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Abstract

This thesis explores the rich dynamics of nanomechanical resonators using cavity-assisted detection
scheme at room temperature. The PhD project initially focuses on the development of a novel detection
scheme to replace the on-chip coplanar waveguide architecture to enhance the detection efficiency of
the nanomechanical displacement. We follow the recent development in the field of circuit quantum
electrodynamics and employ the key element that is used to protect superconducting qubits from
decoherence and to conduct nondemolition measurements. This element is the three dimensional
microwave cavity that has large volume modes, strong electric and magnetic field confinement and it
offers a high quality factor even at room temperature.

In the first part of this work, we focus on the cavity electromechanical system that operates in the
sideband resolved regime at room temperature. To this end, a non-metallized silicon nitride string
resonator is dielectrically coupled to transversemagnetic (TM110)mode of a cylindrical 3Dmicrowave
cavity, which offers almost perfect sideband resolution. We characterize the electromechanical cou-
pling by two measurements, the cavity-induced eigenfrequency shift of the mechanical resonator and
the optomechanical induced reflection (OMIR). While the former is dominated by dielectric effects,
the latter reveals a clear signature of the dynamical backaction of the cavity field on the mechanical
resonator. Our first attempt to implement a room temperature cavity electromechanical system reveals
a relative small single photon coupling rate in the sub-mHz regime. Due to the large number of
photons circulating inside the 3D cavity, it is possible to verify the coupling. The required strong
red-detuned drive in the OMIR experiment results in nonlinear response of the mechanical resonator.

In the second part, we provide a comprehensive description in the development (both theoretical and
experimental) of the iterative adaptive frequency sensing protocol based on the ubiquitous Ramsey
interferometry of a two-level system. In particular, the protocol enables the estimation of unknown
frequencies with high precision from short and finite signals. The implementation of Magnus-based
corrections to the coherent control pulses of the two-level system allows to overcome experimental
constrains such as bandwidth limitation in pulse generation. At the same time, it mitigates leakages
in sensing and readout state preparations of the Ramsey protocol. From the signal processing point of
view, the protocol suppresses loss mechanisms that hinder correct frequency estimation from Fourier
transforms. By applying zero-padding and window techniques to the signals in the time domain,
the protocol substantially suppresses spectral leakage and scalloping losses. In the experimental
realization of the iterative adaptive sensing protocol, we apply again the cavity-assisted detection
scheme using a coaxial _/4 microwave 3D cavity for mechanical motion detection. Additionally, we
employ the coherent nature of the nanomechanical two-mode system which consists of two strongly
coupled flexural in-plane and out-of-plane modes. The application of coherent control pulses to the
classical two-level system is possible due to the dielectric frequency tuning capability and the high
mechanical quality factor. The two mechanical flexural modes can exchange energy coherently in the
resonant condition, orders of magnitude faster than the decay time. Thus, it enables to investigate the
system dynamics in time-resolved measurements.

The experimental results confirm the validity of our iterative adaptive sensing scheme and demonstrate
for the first time the correct implementation of the theoretically proposed Magnus-based corrections.
Thus, a better coherent control in state preparation of the two-level system can be obtained. As a proof
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of principle, we perform the sensing capability of the two-level system by modifying the electric field
environment inside the 3D microwave cavity, in which the nanomechanical resonator is embedded. To
this end, we observe a clear shift in the level splitting of the two flexural modes caused by the change
in the before mentioned electric field.



xi

Zusammenfassung

In dieser Arbeit wird die Dynamik von nanomechanischen Resonatoren mit Hilfe eines kavitäten
gestütztenDetektionsmechanismus bei Raumtemperatur untersucht. DieDissertation konzentriert sich
zunächst auf die Entwicklung eines neuartigen Detektionssystems, das die koplanare Wellenleiterar-
chitektur auf dem Chip ersetzen soll, um die Detektionseffizienz der nanomechanischen Verschiebung
zu verbessern. Wir folgen den jüngsten Entwicklungen auf dem Gebiet der Quantenelektrodynamik
und setzen das Schlüsselelement ein, das verwendet wird, um supraleitende Qubits vor Dekohärenz
zu schützen und um zerstörungsfreie Messungen durchzuführen. Bei diesem Element handelt es sich
um einen dreidimensionalen Mikrowellenhohlraum mit großen Volumenmoden, starker elektrischen
und magnetischen Feldeinschränkung und einer hohen Güte selbst bei Raumtemperatur.

Im ersten Teil dieser Arbeit konzentrieren wir uns auf die Untersuchung des elektromechanischen
Hohlraumsystems, das bei Raumtemperatur im seitenbandaufgelösten Bereich fungiert. Zu diesem
Zweck wird ein nicht-metallisierter Siliziumnitrid-Stringresonator dielektrisch an die transversale
magnetische (TM110)-Mode eines zylindrischen 3D-Mikrowellenresonators gekoppelt, der eine na-
hezu perfekte Seitenbandauflösung bietet. Wir charakterisieren die elektromechanische Kopplung
durch zwei Messungen: die kavitätsinduzierte Eigenfrequenzverschiebung des mechanischen Res-
onators und die optomechanisch induzierte Reflexion (OMIR). Während erstere von dielektrischen
Effekten dominiert wird, zeigt letztere eine deutliche Signatur der dynamischen Rückwirkung des
Hohlraumfeldes auf den mechanischen Resonator. Unser erster Versuch, ein elektromechanisches
System mit Hohlraum bei Raumtemperatur zu realisieren, zeigt eine relativ geringe Kopplungsrate für
einzelne Photonen im Sub-mHz-Bereich. Aufgrund der großen Anzahl von Photonen, die innerhalb
des 3D-Hohlraums zirkulieren, ist es jedoch möglich, die Kopplungsstärke zu verifizieren. Die er-
forderliche starke Rotverstimmung im OMIR-Experiment führt zu einem nichtlinearen Verhalten des
mechanischen Resonators.

Im zweiten Teil berichten wir ausführlich über die Entwicklung (sowohl theoretisch als auch experi-
mentell) des iterativen adaptiven Frequenzbestimmungsprotokolls, das auf der Ramsey-Interferometrie
eines Zwei-Niveau-Systems basiert. Das Protokoll ermöglicht eine hochpräzise Schätzung unbekan-
nter Frequenzen aus kurzen und endlichen Signalen. Die Implementierung von Magnus-basierten
Korrekturen an den kohärenten Kontrollpulsen ermöglicht es, experimentelle Einschränkungen wie
Bandbreitenlimitierung bei der Pulserzeugung zu überwinden. Gleichzeitig werden Leck-Effekte bei
der Vorbereitung des Ramsey-Protokolls für den Abtast- und Auslesezustand reduziert. Aus Sicht
der Signalverarbeitung unterdrückt das Protokoll Verlustmechanismen, die eine korrekte Frequen-
zschätzung aus Fourier-Transformationen verhindern. Die Anwendung der Zero-Padding-Technik und
der Fensterfunktion auf die Signale unterdrückt spektrale Leck-Effekte und Scalloping-Verluste er-
heblich. Bei der experimentellen Umsetzung des iterativen adaptiven Sensing-Protokolls verwenden
wir wiederum den kavitäten gestützten Detektionsmechanismus. In diesem Fall wird die zylindrische
3D Kavität durch eine _/4 Mikrowellenkavität ersetzt. Außerdem nutzen wir die Eigenschaft des
nanomechanischen Zweimodensystems aus, das aus zwei stark gekoppelten in-plane und out-of-plane
Biegemoden besteht, um die kohärente Kontrolle zu untersuchen. Die Anwendung von kohärenten
Steuerimpulsen auf das klassische Zwei-Niveau-System ist aufgrund der dielektrischen Frequenzab-
stimmung und des hohen mechanischen Qualitätsfaktors möglich. Die mechanischen Biegemoden
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können im Resonanzzustand, um Größenordnungen schneller als die Abklingzeit, kohärent Energie
austauschen. Dadurch kann die Systemdynamik in zeitaufgelösten Messungen untersucht werden.
Die experimentellen Ergebnisse bestätigen die Gültigkeit unseres iterativen, adaptiven Sensing-
Schemas. Sie zeigen erstmalig die korrekte Implementierung der theoretisch entwickelten Magnus-
basierten Korrekturen. Mit dieser kann eine bessere Kohärenzkontrolle bei der Vorbereitung der
Zustände des Zwei-Niveau-Systems gewährleistet werden. Zum Beweis demonstrieren wir die
Sensing-Fähigkeit des Zwei-Niveau-Systems. Dafür verändern wir die elektrische Feldumgebung
innerhalb des 3D-Mikrowellenhohlraums, in welchem sich der nanomechanische Resonator befindet.
Wir beobachten dabei eine deutliche Verschiebung in der Niveauspaltung der stark gekoppelten Biege-
moden. Diese wird durch eine Veränderung des zuvor erwähnten elektrischen Feldes verursacht.
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1

1 Introduction

In their news & reviews article [1], C. H. Mielke and A. V. Balatsky portray a spectacular destruction
of a suspension bridge built over the Tacoma Narrows in Washington state in the US (see Fig. 1.1).
Before the total collapse in November 1940, the bridge underwent severe mechanical deformations
owing to gale-force wind at 64 km/h. These strong side-winds were the cause for the aerodynamics
self-excitation effect of the bridge [2]. The induced fundamental antisymmetric torsion mode forced
the bridge to oscillate with larger and larger amplitudes and hence, ripping vital suspender cables
apart. This catastrophic but spectacular event sets a good example of a self-sustained mechanical
oscillator.

Figure 1.1 | Suspended Tacoma Narrows Bridge in November 1940.
The total collapse of the Tacoma Narrows bridge sets a macroscopic example for the dynamics of self-sustained
oscillators. Nowadays, a variety of micrometer and nanometer size suspended structures are used in modern
laboratories to study numerous physical phenomena in different fields of research.
Reprinted from Ref. [1], with the permission of Springer Nature.

Many decades later, researchers from all over the world have successfully employed the vibrational
motions of such suspended structures (but much smaller) to study a multitude of physical phenomena
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including the before mentioned self-sustained oscillation [3], synchronization [4], frequency stabiliza-
tion [5] and advanced sensing applications [6–11].

F. Beil et al. [12] fabricate such a freely suspended structure that is about two billion times smaller
than the Tacoma Narrows bridge and can oscillate in a more extreme manner without collapsing. This
nanosized bridge is also known as a nanomechanical resonator that is made by suspending a beam of
gallium arsenide between two acoustic transducers. In their experiment, Beil and co-workers use the
acoustic transducers at both ends of the nanobridge to generate sound waves that, in turn, set up surface
acoustic waves in the GaAs. The researchers also introduce confined two-dimensional electron gas
(2DEG) into the beam to study the interaction between the confined electrons and the vibration of the
crystal lattice known as phonons. The remarkable feature in this experiment is that the system can be
driven beyond the harmonic motion to explore extreme conditions in a controllable fashion. In order
to reach the so-called shock waves regime, the two transducers are simultaneously driven with phase
locked radio frequency (rf) signals. By adjusting the relative phase shift q of the two signals, standing
wave patterns can be formed causing deformations in the nanomechanical device. The existence of the
shock waves can then be proven by probing the response of the confined two-dimensional electrons
gas.

The experiments discussed above, however, are examples for systems that operate solely in the
classical regime. As technological advances in patterning mechanical structures with nanometer-scale
have made massive strides, researchers hope to conduct experiments with nanomechanical devices
at the quantum limit that further illuminate the boundary between microscopic realm, governed by
quantum mechanics, and the macroscopic world, governed by classical mechanics [13, 14]. The
impressive progress in the study of nano- and micromechanical resonators and the common goal of
exploring the quantum regime of mechanical systems can be observed at the biennial Gordon Research
Conference [15]. From the firstmeeting in 2008 [16] to the current date in 2022 [17], the conference has
brought together scientists and engineers from diverse background, ranging from astrophysical gravity
waves detection [18–21], mesoscopic condensed matter physics [22–27] to quantum optics [28–31],
to increase the level of communication and collaboration between researchers. It all has started with
experimental results and possible theoretical ideas towards the quantum regime in the past. To date in
2022, researchers are formulating experiments that harness quantum behaviour of novel mechanical
devices in an increasing range of precision measurements [32–35], quantum devices [36–38], and tests
of fundamental physics [39–41]. Among many researchers, O’Connell and his colleagues are the first
to bring the mechanical device reliably to its quantum ground state of motion that can, at the same
time, strongly coupled to a different quantum system [42]. Here, they use a quantum bit (qubit) device
to attain quantum control over individual mechanical quanta (phonons). This result has paved the long
road for many subsequent experiments to verify the principle of quantum mechanics and applications
in quantum information processing.

Particularly, coherent control and state manipulation of a two-level system are fundamental require-
ments for the implementation of quantum bits [43–45]. They enable high-fidelity gate operations,
which are essential for building fault-tolerant quantum computers [46]. In this thesis, we study the
coherent control of a two-level system using a classical approach. We employ the linear and coherent
dynamics of two strongly coupled harmonic oscillators as the toy model system to test the dynamics
of a quantum mechanical two-level system. The concept of "classical two-level system", in contrast
to its quantum mechanical counterpart, can be found in a nanomechanical system with two strongly
coupled flexural modes with high mechanical quality factor. Here, the strong coupling mediates
coherent exchange in excitation energy of the two respective modes in orders of magnitude faster than
the decoherence time of the system. In the remainder of this thesis, we refer to the classical two-level
system as the two-mode system.
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In their experiment using the nanomechanical string resonator, Faust et al. [47] report the possibility to
coherently control and manipulate the two-mode system with pulse schemes that are well-established
for nuclear magnetic resonance (NMR) in spins manipulation [48, 49], such as Rabi oscillation [50],
Ramsey fringe [51], andHahn echo [52]. Hence, the system’s coherent dynamics can be fully described
in the generic picture of the Bloch sphere representation. Similar to a quantum two-level system, the
different pulse sequences allow the determination of energy relaxation time )1 and dephasing times )2
and )∗2 of the system. It has been found that these characteristic times are almost equal indicating that
the phase relaxation mechanism is negligible compared to the energy decay rate [47]. So the system
coherence time can be improved with increased quality factor.

A further quantum-classical analogy can be found in experiments demonstrating Landau-Zener transi-
tions [53, 54] and Stückelberg interferometry [55] of two strongly coupled nanomechanical resonator
modes. In the framework of the Landau-Zener dynamics, the two flexural modes coherently exchange
energy during the single passage through the avoided crossing. Depending on the coupling strength
and the detuning speed of the two modes, we can distinguish between two scenarios. In the case of
slow detuning, the excitation energy will remain in the same branch in which it was initialized and thus,
gradually transforming the initial oscillation to the other orthogonal mode. In the high tuning speed
scenario, the diabatic behaviour dominates and there is no mixing between the two modes and hence,
causing a transition at the avoided crossing [56]. This non-adiabatic process represents the classical
analog to the quantum mechanical Landau-Zener tunnelling of a quantum mechanical two-level sys-
tem [53, 54]. As a direct consequence of the wave nature of particle in quantummechanics, the particle
can penetrate through classically forbidden region, such as energy gap in band structures of solids.
This tunneling barrier can be represented in the classical case by the virtual coupling spring between
two mechanical oscillators that is attributed to the energy level splitting of the avoided crossing [57].
In the Stückelberg interferometry experiment [55], the two-level system undergoes a double passage
through an avoided crossing within the coherence time. During the transition, the system experiences
phase accumulation, which leads to self-interference, which in turn causes oscillations in the return
probability. This effect has been experimentally observed exclusively in quantum systems [58–61].
However, Seitner et al. [62, 63] are able to perform Stückelberg oscillations within the framework of
a classical approach, demonstrating the possibility to create superposition states of two mechanical
modes for sensing applications.

To follow the progress in coherent control of the two strongly coupled nanomechanical flexural modes,
we demonstrate in this thesis the theoretical and experimental development of an iterative adaptive
sensing (IAS) protocol based on Ramsey interferometry [51, 64, 65] of a nanomechanical two-mode
system. Our proposed scheme allows one to estimate unknown frequencies from short and finite signal
with high precision, which can be used for sensing application. The experimental results demonstrated
in this thesis are purely classical in nature. However, we would like to emphasize that our developed
IAS protocol is valid for both the classical and quantum regimes.

This thesis is structured as follow:

• In chapter 2, we start with the relevant description of the nanomechanical string resonator
using the Euler-Bernoulli beam theory and approximate the dynamics of the coupled flexural
in-plane and out-of-plane modes by solving equation of motions of linear harmonic oscilla-
tors. In the second part of the chapter, we introduce different types of three dimensional
non-superconducting microwave cavities for the implementation of cavity-assisted mechanical
motion detection scheme at room temperature. We then describe the fabrication process for
generating free-suspended silicon nitride string resonators.
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• Chapter 3 describes dynamics the cavity electromechanical system that operates in the sideband-
resolved regime at room temperature. In this chapter, the operating principle of cavity-assisted
detection and dielectric actuation is explained in detail.

• In Chapter 4, we introduce the theoretical development of our coherent sensing protocol. We
demonstrate how to enhance the ubiquitous Ramsey interferometry of a two-mode system and
how to overcome short comings associated with discrete Fourier transform. To the end of this
chapter, we show that the iterative adaptive spectroscopy indeed mitigates systematic errors such
as spectral leakage and scalloping loss in order to improve frequency estimation.

• In chapter 5, we employ the coherent nature of the strong coupling of the two flexural modes of
the string resonator to implement the theoretically proposed IAS protocol to develop a coherent
sensor.

• Finally, in the last chapter 6, we sum up the key results of the thesis and provide a perspective
in the development of the coherent sensing protocol in the quantum regime using non-classical
squeezed states.
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2 Experimental and Theoretical Basics
In this chapter, we begin with the theoretical foundations of our nanomechanical string resonator.
Subsequently, the various geometries for designing three-dimensional microwave cavities and the
mechanisms for coupling to these types of cavities are discussed. In the last part of this chapter, we
provide step-by-step descriptions on the nano fabrication procedure in order to obtain freely-suspended,
doubly clamped, pre-stressed silicon nitride string resonators.

2.1 The Nanomechanical String Resonator

Figure 2.1 | Schematic Visualization of a Freely Suspended Doubly-Clamped Nanomechanical Resonator.
The polarization directions of the two fundamental flexural modes in-plane (green arrows) and out-of-plane
(orange arrows) are indicated. In addition, we demonstrate the rectangular cross-section of the nano resonator
with the thickness C along the z-axis and the width F oriented along the x-axis.

The dynamical behavior of the nanomechanical string resonator can be derived from the elastic beam
theory that treats the static deformation problem of homogeneous, linear and isotropic solids [66,
67]. Especially the Euler-Bernoulli beam theory can accurately predict the behaviour of systems with
small total displacements and large aspect ratios (i.e. length � thickness, width). Therefore, the
rotational inertia and shear deformations are neglected to reduce the calculation of flexural vibrations
to a one-dimensional problem. Additionally, thin films used in microfabrication tend to have a process
related tensile stress and string resonators made of such thin films are therefore usually pre-stressed.
By combining the Euler-Bernouilli beam theory and Newton’s third law we can derive the equation of
motion for the pre-stressed, doubly clamped silicon nitride (Si3N4) nanomechanical string resonator
as [67]

d�
m2D(G, C)
mC2

+ ��i
m4D(G, C)
mG4 = f�

m2D(G, C)
mG2 . (2.1)
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Here, D(G, C) is the spatial and time-dependent displacement, d is the mass density, � = F × C is the
rectangular cross-section with the width F and the thickness C, � is the Young’s modulus, �i is the
geometric moment of inertia and f is the tensile stress. To solve the differential equation in (2.1), we
can use the ansatz of separating the spatial and temporal variables

D(G, C) =
∞∑
==1

*= (G) cos (lC). (2.2)

Assuming the string has a sinusoidal mode shape with the wavenumber V=, then we can write the
spatial dependent amplitude as:

*= (G) = *0,= sin (V=). (2.3)

For the case of a simply supported doubly clamped beam with the length !, the boundary conditions
are defined as [68]

*= (0) = *= (!) =
m2*= (0)
mG2 =

m2*= (!)
mG2 = 0. (2.4)

These boundary conditions form a system of linear equations of fourth order. By substituting Eq. (2.3)
in the Ansatz (2.2) and choosing V= = =c/! to satisfy the boundary conditions, the set of linear
equations can be solved and we find the eigenfrequencies (in the angular units) of the =th modes

l0,=,8 =
(=c
!

)2
·

√
��8

d�
·

√
1 + f�!2

��8c
2=2 . (2.5)

Note that, due to the rectangular cross-section (perpendicular to the neutral y-axis) of nanomechanical
string, we define the local polar moment of inertia for each transverse axis 8 with 8 ∈ {G, I} as [66]

�8 =

ˆ
�

82 d�. (2.6)

Here, we choose the string’s width F along the x-axis and the thickness C along z-axis. The flexural
vibration mode along the sample substrate can be defined as the in-plane (IP) mode with �G = �IP =
CF3/12 (see green arrows in Fig. 2.1) and the perpendicular polarized vibration mode along the z-axis
is the out-of-plane (OOP) mode with the corresponding moment of inertia �I = �OOP = FC3/12 (orange
arrows). Due to the difference in the flexural rigidity, we expect the eigenfrequency of the IP-mode to
be higher than the OOP-mode for F > C.
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2.2 Linear Harmonic Oscillators

The vibration of any mechanical resonator is the manifestation of a periodic exchange between the
kinetic and potential energy. On the one hand, the deformation of an elastic body due to external
forces allows the system to store potential energy that leads the resonator out of its position of rest.
On the other hand, the restoring forces accelerate the masses of the system back to the position of
equilibrium and hence generate kinetic energy. In turn, this kinetic energy leads the system to traverse
the position of rest and generates new deflection energy which, again, represents the potential energy.
In a real mechanical resonator, the energy exchange can not last forever since the resonator is coupled
to the environment where energy can be dissipated. There are many sources that cause the resonator
into damping e.g. the surrounding medium (liquid or gas), the clamping to the substrate and intrinsic
losses that result from the resonator’s material. Unwanted interactions with the medium can be simply
reduced by enclosing the system in vacuum. Clamping losses are caused by radiation of vibrational
energy through the anchor of a mechanical resonator [67] and can have a substantial contribution
to the total loss mechanism. However, Rieger et al. [69] demonstrate that the effect of clamping
losses is negligible in our doubly clamped string resonator geometry. This is due to the large acoustic
impedance mismatch between the string and the clamping region. Here, we assume that intrinsic
losses such as defects in the material and, even more likely, defects on the resonator’s surface are the
limiting damping mechanism of our operating nanomechanical device.

Note that highly stressed resonators are known to "dilute" the dissipation intrinsic to the material [70–
72], and hence, high mechanical quality factor can be achieved even at room temperature [73].
Additionally, one can combine the dilution dissipation with the so-called "soft clamping" technique,
where the mechanical mode penetrates evanescently into the phononic bandgap around the mode
frequency [74, 75]. This approach strongly suppresses the radiation to the substrate and further
improves the coherence of the mechanical system dramatically. Recent work has shown that by
choosing crystalline materials over amorphous or glassy materials and combining them with dilution
dissipation and soft-clamping techniques [76] have further boosted the coherence of the mechanical
resonator and make it a promising candidate for force, mass sensing and enabling quantum operations
at room temperature.

In the following, we discuss the fundamental dynamics of a driven mechanical resonator. We assume
the resonator is driven in the linear regime, which can be assured by keeping the total displacement
amplitude small. Hence, the dynamics of the driven mechanical resonator can be simplified as the
ones of a linear harmonic oscillator with an effective mass <eff which approximates the structure to
a point mass located at the maximum deflection. For the fundamental flexural modes of a doubly
clamped string resonator the effective mass is found to be <eff =

1
2<0, with the total string mass

<0 = d!FC [67]. The equation of motion for a driven and damped harmonic oscillator is the second
order differential equation [67]:

d2

dC2
D(C) + Γ d

dC
D(C) + l2

0 D(C) = 5 (C). (2.7)

Here, l0 is the eigenfrequency of the resonator from Eq. (2.5), where we have omitted the indices =, 8
for simplicity. Γ is the linear damping coefficient and 5 (C) = � (C)/<eff is the external driving force
divided by the effective mass of the string resonator.
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2.2.1 Undriven Harmonic Oscillator

Let us first consider the case of an undriven system, where the external drive is set to zero. Hence, the
equation of motion (2.7) becomes

d2

dC2
D(C) + Γ d

dC
D(C) + l2

0 D(C) = 0. (2.8)

Using the harmonic Ansatz D(C) = D0 exp (_C) we can find the solutions

_1,2 = −
Γ

2
±

√
(Γ/2)2 − l2

0. (2.9)

From these solutions we can distinguish the dynamics of the oscillator for two different cases. For
Γ ≥ l0, where the damping is larger than the system’s eigenfrequency, the solution in Eq. (2.8) is
simply an exponential decay (over-damped case). When the damping is relatively small, that is Γ ≤ l0
(under-damped) case, Eq. (2.9) become imaginary. The solution in this case is the linear combination
of the paramters _1, _2 inserting into the harmonic Ansatz. By applying the Euler’s formula we obtain
the solution for Eq. (2.8)

D(C) = D0 e−
Γ
2 C cos

(√
l2

0 − (Γ/2)
2 C

)
. (2.10)
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Figure 2.2 | The Time Evolution of an Under-Damped Harmonic Oscillator.
In the absence of the drive the amplitude follows an exponential decay by the rate Γ/2 (orange curve). We choose
the ratio l0/Γ = 20. The system exhibits an exponential decay [see Eq. (2.10)] together with an oscillation
at frequency lr =

√
l2

0 − (Γ/2)
2, also referred as the natural frequency. In the weakly damped case, where

l0 � Γ, the natural frequency is almost identical to the eigenfrequency of the mode that is lr ≈ l0.

The solution for the under-damped case is illustrated in Fig. 2.2 with the ratio that l0/Γ = 20. The
amplitude of the resonator follows an exponential decay by the rate Γ/2. In the real experiment it
is often desirable to measure the decay in energy � (C) ∝ |D(C) |2 of the system that is referred as the
ring-down measurement. By extracting the characteristic decay time of � (C) that is 1/Γ we can obtain
the information about the coherence of the system under investigation. Note that all measurements
conducted in this work, are deeply in the under-damped regime.
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2.2.2 Driven Harmonic Oscillator
Now, we consider the case where the point mass is periodically driven by an external force � (C) =
�0 exp (ilC). The oscillator will follow the driven force � (C) after a certain transient time, hence we
only consider a specific steady solution. Using the Ansatz D(C) = D0 eilC to solve Eq. (2.7), we obtain

D0 =
�0/<eff(

l2
0 − l2

)
+ iΓl

. (2.11)

This complex amplitude can be converted to the polar form D0 = |D0 |eii with the norm

|D0 | =
�0/<eff√(

l2
0 − l2

)2
+ Γ2l2

, (2.12)

which is defined as the amplitude response of the driven resonator. The corresponding phase response
is

tan (i) = ℑm{D0}
ℜe{D0}

=
Γl

l2 − l2
0
. (2.13)
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Figure 2.3 | Periodically Driven, Damped Harmonic Oscillator.
Normalized amplitude response (a) and the relative phase response (b) of a harmonic oscillator driven by an
external force � (C) = �0 exp (ilC). Here, we choose the ratios l0/Γ = {10, 5, 2.5} (blue, orange, green)
respectively.

In Fig. 2.3, we plot the normalized amplitude response and the relative phase from Eqs. (2.12)
and (2.13) as a function of the drive frequency l for different damping rates (see figure description).
It is apparent in Fig. 2.3 (a), that a larger damping rate will lead to a broadening of the linewidth
in the amplitude response. The frequency at the highest amplitude lr =

√
l2

0 − Γ2 is defined as the
resonance frequency. In the case of low damping the resonance frequency is similar to the systems’s
eigenfrequency lr ≈ l0. On resonance, the relative phase lag is i = −c/2, for l � l0 the phase
lag becomes negligible and if the drive frequency is much higher than the resonance frequency we
find i ≈ −c [see Fig. 2.3 (b)]. Additionally, we want to introduce a very important figure of merit to
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characterize the mechanical oscillator, that is the so-called ’Quality factor’ (&). The definition of the
quality factor is the ratio between the total energy that is stored in the system and the energy lost per
cycle [66]

& = 2c
total energy

energy lost per cycle
= 2c

W
ΔW

=
lr
Γ
=
l0
Γ
·
√

1 − 2Γ2

l2
0
. (2.14)

For resonators with high quality factor we have 2Γ2/l2
0 � 1 and Eq. (2.14) becomes

& ≈ l0
Γ
=
l0
Δl

. (2.15)

HereΔl is the full width at half maximum (FWHM) that we can extract from the resonator’s amplitude
response by using the square root of a Lorentzian fit.

2.2.3 Coupled Linear Harmonic Oscillators

kA “ k ´ ∆k

kB “ k ` ∆k

mA mB

κ

ΓA

ΓB

Figure 2.4 | Coupled Harmonic Oscillators.
Schematic drawing of two coupled linear damped resonators with the masses <� and <�. Both masses are
coupled via the mutual spring with spring constant ^, the damping rates for both resonators are Γ� and Γ�,
respectively.

Two coupled harmonic oscillators are considered as a generic model system that can be used to
describe a wide range of systems in various fields of physics, depending on the specific type of
coupling employed. For example, in the field of quantum electrodynamics, oscillator A can be the
two level atom and oscillator B describes a cavity field. In cavity optomechanics oscillator, A would
represent the mechanical oscillator, while the oscillator B is an optical resonator.

In our specific case, the two coupled oscillators would describe the coupling of the flexural in-plane
and out-of-plane modes. In the following, we consider two strongly coupled harmonic oscillators with
masses <A and <B. The corresponding spring constants :A = : − Δ: (C) and :B = : + Δ: (C) with
small detuning Δ: (C) are tunable and can be time dependent. The corresponding eigenfrequencies
can be definded as l0,A =

√
:A/<A and l0,B =

√
:B/<B, respectively. Both oscillators are weakly

damped by the rate Γ� = Γ� = Γ. The two oscillators are coupled by a spring with the spring constant
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^ where the condition for strong coupling (^ > Γ) is fulfilled. The graphical illustration of such simple
coupled system is shown in Fig. 2.4.

Following the work from Frimmer and Novotny [77], we derive the equations of motion for the
displacements of the two modes D 9 for 9 ∈ {�, �}. We consider the case of constant detuning
Δ: = constant and assume the masses of the oscillators are equal (<A = <B = <)

d2

dC2
D� (C) + Γ

d
dC
D� (C) +

[
: + ^
<
− Δ:
<

]
D� (C) −

^

<
D� (C) = 0,

d2

dC2
D� (C) + Γ

d
dC
D� (C) +

[
: + ^
<
+ Δ:
<

]
D� (C) −

^

<
D� (C) = 0.

(2.16)

For the sake of simplicity, we define the carrier frequency ΩG , the detuning frequency Ω3 and the
coupling frequency Ω2 as

Ω2
G =

: + ^
<

,

Ω2
3 =

Δ:

<
,

Ω2
2 =

^

<
.

(2.17)

We can rewrite Eq. (2.16) in the matrix form[
d2

dC2
+ Γ d

dC
+Ω2

G

] 
D� (C)

D� (C)

 +

−Ω2

3
−Ω2

2

−Ω2
2 Ω2

3



D� (C)

D� (C)

 =


0

0

 . (2.18)

The solutions for these coupled differential equations can be found by using D 9 (C) = D0, 9 exp (ilC).
Inserting this harmonic Ansatz into Eq. (2.18) we obtain a new set of coupled linear equations for
D0,� and D0,� that can be, again, expressed in the matrix form S

[
D0,�, D0,�

]T
= 0. The nontrivial

solutions for this homogeneous system of equations exist only if det[S] = 0. Finally we obtain the
eigenvalues

l± =

(
Ω2
G ∓

√
Ω4
3
+Ω4

2

)1/2
. (2.19)

Here, l+ is the frequency of the symmetric eigenmode, which is lower than the frequency of the
antisymmetric mode l−.

In Fig. 2.5, we illustrate the eigenfrequencies from Eq. (2.19) as a function of detuning Δ: . In case of
no coupling (^ = 0), the two modes follow the straight dashed lines and intersect at Δ: = 0. However,
in the present of finite coupling, the twomodes are no longer degenerated atΔ: = 0 and we observe the
characteristic behaviour that is called the avoided-crossing of the eigenfrequencies. We can calculate
the frequency splitting Ω0 of the two modes at resonance Δ: = 0

Ω0 = l− − l+ ≈
Ω2
2

ΩG
=

^

<ΩG
. (2.20)

Here, we use the first order of the Taylor series expansion, that is 5 (G) =
√

1 + G ≈ 1+ 1
2G. Additionally,

we assume that the coupling is much smaller than the spring constant of the system Ω2 � ΩG . The
avoided-crossing is a characteristic fingerprint of strong coupling. It is apparent in Eq. (2.20) that the
splitting increases with the coupling strength (Ω0 ∝ ^). Note that we have neglect the damping term
Γ in our calculation.
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Figure 2.5 | Two Strongly Coupled Modes and Avoided Crossing.
Eigenfrequencies l± are plotted versus the static detuning Δ: . The dashed lines indicate the tuning behaviour
in the absence of mutual coupling ^ = 0. For finite coupling ^ the characteristic avoided crossing is observed
and the frequency splitting at resonance (Δ: = 0) is Ω0. For large detuning, where Δ: � 0, the oscillators
A and B exhibit pure eigenmodes (see color codes orange and blue). However, on resonance, the eigenmodes
are symmetric (l+) and anti-symmetric (l−) superpositions of the two individual oscillators, where the two
eigenmodes hybridize.

By solving the eigenwert problem with the damping term, we obtain (rather complicated) complex
eigensolutions, where the imaginary part describes the linewidth, and the real part represents the
amplitude of the coupled system. The friction terms in Eq. (2.16) and (2.18) are responsible for the
’smear-out’ of the curves that corresponds to the finite linewidth in the response of the respective
oscillator. In order to observe strong coupling, the frequency splitting should be larger than the sum
of the mechanical linewidths

Ω0
2Γ

> 1. (2.21)

If the dissipation in each system is smaller than the coupling strength, the modes can coherently
exchange energy. In the strong coupling regime we can observe interesting time-dependent phe-
nomena that were originally encountered only in quantum mechanics and initially thought of purely
quantum mechanical nature. For example, the quantum phenomenon of electromagnetically induced
transparency was observed in a classical system using two linearly coupled RLC circuits [78].

Additionally, adiabatic and nonadiabtic dynamics of two strongly coupled resonator modes described
by the Landau-Zener transitions were observed in Ref. [56]. Remarkably, T. Faust et al. demonstrated
the coherent control of a nanomechanical two-mode system [47] that can be fully described by the
Bloch sphere manipulation, that is the Rabi oscillation [50], Ramsey fringes [51] and Hahn Echo [52].

Furthermore, previous work of our group showed the classical analog of the Stückelberg interferometry
demonstrating the coherent transfer of energy in a nanomechanical two-mode system [63]. Following
the work of Notvotny et al. [77], we describe the analogy between the coupled pair of classical
harmonic oscillators and a quantum mechanical two-level system.
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2.2.4 A Classical Two-Level-System
In order to understand the dynamics of the harmonic oscillator’s eigenmodes, we consider the case
where ^ � : and define a new Ansatz

D� (C) = 0(C) exp (iΩGC),
D� (C) = 1(C) exp (iΩGC).

(2.22)

Here, each mode oscillates rapidly at the carrier frequency ΩG and is modulated by the slowly varying
complex amplitudes 0(C) and 1(C) that full-fill the normalization condition |0(C) |2 + |1(C) |2 = 1. We
substitute the expressions from Eq. (2.22) into the equation of motion (2.18).

Consider the casewhere ^ � : , we assume that the amplitudes 0(C) and 1(C) do not change significantly
during an oscillation period 2c/ΩG [77]. This allows us to neglect the second derivative, where ¥0(C) �
iΩG ¤0(C) and ¥1(C) � iΩG ¤1(C). This method is called the ’Slow Varying Envelope Approximation’
(SVEA). Furthermore, we only consider the weak damping case where Γ � ^. Hence, we can use
2iΩG + Γ ≈ 2iΩG . By applying these approximations we can derive the equation of motion for the
eigenmode amplitudes

i
[
¤0
¤1

]
=

1
2

[
l3 − iΓ Ω0
Ω0 −l3 − iΓ

] [
0

1

]
. (2.23)

In order to simplify the notation, we introduce the rescaled detuning frequency l3 = Ω2
3
/ΩG and from

Eq. (2.20) we have the relation Ω0 ≈ Ω2
2/ΩG .

For vanishing damping (Γ = 0) we obtain the dynamical matrix

� =
1
2

[
l3 Ω0
Ω0 −l3

]
=

1
2
(l3fI +Ω0fG). (2.24)

Equation (2.24) resembles the time dependent Schrödinger equation iℏ mC |Ψ〉 = �̂ |Ψ〉 for the state
vector |Ψ〉 = 0(C) |6〉 + 1(C) |4〉, that is the superposition of the ground state |6〉 and the excited state
|4〉. This two-level system is coupled by 〈4 | �̂ |6〉 = ℏΩ0/2.
Note that our nanomechanical two-mode system differs from its quantum mechanical counterpart,
where the detuningΩ3 and couplingΩ0 are interchanged. When treating the system close to resonance
(Δ: = 0), the eigenmodes are symmetric and antisymmetric superpositions [see Eq. (2.19)] of the two
individual oscillators (two-level system). Hence, the system’s equations of motion can be transformed
into a different basis [77].

In our case, we will study the dynamics of the system in a larger range Δ: � 0 where the two
oscillatormodes are far detuned from the avoided crossing region showing independentmode behavior.
Therefore, we use Eq. (2.24) to describe the tuning dynamics of our coupled two-mode system.
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2.3 Three Dimensional Microwave Cavity Resonators
Research in microwave engineering has been pushed forward with an incredible speed in the past
decades and has brought substantial developments in RF and microwave technology such as wireless
communications, microwave integrated circuits, network and sensing applications. Microwave res-
onators are important components for the application of microwave systems. They can be used as
filters, oscillators and tuned amplifiers to enhance certain physical interactions. To this end, super-
conducting microwave resonators in the bulk form play the central role as highly sensitive detectors
in experiments searching for dark-matter axions [40, 79, 80]. The static high magnetic field inside
the tunable, superconducting high-Q microwave cavity stimulates the axions that enter the cavity to
convert into a single, detectable microwave photon.

Furthermore, these bulk cavities, commmonly referred as three dimensional (3D) cavities, are attract-
ing considerable attention due to the integration of the Josephson junction based quantum bit (qubit)
into the cavity. Significantly enhanced relaxation and decoherence time on the order of hundreds of
microseconds have been demonstrated [81]. With the increased coherence time and the long single
photon lifetimes, microwave 3D cavities have enabled a series of key experiments for fundamental
study of quantum mechanics in the field of circuit quantum electrodynamics (cQED) [82] such as
single photon Kerr effect [83], tracking the photon jumps [84], entangled qubits [85].

Other experiments further demonstrate the coupling of the 3D cavities to different physical quantities
e.g. spin ensembles in nitrogen vacancy centers [86] and YIG sphere [87]. The implementation of
such bulk cavity has a distinct advantage compared to the conventional and well established on-chip
coplanar waveguide resonators [88] that is the confined high electric field strength �max ∼ 10 MV/m
combined with the large mode volume while maintaining remarkably high quality factors. The build-
up and localization of electromagnetic energy within the cavity make it possible to enhance radiation
interactions with matter. The radiation pressure acting on the mechanical element inside the cavity
gives rise to optomechanical and electromechanical phenomena such as parametric amplification,
sideband cooling and squeezing [24, 89–94].

However, the field of cavity electromechanics mentioned above is limited to millikelvin temperatures,
since it relies on superconducting circuits. Room temperature cavity electromechanics is impeded by
the non-zero resistance of the normal conducting circuits, which gives rise to dissipation. Hence, it
is quite challenging to conduct experiments using cavity electromechanics effects at room tempera-
ture [95].

In this thesis, we demonstrate a scheme, where we employ a method for cavity-assisted displacement
sensing and optomechanically induced reflection (OMIR) of a nanomechanical resonator at room
temperature. Since the operation of microwave resonators is very similar to that of lumped-element
resonators of circuit theory [96], we start this section by reviewing the basic characteristics of a
parallel RLC resonant circuit. We will then discuss the different types of microwave 3D cavities and
the various techniques to couple to these resonators and how to determine their quality factors.
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2.3.1 RLC Lumped-Element Resonator
Near resonance, an ideal cavity resonator can be represented by either an RLC parallel circuit or
an RLC series circuit, depending on the position of the reference plane in the coupling line [97].
Following the work from Pozar [96], we derive the dynamics of a parallel RLC lumped-element
circuit (see Fig. 2.6) with the corresponding resistance ('), the capacitance (�) and the inductance
(!).

Figure 2.6 | Parallel RLC Lumped-Element Circuit.
The dynamics of a microwave cavity resonator can be described by the lumped-element circuit representation
with the capacitance (�), the inducatance (!) and the resistance ('). The RLC-circuit can be driven by an
external AC source.

The frequency dependent input impedance for the parallel circuit is

/in(l) =
(

1
'
+ 1

jl!
+ jl�

)−1
. (2.25)

The complex power delivered to the resonator is defined as

%in(l) =
1
2
|+ |2

(
1
'
+ j
l!
− jl�

)
. (2.26)

Furthermore, we can find the energy quantities that are related to each lumped-element in the resonator

%loss =
1
2
|+ |2
'
, (2.27a)

,e =
1
4
|+ |2�, (2.27b)

,m = |�! |2! =
1
4
|+ |2 1

l2!
, (2.27c)

where %loss is the dissipated power by the inverse resistor '−1,,e is the average electric energy stored
in the capacitor � and,m is the average magnetic energy stored in the inductor ! with the current �!
that flows through the inductor. Then the complex power in Eq. (2.26) can be rewritten as

%in = %loss + 2jl(,m −,e). (2.28)

The input impedance from Eq. (2.25) can be expressed in similar way

/in =
2%in
|� |2

=
%loss + 2jl(,m −,e)

1
2 |� |2

. (2.29)
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In case of resonance, the average stored magnetic and electric energy are equal that is ,m = ,e.
Hence, the input impedance on resonance is

/in =
%loss
1
2 |� |2

= ', (2.30)

which is a purely real value. From Eqs. (2.27b), (2.27c) and with the resonance condition,m = ,e,
we can define the resonant frequency as

l0 =
1
√
!�

. (2.31)

We can define the quality factor & of the harmonic oscillator (see also discussion in Sec. 2.2 ) as

& = l
average energy stored

energy loss rate
= l

,m +,e
%loss

. (2.32)

Hence, & is an important figure of merit that defines the loss of a resonance circuit - lower loss
implies higher &. In this parallel lumped-element circuit the loss is represented by the inverse
resistance '−1 [see Eq. (2.27a)]. For real microwave resonators, losses can be due to many types of
dissipation channels such as conductor loss at room temperature, dielectric loss, radiation loss and
contact resistance (seam loss). An additional source of loss is the coupling to an external network to
perform measurements. All of these loss mechanisms will have contributions in lowering the quality
factor. In the absence of external coupling, we can denote & as unloaded quality factor &0. For our
parallel resonant circuit we can evaluate the unloaded quality factor &0 from the resonant condition
,m = ,e

&0 = l0
2,m
%loss

=
'

l0!
= l0'�. (2.33)

Note that the energy loss in the parallel lumped-element circuit is proportional to the inverse resistance
'−1 [see again Eq. (2.27a)]. Thus, the unloaded quality factor of the parallel resonant circuit increases
as ' increases.

Additionally, we can rewrite the input impedance from Eq. (2.25) for the near resonance case as

/in(l) '
'

1 + j2&0Δl/l0
, (2.34)

where we have the relation l = l0 + Δl and Δl is small. Hence, we can use the series expansion
that is

1
1 + G ' 1 − G + · · · .

At the end, we want to consider the half-power fractional bandwidth of the resonator (BW). As the
name suggests the fractional bandwidth is defined when the average power delivered to the circuit
is decreased by one-half at resonance. The half-power bandwidth is defined as the difference in
half-power frequencies l1 and l2 with

|/in(l) | =
1
√

2
|/in(l0) |. (2.35)

From Eqs. (2.34) and (2.35) we find

'√
1 + 4&2

0(Δl/l0)2
=
'
√

2
. (2.36)
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Figure 2.7 | Parallel RLC Lumped-Element Resonator’s Response.
Resonator’s response versus frequency for three different unloaded quality factors {&0, 2&0, 5&0}. The
response curve broadens when decreasing the quality factor. The red dashed line indicates the position of the
half-power bandwidth of the resonator, where the frequency is such that |/in | = 2'2. Here, the average power
delivered to the circuit is one-half that delivered at resonance (see black dash lines). Note that we keep the
resistance ' and resonant frequencyl0 constant while varying the capacitance� [see Eq. (2.33)] to demonstrate
the effects on the resonator’s response at different quality factors.

The Eq. (2.36) is only valid when 4&2
0(Δl/l0)2 = 1 and hence

Δl = ± l0
2&0

. (2.37)

The half-power frequencies are symmetric to the resonant frequency for pure modal structure

l1 = l0 +
l0

2&0
,

l2 = l0 −
l0

2&0
.

(2.38)

The bandwidth is by definition
BW = |l1 − l2 | =

l0
&0
. (2.39)

The quality factor is then given by
&0 =

l0
BW

. (2.40)

Therefore, the determination of the half-power bandwidth from the resonator’s response curvewill give
direct access to the quality factor. In Fig. 2.7, we show the magnitude of the input impedance versus
the frequency that exhibits a square root of the Lorentzian resonance whose form is Q-dependent. As
the quality factor decreases, the resonator’s response becomes more broadened and the half-power
bandwidth increases accordingly. The position of the half-power bandwidth is indicated in Fig. 2.7
(see red dashed-line).
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2.3.2 Rectangular Cavity Resonator

Figure 2.8 | The Rectangular Cavity Resonator’s Geometry.
The waveguide is short circuited at both ends (I = 0, 3) with rectangular cross-sections and dimensions (0, 1).
The microwave resonator supports both transverse electric (TE) and transverse magnetic (TM) modes.

Three dimensional (3D) microwave resonators are usually formed from waveguide resonators that
are short circuited at both ends and thus, forming a closed box (cavity). The electric and magnetic
energy is strongly confined and stored inside the cavity enclosure and hence, the radiation loss can be
reduced substantially. Nevertheless, these geometries are not completely free of losses. The stored
power can dissipate into the metallic walls of the cavity as well as in the dielectric material that may
fill the cavity. Also the metal-oxide layer and the roughness on the cavity’s surface, the imprecision in
manufacturing and spurious contact resistance at seams (cavities can be made of different parts) can
open up additional loss channels. An elaborated investigation of the loss mechanism of 3D microwave
cavities can be found in Ref. [98].
A widely used type of 3D cavity in various experiments is the rectangular cavity. It has been shown,
that the rectangular microwave 3D cavity suppresses decoherence of Josephson junction qubits [99]
by providing a well defined and low loss environment. It can also be used to mediate coherent
coupling between magnon and qubit [100], and since the electric field is confined in small volume it
can enhance the light-matter interaction via radiation pressure and allows ground state cooling of the
mechanical system [101–103]. The theoretical treatment of a cavity resonator consists of solving the
Maxwell’s equations with the corresponding boundary conditions. In Fig. 2.8, a typical geometry of
the rectangular cavity is illustrated.
The 3D cavity consists of a single conductor with air-filled rectangular cross-section of dimensions
(0, 1). Along the propagation direction I, the rectangular waveguide is shorted at (I = 0, 3). These
boundary conditions force the propagating electromagnetic fields, that is injected inside the cavity, to
form standing waves and establish resonant conditions. From Ref. [96], we know that the rectangular
waveguide support transverse electric (TE) and transverse magnetic (TM) modes. In the following
we only consider the fundamental propagating TE101 mode with the condition �I = 0. The fields
components in this case are

�H = �0 sin
cG

0
e−jVI, (2.41a)

�G =
jV0
c
�0 sin

cG

0
e−jVI, (2.41b)

�I = �0 cos
cG

0
e−jVI, (2.41c)
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�G = �I = �H = 0. (2.41d)

The wave impedance /TE = −
�H
�G

=
l`

V
relates the transverse electric and magnetic fields with the

scaling
|�0 | =

l`0

c
|�0 |. (2.42)

Here, ` is the permeability of the material filling the cavity and V is the propagation constant. The
boundary conditions establish resonances in the rectangular waveguide. In case of short circuited
waveguide at (I = 0, 3), the resonant frequency of the mode TE<=ℓ is given by

5<=; =
2

2c√`AnA

√(<c
0

)2
+

(=c
1

)2
+

(
ℓc

3

)2
, (2.43)

where 2 is the speed of light, nA is the relative permittivity (dielectric constant), `A is the relative
permeability and the indices <, =, ℓ indicate the number of variations in the standing wave pattern
in the G, H, I directions, respectively. The mode with the lowest resonant frequency for the condition
1 < 0 < 3 is the TE101 mode, which is often referred to as the dominant TE mode. In the following,
we define the TE101 mode as the fundamental mode of the rectangular cavity and the corresponding
frequency is found to be [96]

50 =
2

2c√`AnA

√(c
0

)2
+

(c
3

)2
. (2.44)

In Fig. 2.9, we show the CAD generated drawing of the rectangular cavity investigated in the context
of this work and the corresponding dimensions. The cavity is physically realized by milling out from
two separated blocks of metal (usually copper for room temperature applications) with high purity.
The two halves are then enclosed by screws to form a cavity. The input and output coupling to the
cavity occurs via antenna SMA pins that penetrate into the cavity volume through circular holes with
radii of A ≈ 1 mm. These pin ends will introduce electromagnetic excitations into the cavity volume
via an external microwave signal generator. The variation of the pin’s insertion depth allows us to
control the coupling of the cavity to the environment. We will discuss the coupling mechanism later
below in Sec. 2.3.5.

