

Technische Universität München

TUM School of Computation, Information and Technology

On Engineering Self-Adaptive Cyber-Physical Systems

Ana Petrovska

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology

der Technischen Universität München zur Erlangung einer

 Doktorin der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Matthias Grabmair, Ph.D.

Prüfer*innen der Dissertation:

1. Prof. Dr. Alexander Pretschner

2. Assoc. Prof. Raffaela Mirandola, Ph.D.,

 Politecnico di Milano

Die Dissertation wurde am 17.11.2022 bei der Technischen Universität München eingereicht

und durch die TUM School of Computation, Information and Technology am 03.04.2023

angenommen.

Acknowledgments

“To do things right, first you need love,
then technique.”

Antonio Gaudi

Working on this thesis was a journey to finding myself. I will be eternally grateful for
all that I have been given throughout. However, this thesis would not have been possible
without the support of many people. This thesis is because of you and for you.

First, I want to thank my supervisor Professor Alexander Pretschner. Alex, I am deeply
grateful for being given this chance to join your group—a chance that has completely
changed my life. Thank you for believing in me, constantly challenging me, pushing me,
and guiding me. For always asking the most difficult questions that no one else dares to
ask, and trusting that I am capable in finding the answers. We might not have all the
answers yet, but the depth that this thesis went is beyond everything I ever thought I
would be able to achieve. It was an honor for me to be able to work with you and to grow
under your supervision. I also want to thank Professor Raffaela Mirandola. You agreeing
to be my second examiner has more meaning to me than you will ever know.

Special gratitude goes to Professor Ilias Gerostathopoulos and Professor Stefan Kugele.
You both have had an essential part in my research and overall journey. Ilias, my mentor,
thank you for the passion and energy that you brought in the early stages of my work.
Our paths, including my decision to research self-adaptive systems, have miraculously
overlapped during your stay at TUM, and you have been someone I have always looked up
to. And, Stefan, there are no words to thank you enough for everything that you have done
for me. You are one of the very few people I could always rely on and a constant source
of strength and stability in everything I did. Our countless hours of discussion about my
research at any time of the day, your critical thinking, attention to detail, and expertise on
the formal aspects of the work, in combination with your patience and tranquillity, played
an immense role for me. Thank you for believing in me and seeing the value in my work,
even in the moments when I was struggling to see it myself. I also want to say thanks to
Wolfgang Böhm, Professor Manfred Broy, Professor Danny Weyns, Diego Marmsoler and
Florian Grigoleit with whom I had chance to establish different collaborations.

To all my past and present colleagues in the chair, especially to Thomas, Stephan,
Severin, Florian, Patrick, Amjad, Valentin, Mojdeh and Traudl: thank you! Without being
able to share the pain with you and without your presence in the chair, I am not sure if I
would have been able to survive this journey and endure until the end. Without a doubt,
our group has some of the smartest people I have met, and I am grateful for the chance to
be your colleague and to learn from all of you.

This thesis would not be what it is without all the wonderful students that I supervised
over the years who contributed in unique ways towards shaping my research, often com-
plementing my thoughts and ideas with different and fresh perspectives: Shahin, Sergio,
Julian, Malte, Dmitrij, Sebastian, Muhammad Ansab, Tamer, Theo, Adrian, Andreas,
Nour, Naum, Guan, and a couple of other students from the SSACPS praktikum. Thank

you for choosing me to be your supervisor and bringing your individuality and authenticity
to our collaboration. I truly appreciate all of you, and being your supervisor was one of
the best and most fun part of my work.

My professional life and purpose are only complete if my quest to be continuously
challenged as an engineer and a researcher is accompanied by fighting and advocating for
diversity and better representation of women in Computer Science. Therefore, my Ph.D.
experience would have been partial without the Women in CS@TUM family: Professor
Anne Brüggeman-Klein and everyone on the team, some of whom have become dear friends
of mine over the years. Having the freedom to grow and shape this community and to lead
the most amazing, inspiring, courageous, and fearless group of women (and some men) was
and still is one of the biggest passions in my life. The spirit of this group is unbeatable,
and I am beyond thankful to have had a chance to work with all of you.

And finally, I want to thank my friends and family. Sirma, Ivana and Sandra, thank
you for always being by my side to listen and console me empathetically. I am sorry that
most of the conversations and topics that we had for the last couple of years, from my
side, boiled down to my work and research. And to Sara and Nadine, I feel our friendships
reached new depths since we could understand each other how pursuing a Ph.D. feels when
no one else could understand us. Mama and tato, you are both my rock, and I cannot
imagine a world in which this thesis could happen without you. I will be forever grateful
for the unconditional love and, more importantly, the unconditional support you have given
to me throughout this whole time. The last couple of years have brought us closer than
ever before, and I love you more than words can describe. I also want to say thanks to
my extended family: to my grandma, all my aunts, uncles, cousins, nieces, and nephews,
for always showing care about my well-being and the progress of my thesis. And lastly,
I want to thank Thomas and Monika. Since the time we met, our hearts and souls have
beat together, and I am so grateful to have you in my life.

iv

Zusammenfassung

Die Idee der selbst-adaptiven Systeme und allgemein der selbst-* Systeme wurde in
der Literatur mit der Veröffentlichung des berühmten Papiers The vision of autonomic
computing, allgemein bekannt als IBM-Manifest, vor fast zwei Jahrzehnten eingeführt und
etabliert. Seitdem hat die Popularität von selbst-adaptiven Systemen in verschiedenen
Forschungsbereichen erheblich zugenommen. Trotz der umfangreichen Arbeiten in diesem
Forschungsbereich und der lebhaften Forschungsgemeinschaft fehlt es in der wissenschaftli-
chen Literatur jedoch immer noch an einem genaueren Verständnis von selbst-adaptiven
Systemen, insbesondere an klaren Spezifikationen und nutzbaren, praktikablen Definitionen.
Bislang wird die Terminologie im Zusammenhang mit selbst-adaptiven Systemen noch sehr
ungenau verwendet, was dazu führen kann, dass verschiedene Akteure ein unterschiedliches
Verständnis von diesen Systemen haben. Eine mehrdeutige Beschreibung der Terminologie
und das Fehlen eines präzisen Verständnisses von selbst-adaptiven Systemen machen ein
ohnehin schon komplexes Forschungsgebiet noch komplizierter und hindern die Forscher-
gemeinschaft daran, ihre Ziele in vollem Umfang zu verwirklichen. Für mehr Klarheit
und Kohärenz—die möglicherweise zu einer noch größeren Bedeutung dieses Fachgebiets
führen—halten wir es für unerlässlich, eine gemeinsame Terminologie festzulegen und
ein besseres Gesamtverständnis für die Semantik dieser Terminologie zu erlangen. Das
übergeordnete Ziel dieser Dissertation ist es daher, ein gemeinsames Verständnis dieser
Systeme zu erarbeiten und zu vertiefen.

Diese Dissertation besteht aus zwei Teilen: theoretische Grundlagen selbst-adaptiver Syste-
me und dem Engineering selbst-adaptiver cyber-physischer Systeme (CPS) in dynamischem
Kontext. Als Beitrag im ersten Teil dieser Dissertation führen wir Grundlagenforschung
durch, die sich vor allem mit der Frage beschäftigt, wie sich selbst-adaptive Systeme
von “gewöhnlichen”, nicht-adaptiven Systemen unterscheiden. Konkret schlagen wir im
ersten Teil zunächst eine Taxonomie autonomer Systeme vor und führen eine systematische
Literaturrecherche darüber durch, wie selbst-adaptive Systeme in der Literatur definiert
werden. Einige Erkenntnisse aus der vorgeschlagenen Taxonomie autonomer Systeme und
die Einschränkungen der bestehenden formalen Definitionen selbst-adaptiver Systeme
dienen als Grundlage für den Rest unserer theoretischen Beiträge. In unseren weiteren
theoretischen Beiträgen erörtern wir, dass das Verständnis der Systemanpassung für eine
nachfolgende Definition von selbst-adaptiven Systemen unabdingbar ist, und daraufhin
definieren wir Systemadaption formell. Wir schlagen auch einen Bewertungsrahmen vor, der
notwendig ist, um zu beurteilen, ob ein System adaptiv ist, und der im Entwicklungsprozess
selbst-adaptiver Systeme berücksichtigt werden muss.

Im zweiten Teil dieser Dissertation führen wir mehr angewandte Forschung durch, in der
wir uns auf die Entwicklung von selbst-adaptiven CPS konzentrieren, die in sich verändern-
den, dynamischen und teilweise beobachtbaren Kontexten operieren. Im Zusammenhang mit
unseren theoretischen Beiträgen schlagen wir eine logische Architektur für die Entwicklung
dieser besonderen Art von selbst-adaptiven Systemen vor, gefolgt von einer Methodik für
eine domänen- und systemunabhängige Modellierung des Wissens in der Adaptionslogik,

v

die Wissensaggregation und Schlussfolgerungen unter Unsicherheiten während der Laufzeit
ermöglicht.

Durch die Kombination dieser beiden Teile bieten wir einen kontinuierlichen und einheit-
lichen Entwicklungsprozess von formalen Definitionen über eine logische Architektur, die
in das vorgeschlagene theoretische Rahmenwerk eingebettet ist, bis hin zu einer konkreten
Systemimplementierung aus dem Gebiet der Multi-Agenten-Robotik. Wir erreichen dies,
indem wir eine Brücke zwischen den verschiedenen Arten von Beiträgen und Lösungen
bilden, die alle eine unterschiedliche Generalität und Abstraktionsebene aufweisen.

vi

Abstract

The idea of self-adaptive systems, and in general self-* systems, was initiated and
established in the literature with the publishing of the famous paper on The vision of
autonomic computing, broadly known as IBM manifesto almost two decades ago. Since
then, the popularity of self-adaptive systems has significantly increased across various
research domains. However, despite the extensive work in this research field and the
vibrant research community, the literature still lacks a more precise understanding of
self-adaptive systems, including clear specifications and usable, working definitions. So
far, the terminology related to self-adaptive systems is still used liberally, which can result
in different parties having a different understanding of these systems. An ambiguous
description of the terminology and the lack of a precise understanding of self-adaptive
systems add complexity to an already complex field of research and hinder the community
from endeavouring to a fuller extent. For improved clarity and coherence—potentially
yielding to even higher prominence of this domain—we consider as essential to set a common
terminology and gain a better comprehension of the semantics of that terminology. As
a result, the overarching objective of this dissertation is to broaden and set a common
understanding of these systems.

This thesis contains of two parts: theoretical foundations for self-adaptive systems and
on engineering self-adaptive cyber-physical systems (CPSs) in dynamic context. In the first
part of this thesis, we conduct foundational research, mainly motivated by how self-adaptive
systems differ from the “ordinary,” non-adaptive systems. Concretely, as contributions in
the first part, we first propose a taxonomy of autonomous systems and conduct a systematic
literature review on how self-adaptive systems are defined in the literature. Some findings
from the proposed taxonomy of autonomous systems and the limitations of the existing
formal definitions of self-adaptive systems serve as a basis for the rest of our theoretical
contributions. In the rest of the theoretical contributions, we discuss that understanding
system adaptation is essential for a subsequent definition of self-adaptive systems, and
in response, we define system adaptation formally. We also propose a framing necessary
to debate whether a system is adaptive, which needs to be considered in the engineering
process of self-adaptive systems, and lastly, we define self-adaptive systems.

In the second part of this thesis, we conduct more applied research, in which we focus
on the engineering of self-adaptive CPSs that operate in changing, dynamic, and partially
observable contexts. Within our theoretical contributions, we propose a logical architecture
for engineering this particular type of self-adaptive system, followed up with a methodology
for a domain- and system-independent modeling of the knowledge in the adaptation logic,
which enables knowledge aggregation and reasoning under uncertainties during run-time.

By combining both of these parts, we provide a continuous and streamlined engineering
process from formal definitions to a logical architecture embedded in the proposed theoretical
framework to a concrete system implementation from the domain of multi-agent robotics.
We achieve this by bridging the various types of contributions and solutions, all of them
with different generality and level of abstraction.

vii

Contents

I Introduction and Background 1

1 Introduction 3
1.1 Self-Adaptive Cyber-Physical Systems: Motivation, Challenges and Short-

comings . 3
1.1.1 Cyber-Physical Systems and Run-Time Uncertainties 4
1.1.2 Self-Adaptation as an Emerging Property of Modern Systems 5
1.1.3 Challenges while Engineering Self-Adaptive Systems 6

1.2 The Goal of this Thesis . 7
1.3 Problems Statements and Research Gaps 7
1.4 Solution . 13
1.5 Contribution . 16
1.6 Structure . 19

2 Background 21
2.1 Uncertainty Classification and Run-Time Uncertainty Taxonomy 21
2.2 Reasoning under Uncertainty . 24

2.2.1 Bayesian Probability . 24
2.2.2 Dempster-Shafer Theory . 25

2.3 Subjective Logic Theory . 26
2.3.1 Subjective Opinions . 27
2.3.2 Binomial Opinions Representation 30
2.3.3 Belief Fusion . 31

II Theoretical, Architectural, Methodological and Technical Solutions 37

3 Towards a Taxonomy of Autonomous Systems 39

4 Defining Self-Adaptive Systems: A Systematic Literature Review 51
4.1 Introduction . 55
4.2 Literature Review Methodology . 57
4.3 Results . 62

4.3.1 General overview of the results . 62
4.3.2 Identifying the different classes and dimensions for analysis 63
4.3.3 Analysis of the primary studies . 65

4.4 Discussion . 70
4.4.1 Discussion on the results and future works 70
4.4.2 Threats to validity . 72

4.5 Related Work . 73
4.6 Conclusion . 74

ix

Contents

5 Defining adaptivity and logical architecture for engineering (smart)
self-adaptive cyber-physical systems 75

6 Knowledge Aggregation with Subjective Logic in Multi-Agent Self-
Adaptive Cyber-Physical Systems 99

7 Run-time Reasoning from Uncertain Observations with Subjective
Logic in Multi-Agent Self-Adaptive Cyber-Physical Systems 111

III Related Work and Conclusion 127

8 Related Work 129
8.1 Defining System Adaptation and Self-Adaptive Systems 129

8.1.1 Informal Definitions of Self-Adaptive Systems 129
8.1.2 Analysis of the Formal Definitions of System Adaptation and Self-

Adaptive Systems . 132
8.1.3 Other notions related to system adaptation 137
8.1.4 Overall summary . 139

8.2 Engineering Self-Adaptive Systems . 139
8.2.1 Models . 139
8.2.2 Patterns . 141
8.2.3 Frameworks . 142
8.2.4 Architectures . 144
8.2.5 Overall summary . 146

8.3 Mitigating Uncertainties in Self-Adaptive Systems 146
8.3.1 Overall summary . 149

8.4 Summary of the Gaps . 150

9 Conclusion 151
9.1 Thesis overview and summary of the contributions 153
9.2 Lessons Learned . 157
9.3 Future Work . 157

A A Theoretical Framework for Self-Adaptive Systems 159
A.1 Current state-of-the-art and its limitations 159

A.1.1 Conceptual model of a self-adaptive system 160
A.1.2 Evaluating self-adaptive systems . 160

A.2 Summary of our previous theoretical findings and contributions on defining
system adaptation . 161

A.3 Exemplifying the SACTC framing using the robotics system 164
A.4 Defining Self-Adaptive Systems . 166

A.4.1 Two premises in defining self-adaptive systems 166
A.4.2 Classification of self-adaptive systems 167
A.4.3 Defining (first and second level of) passive self-adaptive systems . . 169

x

Contents

A.4.4 Defining active self-adaptive systems 174
A.5 Exemplary Use Case . 178
A.6 Concluding remarks . 180

Bibliography 185

xi

Part I

Introduction and Background

1

1 Introduction
This chapter presents an introduction to the topic and the fundamental
problems addressed by this thesis. It discusses the goals, the research
gaps, the solutions, and the contributions of this work.

1.1 Self-Adaptive Cyber-Physical Systems: Motivation,
Challenges and Shortcomings

Traditionally, an important and considerable part of the research in software engineering
focuses on handling software complexity and software quality, in particular attaining specific
quality properties [107]. Woods [126] has also presented his perspective on how systems
evolve from monolithic architectures back in the 1980s, to intelligent, connected, real-time,
complex systems in the 2020s that are comprised of many interconnected software and
hardware components. Therefore, the importance of attaining the systems quality and the
systems functional goals increases proportionally with the increasing complexity of the
software systems, which also implies increased costs for managing those systems.

In recent years there has been an expanding interest in dealing with software complexity
and software quality at run-time or operation time after the systems have been initially
deployed. Four main factors have contributed towards this.

Firstly, there are various new emerging systems and technologies, including 5G, Internet
of Things (IoT), and Cyber-Physical Systems (CPS), with a higher demand for embedded,
mobile, and ubiquitous applications. Secondly, these modern systems introduce new levels
of complexity. Namely, the systems are dynamic themselves and often need to operate in
highly dynamic and unanticipated environments with continuously changing conditions
that introduce uncertainties, e. g., unanticipated resource availability, dynamically changing
system goals, and different hardware and software faults and failures. Furthermore, related
to this point, the engineering of these modern and dynamic systems goes beyond the
system itself. Instead, the context in which the system is intended to operate needs to
be considered—with almost equal importance—in the engineering process of the systems.
This phenomenon, engineering dynamic systems also in correspondence to their context,
requires a significant paradigm shift in most of the currently established engineering
practices. Thirdly, the systems’ development process itself has become more dynamic and
agile, aiming to deploy the systems as early as possible, even sometimes “too early.” This
results in engineers not being able to anticipate everything during the design phase of the
systems and, therefore, to incomplete requirements during the requirements elicitation
phase. Lastly, there are aspects of the system and its environment that simply cannot be
anticipated during the design time of the system, regardless of the time available, which
unavoidably lead us towards building imperfect and flawed systems. For example, engineers
will always have partial knowledge about the dynamic and changing environments (or
contexts) in which the systems will be operating, similarly as some of the internal system

3

1 Introduction

faults or failures that occur during run-time. Thus, uncertainty is an intrinsic property of
every modern and dynamic system. By definition uncertainty refers to situations involving
incomplete or inconsistent information such that it is not possible for the system to know
which environmental or system state hold at a specific point in time [104].

As a result of all of the above, the idea behind systems that can handle changes and
uncertainties autonomously [116], called self-adaptive systems, has emerged in the literature
in the past ten to twenty years. “In a world where computing systems rapidly converge
into large open ecosystems, uncertainty is becoming the de-facto reality of most systems we
build today, and it will be a dominating element of any system we will build in the future.
The challenges software engineers face to tame uncertainty are huge. Self-adaptation has
an enormous potential to tackle many of these challenges” [118].

1.1.1 Cyber-Physical Systems and Run-Time Uncertainties

The world is changing, and so are systems. In recent years, the widespread availability
of cost-effective embedded systems with increasing computation power and the expansion
of wireless networks have lead to a solid foundation for the emergence and advancement
of the omnipresent Cyber-Physical Systems (CPSs) in a multitude of different domains,
with continuously growing socio-economic influence. Namely, CPSs are software-intensive
systems embedded in the physical world to monitor, control, and coordinate various
processes in both the physical and the digital world. Also, contemporary CPSs are often
mobile and operate autonomously. Autonomous refers to the ability of the CPSs to operate
in an uncontrolled environment without the need for any human or electro-mechanical
guidance [4, 75]. Additionally, multiple CPSs can also communicate with each other
and collaboratively work together towards achieving one or several common objectives.
Thus, multiple collaborating CPSs can provide shared and more complex functionalities
that a single system in isolation cannot attain. Furthermore, since the CPSs themselves
are composed of many interacting and interconnected components, they inherit all the
complexities of modern large-scale distributed systems [90]. As a result, the engineering
of CPSs must consider the dynamic composition of their internal structural components,
as well in some situations, the dynamic composition of groups of CPSs. In summary, the
prominent research in the field of CPSs—considered the second generation of embedded
systems—involves modelling, designing, developing, and analysing networked, real-time,
distributed systems. As a consequence of their deployment into and their interaction with
the physical world, they operate in dynamic, changing and uncertain environments, and
come to close interactions with humans. The subset of the environment relevant for the
CPS, which interacts with the system is called operational or execution context [102, 86,
32, 90]. In general, context is the system-relevant part of the environment that influences
the system’s input, behaviour and state but cannot be influenced by the developers of the
system, and it should be accepted as given.

The business continuity of the modern CPSs requires these systems to operate efficiently,
correctly and reliably despite being exposed to a variety of uncertainties during their
operation. In dynamic systems, e. g., CPSs, sources of uncertainty occur in one of the
following three phases: requirements, design and run-time phase [104]. In this thesis, we

4

1.1 Self-Adaptive Cyber-Physical Systems: Motivation, Challenges and Shortcomings

only focus on run-time sources of uncertainties; therefore, uncertainties that originate
from the requirements and design phase of the systems are out of the scope of this work.
We classify the run-time uncertainties as: 1) internal—originating from the CPSs, and
2) external—originating from the unpredictability of the environment (i. e., the context) in
which the CPSs operate. The internal run-time uncertainties that originate from the CPSs
themselves are usually due to some technical limitations. For example, different sensor
uncertainties: sensor ambiguity, imprecision, or even complete sensor failures [104], or other
hardware and software failures in different components of the CPS that could potentially
lead to an unwanted system’s behaviour. Furthermore, the sensors of the CPSs have only
a limited sensing range, meaning they can only make partial observations of the context in
which they operate, which introduces another dimension of internal run-time uncertainties.
On the other side, the external uncertainties stem from the inherently changing and often
unanticipated contexts in which the systems operate, and can manifest in various forms
depending on the system under consideration. A common approach to deal with run-time
changes and uncertainties that could not be fully anticipated during the system’s design is
to make the CPSs self-adaptive.

1.1.2 Self-Adaptation as an Emerging Property of Modern Systems

Managed Element
(software system, CPSs)

Context

M E

P

Adaptation Logic

A

K

Self-Adaptive System

Figure 1.1: Conceptual model of
a self-adaptive system [118, 66].

In the literature, self-adaptation is widely considered
an effective approach that enables any software or CPS to
autonomously deal with various dynamics emerging from
the context or the system itself. Namely, self-adaptation
aims in supporting the engineering of the systems that
will have the ability to autonomously handle changes and
uncertainties during the run-time or operational time [95,
73, 84]. The core idea behind self-adaptivity is the general
systems’ ability to change their behaviour, parameters or
structure, as a response to internal and external changes
and uncertain execution conditions without human inter-
vention in order to continue meeting their system goals.

Although the terms system adaptation and self-
adaptive systems have not been precisely defined yet [118,
116], over the years, various approaches for engineering
self-adaptive systems have been proposed in the literature.
The two most prominent ones are: control-based [41, 6]
and architecture-based [66, 28, 43, 119] self-adaptation.
In this work we mainly focus on the latter. In architecture-based self-adaptation, it is
broadly accepted that a self-adaptive system on an abstracted level is comprised of a
managed element and an adaptation logic, as depicted in Figure 1.1. In previous works,
the adaptation logic has also been referred to as managing system [118], or as autonomic
manager [66]. The managed element can be either a traditional software system or a CPS.
It is the entity that obtains self-adaptation capabilities, given by the adaptation logic. The
adaptation logic is a part of the self-adaptive system that gives the ability to the managed

5

1 Introduction

element to self-adapt. A common approach to realize the adaptation logic is through the
MAPE-K (Monitor, Analyze, Plan, Execute) feedback loop, with shared Knowledge among
all the components of the loop [66]. Furthermore, as explained previously, every system
operates in a context.

1.1.3 Challenges while Engineering Self-Adaptive Systems

Besides computer science, there are other fields and disciplines that have been considering
the notions of adaptation, for example, biology and evolutionary sciences [16, 127], climate
change and environmental sciences [89, 42], as well as film, cinematography and media
studies [56, 79]. Concretely in the field of software engineering, there exist many prior
efforts to define self-adaptive systems informally [111, 120, 73, 32, 117], as well as formally
[20, 120, 22, 23]. However, despite the notable advancements in the research on system
(self-)adaptation in the last two decades and the domain’s active community, none of the
previously proposed definitions has been broadly accepted, and the shared understanding
of the core terminology is still imprecise. According to Weyns, self-adaptive systems have
not been defined yet [116], and the lack of precise and broadly accepted definitions is
possibly the biggest challenge in the field of engineering self-adaptive systems [118, 119].

Separate prior works in the literature [20, 82, 116] have independently observed that
the terms adaptation, and respectively, self-adaptive systems are primarily used intuitively
without deeper understanding and explanations of their precise meaning. The intuitive
interpretation of the notion of adaptation, which primarily relies on the common language,
is ambiguous, resulting in underspecified usage of these terms. Although in some instances
such usage might suffice, this is not the case in engineering and science, where if and when
a system behaves adaptively cannot be answered by means of intuition, and more rigorous
definition is necessary [82]. Understanding and defining system adaptation is the first step
towards defining self-adaptive system.

The intuitive usage of the terminology can be further observed in various other works
that have taken a different stance towards system (self-)adaptation, frequently using the
terms adapting and changing, even dynamic and flexible, interchangeably. For example,
in a recent work [25] the authors claim that every cyber-physical system (CPS) is self-
adaptive. Even more extreme, one might argue that an if-then-else statement, where the
condition is related to the input values, already incorporates the notion of adaptation. As
another example, we consider an informal definition of adaptivity by Broy [17]: “The core
concept behind adaptivity is the general ability to change a system’s observable behaviour,
structure, or realization basically without users’ interaction.” However, one might have
an intuitive question: does not (almost) every system change its behaviour based on the
received inputs? For instance, robots moving in the room autonomously and discovering
new tasks that are later attained by the robots already change the observable behaviour
of the systems. Thus, we identify a significant challenge towards defining self-adaptive
systems: the importance of understanding and differentiating when a system functions and
when it adapts.

The lack of definitions on what are self-adaptive systems, has different software engineering
consequences and implications, for instance, how to build and evaluate these systems.

6

1.2 The Goal of this Thesis

Therefore, understanding, characterizing and defining self-adaptive systems, is the first step
towards specifying, modelling and implementing these systems. This should also enable a
more critical and systematic comprehension of the existing works in this domain. Finally,
having a more precise definition sets the foundation on how to evaluate and compare these
systems in the future, i. e., it is pivotal for the rest of the engineering phases, e. g., testing
and verification.

1.2 The Goal of this Thesis

The overarching research objective of this thesis is to broaden the understanding and
provide a unifying formal foundation of the notions of system adaptation and self-adaptive
systems in software and systems engineering. So far in the literature, we have seen that these
terms have been used liberally and mostly intuitively, without deeper insights and a clear
distinction between a system operation (i. e., system function) and a system adaptation.
For improved clarity and coherence—potentially yielding to increased prominence of this
domain, we consider as essential to gain a better comprehension of the semantics of the
terminology. Ideally, being able to better frame adaptation as a system property, and
identify and specify characteristics of self-adaptive systems should enable us to have more
constructive discussions on the existing and current works, as well as identify future
challenges and directions.

In a nutshell, the first goal of this thesis is to establish definitions and formulate
what is system adaptation, which sets the foundation for defining self-adaptive
systems. This helps in identifying the characteristics and the properties of these systems,
and it serves as the first step towards discussing how to engineer them. Our aim with the
first goal is not to disregard all the previous work in this research domain but to complement
the existing works with improved semantics, which in result, will yield to improved clarity
and comprehension of the terminology. As a second goal of this thesis, we focus on
how to engineer a specific class of self-adaptive CPSs. Concretely, within the frame
of the proposed formal definitions, we further propose architectural, methodological, and
technical solutions for engineering self-adaptive CPSs, which are inherently decentralized
and operate in changing, uncertain, and partially observable contexts.

1.3 Problems Statements and Research Gaps

From the thesis’ goals described in the previous section, we derived a few theoretical
and practical research problems, classified into two major parts: Part 1—Theoretical
foundations for system adaptation and self-adaptive systems and Part 2—On
engineering self-adaptive CPSs in dynamic context. For each problem, we identify
a corresponding gap that the existing body of literature has not considered, to which
this thesis contributes. The problems and the respective gaps this thesis addresses are
summarized in this section. Additionally, at the end of Part 1, we also provide a brief
summary of some of the theoretical findings that result in different engineering implications
for self-adaptive systems and serve as a foundation for identifying the problems in Part 2.

7

1 Introduction

Part 1: Theoretical Foundations for System Adaptation and
Self-Adaptive Systems

Problem 1: Lack of definitions of system adaptation and self-adaptive systems in software
and systems engineering. Despite the past efforts, the notion of system adaptation and
self-adaptive systems have not been precisely defined in the literature. Understanding
and defining system adaptation is the core pillar towards defining self-adaptive systems.
Although there might be some intuitive understandings, including some informal definitions
of these notions, the terminology is still ambiguous, and therefore, understandable, and
universally practicable definitions are missing. If we do not know what self-adaptive systems
precisely are, we cannot argue how to engineer them. This need increases further with
the growing complexity of modern and dynamic systems. Moreover, the lack of commonly
accepted definitions makes it difficult for the systems and different solutions in this research
domain to be compared and discussed, since the core terminology is used with different
semantics.

Gap 1: The literature in software engineering lacks a precise, comprehensive and broadly
accepted formal definition of system adaptation and self-adaptive systems.

To the best of our knowledge, there are only a few works in the literature that provide
a formalized world of concepts for self-adaptive systems [20, 120, 22, 23, 7, 129]. Among
them, two of the previous works by Broy et al. [20] and Bruni et al. [22] have tried to
identify how adaptive systems differ from the ordinary, non-adaptive systems. However,
none of the past efforts has studied the exact difference between nominal system functioning
and system adapting, which is the essential starting point for a further discussion and
definition. To this contributes differentiating the system goals in self-adaptive systems
in two categories: business and adaptation goals. Concretely, the core motivation for
system adaptation is that self-adaptive system is able to continue meeting their functional
specifications (i. e., business goals, concerns of the managed system), while maintaining or
even improving adaptation goals, which are one or more quality objectives (concerns of
the adaptation logic). Moreover, the existing works in the literature do not discuss 1) the
necessary framing in order to discuss system adaptation, 2) the shared characteristics of
self-adaptive systems, nor 3) identify the criteria and the prerequisites for a system to
be self-adaptive. The analysis of the related work that identified this gap is presented
in Section 8.1.

Short summary of some of the theoretical findings

In the following, we provide a brief summary of some of the theoretical findings on system
adaptation and self-adaptive systems that are further elaborated, discussed, and deduced in
Chapter 5 and Appendix A. These theoretical findings lead to increased conceptual clarity
and characterization of (self-)adaptive systems and have various engineering implications
for developing these systems. We summarize these findings here since they serve as a
basis for identifying the upcoming research and engineering problems in Part 2 of this thesis.

8

1.3 Problems Statements and Research Gaps

On system adaptation:

• Adaptation is a property of an individual system function. However, an
individual function does not mean a simple function and the granularity of
the function matters. The complexity for adaptation is proportional to the
complexity of the system function that adapts.

• The system (the managed element) always adapts to certain adaptation goals
(i. e., one or more quality objectives). The same system (i. e., the system
function) might be adaptive according to one adaptation goal, and maladaptive
according to another.

• The business goals are related to the functional requirements of the managed
element or the system (i. e., the system function); whereas, the adaptation
goals are one or more quality objectives, associated with specific non-functional
requirements and are concerns of the adaptation logic.

• The system (i. e., the system function) can only adapt to certain context
(or system) situations. No system universally behaves adaptively in every
condition. The complexity for adaptation is proportional to the complexity of
the context and the system that gains adaptation capabilities.

On self-adaptive systems:

• Various uncertainties and changes can lead to situations in which the adaptation
goals (i. e., the system adaptation) are not fulfilled, which presents a trigger
for the system to self-adapt.

• The system self-adapts with intention to eventually achieve system adaptation.
• We differentiate between passive and active self-adaptation. In the passive

self-adaptation the system (i. e., the managed element) is enriched with an
adaptation logic built according to the MAPE-K. In the active self-adaptation,
to which we refer to as true self-adaptation, the adaptation logic is also extended
with a functionality that enables the system to evaluate the fulfilment of the
adaptation goals (i. e., the system adaptation), based on which the need
for self-adaptation is triggered and different actions towards adaptation are
selected.

• The same system (i. e., the system function) adapts differently according to
different adaptation logic..

On the adaptation logic:

• The adaptation logic is constructed based on the concrete system function
that gains adaptation capabilities, the adaptation goals and the uncertainties
according to which the managed element (i. e., the system) is considered to be
adaptive.

9

1 Introduction

• Assuming that the adaptation logic is built according to the MAPE-K. Since
the implementation of all the other MAPE phases can be distributed in the
managed element [123], the very minimal requirement for the system to be
self-adaptive is the existence of an additional knowledge in the adaptation
logic (see Figure 1.1) created correspondingly to the adaptation goals and the
relevant aspects for the adaptation (tackled in Problem 2).

• The knowledge should reflects the relevant aspects for the adaptation from
the state, the model, or the behaviour of: 1) the system (i. e., the managed
element), 2) the context, or both.

• The knowledge in the adaptation logic of the self-adaptive system can be
hard-coded during design time. However, if the system and its context are
dynamic and change during run-time (e. g., in the case of CPSs), then in
order for the knowledge in the adaptation logic to reflects their actual state,
behaviour or structure, it also needs to be modified during run-time (tackled
in Problem 2 and 3).

• To update the knowledge during run-time, there is a need for reasoning on the
relevant aspects regarding the specific adaptation from what each system (i. e.,
CPS) observes from its dynamic, uncertain and partially observable context
(tackled in Problem 2 and 3).

• The knowledge and the other components of the adaptation logic, need to
capture the uncertainties introduced during run-time (tackled in Problem 3).

On (system and context) changes and uncertainties:

• A system cannot adapt to unknown unknowns. While discussing self-adaptive
systems, it is essential to identify what aspects that are relevant for the adap-
tation are changing (i. e., what is and the degree of unknown or unanticipated),
according to which we want to adapt considering the specific adaptation goals
(tackled in Problem 3).

• Similarly, the uncertainties for which the concrete adaptation accounts need
to be identified and characterized, and their type and range need to be defined
(tackled in Problem 3).

The newly gained, more profound understanding of system adaptation and self-adaptive
systems helps us characterize these systems better and determine the components that
need to be inherently part of a self-adaptive system, as well as what kind of information
and functionality those components provide. As previously explained, in this thesis, we are
concretely interested in engineering autonomous and decentralized single or multi-agent
self-adaptive CPSs (MA-SACPSs), which operate in changing, uncertain, and partially
observable contexts. The engineering of this class of self-adaptive CPSs is what we tackle
in Part 2 of this thesis.

10

1.3 Problems Statements and Research Gaps

Part 2: On Engineering Self-Adaptive CPSs

Problem 2: Lack of architectures for engineering (MA-)SACPSs operating in changing,
uncertain, and partially observable contexts. As a consequence of the scarcity of definitions
of system adaptation and self-adaptive systems, and the lack of clear characterization of
these systems, there is a deficiency of architectures and design patterns that can serve
as a blueprint for engineering self-adaptive systems. Namely, establishing definitions and
understanding what are self-adaptive systems, is the first step towards specifying, modelling
and designing these systems. However, to define what are self-adaptive systems, we, first
and foremost, need to define system adaptation. Also having definitions would mostly
remain declarative and descriptive, as they do not provide constructive insights on how
self-adaptive systems are designed and build.

The MAPE-K conceptual model is the only broadly accepted model in the literature
for engineering self-adaptive systems. Although MAPE-K gives some intuition behind
the engineering of self-adaptive systems, primarily by the separation of concerns between
the managed element and the adaptation logic, it still lacks a more precise semantics of
these two components. Hence, there are a few problems emerging from the usage of the
MAPE-K as a reference model for engineering self-adaptive systems. First, it can often be
interpreted that the managed element, which is just any system, already contains elements
of monitoring, analysis, planning and execution; as a result, blurring lines between the
managed element and the adaptation logic. This separation becomes additionally blurry
with the introduction of different MAPE-based patterns for self-adaptive systems [123,
101]. Second, the conceptual MAPE-K model has a very high level of abstraction and is not
particularly helpful in designing and the implementation of the actual system. Concretely,
there is a big disconnect between the MAPE-K (see Fig. 1.1) and potential technical
implementations of a self-adaptive system. Third, the conceptual MAPE-K model does
not provide any concrete insights on how self-adaptive systems (engineered according to
MAPE-K) differ from the ordinary systems that are non-adaptive, Finally, it is not clear
how self-adaptive systems engineered according to the MAPE-K differ from the other self-*
systems (e. g., self-awareness [81, 72], self-healing [100, 49]), since MAPE-K is used for
engineering all the self-* systems in general. As a result, a need emerges for an architec-
ture for engineering self-adaptive systems at some intermediate level of abstraction which
conforms to the formal definitions and the more precise characterization of self-adaptive
systems. As previously explained, in this thesis, we are concretely interested in engineering
autonomous and decentralized (MA-)SACPSs, which operate in changing, uncertain, and
partially observable contexts.

Gap 2: The existing works in the literature do not provide concrete architectures, frame-
works nor methodologies for engineering self-adaptive systems, particularly decentralized
and autonomous (MA-)SACPSs that operate in changing and uncertain contexts that are
only partially observable by the CPSs.

Until now, in the literature, there are several proposed design patterns for self-adaptive
systems [123, 101]; however, these works 1) mainly focus on different combinations in
the decentralization of the four phases of the MAPE and 2) they completely exclude the

11

1 Introduction

explicit consideration of the knowledge component in their patterns. Although different
MAPE-based patterns are more informative regarding the system’s design, inherently they
have the same limitations as the MAPE-K closed feedback loop itself: their high level of
abstraction and low level of details, which does not provide any characterization of how a
system built upon the MAPE loop differentiates from the ordinary, non-adaptive systems.
The complete analysis of the related work that identified this gap is presented in Section 8.2.
In the following we summarize relevant information regarding the architectural solution,
necessary to identify and introduce the third and the final problem of this thesis.

A potential architectural solution should consider all the identified components of
a self-adaptive system that were previously discussed in the theoretical findings.
However, since it is a general solution, it shall not prescribe any use case or system-
specific properties, e. g.:

• the relevant aspects from the state and the behaviour of the CPSs and the
context for the concrete adaptation,

• how the knowledge in the adaptation logic is modelled according to those
relevant aspects,

• the relevant uncertainties for the specific adaptation, and
• how to reason under uncertainties in order to update the knowledge in the

adaptation logic during run-time.

All these aspects need to be conveniently considered by the engineers of the self-
adaptive systems, but they can only be answered within the frame of the specific
use case or system under consideration.

Problem 3: Lack of solutions for knowledge and uncertainty representation in the
adaptation logic, and reasoning under uncertainty to update the knowledge during run-time.
Knowledge modelling and representation in the adaptation logic, and run-time reasoning
based on which that knowledge is updated are important for building self-adaptive systems,
especially self-adaptive CPS that are dynamic themselves and operate in dynamic, changing
and uncertain context that is often only partially observable by the CPSs. In dynamic
systems and contexts, in order for the “best” adaptation to be feasible, the knowledge in
the adaptation logic should be continuously updated to reflect the run-time state of the
context (and the system), relevant for the concrete adaptation. As a result, having an
encoded context model in the knowledge in the adaptation logic during the design of a
dynamic self-adaptive CPS does not suffice the adaptation during the system’s run-time.
In response, the need emerges for an efficient representation of the knowledge, which
ultimately enables real-time updating of the knowledge. Since the monitoring technology
of the CPSs, e. g., the sensors, introduce various types of (internal) run-time uncertainties
besides the (external) uncertainties from the context in which the systems operate, the
knowledge cannot be updated directly upon the observations made by the CPSs. Instead,
there is the need for reasoning under uncertainties before the knowledge is updated, which
will enable accurate representation of the actual state of the context or the system (i. e.,

12

1.4 Solution

the managed element) during run-time. The updated knowledge in the adaptation logic
is later used in different phases of the MAPE loop to further analyze and plan the next
adaptation actions. The run-time reasoning can be considered as a run-time uncertainties
mitigation strategy in self-adaptive systems. Additional details on the uncertainties in
dynamic systems are given in Section 2.1.

Gap 3: There is a scarcity of approaches proposed in the literature that allow domain-
and system-independent modelling of the knowledge in the adaptation logic and run-time
reasoning, based on which the knowledge is continuously updated to accurately reflect the
current state of the relevant aspects from the context and the system for the concrete
adaptation. Although knowledge representation and reasoning are essential for building
self-adaptive CPSs, especially MA-SACPSs, there is a scarcity of approaches for modelling
the knowledge in the adaptation logic that allow capturing uncertain observations from
single or multiple, decentralized CPSs, to effectively reason and aggregate the observations,
and eventually update the knowledge. The observations that the CPSs make using their
sensors are uncertain, i. e., faulty, inaccurate, and in response, potentially conflicting. Before
knowledge is updated, those uncertain observations need to be aggregated. However, so far
in the literature, knowledge representation in the adaptation logic has been treated as a
problem- and system-specific task [44]. Also, to our knowledge, there is no other work that
contributes toward run-time observations aggregations and reasoning under uncertainties
based on which the knowledge in the adaptation logic is updated in order to reflect the
run-time state of the dynamic context of the self-adaptive CPSs. The analysis of the related
work on mitigating uncertainties in self-adaptive systems is presented in Section 8.3.

1.4 Solution

This thesis contributes towards refining the existing engineering processes for self-adaptive
systems by proposing different theoretical, architectural, methodological and technical
solutions for the problems identified in the previous section, summarized and shown in
Figure 1.2. The figure also depicts the generality of the proposed solutions. Furthermore,
the proposed solutions as part of this thesis support the engineering of both single-agent
self-adaptive CPSs and multi-agent self-adaptive CPSs (MA-SACPSs).

As part of this thesis, we present a three-fold solution to address Problem 1 (Lack
of definitions of system adaptation and self-adaptive systems in software and systems
engineering). In the first solution, we first propose a taxonomy of autonomous systems
and formally specify different levels of autonomy. During our efforts to define self-adaptive
systems, we realized that gaining a more profound understanding of system autonomy is
necessary before scoping and discussing self-adaptive systems. Our taxonomy of autonomous
systems served as a backbone for differentiating different types of self-adaptive systems in
the later solutions of this thesis.

In our second solution, we aimed to systematically investigate how self-adaptive systems
are defined across the literature. Although the objective of this thesis was to define
self-adaptive systems, during the course of this research, it became clear that in order to

13

1 Introduction

Theoretical solutions
(Addressing Problem 1)

Architectural solution
(Addressing Problem 2)

Methodological solutions
(Addressing Problem 3)

Technical solutions

(To show and validate the contributions of all the previous solutions)
Reference problem, ROS-based multi-agent robotics system, Evaluation framework

Most general
solution

Most specific
solution

Applies to:

every self-adaptive
system

decentralized and
autonomous

(MA-)SACPSs

(MA-)SACPSs where the
knowledge in the AL is
modelled as a grid map

mobile robotics
system

Figure 1.2: Trapezoid of the solutions proposed in this thesis and the generality of different
solutions.

define self-adaptive systems, we first need to define the concept of system adaptation in
software and systems engineering. In response, as part of this study, we investigated if the
existing efforts also formally define system adaptation as part of their contributions and if
they consider the characteristics of self-adaptive systems that we summarized from two
principles on self-adaptive systems proposed by Weyns in a recent work [116]. In our study,
we also discussed the limitations and shortcomings of the related efforts and elicited the
requirements for a holistic and formal definition of self-adaptive systems.

In the third solution to the first problem, we formally define system adaptation and
identify how the system function that is considered adaptive, the context, and the separation
between business and adaptation goals (i. e., some quality objectives) play a central role in
defining system adaptation, and respectively, self-adaptive systems. Our formal contribution
increases the semantics of the MAPE-K conceptual model, which has been proposed in the
literature as a reference model for engineering not only self-adaptive but self-* systems in
general. In addition to the formal definition of system adaptation, we propose a framing
that is necessary to be considered in order to answer if a system is adaptive. The definition
of system adaptation and the proposed framing set the basis for our formal definitions of
self-adaptive systems.

In our formalisms, we adopt an approach to define system adaptation using the function
considered to behave adaptively. Based on our definition of system adaptation, we propose
a metric for measuring system adaptation, which we refer to as Quality Function. We
also identify how context, the differentiation between adaptation and business goals, and
the consideration of knowledge in the adaptation logic play a central role in defining
passive self-adaptation. In active self-adaptation, the self-adaptive system additionally
evaluates itself (using the Quality Function), based on which it can detect when the system
adaptation is not fulfilled, which presents a trigger for self-adaptation. In response, various
actions towards adaptation could be chosen with the intention for system adaptation to be
potentially achieved again. All the theoretical findings, formal solutions, and contributions

14

1.4 Solution

proposed in this thesis present the foundation for specifying, designing, and evaluating
self-adaptive systems, and they also serve as a foundation for comparing the existing works.

To address Problem 2 (Lack of architectures for engineering (MA-)SACPSs operating
in changing, uncertain, and partially observable contexts), we embed our formal definitions
of system adaptation and self-adaptive systems into an applicable logical architecture
for engineering self-adaptive CPSs that narrows the gap between the formal foundations
and potential technical implementations of a class of systems. Concretely, the proposed
logical architecture can serve as guidance or a blueprint for engineering autonomous and
decentralized (MA-)SACPSs that operate in changing and uncertain contextual conditions.
In our logical architecture, not only that the managed elements (i. e., the CPSs) adapt, but
the adaptation logic (precisely the knowledge in the adaptation logic) changes itself during
run-time to accommodate changes and uncertainties that could not be anticipated during
the design of the self-adaptive system. In the logical architecture, we put a special emphasis
on considering the knowledge in the adaptation logic, and the procedure established in our
solution can also be seen as methodological guidance for updating the knowledge during
run-time in order to reflect the actual run-time state and behavior of the systems and the
context. It is important to emphasize that in our logical architecture, we do not prescribe
how to represent the knowledge in the adaptation logic, nor the type and the range of the
uncertainties, including methods to reason upon them.

In a nutshell, our proposed formal definitions of adaptation can be considered orthogonal
to architectures on different levels of abstraction: 1) the MAPE-K conceptual model with
the highest level of abstraction and the lowest level of details, 2) the proposed logical
architecture with an intermediate level of abstraction and intermediate level of details, and
3) a potential technical architecture of an implementation—instantiated from our logical
architecture–with the lowest level of abstraction and the highest level of details.

To address Problem 3 (Lack of solutions for knowledge and uncertainty representation
in the adaptation logic, and reasoning under uncertainty to update the knowledge during
run-time), we propose a Subjective Logic-based methodological approach for knowledge and
uncertainty representation, which enables reasoning under uncertainties of the decentralized
monitoring by the CPSs. Subjective Logic (SL) [60, 61] is an enriched probabilistic
logic-based framework for artificial reasoning, based on the Dempster-Shafer Theory
(DST) [34, 109] of evidence. (MA-)SACPSs inherently produce uncertain, partial, faulty
and potentially conflicting observations from the relevant aspects of the context for the
concrete adaptation. Therefore, the proposed methodology supports run-time reasoning
and observations aggregation based on which the knowledge in the adaptation logic is
updated. This enables the knowledge to have the “best” representation of the run-time
state of the dynamic and uncertain context and serves as a basis for analysing and planning
the next adaptation actions. By “best” representation, we refer to the most complete,
consolidated and accurate representation of the relevant aspect from the context for the
concrete adaptation, in which different uncertainties and potential conflicts that stem
from the uncertainties are resolved. The uncertainties could introduce various imparities
between the actual state of the context and the modelled context in the knowledge in the
adaptation logic. The updated knowledge is later utilised for planning the next adaptation
actions.

15

1 Introduction

Finally, although the problems presented in Section 1.3 are general, the solutions,
particularly the solutions to Problem 3, are only possible when considered in a specific
domain of applications. For that reason, to show, to evaluate and validate the contributions
of all the previous solutions, we provide a few other technical artifacts as part of this
thesis, including 1) a reference problem from the robotics domain, 2) an implementation
of the ROS-based robotics system for experimentation with i) the implementation of
the (MA-)SACPSs, ii) different types of internal and external uncertainties and iii) the
dynamics of context and, 3) an evaluation framework to evaluate the system adaptation
according to our definitions and formalisms.

1.5 Contribution

The thesis makes the following contributions w.r.t. the gaps in the literature identified
in Section 1.3. Concretely, to close Gap 1, we make the following contributions:

C1 A taxonomy of autonomous systems. To better frame the need for self-adaptive
systems, we propose a taxonomy that supports formal specifications of different levels
of autonomous systems. We discuss how a certain level of autonomy is a precondition
for self-adaptation and also show that self-adaptation is necessary for achieving a
higher level of autonomy since it enables the system to deal with various changes
and uncertainties that were not (fully anticipated) during the design of the system.

C2 Systematic literature review on defining self-adaptive systems. In recent
years, self-adaptation has received growing attention in software and systems engi-
neering; however, a precise understanding of these systems is still lacking. There
have been a few attempts to define self-adaptive systems over the years, but there
is still no consensus on the definition of these systems. This is probably because
the existing efforts did not aim to understand and define system adaptation prior to
defining self-adaptive systems. Towards narrowing gap 1, we have systematically
reviewed how system self-adaptive systems have been previously formally defined
and characterized in the literature. In this work, we also analyze the limitations and
shortcomings of the existing formal definitions.

C3 Formal definition of system adaptation and self-adaptive systems. To
close Gap 1, we propose 1) a formal definition of the notion of system adaptation,
2) a framing for engineering (self-)adaptive systems, and 3) a theoretical frame-
work in which we identify and define of two types of self-adaptive systems. We
additionally specify the process of self-adaptation, elicit the minimum requirements
for self-adaptive systems and discuss various architectural implications from our
theoretical contributions. Concretely, in our formalisms, we adopt an approach to
define system adaptation using the function considered to behave adaptively. In our
formal definitions of self-adaptive systems, we differentiate between passive and active
self-adaptation based on the ability of the system to evaluate itself and indicate when
the system adaptation is not fulfilled.

To tackle Gap 2, the following contribution is proposed:

16

1.5 Contribution

C4 A logical architecture for engineering self-adaptive CPSs in dynamic con-
text. To close Gap 2, we propose a logical architecture for engineering (MA-)SACPSs
operating in a dynamic, uncertain, and partially observable context that builds upon
our formalisms for system adaptation and self-adaptive systems, previously proposed
to close Gap 1. The proposed architecture narrows the gap between the MAPE-K as
a conceptual architecture and the formal foundations, and concrete technical imple-
mentation. Furthermore, the logical architecture can be considered as procedural
guidance for dynamic knowledge improvement in the adaptation logic.

To fill Gap 3 we make the following contribution:

C5 A methodology for knowledge representation and run-time reasoning
under uncertainties in self-adaptive CPSs. To close Gap 3, we propose a
methodology for knowledge modelling, aggregation and reasoning in (MA-)SACPSs
that is domain- and system-independent and can deal with reasoning on uncertain,
partial and conflicting observations. Concretely, our approach uses Subjective Logic
(SL) to update the knowledge in the adaptation logic at run-time by aggregating
partial observations of the relevant aspects of the context for the concrete adaptation
made by each CPSs in (MA-)SACPSs.

And the last contribution of this thesis is the following:

C6 A model problem, a ROS-based robotics system and an evaluation frame-
work for evaluating system adaptation and experimentation with self-
adaptive CPSs and the dynamics of the context. Finally, we propose a model
problem from the domain of robotics, a ROS-based simulated robotics system and an
evaluation framework to evaluate system adaptation according to our definitions and
formalisms. These three artifacts provide a foundation and enable researchers and
practitioners in this domain to build, experiment, evaluate and compare self-adaptive
systems and different aspects of system adaptation.

Figure 1.3 highlights the contributions of this thesis. As part of this publication-based
doctoral thesis, these contributions have previously appeared in the following peer-reviewed
publications published in proceedings of international conferences and journals:

P1 S. Kugele, A. Petrovska, I. Gerostathopoulos, “Towards A Taxonomy of Au-
tonomous Systems,” 15th European Conference on Software Architecture (ECSA),
2021.

P2 A. Petrovska, G. Erjiage, S. Kugele, “Defining Self-Adaptive Systems: A System-
atic Literature Review,” IEEE/ACM 18th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), 2023. Under review.

P3 A. Petrovska, S. Kugele, T. Hutzelmann, T. Beffart, S. Bergemann, A.Pretschner,
“Defining Adaptivity and Logical Architecture for Engineering (Smart) Self-Adaptive
Cyber-Physical Systems,” Information and Software Technology Journal, 2022

17

1 Introduction

On Engineering Self-Adaptive Cyber-Physical Systems

Gap 1 Gap 2 Gap 3

C2 Systematic literature
review on self-adaptive

systems

C3 Formal definition of
system adaptation and self-

adaptive systems

C4 Logical
architecture for

engineering
(MA-)SACPSs

C5 Methodology for
knowledge representation

and run-time reasoning
under uncertainties in

(MA-)SACPSs

C6 Model problem,
ROS-based robotics system and evaluation framework

Part 1: Theoretical Foundations
Part 2: On Engineering Self-Adaptive CPSs in Dynamic

and Uncertain Context

P2

P3

P3 P4 P5

P3 P4 P5

C1 A taxonomy of
autonomous systems

P1

Figure 1.3: Mapping of Gaps, Contributions and Publications to the structure of this thesis.

P4 A. Petrovska, S. Quijano, I. Gerostathopoulos, A. Pretschner, “Knowledge Aggre-
gation with Subjective Logic in Multi-Agent Self-Adaptive Cyber-Physical Systems,”
IEEE/ACM 15th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), 2020.

P5 A. Petrovska, M. Neuss, I. Gerostathopoulos, A. Pretschner, “Run-time Reasoning
from Uncertain Observations with Subjective Logic in Multi-Agent Self-Adaptive
Cyber-Physical Systems,” IEEE/ACM 16th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), 2021.

In addition to the previously enumerated papers, the author of this thesis have co-
authored a few additional peer-reviewed publications. The papers tackle relevant problems,
related to the topic of this thesis; however, they are excluded from this thesis.

1. C. Hildebrandt, T. Bandyszak, A. Petrovska, N. Laxman, E. Cioroaica, “EURECA:
Epistemic Uncertainty Classification Scheme for Runtime Information Exchange in
Collaborative System Groups,” International Journal on Software-Intensive Cyber-
Physical Systems (SICS), 2018.

2. A. Petrovska, F. Grigoleit, “Towards Context Modeling for Dynamic Collaborative
Embedded Systems in Open Context,” 10th International Workshop Modelling and
Reasoning in Context (MRC), 2019.

3. A. Petrovska, A. Pretschner, “Learning Approach for Smart Self-Adaptive Cyber-
Physical Systems,” IEEE 13th International Conference on Self-Adaptive and Self-
Organizing Systems (SASO), 2019.

4. A. Petrovska, M. Neuss, S. Bergemann, Martin Büchner, M. Ansab Shohab, “Smart
Self-Adaptive Cyber-Physical Systems: How can Exploration and Learning Improve

18

1.6 Structure

Performance in a Partially Observable Multi-Agent Context?,” 13th International
Conference on Adaptive and Self-Adaptive Systems and Applications (ADAPTIVE),
2021.

5. A. Petrovska, J. Weick, “Bayesian Optimization-Based Analysis and Planning
Approach for Self-Adaptive Cyber-Physical Systems,” IEEE 2nd International Con-
ference on Autonomic Computing and Self-Organizing Systems (ACSOS), 2021

6. A. Petrovska, “Self-Awareness as a Prerequisite for Self-Adaptivity in Computing
Systems,” 6th Workshop on Self-Aware Computing (SeAC), 2021

7. A. Petrovska, J. Weick, “Realization of Adaptive System Transitions in Self-
Adaptive Autonomous Robots,” The 37th ACM/SIGAPP Symposium On Applied
Computing (SAC), 2022

1.6 Structure

In Chapter 2, we provide the overview of the background and the required formal
foundations of the Subjective Logic. The solutions and the contributions to the presented
problems and gaps are described in Chapters 3 to 7. Chapter 3 proposes the taxonomy
and formalization of different levels of autonomous systems. In Chapter 4, we present
the systematic literature review, in which we investigate the existing formal definitions of
self-adaptive systems in the literature and analyze and summarize the limitations of the
formal definitions. Some findings from the proposed taxonomy of autonomous systems and
the limitations of the existing formal definitions of self-adaptive systems serve as a basis
for the rest of our theoretical contributions. In Chapter 5, we provide the framing and the
formal definition of system adaptation, and discuss the preliminary characterization and
minimum requirements for self-adaptive systems. Also, as part of this chapter, we propose
the logical architecture for engineering self-adaptive CPSs that operate in dynamic and
uncertain contexts. As discussed prior in the introduction, parts of the logical architecture
can be considered as procedural guidance for changing the knowledge in the adaptation
logic during run-time; however, as part of the logical architecture, we do not prescribe how
the knowledge can be exactly modeled. In response, in Chapters 6 and 7, we propose the
methodology for knowledge representation and reasoning under uncertainty. In Chapter 8,
we summarize the related work. In Chapter 9, we conclude this thesis by discussing the
results and summarizing the contributions of this thesis and providing an outlook to the
future work. In Appendix A, we complement the theory from Chapter 5 by proposing a
theoretical framework for engineering self-adaptive systems. In this framework, we make
the following contributions: (1) formally define passive and active self-adaptive systems, (2)
we extend the minimum requirements for a system to be self-adaptive, and (3) we identify
and specify the process of self-adaptation.

19

2 Background

This chapter presents the background on uncertainty classification and
various theories for reasoning under uncertainties, including the formal
foundations of Subjective Logic. As part of this thesis, we use Subjective
Logic to represent and reason upon uncertainties during run-time, based
on which the knowledge in the adaptation logic is updated. Parts of this
chapter have previously appeared in publications [97, 98], co-authored by
the author of this thesis.

2.1 Uncertainty Classification and Run-Time Uncertainty
Taxonomy

The most general classification of uncertainties in the literature distinguishes between
aleatory and epistemic uncertainties. Aleatory uncertainties (also known as aleatory
variability) exist from the natural randomness of the processes [1], and the modeller does
not foresee the possibility of reducing them [35]. Whereas uncertainties are characterized
as epistemic if the modeller sees a possibility to reduce them by gathering more data or by
refining models [35]. Usually, they exist due to limited data and knowledge.

In the domain of self-adaptive systems, Ramirez et al. [104] have previously proposed
a taxonomy of uncertainty for dynamically adaptive systems. In dynamic and adaptive
systems, the uncertainty originates in one of the following three phases: requirements,
design and run-time phase. If the uncertainty is not resolved within the phase it originates,
it can be propagated to the subsequent phases. Ultimately, any uncertainty that is not
resolved in the requirements and design phase propagates at run-time. There is a great
variety of sources of uncertainty in any of the three phases. Table 2.1 gives an overview of
the most common sources of uncertainty, including their definition and existing mitigation
strategies. In this thesis, we only consider uncertainty sources that occur in the run-time
phase.

Id Term Definition

R
eq

ui
re

m
en

ts

1 Missing Requirement The specification is incomplete and does
not cover all requirements.

2 Ambiguous Requirement The specification or evaluation criteria can
be interpreted in different ways.

3 Falsifiable Assumption A possibly false statement used to support
the validity of a requirement.

4 Unsatisfiable Requirements A requirement that cannot be satisfied by
the dynamically adaptive systems.

21

2 Background

5 Requirements Interactions Two or more requirements that inadver-
tently interfere with each other.

6 Doubt A concern about a statement or require-
ment.

7 Claim A subjective rationale that forms the basis
of a decision.

8 Changing Requirements Requirements that do not reflect the needs
and constraints of the system.

D
es

ig
n

9 Unexplored Alternatives When not all different design options are
considered.

10 Untraceable Design Irrelevant design decisions from the per-
spective of requirements.

11 Risk An exposure to danger or loss.

12 Misinformed Tradeoff Analysis Design decisions based on misguided and
subjective preferences.

13 Inadequate Design Requirements cannot be fully satisfied or
include latent behaviours.

14 Unverified Design Lack of proof that shows a design satisfies
its requirements.

15 Inadequate Implementation An implementation that contains errors or
faults.

16 Latent Behaviour An unknown behavior that should be dis-
allowed.

R
un

-t
im

e

17 Effector An adaptation that alters the execution
environment in unanticipated ways.

18 Sensor Failure When a sensor cannot measure or report
the value of a property.

19 Sensor Noise Random and persistent disturbances that
reduce the clarity of a signal.

20 Imprecision A lack of repeatability in a given measure-
ment.

21 Inaccuracy A divergence between a measured value
and its real value.

22 Unpredictable Environment Events and conditions in the environment
that cannot be anticipated.

23 Ambiguity A lack of numerical precision and accuracy
in a measurement.

24 Non-Specificity A property whose value is only known
within a certain range of values.

25 Inconsistency Two or more values of the same property
that disagree with each other.

26 Incomplete Information A missing or unknown dimension of data.

22

2.1 Uncertainty Classification and Run-Time Uncertainty Taxonomy

Table 2.1: An overview of the various sources of uncertainty and their definitions, modified from
Ramirez et al. [104].

Besides the classification of the different sources of uncertainties (see Table 2.1), the
authors in [104] also propose a taxonomy of the uncertainties in each of the three phases.
The proposed taxonomies provide insight into the root causes and the potential effects of
certain types of uncertainty. In Fig. 2.1 it can be seen that all the uncertainties at run-time
origin either from the effectors, sensor failure, noise and imprecision, and unpredictable
environment. As part of this thesis we exclude from consideration the uncertainties from the
effectors, and we focus only on different sensor uncertainties and unpredictable environment.
All the run-time uncertainties that we focus on in this dissertation are shown in bold
in Tab. 2.1.

Effectors

Sensor
Failure

Sensor
Noise

Unpredictable
Environment

Sensor
Imprecision

Inaccuracy

Ambiguity Inconsistency Incomplete
Information

Uncertain
Sensory
Inputs

Non-
Specificity

Incorrectly
Interpreted
Events

Figure 2.1: The taxonomy of run-time uncertainty, created by Ramirez et al. [104].

As part of this thesis, we further classify the sources of run-time uncertainties, as
1) internal—originating from the system itself, e. g., the various uncertainties from sensors
and the uncertainties from the effectors as shown in Tab. 2.1, and 2) external—originating
from the environment or the context in which the systems operate e. g., unpredictable
environment from Tab. 2.1. Usually, it is infeasible for the developers of the MA-SACPS
to anticipate at the system’s design all the possible states of the context that the system
will encounter during its operation. Consequently, the unpredictability of the environment
will ultimately impart some uncertainty onto the MA-SACPS through its monitoring
architecture.

Additionally, during its operation, a system can only perceive and determine parts of
the context through the inputs for which the system has only encoded explicit interfaces
(e. g., sensors). However, there can happen that there are aspects of the context that
the system cannot determine through its sensors but still have (external) effects on the
system’s state. Similarly, there might be some internal aspects originating from the
system itself (e. g., failure of a hardware component or a software bug) that also affect
the system’s state in a similar way as the external, contextual effects. In sum, we identify
two additional dimensions of uncertainties: 1) the system may not be equipped with the
necessary technology, i. e., lacks a concrete type of input (e. g., in case of robotics system,
no sensor capable of detecting road conditions (external effects), or no sensor capable of

23

2 Background

detecting a failed hardware component inside the system (internal effects), and 2) the
technology used may be limited in its capability, i. e., the input cannot receive values outside
of a specific range. For example, the CPS cannot observe the complete context in which
they operate due to the technical limitations of their sensors, e. g., limited sensor range
to which we refer as partiality or partial observations as part of this thesis. These newly
introduced two dimensions can be considered as extensions from incomplete information
and non-specificity from Tab. 2.1.

2.2 Reasoning under Uncertainty

There are various approaches to ascertain information in random, uncertain and unpre-
dictable conditions. However, all rely on a few theories that describe how to reason under
uncertainty. Two of the most prominent theories are the Bayesian Probability and the
Dempster-Shafer Theory, which are further discussed in Section 2.2.1 and Section 2.2.2
respectively.

2.2.1 Bayesian Probability

Bayesian Probability is an interpretation of the concept of probability that can be seen
as an extension of propositional logic. In Bayesian statistics, probability is used as the
fundamental measure of uncertainty; therefore, it allows for reasoning with propositions
whose truth values are uncertain. Being an evidential probability, the prior probability of a
proposition (i. e., the probability of the proposition being true prior to any evidence being
accounted for) is assigned, and as new evidence becomes available and accounted for, the
probability of the proposition is updated through a mechanism called bayesian updating
[93]. Unlike a frequentist view of probability, in which the probability of a proposition
represents the frequency of the event occurring, in Bayesian Probability the probability of
a proposition represents a state of belief [45].

Reasoning with Bayesian Probability is realized in three steps: (1) represent all sources
of uncertainty as statistical random variables, (2) determine and assign a prior probability
distribution to the random variables and (3) as more evidence is made available, update
the probability distributions by applying the Bayes’ formula:

P (A|B) = P (B|A)·P (A)
P (B) , (2.1)

where P (A) represents the prior probability of the proposition A being true, and P (A|B)
is the conditional probability of A being true given B is true. As new evidence becomes
available, the probability distributions describing the propositions are updated, and these
updated probabilities are then used as priors for further calculations with new evidence.

While Bayesian Probability appears to be a reasonably simple method of extending
propositional logic to handle uncertainty, one issue that arises is when one wants to carry
out abductive inference and is mistakenly assumed that P (A|B) = P (B|A). Therefore,
when one wants to reason backwards from some observable evidence to the likely hypothesis,
the conditional probabilities must first be inverted [63]. Subjective Logic (further explained

24

2.2 Reasoning under Uncertainty

in Section 2.3) supports both deductive and abductive reasoning as separate operators,
which helps to avoid this mistake.

2.2.2 Dempster-Shafer Theory

The Dempster-Shafer theory of evidence (DST) introduced by Dempster [34] and Shafer
[109] is a convenient and flexible theoretical framework to represent uncertain data and
provides a method for merging independent belief pieces of evidence collected from different
agents. DST has been applied in many fields, including decision making, information fusion,
pattern recognition, and sensor fusion [112]. In his mathematical theory of evidence, Shafer
introduced the theoretical framework of belief functions and the so-called Dempster-Shafer’s
rule of combination to merge sources of evidence. In the following, we present the main
notions of DST.

Let Θ = {θi, i = 1, ..., n} be the frame of discernment of a problem under consideration.
The set Θ consist of n exhaustive and exclusive possible values for a state variable v of
interest. The powerset of Θ, denoted as 2Θ, represents the set of all subsets of Θ. A basic
belief assignment (BBA) m on Θ [109, 36, 62]., also called a belief mass function, is a
mapping of the powerset 2Θ to [0, 1] that satisfies the following conditions:

m(∅) = 0 and
∑

X⊆Θ
m(X) = 1, (2.2)

where the values m(X)of a BBA are called basic belief masses and represent how strongly
the evidence supports X. If m(∅) = 0, m is said to be normal and if and only if m(X) > 0,
each subset X ⊆ 0 is called a focal element of m. A BBA m can also be represented by its
associate belief function Bel and plausibility function Pl respectively, defined as follows:

Bel(X) =
∑

Y ⊆X ̸=∅
m(Y) and P l(X) =

∑
Y ∩X ̸=∅

m(Y). (2.3)

In contrast to probability theoretic approaches, the DST facilitates the expression of
the belief in every element of 2Θ and not only the elementary hypotheses. Thus, even
information sources can be used that can only provide their knowledge about subsets
of Θ. Thus, it is feasible to fuse two BBAs received from sources S1 and S2 with different
reliability using Dempster’s rule of combination:

mS1⊕S2(X) = mS1(X) ⊕ mS2(X) = 1
1−k

∑
A∩B=X

mS1(A)mS2(B), (2.4)

where k is a normalization constant representing the degree of conflict between mS1 and
mS2 defined as:

k =
∑

A∩B=∅
mS1(A)mS2(B). (2.5)

The use of Dempster’s rule is mathematically possible only if mS1 and mS2 are not totally
conflicting, and the normalization constant k reflects the degree of conflict between the
two sources. This normalization effectively redistributes the conflicting belief masses to the
non-conflicting ones, hereby eliminating the conflict between the sources. Dempster-Shafer’s

25

2 Background

rule of combination is associative, commutative and nonidempotent [62]. However, the
rule cannot be applied if the two sources are in complete opposition. These properties of
Dempster-Shafer’s rule of combination are beneficial for real-time applications as sources
can be combined sequentially, and at a random order [36]. Moreover, the functions are
simple to implement and compute. However, these results should be considered with
caution, as a later study [36] showed that the order of at which sources get aggregated may
impact the results. Another downside of the DST is that it can lead to counter-intuitive
results when combining conflicting sources [128]. The limitations of the Dempster-Shafer
theory are addressed in the Subjective Logic theory proposed by Jøsang [61, 60].

