϵ ¼ h=6 and jEj ¼ Dn=2 and used
Eq. (5). In Appendix A in Supplemental Material [20], we
show that the level-pQAOAcircuit has depthd ≤ pðDþ 1Þ
whenever G is a bipartite degree-D graph. Thus, 1 ≤
48n−1=223d=2 implies p ≥ ð1=3 log2 n − 4ÞðDþ 1Þ−1. This
concludes the proof of Eq. (3).
The above arguments provide an upper bound on the

variational energy for any Z2-symmetric state generated by
a low-depth circuit. One may ask if stronger bounds can be
derived by making use of the special structure of the QAOA
ansatz. Indeed, so far this structure has been used only in
establishing the Z2 symmetry and expressing the circuit
depth d in terms of the degree D and the level p. A notable
special feature of the QAOA ansatz is its geometric
locality—the entangling operators eiγaC include inter-
actions only between nearest-neighbor qubits with respect
to the underlying graph G.
To elucidate implications of the geometric locality,

consider a toy model known as the ring of disagrees
[3]. It describes the MaxCut problem on the cycle graph.
The latter has a set of vertices V ¼ Zn ¼ f0; 1;…; n − 1g.
An edge is drawn between any pair of vertices j; k ∈ Zn

such that j ¼ k� 1modn. Quite recently, Ref. [21] proved
that the optimal approximation ratio achieved by the level-
p QAOA for the ring of disagrees is bounded above by
ð2pþ 1Þ=ð2pþ 2Þ for all p and conjectured that this
bound is tight. Here, we prove a version of this conjecture
for arbitrary Z2-symmetric geometrically local variational
states. To quantify the geometric locality, let distðj; kÞ be
the distance between qubits j and kwith respect to the cycle
graph Zn. Define the R neighborhood of a qubit j as the set
fi ∈ Zn∶distði; jÞ ≤ Rg. A unitary U acting on n qubits
located at vertices of the cycle graph has range R if the
operatorU†ZjU has support on the R neighborhood of j for
any qubit j. For example, the level-p QAOA circuit
associated with the ring of disagrees has range R ¼ p.
A unitary U is said to be Z2 symmetric if UX⊗n ¼ X⊗nU.
Let C be the MaxCut Hamiltonian Eq. (2) associated with
the cycle graph Zn, where n is even. Note that such a graph
has a maximum cut of size n. We show that

1

n
hþnjU†CUjþni ≤ 2Rþ 1=2

2Rþ 1
ð10Þ

for any Z2-symmetric range-R unitary U with R < n=4.
This bound is tight whenever n is an even multiple of
2Rþ 1. Since one can always round n to the nearest even
multiple of 2Rþ 1, the bound Eq. (10) is tight for all n up
to corrections Oð1=nÞ, assuming that R ¼ Oð1Þ.
We shall now prove the upper bound Eq. (10). Let X̄ be

the operator that applies Pauli X to every second qubit, and
let W ¼ X̄U. Note that W is a Z2-symmetric circuit with
range R. Since X̄ðZjZjþ1ÞX̄ ¼ −ZjZjþ1 for any qubit j, the
MaxCut Hamiltonian Eq. (2) satisfies Cþ X̄CX̄ ¼ nI.
Taking the expected value of this identity on the state
Ujþni, one infers that Eq. (10) holds whenever

1

n
hþnjW†CWjþni ≥ 1 −

2Rþ 1=2
2Rþ 1

¼ 1

2ð2Rþ 1Þ : ð11Þ

Thus, it suffices to prove that Eq. (11) holds for any
Z2-symmetric range-R circuitW. For each j; k ∈ Zn define

ϵj;k ¼
1

2
hþnjW†ðI − ZjZkÞWjþni:

We claim that

ϵj;k ¼ 1=2 if distðj; kÞ > 2R: ð12Þ

Indeed, hþnjW†ZjWjþni ¼ 0 for any qubit j, since the
states Wjþni and ZjWjþni are eigenvectors of X⊗n with
eigenvalues 1 and −1. Such eigenvectors have to be
orthogonal. From distðj;kÞ>2R, one infers that W†ZjW
and W†ZkW have disjoint support. Thus,
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hþnjW†ZjZkWjþni¼ hþnjðW†ZjWÞðW†ZkWÞjþni
¼ hþnjW†ZjWjþni · hþnjW†ZkWjþni
¼ 0:

This proves Eq. (12).
Suppose one prepares the state Wjþni and measures a

pair of qubits j < k in the standard basis. Then ϵj;k is the
probability that the measured values on qubits j and k
disagree. If qubits j and k disagree, at least one pair of
qubits ði; iþ 1Þ located in the interval ½j; k� must disagree.
The probability of the latter event is ϵi;iþ1. Thus, the union
bound gives

ϵj;k ≤
Xk−1

i¼j

ϵi;iþ1: ð13Þ

Set k ¼ jþ 2Rþ 1. Then ϵj;k ¼ 1=2 by Eq. (12). Take the
expected value of Eq. (13) with respect to random uniform
j ∈ Zn. This gives

1

2
≤
2Rþ 1

n

X

i∈Zn

ϵi;iþ1 ¼
2Rþ 1

n
hþnjW†CWjþni;

proving Eq. (11). As argued above, Eq. (11) is equivalent to
Eq. (10). In Appendix B in Supplemental Material [20],
we show that the bound Eq. (10) is tight by constructing a
Z2-symmetric range-R circuitU such thatUjþni is a tensor
product of GHZ-like states on consecutive segments of
2Rþ 1 qubits. This circuit is shown to saturate the upper
bound Eq. (10).
Motivated by the limitations established above, we

propose a nonlocal modification of QAOA which we call
the recursive quantum approximate optimization algorithm

(RQAOA). This is a VQO-type algorithm based on the
variational ansatz Eq. (1) with a constant level p. The key
new feature of the RQAOA is a variable elimination step.
The latter transforms a cost function with n variables to one
with n − 1 variables by examining correlations present in
the optimal variational state and identifying strongly
correlated clusters of variables. To describe this formally,
suppose the cost function CðxÞ describes the Ising model
on a graph G ¼ ðV; EÞ with n vertices. The corresponding
n-qubit Hamiltonian is

C ¼
X

ðj;kÞ∈E
Jj;kZjZk: ð14Þ

Here, Jj;k are arbitrary real coefficients. As before, our goal
is to maximize CðxÞ ¼ hxjCjxi. The RQAOA consists of
the following steps.
First, maximize the expected value hψðβ; γÞjCjψðβ; γÞi

over β; γ ∈ Rp. For every edge ðj; kÞ ∈ E, compute the
mean value Mj;k ¼ hψðβ; γÞjZjZkjψðβ; γÞi.
Next, find an edge ði; jÞ ∈ E with the largest magnitude

of Mi;j (breaking ties arbitrarily). The corresponding
variables Zi and Zj are correlated if Mi;j > 0 and anti-
correlated if Mi;j < 0. Impose a parity constraint

Zj ¼ sgnðMi;jÞZi ð15Þ

and substitute it into the cost function C to eliminate the
variable j. For example, a term Jj;kZjZk with k ∉ fi; jg
gets mapped to Jj;ksgnðMi;jÞZiZk. The term Ji;jZiZj gets
mapped to a constant energy shift Ji;jsgnðMi;jÞ. All other
terms remain unchanged. This yields a new Ising cost
functionC0 that depends on n − 1 variables. The underlying
interaction graph G0 with n − 1 vertices is obtained from G

FIG. 1. (a) Approximation ratios achieved by the level-1 RQAOA (blue) and the Goemans-Williamson (GW) algorithm [9] (red) for 15
instances of the Ising cost function with random �1 couplings defined on the 2D toric grid of size 16 × 16. In case (b), the Ising
Hamiltonian also includes random �1 external fields. The RQAOA threshold value is nc ¼ 20. We found that the standard level-1
QAOA achieves approximation ratios below 1=2 for all considered instances (not shown). The GW algorithm was implemented with
n ¼ 256 rounding attempts, and the best found solution was selected. The exact maximum energy was computed using integer linear
programming.
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by contracting the edge ði; jÞ [22]. The maximum energy of
C0 coincides with the maximum energy of C over the subset
of assignments satisfying the constraint Eq. (15).
Next, call the RQAOA recursively to maximize the cost