A very convenient way to analyse and pre-define the properties of the cavities before the manufacturing
is to use finite element method (FEM) simulations. The FEM is a numerical technique for solving
versatile problems which are described by partial differential equations. It can be used in many
disciplines, e.g. solid and structural mechanics, fluid dynamics, acoustic, thermal conduction and
electromagnetics. In FEM the domain of interest is subdivided into small cells of simple shape. For
example a 2D domain can be subdivided into triangles or quadrilaterals and a 3D domain can be split
into tetrahedron or cubes. This structured grids are commonly referred to as mesh. The solution can
be found by introducing a set of finite basis functions that are typically non-zero in a few adjacent
elements. The solution to the differential equation problems is then projected into the function space
in such a way that the residual norm is minimized on average [104]. The main reason why the FEM
simulation is a favorite method in many branches of engineering, is the ability to deal with complex
geometry.

Our FEM simulation software of choice is COMSOL Multiphysics with the electromagnetics (RF)
module. In the COMSOL interface, three dimensional structures are discretized into tedrahedral
mesh. On the designed geometry, Maxwell’s equations can be solved for each individual nodes
and the resonant condition for the corresponding electric and magnetic field distribution can be
determined. The boundary conditions are found from the electronic properties of the metals and the
dielectric materials, both are available in the COMSOLmaterials library. In Fig. 2.10, the electric field
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distribution of the rectangular 3Dmicrowave cavity is illustrated. The field distribution corresponds to
the fundamental TE101 modewith the cavity dimensions (0 × 1 × 3) : (38.5mm × 7.4mm × 37.3mm).
The resonant frequency for the fundamental mode is 5101 ≈ 5.6 GHz. Here the boundary conditions
are set as perfect electric conductors for the metallic walls and the dielectric material that fills the
cavity is air. Beside the determination of the resonant condition and the illustration of the field
distributions of the modes, it is possible to calculate the scattering parameters in the frequency domain
by introducing ports into the cavity.

Figure 2.9 | CAD Drawing of the 3D Microwave Cavity.
(a) The cavity is made from two parts that are connected via screws. The SMA connectors (yellow) are used
for the input and output coupling. (b) Top view and (c) front view with the corresponding dimensions (mm) of
the cavity part.
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Figure 2.10 | Rectangular Cavity Field Distribution using COMSOL Multiphysics.
Electric field distribution of the fundamental TE101 mode of the rectangular cavity. The metallic walls are set
as perfect electric conductors and the dielectric material filled inside the cavity is air from the materials library.
The electric field is concentrated in the center of the cavity and the field strength is almost zero at the cavity’s
side wall. The colorbar denotes the electric field amplitude inside the cavity and the red arrows indicate the
field direction.

2.3.3 Cylindrical Cavity Resonator

Similar to rectangular cavities discussed above, the cylindrical 3Dmicrowave cavity can be constructed
from a section of circular waveguide that is shorted at both ends. This type of cavity can be found
in ultra-low-noise experiment, that serves as a sensitive detector in the search for dark-matters [79].
It can also be used as narrow band-pass filter, where the cavity is designed with a movable top lid
to allow mechanical tuning of the resonant frequency [62, 63, 105]. The resonant frequencies for
the TE=<ℓ and TM=<ℓ cylindrical cavity modes can be derived by solving Maxwell’s equations and
finding solutions that satisfy the boundary conditions on the walls of the circular waveguide and short
circuited at both ends along the propagation direction [96]. The resonant frequency of the TM=<ℓ

mode is found to be

5=<ℓ =
2

2c√`AnA

√( ?=<
0

)2
+

(
ℓc

3

)2
. (2.45)

The corresponding TE=<ℓ mode is

5=<ℓ =
2

2c√`AnA

√(
?′=<
0

)2
+

(
ℓc

3

)2
. (2.46)

With 0, 3 are the radius and height of the cylindrical cavity and ?=< is the <Cℎ zero of the Bessel
functions of the first kind �= (G). ?′=< is the <Cℎ root of �′= (G), so that �′=

(
?′=<

)
= 0 and �′= (G) is the

derivative of �= (G) with respect to the argument G.
Figure. 2.11 illustrates the mode chart for a few lower order resonant modes of the cylindrical cavity.
Such mode chart is particularly helpful to pre-define the desired resonant frequency and to determine
the cavity dimensions with less effort. It is visible in the chart that the dominant (the mode with the
lowest frequency) TE mode is the TE111 mode, whereas the dominant TM mode is the TM010 mode.
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Figure 2.11 | Cylindrical Cavity’s Resonant Mode Chart.
The fundamental TM mode is the TM010 mode and the dominant TE mode is the TE111 mode. The two modes
TE011 and TM111 are degenerated. Used with permission of John Wiley & Sons - Books, from Microwave
Engineering, Pozar David M., 4th Edition, 2012.

Particularly, the TE011 mode of the cylindrical cavity exhibits exceptionally high quality factor due to
the electric field distribution of the mode itself. It has no dielectric participation and zero currents
flowing across the corners of the geometry [98]. The non-zero fields of the TE011 mode are [96]

�I = �0�0

( ?11d

0

)
sin

cI

3
, (2.47a)

�d = −
V0�0
?11

�1

( ?11d

0

)
cos

cI

3
, (2.47b)

�q = −
j:[0�0
?11

�1

( ?11d

0

)
sin

cI

3
. (2.47c)

Here [ =
√
`/n and we use the relation ?′01 = ?11 ≈ 3.83, �′−= (G) = (−1)=�= (G) and hence �′0(G) =

−�1(G). It is immediately apparent from Eq. (2.47c) that at the sidewalls (d = 0) we have �1(?11) = 0
so the electric fields are zero. Additionally, the same conditions apply on the lid (I = 0, 3) where
sin (0) = sin (c) = 0. Therefore, the electric field vanishes at all cavity surfaces for the TE011 mode
and there is no dielectric loss and the surface resistance is negligible for the specific mode. Following
Eqs. (2.47a) and (2.47a), we further find that at the corners of the geometry (I = 0, 3) and (d = 0)

�I

���
corner

= �d

���
corner

= 0. (2.48)

Hence, we have zero currents flowing across the corners and the seam loss of the cavity is strongly
suppressed. With these two arguments mentioned above, the TE011 mode of the cavity is expected to
be only limited by the conductor loss and this can be further reduced by exploiting the superconducting
property of the metal, such as aluminum or niobium at low temperature.
In the field of cQED it has been shown that these types of cavity can exhibit quality factors up to
109 [106]. At room temperature, conductor loss from the metal is the main loss channel but by careful
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(a) (b)

Figure 2.12 | COMSOL Multiphyisics Simulation of the Cylindrical Cavity TE011 Mode .
(a) The electrical field distribution of the TE011 mode. The E-field exhibits a donut-shape around the cylindrical
z-axis. The field becomes zero at the cavity wall (see color code). (b) The corresponding magnetic field
distribution with the maximum at the center of the cavity and is almost zero at the corners. The cylindrical
geometry has the dimensions (0 × 3) : (35mm × 70mm).

treatment of the surface and using metal with high purity, it is still possible to reach reasonably high
quality factors up to 104 [96]. Finally, we can find the resonant frequency of the cylindrical TE011
mode from Eq. (2.46) as

5011 =
2

2c

√(
?11
0

2
)
+

(cI
3

)2
. (2.49)

From the relation �′0(G) = −�1(G) and the Eqs. (2.45), (2.46) we can see that the TE011 and the TM111
are degenerated for all aspect ratios 0/3 of the cylindrical cavity. This relation is also apparent in the
mode chart illustrated in Fig. 2.11. In order to lift off the degeneracy, we need to introduce a shape
perturbation. For example, a ring-shape extrusion of at the upper corner lid will effectively reduce
the mode volume of the TM111 mode, while the TE011 remains relatively unaffected [106, 107]. In
Fig. 2.12 (a) we use COMSOL simulation to plot the electrical field distribution of the TE011 mode,
that exhibits a donut-shape about the cylindrical z-axis. It is apparent from the color code that the
electric field goes to zero at the cavity wall. The magnetic field distribution is shown in Fig. 2.12 (b).
At the corners the surface magnetic field nearly vanishes and the field’s maximum is at the center
of the cavity. The COMSOL simulations here confirm the calculations discussed above and give a
reasonable explanation for the high quality factor of the TE011 mode.
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2.3.4 Coaxial ,/4 Cavity Resonator

Figure 2.13 | The Coaxial ,/4 Resonator.
The quarter-wave coaxial resonator is constructed out of the coaxial transmission line with an inner conductor
of radius A that is shorted on one end (bottom) and open at the distance _/4. At the distance ! the cavity is
basically a cylindrical waveguide that is the outer conductor with the radius '. The cavity has no lid on the top
part and is open into free space.

In this section, we discuss the novel third type of 3D microwave cavity that was developed in the R.
Schoelkopf lab [81]. The so-called coaxial _/4 cavity exhibits high quality factor up to & ≈ 108 at
cryogenic temperature and enhances superconducting transmon qubit’s coherence up to millisecond.
The high Q makes them ideal memory elements and this type of cavities form the backbone of many
quantum control experiments [108–114]. The geometry of the _/4 microwave 3D cavity is illustrated
in Fig. 2.13. The cavity is formed out of the geometry of a coaxial transmission line (TL) where A and
' are the radii of the inner and outer conductor, respectively. The inner conductor of the transmission
line with the length of _/4 is shorted on one end and open circuited into the other end that is a circular
waveguide. Note that, instead using dielectric material, the coaxial cavity is simply filled with air.
Since the system is made of two conductors, the coaxial transmission line is known to support a
transverse electromagnetic (TEM) mode with fields [96, 98]

�̄ =
+0e−WI

d ln '/A d̂, (2.50a)

�̄ =
+0e−WI

2c[d
q̂. (2.50b)

The mathematical treatment is similar to the calculation of the cylindrical geometry but the boundary
conditions of the coaxial cavity are much more complex and hence, the exact determination of the
field distributions and the resonant conditions are quite challenging in this case. Nevertheless, the
resonance frequency can be simply estimated from the length of the transmission line that is ℓ ≈ _/4
and hence, we find the resonance frequency for the fundamental mode of the coaxial cavity

50 ≈
2

_
=
2

4ℓ
. (2.51)
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Since the cavity is a _/4 resonator, we expect the next TEM harmonic should appear near 3_/4 that
is three times higher than the fundamental mode implying a very clean spectrum. The electrical
field distributions and the resonance conditions can be determined using FEM simulation software
COMSOL Multiphysics.

(a) (b) (c)

Figure 2.14 | COMSOL Simulation of the Coaxial Cavity TEMModes.
(a) The electric field distribution of the fundamental TEMmode. The field is distributed mainly around the inner
conductor and the mode’s energy density decreases exponentially into the waveguide section. The resonant
frequency of the fundamental mode is 50 = 3.66 GHz. The geometry of the coaxial cavity allows confinement of
the fundamental mode and no light is leaked outside the cavity. (b) The electric field distribution of the second
harmonic TEM mode of the cavity. The eigenfrequency of this mode is 52nd = 10.80 GHz, that is three times
higher than the fundamental mode, as expected. Therefore, the coaxial provide a remarkably clean frequency
spectrum. (c) The dominant cylindrical waveguide mode TE11 start to play a role at much higher frequency that
is 5TE11 = 14.65 GHz.

We illustrate the simulated results for the coaxial cavity in Fig. 2.14. Here, the cavity dimensions are
A = 1.8 mm, ' = 8 mm, ℓ = _/4 = 18 mm and ! = 22 mm. Due to the design where, the fundamental
TEM mode of the coaxial cavity is well below the circular waveguide mode, the fundamental mode’s
energy density decreases exponentially into the waveguide section and no light is leaked outside the
cavity. This behavior is confirmed by the COMSOL simulation in Fig. 2.14 (a), where the electric
field distribution is mainly around the top part of the inner conductor and decays exponentially towards
the cylindrical waveguide. The resonance frequency of the fundamental TEM mode of the cavity is
50 = 3.66 GHz. The resonance frequency of the second harmonic TEM mode [see Fig. 2.14 (b)] is
sufficient far away from the first that is ∼ 3 50 and hence, the coaxial cavity provides a clean frequency
spectrum that allows us to avoid multimode coupling issues. As illustrated in the cylindrical mode
chart of Fig. 2.11 the dominant waveguide TE11 can be closer to the cavity’s fundamental mode.
However, we define the dimensions of the cavity in a way, that the waveguide mode [see Fig. 2.14 (c)]
starts to kick in at lTE11 = 14.65 GHz and this is sufficient separated from any frequency modes we
want to exploit in our measurements.
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2.3.5 Cavity Coupling Mechanisms

As mentioned at the beginning of this section, all types of microwave cavities suffer from losses that
cause the signals inside the cavity to decay over time. In general, we distinguish between internal
and coupling losses. Internal losses, described by the unloaded quality factor &0 from Eq. (2.33),
are related to intrinsic loss mechanisms such as conductor losses, dielectric loss or seam loss etc (see
discussion in Sec. 2.3.1). External loss, however, is the direct consequence of coupling the signals
into and out of cavity using external circuitry and can be related to the coupling or external quality
factor&4. And hence, the total or loaded quality factor&; can be obtained by adding up the reciprocal
values of these two contributing quality factors [96]

1
&;

=
1
&0
+ 1
&4

. (2.52)

In order to perform measurements with the microwave cavity, input and output ports need to be
introduced at the cavity’s wall. If we want to measure the device in reflection, only a single port is
needed. Transmission measurements, however, require a two port device. The coupling to the cavity
can be realized using a coaxial transmission line (TL) that carries microwave signals into the cavity
via a narrow section of circular aperture with radius A0 ≈ 1 cm.

Figure 2.15 | Excitation of 3D Microwave Cavities .
(a) Capacitive coupling to the 3D cavity by turning signals from the coaxial line that support TEM mode into
propagating circular waveguide mode (TM01). This type of configuration is suited for the rectangular geometry.
Below cutoff frequency, the signal decays exponentially along the waveguide length !. (b) Inductive loop
coupling to the 3D cavity. The center conductor is bent and soldered to the metallic shield of the pin coupler.
The coupling mechanism from a circular aperture to the hollow cavity can be described by the dipole excitation
problem when the radius of the aperture is smaller than the wavelength A � _. This configuration is suitable
for the cylindrical cavity geometry.

As visible in Fig. 2.15 (a), there is an abrupt transition between the TL and the circular aperture, where
many waveguide modes can be excited by this transition. Since the radius A0 of the circular aperture
is much smaller than the wavelength of the cavity’s resonant mode A0 � _, the coupling via aperture
can be mathematically treated as a dipole radiation problem [115]. Hence, the electric or magnetic
field can radiate energy into the cavity like a small dipole antenna. As an example, the coupling to the
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rectangular cavity is achieved by transforming signals from the TEM mode of the transmission line to
a propagating circular waveguide mode (TM0<) [98] with the propagation constant

VTM0< =

√
:2 −

(
?0<
A0

)2
. (2.53)

Here, ?0< is again the <th zero of the zeroth Bessel function �0(G) of the first kind. The propagation
constant of Eq. (2.53) becomes imaginary when l <

?0<2
A0

. So below this cutoff frequency the signal
is attenuated exponentially in the length of the waveguide section ! [see Fig. 2.15 (a)]. We expect the
external quality factor to scale exponentially with the length of the waveguide section [98]

&4 ∝ e−2VTM01! . (2.54)

The coupling to the cylindrical cavity is accomplished in a similar way. Here, the center pin of a
coaxial cable is bent and soldered to the outer shield, where a loop is formed. The size of the loop is
smaller than the wavelength, therefore the voltage is nearly zero and the current is large. The current
generates a magnetic field that radiates like a magnetic dipole [see Fig. 2.15 (b)]. The magnetic
moment of the loop is constant along its surface area =̂. The coupling is strongest, when the magnetic
field of the resonance mode is perpendicular to the plane =̂. Therefore, we align the coupling loop to
the d̂ vector of the cavity [98]. This method allows both TE and TM types of circular waveguide to
contribute to the evanescent coupling to the cavity. Similarly, we expect for the coupling to the cavity
resonant mode of interest TE011 that the external quality factor should scale exponentially in the length
of the waveguide section !

&4 ∝ e−2VTE11! . (2.55)

A comprehensive analysis of the coupling mechanisms to the 3D cavities can be found in the bachelor
thesis of Daniel Anic [116] and the dissertation of M. Reagor [98].

2.3.6 Quality Factor Determination
Traditionally, the determination of the unloadede quality factor &0 provides direct information about
intrinsic loss mechanisms inside the cavity and hence microwave cavity can be used to study dielectric
loss in materials [117, 118]. In the field of cavity optomechanics [90, 119], it is important to have a
good knowledge about the cavity’s external coupling, since most of the experiments are operated in the
cavity "overcoupled" regime. With this condition most of the photons emerged from the cavity are not
absorbed inside the cavity and can, more likely, interact with the mechanics. In the "undercoupling"
regime, however, the cavity damping is dominated by different sources of intrinsic losses. For most
experiments, this coupling condition is often not desirable due to the loss of information. In the
following, we provide two different possibilities to determine the different quality factors.

Q Determination from Two-Ports Measurement Generally, a direct measurement of the unloaded
quality factor&0 is not possible because the coupling to the external circuitry will always have a finite
contribution to the total loss of the cavity. However, from Ref. [96], we know that it is possible to
determine &0 from the frequency response of a loaded resonator that is connected to a transmission
line.
In Fig. 2.16 we show the circuit representation of the coupling scheme. The microwave input
signals drive the parallel RLC resonator from a transmission line with impedance '0 = 50Ω. The
cavity response is measured by an amplifier that is connected to a second transmission line with
the same impedance '0 and that forms a two-port network. The input-output coupling from the
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Figure 2.16 | Circuit Diagram of Resonator Coupled to Transmission Lines.
Schematic diagram of the 3D microwave cavity (RLC resonator) capacitively coupled to transmission lines via
coupling capacitance �2 forming a two port device. The transmission lines have input impedance '0 = 50. The
cavity’s response is measured using an amplifier that is connected to the second transmission line.

transmission lines with the resonator arises via coupling capacitors �2 with the impedance /2 =
1/il�2. Our coupling scheme shown in Fig. 2.15 (a) from the previous section fits perfectly to this
circuit representation. The inductive (loop) coupling can be treated in a similar manner. From the
calculation of the impedance of a RLC lumped-element resonator [see Eq. (2.34)], we know that the
cavity exhibits a Lorentzian response curve. However, by measuring the cavity with a microwave
network analyzer, it is more convenient to express the cavity response in terms of scattering matrix
(−parameter (21 as a ratio of the output to the input voltage [120]

(21(l) =
2+2
+1

=
(21(l0)

1 + i2&; (l − l0)/l0
. (2.56)

Here, (21(l0) is the maximum transmission coefficient that occurs at the peak of the resonance. The
square modulus |(21(l) |2 of the cavity response then yields a lorentzian curve

|(21(l) |2 =
|(21(l0) |2

1 + 4&2
;

(
l
l0
− 1

)2 . (2.57)

The loaded quality factor &; can simply be calculated by the relation &; = l0/BW. By introducing
the coupling coefficient 6 = &0/&4, we can express the unloaded &0 from Eq. (2.52) as

&0 = (1 + 6)&; . (2.58)

Similar to cavity optomechanical systems, we can distinguish between three cases:

• 6 < 1: The cavity is undercoupled to the feedline.

• 6 = 1: The cavity is critically coupled to the feedline.

• 6 > 1: The cavity is overcoupled to the feedline.

Furthermore, we find the coupling coefficient can be defined as follows

6 =
|(12(l0) |2

1 − |(12(l0) |2
. (2.59)
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How to determine &0 and &4:
All together, in order to find both the unloaded and the external quality factors {&0, &4} we need
to determine the loaded quality factor &; first. This can be done by fitting the cavity response
|(21(l) |2 from Eq. (2.57) using the Lorentzian fit. In the next step, the coupling coefficient 6 from
Eq. (2.59) should be extracted. To obtain &0 we use Eq. (2.58) and the relation (2.52) gives &4.

As an example, we illustrate in Fig. 2.17 (a) the tuning behaviour of the rectangular cavity’s coupling
efficiency 6 versus the penetration depth ! of the coaxial inner conductor.
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Figure 2.17 | Coupling Efficiency of the Rectangular Microwave Cavity.
(a) Coupling efficiency 6 = &4/&0 versus penetration depth !. Negative values indicate that the coaxial inner
pin is still inside the circular aperture [see Figs. 2.15 (a) and (b)]. The over and undercoupled regimes are
separated by the critically coupled line (green) where 6 = 1. (b) Cavity’s decay rates versus penetration depths
!. In the weak coupling regime, the external coupling rate is zero. By increasing the penetration depth, the
external coupling rate can exceed the cavity internal losses ^4 > ^0. The dashed line is a guideline to the eye.

Note that, for negative values of !, the coaxial pin tip is still inside the cylindrical coupling aperture
[see Figs. 2.15 (a) and (b)]. Positive values of !, on the other hand, indicate that the coaxial pin is
located inside the rectangular cavity box. The case for critical coupling occurs when ! ∼ 1.1 mm.
Instead of the quality factor &G , we plot the rectangular cavity decay rates ^G = l0/&G versus the
pin insertion depths in Fig. 2.17 (b), where G ∈ {;, 0, 4} indicates the parameters for the loaded,
unloaded and external coupling cases. In the undercoupling regime ^4 � ^0, the cavity losses are
dominated by the intrinsic loss mechanisms. When the external coupling exceeds the internal loss
mechanisms (^4 � ^0), the cavity is in the overcoupled case and the injected microwave signals can
reach the measurement port without being absorbed inside the cavity. Ideally, the cavity intrinsic
loss would remain the same during the measurement. But since the coaxial pin is inserted inside
the cavity, it would open up a new decay channel, where the signal can be reflected back into the
input line and hence the internal decay rate ^0 increases slightly when we operate the cavity in the
overcoupled regime. The loaded or total decay rate is the sum of the unloaded and external coupling
rates ^; = ^0 + ^4. Note that, we use this insertion depth variation technique discussed above to extract
the quality factors for the rectangular and coaxial cavities since they are two port devices. Therefore,
the measured transmission gives direct access to the scattering parameter (21 (or cavity response). It
appears as a peak whose square modulus exhibits a Lorentzian distribution.
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Circle Fit Technique The second technique to determine the microwave cavity’s parameters is to
use the so-called circle fit algorithm. The mathematical description of this algorithm was first derived
by Chernow and Lesort [121]. Probst et al. [122] utilize this circle fit technique as the implementation
for robust fitting and calibration of complex resonator scattering data. Instead of using only power or
amplitude response of the cavity, we can utilize a full complex transmission of the scattering parameter
data (21 provided by the network analyzer. For instance, this method is more appealing for reflection
measurements because the results provide a reference baseline, that allows us to extract the distortions
coming from the environment such as cable delay, attenuation and gain in the measurement, ect. The
coupled system can be described in the "notch type" resonator [122] geometry, where the resonator
is coupled to one transmission line [see Fig. 2.18 (a)]. The transmitted amplitude of the notch type
geometry in Fig. 2.18 (b) appears with a dip, that is the resonance of the LRC resonator.

e

0

Figure 2.18 | Notch Type Geometry.
(a)A RLC resonator coupled to the transmission line forming the notch type geometry for measurements in
reflection.(b) Transmitted amplitude and phase as a function of frequency with added noise. The transmission
shows a dip in the amplitude. Reprinted from Ref. [122], with the permission of AIP Publishing.

Before describing the fit procedure, we want to discuss the notch type geometry, that is the resonator
coupled to a transmission line, as the most generic two-port device. In this case, the scattering
parameter (21 appears with a dip in the transmission [123]

(21 = 1 − ^

^ + i(l − l0)
. (2.60)

Here, ^ is the total decay rate of the resonator and is, in general, a complex number. For an ideal
dissipationless resonator, ^ is real and describes the external coupling strength ^ = ^4. By introducing
the dissipation to the resonator, the complex ^ can be split into real and imaginary components
^ = ^' + i^� . Additionally, the dissipation can add an imaginary component to the resonance
frequency, thus, l0 → l0 + ib. Equation (2.60) can be expressed as

(21 = 1 − ^' + i^�
(^' + b) + i(l − (l0 − ^�))

. (2.61)

Similar to the harmonic oscillator, the damping effectively shifts the resonance frequency of the
resonator and hence, we define a new resonance frequency for the dissipation case as l̃0 = l0 − ^� .
We re-define ^� = −Xl as an induced shift in the cavity resonance frequency due to dissipation and
the Eq. (2.61) is simplified to

(21 = 1 − ^' − iXl
(^' + b) + i(l − l̃0)

. (2.62)

We can further modify Eq. (2.62) by replacing the real part of the denominator as the total (or loaded)
quality factor&0 that is by definition&; = l̃0

2(^'+b) . Remember that we can decompose the total quality
factor into unloaded and external components

1
&;

=
1
&0
+ 1
&4

=
2b
l̃0
+ 2^'
l̃0

. (2.63)
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So we can express Eq. (2.62) in terms of quality factors as

(21 = 1 −
l̃0

2&4 − iXl(
l̃0

2&4 +
l̃0

2&0

)
+ i(l − l̃0)

. (2.64)

By rearrange Eq. (2.64) we get

(21 = 1 −
&;
&4

(
1 − i&4

2Xl
l̃0

)
1 + 2i&;

(
l
l̃0
− 1

) . (2.65)

Note that for Xl = 0, the cavity resonance has the so-called symmetric response and &4 is a real
number. For Xl ≠ 0 the external quality factor becomes complex and the shape of the resonance dip
can become asymmetric. This might arise from the impedance mismatch of the system or from the
reflections between the input and output ports [122, 124]. In their work, Khalil et al.[125] take the
impedance mismatch into account that is quantified by q and therefore, we have &4 = |&4 | exp (−8q).
All together, we obtain the final expression for a generic notch type resonator coupled to a transmission
line that is[122, 125]

(21 = 1 − (&;/|&4 |)eiq

1 + 2i&;
(
l
l̃0
− 1

) . (2.66)

Now, we discuss the fitting of the cavity’s resonance parameters using the circle fit technique provided
by Probst et al. [122]. In addition to the general model for the complex (21 scattering coefficient of
the notch type resonator, we need to take the effect of the coupling environment into account. Hence,
Eq. (2.66) becomes

(21(l) = 0eiUe−i2clg

1 −
(&;/|&4 |)eiq

1 + 2i&;
(
l
l̃0
− 1

)  . (2.67)

The first term in Eq. (2.67) denotes the added environment that refers to all contributions coming from
the outside of the system. Here, 0 denotes the additional amplitude gain. The phase shift U and the
delay time g are caused by the cable length and the finite speed of the signal propagating inside the
microwave cables. In general, it is possible to use Eq. (2.67) to simultaneously fit all the 7 unknown
parameters. However, this non-linear and multiple-parameter fit routine can be extremely sensitive to
initial start parameters and hence the results become unreliable. For that reason, Probst et al. [122]
suggested to break down the fitting problem into several independent fitting steps, where each only
contains a few parameters. We illustrate the fitting procedure in Fig. 2.19. The cable delay causes a
circular distortion of the ideal resonance circle [see Fig. 2.19 (a)] with the radius 0, that represents
attenuation or amplification in the setup. The cable delay tilts the phase signal by a slope 2cg. In order
to estimate the delay time a simple linear fit function should be carried out. When obtaining a good
estimate for the delay time g, we can perform a non-linear least square fit on the twisted loop like curve.
Here, the fit parameter is the cable delay and the error function to be minimized is the deviation from
the ideal circular shape n2 =

∑=
8=1 A

2
0 −

[
(G8 − G2)2 + (H8 − H2)2

]
. From the algebraic circle fit we get

A0, G2 and H2 that are the radius and the corresponding center coordinates of the circle [see Fig. 2.19 (b)
red circle]. The impedance mismatch can be directly calculated by q0 = − arcsin (H2/A0). Note from
the diameter of the circle, we obtain the ratio 3 = &;/|&2 |. Even though, the data already exhibits a
circular shape, they are still not equivalent to the ideal case due to the attenuation/amplification and
phase shift 0eiU. In order to determine 0 and U, the circle is translated back to the origin [margenta
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circle in Fig. 2.19 (b)]. Subsequently, a phase vs. frequency fit is performed, which yields the
resonance frequency l0 and the total quality factor [see Fig. 2.19 (c)]

\ (l) = \0 + 2 arctan
(
2&;

[
1 − l

l0

] )
. (2.68)

From \0 and the center position, is it possible to translate the circle to its canonical position, where
the off-resonant point % = 1 [Fig. 2.19 (d)]. Since the circle is in its canonical form, we can calculate
the external (or coupling) quality factor &4 = &;/(2A0 exp (−iq0)). The internal (unloaded) quality
factor can be again calculated by the relation &−1

0 = &−1
;
−&−1

4 .

Figure 2.19 | Circle Fit Algorithm on Cavity’s Complex Scattering Data.
(a) Uncalibrated complex scattering data of a resonator. The cable delay causes a distortion of the ideal circular
shape of the resonance circle. (b) Algebraic circle fit to determine the circle diameter 3 and its center position
(G2 , H2). By the translation to the origin, the prefactors 0 and U can be determined. (b) The phase versus
frequency fit to obtain the resonance frequency l0, the unloaded (total) quality factor &0 and the offset phase
\0. (d) Last step to transform the cirle to its canonical position where % = 1. Reprinted from [122], with the
permission of AIP Publishing.
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In Figs. 2.20 and 2.21, we demonstrate the circle fit algorithm applied to the complex scattering
data of the cylindrical cavity mode TM110 in reflection. Note that in reflection, we obtain the cavity
amplitude response with a Lorentzian distribution that is equivalent to the scattering parameter (21 of
the notch type resonator in Eq. (2.67) [also see Fig. 2.18 (a) and (b)] . As expected, the cavity raw
complex scattering data in Fig. 2.20 (a) exhibit a distorted loop rather than a circular shape of the
cavity’s resonance caused by cable delay. In Fig. 2.20 (b) the cavity amplitude response |(21 | shows
a Lorentzian distribution with an uncalibrated dip. Additionally, the cable delay tilts the cavity phase
response by a slope 2cg [see Fig. 2.20 (c)].

By applying the circular fit routine the raw data can be re-calibrated. Figure 2.21 (a) shows that the
distorted loop becomes a perfect circular shape by using the nonlinear least square fit. Additionally,
the amplitude response is properly re-normalized and the phase response shows a phase jump on
resonance without a slope [see Fig. 2.21 (b)-(c)]. The circle fit algorithm offers a fast and accurate
analysis of noisy complex scattering data of our microwave 3D cavities without any need of calibration.
The python based implementation of the algorithm can be found on Ref. [126].

Note that the circle fit technique discussed here assumes that the occurrence of the asymmetric
lineshapes (Fano effects) in the cavity response is due to impedance mismatches at the input and
output port. Hence, we can use the model described by Eq. (2.66). In a more generic picture, the
Fano feature in the cavity response can occur from the "cross talk" between the resonant signal and
the background. For example, the direct leakage due to the finite isolation in the input and output
ports of the circulator in a reflection measurement can lead to interference with the cavity output.
Generally, the resulting amplitude and phase of the Fano interference are unknown. In principle,
the asymmetric lineshape itself is harmless and does not affect the analysis of the S-parameter. The
problem occurs, however, when the leakage does not cause any asymmetric lineshape, but still add
an unknown systematic error in the calculated internal quality factor that cannot be calibrated out.
Rieger et al. suggest a procedure to extract &0 with a range of uncertainty based on an upper bound
for the interference amplitude [127]. This range of uncertainty increases strongly with the cavity’s
coupling strength. Since our system operates in the undercoupled regime, we assume that the error in
the internal quality &0 determination is relatively small.
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Figure 2.20 | Cylindrical Cavity Complex Scattering Data.
(a) Uncalibrated complex scattering data of the cylindrical cavity mode TM110 with distorted loop shape of the
cavity resonance. (b) Cavity amplitude response exhibits a dip with Lorentzian distribution at the resonance
frequency. Almost no asymmetry in the cavity’s response indicating small impedance mismatch between input
and output coupling. (c) Phase versus frequency response of the cavity. The slope in the phase response is a
direct consequence of the cable delay.
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Figure 2.21 | Cylindrical Cavity Data with Circle Fit Algorithm.
(a) The cavity’s complex scattering data after the implementation of the circular fit procedure showing a perfect
circle on resonance. (b) The cavity’s amplitude response is renormalized. (c) The cavity phase response after
proper calibrations showing a phase jump on resonance.



2.4 NANO FABRICATION PROCEDURES

35

2.4 Nano Fabrication Procedures
In this section, we provide an overview of the methods for fabricating the double-clamped no string
resonators that we described theoretically in Sec. 2.1. Note that all manufacturing steps described
below are performed in the clean room facility "Nanolab" of the University of Konstanz. Since the
group has recently moved to the Technical University of Munich (TUM), new fabrication processes
have been developed by F. David and B. Yalaman for both silicon nitride (SiN) [128] and silicon
carbide (SiC) [129] string resonators. In this work, we employ the so-called "top down" fabrication
technique only for SiN string resonators, which relies heavily on electron beam lithography (EBL).

Electron Beam Lithography
There is a variety of nano-lithography techniques, e.g. deep ultraviolet (DUV) lithography, extreme
ultraviolet lithography (EUV) and also electron beam lithography. DUV and EUV are mainly used for
mass production in the semiconductor industry, as these processes are fast and highly reproducible.
EBL, however, is primarily used in research and development (R&D). The maskless nature of this
technique offers flexibility in design and remarkably high resolution (5 nm and below). Therefore,
EBL is more suitable for test purposes and allows the design of small geometries.

The EBL system uses a focused electron beam (e-beam) to directly irradiate the top surface of a resist-
coated material to create the desired pattern. Electron beam resists are mainly chemical compounds
that are highly sensitive to electrons. Their chemical structures are modified after the e-beam exposure
to either form new bonds between the molecules in the resist (negative) or breaking existing bonds
(positive). The exposed area of a negative resist becomes insoluble after development in a suitable
developer, while the positive resist becomes soluble after exposure to the electron beam. In our case,
we use a positive resist 1 to define the structure of electrodes flanking the nanomechanical string
resonator on both sides for dielectrical transduction [70, 130].

A second step of e-beam lithography is employed to align the structure of the doubly clamped string
resonator between the narrow gap of the electrodes. Typically, the electrodes are designed to have
400 nm − 500 nm wide gap. Since the width of the strings are 250 nm − 300 nm, it is essential to
add markers in the first lithography step to obtain an alignment process with high precision. Using
the alignment marks, the deflection of the electron beam is calibrated in such a way that the beam
motion correctly matches the lengths defined by the coordinates of the previously designed pattern
in the writing field. In the following, we provide a step by step description of our nano fabrication
procedure that is developed and now well established by the group over many years.

Figure 2.22 shows the first fabrication steps to realize the desired geometry in the nanometer range.
Our sample consists of a stoichiometric silicon nitride (Si3N4) layer with a thickness of 100 nm, in-
dustrially grown on 500 µm fused silica (SiO2) substrate using low pressure chemical vapor deposition
(LPCVD) technique [Fig. 2.22 (a)]. For reasons of reproducibility and to support orientation during
the fabrication process, the wafer is diced into chips measuring 5× 5 mm2, which form the basis of all
successive steps.

At first, the samples are rinsed in ultrasonic bath using acetone and isopropanol (IPA) solutions, each
for 5 minutes. The electron sensitive resist is then spin-coated on the surface of the chip with a
rotation speed of 5000 rpm in 30 s to obtain a film thickness of 450 nm. Subsequently, the sample is
softbaked on a hotplate by 180 °C for 90 s. Due to the non-conductive nature of the quartz substrate,
an additional layer of conductive polymer 2 is required to avoid charging effects during the e-beam
1MicroChem PMMA 950k A6
2Allresist Electra 92 (AR-PC 5090)
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Figure 2.22 | Electrodes Patterning with Electron Beam Lithography.
(a) 100 nm silicon nitride (dark blue) is grown on quartz substrate (gray) served as basis for fabrication of doubly
clamped nano string resonators. (b) Sample after the e-beam exposure and development. By using positive
resist, the patterned structures are dissolved in the developer. (c) The remaining gold electrodes after e-beam
evaporation and lift-off process on top of the SiN layer.

exposure. Here, we spin-coat Electra 92 on top of the previously coated PMMA with 2000 rpm in
60 s and the conductive polymer is subsequently baked for 2 minutes with 90 °C. The sample is now
ready for the e-beam exposure.

In the clean room facility "Nanolab" of the university of Konstanz we use the scanning electron
microscope 3 from Zeiss with a beam controlled software 4 to pattern the structures of the electrodes
[see Fig. 2.22 (b)], alignment markers and bondpads (not shown). Note that the alignment markers are
essential for the second exposure, as we use them for orientation to align the string structures between
the small gaps of the electrodes (see for instance Ref. [128]). The e-beam exposure is performed at a
working distance of 8.6 mm and an acceleration voltage of 10 kV. In this case, two different apertures
are used since we have structures that differ greatly in sizes. As a result, the 20 µm aperture with the
dose of 90 µC/cm2 is primarily employed to pattern the electrodes structures and the 120 µm aperture
and 196 µC/cm2 is used for the millimeter-sized bond pads that electrically connect the electrodes to
the drive sources. Note that we change apertures during the exposure to pattern both bond pads and
electrode structures in a single step. The exposure time calculation and the offset compensation due
to the change in aperture is carried out by the beam control software.

After the e-beam patterning, the conductive layer is removed simply by submerging the sample in
deionized water for 60 s. The positive resist is then developed by using the mixture of MIBK 5 and
IPA with a ratio of 1:3 with a duration of 50 s and the rinse in only IPA will stop the development
process. We gently blow dry the sample with a nitrogen gun to complete the first exposure step. Since
we use a positive resist, the exposed areas should be dissolved after the development leaving empty
structures behind [see Fig. 2.22 (b)].

3Zeiss Crossbeam 1540XB
4Neomicra
5Methylisobutylketone
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E-Beam Evaporation

The metallization of the sample to obtain gold structures is done by the physical vapor deposition
(PVD) technique. In this work, we utilize the so-called e-beam evaporation. Here, an intense beam
of electrons is generated from a filament and directed towards the crucible that contains the source
target (i.e. gold, chromium ect.) using electric and magnetic fields to vaporize it within a vacuum
environment. This process allows the atoms to leave the metallic surface and traverse through the
vacuum. With sufficient thermal energy, the atoms from the metallic source can reach the sample
target that is located above the crucible. This mechanism can be used to coat the substrate that is
attached on the target. In our lab, we employ the e-beam evaporation technique 6 to deposit 5 nm of
chromium that serves as adhesion layer 7, and 100 nm of gold on the sample. For chromium, we use an
evaporation rate of 0.3Å/s and for gold we increase the evaporation rate to 1Å/s, respectively. Note
that we decide to evaporate 120 nm gold, since the thickness of the gold electrodes will be reduced
to ≈ 50 nm after the anisotropic etching process. However, this proceeding demands relatively high
consumption of gold and therefore we suggest to add an additional etch mask (i.e. 30 nm of chromium)
to protect the gold electrodes from degradation during the etch process. With the protective etch mask,
we can reduce the thickness of the gold layer to 50 nm. In the successive lift-off process, we dissolve
the remaining resist PMMA by submerging the evaporated sample in acetone solution where the
overlying metallic coating can be removed. Only the structures that are previously written by the
e-beam lithography, (and now filled with a gold layer) are preserved [see Fig. 2.22 (c)].

Protective Anisotropic Etch Masks for String Resonators

Figure 2.23 | E-Beam Patterning of String Resonators.
(a) PMMA coated sample with electrodes before e-beam lithography. (b) Sample after e-beam exposure and
development. (c) Sample after vapor deposition and lift-off process. A cobalt mask with the geometry of a
doubly-clamped string resonator will protect the underlying SiN layer from anisotropic etch process.

After the lift-off process, we are now ready to begin the second e-beam lithography step to define
the geometry of the doubly clamped strings which is located between the two electrodes defined in

6AJA Internaltional ATC Orion 8-T
7Note that titanium, which is used as a standard material for adhesion, is not applicable in our case due to the application
of buffered hydroflueric acid (bHF).
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Figure 2.24 | Metallic Etch Masks.
(a) Scanning electron microscope (SEM) image of the evaporated cobalt string etch mask (deposition rate
0.5Å/s) shows relatively smooth edges. (b) Aluminum etch mask with large grain size by deposition rate
0.5Å/s will lead to string resonators with rough edges and hence lower the quality factor.

the previous steps (see Fig. 2.23). We repeat the procedure of spin-coating the resist and conductive
polymer Electra described above to obtain the same starting conditions before e-beam patterning [see
Fig. 2.23 (a)]. As mentioned earlier, the second exposure requires careful alignment to correct the
mismatch between the stage coordinates (xyz) and the sample coordinates (uvw) in the Neomicra
software. The predefined markers from the first step provide the beam control software Neomicra
with good orientation for alignment procedures such as angle corrections, zoom factor, lateral and
horizontal offsets ect. We execute the e-beam exposure with the configurations similar to the first
step. Due to small dimensions of the strings, we use the 20 µm aperture with a dose of 117 µC/cm2 to
pattern the geometry. Subsequently, the exposed sample can be developed [Fig. 2.23 (b)] and we can
deposit the metallic mask to protect the below lying SiN layer from the anisotropic etch process.
We would like to emphasize that the choice of material for the etch mask is crucial for the smoothness
of the string edges, which in turn have a direct influence on the quality factor. An etch mask with high
roughness will directly imprint its shape to the underlying protected layer after the isotropic etching
process. Consequently, string resonators with rough edges exhibit considerable low quality factors
in contrast to the ones with smooth edges. In this thesis, we want to compare the smoothness of
the aluminum to cobalt etch mask. Aluminum provides a relatively inexpensive and straightforward
solution in vapor deposition of thin films. It is also known as one of the most important material in
microelectronics. However, it is well known that the coated aluminum film builds up clusters during
evaporation and hence, showing grain structures on the thin film. It has been shown, that the grain size
strongly depends on the evaporation rates of aluminum and also on the material of the substrate [131].
The best results can be achieved with glass substrate and an evaporation rate of 0.1Å/s, where the thin
aluminum films show grains with diameters ranging from 20 nm− 40 nm. In our case, we use e-beam
deposition to evaporate 35 nm of aluminum with a rate of 1Å/s that serves as the etch mask. As
apparent in Fig. 2.24 (b), the aluminummask with the high deposition rate shows relatively large grain
size and hence, the strings will suffer from the roughness and the quality factor is accordingly low.
The second material of choice in our experiment is cobalt. The mask from cobalt evaporation [see
Fig. 2.24 (a)] offers much smoother surface and edges, thus, the quality factors of the string resonators
are expect to be higher than the ones from an aluminum mask. However, Cobalt is generally not the
first choice material, because it is relatively expensive due to the high demands in lithium- ion battery
technology, and also due the characteristic ferromagnetic nature of the material. Cobalt is nowadays
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rarely found in most evaporation chambers. Many groups performing experiments in low temperature
environments are likely to avoid to evaporate this type of metal in the same chamber, where they
fabricate their device, i.e. superconducting qubits or coplanar microwave resonator. The residue of
cobalt and its the ferromagnetic nature can destroy the superconducting properties of such devices.
Fortunately, in the laboratory of Prof. Elke Scheer at the University of Konstanz, we can find an
e-beam evaporation champer to deposit cobalt. Here, we use an evaporation rate of 0.5Å/s to deposit
35 nm cobalt etch mask on our SiN samples. Note that all the samples used in this thesis are deposited
with cobalt since they give the highest quality factors.

The third material of choice that can be used as a protective etch mask is chromium. It combines
both advantages (smoothness and inexpensiveness) of the two other materials and has proven to be
a good material for ICP-RIE etching. However, using chromium mask will lead to some fabrication
challenges, which we will not discuss here in this thesis. A comprehensive comparison between
chromium and aluminum etch masks can be found in the PhD thesis of Y. Klass [132].

Anisotropic Etching (ICP-RIE)

After the second lithography step and the etch mask deposition with cobalt, the sample is now ready
for the etching process to faithfully reproduce the pattern defined by the e-beam lithography. In our
case, we use the anisotropic dry etch process, the so-called inductively coupled plasma - reactive ion
etching (ICP-RIE) technique. The etch mechanism occurs by using reactive gases that interact either
physically (by bombardments of ion) or chemically (by radicals) with the surface atoms of the sample.
The reactive plasma state of the gas is generated by an external radio frequency (RF) source. The
RF-field causes the electrons to oscillate rapidly. With large RF-power, the electrons gain enough
power to impact nearby atoms or molecules generating more electrons and leaving behind positive
ions or highly reactive radicals. In order to enhance the plasma density, a second RF-source (a coil)
is added to the vacuum chamber. The added magnetic field causes the electrons to spiral inside the
vacuum chamber. In other words, the spiral movement extends the electron’s mean free path where
they can cause more collisions before hitting the chamber wall. The control over the two independent
RF-source gives full control over the etch behaviour of the highly reactive plasma cloud. The ICP can
generate both ions and radicals. On the one hand, ions get accelerated towards the sample surface and
cause physical etch process. The physical etching is directive and we call this process "anisotropic
etching". Radicals, on the other hand, diffuse into the sample and cause chemical etching. This type
of etch process occurs in all directions and hence, we call this mechanism "isotropic etching". For a
more comprehensive description about the working principle of the ICP-RIE (see Ref. [133]).

The obtain the pattern predefined by the e-beam lithography, we solely utilize the directive anisotropic
etch process that is conducted in the "Nanolab" using the ICP-RIE 8 technique. The reactive gases
used here are sulfur hexaflouride (SF6) and argon (Ar). The etch procedure is executed at 10 °C wafer
temperature and we use the gas flow of 4 sccm and 2 sccm for Ar and SF6, respectively. We adjust
the ICP power to 350 W and the RIE power is set to 65 W. The chamber pressure reaches 2 mTorr
during the etch process. The etch time is 3:04 min, that results in an etching depth of 340 nm, which
is more than sufficient to etch through the SiN layer deposited on the fused silica substrate. After this
anisotropic dry etch process we continue the fabrication procedure with isotropic chemical etching to
finally release the SiN structures to obtain free suspended string resonators.