2.3 Subjective Logic Theory

When we assume an objective world, we can use binary logic to assert propositions about
a state of the world to be either false or true. However, the world is unpredictable, and
in many situations, one cannot determine the nature of a proposition with certainty. In
other words, it is practically impossible to determine with absolute certainty whether a
given proposition is true or false. Through probability calculus, which takes argument
probabilities in the range [0,1], we are able to reflect subjectivity by allowing propositions
to be partially true. However, due to the lack of sufficient evidence, we are often unable to
estimate probabilities with confidence. Furthermore, whenever the truth of a proposition
is assessed, it is always done by an individual, and it cannot be considered to represent a
general and objective belief. In order to reflect as faithfully as possible the perceived world
in which we are immersed, a formalism to express degrees of uncertainty about beliefs is
needed; said formalism also shall include belief ownership to reflect the subjective nature
of beliefs [61, 60].

Subjective Logic (SL) [61, 60] is a framework for artificial reasoning based on probabilistic
logic and Dempster-Shafer theory of evidence [34, 109]. The idea of explicit representation
of ignorance and fusing sources of evidence are inherited from the Dempster-Shafer belief
theory [60, 109], and the interpretation of an opinion in Bayesian perspective is possible by
mapping opinions into probability distributions [60]. To reason with propositions whose
truth-values are uncertain, Bayesian probability and statistics can also be employed [45].
As previously explained in Section 2.2.1, Bayesian Probability is an interpretation of
the concept of probability that can be seen as an extension of propositional logic. In
Bayesian statistics, probability values are used as the fundamental measure of uncertainty.
Therefore, it allows for reasoning with propositions whose truth-values are uncertain [45].
However, this type of probabilistic logic does not allow to seamlessly model situations where
different agents express their beliefs about the same proposition. SL explicitly integrates
the subjective nature and ownership of beliefs in its formalism, allowing the combination
of different beliefs about the same proposition. Additionally, as mentioned above, SL is
based on the Dempster-Shafer Theory of evidence (DST). In particular, Dempster-Shafer’s
rule of combination, originally proposed for merging sources of evidence in DST, is also
used in SL.

To summarize, in recent years, SL has gained prominence because of its capability to deal

26

2.3 Subjective Logic Theory

Logic

Probabilistic Logic

Probability

Uncertainty & Subjectivity

Subjective Logic

Logic

Probabilistic Logic

Probability

Uncertainty & Subjectivity

Subjective Logic

Figure 2.2: Subjective Logic Framework from [61].

𝕏

ҧ𝑥𝑥

(a) Example of binary domain.

𝑦1 𝑦2

𝕐

𝑦3 𝑦4

(b) Example of n-ary domain.

Figure 2.3: Domains example from [61].

with the degree of (un)certainty of propositions, i. e., it explicitly represents the amount of
“uncertainty on the degree of truth about a proposition” [60]. Concretely, SL inherently
allows 1) uncertainties representation as part of the fundamental building block of SL,
called Subjective Opinions (further explained in Section 2.3.1), and 2) reasoning about the
uncertainties through a process of Belief Fusion in which multiple Subjective Opinions are
aggregated based on the selected fusion operator (further explained in Section 2.3.3).

2.3.1 Subjective Opinions

The fundamental building block of SL is a subjective opinion that represents the amount
of uncertainty on the degree of truth about a proposition. The representation of a subjective
opinion is a composite function consisting of belief masses, uncertainty mass and base rate.
An opinion expresses a belief about the state of a variable which takes its values from a
domain (i. e., a state space).

Domains

In SL, a state space consisting of a set of values is called a domain. A domain represents
the possible states of a variable situation. The different values of a domain are exclusive i. e.,
only one state value is possible at any moment in time-, and exhaustive i. e., all possible
state values are included in the domain. Domains can be binary (exactly two values) or
n-ary (n values) where n > 2. A binary domain can be denoted X = {x, x}, where x is the
complement (negation) of x, as illustrated in Fig. 2.3a.

Binary domains are typically used when modelling situations that have only two al-
ternatives, such as a location in a map in which can be task on or not. Situations with
more than two alternatives have n-ary domains where n > 2. As an example, the domain
Y = y1, y2, y3, y4 represents a quaternary domain, illustrated in Fig. 2.3b.

27

2 Background

The values of an n-ary domain are considered to represent a single possible state or
event, such values are called singletons. It is possible to combine singletons into composite
values. Let us assume a ternary domain X = x1, x2, x3. The hyperdomain of X is the
reduced powerset denoted R(X) and illustrated in Fig. 2.4. The solid circles denoted x1, x2
and x3 represent singleton values, and the dotted oval shapes denoted (x1 ∪ x2), (x1 ∪ x3)
and (x2 ∪ x3) represent composite values.

𝑥1 𝑥2

ℛ(𝕏)

𝑥3

𝑥1 ∪ 𝑥2

𝑥2 ∪ 𝑥3𝑥1 ∪ 𝑥3

Figure 2.4: Example hyperdomain from [61].

Definition 1 (Hyperdomain [61]). Let X be a domain, and let P(X) denote the powerset
of X. The powerset contains all subsets of X, including the empty set {∅}, and the
domain {X} itself. The hyperdomain denoted R(X) is the reduced powerset of X, i. e., the
powerset excluding the empty-set value {∅} and the domain value {X}. The hyperdomain
is expressed as

Hyperdomain: R(X) = P(X)\{X}, {∅}.

Random Variables

Let X denote a binary or an n-ary domain. Then we can define X to be a random
variable which takes its values from X. For example, if X is a ternary domain, then ‘X = x3’
means that the random variable X has value x3, which is typically interpreted in the sense
that x3 is TRUE. As a convention, domains are denoted by blackboard letters such as X,Y
or Z, and that variables are denoted by italic capital letters such as X, Y or Z.

Let X be a ternary domain, and consider X’s hyperdomain denoted R(X). From de
definition of a hyperdomain we infer the possibility of assigning values of the hyperdomain
to a variable. For example, it must be possible for a variable to take the composite value
x1, x3 ∈ R(X), i. e., the real TRUE value is either x1 or x3, but it is unspecified which
value in particular it is. Variables that take their values from a hyperdomain are called
hypervariables.
Definition 2 (Hypervariable [61]). Let X be a domain with corresponding hyperdomain
R(X). A variable X that takes its values from R(X) is a hypervariable.

A hypervariable X can be constrained to a random variable by restricting it to only
take values from the domain X. For simplicity of notation, we use the same notation for a
random variable and for the corresponding hypervariable so that, e.g. X can denote both
a random variable and a hypervariable. When either meaning can be assumed, we simply
use the term variable.

28

2.3 Subjective Logic Theory

Belief Mass Distribution and Uncertainty Mass

Subjective opinions are based on belief mass distributions over a domain X, or over a
hyperdomain R(X). In the case of multinomial opinions, the belief mass distribution is
restricted to the domain X. In the case of hyperopinions, the belief mass distribution applies
to the hyperdomain R(X). Belief mass assigned to a singleton value xi ∈ X expresses
support for xi being TRUE. The sum of belief masses can be less than one, i. e., belief mass
distributions are sub-additive and their are complemented by uncertainty mass denoted
uX . In general, the belief mass distribution bX assigns belief masses to possible values
of the variable X ∈ R(X) as a function of the evidence support for those values. The
uncertainty mass uX represents the lack of support for the variable X to have any specific
value. The sub-additivity of the belief mass distribution and the complement property of
the uncertainty mass are expressed by the definition below.

Definition 3 (Belief Mass Distribution [61]). Let X be a domain with corresponding
hyperdomain R(X), and let X be a variable over those domains. A belief mass distribution
denoted bX assigns belief mass to possible values of the variable X. In the case of a random
variable X ∈ X, the belief mass distribution applies to domain X, and in the case of a
hypervariable X ∈ R(X) the belief mass distribution applies to hyperdomain R(X). This
is formally defined as follows.

Multinomial belief mass distribution : bX : X → [0, 1],

with the additivity requirement : uX +
∑
x∈X

bX(x) = 1.

Hypernomial belief mass distribution : bX : R(X) → [0, 1],

with the additivity requirement : uX +
∑

x∈R(X)
bX(x) = 1.

Base Rate Distributions

The default base rate of a composite value is equal to the number of singletons in the
composite value relative to the cardinality of the whole domain. For example, given a
domain X of cardinality k, the default base rate of each singleton value in the domain
is 1/k, and the default base rate of a subset consisting of n singletons is n/k. Default
base rate is sometimes called ‘relative atomicity’ in the literature. Base rates can also be
dynamically updated. For example, when an urn contains balls of red (x) and black (x)
balls of unknown proportion, the initial base rates of the two types of balls can be set to
the default base rate a(x) = a(x) = 1/2. Then, after having picked a number of balls, the
base rates can be set to the relative proportions of observed balls.

Base rates are expressed in the form of a base rate distribution denoted aX , so that
aX(x) represents the base rate of the value x ∈ X. Base rate distribution is formally defined
below.

29

2 Background

Definition 4 (Base Rate Distribution [61]). Let X be a domain, and let X be a random
variable in X. The base rate distribution aX assigns base rate probability to possible values
of X ∈ X, and is an additive probability distribution, formally expressed as:

Base rate distribution : aX : X → [0, 1],

with the additivity requirement :
∑
x∈X

aX(x) = 1.

Integrating base rates with belief mass distributions enables a better and more intuitive
interpretation of opinions, facilitates probability projections from opinions, and provides
a basis for conditional reasoning. When using base rates for probability projections, the
contribution from uncertainty mass is a function of the base rate distribution.

The base rate distribution is normally considered to be general (i. e., not subjective)
because it is based on common background information. Although different analysts can
have different opinions on the same variable, they normally share the same base rate
distribution over the domain of a particular situation. Nonetheless, it is obvious that
two different observers can assign different base rate distributions to the same random
variable in case they do not share the same background information. Base rates can thus
be partially objective and partially subjective. This flexibility allows two different analysts
to assign different belief masses as well as different base rates to the same variable. This
naturally reflects different views, analyses and interpretations of the same situation by
different observers.

The base rates associated to events of a frequentist nature (i. e., that can be repeated
several times), can be derived from statistical observations. For events that can only
happen once, the analyst must often extract base rates from subjective intuition or from
analyzing the nature of the situation at hand and any other relevant evidence. However, in
many cases, this can lead to considerable vagueness about base rates, and when nothing
else is known, it is possible to use the default base rate distribution for a random variable.
More specifically, when there are k singletons in the domain, the default base rate of each
singleton is 1/k.

The usefulness of base rate distributions is to make possible the derivation of projected
probability distributions from opinions. Projection from opinion space to probability space
removes the uncertainty and base rate to produce a probability distribution over a domain.
The projected probability distribution depends partially on belief mass and partially on
uncertainty mass, where the contribution from uncertainty is weighted as a function of the
base rate.

2.3.2 Binomial Opinions Representation

In general, the notation ωC
X is used to denote opinions in subjective logic, where the

subscript X indicates the target variable or proposition to which the opinion applies, and
the superscript C indicates the subject agent/source who holds the opinion. Superscripts
can be omitted when it is implicit or irrelevant who the belief owner is. A binary domain
consists of only two values and the variable is typically fixed to one of the two values.

30

2.3 Subjective Logic Theory

Formally, let a binary domain be specified as X = {x, x}, then a binomial random variable
X ∈ X can be fixed to X = x. Opinions on a binomial variable are called binomial opinions,
and a special notation is used for their mathematical representation.

Definition 5 (Binomial Opinion [61]). Let X = {x, x} be a binary domain with binomial
random variable X ∈ X. A binomial opinion about the truth/presence of value x is the
ordered quadruplet ωx = (bx, dx, ux, ax), where the additivity requirement

bx + dx + ux = 1

is satisfied, and where the respective parameters are defined as
bx : belief mass in support of x being TRUE (i.e. X = x),
dx : disbelief mass in support of x being FALSE (i.e. X = x),
ux: uncertainty mass representing the vacuity of evidence,
ax : base rate, i.e., prior probability of x without any evidence.

The projected probability of a binomial opinion about value x is defined by:

P (x) = bx + axux

A binomial opinion can be visualized as a point in a barycentric coordinate system
of three axes represented by a 2D simplex, which is in fact, an equilateral triangle, as
illustrated in Fig. 2.5. Here, the belief, disbelief and uncertainty axes go perpendicularly
from each edge towards the respective opposite vertices denoted x, x and u, respectively.
The base rate ax is a point on the baseline (also called probability axis). The line connecting
the top angle of the triangle and the base rate point is called the base rate director. The
projected probability P (x) is determined by projecting the opinion point onto the baseline,
parallel to the base rate director. The binomial opinion ωx = (0.40, 0.20, 0.40, 0.90) with
probability projection P (x) = 0.76 is shown as an example.

2.3.3 Belief Fusion

Through a process of belief fusion, multiple opinions regarding the same proposition
are merged or aggregated into a single, collective opinion. The resulting single opinion is
assumed to represent the ground truth better than each opinion in isolation. The process
of opinion fusion is illustrated in Fig. 2.6, where we can see how multiple distinct sources,
e. g., denoted C1, C2, ... CN , can produce different and possibly conflicting opinions ωC1

X ,
ωC2

X ,...ωCN
X about the same variable X. Multi-source fusion consists of merging the different

sources into a single source that can be denoted ⋄(C1, C2, ...CN), and mathematically fusing
their opinions into a single opinion denoted ω

⋄(C1,C2,...CN)
X which represents the opinion

of the merged sources. The merger function is denoted by the symbol ⋄ [64]. A source
of evidence could be, for e. g., a trust relationship between two actors in a peer-to-peer
system, information of an observed system’s event or a sensor in a robot which can be
represented as an opinion. Depending on the specific application, a suitable operator of
belief fusion with different properties is required.

31

2 Background

Figure 2.5: Visualization of an binomial opinion from [61].

Subjective Logic Operators

SL is a generalization of binary logic and probability calculus. As a result, most of the
operators are generalizations and extensions of operators from binary logic and probability
calculus, while others are unique to subjective logic. Concretely, the operators relevant
for the Belief Fusion of different SL opinions are: averaging belief fusion, cumulative belief
fusion, weighted belief fusion, consensus & compromise fusion and belief constraint fusion.
Each of these fusion operations is designed to determine the shared belief and uncertainty
of a group of evidence sources, with different applications depending on how evidence
should be combined.

In the following, we give more details on each Belief Fusion operator:

• Belief Constraint Fusion (BCF) merges the preferences of multiple agents to
find the preference of the group [61]. However, when opinions disagree, a common
preference cannot be found, and belief fusion is not possible. As an example, consider
a group of friends that want to watch a movie together. If they all want to watch
the same movie, they can agree; otherwise, an agreement is not possible.

• Cumulative Belief Fusion (CBF) treats the individual opinions that are aggregated
as independent pieces of evidence for the same proposition. This cumulatively
increases the belief and/or disbelief value of the aggregated opinion while reducing its
uncertainty. It is most suitable for combining multiple non-conflicting opinions. For
example, repeated measurements in an experiment can be fused to form an opinion
with an uncertainty smaller than that of an individual measurement.

• Averaging Belief Fusion (ABF) calculates the average across all aggregated
opinions. It is commonly used when the opinions are dependent on each other, such
that a larger number of opinions does not represent more evidence for or against a

32

2.3 Subjective Logic Theory

𝑆𝑜𝑢𝑟𝑐𝑒 𝐶1 expresses 𝝎𝑋
𝐶1

Values of

domain

𝕏

Fusion Process

𝑆𝑜𝑢𝑟𝑐𝑒 𝐶2 expresses 𝝎𝑋
𝐶2 supports

𝑆𝑜𝑢𝑟𝑐𝑒 𝐶𝑁 expresses 𝝎𝑋
𝐶𝑁

𝑆𝑜𝑢𝑟𝑐𝑒s
𝐶1, 𝐶2, … , 𝐶𝑁

express 𝝎𝑋
♢(𝐶1,𝐶2,…,𝐶𝑁) supports

Values of

domain

𝕏

.

.

.

.

.

.

Figure 2.6: Fusion process adapted [64].

proposition. One example would be an examination board grading the dissertation
of a student. Unlike other fusion operators, the outcome of this fusion process is
affected by aggregating vacuous opinions.

• Weighted Belief Fusion (WBF) weights each opinion by the confidence in the
opinion and then averages the result. As the uncertainty in the opinion rises the
confidence decreases. The ABF is a special case of the WBF where all the uncertainties
are equal. Due to this weighting, a vacuous opinion does not affect the result. An
example of this type of situation is when, e. g., medical doctors express opinions
about a set of possible diagnoses.

• Consensus & Compromise Fusion (CCF) maintains the shared belief masses
between all the aggregated opinions. For conflicting opinions, a compromise is found,
which has increased uncertainty. This operator is particularly helpful for identifying a
set of shared beliefs among all agents. CCF is idempotent, commutative and considers
a vacuous opinion as a neutral element. This operator is helpful in situations when
different experts generate opinions identifying different options, such as when doctors
with different expertise suggest potential causes in a diagnostic process. The fused
opinion reflects the opinion of all experts and illustrates the group as a whole is
certain about a certain set of potential causes.

Demonstration of the Belief Fusion with Different Operators

In Tabs. 2.2 and 2.3, we show a sample calculation to demonstrate the different belief
fusion operators is shown for a pair of agreeing and disagreeing opinions ω1

x, ω2
x on the

same variable or proposition. respectively. The calculations were performed using the
Subjective Logic Library1.

Table 2.2 shows that when the opinions that are being aggregated agree, the CBF and
BCF function create an aggregated opinion whose belief exceeds that of the sources. The

1https://github.com/vs-uulm/subjective-logic-java

33

2 Background

difference between these two operators is that the CBF operator maintains increased
the disbelief slightly with respect to ω1

x, whereas the BCF operator actively reduces the
disbelief below the ω1

x value. The WBF and CCF operators try to find compromises
between opinions which is why their belief and disbelief values are in between the belief
masses of ω1

x and ω2
x. The table further demonstrates that the ABF operator is simply

an average between the two source opinions. Similarly, one can see that the WBF is an
average in which the opinions are weighted inversely by their uncertainty.

Opinions Aggregation Method
Parameters ω1

x ω2
x BCF CBF ABF WBF CCF

bx 0.85 0.52 0.91 0.84 0.69 0.81 0.80
dx 0.10 0.18 0.07 0.11 0.14 0.11 0.11
ux 0.05 0.30 0.02 0.05 0.17 0.08 0.09
ax 0.50 0.50 0.50 0.50 0.50 0.50 0.50

P (x) 0.88 0.28 0.92 0.86 0.77 0.85 0.84

Table 2.2: Aggregating two concurring opinions ω1
x, ω2

x using different belief fusion operators.

Opinions Aggregation Method
Parameters ω1

x ω2
x BCF CBF ABF WBF CCF

bx 0.85 0.20 0.73 0.72 0.53 0.71 0.35
dx 0.10 0.64 0.25 0.24 0.37 0.22 0.14
ux 0.05 0.16 0.02 0.04 0.10 0.07 0.51
ax 0.50 0.50 0.50 0.50 0.50 0.50 0.50

P (x) 0.88 0.28 0.74 0.74 0.58 0.75 0.61

Table 2.3: Aggregating two disagreeing opinions ω1
x, ω2

x using different belief fusion operators.

When the initial opinions are in conflict with each other, the BCF and CBF still try
to maximize their belief masses. It is important to note that this process of aggregating
conflicting opinions still reduces the uncertainty of the aggregated opinion when using the
CBF and BCF operators, which is clearly undesirable. While the WBF operator does
not actively reduce the uncertainty since it weighs opinions by their confidence, an initial
opinion with a low uncertainty will result in an aggregated opinion with low uncertainty,
even if the opinions are conflicting. In contrast, the CCF operator actively increases the
uncertainty when states are conflicting. This is a stark difference between two operators
that are used for finding compromises between conflicting opinions and should be considered
when choosing the operator to resolve conflicts.

Selection of a Belief Fusion Operator

To select the adequate Belief Fusion operator, Jøsang [61] developed a set of guidelines
summarized in Fig. 2.7 and further described below. Concretely Fig. 2.7 illustrates the
decision process for selecting the most adequate belief fusion operator for the specific
application.

34

2.3 Subjective Logic Theory

Fusion of totally
conflicting opinion

arguments

Effect of fusing
equal opinion

arguments

Effect of fusion
with vacuous

opinion argument

Defined
(Conflict
visibility)

Unchanged
confidence Principle for

handling conflict
belief

No effect
 (Neutral
element)

Constraint Fusion

Consider
situation of

belief fusion to
be modeled

Cumulative Fusion Averaging Fusion Weighted Fusion

Consensus and
Compromise

Fusion

Undefined
(Conflict hiding)

Increased
confidence

Increased
uncertainties (non-

neutrality)

Weighted
average

Compromised
belief

Figure 2.7: Decision process for selecting the most adequate fusion operator, adopted from [61].

1. If no compromise can be accepted between totally conflicting opinions, then it is
probably adequate to apply the belief constraint fusion operator. This fusion operator
reflects the assumption that there is no compromise solution for totally conflicting
opinions.

2. In the case that equal arguments are considered as independent support for specific
values of the variable so that equal opinions produce reduced uncertainty, then it is
probably adequate to apply the cumulative fusion operator. This operator can also
handle totally conflicting opinions.

3. In the case that a vacuous opinion has an influence on the fused result, then it is
probably adequate to apply the averaging fusion operator. This can be meaningful
where the lack of opinions (uncertainty) shall also be visible.

4. If the conflict between opinions must be solved, the simplest belief conflict management
principle is to apply a weighted belief fusion operator. In case it is assumed that
conflicting belief should be transformed into compromise belief, then it is probably
adequate to apply consensus & compromise fusion. This operator takes into account
common belief between belief arguments and is thereby preferable than weighted
belief fusion.

In our MA-SACPS the observations are made independently by multiple agents (robots);
hence, their opinions can be treated as independent pieces of evidence. Furthermore,
compromises between said opinions are desired, such that the aggregated opinion is
as accurate as possible. For the sake of accuracy, the compromise between conflicting
opinions should only comprise of belief masses all agents can agree upon. Moreover, if the
observations of different agents disagree, this should be reflected with a higher uncertainty.
Lastly, vacuous opinions would indicate that an agent has made a meaningless measurement
and should not impact the aggregated opinion. According to the guidelines discussed
above, as well as the sample calculations, we selected Cumulative Belief Fusion (CBF)
and Consensus & Compromise Fusion (CCF) operators to implement the reasoning and
the knowledge aggregation in the adaptation logic as part of our self-adaptive CPS. Also
our proposed knowledge aggregation and uncertainty mitigation method is applicable
to systems that are composed of a single as well as multiple agents. The mathematical
definition of all the operators is omitted as part of this section, but they can be found
in [64, 113]. Finally, although we focus on these two fusion operators, the implementation
of the system in this thesis support information aggregation with all the fusion operators.

35

Part II

Theoretical, Architectural,
Methodological and Technical

Solutions

37

3 Towards a Taxonomy of Autonomous
Systems

On Engineering Self-Adaptive Cyber-Physical Systems

Gap 1 Gap 2 Gap 3

C2 Systematic literature
review on self-adaptive

systems

C3 Formal definition of
system adaptation and self-

adaptive systems

C4 Logical
architecture for

engineering
(MA-)SACPSs

C5 Methodology for
knowledge representation

and run-time reasoning
under uncertainties in

(MA-)SACPSs

C6 Model problem,
ROS-based robotics system and evaluation framework

Part 1: Theoretical Foundations
Part 2: On Engineering Self-Adaptive CPSs in Dynamic

and Uncertain Context

P2

P3

P3 P4 P5

P3 P4 P5

C1 A taxonomy of
autonomous systems

P1

Figure 3.1: Mapping of Gaps, Contributions and Publications to the structure of this thesis.

Summary: The observed growing trend in putting the self-* properties of the systems
in focus, concretely self-adaptation as a concrete point of interest in this dissertation,
originates from the quest for increased system autonomy and the continuous engineering
aim to decouple the user (precisely the user’s control) from the systems. During our efforts
to define self-adaptive systems, we realized that it is necessary to gain a more profound
understanding of system autonomy before being able to scope and discuss self-adaptive
systems. In response, in this paper, we proposed a taxonomy that supports the formal
specification of different levels of autonomous systems. For each level of autonomy, we
also propose a high-level architecture in which we exemplify the interaction between the
end-user, the system, and the context. Our goal is to propose terminology that, if broadly
accepted, can be used for more effective communication and comparison of autonomy levels
in software-intensive systems that go beyond the well-known SAE J3016 for automated
driving.

Problem: Similarly, as system adaptation and self-adaptive systems, the lack of shared
understanding of the notion of autonomy makes it difficult for the works across various
domains to be compared or even discussed since the same term is used with different

39

3 Towards a Taxonomy of Autonomous Systems

semantics. For instance, very often in the literature, Unmanned Aerial Vehicles (UAVs)
are misleadingly referred to as autonomous, although very often, an end-user completely
controls their flying operation.

Gap: To the best of our knowledge, there is no other work beyond the SAE J3016 standard
for automated driving systems, which classifies different levels of system autonomy. However,
this standard focuses on driving automation, and it is applicable only in the automotive
domain. Additionally, there are very few other prior efforts in the literature to define
system autonomy both informally [51] and formally [83, 10]. However, there is no other
work that proposes a taxonomy and formally defines different levels of autonomy.

Method/Solution: In this paper, to define system autonomy, we differentiate between
the system itself, the end-user of the system, and the context in which the system operates.
We consider all three as separate entities in our architecture and formalisms. Concretely,
to define different autonomy levels, we 1) put the system function in the main focus,
concretely by treating autonomy as a property of a single function, and 2) investigate the
degree of interaction that an end-user has with the system (i. e., the system function),
and 3) emphasize the importance of considering the learning aspects in autonomous
systems, especially when the systems operate in highly dynamic, uncertain, and unknown
environments and when the user’s control of the system reduces. As part of this work, we
use the focus [18] formal modeling notation.

Contribution: As part of this paper, we propose a taxonomy that supports formal
specifications of different levels of autonomous systems, accompanied by a high-level
architecture for each level, which exemplifies the interaction between the system, the
end-user, and the context in which the system operates. In a nutshell, while neglecting the
complexity of the system and its context and what this implies, we can say that the degree
of autonomy is proportional to what portion of the logic from the end-user is shifted to
the system as control logic.

Limitations: As part of this paper, we do not investigate the relationship between the
levels of autonomy and self-* properties of the systems, e. g. self-adaptation. However, based
on the findings and our contributions in this paper, we can conclude that (self-)adaptation
is not possible without a certain degree of autonomy. Namely, a certain level of autonomy,
i. e., the decoupling between the system (i. e., the managed element as part of a self-adaptive
system) and the control logic (i. e., the adaptation logic as part of a self-adaptive system) is
a precondition for self-adaptive systems. Simultaneously, (self-)adaptation is a precondition
for higher autonomy since it enables the system to deal with various unanticipated changes
and uncertainties. Nevertheless, a clear distinction between these two notions is still open.
We close this gap with the contributions in the rest of the chapters of this dissertation,
in which we define system adaptation and characterize, define and specify self-adaptive
systems.

40

Author Contribution: All the authors together conceived the problem statement and
conceptualised the idea, including the paper’s main objective and general solution. S.
Kugele and A. Petrovska developed the taxonomy levels and the formalisation. The paper
was written by A. Petrovska and S. Kugele, and I. Gerostathopoulos reviewed and edited
the later drafts of the paper.

Copyright Note: © 2021 Springer Nature Switzerland AG. Reprinted by permission
from Springer Nature Customer Service Centre GmbH. Stefan Kugele, Ana Petrovska,
Ilias Gerostathopoulos, Towards a Taxonomy of Autonomous Systems, 15th European
Conference on Software Architecture (ECSA), 2021.

On the following pages, the final accepted version of the article is reprinted in accordance
to the Springer Nature rights for using material in a dissertation. The official published
version of the paper can be found with the following DOI: 10.1007/978-3-030-86044-8_3.

41

https://doi.org/10.1007/978-3-030-86044-8_3

Towards a Taxonomy of Autonomous Systems

Stefan KugeleB1[0000−0002−9833−4548], Ana Petrovska2[0000−0001−6280−2461], and
Ilias Gerostathopoulos3[0000−0001−9333−7101]

1 Technische Hochschule Ingolstadt, Research Institute AImotion Bavaria, Germany
Stefan.Kugele@thi.de

2 Technical University of Munich, Department of Informatics, Germany
ana.petrovska@tum.de

3 Vrije University in Amsterdam, Faculty of Science, The Netherlands
i.g.gerostathopoulos@vu.nl

Abstract. In this paper, we present a precise and yet concise charac-
terisation of autonomous systems. To the best of our knowledge, there is
no similar work, which through a mathematical definition of terms pro-
vides a foundation for describing the systems of the future: autonomous
software-intensive systems and their architectures. Such systems include
robotic taxi as an example of 2D mobility, or even drone/UAV taxi, as an
example in the field of 3D urban air mobility. The presented terms lead
to a four-level taxonomy. We describe informally and formally the taxon-
omy levels and exemplarily compare them to the degrees of automation
as previously proposed by the SAE J3016 automotive standard.

Keywords: Autonomous systems · Taxonomy · Architecture

1 Introduction

The world is changing, and so are systems. Woods [9] describes in his much-
noticed article “Software Architecture in a Changing World” the evolution from
monolithic systems back in the 1980s to intelligent connected systems in the
2020s. We share Woods’s vision for future systems. Today’s connected cyber-
physical systems (CPSs) are not too far away from this vision. The missing link
between the current systems and the autonomous systems that we outline for
the future is twofold: First, systems will be capable of adapting their structure
and behaviour in reaction to changes and uncertainties emerging from their
environment and the systems themselves [4,6,8] – they will be adaptive systems.
Second, they will be able to derive knowledge themselves during their operational
time to infer actions to perform.

The modern CPSs, such as cooperative robotic systems or intelligent trans-
portation systems, are per se distributed. The not too distant future probably
brings hitherto unrivalled levels of human-robot interaction. In such scenar-
ios, machines and humans share the same environment, i. e., operational con-
text [1, 4]. Examples for those shared environments are (i) production systems
(cf. Industry 4.0) or (ii) intelligent transportation systems with both autonomous

2 S. Kugele et al.

and human-operated mobility. As a result, autonomous behaviour becomes an
indispensable characteristic of such systems.

The lack of shared understanding of the notion of autonomy makes it difficult
for the works across various domains to be compared or even discussed since
the same term is used with different semantics. For example, very often in the
literature, Unmanned Aerial Vehicles (UAVs) are misleadingly referred to as
autonomous, although an end user completely controls their flying operation.
As another example, we take robots operating in a room, which use Adaptive
Monte Carlo Localisation (AMCL) to localise themselves and navigate in the
space. Even though the robots localising and navigating independently in the
room is some form of autonomy, they simply cannot be called fully autonomous
systems if they operate in a room in which they often collide or get in deadlocks.
In these situations, human administrators need to intervene in order for the
robots to be able to continue with their operation. The intervention from a user
(i. e., human administrator) directly affects the system’s autonomy.

In response, we present in this paper our first steps towards a unified, com-
prehensive, and precise description of autonomous systems. Based on the level
of user interaction and system’s learning capabilities, we distinguish four au-
tonomy levels (A0-A3): non-autonomous, intermittent autonomous, eventually
autonomous, and fully autonomous. Our goal is to offer a precise and concise
terminology that can be used to refer to the different types/levels of autonomous
systems and to present a high-level architecture for each level.

The remainder of this paper is structured as follows. In Sect. 2 we briefly
sketch existing efforts to formalise autonomy and explain the formal notation
we are using later on. In Sect. 3, we present our taxonomy. Finally, in Sect. 4,
we discuss and conclude the paper and outline our further research agenda.

2 Background

2.1 Existing Efforts to Formalise Autonomy

An initial effort in the literature to formally define autonomy was made by Luck
and d’Inverno [5]. In this paper, the authors argue that the terms agency and au-
tonomy are often used interchangeably without considering their relevance and
significance, and in response, they propose a three-tiered principled theory using
the Z specification language. In their three-tiered hierarchy, the authors dis-
tinguish between objects, agents, and autonomous agents. Concretely, in their
definition of autonomy, as a focal point, the authors introduce motivations—
“higher-level non-derivative components related to goals.” Namely, according to
their definition, autonomous agents have certain motivations and some potential
of evaluating their own behaviour in terms of their environment and the respec-
tive motivations. The authors further add that the behaviour of the autonomous
agent is strongly determined by and dependent on different internal and environ-
mental factors. Although the authors acknowledge the importance of considering
different internal and environmental (i. e., contextual) factors while defining au-
tonomy, in their formalisms, the importance of the user in defining autonomy is

Towards a Taxonomy of Autonomous Systems 3

entirely omitted. On the contrary, in our paper, we put the strongest emphasis
on the user. Concretely, how the involvement of the user in the operation of the
system diminishes, proportionally to the increase of the system’s autonomy. We
define levels of system’s autonomy by focusing on the system’s function and how
much from the user’s logic is “shifted” to the system in the higher levels of au-
tonomy. We further touch on the importance of learning, especially when 1) the
systems operate in highly dynamic, uncertain and unknown environments, and
2) the user’s control on the system reduces. To the best of our knowledge, there
is no prior work that defines different levels of autonomy formally.

2.2 Formal Modelling Approach

Within this paper, we use the formal modelling notation Focus introduced by
Broy and Stølen [2]. We restrict ourselves to only those concepts necessary for the
understanding of this work. In Focus, systems are described by their (i) syntac-
tic and their (ii) semantic interface. The semantic interface of a system is denoted
by (I . O) indicating the set of input and output channels, I,O ⊆ C, where
C denotes the set of all channels. Systems are (hierarchically) (de-)composed
by connecting them via channels. A timed stream s of messages m ∈ M , e. g.
s = 〈〈m1〉 〈〉 〈m3 m4〉 . . . 〉, is assigned to each channel c ∈ C. The set of timed
streams T (M) over messages M associates to each positive point in time t ∈ N+

a sequence of messages M∗, formally T (M) = N+ →M∗. In case of finite timed
streams, Tfin(M) is defined as: Tfin(M) =

⋃
n∈N ([1 : n]→M∗). In the example

given, in the first time slot, 〈m1〉 is transmitted; in the second time slot, nothing
is transmitted (denoted by 〈〉), and in the third depicted time slot, two mes-
sages 〈m3 m4〉 are transmitted. Untimed streams over messages M are captured
in the set U(M) which is defined as U(M) = (N+ →M) ∪⋃

n∈N ([1 : n]→M),
i. e., each time slot is associated with at most one message and there can be

streams of finite length. By
−→
C , we denote channel histories given by families of

timed streams:
−→
C = (C → T (M)). Thus, every timed history x ∈ −→X denotes an

evaluation for the channels in C by streams. With #s, we denote the number
of arbitrary messages in stream s, with m#s that of messages m. For timed
streams s ∈ T (M), we denote with s↓(t) ∈ Tfin(M) the finite timed stream until
time t . The system’s behavioural function (semantic interface) f is given by a

mapping of input to output histories: f :
−→
I → ℘(

−→
O).

3 A Taxonomy for Defining Autonomy
In this section, we first describe how autonomy of a system is related to autonomy
of its functions, then present the main ideas behind our proposed taxonomy, and
finally describe both informally and formally the different levels of autonomy.

3.1 Autonomy as a Property of Individual Functions

CPSs such as modern cars are engineered in a way to deliver thousands of cus-
tomer or user functions. These are functions that are directly controlled by the
user, or at least the user can perceive their effect. Switching on the radio, for
example, results in music being played. This is a customer function. On the

4 S. Kugele et al.

other hand, there are functions, for example, for diagnosis or for offering en-
cryption services, which the customer cannot control directly, of whose existence
often nothing at all is known and whose effects are not visible to the user. Con-
sidering the above-mentioned, it is not trivial to classify a complete system as
autonomous or non-autonomous. Instead, autonomy is a property of individual
functions. Let us take a vehicle that drives autonomously. We assume that this
system still offers the functionality to the passengers to choose the radio station
or the playlist themselves. Thus, the CPS operates autonomously in terms of
driving but is still heteronomous in terms of music playback. A similar argu-
mentation applies, for example, to vehicles that are equipped with automation
functions of varying degrees of automation, as considered in the SAE J3016
standard. For this system, as well as for other multi-functional systems, it is not
meaningful to conclude from the autonomy of a single function, the autonomy
or heteronomy of the whole system. Therefore, the commonly used term of an
autonomous vehicle is too imprecise since the term autonomy refers exclusively
to its driving capabilities. Hence, also the SAE proposes not to speak about
“autonomous vehicles” but instead about “level [3, 4, or 5] Automated Driving
System-equipped vehicles” (cf. [7], §7.2).

The only two statements that can be made with certainty are the following:
(1) if all functions of a system are autonomous, then the system can also be called
autonomous, and (2) if no function is autonomous, then certainly the system
is not autonomous. Anything in between cannot be captured with precision.
Single-functional systems are a special case. In such systems, the autonomy or
heteronomy of the single function is propagated to the system. For the sake of
illustrating our taxonomy on a simpler case, we will focus on single-functional
systems in the rest of the paper.

3.2 Main Ideas Behind the Taxonomy for Autonomy

Our first main idea is to define autonomy levels of a system by focusing on the
system’s function and specifically by looking at the level of interaction that a user
has with the system. Intuitively, the more user interaction is in place, the less
autonomous the system is. “More user interaction” can mean both more frequent
interaction and more fine-grained interaction. Actually, these two characteristics
very often go hand in hand: consider, for instance, the case of a drone: it can be
controlled with a joystick with frequent and fine-grained user interaction (lower
autonomy); it can also be controlled via a high-level target-setting routine with
less frequent and more coarse-grained user interaction (higher autonomy).

The second main idea behind our taxonomy is to distinguish between sys-
tems that learn and ones that do not learn. By learning, we mean that systems
can observe both their context and user actions and identify behavioural pat-
terns (e. g. rules or policies) in the observed data (e.g. by training and using a
classifier). Such patterns can be used at run-time to reduce the amount of user
interaction with the system gradually. Hence, the more capable a system is of
learning behavioural patterns, the more autonomous it can become.

Finally, the third main idea is to define a system as autonomous within
an assumed operational context. The assumed context can be narrow (e. g. a

Towards a Taxonomy of Autonomous Systems 5

drone operating in a wind range of 0-4 Beaufort) or very broad (e. g. a drone
operating under any weather conditions). The specification of the context can
also be uncertain or incomplete, i. e., the designers of the system might not be
able to anticipate and list all possible situations that may arise under a specific
context assumption. In any case, the more broad context is assumed, the harder
it becomes for a system to reach high autonomy.

3.3 Taxonomy Levels

Non-Autonomous (A0)

Intermittent Autonomous (A1)

Eventually Autonomous (A2)

Fully Autonomous (A3)

Fig. 1: Taxonomy levels.

The four levels of autonomous systems in
our taxonomy are shown in Fig. 1. Figure 2
shows the interaction between the user u, the
context c, and the system s, as well as the
(very high level) architecture of the system
at each level in the taxonomy.

The lowest level, A0, refers to systems
that are not autonomous. For these systems, user input is needed at all times for
controlling their operation. Examples are using the radio in a car or controlling
the movement of a robot via a remote controller. As can be seen in Fig. 2(a),
on this level, the system s (i. e., the system function sf) is completely controlled
by the user and does not assume any input from the context (although this
input might be already taken indirectly into account by the user). Note that
the function sf might internally do something in the background that does not
depend on the user input. A user can control the movement and trajectory of a
drone; however, each drone internally provides attitude stabilisation that is not
dependent on user input but is part of this system function.

The next level, A1, refers to systems that are intermittent autonomous: they
can operate autonomously in-between two consecutive user inputs. In this case,
the system can receive user input periodically or sporadically. As shown in
Fig. 2(b), part of the logic of the user is shifted to the system as a control
logic cl′, which interacts with the system function sf. Input to the control logic
can also be provided by the context. For instance, consider the movement of a
robotic vacuum cleaner: the system perceives its environment through its sen-
sors (obtains context input) and operates autonomously until it gets stuck (e. g.
because of an obstacle or a rough surface); at this point, a user is required to
intervene to restart the robot or point it to the right direction.

Level A2, shown in Fig. 2(c), refers to eventually autonomous systems: here,
the user interaction reduces over time until the system reaches a point where
it does not require any user interaction (user control). For this to happen, the
system’s control logic cl′ is usually enhanced and equipped with a learning com-
ponent ` that is able to identify the user interaction patterns associated with
certain system and context states. An example is a robotic vacuum cleaner that
is able to learn how to move under different floor types (e. g. faster or slower)
and avoid crashes that would necessitate user interaction. Clearly, the degree and
sophistication of monitoring and reasoning on context changes and user actions
is much higher than in intermittent autonomous systems.

6 S. Kugele et al.

s = sf

u

sfc

(a) A0

s = sf ⊗ cl′

cl′u′

sfc

(b) A1

s = sf ⊗ (cl′ ⊗ `)

cl′⊗`u′

sfc

(c) A2

s = sf ⊗ (cl⊗ `)

cl⊗ `

sfc

(d) A3

Fig. 2: From user-operation to autonomy: (a) A human user u controls the
system s (i. e., the system’s function sf). (b) The control logic is divided between
the user u′ and the system cl′, i. e., u = u′ ⊗ cl′. (c) The control logic of the
system cl′ could be enhanced with a learning component ` to better address
e. g. changes in the context c. (d) The control logic cl with the usually necessary
learning component ` is entirely performed by the system itself.

Finally, level A3 refers to fully autonomous systems, where no user input
is needed (except the provision of initial strategic or goal-setting information),
as it can be seen in Fig. 2(d). Systems on this level of autonomy can observe
and adjust their behaviour to any context by potentially integrating learning in
their control logic cl. Please note that the necessity and the sophistication of the
learning is proportionate to 1) the complexity and the broadness of the context,
and 2) the specifications of the context in the systems, as previously explained in
Sect. 3.2. For instance, a robotic vacuum cleaner can move in a fully autonomous
way when its context is more simplistic and could be fully anticipated (e. g.
prescribed environment that contains only certain floor and obstacle types).
To achieve this, the system needs to be equipped with sensing and run-time
reasoning capabilities to adjust its movement behaviour and remain operational
without human interaction. However, the difficulty for the same system to remain
fully autonomous increases proportionally to the complexity of its context. For
example, the context can be dynamic in ways that could not be anticipated,
resulting in uncertain and incomplete context specifications. Since the user on
this level is entirely out of the loop, this would require new, innovative, and more
sophisticated learning methods in the fully autonomous systems.

We note that one can also imagine relatively simple systems without context
impact that are configured once or not at all by a user and then work without
any user interaction or learning (e. g. an alarm clock); while these systems also
technically fall under A2 or A3, they are less complex and sophisticated.

3.4 Formalisation of Taxonomy Levels

The intuitively described taxonomy levels are specified mathematically in the
following. We denote with u the input stream from the user to the system.

Definition 1 (Non-Autonomous, A0). A system is called non-autonomous,
iff it solely depends on user inputs: ∀t ∈ N+ : u(t) 6= 〈〉.

If there is less and less intervention or input by users, this becomes necessary
repeatedly; we speak of intermittent autonomy.

Towards a Taxonomy of Autonomous Systems 7

Definition 2 (Intermittent Autonomous, A1). A system is called intermit-
tent autonomous, iff user interaction is necessary from time to time (periodic or
sporadic), i. e.: ∀t ∈ N+ ∃t ′, t ′′ > t , t ′, t ′′ ∈ N+, t ′ 6= t ′′ : u(t ′) 6= 〈〉 ∧ u(t ′′) = 〈〉.

We emphasised that learning is essential in order to reach even higher levels
of autonomy. By learning, the system converges to a point t after which no user
interaction is needed anymore. Such systems are called eventually autonomous.

Definition 3 (Eventually Autonomous, A2). A system is called eventually
autonomous, iff after time t ∈ N+ no user input or intervention is needed any-
more to fulfil the mission goals: ∃t ∈ N+ : ∀t ′ > t : u(t ′) = 〈〉.
In other words, only a finite number n of messages were transmitted up to t and
no further messages will be transmitted beyond that time: #u↓(t) = n, with
n ∈ N. The smaller t is, the earlier the point of autonomy is reached. If this is
already the case from the beginning, we speak of fully autonomous systems.

Definition 4 (Fully Autonomous, A3). A system is called fully autonomous
if no user interaction or intervention is necessary at all, i. e., ∀t ∈ N+ : u(t) = 〈〉.

Eventual and full autonomy make strict demands on the ability to precisely
perceive and analyse the context, and draw conclusions and learn from it. How-
ever, in many respects, it will probably not be possible to achieve them in the
foreseeable future for a not highly restricted operational context. Reasons for this
are manifold and include the limited ability to fully perceive and understand the
context and be prepared for all conceivable operational situations. Therefore, let
us now consider intermittent autonomy. Assume the case that every other time
step (e. g. every second minute), there is user interaction on an infinite timed
stream, see u1 below. This results in an infinite number of interactions. In an-
other case, there could be one interaction every millionth minute, as shown in
u2. These two cases are equivalent or indistinguishable by definition.

u1 = 〈〈m〉〈〉〈m〉〈〉 . . . 〈m〉〈〉 . . . 〉, u2 = 〈〈m〉〈〉106−1〈m〉〈〉106−1 . . . 〈m〉〈〉106−1 . . . 〉
This is due to Cantor’s concept of infinity. Intuitively, however, a system that
depends on user input every two minutes acts less autonomously than a system
that can operate for almost two years (1.9 years in u2) independently. Therefore,
intermittent autonomy extends from “almost” no autonomy towards “almost”
eventually autonomy. The classification in this spectrum can be made more
precise if we take a closer look at the frequency of user input. Because of the
above discussion on infinity, we only consider prefixes of finite length of (in)finite
streams, i. e., u↓(t). Let α ∈ (0, 1) be the ratio between times without user input
and the interval [1; t], i. e., α = 〈〉#u/t . The closer α gets to one, the more
autonomous the system is.

4 Discussion and Conclusion

Comparison to SAE Levels (L0-L5) [7]. No driving automation (L0) refers to
A0–no autonomy, L1/2 (driver assistance, partial driving automation) can be de-
fined with the notion of intermittent autonomy–A1, conditional driving automa-
tion (L3), applies for α ≈ 1 in a limited operational context such as highway

8 S. Kugele et al.

autopilots. Finally, high driving automation (L4) and full driving automation
(L5) are captured by our level A3, full autonomy. For both, different assump-
tions, w.r.t. the context or the operational design domain, need to be made.

Future Extensions. It would be relevant to investigate the relation between the
higher levels of autonomy and self-* properties (cf. [3]) of the systems, e. g.
self-adaptation. In our current understanding, adaptivity is a precondition for a
higher autonomy since it enables the system to deal with various unanticipated
changes and uncertainties; however, a clear distinction and definition of these
two notions is still open. Another open issue refers to the notion of messages
exchanged in intermittent autonomous systems. We have tried to distinguish
between two intermittent autonomous systems based on their frequency of mes-
sage exchange, but the expressiveness of messages is also important. Not every
message has to have the same “information content”. It is a matter for future
research and discussion whether this point can be captured using, e. g. Shannon’s
definition of information content (a limitation of this approach is the assump-
tion of statistical independence and idempotence of messages). To what extent
or when is this a permissible limitation is an open question.

Conclusion. In this paper, we proposed a taxonomy that supports the formal
specification of different levels of autonomous systems. We have also proposed a
high-level architecture for each level to exemplify the user, context, and system
interaction. Our goal is to propose a terminology that, if broadly accepted, can
be used for more effective communication and comparison of autonomy levels
in software-intensive systems that goes beyond the well-known SAE J3016 for
automated driving.

References

1. Broy, M., Leuxner, C., Sitou, W., Spanfelner, B., Winter, S.: Formalizing the notion
of adaptive system behavior. In: ACM Symposium on Applied Computing (SAC).
pp. 1029–1033. ACM (2009)

2. Broy, M., Stølen, K.: Specification and Development of Interactive Systems–Focus
on Streams, Interfaces, and Refinement. Monogr. in Comp. Science, Springer (2001)

3. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

4. de Lemos, R., et al.: Software engineering for self-adaptive systems: A second
research roadmap. In: Software Engineering for Self-Adaptive Systems. LNCS,
vol. 7475, pp. 1–32. Springer (2010)

5. Luck, M., d’Inverno, M.: A formal framework for agency and autonomy. In: First In-
ternational Conference on Multiagent Systems. pp. 254–260. The MIT Press (1995)

6. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM transactions on autonomous and adaptive systems (TAAS) 4(2), 1–42
(2009)

7. Society of Automotive Engineers: Taxonomy and definitions for terms related to
driving automation systems for on-road motor vehicles, SAE j3016 (2018)

8. Weyns, D.: Software engineering of self-adaptive systems. In: Handbook of Software
Engineering, pp. 399–443. Springer (2019)

9. Woods, E.: Software architecture in a changing world. IEEE Softw. 33(6), 94–97
(2016)

4 Defining Self-Adaptive Systems: A
Systematic Literature Review

On Engineering Self-Adaptive Cyber-Physical Systems

Gap 1 Gap 2 Gap 3

C2 Systematic literature
review on self-adaptive

systems

C3 Formal definition of
system adaptation and self-

adaptive systems

C4 Logical
architecture for

engineering
(MA-)SACPSs

C5 Methodology for
knowledge representation

and run-time reasoning
under uncertainties in

(MA-)SACPSs

C6 Model problem,
ROS-based robotics system and evaluation framework

Part 1: Theoretical Foundations
Part 2: On Engineering Self-Adaptive CPSs in Dynamic

and Uncertain Context

P2

P3

P3 P4 P5

P3 P4 P5

C1 A taxonomy of
autonomous systems

P1

Figure 4.1: Mapping of Gaps, Contributions and Publications to the structure of this thesis.

Summary: In the last two decades since the IBM manifesto on autonomic computing
was published, there has been an increased interest in self-* systems, including self-adaptive
systems, which are the focus of this dissertation. However, despite the prominent research
and the extensive work on self-adaptive systems, the literature still lacks precise, universally
understandable and applicable definitions of these systems. We observed independently
from other works in the literature [20, 82, 116] that so far, the terms system adaptation and
self-adaptive systems have been primarily used intuitively without a precise explanation of
their meaning. Although such usage might suffice in some instances, this is not the case in
engineering and science, where a more rigorous definition is necessary [82]. In response, 1)
to obtain an overview of the current state-of-the-art, 2) to gain insights into the limitations
of the existing works, and 3) to set a foundation for a holistic formal definition, we conduct
a systematic literature review focusing on how self-adaptive systems have been formally
defined so far in the literature.

Problem: First and foremost, the lack of a concrete definition of self-adaptive systems
hinders constructive scientific debates, which are impossible if experts have the same
understanding of what self-adaptive systems are. Furthermore, the need for definitions

51

4 Defining Self-Adaptive Systems: A Systematic Literature Review

on what are self-adaptive systems has different engineering consequences, e. g. how to
engineer these systems, that go beyond the famous MAPE-K conceptual model. Although
MAPE-K gives some intuition behind the engineering of self-adaptive systems, primarily
by the separation of concerns between the managed system and the managing system,
a more specific semantics of these two components within the conceptual model is still
lacking. Without more specific semantics accompanying the MAPE-K conceptual model,
it is unclear how to separate between self-adaptive and self-* systems since MAPE-K is
used as a conceptual model for engineering all the self-* systems. Similarly, the lack of
precise semantics does not only affect the design phase of self-adaptive systems, but it also
reflects in a lack of foundation on how to evaluate and compare these systems.

Gap: Over the years, various mapping studies and literature reviews have been published
in the field of self-adaptive systems focusing on engineering self-adaptive systems [90, 84, 74,
119, 101]. However, to this date, no systematic study investigates how self-adaptive systems
are formally defined in the literature that also summarizes their concrete limitations and
aims to gain insight into why none of these formal efforts have been accepted by the
community so far.

Method/Solution: As part of this contribution, we conduct a systematic literature
review to answer “How are self-adaptive systems formally defined in the existing literature?”,
which is our leading research question as part of this paper. To support answering the
leading research question in more detail, we derive three more refined research questions
based on which we analyzed the primary studies and obtained our results:

1) Do the papers with formal definitions of self-adaptive systems also define system
adaptation as part of their contributions?

2) Which characteristics of the self-adaptive systems are considered in the existing
formal definitions and specifications?

3) Which formal notations have been used across different works to define self-adaptive
systems?

Results: Our results reveal that despite the increasing interest in self-adaptive systems
over the years, there is a scarcity of efforts that define these systems formally. Concretely,
from an initial pool of 1493 papers, we have selected 314 relevant papers, which resulted
in only nine primary studies whose objective was to define self-adaptive systems formally.
Although it is not possible to define self-adaptive systems without first defining what it
means for a system to adapt, our results show that out of these nine primary studies, only
one work [23] aimed to define system adaptation as part of its contribution formally. The
second unexpected insight from our results is that the notion of uncertainty is not considered
in the formalisms in any of the primary studies, although uncertainty is considered the
main reason for the need for self-adaptation across the literature. Finally, our results have
shown that many of the primary studies provide their formalism by leveraging the aspects
of collaboration [129], distribution [120], decentralisation [7] and ensembles [23] to define
self-adaptive systems. However, system adaptation is not necessarily an emerging property

52

from collaboration or decentralization and should be defined in independence from these
notions.

To summarize, a future formal definition of self-adaptive systems should provide more
precise semantics by 1) defining what it means for a system to adapt and how system
adaptation differs from system function, 2) considering more systematically all the different
characteristics of self-adaptive systems in their formalism, in particular the aspect of
uncertainty, and 3) defining adaptation and self-adaptive system in isolation from, e. g.,
collaboration and multi-agent systems. As a result, the prerequisite for specifying self-
adaptive systems is first defining system adaptation and differentiating it from a nominal
system functioning. Only after addressing and closing this research gap, we will be able to
navigate toward a clear and precise definition of self-adaptive systems.

Contribution: Our study provides an overview of the current state-of-the-art research
that has made efforts in the past toward proposing formal definitions of self-adaptive
systems. Based on the analysis of the current research and its limitations, we elicit
requirements and set a foundation for the future establishment of a holistic definition
of self-adaptive systems. Having a more precise definition, or even in more general, a
common, shared language and understanding of the core terminology of self-adaptive
systems will complement the already existing works in this field, support scientific debates
which currently lack a clear foundation for a discussion, and open new research directions
for the future.

Limitations: Doing an automated search in the databases using the query “self-adaptive
systems” yields hundreds of thousands of results. For that reason, we either searched in
the databases by meta-data or only by title, depending on the advanced search options
available in the concrete database. We assumed that if a paper defines self-adaptive systems,
then that paper will certainly contain the keyword (self-adapt*) as part of these fields.
However, this is not by any means a guarantee of completeness.

Author Contribution: A. Petrovska conceived the problem statement and conceptu-
alised the idea and the mean objective of the paper. A. Petrovska also derived the exact
methodology that was used for the systematic literature collection, selected the digital
libraries for the collection of the papers, and created the exclusion and inclusion criteria
used for filtering the initial set of papers. A. Petrovska and G. Erjiage jointly derived
the searching query, and G. Erjiage executed the search and collected the initial set of
papers. A. Petrovska and G. Erjiage did the filtering of the initial set of papers and the
final selection of the primary studies. The writing of the paper was done by A. Petrovska,
and S. Kugele provided review and editing on the final drafts of the paper.

Note: The paper is currently under review at the 18th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2023). For the
coherent storyline of this thesis, the content of the paper is included in the following. Please
note that the content of the paper is not included in the original template as submitted.

53

Defining Self-adaptive Systems: A
Systematic Literature Review

Abstract

In the last two decades, the popularity of self-adaptive systems in the field of software and
systems engineering has drastically increased. However, despite the extensive work on self-
adaptive systems, the literature still lacks a common agreement on the definition of these
systems. To this day, the notion of self-adaptive systems is mainly used intuitively without
a precise understanding of the terminology. Using terminology only by intuition does not
suffice, especially in engineering and science, where a more rigorous definition is necessary.
In this paper, we investigate the existing formal definitions of self-adaptive systems and
how these systems are characterised across the literature. Additionally, we analyse and
summarise the limitations of the existing formal definitions in order to understand why
none of the existing formal definitions is used more broadly by the community. To achieve
this, we have conducted a systematic literature review in which we have analysed over 1400
papers related to self-adaptive systems. Concretely, from an initial pool of 1493 papers, we
have selected 314 relevant papers, which resulted in nine primary studies whose primary
objective was to define self-adaptive systems formally. Our systematic review reveals that
although there has been an increasing interest in self-adaptive systems over the years, there
is a scarcity of efforts to define these systems formally. Finally, as part of this paper, based
on the analysed primary studies, we also elicit requirements and set a foundation for a
potential (formal) definition in the future that is accepted by the community on a broader
range.

4.1 Introduction

Since the publishing of the famous IBM manifesto on autonomic computing by Kephart
and Chess [66] almost two decades ago, the interest in the self-* properties of the systems
in software engineering has increased rapidly. Some of the most broadly spread and often
found self-* properties in the literature are: self-adaptation, self-awareness, self-healing
and self-organising, just to name a few. For example, the publications on self-adaptive
systems have increased by 304% in the last twenty years, compared to the 50 years before
that (from 1951-2001).1

There are many disciplines that have been considering the notion of adaptation, for
example, biology and evolutionary sciences [16, 127], climate change and environmental
sciences [89, 42], as well as film, cinematography and media studies [56]. The situation
slightly differs in the field of software and systems engineering, where we can observe that
the majority of the works available focus only on self-adaptive systems, without tacking
and clarifying what is understood under the notion of adaptation in a first place. Hence,

1Source: ACM Digital Library.

55

4 Defining Self-Adaptive Systems: A Systematic Literature Review

defining the property of system adaptation is circumvented by the existing works, although
defining what we understand under system adaptation is an essential prerequisite for a
subsequent definition of self-adaptive systems.

Suppose we only focus on the available definitions of self-adaptive systems. In that case,
we can observe the following: there exist prior works that propose informal definitions
of self-adaptive systems as part of their papers [73, 32, 117]. However, all the informal
definitions only rely on intuitive understanding communicated by the spoken language
that is fairly ambiguous, which results in under-specified usage of the terminology of
self-adaptive systems. In response, to tackle the limitations of the informal definitions,
some researchers have put the focus on defining these systems formally [120, 22]. However,
despite the notable advancements in the research on self-adaptive systems in the last two
decades and the domain’s active community, none of the existing formal definitions is
broadly accepted and used as means of communication among the experts in the field.
Therefore, the understanding of the core terminology still remains imprecise. To summarise,
there is only an intuitive understanding of self-adaptive systems without a more profound
understanding and a precise definition of these systems and how they differ from the
“ordinary” systems considered non-adaptive. Furthermore, defining the property of system
adaptation is the first step toward defining self-adaptive systems, and this is something
that this research field has not paid enough attention to yet.

Other existing works in the literature also support our observations: Broy [20] and
Lints [82] have independently reached the same concision regarding the intuitive use of the
terms of adaptation and self-adaptive systems, arguing that although in some instances such
intuitive usage might suffice, this is not the case in engineering and science, where a more
rigorous definition is necessary [82]. Additionally, Weyns [116] in a recent work states that
self-adaptive systems are not defined yet and that the lack of broadly accepted definitions
is possibly the biggest challenge in the field of engineering self-adaptive systems [118, 119].

Problem. The lack of precise understanding of what are self-adaptive systems has
different software engineering consequences and implications, for instance, how to build
or engineer these systems that go beyond the famous MAPE-K conceptual model. The
fundamental issue with the MAPE-K is that it serves as a reference model for engineering
not only self-adaptive, but any self-* system in general. Although MAPE-K gives some
intuition behind the engineering of self-adaptive systems, primarily by the separation of
concerns between the managed system and the managing system, a more specific semantics
of these two components within the conceptual model is still lacking. A more specific
semantics accompanying the MAPE-K reference model, will also enable a better separation
and characterisation of, e. g., self-adaptive, self-organising and self-aware systems.

Moreover, as mentioned before, besides the engineering implications, the lack of a concrete
definition of self-adaptive systems has various scientific consequences. Namely, it hinders
constructive scientific debates, which are impossible if experts have different understanding
of what self-adaptive systems are. A better semantics of self-adaptive systems will 1) set a
foundation for more constructive scientific debates, 2) complement the already existing
works (methods, architectures, models, etc.) in this field, and 3) set the foundation on how
to evaluate and compare these systems in the future.

Gap. Despite 1) the acceptance and the acknowledgement of adaptation as an emerging

56

4.2 Literature Review Methodology

property of software systems, and 2) the various systematic mapping studies and literature
reviews in the field of self-adaptive systems [90, 84, 74, 119, 101], to the best of our
knowledge, there is no other study that investigates and summarises how self-adaptive
systems have been previously defined and characterised in the literature. In particular, no
prior work summarises and analyses the existing formal definitions of self-adaptive systems
in order to understand and gain insight into why none of these formal efforts is accepted
by the community and what are their concrete limitations.

Solution. As a result, as part of this paper, we conduct a systematic literature review,
which aims at summarising and analysing the existing works that formally define and
specify self-adaptive systems. The following central research question leads our research:

How are self-adaptive systems formally defined in the literature?

To tackle this broad research question, we derive three more refined research questions
(further explained in Section 4.2), investigating 1) if the existing formal definitions also
formalise the notion of system adaptation as part of their contributions, 2) which char-
acteristics of self-adaptive systems are considered in the existing formalism, and 3) the
formal notations used in each of the studies.

Contribution. Our systematic literature review provides an overview of the current
state-of-the-art and structures the existing knowledge on how self-adaptive systems have
been defined in the literature so far. More importantly, we analyse and summarise the
limitations of the existing formal definitions, which provides new insights into why none
of the formal definitions and specifications is accepted and used more broadly by the
community. Our contributions also provide a foundation for improving the semantics of
the core terminology of self-adaptive systems. This potentially leads towards a future
establishment of a more unified understanding of these systems and, ideally, even to a
broadly accepted definition of self-adaptive systems in the near future. A more profound
understanding of the terminology will support the community in setting new challenges
and identifying new directions for future research.

The rest of this paper is structured as follows: Section 4.2 presents the used methodology
based on which we conduct our systematic literature review and the identified research
questions. We present the results and answer the research questions in Section 4.3.
In Section 4.4, we further discuss the main findings, followed up with a discussion on
the limitations of this review. In Section 4.5, we present the related work and finally,
Appendix A.6 concludes the paper.

4.2 Literature Review Methodology

This section describes the research methodology we followed in conducting the systematic
literature review. The systematic process followed the guidelines proposed in various works
by Kitchenham et al. [67, 68]. An overview of our complete methodology is presented in
Fig. 4.2.

57

4 Defining Self-Adaptive Systems: A Systematic Literature Review

Phase 1:
Defining
research
questions

Expert search

Initial papers set

Snowballing
through the

initial set

Systematic collection of papers
Selection of

digital libraries
Search query

derivation
Search

execution

Phase 3:
Defining

exclusion
and

inclusion
criterion

Phase 4: Filtering
according to the
inclusion and the
exclusion criteria

Phase 7:
Reporting

the
review

Phase 5:
Merging

expert and
systematic

search

Phase 6: Selection of
primary studies

Individual voting

Collating votes

Finish
classification

Agreement

Y
N

Discussion

Papers from
SEAMS and

SASO

Papers from
various SLR
and surveys

Individual voting

Collating votes

Finish
classification

Y
N

Discussion
Agreement

127

1366

44 314

294

Phase 2: Data collection 9

Figure 4.2: Research methodology. With green, blue, and orange boxes, we depict the artefacts
and the activities in the planning, conducting and reporting of the review.

Phase 1: Defining research questions

The overall objective of the systematic literature review was to give an overview of
the current state-of-the-art regarding the definition of self-adaptive systems in software
and systems engineering, concretely how self-adaptive systems have been formally
defined in the existing literature, which is the leading research question as part of this
work. To support answering the leading research question in more detail, we derive three
refined research questions:

RQ-A Do the papers with formal definitions of self-adaptive systems also define system
adaptation as part of their contributions?

RQ-B Which characteristics of the self-adaptive systems are considered in the existing
formal definitions and specifications?

RQ-C Which formal notations have been used across different works to define self-adaptive
systems?

Phase 2: Data collection

In this study, we collected the papers in two different ways: manually by an expert
search and by conducting a systematic studies collection.

Expert search. We initially started the data collection by collecting papers in a
non-systematic way, referred to as an expert search. In the expert search, we started with
an initial set of papers that included relevant studies based on our domain knowledge,
known to us as key contributions in the field of self-adaptive systems. We extended this
initial set of studies in three different ways. First, we snowballed through the related work
of the initial set of studies, as described by Wohlin [125]. Second, we searched through
the relevant papers in the conference proceedings of SEAMS2 and SASO3 as the two most
relevant venues in this domain of research. Finally, we searched for relevant papers from
previously published systematic literature reviews and surveys on self-adaptive systems.
In this last step, we considered the studies from Weyns et al. [121], Muccini et al. [90],

2SEAMS stands for International Symposium on Software Engineering for Adaptive and Self-Managing
Systems.

3SASO (currently ACSOS) stands for International Conferences on Self-Adaptive and Self-Organizing
Systems.

58

4.2 Literature Review Methodology

Macías-Escrivá et al. [84], and Krupitzer et al. [73, 74]. At the end, our expert search
resulted in 127 relevant studies in total.

Systematic studies collection. Our systematic search and collection of studies consist
of two aspects: 1) selection of digital libraries on which we perform the automated search,
and 2) search query derivation, which we later used as search queries in the selected
databases.

We chose the following digital libraries to perform the search:

• ACM Digital Library (https://dl.acm.org/)
• IEEE Xplore (http://ieeexplore.ieee.org/)
• Scopus (https://dl.acm.org/)
• ScienceDirect (http://www.sciencedirect.com/)
• Wiley InterScience (http://onlinelibrary.wiley.com/)
• World Scientific (https://www.worldscientific.com/)

The search query derivation was an iterative process. Concretely, half a dozen of
trial searches were performed in each database to evaluate the number of relevant studies
obtained by different queries. Through this iterative process, we aimed to better understand
the suitability of different search queries and keyword combinations, their advantages,
and limitations, which was crucial for the final keyword query selection. Namely, we
aimed for a search query as general as possible to consider a broad range of relevant
papers from the literature while minimising the number of irrelevant studies. Some of the
initial searching queries were the following: (self-adapt* AND software), (self-adapt*
AND system), and (self-adapt* AND engineer*). Our preliminary results showed that
including the keywords system and engineer* in the query resulted in many irrelevant
studies, e. g. from networks and hardware. On the opposite side, we realised that restricting
only to the keyword software excludes works from the domain of cyber-physical systems,
which are systems with increasing prominence in the field of self-adaptive systems in
the last decade. Furthermore, since the main focus of this literature review is to get
a better understanding of how self-adaptive systems are defined, we also tried using
(self-adapt* AND defin*) as a searching query, which unfortunately gave only a few
results. Different combinations of these searching keywords have led either to a broad set of
irrelevant papers or to a very narrow search. For that reason, we used (self-adapt* AND
(software OR cyber-physical)) as a final searching query for our automated search on
the databases identified above, searching by meta-data (title, abstract, keywords) or only
by title, depending on the advanced search options available for the chosen databases. The
systematic collection resulted in 1366 studies matching the derived searching query.

Phase 3: Defining inclusion and exclusion criteria

After the collection of the papers, we needed to perform the first study selection. Since
we are exclusively interested in studies related to system adaptation and engineering
self-adaptive systems, in this phase, we defined rigorous inclusion and exclusion criteria
to filter the irrelevant papers collected during the extensive search in the previous phase.

59

https://dl.acm.org/
http://ieeexplore.ieee.org/
https://dl.acm.org/
http://www.sciencedirect.com/
http://onlinelibrary.wiley.com/
https://www.worldscientific.com/

4 Defining Self-Adaptive Systems: A Systematic Literature Review

Table 4.1: Inclusion criteria.

Criteria Description
I1 Papers that have been published in conferences and journals, including full

research papers, short papers, position papers, new ideas and emerging results
papers, and papers from doctorate symposiums

I2 Literature published in book chapters
I3 Papers defining adaptivity, context, self-adaptivity in software engineering
I4 Papers proposing engineering approaches (for example, frameworks, method-

ologies, methods, reference architectures) for self-adaptive systems
I5 Papers focusing on modelling, design, architecture, and engineering of self-

adaptive systems
I6 Systematic literature reviews and mapping studies on self-adaptive systems

The inclusion and the exclusion criteria that we defined for this purpose are presented in
Tab. 4.1 and Tab. 4.2, respectively.

Phase 4: Filtering according to the inclusion and exclusion criteria

In this stage, we apply the inclusion and exclusion criteria to the studies collected
through 1) the expert search, and 2) the automated systematic collection. Two of the
co-authors of this literature review performed the filtering and selection of the studies
in this stage. During the voting process, the title, the abstract, and, if necessary, the
introduction and conclusion of each study (1493 in total: 127 from the expert search and
1366 from the systematic collection) were read and carefully examined to determine their
relevance. The exact steps of the classification and the voting process of this phase are
depicted in Fig. 4.2. In a nutshell, the authors voted and classified each paper individually.
A discussion followed if the authors’ votes were in disagreement until the authors reached a
unified decision about the study under analysis. Applying the inclusion and the exclusion
criteria resulted in 338 studies in total: 44 studies from the expert search and 294 studies
from the systematic collection.