function C0. Each recursion step eliminates one variable
from the cost function. The recursion stops when the
number of variables reaches some specified threshold value
nc ≪ n. The remaining instance of the problem with nc
variables is then solved by a purely classical algorithm (for
example, by a brute force method). Thus, the value of nc
controls how the workload is distributed between quantum
and classical computers.
Finally, assign a value to all eliminated variables Zj by

backtracking the steps of the algorithm and applying the
parity constraints Eq. (15) imposed at each step. This
results in a tentative solution x ∈ f0; 1gn of the original
problem with n variables.
Importantly, the limitations established above for the

QAOAwith a constant levelp on bounded degree graphs do
not apply to its recursive version. Indeed, each variable
elimination step performed by the RQAOA results in a
contraction of some edge in the graph. The latter tends to
increase the maximum vertex degree, thereby increasing the
circuit depth of level-p variational states. In other words, the
RQAOA overcomes the locality restriction of the standard
QAOAwithout increasing the number of variational param-
eters that have to be optimized at each step.
We report a numerical comparison between the level-1

RQAOA and the Goemans-Williamson algorithm [9] for
the Ising cost function Eq. (14) with random coefficients
Jj;k ¼ �1. Two graphs are considered: (a) the 2D grid and
(b) the 2D grid with one extra vertex connected to all grid
points. The latter is equivalent to the 2D Ising model with
random �1 external fields. As shown in Ref. [23], the
problem of maximizing the energy CðxÞ admits an efficient
algorithm in case (a), while case (b) is NP hard. To
compute the mean values hψðβ; γÞjZjZkjψðβ; γÞi, we used
a version of the algorithm byWang et al. [24], as detailed in
Appendix C in Supplemental Material [20]. Figure 1 shows
approximation ratios achieved by each algorithm for 15
problem instances with the grid size 16 × 16. It can be seen
that the RQAOA outperforms the Goemans-Williamson
algorithm for all except for one instance. We found that the
standard level-1 QAOA achieves an approximation ratio
below 1=2 for all considered instances. Finally, we show
analytically that the RQAOAwith the level p ¼ 1 finds the
optimal solution for the ring of disagrees model; see
Appendix D in Supplemental Material [20]. Meanwhile,
the standard level-p QAOA achieves an approximation
ratio of at most ð2pþ 1Þ=ð2pþ 2Þ for this model [21].
This proves that in certain cases the RQAOA is strictly
more powerful than the QAOA.
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Note added.—Recently, analogous limitations were estab-
lished for random regular graphs by exploiting the locality
and spatial uniformity of the QAOA [25,26]. We focus on
Z2 symmetry and locality, and our statements also apply to
nonuniform local algorithms.
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A QAOA state preparation circuit

In this section we construct a quantum circuit that prepares the level-p QAOA state for any Ising-
type Hamiltonian

C =
∑

(j,k)∈E
Jj,kZjZk

defined on a graph G = (V,E) with n vertices and maximum vertex degree D. This includes the
MaxCut Hamiltonian as a special case. Let

U =

p∏

a=1

eiβaBeiγaC

be the requisite circuit. For simplicity, we ignore the initial layer of Hadamard gates that prepares
the |+n〉 state.

Lemma A.1. The unitary U can be realized by a circuit of depth d ≤ p(D+ 2) composed of 1-qubit
and 2-qubit gates. If the graph G is D-regular and bipartite then d ≤ p(D + 1).

Proof. By Vizing’s theorem [24] there is an edge coloring of G with at most D + 1 colors. Let
E = E1 ∪ · · · ∪ ED+1 be such a coloring. For each color c ∈ {1, · · · , D + 1} define a unitary

Vc =
∏

(j,k)∈Ec

eiγJj,kZjZk

Note that Vc is a depth-1 circuit since all edges in Ec are disjoint. Then each entangling layer eiγaC

can be realized by a depth D+ 1 circuit V1V2 · · ·VD+1. Each layer eiβaB is a product of single-qubit
gates, which has depth one. Thus U has depth at most p(D + 2).