8ICP-RIE Oxford Plamalab 100
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Isotropic Chemical Etching
In order to fabricate string resonators with high quality factors, we need to keep the sample free from
impurities that are the metallic residues from the etch mask. It has been reported, that the inverse
quality factor scales linearly with the thickness of the metallic layer deposited on the string [134]. For
this reason, we remove the remaining cobalt etch mask by immersing the sample in a piranha solution
for 2 minutes. The piranha solution is the mixture of sulfuric acid (H2SO2) and 30 % hydrogen
peroxide with a ratio of (3:1). Another positive effect of piranha solution is the strong chemical
reaction to organic materials. Hence, the piranha treatment will further remove organic residues from
our sample. Note that the aluminum mask can be removed by sodium hydroxide (NaOH) with the
concentration of 1 mol/l in 1 minute. After the removal of the metallic etch mask, the sample is now
ready for the final isotropic chemical etching step. Here, we use buffered hydrofluoric acid (BHF) 9

to release the silicon nitride string resonators. BHF offers high selectivity in the etch process, where
only the sacrificial material (SiO2) is removed while the device layer (SiN) still remains intact. By
doing so, we submerge the sample into BHF solution for 3 min 30 s to under-etch the below lying
quartz substrate and the SiN string resonators are freely suspended after this step. Note that the
sacrificial material (SiO2) below the electrodes structures are also partly remove. Due to the larger
thickness (1 µm) the electrodes are not released from the substrate. Subsequently, the sample is rinsed
in de-ionized (DI) water to stop the etch process. Note that the sample is constantly submerged in
liquid environment during the chemical etch procedure. If we simply remove the sample from the
liquid, the thin and long string resonators will be most likely damaged or attached to the substrate due
to the strong surface tension. The first step to minimize the damage is to replace the rinse DI water
with IPA because the solution exhibits appreciably small surface tension. Additionally, we can further
reduce the tension by heating the IPA up to 50 °C before drying the sample. At last, the sample should
be gently blow dried with a nitrogen gun along the direction of the strings.

Critical Point Drying
An even more gentle method to transfer the sample from liquid to gaseous phase is to use the critical
point drying (CPD) technique. Here, the transition between the liquid and gaseous phase is bypassed
over the critical point to reach the so-called supercritical fluid state. In this high pressure and high
temperature regime it is not possible to distinguish between the gaseous and liquid phase since they
both have the same density. For this process the most common medium of choice is CO2 that has a
critical point at 73.8 bar and 31 °C. In the CPD chamber 10, we slowly replace the IPA solution with
the sample immersed inside with liquid CO2. The chamber is then heated up to overcome the critical
point and we then slowly reduce the pressure to end up in the gas phase. A detailed description of the
working principle of the CPD can be found in the PhD dissertation of M. Bückle [133]. In Fig. 2.25,
we illustrate a schematic drawing of the final result of our nano fabrication procedure, where the
nanomechanical string resonator is clamped by the pads and flanked by the electrodes on both sides for
dielectrical transduction. All the important fabrication parameters are listed on table 2.1. We portrait
a real SEM image of the doubly clamped silicon nitride string resonators taken after the successful
nano fabrication procedure in Fig. 2.26.

9TECHNIC Hydroflouric Acid BOE 7-1
10Baltec CPD 030
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Figure 2.25 | Doubly-Clamped String Resonator with Electrodes.
Schematic representation of a doubly-clamped string resonator with electrodes flanking on both sides after a
successful implementation of the nano fabrication procedures.

Figure 2.26 | SEMMicrographs of Multiple String Resonators with Electrodes.
A series of nanomechanical string resonators are designed to improve the yield of the fabrication process.
Here, we increase the length of the strings by 5 µm steps. The corresponding eigenfrequencies range from
5 MHz− 10 MHz. The inset (orange) shows an enlarged view of a freely suspended string resonator that is fixed
on both sides by clamping pads.
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Table 2.1 | Fabrication Parameters.
Overview of the most important parameters and devices for the fabrication of nano-string resonators and
electrodes.

Spin coating / Bake
Resist Process Details
PMMA Spin coater 5000 rpm & 30 s

Softbake 180 °C & 90 s
Electra 92 (conductive layer) Spin coater 2000 rpm & 60 s

Softbake 90 °C & 120 s
Electron Beam Lithography (Zeiss Crossbeam 1540XB)

Step Aperture Dose
Electrodes 20 µm 90 µC/cm2

Bondpads 120 µm 196 µC/cm2

String 20 µm 117 µC/cm2

E-Beam Evaporation (AJA Orion-8)
Step Material Thickness & Rate
Bondpads/Electrodes Cr 5 nm & 0.3Å/s
Bondpads/Electrodes Au 120 nm & 1Å/s
String protective Etch mask Co 35 nm & 0.5Å/s
String protective Etch mask (alternative) Al 35 nm & 1Å/s

ICP-RIE (Oxford Plasmalab 100)
Reactive gas Process
SF6 / Ar 2 sccm (SF6)

4 sccm (Ar)
ICP Power 350 W
Rie Power 65 W
Pressure 2 mTorr
Wafer Temperature 10 °C
Etch Time 3:04 min

Isotropic Underetch
Solution Etch Time
Buffered Hydrofluoric Acid (BHF) 3:15 min
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3 Room Temperature Cavity
Electromechanics

The following chapter is based on our manuscript:

A. T. Le, A. Brieussel and E. M. Weig, "Room temperature cavity electromehanics in the
sideband-resolved regime", Journal of Applied Physics, 130, 014301 (2021). Reference [107]
The published work has explicitly been written by the author. Therefore, the following chapter
will partly contain passages of the original publication. All the figures are reprinted under
permission of AIP Publishing and indicated as such.

In this chapter, we combine the two main ingredients that are the doubly clamped nanomechanical
resonator and the microwave 3D cavity geometry discussed in the previous sections 2.1 and 2.3. We
want to establish a cavity electromechanical system that operates under the same principles as their
cavity optomechanical analogues [90]. But rather relying on a light field circulating inside an optical
cavity, an electromagnetic circuit is employed to realize a cavity mode in the microwave regime which
parametrically couples to a mechanical resonator. Motivated from recent developments in the field
of circuit quantum electrodynamics (cQED), where 3D microwave cavities have replaced coplanar
waveguide architectures due to their large mode volumes and remarkably high quality factors, three
dimensional superconducting microwave cavities have been adapted for cavity electromechanics by
capacitive coupling to a mechanical resonator [102, 103, 135]. However, the field of cavity elec-
tromechanics is limited to millikelvin temperatures, since it relies on superconducting circuits. Room
temperature cavity electromechanics is impeded by the non-zero resistance of a normal conducting
circuit, which gives rise to strong dissipation. In the past, our group has successfully employed
non-superconducting microwave cavities such as copper microstrip resonators for cavity-assisted dis-
placement sensing of nanomechanical resonators at room temperature [56, 130]. Their use for cavity
electromechanics, however, is limited by a cavity quality factor of about 100 due to dielectric and con-
ductor losses, which not only constrains the displacement sensitivity but also keeps the system to reside
deeply in the unresolved sideband. This is the so-called bad cavity regime, where the linewidth ^/2c
of the cavity exceeds the eigenfrequency of the mechanical mode Ωm/2c. In the following, we will
demonstrate a room temperature cavity electromechanical system that is capable of sideband-resolved
(^ < Ωm) operations. The rest of this chapter is structured as follows: First, we start to discuss the fun-
damental mechanism, that is the sidebands generation in cavity electromechanics and how to employ
the microwave cavity to probe the displacement of a strongly pre-stressed silicon nitride nanostring
resonator. The heterodyne in-phase quadrature (IQ) mixing technique for frequency down-conversion
is explained subsequently. Second, we continue with the actuation technique, where the dielectric
property of the mechanical resonator is employed. At last, we demonstrate the experimental results of
our room temperature cavity electromechanical system.
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3.1 Mechanical Motion Detection
The detection of mechanical motion from tiny mechanical objects with high precision remains a
difficult task. It is due to the fact, that the displacement amplitude of such nanomechanical resonators
are found in the order of 10−12 m to 10−9 m. In our group we employ the dielectrical detection scheme
to determine the frequency and displacement amplitude of themechanical oscillation. In the following,
we provide a description about the working principle of our well-established cavity-assisted detection
technique using heterodyne IQ-mixing.

3.1.1 Sideband Generation
In the field of cavity optomechanics [90], the mechanical oscillator is trapped inside an optical
cavity to enhance the light matter interaction. Due to the high finesse of the optical cavity, the
injected photons can circulate and remain inside the cavity for a long time, increasing the chance to
transfer the momentum of the photons into a mechanical motion or vice versa by radiation pressure
mediated backaction. This mechanism leads to interesting phenomena such as amplification or
damping (also known as cooling) of the mechanical motion. The parametric, dispersive coupling in
the optomechanical system leads to the generation of sidebands in the response spectrum of the optical
cavity providing information of the mechanical element inside the cavity.

The cavity electromechanical systems operate under the very same principle as their cavity optome-
chanical analogues. Cavity electromechanics often utilizes low-loss superconducting circuits that are
easily cooled to temperatures below 100 mK. The compatibility of this system to dilution refrigerator
environment provide a large advantage in ground state cooling of the mechanical motion [42, 136].
J. D. Teufel et al. demonstrate in their experiments large electromechanical coupling using a flexible
vacuum gap capacitor to cool the mechanical motion to the quantum ground state [93] and to reach the
quantum enable strong coupling regime [92]. Many groups implement these cavity electromechanical
systems for microwave-to-optical conversion [24, 137] to obtain squeezing of a micromechanical res-
onator [138], for amplification of microwave signals [139], entanglement generation [140, 141], just
to name a few.

Here, we employ in our experiment the cylindrical microwave 3D cavity geometry discussed in
Sec. 2.3.3 to readout the motion of the mechanical oscillator. The coupling occurs via gold electrodes
flanking the dielectric SiN string resonator (see Fig. 2.26). On the one hand, one electrode is
wirebonded to a microwave dipole antenna which is located inside the cavity. In turn, the dipole
antenna can receive the signals from amicrowave electric field that is built up inside the cavity due to the
resonance condition. On the other hand, the mechanical motion of the dielectric SiN string resonator
periodically modulates the capacitance of the electrodes, generating sidebands in the microwave
cavity response similar to cavity optomechanics. In the following, we explain the mechanism of the
sidebands generation using a lumped-element circuit picture rather than the standard framework of
cavity optomechanics [90]. This model conveniently describes the frequency modulation of the cavity
resonance [142].

As illustrated in Fig. 3.1, the motion of the nanomechanical system temporarily modulates the capac-
itance of the tank circuit. Then the modulated resonance frequency is

lc(C) =
1
√
!�

=
1√

!�B (1 + X�m(C)/�s)
≈ l̃s

(
1 − X�m(C)

2�s

)
. (3.1)

Here, l̃s =
√
!�s is the unmodulated resonance frequency that results from the static part of the

capacitance �s = �Ant + �0. For the expression on the right hand side of Eq. (3.1), we use the series
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Figure 3.1 | Frequency Modulation of Cavity Resonance.
Simple tank circuit model that explains sidebands generation via capacitive coupling of a mechanical resonator
to LCR-circuit. The capacitance of the tank circuit can be divided to static part, that consists of the circuit’s
intrinsic capacitance �0 and the coupling capacitance via antenna �Ant. The dynamical part X�m(C) represents
the demodulation via mechanical element.

expansion, since the relation X�m � �s is generally valid in our system. The time-dependent part for
the mechanical motion along x-direction is

X�m(C) =
m�m
mG

G(C) = � ′mGm cos (Ω<C). (3.2)

With �m the capacitance of the gold electrodes, Gm is displacement amplitude of the mechanical
resonator andΩm is the mechanical resonance frequency. The instantaneous frequency from Eq. (3.1)
then takes the form

lc(C) ≈ l̃s

(
1 − �

′
mGm cos (Ω<C)

2�s

)
= l̃s −

�
′
mGml̃s

2�s
cos (Ω<C). (3.3)

The corresponding phase can be calculated by the integral

q(C) ≈
ˆ (

l̃s −
�
′
mGml̃s

2�s
cos (ΩmC)

)
dC

= l̃sC +
�
′
mGml̃s

2�sΩm
sin (ΩmC) + q0

= l̃sC + A(Gm) sin (ΩmC) + q0,

(3.4)

where q0 is the initial phase of the system and the amplitude

A(Gm) =
�
′
mGml̃s

2�sΩm
. (3.5)

If the drive frequency is close enough to cavity resonance, we can write the output voltage of the tank
circuit as

+out(C) ≈ �in&' cos (q(C)) = �in&' cos[l̃sC + A sin (ΩmC) + q0] . (3.6)

The expression for the output voltage from Eq. (3.6) is well-known in the frequency modulation
analysis, where a cosine wave signal with the carrier frequency l̃s is modulated by a sine function
with frequency Ωm. In this case the expression can be expanded using Bessel functions identity [143]

+out(C) = �in&'
∞∑

==−∞
�= (A) cos[(l̃s + =Ωm)C], (3.7)
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where �= (A) is the =Cℎ Bessel function. We can write the first few terms for the cavity’s output voltage

+out(C) = �in&'{�0(A) cos(l̃sC)︸             ︷︷             ︸
cavity resonance

+ �−1(A) cos[(l̃s −Ωm)C]︸                          ︷︷                          ︸
1st red sideband

+ �+1(A) cos[(l̃s +Ωm)C]︸                          ︷︷                          ︸
1st blue sideband

+ . . . }. (3.8)

Here, Eq. (3.8) describes the cavity output with the pure cavity and the first sideband terms. In the
absence of the mechanical resonator or for small displacement A(Gm) = 0, all sidebands vanish and
�0(0) = 1, where only the cavity resonance persists. The modulation of the mechanical resonator
creates a time-varying capacitance X�m(C). This serves to frequency modulate the microwave cavity
resonance and create new susceptibilities that are multiples of the mechanical frequency above and
below the uncoupled cavity resonance l = l̃s ± =Ωm. Typically, only = = 1 is taken into account.
So the observation of the microwave cavity’s response will give us direct access to the mechanical
properties.

3.1.2 Heterodyne IQ-Mixing Technique
In previous works, the mechanical motion detection was conducted using a co-planar _/4 waveguide
resonator [56, 63, 70, 130], which exhibits broad cavity linewidth of ≈ 36 MHz. The mechanical
resonators, in turn, are designed to operate mostly from 5 MHz − 10 MHz. Hence, the system is
in the unresolved sideband regime and it is not possible to observe the mechanical response which
is overlapped with the cavity spectrum in gigahertz regime. Additionally, in experiments that are
performed by my colleague J. Ochs to explore nonlinearity effects of the nanomechanical resonators
such as thermal squeezing [144], resonant amplification and absorption [145] and broken symmetry
in the resonant nonlinear response [146], require the lock-in amplifier1 that operates mainly in the
megahertz range. Devices with the same functionalities in gigahertz range will become more cost-
intensive and is much more difficult to control due to the large bandwidths that require fast electronics.
For these reasons, themotions of the nanomechanical string resonators are detectedwith the heterodyne
in-phase quadrature (IQ) mixing technique to down convert the sidebands from gigahertz to megahertz
regime. Figure 3.2 shows the schematic of the heterodyne down-conversion procedure. A microwave
tone from a signal generator2 is applied to the single port of the cylindrical microwave 3D cavity. The
input microwave signal is then phase-modulated due to the interaction with the mechanical resonator
as discussed above. By using a microwave circulator3, we can separate the input and output microwave
signals. These microwave circulators (also isolators) are nonreciprocal devices that only allow the
signal to propagate in one direction and protect the microwave source and the 3D cavity from back
reflection. The output and demodulated cavity signal is then fed into an in-phase quadrature (IQ)
mixer4 together with a local oscillator (LO) of the very same microwave source. Let us first recall the
trigonometric identity

cos (�) cos (�) = 1
2
(cos (� + �) + cos (� − �)). (3.9)

By mixing the two signals

cos (lRF + i) · cos (lLO) =
1
2
[cos (lRF + lLO + i) + cos (lRF − lLO + i)], (3.10)

1Zurich Instrument lock-in amplifier HF2LI
2Rohde&Schwarz SMA 100 A
3MCLI CS-19 4-8 GHz
4Marki Microwave IQ-0307 LXP
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we will get a high frequency component l+ = lRF + lLO + i and a low frequency component
lIF = lRF − lLO + i. Here, lRF is the carrier frequency that contains the mechanical modulation
with the phase shift i and lLO is the frequency of a continuous local oscillator coming from the
same microwave source. In the worst case scenario, the cavity phase modulation becomes i =

lLO − lRF + c/2 causing destructive interference of the two mixed signals. To overcome this phase
dependent procedure, we use the before mentioned double-balanced IQ-mixer that consists of two
hybrids (0°/0°) and (0°/90°) power splitter as well as two mixers (see Fig. 3.2). At the output of the
mixer we will obtain the time-dependent in-phase and quadrature of the high frequency part I+(C),
Q+(C) and the low intermediate frequency (IF) part IIF(C) and QIF∗ (C) with a well-defined 90° phase
shift to each other

IIF(C) = A(C) cos (lIF + i(C)) (3.11)
QIF∗ (C) = A(C) sin (lIF + i(C)). (3.12)

So Eqs. (3.11) and (3.12) show that one of the output after the IQ-mixer is always non-zero and
independent of the phase difference of the two input signals. The two demodulated quadrature
components are then combined using another (0°/90°) power combiner/splitter5. Hence, the combined
output signal is

S(C) =
√
I2
IF(C) + Q

2
IF∗ (C). (3.13)

Depending on the phase of the two input signals from Eqs. (3.11) and (3.12), there is at least one
of these signals that is non-zero. Thus, the sum of the two signal is completely independent of the
phase relation of the two input signals and this helps us to avoid readjustments of the phase after each
measurement. The combined output signal is subsequently low-pass6 and high-pass7 filtered to get rid
of the high frequency component l+ and to reduce the noise contributions. The filtering procedure
allows us to conduct measurements in a frequency window from 120 kHz to 81 MHz. This range is
suitable to observe the mechanical oscillation since the eigenfrequency of the string resonator operates
in megahertz regime. The signal is then amplified8 and fed to the network analyzer9 to reconstruct the
amplitude and phase response of the mechanical signal in the dielectric driven measurement that will
be discussed in the next section.

5Mini-Circuits JSPQ-65W+
6Mini-Circuits VLFX-80+
7Mini-Circuits ZFHP-0R75+
8MITEQ AU-1464-R Amplifier +35 dB
9Rohde & Schwarz ZNB 8
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3.2 Dielectrical Actuation
One of the most efficient and highly integrable way to locally actuate nanomechanical resonator, is the
capacitive actuation scheme. However, the major limitation of this system is the large dissipation due
to the dominant loss mechanism of the metal layer deposited on the surface of the resonator [134, 147].
To overcome the strong metallic induced damping, the system needs to operate at low temperature
environment and the thin metallic film needs to become superconductor [139, 148]. Since we want
to conduct experiments at room temperature, we need to come up with an alternative transduction
scheme. To this end, Q. Unterreithmeier et al. introduced an universal transduction scheme for
the nanomechanical resonators based on dielectric interactions [70]. When a polarizable material is
placed in an inhomogeneous electric field, it experiences an attractive force towards the maximum field
strength. So the two electrodes flanking the polarizable dielectric SiN string resonator (see Fig. 2.26)
can be utilized for both coupling to the microwave cavity, and at the same time for dielectrical
transduction. The static voltage applied to the adjacent electrodes by a DC voltage source generates a
strong, confined electric field, which in turn causes a change in the charge distribution in the dielectric
silicon nitride string resonator. This voltage induced polarization can be approximated by an electric
dipole that aligns along the field gradient and hence, exerts an electrostatic gradient force on the
resonator. To this end, the resonator is pulled towards one of the electrodes, bringing it out of its
equilibrium position. This leads directly to a change in the restoring force and thus, to a change in the
resonant frequency of the respective string resonator. We will discuss the frequency tuning behaviour
in more detail in Sec. 5.1.2. In addition to the DC voltage, we can further apply a weak periodic RF
drive voltage*RF = *d cos (ldC) generating a periodic force [70]

� [*DC +*RF] ∝ (*DC +*RF)2 ≈ *2
DC + 2+DC*d cos (ldC), (3.14)

that periodically drives the voltage-induced dipole, thus, actuating the nanomechanical string resonator
at the drive frequency ld. Beside *DC and *RF, the microwave term *`F originated from the
microwave 3D cavity the can contribute to the dielectric tuning effects (see discussion in Sec. 3.3.2).
Note that we have neglected the quadratic term+2

RF that describes the resonator’s actuation at twice the
drive frequency. Due to small drive amplitude, the contribution of this term remains relatively small.
The effect of the quadratic term may become pronounced in experiments exploring the resonators
nonlinearity. We illustrate the dielectrical actuation scheme in Fig. 3.2, where the DC source and
the RF drive from the network analyzer are combined with a bias tee10 and applied to the electrodes
via a single layer capacitor11 (SLC). At the same time the SLC serves as a ground potential for the
microwave cavity establishing a microwave bypass.

3.3 Sideband-Resolved Cavity Electromechanical System
Themainmotivation for thiswork, inwhichwe replace the coplanarmicrostrip resonatorwith 3Dcavity
architectures, is to improve the quality factor of the microwave cavity. In previous works [95, 130],
coplanarwaveguide resonators used for cavity-assisted detection are imprinted on printed circuit boards
(PCB), where the power dissipation is significant due to the dielectric material of the PCB. Hence,
the linewidth (^) of such cavities typically exceed the resonance frequency (Ωm) of the mechanical
resonator and mitigate the optomechanical coupling and detection sensitivity. 3D microwave cavities
structures, on the other hand, offer strong confined electric and magnetic field distributions that are
enclosed by the cavitywalls and hence, the radiation loss is reduced substantially. At room temperature,
10Mini Circuits ZFBT-6 GW+
11JOHANSON TECHNOLOGY SLC Microwave Capacitor U70, 1800 pF
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Figure 3.2 | Electrical Schematic for Mechanical Actuation and Detection.
Cavity-assisted displacement sensing and dielectrical actuation of nanomechanical silicon nitride string res-
onators. A microwave pump tone is applied to the cavity single port via a circulator that separates the input and
output signal. A single layer capacitor (SLC) provides a ground path for the microwave signal and at the same
time enables RF drive (supplied by the vector network analyzer (VNA)) and the control of the inhomogeneous
electrical field between the two gold electrodes by a DC source. Both signals are combined using a bias tee.
The mechanical detection is realized via a microwave loop antenna which is bonded to one of the electrodes
to inductively couple to one of the cavity resonance’s mode. At the same time, the mechanical motions peri-
odically modulate the capacitance �m(C) of the two electrodes, generating sidebands in the microwave cavity
signal due to the loop antenna coupling. The electromechanically modulated cavity reflected signal from the
single port is then fed into an IQ-mixer with a reference signal (LO) for the frequency down-conversion. The
output intermediate 90° phased-shifted frequencies IF and IF∗ are merged with a (0°/90°) power combiner and
subsequently low-, high-pass (LP, HP) filtered and amplified (AMP) before feeding the signal back into the
VNA.
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the main loss mechanism for these types of geometry is conduction loss. Nevertheless, the quality
factor of a 3D cavity can exceed that of a microstrip cavity by a few orders of magnitude. As a
result, the optomechanical coupling and detection efficiency are improved. The high quality factor,
thus, enable the operation in the sideband-resolved limit, where the cavity photon lifetime exceeds the
mechanical oscillation period [149–151] (^ < Ωm). In this regime, the injected photons can remain
trapped inside the cavity for many oscillation periods where it is more likely to interact with the
mechanical element.

3.3.1 Room Temperature Cavity-Assisted Detection
Figure 3.3 (a) depicts a photograph of the cylindrical cavity. It consists of two parts which have been
machined from bulk copper (Cu > 99 %) andwhich can be closed using screws. The cavity has a radius
of 35 mm and a height of 70 mm, it supports both transverse electric (TE) and transverse magnetic
(TM) modes (see Sec. 2.3). As the modes reside in the hollow cylinder, they are slightly affected by
dielectric and conductor losses, which enables high quality factor even at room temperature [106]. The
coupling to the cavity is realized by injecting the microwave signal from a coaxial line through a loop
coupler via a 3.6 mm sized hole in the cavity top [see Fig. 3.3 (a) and (c)]. In all our measurements,
we use a circulator to physically separate the input and output signals of the single port reflection
cavity and to avoid back reflections and interference effects. Figure 3.3 (b) (left) displays the reflection
coefficient |(11 | of the TM110 mode which is found at l2/(2c) ≈ 5.147GHz with a linewidth of
^/(2c) = 2.824MHz for the empty cavity, in good agreement with finite element simulations (now
shown here). This corresponds to a cavity quality factor of 1.800, exceeding the state of the art in
microwave-cavity-assisted nanomechanical displacement sensing at room temperature bymore than an
order of magnitude [56]. The nanomechanical resonator under investigation is a strongly pre-stressed
nanostring fabricated from LPCVD silicon nitride on a fused silica wafer, which is flanked by two gold
electrodes for dielectric transduction (see Sec. 2.4). The reflection coefficient of the same mode of the
cavity including the resonator chip is shown in Fig. 3.3 (b) (right). Upon insertion of the resonator,
the eigenfrequency of the TM110 mode shifts to lc/(2c) = 5.226 GHz. The linewidth increases by a
factor of 2 to ^/(2c) = 5.572 MHz.
We use the circle fit technique discussed in Sec. 2.3.6 to fit of the amplitude and phase of the cavity’s
reflection coefficient. The fit reveals an external dissipation rate of ^4/(2c) = 1.361MHz. This leads
to a coupling efficiency [ = ^4/^ = 0.244 , indicating that the cavity is undercoupled. Figure 3.3 (c)
shows the physical realization of the cavity electromechanical system. The sample holder with
the resonator chip is placed inside the cavity. One of the electrodes is connected to an antenna to
inductively couple to the TM110 of the cavity. It consists of a looped silver wire on top of a coaxial cable
which places the loop into the electromagnetic field near the center of the hollow cylinder. The other
electrode is bonded across a single layer capacitor acting as capacitive ground [130] and connected to
an RF signal generator through a 1.5 mm wide hole in the cavity wall for dielectric actuation of the
resonator [152–157]. The nanostring under investigation is F = 250 nm wide, C = 100 nm thick and
! = 57 µm long, similar to the one depicted in Fig. 3.3 (d).
While the cavity characterization is done under ambient conditions, the experiments discussed in the
following involve the vibrational excitation of the nanostring and air damping needs to be excluded.
Hence, the entire cavity electromechanical system consisting of the string resonator as well as the
microwave cavity is placed inside a vacuum chamber below 5 × 10−4 mbar. As indicated above, all
measurements are performed at room temperature. The nanomechanical resonator is characterized by
dielectrically driving its fundamental out-of-plane mode with a vector network analyzer (VNA). The
response of the nanomechanical resonator is characterized using heterodyne cavity-assisted displace-
ment detection discussed in Sec. 3.2 using the 3D microwave cavity. The microwave cavity is driven
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Figure 3.3 | Experimental Setup for Room Temperature Cavity Electromechanics.
(a), Photograph of the (open) cylindrical microwave 3D cavity machined from bulk copper. The microwave
signal is inductively injected into the cavity via a loop coupler. The sample holder including the antenna is visible
on the cavity floor. (b), Reflection coefficient |(11 | of the TM110 mode (black) along with fit to the data (red),
showing the response of both the empty cavity (left) and the cavity including the sample (right). Upon insertion
of the sample the frequency of the TM110 mode shifts by ∼ 80MHz. The second dip in the cavity response
(left) belongs to the TE112 mode (see Fig. 2.11). Furthermore, an increase of the linewidth by a factor of 2 is
observed. (c), Schematic visualizing the physical implementation of the cavity electromechanical system. The
doubly clamped silicon nitride string resonator (blue) is situated between two elevated gold electrodes (yellow).
The resonator chip (light green) is glued to a printed circuit board (green) and placed inside the cavity (beige).
The circuit board also hosts a looped dipole antenna which is bonded to one of the electrodes to inductively
couple to the TM110 mode. The other electrode is connected to a single layer capacitor (brown) which serves as
a capacitive ground for frequencies in the microwave frequency range, and to a wire which is fed through a hole
in the cavity wall. This allows to apply DC voltages and RF signals to dielectrically drive the resonator inside
the cavity. (d), Scanning electron micrograph of a doubly clamped pre-stressed nanomechanical resonator
between two gold electrodes for dielectric actuation as well as coupling to the three-dimensional microwave
cavity. Adapted and reprinted from Ref. [107], with the permission of AIP Publishing.
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exactly on resonance l3 = l2, such that the periodic modulation of the capacitance induced by the
dielectric nanostring vibrating between the two electrodes induces sidebands at l2 ±Ω< on the cavity
response. The reflected signal of the cavity is demodulated by an in-phase quadrature (IQ) mixer,
filtered and amplified as previously described in Sec. 3.2. The resulting signal is fed back into the
VNA. The response of the fundamental out-of-plane mode of the resonator is displayed in Fig. 3.4.
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Figure 3.4 | Characterization of the nanostring resonator.
(a), Linear response of the fundamental out-of-plane mode of the nanostring (black) and Lorentzian fit (red) for a
drive power of %< = −36 dBm. (b), Response of the nanostring by increasing drive power from %< = −36 dBm
to −14 dBm showing the transition to the nonlinear Duffing regime. Adapted and reprinted from Ref. [107],
with the permission of AIP Publishing.

Figure 3.4 (a) shows the Lorentzian resonance curve observed in the linear response regime for a drive
power %< = −36 dBm. Fitting allows to extract the resonance frequency Ω</(2c) = 6.494 8 MHz,
as well as a linewidth Γ/(2c) = 42 Hz which gives rise to a quality factor of & ≈ 150.000. Given
the cavity linewidth ^/(2c) = 5.572 MHz the condition for sideband resolution, Ω< > ^, is fulfilled
for the TM110 mode. The sweep response of the resonator toward higher frequencies for increasing
drive power between −36 dBm to −14 dBm is depicted in Fig. 3.4 (b). Clearly, the transition from
the linear, Lorentzian response to an asymmetric response curve, which is well described by the
cubic nonlinearity UG3 of the Duffing model with a stiffening U > 0, is observed [158]. This
demonstrates that the cavity-assisted displacement detection is not impeded even under strong driving
of the nanomechanical resonator inside the 3D cavity.

3.3.2 Dielectrical and Optomechanical Backaction

Following the characterization of the microwave cavity and the nanomechanical resonator, we discuss
the electromechanical coupling between the two systems. Here, we explore how the cavity detuning
affects the mechanical eigenfrequency of the resonator.

Optomechanical Backaction The radiation pressure of the power circulating in the microwave
cavity acts back on the mechanical resonator, causing a mechanical eigenfrequency shift which
depends on the microwave drive power %3 and detuning Δ = l3 − l2. This so-called optical spring
effect leads to a detuning-dependent softening or hardening of the resonator. In case of a high-Q
mechanical oscillator with small linewidth, where Γ � ^, the frequency shift of the mechanical
oscillator is given by [159]
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XΩ<,opt = 6
2

(
Δ −Ω<

^2

4 + (Δ −Ω<)
2
+ Δ +Ω<

^2

4 + (Δ +Ω<)
2

)
. (3.15)

which is valid for 6 � ^ � Γ. Here, 6 = 60 ·
√
=3 , the electromechanical coupling strength which

depends on the single photon coupling strength 60 and the number of photons =3 circulating in the
cavity. In order to define the intra-cavity photon number we need to distinguish between two cases.

Following Eq. (E45) in the Supplementary of Clerk et al. [160] the input power for single-side driven
cavity can be defined as

%3 = ℏl3
^4

4
· =̄3 (3.16)

The driven single-sided intra-cavity photon number is found to be [102]

=̄3 =
%3

ℏl3
· ^4
^2

4 + Δ2
(3.17)

In the case of a driven two-sided cavity, where the incoming power can be sent either through the left
or the right port ^4 = ^! + ^', we can relate the incoming power with the photon number (i.e for the
left input port)

%3 = ℏl3
^2
4

4^!
· =̄3 (3.18)

Assuming symmetric coupling ^4 = ^! + ^' we can re-write Eq. (3.18)

%3 = ℏl3
^4

2
· =̄3 (3.19)

Hence, the driven two-side intra-cavity photon number is defined as [56, 92]

=̄3 =
2 · %3
ℏl3

· ^4

^2 + 4Δ2 (3.20)

In this work, we will use Eq. (3.17) to calculate the intra-cavity photon number since the input power
is sent into a single port.

Note that the number of intra-cavity photons strongly depend on the drive power %3 and the cavity
detuning Δ = l3 − l2. The presence of an average radiation pressure inside the cavity causes static
shift in the mechanical displacement that, in turn, modifies the resonance frequency of the cavity
leading to a new effective detuning [90, 161]

Δ̄ = Δ + 60
GZPF

Ḡ, (3.21)

where GZPF =
√

ℏ
<effΩm

is the zero-point fluctuation amplitude of the mechanical oscillator and Ḡ is
the static mechanical displacement. In our case, the static mechanical displacement of the resonator
arising from the radiation pressure force is negligibly small, hence, the detuning Δ is employed rather
than the effective detuning Δ̄ in Eq. (3.15).
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Dielectrical Frequency Tuning In addition to the optomechanical backaction, we also expect a
quasi-static dielectric force acting on the mechanical resonator. This force results from the root-mean-
square (RMS) electrical field which builds up inside the microwave cavity and contributes to the
dielectric frequency tuning (see discussion in Sec. 3.2) of the nanostring [130]. The RMS cavity field
exhibits the same detuning-dependence as the intracavity photon number =̄3 defined in Eq. (3.17).
This translates into a change in eigenfrequency of the mechanical oscillator as the cavity is detuned
from its resonance. We will start the derivation of the dielectrical frequency tuning by defining the
electrostatic energy of an induced dipole at position r0 in an electrical field. That is

,4; = −
1
2
pK (r0) = −

1
2
U�2(A0) (3.22)

with the polarizability of the dielectric material U. Now, consider only the I−component (for the
mechanical OOP mode) of the electric field (or alternatively only H−component for the IP mode) that
can be treated as a scalar. For small displacement I around the equilibrium position I0 (which is valid
in our case, because the displacement is ∼ fm). We can use the Taylor expansion

� (I0 + I) = � (I0)︸︷︷︸
�0

+ m�
mI

����
I0︸︷︷︸

�1

·I + 1
2
m2�

m2I2

����
I0︸    ︷︷    ︸

�2

·I2 + O(I)= (3.23)

to express the electrostatic energy

,el ≈ −
U

2

(
�0 + �1I + �2I

2
)2

= −U
2

(
�2

0 + 2�0�1I + 2�0�2I
2 + �2

1I
2 + 2�1�2I

3 + �2
2I

4
)
.

(3.24)

The force acting in the I−direction is defined as

� = −m,el
mI

= +U
2

(
2�0�1 +

(
4�0�2 + 2�2

1

)
I + 6�1�2I

2 + 4�2
2I

3
)
.

(3.25)

And hence,

� = U�0�1︸ ︷︷ ︸
constant offset

+ U

(
2�0�2 + �2

1

)
I︸               ︷︷               ︸

dielectrical induced spring constant

+ 3�1�2I
2 + 2�2

2I
3︸                ︷︷                ︸

dielectrical induced higher nonlinear terms

. (3.26)

Now consider the contribution of DC, RF and microwave signals. Assuming �2 = 0 as linearized
description. The dielectric force can be rewritten as

� = U�0�1 + U�2
1I (3.27)

where �0 = � (I0) and �1 =
m�
mI

����
I0

as defined above.

The eigenfrequency of the resonator is determined by its spring constant

: = −m�
mI

= −U�2
1 (3.28)
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Ω<,dielectric =

√
:0 + :
<eff

=

√
:0
<eff
·

√
1 + :

:0
≈︸︷︷︸

for :�:0

√
:0
<eff
·
(
1 + :

2:0

)
= Ω< −

U�2
1

2<effΩ<
(3.29)

The electric field and also its derivatives are expressed in terms of voltage applied between the
electrodes. Assuming the resonator only reacts to the static component of the applied voltage

K (I) ∼ *, (3.30)
〈K (I)〉 ∼ *DC +*rms

RF +*
rms
`F , (3.31)

and accordingly

〈K1(I)〉 ∼ *DC +*rms
RF +*

rms
`F . (3.32)

The same is applied for all other derivatives of the electric field. The eigenfrequency shifts can be
expressed as

XΩ<,dielectric = Ω<,dielectric −Ω< = −
U�2

1
2<effΩ<

= − U

2<effΩ<
·
(
*DC +*rms

RF +*
rms
`F

)2
. (3.33)

Generally, we assume *DC > *rms
`F > *rms

RF . In our experiment the static field *�� is mainly used
for large mechanical eigenfrequency tuning XΩ<,dielectric/(2c) ≈ 200 kHz. The term *rms

`F is the field
built up inside the 3D microwave cavity. Its strength depends on the pump power and detuning of the
cavity. Typically, the mechanical resonance eigenfrequency shift induced by the rms microwave field
is one order of magnitude smaller XΩ<,dielectric/(2c) ≈ 20 kHz if compared to the static DC frequency
tuning. And finally, the RF drive field *rms

RF is employed for amplifying the resonator’s amplitude
and, if necessary, brings the system into the nonlinear regime. The contribution in the eigenfrequency
tuning of the RF drive field is negligible small compared to the other two effects. Now, we only
consider the effect of the microwave cavity where*DC = 0 and*rms

RF = 0

XΩ<,dielectric = 2`F ·
(
*rms
`F

)2
(3.34)

where 2`F = − U
2<effΩ<

. Hence, the dielectrical frequency detuning induced by the microwave cavity
pump tone can be defined as

XΩ<,dielectric = 2`F' · %3 = 2`F'ℏl3^ · =̄3 = 2`F'ℏl3^ ·
^4

^2

4 + Δ2
· %3
ℏl3

. (3.35)

And finally we get the expression

XΩ<,dielectric = 2`F ·
(
*rms
`F (Δ)

)2
= 2`F'

^^4
^2

4 + Δ2
%3 . (3.36)

The calibration factor 2`F converts the change of the effective RMS voltage *rms
`F inside the cavity

into a frequency change, and ' = 50Ω is the impedance of the circuit, which allows to express the
RMS voltage in terms of the power circulating in the cavity. In total, the detuning dependence of the
mechanical resonance is

Ω′< = Ω< + XΩ<,dielectric + XΩ<,opt, (3.37)
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where Ω< is the unperturbed mechanical eigenfrequency, XΩ<,dielectric is the frequency tuning due to
the quasi-static dielectric force and XΩ<,opt is the optomechanical back-action effect from Eq. (3.15).

In Fig. 3.5 (a) the nanomechanical resonator’s eigenfrequency is plotted as a function of detuning (black
circles) for a cavity drive power of %3 = 15 dBm. The data is well described by Eq. (3.37), which is
apparent from a fit to the data (red line). However, the fit yields an overwhelming contribution of the
dielectric frequency shift and only negligible optomechanical backaction such that the optomechanical
coupling strength 6 can not be determined. The inset of Fig. 3.5 (a) shows the theoretical prediction of
the eigenfrequency according to Eq. (3.37) using the parameters of the experiment for three different
values of 60: The grey solid line illustrates the eigenfrequency shift for zero optomechanical coupling
60/(2c) = 0 Hz.
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Figure 3.5 | Cavity-Induced Eigenfrequency Shift.
(a), Experimental data for a cavity drive power of %3 = 15 dBm are shown as black circles, the fit of Eq. (3.37) is
indicated as a red solid line. The observed detuning dependence of the mechanical eigenfrequency is dominated
by the dielectric shift, which overwhelms the contribution of the optomechanical backaction. Inset: Theoretical
prediction of the eigenfrequency shift according to Eq. (3.37) for 60 = 0 Hz (grey), 200 µHz (light green) and
20 mHz (dark green). (b) Residual of the data shown in (a). Adapted and reprinted from Ref. [107], with the
permission of AIP Publishing.

As Eq. (3.36) does not depend on the sign of Δ, it is mirror symmetric with respect to the H-axis. The
light green dashed line corresponds to 60/(2c) = 200 µHz, which is the value of the single photon
coupling rate estimated from the data in Fig. 3.7. The line completely coincides with the grey line,
confirming that the optomechanical coupling has no measurable effect on the eigenfrequency shift.
Minute deviations start becoming apparent from 60/(2c) = 2 mHz which we thus estimate as an upper
bound of the single photon coupling rate. The dark green dashed line for 60/(2c) = 20 mHz already
shows a sizable deviation of the eigenfrequency shift resulting from optomechanical coupling. Our
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observation of a negligible optomechanical eigenfrequency shift is supported by the nearly mirror-
symmetric shape of the measured eigenfrequency shift of the resonator around zero detuning in
Fig. 3.5 (a). The slight deviation shifting the maximum to a small positive detuning is likely caused
by a slight drift of the mechanical eigenfrequency from slow polarization effects within the nanostring
during the cavity frequency sweep. The opposite effect would be expected from radiation pressure
effects. Figure 3.5 (b) shows the residual of the data vs. the fit. We attribute the observed pattern
to the same slow polarization effects. The small value of 60 is consistent with our observation that
the mechanical linewidth does not yield any measurable detuning dependence in our experiment (not
shown).

3.3.3 Optomechanically Induced Reflection

Figure 3.6 | Schematic Diagram for the Optomechanically Induced Reflection Experiment.
The pump tone l3 defines the detuning from the cavity resonance frequency Δ = l2 − l3 . The probe tone
l? is used to determine the cavity’s response that has a linewidth ^. The drive is detuned so that its uppder
mechanical sideband is in the vicinity of the cavity resonance X = Δ −Ω<.

In order to obtain a better estimation of the electromechanical coupling strength, we apply a second
technique to characterize the parametric coupling between the nanostring and the three-dimensional
cavity. It is based on the optomechanically induced transparency (OMIT) [92, 162, 163], which
arises from the coherent interaction of two microwave tones with the mechanical resonator in the
resolved sideband regime [101]. Figure 3.6 illustrates the pump scheme of an OMIT experiment.
The cavity is strongly pumped by a drive tone at l3 = l2 − Δ which is red detuned from the cavity
resonance by Δ = X + Ω<. The cavity response is measured by a second, weak probe tone l? that
is scanned across the cavity resonance. The beating between the two microwave tones induces a
radiation pressure force coherently driving the mechanical resonator. In turn, the resonator imprints
sidebands on the drive, which interfere constructively with the probe. This opens a transparency
window in the cavity transmission or, as in our case, the cavity reflection, strictly speaking, leads to
optomechanically induced reflection (OMIR) [101]. According to the standard theory of OMIT, the
height of the transparency peak allows to directly extract the cooperativity � = 462/(^Γ), rendering
OMIT an important tool in cavity opto- and electromechanics.
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Figure 3.7 | Optomechanically induced reflection (OMIR).
(a), Cavity reflection coefficient |(11 | showing an OMIR peak of the undercoupled cavity in response to a weak
probe tone l? ≈ l2 in the presence of an additional strong, red-detuned drive l3 = l2 −Ω<. The asymmetric
shape of the OMIR feature reveals the nonlinearity of the mechanical resonator. The inset displays the full cavity
resonance (red box illustrates area shown in main panel). (b), Forward (blue) and reverse (red) sweeps of the
probe tone reveal a hysteresis of the OMIR feature reflecting the bistability of the nonlinear mechanical system.
(c) OMIR feature as a function of the probe power. For increasing probe power, the OMIR feature broadens,
while its amplitude slightly decreases. (d) OMIR feature as a function of the drive detuning. For a drive tone
red- or blue-shifted from the red sideband condition (red and blue trace, respectively) the OMIR feature shifts
to the left or right of the cavity resonance. The situation for a drive on the red sideband is also included (black
trace). Red and blue trace are vertically offset for clarity. Adapted and reprinted from Ref. [107], with the
permission of AIP Publishing.
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In Fig. 3.7 (a) we plot the response of the microwave cavity as a function of the probe frequency l?
for a drive applied at optimal detuning Δ = l3 − l2 = −Ω<. The drive and probe power are 15 dBm
and −25 dBm, respectively. A transparency feature at l2 is clearly apparent in the center of the cavity
resonance. Note that the peak is not symmetric. Its asymmetry reflects the nonlinear response of the
mechanical resonator to the radiation pressure drive exerted by the two microwave tones [161, 164,
165]. In agreement with the standard model for OMIR for the case of an undercoupled cavity driven
on the red sideband, the shape of the nonlinear transparency peak directly follows the response of the
Duffing resonator [161, 164].

This is also reflected in the hysteretic behavior of the OMIR feature displayed in Fig. 3.7 (b) for
a forward (black) as well as a reverse (red) sweep of the cavity probe at a somewhat lower probe
power. Figure 3.7 (c) illustrates the dependence of OMIR peak on the probe power. The curves
(from left to right) correspond to an increasing probe power from −46 dBm to −39 dBm. As expected,
the width of the nonlinear feature broadens with increasing probe power while its amplitude slightly
decreases[161]. Finally, the effect of a detuning X of the cavity drive from the red sideband condition,
Δ = −Ω< + X, is explored in Fig. 3.7 (d) for a constant probe power of −25 dBm. For a drive tone red-
or blue-shifted from the red-sideband condition (X = ±180 kHz red and blue trace, respectively), the
OMIR peak moves away from the minimum of the cavity response at l2 [161]. The data for the drive
matched to the red sideband is also included (X = 0 Hz, black trace). For clarity, the red and blue trace
are vertically offset from the black trace.

According to the standard theory of OMIR, the height of the transparency peak (0
11 allows to quantify

the cooperativity. For the case of an undercoupled cavity driven on the red sideband, � = (2[)/(1 −
(0

11) − 1. Neither the nonlinear regime nor a poor sideband resolution greatly affect the magnitude of
the OMIR feature [161, 166]. Using the yellow trace in Fig. 3.7 (c), we extract an approximate value
of � ≈ 0.025. This translates into an optomechanical coupling strength of 6/(2c) = 1.2 kHz, and,
given a cavity photon number of 4.0 · 1013 at a drive power of 15 dBm on the red sideband, to a single
photon coupling rate of 60/(2c) = 200 µHz.

It is noteworthy to mention that such a feeble single photon coupling can produce observable features
in the OMIT experiment at all. This is enabled by the large number of photons supported by the
three-dimensional microwave cavity, which exceeds photon numbers achieved in planar microwave
resonators at low temperatures [92, 101] by at least four orders of magnitude and is at present only
limited by the maximum output power of our microwave generator. The observed weak single photon
coupling strength is attributed to our cavity design, as the loop antenna could not be precisely positioned
in the cavity in our experiment and presumably only weakly couples to the TM110 cavity mode. As
apparent from Fig. 2.11, the cylindrical cavity geometry exhibits a large number of TM and TE modes
with very similar resonance frequencies. Hence, multimode coupling can not be avoided in this case.
At the same time, the electromechanical coupling of the nanostring to the electrodes is limited by a
relatively large electrode-electrode separation of approx. 600 nm for the sample under investigation.
For future work on the room temperature cavity electromechanics platform, an improved control
of the antenna position as well as a smaller electrode gap will enable to significantly increase 60.
Furthermore, we attribute the strongly suppressed OMIR peak and the corresponding underestimation
of the cooperativity to a large population of approx. 7500 thermal photons in the cavity, which is not
accounted for in the standard theory. We further hypothesize that the reduced magnitude of the OMIR
peak can be employed to independently probe the number of thermal photons in the cavity, which
may also be of interest for cavity electromechanics at cryogenic temperatures where a small but finite
thermal cavity population typically exists.
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3.4 Conclusion
In conclusion, we have demonstrated a cavity electromechanical system that operates in the sideband
resolved regime at room temperature. This was accomplished by introducing a three-dimensional, non-
superconducting microwave cavity made of copper which replaces the previously employed copper
microstrip cavity, the quality factor of which is outperformed by more than an order of magnitude. In
our experiment a non-metallized silicon nitride nanostring resonator was dielectrically coupled to the
TM110 mode of the cavity which offers almost perfect sideband resolution ^ ≤ Ω<. Electromechanical
coupling was observed and characterized in one- and two-microwave tone experiments. While the
mechanical eigenfrequency shift is dominated by dielectric frequency tuning, the optomechanically
induced transparency (in reflection geometry) establishes a clear proof of dynamical backaction.
Despite the minute single photon coupling rate of our first implementation of the room temperature
cavity electromechanical platform in the sub-mHz regime, a measureable coupling is enabled by the
large number of photons circulating in the three-dimensional microwave cavity. As a result of the
required strong red-detuned cavity drive, the response of the mechanical resonator is nonlinear in our
proof-of-principle experiment.