Phase 5: Merging expert and systematic search

In this phase, the filtered results from both the expert search and the systematic collection
from the previous phase are combined, and the found duplicates are removed. This resulted
in 314 unique and relevant papers.

Phase 6: Selection of primary studies

The selected relevant papers from the previous phase could be analysed in different
ways based on the aims and the goals of the concrete study. Since in our work we are
interested in how self-adaptive systems are formally defined in the literature, we analysed
and classified the relevant studies from Phase 5 according to two questions, depicted in the
activity diagram in Fig. 4.3. The selection process in this phase was similar to the inclusion

60

4.2 Literature Review Methodology

Table 4.2: Exclusion criteria.

Criteria Description
E1 Papers that are not full research papers, including abstracts, tutorials, presen-

tations, or lecture notes
E2 Papers without PDF and abstracts
E3 Tool papers, case studies, roadmaps, overviews
E4 Papers not focusing on self-adaptivity in software engineering and cyber-physical

systems, but instead focus on
E4.1 Specialised parts of software engineering, for example: software prod-

uct lines, cloud-based, service-oriented
E4.2 Other computer science fields: networking, hardware, middleware,

OS, sensing, control and control theory or static robotics systems
E4.3 Another field in general, for example energy, manufacturing, smart

buildings, smart cities, traffic control, economics, natural processes
etc.

E5 Papers not focusing on modelling, design, architecture, and engineering of self-
adaptive systems, but instead on verification, validation, testing, or operation
and maintenance phases of a software life cycle

E6 Papers not written in English

Figure 4.3: Two-step selection process.

and exclusion criteria filtering process described previously in Phase 4. In summary, two
of the authors independently analysed and classified the 314 relevant studies from the
previous step, according to the two-step selection process from Fig. 4.3. The votes were
consolidated, and in case of disagreements, discussions took place among the authors until
reaching a unified decision. Applying the two-step selection process in this phase resulted
in a final set of nine primary studies that are analysed rigorously in the rest of this paper.

Please note the following about our analysis: 1) there were more than nine studies that
included some formalism; however, we only selected those papers whose goal was to define
self-adaptive systems formally and the studies with different objectives were excluded
during this selection process, and 2) there were three more papers [54, 53, 52] that claimed
to define self-adaptive systems in their abstract and introduction, but since the actual
contributions of these papers did not fulfil their claims, we excluded them from our primary
studies.

61

4 Defining Self-Adaptive Systems: A Systematic Literature Review

Phase 7: Reporting the review

A reproducible package with the selected studies in each of the phases of our methodology,
the authors’ voting and the analysed data is available online.4 Additionally, the package
contains the BibTeX bibliography (.bib) of all the relevant studies from Phase 5.

4.3 Results

4.3.1 General overview of the results

This section gives an overview of the 314 relevant papers analysed in Phase 6. In Fig. 4.4,
we show the distribution of the papers over the years in different types of venues. We
can also see in Fig. 4.4 that the first works on this topic were published in 1999, and the
publication trend has grown since 2004, which can be correlated with two distinct events.

19
99

20
00

20
02

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Publication year

0

5

10

15

20

25

Nu
m

be
r o

f p
ap

er
s

Types of papers by publication year
Conference
Journal
Workshop
Book
Other

Figure 4.4: Overview of the number of publications per year.

The first event is related to the first noted instance of the term self-adaptive software
in the literature in a technical report by Laddaga in 1997 [77]. In this report, Laddaga
informally defines self-adaptive software systems as “[. . .] software that evaluates its own
behaviour and changes behaviour when the evaluation indicates that it is not accomplishing
what the software is intended to do, or when better functionality or performance is possible.”
The author also adds that the research in self-adaptive systems “[. . .] seeks a new basis
for making software adaptive, that does not require specific adaptive techniques, such as
neural networks or genetic programming, but instead relies on software informed about
its mission and about its construction and behaviour.” The second, probably even more
significant event was the publishing of the famous IBM manifesto on autonomic computing
by Kephart and Chess [66] in 2003. This paper introduced the MAPE-K conceptual model
and set the foundation not only for engineering self-adaptive systems but self-* systems in
general, e. g., self-awareness [81, 72] and self-healing [100, 49]. The manifesto on autonomic

4https://github.com/tum-i4/self-adaptive_SLR

62

https://github.com/tum-i4/self-adaptive_SLR

4.3 Results

computing also set a foundation for a whole new research field on self-adaptive systems,
which has been expanding for the last two decades.

Figure 4.5 shows that from the 314 relevant studies we analysed in Phase 6, the majority
of studies—56% of the studies (175 papers) provide neither an informal or formal definition
nor an intuition of the authors’ understanding of self-adaptive systems. We did not expect
these results since these studies were rigorously selected to contribute with solutions
for engineering self-adaptive systems. 41% of the studies (130 papers) provide informal
definitions as part of their works, and only 3% of the studies (9 papers) provide some
formalisation of the notion of self-adaptive systems. We selected those nine studies as
primary for further analysis in our systematic review.

no definition informal definition formal definition
0

25

50

75

100

125

150

175

Nu
m

be
r o

f p
ap

er
s

175

130

9

Figure 4.5: Overview of the type of definitions.

4.3.2 Identifying the different classes and dimensions for analysis

To answer the leading research question as part of this work and to discuss how self-
adaptive systems are formally defined in the literature, we introduce four classes of analysis
dimensions: (C1) papers that formally define the property of system adaptation as part
of their formal definition of self-adaptive systems, (C2) papers that formalise MAPE
behaviour, (C3) papers that consider different characteristics of self-adaptive systems in
their formal definitions, and (C4) used formal notation. The introduced analysis classes
contain eight analysis dimensions in total, based on which we analysed all the primary
studies (see Tab. 4.3).

As discussed previously in Section 4.1, in order to define self-adaptive systems, we first
need to understand what the notion of system adaptation means in the field of software
and systems engineering. Defining adaptation as a system property is 1) the core pillar
for defining self-adaptive systems, and 2) is necessary to compare the existing and future
works in this field. Therefore, we want to investigate if the existing papers on formalising
self-adaptive systems also define system adaptation as part of their contributions. Hence,

63

4 Defining Self-Adaptive Systems: A Systematic Literature Review

in our first class (C1), we differentiate between 1) papers with a concrete aim to explicitly
formalise system adaptation, 2) papers that assume they define this notion implicitly,
for instance, through formalising adaptive system behaviour, and 3) papers that do not
formally define system adaptation in their work.

During our analysis, we also identified that some of the primary studies aimed at defining
adaptive behaviour by specifying the behaviour of the MAPE-K feedback loop. In
response, we introduced the second class (C2) for analysis.

In the third class (C3) of the analysis dimensions, we consider various characteristics
identified in the literature as essential while defining self-adaptive systems based on the
external and internal principles proposed in a recent work by Weyns [116]. As we elaborated
previously, Weyns has stated that there is no consensus on the definition of self-adaptation
so far in the community. In response to that, as part of his work [116], he proposes two
complementary principles—external and internal—that characterise self-adaptive systems.
The principles are built upon the consolidated usage of the notion of self-adaptive systems
for the past decade in the community. To the best of our knowledge, this is the most
complete consolidated characterisation of self-adaptive systems. For that reason, we used
the characteristics from the principles to identify further dimensions for the analysis of our
primary studies.

According to the external principle, a self-adaptive system handles changes and uncer-
tainties from its environment (also referred to as context), the system, and the system
goals autonomously. The context is the part of the environment relevant to a particular
system [20]. These two terms have often been used interchangeably in the domain of
self-adaptive systems; however, from our point of view, having a clear understanding and
differentiation of context and environment is important. However, making this differentia-
tion is not the aim of this work, and through the rest of the paper and in Tab. 4.3 we will
use the concept of context only. By system in the table, we refer to the managed system
that gains the ability to adapt as part of a self-adaptive system and not the self-adaptive
system as a whole.

The internal principle separates the system goals in self-adaptive systems into domain
and adaptation goals. The domain goals are related to the concerns of the managed
system—the system that gains adaptation capabilities. Whereas the adaptation goals
are related to the concerns of the managing system—the entity of the self-adaptive system
that enabled the adaptation of the managed system. We use this differentiation from the
principles and make a further semantic distinction between the managed and the managing
system as part of a self-adaptive system. Concretely, we say that the domain goals are
related to the functionality of the system—more precisely, to the fulfilment of the system
function, i. e., the function of the managed system. In contrast to the domain goals, we
consider the adaptation goals to be in relation to one or more quality criteria or objectives,
which is also supported by prior works [114, 122]. In sum, we consider the separation of
the goals in self-adaptive systems between domain and adaptation goals as essential, as
it provides the basis for discussing and distinguishing when a system adapts and when it
simply operates or functions. Furthermore, during the analysis of our primary studies, we
did not concretely search whether these terms are used or not. Instead, we analysed the
studies more thoroughly to answer if perhaps the studies adopt these ideas while using

64

4.3 Results

different terminology, or if these ideas are implicitly considered in their contributions and
formulas without giving them a specific name.

In a nutshell, in the third class (C3) of analysis dimensions, we differentiate between
1) papers that include a concrete characteristic formally as part of their definition, 2) papers
that identify or mention a concrete characteristic only informally and do not include it as
part of their formalism, and 3) papers that do not even identify or mention the necessity
for the consideration of a concrete characteristic in their definition of self-adaptive systems.

Finally, in the fourth class (C4), we have noted the formal notation used in each paper.

4.3.3 Analysis of the primary studies

In this section, we analyse the primary studies in order to consolidate the existing
work and answer the research questions. A thorough analysis of the primary studies and
discussion of their limitations should enable us to set the foundation for improving the
semantics and to derive requirements for a unified and precise definition of self-adaptive
systems in the future. Although we collected the papers systematically, we ended up only
with nine primary studies for the analysis. Therefore, we decided to take a more qualitative
approach to analyse our primary studies guided by our leading research question that
we previously introduced in Section 4.2). We summarise the qualitative analysis of our
primary studies in the following, based on which Tab. 4.3 is filled. Due to space limitations,
we are not giving the formal details, but we include the used formal notations in each of
the primary studies.

One of the first efforts to formally define adaptive behaviour was made by Zhang and
Cheng [129], in which the authors proposed a model-driven software development process
for dynamically adaptive programs. According to the authors, adaptive programs are
generally more difficult to specify due to their high complexity, especially in multi-threaded
adaptations where the program behaviour results from the collaborative behaviour of
multiple threads. This is the first main limitation of this work since adaptation is not
necessarily an emerging property from a collaboration, and it should be treated and defined
as a separate concept. In their formal representation of adaptive programs, a program is
represented by a state machine that exhibits certain behaviour and operates in specific
domains. A dynamically adaptive program operates in different domains and changes its
behaviour (i. e., behavioural modes corresponding to the specific domain) at run-time in
response to domain changes. As part of their work, the authors do not explicitly formalise
system adaptation; however, they illustrate the specification process for three types of
adaptive behaviour by modelling an audio streaming protocol with Petri nets. The authors
use prior works on specifying dynamic systems architectures [5, 15] to formalise adaptive
programs. As a result, they often use the terms adaptive and dynamic interchangeably
throughout the paper without clearly distinguishing between them, which is the second
limitation of this study. Lastly, this work does not consider any of the other analysis
dimensions identified in class C3, which are paramount to be included in a holistic formal
definition.

A similar concept in which adaptation is described through the realisation of different
behavioural modes is proposed by Klarl [69]. In this work, the author realises the behavioural

65

4 Defining Self-Adaptive Systems: A Systematic Literature Review

modes by roles which can be dynamically adopted by a component. Concretely, the author
proposes a model-driven engineering process to develop self-adaptive systems, in which
the adaptation logic (i. e., the managing system) is considered independently from the
application logic (i. e., the managed system) and supports the systematic transition between
their components. For specification, the author proposes hierarchical adaptation automata,
and for the design—a role-based architecture according to a Helena Adaptation Manager
pattern. This study neither defines the notion of system adaptation nor adaptive behaviour.
Except for considering the context (concretely, perceptions about the context) and the
system state as attributes of the signature of self-adaptive component types in the formalism
of the paper, no other analysis dimension from class C3 is considered as part of this study.

In two separate works, Broy et al. [20] and Bruni et al. [22] try to answer how the
self-adaptive systems differ from the “ordinary” systems, which are considered non-adaptive.
Concretely, Broy et al. aim at defining adaptive system behaviour while differentiating
interaction patterns between three separate entities: the system, a subject (a user or other
technical system that interacts with the system) and the context. The authors claim
that one can differentiate the adaptive behaviour of the system only by considering and
observing the context in which the system operates. The authors further classify the system
inputs into direct/explicit and indirect/implicit, and assume that a system always receives
the user inputs explicitly. Therefore, adaptive system behaviour can be observed if the
system reaction resulting from the user input (the explicit input) is additionally determined
by some additional information about the context received through the implicit inputs.
Based on these ideas, the authors identify four types of observable system behaviour (i. e.,
adaptive behaviour) with respect to the user: non-adaptive, non-transparent adaptive,
transparent adaptive and diverted adaptive behaviour. To summarise, as part of this work,
the authors identify the consideration of the context and the system (state) as relevant
and necessary for the system adaptation; and therefore, they include them as part of their
formalism, which is based on Focus modelling approach.

Bruni et al. [22] propose a conceptual framework for adaptation, in which they assign a
central role to control data, which governs the adaptive behaviour of a component. The
authors define adaptation informally as a run-time modification of the control data and,
consequently, consider a component as self-adaptive if it can modify its own control data
at run-time. They formally define adaptable vs non-adaptable components, self-adaptive
components, and knowledge-based adaptation, in which they recognise the context as the
observable part of the environment. The authors formalise their conceptual framework
using a Labelled Transition System (LTS) model. Similarly as in [20], the authors consider
the context and the system state as part of their formalisation; however, all the other
analysis dimensions from class C3 are not considered in either of these two works. The
most significant shortcoming of this work is that the central idea of their concept (i. e.,
the control data) is left fuzzy and unclear since the authors do not elaborate precisely on
what they understand under the notion of control data, how one can identify control data
in the system, how the system is influenced by the control data and the structure of the
control data. Furthermore, in contrast to the work by Broy et al. [20], Bruni et al. do not
formalise or specify adaptive behaviour as part of their work.

66

4.3 Results

T
ab

le
4.

3:
Su

m
m

ar
y

of
pa

pe
rs

th
at

pr
ov

id
e

so
m

e
fo

rm
al

de
fin

iti
on

s
on

sy
st

em
ad

ap
ta

tio
n

an
d

se
lf-

ad
ap

tiv
e

sy
st

em
s.

C
la

ss
A

na
ly

si
s

D
im

en
si

on

Zh
an

g
an

d
B

.H
.C

.
C

he
ng

[1
29

],
20

06

B
ro

y
et

al
.

[2
0]

,
20

09

Q
ur

es
hi

,
Ju

re
ta

,
an

d
Pe

rin
i

[1
03

],
20

11

B
ru

ni
et

al
.

[2
2]

,
20

12

W
ey

ns
,

M
al

ek
,

an
d

A
nd

er
s-

so
n

[1
20

],
20

12

A
rc

ai
ni

,
R

ic
-

co
be

ne
,

an
d

Sc
an

-
du

rr
a

[7
],

20
15

Ig
le

sia
an

d
W

ey
ns

[5
8]

,
20

15

K
la

rl
[6

9]
,

20
15

B
uc

ch
ia

-
ro

ne
an

d
M

on
gi

el
lo

[2
3]

,
20

19

C
1

Sy
st

em
ad

ap
ta

ti
on

Im
pl

ic
it

Im
pl

ic
it

N
o

N
o

N
o

N
o

N
o

N
o

Ex
pl

ic
it

C
2

M
A

P
E

be
ha

vi
ou

r
N

o
N

o
N

o
N

o
N

o
Ye

s
Ye

s
N

o
N

o

U
nc

er
ta

in
ti

es
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
C

on
te

xt
(s

ta
te

)
N

o
Fo

rm
al

Fo
rm

al
Fo

rm
al

Fo
rm

al
Fo

rm
al

Fo
rm

al
In

fo
rm

al
Fo

rm
al

C
3

Sy
st

em
(s

ta
te

)
N

o
Fo

rm
al

N
o

Fo
rm

al
Fo

rm
al

Fo
rm

al
Fo

rm
al

Fo
rm

al
Fo

rm
al

D
om

ai
n

go
al

s
N

o
N

o
Fo

rm
al

N
o

N
o

N
o

N
o

N
o

N
o

A
da

pt
at

io
n

go
al

s
N

o
N

o
Fo

rm
al

N
o

In
fo

rm
al

In
fo

rm
al

Fo
rm

al
N

o
N

o

C
4

Fo
rm

al
no

ta
ti

on
Pe

tr
i

ne
ts

FO
C

U
S

Te
ch

ne
LT

S
Z

la
n-

gu
ag

e
A

SM
TA

,
T

C
T

L
LT

S
T

G
G

,
LT

S

67

4 Defining Self-Adaptive Systems: A Systematic Literature Review

Weyns et al. [120] propose formally specified models for designing self-adaptive software
systems. The authors propose a FOrmal Reference Model for Self-adaptation (FORMS),
which enables precise descriptions of the architectural characteristics of distributed self-
adaptive software systems in the early design phases of the system. FORMS primarily
focuses on the formalisation of the structural aspect of self-adaptive systems without
providing any insights into the behavioural semantics of the self-adaptive systems. Although
FORMS had and continues to have a notable impact in the community, it neither defines
system adaptation nor adaptive behaviour. FORMS considers the aspect of context and
system formally, and the adaptation goals are only considered informally throughout the
work. Finally, similarly to [129], the authors of FORMS leverage some other concept—
specifically in FORMS, the notion of system distribution—to compensate in some sense
for the lack of precise understanding of system adaptation necessary for the definition of
self-adaptive systems.

Arcaini et al. in [7] and Inglesia and Weyns in [58] aim to define self-adaptive systems by
formally specifying the MAPE-K feedback loop. Arcaini et al. [7] show how MAPE-K loops
can be explicitly formalised in terms of agents’ actions using Abstract State Machines (ASM)
transition rules to model the behaviour of self-adaptive systems. Concretely, the authors
exploit the concept of multi-agent ASM to specify decentralised adaptation control by using
MAPE computations. Although the authors aim at modelling and specifying self-adaptive
systems, concretely the behavioural aspect of self-adaptation, their contribution primarily
focuses on specifying the behaviour of the MAPE feedback loop (i. e., the managing system)
and not the behaviour of the self-adaptive system as a whole. The other shortcoming is that
the authors consider the adaptation as a result of the collaborative behaviour of multiple
managing agents (i. e., MAPE-K loops). However, system adaptation is not necessarily an
emerging property from collaboration, and its definition should be independent of the type
and nature of the system. Finally, the authors consider the context and system in their
formal specifications and informally the adaptation goals.

To support the design and the engineering of self-adaptive systems, Inglesia and Weyns
in [58] derive a set of MAPE-K formal templates for designing feedback loops of self-adaptive
systems. The proposed templates comprise: 1) behaviour specification templates for
modelling different components of the MAPE-K loop and their interaction—using networks
of timed automata (TA), and 2) and property specification templates for specifying required
properties of the adaptive behaviour—based on timed computation tree logic (TCTL).
Similar to the work of Arcaini et al. [7], the authors of [58] do not define the adaptive
behaviour of the entire self-adaptive system but instead specify the MAPE behaviour,
assuming that the MAPE behaviour will eventually adapt the managed system. As part of
this work, the context, the system, and the adaptation goals are formally considered in the
templates.

A more complete formalism has been proposed in a recent work by Bucchiarone and
Mongiello [23], in which the authors introduce a formal framework to characterise different
aspects of an ensemble-based software engineering. Concretely, they present 1) how to model
dynamic software ensembles using Typed Graph Grammar (TGG), 2) how to specialise and
re-configure ensembles, and 3) how to manage collective adaptations in an ensemble. As
part of this work, the authors use TGGs combined with Labelled Transition Systems (LTSs)

68

4.3 Results

to formally define system context, context-awareness, and system adaptation; however, only
in the frame of system ensembles, which is the biggest shortcoming of this paper. However,
adaptation as a system property should be considered and defined in independence from
ensembles or system collaboration and not as an emerging property thereof. It is important
to point out that compared to all the other analysed primary studies, there is a notable
maturity in the work by Bucchiarone and Mongiello [23]. Concretely, this is the only
work that defines system adaptation as part of their contribution formally. Furthermore,
the authors also identify the importance of considering the context and the system, by
explicitly considering the system functionality that adapts, as necessary aspects to discuss
system adaptation and, therefore, self-adaptive systems.

Qureshi et al. in [103] take a different approach than the rest of the primary studies. In
their work, the authors focus on defining the requirements for self-adaptive systems instead
of defining self-adaptive systems. The authors tackle how the requirements problems
(i. e., the problems solved during the requirements engineering) differ for self-adaptive
systems compared to systems that are not self-adaptive. As it was previously observed,
Broy et al. [20] and Bruni et al. [22] also tried to differentiate in their works how self-
adaptive systems differ from those that are considered non-adaptive. The overarching
objective of the work by Qureshi et al. in [103] is to identify concepts and relations that
are necessary to be considered while eliciting and analysing requirements for self-adaptive
systems. Therefore, the authors do not aim to define system adaptation, adaptive behaviour,
nor MAPE behaviour as part of their work. Although this paper does not explicitly identify
the relevance of the independent consideration of the system (i. e., the managed system
that gains adaptation capabilities) as part of their formalism, this is the only paper in our
primary studies that makes a distinction and formally considers the domain goals (referred
to as mandatory goals as part of their work), and the adaptation goals (referred to as
quality constraints).

Addressing RQ-A

Do the papers with formal definitions of self-adaptive systems also define system adap-
tation as part of their contributions? It is not possible to define self-adaptive systems
without defining what it means for a system to adapt in the first place. However, our
literature analysis showed that only one study formally defines system adaptation as
part of their efforts to define self-adaptive systems; however, only in the frame of system
ensembles. Two primary studies implicitly define system adaptation by specifying adaptive
system behaviour as part of their contributions. And finally, two studies specify the MAPE
behaviour (i. e., the behaviour of the managing system as part of a self-adaptive system),
assuming that the MAPE behaviour will eventually adapt the managed system.

Addressing RQ-B

Which characteristics of the self-adaptive systems are considered in the existing formal
definitions and specifications? If in RQ-A we focused on the behavioural aspect of self-
adaptive systems, in RQ-B, we shift the focus to the structural aspects of these systems.

69

4 Defining Self-Adaptive Systems: A Systematic Literature Review

Concretely in this research question, we investigate which of the characteristics that have
been recently consolidated in this field of research, as explained in Section 4.3.2, are
considered in the existing body of work that formally defines self-adaptive systems. The
most notable insight of our analysis is that none of the primary studies consider the
aspect of uncertainty, both formally and informally, as part of their contribution. This
is extremely surprising since the notion of uncertainty has been at the centre of the idea
behind self-adaptive systems. Precisely the core motivation for self-adaptive systems is
built on the unpredictable changes and uncertainties that trigger the need for system
adaptation during the run-time of the system. This is also roughly how all the informal
definitions available in the literature define self-adaptive systems, with a liberate use of
the notion of uncertainties—a notion that is seemingly difficult to be put in formalism, as
shown by our results. These results are another proof of the importance of having a clear,
systematic, and formal definition of self-adaptive systems.

Almost all of the primary studies that we analysed consider the (states of the) context
and system in some way as part of their formalism—the majority of them formally. This
concludes that system adaptation and, therefore, self-adaptive systems cannot be defined
in isolation from the context in which the self-adaptive systems operate and the properties
of the system (i. e., the managed system) that gains the ability to adapt as part of a
self-adaptive system.

Four out of nine primary studies (two formally and two informally) consider the concept
of the adaptation goals, as we previously described them in Section 4.3.2, and identify
that the system self-adapts in order to fulfil some quality objectives. However, the number
of primary studies that consider the domain goals is much lower, and out of the nine
primary studies only one study considers the domain goals. This is probably because this
differentiation and the identification of the domain goals is much more subtle, but as we
discussed in Section 4.3.2, it is necessary in order to argue when the system adapts and
when does it simply function.

Addressing RQ-C

Which formal notations have been used across different works to define self-adaptive
systems? Among the primary studies, three papers used Labelled Transition Systems
(LTS)—in which one of them used Typed Graph Grammars (TGG) in combination with
LTS. The rest of the studies used: Petri nets, FOCUS, Techne, Z language, abstract state
machines (ASM), timed automata (TA) and timed computational tree logic (TCTL).

4.4 Discussion

4.4.1 Discussion on the results and future works

Despite the vibrant and growing community and the expanding interest in self-adaptive
systems, our results have shown a sparsity of contributions that define self-adaptive systems
formally. We derive various premises from the analysis and the results of our study, which
set the foundation for the requirements for a holistic, formal definition.

70

4.4 Discussion

The ideas of autonomic systems that introduced the MAPE-K conceptual model have
profoundly impacted the engineering field and have initiated various new lines of research
for the last two decades. Although MAPE-K gives some intuition behind the engineering of
self-adaptive (and self-*) systems by the separation of concerns between the managing and
the managed system, a more specific semantics of these two components is still missing.
For instance, one can assume that every system that does some monitoring, planning,
analysis, and execution and has some loose interpretation of the knowledge (e. g. every
cyber-physical system), is self-adaptive by default. In response, the principles proposed
by Weyns [116], concretely the internal principle that differentiates between the domain
and the adaptation goals, have already made the initial steps in the direction of improving
the terminology.

As we previously discussed in Section 4.3.2, it is paramount to distinguish between
system functioning and system adapting. Making this distinction will set the foundation
for defining system adaptation and, subsequently, self-adaptive systems. In our analysis, we
observed that in three of the primary studies [20, 22, 103], the authors raised the question
of the necessity to differ (self-)adaptive systems from the “ordinary”, non-adaptive systems.
However, the work by Bucchiarone and Mongiello [23] is the only study that contributes
in this direction, in which the authors focus on identifying the system functionality that
adapts; therefore, explicitly separating between system functioning and system adapting.

It is notable from the surveyed literature and our analysis that none of our primary
studies (see Tab. 4.3) considers all the characteristics of self-adaptive systems as discussed
in the principles [116]. The most unexpected insight from our results is that the notion of
uncertainty has not been considered in the contributions of any of the primary studies,
although uncertainty is considered the main reason for self-adaptive systems in the published
papers on this topic and the informal definitions of these systems. So far, there is an
intuitive understanding of the concept of uncertainty in self-adaptive systems, resulting in
a clear need for more careful consideration of the aspect of uncertainty in this research
domain. Concretely, how uncertainties can be represented, quantified and in general
formalised as part of a formal definition of self-adaptive systems.

Finally, our results have shown that almost half of the primary studies provide their
formalism by leveraging the aspects of collaboration [129], distribution [120], decentralisa-
tion [7], and ensembles [23] to define self-adaptive systems. However, system adaptation is
not necessarily an emerging property from collaboration or decentralisation and should be
defined in independence from these notions.

Based on our results and our findings, we can summarise that a potential formal definition
of self-adaptive systems should provide a more precise semantics by 1) defining what it
means for a system to adapt and how system adaptation differs from system function,
2) considering more systematically all the different characteristics of self-adaptive systems
in its formalism, in particular the aspect of uncertainty, and 3) defining adaptation and
self-adaptive system isolated from, e. g., collaboration and multi-agent systems.

71

4 Defining Self-Adaptive Systems: A Systematic Literature Review

4.4.2 Threats to validity

Although the systematic process for data collection and analysis followed the well-known
accepted guidelines for systematic literature review [67, 68], there are some possible threats
to validity that we summarise in the following.

Internal validity

In this study, we aimed to investigate how self-adaptive systems are defined in the litera-
ture. Finding this information in the papers we analysed was not always straightforward,
especially while searching for informal definitions since this information was often implicitly
included in the text. The expertise of the researchers also plays a role in this process;
however, the potential bias of the researchers that conduct the systematic literature review
is a common threat to validity. To mitigate this issue, voting was done by two of the authors.
In case of conflicts, there was a follow-up discussion and a more in-depth paper analysis
until a consensus was reached. On the other hand, searching for the formal definitions
in the studies was much less complicated. Namely, in this case, we first searched if the
analysed studies contained any formalism (which drastically reduced the search space). In
case they did, we then proceeded with a thorough analysis of the paper, searching if the
paper aims to define self-adaptive systems as part of their (formal) contributions. The
voting on the formal definitions led to almost no conflicts among the authors.

External validity

Doing an automated search in six databases using the term “self-adaptive systems” yields
hundreds of thousands of results. For that reason, we adopted the following two strategies,
as previously explained in Section 4.2:

1. We implemented an iterative search process with pilot searches to define and fine-tune
the search string to minimise the number of irrelevant studies. In each iteration, a
subset of the collected data was manually inspected and analysed by two of the authors.
The search string was refined based on the insights gained from the concrete iteration.

2. In our automated search, we either searched in the databases by meta-data (title,
abstract, keywords) or only by title, depending on the advanced search options available
in the concrete database. We assumed that if a paper defines self-adaptive systems,
then that paper will certainly contain the word (self-adapt*) as part of these fields.
However, there is the possibility to have missed some relevant studies by limiting the
automated search in the databases only by meta-data.

However, not to compromise the completeness of the collected data, we analysed the
complete initial pool of papers (1493 papers) and not only a random selection of these
works. This proved to be the right decision, considering that the final set of primary studies
contained only nine papers that could have been easily missed if we had decided to analyse
only a random selection of the initial pool of papers.

72

4.5 Related Work

Reliability

To ensure that our research findings can be replicated, as part of this paper, we have
made available a reproducible package with the selected studies in each of the phases of
the methodology. The package contains all the necessary data for replication, including
the final queries that we used for the automated search in the databases and the authors’
votes. To mitigate the inherent bias that each researcher has due to their background
and experience, we have ensured that multiple researchers made the paper selection and
the data extraction and analysis. Precisely, during the analysis in Phases 4 and 6 of our
methodology, we introduced a voting process in which, if the authors classify a paper
differently, a discussion took place until the voters have reached a unified decision about
the study. On the other hand, the reliability of the used databases and the replication of
the automated search with the specific queries is something that we cannot account for.

4.5 Related Work

To the best of our knowledge, this is the first study that has focused on systematically
collecting and analysing how self-adaptive systems are defined. Although the interest in self-
adaptive systems has been rapidly growing, the concrete semantics of the core terminology
is still missing. Namely, the literature still lacks a consensus on a definition—understanding
why this is the case and getting a better overview of the existing body of literature was
the motivating factor for our study.

Many other systematic reviews and mapping studies with different objectives were
conducted over the years in the literature. However, they were all focusing on other aspects
related to self-adaptive systems, for example, engineering approaches for self-adaptive
systems [73, 74, 122, 119], the use of formal methods in self-adaptive systems [121], and
two recent works in which the authors focused on decentralisation in self-adaptation [101]
and the application of machine learning in self-adaptive systems [48]. Besides the existing
systematic literature reviews and mapping studies, there are a couple of other surveys and
roadmaps on future research challenges [80, 84, 107, 118]. In contrast to these works, in
our systematic literature review, we aim to consolidate the existing (formal) definitions of
self-adaptive systems and, more importantly, understand their limitations, which sets the
foundation for a future establishment of a more unified understanding of these systems. An
improved terminology semantics will complement the existing works in this field, including
the contributions from the other systematic reviews, mapping studies, and roadmaps
presented above.

Motivated by similar incentives as our study, only putting the focus on self-awareness
instead of self-adaptation, Elhabbash et al. in [37] have conducted a systematic literature
review on the usage of self-awareness in software engineering. Among other objectives,
the authors also summarise and analyse how self-aware systems have been defined in the
literature. Please note that in this study, the authors only focus on summarising the
informal definitions of these systems. Although most of the researchers in the literature
use the terms self-adaptation and self-awareness interchangeably, there are some prior
works [71, 81, 94], in which the authors distinguish these terms and consider self-awareness

73

4 Defining Self-Adaptive Systems: A Systematic Literature Review

as an “enabler” or a precondition for self-adaptive systems. In the future, if we have a
clearer and more precise definition and understanding of self-adaptive systems, this will
also help us to better distinguish self-adaptive systems from other self-* systems, such as
self-aware systems.

4.6 Conclusion

The lack of commonly accepted definitions and the ambiguous description of the ter-
minology adds complexity to an already complex field of research. In response, our main
objective in this paper was to get better insights and summarise the existing body of
literature by systematically reviewing how self-adaptive systems have been defined in the
prior works in this field. First and foremost, we wanted to investigate if the existing works
define self-adaptive systems and how many of these works provide any definition, putting a
special emphasis and qualitatively analysing the formal definitions of these systems later
in the paper. Our results showed that 1) the majority of the papers we analysed do not
even provide an informal definition or description of what they consider a self-adaptive
system to be, and 2) only nine papers aimed to define or specify self-adaptive systems in
their contributions formally. The results of our study clearly revealed that the problem of
defining self-adaptive systems remains under-researched, which to some extent, explains
why the research field lacks more unified definitions—or generally a better understanding
of the terminology. We hope that with our study, we raise awareness on this important
matter and show the great potential for future research that will focus on creating a more
precise understanding and, ideally, formal definitions of self-adaptive systems that will be
accepted on a broader range.

Our systematic literature review also provides a foundation for improving the terminology.
Concretely, through our qualitative analysis of the existing formal definitions of self-
adaptive systems, we also summarised their limitations and shortcoming, based on which
we elicit requirements for a potential holistic and unified formal definition of these systems.
Increasing the clarity of the terminology will support and complement the already existing
approaches and methods for engineering self-adaptive systems and also open new directions
of research in the future, enabling the community to endeavour to a fuller extent.

74

5 Defining adaptivity and logical
architecture for engineering (smart)
self-adaptive cyber-physical systems

On Engineering Self-Adaptive Cyber-Physical Systems

Gap 1 Gap 2 Gap 3

C2 Systematic literature
review on self-adaptive

systems

C3 Formal definition of
system adaptation and self-

adaptive systems

C4 Logical
architecture for

engineering
(MA-)SACPSs

C5 Methodology for
knowledge representation

and run-time reasoning
under uncertainties in

(MA-)SACPSs

C6 Model problem,
ROS-based robotics system and evaluation framework

Part 1: Theoretical Foundations
Part 2: On Engineering Self-Adaptive CPSs in Dynamic

and Uncertain Context

P2

P3

P3 P4 P5

P3 P4 P5

C1 A taxonomy of
autonomous systems

P1

Figure 5.1: Mapping of Gaps, Contributions and Publications to the structure of this thesis.

Summary: In our systematic literature review from Chapter 4, we provided an overview
of the current state-of-the-art on how self-adaptive systems are defined in the literature so
far. Furthermore, we discussed the limitations and shortcomings of the existing formal
definitions, based on which we elicit requirements for a potential holistic and unified formal
definition of these systems. In Chapter 4, we also discussed that defining the property of
system adaptation is the first step toward defining self-adaptive systems. In response, as
part of this chapter, we first formally define system adaptation, and based on our definition,
we provide a more precise characterization and semantics of self-adaptive systems. However,
definitions are generally declarative and descriptive, and they do not provide constructive
insights into how to engineer self-adaptive systems.

Additionally, as discussed in Section 1.1, the proposed MAPE-K model is a de facto
conceptual model for engineering not only self-adaptive systems but self-* systems in
general. As a result, this conceptual model does not help in differentiating how the
engineering processes for building a self-adaptive system differ from the engineering of
other self-* systems. Therefore, as a second contribution of this chapter, we present a

75

5 Defining adaptivity and logical architecture for engineering (smart) self-adaptive
cyber-physical systems

logical architecture for engineering self-adaptive CPSs that narrows the gap between: 1) the
MAPE-K conceptual architecture and 2) a potential technical implementation for a class
of self-adaptive CPSs that operate in dynamic, uncertain and partially observable context.

Problem: The problem that we tackle in this paper is two-fold: Despite the notable
advancements on many fronts, engineering self-adaptive systems remains more challenging
than traditional systems [120], especially when the concepts of self-adaptation are aligned
with the new emerging technologies. Although there are numerous technical challenges, the
lack of a clear definition of the core terminology and a shared understanding of self-adaptive
systems might be what hinders the progress the most. According to Weyns, self-adaptive
systems have not been defined yet [116], and the lack of clear definitions of the terminology
is the most prominent contemporary challenge in the field of engineering of self-adaptive
systems [118, 119]. Different models and frameworks on engineering self-adaptive systems
[44, 46, 38, 70] have been proposed in the literature, and although these works achieved
distinguished success, defining self-adaptive systems was not their aim. There have been a
few past efforts to formally define self-adaptive systems [20, 120, 22, 23]; however, none of
these formalizations is accepted and used by the community as a reference definition.

Broy [17], Lints [82], and Weyns [116] have all independently observed that across
the literature, the terms system adaptation and self-adaptive systems are mainly used
intuitively without a deeper understanding of their meaning. 1) The intuitive interpretation
of the notion of system adaptation, which primarily relies on the spoken language, and
2) the informal definitions of self-adaptive systems are fairly ambiguous and result in
underspecified usage of these terms. Although such usage might suffice in some instances,
this is not the case in engineering and science, where if and when a system behaves adaptively
cannot be answered through intuition, and a more rigorous definition is necessary [82].
The ambiguity in the understanding of system adaptation results in ambiguity in the
understanding of what self-adaptive systems are. This is the first problem that we tackle
as part of this paper.

The lack of definitions and terminological clarity has different software engineering
consequences and implications, for instance, how to build or engineer these systems
that go beyond the famous MAPE-K conceptual model. Establishing a more precise
vocabulary, specifications, and definitions of self-adaptive systems, or in general, improving
the foundational clarity of the terminology, is the first step towards the modeling, design,
implementation, and evaluation of these systems. However, definitions remain mainly
descriptive, as they do not provide constructive insights into how self-adaptive systems are
designed and built. As a result, a need emerges for architectural solutions—beyond the
conceptual MAPE-K model—on how to build self-adaptive systems, which is the second
problem that we tackle in the second half of this paper.

Gap: Despite the extensive work on self-adaptive systems, software and system engi-
neering literature still needs a precise, comprehensive, applicable, and broadly accepted
(formal) definition of self-adaptive systems. To define self-adaptive systems and understand
self-adaptation, we first need to understand what the concept of system adaptation means.

76

However, we can observe that most of the available works in this domain focus exclusively
on self-adaptive systems without first clarifying and defining what is understood under the
notion of system adaptation, which is an essential prerequisite for a subsequent definition
of self-adaptive systems. This furthermore results in a lack of foundational clarity of
self-adaptive systems, including 1) a lack of clarity on the exact processes of adaptation
and self-adaptation, 2) the minimal requirements for a system to be self-adaptive and, in
general, 3) how self-adaptive systems differ from the “ordinary,” non-adaptive systems.
Defining adaptation as a system property is the core pillar for defining self-adaptive systems,
and is necessary to compare the existing and future works in this field.

Probably due to the scarcity of the precise definition of the terminology, there is also
a deficiency of architectures that can serve as a blueprint for engineering self-adaptive
systems. To the best of our knowledge, no prior work provides concrete architectures for
engineering decentralized and autonomous self-adaptive CPSs that operate in dynamic,
changing, and uncertain contexts that are only partially observable by the CPSs. Since
CPSs are dynamic themselves and operate in a dynamic context, having knowledge in
the adaptation logic that is hard-coded during the design of the self-adaptive system does
not suffice. Instead, the adaptation logic of dynamic self-adaptive systems should have
mechanisms that will enable it to be continuously updated during the system’s run-time to
reflect the context’s run-time states and the system that are relevant for the adaptation.

Method/Solution: In this paper, based on the elicited requirements from Chapter 4,
we first formally define system adaptation and show how i) the quality aspects and
the separation between business and adaptation goals and ii) the distinction between
system functioning and system adapting play a central role in defining (self-)adaptive
systems. Second, within our formal framework, we provide a structure for engineering self-
adaptive CPSs that narrows the gap between the formal definitions and potential technical
implementations for a class of systems. Concretely, we propose a logical architecture
that can serve as guidance or a blueprint for engineering decentralized and autonomous
self-adaptive CPSs that operate in changing, uncertain, and partially observable contexts.
In our logical architecture, the adaptation logic “learns” and changes itself during run-time
to accommodate run-time uncertainties and to continue reflecting the relevant aspects from
the states of the context and the system for the concrete adaptation.

Findings: In order to debate if a system is adaptive, we first need to specify the right
framing according to which the system is considered to be adaptive:

• What is the system function (sf) that is considered as adaptive?
• According to which adaptation goals does the system (i. e., the system function (sf))

adapt?
• According to which context or system conditions (changes, uncertainties) does the

system (i. e., the system function sf)) adapt?
• What is the time period in which the system is considered adaptive?
• And lastly, emerging from our formal definition of system adaptation: under which

convergence parameters ℓ and ε is the system considered as adaptive?

77

5 Defining adaptivity and logical architecture for engineering (smart) self-adaptive
cyber-physical systems

Our proposed framing needs to be considered in the engineering processes of every
self-adaptive system, and it should conveniently drive the design, implementation, and
evaluation of these systems. We further exemplify the usage of the in framing Appendix A.

Results: The conducted evaluation as part of this paper enabled us to show the validity
of the proposed formal definition of system adaptation and the proposed framing for
engineering (self-)adaptive systems. We summarize the steps we conducted to bridge
the gap from our proposed formal definition to the empirical results as independent
contributions in the following.

Contribution: As part of this paper, we formally define system adaptation, propose
the necessary framing for engineering (self-)adaptive systems and provide a preliminary
characterization of self-adaptive systems. The differentiation between the nominal system
function (sf) and system adaptation enables us to differentiate between ordinary and
adaptive systems. This is further supported by the separation between the business and
adaptation goals. The business goals are related to the functional requirements of the
systems, i. e., the system function (sf) of the managed system—the system that gains
adaptation capabilities as part of a self-adaptive system. However, besides attaining the
business goals, the main reason for system adaptation is attaining one or more adaptation
goals despite the dynamic and uncertain internal and contextual conditions. If the business
goals are related to the system’s functional requirements (i. e., the system function), then
the adaptation goals are related to some non-functional requirements or quality objectives.

To quantify and measure the system adaptation, we introduce a metric referred to as
Quality Function. Concretely, the Quality Function measures the degree of fulfillment of the
adaptation (and the business) goals over time. Creating and defining the Quality Function—
which includes specification and quantification of the business and the adaptation goals—is
a complex, multi-stage process that is use case-specific and is left to the engineers of
the self-adaptive systems. However, to validate and evaluate our formal and theoretical
contributions, including the Quality Function that is essential for measuring system
adaptation and a significant part of our logical architecture, we also propose a calculation
of the Quality Function, which is yet another contribution of this paper. To achieve this, we
1) designed a model problem from the robotic domain, based on which we 2) implemented a
simulated, ROS-based, and multi-agent system, and 3) implemented a so-called evaluation
framework tooling. These are three additional technical contributions as part of this
work. The evaluation framework can be used in any self-adaptive system that adopts the
standardized interface of the framework. The calculation of the Quality Function in our
evaluation framework is applicable and re-usable for a class of systems from the CPSs
domain, and with minor modifications, it could be universally usable for measuring system
adaptation for every self-adaptive system.

Within the proposed theoretical concepts and formalisms from the first part of this
paper, in the second part of this paper, we propose a logical architecture for engineering
self-adaptive CPSs that operate in a dynamic and changing context, from which the CPSs
make partial and uncertain observations. Concretely, our logical architecture enables the

78

self-adaptive CPS to change its adaptation logic (i. e., the knowledge in the adaptation
logic) to reflect the actual state of the context during run-time, which is something that
none of the previously proposed reference architectures [3, 14] for engineering self-adaptive
systems support. Additionally, the logical architecture defines how different components
interact and what information they exchange. This provides another dimension of semantic
precision, which has not been considered in the previous works [66, 44, 91, 123, 101].
Finally, as part of this paper, we discuss open research problems and future research
directions stemming from the proposed formalization of system adaptation and the logical
architecture.

Limitations: There are a couple of limitations that we summarize in the following.
Limitations of the formal definition of system adaptation. As part of the paper, we

define system adaptation as a sequence of functions sf0, sf1, . . . , sfm, . . . , sfn, . . . at time
t = 0, 1, . . . , m, . . . , n, . . . that improves over time. These functions improve the fulfillment
of the adaptation goals (and the business goals) at run-time by mapping a function sfm

to another “better” function sfn, where n > m,. However, our formulation could be
interpreted in two different ways.

According to the first interpretation, this is a sequence of the system function sf

adapted or improved by the adaptation logic at different points in time, with improved
Q over time. In other words, the system adaptation is a sequence of functions sf0, sf1,

. . . , sfm, . . . , sfn, . . . at time t = 0, 1, . . . , m, . . . , n, . . . , with n > m, that are assessed
(according to Q) and their assessment improves over time (e. g., sfn is “better” than sfm)
despite the changing and uncertain run-time conditions. How Q is defined, specified and
measured (i. e., assessed) is left to the engineers of the self-adaptive system. This includes
how Q measures the system function sf at specific point in time. As part of the work
presented in this paper, we assume that the value of the system function sf is measured
through the value of the states of the context and the system (i. e., the managed element).
In other words, the calculation of Q is an approximation, in which we abstract the input
and the outputs of sf , since we assume that they are explicitly encoded in the states. In
a nutshell, we can say that the sf of an “ordinary”, non-adaptive system system has a
sequence of system states σ0, σ1, σ2, . . . , σm, . . . , σn, . . . and this sequence is improved in
the case of a self-adaptive system. Concretely, in case of a self-adaptive system, sf is
changed by the adaptation logic over time t = 0, 1, . . . , m, . . . , n, . . . , resulting in a different
sequence of states σ0, σ′

1, σ′
2, . . . , σ′

m, . . . , σ′
n, . . . , compared to a non-adaptive system.

According to the second interpretation, this is a sequence of different functions that
evolve over time. For a function to change, it either changes its input or output interface
or changes the state transition by itself during run-time. In the first interpretation, we
talk about system adaptation, whereas in the second interpretation, we talk about system
evolution, which is part of a completely other research domain and is out of the scope of
this dissertation.

Lastly, as part of this paper in this chapter, we only formalize system adaptation and
provide a preliminary characterization of self-adaptive systems. Based on the definition of
system adaptation from this paper, in Appendix A, we:

79

5 Defining adaptivity and logical architecture for engineering (smart) self-adaptive
cyber-physical systems

1) we specify the process of self-adaptation,
2) extended the preliminary characterization and minimum requirements for self-adaptive

systems, and lastly,
3) formally define (passive and active) self-adaptive systems.

Limitations of the calculation of the Quality Function. For calculating the Quality
Function, we assumed that the state of the context and the systems are available. However,
this is not always possible, depending on the concrete system under consideration. For
example, due to the partiality in the observations of the CPSs that we focus on as part
of this thesis, these systems do not have access to the complete context state relevant for
system adaptation. Nonetheless, in the case of some software systems, these limitations
might not exist, and this is something that emerges only from the complexity of the system
or the model problem that we considered as part of this thesis. As part of this paper, we
propose two solutions to this limitation; however, this research problem still remains open
for additional research contributions in the future.

Limitations of the implementation. The Quality Function can be used for two purposes:
i) to define the system adaptation, and ii) to measure its (approximate) value at run-time
(see the previous limitation). Furthermore, the measured, approximated value can be
used i) to (passively) evaluate the system adaptation (as we do in the validation of the
formal definitions in this paper) and ii) to (actively) steer the self-adaptation and decide
which adaptation actions shall be triggered based on the value of Q. Based on this,
in Appendix A, while defining self-adaptive systems, we differentiate between passive and
active (also referred to as true) self-adaptation. Please note that the theory of active
self-adaptation, in which the value of Q is used to actively steer the self-adaptation, is
not realized as part of the implementation of the use case in this thesis. This is because
some of our theoretical findings, which we reached towards the end of this dissertation,
opened various research and technical problems that remained out of the scope of the
implementation. However, it is important to emphasize that this is not a limitation of
the logical architecture that we propose as part of this paper (since we have dedicated
components and processes as part of our architecture); instead, as previously said, it is a
limitation of the implementation of the system.

Author Contribution: A. Petrovska and A. Pretschner conceived and discussed the
problem statement. The initial drafts of the theoretical contributions and formalisms were
developed by A. Petrovska and A. Pretschner, and were later discussed and refined with
the help from S. Kugele and T. Hutzelemann. A. Petrovska and T. Beffart developed
the initial version of logical architecture, which was later reviewed and refined in close
discussion with A. Pretschner and S. Kugele. The model problem from the robotics system,
including the implementation of the robotics system, was done by A. Petrovska. The
implementation of the evaluation framework, including the Quality Function, was done
by S. Bergemann and A. Petrovska. S. Bergemann and A. Petrovska also designed the
experiments and jointly analysed the results. S. Bergemann conducted the experiments.
The paper was written by A. Petrovska and revised by A. Pretschner, S. Kugele and T.
Hutzelemann.

80

Copyright Note: © 2022 Elsevier B.V. Reprinted by permission from Elsevier. Ana
Petrovska, Stefan Kugele, Thomas Hutzelmann, Theo Beffart, Sebastian Bergemann,
Alexander Pretschner, Information and Software Technology, Elsevier, July 2022.

On the following pages, the full article is reprinted in its published form in accordance to
the Elsevier rights that as the author of this Elsevier article, I retain the right to include it
in a thesis or dissertation. The official published version of the paper can be found with
the following DOI: 10.1016/j.infsof.2022.106866.

81

https://doi.org/10.1016/j.infsof.2022.106866

Information and Software Technology 147 (2022) 106866

Available online 19 February 2022
0950-5849/© 2022 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Defining adaptivity and logical architecture for engineering (smart)
self-adaptive cyber–physical systems
Ana Petrovska a,∗, Stefan Kugele b, Thomas Hutzelmann a, Theo Beffart a, Sebastian Bergemann a,
Alexander Pretschner a

a Department of Informatics, Technische Universität München, Boltzmannstasse 3, Garching bei München, Germany
b Research Institute AImotion Bavaria, Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany

A R T I C L E I N F O

Keywords:
Adaptivity
Quality function
Knowledge
Logical architecture
Self-adaptive cyber–physical systems

A B S T R A C T

Context: Modern cyber–physical systems (CPSs) are embedded in the physical world and intrinsically operate
in a continuously changing and uncertain environment or operational context. To meet their business goals and
preserve or even improve specific adaptation goals, besides the variety of run-time uncertainties and changes
to which the CPSs are exposed—the systems need to self-adapt.
Objective: The current literature in this domain still lacks a precise definition of what self-adaptive systems are
and how they differ from those considered non-adaptive. Therefore, in order to answer how to engineer self-
adaptive CPSs or self-adaptive systems in general, we first need to answer what is adaptivity, correspondingly
self-adaptive systems.
Method: In this paper, we first formally define the notion of adaptivity. Second, within the frame of the formal
definitions, we propose a logical architecture for engineering decentralised self-adaptive CPSs that operate in
dynamic, uncertain, and partially observable operational contexts. This logical architecture provides a structure
and serves as a foundation for the implementation of a class of self-adaptive CPSs.
Results: First, our results show that in order to answer if a system is adaptive, the right framing is necessary:
the system’s adaptation goals, its context, and the time period in which the system is adaptive. Second, we
discuss the benefits of our architecture by comparing it with the MAPE-K conceptual model.
Conclusion: Commonly accepted definitions of adaptivity and self-adaptive systems are necessary for work
in this domain to be compared and discussed since the same terms are often used with different semantics.
Furthermore, in modern self-adaptive CPSs, which operate in dynamic and uncertain contexts, it is insufficient
if the adaptation logic is specified during the system’s design, but instead, the adaptation logic itself needs to
adapt and ‘‘learn’’ during run-time.

1. Introduction

In recent years, the widespread availability of cost-effective embed-
ded systems with increasing computation power and the expansion of
wireless networks has led to the rise of Cyber–Physical Systems (CPSs)
in many different domains. CPSs are software-intensive systems that are
embedded in the physical world. They monitor, control, and coordinate
processes in both the physical and the digital world. These modern CPSs
are often mobile, decentralised, and operate autonomously, e.g., robots,
drones and self-driving cars. Additionally, multiple CPSs can com-
municate and work collaboratively towards achieving one or several
common objectives, for instance, by forming fleets of robots or drones,
or platoons of automated self-driving cars. Multiple collaborating CPSs

∗ Corresponding author.
E-mail addresses: ana.petrovska@tum.de (A. Petrovska), stefan.kugele@thi.de (S. Kugele), t.hutzelmann@tum.de (T. Hutzelmann), theo.beffart@tum.de

(T. Beffart), sebastian.bergemann@tum.de (S. Bergemann), alexander.pretschner@tum.de (A. Pretschner).

can provide shared and more complex functionalities that a single
system in isolation cannot attain. As a consequence of their interaction
and deployment into the physical world, CPSs operate in a dynamic
and uncertain environment, or execution context [1–4]. The context
and the CPSs themselves are continuously changing in unanticipated
ways that could not be known during the systems’ design. Despite the
changes and uncertainties at run-time, business continuity of modern
CPSs requires the systems to resume operating efficiently and reliably
within inherently dynamic conditions. Ramirez et al. [5] classify the
sources of run-time uncertainties in adaptive systems in two groups:
(1) internal uncertainties that originate from the self-adaptive system
itself, i.e., sensor failure, sensor imprecision, sensor noise and effectors,

https://doi.org/10.1016/j.infsof.2022.106866
Received 1 May 2021; Received in revised form 14 January 2022; Accepted 28 January 2022

Information and Software Technology 147 (2022) 106866

2

A. Petrovska et al.

Fig. 1. Updated conceptual model of a self-adaptive system from [3].

and (2) external, e.g., unpredictable environment. Additionally, due
to the sensing limitations of the hardware (i.e., the limited sensor
range) of the CPSs, they observe the environment or the context in
which they operate only partially. Concretely, the CPSs cannot observe
the complete state of their context during their operation, introducing
another dimension of run-time uncertainty. A common approach to
deal with run-time changes and uncertainties that could not be fully
anticipated during the design of the CPSs—while preserving the sys-
tems’ performance or certain quality objectives—is to make the CPSs
self-adaptive.

In architecture-based self-adaptation [4,6–8], a common approach
to introduce the necessary self-adaptation capabilities is to extend the
CPS, which is the managed element as part of a self-adaptive system,
with an adaptation logic (see Fig. 1). Traditionally, the adaptation logic
is based on the MAPE—a closed feedback loop [6]. In previous works,
the adaptation logic has also been referred to as managing system [3],
or as autonomic manager [6]. The MAPE-K loop is comprised of four
consecutive functions or phases: Monitor, Analysis, Plan, and Execute,
with Knowledge that is shared across all four stages of the loop.

Problem: Despite the notable advancements on many fronts, engi-
neering (self-)adaptive systems remains more challenging than tradi-
tional systems [9], especially when the concepts of self-adaptivity are
aligned with new emerging technologies found in CPSs. The difficulty
in defining self-adaptive systems primarily originates from the lack
of understanding (1) what is a system’s adaptivity, and (2) how self-
adaptive systems differ from ordinary systems that are considered
non-adaptive.

As part of this paper, we explore the following hypothesis:

Hypothesis: To argue if a system is adaptive or not, we first
need to specify its framing:

1. The adaptation goals (i.e., one or more quality objec-
tives) according to which the system is considered to
behave adaptively,

2. The context and the system situations (i.e., different
changes and uncertainties) in which the system adapts,
and

3. The time frame in which the system is considered as
adaptive.

Due to the scarcity of precise definitions of adaptivity and the lack of
a precise characterisation of self-adaptive systems, there is a deficiency
of architectures and design patterns that can serve as a blueprint for
engineering these systems. Establishing definitions and understanding
what self-adaptive systems are, is the first step towards specifying, mod-
elling and designing these systems. However, definitions still remain

mainly descriptive, as definitions do not provide constructive insights
into how self-adaptive systems are designed and built. Therefore, the
identified problem is two-fold: (1) there is a gap between the MAPE-K
(see Fig. 1) conceptualisation and potential technical implementations
of a self-adaptive system. Concretely, the conceptual MAPE-K model
has a very high level of abstraction and is not particularly helpful
in designing and implementing the actual system; and (2) the con-
ceptual MAPE-K model does not provide concrete insights on how
self-adaptive systems (engineered according to MAPE-K) differ from
‘‘ordinary’’ systems that are non-adaptive. As a result, a need emerges
for architectural solutions on how to build self-adaptive systems at
some intermediate level of abstraction—beyond the conceptual MAPE-
K model—especially when SACPSs that operate in changing, uncertain
and partially observable contexts are in focus.

Gap: Existing works do not provide concrete architectures for en-
gineering self-adaptive systems, particularly decentralised and auton-
omous self-adaptive CPS (SACPS) that operate in changing and un-
certain contexts that are only partially observable by the CPSs. Until
now, in the literature, there are several proposed design patterns for
self-adaptive systems [10,11]; however, these works mainly focus on
different combinations in the decentralisation of the four phases of the
MAPE, and they exclude the knowledge component. Although different
MAPE-based patterns are more informative regarding the system’s de-
sign, inherently they have the same limitations as the MAPE-K closed
feedback loop itself: their high level of abstraction and low level of
details, which does not provide any characterisation of how a system
built upon the MAPE loop differentiates from the ordinary, non-adaptive
systems.

Solution: As part of this work, first we formally define context
and adaptivity and show how quality plays a central role in under-
standing and defining self-adaptive systems. Second, we embed the
formal concepts of adaptivity into a logical architecture for engineering
SACPSs that narrows the gap between the formal foundations and
potential technical implementations of a class of use cases. Concretely,
the proposed logical architecture can serve as guidance or a blueprint
for engineering autonomous and decentralised SACPSs. In our logical
architecture, not only the managed elements (i.e., the CPSs) but the
adaptation logic adapts as well. In other words, the adaptation logic
‘‘learns’’ and changes itself during run-time to accommodate run-time
changes and uncertainties that could not be anticipated during the
design of the self-adaptive system. The proposed formal definitions of
adaptivity can be considered as orthogonal to architectures at different
levels of abstraction: (1) the MAPE-K conceptual model at the highest
level of abstraction and the lowest level of details, (2) the proposed
logical architecture at an intermediate level of abstraction and inter-
mediate level of details, and (3) a potential technical architecture of
an implementation—instantiated from our logical architecture—at the
lowest level of abstraction and highest level of details.

Structure: The remainder of the paper is structured as follows: in Sec-
tion 2, we present the use case, followed by related work in Section 3.
In Section 4, we define adaptivity before giving a high-level overview
of the logical architecture in Section 5. In Section 6, we explain in
more detail the design-time components, and in Section 7, we explain
the run-time components of the architecture. In Section 8, we evaluate
the proposed formal notions of adaptivity on an implementation from
the robotics domain and discuss the benefit of our logical architecture
by comparing it to prior works. In our discussion in Section 9, we
discuss the threats to validity, the implications from the technical
implementation of systems according to our logical architecture and
future research directions. Section 10 concludes the paper.

2. General setting and use case description

2.1. Class of use cases from the CPSs domain and general setting

The logical architecture proposed in this paper can be used as
a blueprint for the development of the technical architecture, i.e.,

Information and Software Technology 147 (2022) 106866

3

A. Petrovska et al.

Fig. 2. Master–Slave pattern of the MAPE-K loop.
Source: Updated from [10].

the implementation for the class of CPSs explained in this section.
Concretely, we consider every use case in which one or more mobile
and decentralised CPSs autonomously traverse an environment to dis-
cover and collaboratively attain tasks that are continuously appearing.
What we aim at adapting in this class of use cases is how the CPSs
traverse the dynamically changing and uncertain context in which they
operate, despite the partial and uncertain observations that the CPSs
make during run-time. Autonomous, in this case, refers to the CPSs’
capabilities to navigate and move in space without the need for physical
or electro-mechanical control from a guidance device. The CPSs could
operate in two-dimensional (e.g., robots, self-driving cars) or three-
dimensional (e.g., drones, UAVs) environments or contexts. Although
the properties of mobility and autonomy are important for the targeted
class of systems, our architecture can guide the engineering of self-
adaptive systems for all the CPS which are (1) decentralised with (2)
uncertain and partial monitoring or observation capabilities of the dynamic
and the uncertain context in which the systems operate. This also
includes, for example, stationary agents (e.g., radio antennas, different
IoT devices, etc.) that comply with the properties mentioned above. In
these cases, the majority of the components from the architecture can
be re-used except for the logic of the Planning Logic component (see
Fig. 4).

Self-adaptive systems have two types of goals: business goals related
to the functional requirements of the system, and adaptation goals re-
lated to the non-functional requirements or different quality objectives
of the system [2]. In our class of use cases, the requirements for CPSs
are to fulfil their function (i.e., the business goals) by discovering
and attaining tasks. The CPSs complete the tasks by navigating and
reaching their locations. In addition to fulfilling their business goals,
every self-adaptive system, including SACPS, also needs to fulfil one
or more adaptation goals, which are different quality objectives. The
adaptation goals of the SACPSs need to be satisfied despite different
run-time uncertainties and changes that could not be anticipated during
the design of the systems (see Section 1).

2.2. Requirements of the SACPSs

In this work, we assume that every decentralised CPS is a managed
element as part of the SACPS and contains monitoring and execution
capabilities, i.e., it can perform the M and E phases of the MAPE-K
independently on a local level. Namely, each CPS is able to produce its
own observations from the context and execute its respective planned
actions independently. Concretely, the CPSs monitor and can only de-
tect appearing tasks within their range of observation, which is partial
(covering only part of their context) and uncertain. Furthermore, by
‘‘executing their respective planned actions independently’’, we refer
to the ability of each CPS to autonomously localise itself and navigate
to the locations of its tasks, once the tasks—concretely the location of
the tasks—are assigned to the CPS by the adaptation logic.

The other three phases of the MAPE-K: analysis, planning, and
knowledge are centralised in the adaptation logic and shared among all

the CPSs. Note that although these components are centralised as part
of the logical architecture, they could be realised in a distributed man-
ner in the technical implementation of the system. The adaptation logic
needs to (1) consider all the uncertain and partial context observations
from every CPSs, (2) consolidate that information and resolve all the
conflicts that could potentially originate from the uncertain and partial
observations from the previous step, (3) update the knowledge in the
adaptation logic, based on the consolidated and aggregated information
from the decentralised observations, (4) and plan the optimal actions
for all the CPSs (based on the adapted knowledge), according to the
adaptation goals of the overall SACPS. In sum, we propose an architec-
tural solution for SACPSs in which the MAPE-K loops are structured
according to the Master–Slave pattern [10], shown in Fig. 2,1 and
satisfy all the properties described above. The managed elements (the
CPSs) fulfil the functionality of the SACPS by detecting and navigating
to the locations of the tasks, and the behaviour of the CPSs (which task
to pursue next) is adapted by the adaptation logic according to specific
adaptation goals.

2.3. Robotics running example

From the class of use cases, we instantiate a specific use case from
the robotics domain. The robotics use case is also used as a running ex-
ample to demonstrate the usage of the logical architecture throughout
the rest of the paper. In our example, multiple robots clean a room in
which dirt patches are continuously spawned with unknown location
patterns and frequencies. Each robot can autonomously move to a
destination—usually, a task’s location while avoiding static obstacles
(e.g., walls) or dynamic obstacles (e.g., other robots, humans) along
its way. Additionally, sometimes, the robots observe tasks on locations
where there are no tasks, or fail to observe an existing task. The dirt
patches represent the cleaning tasks for the robots. Thus, the robots
fulfil their business goal by detecting and cleaning the dirt tasks. In
addition to simply keeping the room clean, we also want to improve
the quality of this cleaning process (i.e., the adaptation goal). The robots
need to fulfil both: the business and the adaptation goals, despite the
existence of various external and internal uncertainties. The system
function that we want to adapt in our running example is the global task
assignment for all the robots, which gets adapted based on the ‘‘best’’,
most complete representation of the dynamic, uncertain and partially
observable context that is learned and aggregated over time, in order
to maximise the specific adaptation goals despite various run-time
uncertainties.

The robots explore the room and discover new tasks in a distributed
manner with a scanner capable of sensing 360 degrees radius, in our
example, a LiDAR sensor. However, due to their internal technical
limitations, the robots are subjected to different sensor run-time un-
certainties and partiality in the observations. The internal systems’
uncertainties might originate from different sensor uncertainties, e.g.,
sensor noise, ambiguity, imprecision and even a complete sensor fail-
ure [5]. Furthermore, due to their sensors’ technical limitations (i.e.,
limited sensing range), the CPSs produce only partial observations
of the context in which they operate, introducing another dimension
of internal uncertainty. Due to the different sensor uncertainties, a
divergence could occur between the measured value (e.g., the measured
location of the task) and the real value (e.g., the actual location of the
task), which could lead to two or more values of the same property
disagreeing with each other (e.g., two or more robots observing the
same task but at different locations). This results in the robots not
knowing the actual context (i.e., the room) in which they operate
in regard to the task appearance, which affects the fulfilment of the
adaptation goals.

1 (1-*) is one-to-many cardinality.

Information and Software Technology 147 (2022) 106866

4

A. Petrovska et al.

3. Related work

In this section, we examine the most relevant approaches with
respect to our proposed logical architecture.

Models. More than twenty years ago, Kephart and Chess, in their
famous IBM manifesto on autonomic computing [6] have proposed the
MAPE-K conceptual model. As explained previously in Section 1, most
of the architecture-based self-adaptation systems are built upon the
MAPE-K loop, or at least on different variations of the five phases of
the MAPE-K. However, the MAPE-K is a conceptual model at a high
level of abstraction with little detail and is not necessarily helpful in
the design of an actual technical implementation of a self-adaptive
system. Furthermore, one might argue that there is no clear distinction
of how self-adaptive systems built according to the MAPE-K differ from
the ordinary, non-adaptive systems, since every system to some degree
incorporates notions of monitoring, analysis, planning and execution.

Other software models have also been used for the development of
different parts of self-adaptive software systems. Zhang and Cheng [12]
propose a model-driven software development process for dynamically
adaptive programs, focusing on behavioural modelling. Concretely,
their paper introduces an approach to create formal models for the
behaviour of adaptive programs. Weyns et al. [9] have also focused on
using models as formal specifications of self-adaptive software systems.
The authors propose FORMS, which enables precise descriptions of
architectural characteristics in the early design of the systems. Although
both papers provide specifications for engineering self-adaptive soft-
ware systems, they do not define what adaptivity is, nor how systems
with adaptive behaviour differ from systems that are considered non-
adaptive. Additionally, the formal specifications of their models do not
consider the notion of context and quality (adaptation goals), which
to the best of our understanding, are necessary to define any concept
related to adaptivity (further explained in Section 4).

Patterns. Weyns et al. [10] propose patterns for decentralised MAPE
control loops in self-adaptive systems. The authors argue that when
systems are large, complex and heterogeneous, a single MAPE loop
might be insufficient for managing all the system’s adaptations, and
the need to decentralise the MAPE phases emerges. In [10], the au-
thors develop a systematic approach for describing multiple interacting
MAPE loops, based on which they propose five patterns for MAPE-based
decentralised control in self-adaptive systems. Although the different
patterns for decentralisation of the MAPE loops can foster more struc-
tured formations for engineering self-adaptive systems, we see the same
concern as with the MAPE-K loop itself—they remain on a very high
level of abstraction, and they are not necessarily beneficial for the
design of an actual physical architecture of a self-adaptive system.

Musil et al. [13] report the results of a systematic survey on CPSs
that combine different self-adaptation mechanisms across the techno-
logical stack of the system. Their results show that the majority of
the studies combine variations of MAPE, and based on a few studies
from their survey, the authors identify three adaptation patterns with
different combinations of multiple types of self-adaptation within the
system. Their patterns distinguish between the type of adaptation
mechanisms, their layer locations, and the cross-layer inter-adaptation
interactions between the respective mechanisms. The three proposed
patterns aim at tackling the following three problems: (1) a distributed
application seeks to improve the utility of its services to the physical
resources by dynamically exploiting rich context information, (2) a
distributed application exploits data of individual resource to improve
its overall utility by changing the resource configuration that produces
the functionality of the application, and (3) a distributed application
seeks to improve the overall utility of its service, which requires the au-
tonomous entities to efficiently share information and coordinate their
tasks on a local basis. In their study, the authors have explored how
different adaptation mechanisms have been utilised for self-adaptation
in CPS, without providing a common and shared understanding of what

system adaptation means in the first place. Furthermore, the patterns
identified in this work are not informative for the specific design of a
SACPS, nor do they tackle concrete specificities and properties of the
CPSs that are unique for these systems and differ, for example, from
other distributed and decentralised applications or software systems.

Architectures. At the architectural level, Affonso et al. [14] and
Braberman et al. [15] propose two reference architectures, which—to
the best of our knowledge, are the only existing reference archi-
tectures in the literature that support more systematic guidance for
the development of self-adaptive systems. Affonso et al. [14] present
a reflection-based reference architecture for self-adaptive software,
named RA4SaS, which aims at developing software entities that are
transparently monitored and adapted at run-time. Namely, to per-
form these operations, this architecture proposes using modules in an
‘‘assembly line’’, which allows a software entity to be disassembled,
adapted, and reassembled automatically by these modules.