If G is D-regular and bipartite, we may reduce the number of edge colors from D + 1 to D
since all bipartite graphs are D-edge-colorable by Kőnig’s line coloring theorem. We illustrate the
construction of the circuit on Figure 1 for the case D = 3 and p = 1.
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†Zentrum Mathematik, Technical University of Munich, 85748 Garching, Germany
‡Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
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•
= eiγJZZ•

Figure 1: Example for the construction of the circuit given in Lemma A.1: a 4-colorable graph with
maximum degree 3 alongside its associated depth-5 quantum circuit for the level-1 QAOA unitary.

B Optimal variational circuit for the ring of disagrees

In this section we consider the MaxCut Hamiltonian C on the cycle graph Zn. It is shown that the
upper bound

1

n
〈+n|U †CU |+n〉 ≤ 2p+ 1/2

2p+ 1
.

established in the main text for any Z2-symmetric range-p unitary U with p < n/4 is tight whenever
n is an even multiple of 2p+ 1. Let

|GHZn〉 = 2−1/2(|0n〉+ |1n〉)

be the GHZ state of n qubits.

Lemma B.1. Suppose n = 2p+1 for some integer p. There exists a Z2-symmetric range-p quantum
circuit V such that

|GHZn〉 = V |+n〉. (1)

Proof. We shall write CXc,t for the CNOT gate with a control qubit c and a target qubit t. Let Hj

be the Hadamard gate acting on the j-th qubit and c = p+ 1 be the central qubit. One can easily
check that

|GHZn〉 =

(
p∏

j=1

CXc,c−jCXc,c+j

)
Hc|0n〉.

All CX gates in the product pairwise commute, so the order does not matter. Inserting a pair of
Hadamards on every qubit j ∈ [n] \ {c} before and after the respective CX gate and using the
identity (I ⊗H)CX(I ⊗H) = CZ one gets

|GHZn〉 =


 ∏

j∈[n]\{c}
Hj



(

p∏

j=1

CZc,c−jCZc,c+j

)
|+n〉. (2)

Let S = exp [i(π/4)Z] be the phase-shift gate. Define the two-qubit Clifford gate

RZ = (S ⊗ S)−1CZ = exp(−iπ/4) exp [−i(π/4)(Z ⊗ Z)].
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Expressing CZ in terms of RZ and S in Eq. (2) one gets

|GHZn〉 = S2p
c


 ∏

j∈[n]\{c}
HjSj



(

p∏

j=1

RZc,c−jRZc,c+j

)
|+n〉. (3)

Multiply both sides of Eq. (3) on the left by a product of S gates over qubits j ∈ [n] \ {c}. Noting
that

SHS = i exp [−i(π/4)X]

one gets (ignoring an overall phase factor)

∏

j∈[n]\{c}
Sj|GHZn〉 = S2p

c


 ∏

j∈[n]\{c}
exp [−i(π/4)Xj]



(

p∏

j=1

RZc,c−jRZc,c+j

)
|+n〉. (4)

Using the identity ∏

j∈[n]\{c}
Sj|GHZn〉 = S2p

c |GHZn〉.

one can cancel S2p
c that appears in both sides of Eq. (4). We arrive at Eq. (1) with

V =


 ∏

j∈[n]\{c}
exp [−i(π/4)Xj]



(

p∏

j=1

RZc,c−jRZc,c+j

)

The circuit diagram of V in the case n = 7 is shown in Figure 2. Obviously, V is Z2-symmetric
since any individual gate commutes with X⊗n. Let us check that V has range-p. Consider any
single-qubit observable Oq acting on the q-th qubit. Consider three cases. Case 1: q = c. Then
V †OqV may be supported on all n qubits. However, [c− p, c+ p] = [1, n], so the p-range condition
is satisfied trivially. Case 2: 1 ≤ q < c. Then all gates RZc,c+j in V cancel the corresponding gates
in V †, so that V †OqV has support in the interval [1, c] ⊆ [q − p, q + p]. Thus the p-range condition
is satisfied. Case 3: c < q ≤ n. This case is equivalent to Case 2 by symmetry.