Our results translate the thriving field of cavity electromechanics from the millikelvin realm to room
temperature. For future exploitation, the electromechanical vacuum coupling rate 60/(2c) will need
to be increased. This can be accomplished by an improved positioning of the loop antenna providing
the coupling between the cavity mode and the control electrodes. Furthermore, the coupling can be
enhanced by increasing the dielectric transduction efficiency, i.e. by reducing the lateral gap between
the electrodes. Following these technical improvements, we expect to reveal the electromechanical
cooling or pumping of the mechanical mode. Finally, the quality factor or the TE011 mode exceeds
that of the TM110 mode by another order of magnitude, which offers the prospect of entering the
deep-sideband-resolved regime of cavity electromechanics at room temperature. In the following, we
replace the cylindrical cavity geometry with a coaxial cavity (see discussion in Sec. 2.3.4). This type
of cavity proves to be a more suitable candidate for the cavity-assisted detection scheme because it
provides a remarkably clean frequency spectrum to avoid multimode coupling. Due to its small size,
the coaxial cavity can be integrated into future experiments at cryogenic temperatures.
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Table 3.1 | Parameters in Cavity Electromechanics Experiment.
Overview of the most important parameters and devices for the room temperature cavity electromechanics
experiment.

Nanomechanical String Resonator
Dimensions (F × C × !) (250 × 100 × 57000) nm
Eigenfrequency Ω</(2c) 6.494 8 MHz
Linewidth Γ/(2c) 42 Hz
Quality factor & 150.000

Cylindrical 3D Cavity
Resonance Frequency (TM110) l2/(2c) & 5.226 GHz
Linewidth ^/(2c) 5.572 MHz
External Coupling Rate ^4/(2c) 1.361 MHz
Coupling Efficiency [ = ^4/^ 0.244
Dimensions (A × �) (35 × 70)mm
Drive Power %3 31.623 mW
Drive Frequency l3/(2c)
Cavity Detuning Δ = l3 − l2
Intra-Cavity Photons =3 (Δ = 0) 2.5486 · 1014

Intra-Cavity Photons =3 (Δ = −Ω<) 3.9607 · 1013
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4 Coherent Sensing Protocol for Short
Signals

The following chapter is based on our manuscript:

A. Chowdhury, A. T. Le, E. M. Weig and Hugo Ribeiro, "Iterative Adaptive Spectroscopy of
Short Signals", arXiv preprint arXiv:2204.04736 (2022). Reference [167]

The theoretical model has been developed in collaboration with Prof. H. Ribeiro from the
University of Massachusetts Lowell and Dr. A. Chowdhury. The original theoretical model is
printed under permission of Prof. H. Ribeiro. Certain passages of the original publication are
printed under permission of Dr. A. Chowdhury and Prof. H. Ribeiro.

A quantum coherent sensor utilizes its fragile quantum nature to probe extremely small changes of a
certain physical quantity, e.g. electric or magnetic field, and allows one to increase spatial resolutions
and to measure with high sensitivity. Generally, the precision of any coherent sensor, classical or
quantum, is limited by themaximalmeasurement time-window Cw over which a signal of interest can be
sampled. This limitation originates from unwanted interactions of the sensor with noisy environment
degrees of freedom, which lead to decoherence and thus, to the decay of the measured signals.1

Strategies extending the coherence time [168–173] or using states with no classical analogs [174–179],
e.g., entangled or squeezed states, to improve the precision have been put forward. However, these
strategies do not guarantee that the sensor operates with the highest precision attainable. This is only
possible, if all steps involved in the sensing protocol are optimized [180].

In this chapter, we provide the theoretical development of a sensing protocol for frequency estimation
with high precision. We employ the strong coupling nature of a nanomechanical two-mode system
to implement an iterative, adaptive frequency sensing scheme based on Ramsey interferometry [51].
Typically, Ramsey sequences in quantum two-level systems, e.g. spin [181] or superconducting [182]
quantum bit (qubit), are performed with a finite qubit-drive detuning. It enables one to measure the
beating pattern (the Ramsey fringes) as a function of detuning in the rotating frame of the drive field.
In our case, it is not necessary to implement a drive tone to bring our system into superposition states.
Thus, we obtain a beating pattern that is due to the coherent exchange in excitation energy of the
nanomechanical two-mode system in the laboratory frame (more details can be found in Sec. 4.1).
Note that our protocol is applicable to any two-level systems in both classical and quantum regime
and that it is particularly suited for short and finite signals.

We start with the implementation of the ubiquitous Ramsey interferometry [183] of a two-mode system
to sense the unknown coupling strength Ω0/2 from a signal with short waiting time Cw. The waiting
time (often referred to as dark time) denotes the free evolution period of the two-mode system in the
Ramsey interference experiment. There are two reasons to impose a short Cw: First, it is experimentally
simpler to sample short signals (smaller number of data points required) and second, from a signal
1Note that the term measured signal refers to the data recorded by the sensor, whereas the signal of interest represents
the quantity to be detected.
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processing point of view, it is easier to deal with non-decaying signals 2 to enhance the frequency
estimation through the application of window functions [184]. Note that the coupling strength is
the key element that we want to estimate with high precision, since the change in Ω0/2 is a direct
consequence of the coupling of the sensor to the physical quantity that we want to measure.

Additionally, we introduce a strategy to enhance the Ramsey interferometry by correcting the control
pulses, that come with experimental constraints such as bandwidth limitations and noisy environment.
The correction allows us to prepare the sensing and readout states with high-fidelity. To find frequency
control yielding high fidelity state preparation, we use the recently proposed Magnus-based strategy
for control [185, 186]. Furthermore, we describe the signal processing technique to deal with finite and
short signals to mitigate spurious effects such as spectral leakage and scalloping when transforming
the signals from the time into frequency domain using discrete Fourier transform (DFT). And finally,
we explain the working principle of our developed iterative, adaptive sensing protocol to estimate
unknown frequency with high precision.

4.1 Ramsey Interferometry
The scope of this chapter is to develop a sensing protocol with a sensor element that uses coherence
(i.e., wavelike spatial or temporal superposition) to probe a physical quantity. To follow the definitions
in the review of Degen et al., a system needs to fulfill certain criteria in order to function as a coherent
sensor [183]

1. The system has discrete, resolvable energy levels that are separated by a transition � = ℏΩ0.

2. It is possible to initialize the system in a well-known state and to read-out the state accordingly.

3. The system can be coherently manipulated.

4. The coherent sensor interacts with relevant physical quantities, i.e. electric or magnetic field.
The interaction translates into a change in energy levels or to transition between energy levels.

Generally, quantum two-level systems (TLS) are natural coherent sensor candidates that can fulfill
all of these criteria. Furthermore, it has been shown that coherent manipulation and control are
possible in both the quantum [187] and classical regime [47, 188]. In order to perform a coherent
sensing experiment, we typically follow certain sequences that includes control and free evolution
steps. Our goal is to develop a sensing protocol whose duration is short, i.e., (Ω0/2c)Cr < 5 [shortest
time scale possible to apply Blackman-Harris window, also see Fig. 4.9 (j) and (k)], where Ω0 is the
transition frequency of the two distinguishable modes and Cr is the time sequence to conduct a sensing
experiment. To this end, we employ the ubiquitous Ramsey interferometry of a two-mode system to
estimate an unknown frequency from a signal with a short waiting time Cw.

Commonly, the Ramsey interferometry can be divided into five individual steps [183]. Assuming the
system has two distinguishable states that are a1 and a2 (i.e. the qubit’s natural eigenstates |6〉 and |4〉
or the classical nanomechanical IP and OOP flexural modes), (I) the coherent sensor can be initialized
into one of the states, i.e. a1. (II) A fast control pulse is applied to transform the coherent sensor into
the superposition state with high fidelity. Alternatively, an adiabatic detuning combined with a c/2
pulse (see step I’) can be used to bring the system into superposition state (see for instance Ref. [47]).
2The decay envelope of the signal can be viewed as an "uncontrolled" window function applied to the signal oscillating
component. The presence of an "uncontrolled" window function can negate all the benefits of using specific window
functions tailored to enhance frequency estimation.
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(III) The system can evolve for a certain waiting time Cw, where the superposition state picks up a
phase i = Ω0Cw during the evolution. (IV) By applying a second control pulse, one can convert the
system back to the measureable state a1. (V) The last step is the final read-out of the state to record
the return probability

%(Cw) = |aT
1 exp (−iΩ0CwfG)a1 |2 = cos2(Ω0Cw/2) =

1
2
[1 + cos (Ω0Cw)], (4.1)

where fG is the Pauli matrix. So by measuring the return probability as a function of time Cw, we
obtain an oscillatory signal with a frequency given by Ω0/2. In Fig. 4.1 (a), we illustrate the five
individual steps of the Ramsey sequence. Consequently, the Ramsey measurement of a two-mode
system provides us direct access to the energy splitting � = ℏΩ0. If the system interacts with a relevant
physical quantityV(C) (e.g. electric or magnetic fields), we should be able to observe a relative change
in transition frequency due to the coupling of the form W =

m@Ω0
mV@ . The coupling can be linear (@ = 1)

or quadratic (@ = 2).

(a)

(b)

Figure 4.1 | Ramsey Interferometry with a Two-Mode System.
(a), The five steps of a Ramsey sequence to sense the coupling strength Ω0/2. The normal (slow) sequence
is indicated by gray arrows, while the enhanced (fast, high-fidelity) sequence follows the orange arrows. (b),
The eigenfrequencies of the parametrically coupled two-mode system showing an avoided crossing with the
frequency splitting Ω0. Reprinted from Ref. [167]

4.1.1 Parametrically Coupled Two-Mode System as Coherent Sensor
We consider a parametrically coupled two-mode system as the coherent sensing element [see for
instance Fig. 4.1 (b)]. The dynamical matrix (effective Hamiltonian) describing the coupled modes
has been previously discussed in Sec. 2.2.4 (or see, e.g., Ref. [63]).

� (C) = 1
2
(Δ(C)fI + [Ω0 + XΩ(C)]fG), (4.2)

where f9 , 9 ∈ {G, H, I}, are the Pauli matrices, Δ(C) = l2(C) − l1(C) is the controllable frequency
difference between mode 1 and 2 [see Fig. 4.1 (b)], Ω0/2 is the unknown coupling strength we seek
to estimate [see Fig. 4.1 (b)], and XΩ(C) is a real stochastic process describing how noise arising, e.g.,
from thermal fluctuations or fluctuations of the fields the system is subjected to, affects the coupling
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between the modes. By neglecting the noise contribution, the eigenfrequencies of Eq. (4.2) are given
by _±(C) = ±1

2

√
Δ2(C) +Ω2

0 [see Fig. 4.1 (b)].

The dynamical matrix � (C) is formally equivalent to a quantum two-level Hamiltonian �̂ (C) [47,
77, 188] subject to classical noise. The model we use, thus, describes both coherent classical
systems [56, 63, 92, 189–194] and quantum systems [195–202]. Since our goal is to develop a
sensing protocol whose duration Cr is short, i.e., (Ω0/2c)Cr < 5, we assume that XΩ(C) ≈ XΩ does not
change appreciably for one realization of the protocol (frozen environment approximation). Within
this framework, averaged Ramsey signals are obtained by performing statistical averaging, i.e.,

〈B(C)〉XΩ =
ˆ ∞
−∞

d(XΩ) ?(XΩ) B(C), (4.3)

where B(C) is the oscillatory output of the Ramsey sequence and ?(XΩ) is the probability distribution
of XΩ. Here, we assume ?(XΩ) to be a Gaussian distribution with zero mean and standard deviation
fXΩ,

?(XΩ) = 1
√

2cfXΩ
exp

[
−1

2
XΩ2

f2
XΩ

]
. (4.4)

Here, we further assume fXΩ = Ω0/10.

4.1.2 Sensing and Readout State Preparation

Figure 4.2 | Generic Sweep for the Ramsey Interferometry.
Time dependent frequency-sweep to generate a Ramsey sequence. (I) Sensing state (a1) initialization. (II)
Control pulse to transform the coherent sensor into superposition state. (III) Free evolution during the time
interval Cw. (IV) Second control pulse to convert the sensor back to the measurable state a1. (V) Sensing state
readout. Reprinted from Ref. [167]

We consider a generic frequency-sweep for the Ramsey interferometry given by

Δ(C) =


Δs(C) = Δ0 5 (C), for 0 ≤ C ≤ Cs,
0, for Cs < C < Cf ,
Δr(C) = Δ0 [1 − 5 (C − Cf)], for Cf ≤ C ≤ Cr,

(4.5)

where Cs = Cr− Cf , Δ(0) = Δ(Cr) = Δ0 is the initial (final) value of the frequency difference of a1 and a2
[see Fig. 4.1 (b)] and 5 (C) is a smooth sweep function obeying 5 (0) = 5 (Cr) = 1 and 5 (Cs) = 5 (Cf) = 0.
We define the measurement time-window Cw = Cf − Cs and the total sensing time Cr = 2Cs + Cw, where we
choose the duration of both the sensing and readout state preparation protocols to be Cs (see Fig. 4.2).
By choosing Δ0 � Ω0, we can initialize the system in state a1 = (0, 1)T at C = 0 [see step (I) in
Fig. 4.1 (a) and Fig. 4.2]. This is also the sensing state as we would like to use to probe Ω0, i.e.,
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as = a1. At the avoided crossing, a1 can be expressed as an equal superposition of the eigenmodes of
Eq. (4.2), which is the state maximizing the visibility of the Ramsey fringes. To give an example, we
can define the superpositions of the eigenmodes a1 and a2 as

a± =
1
√

2
(a1 ± a2). (4.6)

Instead using one of the superposition states in Eq. (4.6), we can choose the basis

a1 =
1
√

2
(a+ − a−). (4.7)

Similarly, we can also choose a2 as the basis vector as the sensing state.

Using a1 as Sensing State We can verify the advantage of using a1 to maximize the visibility of
the Ramsey signal by assuming that one can prepare with unit fidelity both the sensing and readout
state. In this case the Ramsey signal is given by

B(C) = |aT
1 exp(−8Ω0CfG)a1 |2 = cos2 [(Ω0/2)C], (4.8)

which is a function oscillating between 0 and 1, and thus with unit visibility.

To understand why this property is important in the context of frequency estimation from short signals,
let us consider the situation where we prepare any arbitrary state at C = Cs. We model this situation
by describing the evolution generated by � (C) [see Eq. (4.2)] between C = 0 and C = Cs as a rotation
'n (\) of angle \ around an axis n = (sinU cos V, sinU sin V, cosU)T. We have

'n (\) = cos (\/2)1 − 8 sin (\/2)n · 2, (4.9)

with 2 = (fG , fH, fI)T the vector of Pauli matrices. Similarly, we assume that the preparation of the
readout state is described by the rotation 'n (−\). Within this framework, the Ramsey signal is given
by

B\ (C) = |aT
1'n (−\) exp(−8Ω0CfI)'n (\)a1 |2

= 1 +
[
sin2 U

(
2 cosU cos V sin2(\/2) + sin V sin \

)2
− 1

]
sin2 [(Ω0/2)C]

= 1 + E(U, V, \) sin2 [(Ω0/2)C]

(4.10)

For U = 0 with V and \ arbitrary, we have B\ (C) = B(C) since this corresponds to a rotation around the
I-axis which only imprints a global phase to mode a1. Another situation that leads to B\ (C) = B(C)
is setting U = c/2, V = 0 and \ arbitrary, which corresponds to a rotation around the G-axis. This
does also not affect the Ramsey signal since the Ramsey signal is obtained by letting the state vector
precess freely around the G-axis.

For any other rotation, the Ramsey signal can be viewed as the sum of two signals: A constant signal
B1(C) = 1 and an oscillating signal B2(C) = E(U, V, \) sin2 [(Ω0/2)C] with visibility 0 ≤ |E(U, V, \) | < 1.
Thus, we can write the discrete Fourier spectrum as

|F [B\ (C)] |2 = |F [B1(C)] |2 + |F [B2(C)] |2 + 2Re[F [B1(C)]F [B1(C)]∗] . (4.11)

Equation (4.11) shows that one can interpret the spectrum of a finite B\ (C) as an interferometric pattern.
As a result, |F [B\ (C)] |2 does not necessarily have a maximum located at l = Ω0. This is yet a type of
systematic error in the sensing result which cannot be eliminated unless one knows exactly what the
values of U, V, and \ are.
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Finally, we note that in the infinite measurement-time window limit, i.e., Cw → ∞, this issues
vanishes since the discrete Fourier transform of B1(C) would reduce to the Kronecker delta function.
Consequently, in the limit defined by Ω0Cw � 1, the induced systematic error is negligible. So by
choosing a1, we would obtain the maximum contrast in the Ramsey fringe with unit visibility [see
Eq. (4.8)]. Any arbitrary state would generate an additional signal leading to an interferometric pattern
and hence, degrades the unit visibility in the Ramsey fringe.

Bandwidth Limitation in Pulse Generation To prepare the sensing state as = a1 at C = Cs and
the readout state ar at C = Cr (step II and IV in Figs. 4.1 (a) and 4.2, respectively) one needs to
choose 5 (C) such that the evolution generated by Eq. (4.2) corresponds to the identity in the intervals
0 ≤ C ≤ Cs and Cf ≤ C ≤ Cr. This can theoretically be realized with a frequency-sweep whose leading
and trailing edge duration fulfills the condition Ω0Cs � 1 (quasi instantaneous sweep). However,
faithful reproduction of fast sweeps in the lab environment are limited by the maximum bandwidth
of wave generators. The Landau-Zener model [53–55, 203], where one sets the sweep function to be
linear in time, 5 (C) = 1 − C/Cs, is a perfect example: Faster and faster sweeps require more and more
Fourier components to accurately reproduce 5 (C). This problem becomes apparent when dealing with
the generation of a linear ramp.

Figure 4.3 | Fourier Components of Linear Ramp versus One Tone Ramp.
Plot of the Fourier amplitudes |2n | [see Eq. (4.12)] as a function of the harmonic =, for one tone (green) and
linear ramp Btriangle(C) (purple). Reprinted from Ref. [167]

Generally, linear ramps are generated by approximating a triangular wave with a period equal to ) .
The linear ramp is then obtained by considering the time-interval C ∈ [0, Cs = )/4]. The Fourier series
of the triangle wave is given by

Btriangle(C) =
∞∑
==1

2= sin
(
2c(2= − 1) C

)

)
,

2= = −
8
c2
(−1)=
(2= − 1)2

.

(4.12)

This indicates that one needs to use an infinite number of harmonics to faithfully reproduce a linear
ramp (see Fig. 4.3), that is impossible to implement in an experiment because of the bandwidth
limitation of the signal generators. Instead of the smooth linear ramp, we would obtain a step-like
function due to the absence of high frequency components.



4.2 STRATEGY FOR HIGH FIDELITY SENSING STATE PREPARATION

69

The alternative is to use a frequency-sweep with an adiabatic leading edge followed by a c/2 pulse
[see, e.g., Ref. [47] and extra step I’ in Fig. 4.1 (a)]. While such a protocol is not limited by bandwidth
constraints, it is limited by adiabaticity of the sweep and the fidelity of the resonant c/2 pulse. A high-
fidelity adiabatic sweep must fulfill the condition Ω0Cs � 1. This renders high fidelity preparation of
the sensing state in the presence of noise unsustainable [204]. For systems with short decay time )1,
the implementation of an adiabatic sweep is not feasible.

So the challenge in this work is to design a fast and, at the same time, bandwidth-limited protocol that
still yields a high-fidelity state preparation [orange arrows in Fig. 4.1 (a)]. For this purpose, we first
start with the generation of the single-tone function for frequency detuning

5 (C) = 1
2

[
1 + cos

(
c

Cs
C

)]
. (4.13)

Here, we choose a sweep time Cs which respects the bandwidth limitation imposed by various ex-
perimental components including arbitrary waveform generators (AWG), filters, amplifiers, and other
passive and active circuit components in a laboratory environment. This implies that the allowed
maximal Cs in Eq. (4.13) is in general still too slow to realize a quasi instantaneous sweep, but yet much
shorter than the Cs required to fulfill the adiabatic criterion. In this intermediate regime, where the
generated evolution is coherent, it is possible to applied the single tone function defined in Eq. (4.13)
for state preparations in the Ramsey sequence. To further improve the visibility of the Ramsey fringe,
we use the recently proposed Magnus-based strategy for control [185, 186] to cancel, on average,
transitions to mode a2. This strategy provides a solution that modifies the simple single-tone control
function (4.13) within the framework of bandwidth limitation. In the following section, we provide
the fundamental idea of the Magnus-based corrections to overcome experimental constraints in order
to faithfully prepare the sensing and readout states of the Ramsey sequence with high fidelity.

4.2 Strategy for High Fidelity Sensing State Preparation
From the previous sections we depicted the challenges in the implementation of a coherent sensing
protocol. On the one hand, the bandwidth limitation of any AWG puts an upper bound on how well
one can faithfully generate a control pulse in an experiment. On the other hand, the noise contribution
will set the lower bound for the adiabaticity strategy. To overcome these experimental constraints, we
follow the framework proposed by T. F. Roque and H. Ribeiro [185, 186] to construct control fields
that are fast and allow one to realize the desired state flow that is compatible with all experimental
constraints.

4.2.1 Magnus-Based Corrections
The generic strategy is to develop a specific time-dependent dynamical matrix (with all experimental
constraints) to produce (at time Cf) a desired state evolution. We first define the generic dynamical
matrix

� (C) = �0(C) + Y+ (C). (4.14)

Here, we choose �0(C) such that when we completely neglect + (C) [Y → 0] Eq. (4.14) is exactly
solvable. + (C) represents the unwanted interaction that disrupts ideal dynamics and can be treated
as perturbation with Y � 1. In this work, we focus on the classical dynamical matrix (instead of
describing the system’s Hamiltonian) and the classical flow (instead of time evolution operators). The
basic strategy follows two steps
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• We choose the control field for the simple dynamical matrix �0(C) so that the desired operation
can be realized in the absence of the error term + (C).

• The presence of + (C) disrupts the ideal evolution of the system. Nevertheless, we desire a flow
at time Cf that corresponds to the flow generated by �0(C) only. This, in general, can be achieved
by modifying the control sequence so that the impact of + (C) is averaged out over the evolution
times.

Following the dynamical matrix in Eq. (4.14), we can define the corresponding time-dependent flow
that describes the state evolution (see for instance Eq. (10) in [63])

Φ(C) = Φ0(C)ΦI(C). (4.15)

Here, Φ0(C) is the ideal flow generated by the undisturbed dynamical matrix �0(C)

Φ0(C) = exp
[
−i
ˆ C

0
dg�0(g)

]
. (4.16)

The contribution of the error term + (C) to the system dynamics is given by ΦI(C), which is defined as

ΦI(C) = exp
[
−iY
ˆ C

0
dg+I(g)

]
. (4.17)

Here, the dynamics of the spurious term is transformed to the interaction picture generated by Φ0(C)
that is

+I(C) = Φ†0(C)+ (C)Φ0(C) − iΦ†0(C) ¤Φ0(C). (4.18)

It is apparent from Eq. (4.15) that the presence of a nonzero error term + (C) prevents the system to
evolve at C = Cf to a desired state, since in general ΦI(C) ≠ 1.

Thus, the strategy to correct the unitary flow at C = Cf is to modify the dynamical matrix in Eq. (4.14)
by adding a control term, (C) in order to cancel the unwanted effect of + (C)

�mod(C) = �0(C) + Y+ (C) +, (C). (4.19)

The corresponding flow generated by �mod(C) is given by Φmod(C) = Φ0(C)Φmod,I(C). Here

Φmod,I(C) = exp
[
−i
ˆ C

0
dC1�mod,I(C1)

]
(4.20)

is the time-dependent unitary flow generated by the modified dynamical matrix

�mod,I(C) = Y+I(C) +,� (C) (4.21)

in the interaction picture with respect to �0(C) [see Eq. (4.18)].
The desired unitary evolution at C = Cf is obtained if Φmod,I = 1, i.e., Φmod(Cf) = Φ0(Cf). Obviously,
the trivial solution here is , (C) = −Y+ (C). This solution demands the cancellation of the spurious
term + (C) at all times and is almost infeasible, since the correction term, (C) will be constrained by
the experimental apparatus and the interaction to the environment.

A more elegant solution consists in cancelling the error term on average. The correction is chosen to
average out the effects of+ (C), meaning that during the intermediate time the evolution will defer from
that generated by �0(C), but at the final time Cf we will have Φ(Cf) = Φ0(Cf). To follow the procedure
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in Refs. [185, 186], we seek the control term, (C) using a series representation, which allows one to
treat the problem perturbatively

, (C) =
∞∑
==1

Y=, (=) (C). (4.22)

By inserting Eq. (4.22) into Eq. (4.21) and (4.20), we obtain an equation system with time-ordered
exponential (Dyson series). A more convenient approach is to use the Magnus expansion [205], where
we can replace the complicated time-ordered exponential by the Magnus Ansatz [186]

Φmod,I(C) = exp
∞∑
;=1
M; (C). (4.23)

The Magnus expansion termsM; (C) are recursively defined by differential equations [185, 186, 205].
The first two terms are given as

mCM1(C) = −i�mod,I(C),

mCM2(C) =
1
2
[mCM1(C),M1(C)],

(4.24)

where [�, �] ≡ �� − �� is the matrix commutator of � and �. The main strategy here is to choose
terms in the series for, (C) in Eq. (4.22) to correct the dynamics up to order O(Y<). In Ref. [185] it
has been demonstrated that the correction can be achieved by truncation of, (C) up to order < and to
satisfy the relation

Y=
ˆ Cf

0
dC, (=)I (C) = −i

=∑
;=1
Ω
(=−1)
;
(Cf). (4.25)

Here,Ω(=)
;
(C) is the ;th term of theMagnus expansion computed from the partially modified dynamical

matrix

�
(=)
mod,I(C) = Y+I(C) +

=∑
;=1

Y;,
(;)
I (C). (4.26)

From Eqs. (4.25) and (4.26) we can determine the Magnus expansion up to <th order, i.e. for < = 1
we obtain

Ω
(0)
1 (C) = −i

ˆ Cf

0
dC+I(C). (4.27)

For the requirement Ω(1)1 (Cf) = 0 we find the expression for the first order correction term to be given
by ˆ Cf

0
dC, (1)I (C) = −

ˆ Cf

0
dC+I(C). (4.28)

And hence, the 1st order Magnus expansion is given by

Ω
(1)
1 (C) = −8

ˆ Cf

0
dC

[
+I(C) +, (1)I (C)

]
. (4.29)

The higher orders can be calculated using Eqs. (4.25) and (4.26) recursively.
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The substantial limitation of this perturbative approach is that it often demands terms in, (C) that are
not realizable due to experimental restrictions. Therefore, Roque et al. introduced a way to find terms
in the series expansion of , (C) that are always compatible with all experimental constraints [186].
This can be done by performing a basis decomposition of the control terms in Eq. (4.22), and then
further decompose the time-dependent coefficients of, (=) (C) into a Fourier series.
First, the system is decomposed by a set of #H time-independent Hermitian matrices � 9 . These
matrices are chosen to form a basis such that any matrix can be uniquely decomposed into that basis.
We define for �0(C), + (C) and, (C)

�0(C) =
∑
9

3 9 (C)� 9 , (4.30)

+ (C) =
∑
9

E 9 (C)� 9 , (4.31)

, (=) (C) =
∑
9

F
(=)
9
(C)� 9 . (4.32)

Here, 3 9 (C), E 9 (C) and F (=)9 (C) are real control fields associated with the decomposition of �0(C), + (C)
and , (=) (C). To give an example, the set of Hermitian matrices � 9 for a two-mode system are the
Pauli matrices 29 with 9 ∈ {G, H, I}. Similarly, we can transform (4.31) and (4.32) to the interaction
picture defined by the unperturbed dynamical matrix �0(C)

+I(C) =
∑
9

Ẽ 9 (C)� 9 , (4.33)

,
(=)
I (C) =

∑
9

F̃
(=)
9
(C)� 9 . (4.34)

The tildes describe the control fields in the interaction picture

Ẽ 9 (C) =
∑
;

0; 9 (C)EI(C), (4.35)

F̃
(=)
9
(C) =

∑
;

0; 9 (C)F (=)I (C), (4.36)

where the functions 0; 9 (C) fully encode the action of the interaction picture transformation on the basis
� 9 ,; (C) =

∑
; 0 9 ; (C)�; .

In order to determine the first-order correction control term we can substitute Eqs. (4.33) and (4.34)
to (4.28) to obtain an equation system that can be divided into a set of #H equations

ˆ Cf

0
dCF̃ (1)

9
(C) = −

ˆ Cf

0
dCẼ 9 (C). (4.37)

For a two-mode systemwe would obtain a system of three coupled integral equations. Each equation is
associated to a Pauli matrix (2G , 2H and 2I) or in other words the basis decomposition. The difficulty
in solving these coupled integral equations can be overcome by choosing appropriate decomposition
for the functions F (1)

9
(C) that have support in the interval [0, Cf]. Hence, we can use a finite Fourier

series decomposition

F
(1)
9
(C) =

:max, 9∑
:=1

2
(1)
9 :

cos (l: C) + 3 (1)9 : sin (l: C), (4.38)
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with l: = 2c:/Cf and 3 (1)90 = 0. With the parametrization defined in Eq. (4.38), we can calculate
the time integration over the duration of the protocol and use free Fourier coefficients 2 9 : and 3 9 : to
fulfill Eq. (4.37). Note that all experimental constraints should be imposed in Eq. (4.38), hence, 2 9 :
and 3 9 : should be zero if one does not have control over a certain operation � 9 ′. It is often required
in the protocol that F (1)

9 ′ (0) = F
(1)
9 ′ (Cf) = 0, hence we find in Eq. (4.38) that the coefficient 2(1)

9 ′: must

obey
∑:max, 9
:=0 2

(1)
9 ′: = 0. For this requirement, the truncated series for F (1)

9 ′ (C) has the form

F
(1)
9 ′ (C) =

:max, 9 ′∑
:=1

2
(1)
9 ′: [1 − cos (l: C)] + 3 (1)9 ′: sin (l: C). (4.39)

Since we know the explicit time dependence of F (1)
9 ′ (C) in the control sequence, we can perform the

time integration and this simply leads us to a system of #H time-independent linear equations that can
be solved analytically.

Summary:
Generally, fast and high-fidelity control of the system is a complex task, which is this case reduces
to find correction terms , (C). Here, we use an analytical approach based on physical intuition,
which can be summarized in three main steps. (1) The perturbative expansion of the correction
term , (C) in Eq. (4.22). (2) The decomposition of the system by a set of time-independent
Hermitian matrices showed in Eqs. (4.30), (4.31) and (4.32). (3) The final Fourier expansion [see
Eq. (4.38)] of the control fields with associated Fourier coefficients as free parameters to satisfy
system of equations given by Eq. (4.37).

Singular Corrections Sometimes, experimental restrictions can put limitations in the control capa-
bility of , (C). For example, there can be a bandwidth limitation, which would restrict the values of
”:” when decomposing the field or maybe the problem is such that the coefficients associated to fI is
a constant and the one associated to fH is zero. These are a typical situations where the corrections
of the dynamical matrix become singular and the standard strategy described above is not applicable,
due to the missing correction terms.

A naive solution would be to simply drop the terms that one can not implement, which makes the
system’s dynamics somewhat uncontrollable and it is indeed not the optimal approach. This problem,
however, can be solved by using the commutation relation of the Hermitian basis to dynamically
generate the missing terms, i.e. [�1, �2] ∝ i�3. Here, the key point is to choose a basis that also has
a closed Lie algebra structure. To use this property for the first order, we need to look for, (1)I (C) so
that

Ω
(1)
1 (Cf) +Ω

(1)
2 (Cf) = 0. (4.40)

We can further substitute the expressions for the first two Magnus expansion terms in Eq. (4.24) to
Eq.(4.40) and obtain

− i
ˆ Cf

0
dC1� (1)mod,I(C1) −

1
2

ˆ Cf

0
dC1
ˆ Cf

0
dC2

[
�
(1)
mod,I(C1), �

(1)
mod,I(C2)

]
= 0. (4.41)

The commutation in the double integral in Eq. (4.41) will generate terms that are proportional to the
missing term �3 that is associated with, (1)I (C). So the price to pay in order to generate the missing
correction terms in the singular case is to solve a nonlinear equation in, (1)I (C) [186].
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When scaling up the strategy with arbitrary dimension #H, we can write the Magnus expansion
associated to � (1)mod(C) = Y+I(C) +, (1)I (C) as

∞∑
;=1
Ω
(1)
I (Cf) =

∞∑
;=1

[
Ω
(0)
;
(Cf) + XΩ(1); (Cf)

]
. (4.42)

Here, Ω(0)
;
(Cf) are the Magnus terms that are only related to the uncorrected dynamical matrix

�
(0)
mod,I = Y+I(C), and XΩ(1); (Cf) contains higher-order commutators that generate the missing terms in

,
(1)
I (C). The truncation of the summation in Eq. (4.42) will follow in case all the missing terms � 9

in, (1) (C) are found. Assuming we generate the missing terms at ; = ;2 with
∑;2
;=1 XΩ

(1)
;
(Cf), we can

express Eq. (4.42) as

;2∑
;=1
Ω
(1)
;
(Cf) = 0. (4.43)

In order to solve Eq. (4.43), we follow the procedures described above for the standard linear strategy.
, (1) (C) should be decomposed into a finite Fourier series [see Eq. (4.38)] and transformed to the
interaction picture before inserting in Eq. (4.43). However, with the singular corrections the obtained
system of Eqs. (4.43) are intrinsically nonlinear. Here, we have to solve polynomial equations that
contain the coefficients 2 9 : and 3 9 : from Eq. (4.38).

4.2.2 Modified Pulse Sequence for the Two-Mode System
Now we use the Magnus-based strategy discussed above to enhance the sensing and readout states
preparation of our two-mode system. We want to cancel the transitions from mode a1 to mode a2
on average [see Fig. 4.1 (b)]. Note that the mode transitions are the unwanted effects that we want to
prevent, since we desire to initialize and prepare a1 as the sensing state aB, as mentioned above. In
order to find the corrected leading and trailing edges of the frequency sweep [see step (II) and (IV)
in Fig. 4.2], we need to seek the dynamical matrix � (C) = �0(C) + + (C). Here, �0(C) generates the
desired dynamics that detunes the initial state a1(C = 0) to the sensing state a1(C = Cf) = aB. + (C),
however, is the spurious coupling that disrupts the desired dynamics. For the problem at hand (see
Eq. (4.2)), and neglecting noise, we have

�0(C) =
1
2
Δ(C)fI, (4.44)

and
+ (C) = 1

2
Ω0(C)fG . (4.45)

To follow the strategy, we introduce a control term, (C), which cancels on average the spurious effects
generated by + (C). Formally, this leads to a modified dynamical matrix

�mod(C) = � (C) +, (C), (4.46)

which generates a flow Φmod(C). The control, (C) must be chosen so that

Φmod(Cf) = Φ0(Cf), (4.47)

where Φ0(C) is the flow generated by �0(C) [see Eq. (4.44)].
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From Eq. (4.39), we define , (C) = Δcorr(C)fI, which is compatible with the constraints of the
problems, where we are only able to control in time the field coupling to fI. Taking advantage of the
mirror symmetry of the frequency-sweep around C = Cr/2, we can express Δcorr(C) as

Δcorr(C) =


Δeven(C) + Δodd(C) for 0 ≤ C ≤ Cs,
0 for Cs < C < Cf ,
Δeven(C) − Δodd(C) for Cf ≤ C ≤ Cr,

(4.48)

where Δeven(C) and Δodd(C) are parametrized as finite Fourier series

Δeven(C) =
:max∑
:=1

2:

[
1 − cos

(
2c:

C

Cf

)]
,

Δodd(C) =
;max∑
;=1

3; sin
(
2c;

C

Cf

)
.

(4.49)

Here, 2: and 3; are the free Fourier coefficients one must find in order to fulfill Eq. (4.47). The number
of free coefficients is set by choosing appropriate values for :max and ;max, e.g., one might want to
constrain the bandwidth. We emphasize, that we parametrize Eq. (4.48) so that the coefficients 2: and
3; are the same for the leading and trailing edge of Δcorr(C).
Equations for 2: and 3; are found by transforming �mod(C) to the interaction picture defined byΦ0(C),
i.e., � (C) → �mod,I(C) = Φ†0(C)�mod(C)Φ0(C)− iΦ†0(C) ¤Φ0(C). We find �mod,I(C) = +I(C) +,I(C), where

+I(C) =
Ω0
2

[
cos

(ˆ C

0
dC1Δ(C1)

)
fG − sin

(ˆ C

0
dC1Δ(C1)

)
fH

]
(4.50)

and
,I(C) = , (C). (4.51)

By comparing ,I(C) with +I(C), we notice that the control dynamical matrix , (C) is singular [186].
Thus, we follow the strategy outlined in section 4.2.1 and in Ref. [186] to obtain a set of nonlinear
equations for the coefficients 2: and 3; .

Here, we look for the coefficients 2: and 3; which fulfill the coupled equations

1
2

Tr

[ 4∑
:=1

Ω
(1)
:
(Cf)fG

]
= 0,

1
2

Tr

[ 4∑
:=1

Ω
(1)
:
(Cf)fH

]
= 0,

(4.52)

where Ω(1)
:
(Cf) are the elements of the Magnus series generated by �mod,I(C). Since we only want to

prevent (coherent) transitions on average from mode a1 to mode a2 and vice versa, we only look for
the coefficients 2: and 3; that cancel the off-diagonal elements of the Magnus expansion up to fourth
order.

Since the non-linear system of equations in Eq. (4.52) generally has more than one solution, one
can choose the solution that minimizes the norm of the vector of free parameters, i.e., the function
6 =

∑
:,; (22

:
+ 32

;
). In particular, it is numerically more efficient to directly minimize 6 under the

constraints defined by Eq. (4.52).
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Figure 4.4 | Corrections of the Leading Edge.
Comparison of the leading edge of the uncorrected (green) and modified (red and blue) frequency-sweep
allowing one to prepare the sensing state [step (II) in Fig. 4.2]. For 9 = 1 (red line), only a single harmonic
component :max = ;max = 1 is used. For 9 = 2, the correction terms in Eq. (4.49) are added up to the forth
harmonics :max = ;max = 4. Reprinted from Ref. [167]

In Fig. 4.4 we plot the pulse form of the leading edge that dynamically changes the detuning of the
two-mode system from Δ0 to 0 (at avoided crossing) as a function of time C = [0, Cs]. The green line
in Fig. 4.4 represents the uncorrected single-tone function 5 (C) of Eq. (4.13), that we assign with the
index 9 = 0.

The Magnus strategy yields the function 5mod for the leading edge that is

5mod(C) = 5 (C) + Δeven(C) + Δodd(C). (4.53)

Equation (4.53) defines a modified frequency sweep, where Δeven(C) and Δodd(C) are the parametrized
Fourier series in Eq. (4.49). We consider here two different modified frequency-sweeps. For 9 = 1
(red line in Fig. 4.4) is the case, where we only add a single harmonic component :max = ;max = 1 to
the Fourier series. For 9 = 2, we use :max = ;max = 4 (see blue line in Fig. 4.4). In the following, we
will label Mod1 as the modified frequency sweep associated with 9 = 1 (red) and 9 = 2 with Mod2
(blue), respectively.

(a) (b)

Figure 4.5 | Fidelity in State preparation.
(a) Comparison of the averaged sensing state error fidelity [see Eq. (4.54)] between the uncorrected (green),
correction by adding one harmonic component :max = ;max = 1 (red, Mod1), and corrections with 4 harmonic
components :max = ;max = 4 (blue, Mod2) frequency-sweeps as a function of Cs. (b) Same as (a) for the readout
state. Reprinted from Ref. [167]
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To compare the performance of the different frequency-sweeps, we consider the state fidelity errors

Ys, 9 = 1 − |aT
1Φ 9 (Cs)a1 |2,

Yr, 9 = 1 − |aT
1Φ

T
9 (Cf)Φ 9 (Cr)a1 |2,

(4.54)

associated to the preparation of the sensing and readout state. Again, 9 ∈ {0, 1, 2} labels the different
frequency-sweeps: 9 = 0 is the uncorrected detuning sweep [see Eqs. (4.5) and (4.13)], and 9 = 1, 2
are associated to the modified frequency-sweepsMod1 andMod2, respectively. The flowΦ 9 (C) allows
one to find the state vector at time C, e.g. a(C) = Φ 9 (C)a(0), and obeys the equation of motion (see,
e.g., Ref. [63])

8 ¤Φ 9 (C) = � 9 (C)Φ 9 (C), (4.55)

with � 9 (C) given by Eq. (4.2).
Fig. 4.5 (a) and (b) display the averaged errors in the preparation for the sensing state 〈Ys, 9 〉 and the
readout state 〈Yr, 9 〉 [obtained by averaging Ys, 9 and Yr, 9 over noise, see Eq. (4.3)] as a function of Cs,
respectively. To achieve error fidelities on the order of 10−3 with the uncorrected frequency-sweep
(green trace), one would need to fulfill Ω0Cs/(2c) � 10−2, which would require an AWG with a very
large bandwidth. In stark contrast, the corrected detuning-sweeps (red and blue traces) allow one to
achieve error fidelities smaller than 10−3 for values ofΩ0Cs that are much larger than the ones required
for a quasi instantaneous sweep, which reduces the bandwidth requirements associated with such a
sweep. In the appendix A.1, we further discuss the effects of noise and low fidelity state preparation
on the sensing protocol.

4.2.3 Inaccuracy in Frequency Estimation with trivial Signal Processing
Although our modified frequency-sweeps allow us to prepare the ideal sensing and readout states,
they do not allow us to correctly estimate unknown frequencies from short-time signals, i.e., 2 ≤
(Ω0/2c)Cw ≤ 4.

(a) (b) (c)

Figure 4.6 | Frequency Estimation with Trivial Signal Processing.
(a) Discrete spectral density |F 〈B(C)〉|2 obtained from signals generated with the uncorrected ( 9 = 0, green),
Mod1 ( 9 = 1, red) and Mod2 ( 9 = 2, blue) frequency-sweep for Cw = 2.5 × (2c/Ω0) and no noise contribution
that is XΩ = 0. (b) Same as (a) for Cw = 2 × (2c/Ω0). (c) Same as (b) for XΩ ≠ 0 [see Eqs. (4.3) and (4.4)].
Reprinted from Ref. [167]

We illustrate this in Fig. 4.6 (a)-(c) where we compare the modulus squared of the discrete signal
Fourier transform (spectral density), |F [〈B(C)〉] |2, for different case scenarios. We stress that, unlike
for the case of a sensing experiment, the spectra were obtained assuming that we know exactly the value
of Ω0 to capture only the effects of the shortcomings associated to Fourier transforms of short-time
signals.
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The modified frequency-sweeps (red and blue traces) lead to spectra where the global maximum (with
the 0-frequency peak excluded) can be more easily identified. However, the global maximum is not
located at Ω/Ω0 = 1. Our results also show that small changes in Cw can result in different spectra
with maxima located at very different frequencies, which obviates a correct frequency estimation.

In the following section, we discuss on the shortcoming associated with the Fourier transform of a
short and finite signal and the procedure utilizing windowing functions to enhance the estimation of
the unknown frequency.

4.3 Signal Processing Technique

In this section, we briefly describe the fundamental and most important technique in signal processing
that is based on Fourier analysis to transform signals from the time into the frequency domain. The
motivation for the transformation is the direct visibility in contributions of all frequency components
in the frequency domain and hence, they can easily be extracted. In the time domain, where the
"Ramsey fringes" are measured, it is difficult to estimate frequency distributions with high precision
due to the absence of a precise analytic function to fit the data.

Fourier analysis and the corresponding Fourier transform are among the most important algorithms
used for image and audio compression, high performance scientific computing and signal processing.
A continuous-time periodic (and aperiodic) signal can be simply expressed by a sum of harmonically
related sine and cosine waveforms. These are generally known as the Fourier series expansion of the
signal, which involves the decomposition of periodic (aperiodic) signals into their individual frequency
components [184]. Generally, the continuous-time Fourier series of a aperiodic signal can be defined
as

F (l) =
ˆ ∞
∞
B(C)e−ilC dC. (4.56)

Here, the complex exponential e−ilC provides the frequency components that are used as the orthogonal
basis functions. B(C) is the analytic function that can be decomposed into individual Fourier coefficients
and is also known as the inverse Fourier transform

B(C) = 1
2c

ˆ ∞
∞
F (l)eilC dl. (4.57)

We want to highlight a very useful property of the Fourier transform that is the convolution theorem.
A convolution is an integral expressing the degree of overlap of a function B1 with another function B2.

B1 ∗ B2 ≡
ˆ ∞
−∞
B1(g)B2(C − g) dC. (4.58)

The theorem states that the convolution of the two signals in the time domain is a point wise product
of their Fourier transform counterparts in the frequency domain and vice versa

B1(C) ∗ B2(C) ←→ F1(l) · F2(l). (4.59)

This theorem allows us to apply the so-called window functions to the measured signal in order to
suppress unwanted spurious effects, such as spectral leakage that hinders precise frequency estimation.
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4.3.1 Discrete Fourier Transform (DFT) of Short Signals
Most of the time, data obtained from experiments in the laboratory or from simulations are sampled
with a finite rate. Consequently, there exists no analytic function required to perform the Fourier
transform. Furthermore, it is also apparent that it is not possible to implement the Fourier transform
for general purpose digital signal processing. The integral sign in Eq. (4.56) requires an infinite
amount of computational effort. These difficulties can be overcome by the so-called discrete Fourier
transform (DFT), that is more accessible for digital implementation.

The DFT is defined for =samp samples of G= at =samp equally spaced frequencies l: . Note that = is
the discrete location with the corresponding amplitude G=. Given a periodic signal with period ) and
=samp sampling points, the DFT is defined as [184]

F [:] =
=samp−1∑
==0

B[=]e−i 2c
)
:=, for : = 0, 1, . . . , =samp − 1. (4.60)

In other words, the DFT is the method to transform the data vector G [=] into its sine and cosine
components by Fourier expansion instead of transforming an analytic function B(C). The inverse DFT
is defined as

B[=] = 1
)

#−1∑
:=0
F [:]ei 2c

)
:=, for = = 0, 1, . . . , =samp − 1. (4.61)

4.3.2 Zero-Padding
The main goal of our work is to find a simple way to estimate the frequency of an oscillating signal in
the time domain, namely the Ramsey fringe, with high precision. But when dealing with signals that
are constructed from a finite number of sampling points, we need to take additional systematic errors
into account. One source of such error is due to small =samp that will lead to scalloping loss. This loss
mechanism is produced by the inability of the DFT to observe the spectrum as a continuous function
because the Fourier transform spectrum is limited to integer multiple of the fundamental frequency
l: . In the worst case scenario, if the spectral component of interest is located, e.g., between l:−1 and
l: , the component will then be seen by both frequencies and the maximum of interest is distributed
among these wrong frequencies. So the lack in resolution does not allow the Fourier transform to
resolve the real maxima of the spectrum any further than the frequency spacing

Xl =
lB

=samp
, (4.62)

where lB is the sampling rate and =samp is the number of sampling points of the signal. This source
of error is, however, relatively simple to fix by using the zero-padding technique, as described in
signal processing textbooks, e.g., in Ref. [184]. Zero-padding consist in extending the signal with =pad
zeros yielding a

[ (
=samp + =pad

)
/2

]
-points discrete Fourier transform. To further reduce the effects of

scalloping loss we use interpolation of the padded discrete spectrum [206].

4.3.3 Spectral Leakage
The second source of error that mitigates the high precision in frequency estimate is related to the
selection of a finite-time interval, e.g. the waiting time Cw in the Ramsey sequence (see Sec. 4.1). The
coherence time of the sensor defines an upper limit for the time window in which a measurement is
possible. By performing the DFT, we project the time signal into a set of orthogonal trigonometric
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basis functions. From the all possible frequencies, only those which coincide with the basis will
project into a single basis vector. All other frequencies will exhibit non-zero projection on the entire
basis set. This behaviour is often referred to as spectral leakage [207].