Braberman et al. [15] present MORPH, a reference architecture that
distinguishes the dependencies between structural reconfigurations and
behavioural adaptations in self-adaptive systems. Concretely, the pro-
posed architectural approach involves run-time change of the system
configurations (e.g., the system’s components and their bindings) and
behaviour update (e.g., components orchestration, reactive behaviour,
etc.) based on design time predefined configurations. In our logical
architecture, compared to the reference architectures described above,
the adaptation logic not only adapts the managed element(s) but also
modifies and adapts itself during run-time.

Frameworks. The most prominent framework proposed in the litera-
ture for engineering self-adaptive systems is the Rainbow framework,
developed by Garlan et al. [16]. Rainbow is a two-layered framework
for architecture-based self-adaptation utilising utility theory. In the
framework, the adaptation infrastructure is tailored using the system-
specific adaptation knowledge, including the types and properties of
components, behavioural constraints, and adaptation strategies. Rain-
bow uses specific adaptation mechanisms for planning (e.g., utility
theory), which is something that we do not prescribe in our logical
architecture and is left to the designers of the system. Furthermore, the
adaptation logic of the framework is predefined during the design of
the system, as Rainbow does not support run-time modification of the
adaptation logic, which disables the approach to deal with uncertain
situations and changing conditions that were not known during its
design, as we do in this paper. A few other frameworks have also been
proposed in the literature that apply to only a single technology, e.g.,
Java-based applications [17,18], or to a single domain, e.g., mobile
applications [19,20].

Camara et al. [21] propose a framework for self-adaptation based
on quantitative synthesis and verification that separates planning into
architecture reconfiguration and task planning problems on a use case
of mobile service robots—similar to ours. The authors have identified
the problem of the large solution spaces while searching for the best
combination of software architecture configuration and task planning
specification for adaptation. This is because quantitative guarantees
associated with reconfiguration and behaviour strategies depend on
different information from various models that change at run-time.
This potentially invalidates every quantitative guarantee associated
with pre-computed strategies (the core limitation of the MORPH ap-
proach [15] presented above). This paper acknowledges the impor-
tance of information from models that change at run-time, and their
proposed approach enables automated run-time decision-making for
self-adaptation. In our architecture, similarly as in [21], we also pro-
mote both behavioural (the adaptation of the managed elements) and
structural adaptation (the adaptation of the adaptation logic). How-
ever, our logical architecture resides on a higher abstraction level,
and it is built while considering specific characteristics of CPSs that
are entirely out of scope in the approach proposed in [21] (e.g.,
partiality and uncertainties of observations, dynamic context, need for

Information and Software Technology 147 (2022) 106866

5

A. Petrovska et al.

knowledge aggregation, etc.). Furthermore, our architecture is built
within the proposed formalism for adaptivity, consequently supporting
a more systematic development of SACPSs. Concretely, the paper from
Camara et al. [21] mainly focuses on the planning phase of the self-
adaptive system, and it could be seen as one potential technical solution
for the planning component of our logical architecture (see Fig. 4).

To the best of our knowledge, our logical architecture is the only
proposed architecture in the literature that can serve as a blueprint
for engineering SACPSs. Concretely, engineering autonomous and de-
centralised SACPSs that make partial and uncertain observations of
the dynamic, changing, and the uncertain context in which they op-
erate. Since the context is changing unpredictably during run-time, a
particular emphasis in the architecture is put on run-time knowledge
derivation. Namely, the knowledge in the adaptation logic gets contin-
uously updated, which should later enable a better adaptation of the
overall SACPSs.

4. On context, adaptivity and self-adaptive systems

4.1. Defining context and the notion of partiality and uncertainty

Over the years, with the shifting focus on modern, dynamic systems,
including CPSs, the importance of the notion of operating context, or
simply context has emerged—in particular when understanding and
engineering self-adaptive systems is in the focus [3,4,22]. According
to traditional software engineering [23], every system operates in an
environment, also referred to as universe (U). The context (C) is the
part of the environment that consists of all the objects relevant to the
system. The system-relevant parts of the environment affect the system
input (𝐼), as well as the state and the behaviour of the system.

𝐼 ⊂ C ⊂ U

Namely, every system is embedded in a context, which is everything
that somehow interacts with the system and influences the system’s
input and behaviour. The system perceives, accesses, and interacts with
its context through its inputs and outputs. Please note that first, not
everything from the real context is necessarily perceived through the
(encoded) system’s inputs (𝐼 ⊂ C), e.g. temperature, dust, humidity, or
radiation but still has effects on the state of the system. And second,
dynamic systems, e.g., CPSs that operate in changing, unpredictable,
and unanticipated contexts cannot (fully) know or anticipate even the
perceivable context during the system’s design. As a result, regardless
of the assumptions, the engineers make to model the context during
the design of the system, the model will only be an approximation
of the ‘‘real context’’, and will not fully reflect the actual context in
which the system operates at run-time. This gives rise to the notion
of partiality in the systems. The systems—primarily due to their input
limitations—at a specific time, can only make partial observation of
their context. Uncertainty is, therefore, an intrinsic property of CPSs. In
sum, the reasons for the partial nature and uncertainty about the context
are threefold: (1) the system may not be equipped with the necessary
technology, i.e., lacks a concrete type of input (for example, no sensor
capable of detecting surface conditions) (2) or the technology used may
be limited in its capability, the input receives only a specific range of
values (e.g., limited range of a sensor) (3) or the technology is imprecise
and faulty.

In our running example robots detect elements in the room using
a LiDAR sensor. Other conditions, e.g., wet floor surfaces that have
relevant effects on the system, cannot be perceived by robots due
to missing equipment, i.e., a missing humidity sensor. Furthermore,
a LiDAR scanner has only a limited measuring range, for example,
10 m. Thus, at a specific point in time, there are tasks outside of the
sensor’s range that cannot be detected, although they affect the system’s
state and behaviour, and the fulfilment of the system’s business and
adaptation goals. Finally, due to sensor uncertainties, the robots might
observe tasks on locations different from their real locations, failing to
observe an existing task, or observe task in a location where there is
none.

4.1.1. Context in the frame of the logical architecture
As previously said, as part of the logical architecture, we focus on

optimising the traversal of CPSs with respect to adaptation goals, in
two- or three-dimensional environments or contexts. This enables us
to further narrow down the general definition of context. Namely, we
define context C𝑑

𝑃 as a subset of C (C𝑑
𝑃 ⊆ C), expressed as a function

that maps 2D or 3D locations (depending on the considered dimensionality
(𝑑) of the context) to characteristics of the context at that location. These
characteristics originate from some set of possible properties (𝑃𝑤𝑜𝑟𝑙𝑑)
that may hold in the real world.

C𝑑
𝑃 ∶R𝑑 → (𝑃𝑤𝑜𝑟𝑙𝑑), C𝑑

𝑃 ⊆ C ⊂ U

The system can neither perceive nor anticipate all possible 𝑃𝑤𝑜𝑟𝑙𝑑 .
Instead, the CPS uses its sensors to produce partial and uncertain
observations of the context, as previously discussed. These observa-
tions encode (approximations of) the real-world properties 𝑃𝑤𝑜𝑟𝑙𝑑 as
observable properties 𝑃𝑜𝑏𝑠. Additionally, the model built in the adap-
tation logic infers properties of the world that cannot be observed
directly and encodes them as model properties 𝑃𝑚𝑑𝑙 (further explained
in Section 7.2).

4.2. Defining adaptivity

In recent work, Kugele et al. [24] propose a taxonomy of au-
tonomous systems, in which they formally specify different levels of
autonomy. As part of this work, the authors reason that it is not trivial
to classify a complete system as autonomous or non-autonomous. In-
stead, autonomy is a property of individual functions. Within the frame of
self-adaptive systems, we adopt the same idea. Concretely, throughout
the rest of the paper, the focus shifts from discussing the adaptivity of
the system as a whole to the adaptivity of a specific system function 𝑠𝑓 .
Furthermore, adaptation as a process always aims at improving or pre-
serving certain adaptation goals (i.e., one or more quality objectives)
in dynamic and uncertain internal and contextual conditions.

In the following, we define adaptivity formally: The behaviour of
a system at a given moment in time is determined by its system
function 𝑠𝑓 . For simplicity, we assume without loss of generality that
the systems are deterministic. The function 𝑠𝑓 maps the input of the
system 𝑖 ∈ 𝐼 and its internal state 𝜎 ∈ 𝛴 and context 𝑐 ∈ C to an
output 𝑜 ∈ 𝑂 and new state 𝜎′ ∈ 𝛴, defined as follows:

𝑠𝑓 ∶ 𝐼 × 𝛴 × C → 𝑂 × 𝛴, 𝑓 (𝑖, 𝜎, 𝑐) = (𝑜, 𝜎′) (1)

Parts of the context are reflected in the system’s encoded input,
but there are also parts of the context that are implicit yet potentially
impact the output. In turn, the context may be modified by the system’s
output, but since there are usually other influences as well, we do not
need to consider it as part of the system functionality’s output. We
then define adaptivity as a sequence of functions (𝑠𝑓 0, 𝑠𝑓 1,… , 𝑠𝑓 𝑡,…)
that evolve over time. These functions generally improve the business
and adaptation goals at run-time by mapping a function 𝑠𝑓 𝑡 to another
‘‘better’’ function 𝑠𝑓 𝑡+1. The notion of ‘‘better’’ is determined by a
Quality Function 𝑄, and it is used throughout the rest of the paper.
However, defining the Quality Function 𝑄, i.e., what precisely is meant
by ‘‘better’’ and how it is measured, is use case-specific and it is left to
the designers of the self-adaptive system.

The Quality Function is used to measure the quality of a system
function 𝑠𝑓 𝑡 at time 𝑡:

𝑄 ∶ (𝐼 × 𝛴 × C → 𝑂 × 𝛴) → [0, 1] (2)

𝑄 needs to measure the degree of fulfilment of the business and the
adaptation goals at a specific point in time. Independent of the concrete
realisation of the Quality Function 𝑄, we stipulate its value to always
reside within a fixed range normalised between 0 and 1. The lower
boundary is defined by the point where the business goals are no longer
met, whereas the upper limit is reached when all of the business and
adaptation goals are achieved perfectly.

Information and Software Technology 147 (2022) 106866

6

A. Petrovska et al.

Fig. 3. Exemplary adaptation of the system (i.e., the system function 𝑠𝑓) over time: 𝑄 = 0 indicates that the business goals of 𝑠𝑓 are not fulfilled and 𝑄 = 1 would represent a
perfect fulfilment of the business and the adaptation goals. The system adapts close to a recorded maximum value (𝑄(𝑠𝑓 3) = 0.83), with 𝓁 = 0.7 and 𝜀 = 0.1, after time 𝑡 = 6.5.

Definition 1 (Adaptive System). An adaptive system is an infinite se-
quence of functions (𝑠𝑓 𝑖)∞𝑖=0 =

(
𝑠𝑓 0, 𝑠𝑓 1,… , 𝑠𝑓 𝑛,…

)
that satisfies some

quality objectives, s.t. the Quality Functions 𝑄 of the infinite sequence
of functions converges in some sense, e.g. towards a limit 𝓁 s.t.

∃𝓁, 𝜀, 𝑖 ∀𝑡 ≥ 𝑖∶ |𝑄(𝑠𝑓 𝑡) − 𝓁| < 𝜀,

with 𝓁, 𝜀 ∈ [0, 1] and 0 ≤ 𝓁 − 𝜀 < 𝓁 < 𝓁 + 𝜀 ≤ 1
(3)

where 𝑄 is a Quality Function of the system function 𝑠𝑓 𝑡 at the specific
point in time 𝑡. For this notion of convergence, after time 𝑖, the Quality
Function of 𝑠𝑓 converges, and 𝓁 and 𝜀 are threshold values for the
convergence: 𝓁 is the convergence limit and 𝜀 is the measure of the
closeness of the convergence (see Fig. 3).

Note that the specific notion of convergence here is immaterial
and that the simple definition used above does not allow for infinite
repetitions of a pattern where a system operates normally (and im-
proves its quality over time), then fails-operationally (and thus reduces
its quality), then takes up normal operation again, fails again, etc.
Hence, the Quality Function 𝑄 is not always a monotonically increasing
function at each time step, especially when changes and uncertainties
occur—either internal (from the managed element) or external (from
the context)—including system’s faults (see Fig. 3). Also the Quality
Function 𝑄 of the system functions series converges to the limit 𝑙
over time, but it does not necessarily converge to 1. In an optimal
case, when a system adapts, its 𝑄 should converge close to a recorded
maximum value (see 𝑄(𝑠𝑓 3) in Fig. 3). However, in case there is no
other adaptation option available then the system can adapt to, e.g., a
fail-operational state with a reduced 𝑄 and converges to a value smaller
than the maximum existing 𝑄.

Fig. 3 illustrates the convergence of the Quality Functions of a
sequence of system functions 𝑠𝑓 𝑡 close to a maximum value (𝑄(𝑠𝑓 3)
= 0.83), which convergence limit 𝓁 = 0.7 and measure of closeness
𝜀 = 0.1. Please note that in the figure only a part of the infinite sequence
of system functions is shown. Also as indicated in the figure, there is an
internal or external change, which causes the quality to drop at first.
A subsequent action towards the adaptation, however, again achieves
an increased quality performance. The Quality Function, the precise
notion of convergence as well as the parameters have to be specified as
part of the system’s design process. We further specify how the Quality
Function 𝑄 is calculated, considering different business and adaptation
goals in Section 6.

Until now, in software engineering and in various other disciplines,
the term adaptation has been used intuitively without deeper under-
standing and explanations of the precise meaning [25]. Nonetheless, if
and when a system behaves adaptively cannot be answered by means
of intuition, especially in engineering and science. Definition 1 and the
introduction of Quality Function, contribute towards closing this gap.
The Quality Function can be used with two purposes:

1. to define the system’s adaptivity as explained in Definition 1 and
exemplified in Fig. 3, and

2. to measure its (approximate) value at runtime. The measured,
approximated value can be used to (i) to (passively) evaluate
the system’s adaptivity and (ii) to (actively) steer the adaptation
and decide which adaptation actions shall be triggered based on
the value of Q.

If the system itself does the latter, it can be considered an instance of
goal-driven self-adaptation.

Note that the parameter of the Quality Function is defined as an
entire function with potentially infinitely many inputs and/or con-
texts. This means that its value usually cannot be measured at run-
time directly. However, its value can be approximated by considering
information about the system’s behaviour since the last adaptation step.

4.3. Characterisation of self-adaptive systems

The separation between system function (𝑠𝑓) and adaptation in the
previous section sets the foundation for differentiating between (self-
)adaptive systems, and the ordinary systems that are considered as
non-adaptive. Therefore, while discussing self-adaptive systems it is
essential to determine which aspects (which system function, adap-
tation goals (i.e., the quality objectives), and contextual and system
situations (i.e., changes, uncertainties)) are relevant for the specific
adaptation, based on which the adaptation logic for the concrete system
(i.e., system function) is constructed. The existence of the adaptation
logic enables the adaptation to be executed by the system itself, in
an autonomous manner without any user interaction, and we refer
to this case as self-adaptation. Conversely, if a human administrator
triggers the adaptation, then we call this a manual adaptation, or
system reconfiguration. Furthermore, in Section 3, we have discussed
that according to [10] the four MAPE phases can be decentralised
and distributed in the managed element (i.e., the system). In response,
we conclude that the existence of knowledge in the adaptation logic,
created w.r.t. the relevant aspects for the adaptation, is a minimum
requirement for the system to be self-adaptive.

The concepts behind self-adaptivity can hardly be explained without
considering the system’s context and its interaction with the system, as
previously explained in Section 4.1. Namely, (1) changes in the system
itself (the managed element), (2) changes in the context, (3) or changes
of the adaptation goals [3] may trigger the system to self-adapt. As
a result, the knowledge in the adaptation logic stores the adaptation
goals and the models of the context and the managed elements (i.e., the
CPSs, see Fig. 1). Note that in this paper, we focus on self-adaptation
triggered by system and context, where we assume the adaptation goals
to be defined during the design of the system and to not change during
operation of the system.

Information and Software Technology 147 (2022) 106866

7

A. Petrovska et al.

If the models of the context and the CPSs are hard-coded in the
knowledge of the adaptation logic during the design of the self-adaptive
system, then this is sufficient only if all their states can be fully antici-
pated during the system’s design. However, due to uncertain, changing
and dynamic conditions at run-time, the states of the context and the
CPSs cannot be fully anticipated by the engineers of the systems during
systems’ design. Therefore, the models of the context and the managed
elements cannot be hard-coded in the adaptation logic at design time,
but instead, they need to be models at run-time (models@RT), which
are continuously updated during the operation of the self-adaptive
system [26,27]. If the underlying system or the context change, then
their representations in the adaptation logic—the models—should also
change. In this work, we focus on context models@RT, which are
updated based on the information the self-adaptive system ‘‘learns’’
during its operation.

5. Overview of the logical architecture

This section introduces our logical architecture for engineering
self-adaptive CPSs that operate in dynamic, uncertain, and partially
observable context. In comparison with conceptual architectures or
models (e.g., MAPE-K), logical architectures should provide a higher
level of detail without restriction to any particular technology or im-
plementation. A logical architecture [28,29] defines: (i) functional
components in which different elements from a physical architecture
are grouped by functionality (1-to-N or M-to-N mapping), (ii) arranged
by their communications—how different components in the architec-
ture interact and what information they exchange. Note that centralised
components in a logical architecture could be distributed as part of a
technical implementation.

Our proposed logical architecture, shown in Fig. 4, is motivated
by and built upon the definition of adaptivity and the characterisa-
tion of self-adaptive systems from Sections 4.2 and 4.3, respectively.
Additionally, it is specific enough to be useful in the design and
the implementation of a class of use cases, as previously explained
in Section 2. The main focus of our architecture is modelling and
deriving knowledge about the context, which enables the adaptation
logic to reflect the actual context during the systems’ operation, which
is dynamic and could not be anticipated and specified in the SACPS
during its design. Concretely, our architectural solution can be seen as
methodological guidance for dynamic knowledge management in the
adaptation logic, i.e., it sets a foundation for procedures for reasoning
and updating the context model@RT based on independent, partial
and uncertain observations made by decentralised and autonomous
CPSs. Note that each architecture component is mapped to one or more
phases of the MAPE-K (marked with letters in the upper right corner of
the components).

This section provides a high-level overview of (1) the design time
components: the System Goals and the Quality Function (including the
Quality Evaluator) in Section 5.1, and (2) the run-time components:
the Managed Elements and the Adaptation Logic, in Sections 5.2 and
5.3, respectively. A more detailed explanation of the design time and
the run-time components of the logical architecture are given in the
following Sections 6 and 7.

5.1. System Goals, Quality Function and Quality Evaluator

The System Goals are based on domain knowledge supplied by
the stakeholders or the designers of the self-adaptive system. They
are defined during the design of the system, and in our work, we
assume they do not change over time. In self-adaptive systems, we
differentiate between two kinds of goals: Business Goals and Adaptation
Goals. Business Goals are binary conditions based on the functional
requirements of the system (i.e., the system function 𝑠𝑓). Upholding
them is the basic requirement for the performance of a self-adaptive

system to be considered adequate. The Adaptation Goals are quantita-
tive measures of the system performance based on its non-functional
requirements, which are one or more quality objectives. Together the
goals form the Quality Function 𝑄 (see Section 4.2) that the self-
adaptive system strives to maximise. Thus, the Goals determine what
behaviour the Planning Logic enforces and what information it requires
to do so. This determines the kind of characteristics the Context Module
has to track and model from the actual context. The Goals and the
Quality Function are further defined in Section 6. Furthermore, as
part of the self-adaptive system in our logical architecture, we propose
the Quality Evaluator component, which is derived from the Quality
Function 𝑄. The existence of this component could potentially enable
a goal-driven self-adaptation by actively guiding the required actions
towards an adaptation, which will be decided based on the value of
the 𝑄, as previously described while discussing the purpose of the 𝑄 in
Section 4.2.

In the running example the Business Goals are two-fold: robots keep
a room clean, and robots do not collide. The Adaptation Goals relate
to measures of the quality of that cleaning process. However, how this
is defined and specified depends on the engineers of the self-adaptive
system and their own interpretation of the quality of that cleaning
process. For example, it can be calculated based on how many tasks in
the room are cleaned while minimising the total distance travelled by
the robots, or cleaning as many tasks in the shortest time possible, or
minimising the time a dirt task remains on the floor before it is cleaned.
In Section 6, we provide additional details on how the quality function
𝑄 is constructed considering the business and the adaptation goals,
which we further concretise and evaluate for our running example in
Section 8.1.

5.2. Managed Elements

The Managed Elements are any number of CPSs (one or more) that
interact with the physical world, specifically their context. As such,
they represent the only interface between the self-adaptive system
and its context. They provide their observations of the context to the
adaptation logic and, in turn, act on instructions received from the
adaptation logic. The managed elements comprise the decentralised
monitoring (M) and execution (E) steps of the MAPE-K loop. The
managed elements are further explained in Section 7.1.

In the running example the managed elements are the robots de-
ployed in the room. The robots detect the dirt tasks and perceive
obstacles and the other robots, using LiDAR sensors in a decentralised
manner. The observations from the monitoring are propagated to the
adaptation logic. After analysing the observations from all the robots
and consolidating them into knowledge, the planning component in
the adaptation logic assigns the next (optimal) target locations to each
robot. The navigation and the traversal to those locations is then
executed in a decentralised manner by every robot independently. Note
that the propagation, analysis, and consolidation of knowledge takes
time. It is dependent on the number of robots. In case of abrupt events,
this could be safety-relevant. However, each robot has knowledge of
the local context and can therefore act without propagated knowledge
and, for example, take evasive action or choose a different safety tactic
to mitigate risk and reach a safe state (fail-safe strategy).

5.3. Adaptation Logic

The Adaptation Logic accumulates observations that each managed
element independently makes of the context and uses this knowledge to
come up with instructions for all the managed elements that optimise
the achievement of the adaptation goal(s). The adaptation logic is
itself subdivided into multiple sub-components: The Context Module,
which is responsible for analysis and the acquisition of knowledge,
and the Planning Logic, which uses the knowledge to plan the actions and
adapts the target locations that the managed elements should carry out.
Together these two components handle the processing of information
and the adaptation at run-time, and they are explained in more detail
in Sections 7.2 and 7.3.

Information and Software Technology 147 (2022) 106866

8

A. Petrovska et al.

Fig. 4. The proposed logical architecture. The different components in the self-adaptive system are marked in order to signify where different phases of the MAPE-K loop are
implemented. The grey boxes are not functional components; instead, they are the context models that can be seen as separate artefacts. We have kept them as separate components
in the architecture, as they have a central role in the solution and clarify what information passes from one component to another.

5.3.1. Context Module
The Context Module is responsible for the analysis of the observa-

tions from the managed elements and subsequent deduction of knowl-
edge about the context, which is later used as a base for decision
making by the planning logic. At each time-step 𝑡, it performs these
three tasks: It

1. collects local observations of the context made by each dis-
tributed Managed Element independently: the Local Contexts
𝐶 𝑡
𝑙𝑜𝑐𝑎𝑙𝑖

2. combines observations from the different Managed Elements to
a unified view of the context: the Observable Context 𝐶 𝑡

𝑜𝑏𝑠. This
only covers the locations that are currently observed by the
managed elements.

3. stores information for the observed and the unobserved part
of the context: Modelled Context 𝐶 𝑡

𝑚𝑑𝑙. Different 𝐶 𝑡
𝑚𝑑𝑙1

, 𝐶 𝑡
𝑚𝑑𝑙2

,… ,
𝐶 𝑡
𝑚𝑑𝑙𝑁

for encoding different aspects of the actual context might
exist.

In the running example, the context is two-dimensional. We hence
model it as a grid, in which each cell can be occupied by a dirt task, a
wall, another robot, or be unoccupied. Therefore, the Context Module
builds a grid map of the context and keeps track of which parts of the
room are dirty by combining the observations of the robots. It uses the
observations (current and past) by the robots to track the locations
which are getting dirtier more often. Based on this history, it then
approximates the underlying distribution and provides predictions for
the dirtiness of unseen areas.

5.3.2. Planning Logic
The Planning Logic receives the most recent knowledge about the

context. Given this information, it determines the actions for the man-
aged elements that would further improve the goals. Concretely, the
planning logic is designed such that it aims at continuously improving
the Quality Function 𝑄 by adapting the target locations for all CPSs
that collaboratively attain the task, based on the input from the Con-
text Module. Its structure can be fixed at design time, in which case
the self-adaptation of the system is exclusively performed within the
Context Module during run-time. Moreover, the Planning Logic itself
can change its algorithms, structure or parameters at run-time, based
on the input it receives from the Context Module.

In the running example, this logic deploys the robots efficiently by
providing them with appropriate target locations to navigate. It uses
the robot locations and current observation of dirt, in combination with
the learned past observations and predictions about the unseen areas to
find the best adaptation action for each robot, i.e., to assign the robot
to dirty area that will optimise the goals. As the learned models in
the knowledge moves closer to the true distribution of the dirt, these
decisions will lead to better results w.r.t. the goals.

6. Logical architecture: Design time components

In our logical architecture, the Goals and the Quality Function
are design time components, which are use case-specific and guide
the development of the other components in the self-adaptive system,
i.e., the Managed Elements and the Adaptation Logic. Considering
the Goals, the designer of the self-adaptive system needs to define
the following: (1) the Quality Function 𝑄 (previously introduced in
Section 4.2) as a measure of how good the system performance is with
respect to the business and adaptation goals, (2) what behaviour of the
Managed Elements the Quality Function 𝑄 improves, given the state
of the context along with how the Planning Logic can determine what
actions contribute to such behaviour, and (3) what information about
the state of the context and the system is required by the Planning
Logic, and how to extract this information from the observations made
by each Managed Element.

6.1. Quality Function

For every business and adaptation goal, it needs to be defined what
constitutes a good behaviour with respect to the specific goal. This
enables us to reason what is ‘‘better’’ or how the Quality Function 𝑄
improves over time. We measure the quality of the behaviour of a self-
adaptive system by evaluating the state of the context C and the system
𝛴 during run-time. With 𝐶 𝑡 we label a ‘‘snapshot’’ of the context C at
a particular point in time 𝑡 (𝐶 𝑡 ∈ C). Note that this calculation of the
Quality Function 𝑄 is an approximation, as described in Section 4.2,
in which we have abstracted the input and outputs, since they are
explicitly encoded in the system state.

Formally each goal 𝑔 (business goal (𝑔𝑏) or adaptation goal (𝑔𝑎))
defines a Goal Quality Function 𝑞𝑔 which maps the context state 𝐶 (and

Information and Software Technology 147 (2022) 106866

9

A. Petrovska et al.

hence the input to the system) and the system state 𝛴 at time t to a
real-valued score, in the range between 0 and 1:

𝑞𝑡𝑔 ∶𝐶
𝑡 × 𝛴𝑡 → [0, 1].

The Quality Function 𝑄 for all the goals at a specific point in time
(𝑡) is calculated as follows:

𝑄𝑡 =
∏

𝑔𝑏∈𝐺𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠

𝑞𝑡𝑔𝑏 (𝐶
𝑡, 𝛴𝑡) ⋅

⎛⎜⎜⎝
∑

𝑔𝑎∈𝐺𝑎𝑑𝑎𝑝𝑡

𝛼𝑔𝑎𝑞
𝑡
𝑔𝑎
(𝐶 𝑡, 𝛴𝑡)

⎞⎟⎟⎠
(4)

where each 𝑞𝑔 considers a pair of context and system states (𝐶,𝛴) at
time 𝑡, and 𝛼𝑔 is the weight associated with each adaptation goal. Since
𝑄 = 0 if one of the business goal (𝑔𝑏) fails, all Goal Quality Functions 𝑞𝑔𝑏
of the business goals are combined in a product and multiplied with
the function results of the adaptation goals. The lack of fulfilment of
the business goals indicates that the overall system is non-functional.
As a result, any adaptation is not possible when the system fails to fulfil
its basic functionality (i.e.. the system function 𝑠𝑓) in the first place. In
the following, we explain how the concrete Goal Quality Functions are
calculated.

6.1.1. Business Goals
The Business Goals reflect the functional requirements of the sys-

tem. If they are not fulfilled, it does not matter whether or not the
behaviour of the self-adaptive system was optimal with respect to the
adaptation goals. Therefore, for all Business Goals, the Goal Quality
Function is defined as a binary distinction between the goal being
fulfilled or not:

for 𝑔𝑏 ∈ 𝐺𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠, 𝑞𝑔𝑏 =

{
1 if goal is fulfilled
0 otherwise.

(5)

6.1.2. Adaptation Goals
Adaptation Goals reflect the non-functional requirements of the

system and can be one or more quality objectives. The Goal Quality
Function 𝑞𝑔𝑎 for each Adaptation Goal is defined such that the score it
defines increases when the system is doing ‘‘better’’ with respect to that
respective goal. Furthermore, not necessarily all of the quality objec-
tives are of the same importance for the system’s stakeholders. Some
quality objectives might be contradictory, e.g., minimising the wear
on the mechanical parts can be opposed to getting things done as fast
as possible, and some objectives cannot be achieved simultaneously.
Therefore, each adaptation goal is also associated with a weight 𝛼𝑔𝑎
such that ∀𝑔𝑎 ∈ 𝐺𝑎𝑑𝑎𝑝𝑡: 𝛼𝑔𝑎 > 0 and ∑

𝑔𝑎∈𝐺𝑎𝑑𝑎𝑝𝑡
𝛼𝑔𝑎 = 1. As a result:

0 ≤ ∑
𝑔𝑎∈𝐺𝑎𝑑𝑎𝑝𝑡

𝛼𝑔𝑎𝑞𝑔𝑎 (𝐶,𝛴) ≤ 1. (6)

Finally, after assigning corresponding weights 𝛼𝑔𝑎 , and substituting
Eqs. (5) and (6) in Eq. (4) it follows: 0 ≤ 𝑄 ≤ 1.

The concrete realisation of the business and the adaptation goals for
our running example, with their corresponding Goal Quality Functions
and the calculation of the overall Quality Function 𝑄, is given in
Section 8.1, on the real implementation of the robotics system. Finally,
please note that as part of this paper we only use 𝑄 to passively evaluate
the system’s adaptivity (as it will be further shown in the results
section). Therefore, the Quality Evaluator is only a logical component
in our architecture and we do not specify it further as part of this work,
nor we specify how its feedback to the adaptation logic can guide the
adaptation, which in theory would enable another dimension of goal-
driven self-adaptation. As a result, this remains part of a future work
(see Section 9.3).

7. Logical architecture: Run-time components

7.1. Managed Elements

The Managed Elements (i.e., the CPSs) are responsible for any direct
interaction between the self-adaptive system and its context—the de-
tails of that interaction are encapsulated within their implementation.
The Adaptation Logic makes no assumption about that implementation;
therefore, it is independent of the actual type of the Managed Elements
and only expects it to conform to the following interface:

Input from the Adaptation Logic. The adaptation logic sends to the
Managed Elements adapted instructions, that request that the Managed
Elements move to the new target location which is a result of the sys-
tem’s adaptation. After the adapted target locations have been assigned,
the execution of the movement to those locations (e.g., motor actu-
ation) is entirely up to the implementation of the Managed Element,
which likely involves localisation and path planning, as well as sensing
capabilities to avoid collisions with the other static and dynamic objects
from its context. Please note that the Managed Elements do some
‘‘local’’ planning as part of the Execution component, which differs from
the ‘‘global’’ planning in the Planning Logic of the adaptation logic.
Namely, the ‘‘local’’ planning is in regard to planning the best trajectory
to the received target location, and each Managed Element executes
this independently. Whereas, the ‘‘global’’ planning adapts the whole
system (all the CPSs) in response to the appearing tasks in the context,
and assigns the adapted target location to all the Managed Elements
according to the adaptation goals.

Referring back to Eq. (1), Eq. (2) and Definition 1, a system built
according to our logical architecture is an adaptive system since we
have a sequence of functions in which the state 𝛴 of the system function
𝑠𝑓 is changed by the adaptation logic, whose components are further
described in the rest of this section. Concretely, the adaptation logic
builds knowledge over time, based on which the overall, internal state
of the self-adaptive system changes, resulting in the same inputs (same
observations from the context) to produce different outputs (adapted
target locations) than what the managed elements would have pro-
duced in the absence of the adaptation logic, resulting in a sequence
of different functions.

Output to the Adaptation Logic. Local Context Observation
observe_context(): Returns a snapshot of the context at the
current time step 𝑡 from the point of view of a single Managed Element
𝑖—the Local Context 𝐶 𝑡

𝑙𝑜𝑐𝑎𝑙𝑖
. Each Managed Element uses whatever

sensing capabilities it has to report on the part of the context it cur-
rently observes. These observations are the only source of information
about the state of the context during run-time. Please note that these
observations are uncertain and only partial. This output is refreshed at
each time step 𝑡 and used by the Context Module.

In the running example the robots operate in a two-dimensional
environment. Therefore, whenever a robot receives a target location
(x,y) from the Planning Logic, it uses Adaptive Monte Carlo Locali-
sation (AMCL) [30] based on which the robot localises itself, and then
accordingly plans and navigates a trajectory to its next location. While
manoeuvring, the robot uses its sensors to avoid collision with dynamic
obstacles like other robots or people moving through the room, and
static obstacles, e.g., walls. At each time step, it reports information
about its location, the partial space of the room it observes, and the
detected tasks within this space, which are later aggregated in the
adaptation logic.

7.2. Context Module

The Context Module produces the best possible representation of the
context in which the SACPSs operate. To accomplish this, the Context
Module builds knowledge which combines, aggregates and then stores
the partial context observations made by each Managed Element. This

Information and Software Technology 147 (2022) 106866

10

A. Petrovska et al.

knowledge does not only contain the current state of the context (𝐶 𝑡
𝑜𝑏𝑠)

but also stores various aspects of interest from the context over time
(𝐶 𝑡

𝑚𝑑𝑙), which later can be used as support for inferring and predicting
properties of, for e.g., the unobserved parts of the context at a specific
time 𝑡. The resulting representation spans on the entire 2D or 3D
space of relevance, depending on the dimensionality of the operational
context. The knowledge, i.e., the built context models@RT are later
utilised by the Planning Logic.

Context Properties. The Context Properties encode every aspect of the
context that is relevant for the decision making in the Planning Logic.
They may be derived from the real properties of the context 𝑃𝑤𝑜𝑟𝑙𝑑 but
are independent of them. We differentiate between two types of Context
Properties:

1. Observable Properties 𝑃𝑜𝑏𝑠 are directly observed by the Managed
Elements. The observations represented by the Local Contexts
𝐶 𝑡
𝑙𝑜𝑐𝑎𝑙𝑖

are expressed as Observable Properties and then passed to
the Adaptation Logic. In the running example, observable proper-
ties are, among others, cell occupancy (i.e., the location of the
dirt tasks).

2. Model Properties 𝑃𝑚𝑑𝑙 represent assumptions about the context
that are inferred from observations. In the running example, an
important model property is the probability of a certain location
(i.e., cell in the grid) to be dirty (i.e., occupied by a dirt task).
There is a broad range of options what those probabilities rep-
resent and how they can be calculated. A simple example could
be the probability of tasks appearance in that cell (calculated by
dividing the tasks that have appeared in that cell with the total
amount of tasks in the room).

For defining the logical architecture, we define the union of these two
types of properties, as set of properties 𝑃 = 𝑃𝑜𝑏𝑠 ∪ 𝑃𝑚𝑑𝑙 needed to
describe the relevant aspects of the context.

7.2.1. Local Context
At every time step, each Managed Element reports its own ob-

servation of the context as its individual Local Context 𝐶 𝑡
𝑙𝑜𝑐𝑎𝑙𝑖

. Each
𝐶 𝑡
𝑙𝑜𝑐𝑎𝑙𝑖

assigns to each point in the line of sight of the respective
Managed Element a set of observable properties 𝑃𝑜𝑏𝑠 and values for
those properties. Concretely, it is a function that maps 2D (𝑥, 𝑦) or 3D
(𝑥, 𝑦, 𝑧) coordinates to the properties at those coordinates. Please note
that in the formulas, through the rest of the section, for simplicity we
only use the 2D coordinates. For each location within the range of their
observations, the Managed Elements record the values of the observable
properties they can perceive. The output of the 𝑖th Managed Element
at time 𝑡 is therefore described as the following function:

𝐶 𝑡
𝑙𝑜𝑐𝑎𝑙𝑖

∶R𝑑
𝑜𝑏𝑠𝑡𝑖

→ (𝑃𝑜𝑏𝑠),

(𝑥, 𝑦) ↦
{
𝑝 ∈ 𝑃𝑜𝑏𝑠 ∣ 𝑖

observed 𝑝 to be a property of point (𝑥, 𝑦)}

where R𝑑
𝑜𝑏𝑠𝑡𝑖

is the part of the context observed by the 𝑖th Managed
Element at time 𝑡 and 𝑑 is the dimensionality of the context. Individual
observations from different Managed Elements can overlap, and due
to sensor uncertainties they might even contradict with each other.
Therefore, the individual observations need to be further processed and
aggregated before they can be used to update the context model@RT.

7.2.2. Observable Context
The Observable Context 𝐶 𝑡

𝑜𝑏𝑠 is the unified and aggregated view of the
individual observations from all the Managed Elements. It represents
the model@RT of the most complete state of the actual, current context
in which the Managed Elements operate. In other words, the most
complete, aggregated observation of the context that all the Managed
Elements make together at a specific time 𝑡. 𝐶 𝑡

𝑜𝑏𝑠 contains all observable

information about the context, represented as observable properties
𝑃𝑜𝑏𝑠, at the current time step 𝑡.

𝐶 𝑡
𝑜𝑏𝑠 ∶

𝑛⋃
𝑖=1

R𝑑
𝑜𝑏𝑠𝑡𝑖

→ (𝑃𝑜𝑏𝑠),

(𝑥, 𝑦) ↦
{
𝑝 ∈ 𝑃𝑜𝑏𝑠 ∣ 𝑝 is a property of point(𝑥, 𝑦)

}
,

where 𝑛 is the number of CPSs (e.g., robots).
To get such a unified view, the individual Local Contexts have to

be combined or aggregated first. The Observable Context Aggregation
function 𝐹 𝑎𝑔𝑔

𝑜𝑏𝑠 maps the 𝑛 independent Local Contexts 𝐶 𝑡
𝑙𝑜𝑐𝑎𝑙𝑖

of the
Managed Elements to the unified 𝐶 𝑡

𝑜𝑏𝑠:

𝐹 𝑎𝑔𝑔
𝑜𝑏𝑠 ∶

(
R𝑑
𝑜𝑏𝑠𝑡𝑖

→ (𝑃𝑜𝑏𝑠)
)

𝑛 → (
𝑛⋃
𝑖=1

R𝑑
𝑜𝑏𝑠𝑡𝑖

→ (𝑃𝑜𝑏𝑠))

𝐶 𝑡
𝑜𝑏𝑠 ∶=𝐹

𝑎𝑔𝑔
𝑜𝑏𝑠

(
𝐶 𝑡
𝑙𝑜𝑐𝑎𝑙1

, 𝐶 𝑡
𝑙𝑜𝑐𝑎𝑙2

,… , 𝐶 𝑡
𝑙𝑜𝑐𝑎𝑙𝑁

)

This function has to account for all discrepancies which possibly ex-
ist between the Local Contexts. Concretely, the Managed Elements have
sensors that are exposed to different run-time uncertainties, e.g., sensor
failure, noise and imprecision [5]. Therefore, different Local Contexts
might assign different values to the same property at the same location,
for example, when one Managed Elements detects a task at a specific
location, and another Managed Element does not. Concretely, if there
is a semantics inherent to the properties, it might be violated by the
combination of the Local Contexts assigning contradictory properties.
How the aggregation function 𝐹 𝑎𝑔𝑔

𝑙𝑜𝑐𝑎𝑙 solves these conflicts is a technical
challenge on its own, and it is up to the designers and the engineers of
the self-adaptive CPSs, and depends on the needs of the use case. As a
simple solution, one of the CPSs could be assigned as ‘‘lead’’, and in case
some conflicts happen the lead’s opinion can overwrite the rest. Also
some peer-to-peer negotiation algorithms can be implemented. Further-
more, in [31,32], the authors propose a Subjective Logic-based [33]
approach for aggregating context observations.

7.2.3. Modelled Context
The Modelled Context 𝐶 𝑡

𝑚𝑑𝑙 accumulates observations over time,
and it is the part of the Context Module that serves as a basis for
‘‘learning’’ the context. As part of the Modelled Context, the past
(aggregated) observations are stored as knowledge. As previously ex-
plained in Section 1, different models can depict different aspects of
the actual context. As a result, different Modelled Contexts can exist
(𝐶 𝑡

𝑚𝑑𝑙1
, 𝐶 𝑡

𝑚𝑑𝑙2
,… , 𝐶 𝑡

𝑚𝑑𝑙𝑁
), and depending on what kind of knowledge

is encoded in them, they can allow the system to make predictions
about the state of unobserved parts of the context. The Modelled Context
assigns both observable and model properties based on the knowledge
the system has gathered over time. The result is a function defined on
the entire context C𝑑

𝑃 that assigns every point in the context to a set of
properties.

𝐶 𝑡
𝑚𝑑𝑙 ∶ C𝑑

𝑃 → (𝑃),
(𝑥, 𝑦) ↦ {𝑝 ∈ 𝑃 ∣ 𝑝 is predicted to be a property of point (𝑥, 𝑦)}

Each Modelled Context is updated based on the current Observable
Context 𝐶 𝑡

𝑜𝑏𝑠 and the corresponding Modelled Context in the previous
time step 𝐶 𝑡−1

𝑚𝑑𝑙. This is done as part of the Context Model Adaption
𝐴, which accumulates the observations as knowledge and stores them
into the Modelled Contexts 𝐶 𝑡

𝑚𝑑𝑙. Concretely, 𝐴 tracks the changes in
the Observable Context 𝐶 𝑡

𝑜𝑏𝑠 and uses those to infer information and,
consequently, to refine the Modelled Contexts.

𝐴∶ (R𝑑
𝑜𝑏𝑠𝑡 → (𝑃𝑜𝑏𝑠)) × (C𝑑

𝑃 → (𝑃)) → (C𝑑
𝑃 → (𝑃))

𝐶 𝑡
𝑚𝑑𝑙 ∶= 𝐴(𝐶 𝑡

𝑚𝑑𝑙 , 𝐶
𝑡−1
𝑚𝑑𝑙),

where 𝐶1
𝑚𝑑𝑙 is the initial design time model that the engineer of the

self-adaptive system encodes in the adaptation logic. All of the above-
mentioned allows the adaptation logic to take into account parts of the

Information and Software Technology 147 (2022) 106866

11

A. Petrovska et al.

context that the Managed Elements do not currently observe. Finally,
all the context models@RT 𝐶 𝑡

𝑜𝑏𝑠, 𝐶
𝑡
𝑚𝑑𝑙1

, 𝐶 𝑡
𝑚𝑑𝑙2

,… , 𝐶 𝑡
𝑚𝑑𝑙𝑁

are then passed
to the Planning Logic. Models of sufficient quality allow the Planning
Logic to take into account how the context develops in the near future.

In the running example as previously explained the room is divided
into discrete grid cells. Therefore, one value for each property is
assigned per cell and maps all the points (x, y) within each cell to the
respective properties of that cell. The Observable properties 𝑃𝑜𝑏𝑠 are:

• isObstacle:bool: cell is occupied by an obstacle e.g. a wall.
This is mutually exclusive with the other two;

• isDirty:bool: the cell was discovered to be dirty, i.e., occu-
pied by a task;

• occupiedByRobot:int: the cell is currently occupied by a
robot and which robot it is.

To combine the 𝐶 𝑡
𝑙𝑜𝑐𝑎𝑙𝑖

from different Managed Elements, a simple rule
for reasoning, as part of 𝐹 𝑎𝑔𝑔

𝑜𝑏𝑠 , is used:

1. occupiedByRobot is reported by each robot for itself and
trusted as true,

2. if any 𝐶 𝑡
𝑙𝑜𝑐𝑎𝑙𝑖

has isObstacle or isDirty for a cell then this
is propagated to 𝐶𝑜𝑏𝑠,

3. the latest property issued per cell is kept as final (a naive way
for conflict solving).

As a result, 𝐶 𝑡
𝑜𝑏𝑠 contains the detected dirt tasks, the true locations of

the robots and all the information about the surrounding obstacles that
are currently observed or seen at a time 𝑡. Based on 𝐶 𝑡

𝑜𝑏𝑠 different Mod-
elled Contexts 𝐶 𝑡

𝑚𝑑𝑙1
, 𝐶 𝑡

𝑚𝑑𝑙2
,… , 𝐶 𝑡

𝑚𝑑𝑙𝑁
, can be constructed—depending

on what the models represent, or what information do they store, for
example, accumulated task appearances, patterns of task appearances,
probability distributions of the tasks, probability of a task appearing
in a cell in the next time step, etc. This information is used to infer
whether locations that have not been observed for a while are dirty
or not. Consequently, the Modelled Context 𝐶 𝑡

𝑜𝑏𝑠 learns the underlying
distribution of dirt appearance, for both, the seen and unseen areas at
time 𝑡, and it is adapted based on the Observable Context 𝐶 𝑡

𝑜𝑏𝑠 and
the Modelled Context from the previous time step 𝐶 𝑡−1

𝑚𝑑𝑙. An example
for a set of properties 𝑃𝑚𝑑𝑙 necessary to model the above-mentioned
distribution could be the following:

• dirtPrior:float: probability of dirt appearing in this cell at
any given time.

• dirtProb:float: probability that a unobserved cell is cur-
rently dirty.

• lastSeen:int: number of time steps since this cell was last
observed by a Managed Element.

The values for dirtPrior are deducted from tracking the appearance
of dirt over time. By combining them with the information from last-
Seen, the probability of an unseen cell being dirty at the current time
step can be estimated.

7.3. Planning Logic

At each time step 𝑡, the Planning Logic takes into account the
current state of the Observable Context 𝐶 𝑡

𝑜𝑏𝑠 and the Modelled Con-
texts (𝐶 𝑡

𝑚𝑑𝑙1
, 𝐶 𝑡

𝑚𝑑𝑙2
,… , 𝐶 𝑡

𝑚𝑑𝑙𝑁
) and determines the commands for all the

Managed Elements:

𝑃𝐿∶ (𝐶 𝑡
𝑜𝑏𝑠, 𝐶

𝑡
𝑚𝑑𝑙1

, 𝐶 𝑡
𝑚𝑑𝑙2

,… , 𝐶 𝑡
𝑚𝑑𝑙𝑁

,S 𝑡−1
PL) ↦ ⟨𝑐1,… , 𝑐𝑛⟩

where 𝑐𝑖 ∈ (R𝑑 ∪{⊥}) are the coordinates of the adapted commands for
Managed Element 𝑖. An entry of ⊥ signifies that no new command is
sent to that Managed Element at this time. S 𝑡−1

PL is the previous state of
the Planning Logic (e.g. task queues or currently executing movement
commands). The Planning Logic is characterised as that it maximises

the quality function 𝑄 when given optimal 𝐶 𝑡
𝑜𝑏𝑠 and 𝐶 𝑡

𝑚𝑑𝑙 that represent
the most complete knowledge of the real context. At this high level of
abstraction the Planning Logic is solely defined by this characterisation
because everything else is highly dependent on the use-case and the
goals.

8. Evaluation

To evaluate the applicability and the usability of the logical archi-
tecture, we have designed and implemented: (i) a ROS-based, simulated,
multi-agent SACPS motivated by the running example from Section 2.3,
and (ii) a so-called evaluation framework that can evaluate the adaptivity
of the simulated SACPS within our defined use case.2 The ROS-based,
multi-robot system is simulated in Gazebo [34]. Referring to the logical
architecture in Fig. 4, the simulated ROS-based SACPSs constitutes the
self-adaptive system component, whereas the evaluation framework
comprises the Goals, the Quality Function 𝑄, and the context. Addi-
tionally, the evaluation framework can be used for any self-adaptive
system that adopts the standardised interface of the framework, and
the calculation of the Quality Function 𝑄 in our evaluation framework
is universal (i.e., independent of the use case).

In this section, we first validate the integrated Goals and Quality
Function 𝑄 in Section 8.1, before evaluating the logical architecture in
Section 8.2.

8.1. Evaluation of the Goals and the Quality Function

While explaining the business and adaptation goals prior in Sec-
tion 5.1, we already gave an intuition and briefly exemplified how
they can be calculated for our specific running example. How specific
the business and adaptation goals are defined and specified depends
on the engineers of the self-adaptive systems. In this section, we first
explain a concrete realisation of the business and the adaptation goals
based on our interpretation of the quality of the cleaning process, using
the formalisms from Section 6. This enables us to validate the concepts
of Goals and the Quality Function, which are at the heart of defining
adaptivity and a major part of our logical architecture for engineering
SACPSs, on the actual implementations of the SACPS and the evaluation
framework.

8.1.1. Goals and requirements for the SACPS in natural language
Initially, goals are expressed in a natural language and describe

the intention of the engineers of the SACPS. The goal of our use case
is minimal: the robots to clean the room. Depending on the system,
this overall goal can be refined and extended with more detailed
requirements for both the business and the adaptation goals.

In our running example, we define the business goals 𝑔𝑏, with their
corresponding business Goal Quality Functions 𝑞𝑔𝑏 as follows:

𝑔𝑏1 The SACPS should work as expected regarding the naviga-
tion and the movement. No robot should have a collision; 𝑞𝑔𝑏1
[no_crashes]

𝑔𝑏2 The SACPS should work as expected regarding the completion
of the tasks. This means that a minimum number of dirt tasks
needs to be cleaned to consider the system as functional; 𝑞𝑔𝑏2
[minimum_cleaned]

In addition to keeping the room clean, we also want to improve the
quality of the cleaning process (the adaptation goal), despite the differ-
ent run-time system and context uncertainties. In response, we define
the following adaptation goals 𝑔𝑎, with their corresponding adaptation
Goal Quality Functions 𝑞𝑔𝑎 as follows:

2 The source code of the complete implementation of the multi-robot, ROS-
based SACPS and the evaluation framework, as well as the installation instruc-
tions, are available on the following links: https://github.com/tum-i4/SACPS-
robotics-system, https://github.com/tum-i4/SACPS-evaluation-framework.

Information and Software Technology 147 (2022) 106866

12

A. Petrovska et al.

𝑔𝑎3 The SACPS should clean as much dirt as possible; 𝑞𝑔𝑎1
[higher_cleaning_rate]

𝑔𝑎4 The SACPS should detect as much dirt as possible; 𝑞𝑔𝑎2
[higher_detection]

𝑔𝑎5 The SACPS should not ignore dirt; 𝑞𝑔𝑎3 [shorter_dirt
_existence]

𝑔𝑎6 The SACPS should minimise the travelled distance; 𝑞𝑔𝑎4
[less_distance]

How different goals are translated into Goal Quality Functions 𝑞𝑔 and
is explained in the next section.

8.1.2. Creation of Goal Quality Functions 𝑞𝑔
In the previous section, we described the goals of the SACPS in nat-

ural language, similar to something that a stakeholder would provide.
To evaluate a SACPS according to these goals, we need to translate
them into Goal Quality Functions 𝑞𝑔 based on which the overall quality
function 𝑄 is calculated. In the following, we give an example for the
specification of the Goal Quality Functions for the second business goal
(𝑔𝑏2).

The Goal Quality Function 𝑞𝑔𝑏2 for 𝑔𝑏2 is specified and realised
as follows: Since the second business goal 𝑔𝑏2 requires a minimum
number of dirt tasks to be completed in order to consider the SACPS
as functional, first we needed to interpret the meaning of this goal for
our system and based on that interpretation, specify the Goal Quality
Function.

Description: ‘‘10% of the total dirt tasks must always be cleaned (at
least) after 5 tasks have been initially spawned in the room’’.

We specify this function based on the total number of spawned
tasks (spawned_dirt_number), the number of cleaned tasks
(finished_dirt_number), and as a parameter for the minimum
percentage of cleaned tasks we chose 10%. minimum_cleaned—
which is another name for the Goal Quality Function 𝑞𝑔𝑏2 —then cal-
culates the percentage of the number of cleaned to spawned dirt tasks,
and returns 1 if the calculated percentage is higher than or equal to
the specified parameter (the system fulfil its business goal), otherwise
0 (the system does not fulfil its business goal).

𝑞𝑔𝑏2 =
⎧
⎪⎨⎪⎩

0 if (𝚜𝚙𝚊𝚠𝚗𝚎𝚍_𝚍𝚒𝚛𝚝_𝚗𝚞𝚖𝚋𝚎𝚛 ≥ 5
and 𝚏𝚒𝚗𝚒𝚜𝚑𝚎𝚍_𝚍𝚒𝚛𝚝_𝚗𝚞𝚖𝚋𝚎𝚛 < 0.1 ⋅ 𝚜𝚙𝚊𝚠𝚗𝚎𝚍_𝚍𝚒𝚛𝚝_𝚗𝚞𝚖𝚋𝚎𝚛)

1 otherwise.

If there are more business goals, the process would always be the
same: interpret what input metrics are needed for a specific Goal
Quality Function and then combine them to get a test value for a binary
check that results in either 1, if fulfilled, or 0, otherwise.

Finally, the Goal Quality Functions for the Adaptation Goals need
to be weighed out according to Eq. (6) in Section 6, and all the Goal
Quality Functions are combined according to Eq. (4) in Section 6,
which results in the overall Quality Function 𝑄, based on which the
adaptivity of the system is evaluated. Due to the space limitation,
the specifications of the Goal Quality Functions for the rest of the
business (no_crashes) and adaptation (higher_cleaning_rate,
higher_detection, shorter_dirt_existence, less_dist-

ance) goals are out of the scope of this paper. However, all of them
can be found in the source code of the evaluation framework and are
included in the evaluation in the following section.

8.1.3. Validation of the Quality Functions 𝑄
In this section, we validate the calculation of the Quality Functions

𝑄, if it works as intended and if it enables us to evaluate the adaptation
of the SACPS according to the specified goals, which were explained in
the previous section for the concrete use case. Furthermore, through
these results, we support or falsify the hypotheses from Section 1. To
achieve this, we have conducted an extensive evaluation; however, we
will analyse the calculated 𝑄 scores from only a few experiments due

to space limitations. For all the experiments we have kept the same
experimental setup: same room map (including room resolution and
initial robot positions), two robots, a uniform distribution of the dirt
tasks, and a simulation time of 2400 s. Before we started the analysis
of the experiments, we also conducted repetition tests to show that
the 𝑄 scores are reproducible and not random. Therefore, we ran the
experiments five times with the same parameters. The 𝑄 score across
multiple runs varied within a very small range of ±0.03, which was
expected due to the non-determinism of the Gazebo simulator.

To validate the system’s adaptation and the specified adaptation
goals, and to show that in order to argue if a system is adaptive or
not, it needs to be considered inseparably from its context and the
changing context situations, we have set up two different tests, in which
we varied the spawning rate of the tasks for the robots. In the first
test scenario, we have set up a lower spawning rate (see Fig. 5a),
or in other words, the contextual situation in which the system can
behave adaptively (𝑄 converges close to the maximum value over
time), according to Definition 1. In principle, we also have a sequence
of functions, since at each timestamp in the graph, the system function
is calculated based on internal system states that change over time
(depending on the knowledge from the adaptation logic). Depending
on the different models that are stored and continuously updated in the
knowledge of in the adaptation logic, the robots get different, adapted
target locations (outputs), despite making same observations from the
context (inputs). Additionally, in contrast to the first test scenario, in
the second test scenario, we have set up a high(er) spawning rate, and
according to these context situations, the system does not adapt since
there is a continuous drop in the 𝑄 (see Fig. 5b). Concretely, in the
second test scenario, the spawning rate of the tasks in the room is
so high that the robots—no matter how well they self-adapt—are still
not be able to keep up with the adaptation goals (i.e., the quality of
the cleaning process) due to the limited resources (e.g., the number of
robots in the room or their velocity).

Furthermore, as previously explained, the 𝑄 score is always be-
tween 0 and 1, where 0 means the business goals are not met, and
1 means the business and the adaptation goals are achieved perfectly
(see Section 4.2). As indicated, the analysis is not about the absolute 𝑄
scores at a specific point in time; but rather about the trend of the 𝑄
over time. While arguing if a system is adaptive or not, it must always
be accompanied by the time period in which the system is adaptive.
Concretely, if we only observe Fig. 5b for the first 500 s, we might label
the system as adaptive, which is incorrect if we observe the Quality
Function 𝑄 for a longer time.

To validate the business goals, in one of the test scenarios in our
experiments, we increased the spawning rate so high that the robots
could not keep up with the minimum threshold of 10% that we have
specified in the minimum_cleaned Goal Quality Function. The evo-
lution of the overall Quality Function 𝑄, as well as the Goal Quality
Functions for all the goals (business and adaptation), can be seen in
Fig. 6a. Similarly, for the first Business Goal, in one of our testing
scenarios, a robot crashes. As a result, it can be observed in Fig. 6b
the 𝑄 score drops to 0, although the scores of the other Goal Quality
Functions remains intact.

Main findings: Based on (1) our formal definition on adaptiv-
ity from Section 4, (2) the identification of the system function
(𝑠𝑓) and how functioning differs from adapting, (3) and the
conducted experiments, we were able to prove the hypothesis
from Section 1. Namely, to argue if a system is adaptive or not,
it needs to be put in a proper framing:
First , the adaptation goals (i.e., one or more quality objec-
tives) for the specific system (i.e., system function) need to be
identified and specified. Based on these goals, the adaptation
logic for the concrete system function (𝑠𝑓) is constructed.

Information and Software Technology 147 (2022) 106866

13

A. Petrovska et al.

Fig. 5. 𝑄 score comparison regarding different contextual situations, i.e., dirt spawn rates (every other parameter is identical). The overall 𝑄 score is solid red, its Business Goal
Quality Functions are dotted and its Adaptation Goal Quality Functions are dashed.

Please note that the same system (i.e., the system function)
might be adaptive according to one adaptation goal and
maladaptive according to another.
Second, the system (i.e., the system function) can only
adapt to certain context (or system) situations (e.g., different
changes and run-time uncertainties). No system universally
behaves adaptively in every condition, at least in regard to
a particular goal. To some contextual situations, the system
might be adaptive, and to others, it might not.
Finally , considering the time frame in which a system is
adaptive is crucial. The absolute value of the Quality Func-
tion 𝑄 at one timestamp gives no information regarding the
system adaptation. Therefore, we cannot observe a system at
one point in time and call it adaptive. Adaptivity is bound
to a specific time frame, i.e., the only way to evaluate if a
system adapts or not is to observe over a certain period and
observe how the quality objective(s) develop over the same
time period.

8.2. Benefits of our Adaptivity Definition and the proposed Logical Ar-
chitecture in comparison to the MAPE-K conceptual model and existing
words

The conceptual MAPE-K model gives some intuition behind the en-
gineering of self-adaptive systems, mainly by the separation of concerns
between the managed element and the adaptation logic. However, the
conceptual model is very general, and a more specific semantics of its
two components and their interaction is still missing and is left on the
engineers of the self-adaptive systems, potentially opening space for
various misinterpretations. This is, on one side beneficial, since the
same model can be used as a backbone for designing various types
of systems. However, on the other side, its generality does not allow
the conceptual model to be specialised according to some properties
and characteristics that are unique for a specific type of systems.
For example, the dynamic and changing context, and run-time sensor
uncertainties and partiality in the observations in the case of CPSs. Fur-
thermore, although the different MAPE-based design patterns proposed
in the literature (e.g., [10]) might be more informative regarding the
system’s design; however, they (1) completely exclude the knowledge
component that we have identified as a minimal requirement for a
system to be self-adaptive (see Section 4.3), and (2) have the same
limitations as the MAPE closed feedback loop itself. For example, their
high level of abstraction, without providing any characterisation of how

Information and Software Technology 147 (2022) 106866

14

A. Petrovska et al.

Fig. 6. Scores when a business goal cannot be fulfilled and overall 𝑄 score drops to 0. The overall 𝑄 score is solid red, its Business Goal Quality Functions are dotted and its
Adaptation Goal Quality Functions are dashed.

a system built upon the MAPE loop differentiates from the ‘‘ordinary’’,
non-adaptive systems. Please note that our logical architecture itself is
built upon the Master–Slave pattern proposed by Weyns [10].

In the following, we briefly summarise the benefits of our proposed
logical architecture in comparison to existing works:

(1) our logical architecture is based on our formal definition of
the system’s adaptivity. The formal adaptivity definition enables
us not only to measure if a system is adaptive and in which
conditions but also to compare different self-adaptive systems,

(2) the differentiation between the system function (𝑠𝑓) and sys-
tem adaptation enables us to differentiate between the ordinary
systems and self-adaptive systems,

(3) identifying the minimal requirement for a system to be self-
adaptive and the identified necessary framing (from the main
findings) give further insights on the semantics of the adaptation
logic and how it should be constructed,

(4) our logical architecture provides support for engineering systems
that operate in dynamic and changing context, from which the
CPSs make partial and uncertain observations. Concretely, our
logical architecture enables the SACPS to change its adaptation

logic and to reflect the actual context during run-time, which is
something that none of the previous reference architectures [14,
15] for engineering self-adaptive systems has proposed before,
and

(5) finally, as previously explained in Section 5, the logical ar-
chitecture defines how different components interact and what
information they exchange. This provides another dimension
of semantic precision, which has not been considered in the
previous works [6,10,11,13,16].

As previously elaborated and discussed in Section 3 and various
previous sections, to the best of our knowledge, there is no other (log-
ical) architecture proposed in the literature that addresses some of the
limitations of the MAPE-K conceptual model and MAPE-based patterns,
and is specialised for a class of systems from the domain of CPSs. We
hope that the architecture proposed in this paper will serve not only
as a blueprint for engineering SACPSs but also as a baseline for future
research. Concretely, as a baseline for comparison and evaluation of
contributions and architectures proposed in the future.

Information and Software Technology 147 (2022) 106866

15

A. Petrovska et al.

9. Discussion

9.1. Threats to validity to the Quality Function 𝑄

First, for calculating the Quality Function 𝑄, we assumed that
the context C and the system 𝛴 are available. However, due to the
partiality in the observations of the CPSs, the systems do not have
access to the complete state of the context. Therefore, to quantify the
quality of the self-adaptive system, there are two possible alternatives:
(1) some form of external validation—which is not a subject to the
same limitations of partiality—that provides the actual total state of the
context. In practice, having this external observation is easily possible
in an experimental setup or a simulation; (2) or incorporation of a
business goal that includes metrics for context coverage percentage,
that is later appropriately integrated in different goal quality functions
𝑞𝑔 , in setups where the external validation is not available. We assume
that we simulate the robotic system in all the given examples from
our running example; therefore, the simulation inherently provides the
external context validation. Second, the weighted sum method in the
adaptation goals unfolds the problem of coming up with ‘‘good’’ 𝛼𝑔𝑎
weights, which itself leads to a need for a multi-criteria optimisation
problem, e.g., Pareto front optimisation.

9.2. Discussion on system implementation guided by our logical architecture

There are some aspects which might technically present a problem
or a challenge on its own, but do not represent an issue on the abstrac-
tion of a logical architecture and therefore have not been considered
earlier. Nevertheless, we want to briefly summarise some points of
relevance, important while instantiating our architecture to a technical
implementation.

So far, we only have one technical implementation of the robotics
system, guided by the proposed logical architecture. As previously
explained in Section 8, our technical implementation of the multi-robot
system is ROS-based and simulated in Gazebo. Our implementation
enables us to simulate any number of robots in any context (i.e., any
room) with different static (e.g., walls, corridors, furniture, etc.) and
dynamic objects (e.g., humans, or other robots with different goals),
including the tasks that continuously appear for the robots in the
room. The robots that we simulate are TurtleBot 3 Burger.3 Further-
more, Gazebo relies on well-established physics engines, which enable
simulations with high fidelity that closely resemble real-world robotics
systems and their context, with a physically correct representation of
the robots, including their size and volume, frictions, as well as their
sensors and actuators [32]. Although we aimed to build as realistic
simulation as possible, with a codebase that can be easily deployed on
real robots, one aspect that our implementation does not consider is
simulating the networking or the communication capabilities between
the robots (i.e., the information exchange between different robots
happens instantaneously). This aspect does not have any relevance as
part of our logical architecture, but indeed it might have a range of
different technical implications.

In sum, while discussing different technical implementations for
other use cases that are instantiated from our logical architecture,
some implementation-related questions will arise and need to be conve-
niently discussed and considered by the developers of the self-adaptive
systems. For instance, (1) the communication of the CPSs (including
the communication latency), (2) the type and the complexity of the
task planning algorithms (e.g., for some optimisation-based algorithms,
the CPSs themselves might have limited computational capabilities, in
which real-time optimisation is not feasible at all), (3) the scalability
of the implementation of different components, and (4) the models,
concretely the models@RT, their complexity, and how they are stored,
versioned, managed and updated during run-time.

3 https://www.turtlebot.com/.

9.3. Discussion on future research directions

Although the procedure established in our logical architecture can
be seen as methodological guidance for knowledge derivation and
management in self-adaptive CPSs, it is essential to emphasise that we
neither prescribe how to represent the knowledge in the adaptation
logic, nor how to design and select the models the knowledge contains.
Also, we did not elaborate further on the run-time uncertainties, the
knowledge aggregation, nor the planning based on the different mod-
els@RT. Therefore, the logical architecture only establishes a blueprint
of what processes are necessary and not how to accomplish them. As
part of our running example, we proposed simplistic solutions to some
of the open problems, which were necessary for depicting and exempli-
fying the contribution of the logical architecture itself; however, many
problems still remain open:

1. How to represent the knowledge in the adaptation logic?
Knowledge representation is an essential concern for building self-

adaptive systems, also acknowledged by Weyns et al. [10]. However,
there is a scarcity of approaches for modelling knowledge in the adapta-
tion logic, with a particular emphasis on modelling the context in the
knowledge. Instead, in the existing works, knowledge modelling has
been typically treated as a domain-specific task, later leading to ad-hoc
solutions to observations aggregation.

2. How to aggregate partial and uncertain observations made by the decen-
tralised CPSs? What are the uncertainties for the CPSs? How to represent
uncertainties? How to reason about the uncertainties?

To update the models@RT—and accordingly, the knowledge com-
ponent in the adaptation logic—the need for run-time information
aggregation and reasoning emerges of what each CPSs individually
observes. The CPSs are exposed to various run-time uncertainties:
internal, for example, sensor failure and ambiguity, and external, for
example, changes in their operational context. Consequently, there is a
need for capturing uncertainty that will allow reasoning by an effective
aggregation of the partial and uncertain observations made by the
decentralised CPSs, based on which the models@RT are updated and
later used in the planning phase of the MAPE-K.

3. How to plan and find the most optimal actions for the self-adaptive CPSs
considering different models@RT?

To the best of our knowledge, utilising and combining different
models@RT for analysis and planning of the next best adaptation
actions, for the SACPSs is still under-researched.

4. How can the Quality Evaluator component guide a goal-driven self-
adaptation?

As part of this paper, we used the value of the Quality Function 𝑄
to passively evaluate the system’s adaptivity and we did not elaborate
further nor specified how the Quality Evaluator component can actively
guide and steer the self-adaptation of a system based on the value of 𝑄.
At its nature, this is an optimisation problem, and opens new directions
of research in this field.

10. Conclusion

The lack of commonly accepted definitions of different terminology
of adaptivity makes it difficult for the works in this domain to be
engineered, discussed and compared. We addressed this problem by
formally defining system’s adaptivity, and characterising self-adaptive
systems more precisely, by differentiating when a system functions
and when does it adapt. However, the formal definitions are mostly
declarative and descriptive and do not provide constructive insights on
how to engineer self-adaptive systems, including SACPSs. To this end,
we presented a logical architecture for engineering self-adaptive CPSs
that narrows the gap between: (1) the MAPE-K conceptual architecture,
which, over the years, has broadly served as a reference model for
building self-adaptive systems, and (2) a physical architecture, i.e.,

Information and Software Technology 147 (2022) 106866

16

A. Petrovska et al.

a technical implementation for a class of decentralised SACPSs that
operate in dynamic, uncertain and partially observable context. The
proposed logical architecture is embedded in the formal definition of
adaptivity.

The lack of consensus on what self-adaptive systems are, hinders
the progress on how to specify, design and engineer these systems, and
even more importantly how to compare and evaluate them. We hope
that with the contributions of this paper, we have narrowed this gap.

CRediT authorship contribution statement

Ana Petrovska: Conceptualization, Methodology, Software, Vali-
dation, Resources, Visualization, Formal analysis, Writing – original
draft. Stefan Kugele: Conceptualization, Methodology, Formal anal-
ysis, Supervision, Writing – review & editing. Thomas Hutzelmann:
Conceptualization, Methodology, Formal analysis, Writing – review
& editing. Theo Beffart: Conceptualization, Methodology. Sebastian
Bergemann: Software, Validation. Alexander Pretschner: Conceptu-
alization, Methodology, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] S. Mahdavi-Hezavehi, P. Avgeriou, D. Weyns, A classification framework of
uncertainty in architecture-based self-adaptive systems with multiple quality
requirements, Manag. Trade-Offs Adapt. Softw. Archit. (2017) 45–77.