Recall that the ring of disagrees Hamiltonian has the form

C =
1

2

∑

j∈Zn
(I − ZjZj+1).

Lemma B.2. Consider any integers n, p such that n is even and n is a multiple of 2p + 1. Then
there exists a Z2-symmetric range-p circuit U such that

1

n
〈+n|U †CU |+n〉 =

2p+ 1/2

2p+ 1
.

Proof. Let W be the Z2-symmetric range-p unitary operator preparing the GHZ state on 2p + 1
qubits starting from |+2p+1〉, see Lemma B.1. Suppose n = m(2p + 1) for some even integer m.
Define

U = XW⊗m,

where
X = (X ⊗ I)⊗n/2.
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|+〉 • RX (π/4)
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p

•
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π
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Figure 2: The Z2-symmetric range-3 quantum circuit to prepare the GHZ state |GHZ2p+1〉 of 2p+1 =
7 qubits (p = 3). Here, RO(θ) = exp (−iθO).

Since each copy of W acts on a consecutive interval of qubits and has range p, one infers that U
has range p. We have

X
†
CX =

∑

k∈Zn
Gk, where Gk =

1

2
(I + ZkZk+1).

The state W⊗m|+n〉 is a tensor product of GHZ states supported on consecutive tuples of 2p + 1
qubits. The expected value of Gk on the state W⊗m|+n〉 equals 1 if Gk is supported on one of the
GHZ states. Otherwise, if Gk crosses the boundary between two GHZ states, the expected value of
Gk on the state W⊗m|+n〉 equals 1/2. Thus

〈+n|U †CU |+n〉 =
∑

k∈Zn
〈+n|(W⊗m)†GkW

⊗m|+n〉 = m(2p+ 1/2) = n

(
2p+ 1/2

2p+ 1

)
.

C Numerical simulation of level-1 QAOA and RQAOA

In this section we provide details of the simulation reported on Figure 1 in the main text. Let J be
a real symmetric matrix of size n. Consider an Ising-type Hamiltonian

C =
∑

1≤j<k≤n
Jj,kZjZk .

Here Jj,k are arbitrary real coefficients. Below we show how to compute the mean value of a Pauli
operator ZjZk on the level-1 QAOA state

|ψ(β, γ)〉 = eiβBeiγC |+n〉

in time O(n) using an an explicit analytic formula. Such a formula was derived for the MaxCut
cost function by Wang et al. [27, Theorem 1]. Here we provide a generalization to arbitrary Ising
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Hamiltonians. Since the total number of terms in the cost function is O(n2), simulating each step
of RQAOA takes time at most O(n3). Assuming that nc = O(1), the number of steps is roughly
n so that the full simulation cost is O(n4). Crucially, the simulation cost of this method does not
depend on the depth of the variational circuit. This is important because RQAOA may potentially
increase the depth from O(1) to O(n) since it adds many new terms to the cost function.

Lemma C.1. Fix a pair of qubits 1 ≤ j < k ≤ n. Let c = cos (2β) and s = sin (2β). Then

〈ψ(β, 1)|ZjZk|ψ(β, 1)〉 = (s2/2)
∏

p 6=j,k
cos [2Jj,p − 2Jk,p]− (s2/2)

∏

p 6=j,k
cos [2Jj,p + 2Jk,p]

+ cs · sin (2Jj,k)

[∏

p6=j,k
cos (2Jj,p) +

∏

p 6=j,k
cos (2Jk,p)

]
. (5)

Here we only consider the case γ = 1 since γ can be absorbed into the definition of J .

Proof. Given a 2-qubit observable O define the mean value

µ(O) = 〈ψ(β, 1)|Oj,k|ψ(β, 1)〉.