Rectangular Window (no window) To follow the discussion in the text book [184], the spectral
leakage is often related to the effect of windowing. The obtained spectrum in the time domain can
always be expressed as the convolution of the measured signal and a window function. Now assuming
the case, wherewe directly analyzemeasured data. Even thought there is "no (extra) window" involved,
this situation still corresponds to a "rectangular window", simply because the data set has a beginning
and a finite end. We illustrate this for the case of the rectangular window, which is the situation
encountered when directly analyzing a measured signal, and show how this inevitably leads to the
creation of new frequency components. This is apparent by Fourier transforming a cosine function
that is truncated by a rectangular window function. We define a continuous-time cosine function as

B(C) = cos (l0C), for −∞ < C < ∞. (4.63)

The continuous-time Fourier transform of Eq. (4.63) is given by

S(l) = c[X(l + l0) + X(l − l0)], (4.64)

which can be considered as two Dirac-delta impulses located at ±l0. In a real experiment, however,
we need to record a finite number of data samples over a duration 0 < C < Cw. That effectively creates
a rectangular window

F(C) =
{

1, for 0 ≤ C ≤ Cw,
0 elsewhere .

(4.65)

The Fourier transform of the rectangular function in Eq. (4.65) is the sinc function

W(l) = Cw sinc
(lCw

2c

)
e
−ilCw

2 , for −∞ < l < ∞. (4.66)

Altogether, the truncated cosine function can be expressed as

BF (C) = B(C)F(C) =
{

cos (l0C), for 0 ≤ C ≤ Cw,
0 elsewhere .

(4.67)

From the convolution theorem [see Eq. (4.59)] the DFT of BF (C) is found to be
SF (l) = S(l) ∗W(l)

= cCw [sinc ((l + l0)Cw/2c) + sinc ((l − l0)Cw/2c)]e
−ilCw

2 , for −∞ < l < ∞.
(4.68)

The discrete Fourier transform of a finite-time cosine function truncated by a rectangular window
exhibits two sinc-function components centered at ±l0 with a series of side-lobes that slowly decay
(see e.g. blue curves in Fig. 4.7). This spurious peaks occur due to the truncation of the signal
and is unavoidable when applying DFT. The resulted spectral leakage is a combination of the before
mentioned sinc side-lobes and the transform of the sinusoidal components, whose frequencies are not
integer multiples of the reciprocal of the period ) = 2c/l0. Consider a finite input signal to the DFT
5 [=] = �eil0=XC , where XC = Cw/=samp. The DFT can be computed as [184]

F [:] =
=B0<?−1∑
==0

5 [=]e
−i2c=:
=samp , : = 0, 1, . . . , =samp − 1

= �e
[
i =samp−1

2

(
l0XC− 2c:

=samp

)]
·

sin
[
=samp

2

(
l0XC − 2c:

=samp

)]
sin

[
1
2

(
l0XC − 2c:

=samp

)] .

(4.69)
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Figure 4.7 | Spectral Leakage.
(a), Zero leakage for frequency l0 =

2c<
)

which is an integer multiple < of reciprocal of the period ) . The
frequency response of the sinc function [blue lines in both (a) and (b)] is added for comparison. The DFT
outputs (orange dots) show a maximum for F [: = <] that exactly coincides with the maximum of the sinc
function. The adjacent output points are zero. (b), The distribution of the discrete Fourier spectrum (green
dots) when l0 is not an integer (here: < + 1/2). The amplitude of the main output point F [< = :] is not at the
maximum of the sinc function. The response of the adjacent points, however, is non zero and coincides with
the maxima of the sidelobes. This spreading of energy to the sidelobes is referred to as spectral leakage.

In Fig. 4.7, we plot the normalized DFT in Eq. (4.69) for two cases. Fig. 4.7 (a) illustrates the frequency
spectrum with zero leakage for l0 = <

2c
)

(orange dots) for a same length that equals an integer < of
the period ) . For comparison, we plot the sinc-function (blue lines) of the corresponding continuous
Fourier transform. The response has a maximum amplitude at : = <, which coincides with the
main-lobe and the remaining frequency contribution is zero at the side-lobes. Spectral leakage occurs,
when l0 is not an integer multiple of the reciprocal of ) . Figure 4.7 (b) illustrates the situation of
maximum spectral leakage which occurs for l0 =

(
< + 1

2

)
2c
)
. The contribution to the side-lobes are

non zero and there are two local maxima. This spread of energy is referred to as frequency leakage,
which leads to a wrong estimation in frequency.

Blackman-Harris Window Another intuitive way to understand the mechanism of spectral leakage
is that the frequency components in the measured signal do not match with those from the basis set
in the DFT. Hence, the periodic extension of the signal will cause discontinuities at the boundaries
of the observation. These discontinuities are responsible for the spectral leakage over the entire basis
set. A very common way to minimize the effect of spectral leakage is to apply weighting functions
(also known as window functions) to the data in the time domain. This approach effectively reduces
the discontinuity at the boundary of the periodic extension [207]. In other words, an appropriate
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Figure 4.8 | Rectangular Window vs. Blackman-Harris Window.
(a), The scheme of the rectangular window (nowindow) function defined in Eq. (4.65). (b), The continuous-time
Fourier spectrum of the rectangular window shows a moderate decrease in the side-lobes by −6 dB per octave.
(c), The Blackman-Harris window function (see Eq. (4.70)). (d), The continuous-time Fourier spectrum
of the Blackman-Harris window shows strongly suppressed side-lobes and broadened main-lobe as a direct
consequence of the reduced amplitude at the leading and trailing edges.

window function will suppress the contribution of the side-lobes (in frequency domain) to minimize
the leakage.

Among the numerous window functions, the so-called Blackman-Harris (BH) window function is
known to strongly suppress the sidelobes, thus greatly minimizing the effect of the spectral leakage.
The BH window is defined as the sum of four-terms [184]

FBMH(C) =
{
00 + 01 cos

(
cC
g

)
+ 02 cos

(
2cC
g

)
+ 03 cos

(
3cC
g

)
, for |C | ≤ g

0, elsewhere .
(4.70)

With the coefficients 00 = 0.35875, 01 = 0.48829, 02 = 0.14128 and 03 = 0.01168. The correspond-
ing Fourier transform is given by

WBMH(l) = 200
sin (lg)
l

+ 01

[
sin ((l + c/g)g)
(l + c/g) + sin ((l − c/g)g)

(l − c/g)

]
+ 02

[
sin ((l + 2c/g)g)
(l + 2c/g) + sin ((l − 2c/g)g)

(l − 2c/g)

]
+ 03

[
sin ((l + 3c/g)g)
(l + 3c/g) + sin ((l − 3c/g)g)

(l − 3c/g)

]
, for −∞ < l < ∞.

(4.71)
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In Fig. 4.8, we demonstrate the effectiveness in side-lobe suppression of the Blackman-Harris window
compared to the rectangular (or no window) function. From Eqs. (4.65) and (4.66) we know the
Fourier transform of a rectangular window [see Fig. 4.8 (a)] exhibits a frequency spectrum with the
sinc distribution (Fig. 4.8 (b)). The first side-lobes in the continuous-time Fourier spectrum show a
reduction in amplitude by only −13 dB compared to the main-lobe. All the subsequent side-lobes fall
off at −6 dB per octave, which is expected from a function with an abrupt discontinuity [184, 207].
The Blackman-Harris window illustrated in Fig. 4.8 (c), on the other hand, has a smooth transition
at the beginning and the end of the window. Remarkably, the side-lobes suppression is substantial
that is −92 dB compared to the main-lobe (Fig. 4.8 (d)). The price to pay is a trade-off between the
side-lobes suppression and the broadening in the width of the main-lobe. The discrete-time Fourier
transform of the Blackman-Harris window exhibits a width in the main-lobe that is four times larger
than that of the rectangular window.

Summary In the following, we summarize the shortcomings associated with Fourier transforms for
short signals discussed above (see Fig. 4.9). We employ the cosine function in Eq. (4.63) over a finite
interval of time. We consider two different intervals of time defined as C1,max = 4) and C2,max = 4.5) ,
where ) = 2c/l0 [see Fig. 4.9 (a)-(b)]. Let us first consider a situation where one could continuously
measure the signal. A finite-time signal is equivalent to the pointwise multiplication of an infinite
signal with a rectangular window. The corresponding Fourier transform produces a spectrum, whose
value at l = l0 is the sum of all the spectral contributions of the signal weighted by the spectrum
of the window centered at l0 (convolution theorem). As a result, even a simple, single frequency
spectrum appears with multiple frequency components [see Fig. 4.9 (c)].

Experimentally, however, it is not always possible tomeasure a continuous signal, but it can be sampled
at certain rates [Fig. 4.9 (d) and (e)]. In this situation, one uses the discrete Fourier transform (DFT)
to extract information of frequency components (also see discussion in Sec. 4.3.1). This results in a
spectrumwith a finite number of points [dotted points in Fig. 4.9 (f)], fromwhich frequency estimation
is limited due to a finite frequency resolution set by X 5 = 1/Cmax. This is known as scalloping loss
(see Sec. 4.3.2).

For the sake of visibility, we illustrate the continuous lines in Fig. 4.9 (f) showing the discrete-time
Fourier transform (DTFT) associated to the sampled signals in (d-e). Note that the DTFT is the Fourier
transform of a discrete time signal but the number of sampling point =samp is allowed to approach
infinity. Hence, the output of the DTFT can be seen as a continuous function. In contrast, the discrete
Fourier transforms [dots in Fig. 4.9 (f)] sample the continuous spectrum generated by the discrete-time
Fourier transform with a frequency interval X 5 .

To minimize scalloping losses, the common practice requires one to use zero-padding [Fig. 4.9 (g)-
(h)], which effectively reduces X 5 . Additionally, zero-padding forces the signal to appear aperiodic,
which mitigates spectral leakage when the time interval is not an integer multiple of the period
[see Fig. 4.9 (i)]. However, the accuracy of the frequency estimate is still limited by the use of
a rectangular window (or no-window), which as we discussed above, also induces spectral leakage
[inset in Fig. 4.9 (i)].

Using specific window functions, e.g., the Blackmann-Harris window [Fig. 4.9 (j)-(k)] [207], one
further mitigates spectral leakages. This leads to a better estimate of the signal frequency as seen in
Fig. 4.9 (l). As mentioned in Sec. 4.3.2, using interpolation of the Fourier spectrum further enhances
the accuracy of the frequency estimate.
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(a)

(d)

(g) (h) (i)

(j) (k) (l)

(e) (f)

(b) (c)

Figure 4.9 | Spectral Leakage and Scalloping Losses.
Time and frequency domain representation of B(C) = cos (l0C) for a time interval of 4) (purple) and 4.5)
(pink). (a-b), Continuous time measurement with finite time windows and their corresponding continuous
Fourier transform in (c). (d-e), Discrete sampling of a continuous signal for both time intervals. The associated
discrete Fourier transform (dots) and discrete-time Fourier transforms (solid lines) are shown in (f). (g-h) Zero-
padding of the sampled signal and corresponding interpolated discrete Fourier transforms in (i). Post-processing
of the sampled signal with a Blackmann-Harris window and zero-padding (j-k). The resulting discrete Fourier
transform is less susceptible to spectral leakage (l). Reprinted from Ref. [167]
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4.4 Iterative Adaptive Spectroscopy for Frequency Estimation
Beside the corrections in state preparations with the Magnus-based strategy, we show how an iterative
procedure combining both an update on the estimate for Ω0 and different windowing schemes [184]
to process the measured signal solves the issues outlined above and yields a high-precision estimate
of the unknown frequency.

From the discussion in Sec. 4.3, we know that windows (sometimes also referred to as tapers) are
weighting functions designed to simplify the analysis of harmonic signals. In particular, the win-
dow functions apply selective weights to reduce spectral leakage associated with finite measurement
windows [184, 207].

As apparent in Figs. 4.8 (c) and (d) theBlackman-Harriswindow [184, 207] is constructed to effectively
reduce spectral leakage. However, as a downside, the width of the main-lobe from the BH window
is substantially broadened. Additionally, we must choose the measurement-time window with at least
four periods of oscillations: (Ω0/2c)Cw ≥ 4. This is due to the fact that the BH window effectively
suppresses the oscillations of the left and right sides of the signal [compare for instance Figs. 4.9 (g)
and (j)]. Hence, the total number oscillations are reduced to two, which is the minimum number
required for the frequency estimation. The reduction in oscillation period leads to a decrease in
amplitude of the spectral density [see Figs. 4.9 (i) and (l)], which can render frequency detection
problematic, specially for short-time, noisy signals. Finally, and we cannot stress this enough, while
windowing reduces spectral leakage, it can never completely suppress it. Thus, even with windowing,
high-precision frequency estimation is still limited by artifacts linked to discrete Fourier transforms
of short-time signals.

Figure 4.10 | Iterative Adaptive Spectroscopy of Short Signals.
Flow chart illustrating the steps involved at each iteration. From the first frequency estimation Ω̄(0) , i.e. obtained
from a spectroscopy measurement, the Ramsey interferometry B (0) is performed. The resulting Ramsey fringe
in the time-domain is subsequently transformed into the frequency domain using DFT with zero-padding
and rectangular windowing. From the new estimated frequency Ω̄(1) we repeat the procedure by updating
the Magnus-based correction to calculate the Fourier components 2: and 3; [see Eq. (4.49)]. Note that by
performing the 2nd DFT of the Ramsey fringe to estimate Ω̄(2) , we introduce the Blackman-Harris window
function to suppress spectral leakage and scalloping effects. The iterative procedure can be repeated arbitrarily.
Reprinted from Ref. [167]
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To overcome this limitation we use the iterative, adaptive sensing (IAS) protocol depicted in Fig. 4.10.
Each interaction consists in performing Ramsey interferometry (see Sec. 4.1) involving the Magnus-
based (see Sec. 4.2.1) high fidelity state transfer (rhombi in Fig. 4.10) with a frequency-sweep that
takes into account our current knowledge of the frequency estimate [circles in Fig. 4.10]. This way
we can iteratively suppress systematic frequency shift errors originating from spectral leakage when
Cw (step III in Fig. 4.2) is not an integer multiple of the period. This is done by updating after each
iteration the measurement-time window

C
(<+1)
w = =p ×

2c
Ω̄(<+1)

< ∈ ℕ0, (4.72)

where Ω̄(<) denotes the frequency estimate obtained at iteration< and =p ≥ 4 is an integer that defines
how many periods are in the measurement-time window.

We assume in Eq. (4.72) that a prior estimate of the frequency, which we denote by Ω̄(0) , is known.
This quantity can, e.g., be obtained with "standard" Ramsey interferometry or by using spectroscopic
methods. We also update after each iteration the leading and trailing edge of the modified detuning-
sweeps since the Magnus-based strategy for control requires one to know the parameters entering
the equations of motion [see Eqs. (4.2) and (4.55)]. Thus, we decrease at each iteration the error in
preparing both the sensing and readout state.

A new estimate of the frequency is obtained by processing the acquired signal either with a window
function tailored to either enhance the amplitude of the Fourier spectrum for the first iteration or the
quality of the frequency estimation for all subsequent iterations (rectangles in Fig. 4.10). The window
functions for signal processing are chosen according to

5 (<) (C) =
{
Θ(C) − Θ(C − C (1)w ) for < = 1,
5BH(C/C (<)w − 1/2) for < ≥ 1,

(4.73)

where Θ(C) denotes the Heaviside function and 5BH(C) is the Blackman-Harris window function [see
Eq. (4.70)]. We deliberatively choose not to process the signal after the first iteration (we use a
rectangular window) 3 in order to generate a spectral density with larger amplitudes, from which
maxima are easier to extract.

The other source of systematic errors arise when dealing with a signal which is constructed from a
finite number of sampling points (measurements) =samp. A small =samp will lead to scalloping, i.e.,
the b=samp/2c-point discrete Fourier transform does not resolve the real maxima of the spectrum [see
Fig. 4.7 (b)]. This is, however, easily fixable by using zero-padding, as described in Sec. 4.3.2.

Fig. 4.11 shows the relative error of the frequency estimate

Y
(1)
Ω
= |1 − Ω̄(1)/Ω0 | (4.74)

as a function of =samp for =p = 4 for the first iteration [< = 1 in Eqs. (4.72) and (4.73)] of our
iterative sensing scheme. Here =pad is chosen such that =samp + =pad = 1000. Independently of the
frequency-sweep used, doubling =samp only leads to a small variation of the relative error. This allows
us to identify d=samp/=pe = 8 > 2 as a good compromise between the error and experimental cost,
i.e., the number of measurements required. The results show the advantage of using the modified
frequency-sweeps Mod1 (red trace) and Mod2 (blue trace) over the uncorrected one (green trace); the
smaller the error in preparing both the sensing and readout state the smaller the relative error of the
first frequency estimate for a signal of identical duration.
3From the point of view of signal processing applying a rectangular window is the same as applying no window.
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Figure 4.11 | Frequency Estimation Error versus Sampling points.
Comparison of the relative error Y (1)

Ω
of the frequency estimation as a function of sampling points =samp for the

uncorrected ( 9 = 0, green), corrected Mod1 ( 9 = 1, red), and Mod2 ( 9 = 2, blue) detuning-sweeps. The shaded
region shows the error on the measurement. Reprinted from Ref. [167]

In Fig. 4.12 (a) we plot the relative error Y(<)
Ω

after each iteration of our adaptive scheme (IAS 1,
light blue squares). We also include the error on our prior estimate Ω̄(0) (see definition for standard
deviation fXΩ in Sec. 4.1.1) for reference (orange circle). The iterative procedure converges to a
value of the frequency estimate whose error is significantly smaller than the initial estimate. The
fast convergence indicates that we have reached the spectral resolution allowed by our measurement
time-window after just a few iterations.

(a)

(b)

Figure 4.12 | Results of the Iterative Adaptive Spectroscopy.
(a) Relative error Y (<)

Ω
in frequency estimation as a function of iterations for IAS 1 (light blue squares) and IAS

2 (dark blue triangles). (b) Signal to noise ratio (SNR) [see Eq. (4.75)] as a function of iterations for IAS 1. Note
that the error in both (a) and (b) is smaller than the symbols. Otherwise specified, we use Cw = 4 ×

(
2c/Ω̄(<)

)
,

Cf = 0.5 ×
(
2c/Ω̄(<)

)
, =samp = 30 and =pad = 970. Reprinted from Ref. [167]

To show that the choice of window for the first iteration has no influence on the results, we also plotted
in Fig. 4.12 (a) the relative error obtained by using at every step the Blackman-Harris window for
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signal processing (IAS 2, dark blue triangles). Finally, we plot in Fig. 4.12 (b) the signal-to-noise
(SNR) ratio defined as

SNR =

√
#F [〈B(<) (C) 5 (<) (C)〉][

#∑
9=1

(
F [B(<)

9
(C) 5 (<) (C)] − F [〈B(<) (C) 5 (<) (C)〉]

)2
]1/2 , (4.75)

which is a measure of the confidence level on the frequency estimate. More precisely, in this context,
the SNR quantifies the degree of confidence we have in identifying the global maximum of the
spectral density (zero-frequency component excluded). Our results show that as the relative error on
the frequency estimate decreases, we become more and more confident in identifying the frequency
associated to the global maximum of the spectral density in spite of having a noisy signal.

4.5 Conclusion
To sum up, we have theoretically developed an iterative, adaptive sensing protocol based on enhanced
Ramsey interferometry of two-mode systems. Our scheme allows one to get precise estimates of an
unknown frequency by considering short, finite-time signals under realistic assumptions of experi-
mental bandwidth limitations. Specifically, our scheme avoids shortcomings both related to dealing
with decaying signals and experimental constraints related to the sampling and could be implemented,
e.g., in coupled mechanical oscillators [56, 63, 189, 190], optomechanical systems [92, 191], hybrid
optomechanical systems [192], coupled optical modes [193], and qubits [58, 208] under the influence
of classical noise, just to name a few.

The main ingredients of our method are the use of the Magnus-based strategy discussed in Sec. 4.2.1
and 4.2.2 for control to find frequency-sweeps that allow one to prepare with high fidelity both the
sensing and readout state and an iterative procedure (see Sec.4.4) built to mitigate systematic errors
showed in 4.3.3 and 4.3.2 when using Fourier transforms to extract frequency components. We stress
that independently of how the sensing and readout state are prepared, our iterative, adaptive sensing
protocol can always be applied to enhance frequency estimates. In the following chapter, we will
demonstrate the experimental implementation of our theoretical work.
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5 A Classical Nanomechanical Two-Level
System as Coherent Sensor

The following chapter is based on our unpublished manuscript that is in preparation:

A. T. Le, A. Chowdhury, H. Ribeiro and E. M. Weig, "Fast iterative adaptive frequency sensing
scheme of a two-level system", Unpublished manuscript.

The theoretical model has been developed in collaboration with Prof. H. Ribeiro from the
University of Massachusetts Lowell and Dr. A. Chowdhury. The experiment was performed
by the author of this work. The data evaluation relies on discussions between E. M. Weig, A.
Chowdhury andH. Ribeiro. The theoretical model and certain passages of the original publication
is printed under permission of Dr. A. Chowdhury and Prof. H. Ribeiro.

Motivated from the theoretical development of the coherent sensing protocol in Chapter 4, we imple-
ment this idea into an experimental realization. Here, we need a two-level system (either classical
or quantum) that satisfies the criteria of a Ramsey protocol (see section 4.1) and, at the same time,
dynamically couples to a physical quantity that we wish to determine in order to use it as a coherent
sensing element. It has been theoretically demonstrated [77, 188], that classically coupled harmonic
oscillators can be coherently controlled and manipulated in the same way as their quantummechanical
two-level system analogues.

T. Faust et al. showed in the experiment with a classical nanomechanical two-mode system that the
coherent dynamics of two strongly coupled flexural modes can be fully controlled and described in a
Bloch sphere representation [47]. By employing pulse schemes that are well-known from coherent
spin control, e.g. Rabi, Ramsey and Hahn Echo sequences, it is possible to simulate the coherent
dynamics of a quantum system by a classical two-mode system.

Another classical to quantum analogy based on coherence has been demonstrated by Seitner et al. in
the Stückelberg interferometry experiment [62, 63] with the very same classical nanomechanical two-
level system. The Stückelberg interferometry usually describes the dynamics of a quantum two-level
system that undergoes a double passage through an avoided crossing. The phase accumulation during
the double passage leads to self-interference and creates an oscillating pattern in the return probability
of the quantum two-level system [208–210]. The coherent exchange in excitation energy of the two
mechanical modes represents an analogy to the quantum mechanical interference.

This chapter provides a natural follow-up of these prior works from the chair by implementing the
enhanced Ramsey protocol proposed in Sec. 4.1 on the nanomechanical two-mode system under
investigation. We are going to employ the strong coupling nature of the mechanical in-plane and
out-of-plane flexural modes. Our aim is to develop a testbed applicable for quantum sensing protocols
that is fast and allows frequency estimate with high precision.

The chapter is organized as follows: first, we discuss in depth the challenges to experimentally realize
the theoretically proposed sensing protocol using the platform described in Sec. 4.4. In Sec. 5.1,
we demonstrate the experimental implementation in the development of voltage combiners and pulse
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generation, which must meet certain requirements for precise implementation of the Magnus control
pulses. Second, we re-introduce the nanomechanical system and the dielectrical frequency tuning
mechanism that we exploit for implementation of the sensing protocol (see Sec. 5.1.2). Sec. 5.2
briefly demonstrates the simple single passage experiment that can be described by the Landau-Zener
model. This experiment serves as a simple proof of state control of the two-mode system, and to test the
readout. In Sec. 5.3 and Sec. 5.4, we show the experimental results of the Ramsey protocol based on
the proposed iterative adaptive spectroscopy (IAS) and compare them to the theoretically model. And
finally, as a first proof of principle, we demonstrate a coherent sensing experiment in Sec. 5.5, where
we utilize fast and high precision in frequency estimation to observe a frequency shift in coupling
strength Ω0 of the classical two-level system due to the change in the electrical field environment. In
the last section 5.6, the experimental work and the corresponding results are summarized.

5.1 Experimental Realization
We implement the sensing protocol using nanomechanical resonator in a vacuum chamber with relative
moderate pressure of about < 10−4 mbar and at room temperature. Here, we study a nanomechanical
two-mode system, i.e. the dynamics of two distinguishable strongly coupled, classical mechanical
modes that can be seen as two collective phononic ensembles that can coherently exchange excitation
energies. Here, our sample consists of a freely suspended doubly-clamped, pre-stressed silicon
nitride string resonator with a high quality factor of & ≈ 250.000. The resonator used in this
experiment exhibits a length of ! = 55 µm, the width is F = 250 nm and the thickness is about
C = 100 nm. The eigenfrequencies of such a mechanical resonator are typically in the radio frequency
(RF) domain. In Sec. 2.4, we described the fabrication procedure and illustrated the scanning electron
microscopy (SEM) image (see Fig. 2.26) of such nanomechanical resonator. As discussed in Sec. 2.1,
the rectangular cross-section of such a doubly-clamped string resonator leads to a frequency offset
between the two orthogonally polarized fundamental modes due to the difference in the moment of
inertias, respectively [see Eqs. (2.5) and (2.6)]. This resonant frequency offset can be compensated
by dielectric frequency tuning. In addition, the spatially inhomogeneous electric field causes the
two modes to hybridize into normal modes in the near resonance condition [56]. We will discuss
the dielectrical frequency tuning and mode coupling mechanism in more details further below in
Sec. 5.1.2.

We show the device schematic of this experiment in Fig. 5.1. Additionally, we illustrate in Fig. 5.2
a complete overview of our experimental setup, including detection, noise and RF drive, as well as
dielectrical frequency tuning and the coherent control capability using pulse sequences for the Ramsey
interferometry experiment.

Again, we employ the microwave cavity-assisted detection scheme combined with the heterodyne
mixing technique described in Sec. 3.1. The mechanical motion is detected by placing adjacent gold
electrodes in the vicinity of the dielectrical string resonator. One of the electrodes is connected to
an antenna that capacitively (�Ant) couples to the electric field of the three dimensional (3D) coaxial
_/4 microwave cavity (see Fig. 5.1) that we representatively illustrate as a simple LC-circuit with
inductance !0 and capacitance �0 (see blue box in Fig. 5.2). Note that the antenna is placed right
above the inner conductor of the 3D cavity, where the electric field distribution of the fundamental
TEM mode has its maximum [see Fig. 2.14 (a)]. With the sample and the coupling antenna inside,
the cavity resonance of the fundamental mode is found to be l2/(2c) = 3.0 GHz. The geometrical
illustration of such a cavity can be found in Fig. 2.13. We emphasize, that we have switched from the
cylindrical geometry to the coaxial cavity due to the simple and clean spectral mode distribution. As
apparent in Fig. 2.14, the second TEM harmonic mode of the cavity starts to emerge at 10.8 GHz that
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Figure 5.1 | Device Schematic.
Coaxial _/4 microwave 3D cavity made of cooper support a microwave resonance of l2/(2c) = 3.0 GHz. The
sample with the nanomechanical string resonator is coupled to the cavity via an microwave loop antenna that
is connected to one of the gold electrode. The mechanical RF drive tone, the pulse generated by an AWG and
the DC voltage can be applied on the second electrode via a single layer capacitor. The microwave cavity is
continuously pumped and measured in transmission.
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Figure 5.2 | Experimental Setup for the Iterative Adaptive Spectroscopy Experiment.
The 3D microwave coaxial _/4 cavity (blue box) is driven on resonance by a signal generator to avoid unwanted
optomechanical effects. The capacitance (�m(C)) of the electrodes is periodically modulated by the mechanical
motion and at the same time, one of the electrode is capacitively coupled to the 3D cavity via microwave
antenna (�Ant). The cavity output is down-converted using heterodyne mixing technique (green box) using a
local oscillator (LO). The down-converted signal is then filtered and amplified before feeding into a spectrum
analyzer for observation. Additionally, we utilize a custom made voltage combiner (orange box) in order to
merge the outputs of a DC source, an arbitrary waveform generator and RF drive source into a single output
to feed them to the electrodes via a single layer capacitor (SLC). In the Ramsey experiment, where the pulse
sequence are generated, it is necessary to synchronize the function generators (33500B and 81150A) with the
spectrum analyzer by the internal 10 MHz clock. Additionally, the arbitrary wave function generator provides a
trigger signal to the FSV to start the ring-down measurement.
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is three times higher than the fundamental mode and the cylindrical waveguide mode is at even much
higher frequency that is 14.7 GHz.

As described in Sec. 3.1.1, the mechanical motion periodically modulates the capacitance �m(C) of
the electrodes and, simultaneously, induce sidebands in the cavity response of the resonantly driven
cavity at frequencies lc ± lm. Here, the cavity resonance is lc/(2c) = 3.0 GHz and the mechanical
fundamental frequencies of the flexural modes are roughly lm/(2c) ≈ 7.3 MHz. Note, that the
second electrode is wirebonded to a single layer capacitor1 (SLC) that provides the ground plane for
the high frequency mode of the microwave cavity and at the same time, it enables the application
of the DC and RF signal from various sources2 3 4 to the electrodes for the drive and coherent
frequency tuning. Throughout the experiment, the microwave 3D coaxial cavity is driven using a
signal generator5 precisely on resonance to avoid unwanted electromechanical interactions [56, 92,
102, 107]. Note that the resonance frequency of the 3D cavity is extracted at the maximum position
of the cavity transmission. This is simple enough due to the clean frequency spectrum and high
signal-to-noise ratio. The resulting electromechanical sidebands can be resolved using heterodyne
IQ-mixing6 technique (see green box in Fig. 5.2) with subsequent low-7 and high-pass8 filtering and
amplification9. Finally, the down-converted signal is fed into a spectrum analyzer10 to observe either
the noise driven frequency response of the mechanical resonator in the frequency domain or the
decaying (ring-down) signal in the time domain.

5.1.1 Voltage and Pulse Control Technique
One of the challenges in this work is to develop a precise and reliable voltage control scheme to
manipulate the tuning speed and the shape of the ramp function in a coherent control experiment.
In order to implement the theoretically calculated pulse shape to the experiment, we quire a reliable
implementation of the generated voltage function on the sample. In this section, we discuss the
different possibilities to combine the output of a DC voltage source with the output of an arbitrary
wave function generator (AWG) and the requirement for the combiner to meet certain experimental
criteria. Additionally, we describe the working principle of our self developed Matlab script that
controls all the devices in this experiment.

Voltage Combiners The frequency tuning of the nanomechanical two-mode system can be realized
by applying control DC voltages to the two adjacent electrodes. We will discuss the dielectrical
tuning behaviour (already addressed in Ch. 3) in more detail in the following section 5.1.2. In order
to perform the Ramsey scheme, discussed in Sec. 4.1, we should be able to initialize the two-mode
system to fulfill the requirement of step (I) in Fig. 4.2.This can be achieved in the experiment by setting
the DC voltage to a fixed value. To satisfy step (II) and (IV) in Fig. 4.2, where we have to detune
the system to the sensing state and readout state, we need to generate additional control pulses on top
of the DC voltage, which bring the system to the desired operation points. The challenge here is to
create a voltage combiner, that superimposes an arbitrary waveform (consisting of multiple frequency
1JOHANSON TECHNOLOGY SLC Microwave Capacitor U70, 1800 pF
2Keithley SourceMeter 2410
3Keysight Trueform Waveform Generator 33500B
4Keysight Pulse Function Arbitrary Noise Generator 81150A
5Rohde & Schwarz Signal Generator SMB100
6Marki Microwave IQ-0307 LXP
7Mini-Circuits VLFX-80+
8Mini-Circuits ZFHP-0R75+
9MITEQ AU-1464-R +35 dB
10Rohde & Schwarz FSV Signal and Spectrum Analyzer
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components) on top of a DC voltage. We require a combiner that works with large DC offsets. It
should support signals from DC to a few tens of megahertz (DC - MHz) range to faithfully reproduce
theMagnus-based correction pulses, and most importantly, by adding and removing the arbitrary pulse
form of the AWG, we require a smooth transition without the switch-on and switch-off spikes. In the
experiment, such spikes can lead to an unwanted detuning behaviour and hence, mitigate the fidelity
in preparation of the sensing and readout states.

Figure 5.3 | Combine DC and RF Signals.
(a) Combining DC and RF using resistive RF-splitter/combiner. The resulting circuitry leads to a division
in the voltage (attenuation) of ≈ 6 dBm, hence the maximum amplitude range of the devices cannot be fully
exploited. (b) Generation of an arbitrary wave function with the build-in offset of the function generator itself.
This configuration is not suitable for our pulse scheme experiment and the DC offset provided by the device is
limited (mostly ±5 V). (c) Producing DC+RF by putting the AWG and the DC source in series. This technique
allows full range operation of the DC voltage source and the large bandwidth (DC - 50 MHz) of the AWG.

In previous works [62, 211], an active operational amplifier (OpAmp) has been used to combine the
DC voltage with the linear ramp function. Due to the high demands on signal accuracy (large DC
offsets, large frequency range and no voltage spikes) the operational amplifier is not a valid option for
our experiment. It is known that such devices create voltage offsets, frequency and phase shifts in the
combined signal.
Another possibility is to combine the signals using a resistive RF power splitter/combiner [see
Fig. 5.3 (a)]. The disadvantage of this system, however, is the strong attenuation of the input signals
of about 6 dBm which is undesirable since we require large DC offsets.
A simple and convenient method is to use only the function generator by itself. Many AWG have
the ability to produce a DC offset in conjunction with their output waveform [see Fig. 5.3 (b)].
Unfortunately, due to the application of internal attenuators and also the limited DC offset range of
the devices itself, it is impossible for us to utilize this option. Most of the devices offer DC offsets
superimposedwith waveform signal voltage only in the range of−5 V to 5 V into 50Ω load impedance,
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which is equivalent to the range from −10 V to 10 V into an open circuit. Moreover, this option is
compatible only with experiments using continuous waveform and offset. In a finite time experiment
with pulsed sequences, it is not possible to initialize the system and hence we cannot conduct the
Ramsey sequence.

In order to generate a signal or pulse sequences riding on top of a DC offset and, at the same time,
require an offset that is greater than the function generator can provide, we can put the DC power
supply in series with the function generator output [see Fig. 5.3 (c)]. This technique offers several
advantages, i.e. full bandwidth capabilities of the function generator and the flexibility in setting the
DC level delivered by the voltage source. Note, it is important to make sure that the devices in this
series should either have the same ground potential or one of them should be internally isolated (float)
from the earth ground. In our case, the DC voltage source Keithley 2410 is isolated from the earth
ground and we can float the output off the ground up to ±240 V. This means we can apply the full
range of voltage from the DC source, that is ±21 V.

Additionally, the AWG 11 used in our setup operates with two different types of amplifiers [212] in
the channel output. One amplifier (high bandwidth amplifier) is optimized for high bandwidth (up
to 120 MHz), but provides a smaller output voltage window (±5 V). The second one (high voltage
amplifier) is optimized for high output voltage (±10 V) but the downside of this amplifier type is the
lower bandwidth that allows us to operate with frequencies only up to 50 MHz instead of the full range
to 120 MHz. Nevertheless, we are not limited by the restriction of the bandwidth since we only require
the operation up to a few megahertz. In our experiment, we choose the second option to employ the
full voltage range of the AWG.

Altogether, with this technique we are able to apply DC voltages that can go up to *max = ±31 V,
which is a combination of AWG *AWG,max = ±10 V and the DC source *DC,max = ±21 V. We can
generate arbitrary pulses with a bandwidth that ranges from DC to 50 MHz. The simple circuitry
from our custom made voltage combiner box is illustrated in Fig. 5.4 (a). The output of the AWG
is put in series with the DC voltage source using a custom made BNC cable [see Fig. 5.4 (b)]. The
cable provides a proper shielding that is connected to the HF housing of the combiner box with the
connection to the ground. Furthermore, we can add a second wave function generator 12 that can
supply the sinusoidal or white noise drive to the nanomechanical resonator to implement mechanical
frequency regulations in the measurement routine (for detail discussion see Sec. 5.1.3). Note, the input
of this drive source (33500B) is heavily attenuated by adding a resistor of 1 kΩ to the device output
port (see Fig. 5.4), however, the combined signal from the AWG (81150A) and the DC voltage source
remains unaffected. This is desirable for our purposes, because we want to keep the drive power weak
in order to operate the resonator in the linear regime. For the coherent control, however, we should be
able to operate in a larger range of voltage (combined voltages of AWG 81150A and DC source) so
we can reliably separate the initial and sensing states.

11Keysight 81150A Pulse Function Arbitrary Noise Generator
12Keysight Trueform Waveform Genrator 33500B
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Figure 5.4 | Schematic of the Power Combiner Box.
(a) Graphical illustration of the power combiner box used to combine the DC voltage source and the arbitrary
noise generator (AWG 81150A) in series, together with the second wave function generator (33500B). Due to
the difference in the output impedance, the signal from the wave function generator (33500B) that we use for
sinusoidal and noise drive is heavily attenuated by (≈ −24 dBm). The combined signal from the DC voltage
source and the AWG (81150A), that we used for coherent control, remains relatively unchanged. The voltage
combiner box is made out of the HF housing Teko 372.16 that is commercially available to protect the signal
from unwanted interaction with the environment in the laboratory. (b) Photograph of the (open) box and the
custom made BNC cable for the series circuitry. The cable has the outer shielding that is connected to the HF
housing of the box for proper grounding.
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Pulse Generation In addition to the conventional waveforms, such as square, ramp and sine ect.,
the AWG (Keysight 81150A) offers the possibility to create arbitrary waveforms that can be custom
made. This option is essential for the Ramsey interferometry experiments, since we need to customize
the control pulse provided by the Magnus-based corrections discussed in Sec. 4.2. Conveniently, the
provider Keysight offers a commercial software13 that reliably supports the design of such an arbitrary
waveform. The waveform builder is a Microsoft Windows-based program that provides creation tools,
e.g. the equation editor, waveform math and drawing tools, which can be used to create custom
signals [213]. The created waveform can be fed into the AWG either by direct link or via USB drive.
The disadvantage of this method, however, is the lack in flexibility to dynamically adapt the waveform
during the measurement protocol. The waveform always has to be loaded into the AWG manually,
since there is no posibility to connect the waveform builder software to our Matlab control script.

An alternative method to generate arbitrary waveforms is the implementation of the Matlab based
application tool the so-called IQtools, that is also provided by Keysight. Note that the IQtools is a
part of Keysight’s IO Library Suite, and hence, it is important to install both the library and the tool’s
source code into the Matlab working directory. The IQtools application allows direct communication
and streaming of data to the AWG via predefined Matlab codes, which we can incorporate directly
into our measurement routine. This type of device communication is therefore the key element that
allows automation of our measurement process without manual adjustment in the control script. In
Fig. 5.5 we illustrate a typical numerically created Ramsey pulse sequence recorded from the output
of the arbitrary wave function generator.

Figure 5.5 | Pulse Generation.
A typical pulse form as a function of time generated by the arbitrary wave function generator (Keysight 81150A)
in the Ramsey interferometry experiment.

The total pulse length consists of #tot = 500.000 sample points (500 kSa) and is typically divided into
five different time windows (Ramsey sequence). The first region from 0→ C0 is a short time window
with*i = 0 V, before the actual voltage ramp 14. Here, we set the time C0 = 2c× #0

#tot
1

lAWG
, with #0 = 1

1333503A BenchLink Waveform Builder Pro Software
14A constant DC voltage is applied during the entire sequence. Both voltages from the DC source and the AWG are

combined using the combiner box as described above
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kSa and lAWG/(2c) is the frequency that is defined by the AWG itself. The second time window is
extended from C0 to

Cs − C0 = 2c × 50 Sa
500 kSa

· 1
lAWG

, (5.1)

that is the period to bring the initial state to the sensing state by ramping up the voltage*i → *f . Note,
we choose the ratio #tot

#s
= 104 for the sensing state preparation, i.e. by setting lAWG/(2c) = 1 Hz in

the AWG. With that, we obtain the sweep frequency for the sensing state

VAWG =
#tot
#s
· lAWG

2c
= 10 kHz. (5.2)

The third region of our pulse scheme with a time window Cw = Cf − Cs, is designed for the system to
evolve freely, where the two flexural modes can coherently exchange their excitation energy. Here,
we keep the voltage constant at *f . Subsequently, the forth region in Fig. 5.5, defined by the time
between Cr and Cf , is employed to detune the system to the readout state. We emphasize that the
exponential decay of the returning excitation must be measured with a finite offset with respect to
the initial frequency. This is due to the fact that the resonant sinusoidal drive tone used to prepare
the initial frequency is always on throughout the sequence. The difference in the initial and readout
states can be realized by introducing an offset in the applied voltage that is*off = *r −*i. We choose
the offset to be large enough to avoid re-excitation by the sinusoidal drive tone using in the initial
state preparation. Subsequently, in the fifth region (C > Cr), we measure the exponential decay of the
returned excitation after tuning*f to*r. After the measurement, the absolute voltage is ramped from
*r back to the initial voltage*i (not shown).

As mentioned in the previous section, the arbitrary wave function generator (Keysight 81150A) offers
two different types of amplifiers. We choose to operate with the high voltage amplifier option to exploit
the full range in the voltage output (±10 V). Note that most function generators are designed with
50Ω output impedance to minimize signal reflections when the output is connected to a coaxial cable
that also has a characteristic impedance of 50Ω and is terminated with a 50Ω load. Consequently, the
50Ω output impedance and the 50Ω load form a 2:1 voltage divider and the actual internal output of
the function generator is twice the set voltage value in the AWG. By reducing the output impedance of
our AWG to 0Ω, we can obtain an even larger voltage range from −20 V to 20 V. Another important
fact to consider, when feeding the numerically designed pulse scheme into the AWG, is that the device
will always generate an output voltage that ranges from −*f to +*f . Therefore, it is necessary to
add an offset +*f to the device to compensate the negative value and to enable the pulse sequence to
start from 0 V. With the introduced offset and the 0Ω-output impedance, the total voltage output of
the AWG is *AWG = 4*f . In order to obtain the right output voltage, we need to readjust the output
voltage at the AWG to*AWG = *f/4 to compensate both before mentioned effects.

5.1.2 Dielectric Frequency Tuning and Two-Mode Coupling

To follow the discussion in Sec. 3.3.2, where we have described the quasi-static dielectric detuning of
the nanomechanical resonator from the cavity’s RMS electrical field, we can treat the detuning effect
resulted from the applied DC voltage in the similar manner. The static and inhomogeneous electric
field from the gold electrodes induces a polarization in the dielectric material of the nano resonator.
As a result, the string is pulled towards the maximum of the electric field and therefore, experiences a
different field gradient which can be seen as an additional spring constant [56, 70, 130]

Lel = −∇( p · K). (5.3)
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Here, p = UK is the electric dipole moment and U is the polarizability of the dielectric material
(SiN) of the nanomechanical string resonator. From Sec. 2.1, we know that the string supports two
fundamental flexural vibrational modes. The in-plane (IP) mode describes the mechanical motion
along the x-axis and the out-of-plane (OOP) mode is the perpendicular polarized vibration mode along
the z-axis (see Fig. 2.1). Due to the difference in dimension of the string’s rectangular cross-section,
where the 250 nm beam width exceeds its thickness of 100 nm, the IP mode exhibits a slightly higher
rigidity than the OOP mode which leads to a higher eigenfrequency of the IP mode.

From Eq. (3.26), we show that the force gradient, experienced by the string resonator, is proportional
to the square of the applied DC voltage and thus, we expect a quadratic dependence in the detuning
behaviour of the resonator resonance frequency with respect to the applied DC voltage. In the
investigated geometry, where the string is lower than electrodes, the respective eigenfrequencies of
the IP and OOP modes can be detuned in opposite directions [130]. Thus, by tuning the applied DC
voltage, we can compensate the frequency difference of the two respective modes and bring them on
resonance.

Figure 5.6 | Dielectric Tuning and Strong Coupling.
Color-coded and noise driven frequency spectrum versus the applied DC voltage. The resonance frequency of
the IP mode decreases quadratically as a function of the DC voltage. The resonance frequency of the OOPmode,
on the other hand, increases quadratically. The strong coupling of the two flexural modes and the resulting
avoided crossing with a level splitting Ω0 is apparent. The orange circles denote the initial and final voltages
of the Ramsey protocol that we will discuss later in Sec. 5.3. Δ0 is the initial level splitting of the two flexural
modes. The green arrows illustrate the differences in frequency splitting in both cases.

In case of strong coupling, these two fundamental flexural modes hybridize into normal modes that
can be expressed as a superpositon of the two modes. The resulting avoided crossing near resonance
is the characteristic fingerprint of strong coupling with the corresponding level splittingΩ0. As shown
in Fig. 5.6, the IP mode has a higher eigenfrequency than the OOP mode at*DC = 0 V. By increasing
the DC voltage to ≈ −8 V the two modes can be tuned into resonance, where the avoided crossing
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with a level splitting of Ω0 can be observed. Note that the coupling of the two modes is mediated by
the strong inhomogeneous electric field K between the electrodes that induces force gradient to the
beam due to asymmetry in the geometry [56]

Ω0/2c ∝
m�G

mI
=
m

mI

(
−mU�

2

mG

)
= −Um

2�2

mImG
. (5.4)

The non-zero cross derivative in Eq. (5.4) ensures that a displacement in x-direction modifies both the
IP and OOP modes and is responsible for the mode coupling. The strong coupling allows coherent
exchange in excitation energy of the two normal modes, where coherent control experiments such as
Rabi, Ramsey and Hahn Echo sequences can be conducted [47, 77]. By further increasing the voltage
(*DC ≈ −20.5 V), we can strongly tune the two modes out of resonance to obtain pure IP and OOP
modes again. By tuning the nanomechanical flexural modes in and out of resonance, we can mediate
the coupling behaviour of the system.

5.1.3 Measurement Protocol
The frequency tuning of the nanomechanical flexural modes to implement the theoretical proposed
iterative adaptive sensing protocol (see Sec. 4.4) requires very reliable and precise control inDCvoltage
supply and pulse generation. Therefore, it is essential to generate a measurement script to implement
the sequences and commands to control all the devices showed in Fig. 5.2. The communication
between AWG (Keysight 81150A) that is used to prepare the sensing and readout states during the
measurement and the spectrumanalyzer (R&SFSV) thatmeasures the exponential decay in a ring-down
measurement, is of particular importance. The synchronization of the two devices can be realized
using the so-called "trigger mode". When operating in the trigger mode, the AWG (81150A) will
simultaneously send the pre-defined waveform and a trigger signal to the output ports (see Fig. 5.2).
The spectrum analyzer, on the other side, will start to record the data within a certain time window
once it receives the trigger signal from the AWG. To achieve a good synchronization, we need to
implement a certain delay time between the trigger output and the beginning of the measurement. The
delay time will compensate the transient time of the triggered signal that travels through the cable
at certain length. In Fig. 5.7, we illustrate the working principle of our Matlab control script. The
Matlab source codes can be found in the GitHub repository [214].

Generally, we start our Matlab script by defining important device parameters, the working directory
in which the final results can be saved and the eigenfrequency 5init of the nanomechanical IP mode for
measurement’s initialization. Note that the initial eigenfrequency of the IPmode and the corresponding
intial voltage can be roughly estimated using the spectroscopymeasurement depicted in Fig. 5.6 (orange
dot at roughly −20.5 V). The microwave cavity pump is kept constant at %µw = 22 dBm throughout
the measurement. To get the exact initial frequency 5init, we implement a noise driven characterization
measurement using the spectrum analyzer. Here, the nanomechanical eigenfrequency is regulated by
the applied voltage *i inside a feedback loop until the desired eigenfrequency 5init is obtained. Note
that the initial voltage *i must be re-adjusted after each measurement to keep 5init constant, since
the resonator experiences eigenfrequency shifts due to temperature fluctuations and the large sudden
change in control voltage.

In the next step, we calculate the voltage offset X* = *f −*i and Ω0 that are necessary to create the
leading and trailing edges of the Ramsey sequence. The results from the spectroscopy measurement
serve as a first rough estimate (see orange dot (*f) in Fig. 5.6) to find the appropriate final voltage*f
and to reach the avoided crossing region. In Appendix A.3, we show our routine to fit the avoided
crossing in order to extract all the important parameters. Additionally, we use the prior knowledge of
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Figure 5.7 | Working Principle of the Matlab Control Script.
The Matlab script is the key element that controls all the devices for frequency regulations and ring-down
measurements. It dynamically changes the input parameters to generate data for the Ramsey protocol.
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the level splitting Ω0 to calculate the Fourier coefficients 2k, 3; [see Eq. (4.49)] in the Magnus-based
corrections and to adjust the proper time window such that (Ω0/2c)Cw = 4 to improve the frequency
estimation procedure. The numerically designed correction pulse with Magnus-based correction for
the leading and trailing edges can then be fed into the AWG using the IQtools source code.