[2] A. Petrovska, A. Pretschner, Learning approach for smart self-adaptive cyber-
physical systems, in: 2019 IEEE 4th International Workshops on Foundations
and Applications of Self* Systems (FAS* W), IEEE, 2019, pp. 234–236.

[3] D. Weyns, Software engineering of self-adaptive systems: an organised tour and
future challenges, in: Chapter in Handbook of Software Engineering, 2017.

[4] D. Weyns, T. Ahmad, Claims and evidence for architecture-based self-adaptation:
a systematic literature review, in: European Conference on Software Architecture,
Springer, 2013, pp. 249–265.

[5] A.J. Ramirez, A.C. Jensen, B.H. Cheng, A taxonomy of uncertainty for dy-
namically adaptive systems, in: 2012 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), IEEE, 2012, pp.
99–108.

[6] J.O. Kephart, D.M. Chess, The vision of autonomic computing, Computer 36 (1)
(2003) 41–50, http://dx.doi.org/10.1109/MC.2003.1160055.

[7] S.-W. Cheng, D. Garlan, B. Schmerl, Architecture-based self-adaptation in the
presence of multiple objectives, in: Proceedings of the 2006 International
Workshop on Self-Adaptation and Self-Managing Systems, 2006, pp. 2–8.

[8] D. Garlan, B. Schmerl, S.-W. Cheng, Software architecture-based self-adaptation,
in: Autonomic Computing and Networking, Springer, 2009, pp. 31–55.

[9] D. Weyns, S. Malek, J. Andersson, Forms: Unifying reference model for formal
specification of distributed self-adaptive systems, ACM Trans. Auton. Adapt. Syst.
(TAAS) 7 (1) (2012) 1–61.

[10] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke,
J. Andersson, H. Giese, K.M. Göschka, On patterns for decentralized control
in self-adaptive systems, in: Software Engineering for Self-Adaptive Systems II,
Springer, 2013, pp. 76–107.

[11] F. Quin, D. Weyns, O. Gheibi, Decentralized self-adaptive systems: A mapping
study, 2021, arXiv preprint arXiv:2103.09074.

[12] J. Zhang, B.H. Cheng, Model-based development of dynamically adaptive
software, in: Proceedings of the 28th International Conference on Software
Engineering, 2006, pp. 371–380.

[13] A. Musil, J. Musil, D. Weyns, T. Bures, H. Muccini, M. Sharaf, Patterns for
self-adaptation in cyber-physical systems, in: Multi-Disciplinary Engineering for
Cyber-Physical Production Systems, Springer, 2017, pp. 331–368.

[14] F.J. Affonso, E.Y. Nakagawa, A reference architecture based on reflection for self-
adaptive software, in: 2013 VII Brazilian Symposium on Software Components,
Architectures and Reuse, Ieee, 2013, pp. 129–138.

[15] V. Braberman, N. D’Ippolito, J. Kramer, D. Sykes, S. Uchitel, Morph: A reference
architecture for configuration and behaviour self-adaptation, in: Proceedings of
the 1st International Workshop on Control Theory for Software Engineering,
2015, pp. 9–16.

[16] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, P. Steenkiste, Rainbow:
Architecture-based self-adaptation with reusable infrastructure, Computer 37 (10)
(2004) 46–54.

[17] R. Asadollahi, M. Salehie, L. Tahvildari, Starmx: A framework for developing self-
managing Java-based systems, in: 2009 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, IEEE, 2009, pp. 58–67.

[18] I. Gorton, Y. Liu, N. Trivedi, An extensible, lightweight architecture for adaptive
J2EE applications, in: Proceedings of the 6th International Workshop on Software
Engineering and Middleware, 2006, pp. 47–54.

[19] S. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen, G. Horn, J. Lorenzo, A.
Mamelli, G.A. Papadopoulos, A development framework and methodology for
self-adapting applications in ubiquitous computing environments, J. Syst. Softw.
85 (12) (2012) 2840–2859.

[20] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen, J. Lorenzo, A.
Mamelli, U. Scholz, Music: Middleware support for self-adaptation in ubiquitous
and service-oriented environments, in: Software Engineering for Self-Adaptive
Systems, Springer, 2009, pp. 164–182.

[21] J. Cámara, B. Schmerl, D. Garlan, Software architecture and task plan
co-adaptation for mobile service robots, in: Proceedings of the IEEE/ACM
15th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, 2020, pp. 125–136.

[22] C. Krupitzer, F.M. Roth, S. VanSyckel, G. Schiele, C. Becker, A survey on
engineering approaches for self-adaptive systems, Pervasive Mob. Comput. 17
(2015) 184–206.

[23] I.S.C. Committee, et al., IEEE Standard Glossary of Software Engineering Termi-
nology (IEEE Std 610.12-1990), Vol. 169, IEEE Computer Society, Los Alamitos,
CA, 1990.

[24] S. Kugele, A. Petrovska, I. Gerostathopoulos, Towards a taxonomy of autonomous
systems, in: European Conference on Software Architecture, Springer, 2021, pp.
37–45.

[25] M. Broy, C. Leuxner, W. Sitou, B. Spanfelner, S. Winter, Formalizing the notion
of adaptive system behavior, in: Proceedings of the 2009 ACM Symposium on
Applied Computing (SAC), ACM, 2009, pp. 1029–1033, http://dx.doi.org/10.
1145/1529282.1529508.

[26] G. Blair, N. Bencomo, R.B. France, Models@ run. time, Computer 42 (10) (2009)
22–27.

[27] A. Bennaceur, R. France, G. Tamburrelli, T. Vogel, P.J. Mosterman, W. Cazzola,
F.M. Costa, A. Pierantonio, M. Tichy, M. Akşit, et al., Mechanisms for leveraging
models at runtime in self-adaptive software, in: Models@ Run. Time, Springer,
2014, pp. 19–46.

[28] P.B. Kruchten, The 4+ 1 view model of architecture, IEEE Softw. 12 (6) (1995)
42–50.

[29] K. Pohl, H. Hönninger, R. Achatz, M. Broy, Model-Based Engineering of Embed-
ded Systems: The SPES 2020 Methodology, Springer Science & Business Media,
2012.

[30] D. Fox, Kld-sampling: Adaptive particle filters and mobile robot localization, Adv.
Neural Inf. Process. Syst. (NIPS) 14 (1) (2001) 26–32.

[31] A. Petrovska, S. Quijano, I. Gerostathopoulos, A. Pretschner, Knowledge aggre-
gation with subjective logic in multi-agent self-adaptive cyber-physical systems,
in: Proceedings of the IEEE/ACM 15th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, 2020, pp. 149–155.

[32] A. Petrovska, M. Neuss, I. Gerostathopoulos, A. Pretschner, Run-time reasoning
from uncertain observations with subjective logic in multi-agent self-adaptive
cyber-physical systems, in: 16th Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS, 2021.

[33] A. Jøsang, Subjective Logic, Springer, 2016.
[34] N. Koenig, A. Howard, Design and use paradigms for gazebo, an open-source

multi-robot simulator, in: 2004 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), IEEE, 2004, pp.
2149–2154, http://dx.doi.org/10.1109/IROS.2004.1389727.

6 Knowledge Aggregation with Subjective
Logic in Multi-Agent Self-Adaptive
Cyber-Physical Systems

On Engineering Self-Adaptive Cyber-Physical Systems

Gap 1 Gap 2 Gap 3

C2 Systematic literature
review on self-adaptive

systems

C3 Formal definition of
system adaptation and self-

adaptive systems

C4 Logical
architecture for

engineering
(MA-)SACPSs

C5 Methodology for
knowledge representation

and run-time reasoning
under uncertainties in

(MA-)SACPSs

C6 Model problem,
ROS-based robotics system and evaluation framework

Part 1: Theoretical Foundations
Part 2: On Engineering Self-Adaptive CPSs in Dynamic

and Uncertain Context

P2

P3

P3 P4 P5

P3 P4 P5

C1 A taxonomy of
autonomous systems

P1

Figure 6.1: Mapping of Gaps, Contributions and Publications to the structure of this thesis.

Summary: The need for the knowledge component in the adaptation logic is broadly
accepted by the majority of the works in the research domain of self-adaptive systems:

1) regardless if one assumes that self-adaptation is realised by using the traditional
MAPE-K closed feedback loop or by using our logical architecture that we propose
as part of the previous Chapter 5, and

2) independent from the level of abstraction and the semantic precision of the particular
approach used for engineering the self-adaptive systems.

With the contributions in the previous chapters, both the theoretical foundations and
the logical architecture, we have contributed to a better semantic clarity of the adaptation
logic. For instance, in Chapter 5, while characterizing self-adaptive systems, we have
concluded that the existence of the knowledge component in the adaptation logic, created
w.r.t. the relevant aspects for the adaptation, is a minimum requirement for the system to
be self-adaptive1. In Chapter 5 and Appendix A, we have also discussed that the knowledge

1Please note that this only holds in the case of passive self-adaptation, as discussed in Appendix A.

99

6 Knowledge Aggregation with Subjective Logic in Multi-Agent Self-Adaptive
Cyber-Physical Systems

component comprises models of the system (i. e., the managed element) and the context
in which the system is operating, which are relevant for the concrete system adaptation.
And finally, in our logical architecture, in Chapter 5, we discussed that regardless if a
self-adaptive CPSs is composed of a single or a multiple CPSs, there is a need to combine
and aggregate observations from the systems (i. e., the managed elements) in order to
obtain a unified, accurate and consolidated model of the context in the knowledge of the
adaptation logic. Namely, since the observations made individually by each CPSs are
partial and uncertain, they need to be reasoned upon and aggregated prior to updating
the knowledge. However, in none of those contributions, we explicitly focused on how the
knowledge in the adaptation logic can be modeled. To this end, as part of this paper, we
propose a methodological approach for knowledge and uncertainty representation, which
also enables reasoning under uncertainty of decentralized monitoring by the CPSs, based
on which the knowledge in the adaptation logic is updated.

Problem: Due to the dynamicity of the CPSs and their execution context, the knowledge
in the adaptation logic—i. e., the models of the system and the context cannot be created
based on assumptions made at design time; instead, they need to be models at run-time
[13, 12, 115]. For example, the run-time context model should get continuously updated in
response to the changes in the context, reflecting the actual operational context during the
execution of the CPSs. To update the knowledge component, the need emerges for run-time
information aggregation and reasoning of what each CPSs individually observes. The
observations from the CPSs can be faulty, inaccurate, partial, and potentially conflicting.
In response, observation aggregation and reasoning are necessary, enabling the adaptation
logic knowledge to be updated during run-time to continue reflecting the actual run-time
state of the context and the system relevant for a specific adaptation.

Gap: Although knowledge representation and reasoning are important for engineering
self-adaptive systems, there is a scarcity of approaches that allow domain- and system-
independent modeling of the knowledge, which also allows efficiently capturing uncertain
observations from one or more CPSs, based on which the knowledge is eventually updated.
To our knowledge, no other work in the literature contributes to this research direction.
Also, so far in the prior works, the knowledge in the adaptation logic is always constructed
by the experts, and knowledge representation is treated as a system- and problem-specific
task [44].

Method/Solution: We propose a methodological approach for knowledge and uncer-
tainty representation utilizing the theoretical framework of Subjective Logic (SL) [60, 61],
which supports run-time reasoning under uncertainty for a class of self-adaptive CPSs. SL
is a framework for artificial reasoning, and it explicitly represents the amount of uncertainty
on the degree of truth about a proposition and provides operators to combine opinions
from multiple sources. We model the knowledge in the adaptation logic as a grid, in which
each cell can be either occupied or not by a relevant artefact for the concrete system and
the respective adaptation. A subjective opinion represents the amount of uncertainty on

100

the degree of truth about a proposition. For each grid cell, a subjective opinion is issued,
and the subjective opinions are continuously updated during run-time based on the new
information from the observations by the CPSs. Once a value, called projected probability,
exceeds a certain threshold, then we have enough high certainty that the relevant artefacts
(i. e., the tasks) for the CPSs actually exist in the context, then the knowledge is updated,
and the CPSs can proceed with attaining the tasks. For demonstration and evaluation
purposes, we used the model problem and an extension of the implementation of the
robotics system, previously introduced in Chapter 5.

Results: In this paper, we conducted a preliminary evaluation, in which we compared
the results when the robots attain the continuously appearing tasks in the room without
any observations aggregation and with aggregation with two SL operators: CBF and
CCF (see Section 2.3.3). In our results, we can observe that the time necessary to
update the knowledge increases when we use knowledge aggregation, compared with the
case when there is no observation aggregation (i. e., when the uncertain and potentially
wrong observations are directly propagated as knowledge). This is expected since the
observation and knowledge aggregation need more evidence (and hence time) to have
enough certainty before eventually updating the knowledge in the adaptation logic. In
response, our experiments indicated that there is a clear trade-off between the accuracy
of the knowledge aggregation (i. e., how well and accurately the models in the knowledge
reflect the actual state of the context) and the number of completed tasks. Our preliminary
results set the foundation for additional experiments and empirical evaluations.

Contribution: As part of this paper, we did the initial conceptualization and the
implementation of the methodology for knowledge and uncertainty representation in
the adaptation logic, which enabled run-time reasoning of faulty, uncertain, and partial
observations in self-adaptive CPSs. To this point, we showed the applicability of the theory
and the formalisms of the SL in practice for the concrete research problem. Our proposed
approach was evaluated using an extension of the implementation of our model problem
from the robotics domain.

Limitations: In the implementation of our simulated robotics system, we aimed for the
system to resemble the reality as good as possible, with the highest possible fidelity and
realism, including the realistic sensing using a LiDAR sensor exactly how would a real robot
sense its environment. However, while analyzing the results in more depth, we realized
that the sensor model used in our initial implementation simulated an (almost too) perfect
sensing that did not include the various run-time sensor uncertainties (see Section 2.1).
This presented a limiting factor in our evaluation, and we address this limitation with the
work in the following Chapter 7.

Author Contribution: A. Petrovska developed the initial problem statement, the
reference problem from the robotics domain, as well as the design and the implementation
of the robotics system. A. Petrovska and I. Gerostathopoulos jointly refined the final

101

6 Knowledge Aggregation with Subjective Logic in Multi-Agent Self-Adaptive
Cyber-Physical Systems

version of the problem statement of this work. A. Petrovska selected the Subjective Logic as
the theoretical framework and developed the theoretical solutions of the paper. S. Quijano
did the implementation together with A. Petrovska. A. Petrovska, I. Gerostathopoulos
and S. Quijano designed and conducted the experiments and analysed the preliminary
results. The manuscript creation was mainly done by A. Petrovska in close discussion with
I. Gerostathopoulos and A. Pretschner.

Copyright Note: © 2020 ACM. Included here by permission from ACM. Ana Petrovska,
Sergio Quijano, Ilias Gerostathopoulos, Alexander Pretschner, Knowledge Aggregation with
Subjective Logic in Multi-Agent Self-Adaptive Cyber-Physical Systems, 15th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS),
June 2020.

On the following pages, the full article is reused in its published form in accordance
to the ACM author rights to reuse any portion of the authors’ own work in a disserta-
tion. The official published version of the paper can be found with the following DOI:
10.1145/3387939.3391600.

102

https://doi.org/10.1145/3387939.3391600

Knowledge Aggregation with Subjective Logic in Multi-Agent
Self-Adaptive Cyber-Physical Systems

Ana Petrovska
Technical University of

Munich
Munich, Germany
petrovsk@tum.de

Sergio Quijano
Technical University of

Munich
Munich, Germany

sergio.quijano@in.tum.de

Ilias Gerostathopoulos
Vrije Universiteit

Amsterdam
Amsterdam, Netherlands
i.g.gerostathopoulos@vu.nl

Alexander Pretschner
Technical University of

Munich
Munich, Germany
pretschn@in.tum.de

ABSTRACT
Modern software systems, such as cyber-physical systems (CPSs),

operate in complex and dynamic environments. With the continu-
ous and unanticipated change in the operational environment, these
systems are subjected to a variety of uncertainties. Self-adaptive
CPSs (SACPSs) can adjust their behavior or structure at run-time as
a response to the changes in their perceived environment. Namely,
self-adaptation is commonly realized through a MAPE-K feed-
back loop incorporating newly derived knowledge obtained by
the sensed data from the run-time monitoring, during the opera-
tion of decentralized SACPSs. However, to build the knowledge,
the need for run-time observations’ aggregation and reasoning
emerges, since the observations made by the decentralized systems
might be conflicting. In this paper, we propose an approach for
observations aggregation and knowledge modeling in SACPSs that
is domain-independent and can deal with inaccurate, partial, and
conflicting observations, based on the formalisms of Subjective
Logic.

KEYWORDS
subjective logic, knowledge aggregation, reasoning, self-adaptive

systems, cyber-physical systems
ACM Reference Format:
Ana Petrovska, Sergio Quijano, Ilias Gerostathopoulos, and Alexander
Pretschner. 2020. Knowledge Aggregation with Subjective Logic in Multi-
Agent Self-Adaptive Cyber-Physical Systems. In IEEE/ACM 15th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS ’20), October 7–8, 2020, Seoul, Republic of Korea. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3387939.3391600

1 INTRODUCTION
In recent years, the fast growth of cost-effective embedded sys-

tems with continuously increasing computation power has created
a solid foundation for the emergence and expansion of omnipresent
Cyber-Physical Systems (CPSs) across different domains, with grow-
ing socio-economic influence. CPSs are embedded systems that are
distributed, networked, and interconnected. Examples range from

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7962-5/20/05. . . $15.00
https://doi.org/10.1145/3387939.3391600

environmental monitoring systems to robotic fleets and self-driving
cars. Their close connection to the physical world means that they
are exposed to high uncertainty during their operation. Namely,
modern CPSs need to be able to operate efficiently and reliably
within a continually changing, uncertain, and unanticipated envi-
ronment (execution context) [25, 27, 29]. The context is the relevant
part of the environment for a particular system. When the system
under consideration is a CPS, then the relevant objects contained
in the context can be other homogeneous and heterogeneous sys-
tems, entities, and processes in the physical world or cyberspace,
including humans.

A common approach to deal with run-time changes and un-
certainties is to make the CPSs self-adaptive. Self-adaptation is
traditionally realized by an adaptation logic based on closed feed-
back loop—MAPE-K, with four consecutive functions, i.e., Monitor,
Analyse, Plan, Execute with shared Knowledge among all the ele-
ments of the loop [11, 12, 23]. The Knowledge component comprises
models of the CPSs and the context where they are operating.

Due to the dynamicity of the CPSs and their execution context,
these models cannot be created based on assumptions made at
design time, but instead they need to be models at run-time [5, 6, 15,
34]. Concretely, the run-time contextmodel should get continuously
updated in response to the changes in the context, reflecting the
actual operational context during the execution of the CPSs. To
update the model—and accoringly the Knowledge component—the
need for run-time information aggregation and reasoning, of what
each CPSs individually observes, emerges.

When the systems are complex and heterogeneous, like CPSs,
a single MAPE loop for managing all adaptations in the system
may not be sufficient [28, 36]. Instead, self-adaptive CPSs (SACPSs)
typically feature more than a single MAPE loop. Having multiple
control loops in SACPSs also raises a number of challenges in their
development and operation. A main challenge is how to coordinate
the operation of the different MAPE loops. To address this, previous
works have proposed the use of design patterns for decentralized
MAPE control loops in self-adaptive systems [36].

In this work, we focus on SACPSs in which MAPE-K loops are
structured according to the Master-Slave pattern [36]. In this pat-
tern, one or more MAPE-K loops at a lower level perform decentral-
ized monitoring and execution of the adaptation actions. However,
centrally, there is a single high-level MAPE-K loop that performs
analysis on the monitored data, updates the knowledge, and does
the planning accordingly (Figure 1). In particular, the high-level
MAPE-K loop needs to reason on the uncertain, inaccurate, and
potentially conflicting observations coming from the decentralized
monitoring, which, once aggregated, they become knowledge.

SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea Petrovska et al.

Knowledge aggregation in SACPSs that follows the Master-Slave
pattern or any other pattern with decentralized monitoring and cen-
tralized analysis is essential since it can have a significant influence
on the subsequent phases of planning and executing. Consider, for
example, the case of a route planning algorithm that relies on knowl-
edge aggregation from distributed sensors from multiple agents,
which may give conflicting readings. Knowledge aggregation in
SACPSs is also challenging, since, as mentioned above, it needs to
take into account the inherent uncertainties related to each moni-
tor and provide ways to synthesize and consolidate knowledge in
different cases where conflicts arise.

Figure 1: Modified Master-Slave pattern from [36]..
Although knowledge and its aggregation is an important concern

for MAPE-K patterns as also acknowledged by Weyns et al. [36],
there is a scarcity of approaches for modeling self-adaptation knowl-
edge that allows for capturing uncertainty at a local level and for
effectively aggregating knowledge for decision making at a global
level. Instead, knowledge modeling is typically treated as a domain-
specific task, leading to ad-hoc solutions to knowledge aggregation.

In response, in this paper, we present an approach for obser-
vations aggregation and knowledge modeling in SACPSs that is
domain-independent and can deal with reasoning on inaccurate,
partial, and conflicting observations. Concretely, our approach uses
Subjective Logic to build knowledge by aggregating partial ob-
servations of the context made by each agent in a decentralized
multi-agent SACPSs.

Subjective Logic is an enriched probabilistic logic-based frame-
work for artificial reasoning, based on which Subjective Opinions
about a knowledge item from the different monitors are created.
Additionally, Subjective Logic proposes different fusion operators
that allow aggregating the opinions to a final actionable set of
knowledge items in the analysis phase, based on which the run-
time context model in the Knowledge component is accordingly
updated, and later utilized to plan the next adaptation actions.

In short, the main contributions of the paper are the following:
• A subjective logic-based approach for knowledge aggrega-
tion in decentralized monitoring of partial context observa-
tion in SACPSs.

• An open-source implementation of a ROS-based simulated
multi-robot system, based on the robotics use case, further
explained in Section 2.

2 RUNNING EXAMPLE
To motivate the need for knowledge aggregation in self-adaptive

systems and illustrate our approach, we introduce a reference prob-
lem from the domain of CPSs, in particular from the robotics domain,
which is also used as a running example throughout the paper.

The reference problem is comprised of several cleaning robots
operating in the same context, e.g., a room. Each robot is able
to autonomously move to a destination while avoiding 1) static
obstacles (e.g., walls, furniture, etc.) and 2) dynamic obstacles (e.g.,
other robots, humans) along its way. New dirt tasks continuously
appear in the room, and the robots discover them in a distributed
manner with a 2D laser LIDAR scanner, capable of sensing 360
degrees radius. The robot’s observation space is determined by
the scanning distance of the laser scanner, which is less than the
room’s dimensions. Hence, each robot can only observe partially
the room in which it operates. Consequently, the robots can detect
the newly appearing dirt tasks only if they are within their range
of observation.

The mission of the robots is to keep the room as clean as possible
by discovering the dirt tasks and then cleaning themmost efficiently.
However, the fact that the robots have only a partial observation of
the room brings inefficiency to the overall performance, for example,
when one part of the room is getting dirtier than the other.

Therefore, the partial observations made by each robot are sent
periodically to a Cleaning Controller, whose responsibility is
to aggregate the received observations and assign the discovered
dirt tasks to the robots, while respecting the optimality criteria.
Once a dirt task is assigned to the robot, it navigates and moves to
the location of the corresponding task, accomplishes it, and then
navigates to the next task in its queue.

We model the context as a grid map with a size equal to the size
of the room (Figure 3). The cells in the grid are either occupied by
static obstacles, or by dynamic obstacles: robots or dirt tasks. A
context variable models whether a specific cell of the grid map has
a dirt task or not, so there are as many context variables as cells in
the map of the room. Dirt tasks appear per cell; therefore, in the
paper, we use dirt task and dirt cell interchangeably.

The multi-robot cleaning system is subject to external (contex-
tual) and internal (system) uncertainties, manifested via the contin-
uous appearance of tasks in the room and different sensor uncer-
tainties, respectively. Occasionally, each robot will mistakenly sense
a dirt task when there is none, and on the contrary, fail to sense
an actual task. This potentially results in different robots holding
different opinions regarding the space they observe, which requires
appropriate conflict resolution during the aggregation process.

In this setting, each robot is an agent of the SACPS and can be
modeled via a low-level MAPE-K loop (with respect to the Master-
Slave pattern). Each robot independently monitors its surroundings
and executes actions to accomplish its assigned tasks. Cleaning
Controller has the role of the high-level MAPE-K loop performing
the centralized analysis and planning.

3 BACKGROUND ON SUBJECTIVE LOGIC
Subjective Logic (SL) [19, 20] is a framework for artificial reason-

ing, in which the general idea is to enrich probabilistic logic by ex-
plicitly including (1) uncertainty about probabilities and (2) subjec-
tive belief ownership. It allows to express a degree of (un)certainty
about a subjective belief (called opinion).

To reason with propositions whose truth values are uncertain,
Bayesian probability and statistics can also be employed [18]. How-
ever, this type of probabilistic logic does not allow to seamlessly
model situations where different agents express their beliefs about

Knowledge Aggregation with Subjective Logic SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea

the same proposition. SL explicitly integrates the subjective nature
and ownership of beliefs in its formalism, allowing the combina-
tion of different beliefs about the same proposition. Nevertheless,
the interpretation of a SL opinion in the Bayesian perspective is
possible by mapping opinions into probability distributions [19].

SL is based on the Dempster-Shafer Theory of evidence (DST), a
flexible theoretical framework to represent uncertainty introduced
by Dempster [13] and Shafer [32]. In particular, DST’s rule of com-
bination, originally proposed for merging sources of evidence in
DST, is also used in SL where it represents a method of preference
combination embodied in SL’s belief constraint operator [21]. More-
over, the idea of explicit representation of ignorance is inherited
from the Dempster-Shafer belief theory [19, 32].

3.1 Subjective Logic Opinions
The fundamental building block of SL is a subjective opinion

that represents the amount of uncertainty on the degree of truth
about a proposition. The representation of a subjective opinion is a
composite function consisting of belief masses, uncertainty mass
and base rate. An opinion expresses a belief about the state of a
variable which takes its values from a domain (t.e., a state space).

A domain represents all the possible states of a variable situation.
Domains can be binary or n-ary. A binary domain can be denoted
X = {x ,x}, where x is the complement of x . Binary domains are
typically used when modeling situations that have only two alter-
natives, such as the case of our running example, where a location
in the map can either have dirt or not. Situations with more than
two alternatives have n-ary domains. If X denotes a binary or an
n-ary domain, X can be a random variable which takes its values
from X. For instance, we model a situation in our running example
using binary random variables X that take their values from the
binary domain X = {dirt, no_dirt}.

Binomial Opinion Representation. In SL, the notationwA
X is used

to denote opinions, where X indicates the target variable or propo-
sition to which the opinion applies, and A indicates the agent who
holds the opinion. Opinions on binomial variables (e.g. variables
with domain X = {x ,x}) are called binomial opinions, and a special
notation is used for their mathematical representation.
Definition 1 (Binomial Opinion [20]). Let X = {x ,x} be a binary
domain with binomial random variable X ∈ X. A binomial opinion
about the truth/presence of value x is the ordered quadrupletwx =

(bx ,dx ,ux ,ax), where the additivity requirement bx +dx +ux = 1
is satisfied, and where the respective parameters are defined as

bx : belief mass in support of x being TRUE (i.e. X = x),
dx : disbelief mass in support of x being FALSE (i.e. X = x),
ux : uncertainty mass representing the vacuity of evidence,
ax : base rate, i.e., prior probability of x without any evidence.
Opinions with ux = 1 and ux = 0 are called vacuous and dog-

matic, respectively. Finally, the expected probability of a binomial
opinion about value x is defined by: P(x) = bx + axux

Illustration on the Running Example. In our running example,
each robot R issues an opinion for each cell (i, j) that they are able
to observe. A binomial opinion about the presence of dirt on a cell
is the ordered quadrupletwR

i, j = (bx ,dx ,ux ,ax) with
bx : belief mass in support of a tile being dirty,
dx : disbelief mass in support of no dirt,

ux : uncertainty of the sensor observation,
ax : 1/2 (taking an unbiased viewpoint).
The belief mass distribution is calculated as a function of the

robot’s sensor range and the distance to a detected object. In Section
4 we discuss the details of the detection process and the correspond-
ing belief/disbelief and uncertainty masses calculation.

3.2 Combination of Subjective Logic Opinions
When there are more than one opinions for a proposition, there

is often the need to merge or combine them into a single collec-
tive opinion. Such knowledge aggregation with Subjective Logic
can be realized through a process called Belief fusion [20]. Multi-
ple distinct agents, denoted A1, A2, ... AN , can produce different
and possibly conflicting opinionswA1

X ,wA2
X ,...wAN

X about the same
variable X . Multi-source fusion consists of merging the different
sources into a single source that can be denoted ⋄(A1,A2, ...,AN),
and mathematically fusing their opinions into a single opinion
denotedw⋄(A1,A2, ...,AN)

X .
Subjective logic provides a variety of operators, generalizing

and extending operators from binary logic and probability calculus,
including different belief fusion operators: averaging belief fusion,
cumulative belief fusion, weighted belief fusion, consensus & compro-
mise fusion, and belief constraint fusion [33]. Each of these fusion
operations is designed to determine the shared belief and uncer-
tainty of a group of evidence sources, with different applications
depending on how evidence should be combined.

In the rest of the section, we detail on the Cumulative Belief
Fusion and Consensus & Compromise Fusion operators, which we
have experimented with in the running example.

Cumulative Belief Fusion (CBF). CBF is suitable when it is as-
sumed that the amount of independent evidence increases with
the inclusion of more independent sources [20, 22]. If no dogmatic
opinion is present, CBF cumulates the evidence parameters of all
opinions. Alternatively, only dogmatic opinions are considered in
the cumulation of evidence. Vacuous opinions have no influence
on the result. Applying CBF to non-conflicting, uncertain opinions
reduces the uncertainty of the resulting opinion. On the other hand,
applying CBF to conflicting opinions with the same uncertainty
mass has the effect of canceling them out. The CBF operator is
associative, commutative, and non-idempotent. The last property
means that the fusion of equal opinions will in general produce an
opinion that is different from the initial ones.

Consensus & Compromise Fusion (CCF). CCF is suitable when
there is a need for keeping shared beliefs from different sources
and transforming conflicting beliefs into compromise belief [20].
Conflict resolution is achieved by first computing a consensus, con-
serving the agreed weight of all sources, and then computing a
weighted compromise for the residue belief mass based on the rela-
tive uncertainty and the corresponding base rates [33]. Similar to
CBF, vacuous opinions are neutral elements in CCF fusion. Con-
trary to CBF though, CCF is idempotent, meaning that fusing equal
opinions produces the same opinion. Technically, the calculation
of CCF consists of three phases, namely the consensus phase, the
compromise phase, and the normalization phase[22, 33].

Illustration on the Running Example. The different robots in our
running example are the agents that hold independent opinions

SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea Petrovska et al.

Robot N

Managed System

Adaptation logic

Context

Executor

…

Planner

Knowledge

Context model@RT Robot model@RT

Analyzer

Knowledge

aggregation

Robot 2

Managed System

Executor

Robot 1

Managed System

Executor

(1) Partially observe the

context and create

subjective opinion

(2) Create knowledge by

aggregating the subjective

opinions

(3) Update the context model

accordingly to the

aggregated knowledge

(4) Forward the Knowledge to

the Planner

(5) Create plan

(6) Execute actions

(1) (1) (1)

(2) (2)

(3) (4)

(6) (6) (6)

Cleaning Controller

Monitor

Subjective

opinion

creation

Monitor

Subjective

opinion

creation

Monitor

Subjective

opinion

creation

(2) (5)(5)(5)

Figure 2: Overview of the approach.

about the cells that they observe being dirty or not. CBF is known
to be well suited for fusing opinions coming from sensor-generated
evidence [22], while CCF is well suited for fusing opinions coming
from different experts. Both operators can be used in the running
example, since they can cope with shared beliefs (e.g. robots de-
tecting dirt in a cell with low confidence), conflicting beliefs (e.g.
when a robot detects dirt in a cell due to sensor noise while another
does not), and vacuous opinions (e.g. a robot does not observe a
cell at all since it is out of its LIDAR range). Choosing CCF over
CBF allows us to better deal with totally conflicting opinions at the
cost of higher uncertainty in the merged opinion.

4 APPROACH
4.1 Overview of the Approach

Our approach assumes that there are several MAPE-K loops in
the adaptation logic of the SACPS under study and that the MAPE-K
loops are structured accordingly to the Master-Slave pattern [36].
In particular, there are several decentralized Monitor and Execute
components, and single centralized Analysis and Plan components,
as depicted in the overview of the approach in Figure 2.

Monitor.Monitor components belong to the lower-level MAPE-K
loops. They make independent observations about the SACPS itself
and the context in which the SACPSs operate. These observations
are partial—only cover part of the context, and incorrect—they may
includemistakes due to sensor noise and inaccuracies. EachMonitor
has a Subjective Opinion Creator entity, which is responsible for
creating Subjective Logic opinions from each agent about different
context variables. Once the Subjective Logic opinions are created,
they are independently forwarded to the Analysis component. The
Subjective Opinion Creator is further explained in Section 4.2.
Running example. Each robot in our running example represents a
monitor component. It periodically senses its own position and the
presence of dirt tasks in the room. Its observations are both partial,
due to limited range of its LIDAR sensors, and sometimes incorrect,
due to noise in its LIDAR sensors. For illustration, Figure 3 shows

that each robot, at a point in time, can only observe part of the
context.

Analysis. The analyzer is a centralized component in our ap-
proach that collects the Subjective Logic Opinions from the dis-
tributed Monitor components and updates the run-time context
model in the Knowledge component. In particular, the Knowledge
Aggregator entity is responsible for combining the opinions from
different agents about different context variables using a Subjective
Logic operator.
Running example. In our running example, the Analyzer is a com-
ponent housed in Cleaning Controller. It aggregates the partial
observations by fusing the opinions made by robots for the cells that
they are observing. The Knowledge Aggregator is further explained
in Section 4.3.

Plan. The Planner is another centralized component in our ap-
proach that is responsible for selecting adaptation actions or plans,
which are later being executed by each lower-level MAPE-K loop.
We assume that the Planner relies on the run-time context model
represented by the context variables, upon which agents issue opin-
ions in the previous step. However, we do not prescribe how to
perform planning: any planning approach (e.g., rule-based, goal-
oriented) can be used within our approach.
Running example. In our running example, the Planer is also part of
the centralized Cleaning Controller. It takes as input the aggre-
gated knowledge in terms of fused opinions about the appearance of
dirt tasks in the cells. The discovered, unassigned tasks are assigned
to the robots, as exlained in Section 2.

Execute. Executor components belong to the lower-level MAPE-
K loops. They obtain adaptation actions or plans from the Planner
of the higher-level MAPE-K loop and independently execute them.
Running example. In the running example, each robot represents
an Executor component. It keeps a self-adaptive priority queue of
the locations of the dirt tasks that a robot needs to accomplish. The
queues of the robots are modified at run-time, based on the distance
of the robot closest to the newly appeared cleaning task. As long

Knowledge Aggregation with Subjective Logic SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea

D
r

R1

R2

R3

𝜔1,1
𝑅𝑖

𝜔𝑖,𝑗
𝑅𝑖

Figure 3: Grid map and partial context observation

as there are tasks in its queue, each robot picks the next task and
navigates autonomously to the corresponding cell to clean the task.

4.2 Subjective Opinion Creator
A robot R issues a subjective opinion wR

i, j for each cell (i, j) in
the grid map that it is within its detection range r (Figure 3). This
opinion depends on the Euclidean distance D of the cell from the
robot andmodels whether that cell contains dirt or not. In particular,
the parameters of an opinionwR

i, j = (bX ,dX ,uX ,aX) are calculated
by the following formulas:

bX =

{
1 − uX , for X = dirt
0.0,otherwise dX =

{
1 − uX , for X = no_dirt
0.0,otherwise

uX =min(0.99, D
r
) aX = 1/2

The further a cell is from the robot, the higher the uncertainty
mass uX of the robot’s opinion. Observations at the edge of LI-
DAR sensor range are considered highly uncertain, but can still
contribute during knowledge aggregation; hence, we assign an un-
certainty value of 0.99 instead of a totally uncertain opinion (i.e.,
uX = 1). If a robot detects dirt on a cell, the belief mass bX be-
comes the complement of uX and the disbelief mass dX for that cell
becomes zero. On the contrary, if no dirt is detected, bX becomes
zero and dX becomes the complement of uX . The base rate aX is
always considered to be the default base rate for a binary domain,
i.e. aX = 1/2. Finally, no subjective opinions are issued for (i) cells
which are occupied by static obstacles (e.g. walls) since these are
assumed to be accurately detected, (ii) cells that lie outside of the
detection range of the robot.

4.3 Knowledge Aggregator
When the system is first initialized, the run-time context model

does not contain information that the Analyzer can use to carry out
its tasks. We model this situation by creating a vacuous subjective
opinion for each cell of the context grid map. This initialization
serves two purposes in our subjective logic approach: (1) a vac-
uous opinion will inform the analyzer that there is no previous
knowledge about a context variable and (2) when the first knowl-
edge aggregation is executed, the existing vacuous opinions do not
influence in the final result.

No conflict Conflicting observations
Opinion Inputs Aggregation Inputs Aggregation

R1 R2 CBF CCF R1 R2 CBF CCF
bx 0.630 0.010 0.631 0.634 0.000 0.010 0.004 0.004
dx 0.000 0.000 0.000 0.000 0.630 0.000 0.628 0.630
ux 0.370 0.990 0.369 0.366 0.370 0.990 0.369 0.366
ax 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
P(x) 0.815 0.505 0.816 0.817 0.185 0.505 0.188 0.187
Table 1: Knowledge aggregation of two robots’ observations

The knowledge aggregation takes place each time a robot in-
forms the Knowledge Aggregator of a made partial observation of
the context. For the cells covered in the partial observation, subjec-
tive opinions are issued. Additionally, the Knowledge Aggregator
extracts the previously-stored opinions for the corresponding cells
from the Knowledge. For each cell, both opinions are then fused
and aggregated, and the run-time context model in the Knowledge
is updated accordingly. This process is executed with the same
frequency for all the robots scanning their surrounding area.

This aggregation step aims to solve potential conflicting ob-
servations, and at the same time, increase the confidence of the
observations, according to the chosen subjective logic operator.

As an example, let us consider the situation illustrated in Fig-
ure 3, where robots R1 and R2 hold overlapping partially observed
contexts and a dirt cell (depicted with a yellow star) is detected.
When the knowledge aggregator receives the independent partial
observations sent by the robots, it initiates the aggregation process.
Let us further consider two different scenarios: (1) R1 and R2 detect
dirt in the same cell and, (2) R1 does not detect dirt but R2 does.
Using the formulas described in Section 4.2, Table 1 shows the cal-
culated opinions for both scenarios, and the knowledge aggregation
results using CBF and CCF operators.

In both scenarios, we observe improvement in the confidence
of the aggregated observations, i.e., the uncertainty mass in the
aggregated opinion decrease compared to the individual uncertainty
masses of each robot’s opinion (blue cells in Table 1). However,
in the presence of conflicting observations, the resulting belief
masses reflect a consensus and compromise of the individual robots’
opinions (yellow cells in Table 1); this compromise belief is reflected
in the expected probability P(x) calculated as explain in Section 3.1.
The resulting P(x) of the aggregated opinions is then used by the
Analyzer to decide when the detected dirt should be considered as
a goal to be assigned to one of the participating robots.

5 IMPLEMENTATION
In this section, we discuss the implementation of our testbed

based on the reference problem, which was previously described in
Section 2. Robotics is an inherently complex domain, particularly
when considering not only one but multiple agents. So merely
creating and setting up a realistic multi-robot system presents a
challenge by itself. By providing a simulated, yet physically correct
representation of the robots with their sensors and actuators, and
the context where they are operating, our current implementation
provides a foundation for various applications and experiments,
which can also be easily modified accordingly to the individual
needs of other researchers.

SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea Petrovska et al.

Figure 4: Result for a simulation of 2 robots with and with-
out knowledge aggregation.

In our implementation, the entire communication is based on the
Robot Operating System (ROS). For simulating the robotics system
we use Gazebo [1, 24], and the robots we simulate are TurtleBot
3 Burger1. With our implementation, one can simulate as many
robots, as long the number of robots makes sense in the given room.
Additionally, different room maps, from the one currently consid-
ered in our system, can be used. Gazebo relies on a well-established
physics engines, which enables high physical [10], functional [2]
and visual [31] fidelity. Simulations with high fidelity closely resem-
ble the real world, meaning that the model and even the physics
of the robots, the environment, including the static and dynamic
objects are simulated as realistically as possible. The use of ROS al-
lows the system to be deployed on real, physical robots without any
modification. The source code of the implementation, together with
complete documentation, and installation instructions are avail-
able on the following link: https://github.com/squijanor/knowledge-
aggregation-subjective-logic.git. For subjective logic, we have used
an open-source Java library2.

6 PRELIMINARY EXPERIMENTS
6.1 Setup

The testbed provides a simulation of n robots deployed in a room
spanning 10 x 10m. To evaluate the knowledge aggregation ap-
proaches, we conducted five series of experiments, 10 minutes each.
For the simulation of the appearance of new tasks, we used a ran-
dom seed in each experiment, and to guarantee a better replication
of the test scenarios, we used a fixed frequency with which the new
tasks are created. We compare these results with a base scenario
without knowledge aggregation. In this scenario, the Cleaning
Controller does not aggregate nor solve conflicts in the observa-
tions made by different robots; instead, it proceeds to create goals
directly from the observations received from every individual robot.
This might result in goals at locations where dirt tasks do not exist
or locations that are different from the real locations of the tasks.

6.2 Preliminary Results
Figure 4 shows first results from experiments comparing no ag-

gregation, and aggregation with CBF and CCF. CBF requires the

1https://www.turtlebot.com/
2https://github.com/vs-uulm/subjective-logic-java

fusion of different sources to increase the confidence in the obser-
vations, whereas CCF trades-off conflict resolution for a higher
uncertainty in the merged result. We used 0.5 as expected probabil-
ity threshold in the aggregated subjective opinions to determine
when the detected task should be assigned as a goal to a robot. By
adjusting this parameter, the effect on the discovery time can be
controlled. In our first experimental results, we see that the discov-
ery time increases for both CBF and CCF. This is expected, since
they need more evidence (and hence time) to create cleaning goals.
The attainment time is roughly the same in all cases.

7 RELATEDWORK
Models@RuntimeModels@Runtime [5, 6, 15, 34] are a promis-

ing approach to managing complexity in run-time environments,
based on software models. They are considered as adaptation mech-
anisms, or rather support for realizing self-adaptive systems. Ac-
cording to [6] the run-timemodels provide “abstractions of run-time
phenomena” and they can be used in a various ways by different
stakeholders. Additionally, the models should represent the system
by reflecting the system and its current state and behavior. Namely,
if the underlying system changes, then the representations of the
system—the models—should also change. Floch et al. in [15] and
Bennaceur et al. in [5] identify the need for mechanisms to reason
about the system and its environment in models@runtime, without
proposing any concrete solution.

Uncertainties in Self-adaptive systems.The term uncertainty
has been broadly discussed across many disciplines and sciences.
However, in the field of self-adaptive systems, uncertainties have a
central role as the main triggers for a system to self-adapt so that
the business continuity of the system can be preserved during run-
time. Across the literature, there have been many proposed works
that have tried to understand the scope and the effects that the
uncertainties have on the dynamic systems[8, 14, 16, 25, 26, 30, 35].
Ramirez et al. [30] classify uncertainties on three different levels,
based on the uncertainties’ sources: uncertainties on the require-
ment level, design level and runtime level. According to the authors,
the potential sources of runtime uncertainties are mainly related to
interactions between the system and its context, including sensor
noise, inaccuracy of sensor measurements, or an unpredictable sys-
tem environment. Besides the proposed mitigation techniques for
unpredictable environment [3, 7, 9, 17, 37], sensor failure [7, 17]
and incomplete information [4, 9, 37], there are no identified tech-
niques to mitigate the rest of the run-time uncertainties including
sensor noise, sensor imprecision and inconsistency [30]. We hope
that with the proposed approach in this paper, we are contributing
towards narrowing this gap.

8 CONCLUSION
In this paper, we propose an approach that uses subjective logic

to collaboratively aggregate the partial observations of the con-
text made by each CPS (robot) in a multi-agent setup. Based on
the aggregated observations, we accordingly update the run-time
context model of the context in the knowledge of the adaptation
logic, which is later utilized by the adaptation logic to analyze and
plan the next adaptation actions.

Knowledge Aggregation with Subjective Logic SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea

Through preliminary experiments, we demonstrated that Subjec-
tive logic is a flexible framework to merge knowledge from different
agents. The provided testbed sets the basis to experiment with dif-
ferent methods for knowledge aggregation. In this work we only
evaluated the application of CBF and CCF operators. In future work,
we plan to evaluate the remaining set of operators, which will pro-
vide a complete insight into the full capabilities of subjective logic
as a means for knowledge aggregation. Also, to guarantee the inter-
nal validity of our testbed, we will conduct different and multiple
trials to determine the statistical soundness of our results. Namely,
we plan to increase the number of experiments, testing different
room distributions and the simulation of multiple robots.

ACKNOWLEDGMENTS
This research has in part been funded by the German Federal

Ministry of Education and Research under the grants no. 01IS16043A.

REFERENCES
[1] Carlos E. Aguero, Nate Koenig, Ian Chen, Hugo Boyer, Steven Peters, John Hsu,

Brian Gerkey, Steffi Paepcke, Jose L. Rivero, Justin Manzo, Eric Krotkov, and Gill
Pratt. 2015. Inside the Virtual Robotics Challenge. 12 (2015), 494–506. Issue 2.
https://doi.org/10.1109/TASE.2014.2368997

[2] John A. Allen, Robert T. Hays, and Louis C. Buffardi. 1986. Maintenance Training
Simulator Fidelity and Individual Differences in Transfer of Training. 28 (1986),
497–509. Issue 5. https://doi.org/10.1177/001872088602800501

[3] Luciano Baresi, Liliana Pasquale, and Paola Spoletini. 2010. Fuzzy goals for
requirements-driven adaptation. In 2010 18th IEEE International Requirements
Engineering Conference. IEEE, 125–134.

[4] Nelly Bencomo, Jon Whittle, Pete Sawyer, Anthony Finkelstein, and Emmanuel
Letier. 2010. Requirements reflection: requirements as runtime entities. In 2010
ACM/IEEE 32nd International Conference on Software Engineering, Vol. 2. IEEE,
199–202.

[5] Amel Bennaceur, Robert France, Giordano Tamburrelli, Thomas Vogel, Pieter J
Mosterman, Walter Cazzola, Fabio M Costa, Alfonso Pierantonio, Matthias Tichy,
Mehmet Akşit, et al. 2014. Mechanisms for leveraging models at runtime in
self-adaptive software. In Models@ run. time. Springer, 19–46.

[6] Gordon Blair, Nelly Bencomo, and Robert B France. 2009. Models@ run. time.
Computer 42, 10 (2009), 22–27.

[7] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger
Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. 2009. Engi-
neering self-adaptive systems through feedback loops. In Software engineering
for self-adaptive systems. Springer, 48–70.

[8] Javier Cámara, David Garlan, Won Gu Kang, Wenxin Peng, and Bradley Schmerl.
2017. Uncertainty in Self-Adaptive Systems Categories, Management, and Per-
spectives. (2017).

[9] Betty HC Cheng, Pete Sawyer, Nelly Bencomo, and Jon Whittle. 2009. A goal-
based modeling approach to develop requirements of an adaptive system with
environmental uncertainty. In International Conference on Model Driven Engineer-
ing Languages and Systems. Springer, 468–483.

[10] Jeff Craighead, Robin Murphy, Jenny Burke, and Brian Goldiez. 2007. A Survey
of Commercial & Open Source Unmanned Vehicle Simulators. In Proceedings of
the 2007 IEEE International Conference on Robotics and Automation. IEEE, 852–857.
https://doi.org/10.1109/ROBOT.2007.363092

[11] Rogério De Lemos, David Garlan, Carlo Ghezzi, Holger Giese, Jesper Andersson,
Marin Litoiu, Bradley Schmerl, Danny Weyns, Luciano Baresi, Nelly Bencomo,
et al. 2017. Software engineering for self-adaptive systems: Research challenges
in the provision of assurances. In Software Engineering for Self-Adaptive Systems
III. Assurances. Springer, 3–30.

[12] Rogério De Lemos, Holger Giese, Hausi A Müller, Mary Shaw, Jesper Andersson,
Marin Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M Villegas, Thomas Vogel,
et al. 2013. Software engineering for self-adaptive systems: A second research
roadmap. In Software Engineering for Self-Adaptive Systems II. Springer, 1–32.

[13] A. P. DEMPSTER. 1968. A Generalization of Bayesian Inference Author (s):
A . P . Dempster Source : Journal of the Royal Statistical Society . Series B (
Methodological), Vol . 30 , No . 2 Published by : Wiley for the Royal Statistical
Society Stable URL : http://www.jstor.o. 30, 2 (1968), 205–247.

[14] Naeem Esfahani and Sam Malek. 2013. Uncertainty in self-adaptive software
systems. In Software Engineering for Self-Adaptive Systems II. Springer, 214–238.

[15] Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen, Ketil Lund,
and Eli Gjorven. 2006. Using architecture models for runtime adaptability. IEEE
software 23, 2 (2006), 62–70.

[16] David Garlan. 2010. Software engineering in an uncertain world. In Proceedings of
the FSE/SDP workshop on Future of software engineering research. ACM, 125–128.

[17] David Garlan, S-W Cheng, A-C Huang, Bradley Schmerl, and Peter Steenkiste.
2004. Rainbow: Architecture-based self-adaptation with reusable infrastructure.
Computer 37, 10 (2004), 46–54.

[18] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and
Donald B. Rubin. 2014. Part I Fundamentals of Bayesian Inference. In Bayesian
Data Analysis (3. ed. ed.). CRC Press, Chapter 1, 4–29.

[19] Audun Jøsang. 2001. A Logic for Uncertain Probabilities. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 9, 3 (2001), 271–311.

[20] Audun Jøsang. 2016. Subjective Logic. Springer International Publishing Switzer-
land. https://doi.org/10.1007/978-3-319-42337-1

[21] Audun Jøsang and Simon Pope. 2012. Dempster’s rule as seen by little colored
balls. Computational Intelligence 28, 4 (2012), 453–474. https://doi.org/10.1111/j.
1467-8640.2012.00421.x

[22] Audun Josang, Dongxia Wang, and Jie Zhang. 2017. Multi-source fusion in
subjective logic. 20th International Conference on Information Fusion, Fusion 2017
- Proceedings (2017). https://doi.org/10.23919/ICIF.2017.8009820

[23] JeffreyO. Kephart andDavidM. Chess. 2003. The Vision of Autonomic Computing.
Computer 36, January (2003), 41–50. https://doi.org/10.1046/j.1365-2745.2002.
00730.x arXiv:arXiv:astro-ph/0005074v1

[24] Nathan Koenig and Andrew Howard. 2004. Design and Use Paradigms for
Gazebo, An Open-Source Multi-Robot Simulator. In 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).
IEEE, 2149–2154. https://doi.org/10.1109/IROS.2004.1389727

[25] Sara Mahdavi-Hezavehi, Paris Avgeriou, and Danny Weyns. 2017. A classifica-
tion framework of uncertainty in architecture-based self-adaptive systems with
multiple quality requirements. In Managing Trade-Offs in Adaptable Software
Architectures. Elsevier, 45–77.

[26] Diego Perez-Palacin and Raffaela Mirandola. 2014. Uncertainties in the modeling
of self-adaptive systems: A taxonomy and an example of availability evaluation.
In Proceedings of the 5th ACM/SPEC international conference on Performance
engineering. ACM, 3–14.

[27] Ana Petrovska and Alexander Pretschner. 2019. Learning Approach for Smart
Self-Adaptive Cyber-Physical Systems. In 2019 IEEE 4th International Workshops
on Foundations and Applications of Self* Systems (FAS* W). IEEE, 234–236.

[28] Mariachiara Puviani, Giacomo Cabri, and Franco Zambonelli. 2013. A taxon-
omy of architectural patterns for self-adaptive systems. In Proceedings of the
International C* Conference on Computer Science and Software Engineering. ACM,
77–85.

[29] Federico Quin, Thomas Bamelis, Singh Buttar Sarpreet, and Sam Michiels. 2019.
Efficient analysis of large adaptation spaces in self-adaptive systems using ma-
chine learning. In 2019 IEEE/ACM 14th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE, 1–12.

[30] Andres J Ramirez, Adam C Jensen, and Betty HC Cheng. 2012. A taxonomy
of uncertainty for dynamically adaptive systems. In Proceedings of the 7th In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems. IEEE Press, 99–108.

[31] Edward J. Rinalducci. 1996. Characteristics of Visual Fidelity in the Virtual
Environment. 5 (1996), 330–345. Issue 3. https://doi.org/10.1162/pres.1996.5.3.330

[32] Glenn Shafer. 1976. A mathematical theory of evidence. Princeton University
Press (1976).

[33] Rens W. Van Der Heijden, Henning Kopp, and Frank Kargl. 2018. Multi-Source
Fusion Operations in Subjective Logic. 2018 21st International Conference on
Information Fusion, FUSION 2018 (2018), 1990–1997. https://doi.org/10.23919/
ICIF.2018.8455615 arXiv:arXiv:1805.01388v1

[34] Thomas Vogel, Andreas Seibel, and Holger Giese. 2010. The role of models and
megamodels at runtime. In International Conference on Model Driven Engineering
Languages and Systems. Springer, 224–238.

[35] Kristopher Welsh and Pete Sawyer. 2010. Understanding the scope of uncer-
tainty in dynamically adaptive systems. In International Working Conference on
Requirements Engineering: Foundation for Software Quality. Springer, 2–16.

[36] Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Miran-
dola, Christian Prehofer, Jochen Wuttke, Jesper Andersson, Holger Giese, and
Karl M. GÃűschka. 2013. On Patterns for Decentralized Control in Self-Adaptive
Systems. In Software Engineering for Self-Adaptive Systems II: International Semi-
nar, Dagstuhl Castle, Germany, October 24-29, 2010 Revised Selected and Invited
Papers, RogÃľrio de Lemos, Holger Giese, Hausi A. MÃĳller, and Mary Shaw
(Eds.). Springer, Berlin, Heidelberg, 76–107. https://doi.org/10.1007/978-3-642-
35813-5_4

[37] JonWhittle, Pete Sawyer, Nelly Bencomo, Betty HCCheng, and Jean-Michel Bruel.
2009. Relax: Incorporating uncertainty into the specification of self-adaptive
systems. In 2009 17th IEEE International Requirements Engineering Conference.
IEEE, 79–88.

7 Run-time Reasoning from Uncertain
Observations with Subjective Logic in
Multi-Agent Self-Adaptive
Cyber-Physical Systems

On Engineering Self-Adaptive Cyber-Physical Systems

Gap 1 Gap 2 Gap 3

C2 Systematic literature
review on self-adaptive

systems

C3 Formal definition of
system adaptation and self-

adaptive systems

C4 Logical
architecture for

engineering
(MA-)SACPSs

C5 Methodology for
knowledge representation

and run-time reasoning
under uncertainties in

(MA-)SACPSs

C6 Model problem,
ROS-based robotics system and evaluation framework

Part 1: Theoretical Foundations
Part 2: On Engineering Self-Adaptive CPSs in Dynamic

and Uncertain Context

P2

P3

P3 P4 P5

P3 P4 P5

C1 A taxonomy of
autonomous systems

P1

Figure 7.1: Mapping of Gaps, Contributions and Publications to the structure of this thesis.

Summary: In this section, we build on our previous work from Chapter 6, in which we
introduced 1) the idea of knowledge aggregation and reasoning with SL, 2) the conceptual-
ization of the methodology for knowledge and uncertainties representation in self-adaptive
systems and 3) the preliminary results. Concretely, in this paper, we further detail and
develop our methodology and the implementation of the robotics system and extensively
evaluate our fully developed approach. Hence, we address the limitations from Chapter 6,
and some of the limitations of the SL that we discovered during the initial evaluations
while working on this paper. The problem and the gap that this paper contributes to
remain the same as in Chapter 6.

Method/Solution: As part of the paper, we propose two additional solutions that
contribute towards the fully developed SL-based methodology for knowledge and uncertainty
representation and reasoning under uncertainties in self-adaptive CPSs. The proposed

111

7 Run-time Reasoning from Uncertain Observations with Subjective Logic in Multi-Agent
Self-Adaptive Cyber-Physical Systems

solutions in this paper extend the methodological and technical solutions that we previously
proposed in Chapter 6. The first solution in this paper is a technical solution, in which we
extend the implementation of the robotics system, concretely the implementation of the
sensing, to support various run-time uncertainties as discussed in Section 2.1. Additionally,
our results from the initial evaluation of the fully developed robotics system showed that
none of the original operators for information fusion originally proposed by the SL supports
(cf. Section 2.3.3) a long-term knowledge aggregation. In response, as a second solution,
we propose a new SL fusion operator, which we named Combination Scheme.

Results: We identify three research questions that guide our evaluation. In the first
research question, we investigate the feasibility of different SL fusion operators (i. e.,
aggregation schemes) for knowledge aggregation. We initially aimed to evaluate our
proposed approach using either CBF or CCF as SL fusion operators. However, our initial
evaluation, conducted as part of this paper, showed that none of the SL operators is capable
of providing long-term, real-time knowledge aggregation. To show this, we conducted
analytical and empirical evaluations. In the second research question, we evaluate the
effectiveness of the best aggregation scheme on the core research problem. In other
words, mitigating uncertainties from various uncertain, faulty, and potentially conflicting
observations by the CPSs based on which the knowledge in the adaptation logic of the self-
adaptive CPSs is modified and updated during run-time. Our results have shown that our
approach is capable of correcting the observations of a faulty CPS. And finally, in the third
research question, we investigate the sensitivity of the approach to the main parameter for
deciding when the knowledge in the adaptation logic is updated—the expected probability
of the context variables. With the results from our evaluation, we validated the indication
from the preliminary results from Chapter 6 and showed a clear trade-off between the
number of tasks completed and the accuracy of the CPSs.

Contribution: In this work, we propose a fully developed domain-independent method-
ological approach for knowledge and uncertainty representation and knowledge aggregation
and reasoning of decentralized monitoring in (MA-)SACPSs that inherently produce uncer-
tain, faulty, and potentially conflicting observations. Our proposed methodology allows to
efficiently capture and mitigate uncertainty at run-time, based on which the knowledge
(i. e., the models) in the adaptation logic is updated during run-time to accurately reflect
the actual state of the context and the CPSs during the operation of the self-adaptive CPSs.
Our methodological contribution is additionally supported by a technical contribution from
the robotics domain. Concretely, an open source implementation of an in-house ROS-based
multi-robot system, which as part of this paper acted as a testbed for experimentation
with all the run-time uncertainties from Section 2.1, except for the effectors, which are out
of the scope of this dissertation.

With the overall contributions in Chapters 6 and 7, we showed the applicability of the
theory of the SL in practice. However, with the evaluation as part of this paper, we have
also shown that none of the original SL fusion operators support long-term knowledge
aggregation. In response, we have proposed a new SL fusing operator, which is another

112

contribution as part of this paper.

Limitations: In this paper, although we evaluated the feasibility of different SL ag-
gregation schemes, the effectiveness of our newly proposed aggregation scheme and the
sensitivity of the proposed approach, we did not evaluate system adaptation according to
the Definition 1 and the proposed Quality Function from Chapter 5.

Author Contribution: A. Petrovska identified the limitations of the preliminary results
(see Chapter 6), precisely the limitations of the previous implementation of the system,
based on which she identified the problem statement and the overall objective of this paper.
A. Petrovska designed the initial draft of the solution, which M. Neuss implemented. A.
Petrovska designed the experiments and M. Neuss conducted the experiments, and both
authors jointly analysed the obtained results. The paper was written by A. Petrovska. I.
Gerostathopoulos and A. Pretschner provided review and editing on the final drafts of the
paper.

Copyright Note: © 2021 IEEE. Reprinted, with permission, from Ana Petrovska, Malte
Neuss, Ilias Gerostathopoulos, Alexander Pretschner, Run-time Reasoning from Uncertain
Observations with Subjective Logic in Multi-Agent Self-Adaptive Cyber-Physical Systems,
16th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), May 2021.

On the following pages, the accepted version of the article is reprinted in accordance to the
IEEE rights for using an entire copyrighted paper in a dissertation. The official published
version of the paper can be found with the following DOI: 10.1109/SEAMS51251.2021.00026.

113

https://doi.org/10.1109/SEAMS51251.2021.00026

Run-time Reasoning from Uncertain Observations
with Subjective Logic in Multi-Agent Self-Adaptive

Cyber-Physical Systems
Ana Petrovska, Malte Neuss
Technical University of Munich

Munich, Germany
petrovsk@in.tum.de, neuss@in.tum.de

Ilias Gerostathopoulos
Vrije Universiteit Amsterdam

Amsterdam, Netherlands
i.g.gerostathopoulos@vu.nl

Alexander Pretschner
Technical University of Munich

Munich, Germany
pretschn@in.tum.de

Abstract—Modern society has become increasingly reliant
on the omnipresent cyber-physical systems (CPSs), making it
paramount that the contemporary autonomous and decentralized
CPSs (e. g., robots, drones and self-driving cars) act reliably
despite their exposure to a variety of run-time uncertainties. The
sources of uncertainties could be internal, i. e., originating from
the systems themselves, or external—unpredictable environments.
Self-adaptive CPSs (SACPSs) modify their behavior or structure
at run-time in response to the uncertainties mentioned above. The
adaptation relies on gained knowledge from the observations that
the SACPSs make during their operation. As a result, to build
the knowledge, the need for run-time observations aggregation
and reasoning emerges since the observations made by decen-
tralized CPSs are uncertain, partial, and potentially conflicting.
In response, in this paper, we propose a novel methodological
approach for deriving or aggregating knowledge from uncertain
observations in SACPSs utilizing the Subjective Logic. The
effectiveness of the proposed approach is demonstrated through
extensive evaluation on an in-house, multi-agent system from the
robotics domain.

Index Terms—uncertainties, subjective logic, knowledge aggre-
gation, self-adaptive systems, cyber-physical systems

I. INTRODUCTION

Cyber-physical systems (CPSs) are software-intensive sys-
tems that control, communicate, and coordinate various pro-
cesses in the physical and the digital worlds. Over the
past decades, the boundary between the digital and physical
has become increasingly blurry, accompanied by the rising
prominence of CPSs. This process was further accelerated
by the rapidly decreasing costs of embedded systems, which
ultimately led to the omnipresence of CPSs as seen today.
Nowadays, CPSs come in all shapes and sizes with applica-
tions as diverse as self-driving cars, smart homes, and entire
robotic fleets, including autonomous robots and UAVs [6, 18].

As modern society increasingly relies on CPSs, these sys-
tems must act reliably even when faced with different run-time
uncertainties. For instance, internal system uncertainties, i. e.,
different software or hardware faults and failures, as well as
external uncertainties, e. g., uncertain and changing environ-
ments or execution contexts [21, 24, 28] in which the systems
operate. Further, due to the limited range of their sensors,
CPSs can only observe their context partially, which introduces

another uncertainty dimension in the systems. A common
approach to deal with uncertain and changing conditions at
run-time while preserving the system’s performance is to make
CPSs self-adaptive.

In architecture-based self-adaptation [8, 12, 17, 40], a self-
adaptive system—including self-adaptive CPS (SACPS)—is
comprised of a managed element and an adaptation logic.
The managed element can be either a software system or
a CPS. If the SACPS consists of multiple autonomous and
decentralized CPSs (i. e., managed elements), we refer to it
as a Multi-Agent SACPS (MA-SACPS). On the other hand,
the adaptation logic gives the managed element the ability to
self-adapt and is commonly implemented using the MAPE-K
feedback loop [17, 31, 32]. MAPE-K relies on four separate
modules that Monitor, Analyse, Plan and Execute adaptations
based on a shared Knowledge element. Furthermore, every
system operates in a context. The context is the relevant part
of the environment that can be observed, but not controlled.
The knowledge (K) should keep models of both (1) the context
in which the CPSs are operating, and (2) the CPSs themselves.
These models should be continuously updated at run-time to
reflect the dynamic changes in both the context and the CPSs;
therefore, they need to be models at run-time (models@RT).

Models@RT [3, 4, 10, 38] are a promising approach for
managing complexity at run-time, also considered as adapta-
tion mechanisms for realizing self-adaptive systems. In past
efforts, Floch et al. [10] and Bennaceur et al. [3] have
identified the need for reasoning mechanisms as part of the
models@RT, based on which the models are updated; however,
no concrete solutions have been proposed. Concretely, the
authors recognize as open research challenges: 1) the need for
creating run-time models, and updating them in response to
changes in the system and system’s context; and 2) the need for
reasoning (i. e., information or knowledge aggregation) based
on which the models are updated.

Problem. MA-SACPSs are exposed to a variety of run-time
uncertainties resulting in inaccurate and partial observations,
which potentially lead to conflicting observations made by
different CPSs. This can impact the overall performance of the
adaptive system. Consequently, there is a need for reasoning

1

by effectively aggregating the different observations before
updating K. This can be seen as an uncertainty resolution
strategy applied at run-time.

Gaps. Although knowledge representation, aggregation and
reasoning are essential for building MA-SACPSs [41], there is
a scarcity of approaches for modeling K that allow capturing
uncertain and conflicting observations from multiple, decen-
tralized CPSs, to effectively aggregate the observations and
eventually update the K. Additionally, in prior works, knowl-
edge modeling has been typically treated as a domain-specific
task [11], leading to ad-hoc solutions to its aggregation.

Solution. In this paper, we present a methodological ap-
proach for knowledge aggregation and reasoning in MA-
SACPSs that is domain-independent and can deal with rea-
soning on uncertain, partial, and conflicting observations.
Concretely, our approach uses Subjective Logic (SL) [14, 15]
to update the knowledge in the adaptation logic at run-time by
aggregating observations of the context made by each CPSs
in a MA-SACPSs.

Contribution. Building on our previous work in which we
introduced the idea of knowledge aggregation via Subjective
Logic [25], in this paper we detail and extensively evaluate our
fully developed approach. Succinctly, we make the following
contributions:

(i) We present our fully developed SL-based approach for
knowledge aggregation and reasoning in MA-SACPSs.

(ii) We provide an open-source implementation of a in-house
ROS-based multi-robot system, which acts as a testbed
for different scenarios involving uncertain and conflicting
observations in the robotics domain.

(iii) We evaluate the effectiveness and sensitivity of the pro-
posed SL-based approach through extensive controlled
experiments.

Organization. In Section II we describe the class of use
cases from the CPSs domain to which our approach is appli-
cable, and a use case instantiation used as a running example
throughout the rest of the paper. Section III summarizes
the necessary background, before giving an overview of the
approach in Section IV. In Section V we briefly describe the
implementation of the approach, followed by the evaluation
in Section VI. Section VII discusses related work, before
concluding the paper in Section VIII.

II. USE CASE

A. Class of Use Cases
Our proposed solution applies to any use case where multi-

ple CPSs need to collaborate and coordinate processes assum-
ing decentralized, partial and uncertain monitoring and central-
ized analysis. For example, mobile CPSs that autonomously
traverse an environment to discover and attain tasks (e. g.,
robots or drones), or stationary agents that might have over-
lapping ranges of sensing (e. g., radio antennas). The CPSs
could operate in two-dimensional (e. g., robots, self-driving
cars) or three-dimensional environments (e. g., drones, UAVs).
The dimension of the environment consequently defines how
the context is modeled.

The complex and heterogeneous nature of CPSs of-
ten requires the SACPS to consist of multiple MAPE-K
loops [25, 27, 41]. The use of multiple, interconnected MAPE-
K loops leads to numerous challenges, one of which is
the coordination of the control loops [39]. One possible
solution is the use of design patterns [41] for distributed
self-adaptive systems. In our paper, we assume that the
considered CPSs are capable of independently monitoring
the context in which they operate and simultaneously exe-
cute actions, i. e., performing the M and E phases of the
MAPE-K on a local level. The decentralized phases of the
MAPE-K inside the managed elements (the CPSs) are con-
trolled by a single, centralized instance of planning (P),
analysis (A), and knowledge (K) in the adaptation logic.

A P

K

M E

1 1

* *

Fig. 1. Master-Slave pattern
of the MAPE-K loop (updated
from [41]).

Concretely, the MAPE-K loops in-
side the adaptation logic are struc-
tured according to the Master-
Slave pattern (see Figure 1), pre-
viously proposed by Weyns [41].
To motivate the need for reason-
ing or knowledge aggregation, the
centralized MAPE-K loop needs
to reason on the uncertain, par-
tial and potentially conflicting ob-
servations made by the decentral-
ized monitoring, which, once ag-
gregated, become knowledge.