We are interested in the observable O = ZZ ≡ Z ⊗ Z.
We note that all terms in B and C that act trivially on {j, k} do not contribute to µ(O). Such

terms can be set to zero. Given a 2-qubit observable O, define a mean value

µ′(O) = 〈+n|eiC′Oj,ke
−iC′ |+n〉, where C ′ =

∑

p 6=j,k
(Jj,pZj + Jk,pZk)Zp. (6)

Using the identities

eiβ(Xj+Xk)ZjZke
−iβ(Xj+Xk) = c2ZjZk + s2YjYk + cs(ZjYk + YjZk),

eiJj,kZjZkZjZke
−iJj,kZjZk = ZjZk,

eiJj,kZjZkYjYke
−iJj,kZjZk = YjYk

eiJj,kZjZkZjYke
−iJj,kZjZk = cos (2Jj,k)ZjYk + sin (2Jj,k)Xk,

eiJj,kZjZkYjZke
−iJj,kZjZk = cos (2Jj,k)YjZk + sin (2Jj,k)Xj,

and noting that µ′(ZZ) = 0 one easily gets

µ(ZZ) = s2 · µ′(Y Y ) + cs · cos (2Jj,k) [µ′(ZY ) + µ′(Y Z)] + cs · sin (2Jj,k) [µ′(XI) + µ′(IX)] . (8)

Using the explicit form of C ′ one gets

e−iC
′ |+n〉 =

1

2

∑

a,b=0,1

|a, b〉j,k ⊗ |Φ(a, b)〉else, (9)

where |Φ(a, b)〉 is a tensor product state of n− 2 qubits defined by

|Φ(a, b)〉 =
⊗

p6=j,k
|Jj,p(−1)a + Jk,p(−1)b〉p where |θ〉 ≡ e−iθZ |+〉.

Combining Eqs. (6),(9) one gets

µ′(O) = (1/4)
∑

a,b,a′,b′=0,1

〈a′, b′|O|a, b〉 · 〈Φ(a′, b′)|Φ(a, b)〉. (10)
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Using the tensor product form of the states |Φ(a, b)〉 and the identity 〈θ′|θ〉 = cos(θ − θ′) gives

〈Φ(a′, b′)|Φ(a, b)〉 =
∏

p 6=j,k
cos [Jj,p(−1)a − Jj,p(−1)a

′
+ Jk,p(−1)b − Jk,p(−1)b

′
]. (11)

From Eqs. (10),(11) one can easily compute the mean value µ′(O) for any 2-qubit observable.
Consider first the case O = Y Y . Then the only terms contributing to Eq. (10) are those with

a′ = a⊕ 1 and b′ = b⊕ 1. The identity 〈a⊕ 1|Y |a〉 = −i(−1)a gives

µ′(Y Y ) = −(1/4)
∑

a,b=0,1

(−1)a+b
∏

p 6=j,k
cos [2Jj,p(−1)a + 2Jk,p(−1)b],

that is,

µ′(Y Y ) = (1/2)
∏

p 6=j,k
cos [2Jj,p − 2Jk,p]− (1/2)

∏

p 6=j,k
cos [2Jj,p + 2Jk,p]. (12)

Next consider the case O = Y Z. Note that the matrix elements 〈a′, b′|O|a, b〉 have zero real part.
From Eqs. (10),(11) one infers that µ′(Y Z) has zero real part. This implies

µ′(Y Z) = µ′(ZY ) = 0. (13)

Finally, consider the case O = XI. Then the only terms that contribute to Eq. (10) are those with
a′ = a⊕ 1 and b′ = b. We get

µ′(XI) =
∏

p 6=j,k
cos (2Jj,p). (14)

Here we noted that the inner product Eq. (11) with a′ = a⊕ 1 and b′ = b does not depend on a, b.
By the same argument,

µ′(IX) =
∏

p 6=j,k
cos (2Jk,p). (15)

Combining Eq. (8) and Eqs. (12),(13),(14),(15) one arrives at Eq. (5).

Clearly, the ability to simulate level-1 RQAOA with Ising-type cost functions on a classical
computer in polynomial time precludes exponential quantum speedups. However, as far as we
know, higher-level RQAOA with p ≥ 2 lacks efficient classical simulation leaving room for a quantum
advantage.