We start the actual measurement routine by creating a set of waiting times to dynamically modify
the pulse form. Before each measurement, we again introduce two steps of frequency regulations to
always start at the right frequency 5init. This is particularly important because our system experiences
frequency drift as the ambient temperature inside the lab changes over time. Furthermore, the detuning
in the voltages also leads to a slowdrift in themechanical eigenfrequency thatwe need to compensate. 15
In the first step, we employ the noise driven frequency regulation scheme that is similar to the initial
frequency regulation described above. To obtain a better accuracy, we add the 2nd frequency regulation
step. Here, we apply a single frequency sinusoidal drive at 5init and, again, re-adjust *i to fine tune
the maximum amplitude of the mechanical response. In case both frequency regulations are satisfied,
the script will switch the AWG and FSV into trigger mode operation. Subsequently, the AWG initiates
a trigger event and, simultaneously, sends the arbitrary pulse to the main output port to start the
ring-down measurement in the FSV. Note, for each set of waiting time, we repeat the measurement
30 times, respectively. The data generated by the spectrum analyzer is then stored in the predefined
working directory for subsequent data analysis.

Setup Characterization Since wewant to operate the coupled two-mode system in the linear regime,
it is important to find out the threshold of drive power, where the mechanical response becomes
nonlinear. For that purpose we characterize the nanomechanical amplitude response by varying the
sinusoidal drive power from −50 dBm to 0 dBm. The sinusoidal drive frequency is kept constant
and the amplitude is readout using the spectrum analyzer in the time domain at the very same drive
frequency. Note that the initial frequency is regulated with the very same voltage regulation procedures
discussed above. The results are illustrated in Fig. 5.8 (a). Each measurement point represented the
average amplitude measured over 1 s time window. For low drive power up to ≈ −25 dBm, we observe
a linear increase in the amplitude response of the resonator. Above the threshold, the response of the
mechanical resonator enters the nonlinear regime, hence, the output amplitude starts to saturate since
we only measure at the same frequency.

Additionally, we show in Fig. 5.8 (b) a typical result of the voltage regulation procedure during the
experiments. Here, we choose a waiting time period that contains 30 data points. Each individual
point is then repeated 30 times to obtain statistical distributions for a better frequency estimate. The
voltage regulation procedure needs to be re-adjusted after each measurement point. It is apparent, that
the system experiences a large drift at the beginning of the experiment. That is due to the strong tuning
of the applied DC voltage to find the initial frequency. Note that the cavity pump at %µw = 22 dBm
is always kept constant and we usually wait for 2-3 days before performing the measurement for the
system to stabilized in order to avoid long term drift due to microwave cavity pump. From Fig. 5.8 (b),
it is apparent that the voltage adjustment can compensate a much slower drift that is attributed to the
change in the temperature inside the lab environment.

We would like to emphasize that the voltage regulation procedures are essential for our data analysis.
It is very important to always start with the same condition and the same initial frequency ( 5init) to
ensure reproducibility.

15Note that the measured the frequency drift due to temperature fluctuation is 2 Hz over 40 hours. The slow drift due to
the change in cavity pump power or applied voltages is roughly 1.2 kHz
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Figure 5.8 | Measurement Setup Characterizations.
(a) Nanomechanical resonator amplitude response versus the applied sinusoidal drive power. Linear increase
in the amplitude response up to −25 dBm defines the threshold in the driven experiment before the resonator
starts to enter the nonlinear regime. (b) The voltage regulation from a set of measurement consists of a time
period ((Ω0/2c)Cw = 4) with 30 measurement points and each measurement point is repeated by 30 times to
obtain statistical distributions.

5.2 Landau-Zener Transitions
The observation of an avoided crossing in the dielectric detuning experiment in Sec. 5.1.2 is a
characteristic fingerprint of strong coupling. Now, we can further study the time dynamics of these
two strongly coupled flexural IP and OOPmodes. When tuning the flexural modes through the avoided
crossing region (see Fig. 5.6), the modes undergo a transition that strongly depends on the tuning
speed. This behaviour follows the well-known Landau-Zener model, that is often used to describe
nonadiabatic transitions of quantum mechanical modes, e.g. quantum dots [208], superconducting
qubits [215], and nitrogen-vacancy centers in diamonds [216].

In Figs. 5.9 (a) and (b), we depict the dielectric frequency detuning scheme to sweep the system
through the coupling region. Note that we utilize the same measurement protocol discussed in
Sec. 5.1.3.The mechanical resonator is initialized at frequency 5init by applying a sinusoidal drive tone
at the mechanical eigenfrequency lIP/(2c) in the lower branch or lOOP/(2c) in the upper branch
[see green circles in Fig. 5.9 (a)] together with a static DC bias voltage *i,LZ to the electrodes. At
time C = 0, we add a third tone that contains a simple linear ramp function provided by the AWG to
increase the voltage up to *f,LZ within a time interval g [red solid line in Fig. 5.9 (b)]. By changing
the frequency of the linear ramp function, we are able to modify the tuning speed and therefore, we
expect to observe a change in the transition probability [188]. After the ramp and a short delay time
g + X, we start to record the decaying signal 0r [blue solid line in Fig. 5.9 (b)] of the mechanical
oscillator. In this measurement, we initialize the system either in the lower branch with the IP mode
and lIP/(2c) or in the upper branch using the OOP mode with lOOP/(2c). In both cases, we use the
initial voltage*i,LZ ≈ −17 V. We measure in both cases at the lower branch after sweeping the initial
frequencies through the avoided crossing at *f,LZ ≈ −1 V [see red circle in Fig. 5.9 (a)]. Note, it is
necessary to add a delay time to avoid transient artifacts in the pulse scheme. As shown in Fig. 5.9 (b),
we extrapolate the exponential decay back to the beginning of the linear ramp (blue dashed line) to
determine the resonator’s amplitude 00 at C = 0. Note that the decay in amplitude between C = 0 and
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Figure 5.9 | Adiabatic and Diabatic Dynamics of the classical Two-Level System.
(a) Dielectric tuning of the mechanical modes reveals a clear avoided crossing at ≈ −8 V. The eigenfrequencies
are extracted from the spectroscopic measurement illustrated in Fig. 5.6. Green circles indicate the initialization
either in the IP mode or OOP mode at *i,LZ ≈ −17 V and the red circle denotes the measured position
(*f,LZ ≈ −1 V) to determine Landau Zener transitions. (b) The pulse and measurement sequence of the time
resolved experiment to demonstrate Landau-Zener transitions. At C = 0 The initial DC voltage*i (red solid line)
is ramped up to*f during the time span g to sweep the mechanical modes through the avoided crossing region.
We start to record the mechanical decay (dark blue solid line) after a delay time X. The exponential fit (dark blue
dashed line) is used to extrapolate the decaying signal back to C = 0 to extract the magnitude of the mechanical
resonator for normalization. (c) Exponential decays of the mechanical amplitude for different sweep frequencies
VAWG = {1, 20, 50} kHz. Here, the initial frequency lIP(*i)/(2c) and final frequency lOOP(*f)/(2c) are in
the same lower branch [see Fig. 5.9 (a)]. (d) The probability of traversing the avoided level crossing for different
ramp speed lAWG, i.e. going from a mode initialized in the OOP mode of the upper branch into the OOP mode
of the lower branch on the other side of the avoided crossing (light blue circles). The transition probability,
when initializing the IP mode in the lower branch and sweeping through the avoided crossing into the OOP
mode in the lower branch, is indicated by the light orange circles. The blue and orange solid lines illustrate
theoretical predictions obtained from Eq. (5.9).
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C = g + X has to be accounted in the theoretical model in order to determine the correct transition
probability. In our case, we introduce the an additional term in the normalization procedure

%LZ =
00
0init

exp
(
Γ

VAWG

)
. (5.5)

Here 00 is the extrapolated amplitude extracted from the exponential fit, 0init is the initial amplitude

from the sinusoidal drive prepared at *i,LZ, Γ is the mechanical decay term and VAWG is the sweep
frequency. For the initialization in the lower branch using the IP mode, we find 1/ΓIP = 5.9 ms. In
the upper branch the decay is 1/ΓOOP = 6.8 ms.

For a small tuning speed, the excitation energy remains in the same branch. In other words, it is
very likely to transfer the energy from one vibrational mode to the other in the adiabatic limit. When
the frequency detuning speed becomes faster, the system is dominated by the diabatical behaviour
and there is no mixing between the two modes. The excitation energy is more likely to remain at
the same flexural mode and hence, there is a transition from one branch to another. This is the
classical behaviour [188] of the Landau-Zener transition that is analogous to the quantum mechanical
counterparts. We can define the transition probabilities for both quantum and classical case as

%dia = exp

(
−
cΩ2

0
2U

)
. (5.6)

The transition probability for the adiabatic case is simply

%adia = 1 − %dia. (5.7)

We define the detuning speed in Eq. (5.6) as

U

[
�I

B

]
= 2eff · X* · VAWG, (5.8)

with 2eff = 43.363 kHz/V the voltage to frequency conversion factor obtained from the avoided
crossing, X* = *f −*i and VAWG = 104 · lAWG

(2c) the sweep frequency that we can adjust from the AWG
to change the detuning speed. In Fig. 5.9 (c), we plot the exponential decays, where the initial IP mode
and the readout mode (OOP) are in the same lower branch, as a function of time for different sweep
frequencies VAWG = {1, 20, 50} kHz, respectively. As expected, most of the excitation in the IP mode
is adiabatically transferred to the OOP mode in the same branch for low detuning speed. At higher
speed, lAWG/(2c) = 50 kHz, the excitation energy is more likely to end up in the upper branch. This
measurement is repeated for many different ramp frequencies.

We show the final result for the Landau-Zener transitions in Fig. 5.9 (d). Note that in this experiment,
we prepare the initial states either in the upper or lower branch [see green circles in Fig. 5.9 (a)]
and monitor the decay of the mechanical resonator in the lower branch after sweeping through the
avoided crossing at the final voltage *f,!/ ≈ −1 V [see red circle in Fig. 5.9 (a)]. The results in
Fig. 5.9 (d) clearly demonstrate the expected behaviour. For slow ramp frequencies, the adiabatic
behaviour dominates. For faster detuning, the transition probabilities interchange the roles for both
cases. Note that we do not obtain unity transition probability for the case, which we initialize the
system in the lower branch [light blue circles in Fig. 5.9 (d)]. We refer this behavior to the fact that we
can not prepare the initial mode as a pure state due to the mode hybridization of the two modes over
the operated DC voltage range. Hence, this mitigates the contrast in the transition probability. Since
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we do not operate with pure mechanical flexural modes (IP and OOP) but with hybridized modes, we
use a modified transition probability [217]

%dia,mod =
[√
%dia · E +

√
1 − %dia · (1 − E)

]2
(5.9)

with E is the visibility equal to 1 for pure state preparation. Note, from the fit using Eq. (5.9) we can
extract the level splitting for the case of frequency initialization in the upper branche [light orange
triangles in Fig. 5.9 (d)]Ω0/(2c) = 40.02 kHz. When initializing the system in the lower branch [light
blue cirlcles in Fig. 5.9 (d)] , we obtain Ω0/(2c) = 56.06 kHz and from the avoided crossing (see
Fig. 5.6 and Appendix A.3), we get Ω0/(2c) = 41.31 kHz. These results demonstrate the difficulty to
extract the level splitting of our strongly coupled flexural modes of the nanomechanical resonator with
high accuracy. In the following section, we introduce the experimental realization of the theoretically
developed iterative adaptive sensing protocol (see Sec.4.4) based on Ramsey interferometry (discussed
in Sec. 4.1) that allows frequency estimates with high precision. The precise estimation of the level
splitting is essential for the development of the coupled two-mode system as a coherent sensor.

5.3 Ramsey Protocol
As mentioned in the beginning of this chapter, we employ the coherent nature of the resolvable and
strongly coupled modes to implement the enhanced Ramsey protocol proposed in Sec. 4.1. The
key quantity in this protocol is the phase, i(Cw) = Ω0Cw, emerged during the coherent transitions.
Thus, the recorded phase provides direct access to the level splitting Ω0. In contrast to conventional
Ramsey interferometry, we replace the c/2-pulse [see step I’ in Fig. 4.1 (a)] used for sensing state
preparation by a fast-tuning pulse generated from the AWG to directly implement the Ramsey protocol
[fast process indicated by orange arrows in Fig. 4.1 (a)]. This pulse performs an unitary mapping of
the initialized state into the sensing state at the avoided crossing. The fidelity of generating an ideal
sensing state is proportional to the speed of the unitary evolution, which is limited by experimental
constraints (see Sec. 4.1.2). We overcome this limitation by introducing the Magnus-based corrected
protocol discussed in Sec. 4.2. These corrected pulses ensure high-fidelity sensing and readout state
preparations while working intermediate regime. The Ramsey interferometry can thus be implemented
by the following pulse scheme

* (C) =



*i, for C < C0,
*i + X* · Δ0s(C), for C0 ≤ C < Cs,
*f , for Cs ≤ C < Cf ,
*f − X* · [1 − Δfr(C)], for Cf ≤ C < Cr,
*r, for Cr ≤ C.

(5.10)

Here, *i,*f are the initial and final voltages [see Fig. 5.10 (a)] and X* = *f −*i. Furthermore, we
define the time dependent detuning

Δ 9 : (C) = 5 9 : (C) + Δ 9 :,corr(C), (5.11)

where 9 ∈ {0, f}, : ∈ {s, r}. The single tone function 5 9 : (C) requires the pulse scheme to fulfill the
condition 5 (C = 0) = 5 (C = Cr) = 0 and hence, we define

5 9 : (C) =
1
2

[
1 − cos

(
c
C − C 9
C: − C 9

)]
. (5.12)
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The correction term
Δ 9 :,corr(C) = Δ 9 :,even(C) + Δ 9 :,odd(C) (5.13)

is obtained from theMagnus-based strategy with the corresponding first harmonic in the Fourier series

Δ 9 :,even(C) = 21

[
1 − cos

(
2c

C − Cj
Ck − Cj

)]
,

Δ 9 :,odd(C) = 31

[
sin

(
2c

C − Cj
Ck − Cj

)]
,

(5.14)

where 21 and 31 are the free Fourier coefficients associated with the first harmonic correction one must
find to fulfill Eq. (4.47). Figure 5.10 (a) illustrates the typical Ramsey pulse scheme that includes the
following sequence

(I) Initialization: the state a1 =

[
0

lip(C0)

]
is prepared by applying a constant voltage *i to obtain

the IP mode with the corresponding eigenfrequency lIP at inititial time C0 (in the lower branch)
to satisfy the condition Δ0/Ω0 � 1 (see Fig. 5.6). Note, the mode is driven continuously on
resonance during the entire sequence.

(II) Sensing state preparation: implementation of the leading edge with Magnus-based corrections
[see Eq. (5.10)] to frequency-sweep the system to the sensing state as = a1 at C = Cs. To obtain a
reference measurement for the corrected protocol, we can prepare the sensing state without any
correction.

(III) Coherent evolution: for a time Cw = Cf − Cs where the system picks up a phase q = Ω0Cw.

(IV) Read-out state preparation: implementation of the trailing edge with (or without) Magnus-based
corrections to sweep the system to the read-out state ar at C = Cr.

(V) Readout of the ring-down signal as described in Sec. 5.2 to determine the system’s return
probability.

Ideally, the initial and readout states should be identical in order to correctly map the return probability
from the Ramsey sequence. Since the initial state is driven continuously, it is necessary to introduce
a finite offset 01(Cr) − 01(C0) ≠ 0 that enables the readout state to decay rather than being re-excited
(see solid blue line in Fig. 5.10 (a). Additionally, the exponential decay is extrapolated back to
C0 (see dashed blue line in Fig. 5.10 (a) to compensate mechanical damping during the evolution
times Cs, Cw and Cr. By keeping the ratio {lip(Cr) − lip(C0)}/Δ0 � 1, we assume the offset has no
significant impact on the determination of the return probability. Fig. 5.10 (b) illustrates the typical
ring-downs of the readout mode for waiting times Cw = 0 (circles) and Cw = 2c/Ω0 × 1

2 (diamonds),
respectively. The corresponding exponential decay fits are extrapolated back to C0 and the resulting
return amplitude is normalized to the signal amplitude during the initialization procedure (see step I)
where the eigenfrequency of the in-plane mode lip(C0) is continuously driven. The measured return
probability is thus defined as [see also Eq. (4.1)]

%r(Cw) = |aT
1 exp (−iΩ0CwfG)a1 |2 = 1 − E sin2

[(
Ω̄
(<)
0 /2

)
+ i

]
. (5.15)

Here, E is the visibility equal to 1 for ideal state preparation.

In the following, we demonstrate the outputs of our experimental results. First, we conduct the
Ramsey interferometry protocol with the simple control term Δ 9 : (C) = 5 9 : (C) that contains only a
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Figure 5.10 | Implementation of the Ramsey Interferometry.
(a) Ramsey pulse sequence with the corresponding first harmonic Magnus-based correction for 9 = 1 (Mod1)
(see Sec. 4.2.2) of the leading (I) and trailing (IV) edges for the frequency-sweep. Note that we introduce a
finite offset*r −*i ≠ 0, that allows the readout state ar(Cr) to decay while the initial state a1(C0) is continuously
driven. (b) Experimental ring-downs for different waiting times Cw of the Ramsey sequence (light blue). The
exponential fits are extrapolated back to C0 to compensate the decay caused by the mechanical damping during
the evolution time. The black dashed lines indicate the positions of C0 and Cr in (a), respectively. Note that due
to the different waiting times Cw, there is a small deviation in the readout times Cr . However, this is not clearly
observable since the difference is only ≈ 10 µs.
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Figure 5.11 | Control Pulse with Magnus-Based Corrections versus Soft Ramp.
(a) The outputs of the Ramsey interferometry showing the return probability as a function of waiting time with
the typical oscillatory behaviour (Ramsey fringes) for both uncorrected control pulses, denoted soft ramp, (blue
circles) and the Magnus-based modified control pulses (orange diamonds). The measurement time window is
Cw = =p

(
2c
Ω0

)
, with =p = 2 is the number of the expected cycles. (b) The discrete oscillatory outputs in the time

domain in (a) is transformed into the frequency domain using DFT. In the soft ramp case (blue solid line), no
distinct global maximum is observed (ignoring the zero-frequency peak), whereas the Magnus-based corrected
frequency-sweep (orange solid line) leads to a frequency distribution with a pronounced global maximum. Due
to the added zero-padding (see discussion in Sec. 4.3.2), the resolution of the DFT in the frequency domain is
greatly enhanced. We choose =pad = 2000.

single frequency component in the cosine function [see Eq. (5.12)]. We refer to this configuration as
the "soft ramp" case which serves as a reference measurement for the corrected protocol.

Second, we add the correction terms from the Magnus-based strategy, that contains the first harmonic
in the Fourier series [see Eqs. (5.13) and (5.14)], to the control pulse Δ 9 : (C) = 5 9 : (C) + Δ 9 :,corr(C).
We refer this case as the "1st corr". Figure 5.10 (a) illustrates a typical pulse form whose leading and
trailing edges are modified using the first harmonic corrections.

Here, we choose the measurement time window such that Cw = 2
(

2c
Ω0

)
. The tuning speed in our case

is defined by the sweep frequency that is

VAWG =
2eff · X* · Ω0

Δ0 · b
. (5.16)

Here, X* = *f −*i = 13.012 V is the voltage required to detune the initial state into the sensing state,
2eff = 43.363 kHz/V is the voltage to frequency conversion factor obtained from the dielectric tuning
measurement in Sec. 5.1.2,Ω0/(2c) = 41.311 kHz is the level splitting of the two coupled mechanical
modes in the avoided crossing region, Δ0/(2c) = 463.153 kHz is the initial frequency splitting at
C = C0 and

b =
Ω0Cs
2c

(5.17)

is a dimensionless parameter in Eq. (5.16) with a sweep time Cs dependence. In the theoretical
prediction [see Fig. 4.5 (a) and (b)], the uncorrected frequency sweep needs to fulfillΩ0Cs/(2c) � 10−2

in order to achieve error fidelities on the order of 10−3. This requirement translates into a sweep
frequency output that is VAWG ≈ 5.777 MHz. Although this requirement is well-suited in the operation
bandwidth of our AWG (0 MHz − 50 MHz) in the high voltage amplifier mode, it is still not possible
for us to perform control pulses in this frequency range. In this experiment, the voltage combiner box
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together with the single layer capacitor (see Fig. 5.2) ultimately put an upper limit in the frequency
operation at 100 kHz (see discussion in appendix A.4).

Conveniently, we can soften the frequency requirement with the Magnus-based strategy, e.g. we can
choose control pulses with the first harmonic corrections such that b = Ω0Cs/(2c) ≡ 1

2 [see Fig. 4.5 (a)
and (b)]. In this case, the error fidelities in state preparations is on the order of 10−2. At the same
time, we can strongly reduce the sweep frequency requirement in Eq. (5.16) to VAWG ≈ 100 kHz.

In Fig. 5.11 (a), we plot the return probabilities [see Eq. (5.15)] of the initial state a1 as a function of
waiting time Cw for the uncorrected "soft ramp" case and the corrected "1st corr" case. Note, we perform
30 averages for each measurement point to obtain a mean value and the corresponding statistical error.
We observe the oscillatory behaviour in the time domain which is the characteristic finger print of
the Ramsey interferometry in both cases. In stark contrast, the corrected pulse scheme exhibits an
oscillatory signal with a much higher peak to peak amplitudes and exhibits a corrected phase shift
compared to the soft ramp. This result indeed indicates the strong suppression of the spurious coupling
during the sensing and readout state preparations when adding Magnus-based correction terms to the
control pulses.

The effect of the corrected dynamics becomes even more apparent when transforming the Ramsey
interferometry outputs to the frequency domain. In Fig. 5.11 (b), we show the corresponding discrete
Fourier transform of the obtained Ramsey fringes. In order to reduce the effect of scalloping loss due
to a small number of sampling points =samp = 30, we use the zero-padding technique discussed in
Sec. 4.3.2. Here, we add =pad = 2000 zero-valued sampling points on both sides of the oscillatory
signals to enhance the frequency resolutions. The modified control pulse with correction terms leads
to a frequency spectrum (orange solid line), where a global maximum can easily be identified (the
zero-frequency peak is excluded). In the case of the soft ramp (blue solid line), however, no distinct
global maximum is observed.

We emphasize that despite the good control in sensing and readout state preparations, we still observe
the effect of spectral leakage in the frequency distribution. From the discussion in section 4.3.3, we
know that this effect can lead to a shift of the maxima of the Fourier transform and hence, mitigates
the precision in frequency estimate. In the following section, we show how the iterative, adaptive
procedure proposed in Ch. 5, that combines the windowing schemes and the update of the previously
estimated frequencyΩ0, will minimize the unwanted effects in the discrete Fourier transform and thus,
yields a high precision estimate of the level splitting Ω0.
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5.4 Iterative Adaptive Spectroscopy for Frequency Estimation
To determine the level splitting Ω0 with high fidelity, we follow the theoretically proposed "Iterative
Adaptive Spectroscopy" protocol (IAS) discussed in section 4.4. The protocol first follows an initial
estimate of Ω0, e.g. extracted from spectroscopy measurement, which is done by fitting the avoided
crossing (see Appendix A.3). We define this initially estimated splitting as Ω̄(0)0 . This measurement is
then used to define the measurement time window C

(1)
w = =p

(
2c/Ω̄(0)0

)
and the correction coefficients

2
(1)
1 := 2(1)1

[
Ω̄
(0)
0 ,Δ0

]
and 3 (1)1 := 3 (1)1

[
Ω̄
(0)
0 ,Δ0

]
for the iteration step, < = 1. Again, 21 and 31 are the

free Fourier coefficients associated with the first harmonic correction onemust find to fulfill Eq. (4.47).
Δ0 is the initial detuning at C0 shown in Fig. 5.6 (c) fixed by the choice of our initialization frequency
a1(C0) and the number of cycles =? = 4. The initial estimate for this system from the spectroscopic
measurement (see appendix A.3) gives a splitting of Ω̄(0)0 /(2c) = 41(1) kHz from the fitting and the
error is given by the least squares in the regression analysis. The modified Ramsey protocol with these
parameters then yield an oscillatory signal following

%
(<)
r = 1 − E sin2

[(
Ω̄
(<)
0 /2

)
+ i

]
(5.18)

where, E is the visibility equal to 1 for ideal state preparation. The coupling then can be estimated by
performing a fast Fourier transform (FFT) on the zero-padded Ramsey data [184]. On each iteration
step (< > 1) we then:

(a) update the measurement window with C (<)w = =p

(
2c/Ω̄(<−1)

0

)
,

(b) update the corrected control pulseswith the adaptedFourier coefficients 2(<)1 := 2(<)1

[
Ω̄
(<−1)
0 ,Δ0

]
and 3 (<)1 := 3 (<)1

[
Ω̄
(<−1)
0 ,Δ0

]
,

(c) convolute the Ramsey signal with the Blackmann-Harris (BH) window to reduce the effect of
signal processing artifacts, such as spectral leakage and scalloping losses (see discussions in
Sec. 4.3.3).

For instance, we show in Fig. 5.12 (a) the Ramsey signal with no windowing (blue) and Blackman-
Harris windowing (orange) for iteration step < = 8. The Ramsey signal is then padded and Fourier
transformed which gives us an estimate of the splitting for this particular instance [see Fig. 5.12 (b)].
We would like to stress that for each iteration step < the estimation of C (<)w , 2

(<)
1 , 3

(<)
1 is performed

with Ω̄(<−1)
0 evaluated by Blackman-Harris window function in the previous iteration. However, we

display the result of the estimation at each iteration step < (for < > 1) with both BH and rectangular
window (or no window) as shown in Fig. 5.12 (c). Note the missing point in BH window for iteration
< = 1. Only the rectangular window can be applied for this particular case, that is due to the small
number of cycle =p = 2 (see Fig. 5.11). Since the BH window function strongly suppresses the side
lobes of the signal in the time domain [see Fig. 5.12 (a)], it is necessary to employ =p ≥ 4 in order to be
able to estimate the signal in the Fourier frequency domain. For each iteration <, the measurements
are performed statistically on 30 Ramsey signals. To obtain a statistical distribution in the frequency
domain, we estimate the frequency of each Ramsey oscillation before averaging. Here, we assume
that the noise contribution does not appreciably change the level splitting for one realization of the
protocol (frozen environment approxiamtion).

As seen in Fig. 5.12 (c), the Blackman-Harris window results in a well distinguishable estimate of the
splitting compared to the rectangular window with an accuracy better than the standard errors of the
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Figure 5.12 | Iterative Adaptive Spectroscopy for Short and Finite Signals.
(a) Return probability of the state a1 as a function of time in the Ramsey interferometry experiment (blue
circles). Similar to Fig. 5.11 (a), we obtain the typical Ramsey fringe that oscillates at Ω0 in the chosen time
window Cw = 4

(
2c
Ω0

)
. Point-wise product of the Ramsey fringe with the Blackmann-Harris window (orange

dots). Each point indicates the mean value and the corresponding error bars indicate the statistical distribution
over 30 measurements. The dotted blue and orange lines serve as guide to the eye. (b) Fourier spectra of
zero-padded Ramsey signal with rectangular window (no window) function (dark blue) and Blackmann-Harris
window function (orange). The dark blue and orange arrows indicate the maximum positions for frequency
estimations using the respective windows. (c) Frequency estimations of the level splitting Ω̄0

(<) for each
subsequently updated iteration step <. The red circles at < = 8 indicate the frequency estimates from panels
(a) and (b) using no window and BH window functions, respectively. For < = 1, we choose the number of
cycle =p = 2 for the Ramsey oscillation. Since the BH window function strongly suppresses the beginning and
the end of a signal in time domain [see (a)], it is not possible to determine frequencies in Fourier domain for
=p = 2. Thus, only the no window function is applicable in this case.
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individual estimations. Although the iteration saturates for < > 3 and then stays within the standard
errors of further estimations, we show here until < = 12 to display the stability of our measurement
scheme. For < = 8 (red circles), corresponding to the situation shown in Fig. 5.12 (a) and (b), the
frequency estimations with the corresponding standard errors from Blackman-Harris and rectangular
window are Ω̄(8)0,BH/(2c) = 42.79(24) kHz and Ω̄(8)0,RW/(2c) = 44.27(8) kHz, respectively.
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Figure 5.13 | Frequency Estimation versus Number of Cycles.
Frequency estimation with high precision is possible for systems with long coherent time. For system with
short coherence our IAS sequence with BH window (orange) yields a much better frequency estimate than the
rectangular window function(dark blue). For the sake of comparison, we introduce a new x-axis showing the
effective number of cycles =BHp . This is again due to the fact, that the BH window strongly suppresses the
amplitude at the beginning and the end of the oscillatory signal in the time domain [see Fig. 5.12]. The vertical
dashed black line separates the regimes with long (gray box) and short (white box) coherence times.

A natural and simple way to suppress spectral leakage and scalloping is to increase the number of
cycles =p and number of data points (i.e. zero-padding) in the measurement. Here, we again employ
the iterative adaptive method mentioned above and, at the same time, vary the number of cycles =p to
update the measurement window. Additionally, we add =pad = 2000 to increase the spectral solution in
the Fourier frequency domain. As apparent in Fig. 5.13, the frequency estimate using the rectangular
window (dark blue) has strong variations for small =p, whereas the BH window (orange) remains
relatively unchanged. By increasing the number of cycles, the effects of spectral leakage is strongly
suppressed and the frequency estimate of the rectangular window approaches the BH method. Note,
however, that this type of measurement with large number of measurement cycles =p is only possible
for systems with long coherence time.

Nevertheless, precise frequency estimate for short finite signals (i.e. low =p) is still achievable with our
developed iterative adaptive spectroscopy. For the sequence, we employMagnus-based corrections for
high fidelity state preparation and BHwindow filter function to suppress spectral leakage. Once again,
we want to emphasize the advantage of our quasi-instantaneous high precision IAS measurement over
conventional coherent control techniques e.g. spin-echo [52] or Carr-Purcell-Meiboom-Gill (CPMG)
sequence [218]. These dynamical-decoupling techniques were implemented to mitigate noise and
extend the coherence of the two-level system by generating train of control c−pulses [219]. In order
to reliably generate these pulses, good knowledge of the level splitting Ω0 and long coherence time )1
are strongly required. Furthermore, the applied square pulses have finite rise times that are limited by
the bandwidth of the pulse generator, and again, degrade the precise control of the coherent dynamics.
Our method, however, is not constrained by systematic noise, decoherence sources or limitations such
as the bandwidths of the experimental apparatus and thus, enables fast and high precision in frequency
estimate even applicable for systems with short coherence times, where only a small number of cycles
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=p can be measured (see Fig. 5.13). Note that we indeed conduct frequency estimate experiments
using a nanomechanical system with long coherence time )1 ≈ 6 ms. Nevertheless, we can mimic
the operation of the system with short coherence time simply by reducing the number of oscillation
periods =p in the experiments to demonstrate the advantage of our developed IAS protocol in frequency
estimation with high precision.

5.5 Coherent Sensing
The high fidelity state preparation and precise frequency estimate allow us to employ the coupled
nanomechanical two-level system as a coherent sensor to determine small changes of physical quan-
tities, e.g electric or magnetic field, in the surround environment, where the two-level system is
embedded.

Figure 5.14 | Dielectric Tuning and Cavity Pump Power.
Eigenfrequencies of the IP and OOP modes versus DC bias voltage. The dots are values extracted from
Lorentzian fits of the spectroscopic measurements (see for instance Fig. 5.6). The modification of the cavity’s
pump power leads to a small deviation in the tuning behaviour of the respective modes.

.

Modification of the Level Splitting In Ref. [56], it has been demonstrated that the strong coupling
Ω0 of the two flexural modes arises from the asymmetry of the beam and the two adjacent electrodes.
The effective electric field exhibits a gradient in x and z direction [see Eq. (5.4)] that governs the
coupling strength of the in-plane and out-of-plane modes. In our specific case, we modify the root-
mean-square (RMS) electric field that builds up inside the microwave cavity [95, 107] by varying
the microwave cavity’s pump power %µw and hence, changing the electrical environment around the
dielectrical resonator. As a result, we expect the coupling strengthΩ0 of the two flexural modes to shift
according the change in the field’s strength. In Fig. 5.14, we illustrate the dielectrical eigenfrequency
tuning behaviour of the flexural IP and OOP modes as a function of the applied DC voltage for two
different cavity pump powers %µw = 22 dBm and %µw = 22.5 dBm, respectively. The slight change in
the pump power of the microwave cavity results in a small deviation in eigenfrequency tuning. The
modification in the eigenfrequency tuning and the corresponding level splitting Ω0 can be verified
using COMSOL simulations (see discussion in appendix A.5).
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Figure 5.15 | Nanomechanical Two-Level System as a Coherent Sensor.
(a) Statistical frequency distributions of 30 Ramsey signals for both window functions with =p = =

��
p = 2 and

cavity pump power %µw = 22 dBm. (b) By increasing cavity pump power to %µw = 22.5 dBm we can clearly
observe absolute shifts in frequency distributions in both no window and BH window cases. However, there is a
small deviation in the relative offset b (rel). This indicates, that the precision in frequency estimate indeed differs
depending on the applied window functions.
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Sensing Capability In the following, we record the Ramsey fringes after modifying the RMS
electric field and apply our IAS scheme to estimate the new level splitting. Fig.5.15 (a) shows the
statistical frequency distribution of the 30 Ramsey signals and the corresponding mean values for both
rectangular and BH windows with %µw = 22 dBm. Here, we choose the Ramsey signal with =p = 2 for
rectangular window. The point wise product of the Ramsey signal (with =p = 4) and the BH window
function suppresses the side lobes and effectively reduces the number of cycles to =BHp = 2 [see
Fig. 5.12 (a)]. The measurement results can thus be compared for an effective number of 2 cycles in
both cases. The frequency distributions in both cases are well separated. From the previous Sec. 5.4,
we know that the BH windows yields a reliable frequency estimate of Ω̄22 dBm

0,BH /(2c) = 42.79(24) kHz
due to mitigation of the spectral leakage, and hence, suppresses systematic frequency shift errors. The
rectangular window, however, gives a relative offset of

b22 dBm
(rel) /(2c) =

(
Ω̄22 dBm

0,RW − Ω̄22 dBm
0,BH

)
/(2c) = 5.15(39) kHz (5.19)

which is ≈ 12% deviation compared to the result from BH window.

In order to quantify the sensing ability of the nanomechanical two-level system, we increase the cavity
pump power by Δ%µw = 0.5 dBm. Figure 5.15 (b) shows significant shifts in the statistical frequency
distribution in both cases. We obtain a new frequency estimate using BH window Ω̄22.5 dBm

0,BH /(2c) =
46.23(19) kHz. Again, we can find the relative offset due to the estimate using rectangular window

b22.5 dBm
(rel) /(2c) =

(
Ω̄22.5 dBm

0,RW − Ω̄22.5 dBm
0,BH

)
/(2c) = 4.75(30) kHz. (5.20)

Note that besides the absolute shifts after the modification of the electric field strength, there is a small
deviation in the relative offsets before and after the sensing procedure that is b22.5 dBm

(rel) − b22 dBm
(rel) ≠ 0.

Based on our prior knowledge about the high precision in frequency estimate (both theoretical and
experimental) of the BH window technique, we claim that the deviation in the relative offset results
from the rectangular window.

The frequency shift using BH window is

ΔΩ̄0,BH/(2c) =
(
Ω̄22.5 dBm

0,BH − Ω̄22 dBm
0,BH

)
/(2c) = 3.44(43) kHz. (5.21)

It is noteworthy to mention that the statistical distributions [see Figs. 5.15 (a) and (b)] in frequency
estimate using BH window (orange bars) are wider spread compared to the ones with rectangular
window (blue bars). This is due reduction in the amplitude and the broadening of the main lobe in
the frequency domain when applying the BH window to the measured signal as discussed in Sec. 5.4.
Nevertheless, the strong suppression of spectral leakage of the BH window still allows one to improve
the frequency estimation in the DFT, whereas the results using rectangular window are intrinsically
subject to error [see for instance Fig. 5.12 (a) and (b) for comparison].

Thus, despite the downside of theBHwindow technique, where themeasurement timewindowneeds to
fulfill the condition (Ω0/2c)CF ≥ 4 and the reduction in the spectral amplitude, the result confirms the
robustness and high precision of the frequency estimate using Blackman-Harris windowing function
compared to the conventional no-windowing method.
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5.6 Conclusion
In conclusion, we demonstrate the experimental realization of the iterative adaptive spectroscopy
based on the enhanced Ramsey interferometry that allows frequency estimate with high precision.
Experimental constraints such as bandwidth limitation of the AWG that hinders high fidelity sensing
and readout state preparation can be overcome using Magnus-based strategy for frequency sweep
control. When continuously updating the control pulses we can mitigate systematic errors in the
Fourier transform to extract the frequency components. Additionally, the application of the Blackman-
Harris windowfilter function to the time domain Ramsey signal further suppresses spectral leakage and
scalloping effects for short finite signal and enables precise estimates of the unknown level splitting
Ω0. As a proof of principle, we perform the sensing experiment by modifying the electrical field
around the strongly coupled nanomechanical two-level system and at the same time, survey the shift
of the level splitting in the Fourier frequency domain. We stress that our experimental method is
not limited to classical but can also be applied to any quantum two-level systems and is particularly
well-suited for systems with short coherence time. We believe our experimental results provide an
additional contribution in the field of quantum sensing and quantum computation, where fast and high
fidelity parameter estimation is required.





119

6 Summary and Outlook

In this chapter, we sum up the key results of this thesis in Sec. 6.1 and give an outlook towards future
experiments in Sec. 6.2. In Sec. 6.2.2, we discuss the possibilities to improve the coupling between the
microwave cavity and the nanomechanical string resonator to enhance the detection efficiency and the
optomechanical interactions. In section 6.2.3, we show the perspective of moving our nanomechanical
two-level system from the classical into the quantum regime and we provide a brief outlook in the
development of a novel quantum coherent sensor using Ramsey interferometry with non-classical
squeezed states.

6.1 Summary

One of the main scopes of this thesis is the development of a cavity-assisted displacement sensing
scheme of the nanomechanical resonator at room temperature. The mechanical element used in
this work is a freely suspended doubly-clamped, pre-stressed silicon nitride string resonator with a
length of ! = 55 µm, the width is F = 250 nm and the thickness is about C = 100 nm that is placed
between a pair of gold electrodes used for dielectrical actuation and detuning as well as detection. The
eigenfrequencies of the nanomechanical resonator are typically in the radio frequency domain.

The vibrational motion detection of the nanomechanical string resonator is accomplished by coupling
the two adjacent gold electrodes to the electric or magnetic field of themicrowave cavity via microwave
antenna. The mechanical motion of the dielectrical SiN string resonator periodically modulate the
capacitance between the two gold electrodes, and hence, generating sidebands in the microwave cavity
response.We introduce in this work three-dimensional, non-superconducting microwave cavities to
replace the previously employed copper microstrip cavity. We provide studies on different geometries,
e.g. rectangular, cylindrical and coaxial _/4 resonators, and the various coupling mechanisms to these
types of 3D cavity. In particular, the novel coaxial _/4 cavity is a promising candidate that is ideally
suited for conducting further experiments towards the quantum regime. First, this type of cavity offers
exceptionally high quality factors up to & ≈ 108 at cryogenic temperatures. Even room temperature,
the quality factor of such cavity can still outperform the one of the microstrip cavity by more than
an order of magnitude. Second, we can design the cavity such that the fundamental TEM mode
is well below the waveguide cutoff frequency. As a result, the fundamental mode’s energy density
decreases exponentially into the waveguide section and hence, no light can leak outside the cavity.
And third, the resonance frequencies of the higher TEM harmonics are sufficient far away from that
of the fundamental mode. Thus, the coaxial _/4 provides a remarkably clean frequency spectrum that
allows us to avoid multi-mode coupling issues.

In Ch. 3, we demonstrate the operation of a cavity electromechanical system that consists of a
nanomechanical string resonator embedded inside a cylindrical 3D microwave cavity. Here, the non-
metallized silicon nitride nanostring resonator can be dielectrically coupled to the cavity’s resonant
modes. Even at room temperature, the high quality factor of the cylindrical 3D cavity allows us
to conduct experiments in the sideband resolved regime (^ < Ωm). To this end, we are able to
observe electromechanical coupling effects in single- and two-microwave tone experiments. While the
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mechanical eigenfrequency shift is dominated by the dielectric frequency tuning, the optomechanically
induced transparency (in reflection geometry) establishes a clear proof of dynamical backaction.

In the second part of this thesis, we focus on the study of the coherent dynamics of the two strongly
coupled flexural modes of the nanomechanical string resonator. In Ch. 4, we show the theoretical
development of the coherent sensing protocol that allows frequency estimate of short signals with high
precision. First, we introduce the ubiquitous Ramsey interferometry scheme to sense the unknown
coupling strength Ω0/2 of a two-level system. The coupling strength is the quantity of the coherent
sensor that we want to estimate. The change of Ω0 is a direct consequence of a sensor that couples to
the physical quantities in the environment. Second, we introduce a strategy to enhance the Ramsey
interferometry by modifying the control pulses that come with experimental constraints such as
bandwidth limitations and noisy environments. The corrections enable the preparations of sensing
and readout states with high fidelity. We find the frequency control scheme yielding high fidelity
state preparations in the recently proposed Magnus-based strategy. Note that this strategy provides
corrections in the control terms to cancel, on average, unwanted spurious effects in the system’s
dynamics during the time of evolution.

In order to improve the frequency estimation of the oscillatory output from the Ramsey interferometry,
we need to solve two main issues associated to discrete Fourier transform (DFT). The first systematic
error to deal with is the so-called scalloping loss. This type of loss mechanism occurs from a signal
which is constructed from a finite number of sampling points =samp. As a consequence, the Fourier
transform can not resolve the real maxima of the spectrum due to the lack in frequency resolution.
This is, however, relatively simple to fix by using zero-padding technique to extend the signal with
=pad zeros on both sides to increase the frequency resolution.

The second source of systematic error in the DFT is spectral leakage, which makes a simple spectrum
with a single frequency appear to have multiple frequency components. Additionally, this effect can
lead to a shift of themaxima in the frequency domain. The spectral leakage occurs when the oscillatory
signal in the time domain does not match the multiple integer of the period.

To overcome this limitations, we combine the Blackman-Harris (BH) windowing technique with the
iterative, adaptive sensing (IAS) protocol. To carry out the protocol, we repeatedly perform Ramsey
interferometry with a frequency-sweep that takes prior knowledge of the frequency estimate into
account. With the repetition and the BH windowing technique, we can iteratively suppress systematic
frequency shift errors originating from spectral leakage. The IAS protocol is done by updating the
measurement time C (<+1)w obtained from the frequency estimate Ω(<)0 at step < after each iteration.
Additionally, we update the leading and trailing edges of the modified detuning-sweep, since the
Magnus-based strategy for control requires one to know the parameters entering the equations of
motion. Thus, we decrease the error in preparing both the sensing and readout state after each
iteration. Our theoretical result shows that we can reduce the relative error in frequency estimate by
two orders of magnitudes compared to the initial estimate just after a few iterations.

Our iterative, adaptive sensing protocol is particularly suitable for frequency estimates of two-level
systems with short coherence time. The theoretical model of the two-level system used in our work
is valid for both coherent classical and quantum systems. We stress that independently of how the
sensing and readout states are prepared, our IAS protocol can always be applied to enhance frequency
estimates.

In Ch. 5, we demonstrate the experimental implementation of our theoretically developed IAS protocol.
The main focus of the experiment is to develop a testbed which is applicable for quantum sensing that
is fast and, at the same time, allows frequency estimate with high precision. Here, we employ the
coherent nature of the two strongly coupled fundamental flexural in-plane and out-of-plane modes of
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the nanomechanical string resonator that serves as the classical two-level system. Similar to Ch. 3,
we employ the cavity-assisted displacement sensing scheme to detect the motion of the mechanical
resonator. In this experiment, the cylindrical microwave cavity is replaced by a coaxial _/4 microwave
cavity, which exhibits an exceptionally clean frequency spectrum to avoid multimode coupling

By applying a DC voltage to the electrodes, we can induce an electric polarization in the silicon
nitride string resonator which, in turn, couples to the inhomogeneous electric fields. The resulting
force gradients, thus, alter the restoring force of the in-plane and out-of-plane flexural modes of
the mechanical oscillator leading to quadratic resonance frequency tuning of the respective modes.
Note that the rectangular cross-section of the mechanical resonator leads to a small offset in the
eigenfrequencies of the two fundamental flexural modes. Since the electric field gradients along these
flexural modes have opposing signs, we can compensate the frequency offset simply by changing
the applied DC voltage to bring the two modes into resonance. The cross-derivative of the applied
inhomogeneous electric fields induces a linear coupling of the two modes causing them to hybridize
into normal modes in near resonance conditions. The resulting avoided crossing with level splittingΩ0
is the characteristic fingerprint of the strong coupling, where the two modes can coherently exchange
excitation energies.

To perform Ramsey interferometry on this classical two-level system, we need to initialize the system
at voltage*i in the lower branch that is far away from the avoided crossing region to fulfill the condition
Δ0 � Ω0. On top of the static DC voltage, we need to add a dynamical control pulse provided by an
arbitrary wave function generator to detune the system to the desired operation point at the avoided
crossing and back. In order to create a reliable voltage control scheme to manipulate the frequency
tuning speed, we build a custom made voltage combiner which puts the DC power supply in series
with the function generator’s output. This technique offers several advantages, i.e. the full bandwidth
capabilities of the AWG and the flexibility in setting the DC level that is delivered by the voltage
source. The only requirement for this configuration is that one of the device in the series need to be
internally isolated from the earth ground. In our case, the DC voltage source Keithley 2410 is floated
up to ±240 V.

The experimental implementation of the proposed sensing protocol requires reliable and precise control
over all types of apparatus simultaneously. Particularly, it is essential to establish good communication
between the AWG used to prepare sensing and readout state and the spectrum analyser that records
the exponential decay in energy of the mechanical resonator. The synchronization of the devices can
be realized using the trigger mode. For this purpose, we create an all-in-one Matlab-based script
to generate command sequences and to have full control over all of the devices. With the control
script, we can directly stream the numerically generated pulse scheme into the AWG without usage
of additional software. Furthermore, we can define several feedback loops for voltage regulation in
the script to compensate drift effects in the mechanical eigenfrequencies due to fluctuations in the
environmental parameters such as electric field and temperature. The voltage regulations ensure the
reliability and reproducibility of the experimental outputs.

In the first time-resolved experiment, we show the capability to control the dynamics of the classical
two-level system in both adiabatic and diabatic regimes that are well described by the Landau-Zener
transitions. Subsequently, we demonstrate the return probability of the initial state as a function of
waiting time Cw in the Ramsey sequence. As expected, we observe the oscillatory behaviour that is
well-known as the Ramsey fringe with a frequency given by frequency splitting Ω0. In stark contrast,
the Magnus-based corrected Ramsey pulse scheme shows an oscillatory output with much higher peak
to peak amplitudes compared to the uncorrected scheme with a single frequency component in the
control pulse. The improvement in the Magnus-based corrections directly translates in the Fourier
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transform in frequency domain, where a global maximum is clearly visible, whereas in the uncorrected
case no distinct global maximum is observable.

To determine the level splitting Ω0 with high fidelity, we implement the proposed iterative, adaptive
sensing protocol to our experimental routine. The initial estimate level splitting Ω̄(0)0 can be obtained
from the spectroscopy measurement. Subsequently, we update the measurement time window C

(<)
w =

=p

(
2c/Ω̄(<−1)

0

)
, where =p = 4 is the number of cycles, and the corrected control pulses with the

corresponding Fourier coefficients 2(<)1 , 3 (<)1 after each iteration step <. In addition, we apply zero-
padding technique and the Blackman-Harris window function to the Ramsey signal to reduce the
effect of spectral leakage and scalloping losses. The results with the Blackman-Harris window show a
well distinguishable estimate of frequency splitting compared to the no window case with an accuracy
better than the standard errors of the individual estimates. In accordance to theory prediction, we
observe a saturation in frequency estimate after 3 iterations. By increasing the number of cycles =p in
the Ramsey interferometry, we can confirm the validity of precise frequency estimate for short time
signals with our developed iterative adaptive method and the Blackman-Harris windowing technique.