B. Running example

The running example comprises of one or multiple robots
operating in a room, in which dirt patches are continuously
spawned with unknown location patterns and frequencies. The
dirt patches represent cleaning tasks for the robots. Each robot
is able to autonomously move to its destinations (i. e., the
tasks’ locations) while avoiding 1) static obstacles (e.g., walls,
furniture, etc.), and 2) dynamic obstacles (e.g., other robots,
humans) along its way. The robots fulfill their mission by
discovering and cleaning the dirt i. e., completing the tasks
without collision. They explore the room and detect new tasks
in a distributed manner with a scanner, e. g., a LiDAR sensor.
In addition to simply keeping the room clean, we also want
to improve the performance or the quality of this cleaning
process, e. g., cleaning the room in the shortest possible time.

However, the robots are subjected to external and internal
uncertainties, manifested via the continuous appearance of
tasks in the room—with unknown location patterns and differ-
ent sensor uncertainties that cannot be anticipated during the
design of the system. Due to the technical limitations of their
sensors, the robots only monitor a limited range around them
and can discover the newly appearing tasks only if they are
within their range of observation. The partiality of the robots’
observations introduces inefficiency to the overall system
performance. Additionally, due to the sensor technology being
imprecise and faulty, each robot might mistakenly sense a dirt
task when there is none, and on the contrary, fail to sense an
actual task. This potentially results in different robots holding

2

r
R

R1

R2

R3

𝜔1,1𝐴𝑖

𝜔𝑖,𝑗𝐴𝑖
Fig. 2. Grid map and partial robots’ observations, adopted from [25]

different opinions regarding the space they observe, which
requires appropriate conflict resolution during the aggregation
process.

The partial observations made by each robot are sent
periodically to the centralized part of the adaptation logic,
for instance, a Cleaning Controller (see Figure 3), in
which the received observations are aggregated. The resulting
aggregated knowledge, in terms of the presence of dirt tasks
in the room, is the “best”, most complete representation of the
dynamic and uncertain context (i. e., the room) at a specific
time. Optimizing the collective monitoring and analysis by
obtaining the best representation of the state of the room,
allows the performance of the full MAPE-K loop to also be
improved and potentially optimized.

We model the context as a grid map with a size equal to the
room’s size (see Figure 2). A context variable (wAi

x) captures
whether a dirt task occupies a specific cell of the grid map
or not; therefore, there are as many context variables as cells
in the map of the room. The figure also shows the robots’
observation ranges and the tasks for the robots depicted in
yellow hexagons.

III. BACKGROUND

A. Run-time Uncertainties

In dynamic and adaptive systems, such as SACPSs, sources
of uncertainty occur in one of the following three phases:
requirements, design and run-time phase [30]. In this paper,
we only consider uncertainty sources that occur in the run-time
phase. We also classify the sources of run-time uncertainties
as 1) internal—originating from the self-adaptive system it-
self, i. e., sensor failure, sensor imprecision, sensor noise and
effectors, and 2) external, e. g., unpredictable environment.

In this work, we specifically focus on inaccuracy and
inconsistency (stemming from sensor failure, imprecision, and
sensor noise), and unpredictable environment. Ramirez et al.
[30] define sensor failure as “a sensor inability to measure or
report the value of a property”, while inconsistency is defined
as “two or more values of the same property that disagree with
each other”. Additionally, it is often infeasible 1) for the CPSs

to observe the complete environment (i. e., context) in which
they operate, due to the technical limitations of their sensors,
e. g., limited sensor range, and 2) for the developers of the
MA-SACPS to anticipate at system’s design all the possible
states of the context, which the systems will encounter during
its operation. Consequently, the unpredictability of the envi-
ronment will ultimately impart some partiality and uncertainty
onto the MA-SACPS through its monitoring architecture.

B. Subjective Logic

When we assume an objective world, we can use binary
logic to assert propositions about a state of the world to be
either false or true. Nonetheless, it is practically impossible to
determine with absolute certainty whether a given proposition
is true or false. Through probability calculus, which takes
argument probabilities in the range [0,1], we are able to reflect
subjectivity by allowing propositions to be partially true.
However, due to the lack of sufficient evidence, we are often
unable to estimate probabilities with confidence. Furthermore,
whenever the truth of a proposition is assessed, it is always
done by an individual, and it cannot be considered to represent
a general and objective belief. In order to reflect as faithfully
as possible the perceived world in which we are immersed, a
formalism to express degrees of uncertainty about beliefs is
needed; said formalism shall also include belief ownership to
reflect the subjective nature of beliefs [14, 15].

Subjective Logic (SL) [14, 15] is a framework for artificial
reasoning, based on probabilistic logic and Dempster-Shafer
theory of evidence [9, 33]. In recent years, SL has gained
prominence because of its capability to deal with the degree of
(un)certainty of propositions, inherently allowing 1) uncertain-
ties representation as part of the fundamental building block
of SL, called Subjective Opinions (see Section III-B1)), and
2) reasoning about the uncertainties through a process of Belief
Fusion in which multiple Subjective Opinions are aggregated
based on the selected fusion operator (see Section III-B2). For
further explanation on SL please refer to [15, 25].

1) Subjective Opinions: A subjective opinion expresses a
belief about a state variable X which takes its value from a
domain X. This domain represents all the possible states X
can be. A binary domain X = {x, x} is a type of domain
that consists of two complementary states x and x. In our
running example, the state-space is a binary domain where
the complementary states correspond to context variables
(i. e., cells) in the grid map being occupied or unoccupied
{x = occupied, x = unoccupied} by a task. If the domain
of a subjective opinion is binomial, it is called a binomial
subjective opinion. For the sake of brevity, the theoretical
discussion of subjective logic is limited to binomial subjective
opinions, as they are the only relevant in our case.

Definition 1 (Binomial Opinion [15]). Let X = {x, x} be
a binary domain with binomial random variable X ∈ X. A
binomial opinion about the truth of value X is the ordered
quadruplet wx = (bx, dx, ux, ax), where the additivity require-
ment bx + dx + ux = 1 is satisfied, and where the respective

3

parameters are defined as
bx: belief mass in support of x being true (i.e. X = x),
dx: disbelief mass in support of x being false (i.e. X = x),
ux: uncertainty mass representing the vacuity of evidence,
ax: base rate, i. e., probability of x being true without any

evidence.

Binomial opinions that have ux = 1 and ux = 0 are
referred to as a vacuous and dogmatic opinions, respectively.
The projected probability of a binomial opinion about value
x is defined by: P (x) = bx + uxax.

2) Belief Fusion: Through a process of belief fusion, mul-
tiple opinions regarding the same proposition are merged or
aggregated into a single, collective opinion. For instance, in
our running example, multiple robots R1, R2, . . . , RN issue
opinions wR1

x , wR2
x , . . . , wAN

x for the same cell x, and these
opinions need to be conveniently aggregated in a single
opinion. Belief fusion can be realized using different oper-
ators [15, 37]: averaging belief fusion, cumulative belief fu-
sion, weighted belief fusion, consensus & compromise fusion,
and belief constraint fusion operator. Each of these fusion
operators emphasizes different aspects when fusing multiple
opinions. Subsequently, the choice of the operator depends
on the aggregation’s objective. In our use-case, the observa-
tions are made independently by multiple agents; thus, their
opinions can be treated as independent pieces of evidence.
Furthermore, compromises between said opinions are desired,
such that the aggregated opinion is as accurate as possible. As
a result, we choose the Cumulative Belief Fusion (CBF) and
Consensus & Compromise Fusion (CCF) operators, although
the implementation of the approach (further explained in
Section V) supports all the other operators. In the following,
we briefly summarize the two selected fusing operators.

Cumulative Belief Fusion (CBF) treats the individual opin-
ions that are aggregated as independent pieces of evidence
for the same proposition. This cumulatively increases the
belief and/or disbelief value of the aggregated opinion while
reducing its uncertainty. It is most suitable for combining
multiple non-conflicting opinions. Namely, applying CBF to
non-conflicting, uncertain opinions reduces the uncertainty of
the resulting opinion.

Consensus & Compromise Fusion (CCF) maintains the
shared belief masses between all the aggregated opinions.
For conflicting opinions, a compromise is found, which has
increased uncertainty. This operator is helpful for identifying
a set of shared beliefs among all agents. The fused opinion
would represent the set of causes that all opinions agree on.

The belief fusion aims to solve potential conflicting observa-
tions while increasing the observations’ confidence according
to the chosen fusion operator. To demonstrate this point,
we provide a sample calculation for a pair of agreeing and
disagreeing opinions w1

x, w2
x on a same context variable

in Table I.1 We can see that when the opinions that are
being aggregated agree, CBF creates an aggregated opinion
whose belief increases that of the sources. CCF tries to find

1For the mathematical definition of CBF and CCF see [16, 37].

TABLE I
AGGREGATING TWO OPINIONS w1

x , w2
x .

Agreeing Opinions Conflicting Opinions
Param. w1

x w2
x CBF CCF w1

x w2
x CBF CCF

bx 0.85 0.52 0.84 0.80 0.85 0.18 0.72 0.35
dx 0.10 0.18 0.11 0.11 0.10 0.52 0.24 0.14
ux 0.05 0.30 0.05 0.09 0.05 0.30 0.04 0.51
ax 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

P (x) 0.88 0.28 0.86 0.84 0.88 0.28 0.74 0.61

compromises between opinions, which is why their belief and
disbelief values are in between the belief masses of ω1

x and
ω2
x. Additionally, with both fusion operators, we can observe

improvement in the confidence of the aggregated observations,
i. e., the uncertainty mass in the aggregated opinion decreases
compared to the individual uncertainty masses of each robot’s
opinions. When the opinions are in conflict, CBF tries to
maximize their belief masses. It is important to note that
this process of aggregating conflicting opinions reduces the
uncertainty of the aggregated opinion when using CBF, which
can be undesirable. In contrast, CCF actively increases the
uncertainty when opinions are conflicting. As a result, the re-
sulting projected probability P (x) is reduced when using CCF
compared to CBF. This example showcases the different ways
the two operators handle conflicts: whereas CBF essentially
follows the strong opinion, CCF strives for a compromise. As
we will see in our robotic use case, this difference manifests in
the tradeoff between taking decisions fast (about whether a dirt
is detected and should be cleaned) and taking decisions that
are sound (since more than one robot agrees on the matter).

IV. APPROACH

In our approach, the MA-SACPS consists of several MAPE-
K loops structured according to the master-slave pattern [41]
As shown in Figure 3, the Monitor and Executor elements
of the MAPE-K loops are distributed among the decentral-
ized agents, controlled by centralized Analyzer, Planner and
Knowledge elements, each element explained in the following.

A. Monitor

Each managed element (i. e., CPS) in the MA-SACPS
comprises a Monitor component. The Monitor observes the
context in which the CPS operates, and additionally, it does
(a minimal) monitoring of the CPS itself, e. g., it reports on
the current position of the system in the context. Since the
CPS cannot observe the entire context, it only provides partial
observations that are subjected to uncertainties. Based on
these observations, the Subjective Opinion Creator—contained
within the Monitor—creates binomial subjective opinions (see
Section III-B1) about the context variables that are within the
agent’s range. These binomial subjective opinions are then
independently forwarded to the centralized Analyzer.

In our running example each robot contains a Monitor
component. It periodically senses the position of the robot, and
detects the presence of dirt tasks in the room. As explained

4

Adaptation Logic
Cleaning Controller

Knowledge

Managed Element
model@RT Context model@RT

Planner

Analyzer

Knowledge Aggregator

Executor

Monitor

Subjective
Opinion
Creator

Managed System
Robot 1

Executor

Monitor

Subjective
Opinion
Creator

Managed System
Robot N

...

MA-SACPS

Context

Fig. 3. High-level overview of the approach for reasoning in MA-SACPSs,
adopted from [25].

above, each Monitor creates binomial subjective opinions
about the context variables (is a cell occupied or not), for all
the cells that are within the observation range of the robot at
a specific point in time. The process of creating the subjective
opinions is described in the following.

1) Subjective Opinion Creator: Every agent (Ai) creates a
subjective opinion wAi

x for every context variable x (i. e., grid
cell) that is within its vision R. x can be either occupied or
unoccupied by a task, and according to Definition 1 we define
an opinion wx = (bx, dx, ux, ax) as following:

bx =

{
1− uX , for x = occupied
0.0, otherwise

ux = min
(r

R
, 0.99

)

dx =

{
1− uX , for x = unoccupied
0.0, otherwise

ax = 0.5

where r is the distance between the agent and the cell
and R is the agent’s sensor range. This definition facilitates
an uncertainty that increases linearly with the measurement
distance up to an maximum value of 0.99. This value was
chosen deliberately, since the observations at the edge of
sensor range can be considered highly uncertain, but can
still contribute towards the knowledge aggregation; hence,
we assign an uncertainty value of 0.99 instead of a totally
uncertain opinion (i. e., ux = 1). Moreover, the polar nature
between belief bx and disbelief dx was chosen to reflect the
fact that agent can either detect a grid cell to be occupied or
unoccupied by a task, and not a combination of both. The base
rate ax is always considered to be the default base rate for a
binary domain, i. e., ax = 0.5. Finally, no subjective opinions
are issued for (i) cells which are occupied by static obstacles

(e. g., walls), (ii) cells that lie outside of the detection range
of the agent.

B. Analyzer

The Analyzer is a centralized component in which the rea-
soning takes place, with aim to solve any potential conflicting
observations, while increasing the confidence of the observa-
tions according to the chosen subjective logic operator. The
Analyzer contains the Knowledge Aggregator, which collects
and fuses all the subjective opinions that are issued by the
Subjective Opinion Creators in the decentralized agents. The
aggregated opinions are used to update the run-time context
model in K.

In our running example the Analyzer is a component
in the Cleaning Controller. It combines the partial
observations by aggregating the multiple binomial subjective
opinions from different robot about the context variables that
are within their sensing range. In particular, it is responsible
for combining the opinions made by all the robots for all the
cells that they are observing using the subjective logic opera-
tors. The process of aggregating multiple binomial subjective
opinions is discussed next.

1) Knowledge Aggregator: This is a centralized node
that aggregates the observations of the individual agents
(A1, A2, . . . AN). The aggregated observations from all the
agents are stored in the context model in the Knowledge,
modelled as a grid map (see Section II-B). Upon system
initialization, every context variable corresponding to each cell
in the grid map is initialized with a vacuous subjective opinion:
wx =

(
0, 0, 1, 1

2

)
. This initialization has the following two

purposes: (i) a vacuous opinion will inform the analyzer that
there is no previous knowledge about the context variables,
and (ii) when the first knowledge aggregation is executed, the
existing vacuous opinions do not influence the aggregation
result.

The knowledge aggregation takes place every time the Sub-
jective Opinion Creator of an agent publishes new subjective
opinions for the context variables of the cells observed by
the agent. Namely, the Knowledge Aggregator extracts the
opinions that were previously stored for each context variable
in the grid (wg

x), and fuses them with the newly created
opinion from each agent (wAi

x), resulting in a new aggregated
opinion (wagg

x) per context variable. The context variable x
in the grid map is then updated based on aggregated opinion
(wagg

x), and this depicts is the overall process for updating
the context model@RT (i. e., the grid map) in K. The process
is executed with the same frequency for all the agents, and
if multiple agents issue new opinions for the same context
variable (wA1

x , wA2
x , wA3

x , . . .) at the same time, then all of
those opinion are together fused with the opinion from the
grid (wg

x).
The opinions are combined according to the following

three schemes: CBF Scheme, CCF Scheme and Combination
Scheme. The first two schemes are based on the CBF and CCF
fusing operators, previously explained in Section III-B2:

5

CBF Scheme : wagg
x = CBF(wg

x, w
Ai
x)

CCF Scheme : wagg
x = CCF(wg

x, w
Ai
x)

However, preliminary testing revealed that these two SL
operators cannot support long-term knowledge aggregation
(see Section VI-B). In response, as part of this work, we
have proposed a third scheme—Combination (Comb.) Scheme,
defined as following:

wagg
x =

{
CCF(wg

x, w
Ai
x), if u(wg

x) < k ∩OT (wg
x) 6= OT (wAi

x)

CBF(wg
x, w

Ai
x), otherwise.

where u(wg
x) is the uncertainty of context variable, k is a

constant and OT (wAi
x) is the opinion type of the new opinion,

defined as:

OT (wAi
x) =

{
occupied, if b(wAi

x) ≥ d(wAi
x)

unoccupied, if b(wAi
x) < d(wAi

x),

where b(wAi
x) and d(wAi

x) are the belief and disbelief of
the new opinion. In a nutshell, the combination scheme will
always use the CBF operator, except when the new and grid
opinions are conflicting and the uncertainty of the grid opinion
is less than a given constant k = 0.1. We derived k numerically
based on how many opinions need to be aggregated to change
the opinion from unoccupied to occupied while still respecting
the real-time capabilities of the knowledge aggregation (KA).
Due to space limitations, the numerical calculation is not part
of this paper.

C. Planner and Executor

The Planner is a centralized component in our approach
that is responsible for selection of the adaptation actions or
plans, which are later executed by the Executor components
housed in every agent. The Planner relies on the aggregated
knowledge, i. e., it uses the (updated) context model@RT to
determine the actions for all the agents, in order for the
MA-SACPS to adapt and accomplish the adaptation goals in
the most efficient way. We do not prescribe how to perform
the planning: any planning approach (e.g., rule-based, goal-
oriented) can be used within our approach. Finally, each
decentralized agent has an Executor component responsible for
executing the actions previously determined by the Planner.

In our running example the Planner is part of the centralized
Cleaning Controller, which receives as input the ag-
gregated knowledge of the context. The aggregated knowledge,
in terms of the presence of dirt tasks in the room, is the “best”,
most complete representation of the dynamic and uncertain
context (i. e., the room) that is only partially observed at
a specific time. Accordingly to it, the Planner assigns the
discovered tasks to the robots. The outcome of the Planner
is finally sent to the Executor in each robot. Each Executor
contains an adaptive priority queue of the locations of the dirt
tasks assigned to the specific robot. In our implementation,
the queues of the robots are modified at run-time, based on
the distance of the robot closest to the newly appeared task.

Each robot picks the next task in its queue, and navigates
autonomously to the corresponding cell.

V. IMPLEMENTATION

As part of this work, to investigate the usefulness of
knowledge aggregation (KA) in MA-SACPSs, and to assess
the correctness and the effectiveness of our proposed solution,
we have implemented a testbed motivated by the running
example from Section II-B. Since robotics is an intrinsically
heterogeneous domain, setting up a multi-robot system is a
challenge in itself. In response, in this paper, we provide a
ROS-based, multi-robot system simulated in Gazebo [1, 19].
Namely, our implementation enables simulation of 1) a custom
number of robots, and 2) the context in which they operate.
Our running example concretely includes simulating a room
with static (e. g., walls, corridors, furniture, etc.) and dynamic
object i. e., the tasks that continuously appear for the robots in
the room. The robots that we simulate are TurtleBot 3 Burger2.
Furthermore, Gazebo relies on well-established physics en-
gines, which enable simulations with high fidelity that closely
resemble real-world robotics systems and their environments,
with a physically correct representation of the robots, including
their size and volume, frictions, as well as their sensors
and actuators. Finally, the robots use Adaptive Monte Carlo
Localization (AMCL) for localization and navigation.

Although we built a simulated robotics system, implement-
ing realistic sensing (just how a real robot would sense its
surroundings) was a prerequisite to constructing the subjective
logic observations aggregation. As a result, the realistic sens-
ing required more complex implementation to add different
types of sensor uncertainties compared with, for example,
“mocked” sensing in which modelling and adding the sensor
noise would have been more simplistic. In the initial imple-
mentation of the robotic system, previously presented in [25],
the sensor noise was sampled from a Gaussian distribution
and only affected the border of the sensor beam. Although
the former implementation did introduce some sensor noise
in the system, it did not support the uncertainties from
our running example (see Section II-B and Section III-A).
Concretely, it was insufficient to support and prove the need
for knowledge aggregation since it was incapable of creating
conflicting observations within the sensor range. Consequently,
we implemented a more sophisticated sensing model, in which
the conflicting observations result from false positive (FP)
tasks (tasks being observed by a robot that do not exist in
reality) or false negative (FN) tasks (tasks not being observed
when they in reality exist). Tasks that exist and the robots can
observe are true positives (TP) in this setting.

The source code of the complete implementation and the
installation instructions are available on the following link:
https://github.com/tum-i4/Aggregatio. For the SL-based calcu-
lations, we used an open-source Java implementation3.

2https://www.turtlebot.com/
3https://github.com/vs-uulm/subjective-logic-java

6

VI. EVALUATION

In this section, we first explain the evaluation setup before
discussing the obtained results.

We identified the following three research questions that
guided our evaluation:

RQ1. How do the different SL aggregation schemes influence
the KA in MA-SACPSs?

RQ2. Can SL-based KA in MA-SACPSs correct faulty mea-
surements?

RQ3. How does the value of the threshold impact the SL-based
KA in MA-SACPSs?

In RQ1, we investigate the feasibility of different SL aggre-
gation schemes for KA in our approach. In RQ2, we evaluate
the effectiveness of our approach’s best aggregation scheme
(derived from RQ1) on the core problem, i. e., reducing uncer-
tainties and resolving conflicts introduced by inconsistent and
faulty measurements. In RQ3, we investigate the sensitivity of
our approach to the main parameter for decision making, i.e.
the expected probability P (x) of the context variables.

A. Experimental Setup
To answer the identified research questions, we have created

three main experiments (see Table II), conducted based on
240 different simulation runs. Each experiment addressed one
research question, and all the simulation runs lasted for 45
minutes in real-time. In all experiments, the dimension and
the layout (e. g., corridors, walls, etc.) of the room in which
the robots operate, along with the robots’ initial positions and
their sensor range, are held constant. The dimensions of the
room and the sensor range of the robots were chosen in a way
that at any given time the robots can only partially observe
the room there are in. In particular, we chose a room size of
10× 10m, since the robots can only detect obstacles up to a
distance of 3.5m.

Furthermore, we ran simulations under different settings,
controlling: (i) the SL aggregation schemes for KA (part of
the adaptation logic), (ii) the number and the properties of the
robots (i. e., the managed elements), and (iii) the appearance
of the tasks in the room (i. e., the context). With respect to
the first point, we experimented with different subjective logic
operators and thresholds values. The threshold is the projected
probability P (x) value for each detected task, necessary to
be reached in order for the task to be promoted to a goal
for the robots. With respect to the second point, we varied
the number of robots and their sensing capabilities controlled
by the false positive (FP) probability of each robot. The FP
probability captures the percentage of faulty observations per
robot. Finally, with respect to the environment, we varied the
rate of appearance of true positives (TP) (in seconds) and the
location of appearance of the tasks. A seed value controls
the location of the appearance of the tasks, used to replicate
the same distribution of tasks within the room in different
experiments. To increase the validity of the results, we have
run each experiment five times with different seed values.
Using these variables, we explored the capabilities of SL-based
KA and its impact on the performance of the MA-SACPS.

TABLE II
DESIGN OF THE THREE EXPERIMENTS OF THE EVALUATION.

Parameter
Topic of Investigation

RQ1 RQ2 RQ3

Experiment 1 2 3

KA
CBF, CCF, [No, Comb.,

Comb.
Comb. Comb.]

Threshold 0.8 0.8 0.2, 0.4, 0.6, 0.8
No. of Robots 2 [1, 2, 5] 2

FP Prob.
R1 0 0.1, 0.2, ... 0.9 [0.2, 0.5, 0.8]
R2 0 0.1 [0.2, 0.5, 0.8]

Rate of TP (s) 15, 60 60 60
Location (seed) 71, 72, ... 75 71, 72, ... 75 71, 72 ... 75

The rows in Table II represent the values of the variables
used for a specific experiment. When multiple values are
given per variable, then every possible combination is tested
individually. For example, in Experiment 1 the CBF, CCF and
Comb. operators are individually tested for all seed values. On
the contrary, the square brackets indicate that these parameters
are varied simultaneously. For example, in Experiment 2, when
one robot is used, no knowledge aggregation is performed,
whereas for two and five robots, the Comb. operator is used.
Similarly, in Experiment 3 both robots R1 and R2 will have a
FP probability of 0.2 in the first experiment, 0.5 in the next,
etc. When using more then two robots, the additional robots
will have the same FP probabilities as robot two (R2). Finally,
when Knowledge Aggregation is ‘No’, a task is classified as a
goal after a single measurement, i. e., after it has been initially
observed by one of the robots.

B. Experiment 1: Feasibility of different SL aggregation
schemes

We initially aimed at the evaluation to use either CBF
or CCF as operators for KA. Since CCF is desired when
opinions are conflicting (see Section III-B2), the preliminary
experiments quickly showed that it is hard to achieve extreme
beliefs or disbeliefs when opinions are agreeing. This made
it very difficult to surpass the required threshold needed for
a task to be propagated as a goal and resulted in only a
few tasks being completed. Subsequently, the focus shifted
towards the CBF operator, which performed quite well. The
cumulative aggregation method of CBF is ideal when opinions
agree, and it is even capable of handling conflicting opinions to
some degree. However, further analysis revealed that the task
completion rate using CBF slowly deteriorates and eventually
stops when running long simulations. We first explain this
phenomenon via an analytical discussion and then show the
results of the experiment.

1) Analytical Discussion: As discussed in Section III-B2,
when fusing two opinions using CBF, the resulting opinion
will have an uncertainty that is lower than that of the source
opinions independent of whether the opinions agree or dis-
agree. This property means that consecutive applications of
CBF to fuse opinions issued by the robots will continuously
decrease the uncertainty of the opinions of the context vari-

7

ables stored in the grid map. As the uncertainty decreases,
the impact of a new opinion on the opinion in the grid map
decreases as well, and after some time the grid opinions
become too entrenched to change regardless of measurements.
This demonstrates that this property is crucial when designing
MA-SACPSs that need a support of a long-term KA.

The process that was described above can be demonstrated
analytically with a few simple steps. First, consider three
opinions: wvac

x = (0, 0, 1, 0.5), woc
x = (0.7, 0, 0.3, 0.5), and

wunoc
x = (0, 0.7, 0.3, 0.5) where the occupied and unoccupied

opinions are in conflict with one another, and wagg
x is the

opinion of a context variable stored in the grid map. Initially,
upon system initialization, wagg

x = wvac
x . Subsequently, the

occupied opinion is aggregated with the base opinion, resulting
in a new base opinion. This process is repeated 30 times.
Afterward, the unoccupied opinion is aggregated with the
base opinion for 30 times. These two steps of aggregating
30 occupied and 30 unoccupied opinions are repeated four
times. Figure 4 plots the projected probability P (x) of the
wagg

x opinion after each single aggregation (blue line). It can
be seen from the figure that as the number of aggregated
opinions increases, the effect of aggregating 30 occupied
opinions diminishes significantly. The second peak occurs only
60 aggregations after the first peak and yet has a projected
probability of about 40% less than the first peak after 30
aggregations. In our experiments, we consider a threshold of
80%, and opinions are issued every second. Thus, if a task is
spawned at the first simulation minute (after 60 aggregations
took place), even if the grid opinion has a projected probability
of 50% and the robot measures the task for 30 seconds, it
would still not reach the threshold and become a goal. As the
figure shows, this gets even worse with time.

Fig. 4. The projected probability P (x) shows that the effect of an individual
opinion diminishes with time when using the CBF operator, and how the
Comb. scheme overcomes this problem.

To address this issue, we have derived a new aggregation
scheme (Comb.) using a combination of the CBF and CCF
operators, which maintains the CBF operator’s cumulative
property but facilitates a faster switch in opinion when faced
with contradicting opinions, and does not deteriorate with
time. The proposed aggregation scheme was previously dis-
cussed in Section IV. Figure 4 shows that with the Comb.

Fig. 5. Number of tasks completed using CBF, CCF and Comb. Schemes.
The different symbols correspond to the different seed values.

scheme, the occupied and unoccupied opinions have equal
impact on the opinion in the grid map and that their impact
does not diminish over time.

2) Experimental Results: In this section, we experimentally
assess RQ1. For that purpose, we set the FP probabilities to
zero to demonstrate that the observed behaviors are solely
related to the length of the simulation time and not to any
uncertainty sources. The CBF, CCF, and Comb. aggregation
schemes were each tested using the same five seeds with a
threshold of 80% and a TP spawn interval of 15 and 60
seconds. The time at which the tasks have been completed was
measured—Figure 5 shows the cumulative count of completed
tasks over time. The different symbols correspond to the
different seeds that have been tested at the spawning interval
of 60 seconds. The results clearly show that independent of
the location of the tasks, we can observe the same behavior:
Comb. completes tasks at a relatively steady rate throughout
the simulation. In contrast, the CBF operator only works well
for the first few minutes before completely stopping. Lastly,
the CCF operator performs the worst, which is expected as it is
designed to find compromises and not aggregate observations
cumulatively. The same behavior has been observed with a
spawning interval of 15 seconds (plot not shown).

In summary, while addressing RQ1, we came up with the
interesting finding that long-term KA is not feasible by using
the original SL operators in isolation, based on which we
proposed the new scheme—Comb. These experiments enabled
us to prove some of the theoretical limitations of the CBF and
CCF operators (Section III-B2) in an application from practice.

C. Experiment 2: Effectiveness of the KA

In this experiment, we investigate the effectiveness of the
proposed combination scheme for KA by evaluating if the
approach can correct the behavior of a robot with a faulty
sensor. In this experiment, R1 is considered to be the faulty
robot subjected to a FP probability that ranges from 10% to
90% with a 10% step. Our baseline case is a single robot (R1)
that does not use KA. The other two cases consist of two and
five robots and use the Comb. aggregation scheme for KA.
All robots except R1 are assumed to operate nominally with
a FP probability of 10%. The measured metric is the number
of FP and TP tasks that are completed by R1.4

4By “completing” a FP task, we mean that the robot actually navigated to
the place where the dirt was supposed to be.

8

Fig. 6. The TP fraction of the tasks completed by robot 1 for a FP probability
of 50%. The one robot case does not use KA whereas the combination
aggregation scheme is used for two and five robot case. The results have
been averaged over the five seeded runs.

Fig. 7. The variation of the gain of robot 1 with FP probability when using
two or five robots. The gain increases with FP probability, which demonstrates
the effectiveness of the KA in correcting faulty observations.

Lets us first consider the tests when the FP probability of
R1 is 50%. Figure 6 plots the fraction of tasks completed by
R1 for the three different cases. As one would expect, about
half of the completed tasks are TPs without KA, when only
one robot is present. This fraction is significantly increased to
about 70% when adding an additional robot and using KA.
Adding even more robots further raises the TP fraction of
tasks completed by R1. This trend is expected since more
robots make more independent observations, making it easier
to correct faulty measurements. The bar charts further indicate
that the gain in TP fraction per added robot is diminishing as
the number of robots increases, which also makes sense as the
extra vision gained per robot also decreases.

Instead of plotting a bar-chart for every FP probability case,
we calculate the gain in TP fraction of robot Ri as follows:

Gain(Ri, nR) =
nTP (Ri)

nFP (Ri)+nTP (Ri)

∣∣∣
nR

− nTP (Ri)
nFP (Ri)+nTP (Ri)

∣∣∣
1R

where nTP and nFP is the number of TP and FP tasks
completed by robot Ri and nR is the number of robots in
a multi-robot case. In particular, we calculate Gain(R1, nR)
for nR = 2 and nR = 5. The results in Figure 7 show that
the gain in the TP fraction increases together with the FP
probability for both cases—with two and five robots.

In summary, with respect to RQ2, we can conclude that
SL-based KA enables the correction of faulty measurements
made by a robot. In particular, even a single well-functioning
robot can rectify the wrong measurements of another, faulty
robot to a significantly extent. We have also observed that (i)

increasing the number of well-functioning robots improves the
accuracy of collective sensing; (ii) KA becomes increasingly
effective as the faulty observations increase.

D. Experiment 3: Sensitivity analysis of the impact of the
threshold value

The third experiment explores the impact of the threshold
value on the behavior of the MA-SACPS. All simulations
use two robots, and the FP probabilities are varied between
0.2, 0.5, and 0.8. Each of these variations is tested with four
different thresholds ranging from 0.2 to 0.8 with a step of 0.2.
As a metric, the number of completed TP and FP tasks are
measured and averaged across the different seed values, based
on which the average TP and FP fraction of completed tasks
is calculated as follows:

TPF =
nTP

nFP + nTP
, FPF = 1− TPF

where nTP and nFP are the average number of completed
TP and FP tasks, and N = nTP + nFP is the total number
of tasks completed in a particular test. Moreover, the average
number of completed tasks (N) and the range in the number
of completed tasks (Nmax −Nmin) are determined over five
runs. The results from the experiment are depicted in Table III.

First, the table shows that increasing the threshold leads
to an increased TPF for all the FP probabilities that have
been tested. This indicates that the accuracy of the KA
in MA-SACPS can be tuned using the threshold. This is
expected, since the threshold dictates the minimum certainty
the MA-SACPS must have to pursue the completion of a task.
Nonetheless, the impact of the threshold on TPF is relatively
small: changing it from 0.2 to 0.8 induces an increase of
only 3.4% in TPF in the 0.2 probability case; 12.3% in the
0.5 probability case; and 3.8% in the 0.8 probability case.
Furthermore, we can also observe another trend in the average
number of completed tasks. Unsurprisingly, as the threshold
increases, the number of completed tasks decreases.

In summary, with respect to RQ3, we conclude that the
value of the threshold has an impact to SL-based KA, but
a relative small one, and in any case a smaller impact than
the number of collaborating robots. We also observed a clear
trade-off between the accuracy of KA and the number of
completed tasks.

E. Threads to validity

In order to have more realistic and comparable experiments,
we kept the appearance rate of TP constant between runs
since we wanted to explore how different FP probabilities
and aggregation schemes respond to the same context (same
ground truth of TP in the room). As a result, different FP
probabilities result in a different number of tasks, i. e., higher
FP probabilities generate more tasks in the room. This can
be problematic for high FP probabilities as a high density of
tasks restricts robots’ observations, which severely limits the
KA. These effects limit the validity of experiments at very
high FP probabilities.

9

TABLE III
RESULTS FROM EXPERIMENT 3.

FP Prob. Threshold TPF FPF N Nmax −Nmin

0.2

0.2 0.769 0.231 53.6 7
0.4 0.773 0.226 49.4 6
0.6 0.794 0.206 45.6 5
0.8 0.803 0.197 40.6 11

0.5

0.2 0.455 0.545 79.6 31
0.4 0.485 0.515 41.8 64
0.6 0.532 0.468 50.0 41
0.8 0.578 0.422 25.6 57

0.8

0.2 0.205 0.795 93.6 68
0.4 0.200 0.800 43.5 36
0.6 0.219 0.781 47.4 86
0.8 0.243 0.757 29.6 67

For example, in Experiment 2, the slight decreases at the
end of Figure 7 are probably due to the aforementioned drop
in the experiments’ validity as the FP probability increases. In
Experiment 3, we observed that the impact of the threshold
is smaller than we have initially anticipated. Namely, at
small FP probabilities (Table III), one would expect only a
small improvement due to KA as faults rarely occur. On
the contrary, at larger FP probabilities, one would expect a
more considerable increase in the TPF than what is exhibited
by the results. The same effect can be observed in the last
column of Table III, which shows the difference between the
maximum and the minimum number of tasks completed for
the five different seed values. This clearly demonstrates that
the results fluctuate a lot more as the FP probability increases.
For example, for a threshold of 0.8 at a FP probability of 0.2
the range in N (Nmax −Nmin) is 27% of N , whereas a FP
probability of 0.8 with the same threshold has a range in N
that is 226% of its N . Subsequently, high FP probabilities
require a lot more testing for accurate results. Furthermore, in
Experiment 3, we concluded that there is a trade-off between
the accuracy of KA and the number of tasks it completes.
Based on this trade-off, one can conjecture that there is an
optimal threshold that maximizes the number of completed
TP tasks and varies with the FP and FN probabilities. In our
experiment, the increase in TPF is too small to facilitate such
a movement of the maximum; however, more extensive and
statistically significant tests might prove this hypothesis.

VII. RELATED WORK

Knowledge/information aggregation. The need for knowl-
edge aggregation arises in fields as varied as sensor fusion,
expert system development and most prominently in multi-
agent systems [26]. Across the field of multi-agent systems,
knowledge is the information gained by agents’ observations,
often referred to as belief or belief base [26]. A belief is
represented as propositional logic-based formalism [13, 26].
Grégoire and Konieczny in [13] present a survey about the
approaches dealing with logic-based information fusion and
discuss its relationship to multi-agent negotiation. Methods for

belief merging are discussed in [20, 26, 34, 36]. These methods
provide a general basis for knowledge aggregation; however,
they have been only studied in the field of information systems.
To the best of our knowledge, no knowledge aggregation
technique has previously been used in the frame of SACPSs.

Sensor fusion. Munz and Dietmayer [22] proposes an
approach to enhance the detection performance of a sensor
fusion system measured in terms of detection rate versus false
alarm rate. For that purpose, an algorithm is used which
directly incorporates the DST-based sensory information. In
[35], DST is also used to model the sources of uncertainty
before applying the evidence fusion. However, the past ap-
proaches are mainly concerned with the aggregation of data in
a single system, where the set of sensors are the multi-sources;
rather than the aggregation of information or knowledge across
multiple independent systems in a multi-agent system setup for
self-adaptation purposes. Sensor fusion merges concrete sensor
information, whereas, in our paper, we aggregate knowledge—
which are two fundamentally different methods. Additionally,
SL has not been used as a framework for fusing sensor
information before, both generally and in the frame of self-
adaptive systems.

Mitigating uncertainties in self-adaptive systems. As
discussed in Section III-A, in this work, we focus on the
following run-time uncertainties: sensor inconsistency, sensor
failure, and unpredictable environment. Although the past liter-
ature proposes different mitigation strategies for sensor failure
[5, 11] and unpredictable environment [2, 5, 7, 11, 23, 29],
to the best of our knowledge, no solutions have previously
tackled sensor inconsistency. Almost all existing uncertainties
mitigation strategies are based upon one or multiple feedback
loops, i. e., the different MAPE-K phases [5] that are not
modified beyond their design-time specifications. Also, they
are often designed for a specific application [23]. The most
prominent framework for mitigating uncertainties is Rainbow
[11], which focuses on architectural reusability. Rainbow
focuses on isolating the feedback loop from the managed
system as much as possible, enabling system-independent but
knowledge-specific infrastructure. Furthermore, the framework
does not support run-time modification of the adaptation logic,
which disables the framework to deal with uncertain situations
and changing conditions that were not anticipated during
its design, as we do in our paper. In comparison to the
past solutions, our approach presents a run-time uncertainly
resolution strategy that tackles sensor inconsistency, as well
as sensor failure and unpredictable environments.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a domain-independent
methodological approach for knowledge aggregation and rea-
soning of decentralized monitoring in MA-SACPS, which
inherently produce partial, faulty and potentially conflicting
context observations. The proposed approach allows capturing
uncertainty at run-time on a local level, and effective reasoning
and knowledge aggregation for global decision-making. The
conducted experiments revealed that i) no single SL operator

10

is capable of providing long-term real-time KA capabilities,
ii) the proposed SL-based KA approach is capable of cor-
recting the observations of a faulty agent, and iii) there is a
trade-off between the number of tasks that are completed and
the accuracy of the agents, and the threshold can be used to
tune the accuracy of KA to a desired level.

As future work, we want to find a threshold, if one exists,
that maximizes the number of completed TP tasks, which
varies with the FP probabilities. Since the FP probabilities
result from the agents’ interaction with the environment, the
existence of a maximum would render the threshold as another
parameter that can be optimized in real-time, ultimately posing
another possibility for self-adaptation. Alternatively, one can
also evaluate different and more advanced combinations of SL
operators and different room sizes and layouts to improve the
performance of KA even further, or investigate how KA with
SL differs from reasoning with other non-monotonic logics.

REFERENCES

[1] Carlos E. Aguero, Nate Koenig, Ian Chen, Hugo Boyer,
Steven Peters, John Hsu, Brian Gerkey, Steffi Paepcke,
Jose L. Rivero, Justin Manzo, Eric Krotkov, and Gill
Pratt. Inside the virtual robotics challenge. 12:494–
506, 2015. ISSN 1545-5955. doi: 10.1109/TASE.2014.
2368997.

[2] Luciano Baresi, Liliana Pasquale, and Paola Spoletini.
Fuzzy goals for requirements-driven adaptation. In 2010
18th IEEE International Requirements Engineering Con-
ference, pages 125–134. IEEE, 2010.

[3] Amel Bennaceur, Robert France, Giordano Tamburrelli,
Thomas Vogel, Pieter J Mosterman, Walter Cazzola,
Fabio M Costa, Alfonso Pierantonio, Matthias Tichy,
Mehmet Akşit, et al. Mechanisms for leveraging models
at runtime in self-adaptive software. In Models@ run.
time, pages 19–46. Springer, 2014.

[4] Gordon Blair, Nelly Bencomo, and Robert B France.
Models@ run. time. Computer, 42(10):22–27, 2009.

[5] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina
Gacek, Holger Giese, Holger Kienle, Marin Litoiu, Hausi
Müller, Mauro Pezzè, and Mary Shaw. Engineering
self-adaptive systems through feedback loops. In Soft-
ware engineering for self-adaptive systems, pages 48–70.
Springer, 2009.

[6] Hon Chen. Applications of cyber-physical system: A
literature review. Journal of Industrial Integration and
Management, 2017. doi: 10.1142/S2424862217500129.

[7] Betty HC Cheng, Pete Sawyer, Nelly Bencomo, and Jon
Whittle. A goal-based modeling approach to develop
requirements of an adaptive system with environmen-
tal uncertainty. In International Conference on Model
Driven Engineering Languages and Systems, pages 468–
483. Springer, 2009.

[8] Shang-Wen Cheng, David Garlan, and Bradley Schmerl.
Architecture-based self-adaptation in the presence of
multiple objectives. In Proceedings of the 2006 inter-

national workshop on Self-adaptation and self-managing
systems, pages 2–8, 2006.

[9] A. P. DEMPSTER. A Generalization of Bayesian Infer-
ence Author (s): A . P . Dempster Source : Journal of
the Royal Statistical Society . Series B (Methodological
), Vol . 30 , No . 2 Published by : Wiley for the Royal
Statistical Society Stable URL : http://www.jstor.o. 30
(2):205–247, 1968.

[10] Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank
Eliassen, Ketil Lund, and Eli Gjorven. Using architecture
models for runtime adaptability. IEEE software, 23(2):
62–70, 2006.

[11] David Garlan, S-W Cheng, A-C Huang, Bradley
Schmerl, and Peter Steenkiste. Rainbow: Architecture-
based self-adaptation with reusable infrastructure. Com-
puter, 37(10):46–54, 2004.

[12] David Garlan, Bradley Schmerl, and Shang-Wen Cheng.
Software architecture-based self-adaptation. In Auto-
nomic computing and networking, pages 31–55. Springer,
2009.

[13] Eric Grégoire and Sébastien Konieczny. Logic-
based approaches to information fusion. Infor-
mation Fusion, 7(1):4–18, 2006. ISSN 1566-
2535. doi: https://doi.org/10.1016/j.inffus.2005.08.
001. URL http://www.sciencedirect.com/science/article/
pii/S1566253505000771.

[14] Audun Jøsang. A Logic for Uncertain Probabilities.
International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 9(3):271–311, 2001.

[15] Audun Jøsang. Subjective Logic. Springer International
Publishing Switzerland, 2016. ISBN 978-3-319-42335-
7. doi: 10.1007/978-3-319-42337-1. URL http://link.
springer.com/10.1007/978-3-319-42337-1.

[16] Audun Jøsang, Dongxia Wang, and Jie Zhang. Multi-
source fusion in subjective logic. 20th International
Conference on Information Fusion, Fusion 2017 - Pro-
ceedings, 2017. doi: 10.23919/ICIF.2017.8009820.

[17] Jeffrey O. Kephart and David M. Chess. The vision ofau-
tonomic computing. Computer 36, pages 43–50, 2003.
doi: https://doi.org/10.1046/j.1365-2745.2002.00730.x.

[18] Junsung Kim, Hyoseung Kim, Karthik Lakshmanan, and
Ragunathan Rajkumar. Parallel scheduling for cyber-
physical systems: Analysis and case study on a self-
driving car. 2013 ACM/IEEE International Conference
on Cyber-Physical Systems (ICCPS), 2013.

[19] Nathan Koenig and Andrew Howard. Design and use
paradigms for gazebo, an open-source multi-robot sim-
ulator. In 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), pages 2149–2154. IEEE, 2004. ISBN
0-7803-8463-6. doi: 10.1109/IROS.2004.1389727.

[20] Sébastien Konieczny and Ramón Pino Pérez. Merg-
ing information under constraints: A logical framework.
Journal of Logic and Computation, 12(5):773–808, 2002.
ISSN 0955792X. doi: 10.1093/logcom/12.5.773.

[21] Sara Mahdavi-Hezavehi, Paris Avgeriou, and Danny

11

Weyns. A classification framework of uncertainty in
architecture-based self-adaptive systems with multiple
quality requirements. Managing Trade-Offs in Adaptable
Software Architectures, pages 45–77, 2017.

[22] Michael Munz and Klaus Dietmayer. Using Dempster-
Shafer-based modeling of object existence evidence in
sensor fusion systems for advanced driver assistance sys-
tems. IEEE Intelligent Vehicles Symposium, Proceedings,
(Iv):776–781, 2011. doi: 10.1109/IVS.2011.5940463.

[23] Peyman Oreizy, Michael M Gorlick, Richard N Taylor,
Dennis Heimhigner, Gregory Johnson, Nenad Medvi-
dovic, Alex Quilici, David S Rosenblum, and Alexan-
der L Wolf. An architecture-based approach to self-
adaptive software. IEEE Intelligent Systems and Their
Applications, 14(3):54–62, 1999.

[24] Ana Petrovska and Alexander Pretschner. Learning ap-
proach for smart self-adaptive cyber-physical systems. In
2019 IEEE 4th International Workshops on Foundations
and Applications of Self* Systems (FAS* W), pages 234–
236. IEEE, 2019.

[25] Ana Petrovska, Sergio Quijano, Ilias Gerostathopou-
los, and Alexander Pretschner. Knowledge aggrega-
tion with subjective logic in multi-agent self-adaptive
cyber-physical systems. In Shinichi Honiden, Elisa-
betta Di Nitto, and Radu Calinescu, editors, SEAMS ’20:
IEEE/ACM 15th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems,
Seoul, Republic of Korea, 29 June - 3 July, 2020, pages
149–155. ACM, 2020. doi: 10.1145/3387939.3391600.
URL https://doi.org/10.1145/3387939.3391600.

[26] Gabriella Pigozzi and Stephan Hartmann. Aggrega-
tion in multiagent systems and the problem of truth-
tracking. Proceedings of the International Conference
on Autonomous Agents, (May 2014):219–221, 2007. doi:
10.1145/1329125.1329245.

[27] Mariachiara Puviani, Giacomo Cabri, and Franco Zam-
bonelli. A taxonomy of architectural patterns for self-
adaptive systems. In Proceedings of the International
C* Conference on Computer Science and Software En-
gineering, pages 77–85. ACM, 2013.

[28] Federico Quin, Thomas Bamelis, Singh Buttar Sarpreet,
and Sam Michiels. Efficient analysis of large adaptation
spaces in self-adaptive systems using machine learn-
ing. 2019 IEEE/ACM 14th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pages 1–12, 2019.

[29] Andres J Ramirez, Adam C Jensen, Betty HC Cheng,
and David B Knoester. Automatically exploring how
uncertainty impacts behavior of dynamically adaptive
systems. In 2011 26th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2011),
pages 568–571. IEEE, 2011.

[30] Andres J Ramirez, Adam C Jensen, and Betty HC
Cheng. A taxonomy of uncertainty for dynamically
adaptive systems. In 2012 7th International Symposium
on Software Engineering for Adaptive and Self-Managing

Systems (SEAMS), pages 99–108. IEEE, 2012.
[31] De Lemos Rogerio, Holger Giese, Hausi A Mller, Mary

Shaw, Jesper Andersson, Marin Litoiu, Bradley Schmerl,
Gabriel Tamura, Norha M Villegas, and Thomas Vogel.
Software engineering for self-adaptive systems: A sec-
ond research roadmap. Software Engineering for Self-
Adaptive Systems III. Assurances, pages 2–13, 2013.

[32] De Lemos Rogerio, David Garlan, Carlo Ghezzi, Holger
Giese, Jesper Andersson, Marin Litoiu, Bradley Schmerl,
Danny Weyns, Luciano Baresi, and Nelly Bencomo.
Software engineering for self-adaptive systems: Research
challenges in the provision of assurances. Software
Engineering for Self-Adaptive Systems III. Assurances,
pages 3–30, 2017.

[33] Glenn Shafer. A mathematical theory of evidence.
Princeton University Press, 1976.

[34] Luciano H. Tamargo, Alejandro J. Garcı́a, Marcelo A.
Falappa, and Guillermo R. Simari. Modeling knowledge
dynamics in multi-agent systems based on informants.
Knowledge Engineering Review, 27(1):87–114, 2012.
ISSN 02698889. doi: 10.1017/S0269888912000021.

[35] Yongchuan Tang, Deyun Zhou, Zichang He, and Shuai
Xu. An improved belief entropybased uncertainty man-
agement approach for sensor data fusion. International
Journal of Distributed Sensor Networks, 13(7), 2017.
ISSN 15501477. doi: 10.1177/1550147717718497.

[36] Trong Hieu Tran, Ngoc Thanh Nguyen, and Quoc Bao
Vo. Axiomatic characterization of belief merging by
negotiation. Multimedia Tools and Applications, 65
(1):133–159, 2013. ISSN 13807501. doi: 10.1007/
s11042-012-1136-7.

[37] Rens W. Van Der Heijden, Henning Kopp, and Frank
Kargl. Multi-Source Fusion Operations in Subjective
Logic. 2018 21st International Conference on Informa-
tion Fusion, FUSION 2018, pages 1990–1997, 2018. doi:
10.23919/ICIF.2018.8455615.

[38] Thomas Vogel, Andreas Seibel, and Holger Giese. The
role of models and megamodels at runtime. In In-
ternational Conference on Model Driven Engineering
Languages and Systems, pages 224–238. Springer, 2010.

[39] Danny Weyns. Software engineering of self-adaptive
systems. In Handbook of Software Engineering, pages
399–443. Springer, 2019.

[40] Danny Weyns and Tanvir Ahmad. Claims and evidence
for architecture-based self-adaptation: a systematic lit-
erature review. In European Conference on Software
Architecture, pages 249–265. Springer, 2013.

[41] Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam
Malek, Raffaela Mirandola, Christian Prehofer, Jochen
Wuttke, Jesper Andersson, Holger Giese, and Karl M
Göschka. On patterns for decentralized control in self-
adaptive systems. In Software Engineering for Self-
Adaptive Systems II, pages 76–107. Springer, 2013.

12

Part III

Related Work and Conclusion

127

8 Related Work
This chapter presents prior related efforts on defining self-adaptive sys-
tems, engineering self-adaptive systems and finally, mitigating uncertain-
ties in self-adaptive system. Parts of this chapter have been published in
peer-reviewed publications [75, 97, 98, 96, 94] co-authored by the author
of this thesis.

8.1 Defining System Adaptation and Self-Adaptive Systems

In the following section, we examine the available informal and formal definitions of
system adaptation and self-adaptive systems, followed by a short discussion on the relation
of self-adaptive systems with autonomous, context-aware and self-aware systems.

8.1.1 Informal Definitions of Self-Adaptive Systems

The ideas of self-adaptive systems have been rapidly growing for the past two decades,
and many attempts in the literature have been made to define this concept. As discussed
in the previous chapters of this thesis, there is still no general agreement on a broadly
accepted definition of self-adaptive systems in this research field. However, several prior
works have made efforts to define self-adaptive systems, both informally and formally.

Table 8.1 summarizes some of the existing informal definitions.

Study Definition
[77] “Self-adaptive software is informed about its mission, construction and be-

haviour, and it evaluates its own behaviour and changes behaviour when the
evaluation indicates that it is not accomplishing what the software is intended
to do, or when better functionality or performance is possible.”

[92] “Self-adaptive software modifies its own behavior in response to changes in
its operating environment. By operating environment, we mean anything
observable by the software system, such as end-user input, external hardware
devices and sensors, or program instrumentation.”

[117] “The aim of self-adaptation is to let the system collect additional data about
the uncertainties during operation. The system uses the additional data to
resolve uncertainties, to reason about itself, and based on its goals to reconfigure
or adjust itself to satisfy the changing conditions, or if necessary to degrade
gracefully.”

[32] “A self-adaptive system is a system that is able to adjust its behaviour in
response to their perception of the environment and the system itself.”

129

8 Related Work

[73] “A self-adaptive system is able to automatically modify itself in response to
changes in its operating environment. The modification is done by adjusting
attributes (parameters) or artifacts of the system in response to changes in the
system itself or in its environment.”

[120] “Self-adaptive software systems are an emerging class of systems that adjust
their behavior at runtime to achieve certain functional or quality of service
objectives.”

[17] “The core concept behind adaptability is the general ability to change a
system’s observable behavior, structure, or realization basically without users’
interaction.”

[22] “A software system is called self-adaptive if it can modify its behaviour as
a reaction to a change in its context of execution, understood in the widest
possible way, including both the external environment and the internal state
of the system itself.”

[78] Self-adapting is “a system’s ability to modify itself (self-adjust) in reaction to
changes in its execution context or external environment, in order to continue
to meet its business objectives despite such changes.”

[23] “Self-adaptive systems have been introduced to manage situations where soft-
ware systems operate under continuous perturbations due to the unpredicted
behaviours of their clients and the occurrence of exogenous changes in the
environment in which they operate.”

[58] “Self-adaptive systems are systems that adapt to dynamics by reconfiguring
their structure and modifying their behaviour at runtime with little or no
human intervention.”

[54] “Self-adaptive systems adapt their structure and behaviour to cope with
changing environment conditions.”

Table 8.1: Informal definitions of self-adaptive systems in the literature.

Although all of these definitions might look intuitive and clear at first glance, all of
them (except the first definition by Laddaga) are affected by the limitations that were
previously elaborated in more detail in Sections 1.1.3 and 1.3, where we used the informal
definition from Broy as an analysis reference [17]. Concretely, none of the informal definition
distinguishes when a system functions and when it adapts (i. e., the difference between
non-adaptive and adaptive systems), what is the minimum criteria and the prerequisites
for a system to be self-adaptive, nor in general provides a more specific semantic of system
adaptation or self-adaptive systems.

Besides the informal definitions listed in Table 8.1, some other studies have taken a
different approach towards defining self-adaptive systems. For example, Weyns in [116]
states that although there is no general consensus on the definition of self-adaptation, there
are two common interpretations, also called principles, that determine what self-adaptive
systems are. The proposed principles, referred to as external and internal principle, are
complementary to each other and explained as follows.

According to the external principle, “a self-adaptive system is a system that can handle

130

8.1 Defining System Adaptation and Self-Adaptive Systems

changes and uncertainties in its environment, the system itself, and its goals autonomously
(i. e., without or with minimal required human intervention) [116].” According to the
internal principle, “a self-adaptive system comprises two distinct parts: the first part
interacts with the environment and is responsible for the domain concerns—i. e., the
concerns of users for which the system is built; the second part consists of a feedback loop
that interacts with the first part (and monitors its environment) and is responsible for the
adaptation concerns—i. e., concerns about the domain concerns [116].”

The external principle considers the self-adaptive system as a black box, just as an
external observer would examine the system. This principle puts two aspects in focus:

1. the changes and uncertainties in the system, its environment and the (system) goals,
2. and that in self-adaptation, the self- prefix indicates that the system performs the

adaptation autonomously, without or with minimal human intervention.

In the external principle, it needs to be clarified from where the changes and uncertainties
in the goals originate, since it is left unclear what the goals are and where they are
defined. Specifically, the notion of goals in the description of the external principle remains
under-specified, and a further explanation of the form that the goals take, who sets them,
and how and when they are elicited remains open and ambiguous. Furthermore, the aspect
of human and human intervention are as well left unspecific. For example, is the human
the end-user, the developer or the maintainer of the system who needs to intervene with
the system in case of system faults and failures in order for the system to stay operational?
Finally, from the external principle, it is unclear what the author understands by the term
handling, concretely, by self-adaptive systems handling the changes and the uncertainties.

On the contrary, the internal principle looks at the system from an engineering standpoint,
e. g., how an engineer would build a self-adaptive system. If we compare the internal
principle and the architectures of autonomous systems that we proposed in Chapter 3, we
can observe the same design pattern for engineering self-adaptive and autonomous systems.
Specifically, the system (also referred to as a managed element as part of a self-adaptive
system) is enriched with a control logic (the adaptation logic as part of a self-adaptive
system). Therefore, from an architectural point of view there is no difference between a
self-adaptive system according to the second principle and an autonomous system according
to our definitions in Chapter 3.

A potential essential aspect to differentiate autonomous from self-adaptive systems in
the internal principle is the separation of concerns between the so-called first part (i. e., the
managed element), from the so-called second part (i. e., the adaptation logic). Concretely,
Weyns states that the managed element is responsible for the domain concerns, and the
adaptation logic is responsible for the adaptation concerns; however, without even clarifying
what he precisely understands under adaptation concerns, or in general, adaptation. Please
note that the author in [116] uses the terms system concerns (in the internal principle)
and system goals (in the external principle) interchangeably. In summary, both principles
fall short of increasing the semantic clarity of self-adaptive systems.

Summary. The existing informal definitions of self-adaptive systems from the prior
works remain underspecified since they primarily rely on the intuitive meaning of the
language. Over the years, not even an informal working definition was established and

131

8 Related Work

accepted in the community on a broader scale. As a result, in software and systems
engineering, or science in general, a definition with more rigour is required to understand
better what are self-adaptive systems and, respectively, the emerging engineering processes
and implications thereof. This further supports the necessity for formalized definitions and
a formalized world of concepts.

8.1.2 Analysis of the Formal Definitions of System Adaptation and
Self-Adaptive Systems

To the best of our knowledge, only a few approaches in the literature provide a formalized
world of concepts for system adaptation and self-adaptive systems. We summarize them in
the following section.

One of the first efforts toward formally defining adaptive behaviour was done by Zhang
and Cheng [129]. In their work, the authors propose a model-driven software development
process for dynamically adaptive programs, focusing on behavioural modelling. Concretely,
they introduce an approach to create formal models for the behaviour of adaptive programs.
According to the authors, 1) in order for an adaptive program to be trusted, it is important
to have a mechanism to ensure that the program functions correctly during and after
adaptations, and 2) an adaptation can only be performed safely only when the program is
in a quiescent state. This all results in adaptive programs being generally more difficult
to specify, verify and validate due to their high complexity, especially in multi-threaded
adaptations where the program behaviour results from the collaborative behaviour of
multiple threads. Although the authors’ goal is to define an adaptive program, they do not
aim to answer what they understand under the notion of adaptation as part of their work.
Also, it is important to point out that adaptation is not necessarily an emerging property
from a collaboration, as the authors consider as part of their work, and it should be treated
and defined as a separate concept. In their formal representation of adaptive programs, a
program is represented by a state machine (a finite state automaton) that exhibits certain
behaviour and operates in certain domains. A dynamically adaptive program operates in
different domains and changes its behaviour at run-time in response to domain changes.
According to the authors, an adaptive program is a program whose state space can be
separated into several disjoint programs, where each of the programs exhibits different
behaviour and operates in a different domain. The states and transitions connecting one
region to another are adaptation sets.

As part of their work, the authors do not formalize system adaptation in general, but
they illustrate the adaptation specification process for three types of “adaptive behaviour”
in adaptive programs by modelling an audio streaming protocol with Petri nets. To
formalize adaptive programs, the authors use prior works on specifying dynamic systems
architectures [5, 15] as the foundation for their formalisation, often using the terms adaptive
and dynamic interchangeably without providing a clear distinction between these terms.
Although the presented motivation for the work: 1) the need for the program to function
correctly during and after the adaptation and 2) the idea of a quiescent state, are indeed
relevant for (self-)adaptive systems, it is not clear from their proposed specifications how
adaptive programs differ from dynamic systems, and in general, how their specifications

132

8.1 Defining System Adaptation and Self-Adaptive Systems

support the characterization and the engineering of (self-)adaptive systems on a bigger scale.
As emphasized as part of this dissertation, defining system adaptation can only be done
within an appropriate framing, which considers aspects such as changes and uncertainties,
adaptation triggers, context, domain and adaptation goals, and quality. Unfortunately, all
of these aspects are entirely out of the scope in [129].

In two separate works, Broy et al. [20] and Bruni et al. [22] try to answer the question
of how the adaptive systems differ from the “ordinary” systems, which are considered
non-adaptive. Concretely, Broy et al. [20] aim at defining adaptive system behaviour while
differentiating interaction patterns between the system, a subject (a user or other technical
system that interacts with the system), and the environment (modelled as context). The
authors claim that the adaptive behaviour of the system can be differentiated only by
considering and observing the environment in which the system operates. In other words, it
cannot be argued if something adapts in isolation from the environment (i. e., the context)
and its state, which is a conclusion that we have also come to as part of our work and
is one aspect of our framing, proposed in Chapter 5. Additionally, in [20], the authors
classify the system inputs into direct/explicit inputs and indirect/implicit inputs. Namely,
they assume that the system always receives the user inputs explicitly and that a user
experiences an adaptive system behaviour if the system reaction resulting from the user
input is additionally determined by some additional information about the environment
received through the implicit inputs. Furthermore, the authors identify four types of
observable system behaviour (i. e., adaptive behaviour) with respect to the user: non-
adaptive, non-transparent adaptive, transparent adaptive and diverted adaptive behaviour.
This work is based on the formalism of Focus [18], which the authors use to model the
different types of adaptive behaviour through formalizing the interactions between the
subject, the system and the environment. Although the authors identify the consideration
of the context state and the system state as relevant for the adaptation, and they reach to
some sound conclusions (e. g., the adaptation of the system can only be determined within
the frame of context in which the system operates), the definitions in their work still lack
completeness, i. e., they exclude all the other aspects that are necessary and essential for
a holistic definition of system adaptation (see Chapter 4). Despite these limitations, the
work by Broy et al. [20] still proposes a unique interpretation of adaptive system behaviour.
Concretely, his paper differs from all the other works in the literature, and it is the first
existing work that puts the definition of system adaptation in a different perspective,
identifying that adaptation as a system property cannot be defined in isolation from other
notions (in particular, the context as part of their paper).

Bruni et al. [22] propose a conceptual framework for adaptation, in which they assign a
central role to control data, which governs the adaptive behaviour of a component. Namely,
they define adaptation as a run-time modification of the control data. Consequently,
the authors consider a component as self-adaptive if it can modify its own control data
at run-time. Furthermore, the authors propose a simple Labelled Transition Systems
(LTS) formal model based on their conceptual framework. They discuss adaptable vs
non-adaptable components, self-adaptive components, and knowledge-based adaptation,
in which they recognize the context as the observable part of the environment. To this
point, the authors mention the notion of partiality but only very briefly. Although the

133

8 Related Work

authors make a considerable effort towards tackling such a challenging issue as defining
adaptation, the proposed formalization of their concepts and even the proposed conceptual
framework are still very abstract to be helpful towards a design or a later implementation
of a self-adaptive system. Concretely, it is left general and is not elaborated clearly on what
the authors understand under the notion of control data, how one can identify control data
in the system, how the system is influenced by the control data and the structure of the
control data. Unfortunately, this level of abstraction and the fuzziness of the central notion
of their formalisms, i. e., the control data, renders the complete formalization non-usable.
Also, the authors do not discuss any methodological or architectural implications of their
formalisms nor consider any of the essential aspects we elicit in this dissertation that are
crucial for defining these systems.

Weyns et al. [120] and Arcaini et al. [8] propose formally specified models for designing
self-adaptive software systems, concretely distributed/decentralized self-adaptive systems.
The authors propose a FOrmal Reference Model for Self-adaptation (FORMS), which
enables precise descriptions of the architectural characteristics of distributed self-adaptive
software systems in the system’s early design phases. The model is formally specified in
the Z notation. Although FORMS had and continues to have a notable impact in the
community, it does not define what system adaptation is, nor does it help differentiate
between self-adaptive and non-adaptive systems. Furthermore, FORMS focuses on the
formalization of the structural aspect of self-adaptive systems and does not provide a
formalization of the behavioural semantics of the systems. Also, the authors do not consider
the need and importance of considering and representing the context as part of the solution
for engineering self-adaptive systems that they propose. Namely, the idea behind the
dynamics of these systems—concretely the context and system changes—that could not be
anticipated during the systems’ design, and all the resulting implications, including the
need for different mechanisms for knowledge representation, reasoning, etc., are completely
excluded in FORMS.

Arcaini et al. [8] show how to model the adaptation logic and the behaviour of self-
adaptive systems by utilizing the theoretical framework of the multi-agent Abstract State
Machines (ASM). Concretely, the authors represent multiple decentralized MAPE-K loops
formalized in terms of ASM transition rules. Although the authors aim at modelling
self-adaptive systems, they do not explain what the adaptive behaviour of a system means
for them. However, it is important to point out that this is the only related work where the
authors mention and put the focus on the system’s functionality in some way, implicitly
implying and framing the adaptation as a property that modifies the system’s nominal
function. Namely, this paper distinguishes between the logic necessary for self-adaptation
(in their case, the various decentralized MAPE-K loops) and the system’s functional logic,
which provides the system’s functionality. Similarly as to some conclusions that we have
reached as part of our work, the authors of [8] emphasize the importance of the knowledge
(i. e., the knowledge component), which needs to be built according to some relevant aspects
for the concrete adaptation. However, the authors do not elaborate on the knowledge
beyond this explanation nor provide any solutions towards modelling and reasoning (i. e.,
updating the knowledge at run-time). Finally, the formalizations in [8] leverage the aspect
of decentralization and consider adaptation as a result of the collaborative behaviour of

134

8.1 Defining System Adaptation and Self-Adaptive Systems

multiple systems (i. e., managing systems as part of MAPE-K). However, defining the
system adaptation should be independent of the nature of the system. Our definitions
are applicable to single and multiple systems with distributed or centralized nature. A
thorough consideration of the quality and phenomena of the context in which the systems
operate, as well as the consideration of the adaptation goals and their separation from the
business goals, are crucial prerequisites for building systems with self-adaptive capabilities.
However, none of the two papers by Weyns et al. [120] and Arcaini et al. [8] considers them
in their solution.

Context has been more carefully considered in the works proposed by Abusair et al. [2]
and Bucchiarone and Mongiello [23]. Abusair et al. [2] bring the system quality and the
context changes, including the need for context awareness for system adaptation to the
forefront, by focusing on how context changes may affect system quality. The authors
argue that the systems may greatly benefit from context awareness to adapt to the context
changes. This goes in the direction of some of the conclusions from this dissertation related
to the minimal requirements for a system to be self-adaptive. In other words, the knowledge
component in the adaptation logic that consists of models of the system (enabling self-
awareness) and models of the context (enabling context awareness). Please note that when
we write this we only refer to passive self-adaptation (as discussed in Appendix A)—the
minimal set of requirements for the active self-adaptation differs. The approach proposed
by Abusair et al. also leverages software quality under different contextual situations
to determine the best adaptation in a given context by using a reward function. This
could be considered as some quantification of the quality aspect in their paper, which is
exacctly the idea behind the Quality Function in our contributions. However, the authors
do not make any separation between the business and the adaptation goals, nor define what
the authors understand under system adaptation. Namely, although the authors relate
context awareness to adaptation, the paper does not provide any formal foundations or
answers to the main problem that we tackle in this thesis, i. e., what is system adaptation
and, respectively, self-adaptive systems. The final limitation of this work is that their
contribution focuses exclusively on mobile applications, and the authors do not generalize
it to other types of systems.

A more comprehensible and complete formalism has been proposed in recent work by
Bucchiarone and Mongiello [23], in which the authors introduce a formal framework to
characterize different aspects of an ensemble-based software engineering. Concretely, they
present 1) how to model dynamic software ensembles using typed graph grammar, 2) how
to specialize and re-configure ensembles, and 3) how to manage collective adaptations in an
ensemble. As part of this work, the authors use Typed Graph Grammars in combination
with Labelled Transition Systems to formally define system context, context awareness,
and system adaptation in the frame of system ensembles. According to the authors,
the adaptation should consider 1) the goal of some context properties that adaptation
should achieve, 2) the system context at the moment that the need for adaptation is
triggered, and 3) the functionalities of the cells (the systems) present in the system (the
ensembles) at the moment that the need for adaptation is triggered. Although it is not an
extensive and complete framing like the one we propose as part of this dissertation, still the
work by Bucchiarone and Mongiello [23] acknowledges the importance of considering the

135

8 Related Work

functionality that adapts, the quality and the context as inseparable notions from system
adaptation. The aspects of uncertainty, the separation between adaptation and business
goals, the fact that adaptation is always in relation to the satisfaction of the adaptation
goals within a specific range of values, and in overall, what this all implies for engineering
self-adaptive systems have not been considered as part of the definitions in [23]. However,
probably the biggest limitation of this work—similarly to some of the other existing works
described above—is that the authors provide formalisms for adaptation exclusively as an
emerging property from system ensembles/system collaboration. Nonetheless, the notion
of system adaptation needs to be considered and defined in independence from system
collaboration, multi-agent systems and ensembles.