D RQAOA optimally solves the ring of disagrees

In this section we prove that the level-1 RQAOA optimally solves the ring of disagrees model. This is
in sharp contrast to the standard QAOA which achieves approximation ratio at most (2p+1)/(2p+2)
for any level p, as was shown in Ref. [22]. More generally, we show that the level-1 RQAOA optimally
solves any 1D Ising model where the coupling coefficients are either +1 or −1.

Lemma D.1. Consider a cost function

C(x) =
∑

k∈Zn
Jk(−1)xk+xk+1

with n variables x ∈ {0, 1}n located at vertices of the cycle graph Zn. Assume that Jk ∈ {1,−1} for
all k ∈ Zn. Then the level-1 RQAOA outputs x∗ ∈ {0, 1}n such that C(x∗) = maxxC(x).

6



Proof. Let

C =
∑

k∈Zn
JkZkZk+1 (16)

be the corresponding Hamiltonian. First, we observe that 〈ψ(β, γ)|ZiZj|ψ(β, γ)〉 = 0 if dist(i, j) > 2
since in this case the operators U−1ZiU and U−1ZjU have disjoint support. Lemma C.1 shows that

〈ψ(β, γ)|ZiZj|ψ(β, γ)〉 =





1
2
Ji sin(4β) sin(4γ) if j = i+ 1

1
4
JiJi+1 sin2(2β) sin2(4γ) if j = i+ 2

0 otherwise

(17)

when Jk ∈ {1,−1} for every k ∈ Zn. Here we assumed i < j. Thus

|〈ψ(β, γ)|ZiZi+2|ψ(β, γ)〉| ≤ 1/4 (18)

for all β, γ. Let β∗, γ∗ be the optimal angles maximizing the variational energy 〈ψ(β, γ)|C|ψ(β, γ)〉.
Then we can infer from Eq. (17) that

〈ψ(β∗, γ∗)|ZiZi+1|ψ(β∗, γ∗)〉 = Ji/2 . (19)

Combined with Eq. (17) and Eq. (18) we conclude that the maximally correlated pair of variables
are nearest neighbors, that is,

arg max
(i,j):i<j

|〈ψ(β∗, γ∗)|ZiZj|ψ(β∗, γ∗)〉| = (i∗, i∗ + 1) (20)

for some i∗ ∈ Zn. Without loss of generality, assume that i∗ = n−2. Then, according to Eq. (20), the
RQAOA algorithm eliminates the variable Zn−1. By Eq. (19), the corresponding parity constraint
is

Zn−1 = Zn−2Jn−2. (21)

The resulting reduced graph obtained from Zn by contracting the edge (n− 1, n− 2) is isomorphic
to Zn−1. It is easy to check that the new cost function Hamiltonian C ′ acting on n− 1 qubits is

C ′ = 1 +
∑

k∈Zn−1

J ′kZkZk+1 (22)

with

J ′i =

{
Ji if i 6= n− 2

Jn−2Jn−1 if i = n− 2
(23)

We note that the transformation Eq. (23) preserves the parity of the couplings in the sense that

∏

k∈Zn
Jk =

∏

k∈Zn−1

J ′k . (24)
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Proceeding inductively, one eliminates variables Zn−1, Zn−2, . . . , Znc while imposing parity con-
straints (cf. Eq. (21))

Zn−1 = Zn−2Jn−2

Zn−2 = Zn−3J
′
n−3

...

arriving at the cost function Hamiltonian C ′′ for an Ising chain of length nc having couplings ±1.
Because of Eq. (24) and because the Hamiltonian Eq. (16) is frustrated if and only if

∏
k∈Zn Jk = −1,

we conclude that any maximum x∗ ∈ {0, 1}nc of C ′′(x) satisfies

C ′′(x∗) =

{
nc if

∏
k∈Znc Jk = 1

nc − 2 if
∏

k∈Znc Jk = −1.

Because the cost function acquires a constant energy shift in every variable elimination, see Eq. (22),
the final output x of the RQAOA algorithm satisfies

C(x) = n− nc + C ′′(x∗) =

{
n if

∏
k∈Zn Jk = 1

n− 2 if
∏

k∈Zn Jk = −1.

This implies the claim.
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