At last, as a proof of principle, we demonstrate the ability of the classical two-level system to work
as a coherent sensor. Since the strong coupling of the two flexural modes is governed by the strength
of the inhomogeneous electric field, we expect the level splitting Ω0 to change when modifying the
electric field environment around the mechanical resonator. In this case, we modify the root-mean-
square electric field that builds up inside the microwave cavity simply by increasing the microwave
cavity’s pump power. Indeed, we observe a distinct shift in the statistical frequency distribution that
confirms the change in the frequency splitting of the two-level system due to the change in the electrical
environment.

Our theoretical and experimental methods are not limited to classical but can also be applied to any
quantum two-level system. Our results are very promising and we believe that we can perform further
experiments operating deep in the quantum regime to contribute to the field of quantum sensing and
quantum computation, where fast and reliable parameter estimation is required. In the upcoming
sections, we discuss the possibilities to further optimize the experimental setups in order to operate in
the quantum regime.
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6.2 Outlook

6.2.1 Nanomechanical Resonator as Oscillator in the Quantum Regime
Recent development on mechanical oscillators in the quantum regime opens a plethora of possibilities
in application of these devices in quantum technologies. The preparation of mechanical state close
to its ground state of motion has been the motivation of several groups spreading around the world
for the last decade. As we speak, there are several successful platforms which have been able to
demonstrate ground state cooling of the mechanical state and demonstrate quantum state preparation
of a mechanical resonator. The systems include micromechanical resonator [42], drum resonator [93],
optomechanical crystal [220], nanospheres in an optical cavity [39] and ultra coherent resonator [221]
to name a few.

In most of the above-mentioned devices the ground state is reached by overcoming the thermal
fluctuations due to the finite temperature in the experimental environment using various techniques.
These include passive (cryogenic) cooling high frequency GHz modes by placing them in a cryogenic
bath with a fixed temperature [222, 223] or using techniques that utilize dynamical backaction cooling
by cavity electro/optomechanical coupling [90, 93, 224, 225]. The product of the eigenfrequency
and the quality factor (&-factor) known as the Q-f product puts an upper limit to achievable thermal
occupancy in the quantum regime. It can be found in systems range frommembranes having resonance
frequency in the sub-MHz regime to one dimensional doubly clamped beams in the sub-GHz to GHz
frequency regime. At very low thermal occupation numbers (i.e. =th < 1), resolving the displacement
of such oscillators becomes challenging. This requires efficient modulation of the coupled optical
or microwave cavity frequency as a function of the fluctuation of the mechanical oscillator. This
fundamental transduction parameter is often referred as vacuum (or single photon) optomechanical
coupling rate, 60. Another, less fundamental parameter is known simply as optomechanical coupling,
defined as 6 =

√
=cav60, (=cav is the average photon number in the cavity) is also of significant

importancewhen discussing optomechanical systems. Particularly, it is important to carefully optimize
the parameter 6 to realize a mechanical system at a considerably low phonon occupation and also to be
have sufficient sensitivity to be able to resolve small displacements at such low phonon limits. In the
following section, we discuss the 3D cavity-nanomechanical resonator coupling scheme to improve
the optomechanical coupling rate 60 in our experiment.
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6.2.2 Improved Cavity-Nanomechanical Coupling
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Figure 6.1 | Cavity Coupling with a Plate Antenna.
(a), Schematic of the antenna coupling of the cavity field to the sample. The antenna is capacitively coupled
to the electric fields (green lines) and the antenna is shorted directly to one of the electrode that flanks the
nanomechanical string resonator. (b), Change of the cavity resonance frequency (green) and input-output
transmission (red) as a function of the separation between the antenna the inner conductor. (c), Numerical
simulation of achievable optomechanical coupling, 60 between cavity and the mechanical element as a function
of electrodes-string separation, G0. The plot show that it is possible to exponentially approach a very high
optomechanical coupling without being constrained by fabrication limits. Inset shows the string-electrodes
system and the field distribution.

The long term vision is to develop a novel quantum sensor on a nanomechanical two-level platform
that is not limited by the standard quantum limit (SQL). The first step towards this challenging task is to
reduce the thermal occupation of the system down to =th < 1 in order to operate in the quantum regime.
This is experimentally achievable with a combination of passive and active cooling. For example,
for a silicon nitride string resonator with a length of 5 µm and eigenfrequency of about 75 MHz, the
thermal occupation at room temperature is =th ≈ 85.000. However, we can reduce the average thermal
phonon occupation =th of the resonator to around 2 at a base temperature of 10 mK. With modern
day dilution refrigerators, temperatures in this regime are easily accessible. At this level of thermal
occupation, the energy levels are yet not sufficiently separated resulting in possible leakages in sensing
experiments. Therefore, an additional optomechanical cooling is still required to further reduce the
thermal occupation to =th ≤ 1. As shown in Sec. 3.3.2, we can observe the dynamical backaction of the
cylindrical 3D microwave cavity and the nanomechanical resonator in the optomechanically induced
reflection measurement that reveals a weak single photon coupling rate of 60/(2c) = 200 µHz at room
temperature and high cavity drive power. In order to obtain optomechanical sideband cooling we need
to further optimize the optomechanical coupling parameters to enhance interaction of the microwave
cavity and the nanomechanical string resonator. To better compensate the mismatch between the
model volumes of the cavity and the mechanical oscillator, we implement a novel design scheme to
increase the coupling mechanism. In Fig. 6.1 (a), we show a plate capacitor that is capacitively coupled
to a resonant mode of the coaxial _/4 3D microwave cavity. This in turn is capacitively coupled to the
string resonator. A COMSOL simulation of the cavity coupling as a function of the antenna position
is shown in Fig. 6.1 (b). We believe this result is extremely encouraging as it demonstrates very high
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coupling between the microwave mode to the antenna. The next coupling element is the coupling
between the electrodes (one is shorted to the antenna) and the string resonator. The electrodes-string
resonator system creates an additional capacitor element in the LC circuit of the microwave resonator.
The motion of the mechanical element periodically modulates the capacitance in the LC circuit and
hence, creates sidebands in the cavity response (see discussion in section 3.1.1). The efficiency of
this transduction is mostly dominated by the modulation of the capacitance between the electrodes as
a function of the string position. As seen in Fig. 6.1 (c), this effect can be exponentially increased
by bringing the electrodes as close to the string resonator as possible. With the modern clean room
facility in TUM, we anticipate that the separation G0 can be decreased to a value as small as 20 nm.
However, as seen in Fig. 6.1 (c), even with nominal value of G0 = 25 nm, it is possible to boost the
single photon coupling 60 by three order of magnitude compared to the previous result. We expect a
60/(2c) ∼ 100 × 10−3 Hz for a string resonator with the nominally defined parameters.

As mentioned above, it is important to, firstly, reduce the thermal occupation of the nanomechanical
system to =th < 1 to enable experiments in the quantum regime. This could be done by a combination
of passive cooling from the dilution refrigerator and optomechanical active cooling. At such lowmodal
temperatures, the system becomes even more sensitive to external noises. Therefore, equipartition
theorem cannot serve as a faithful indicator of quantumperformance. An alternate quantum indicator is
the so-called ratio betweenStokes and anti-Stokes scatteringfieldwhich frees itself fromany calibration
issues [226]. One can retrieve this quantum indicator directly from heterodyne measurements [227–
229]. At such a level of thermal occupation, the displacement noise of the resonator is on the order
of 10−15 m. Resolving displacement amplitudes of such orders also requires a high optomechanical
coupling, 6. Therefore, a careful analysis of the optomechanical coupling required to achieve desired
goals is of fundamental importance to justify the proposed optomechanical system.

Figure 6.2 | Thermal Occupation and Thermal Noise.
(a), Color plot of thermal occupation of the nanomechanical resonator, =th as a function of cavity photon
occupation, =cav and vacuum optomechanical coupling 60. (b), Total noise floor (xx (in m/Hz2) as a function
of cavity photon occupation, =cav and vacuum optomechanical coupling 60.

In the following, we show the analysis of the proposed optomechanical system with nominal pa-
rameters following the dynamical backaction proposed by Aspelmeyer et al. [90]. With a careful
estimate of system parameters, one can calculate the two most important parameters for the proposed
optomechanical system, namely the thermal occupation =th and the total noise (xx in m/Hz2 [see
Eq. (72) in Ref. [90]]. The total noise (xx is a combination of backaction noise, imprecision noise
and thermal noise in the system. The evolution of =th and (xx as a function of 60 and cavity photon
number =cav is shown in Fig. 6.2 (a) and (b), respectively. The results are indeed motivating, as with a
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considerably moderate 60/(2c)
(
∼ 100 × 10−3Hz

)
and =cav

(
∼ 1011) it is possible to achieve a thermal

occupation with =th ∼ 1 and a noise floor (xx ≈ 10−32m/Hz2. Here, =th is low enough to have a system
with significantly high "quantumness" and the noise floor is low enough to resolve displacements at
such low phonon levels (which is expected to be around 10−15m for zero point fluctuations). With
cautious design parameters it is expected to achieve 60/(2c) ∼ 10×10−3 Hz as predicted by COMSOL
simulations discussed previously. On the other hand, as seen on Fig. 6.1 (a) it is possible to achieve
optimum coupling between the cavity field and the antenna by varying the position of the capacitive
plate antenna with respect to the inner conductor.
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6.2.3 Sensing Beyond Standard Quantum Limit

Figure 6.3 | Mach-Zehnder Interferometer and Ramsey Interferometry.
(a), Schematic of a Mach-Zehnder interferometer. One of the light path travels with an additional variable phase
delay q. This creates an interferometric pattern, varying as a function of the phase q. (b), Same effect can
be observed for Ramsey interferometry with a two-level system. The interference effect in this case varies the
probability of one of the state as the function of the measurement time Cm. The period of the oscillation gives
direct estimate of the level splitting Ω0. (c) Similar interference effects is observed for both Mach-Zehnder and
Ramsey interferometer.

An interferometer is used to monitor differential phase changes between light beams going through
two different optical paths. The sensitivity to monitor this small phase change q, is limited from
the Poissonian statistics of mutually independent photons. The Poissonian distribution is in fact an
approximation of a Gaussian distribution for discrete sampling which scales with a standard deviation
of
√
# , where # is the size of the statistical distribution. Since this statistics is a random process

following a classical description, for photons such a statistical behavior is often referred as a semi-
classical behavior. In short, this semiclassical description of photon counting puts an upper limit to
the achievable sensitivity known as the shot noise limit. The very same effect happens while working
with a Ramsey interferometer with a projective measurement. This in the community often referred as
the Quantum Projection Noise (QPN) which also scales in same way due to similar statistical behavior.
This limit could be surpassed by creating states that do not follow such Poissonian distribution. For
quantum systems, one example of such states is the Squeezed state [230].

Squeezed states of lights have been extensively used in pioneering experiments and recently in the
LIGO gravitational-wave interferometer [174, 177]. The use of squeezed resources becomes even
more effective when radiation pressure shot noise plays a role in the observed quantum limits [231].
Squeezed states are generated by reducing standard deviation of one of the quadrature of the probe
field at the expense of the other. For a coherent state (which follows Poissonian statistics) the smallest
measurable phase difference in an interferometric measurement is given by Δq = 1/

√
# . While for a

squeezed state, the smallest measurable phase difference scales as, Δq = e−A/
√
# , where A is called

the squeezing parameter. It has been even shown that, with such non-classical states it is possible to
achieve sensitivity which scales as 1/# and therefore yielding what is called the Heisenberg limit or
Heisenberg scaling. Such states result in unprecedented sensitivity in metrology as shown in the work
of Hosten et al. [232].

The phononic states follow the same bosonic operators as the photonic states used for laser interferom-
eter. Moreover, the flow of Ramsey interferometry resemble closely to an optical interferometer like
Mach-Zehnder interferometer as shown in Fig. 6.3 (a). The two input beams of an optical interferom-
eter resemble two initial sensing states of any quantum sensor [Fig. 6.3 (b)]. The two input beams are
combined through a 50/50 beam splitter, which is formally equivalent to generation of a superposition
state for a two-level system. For a two-level system this is analogues to two distinct energy levels �0
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Figure 6.4 | Squeezed State Ramsey Interferometry.
State representation with respect to the Wigner probability distribution> First a coherent super position state is
generated at the avoided crossing. It is followed by creation of squeezed state for example by parametrically
modulating the resonator. Finally, a free evolution of the state vector will imprint a phase signature (q)
proportional to the energy difference of the two distinct energy levels.

and �1 separated by ℏΩ0. Then one of the beam has a variable phase shifter, q on its path which
affects the interference pattern when they are finally recombined at the second beam splitter. This is
equivalent to a Ramsey interferometer, where the higher energy state gathers phase proportional to
the energy difference, ℏΩ0 between two discrete energy levels. This interference effect generates a
beating pattern at the frequency of the splittingΩ0 when projection of one of the state vector is probed.
In a classical or semi-classical picture the estimate of Ω0 (as q ) will scale as 1/

√
# with a Poissonian

distribution. However, with a squeezed state it is indeed possible to achieve a more accurate estimate
of the frequency Ω0. For many qubit systems with fermionics degrees of freedom (spin squeezing)
squeezing has been successfully witnessed to enhance sensitivity of the measurement [232].
The usual protocol (see Fig. 6.4) for squeezed state Ramsey interferometry first follows system
initialization by creation of a coherent state for the spin ensemble. This is followed by a c/2 pulse to
create a superposition state, with indistinguishable quadratures (grey circle in Fig. 6.4). A squeezed
state is then generated by employing a squeezed operator (b) on the superposition state. The state
vector can then freely rotate around the z-axis on a Bloch sphere where it gathers phase q proportional
to the energy difference between the ground and excited state. Finally a projective measurement
scheme is used to map back the sensing state. Taking inspiration from the spin states, we propose
a Ramsey interferometry with squeezed states based on parametric modulation of the optical spring
constant. This is achieved by firstly creating a displaced state by coherently modulating the mechanical
degree of freedom. Following the suggestion by Roque et al. [186], a squeezed state is then created
by generating an eigenstate of either 02 +

(
0†

)2 or −i
(
02 −

(
0†

)2
)
. Where 0† and 0 correspond to the

creation and annihilation operator respectively. It can be achieved by parametrically modulating the
nanomechanical resonator proportional to

(
0 + 0†

)2. This is followed by mapping the state back to a
measurable state. However, as suggested in the work of Roque et al. [186], a strong parametric drive
(high squeezing parameter) generates unwanted oscillations at high frequencies. These oscillations
possibly can destroy the coherence of state evolution.

The challenge here is to find an eigenstate of 02 +
(
0†

)2 or −i
(
02 −

(
0†

)2
)
with very high fidelity. One

then has to devise a protocol that is able to generate the desired state with high precision. A detailed
experimental investigation on the techniques to generate the squeezed states of one of the superposition
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states will then have to carry out very carefully. The next step will deal with the implementation of
the squeezed Ramsey with a cautious inspection of the sensing precision.

In conclusion, we theoretically proposed an iterative adaptive sensing protocol based on enhance
Ramsey interferometry to estimate unknown frequency from short, finite signal with high precision.
Our experimental results on coherent sensing of the nanomechanical two-mode system show excellent
agreement with the theoretical prediction. In perspective, the theoretical and experimental results of
this work can be applied to advanced coherent sensing experiments operating in the quantum regime.
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A Appendix

A.1 State preparation errors
In this section we discuss how noise and low fidelity state preparation affects the sensing protocol.

-
Figure A.1 | Noise Induced Errors.
(a) Comparison of the sensing state error fidelity for XΩ = 0 between the uncorrected (green) Mod1 (red), and
Mod2 (blue) frequency-sweeps as a function of Cs. (b) Same as (a) for the readout state. (c) Evolution of the
probability %1(C) of measuring mode a1 as a function of time for Ω0Cs/2c = 0.5. The green dots and arrows are
a visual indicator to show how much the ideal coherent evolution is corrupted by coherent errors when using
the uncorrected pulse in both sensing and readout state. Reprinted from Ref. [167]

A.1.1 Noise-induced errors
In Sec. 4.2.2, we showed the noise averaged sensing and readout state fidelity error [see Figs. 4.5 (a)
and (b)]. Here, to give a sense on how noise hinders the preparation of both states, we present in
Fig. A.1 (a) and (b) Ys, 9 and Yr, 9 [see Eq. (4.54)] obtained in the absence of noise (XΩ = 0 in Eq. (4.2)).
Let us first consider the sensing state fidelity error for the uncorrected protocol [green trace in
Fig. 4.5 (a) and Fig. A.1 (a)]. In this case, the presence of noise favors the state preparation by
preventing the generation of the ideal coherent evolution and thus partially suppressing coherent
transitions to mode a2. On the other hand, for the modified protocols [red and blue traces in
Fig. 4.5 (a) and Fig. A.1(a)] that rely on coherent evolution to average out the effects of the spurious
interaction [see Eqs. (4.45) and (4.50)] noise reduces the state preparation fidelity. However, as the
results in Fig. 4.5 show, the fidelity errors obtained with the modified protocols in the presence of
noise are still orders of magnitude smaller than the uncorrected one. This fact can be attributed to
having protocols that are designed to be shorter than the decoherence time set by the noise.



A APPENDIX

132

For the readout state preparation, one would expect the same observations as above. This is, however,
not the case. Comparison of Fig. 4.5(b) and Fig. A.1(b) reveals that noise hinders the readout state
preparation to a much greater extent than it does for the sensing state preparation. This difference
originates from the dependence of the state fidelity error on the initial state, which for preparing the
sensing state is simply a1 and for preparing the readout state is a(Cf) = Φ 9 (Cf)a1. The latter is a
coherent superposition state and is therefore more susceptible to noise-induced decoherence.

A.1.2 Coherent errors
To illustrate how low fidelity state preparation affects the sensing protocol, we plot in Fig. A.1(c)
the probability %1(Cw, C) of measuring mode a1 as a function of time for a fixed measurement-time
window Cw. We note that the Ramsey signal B(Cw) is constructed from the values of %1(Cw, Cr) when
Cw is varied, i.e., B(Cw) = %1(Cw, Cr). We have

%1, 9 (C) = |0)1Φ 9 (C)01 |2, (A.1)

where 9 ∈ {0, 1, 2} labels, as in Fig. 4.4, which detuning sweep is used to obtainΦ 9 (C). We recall that
9 = 0 labels the uncorrected detuning-sweep, while 9 = 1, 2 labels the detuning-sweep coined Mod1
and Mod2, respectively.

The uncorrected detuning-sweep [green trace in Fig. A.1(c)] shows how coherent errors propagate
and lead to the "wrong" Ramsey signal. Using Mod1 (red trace) or Mod2 (blue trace) which allow for
high fidelity state preparation of both the sensing and readout state, coherent errors are reduced and a
more faithful Ramsey signal can be constructed.
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A.2 Iterative procedure for an idealized Ramsey signal
In this section, we show that the iterative, adaptive sensing protocol we developed in Sec. 4.4 is less
efficient when using rectangular windows only.

To show this, we use a toy model which assumes an ideal Ramsey signal, B(C) = cos2 [(Ω0/2)C] and
consider three different IAS protocols. We consider the protocols IAS 1 and 2 discussed in Sec. 4.4
along with the protocol IAS 3, which consists in using only rectangular windows. For convenience,
they are defined again below:

• IAS 1 5 (<) = Θ(C) − Θ(C − C (1)w ) for < = 1 and 5 (<) = 5�� (C/Cw − 1/2) for < ≥ 1,

• IAS 2 5 (<) = 5�� (C/C (<)w − 1/2) ∀<,

• IAS 3 5 (<) = Θ(C) − Θ(C − C (1)w ) ∀<.

We assume the starting estimate to be Ω̄(0) = 1.1Ω0 and, as in Sec. 4.2.3, after each iteration we update
the measurement time-window Cw based on the new estimate.

In Fig. A.2 we show the relative error of the frequency estimate using the previously defined IAS
protocols (see Sec. 4.4). Using IAS 3 results in a less accurate estimation due to using rectangular
windows, which lead to spectral leakage. The results generated by IAS 1 and IAS 2 lead to the same
relative error for < > 1, in agreement with the results shown in Fig. 4.12.

As explained in Sec. 4.4, we find IAS 1 to be the protocol of choice, since it allows one to make
the first frequency estimate from a spectrum whose main frequency component has a larger Fourier
amplitude.

-6

-4

ε Ω

iteration, m

 IAS 1  IAS 2  IAS 3

0 1 2 3 4 5 6 7 8 9 1010-4

10-2

100

Figure A.2 | Iterative Procedure with Rectangular Window.
Relative error n (<)

Ω
as a function of iteration number, < for three different protocols. Reprinted fromRef. [167]
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A.3 Fitting the Avoided Crossing
Follow the discussion in Sec. 2.2.3, where we described the dynamics of two linearly coupled harmonic
oscillators with the masses <� and <� and the spring constants :� and :�. The solution for the
eigenvalues in Eq. (2.19) can be expressed in a different way that is

l2
± =

1
2

(
l2
� + l

2
� ±

√(
l2
�
+ l2

�

)2
+ 4Ω2

0l�l�

)2

. (A.2)

With the eigenfrequencies l 9 =

√
: 9+^
< 9

where 9 ∈ {�, �} and Ω0 =

√
^/<�
√
^/<�√

l�l�
is the frequency

splitting of the two coupled modes. Furthermore, we define <� = <� = <eff = d!FC/2 and
:� = :� = :0. When applied DC voltage to the electrodes the respective string constants are
modified. The tuning behaviour, we use a second order series expansion of the parabolic frequency
tuning to approximate

: 9 = :0 + b 9 (* −*f) + _ 9 (* −*f)2. (A.3)

With*f is the crossing voltage, b 9 and _ 9 are the frequency conversion factors.

Figure A.3 | Mechanical Eigenfrequency versus DC Voltage.
Dielectrical tuning behaviour of the nanomechanical flexural IP and OOP modes extracted from Fig. 5.6 in the
main text. Blue circles indicate the eigenfrequencies obtained from the Lorentzian fit and the orange lines are
the corresponding fit using Eq. (A.2)

.

In Fig. A.3, we show the extracted data from the dielectric frequency tuning experiment described
in Sec.5.1.2. Note, that in the region where the avoided crossing occurs, it is not possible to fit the
data using Lorentzian function since the visibility is very low in the upper branche. Nevertheless,
Eq. (A.2) provides a good fit to the experimental data. In table A.1, we indicate all the pre-defined
and fit parameters.
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A.3.1 Conversion Factor Calibration
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Figure A.4 | Calibration of the Conversion Factor.
Frequency difference of the two flexural modes (blue circles) extracted from Fig. A.3 and the corresponding
linear fit (orange line) in the region where Δ0/Ω0 ≈ 10.

.

In Fig. A.4, we illustrate the calibration of the voltage to frequency conversion factor 2eff. To keep it
simple, we approximate the frequency tuning to be linear in time. We choose the frequency difference
of the two flexural modes in the region that is far away from the avoided crossing, where the extracted
slope from the linear fit gives a conversion factor of 2eff = 43.363 kHz. Note that this procedure is
only a rough approximation, since the resonance frequencies of the flexural modes are expected to be
tuned with the applied DC voltage [see Eqs. (A.2) and (A.3)]. Despite the discrepancy in the quadratic
frequency tuning by using linear approximation, the theoretical prediction and experimental results
are in good agreement.
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Table A.1 | Avoided Crossing Fitting Parameters.
Overview of the pre-defined and fit parameters to determine the avoided crossing.

Nanomechanical String Resonator
Parameter Symbol Unit
SiN mass density d 2 800 kg/m3

String’s length ! 49 µm
String’s width F 250 nm
String’s thickness C 100 nm
String’s effective mass <eff = dFC!/2 1.71 · 10−15 kg

Fit Parameters
Parameters Symbol Unit
Spring constant :� = :� = :0 0.093 N/m
1st order frequency conversion factor b� −0.26 · 10−3 N/(V m)
1st order frequency conversion factor b� 0.34 · 10−3 N/(V m)
2nd order frequency conversion factor _� 8.3 · 10−6 N/(V2 m)
2nd order frequency conversion factor _� −11.5 · 10−6 N/(V2 m)
Mutual coupling constant ^ 0.52 · 10−3 N/m
Crossing voltage *f −8.06 V
Voltage offset Δ* = *f −*i 12.8 V
Initial detuning Δ0/2c 427 kHz
Level splitting Ω0/2c 41.3 kHz
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A.4 Bandwidth Limitation
As explained in Sec. 4.2.2 and 5.3, we need to fulfill the condition Ω0Cs/(2c) � 10−2 in the "uncor-
rected" control scheme to achieve error fidelities in the order of 10−3 for sensing and readout state
preparations. This condition translates to a sweep frequency of VAWG ≈ 5.777 MHz in the AWG
output. The frequency range in megahertz, however, is not accessible in our experimental setup due
to the bandwidth limitation defined by the custom made voltage combiner box and the single layer
capacitor.
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Figure A.5 | Limitation of the Voltage Combiner.

.

In Fig. A.5 (a), we show a circuit diagram demonstrating the dielectric control scheme of our experi-
mental setup. The AWG (+1) and the DC voltage Source (+3) are connected in series, whose output is
then combined with a function generator (+2). Here, we assume that our sample (dashed green box)
has a high impedance of 1 MΩ. The total capacitance is 5 nF, which results from the combination
of a single-layer capacitor (SLC) and the electrodes. The Bode diagram in Fig. A.5 (b) illustrates
the transmission of the AWG output voltage (+1) as a function of frequency. Due to the strong ratio
in the output impedance (50Ω : 1 kΩ), the AWG output voltage only experiences a relatively small
attenuation of ≈ −0.4 dB at low frequency. Above 100 kHz, however, the attenuation in +1 becomes
noticeable.
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A.5 COMSOL Solid Mechanics/Electrostatics Simulations

(a)

(b)

In-plane mode

Out-of-plane mode

Figure A.6 | Flexural Modes of a Nanomechanical String Resonator.
COMSOL 3D simulations (using Solid Mechanics/Electrostatic Modules) illustrates the displacement profiles
of the out-of-plane (a) and in-plane (b) flexural modes of the pre-stressed doubly clamped nanomechanical
string resonator.

To verify the sensing capability of the nanomechanical two-level system, wemodel the dielectric tuning
behaviour of the string resonator using FEM simulation. The geometry of the COMSOL model is
shown in Fig.A.6. Here the dimension of the string resonator is {F×C×ℓ} = {250 nm×100 nm×44 µm}
and is embedded between two gold electrodes of dimension {F×C×ℓ} = {1 µm×10 nm×44 µm}. Note
that the string is vertically offset from the electrodes to induce dielectric coupling via force gradient.
In Fig. A.6 (a) and (b), we illustrate the displacement profiles of the out-of-plane and in-plane flexural
modes. When no DC bias voltage is applied, the corresponding eigenfrequencies are found to be
lOOP/(2c) = 7.256 MHz and lOOP/(2c) = 7.514 MHz.

Both mechanical modes can be tuned in opposite directions by increasing the DC bias voltage (see
Fig. A.7 (a)), where we can observe a clear avoided crossing of the two modes. To simulate the static
contribution of the electric field that surrounds the string resonator, we modify the charge density in
the dielectric material of the beam and repeat the DC bias voltage sweep. As apparent in Fig. A.7 (b),
there is a deviation in the tuning behaviour of the two flexural modes. The frequency difference of the
two modes Δl as a function of applied DC voltage for three different charge densities is illustrated
in Fig. A.7 (c), indicating a distinct shift in the level splitting Ω0 depending on the strength of the
electric field. In Fig. A.7 (d), we plot the level splitting Ω0 as a function of charge densities. This
COMSOL simulation confirms the change in the coupling strength of the two flexural modes as a
direct consequence of the change in the electric field in the surrounding.
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Figure A.7 | Modifications in Level Splitting of the Nanomechanical Flexural Modes.
(a) Eigenfrequency tuning of the mechanical IP and OOP flexural modes as a function of applied DC voltage
reveals an avoided crossing. (b) Mechanical tuning behaviour can be modified by inducing charge densities
to the nano beam. (c) Frequency difference of the upper and lower branch in (b) shows a shift in the minima
depending on the induced charge density. (d) The level splitting in increases with increasing charge density
indicating the electric field sensing capability of the silicon nitride nanomechanical resonator.





141

Acknowledgement
The success of this work was only possible due to the great support of many people and the years of
prior research on which the present work is based.

First and foremost, I would like to express my deepest gratitude to you Prof. Dr. Eva Weig for being
a great PhD supervisor and mentor. Your invaluable advice and constant support over the last five
years have contributed significantly to the success of this work. You have always given me the creative
freedom to bring my own ideas into this project, which is not taken for granted. Thank you for giving
me the opportunity to do research in nanomechanics and to be a member of your group.

A special thanks to my colleague and dear friend Dr. Avishek Chowdhury. I am very grateful that
we could start the sensing project together. Your experimental expertise and data analysis skills
contributed significantly to this work. I really enjoy our daily discussions be it physics related or any
other topics, e.g. your opinion towards Apple or the taste of music.

I also would like to thank our theoretical collaborator Prof. Hugo Ribeiro for the development of the
amazing Magnus-based corrections and the insightful discussions on a weekly basis. You have always
brought new ideas to the project, and your theory has become an essential part of this thesis. Thank
you for the time and effort you put into the collaboration.

Another special thanks to the staff employees from the University of Konstanz. Thank you Louis
Kukk, our former technician and the master of craft, for putting all my 3D cavity and antenna designs
into reality. Thank you Matthias Hagner for organizing and the maintenance of the NanoLab. Thank
you Harald Richter from the electronics workshop for your ideas to implement the voltage combiner.

I wish to thank all the members from the NQS group and the former members from Konstanz:
Susanne Maier, Berke Demiralp, Avishek Chowdhury, Felix David, Berke Yalaman, Jonny Qiu,
Philipp Bredol, Ahmed Barakat, Maria Kallergi, Maximilian Bückle, Juliane Doster, Katrin Gajo,
Felix Rochau, Alexandre Brieussel, Jana Ochs, Yannick Klaß, Irene Sanchez-Arribas for the great
working environment. I enjoyed our endless discussion on lunch breaks, bar and restaurant visits, the
wine festivals and the trips to conferences.

Thank you Irene, Ahmed, Philipp, Berke, Jana, Hugo and Avishek for proof reading my thesis.

To you Benita, words are not enough to express my gratitude. Thank you for your emotional support
along the journey of life and the motivation to push me forwards. Thank you for proofreading my
work and finding all the grammar mistakes I made. I am just grateful to have you by my side and look
forward to what is to come.

And finally, I wish to thank my beloved family for your lifetime support and your unconditional love .





143

Bibliography
[1] C.H.Mielke andA.V.Balatsky, “Crossing a bridge into the unknown”,NatureNanotechnology

3, 129–130 (2008).
[2] K. Y. Billah and R. H. Scanlan, “Resonance, tacoma narrows bridge failure, and undergraduate

physics textbooks”, American Journal of Physics 59, 118–124 (1991).
[3] X. L. Feng, C. J. White, A. Hajimiri, andM. L. Roukes, “A self-sustaining ultrahigh-frequency

nanoelectromechanical oscillator”, Nature Nanotechnology 3, 342–346 (2008).
[4] S.-B. Shim, M. Imboden, and P. Mohanty, “Synchronized oscillation in coupled nanomechan-

ical oscillators”, Science 316, 95–99 (2007).
[5] L. Huang, S. M. Soskin, I. A. Khovanov, R. Mannella, K. Ninios, and H. B. Chan, “Frequency

stabilization and noise-induced spectral narrowing in resonators with zero dispersion”, Nature
Communications 10, 10.1038/s41467-019-11946-8 (2019).

[6] A. N. Cleland and M. L. Roukes, “A nanometre-scale mechanical electrometer”, Nature 392,
160–162 (1998).

[7] M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of
a nanomechanical resonator”, Science 304, 74–77 (2004).

[8] D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic
resonance force microscopy”, Nature 430, 329–332 (2004).

[9] Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale
nanomechanical mass sensing”, Nano Letters 6, 583–586 (2006).

[10] J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical
mass sensor with yoctogram resolution”, Nature Nanotechnology 7, 301–304 (2012).

[11] S. L. de Bonis, C. Urgell,W. Yang, C. Samanta, A. Noury, J. Vergara-Cruz, Q. Dong, Y. Jin, and
A. Bachtold, “Ultrasensitive displacement noise measurement of carbon nanotube mechanical
resonators”, Nano Letters 18, 5324–5328 (2018).

[12] F.W. Beil, A.Wixforth, W.Wegscheider, D. Schuh, M. Bichler, and R. H. Blick, “Shock waves
in nanomechanical resonators”, Phys. Rev. Lett. 100, 026801 (2008).

[13] A. Cho, “Researchers race to put the quantum into mechanics”, Science 299, 36–37 (2003).
[14] K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics”, Physics Today

58, 36–42 (2005).
[15] G. R. Conference, Gordon research conference, frontiers of science, https://www.grc.org/.
[16] J. Harris and A. Cleland, Gordon research conference, mechanical systems in the quantum

regime, (2008) https://www.grc.org/mechanical-systems-in-the-quantum-regime-conference/
2008/.

[17] C. Regal and C. Hammerer, Gordon research conference. mechanical systems in the quantum
regime, quantum photonics for fundamental measurements and quantum technology. (2022)
https://www.grc.org/mechanical-systems-in-the-quantum-regime-conference/2022/.

https://doi.org/10.1038/nnano.2008.48
https://doi.org/10.1038/nnano.2008.48
https://doi.org/10.1119/1.16590
https://doi.org/10.1038/nnano.2008.125
https://doi.org/10.1126/science.1137307
https://doi.org/10.1038/s41467-019-11946-8
https://doi.org/10.1038/s41467-019-11946-8
https://doi.org/10.1038/s41467-019-11946-8
https://doi.org/10.1038/32373
https://doi.org/10.1038/32373
https://doi.org/10.1126/science.1094419
https://doi.org/10.1038/nature02658
https://doi.org/10.1021/nl052134m
https://doi.org/10.1038/nnano.2012.42
https://doi.org/10.1021/acs.nanolett.8b02437
https://doi.org/10.1103/PhysRevLett.100.026801
https://doi.org/10.1126/science.299.5603.36
https://doi.org/10.1063/1.2012461
https://doi.org/10.1063/1.2012461
https://www.grc.org/
https://www.grc.org/mechanical-systems-in-the-quantum-regime-conference/2008/
https://www.grc.org/mechanical-systems-in-the-quantum-regime-conference/2008/
https://www.grc.org/mechanical-systems-in-the-quantum-regime-conference/2022/


BIBLIOGRAPHY

144

[18] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams,
T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, and
N. Aggarwal, “Observation of gravitational waves from a binary black hole merger”, Physical
Review Letters 116, 10.1103/physrevlett.116.061102 (2016).

[19] H. Miao, S. Danilishin, H. Müller-Ebhardt, H. Rehbein, K. Somiya, and Y. Chen, “Probing
macroscopic quantum states with a sub-heisenberg accuracy”, Phys. Rev. A 81, 012114 (2010).

[20] H. Müller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, and Y. Chen, “Entanglement of
macroscopic test masses and the standard quantum limit in laser interferometry”, Phys. Rev.
Lett. 100, 013601 (2008).

[21] A. R. Wade, G. L. Mansell, T. G. McRae, S. S. Y. Chua, M. J. Yap, R. L. Ward, B. J. J.
Slagmolen, D. A. Shaddock, and D. E. McClelland, “Optomechanical design and construction
of a vacuum-compatible optical parametric oscillator for generation of squeezed light”, Review
of Scientific Instruments 87, 063104 (2016).

[22] J. A. Henry, Y. Wang, D. Sengupta, and M. A. Hines, “Understanding the effects of sur-
face chemistry on mechanical energy dissipation in alkyl-terminated micromechanical silicon
resonators”, The Journal of Physical Chemistry B 111, 88–94 (2006).

[23] S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M.
Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic
cavity”, Nature Physics 5, 485–488 (2009).

[24] R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and
K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light”,
Nature Physics 10, 321–326 (2014).

[25] J. P. Moura, R. A. Norte, J. Guo, C. Schäfermeier, and S. Gröblacher, “Centimeter-scale
suspended photonic crystal mirrors”, Optics Express 26, 1895 (2018).

[26] A. Schliesser, O.Arcizet, R. Rivière, G.Anetsberger, andT. J. Kippenberg, “Resolved-sideband
cooling and position measurement of a micromechanical oscillator close to the heisenberg
uncertainty limit”, Nature Physics 5, 509–514 (2009).

[27] T. Botter, D. Brooks, S. Gupta, Z.-Y. Ma, K. L. Moore, K. W. Murch, T. P. Purdy, and D. M.
Stamper-Kurn, “Quantum micro-mechanics with ultracold atoms”, in Pushing the frontiers of
atomic physics (Mar. 2009).

[28] M. O. Scully, M. S. Zubairy, and I. A. Walmsley, “Quantum optics”, American Journal of
Physics 67, 648–648 (1999).

[29] M. O. Scully and A. A. Svidzinsky, “The super of superradiance”, Science 325, 1510–1511
(2009).

[30] S. Camerer, M. Korppi, A. Jöckel, D. Hunger, T. W. Hänsch, and P. Treutlein, “Realization of
an optomechanical interface between ultracold atoms and a membrane”, Phys. Rev. Lett. 107,
223001 (2011).

[31] M. Bhattacharya, H. Uys, and P. Meystre, “Optomechanical trapping and cooling of partially
reflective mirrors”, Phys. Rev. A 77, 033819 (2008).

[32] Z. Xu, X. Gao, J. Bang, Z. Jacob, and T. Li, “Non-reciprocal energy transfer through the
casimir effect”, Nature Nanotechnology 17, 148–152 (2021).

https://doi.org/10.1103/physrevlett.116.061102
https://doi.org/10.1103/physrevlett.116.061102
https://doi.org/10.1103/physrevlett.116.061102
https://doi.org/10.1103/PhysRevA.81.012114
https://doi.org/10.1103/PhysRevLett.100.013601
https://doi.org/10.1103/PhysRevLett.100.013601
https://doi.org/10.1063/1.4953326
https://doi.org/10.1063/1.4953326
https://doi.org/10.1021/jp0654011
https://doi.org/10.1038/nphys1301
https://doi.org/10.1038/nphys2911
https://doi.org/10.1364/oe.26.001895
https://doi.org/10.1038/nphys1304
https://doi.org/10.1142/9789814273008_0013
https://doi.org/10.1142/9789814273008_0013
https://doi.org/10.1119/1.19344
https://doi.org/10.1119/1.19344
https://doi.org/10.1126/science.1176695
https://doi.org/10.1126/science.1176695
https://doi.org/10.1103/PhysRevLett.107.223001
https://doi.org/10.1103/PhysRevLett.107.223001
https://doi.org/10.1103/PhysRevA.77.033819
https://doi.org/10.1038/s41565-021-01026-8


145

[33] A. Buikema, C. Cahillane, G. L. Mansell, C. D. Blair, R. Abbott, C. Adams, R. X. Adhikari,
A. Ananyeva, S. Appert, K. Arai, J. S. Areeda, Y. Asali, S. M. Aston, C. Austin, A. M. Baer,
M. Ball, S. W. Ballmer, S. Banagiri, and Barker, “Sensitivity and performance of the advanced
ligo detectors in the third observing run”, Phys. Rev. D 102, 062003 (2020).

[34] L. Magrini, P. Rosenzweig, C. Bach, A. Deutschmann-Olek, S. G. Hofer, S. Hong, N. Kiesel,
A. Kugi, and M. Aspelmeyer, “Real-time optimal quantum control of mechanical motion at
room temperature”, Nature 595, 373–377 (2021).

[35] A. Militaru, M. Rossi, F. Tebbenjohanns, O. Romero-Isart, M. Frimmer, and L. Novotny,
“Ponderomotive squeezing of light by a levitated nanoparticle in free space”, Phys. Rev. Lett.
129, 053602 (2022).

[36] X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, “Cavity magnomechanics”, Science Advances
2, 10.1126/sciadv.1501286 (2016).

[37] B. D. Hauer, K. Cicak, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Quantum
optomechanics with millimeter wave photons”, in Conference on lasers and electro-optics
(2021).

[38] R. D. Delaney, M. D. Urmey, S. Mittal, B. M. Brubaker, J. M. Kindem, P. S. Burns, C. A.
Regal, and K. W. Lehnert, “Superconducting-qubit readout via low-backaction electro-optic
transduction”, Nature 606, 489–493 (2022).

[39] U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, and M. Aspelmeyer,
“Cooling of a levitated nanoparticle to the motional quantum ground state”, Science 367,
892–895 (2020).

[40] K. M. Backes, D. A. Palken, S. A. Kenany, B. M. Brubaker, S. B. Cahn, A. Droster, G. C.
Hilton, S. Ghosh, H. Jackson, S. K. Lamoreaux, A. F. Leder, K. W. Lehnert, S. M. Lewis,
M. Malnou, R. H. Maruyama, N. M. Rapidis, M. Simanovskaia, S. Singh, D. H. Speller,
I. Urdinaran, L. R. Vale, E. C. van Assendelft, K. van Bibber, and H. Wang, “A quantum
enhanced search for dark matter axions”, Nature 590, 238–242 (2021).

[41] J. S. Pedernales, K. Streltsov, and M. B. Plenio, “Enhancing gravitational interaction between
quantum systems by a massive mediator”, Phys. Rev. Lett. 128, 110401 (2022).

[42] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M.
Neeley, D. Sank, H.Wang,M.Weides, J.Wenner, J. M.Martinis, and A. N. Cleland, “Quantum
ground state and single-phonon control of a mechanical resonator”, Nature 464, 697–703
(2010).

[43] S. M. de Vasconcellos, S. Gordon, M. Bichler, T. Meier, and A. Zrenner, “Coherent control of
a single exciton qubit by optoelectronic manipulation”, Nature Photonics 4, 545–548 (2010).

[44] C. Roman, A. Ransford, M. Ip, andW. C. Campbell, “Coherent control for qubit state readout”,
New Journal of Physics 22, 073038 (2020).

[45] M. Zanner, T. Orell, C. M. F. Schneider, R. Albert, S. Oleschko, M. L. Juan, M. Silveri, and
G. Kirchmair, “Coherent control of a multi-qubit dark state in waveguide quantum electrody-
namics”, Nature Physics 18, 538–543 (2022).

[46] E. Leonard, M. A. Beck, J. Nelson, B. Christensen, T. Thorbeck, C. Howington, A. Opremcak,
I. Pechenezhskiy, K. Dodge, N. Dupuis, M. Hutchings, J. Ku, F. Schlenker, J. Suttle, C.
Wilen, S. Zhu, M. Vavilov, B. Plourde, and R. McDermott, “Digital coherent control of a
superconducting qubit”, Phys. Rev. Applied 11, 014009 (2019).

https://doi.org/10.1103/PhysRevD.102.062003
https://doi.org/10.1038/s41586-021-03602-3
https://doi.org/10.1103/PhysRevLett.129.053602
https://doi.org/10.1103/PhysRevLett.129.053602
https://doi.org/10.1126/sciadv.1501286
https://doi.org/10.1126/sciadv.1501286
https://doi.org/10.1126/sciadv.1501286
https://doi.org/10.1364/cleo_si.2021.stu2h.2
https://doi.org/10.1038/s41586-022-04720-2
https://doi.org/10.1126/science.aba3993
https://doi.org/10.1126/science.aba3993
https://doi.org/10.1038/s41586-021-03226-7
https://doi.org/10.1103/PhysRevLett.128.110401
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nphoton.2010.124
https://doi.org/10.1088/1367-2630/ab9982
https://doi.org/10.1038/s41567-022-01527-w
https://doi.org/10.1103/PhysRevApplied.11.014009


BIBLIOGRAPHY

146

[47] T. Faust, J. Rieger, M. J. Seitner, J. P. Kotthaus, and E. M. Weig, “Coherent control of a
classical nanomechanical two-level system”, Nature Physics 9, 485–488 (2013).

[48] E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic
moments in a solid”, Phys. Rev. 69, 37–38 (1946).

[49] F. Bloch, “Nuclear induction”, Phys. Rev. 70, 460–474 (1946).
[50] I. I. Rabi, “Space quantization in a gyrating magnetic field”, Phys. Rev. 51, 652–654 (1937).
[51] N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields”, Phys.

Rev. 78, 695–699 (1950).
[52] E. L. Hahn, “Spin echoes”, Phys. Rev. 80, 580–594 (1950).
[53] L. D. Landau, “Zur Theorie der Energieubertragung. II”, Phys. Z. Sowjetunion 2, 46 (1932).
[54] C. Zener, “Non-adiabatic crossing of energy levels”, Proc. R. Soc. A 137, 696 (1932).
[55] E. C. G. Stückelberg, “Theorie der unelastischen Stösse zwischen Atomen”, Helv. Phys. Acta

5, 239 (1932).
[56] T. Faust, J. Rieger, M. J. Seitner, P. Krenn, J. P. Kotthaus, and E. M. Weig, “Nonadiabatic

dynamics of two strongly coupled nanomechanical resonator modes”, Phys. Rev. Lett. 109,
037205 (2012).

[57] M. Seitner, “Coherent dynamics and parametric effects in strongly coupled nanomechanical
resonator modes”, PhD thesis (University of Konstanz, 2017).

[58] W. D. Oliver, Y. Yu, J. C. Lee, K. K. Berggren, L. S. Levitov, and T. P. Orlando, “Mach-zehnder
interferometry in a strongly driven superconducting qubit”, Science 310, 1653–1657 (2005).

[59] M. Mark, T. Kraemer, P. Waldburger, J. Herbig, C. Chin, H.-C. Nägerl, and R. Grimm,
“‘‘stückelberg interferometry” with ultracold molecules”, Phys. Rev. Lett. 99, 113201 (2007).

[60] S. Shevchenko, S. Ashhab, and F. Nori, “Landau Zener Stückelberg interferometry”, Physics
Reports 492, 1–30 (2010).

[61] S. N. Shevchenko, S. Ashhab, and F. Nori, “Inverse Landau-Zener-Stückelberg problem for
qubit-resonator systems”, Phys. Rev. B 85, 094502 (2012).

[62] M. J. Seitner, H. Ribeiro, J. Kölbl, T. Faust, J. P. Kotthaus, and E. M. Weig, “Classical
Stückelberg interferometry of a nanomechanical two-mode system”, Physical Review B 94,
10.1103/physrevb.94.245406 (2016).

[63] M. J. Seitner, H. Ribeiro, J. Kölbl, T. Faust, and E. M. Weig, “Finite-time Stückelberg interfer-
ometry with nanomechanical modes”, New Journal of Physics 19, 033011 (2017).

[64] N. Ramsey, Molecular beams (Oxford University Press, New York, 1985).
[65] M. Brune, S. Haroche, J. M. Raimond, L. Davidovich, and N. Zagury, “Manipulation of

photons in a cavity by dispersive atom-field coupling: quantum-nondemolition measurements
and generation of “schrödinger cat” states”, Phys. Rev. A 45, 5193–5214 (1992).

[66] A. N. Cleland, Foundations of nanomechanics (Springer Berlin Heidelberg, 2003).
[67] S. Schmid, L. G. Villanueva, and M. L. Roukes, Fundamentals of nanomechanical resonators

(© Springer International Publishing Switzerland, 2016).
[68] W. Weaver Jr, S. P. Timoshenko, and D. H. Young, Vibration problems in engineering (John

Wiley & Sons, 1991).

https://doi.org/10.1038/nphys2666
https://doi.org/10.1103/PhysRev.69.37
https://doi.org/10.1103/PhysRev.70.460
https://doi.org/10.1103/PhysRev.51.652
https://doi.org/10.1103/PhysRev.78.695
https://doi.org/10.1103/PhysRev.78.695
https://doi.org/10.1103/PhysRev.80.580
https://doi.org/10.1103/PhysRevLett.109.037205
https://doi.org/10.1103/PhysRevLett.109.037205
https://doi.org/10.1126/science.1119678
https://doi.org/10.1103/PhysRevLett.99.113201
https://doi.org/10.1016/j.physrep.2010.03.002
https://doi.org/10.1016/j.physrep.2010.03.002
https://doi.org/10.1103/PhysRevB.85.094502
https://doi.org/10.1103/physrevb.94.245406
https://doi.org/10.1103/physrevb.94.245406
https://doi.org/10.1103/physrevb.94.245406
https://doi.org/10.1088/1367-2630/aa5a3f
https://doi.org/10.1103/PhysRevA.45.5193


147

[69] J. Rieger, A. Isacsson, M. J. Seitner, J. P. Kotthaus, and E. M.Weig, “Energy losses of nanome-
chanical resonators induced by atomic force microscopy-controlled mechanical impedance
mismatching”, Nature Communications 5, 10.1038/ncomms4345 (2014).