Summary. Despite the growing and active community for the past two decades, including
the expanding interest in self-adaptive systems in the literature of software engineering,
there is a sparsity of works that focus on formal definitions of system adaptation and
self-adaptive systems and characterizations of self-adaptive systems. It is notable that none
of the existing works which propose some formalized world of concepts—which we analyzed
above—have the complete framing and consider all the necessary aspects to understand
system adaptation and, respectively, self-adaptive systems, resulting in a lack of a holistic,
comprehensible and precise formal definition of these terms.

Through our literature analysis in this section, we have also detected a common pattern
among the existing works that aim to propose formal efforts to define (self-)adaptive
systems [129, 120, 8, 23]. Probably done to compensate for the lack of a better understanding
of system adaptation, these works establish their definitions for self-adaptive systems by
exploiting various facets like collaboration, multi-agent systems, decentralization and
ensembles. However, in essence, these notions are independent and separate from system
adaptation and should not be leveraged as foundations to define self-adaptive systems.

Another unexpected insight from our literature analysis is that the notion of uncertainty
has not been considered in any of the formal efforts to define self-adaptive systems, although
uncertainty is considered the main reason for self-adaptive systems in every published
paper on this topic, as well as in the majority of the informal definitions of these systems.

With exception to the last paper by Bucchiarone and Mongiello [23], none of the formal
efforts to define self-adaptive systems tries to define adaptivity as a property of the systems
first before proceeding to define self-adaptive systems.

And lastly, all of the papers summarized in this section entirely exclude the aspect that
a self-adaptive system should evaluate itself regarding the fulfilment of its mission, based
on which the system changes its own behaviour when the evaluation shows that the system
is not fulfilling its objectives. These ideas were initially positioned by Laddaga in his
informal definition of self-adaptive software; however, they were completely abandoned in
the other works in the literature after the MAPE-K closed feedback loop for engineering
self-* systems was published. Hence, in our opinion, they are essential to be considered
while defining self-adaptive systems, together with the definition of system adaptation.

136

8.1 Defining System Adaptation and Self-Adaptive Systems

8.1.3 Other notions related to system adaptation

Across the literature, self-adaptation has been closely related and even used interchange-
ably with other terms like autonomy, context-awareness and self-awareness. This section
summarises some of the existing efforts to define these three notions.

Although the interest in autonomous systems has become more prominent in recent
years through the emerging high-profile application such as autonomous cars, the initial
efforts in the literature to formally define autonomy as a system property were made
in 1995. In [83], Luck and d’Inverno argue that the terms agency and autonomy are
often used interchangeably without considering their relevance and significance, and in
response, they propose a three-tiered theory using the Z specification language. In their
three-tiered hierarchy, the authors distinguish between objects, agents, and autonomous
agents. Concretely, in their definition of autonomy, as a focal point, the authors introduce
motivations—“higher-level non-derivative components related to goals.” Namely, according
to their definition, autonomous agents have certain motivations and some potential to
evaluate their own behaviour in terms of their environment and their respective motivations.
The authors further add that the behaviour of the autonomous agent is strongly determined
by and dependent on different internal and environmental factors. Although the authors
acknowledge the importance of considering different internal and environmental (i. e.,
contextual) factors while defining autonomy, in their formalisms, the importance of the
user in defining autonomy is entirely omitted. On the contrary, in our work, we explicitly
consider the user and how the user’s involvement in the system’s operation decreases
proportionally to increasing the system’s autonomy. We define levels of system autonomy
by focusing on the system’s function and how much from the user’s logic is “shifted” to
the system in the higher levels of autonomy.

Barber and Martin motivate their work in [10] based on the fact that there is little
agreement about the concept of autonomy in the literature, stating that a formal definition
of agent autonomy is necessary to provide a foundation for work in this area as well as to
support the operational deployment of the concept. As part of their contribution, they aim
to propose a framework for interpreting agent autonomy. They conclude that there are
three key elements necessary to model agent autonomy: (1) the identification of the goal
around which the autonomy assessment is focused, (2) specification of the problem-solving
role for each decision-making agent, and (3) explicit declaration of which agents are required
to carry out the decisions made by the decision-makers.

Gunderson and Gunderson in [51] focus on the terms intelligence, autonomy and capa-
bility. The authors argue that although these three terms are often used in the literature
interchangeably, they are far from equivalent. They also state that in order to have a
common framework for discussion, it is necessary to have at least a working definition
of these terms, additionally emphasizing that having more precise definitions than the
working definitions (e. g., formal definitions) would be better preferred. With this, the
authors of [51] once again validate the importance of terminological clarity in engineering,
which is crucial not only for discussions but the overall engineering processes, which was
the main motivation for defining both system autonomy, as well as system (self-)adaptation
to which we contribute with this dissertation.

137

8 Related Work

However, as part of this work, the authors ended up putting the primary focus on
intelligence and capability, defining intelligence as a cognitive process that allows a system
to propose a viable solution to a problem or task and capability as the ability to implement
or execute a proposed solution in a dynamic, uncertain environment successfully. In
relation to defining autonomy, they state that if a system should be tightly controlled,
then it needs to be tightly controlled. This is similar to the differentiation we make in
our work, where we argue that not every system function is meant to be autonomous and
that autonomy is a property of a concrete function. Moreover, as part of their work, the
authors identify the importance of considering the nature of the domain, i. e., the context
of the system. Concretely, the autonomy of a system differs if the systems operate in static
and deterministic contexts versus dynamic and uncertain domains.

Compared to all the prior related efforts, as part of our work, we additionally take
into account the importance of considering the learning aspects in autonomous systems,
especially when 1) the systems operate in highly dynamic, uncertain and unknown en-
vironments, and 2) the user’s control on the system reduces. Finally, to the best of our
knowledge, no prior work defines different levels of autonomy formally.

Context awareness and self-awareness in computing systems is another field of research
related to system self-adaptation. Elhabbash et al. in [37] view self-awareness as a
property for enriching self-adaptive systems similar to other self-* properties (e. g., self-
healing, self-organising, etc.). However, they also state that the relation between other
self-* properties and self-awareness is not entirely clear, and it presents a future research
challenge. Broy in [17] states that context awareness is closely related to adaptation and
context modelling, and it is a prerequisite for self-adaptation, to which the author refers
to as automatic adaptation. Furthermore, according to Broy, context awareness has two
aspects: 1) self-awareness enabling a system to reflect its own system model, its own state,
etc., and 2) awareness of its context (i. e., context-awareness). Finally, Petrovska in [94],
identifies self-awareness and context-awareness as prerequisites for self-adaptation. Through
discussion of the properties of self-adaptive systems, the author depicts the relation between
self-awareness and self-adaptation. Furthermore, the author exemplifies and identifies
two different levels of awareness in computing systems: primary system awareness and
secondary system awareness. Concretely, every system has some knowledge by design:
different models of the system, the system’s state, the encoded specifications of the system,
or in general, the implementation of the system which provides the system’s functionality
(i. e., system function (sf), adopted from [75]). This knowledge is considered as an “innate”
system awareness that the system function (sf) has by design and comprises the primary
system awareness. On the contrary, the reflection of that internal knowledge (the “innate”
awareness) with respect to certain adaptation objectives as part of the knowledge of the
adaptation logic is called secondary system awareness.

Summary. Similarly, as for self-adaptive systems, there needs to be a more precise
definition of autonomous, context-aware and self-aware systems. This results in a blurry
and imprecise distinction between these different types of systems and consequently in
ambiguous and interleaved usage, as well as vague association among the systems. To
the fuzziness in the distinction between these systems additionally contributes the fact
that the proposed MAPE-K conceptual model is used not only as a reference model for

138

8.2 Engineering Self-Adaptive Systems

engineering self-adaptive systems but as well for engineering self-* systems in general
(e. g., self-healing, self-organising, self-aware, etc.). Getting a clear definition of system
adaptation and self-adaptive systems and a more precise terminology semantics will also
contribute to distinction and differentiation among the other types of self-* systems and
self-adaptive systems.

8.1.4 Overall summary

Despite 1) the acknowledgement of adaptation as an emerging property of software
systems, 2) the expanding interest in self-adaptive systems in the literature of software
engineering, 3) the various systematic mapping studies and literature reviews in the field of
self-adaptive systems [90, 84, 74, 119, 101], and 4) many methodological, architectural and
technical solutions for engineering self-adaptive systems, it can be observed that there is a
lack of contributions on the foundations of these systems, which aim to understand and
define the essence of self-adaptive systems. Especially there is a clear gap in the literature
when it comes to formal definitions, as well as formal characterizations of self-adaptive
systems. This also would include conducting research on defining system adaptation, which
is a prerequisite for a subsequent definition of self-adaptive systems.

The lack of precise understanding of what are self-adaptive systems has different software
engineering consequences and implications, for instance, how to build or engineer these
systems that go beyond the famous MAPE-K conceptual model (further discussed and
analyzed in Section 8.2). A more specific semantics accompanying the MAPE-K reference
model will also enable a better separation and characterization of, for example, self-adaptive
and self-organizing or self-aware systems. And finally, having better semantics of the notion
of self-adaptive systems will 1) complement the already existing works in this field, and
2) set the foundation on how to evaluate and compare these systems in the future.

Gap 1: The literature in software engineering lacks a precise, comprehensive and broadly
accepted formal definition of system adaptation and self-adaptive systems.

8.2 Engineering Self-Adaptive Systems

The lack of precise definition of self-adaptive systems has various software engineering
consequences and implications, for instance, how to build these systems. To date, several
approaches have been proposed in the literature to facilitate the engineering of self-adaptive
systems. However, all of them based on authors’ intuitive understanding of these systems.
In this section, we examine the most relevant approaches with respect to our proposed
logical architecture proposed as part of this thesis.

8.2.1 Models

More than twenty years ago, Kephart and Chess, in their well known IBM manifesto
on autonomic computing have proposed the peculiar ideas for autonomic computing
systems that “can manage themselves given high-level objectives from administrators”
[66]. The envisioned autonomic systems organise and manage themselves in a completely

139

8 Related Work

autonomous manner. For these systems, the designers and the engineers have become
obsolete and are replaced by human administrators or end-users that merely specify the
system’s high-level business objectives and do not deal with low-level technical details.
From the current time point, it is very challenging to argue how these systems will perform
and how they will be engineered. As a result, an evolutionary, iterative approach toward
understanding, designing, and engineering succeeding systems should allow continuous step-
by-step integration of the contemporary concepts and ideas. We consider the self-adaptive
systems as an intermediate step—an iteration, which, once fully understood, brings us a
step closer to fully autonomous systems.

Besides setting the vision and the foundation for a whole new research domain, in our
view the most significant contribution of the autonomic manifesto is the proposed MAPE-K
conceptual model [66]. As explained previously in Chapter 1, most of the architecture-based
self-adaptation systems are built upon the MAPE-K loop, or at least on different variations
of the five phases of the MAPE-K. However, the MAPE-K is not helpful in designing an
actual technical implementation of a self-adaptive system since, as discussed in different
sections of this thesis, it is unclear how self-adaptive systems engineered according to
the MAPE-K differ from the “ordinary”, non-adaptive systems. Furthermore, MAPE-K
is used not only as a reference model for engineering self-adaptive systems but also for
engineering self-* systems in general. Therefore, it needs to be clarified how a self-adaptive
system engineered according to the MAPE-K conceptual model differs, for instance, from
a self-aware system, since the same conceptual model is used for engineering self-adaptive,
self-aware and all the self-* systems. Various limitations and flaws of the MAPE-K
conceptual model served as a backbone for eliciting different research problems throughout
this dissertation. In the following, we again briefly summarize some of the limitations of
the MAPE-K.

Although MAPE-K gives some intuition behind the engineering of self-adaptive systems,
primarily by the separation of concerns between the managed element and the adaptation
logic, a more specific semantics of these two components within the conceptual model
is still lacking; therefore, it remains open for a subjective interpretation of the designer
or the engineer of the system. This is not necessarily a disadvantage, but it opens a
space for misinterpretation. Concretely, it can be interpreted that the managed element,
which is just any system, already contains elements of monitoring, analysis, planning1, and
execution; as a result, blurring lines between the managed element and the adaptation
logic. As a result, this enables every system (e. g., CPS) to be misleadingly labelled
as self-adaptive. This separation becomes additionally blurry with the introduction of
different MAPE-based patterns for self-adaptive systems [123, 101] that focus on different
combinations of decentralization of the four MAPE phases. Although different MAPE-
based patterns could be more informative regarding the system’s design, inherently, they
have the same limitations as the MAPE-K closed feedback loop itself: their high level
of abstraction, without providing any characterization of how a system built upon the
MAPE loop differentiates from the “ordinary”, non-adaptive systems, nor a minimal set of

1It is also worth mentioning that in the research domain, the differentiation between the analysis and
planning phases has been argumentative.

140

8.2 Engineering Self-Adaptive Systems

requirements in order for the system to be considered as a self-adaptive.
Moreover, the aspect that a self-adaptive system evaluates its own behaviour and changes

behaviour when the evaluation indicates that the system is not accomplishing what it
is intended to do, as envisioned by Laddaga in his informal definition of self-adaptive
systems [77], is entirely left out in the MAPE-K conceptual model.

Summary. The conceptual MAPE-K model as a reference model for engineering self-*
systems has a very high level of abstraction, which is not necessarily helpful in designing
an actual technical implementation of a self-adaptive system. Furthermore, MAPE-K does
not provide any insights into how self-adaptive systems (engineered according to MAPE-K)
differ from ordinary systems, which are considered non-adaptive, or differ from other self-*
systems.

8.2.2 Patterns

Weyns et al. [123] propose patterns for decentralised MAPE2 control loops in self-adaptive
systems. The authors argue that when systems are large, complex and heterogeneous, a
single MAPE loop might be insufficient for managing all the system’s adaptations, and
the need emerges how to decentralise each of the MAPE phases. A pattern describes
a generic solution for a recurring design problem [87]. The authors in [123] develop a
systematic approach for describing multiple interacting MAPE loops, based on which
they propose five patterns for MAPE decentralised control in self-adaptive systems. The
patterns proposed in [123] are derived from common knowledge in the field of self-adaptation
and the authors’ experiences with building self-adaptive systems. Although the different
patterns for decentralisation of the MAPE loops can foster more structured formations for
engineering self-adaptive systems, the shortcomings, as discussed in the previous section,
remain the same as the MAPE-K loop itself. Concretely, patterns remain on a very high
level of abstraction, and they are not necessarily beneficial for the design of an actual
physical architecture of a self-adaptive system. It is also essential to point out that the
proposed design patterns completely exclude the knowledge component.

In [91], Musil et al. report the results of a systematic survey on CPSs that combine
different self-adaptation mechanisms across the technological stack of the system. Foresee-
able, their results showed that the majority of the studies for engineering self-adaptive CPS
combine variations of the MAPE closed feedback loop. Additionally, as part of this work,
based on a few studies from their survey, the authors identify three adaptation patterns
with different combinations of multiple types of self-adaptation within the system. Their
patterns distinguish between the type of adaptation mechanisms, their layer locations, and
the cross-layer inter-adaptation interactions between the respective mechanisms. The three
proposed patterns aim to tackle the following three problems: 1) a distributed applica-
tion seeks to improve the utility of its services to the physical resources by dynamically
exploiting rich context information, 2) a distributed application exploits data of individual
resources to improve its overall utility by changing the resource configuration that produces
the functionality of the application, and 3) a distributed application seeks to improve the

2Note that the Knowledge component (K) is not explicitly considered as part of the proposed patterns.

141

8 Related Work

overall utility of its service, which requires the autonomous entities to efficiently share
information and coordinate their tasks on a local basis.

In their study, the authors have explored how different adaptation mechanisms have been
utilised for self-adaptation in CPS, without providing a common and shared understanding
of what system adaptation means in the first place, nor did they define self-adaptive systems.
Through their work we can once again show and validate our findings from Chapter 4, that
very often works in this domain leverage the notion of decentralization or distribution to
compensate for the lack of clarify of the core aspects of adaptation and self-adaptive systems.
Furthermore, the patterns identified in this work are not informative for the specific design
of a self-adaptive CPS, nor do they tackle concrete specificities and properties of the CPSs
that are unique for these systems and differ, for example, from other distributed and
decentralised applications, or software systems in general.

Summary. The existing works on patterns for engineering self-adaptive systems and,
respectively, self-adaptive CPSs, primarily utilize the concept of MAPE (please note that
the Knowledge component is excluded) while completely omitting any discussion on system
adaptation and why the systems that are built according to their proposed patterns are self-
adaptive. Additionally, although one might argue that knowledge is implicitly considered
as part of the other four phases of the MAPE, the existing patterns exclude the knowledge
component and leave out any emphasis on the importance of the consideration of the
knowledge as part of their works. This contradicts our findings in which we argue that
the knowledge component built according to the concrete system function that adapts,
the adaptation goals and the uncertainties, and that keeps models of the context and/or
the system that is relevant for the adaptation, is the minimal requirement for a (passive)
self-adaptive system.

8.2.3 Frameworks

The most prominent and broadly accepted framework in the literature for engineering
self-adaptive systems is the Rainbow framework, developed by Garlan et al. [44]. Rainbow
is a two-layered framework for architecture-based self-adaptation utilising utility theory.
In this framework, the adaptation infrastructure is tailored using the system-specific
adaptation knowledge, including the types and properties of components, behavioural
constraints, and adaptation strategies (to which we refer as actions towards adaptation
in this dissertation). Rainbow uses specific mechanisms for planning, which is something
that we do not prescribe in our logical architecture, and it is left to the designers of
the system. Concretely, utility theory in their approach is used for finding the optimal
trade-off between two quality objectives (performance and cost in their used Znn.com
exemplar [27]) when the system is exposed to uncertain conditions (unknown periods
of peak requests). The adaptation is triggered (i. e., different adaptation strategies are
executed—to which we refer actions towards adaptation in our formalisms) based on the
desired value of the trade-off in different conditions. Furthermore, the adaptation logic
of the framework is predefined during the design of the system, as Rainbow does not
support run-time modification of the adaptation logic, which disables the approach to
deal with uncertain situations and changing conditions that were not known during the

142

8.2 Engineering Self-Adaptive Systems

design of the self-adaptive system. In Appendix A.5, we exemplify further some of our
theoretical contributions and terminology that we propose in this dissertation on the
Znn.com exemplar.

D’Angelo et al. [30] propose CYber-PHysical dEvelopment Framework (CyPhEF), a
framework for developing self-adaptive CPSs based on model-driven engineering paradigm
[31]. CyPhEF utilizes models as primary artefacts for engineering self-adaptive CPSs.
Specifically, CyPhEF promotes MAPE-K components to first-class modelling abstractions
and provides: 1) a Domain-Specific Environment for specifying the MAPE-K control
loop model, and 2) a Cyber-Physical Simulation Platform for simulating the designed
self-adaptive CPS. In other words, the Domain-Specific Environment allows defining the
control architecture of the CPS under consideration. The designed self-adaptive CPS is
simulated using the Simulation Platform.

Seiger et al. [108] also propose a framework for engineering self-adaptive CPSs. Their
work examines the application of Business Process Management (BPM) and workflow
technologies in the new areas of the Internet of Things and CPSs to increase automation,
better resource utilization, and higher product quality. The authors present an approach
for enabling self-adaptive workflows based on the MAPE-K, to which, in addition to the
feedback from the process management system and services, additional sensor data from
physical devices is used to monitor and analyze the real-world effects of the process activity
executions. This work uses graph queries on a knowledge base to find a compensation (e. g.,
a replacement resource) to be activated in case of inconsistencies and unanticipated errors.

Although both of these works by D’Angelo et al. [30] and Seiger et al. [108] propose
frameworks for engineering self-adaptive CPSs, both the frameworks propose a MAPE-K-
based solution and none of the frameworks supports run-time modification of the adaptation
logic. Furthermore, D’Angelo et al. acknowledge that developing self-adaptation for CPS
is more challenging than software systems since a CPS contains both control and physical
aspect; however, the authors do not specify the concrete characterization of the CPSs that
their proposed framework tackles. The authors continue with the argument that centralized
control is not adequate in large distributed settings and that self-adaptation might be
achieved through decentralized control. Nonetheless, how decentralizing the control (the
MAPE-K control loop in this case) is related to the adaptation capabilities of the systems
has not been addressed by the authors. Decentralization and adaptation are two distinct
and independent concepts, and the notion of decentralization should not be leveraged to
compensate for the imprecise understanding of the notion of adaptivity.

Camara et al. [24] propose a framework for self-adaptation based on quantitative synthesis
and verification that separates the planning phase into 1) architecture reconfiguration
and 2) task planning problems on a use case of mobile service robots—similar to the use
case in this thesis. The authors have identified the problem of the large solution spaces
while searching for the best combination of software architecture configuration and task
planning specification for adaptation. This is because quantitative guarantees associated
with reconfiguration and behaviour strategies depend on different information from various
models that change at run-time. This potentially invalidates every quantitative guarantee
associated with pre-computed strategies (the core limitation of the MORPH approach
[14], see Section 8.2.4). This paper acknowledges the importance of information from

143

8 Related Work

models that change at run-time, and their proposed approach enables automated run-time
decision-making for self-adaptation. In our architecture, similarly to the framework by
Camara et al., we also promote both behavioural adaptation (modification of the managed
elements) and structural adaptation (modification of the adaptation logic). However,
the work by Camara et al. [24] has a couple of limitations in comparison to the third
contribution of this thesis (i. e., the logical architecture): 1) the authors in [24] mainly focus
on the planning phase of the self-adaptive system, and it could be seen as one potential
technical solution for the planning component of our logical architecture, 2) our logical
architecture is built while considering specific characteristics of single and multi-agent CPSs
(e. g., the partiality and the uncertainties of the observations, the dynamic context, the
need for reasoning and knowledge aggregation, etc.) that are entirely out of scope in the
framework by Camara et al. 3) our architecture is built within the proposed formalisms on
system adaptation, consequently supporting a more systematic development of self-adaptive
CPSs, and most importantly 4) our logical incorporates the notion of the Quality Function,
which enables the self-adaptive system to evaluate itself and indicate when the system is
not accomplishing its goals based on which self-adaptation is triggered.

Finally, a few other frameworks have also been proposed in the literature that apply to
only a single technology, e. g., Java-based applications [9, 50], or to a single domain, e. g.,
mobile applications [55, 105]. However, these works not generalize beyond other types
or classes of systems, nor answer why they consider the systems built according to their
proposed frameworks to be self-adaptive.

Summary. The proposed frameworks in the literature for engineering self-adaptive
CPSs [30, 108, 24] do not focus on the specific characteristics of CPSs, according to which
the respective solutions are proposed. Moreover, except for Rainbow [44], we can observe a
similar pattern as in all the other works in this research domain. Namely, the lack of a
more profound understanding of system adaptation and self-adaptive systems has clearly
reflected in the proposed frameworks that we analyzed as part of this section. The liberate
use of the terminology of self-adaptive systems, including the intuitive understanding of
these systems, results in ambiguity and difficulties in comparing the existing frameworks.

8.2.4 Architectures

On the architectural level, Affonso et al. [3] and Braberman et al. [14] propose reference
architectures based on reflection for self-adaptive software and a reference architecture for
configuration and behavioural self-adaptation, respectively. Reference architectures are
considered as reusable artefacts that combine the knowledge of architectures of software
systems in specific domains. Reference architectures support the development, standardisa-
tion, and evolution of systems of those domains. To the best of our knowledge, these are
the only two existing reference architectures for engineering self-adaptive systems.

Affonso et al. [3] present a reflection-based reference architecture for self-adaptive software,
named RA4SaS, which aims at developing software entities that are transparently monitored
and adapted at run-time. Namely, to perform these operations, this architecture proposes
using modules in an “assembly line”, which allows a software entity to be disassembled,
adapted, and reassembled automatically by these modules. Through a proposed case

144

8.2 Engineering Self-Adaptive Systems

study, the authors show ways to apply structural adaptation of software entities through
automatic mechanisms. The theoretical shortcomings of this work is two-fold, which as
a consequence reflects on the architectural solution proposed in the paper. First, the
authors’ understanding of self-adaptive systems as “systems that can adapt by modifying
their structure and behaviour” is almost the same as the informal definition by Broy [17],
which we extensively discussed and analyzed its shortcomings in Section 1.1.3. Second,
probably as a result of the first point, it is not clear how the automated process proposed
in the architecture is related to system adaptation and why they refer to their process as
adaptation and not simply as automated module change.

Braberman et al. [14] present MORPH, a reference architecture that distinguishes
the dependencies between structural reconfigurations and behavioural adaptations in
self-adaptive systems. Concretely, the proposed architectural approach involves run-time
change of the system configurations (e. g., the system’s components and their bindings) and
behaviour update (e. g., components orchestration, reactive behaviour, etc.) based on design
time predefined configurations. The architecture is structured in three main layers: Goal
Management, Strategy Management, and Strategy Enactment, which control the target
system. The target system provides the system functionality, similarly as the managed
element in our work. In MORPH, the authors consider every layer as implementing a
separate MAPE-K loop. Orthogonal to the three layers, the architecture contains the
Common Knowledge Repository, which keeps the goal model of the system specified by the
system’s developers. The goal model comprises assumptions about the system state, the
system goals and the environment and informs the design of the three layers of the reference
architectures. This is similar to our work (see Chapter 5), where the goals (business and
adaptation) inform the design of the Quality Function and the adaptation logic. Similarly,
in our work we say that the knowledge in the adaptation logic keeps model of the states of
the system and the context, relevant for the concrete adaptation. In our logical architecture,
compared to the both reference architectures described above, the adaptation logic not
only adapts the managed element(s) but also modifies itself during run-time. Although it
can be noted that in MORPH the authors have some better understanding of the semantics
of self-adaptive systems, none of the existing architectures is outlined within a formal
framework that defines what means for a system to adapt at first place, and differentiates
between self-adaptive and ordinary, non-adaptive systems.

Summary. Our literature analysis showed a scarcity of architectures for engineering
self-adaptive systems in the literature. This is presumably because there is a lack of
understanding and definitions, and in more general, semantic clarity about what self-
adaptive systems are, which is a necessary first step before discussing and proposing
approaches for engineering these systems. The two existing reference architectures focus
on engineering self-adaptive software systems and utilize the notions of system reflection
and reconfiguration. These two concepts could be indeed intuitively related to adaptation;
however, in both of these works remains open to what is precisely understood by adaptation
in their contributions. Also, both of the reference architectures provide solutions for self-
adaptive software systems and not CPSs that operate in dynamic and changing contexts.
Finally, in none of the architectures does the adaptation logic gets modified during run-time,
nor do they incorporate the aspect of the system evaluating itself based on which the

145

8 Related Work

system changes its behaviour.

8.2.5 Overall summary

To the best of our knowledge, there is no existing architecture in the literature that can
serve as a blueprint for engineering self-adaptive CPSs. Concretely, engineering autonomous
and decentralised self-adaptive CPSs that make partial and uncertain observations of the
dynamic context in which they operate. Moreover, similar to all the other works in the
literature in this field of research, there is a lack of a more profound understanding of
system adaptation and self-adaptive systems beyond the authors’ intuition, which is clearly
reflected in the proposed approaches that we analyzed as part of this section. Since there
is a lack of formal definitions of system adaptation and self-adaptive systems, none of the
existing approaches for engineering self-adaptive systems has been built within a previously
existing formal and theoretical framework.

Additionally, in this dissertation, we focus on engineering autonomous and decentralised
self-adaptive CPSs that operate in a dynamic context that changes unpredictably during
run-time. In response, the knowledge in the adaptation logic that encodes certain aspects of
the context (or the system) relevant for the adaptation should be updated during run-time
to reflect the actual state of the context and the system during the operation of the
self-adaptive system. Therefore, an architecture for engineering this type of self-adaptive
CPSs should put particular emphasis on run-time knowledge derivation in the adaptation
logic, which enables the adaptation logic to be updated during run-time.

Lastly, none of the existing works incorporates the idea from Laddaga’s informal definition
of self-adaptive software: that these systems can evaluate themselves, i. e. their own
behaviour, based on which they get an indication if they are doing what they are intended
to do, i. e. if the systems fulfil their goals or not. When the (adaptation and the business)
goals are not fulfilled, this triggers the self-adaptation.

Gap 2: The existing works in the literature do not provide concrete architectures, frame-
works nor methodologies for engineering self-adaptive systems, particularly decentralized
and autonomous (MA-)SACPSs that operate in changing and uncertain contexts that are
only partially observable by the CPSs.

8.3 Mitigating Uncertainties in Self-Adaptive Systems

As part of this section, we examine prior efforts that have contributed towards mitigating
uncertainties in self-adaptive systems. In this section, we first summarize the related papers
on this topic and then discuss their limitations, which leads to identifying the respective
gap.

Whittle et al. [124] propose RELAX—a requirements specification language designed
to explicitly consider uncertainty in the specification of the behaviour of dynamically
adaptive systems. Dynamically adaptive systems need to operate correctly in a range of
environmental and contextual conditions. The nature of these conditions in the respective
application domains is often imperfectly understood and, therefore, inherently uncertain.
The proposed RELAX language supports explicit expressions of environmental uncertainty

146

8.3 Mitigating Uncertainties in Self-Adaptive Systems

in the requirements of the self-adaptive system, and the vocabulary of RELAX enables
identifying requirements that may be relaxed at run-time when the environment changes.
RELAX is specified in the form of structured natural language with Boolean expressions,
and the semantics of RELAX is defined in terms of temporal fuzzy logic. Furthermore,
RELAX has three types of operators to handle uncertainty: temporal, ordinal and modal,
and considers four uncertainty factors that warrant a relaxation of the requirements:
properties from the environment, properties that the systems can monitor, properties
stemming from the relationship between the environment and the monitoring, and finally,
the dependencies between the (relaxed and invariant) requirement.

RELAX [124] has also been used as part of the goal-based modelling approach proposed
by Cheng et al. [26]. Similarly as in [124], Cheng et al. in [26] emphasize the uncertainty
of the execution environment as the motivation for dynamic adaptation. In this work, the
authors introduce a goal-based modelling approach based on which the requirements for
dynamically adaptive systems are developed. The proposed modelling approach explicitly
integrates the uncertainties in the process and in the resulting requirements. Concretely,
the approach systematically models the requirements of dynamically adaptive systems
based on a variation of threat modelling (e. g., [106]) to uncover places in the model where
the requirements need to be updated to support adaptation, resulting in a range of tactics
for adaptation which deal with uncertainties. The tactics include 1) adding low-level goals,
2) RELAXing requirements to express bounded uncertainty to accomplish a partial but still
suitable satisfaction of the goals, and 3) identifying new goals to mitigate the uncertainty
that leads to a new target system.

In contrast to the works by Whittle et al. [124] and Cheng et al. [26] that focus on
addressing uncertainties issues in the specifications of the requirements of self-adaptive
systems, the following works from Bencomo et al. [11], Esfahani et al. [39] and Filieri et
al. [40] focus on tackling uncertainties in making adaptation decisions.

Bencomo et al. [11] propose an approach that uses dynamic decision networks (DDNs)
for making decisions under uncertainty in self-adaptive systems. Similarly, as in our
work, Bencomo et al. [11] acknowledge that self-adaptive systems must satisfy functional
requirements while fulfilling some quality attributes or non-functional requirements (NFRs).
The authors state that NFRs play a focal role in choosing between various configurations
that drive the run-time adaptation and that the decision on the configuration is made
based on utility functions that enable evaluating different trade-offs between the NFRs.
Measuring the satisfaction of the NFRs is difficult due to their vague nature. In response,
the authors utilize dynamic decision networks (DDNs)—a probability-based technique, to
reason about the fulfilment of the NFRs, which later supports the decision-making process
of the self-adaptive system. Although various sources of uncertainty have been identified
in the literature of self-adaptive systems over the years, in this paper, the authors focus on
the uncertainty associated with the satisfaction of NFRs. Their approach can be applied
whenever a piece of new evidence is collected for specific events, which might result in a
trigger for the adaptation, i. e., a reconfiguration of the system.

Esfahani et al. [39] propose POssIbilistic SElfaDaptation (POISED), a quantitative
approach for tackling the challenge posed by uncertainty in making adaptation decisions.
POISED builds on possibility theory to assess the positive and the negative consequences

147

8 Related Work

of uncertainty. In this approach, uncertainty estimates are incorporated in the probabilistic
analysis of the adaptation choices. The probabilistic analysis uses the principles of fuzzy
mathematics [76] and provides a sound basis for representing uncertainty. POISED enables
making adaptation decisions that result in the best range of potential behaviour of the self-
adaptive system. Contrary to the other approaches that focus on external or environmental
uncertainties, this work focuses on uncertainty that is rooted in the difficulty of determining
the impact of adaptation on the system’s quality objectives, e. g., determining the impact
of replacing a software component on the system’s responsiveness, battery usage, etc.

Filieri et al. [40] propose KAMI—an approach for verification of non-functional require-
ments of adaptive software. The authors specifically focus on performance and reliability,
which strongly depend on external factors that occur in the environment, which are hard
to be understood or anticipated when an application is initially designed. Similarly, even
if the predictions are initially accurate, they would probably change continuously during
the execution of the application. To express non-functional requirements, the innate
uncertainty that characterizes those requirements and, respectively, the systems need to
be taken into account. Uncertainty, as such, could be formalized and quantified within
the frame of probability. As part of this work, the authors focus on the following two
probabilistic Markov models of the application: Discrete-Time Markov Chains (DTMSs)
and Continuous-Time Markov Chains (CTMCs) to target the challenge of making adap-
tation decisions under uncertainty. The authors illustrate their approach on a simplified
e-commerce application.

All of the five approaches [124, 26, 11, 39, 40] that we analyzed above identify the concrete
type or source of uncertainties that the authors aim to mitigate with their solutions. Also,
all of these works provide a concrete technique or method based on which the mitigation
is achieved. However, there are a couple of aspects that the prior, related work has not
considered, and we summarize in the following. First, the prior work primarily focuses on
external uncertainties, i. e., uncertainties originating from the unpredictable environment
or the system’s context. Internal run-time uncertainties, i. e., the systems’ sensors, have
not been explicitly considered and treated in the existing solutions. Second, the existing
approaches are often designed for a specific application without providing any further
insights into the generalizability of the provided solutions. Third, it can be observed that all
of the approaches in some way incorporate the MAPE-K feedback loop. However, in none
of the approaches, the loop is modified beyond its design time specifications. Namely, the
existing works focus either on mitigating uncertainties in the requirements specifications
for self-adaptive systems or uncertainties in the decision process of the adaptation actions.
However, none of the prior works in the literature focus on mitigating uncertainties in the
reasoning process based on which the knowledge in the adaptation logic is consequently
updated. This allows the adaptation logic to also change during the system’s run-time,
enabling the adaptation logic to reflect the current (i. e., the run-time state) of the context
and the systems.

It is worth mentioning that in the literature, there are a few more existing works (e. g., [92,
21]) that claim to propose uncertainty mitigation strategies based on the fact that their
solutions are simply built upon one or multiple feedback loops (which in essence are nothing
else than variations of the closed MAPE-K feedback loop). As explained previously, a

148

8.3 Mitigating Uncertainties in Self-Adaptive Systems

simple feedback loop performs activities like collecting and analysing information, based
on which actions are decided and later executed. Hence, the authors of these works [92, 21]
interpret that this process intrinsically mitigates the effect of the uncertainties, implying
that every approach built upon a closed feedback loop, by default, mitigates uncertainties.
Predictably, these uncertainty mitigation approaches do not provide any detail on the type
or the range of uncertainty they concretely mitigate (which is necessary while discussing
self-adaptive systems, as we previously discussed in the summary of the theoretical findings
in Section 1.3), nor on the concrete technique or method based on which the uncertainty
mitigation is achieved. Instead, as previously said, they assume that a feedback loop
inherently mitigates uncertainties by default. In the previous sections of this chapter and
Chapter 1, we have already extensively elaborated on the limitations of the MAPE-K and
the various drawbacks which primarily emerge from the lack of the semantic clarity of the
feedback loop. The argument that every closed feedback loop mitigates uncertainties by
default is another emerging drawback stemming from the lack of semantic clarity.

8.3.1 Overall summary

In architecture-based self-adaptation, almost all the existing uncertainties mitigation
strategies are based upon one or multiple feedback loops, i. e., MAPE-K loops. There are
works in the literature that assume that their solutions, by default, mitigate uncertainties
if their solutions are built and utilise closed feedback loops. However, those works do
not even disclose any characteristics related to the nature of the uncertainties that they
focus on, including the type or the range of uncertainties that the authors concretely aim
to mitigate with their proposed solutions. On the contrary, all the papers that we chose
for analysing as related work [124, 26, 11, 39, 40] treat the aspect of uncertainty more
carefully. Concretely, each of these works explains and identifies the type of uncertainty
that their solution tackles, the origin of the uncertainty, and how it manifests in the
system. Most of these works focus on mitigating external uncertainty stemming from the
unpredictable environment (the context) in which the systems operate and do not focus on
internal uncertainties, i. e., various sensor uncertainties. Additionally, none of the previous
works aimed at proposing a domain- and system-independent approach for modelling the
knowledge in the adaptation logic and representing uncertainties, which sets the foundation
for reasoning under uncertainties based on which the knowledge is updated during run-time
to accurately reflect the actual, real-time state of the system and the context relevant
for the adaptation. In sum, all the existing works on mitigating uncertainties in self-
adaptive systems either focus on mitigating uncertainties in the requirements specifications
or uncertainties in the decision process for the adaptation actions. To the best of our
knowledge, no previous work focused on resolving external and internal uncertainties in
the reasoning process based on which the knowledge in the adaptation logic is updated at
run-time.

Gap 3: There is a scarcity of approaches proposed in the literature that allow domain-
and system-independent modelling of the knowledge in the adaptation logic and run-time
reasoning, based on which the knowledge is continuously updated to accurately reflect the
current state of the relevant aspects from the context and the system for the concrete

149

8 Related Work

adaptation.

8.4 Summary of the Gaps

In the following, we summarize all the gaps identified in this chapter. Each gap was
thoroughly elaborated in its corresponding section above.

Gap 1. The literature in software engineering lacks a precise, comprehensive and broadly
accepted formal definition of system adaptation and self-adaptive systems.

Gap 2. The existing works in the literature do not provide concrete architectures, frame-
works nor methodologies for engineering self-adaptive systems, particularly decentralized
and autonomous (MA-)SACPSs that operate in changing and uncertain contexts that are
only partially observable by the CPSs.

Gap 3. There is a scarcity of approaches proposed in the literature that allow domain-
and system-independent modelling of the knowledge in the adaptation logic and run-time
reasoning, based on which the knowledge is continuously updated to accurately reflect
the current state of the relevant aspects from the context and the system for the concrete
adaptation.

150

9 Conclusion
This chapter concludes the work in this thesis. It first gives an overview
of this dissertation and summarizes the contributions. Afterwards, we
discuss the limitations and the lessons learned. Finally, we conclude this
section with the potential future work.

The term self-adaptive software was noted in the literature for the first time in 1997
in a DAPRA technical report written by Robert Laddaga from MIT [77]. According to
Laddaga, “we seek a new basis for making software adaptive, that does not require specific
adaptive techniques, such as neural networks or genetic programming, but instead relies
on software informed about its mission and about its construction and behavior.” Also, in
Laddaga’s vision, “self-adaptive software evaluates its own behavior and changes behavior
when the evaluation indicates that it is not accomplishing what the software is intended to
do, or when better functionality or performance is possible”.

The idea of self-adaptive systems, and in general self-* systems, was popularized a couple
of years later, with the publishing of the famous paper on The vision of autonomic computing
by Kephart and Chess from IBM, also known as IBM manifesto in the literature [66]. In
the manifesto, the authors introduce the term autonomic systems as “computing systems
that can manage themselves given high-level objectives from administrators” in which
the human administrators or end users merely specify the system’s high-level business
objectives and they do not deal with the low-level technical details of how those objectives
are performed, since these tasks are performed by the autonomic system itself.

The ideas positioned in the manifesto, anticipating autonomic, self-engineering, and
self-managing systems, remain “ideas that are not science fiction, but elements of a
grand challenge” [66]. From today’s perspective, it is very challenging to argue how
these systems in the future would perform, what capabilities they will possess, and even
how they will be engineered. As a result, an evolutionary, iterative approach toward
understanding, designing, and engineering succeeding systems should allow continuous
step-by-step integration of contemporary engineering practices. Consequently, we consider
self-adaptive systems as an intermediate step—an iteration, which, once better understood,
brings us a step closer to systems with higher autonomy. Considering current engineering
practices and state-of-the-art knowledge, we can say that the observed growing trend and
interest in self-adaptive systems stems from the quest for increased system autonomy and
the continuous engineering aim to decouple the user (specifically the user’s control) from
the systems.

As discussed throughout this dissertation, the manifesto on the autonomic computing,
including the MAPE-K conceptual model for engineering self-* systems as the main
contribution of that work, made a large impact in the literature and set a foundation for a
whole new research field. However, Jeffery Kephart, who is one of the co-authors of this
paper, has recently made an open statement that despite the enormous success of this
publication, this work has a fatal flaw [65]. Concretely, he referred to the underspecification

151

9 Conclusion

of the notion of goals in their vision and the emerging research problems related to it,
to which Kephart has dedicated most of his research career after the publication of the
autonomic manifesto. Kephart has argued that research needs to pay more attention to
the issue of goal specification: what form do goals take, who sets them, how and when are
they elicited, etc.

The limitation that Kephart has emphasized in [65] is something we have also identified
while working on this dissertation. However, in this dissertation, we identified and primarily
focused on two other major flaws in the contribution of the autonomic manifesto. The
first major flaw that we tackled is how self-adaptive systems engineered according to
the MAPE-K closed feedback loop differ from the “ordinary”, non-adaptive systems that
already incorporate some notion of monitoring, analysis, planning, and executing (e. g.,
CPSs). The lack of semantic clarity of the terminology has led to a highly ambiguous usage
of the notion of system adaptation, resulting in a liberate usage of the term self-adaptive
systems without a shared understanding of these systems. Moreover, this issue became
more eminent over time with the increased number of publications in this research domain
in recent years, in combination with the lack of foundational clarity of these systems. It
can be easily observed in the publishing venues in this research field that although there is
some intuition behind the terminology—mainly by the more senior researchers—there is no
consensus on the definition of self-adaptive systems. This very often results in situations
where every system could be labeled as a self-adaptive, which deteriorates the focus from
the real research problems of the field. For example, the research in this domain is hardly
putting any focus on answering essential questions about self-adaptive systems (e. g., what
are these systems, and how do they differ from the “ordinary”) and instead focuses on
heavily publishing different MAPE-based systems, which—as discussed—opens space for
every system to be labeled as a self-adaptive. Focal to defining self-adaptive systems is
defining what it means for a system to adapt and, consequently, in order to address the
above-identified problems, how adaptation differs from a nominal system function. With
this dissertation, we have substantially contributed to closing this large research problem.

The second major flaw from the autonomic manifesto that we tackled in our work is
related to the second part of Laddaga’s informal definition of self-adaptive software. In
his definition, he emphasizes that self-adaptive software evaluates its own behavior and
changes it when the evaluation indicates that the system is not accomplishing what it
intended. Concretely, the ideas that Laddaga positioned that self-adaptive systems evaluate
themselves regarding the fulfillment of certain goals are entirely overlooked by Kephart
and Chess in their proposed MAPE-K conceptual model.

To some degree, this could be related to the point that Kephart made in [65], that
in the manifesto, they did not put enough attention to the issues of goals specifications,
especially since, as we discussed and concluded in our work, the system’s adaptation is
always in relation to the fulfillment of some (adaptation) goals. In this thesis, to measure
the system adaptation, we proposed a metric to which we referred to as Quality Function,
which quantifies the fulfillment of the adaptation as well as the business goals and enables
the self-adaptive system to evaluate its own behavior and to indicate when the system
is not accomplishing its goals, which aligns with the second part of Laddaga’s definition.
Through our formalisms and contributions, we have independently reached to conclusions

152

9.1 Thesis overview and summary of the contributions

and findings that support how Laddaga originally envisioned these systems and whose
vision, unfortunately, was affected and got derailed after the autonomic manifesto was
published. Increasing the clarity of the terminology will ideally complement various existing
approaches for engineering self-adaptive systems and open new directions of research in
the future, enabling the community to endeavor to a fuller extent.

9.1 Thesis overview and summary of the contributions

The very initial objective of this thesis was to focus on conducting research on specific
aspects of the engineering of self-adaptive CPSs. However, to build self-adaptive systems,
we first need to answer what these systems are. Therefore, during the course of this thesis,
we realized that there is a more profound research challenge that went beyond the initial
vision for this dissertation: the need to define self-adaptive systems. Our newly gained
insights into the complexity of the problem at hand went a step further since, with time,
we also concluded that it is impossible to define self-adaptive systems without first defining
what it means for a system to adapt. Unfortunately, defining the notion of adaptation is
an independent problem on its own, and as such, it transcends the field of engineering and
computer science. As a result, with out growing understanding of the research domain and
the current state-of-the-art, the focus of this dissertation also continuously expanded from
engineering self-adaptive CPSs (as initially intended) to defining system adaptation and
self-adaptive systems.

In response, the overarching goal of this doctoral dissertation was two-fold. The first
goal was to formulate and define system adaptation and self-adaptive systems. To attain
this goal, we conducted fundamental or foundational research. In the second goal, we
focused on engineering a specific class of self-adaptive CPSs, for which we employed applied
and empirical research. To attain both of these goals, this thesis was constituted of
two complementary parts: Part 1—Theoretical foundations for system adaptation and
self-adaptive systems, and Part 2—On engineering self-adaptive CPSs in a dynamic context.

During our efforts to define self-adaptive systems, we realized that gaining a more
profound understanding of system autonomy is necessary before scoping and discussing
self-adaptive systems. In response, in the first part of this dissertation in Chapter 3, we
proposed taxonomy and formally defined different levels of autonomous systems. As part
of this work, we did not investigate further the relationship between the different levels
of autonomy and self-adaptive systems. However, we closed this gap with the rest of the
contributions in the dissertation. In this work, to define system autonomy, we differentiated
between the system itself, the end-user of the system, and the context in which the system
operates, which we also considered as separate entities in our architecture and formalisms.
In our definition of system autonomy and different autonomy levels, we 1) put the system
function in the main focus, treating autonomy as a property of an individual function, and
2) investigated the degree of interaction between the end-user and the system (i. e., the
system function), and 3) emphasized the importance of considering the learning aspects in
autonomous systems, especially when the systems operate in highly dynamic, uncertain,
and unknown environments and when the user’s control of the system reduces. As part of

153

9 Conclusion

this work, we used the focus [18] formal modeling notation. This work served as a basis
for our definition of system adaptation and self-adaptive systems later in the thesis.

In Chapter 4, we conducted a systematic literature review in which we aimed 1) to get
a better understanding of the research field and the previous works that aimed to define
self-adaptive systems, 2) to qualitatively analyse the existing works in order to give an
overview of how these systems have been previously formally defined, and why none of
the existing definitions has been more broadly accepted in the community, and finally,
3) we discussed the limitations of the existing works, which provided a better insight
of the shortcomings of the prior efforts. Our results showed that despite the growing
interest in self-adaptive systems, only nine papers out of more than a thousand papers
that we analysed as part of the initial set of this study aimed to define self-adaptive
systems formally. With our results, we demonstrated our initial observation that most
of the papers in the literature use the notion of self-adaptive systems only by intuition.
Concretely, more than half of the relevant papers in our study (175 out of 314 papers) did
not provide even an informal definition as part of their works. Furthermore, out of the nine
primary studies that we thoroughly analysed, only one paper defined system adaptation;
however, only within the frame of system ensembles. Our results further showed that
roughly half of the nine primary studies provide their formalisms on self-adaptive systems
by taking advantage of some other concepts, e. g., ensembles, collaboration, distribution and
decentralisation. Based on our analysis, we elicited requirements for a holistic and formal
definition of self-adaptive systems. To summarise our results and findings: 1) defining
self-adaptive systems is not possible without defining system adaptation first, 2) a formal
definition of self-adaptive systems should systematically consider different characteristics of
self-adaptive systems in its formalism, in particular the aspect of uncertainty, and 3) system
adaptation is not an emerging property from collaboration or decentralisation, and it
should be considered, understood and defined in independence from these concepts.

Based on the elicited requirements for defining self-adaptive systems, in Chapter 5, we
first formally defined system adaptation and proposed the SACTC framing required for
specifying system adaptation. SACTC is an acronym that stands for system function,
adaptation goals, conditions, time period and convergence parameters. Namely, we defined
system adaptation by separating it from the system function, which is the first premise
in the differentiation between self-adaptive and the “ordinary systems”, considered as
non-adaptive. Similarly as in Chapter 3, we treat adaptation as a property of a single
system function. However, by this we do not mean a simple function, and the granularity
of the function matters. In sum, to answer if a system (self-)adapts, we first need to
identify what system function is considered as adaptive. This is further supported by the
separation between business and adaptation goals. The business goals are related to the
functional requirements of the system (i. e., the system function) that gains the adaptation
capabilities—the managed element as part of a self-adaptive system. On the other side,
the adaptation goals are one or more quality objectives, and they are concerns of the
adaptation logic. The overall goal of a self-adaptive system is to maintain the fulfilment
of the business goals, while preserving or even improving the adaptation goals, despite
the dynamic and uncertain internal and external conditions. In response, the adaptation
logic of a self-adaptive system is constructed considering 1) the specific adaptation goals

154

9.1 Thesis overview and summary of the contributions

and 2) the specific internal (system) and external (contextual) conditions or uncertainties,
according to which the system (i. e., the system function) adapts. Therefore, the same
system (i. e., system function or managed element) adapts differently to different adaptation
logics, which are built according to different adaptation goals and conditions. This is
another premise in the identification of system adapting and system functioning.

As discussed in the previous section, in our work, to measure system adaptation we
introduced a metric to which we referred as Quality Function, which quantifies the fulfilment
of the business and the adaptation goals. We considered the system function as adaptive,
if and only if the Quality Function of the system function—in other words the fulfilment
of the goals—resides in a specific range of values. Or as expressed in our formalisms, it
converges towards a limit ℓ and convergence closeness ε for a concrete SACTC framing
specification. The Quality Function that we proposed as part of our work, in the words of
Laddaga, provides the foundation for evaluating the behaviour of the (self-)adaptive system
and indicates when the system is not accomplishing what is intended to do, i. e., when the
goals are not fulfilled. Based on the 1) the informal definition of self-adaptive software by
Laddaga and 2) our previous framing and formalisation of system adaptation, as part of
in Appendix A we formally defined passive and active self-adaptive systems. As part of
the overall theoretical framework in Appendix A, we also complemented the preliminary
characterization of self-adaptive systems from Chapter 5 and elicited requirements for
self-adaptive systems as such. Lastly, we specified the process of self-adaptation as part of
active self-adaptive systems.

In the second part of the thesis, we focused on the engineering of self-adaptive CPSs in
dynamic, uncertain and partially observable context. In Chapter 5, we proposed a logical
architecture for engineering self-adaptive CPSs. As extensively discussed throughout this
dissertation, the proposed MAPE-K conceptual model for engineering self-*, including
self-adaptive systems, has several limitations that blurry the lines between self-adaptive
systems and the ordinary systems, considered non-adaptive. Additionally, the MAPE-K
has a very high level of abstraction and low level of details that—apart from the separation
of concerns among the managed system and the adaptation logic—does not provide any
constructive insights and semantics on 1) how to engineer self-adaptive systems (e. g.,
potential technical implementation of a self-adaptive system), and 2) how self-adaptive
systems differ from the other self-* systems. In this contribution we embed the formalisms
of system adaptation and self-adaptive systems into a logical architecture for engineering
self-adaptive CPSs—at an intermediate level of abstraction—that narrows the gap between
the formal foundations and potential technical implementation for a class of systems.
We focused on decentralized and autonomous (MA-)SACPSs that operate in dynamic,
uncertain and partially observable contexts, but also the systems themselves are exposed to
various run-time uncertainties primarily originating from their sensors. As part of Chapter 5
we also discussed future research directions emerging from the proposed logical architecture.
In our logical architecture, not only that the managed elements (i. e., the CPSs) are
adapted, but also the adaptation logic “learns” and updates its knowledge during run-time
to accommodate run-time uncertainties emerging from the dynamic and changing context
in which the systems operate. This enables the adaptation logic to accurately continue
reflecting the run-time state of the context and the system relevant for the concrete

155

9 Conclusion

adaptation.
To the best of our knowledge, there are no approaches proposed in the literature that

allow domain- and system-independent modelling of the knowledge in the adaptation
logic, which also allows 1) capturing various (internal and external) run-time uncertainties
and 2) reasoning, based on which the knowledge in the adaptation logic is updated at
run-time. In response, in Chapters 6 and 7, we proposed a methodological approach for
knowledge and uncertainty representation and reasoning based on which the knowledge
in the adaptation logic is updated during run-time to reflect the run-time state of the
context and the systems. Our methodology utilizes the theoretical framework of Subjective
Logic (SL). We also proposed a model problem from the robotics domain and a ROS-
based simulated implementation of the multi-agent robotics system for demonstration and
evaluation purposes. The implementation of our robotic system allows simulating various
run-time uncertainties, as previously discussed in Section 2.1. Concretely, in Chapter 6,
we conceptualized the methodology and implemented the initial version of the robotics
system, based on which we conducted the preliminary evaluation. Whereas, in Chapter 7,
we propose the fully developed methodological approach for knowledge and uncertainty
representation and reasoning at run-time, completed implementation of the ROS-based
multi-robot system in which we simulate various run-time uncertainties, and an evaluation
through extensive controlled experiments.

Our preliminary results in Chapter 6 indicated that the time to update the knowledge
increases when we use the reasoning and aggregation of the observations before updating
the knowledge, compared with no knowledge aggregation. However, in the latter, the
uncertain and potentially wrong and conflicting observations are directly propagated as
knowledge, resulting in a reduction of the system’s efficiency (i. e., the fulfilment of the
adaptation goals), which, in response, potentionally results in a reduction of the Quality
Function. From our preliminary results, we could conclude that there is a trade-off between
the accuracy of the knowledge in the adaptation logic and the number of completed tasks.
With the additional empirical evaluation that we conducted in Chapter 7, which used
an extended implementation of the robotics system, we validated the preliminary results.
Nonetheless, to our surprise, the results from our experiments and some additional analysis
that we conducted in Chapter 7 revealed various other unexpected insights, which as a
result, required an enhancement of the proposed method and approach. Conctetely, our
results showed that none of the original SL fusing operators Section 2.3.3 that we initially
intended to use as part of our evaluation is capable of long-term, real-time knowledge
aggregation. To this point, as another contribution in Chapter 7, we proposed a new
operator for fusing SL opinions that addresses the limitations of the original fusing operators
proposed by Jøsang [61, 60]. To summarize, in Chapter 7, we evaluated the feasibility of
different SL aggregation schemes, the effectiveness of knowledge aggregation with SL, and
we did a sensitivity analysis of the impact of the threshold value.

To conclude, in general in the literature, foundational or fundamental research is con-
ducted prior to any solution, and this type of research usually does not generate findings
or inventions with an immediate application in practice. However, in this doctoral thesis,
we complemented the first part of the thesis, i. e., the theoretical foundations for system
adaptation and self-adaptive systems—our fundamental research, with the second part in

156

9.2 Lessons Learned

which we conducted applied and empirical research for a concrete class of self-adaptive
CPSs. This thesis provides a continuous and streamlined engineering process from formal
definition to a logical architecture embedded in the proposed theoretical framework to a
concrete system implementation from the domain of multi-agent robotics. We achieved
this by bridging the various proposed types of contributions and solutions, all of them
with different generality and level of abstraction, through a consistent storyline: the
theoretical contributions (in Chapter 4 and Appendix A), the architectural contribution
(in Chapter 5), and methodological contribution (in Chapters 6 and 7), and finally, the
technical contributions (in Chapters 5 to 7).

9.2 Lessons Learned

In this section, we highlight some of the most significant lessons learned as part of
this thesis. There is relativity in answering if a system is adaptive and it cannot be
determined in isolation without specifying with respect to what it is considered to be
adaptive. Concretely, (1) which function of the system is treated as an adaptive, (2) what
is the adaptation goal (i. e., the quality objectives) according to which the system (i. e., the
system function) adapts, and (3) according to which contextual and internal uncertainties
is the system (i. e., the system function) considered to behave adaptively.

In this thesis, we define that a system self-adapts with the intention for adaptation to be
eventually achieved. As part of our work we also differentiate between passive and active
self-adaptive systems. In the passive self-adaptive systems, the system (i. e., the system
function) is enriched with an adaptation logic (in the minimal case an additional knowledge
component) constructed in accordance to the system function, the adaptation goals and the
uncertainties according to which the system is considered to behave adaptively. Whereas,
active self-adaptive systems, to which we also refer to as real self-adaptive systems, extend
the passive self-adaptive systems with a feature which enables the system to evaluate itself,
i. e., the fulfilment of the (adaptation) goals, or the system adaptation, based on which
different actions towards adaptation are chosen.

9.3 Future Work

The advantages of working on fundamental research is the fact that the results and the
findings set the foundation for a wide range of new research directions. We outline some of
those directions as potential future work in the following.

A taxonomy of self-adaptive systems. Based on the different levels of self-adaptive
systems and the distinction between passive and active self-adaptive systems, one potential
direction for future work is proposing a taxonomy of self-adaptive systems and mapping
some of the existing approaches for engineering self-adaptive systems from the literature to
the proposed taxonomy.

Extend our implementation of the selected use case for active self-adaptation.

157

9 Conclusion

As discussed previously, the active self-adaptation, in which the value of the Quality
Function is used to steer the self-adaptation actively, is out of the scope of the contributions
that include the implementation of the robotics use case. As a result, preliminary empirical
evidence that supports our theory on the active (or real) self-adaptive systems remained
out of the scope of this thesis. This aspect should be considered as an immediate future work.

Introduction of another model problem from practice. Findings of fundamental
studies and research are usually applicable to a wide range of use cases and scenarios. To
demonstrate (most of) the proposed theoretical concepts in this dissertation, we created
a model problem from the robotics domain and implemented a multi-agent ROS-based
robotics system. Integration of a second model problem and application could be another
future work.

Further analysis of the theoretical contributions of the thesis. Related to the
previous point, the theoretical foundation we put as part of this thesis has opened many
potential research directions for the future. First, one could conduct more qualitative
evaluations of system adaptation, which will extend the existing evaluation from Chapter 5
to additionally validate our theory of system adaptation, including the proposed framing
and our formal definitions. This could include introducing and comparing different Quality
Functions—built according to the concrete system function that is considered to be adaptive,
the concrete adaptation goals and uncertainties.

The previous research direction brings us to the next potential area of research in which
researchers 1) can focus exclusively on conducting additional analysis on how the Quality
Function is constructed and how it quantifies and qualifies the system function, and 2) also
on how much the exposure under different partialities (previously discussed in Chapter 5)
affect the calculation of the Quality Function. These analyses could be done on the created
use case from the robotics domain, ideally extending to other application domains and
systems in the future.

And finally, another big potential topic of research is implementing, evaluating, and
testing different aspects of self-adaptive systems, especially the active self-adaptation,
including the trigger for self-adaptation, and various other aspects and notions emerging
from our formalisms.

System evolution. Finally, while discussing the second interpretation of the sequence of
improving system functions in Chapter 5 and Appendix A, we explained that this could
be considered as a sequence of different functions that evolve over time. For a function
to change, it either changes its input or output interface (i. e., the domain spaces of the
input and the output) or changes the state transition (i. e., the mapping of input to output
within the same space domain of input and output) during run-time. We consider that
in this case, we talk about system evolution, which is part of another research domain.
Investigating the relation between system adaptation and system evolution is another
potential future direction.

158

A A Theoretical Framework for
Self-Adaptive Systems

In Chapter 5, we provided a framing and formal definition of system adaptation, discussed
the preliminary characterization and minimum requirements for self-adaptive systems, and
proposed a logical architecture for engineering self-adaptive CPSs that operate in dynamic
and uncertain contexts. As part of this appendix, we extend the contributions and the
formalization from Chapter 5 by proposing a theoretical framework for engineering self-
adaptive systems. In our theoretical framework, we make the following contributions: (1)
formally define passive and active self-adaptive systems using functions in which we embed
the terminology that we proposed throughout this thesis, including its semantics, (2) we
extend the minimum requirements for a system to be self-adaptive, and (3) we identify and
specify the process of self-adaptation. In our formalization, we define both the structural
(through the proposed terminology) and the behavioral aspects (through adopting functions
for our formalization) of self-adaptive systems. Along with these contributions, we also
(4) identify and discuss various emerging architectural implications. Namely, based on all
our theoretical contributions, we propose a re-factored version of the MAPE-K conceptual
model (for both passive and active self-adaptive systems) that adopts the terminology and
is embedded within the proposed formalization. Lastly, (5) we exemplify our theoretical
contributions on a well-known exemplar from the community.

In Appendix A.1, we first summarise the current state-of-the-art on the engineering
of self-adaptive systems, including the limitations of the MAPE-K conceptual model for
engineering self-adaptive systems and how self-adaptive systems are, in general, evaluated
in the literature. The limitations of the MAPE-K conceptual model, to some degree, have
been previously discussed in Chapters 1 and 5 and Section 8.2. In Appendix A.2, we
summarize some of our prior theoretical concepts and findings from Chapter 5, which set
the foundation for the formalizations and the contributions proposed in the rest of this
appendix. In Appendix A.4, we formalize two types of self-adaptive systems: passive and
active. In Appendix A.5, we exemplify our proposed theoretical framework on the Znn.com
exemplar that was proposed by Cheng [27] in support of the Rainbow framework [44].
Finally, in Appendix A.6, we provide concluding remarks and discuss some limitations.

A.1 Current state-of-the-art and its limitations

As part of this section, we summarise the current state-of-the-art regarding the en-
gineering of self-adaptive systems; concretely, we analyze: 1) the conceptual MAPE-K
model, which is broadly accepted as a reference model for engineering self-adaptive systems
(cf. Appendix A.1.1), and 2) the current best practices in the literature for evaluating
self-adaptive systems (cf. Appendix A.1.2). Furthermore, we identify and discuss their
limitations, which to some degree, served as a motivation for our work. We address their
limitations with the contributions of this chapter.

159

A A Theoretical Framework for Self-Adaptive Systems

A.1.1 Conceptual model of a self-adaptive system

According to the MAPE-K conceptual model, a self-adaptive system consists of a managed
element and an adaptation logic (also known as managing element in the literature) [66].
The managed element is the entity that gains the ability to self-adapt as part of a self-
adaptive system. It can be any system, e. g. software system or cyber-physical system
(CPS). On the other hand, the adaptation logic is realized through the MAPE-K feedback
loop. MAPE-K is an acronym for Monitor, Analyse, Plan, and Execute with shared
Knowledge among all four phases. As previously explained in Section 1.1.2, the MAPE-K
conceptual model was initially proposed in [66], and ever since, it has been used as a
reference model for engineering not only self-adaptive systems but self-* systems in general.

This separation becomes additionally blurry with the introduction of different MAPE-
based patterns for self-adaptive systems [123, 101] that focus on different combinations
of decentralization of the four MAPE phases. Please note that these MAPE patterns
do not explicitly consider the Knowledge component. Although different MAPE-based
patterns could be more informative regarding the system’s design, inherently, they have
the same limitations as the MAPE-K closed feedback loop itself: 1) their high level of
abstraction, without providing any characterization of how a system built upon the MAPE-
K loop differentiates from the “ordinary,” non-adaptive systems nor 2) a minimal set of
requirements for the system to be considered as a self-adaptive.

This separation becomes additionally blurry with the introduction of different MAPE-
based patterns for self-adaptive systems [123, 101] that focus on different combinations of
decentralization of the four MAPE phases. Please note that these MAPE patterns do not
explicitly consider the Knowledge component. Although different MAPE-based patterns
could be more informative regarding the system’s design, inherently, they have the same
limitations as the MAPE-K closed feedback loop itself: their high level of abstraction,
without providing any characterization of how a system built upon the MAPE-K loop
differentiates from the “ordinary,” non-adaptive systems nor a minimal set of requirements
for the system to be considered as a self-adaptive.

A.1.2 Evaluating self-adaptive systems

The lack of clarity on what self-adaptive systems are (and their difference from the
“ordinary,” non-adaptive systems) correspondingly reflects on the aspects of their evaluation.

For this purpose, we have conducted a literature analysis in which we observed that the
most common evaluation objectives in the existing works on self-adaptive systems (that
include some evaluation) are not different from those generally used in the assessment
of “ordinary,” non-adaptive systems. For instance, effectiveness [59, 98], time efficiency
(time for completion [97, 98], time for decision [88], response time [29]), scalability [110],
robustness [59, 98], energy consumption [57, 99], resource cost [99], accuracy [59, 98], etc.

Our insights were additionally confirmed by a recent mapping study by Gerostathopoulos
et al. [47], in which the authors analyze how self-adaptive systems have been evaluated
in the SEAMS1 community over the past decade. Their results showed that effectiveness,

1SEAMS stands for International Symposium on Software Engineering for Adaptive and Self-Managing

160

A.2 Summary of our previous theoretical findings and contributions on defining system
adaptation

learning ability, time efficiency, scalability, and robustness were the evaluation objectives
used in the experiments in the different papers that they analyzed.

In sum, none of the previous papers that include some evaluation of self-adaptive systems
considers the system adaptation as an evaluation objective. This is primarily because
the notion of system adaptation was not prior defined in the literature. A more precise
understanding of system adaptation is not only necessary for defining self-adaptive systems
but also for setting the foundation for a more systematic evaluation and even comparison
of these systems in the future.

A.2 Summary of our previous theoretical findings and
contributions on defining system adaptation

Defining what we understand under system adaptation is essential for a subsequent
definition of self-adaptive systems, as we previously discussed in Chapter 4. To address
this, in Chapter 5, we proposed a framing and a formal definition of system adaptation. In
this dissertation, we concluded that in order to debate if a system is adaptive or not, we
first need to specify the right framing according to which the system is considered adaptive:

[S] What is the system function sf that is considered as adaptive?
[A] According to which adaptation goals does the system (i. e., the system function) adapt?
[C] According to which context or system conditions (changes, uncertainties) does the

system (i. e., the system function) adapt?

In the following, we explain these three aspects of our proposed framing in more detail.
First, adaptation is a property of an individual system function sf . Instead of concentrating
on the managed element (i. e., the system as a whole) as part of a self-adaptive system (see
Appendix A.1.1), we shall focus on a concrete functionality of the system that gains
adaptation capabilities. This system function fulfills the business goals of the system, i. e.,
it is related to the system’s functional requirements. However, focusing on an individual
function does not mean a simple function, and the “granularity” of the function matters.

Second, adaptation is intrinsically related to changing something, but always in order to
improve certain adaptation goals. Contrary to the business goals, the adaptation goals are
one or more quality objectives associated with specific non-functional requirements, as it
can also be noted in various other works [114, 122, 119].

Finally, adaptation aims at preserving and improving the above-mentioned adapta-
tion goals (i. e., quality objectives) when the system is exposed to internal and envi-
ronmental (i. e., contextual) conditions that are changing and introduce uncertainties
at run-time, which cannot be (fully) foreseen during the design of the system. There-
fore, similarly to the system function from the first aspect of the framing, how a self-
adaptive system is built depends on the concrete adaptation goals and the concrete context
and system conditions (changes, uncertainties) according to which the system adapts.

Systems.

161

A A Theoretical Framework for Self-Adaptive Systems

Context

System

System Function

Figure A.1: System
function sf .

Namely, the same system—precisely, system function sf—
might be considered adaptive according to one adaptation
goal and non-adaptive, according to another. Identically,
the system cannot adapt to every condition: it might adapt
to one set of conditions, whereas, according to another set of
conditions, it could be considered non-adaptive. In sum, iden-
tifying the concrete system function, the adaptation goals,
and the uncertain and changing conditions is paramount
for discussing whether a system adapts or not; hence, it is
essential for the specifications of self-adaptive systems.