[70] Q. P. Unterreithmeier, E. M. Weig, and J. P. Kotthaus, “Universal transduction scheme for
nanomechanical systems based on dielectric forces”, Nature 458, 1001–1004 (2009).

[71] P.-L. Yu, T. P. Purdy, and C. A. Regal, “Control of material damping in high-q membrane
microresonators”, Phys. Rev. Lett. 108, 083603 (2012).

[72] S. A. Fedorov, N. J. Engelsen, A. H. Ghadimi, M. J. Bereyhi, R. Schilling, D. J. Wilson, and
T. J. Kippenberg, “Generalized dissipation dilution in strained mechanical resonators”, Phys.
Rev. B 99, 054107 (2019).

[73] S. S. Verbridge, H. G. Craighead, and J. M. Parpia, “A megahertz nanomechanical resonator
with room temperature quality factor over a million”, Applied Physics Letters 92, 013112
(2008).

[74] Y. Tsaturyan, A. Barg, E. S. Polzik, and A. Schliesser, “Ultracoherent nanomechanical res-
onators via soft clamping and dissipation dilution”, Nature Nanotechnology 12, 776–783
(2017).

[75] A. H. Ghadimi, S. A. Fedorov, N. J. Engelsen, M. J. Bereyhi, R. Schilling, D. J. Wilson, and
T. J. Kippenberg, “Elastic strain engineering for ultralow mechanical dissipation”, Science
360, 764–768 (2018).

[76] A. Beccari, D. A. Visani, S. A. Fedorov, M. J. Bereyhi, V. Boureau, N. J. Engelsen, and T. J.
Kippenberg, “Strained crystalline nanomechanical resonators with quality factors above 10
billion”, Nature Physics 18, 436–441 (2022).

[77] M. Frimmer and L. Novotny, “The classical bloch equations”, American Journal of Physics
82, 947–954 (2014).

[78] C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromag-
netically induced transparency”, American Journal of Physics 70, 37–41 (2002).

[79] S. Asztalos, E. Daw, H. Peng, L. J Rosenberg, C. Hagmann, D. Kinion, W. Stoeffl, K. van
Bibber, P. Sikivie, N. S. Sullivan, D. B. Tanner, F. Nezrick, M. S. Turner, D. M. Moltz, J.
Powell, M.-O. André, J. Clarke, M. Mück, and R. F. Bradley, “Large-scale microwave cavity
search for dark-matter axions”, Phys. Rev. D 64, 092003 (2001).

[80] N. M. Rapidis, S. M. Lewis, and K. A. van Bibber, “Characterization of the HAYSTAC axion
dark matter search cavity using microwave measurement and simulation techniques”, Review
of Scientific Instruments 90, 024706 (2019).

[81] M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland, C. Wang, J.
Blumoff, K. Chou, M. J. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf,
“Quantum memory with millisecond coherence in circuit qed”, Phys. Rev. B 94, 014506
(2016).

[82] A.Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin,
and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using
circuit quantum electrodynamics”, Nature 431, 162–167 (2004).

[83] G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L.
Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Observation of quantum state collapse and
revival due to the single-photon kerr effect”, Nature 495, 205–209 (2013).

https://doi.org/10.1038/ncomms4345
https://doi.org/10.1038/ncomms4345
https://doi.org/10.1038/nature07932
https://doi.org/10.1103/PhysRevLett.108.083603
https://doi.org/10.1103/PhysRevB.99.054107
https://doi.org/10.1103/PhysRevB.99.054107
https://doi.org/10.1063/1.2822406
https://doi.org/10.1063/1.2822406
https://doi.org/10.1038/nnano.2017.101
https://doi.org/10.1038/nnano.2017.101
https://doi.org/10.1126/science.aar6939
https://doi.org/10.1126/science.aar6939
https://doi.org/10.1038/s41567-021-01498-4
https://doi.org/10.1119/1.4878621
https://doi.org/10.1119/1.4878621
https://doi.org/10.1119/1.1412644
https://doi.org/10.1103/PhysRevD.64.092003
https://doi.org/10.1063/1.5055246
https://doi.org/10.1063/1.5055246
https://doi.org/10.1103/PhysRevB.94.014506
https://doi.org/10.1103/PhysRevB.94.014506
https://doi.org/10.1038/nature02851
https://doi.org/10.1038/nature11902


BIBLIOGRAPHY

148

[84] L. Sun,A. Petrenko, Z. Leghtas, B.Vlastakis, G.Kirchmair, K.M. Sliwa,A.Narla,M.Hatridge,
S. Shankar, J. Blumoff, L. Frunzio, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf,
“Tracking photon jumps with repeated quantum non-demolition parity measurements”, Nature
511, 444–448 (2014).

[85] E. Flurin, N. Roch, J. D. Pillet, F. Mallet, and B. Huard, “Superconducting quantum node for
entanglement and storage of microwave radiation”, Phys. Rev. Lett. 114, 090503 (2015).

[86] A. Angerer, T. Astner, D. Wirtitsch, H. Sumiya, S. Onoda, J. Isoya, S. Putz, and J. Majer,
“Collective strong coupling with homogeneous rabi frequencies using a 3d lumped element
microwave resonator”, Applied Physics Letters 109, 033508 (2016).

[87] X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, “Strongly coupled magnons and cavity
microwave photons”, Phys. Rev. Lett. 113, 156401 (2014).

[88] M. Göppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J. M. Fink, P. J. Leek, G. Puebla,
L. Steffen, and A. Wallraff, “Coplanar waveguide resonators for circuit quantum electrody-
namics”, Journal of Applied Physics 104, 113904 (2008).

[89] M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics”, Physics Today 65,
29–35 (2012).

[90] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics”, Reviews of
Modern Physics 86, 1391–1452 (2014).

[91] J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K.W. Lehnert, “Nanome-
chanical motion measured with an imprecision below that at the standard quantum limit”,
Nature Nanotechnology 4, 820–823 (2009).

[92] J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds,
“Circuit cavity electromechanics in the strong-coupling regime”, Nature 471, 204–208 (2011).

[93] J.D. Teufel, T.Donner,D. Li, J.W.Harlow,M. S.Allman,K.Cicak,A. J. Sirois, J. D.Whittaker,
K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the
quantum ground state”, Nature 475, 359–363 (2011).

[94] R. W. Peterson, T. P. Purdy, N. S. Kampel, R. W. Andrews, P.-L. Yu, K. W. Lehnert, and C. A.
Regal, “Laser cooling of a micromechanical membrane to the quantum backaction limit”, Phys.
Rev. Lett. 116, 063601 (2016).

[95] T. Faust, P. Krenn, S. Manus, J. Kotthaus, and E. Weig, “Microwave cavity-enhanced trans-
duction for plug and play nanomechanics at room temperature”, Nature Communications 3,
10.1038/ncomms1723 (2012).

[96] D. M. Pozar, Microwave engineering (John Wiley & Sons, 2012).
[97] H. Mooĳweer, Microwave techniques (Macmillan Education UK, 1971).
[98] M. J. Reagor, “Superconducting cavities for circuit quantum electrodynamics”, PhD thesis

(Yale University, 2015).
[99] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. Johnson,

M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf,
“Observation of high coherence in josephson junction qubits measured in a three-dimensional
circuit QED architecture”, Physical Review Letters 107, 10 .1103/physrevlett .107 .240501
(2011).

[100] Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura,
“Coherent coupling between a ferromagnetic magnon and a superconducting qubit”, Science
349, 405–408 (2015).

https://doi.org/10.1038/nature13436
https://doi.org/10.1038/nature13436
https://doi.org/10.1103/PhysRevLett.114.090503
https://doi.org/10.1063/1.4959095
https://doi.org/10.1103/PhysRevLett.113.156401
https://doi.org/10.1063/1.3010859
https://doi.org/10.1063/pt.3.1640
https://doi.org/10.1063/pt.3.1640
https://doi.org/10.1103/revmodphys.86.1391
https://doi.org/10.1103/revmodphys.86.1391
https://doi.org/10.1038/nnano.2009.343
https://doi.org/10.1038/nature09898
https://doi.org/10.1038/nature10261
https://doi.org/10.1103/PhysRevLett.116.063601
https://doi.org/10.1103/PhysRevLett.116.063601
https://doi.org/10.1038/ncomms1723
https://doi.org/10.1038/ncomms1723
https://doi.org/10.1038/ncomms1723
https://doi.org/10.1103/physrevlett.107.240501
https://doi.org/10.1103/physrevlett.107.240501
https://doi.org/10.1103/physrevlett.107.240501
https://doi.org/10.1126/science.aaa3693
https://doi.org/10.1126/science.aaa3693


149

[101] V. Singh, S. J. Bosman, B. H. Schneider, Y. M. Blanter, A. Castellanos-Gomez, and G. A.
Steele, “Optomechanical coupling between a multilayer graphene mechanical resonator and a
superconducting microwave cavity”, Nature Nanotechnology 9, 820–824 (2014).

[102] M. Yuan, V. Singh, Y. M. Blanter, and G. A. Steele, “Large cooperativity and microkelvin
cooling with a three-dimensional optomechanical cavity”, Nature Communications 6, 10.1038/
ncomms9491 (2015).

[103] A. Noguchi, R. Yamazaki, M. Ataka, H. Fujita, Y. Tabuchi, T. Ishikawa, K. Usami, and Y.
Nakamura, “Ground state cooling of a quantum electromechanical systemwith a silicon nitride
membrane in a 3d loop-gap cavity”, New Journal of Physics 18, 103036 (2016).

[104] T. Rylander, P. Ingelström, and A. Bondeson, Computational electromagnetics (Springer New
York, 2013).

[105] S. E. Ratcliffe, “Developing a resonant waveguide cavity as a notch filter”, MA thesis (Ludwig-
Maximilians-Universität München, 2012).

[106] M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk,
T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10 ms
single photon lifetimes for superconducting aluminum cavities”, Applied Physics Letters 102,
192604 (2013).

[107] A. T. Le, A. Brieussel, and E. M. Weig, “Room temperature cavity electromechanics in the
sideband-resolved regime”, Journal of Applied Physics 130, 014301 (2021).

[108] C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek, K. Chou, C. Axline, M. Reagor,
J. Blumoff, K. M. Sliwa, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and
R. J. Schoelkopf, “A schrödinger cat living in two boxes”, Science 352, 1087–1091 (2016).

[109] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio,
S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, “Extending the
lifetime of a quantum bit with error correction in superconducting circuits”, Nature 536, 441–
445 (2016).

[110] R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf,
“Implementing a universal gate set on a logical qubit encoded in an oscillator”, Nature Com-
munications 8, 10.1038/s41467-017-00045-1 (2017).

[111] W. Pfaff, C. J. Axline, L. D. Burkhart, U. Vool, P. Reinhold, L. Frunzio, L. Jiang,M. H. Devoret,
and R. J. Schoelkopf, “Controlled release of multiphoton quantum states from a microwave
cavity memory”, Nature Physics 13, 882–887 (2017).

[112] K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Reinhold, C. J. Axline, Y. Y. Gao, L. Frunzio,
M. H. Devoret, L. Jiang, and R. J. Schoelkopf, “Deterministic teleportation of a quantum gate
between two logical qubits”, Nature 561, 368–373 (2018).

[113] S. Rosenblum, Y. Y. Gao, P. Reinhold, C. Wang, C. J. Axline, L. Frunzio, S. M. Girvin, L.
Jiang,M.Mirrahimi,M. H. Devoret, and R. J. Schoelkopf, “ACNOT gate betweenmultiphoton
qubits encoded in two cavities”, Nature Communications 9, 10.1038/s41467-018-03059-5
(2018).

[114] C. J. Axline, L. D. Burkhart, W. Pfaff, M. Zhang, K. Chou, P. Campagne-Ibarcq, P. Reinhold,
L. Frunzio, S. M. Girvin, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, “On-demand quantum
state transfer and entanglement between remote microwave cavity memories”, Nature Physics
14, 705–710 (2018).

[115] H. A. Bethe, “Theory of diffraction by small holes”, Physical Review 66, 163–182 (1944).

https://doi.org/10.1038/nnano.2014.168
https://doi.org/10.1038/ncomms9491
https://doi.org/10.1038/ncomms9491
https://doi.org/10.1038/ncomms9491
https://doi.org/10.1038/ncomms9491
https://doi.org/10.1088/1367-2630/18/10/103036
https://doi.org/10.1063/1.4807015
https://doi.org/10.1063/1.4807015
https://doi.org/10.1063/5.0054965
https://doi.org/10.1126/science.aaf2941
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/s41467-017-00045-1
https://doi.org/10.1038/s41467-017-00045-1
https://doi.org/10.1038/s41467-017-00045-1
https://doi.org/10.1038/nphys4143
https://doi.org/10.1038/s41586-018-0470-y
https://doi.org/10.1038/s41467-018-03059-5
https://doi.org/10.1038/s41467-018-03059-5
https://doi.org/10.1038/s41467-018-03059-5
https://doi.org/10.1038/s41567-018-0115-y
https://doi.org/10.1038/s41567-018-0115-y
https://doi.org/10.1103/physrev.66.163


BIBLIOGRAPHY

150

[116] D. Anic, “Mikrowellenhohlraumresonatoren in nanoelektromechanik bei raumtemperatur”,
MA thesis (Universität Konstanz, Feb. 2021).

[117] C. N. Works, “Resonant cavities for dielectric measurements”, Journal of Applied Physics 18,
605–612 (1947).

[118] H. Paik and K. D. Osborn, “Reducing quantum-regime dielectric loss of silicon nitride for
superconducting quantum circuits”, Applied Physics Letters 96, 072505 (2010).

[119] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics (Springer-Verlag
Berlin Heidelberg, 2014).

[120] P. J. Petersan and S. M. Anlage, “Measurement of resonant frequency and quality factor of
microwave resonators: comparison of methods”, Journal of Applied Physics 84, 3392–3402
(1998).

[121] N. Chernov and C. Lesort, “Least squares fitting of circles”, Journal of Mathematical Imaging
and Vision 23, 239–252 (2005).

[122] S. Probst, F. B. Song, P. A. Bushev, A. V. Ustinov, and M. Weides, “Efficient and robust
analysis of complex scattering data under noise in microwave resonators”, Review of Scientific
Instruments 86, 024706 (2015).

[123] K. L. Geerlings, “Improving coherence of superconducting qubits and resonators”, PhD thesis
(Yale University, Aug. 2013).

[124] C. Deng, M. Otto, and A. Lupascu, “An analysis method for transmission measurements of su-
perconducting resonators with applications to quantum-regime dielectric-loss measurements”,
Journal of Applied Physics 114, 054504 (2013).

[125] M. S. Khalil, M. J. A. Stoutimore, F. C. Wellstood, and K. D. Osborn, “An analysis method for
asymmetric resonator transmission applied to superconducting devices”, Journal of Applied
Physics 111, 054510 (2012).

[126] S. Probst, Python implementation of the fitting algorithm, (2015) https://www.phi.kit.edu/
ustinov_downloads.php.

[127] D. Rieger, S. Günzler, M. Spiecker, A. Nambisan, W. Wernsdorfer, and I. M. Pop, “Fano
interference in microwave resonator measurements”, https://doi.org/10.48550/arXiv.2209.
03036 (2023).

[128] R. B. Yalaman, “Fabrication and characterization of high q nanomechanical string resonators”,
MA thesis (Technical University of Munich, 2022).

[129] F. David, “Fabrication and characterization of nanomechanical string resonators based on
silicon carbide”, MA thesis (Technical University of Munich, 2022).

[130] J. Rieger, T. Faust, M. J. Seitner, J. P. Kotthaus, and E. M. Weig, “Frequency and q factor
control of nanomechanical resonators”, Applied Physics Letters 101, 103110 (2012).

[131] K. Bordo and H.-G. Rubahn, “Effect of deposition rate on structure and surface morphology
of thin evaporated al films on dielectrics and semiconductors”, Materials Science 18, 10.5755/
j01.ms.18.4.3088 (2012).

[132] Y. Klass, “High q nanomechanical resonators fabricated from crystalline silicon carbide”, PhD
thesis (Technical University of Munich, 2022).

[133] M. Bückle, “Nanomechanical systems based on tensile-stressed crystalline indium gallium
phosphide”, PhD thesis (University of Konstanz, 2020).

https://doi.org/10.1063/1.1697816
https://doi.org/10.1063/1.1697816
https://doi.org/10.1063/1.3309703
https://doi.org/10.1063/1.368498
https://doi.org/10.1063/1.368498
https://doi.org/10.1007/s10851-005-0482-8
https://doi.org/10.1007/s10851-005-0482-8
https://doi.org/10.1063/1.4907935
https://doi.org/10.1063/1.4907935
https://doi.org/10.1063/1.4817512
https://doi.org/10.1063/1.3692073
https://doi.org/10.1063/1.3692073
https://www.phi.kit.edu/ustinov_downloads.php
https://www.phi.kit.edu/ustinov_downloads.php
https://doi.org/https://doi.org/10.48550/arXiv.2209.03036
https://doi.org/https://doi.org/10.48550/arXiv.2209.03036
https://doi.org/https://doi.org/10.48550/arXiv.2209.03036
https://doi.org/https://doi.org/10.48550/arXiv.2209.03036
https://doi.org/10.1063/1.4751351
https://doi.org/10.5755/j01.ms.18.4.3088
https://doi.org/10.5755/j01.ms.18.4.3088
https://doi.org/10.5755/j01.ms.18.4.3088
https://doi.org/10.5755/j01.ms.18.4.3088


151

[134] M. J. Seitner, K. Gajo, and E. M. Weig, “Damping of metallized bilayer nanomechanical
resonators at room temperature”, Applied Physics Letters 105, 213101 (2014).

[135] N. C. Carvalho, J. Bourhill,M.Goryachev, S. Galliou, andM. E. Tobar, “Piezo-optomechanical
coupling of a 3d microwave resonator to a bulk acoustic wave crystalline resonator”, Applied
Physics Letters 115, 211102 (2019).

[136] C. A. Regal and K. W. Lehnert, “From cavity electromechanics to cavity optomechanics”,
Journal of Physics: Conference Series 264, 012025 (2011).

[137] M. Forsch, R. Stockill, A. Wallucks, I. Marinković, C. Gärtner, R. A. Norte, F. van Otten, A.
Fiore, K. Srinivasan, and S. Gröblacher, “Microwave-to-optics conversion using a mechanical
oscillator in its quantum ground state”, Nature Physics 16, 69–74 (2019).

[138] J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. A. Sillanpää, “Squeezing
of quantum noise of motion in a micromechanical resonator”, Phys. Rev. Lett. 115, 243601
(2015).

[139] F.Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, andM. A.
Sillanpää, “Microwave amplification with nanomechanical resonators”, Nature 480, 351–354
(2011).

[140] T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, “Entangling mechanical
motion with microwave fields”, Science 342, 710–713 (2013).

[141] S. Barzanjeh, E. S. Redchenko, M. Peruzzo, M. Wulf, D. P. Lewis, G. Arnold, and J. M. Fink,
“Stationary entangled radiation from micromechanical motion”, Nature 570, 480–483 (2019).

[142] M. Roukes, Fns invited talk: microwave cavity optomechanics, parametrically-coupled non-
linear oscillators and single molecules analysis. (2021) http://fns2021.icfo.eu/2020/12/18/
michael-roukes/.

[143] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs,
and mathematical tables, Vol. 55 (US Government printing office, 1964).

[144] J. S. Huber, G. Rastelli, M. J. Seitner, J. Kölbl, W. Belzig, M. I. Dykman, and E. M. Weig,
“Spectral evidence of squeezing of a weakly damped driven nanomechanical mode”, Physical
Review X 10, 021066 (2020).

[145] J. S. Ochs, M. Seitner, M. I. Dykman, and E. M. Weig, “Amplification and spectral evidence
of squeezing in the response of a strongly driven nanoresonator to a probe field”, Physical
Review A 103, 013506 (2021).

[146] J. S.Ochs,G.Rastelli,M. Seitner,M. I.Dykman, andE.M.Weig, “Resonant nonlinear response
of a nanomechanical system with broken symmetry”, Physical Review B 104, 155434 (2021).

[147] L Sekaric, D. Carr, S Evoy, J. Parpia, and H. Craighead, “Nanomechanical resonant structures
in silicon nitride: fabrication, operation and dissipation issues”, Sensors and Actuators A:
Physical 101, 215–219 (2002).

[148] K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, “Ultrasensitive nanoelectromechanical mass
detection”, Applied Physics Letters 84, 4469–4471 (2004).

[149] I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling
of a mechanical oscillator using dynamical backaction”, Phys. Rev. Lett. 99, 093901 (2007).

[150] F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted
sideband cooling of mechanical motion”, Phys. Rev. Lett. 99, 093902 (2007).

https://doi.org/10.1063/1.4902430
https://doi.org/10.1063/1.5127997
https://doi.org/10.1063/1.5127997
https://doi.org/10.1088/1742-6596/264/1/012025
https://doi.org/10.1038/s41567-019-0673-7
https://doi.org/10.1103/PhysRevLett.115.243601
https://doi.org/10.1103/PhysRevLett.115.243601
https://doi.org/10.1038/nature10628
https://doi.org/10.1038/nature10628
https://doi.org/10.1126/science.1244563
https://doi.org/10.1038/s41586-019-1320-2
http://fns2021.icfo.eu/2020/12/18/michael-roukes/
http://fns2021.icfo.eu/2020/12/18/michael-roukes/
https://doi.org/10.1103/physrevx.10.021066
https://doi.org/10.1103/physrevx.10.021066
https://doi.org/10.1103/physreva.103.013506
https://doi.org/10.1103/physreva.103.013506
https://doi.org/10.1103/physrevb.104.155434
https://doi.org/https://doi.org/10.1016/S0924-4247(02)00149-8
https://doi.org/https://doi.org/10.1016/S0924-4247(02)00149-8
https://doi.org/10.1063/1.1755417
https://doi.org/10.1103/PhysRevLett.99.093901
https://doi.org/10.1103/PhysRevLett.99.093902


BIBLIOGRAPHY

152

[151] A. Schliesser, R. Rivière,G.Anetsberger, O.Arcizet, andT. J. Kippenberg, “Resolved-sideband
cooling of a micromechanical oscillator”, Nature Physics 4, 415–419 (2008).

[152] F. Chen, A. J. Sirois, R. W. Simmonds, and A. J. Rimberg, “Introduction of a dc bias into a
high-q superconducting microwave cavity”, Appl. Phys. Lett. 98, 132509 (2011).

[153] S. E. de Graaf, D. Davidovikj, A. Adamyan, S. E. Kubatkin, and A. V. Danilov, “Galvanically
split superconducting microwave resonators for introducing internal voltage bias”, Applied
Physics Letters 104, 052601 (2014).

[154] Y. Hao, F. Rouxinol, and M. D. LaHaye, “Development of a broadband reflective t-filter for
voltage biasing high-q superconducting microwave cavities”, Applied Physics Letters 105,
222603 (2014).

[155] W.-C. Kong, G.-W. Deng, S.-X. Li, H.-O. Li, G. Cao, M. Xiao, and G.-P. Guo, “Introduction
of DC line structures into a superconducting microwave 3d cavity”, Review of Scientific
Instruments 86, 023108 (2015).

[156] M. A. Cohen, M. Yuan, B. W. A. de Jong, E. Beukers, S. J. Bosman, and G. A. Steele, “A
split-cavity design for the incorporation of a dc bias in a 3dmicrowave cavity”, Applied Physics
Letters 110, 172601 (2017).

[157] M Stammeier, S Garcia, and A Wallraff, “Applying electric and magnetic field bias in a 3d
superconductingwaveguide cavity with high quality factor”, Quantum Science and Technology
3, 045007 (2018).

[158] A. H. Nayfeh and D. T. Mook, Nonlinear oscillations (Wiley, May 1995).
[159] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics”, Reviews of

Modern Physics 86, 1391–1452 (2014).
[160] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, “Introduction to

quantum noise, measurement, and amplification”, Reviews of Modern Physics 82, 1155–1208
(2010).

[161] O. Shevchuk, V. Singh, G. A. Steele, and Y. M. Blanter, “Optomechanical response of a
nonlinear mechanical resonator”, Physical Review B 92, 10.1103/physrevb.92.195415 (2015).

[162] G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects
of light”, Physical Review A 81, 10.1103/physreva.81.041803 (2010).

[163] S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg,
“Optomechanically induced transparency”, Science 330, 1520–1523 (2010).

[164] X. Zhou, F. Hocke, A. Schliesser, A.Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing,
advancing and switching of microwave signals using circuit nanoelectromechanics”, Nature
Physics 9, 179–184 (2013).

[165] V. Singh, O. Shevchuk, Y. M. Blanter, and G. A. Steele, “Negative nonlinear damping of a
multilayer graphene mechanical resonator”, Physical Review B 93, 10 .1103/physrevb.93 .
245407 (2016).

[166] T. Bodiya, V. Sudhir, C. Wipf, N. Smith, A. Buikema, A. Kontos, H. Yu, and N. Maval-
vala, “Sub-hertz optomechanically induced transparency with a kilogram-scale mechanical
oscillator”, Physical Review A 100, 10.1103/physreva.100.013853 (2019).

[167] A. Chowdhury, A. T. Le, E. M. Weig, and H. Ribeiro, “Iterative adaptive spectroscopy of short
signals”, 10.48550/ARXIV.2204.04736 (2022).

https://doi.org/10.1038/nphys939
https://doi.org/DOI:10.1063/1.3573824
https://doi.org/10.1063/1.4863681
https://doi.org/10.1063/1.4863681
https://doi.org/10.1063/1.4903777
https://doi.org/10.1063/1.4903777
https://doi.org/10.1063/1.4913252
https://doi.org/10.1063/1.4913252
https://doi.org/10.1063/1.4981884
https://doi.org/10.1063/1.4981884
https://doi.org/10.1088/2058-9565/aad362
https://doi.org/10.1088/2058-9565/aad362
https://doi.org/10.1103/revmodphys.86.1391
https://doi.org/10.1103/revmodphys.86.1391
https://doi.org/10.1103/revmodphys.82.1155
https://doi.org/10.1103/revmodphys.82.1155
https://doi.org/10.1103/physrevb.92.195415
https://doi.org/10.1103/physrevb.92.195415
https://doi.org/10.1103/physreva.81.041803
https://doi.org/10.1103/physreva.81.041803
https://doi.org/10.1126/science.1195596
https://doi.org/10.1038/nphys2527
https://doi.org/10.1038/nphys2527
https://doi.org/10.1103/physrevb.93.245407
https://doi.org/10.1103/physrevb.93.245407
https://doi.org/10.1103/physrevb.93.245407
https://doi.org/10.1103/physrevb.93.245407
https://doi.org/10.1103/physreva.100.013853
https://doi.org/10.1103/physreva.100.013853
https://doi.org/10.48550/ARXIV.2204.04736
https://doi.org/10.48550/ARXIV.2204.04736


153

[168] P. Fisk, M. Sellars, M. Lawn, C. Coles, A. Mann, and D. Blair, “Very high q microwave
spectroscopy on trapped /sup 171/yb/sup +/ ions: application as a frequency standard”, IEEE
Transactions on Instrumentation and Measurement 44, 113–116 (1995).

[169] K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov, P. Becker,
H.-J. Pohl, J. J. L. Morton, and M. L. W. Thewalt, “Room-temperature quantum bit storage
exceeding 39 minutes using ionized donors in silicon-28”, Science 342, 830–833 (2013).

[170] M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig,
J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour
coherence time”, Nature 517, 177–180 (2015).

[171] A. Barfuss, J. Kölbl, L. Thiel, J. Teissier, M. Kasperczyk, and P.Maletinsky, “Phase-controlled
coherent dynamics of a single spin under closed-contour interaction”, Nature Physics 14, 1087–
1091 (2018).

[172] J. Kölbl, A. Barfuss, M. S. Kasperczyk, L. Thiel, A. A. Clerk, H. Ribeiro, and P. Maletinsky,
“Initialization of single spin dressed states using shortcuts to adiabaticity”, Phys. Rev. Lett.
122, 090502 (2019).

[173] E. D. Herbschleb, H. Kato, Y. Maruyama, T. Danjo, T. Makino, S. Yamasaki, I. Ohki, K.
Hayashi, H. Morishita, M. Fujiwara, and N. Mizuochi, “Ultra-long coherence times amongst
room-temperature solid-state spins”, Nature Communications 10, 3766 (2019).

[174] M. Tse and et al., “Quantum-enhanced advanced ligo detectors in the era of gravitational-wave
astronomy”, Phys. Rev. Lett. 123, 231107 (2019).

[175] M. Malnou, D. A. Palken, B. M. Brubaker, L. R. Vale, G. C. Hilton, and K. W. Lehnert,
“Squeezed vacuum used to accelerate the search for a weak classical signal”, Phys. Rev. X 9,
021023 (2019).

[176] T. L. scientific Collaboration, “A gravitational wave observatory operating beyond the quantum
shot-noise limit”, Nature Physics 7, 962–965 (2011).

[177] J. Aasi and et al., “Enhanced sensitivity of the ligo gravitational wave detector by using
squeezed states of light”, Nature Photonics 7, 613–619 (2013).

[178] M. Werninghaus, D. J. Egger, F. Roy, S. Machnes, F. K. Wilhelm, and S. Filipp, “Leakage
reduction in fast superconducting qubit gates via optimal control”, npj Quantum Information
7, 14 (2021).

[179] B. J. Lawrie, P. D. Lett, A. M. Marino, and R. C. Pooser, “Quantum Sensing with Squeezed
Light”, ACS Photonics 6, 1307–1318 (2019).

[180] J. Liu, M. Zhang, H. Chen, L. Wang, and H. Yuan, “Optimal scheme for quantum metrology”,
Advanced Quantum Technologies 5, 2100080 (2022).

[181] L. M. K. Vandersypen and I. L. Chuang, “Nmr techniques for quantum control and computa-
tion”, Rev. Mod. Phys. 76, 1037–1069 (2005).

[182] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H. Devoret,
“Manipulating the quantum state of an electrical circuit”, Science 296, 886–889 (2002).

[183] C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing”, Rev. Mod. Phys. 89, 035002
(2017).

[184] K. M. M. Prabhu, Window functions and their applications in signal processing (CRC Press,
Sept. 2018).

https://doi.org/10.1109/19.377786
https://doi.org/10.1109/19.377786
https://doi.org/10.1126/science.1239584
https://doi.org/10.1038/nature14025
https://doi.org/10.1038/s41567-018-0231-8
https://doi.org/10.1038/s41567-018-0231-8
https://doi.org/10.1103/PhysRevLett.122.090502
https://doi.org/10.1103/PhysRevLett.122.090502
https://doi.org/10.1038/s41467-019-11776-8
https://doi.org/10.1103/PhysRevLett.123.231107
https://doi.org/10.1103/PhysRevX.9.021023
https://doi.org/10.1103/PhysRevX.9.021023
https://doi.org/10.1038/nphys2083
https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1038/s41534-020-00346-2
https://doi.org/10.1038/s41534-020-00346-2
https://doi.org/10.1021/acsphotonics.9b00250
https://doi.org/https://doi.org/10.1002/qute.202100080
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1126/science.1069372
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.89.035002


BIBLIOGRAPHY

154

[185] H. Ribeiro, A. Baksic, and A. A. Clerk, “Systematic magnus-based approach for suppressing
leakage and nonadiabatic errors in quantum dynamics”, Phys. Rev. X 7, 011021 (2017).

[186] T. F. Roque, A. A. Clerk, and H. Ribeiro, “Engineering fast high-fidelity quantum operations
with constrained interactions”, npj Quantum Information 7, 10.1038/s41534-020-00349-z
(2021).

[187] J. Clarke and F. K.Wilhelm, “Superconducting quantum bits”, Nature 453, 1031–1042 (2008).
[188] L. Novotny, “Strong coupling, energy splitting, and level crossings: a classical perspective”,

American Journal of Physics 78, 1199–1202 (2010).
[189] H. Okamoto, A. Gourgout, C.-Y. Chang, K. Onomitsu, I. Mahboob, E. Y. Chang, and H. Ya-

maguchi, “Coherent phonon manipulation in coupled mechanical resonators”, Nature Physics
9, 480–484 (2013).

[190] F. R. Braakman, N. Rossi, G. Tütüncüoglu, A. F. i.Morral, andM. Poggio, “Coherent two-mode
dynamics of a nanowire force sensor”, Phys. Rev. Applied 9, 054045 (2018).

[191] A. Ranfagni, P. Vezio, M. Calamai, A. Chowdhury, F. Marino, and F. Marin, “Vectorial
polaritons in the quantum motion of a levitated nanosphere”, Nature Physics 17, 1120–1124
(2021).

[192] I Yeo, P.-L. de Assis, a Gloppe, E Dupont-Ferrier, P Verlot, N. S. Malik, E Dupuy, J Claudon,
J.-M. Gérard, a Auffèves, G Nogues, S Seidelin, J.-p. Poizat, O Arcizet, and M Richard,
“Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system.”, Nature
Nanotechnology 9, 106–110 (2014).

[193] S.M. Thon,M. T.Rakher, H.Kim, J. Gudat,W. T.M. Irvine, P.M. Petroff, andD.Bouwmeester,
“Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity”,
Applied Physics Letters 94, 111115 (2009).

[194] M. Pernpeintner, P. Schmidt, D. Schwienbacher, R. Gross, and H. Huebl, “Frequency control
and coherent excitation transfer in a nanostring-resonator network”, Phys. Rev. Applied 10,
034007 (2018).

[195] C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters,
“Remote state preparation”, Phys. Rev. Lett. 87, 077902 (2001).

[196] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret,
S. M. Girvin, and R. J. Schoelkopf, “Charge-insensitive qubit design derived from the cooper
pair box”, Phys. Rev. A 76, 042319 (2007).

[197] P. Rabl, S. J. Kolkowitz, F. H. L. Koppens, J. G. E. Harris, P. Zoller, and M. D. Lukin, “A
quantum spin transducer based on nanoelectromechanical resonator arrays”, Nature Physics 6,
602–608 (2010).

[198] M. S. J. Barson, P. Peddibhotla, P. Ovartchaiyapong, K. Ganesan, R. L. Taylor, M. Gebert, Z.
Mielens, B. Koslowski, D. A. Simpson, L. P. McGuinness, J. McCallum, S. Prawer, S. Onoda,
T. Ohshima, A. C. B. Jayich, F. Jelezko, N. B. Manson, and M. W. Doherty, “Nanomechanical
sensing using spins in diamond”, Nano Letters 17, 1496–1503 (2017).

[199] P. Kurpiers, P. Magnard, T. Walter, B. Royer, M. Pechal, J. Heinsoo, Y. Salathé, A. Akin, S.
Storz, J.-C. Besse, S. Gasparinetti, A. Blais, and A. Wallraff, “Deterministic quantum state
transfer and remote entanglement using microwave photons”, Nature 558, 264–267 (2018).

[200] A. Zrenner, E. Beham, S. Stufler, F. Findeis,M.Bichler, andG.Abstreiter, “Coherent properties
of a two-level system based on a quantum-dot photodiode”, Nature 418, 612–614 (2002).

https://doi.org/10.1103/PhysRevX.7.011021
https://doi.org/10.1038/s41534-020-00349-z
https://doi.org/10.1038/s41534-020-00349-z
https://doi.org/10.1038/s41534-020-00349-z
https://doi.org/10.1038/nature07128
https://doi.org/10.1119/1.3471177
https://doi.org/10.1038/nphys2665
https://doi.org/10.1038/nphys2665
https://doi.org/10.1103/PhysRevApplied.9.054045
https://doi.org/10.1038/s41567-021-01307-y
https://doi.org/10.1038/s41567-021-01307-y
https://doi.org/10.1038/nnano.2013.274
https://doi.org/10.1038/nnano.2013.274
https://doi.org/10.1063/1.3103885
https://doi.org/10.1103/PhysRevApplied.10.034007
https://doi.org/10.1103/PhysRevApplied.10.034007
https://doi.org/10.1103/PhysRevLett.87.077902
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1038/nphys1679
https://doi.org/10.1038/nphys1679
https://doi.org/10.1021/acs.nanolett.6b04544
https://doi.org/10.1038/s41586-018-0195-y
https://doi.org/10.1038/nature00912


155

[201] J. M. Boss, K. S. Cujia, J. Zopes, and C. L. Degen, “Quantum sensing with arbitrary frequency
resolution”, Science 356, 837–840 (2017).

[202] F. Poggiali, P. Cappellaro, and N. Fabbri, “Optimal control for one-qubit quantum sensing”,
Phys. Rev. X 8, 021059 (2018).

[203] E. Majorana, “Atomi orientati in campo magnetico variabile”, Nuovo Cimento 9, 43 (1932).
[204] P. Nalbach and M. Thorwart, “Landau-Zener transitions in a dissipative environment: numer-

ically exact results”, Phys. Rev. Lett. 103, 220401 (2009).
[205] W. Magnus, “On the exponential solution of differential equations for a linear operator”,

Communications on Pure and Applied Mathematics 7, 649–673 (1954).
[206] M. Gasior and J. L. Gonzalez, “Improving fft frequency measurement resolution by parabolic

and gaussian spectrum interpolation”, AIP Conference Proceedings 732, 276–285 (2004).
[207] F. Harris, “On the use of windows for harmonic analysis with the discrete fourier transform”,

Proceedings of the IEEE 66, 51–83 (1978).
[208] J. R. Petta, H. Lu, and A. C. Gossard, “A coherent beam splitter for electronic spin states”,

Science 327, 669–672 (2010).
[209] L. Gaudreau, G. Granger, A. Kam, G. C. Aers, S. A. Studenikin, P. Zawadzki, M. Pioro-

Ladrière, Z. R. Wasilewski, and A. S. Sachrajda, “Coherent control of three-spin states in a
triple quantum dot”, Nature Physics 8, 54–58 (2011).

[210] H. Ribeiro, G. Burkard, J. R. Petta, H. Lu, and A. C. Gossard, “Coherent adiabatic spin control
in the presence of charge noise using tailored pulses”, Phys. Rev. Lett. 110, 086804 (2013).

[211] J. Kölbl, “Kohärente dynamik von gekoppelten nanomechanischen resonatormoden”, MA
thesis (Universität Konstanz, 2015).

[212] K. Technology, Getting started guide: keysight 81150a and 81160a pulse function arbitrary
noise generator, (2014) https://www.keysight.com/us/en/assets/9018-03434/quick- start-
guides/9018-03434.pdf.

[213] Keysight, Data sheet: keysight 33503a benchlink waveform builder pro and basic software.
(2021) https://www.keysight.com/us/en/assets/7018-02919/data-sheets/5990-7569.pdf.

[214] A. T. Le, Github website with Matlab source codes for control in Ramsey interferometry
experiment with Magnus-based corrections. (2022) https://github.com/ATLe88/Project_IAS.
git.

[215] M. Sillanpää, T. Lehtinen, A. Paila, Y. Makhlin, and P. Hakonen, “Continuous-time monitoring
of Landau-Zener interference in a cooper-pair box”, Phys. Rev. Lett. 96, 187002 (2006).

[216] G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic
to single nitrogen–vacancy centres in diamond”, Nature Physics 7, 789–793 (2011).

[217] H. Ribeiro, A. Chowdhury, and A. T. Le, Unpublished, Private discussion with collaborators
H. Ribeiro and A. Chowdhury, 2021.

[218] S. Meiboom and D. Gill, “Modified spin-echo method for measuring nuclear relaxation times”,
Review of Scientific Instruments 29, 688–691 (1958).

[219] H. Bluhm, S. Foletti, I. Neder,M. Rudner, D.Mahalu, V. Umansky, andA. Yacoby, “Dephasing
time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 us”, Nature Physics
7, 109–113 (2010).

https://doi.org/10.1126/science.aam7009
https://doi.org/10.1103/PhysRevX.8.021059
https://doi.org/10.1103/PhysRevLett.103.220401
https://doi.org/https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1063/1.1831158
https://doi.org/10.1109/PROC.1978.10837
https://doi.org/10.1126/science.1183628
https://doi.org/10.1038/nphys2149
https://doi.org/10.1103/PhysRevLett.110.086804
https://www.keysight.com/us/en/assets/9018-03434/quick-start-guides/9018-03434.pdf
https://www.keysight.com/us/en/assets/9018-03434/quick-start-guides/9018-03434.pdf
https://www.keysight.com/us/en/assets/7018-02919/data-sheets/5990-7569.pdf
https://github.com/ATLe88/Project_IAS.git
https://github.com/ATLe88/Project_IAS.git
https://doi.org/10.1103/PhysRevLett.96.187002
https://doi.org/10.1038/nphys2026
https://doi.org/10.1063/1.1716296
https://doi.org/10.1038/nphys1856
https://doi.org/10.1038/nphys1856


BIBLIOGRAPHY

156

[220] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M.
Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum
ground state”, Nature 478, 89–92 (2011).

[221] Y. Seis, T. Capelle, E. Langman, S. Saarinen, E. Planz, andA. Schliesser, “Ground state cooling
of an ultracoherent electromechanical system”, Nature Communications 13, 10.1038/s41467-
022-29115-9 (2022).

[222] S. M. Meenehan, J. D. Cohen, S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, M. Aspelmeyer,
and O. Painter, “Silicon optomechanical crystal resonator at millikelvin temperatures”, Phys.
Rev. A 90, 011803 (2014).

[223] S. M. Meenehan, J. D. Cohen, G. S. MacCabe, F. Marsili, M. D. Shaw, and O. Painter, “Pulsed
excitation dynamics of an optomechanical crystal resonator near its quantum ground state of
motion”, Phys. Rev. X 5, 041002 (2015).

[224] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E.
Harris, “Erratum: strong dispersive coupling of a high-finesse cavity to a micromechanical
membrane”, Nature 452, 900–900 (2008).

[225] L. Qiu, I. Shomroni, P. Seidler, and T. J. Kippenberg, “Laser cooling of a nanomechanical
oscillator to its zero-point energy”, Phys. Rev. Lett. 124, 173601 (2020).

[226] A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P.M. Alegre, A. Krause, andO. Painter, “Observation
of quantum motion of a nanomechanical resonator”, Phys. Rev. Lett. 108, 033602 (2012).

[227] A Chowdhury, P Vezio, M Bonaldi, A Borrielli, F Marino, B Morana, G Pandraud, A Pontin,
G. A. Prodi, P. M. Sarro, E Serra, and F Marin, “Calibrated quantum thermometry in cavity
optomechanics”, Quantum Science and Technology 4, 024007 (2019).

[228] P. Vezio, A. Chowdhury, M. Bonaldi, A. Borrielli, F. Marino, B. Morana, G. A. Prodi, P. M.
Sarro, E. Serra, and F. Marin, “Quantum motion of a squeezed mechanical oscillator attained
via an optomechanical experiment”, Physical Review A 102, 053505 (2020).

[229] A. Chowdhury, P. Vezio, M. Bonaldi, A. Borrielli, F. Marino, B. Morana, G. A. Prodi, P. M.
Sarro, E. Serra, and F. Marin, “Quantum signature of a squeezed mechanical oscillator”,
Physical Review Letters 124, 023601 (2020).

[230] C. M. Caves, “Quantum-mechanical noise in an interferometer”, Phys. Rev. D 23, 1693–1708
(1981).

[231] T. P. Purdy, R. W. Peterson, and C. A. Regal, “Observation of radiation pressure shot noise on
a macroscopic object”, Science 339, 801–804 (2013).

[232] O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100
times lower than the quantum-projection limit using entangled atoms”, Nature 529, 505–508
(2016).

https://doi.org/10.1038/nature10461
https://doi.org/10.1038/s41467-022-29115-9
https://doi.org/10.1038/s41467-022-29115-9
https://doi.org/10.1038/s41467-022-29115-9
https://doi.org/10.1038/s41467-022-29115-9
https://doi.org/10.1103/PhysRevA.90.011803
https://doi.org/10.1103/PhysRevA.90.011803
https://doi.org/10.1103/PhysRevX.5.041002
https://doi.org/10.1038/nature06898
https://doi.org/10.1103/PhysRevLett.124.173601
https://doi.org/10.1103/PhysRevLett.108.033602
https://doi.org/10.1088/2058-9565/ab05f1
https://doi.org/10.1103/physreva.102.053505
https://doi.org/10.1103/physrevlett.124.023601
https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1126/science.1231282
https://doi.org/10.1038/nature16176
https://doi.org/10.1038/nature16176

	Abstract
	Zusammenfassung
	1 Introduction
	2 Experimental and Theoretical Basics
	2.1 The Nanomechanical String Resonator
	2.2 Linear Harmonic Oscillators
	2.2.1 Undriven Harmonic Oscillator
	2.2.2 Driven Harmonic Oscillator
	2.2.3 Coupled Linear Harmonic Oscillators
	2.2.4 A Classical Two-Level-System

	2.3 Three Dimensional Microwave Cavity Resonators
	2.3.1 RLC Lumped-Element Resonator
	2.3.2 Rectangular Cavity Resonator
	2.3.3 Cylindrical Cavity Resonator
	2.3.4 Coaxial Cavity Resonator
	2.3.5 Cavity Coupling Mechanisms
	2.3.6 Quality Factor Determination

	2.4 Nano Fabrication Procedures

	3 Room Temperature Cavity Electromechanics
	3.1 Mechanical Motion Detection
	3.1.1 Sideband Generation
	3.1.2 Heterodyne IQ-Mixing Technique

	3.2 Dielectrical Actuation
	3.3 Sideband-Resolved Cavity Electromechanical System
	3.3.1 Room Temperature Cavity-Assisted Detection
	3.3.2 Dielectrical and Optomechanical Backaction
	3.3.3 Optomechanically Induced Reflection

	3.4 Conclusion

	4 Coherent Sensing Protocol for Short Signals
	4.1 Ramsey Interferometry
	4.1.1 Parametrically Coupled Two-Mode System as Coherent Sensor
	4.1.2 Sensing and Readout State Preparation

	4.2 Strategy for High Fidelity Sensing State Preparation
	4.2.1 Magnus-Based Corrections
	4.2.2 Modified Pulse Sequence for the Two-Mode System
	4.2.3 Inaccuracy in Frequency Estimation with trivial Signal Processing

	4.3 Signal Processing Technique
	4.3.1 Discrete Fourier Transform (DFT) of Short Signals
	4.3.2 Zero-Padding
	4.3.3 Spectral Leakage

	4.4 Iterative Adaptive Spectroscopy for Frequency Estimation
	4.5 Conclusion

	5 A Classical Nanomechanical Two-Level System as Coherent Sensor
	5.1 Experimental Realization
	5.1.1 Voltage and Pulse Control Technique
	5.1.2 Dielectric Frequency Tuning and Two-Mode Coupling
	5.1.3 Measurement Protocol

	5.2 Landau-Zener Transitions
	5.3 Ramsey Protocol
	5.4 Iterative Adaptive Spectroscopy for Frequency Estimation
	5.5 Coherent Sensing
	5.6 Conclusion

	6 Summary and Outlook
	6.1 Summary
	6.2 Outlook
	6.2.1 Nanomechanical Resonator as Oscillator in the Quantum Regime
	6.2.2 Improved Cavity-Nanomechanical Coupling
	6.2.3 Sensing Beyond Standard Quantum Limit


	A Appendix
	A.1 State preparation errors
	A.1.1 Noise-induced errors
	A.1.2 Coherent errors

	A.2 Iterative procedure for an idealized Ramsey signal
	A.3 Fitting the Avoided Crossing
	A.3.1 Conversion Factor Calibration

	A.4 Bandwidth Limitation
	A.5 COMSOL Solid Mechanics/Electrostatics Simulations

	Acknowledegment
	Bibliography