As a second contribution in Chapter 5, we formally define
system adaptation as follows. First, we assume that the behavior of a system at a given
moment in time is determined by its system function sf (see Fig. A.1). The function sf

maps the input of the system i ∈ Isf , its internal state σ ∈ Σsf and the context C to an
output o ∈ Osf and new state σ′ ∈ Σsf (see Definition 1 in Chapter 5 [96]):

sf : Isf × Σsf × C → Osf × Σsf , f(i, σ) = (o, σ′), (A.1)

where context (C) is the part of the environment (U) and consists of all the objects relevant
to the system that affect the system’s input (Isf), and therefore, the state and behaviour
of the system:

Isf ⊂ C ⊂ U. (A.2)

System adaptation is defined as a sequence of functions sf0, sf1, . . . , sfm, . . . , sfn, . . . at
time t = 0, 1, . . . , m, . . . , n, . . . , with n > m, that are assessed and their assessment improves
over time (e. g., sfn is “better” than sfm) despite the changing and uncertain run-time
conditions. The notion of “better” is determined by a newly introduced adaptation metric,
to which the authors refer to as Quality Function Q. Defining Q, i. e., how the system
function is assessed, what is “better” and how it is measured, is use case-specific and is
left to the engineers of the self-adaptive system. However, the engineers need to consider
and comply with the following rules in their definition and construction of the Quality
Function:

1) Q needs to measure the degree of fulfillment of the business and the adaptation goals
at a specific point in time. This includes considering and qualitatively assessing the
context and the system state and quantifying their concrete realization. An example of
how Q is constructed for a concrete system from the robotics domain is given in [96].
Independent of the concrete realization of the Quality Function, its value always resides
within a fixed range, normalized between 0 and 1, as shown in Fig. A.2. The lower
boundary is defined by the point where the business goals are no longer met, whereas
the upper limit is reached when all of the business and adaptation goals are achieved
perfectly.

2) Measuring Q at a single time instance (e. g., at time t = 2 in Fig. A.2) is not sufficient
to reason how well the system adapts, or in general, if it adapts at all. Therefore, the

162

A.2 Summary of our previous theoretical findings and contributions on defining system
adaptation

trigger for self-adaptation

0 1 2 3 4 5 6 7 8 9 10 11 120

0.2

0.4

0.6

0.8

1

sf1

sf2

sf3

sf4

sf5

sf6 sf7

sf8

sf9
sf10

sf11
ℓ + ε

ℓ

ℓ − ε

system function sf adapting

Time t

Q
ua

lit
y

fu
nc

tio
n

Q

change/fault
action towards adaption

Figure A.2: The process of self-adaptation, modified from [96].

only way to evaluate whether a system adapts is to observe how Q develops over time.
3) Lastly, please note that a) Q cannot infinitely improve (there is only a limit to which it

can improve), and b) Q does not necessarily asymptotically and monotonically improve
over time. Instead, there are possible oscillations within a certain range after a certain
time period (see sf6 to sf11 in Fig. A.2). For that reason, we define that the sequence
of Q should converge within a specific range after some time.

Definition 6 (Adaptive system [96]). An adaptive system is an infinite sequence of
functions (sfi)∞

i=0 = (sf0, sf1, . . . , sfi, . . .) that satisfies some quality objectives, s.t. the
Quality Functions Q of the infinite sequence of functions converges towards a limit ℓ s.t.:

∃ℓ, ε, i ∀t ≥ i : |Q(sft) − ℓ| < ε,

with ℓ, ε ∈ [0, 1] and 0 ≤ ℓ − ε < ℓ < ℓ + ε ≤ 1
(A.3)

where Q evaluates the quality of sft at time t, which converges after time i (see Fig. A.2
at t = 6). The values ℓ and ε are the convergence parameters defining the convergence
threshold: ℓ is the convergence limit, and ε is the measure of the closeness of the convergence.

Figure A.2 illustrates the convergence of the Quality Function of a sequence of system
functions sft with convergence limit ℓ = 0.7 and measure of closeness ε = 0.1. Please
note that in the figure, only a part of the infinite sequence of system functions is shown.
Also, the Quality Function of the system functions series converges to the limit ℓ over time.
Still, it does not necessarily converge to 1 (which would mean a perfect fulfillment of both
business and adaptation goals that might not be feasible).

In response, we extend our framing with two more aspects:

[T] What is the time period in which the system is considered adaptive?
[C] Under which convergence parameters ℓ and ε is the system considered as adaptive?

163

A A Theoretical Framework for Self-Adaptive Systems

Throughout the rest of the appendix, we will refer to our proposed framing as SACTC
framing.

A.3 Exemplifying the SACTC framing using the robotics
system

In the following we exemplify our proposed framing on the model problem from the
robotics domain that is used throughout this dissertation.
[S] What is the system function sf that is considered as adaptive?

→ Adaptation is a property of a single function.
[A] According to which adaptation goals does the system (i. e., the system function) adapt?

→ The Quality Function Q is use case-specific and is constructed according to the specific
adaptation and business goals.
[C] According to which context or system conditions (changes, uncertainties) does the
system (i. e., the system function) adapt?

→ To some uncertain conditions and situations, the system adapts and to some it does
not, i. e., the range and the type of uncertainties and changes is important while specifying
(self-)adaptive systems.
[T] What is the time period in which the system is considered adaptive?

→ Related to the concrete adaptation goals and uncertain conditions.
[C] Under which convergence parameters ℓ and ε is the system considered as adaptive?

→ Related to the concrete adaptation goals and uncertain conditions.
Let us consider one or multiple mobile robots that autonomously traverse a room (i. e.,

their context) in order to clean it. The robots clean the room by discovering and attaining
tasks (e. g., dirt patches) that continuously appear in the room with unknown time and
location patterns (which are the external uncertainties). Autonomous, in this case, refers
to their ability to navigate and move in the space without the need for external guidance,
e. g., physical or electro-mechanical control [4, 75]. The robots discover the tasks with a
LiDAR sensor, which has a smaller range of observation than the room size. In other words,
the robots can only have a partial observation of the state of the room at a specific point in
time t = n. Despite the partiality in the observations, the sensors introduce various other
internal run-time uncertainties (e. g., sensor imprecision, ambiguity or failure). Finally, the
robots attain or clean the tasks by driving to the tasks’ locations.

In this use case, the robots provide thousands of different functionalities that can be
considered potentially adaptive, and as discussed in the previous section, the “granularity”
of the functions matters. For instance, we can focus on the Monte Carlo Localisation (a
well-known particle filter algorithm [33]) that enables the robot to localize and navigate
in the space, or we can focus on the function that queues the tasks for the robot, which
defines the order in which the robot attains the tasks. Alternatively, we can also focus
on the high-level functionality of the system: discovering the tasks and then moving to
their locations to attain them. No matter which functionality of the system we focus on
making adaptive, it is important to identify it explicitly. Although we focus on the same
robotic system in the three cases, the objectives for building a self-adaptive system will

164

A.3 Exemplifying the SACTC framing using the robotics system

vary depending on which function we want to make adaptive. The first aspect of the
framing also sets the foundation for the differentiation between system functioning and
system adapting, which is the first step towards differentiating self-adaptive systems from
the “ordinary,” non-adaptive systems.

The robots fulfill their business goal by fulfilling the mission of the system, i. e., the
managed element. However, in addition to keeping the room clean (which is the business
goal in our use case), we also want to improve the quality of the cleaning process (the
adaptation goal), despite the different run-time changes and uncertainties. How specific
adaptation goals are defined and specified depends on the engineers of the self-adaptive
system and their interpretation of the quality of the cleaning process for the concrete use
case. For example, improving the quality of the cleaning process could mean cleaning as
many tasks in the shortest amount of time or cleaning as many tasks while minimizing the
distance that the robots traverse. Based on the specific interpretation and realization of the
adaptation goals, the Quality Function is constructed. Please note that the same system
(i. e., system function (sf)) might be considered adaptive according to one adaptation goal
and maladaptive according to another.

As mentioned above, in the specific robotics example, there are 1) external run-time
uncertainties, originating from the context in which the robots operate, concretely, the
appearance of tasks for the robots with unknown time and location patterns, and 2) internal
run-time uncertainties, originating from the system (i. e., the managed element) itself. For
example, sensor failure, sensor imprecision, and sensor noise [104], as well as the partial
sensing range of the robots. Both the external (the appearance of tasks at random locations)
and the internal uncertainties (e. g., the sensor imprecision) lead to situations that affect the
relevant aspects for the adaptation in this use case, i. e., the presence/absence of dirt tasks
at a specific location in the room, which directly impacts the fulfillment of the adaptation
goals (i. e., the system adaptation). As a simple example, consider that due to these
run-time uncertainties, the robots end up driving to locations where there are no tasks (it
still fulfills the business goal, but fulfillment the adaptation goal worsens—i. e., the value
of Q drops). Additionally, while discussing system and context situations, it is important
to emphasize that the system cannot adapt to every uncertain condition and situation (the
range and the type of uncertainties are important to be specified), which is also in relation
to the convergence parameters and the time period for which the system is considered
adaptive. For example, if a hardware component of a system fails, then the system cannot
even fulfill its business goal. In these cases, there might be no other alternative than
terminating the system’s operation until a human administrator intervenes and replaces
the component (however, this directly opposes the core idea behind self-* systems, i. e., the
increased system autonomy as discussed prior in the thesis). Similarly, the spawning rate
of the tasks in the room might be so high that the robots—no matter how well they clean
the space— are still not able to keep up with the quality of the cleaning process (i. e., the
adaptation goal) due to the limited resources (e. g., the number of robots in the room, their
velocity, etc.). Increasing the number of robots would be the necessary adaptation action
in this particular case. We discussed this extensively through our evaluation in Chapter 5.

165

A A Theoretical Framework for Self-Adaptive Systems

A.4 Defining Self-Adaptive Systems

A.4.1 Two premises in defining self-adaptive systems

The term self-adaptive software was used for the first time in the literature by Robert
Laddaga from MIT in DAPRA technical report [77] in 1997. The informal definition of
self-adaptive software that Laddaga has given as part of this technical report could be
considered, to this day, as superior and more complete compared to all the other informal
definitions that have been published in the literature ever since. Concretely, according to
Laddaga’s definition [77]:

1) “we seek a new basis for making software adaptive, that does not require specific
adaptive techniques, such as neural networks or genetic programming, but instead relies
on software informed about its mission and about its construction and behavior,” and

2) “self-adaptive software evaluates its own behavior and changes behavior when the
evaluation indicates that it is not accomplishing what the software is intended to do, or
when better functionality or performance is possible.”

Based on the first part of his definition, we can argue that the adaptation logic as a
component of the self-adaptive system already enables the system to be informed about its
mission, construction, and behavior. However, as extensively discussed throughout this
dissertation, if the MAPE-K closed feedback loop is exclusively used as a reference model
for building the self-adaptive system, then very misleadingly, every system that incorporates
some aspects of monitoring, analysis, planning and execution can be labeled as a self-
adaptive system. In response, in many of the theoretical contributions in this dissertation:
1) the SACTC framing, 2) the necessity to consider and separate the adaptation and the
business goals and the implications of the separation of the goals on the design of self-
adaptive systems, as well as 3) the preliminary characterization of self-adaptive systems, we
focused on improving the semantic clarity of the adaptation logic. Our findings supported
and also complemented the ideas that Laddaga positioned in the first part of his informal
definition.

However, the second part of Laddaga’s definition is almost entirely overlooked in the
existing approaches for engineering self-adaptive systems that have been proposed in the
literature, as well as all the other informal and formal definitions of self-adaptive systems.
In our view, this is because the Vision of autonomic computing by Kephart and Chess [66],
which proposed the MAPE-K closed feedback loop and became the de facto model for
engineering self-adaptive (and self-* systems), was published a few years after Laddaga’s
definition and completely excluded the ideas that Laddaga positioned on self-adaptive
systems evaluating themselves regarding the fulfillment of their goals.

With the contributions in this appendix, building upon the definition of system adaptation
and the SACTC framing from Chapter 5, we close this gap. Precisely, in this thesis, to
measure system adaptation, we proposed a metric to which we referred as Quality Function
Q, which quantifies the fulfillment of the adaptation goals (also the business goals) and
serves as a foundation for the realization of the second part of Laddaga’s definition. The
Quality Function: 1) inherently enables the system to evaluate its own behavior and

166

A.4 Defining Self-Adaptive Systems

Self-adaptive systems

Active self-adaptive systems

2nd level of self-
adaptive systems:
the knowledge in the

adaptation logic
changes during run-

time

1st level of self-
adaptive systems:

hardcoded knowledge
in the adaptation logic

Passive self-adaptive systems

Figure A.3: Different levels and types of self-adaptive systems and their relations.

2) indicates when the system is not accomplishing what it is intended to do, i. e. when the
adaptation goals are not fulfilled within a certain range (which then becomes the trigger for
self-adaptation, see Fig. A.2). In response, the self-adaptive system should be able to choose
different actions towards adaptation (see Fig. A.2) for the system to (eventually) adapt.
Eventually means that the system adaptation (i. e., the satisfaction of the adaptation and
the business goals within a certain range) will happen either immediately in the next time
step (e. g., with a single action towards adaptation) or might happen later (e. g., after
multiple adaptation actions).

A.4.2 Classification of self-adaptive systems

In order to be inclusive of all the existing works in the literature that do not consider
the second part of Laddaga’s definition, we differentiate between two types of self-adaptive
systems: active and passive self-adaptive systems (see Fig. A.3). We make this differen-
tiation based if the value of the Quality Function Q is used passively or actively (as a
self-adaptation trigger) in the self-adaptation:

1) passive self-adaptive systems, depicted in Fig. A.4a, in which the system (i. e., the
managed element) is informed about its mission, construction and behavior through
the existence of the adaptation logic (as envisioned by Laddaga in the first part of
his definition), and

2) active self-adaptive systems, depicted in Fig. A.4b, in which besides the existence
of the adaptation logic the system can evaluate itself and can steer the adaptation
based on the value of the Quality Function (comprising the first and the second part
of Laddaga’s definition).

Please note that in both of the cases, regardless if we consider passive or active self-

167

A A Theoretical Framework for Self-Adaptive Systems

adaptation the value of the Quality Function needs to be measured, in order to discuss if a
system adapts or not. As previously defined in Chapter 5 and summarized in Appendix A.2,
discussing if a system adapts or not is impossible 1) without the respective SACTC framing
and 2) without measuring the Quality Function and checking if it adheres to the concrete
rules specified in its definition. The only difference is that in passive self-adaptation, we
assume that if the adaptation logic is built according to the framing and the concrete
specifications that we propose in this thesis, then it will, by default, improve the state of the
system (i. e., the managed element), which in result will improve the value of Q. Whereas,
in active self-adaptation, besides the existence of the adaptation logic, the measured value
of the Quality Function Q is used by the self-adaptive system. Namely, when Q is out of
the convergence range, then it becomes a self-adaptation trigger (see Fig. A.2). We explain
this further in the following.

To summarize, in the passive self-adaptive systems, the adaptation logic is constructed
according to the concrete system function, the adaptation goals, and the uncertain condi-
tions (depicted with yellow parallelograms Fig. A.4a). As said above, it is expected that the
adaptation logic improves the state of the system (i. e., the system function (sf)) according
to the concrete adaptation (and business) goals, which as a result, will improve the value of
Q. This type of self-adaptation can be considered as a more indirect way of self-adaptation
since it happens implicitly through the existence of adaptation logic without an active
trigger for self-adaptation. It is important to point out that although various theoretical
contributions from this dissertation improved the clarity of the engineering processes for
self-adaptive systems, including the engineering of passive self-adaptive systems, the overall
self-adaptation process still remains underspecified for this type of self-adaptive systems,
and it could be a source of confusion and misunderstanding.

This is addressed in the active self-adaptive systems through the “active” usage of
the value of the Quality Function. Concretely, in the active self-adaptation, besides the
existence of the adaptation logic, the measured value of the Quality Function is also actively
used as input to the adaptation logic. When Q indicates that the system does not do
what it is intended to do (i. e., the value of Q drops below the range of convergence),
then in response, a concrete adaptation action from the adaptation logic is chosen. This
enables the system to evaluate itself and to indicate when it is not accomplishing what
it is intended to do. The idea of the measured Q actively steering the self-adaptation
(through the trigger for self-adaptation, see Fig. A.2) incorporates both of the aspects from
the informal definition of self-adaptive software by Laddaga and can be considered as a
“feature-complete” or true self-adaptation. As part of the active self-adaptive systems, the
need emerges for additional mechanisms in the self-adaptive system, which use the value of
the Quality Function (i. e., the trigger for self-adaptation) to choose the best actions and
strategies towards adaptation.

Additionally, as seen in Fig. A.3 we differentiate between two different levels of self-
adaptive systems: the first and the second level of self-adaptive systems. We make this
distinction depending if the knowledge in the adaptation logic is hard-coded during the
design of the self-adaptive systems (first level of self-adaptive systems), or if the knowledge
changes and gets updated (i. e., “is learns”) during the run-time operation of the self-
adaptive system (cf. Fig. A.3). It is important to point out that the first and the second

168

A.4 Defining Self-Adaptive Systems

Managed Element
(software system, CPSs)

Context

M E

P

Adaptation Logic

A

K

Self-Adaptive System

E

Adaptation Logic

Self-Adaptive System

M

A P

K

System Function

Managed Element

System function

Uncertainties and
changing conditions

Adaptation goals

Context

Model of the
managed element

Model of the
context

(a) Engineering passive self-adaptive systems.

Managed Element
(software system, CPSs)

Context

M E

P

Adaptation Logic

A

K

Self-Adaptive System

E

Adaptation Logic

Self-Adaptive System

M

A P

K

System Function

Managed Element

Quality Function

System function

Uncertainties and
changing conditions

Adaptation goals

Context

Model of the
managed element

Model of the
context

(b) Engineering active self-adaptive systems.

Figure A.4: Our re-factored version of the MAPE-K conceptual model.

level of self-adaptive systems are orthogonal to passive and active self-adaptive systems.
Therefore, we can talk about the first level of passive or active self-adaptive systems and
the second level of passive or active self-adaptive systems. Additionally, the first level of
self-adaptive systems corresponds to the intermittent autonomy from Chapter 3, and the
second level of self-adaptive systems corresponds to both the eventual autonomous and to
the fully autonomous systems, depending on the sophistication of the learning capabilities.

In Fig. A.4, we show our re-factored version of the MAPE-K conceptual model for
engineering self-adaptive systems for both passive and active self-adaptive systems. In
these re-factored MAPE-K conceptual models, we only distinguish between passive and
active self-adaptive systems and not according to the first and second level. The components
depicted in grey in the re-factored versions of the MAPE-K conceptual model are the new
components that we propose as part of our work. We use our re-factored versions of the
MAPE-K for the needs of the formalisation of passive and active self-adaptive systems that
we propose in the following sections.

A.4.3 Defining (first and second level of) passive self-adaptive systems

Previously in this chapter, as well as in the characterization of self-adaptive systems
in Chapter 5, we concluded that the adaptation logic for a concrete system (i. e., managed
element) needs to be built according to the concrete system function, the adaptation goals,
and the uncertain conditions according to which the system adapts (see Fig. A.4). If we

169

A A Theoretical Framework for Self-Adaptive Systems

assume that 1) the adaptation logic is implemented based on the MAPE-K closed feedback
loop and that 2) the implementation of the four MAPE phases (monitor, analyze, plan,
and execute) can be distributed from the adaptation logic to the managed element (i. e.,
the system) as various patterns in the literature propose [123, 101]; then the minimum
requirements for the adaptation logic in passive self-adaptive systems is the existence of
knowledge component K created correspondingly to the SACTC framing.

The knowledge K in the adaptation logic should consist of information about the system
(i. e., the managed element) and the context that is relevant for the concrete adaptation.
Concretely the knowledge in the adaptation logic should reflect the state or the behavior of:
1) the system (i. e., the managed element), 2) the context, or 3) both, by keeping models
of their relevant aspects for the concrete adaptation in K.

There could be various ways to realize the adaptation logic, including the knowledge,
which is independent of our definition. How the knowledge is represented and constructed
is something that we do not prescribe as part of our theoretical framework, nor our logical
architecture from Chapter 5. However, please note that this changes in the contributions
from Chapters 6 and 7, where we model the knowledge in the adaptation logic as a grid
map. Also, the knowledge can be hard-coded in the adaptation logic during the design
of the self-adaptive system (in the first level of self-adaptive systems), or learned and
modified during the operation of the self-adaptive system to continue reflecting the actual,
real-time state of the relevant aspects from the system (i. e., managed element) and the
dynamic context (in the second level of self-adaptive systems). The latter introduces
various new research directions that we tackle as part of Chapters 5 to 7. For example,
run-time reasoning based on which the knowledge is updated, reasoning under uncertain
observations, etc.

Hard-coded knowledge in the adaptation logic will likely satisfy the quality objectives
from the adaptation goal(s) if all the run-time states of the context and the managed
element can be anticipated during the system’s design and they do not change beyond that.
However, this is not feasible for every system, e. g. for dynamic systems like CPSs, where the
observable behavior, state, or structure of the context and the system (i. e., the managed
element) change in a way that they cannot be (fully) anticipated and known during the
design. To exemplify, we refer to our model problem from the robotics domain. In our
model problem, due to the run-time uncertainties from the context (i. e., the room) in which
the robots operate, it is impossible for the designers of the system to anticipate the exact
spatial patterns of the tasks’ appearance. Therefore, if the knowledge of the adaptation
logic is hard-coded during the design of the self-adaptive systems, it will encode only an
approximation of the tasks’ appearance known during the design, although the patterns
of tasks’ appearance might be completely different during the system’s operation. As a
result, instead of hard-coded knowledge in the adaptation logic of self-adaptive systems,
the knowledge (i. e., the models in the knowledge) should get modified and updated during
run-time, i. e. learned, to reflect the run-time state of the relevant aspects from the system
(i. e., the managed element) and the context for the concrete adaptation. Often in the
literature, these models are referred to as models at run-time (models@RT), which are
considered as a support for realizing self-adaptive systems [13, 12, 115]. Please note that
we do not consider state machines as run-time models.

170

A.4 Defining Self-Adaptive Systems

To update the knowledge at run-time, the adaptation logic requires some mechanisms
for reasoning and storing the newly obtained information, which comprises the learning
aspect, based on which the adaptation logic changes during the run-time. This enables
the self-adaptive system, concretely the knowledge in the adaptation logic, to continue
reflecting the actual state (i. e., the state during the operation of the self-adaptive system)
of the context and the system (i. e., the managed element). In response, in the adaptation
logic, we differentiate between two types of knowledge: 1) knowledge at design (KD) that
is hard-coded by the designers in the adaptation logic at design time, and 2) learned
knowledge (KL), which is updated by the self-adaptive system during its run-time, based
on which we differentiate two types of passive self-adaptive systems:

1) first-level passive self-adaptive systems with hard-coded knowledge in the adaptation
logic, and

2) second-level passive self-adaptive systems in which the knowledge in the adaptation
logic changes and improves over time.

Formalising passive self-adaptive systems

In this thesis, we adopt an approach to formally define self-adaptive systems using
functions. Namely, in passive self-adaptive systems, the function of a self-adaptive system
fSAS is a composite function of λ (the function of the adaptation logic) and sf ′ (the system
function that gains adaptation capabilities as part of the managed element), as it also can
be seen in Fig. A.4a:

fSAS = λ ◦ sf ′. (A.4)

In Equation (A.1) in Appendix A.2 (as well as in Definition 1 in Chapter 5), we defined
the system function sf as the mapping of the system’s input Isf , its internal state Σsf

and the context C to an output Osf and new state Σsf (see Fig. A.1):

sf : Isf × Σsf × C → Osf × Σsf ,

Please note that during the system’s operation, there are parts of the context C that
the system (i. e., system function) can perceive and determine through its input interface
Isf , and parts of the context that the system cannot determine through its input—e. g., in
CPSs due to missing sensors—but still have effects on the system and its behavior. We
refer to the encoded input with explicit interfaces Isf as direct inputs (cf. ID in Fig. A.5)
and to parts of the context for which there is not a direct input but still have an effect
on the system, but we refer to as indirect inputs (cf. II in Fig. A.5). Since II ⊂ C, we
included only C as part of Equation (A.1).

Since we define a function by the mapping between its input and state to an output and
an updated state, for that reason, as part of a self-adaptive system (as shown in Fig. A.4a)
instead of sf we refer to sf ′ which has an additional pair of input and output to the
adaptation logic, compared to sf from Eq. (A.1) (as shown in Fig. A.1). Concretely, we
define sf ′ as following:

sf ′ : Isf × Oλ × Σsf × C → Osf × IME
λ × Σsf , (A.5)

171

A A Theoretical Framework for Self-Adaptive Systems

Context

System s

II

. . .

ID
... Osf

...

Figure A.5: Direct ID and indirect II inputs to the system.

where is Oλ is the output from the adaptation logic to the managed element and IME
λ is

the input from the managed element to the adaptation logic.
To again summarize, if we compare sf in Equation (A.1) and Fig. A.1, with sf ′ in Equa-

tion (A.5) and Fig. A.4a, the fact that there are additional input (Oλ) and outputs (IME
λ)

in sf ′ when the managed element communicates with the adaptation logic, differentiates
the system function sf ′ from sf when the managed element is stand-alone. However,
please be aware that we did this differentiation only for mathematical precision of our
formalism, and the system functions sf and sf ′ have a behavioral equivalence, e. g. from a
user standpoint if the system is considered as a black box.

In the first level of passive self-adaptive systems (as shown in Fig. A.4a), we define
the function of the the adaptation logic λ1 as follows:

λ1 : Iλ × Σλ → Oλ × Σλ,

where Σλ is the state of λ1, and the knowledge KD = M̃E × C̃ is a subset of Σλ (KD ⊂ Σλ.
M̃E is the model of the system and C̃ is the model of the context in the knowledge of
the adaptation logic. As previously discussed in Chapter 5), the models of the managed
element M̃E and the context C̃ are abstractions or approximations of the relevant aspect
for the adaptation from the concrete managed element ME and context C. Lastly, the
input space of Iλ is a Cartesian Product of the input from the managed element IME

λ and
the input from the context IC

λ (Iλ = IME
λ × IC

λ).
Depending on the architecture of the self-adaptive system and the exact system (i. e.,

managed element) under consideration, the input from the context to the adaptation logic
might not exist. In that case, IC

λ is an empty set. As a result, all the information that the
adaptation logic (i. e., the adaptation logic function λ) has from the context is propagated
through the inputs Isf from the context to the managed element (i. e., the system function)
and IME

λ from the managed element to the adaptation logic. This introduces some research
challenges and technical problems on its own, e. g., how to aggregate different (partial)
observations from the context that multiple systems make independently. We identify some
of those challenges in our proposed logical architecture for engineering self-adaptive CPSs,
in Chapter 5, and address them in Chapters 6 and 7 of this thesis.

If the adaptation logic is engineered according to the MAPE-K feedback loop, then the
adaptation logic function λ is a composite function of the functions m, a, p, e of the phases

172

A.4 Defining Self-Adaptive Systems

M, A, P, E:
λ = m(. . . , k) ◦ a(. . . , k) ◦ p(. . . , k) ◦ e(. . . , k),

where k ∈ K is the shared knowledge among all the MAPE phases. As extensively discussed
throughout the paper, the construction of the adaptation logic is always dependent on the
concrete system function, the adaptation goals and the changing and uncertain conditions
according to which the system adapts, as shown in Fig. A.4a.

At the first level of passive self-adaptive systems, the knowledge in the adaptation logic
does not change beyond what was specified by the engineers during the system design and
development of the self-adaptive system. Therefore, the improvements that the adaptation
logic on the first level is offering are limited. Namely, hard-coded adaptation logic does
not suffice when the managed elements are dynamic systems, e. g., CPSs that are exposed
to various run-time uncertainties. In sum, an adaptation logic whose knowledge does not
enhance during run-time is not sufficient to continuously optimally fulfill a given quality
objective, especially when modern dynamic systems, e. g. CPSs are in focus. These systems
operate in changing, and uncertain run-time situations that need to be considered and
represented in the knowledge of the adaptation logic but could not be known during the
design phase of the system. Also, please note that the functions m, a, p, e from the
MAPE phases could incorporate algorithms that utilize some different (machine) learning
techniques, which do not impact or change the knowledge component in the adaptation
logic. We distinguish between the first and the second level of passive self-adaptation only
in terms of whether the knowledge in the adaptation logic changes or not. However, one
could also argue that between the current first and second level of self-adaptation, multiple
other orthogonal levels can be introduced based on different algorithms’ sophistication for
the other MAPE phases.

In the second level of passive self-adaptive systems (cf. Fig. A.3), the adaptation
logic is a function λ2 is defined as following:

λ2 : Iλ × Σλ × KL → Oλ × Σλ.

On this level, KL is learned by the lrn that is a recursive function that aggregates
observations and updates the knowledge (i. e., the models of the managed element M̃E

and the context C̃) in the knowledge of the adaptation logic during run-time:

lrn : KL × IME
λ × IC

λ → KL, lrn(kn
L, iME

λ , iC
λ) = kn+1

L , where k0
L = kD.

The adaptation logic in the second level of passive self-adaptive systems is engineered
in a way that it has the ability to change and enhance the knowledge that has been
initially specified during the system’s design (KD), based on the new observations gathered,
aggregated and analyzed, based on which the knowledge is updated during run-time.

173

A A Theoretical Framework for Self-Adaptive Systems

Limitation of passive self-adaptive systems

As previously discussed in Appendix A.4.2, the overall self-adaptation process still
remains underspecified for this type of self-adaptive system, and it could be a source
of confusion and misunderstanding. According to our definition of system adaptation
in Chapter 5, we can clearly identify when a system adapts; however, the exact process of
self-adaptation in passive self-adaptive systems remains unclear and fuzzy. We tackle this
issue in the definition of active self-adaptive systems, and as a foundation for it, we exactly
use the definition of system adaptation.

A.4.4 Defining active self-adaptive systems

In the passive self-adaptation, we assume that the existence of the adaptation logic
improves the state of the managed element (i. e., the system) that results in an improved
value of the Quality Function Q, compared with the case when the system is operating
without the input from the adaptation logic. In this case, we say that the value of Q is
used passively since we only use it to measure the system adaptation. If the value of Q

is used “actively” 1) to detect when the system adaptation is not fulfilled (e. g., through
the trigger for self-adaptation, see Fig. A.2), 2) based on which different actions towards
adaptation can be chosen for the adaptation to be eventually achieved again, then we say
that the value of Q is actively used by the self-adaptive system. Please note that the active
self-adaptive systems are an extension of the passive self-adaptive systems, and at the same
time, they are orthogonal to the first- and the second-level of self-adaptive systems (i. e.,
the knowledge in the active self-adaptive system can be both hard-coded in the adaptation
logic, or it could improve during run-time).

The process of self-adaptation

As shown in Fig. A.2, the process of self-adaptation contains the following three steps
(or four steps, if the zeroth step is considered):

Step 0: Drop in the value of Q (depicted with red in Fig. A.2);
Step 1: Trigger for self-adaptation (depicted with blue);
Step 2: Action(s) towards adaptation (depicted with green);
Step 3: Fulfilled system adaptation (depicted with grey).

Only when these steps are considered, then we can proceed with the specification of the
self-adaptive system. We explain all the steps in more detail in the following.

The value of the Quality Function Q might drop due to various changing and uncertain
conditions from the system (i. e., the managed element), the context, or both. The concrete
reason for the drop of Q is application or system-dependent, and it needs to be considered
in the concrete specifications or the design of the self-adaptive systems. Also, the system
cannot adapt to unknown unknowns, and the range and the type of uncertainties and
changes are important to be identified while specifying self-adaptive systems [85].

Previously, in Chapter 5 and Appendix A.2, we introduced the Quality Function as
a metric for quantifying and measuring the system adaptation. Concerning the Quality

174

A.4 Defining Self-Adaptive Systems

Function, in this section, we introduce a Quality Satisfaction Function, QSAT , based on
which the need for self-adaptation is triggered, and adaptation actions are initiated. The
Quality Satisfaction Function is a Boolean function, which as parameters in its signature,
takes the value of the Quality Function (a real number between 0 and 1) and the convergence
parameters ℓ and ε (cf. Definition 1 in Chapter 5):

QSAT : Q × ℓ × ε → {true, false}. (A.6)

The trigger for self-adaptation (see Fig. A.2) is when the Quality Satisfaction Function
becomes false. Concretely, this happens when the value of the Quality Function Q, or
the fulfilment of adaptation (and the business) goals, is outside the range specified by the
convergence parameters. In response, adaptation actions are initiated by the adaptation
logic with an intention for the system to adapt eventually (i. e., Quality Satisfaction
Function QSAT to become true). Eventually means that the adaptation could happen
immediately after a single adaptation action or after a sequence of multiple adaptation
actions. To summarize, the Quality Function and the Quality Satisfaction Function set
the foundation for the self-adaptive system to evaluate itself and indicate when it is not
accomplishing what it is intended to do, as envisioned by Laddaga. Based on this, the
adaptation logic that reflects the structure and the behaviour of the managed element and
the context chooses the best adaptation action at a specific point in time from the set
of possible adaptation actions (see A in Fig. A.4b). The adaptation action is passed to
the managed element, or more precisely, the system function sf . As a result of all of the
above, as part of this paper, we extend the SACTC framing proposed in [96] with one
more dimension that is necessary to specify self-adaptation (becoming SACTCA framing):

[A] What are the adaptation actions (or the actions towards adaptation) that the adapta-
tion logic can pass to the managed element after an active trigger for self-adaptation?

Exemplifying the SACTCA framing using the robotics system cont. Referring again to the
exemplification of the framing in Appendix A.3, we need to specify what actions towards
adaptation can be undertaken if the tasks for the robots are spawned with such a high
rate that the robots cannot keep up with their cleaning (reflected in the reduction of the
Quality Function as shown in the evaluation in Chapter 5). A potential adaptation action
could be including more robots in the collaboration, or prioritizing the cleaning of the tasks
according to some rules, or having mechanisms which allow the robots to communicate with
each other and share information about areas of the room that get dirtier than others. It is
important to emphasize that this depends on the concrete adaptation goals and the system’s
overall functionality. Also, as we previously defined before, a system self-adapts with the
intention for adaptation to eventually be achieved. We also said that eventually means
that the adaptation could happen immediately after a single action towards adaptation, or
multiple of them. Therefore, different actions toward adaptation will have a different trend
toward achieving system adaptation. The extended SACTCA framing is the complete
framing that needs to be considered during the design of self-adaptive systems.

In a nutshell, while specifying active self-adaptive systems, the system’s designers and
engineers also need to specify the concrete adaptation actions available that will enable

175

A A Theoretical Framework for Self-Adaptive Systems

the system’s self-adaptation. We detail further the presented self-adaptation process and
the specifications in the following sections.

Extension of the minimum requirements for active self-adaptive systems

In Appendix A.4.3, we discussed that for passive self-adaptive systems, the minimum
requirements for the adaptation logic is the existence of knowledge component K created
correspondingly to the SACTC framing. However, in active self-adaptive system, there
is one more requirement for the adaptation logic, and that is having a set of all the
possible adaptation actions A. Similarly as the knowledge in the adaptation logic, the
set of the adaptation actions can also be hard-coded in the adaptation logic during
the design of the self-adaptive system, parametrized, or completely learned during the
run-time of the self-adaptive system. As a result, this introduces various new research
directions in this domain. It is important to point out that integrating this last part of
the theoretical framework in relation to the adaptation actions remained out of the scope
of our logical architecture, and all the technical contributions of this thesis. Namely, our
logical architecture, integrates the Quality Function and the Quality Satisfaction Function
as Quality Evaluator (see Chapter 5), however, we did not put any emphasis on the
consideration and the importance of the set of the possible adaptation actions.

If we only consider the adaptation logic as part of the self-adaptive system, then we only
cover the first part of Ladagga’s definition, as we previously explained at the beginning
of Appendix A.4.1. Not to exclude the majority of the existing works in the literature,
that engineer their self-adaptive (and in general self-*) systems according to the MAPE-K,
we referred to these self-adaptive systems as passive self-adaptive systems. As explained
at the beginning of this section, both aspects from Laddaga’s informal definition of self-
adaptive software are considered if the adaptation logic (to whose semantic clarity we have
contributed in this dissertation) is additionally accompanied by the usage of the value of
the Quality Function Q. This also enables us to pinpoint the process of self-adaptation
clearly and precisely.

Above we summarized the minimum requirements for the adaptation logic in active
self-adaptive systems. In the following, we summarize the minimum requirements for active
self-adaptive systems that have various architectural implications for engineering these
systems (see Fig. A.4b).

1) identification of the concrete system function from the managed element that gains
adaptation capabilities as part of the self-adaptive system, the concrete adaptation
goals and the concrete uncertain conditions,

2) existence of the adaptation logic built according to the concrete system function,
the adaptation goals and the uncertain conditions (depicted with yellow parallelo-
grams Fig. A.4b), whose knowledge keeps models of the relevant aspects for the
adaptation from the managed element and the context,

3) definition of the Quality Function that enables quantification and measurement of
system adaptation and serves as a foundation for the self-adaptive system to evaluate
itself, based on which the self-adaptation is triggered when the adaptation and the

176

A.4 Defining Self-Adaptive Systems

business goals are not fulfilled within a certain range, and lastly, once the self-adaptation
is triggered, and

4) consideration and identification of the set of the possible adaptation actions A.

Formalizing active self-adaptive systems

The function of an active self-adaptive system fSAS is a composite function of λ′, sf ′′

and Q, as it also can be seen in Fig. A.4b:

fSAS = λ′ ◦ sf ′′ ◦ Q. (A.7)

Similarly as in Equation (A.1) in Appendix A.2 and Equation (A.8) in Appendix A.4.3,
we define sf ′′ as following:

sf ′′ : Isf × Oλ × Σsf × C → Osf × IME
λ × IME

Q × Σsf , (A.8)

where Oλ is the output from the adaptation logic to the system function and contains a
specific action towards adaptation a (a ∈ Oλ ⊆ A) at a specific point in time. Let IME

λ be
the input from the managed element (i. e., sf ′′) to the adaptation logic, and IME

Q be the
input from the managed element (i. e., sf ′′) to the quality function.

As previously explained, the fact that there are additional input (Oλ) and outputs (IME
λ

and IME
Q) in sf ′′ when the managed element communicates with the adaptation logic

and the quality function, differentiates the system function sf ′′ from sf ′ in the passive
self-adaptive system and from sf when the managed element is stand-alone. However, all
the three functions have a behavioural equivalence. This holds as well for the adaptation
logic (cf. λ in Fig. A.4a and λ′ in Fig. A.4b).

Concretely, in active self-adaptive systems we define the function of the adaptation logic
λ′ as following:

λ′ : IC
λ × IME

λ × OQ × Σλ → Oλ × Σλ,

where OQ is the output from the Quality Function passed as an input to the adaptation
logic. The output OQ passes the trigger for self-adaptation to the adaptation logic when
QSAT = false, as previously defined in Equation (A.6). Figure A.4b also shows IME

Q and
IC

Q , which are the inputs that the Quality Function receives from the managed element
and the context. In Appendix A.2 and Chapter 5, we discussed that the notion of “better”
and how system adaptation is measured is determined by the quality function Q. However,
the concrete definition and specification of Q are use case-specific, and Q can only be
constructed by the engineers of a self-adaptive system. The only prerequisite for the
engineers is to comply with the rules for the construction of the Quality Function that
we summarized in Appendix A.2. Regardless of the a concrete approach or technique for
constructing the Quality Function, all the potentially adopted solutions for Q in the future
will need to consider some information from the system function sf ′′ and the context,
which will be received through the inputs from the managed element IME

Q and the context
IC

Q that we depict in Fig. A.4b. We proposed one approach to construct Q for the concrete
robotic system as a separate contribution in Chapter 5.

177

A A Theoretical Framework for Self-Adaptive Systems

A.5 Exemplary Use Case

To demonstrate the theoretical contributions on engineering active self-adaptive systems,
we choose the popular Znn.com2 exemplar from the literature. In this section, we only
descriptively exemplify how the proposed theoretical framework applies to Znn.com. Further
empirical evaluation remained out of the scope of the current work.

Znn.com was proposed by Cheng [27] in support of the Rainbow framework [44]. Please
note that the terminology we propose and use as part of this thesis, including its semantics,
does not exist in the Rainbow framework. With the contributions in this paper, we make
explicit different notions that were only intuitively and implicitly used by the authors of the
Rainbow framework and Znn.com. It is also important to note that we deliberately chose
Znn.com to exemplify our theory because for many of the other available examples in the
field, we could neither find arguments nor an underlying intuition as to why the authors
consider their systems to be self-adaptive (and how the nominal system function differs from
self-adaptation in their use cases). This made it impossible for us to map other examples
onto the proposed theoretical concepts. However, these insights served as additional
validation for the importance of our contributions and why improved terminological clarity
and specifications of these systems are of crucial importance.

Znn.com is a web-based client-server system and a news service that serves multimedia
news content to its customers, which is the business goal of Znn.com. Using a load balancer,
the system balances requests across a pool of replicated servers. Balancing the requests
is the concrete system function that gains adaptation capabilities in the exemplar. As
can be noted, this is one specific function out of the many functionalities that Znn.com
has as a web-based client-server system and a news service. From time to time, Znn.com
experiences drastic increases in news requests that are not within the range of the originally
designed parameters (i. e., the requests exceed the capabilities of the servers required for
normal workloads), resulting in the clients receiving their content with time delays. During
the system’s design, it is unknown when the peak periods of requests will occur, how high
the peaks are and how long they will last, which are the changing and uncertain conditions
in the system. The spikes in client requests cause a performance drop and cost increase.
The performance and the cost are the concrete quality objectives or the adaptation goals in
Znn.com, and the system adapts to improve these adaptation goals despite the changing
and uncertain conditions. Concretely, in Znn.com, when the concrete adaptation goals are
not fulfilled (i. e., QSAT = false, which activates the trigger for self-adaptation), then 1) the
server pool size is adjusted, or 2) the content is switched between multimedia and textual
modes, which are the actions towards adaptation in this concrete system. Namely, the
authors propose four possible actions towards adaptation:

a1 Switch the server content mode from multimedia to textual,
a2 Switch the server content mode from textual to multimedia,
a3 Increment the server pool size, and
a4 Decrement the server pool size.

2https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/model-problem-znn-com/

178

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/model-problem-znn-com/

A.5 Exemplary Use Case

Different actions towards adaptation will enable the adaptation goals to be eventually
fulfilled again (i. e., QSAT = true within a certain range of values).

In Znn.com, the authors do not explicitly identify and frame the system function that
gains adaptation capabilities. However, we can identify that they still implicitly distinguish
the concrete system function sf that gains adaptation capabilities from the other functions.
Also, it can be noted that the authors implicitly separate the concerns of the system
function and the function of the adaptation logic. Furthermore, we can observe that in
their exemplar, the adaptation logic is also built based 1) on the concrete uncertainties,
which in Znn.com are the spikes in the requests, and 2) the concrete adaptation goals:
the system performance and the cost, for which in Znn.com the authors searched for a
trade-off in their fulfilment. We can argue that if, in Znn.com, a different system function,
adaptation goals, and uncertain conditions were under consideration, then the adaptation
logic would have needed to be built differently, therefore, providing a completely different
adaptation function λ. As discussed throughout the paper, considering these three aspects
in the specifications of the self-adaptive systems is crucial for the later engineering of these
systems.

Additionally, the general idea of:

1) the newly introduced concept of a Quality Function Q that measures the system
adaptation (i. e., that quantifies and qualifies the fulfilment of the adaptation and
business goals),

2) improving the system function sf over time according to a concrete assessment (i. e.,
the quality function),

3) the trigger for self-adaptation when there is a drop in the quality function (i. e., when
the quality satisfaction function QSAT becomes false), and

4) the actions towards adaptation that enable adaptation to be eventually fulfilled again
(i. e., QSAT = true)

are concepts that do not exist in the Rainbow framework and the Znn.com exemplar.
However, the authors of the framework quantify the fulfilment of the goals in their own way,
using utility theory, which could be one approach to construct the quality function—as
long as it adheres to the design rules that we presented in Appendix A.2. In Znn.com,
the evaluation based on utility theory searches for some trade-off between the fulfilment
of the quality objectives (the performance and the cost). If this evaluation determines
that the fulfilment of the quality objectives is not within an accepted value, then this
presents a trigger for self-adaptation. In response, a concrete strategy (i. e., action towards
adaptation) is chosen.

Although parts of our theory are only implicitly implemented as part of Znn.com,
the intuition that the authors have of self-adaptive systems aligns with the theoretical
framework proposed as part of this dissertation. The utility theory-based solution from
Znn.com can be mapped to our quality function with small modifications. Also, all the
evaluation metrics from the existing exemplars that we summarized in Appendix A.1.2 can
be modified and adjusted in a way so they adhere to the concrete rules for the construction
of the Quality Function. This is another demonstration of the power and flexibility of our
proposed theoretical framework. Namely, once the quality function can be measured and

179

A A Theoretical Framework for Self-Adaptive Systems

constructed, it is the backbone for all the contributions that we make in this thesis. This
helps to clearly pinpoint and differentiate between system functioning and system adapting
(and self-adapting) and supports the specifications for engineering self-adaptive systems to
differentiate these systems from those that are considered non-adaptive.

And lastly, it is important to point out that although the Rainbow framework is not
built according to the MAPE-K conceptual model, the authors do differentiate between
two layers in a self-adaptive system: the system layer (corresponding to the managed
element) and the architecture layer (corresponding to the adaptation logic). In their
framework, the adaptation layer is tailored using the system-specific adaptation knowledge,
including the types and properties of components, behavioural constraints, and adaptation
strategies (i. e., our introduced actions towards adaptation). This additionally validates
our specification that the adaptation logic does not necessarily need to follow the MAPE-K
conceptual model as long as it consists of a Knowledge component that is built according to
the relevant aspects for the concrete self-adaptation (the system function, the adaptation
goals, uncertain conditions and the actions towards adaptation).

A.6 Concluding remarks

Defining self-adaptive systems is challenging because this problem has a many-dimensional
nature, and none of the existing literature has approached understanding and defining
self-adaptive systems as exhaustively and comprehensively as we do in this paper. Towards
this aim, in this appendix we proposed a theoretical framework for self-adaptive systems,
which provides a holistic overview for understanding and defining self-adaptive systems.
Throughout the whole thesis, we were motivated by the question of how self-adaptive
systems differ from the “ordinary,” non-adaptive systems. As a basis for the theoretical
contributions in this appendix, we used:

• the informal definition of self-adaptive software by Laddaga [77]—concretely the specific
part of his definition that was overlooked by the existing body of literature over the
years, and

• our previous framing and formalization of system adaptation from Chapter 5.

The contributions of this appendix, and the overall dissertation, should ideally set the
foundation for more constructive discussions on the existing and current works, hopefully
supporting this research domain on a larger scale to complement the existing works and
identify and focus on new future challenges and directions. To summarize, as part of this
appendix:

1) we formally defined passive and active self-adaptive systems using functions that capture
the behavioural aspect of these systems, besides also capturing the structural aspect of
self-adaptive systems (through the proposed terminology and specifications),

2) elicited the minimum requirements for the adaptation logic in passive and active self-
adaptive systems, as well as the overall requirements for self-adaptive systems as such
and lastly,

3) we clearly specified the process of self-adaptation.

180

A.6 Concluding remarks

Alongside our theoretical contributions, we have discussed various emerging architectural
implications based on our formalism, and we proposed a re-factored versions of the
MAPE-K conceptual model for engineering passive and active self-adaptive systems. All
our contributions are domain- and application-independent, meaning they are applicable
for engineering any self-adaptive system, as we depicted throughout this appendix with
examples from the robotics domain and software systems (e. g., Znn.com client-server
system).

181

List of Figures

1.1 Conceptual model of a self-adaptive system [118, 66]. 5

2.1 The taxonomy of run-time uncertainty, created by Ramirez et al. [104]. . . . 23
2.2 Subjective Logic Framework from [61]. 27
2.3 Domains example from [61]. 27
2.4 Example hyperdomain from [61]. 28
2.5 Visualization of an binomial opinion from [61]. 32
2.6 Fusion process adapted [64]. 33
2.7 Decision process for selecting the most adequate fusion operator, adopted

from [61]. 35

3.1 Mapping of Gaps, Contributions and Publications to the structure of this
thesis. 39

4.1 Mapping of Gaps, Contributions and Publications to the structure of this
thesis. 51

4.2 Research methodology. With green, blue, and orange boxes, we depict the
artefacts and the activities in the planning, conducting and reporting of the
review. 58

4.3 Two-step selection process. 61
4.4 Overview of the number of publications per year. 62
4.5 Overview of the type of definitions. 63

5.1 Mapping of Gaps, Contributions and Publications to the structure of this
thesis. 75

6.1 Mapping of Gaps, Contributions and Publications to the structure of this
thesis. 99

7.1 Mapping of Gaps, Contributions and Publications to the structure of this
thesis. 111

A.1 System function sf . 162
A.2 The process of self-adaptation, modified from [96]. 163
A.3 Different levels and types of self-adaptive systems and their relations. . . . 167
A.4 Our re-factored version of the MAPE-K conceptual model. 169
A.5 Direct ID and indirect II inputs to the system. 172

List of Tables
183

List of Tables

2.1 An overview of the various sources of uncertainty and their definitions,
modified from Ramirez et al. [104]. 23

2.2 Aggregating two concurring opinions ω1
x, ω2

x using different belief fusion
operators. 34

2.3 Aggregating two disagreeing opinions ω1
x, ω2

x using different belief fusion
operators. 34

4.1 Inclusion criteria. 60
4.2 Exclusion criteria. 61
4.3 Summary of papers that provide some formal definitions on system adapta-

tion and self-adaptive systems. 67

8.1 Informal definitions of self-adaptive systems in the literature. 130

184

Bibliography

[1] Norm Abrahamson. Aleatory variability and epistemic uncertainty. 2007.
[2] Mai Abusair, Antinisca Di Marco, and Paola Inverardi. “Context-Aware Adaptation

of Mobile Applications Driven By Software Quality and User Satisfaction”. In:
2017 IEEE International Conference on Software Quality, Reliability and Security
Companion (QRS-C). IEEE. 2017, pp. 31–38.

[3] Frank José Affonso and Elisa Yumi Nakagawa. “A reference architecture based on
reflection for self-adaptive software”. In: 2013 VII Brazilian Symposium on Software
Components, Architectures and Reuse. Ieee. 2013, pp. 129–138.

[4] Mary B Alatise and Gerhard P Hancke. “A review on challenges of autonomous
mobile robot and sensor fusion methods”. In: IEEE Access 8 (2020), pp. 39830–
39846.

[5] Robert Allen, Remi Douence, and David Garlan. “Specifying and analyzing dynamic
software architectures”. In: International Conference on Fundamental Approaches
to Software Engineering. Springer. 1998, pp. 21–37.

[6] Konstantinos Angelopoulos et al. “Model predictive control for software systems
with CobRA”. In: 2016 IEEE/ACM 11th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE. 2016, pp. 35–
46.

[7] P. Arcaini, E. Riccobene, and P. Scandurra. “Modeling and Analyzing MAPE-
K Feedback Loops for Self-Adaptation”. In: 2015 IEEE/ACM 10th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems. IEEE,
May 2015, pp. 13–23. doi: 10.1109/SEAMS.2015.10.

[8] Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. “Modeling and analyzing
MAPE-K feedback loops for self-adaptation”. In: 2015 IEEE/ACM 10th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems.
IEEE. 2015, pp. 13–23.

[9] Reza Asadollahi, Mazeiar Salehie, and Ladan Tahvildari. “StarMX: A framework for
developing self-managing Java-based systems”. In: 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems. IEEE. 2009, pp. 58–67.

[10] K Suzanne Barber and Cheryl E Martin. “Agent autonomy: Specification, measure-
ment, and dynamic adjustment”. In: Proceedings of the autonomy control software
workshop at autonomous agents. Vol. 1999. Citeseer. 1999, pp. 8–15.

[11] Nelly Bencomo, Amel Belaggoun, and Valerie Issarny. “Dynamic decision networks
for decision-making in self-adaptive systems: a case study”. In: 2013 8th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). IEEE. 2013, pp. 113–122.

185

https://doi.org/10.1109/SEAMS.2015.10

Bibliography

[12] Amel Bennaceur et al. “Mechanisms for leveraging models at runtime in self-adaptive
software”. In: Models@ run. time. Springer, 2014, pp. 19–46.

[13] Gordon Blair, Nelly Bencomo, and Robert B France. “Models@ run. time”. In:
Computer 42.10 (2009), pp. 22–27.

[14] Victor Braberman et al. “Morph: A reference architecture for configuration and
behaviour self-adaptation”. In: Proceedings of the 1st International Workshop on
Control Theory for Software Engineering. 2015, pp. 9–16.

[15] Jeremy S Bradbury et al. “A survey of self-management in dynamic software
architecture specifications”. In: Proceedings of the 1st ACM SIGSOFT workshop on
Self-managed systems. 2004, pp. 28–33.

[16] James Patrick Brock. The evolution of adaptive systems: The general theory of
evolution. Elsevier, 2000.

[17] Manfred Broy. “Formalizing Adaptivity, Dynamics, Context-Awareness, Autonomy”.
unpublished. 2017.

[18] Manfred Broy and Ketil Stølen. Specification and development of interactive systems:
Focus on streams, interfaces, and refinement. New York: Springer, 2001.

[19] Manfred Broy and Ketil Stølen. Specification and development of interactive systems:
Focus on streams, interfaces, and refinement. New York: Springer, 2001.

[20] Manfred Broy et al. “Formalizing the notion of adaptive system behavior”. In:
Proceedings of the 2009 ACM Symposium on Applied Computing (SAC). ACM, 2009,
pp. 1029–1033. doi: 10.1145/1529282.1529508.

[21] Yuriy Brun et al. “Engineering self-adaptive systems through feedback loops”. In:
Software engineering for self-adaptive systems. Springer, 2009, pp. 48–70.

[22] Roberto Bruni et al. “A conceptual framework for adaptation”. In: International
Conference on Fundamental Approaches to Software Engineering. Springer. 2012,
pp. 240–254.

[23] Antonio Bucchiarone and Marina Mongiello. “Ten Years of Self-adaptive Systems:
From Dynamic Ensembles to Collective Adaptive Systems”. In: From Software
Engineering to Formal Methods and Tools, and Back. Springer, 2019, pp. 19–39.

[24] Javier Cámara, Bradley Schmerl, and David Garlan. “Software architecture and task
plan co-adaptation for mobile service robots”. In: Proceedings of the IEEE/ACM 15th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems. 2020, pp. 125–136.

[25] Matteo Camilli, Raffaela Mirandola, and Patrizia Scandurra. “Runtime Equilibrium
Verification for Resilient Cyber-Physical Systems”. In: 2021 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). IEEE.
2021.

[26] Betty HC Cheng et al. “A goal-based modeling approach to develop requirements of
an adaptive system with environmental uncertainty”. In: International Conference
on Model Driven Engineering Languages and Systems. Springer. 2009, pp. 468–483.

186

https://doi.org/10.1145/1529282.1529508

[27] Shang-Wen Cheng. “Rainbow: cost-effective software architecture-based self-
adaptation”. PhD thesis. Carnegie Mellon University, 2008.

[28] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. “Architecture-based self-
adaptation in the presence of multiple objectives”. In: Proceedings of the 2006
international workshop on Self-adaptation and self-managing systems. 2006, pp. 2–8.

[29] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. “Evaluating the effective-
ness of the rainbow self-adaptive system”. In: 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems. IEEE. 2009, pp. 132–141.

[30] Mirko D’Angelo, Annalisa Napolitano, and Mauro Caporuscio. “CyPhEF: a model-
driven engineering framework for self-adaptive cyber-physical systems”. In: Pro-
ceedings of the 40th International Conference on Software Engineering: Companion
Proceeedings. 2018, pp. 101–104.

[31] Alberto Rodrigues Da Silva. “Model-driven engineering: A survey supported by
the unified conceptual model”. In: Computer Languages, Systems & Structures 43
(2015), pp. 139–155.

[32] Rogério De Lemos et al. “Software engineering for self-adaptive systems: Research
challenges in the provision of assurances”. In: Software Engineering for Self-Adaptive
Systems III. Assurances. Springer, 2017, pp. 3–30.

[33] Frank Dellaert et al. “Monte carlo localization for mobile robots”. In: Proceed-
ings 1999 IEEE International Conference on Robotics and Automation (Cat. No.
99CH36288C). Vol. 2. IEEE. 1999, pp. 1322–1328.

[34] Arthur P Dempster. “A generalization of Bayesian inference”. In: Journal of the
Royal Statistical Society: Series B (Methodological) 30.2 (1968), pp. 205–232.

[35] Armen Der Kiureghian and Ove Ditlevsen. “Aleatory or epistemic? Does it matter?”
In: Structural safety 31.2 (2009), pp. 105–112.

[36] Jean Dezert and Albena Tchamova. “On the Validity of Dempster’s Fusion Rule and
its Interpretation as a Generalization of Bayesian Fusion Rule”. In: International
Journal of Intelligent Systems 29.3 (2014), pp. 223–252.

[37] Abdessalam Elhabbash et al. “Self-awareness in software engineering: A systematic
literature review”. In: ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 14.2 (2019), pp. 1–42.

[38] Ahmed Elkhodary, Naeem Esfahani, and Sam Malek. “FUSION: a framework
for engineering self-tuning self-adaptive software systems”. In: Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of software
engineering. ACM. 2010, pp. 7–16.

[39] Naeem Esfahani, Ehsan Kouroshfar, and Sam Malek. “Taming uncertainty in self-
adaptive software”. In: Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering. 2011, pp. 234–244.

187

Bibliography

[40] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. “A formal approach to
adaptive software: continuous assurance of non-functional requirements”. In: Formal
Aspects of Computing 24.2 (2012), pp. 163–186.

[41] Antonio Filieri et al. “Self-adaptive software meets control theory: A preliminary
approach supporting reliability requirements”. In: 2011 26th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2011). IEEE. 2011,
pp. 283–292.

[42] Miguel de França Doria et al. “Using expert elicitation to define successful adaptation
to climate change”. In: Environmental Science & Policy 12.7 (2009), pp. 810–819.

[43] David Garlan, Bradley Schmerl, and Shang-Wen Cheng. “Software architecture-
based self-adaptation”. In: Autonomic computing and networking. Springer, 2009,
pp. 31–55.

[44] David Garlan et al. “Rainbow: Architecture-based self-adaptation with reusable
infrastructure”. In: Computer 10 (2004), pp. 46–54.

[45] Andrew Gelman et al. “Part I Fundamentals of Bayesian Inference”. In: Bayesian
Data Analysis. 3. ed. CRC Press, 2014. Chap. 1, pp. 4–29. isbn: 9781439840955 -
9781439840962.

[46] Ilias Gerostathopoulos et al. “Architectural homeostasis in self-adaptive software-
intensive cyber-physical systems”. In: European Conference on Software Architecture.
Springer. 2016, pp. 113–128.

[47] Ilias Gerostathopoulos et al. “How do we Evaluate Self-adaptive Software Systems?”
In: arXiv preprint arXiv:2103.11481 (2021).

[48] Omid Gheibi, Danny Weyns, and Federico Quin. “Applying machine learning in
self-adaptive systems: A systematic literature review”. In: ACM Transactions on
Autonomous and Adaptive Systems (TAAS) 15.3 (2021), pp. 1–37.

[49] Debanjan Ghosh et al. “Self-healing systems—survey and synthesis”. In: Decision
support systems 42.4 (2007), pp. 2164–2185.

[50] Ian Gorton, Yan Liu, and Nihar Trivedi. “An extensible, lightweight architecture
for adaptive J2EE applications”. In: Proceedings of the 6th international workshop
on Software engineering and middleware. 2006, pp. 47–54.

[51] James P Gunderson and Louise F Gunderson. “Intelligence= autonomy= capability”.
In: Performance Metrics for Intelligent Systems, PERMIS (2004).

[52] M. Hachicha, R. B. Halima, and A. H. Kacem. “Formalizing compound MAPE
patterns for decentralized control in self-adaptive systems”. In: 2018 12th Inter-
national Conference on Research Challenges in Information Science (RCIS). May
2018, pp. 1–10. doi: 10.1109/RCIS.2018.8406680.

[53] M. Hachicha et al. “A correct by construction approach for modeling and formalizing
self-adaptive systems”. In: 2016 17th IEEE/ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD). May 2016, pp. 379–384. doi: 10.1109/SNPD.2016.7515928.

188

https://doi.org/10.1109/RCIS.2018.8406680
https://doi.org/10.1109/SNPD.2016.7515928

[54] R. Haesevoets et al. “A formal model for self-adaptive and self-healing organizations”.
In: 2009 ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems. IEEE, May 2009, pp. 116–125. doi: 10.1109/SEAMS.2009.5069080.

[55] Svein Hallsteinsen et al. “A development framework and methodology for self-
adapting applications in ubiquitous computing environments”. In: Journal of Systems
and Software 85.12 (2012), pp. 2840–2859.

[56] Linda Hutcheon. A theory of adaptation. Routledge, 2012.
[57] M Usman Iftikhar et al. “Deltaiot: a real world exemplar for self-adaptive internet

of things (artifact)”. In: DARTS-Dagstuhl Artifacts Series. Vol. 3. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. 2017.

[58] Didac Gil De La Iglesia and Danny Weyns. “MAPE-K Formal Templates to Rigor-
ously Design Behaviors for Self-Adaptive Systems”. In: ACM Trans. Auton. Adapt.
Syst. 10.3 (Sept. 2015). issn: 1556-4665. doi: 10.1145/2724719. url: https://doi-
org.eaccess.ub.tum.de/10.1145/2724719.

[59] Pooyan Jamshidi et al. “Machine learning meets quantitative planning: enabling
self-adaptation in autonomous robots”. In: SEAMS@ICSE. ACM, 2019, pp. 39–50.

[60] Audun Jøsang. “A logic for uncertain probabilities”. In: International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 9.03 (2001), pp. 279–311.

[61] Audun Jøsang. Subjective logic. Springer, 2016.
[62] Audun Jøsang and Simon Pope. “Dempster’s rule as seen by little colored balls”.

In: Computational Intelligence 28.4 (2012), pp. 453–474. doi: 10.1111/j.1467-
8640.2012.00421.x.

[63] Audun Jøsang and Francesco Sambo. “Inverting conditional opinions in subjective
logic”. In: 20th International Conference on Soft Computing (Mendel 2014) June
(2014).

[64] Audun Jøsang, Dongxia Wang, and Jie Zhang. “Multi-source fusion in subjective
logic”. In: 20th International Conference on Information Fusion, Fusion 2017 -
Proceedings. 2017. isbn: 9780996452700. doi: 10.23919/ICIF.2017.8009820.

[65] Jeffery Kephart. Viewing Autonomic Computing through the Lens of Embodied
Artificial Intelligence. Keynote. 2021 IEEE/ACM 16th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS). 2021.

[66] Jeffrey O Kephart and David M Chess. “The vision of autonomic computing”. In:
Computer 1 (2003), pp. 41–50.

[67] Barbara Kitchenham and Stuart Charters. Guidelines for performing Systematic
Literature Reviews in Software Engineering. Tech. rep. EBSE 2007-001. Keele
University and Durham University Joint Report, 2007. url: http://www.dur.ac.
uk/ebse/resources/Systematic-reviews-5-8.pdf.

[68] Barbara Kitchenham et al. “Systematic literature reviews in software engineering–a
tertiary study”. In: Information and software technology 52.8 (2010), pp. 792–805.

189

https://doi.org/10.1109/SEAMS.2009.5069080
https://doi.org/10.1145/2724719
https://doi-org.eaccess.ub.tum.de/10.1145/2724719
https://doi-org.eaccess.ub.tum.de/10.1145/2724719
https://doi.org/10.1111/j.1467-8640.2012.00421.x
https://doi.org/10.1111/j.1467-8640.2012.00421.x
https://doi.org/10.23919/ICIF.2017.8009820
http://www.dur.ac.uk/ebse/resources/Systematic-reviews-5-8.pdf
http://www.dur.ac.uk/ebse/resources/Systematic-reviews-5-8.pdf

Bibliography

[69] A. Klarl. “Engineering Self-Adaptive Systems with the Role-Based Architecture of
Helena”. In: 2015 IEEE 24th International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises. June 2015, pp. 3–8. doi: 10.1109/
WETICE.2015.32.

[70] Alessia Knauss et al. “ACon: A learning-based approach to deal with uncertainty in
contextual requirements at runtime”. In: Information and software technology 70
(2016), pp. 85–99.

[71] Samuel Kounev, Fabian Brosig, and Nikolaus Huber. The Descartes Modeling
Language. Tech. rep. Institut für Informatik, University of Wuerzburg, Germany,
2014, p. 91.

[72] Samuel Kounev et al. “The notion of self-aware computing”. In: Self-Aware Com-
puting Systems. Springer, 2017, pp. 3–16.

[73] Christian Krupitzer et al. “A survey on engineering approaches for self-adaptive
systems”. In: Pervasive and Mobile Computing 17 (2015), pp. 184–206.

[74] Christian Krupitzer et al. “Comparison of Approaches for developing Self-adaptive
Systems”. In: (2018).

[75] Stefan Kugele, Ana Petrovska, and Ilias Gerostathopoulos. “Towards a Taxonomy
of Autonomous Systems”. In: European Conference on Software Architecture. to
appear. Springer. 2021.

[76] Zadeh La. “Fuzzy sets”. In: Information and control 8.3 (1965), pp. 338–353.
[77] R Laddaga. Self-adaptive software DARPA BAA 98-12. 1997.
[78] Philippe Lalanda, Julie A McCann, and Ada Diaconescu. “Autonomic computing”.

In: Principles, Design and Implementation. Springer, 2013.
[79] Thomas Leitch. “Adaptation, the genre”. In: Adaptation 1.2 (2008), pp. 106–120.
[80] Rogério de Lemos, Holger Giese, Hausi A Müller, et al. “Software engineering for

self-adaptive systems: A second research roadmap”. In: Software engineering for
self-adaptive systems II. Springer, 2013, pp. 1–32.

[81] Peter R Lewis et al. “A survey of self-awareness and its application in computing
systems”. In: 2011 Fifth IEEE Conference on Self-Adaptive and Self-Organizing
Systems Workshops. IEEE. 2011, pp. 102–107.

[82] Taivo Lints. “The essentials of defining adaptation”. In: IEEE Aerospace and
Electronic Systems Magazine 27.1 (2012), pp. 37–41.

[83] Michael Luck and Mark d’Inverno. “A Formal Framework for Agency and Autonomy”.
In: First International Conference on Multiagent Systems. The MIT Press, 1995,
pp. 254–260.

[84] Frank D Macías-Escrivá et al. “Self-adaptive systems: A survey of current approaches,
research challenges and applications”. In: Expert Systems with Applications 40.18
(2013), pp. 7267–7279.

190

https://doi.org/10.1109/WETICE.2015.32
https://doi.org/10.1109/WETICE.2015.32

[85] Martina Maggio. “Is this all about about handling unanticipated changes or about
foreseeing what needs handling?” In: 2021 International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE. 2021, pp. 258–
259.

[86] Sara Mahdavi-Hezavehi, Paris Avgeriou, and Danny Weyns. “A Classification Frame-
work of Uncertainty in Architecture-Based Self-Adaptive Systems with Multiple
Quality Requirements”. In: Managing Trade-Offs in Adaptable Software Architectures
(2017), pp. 45–77.

[87] Doble J Meszaros and Jim Doble. “G. A pattern language for pattern writing”. In:
Proceedings of International Conference on Pattern languages of program design
(1997). Vol. 131. 1997, p. 164.

[88] Gabriel Moreno et al. “DARTSim: an exemplar for evaluation and comparison of self-
adaptation approaches for smart cyber-physical systems”. In: 2019 IEEE/ACM 14th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). IEEE. 2019, pp. 181–187.

[89] Susanne C Moser and Julia A Ekstrom. “A framework to diagnose barriers to
climate change adaptation”. In: Proceedings of the national academy of sciences
107.51 (2010), pp. 22026–22031.

[90] Henry Muccini, Mohammad Sharaf, and Danny Weyns. “Self-adaptation for cyber-
physical systems: a systematic literature review”. In: Proceedings of the 11th inter-
national symposium on software engineering for adaptive and self-managing systems.
ACM, 2016, pp. 75–81.

[91] Angelika Musil et al. “Patterns for self-adaptation in cyber-physical systems”. In:
Multi-disciplinary engineering for cyber-physical production systems. Springer, 2017,
pp. 331–368.

[92] Peyman Oreizy et al. “An architecture-based approach to self-adaptive software”.
In: IEEE Intelligent Systems and Their Applications 14.3 (1999), pp. 54–62.

[93] John Allen Paulos. “The mathematics of changing your mind”. In: New York Times
(US) (2011).

[94] Ana Petrovska. “Self-Awareness as a Prerequisite for Self-Adaptivity in Computing
Systems”. In: 2021 IEEE International Conference on Autonomic Computing and
Self-Organizing Systems Companion (ACSOS-C). IEEE. 2021, pp. 146–149.

[95] Ana Petrovska and Alexander Pretschner. “Learning Approach for Smart Self-
Adaptive Cyber-Physical Systems”. In: 2019 IEEE 4th International Workshops on
Foundations and Applications of Self* Systems (FAS* W). IEEE. 2019, pp. 234–236.

[96] Ana Petrovska et al. “Defining adaptivity and logical architecture for engineer-
ing (smart) self-adaptive cyber–physical systems”. In: Information and Software
Technology 147 (2022), p. 106866.

191

Bibliography

[97] Ana Petrovska et al. “Knowledge aggregation with subjective logic in multi-agent
self-adaptive cyber-physical systems”. In: Proceedings of the IEEE/ACM 15th In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems. 2020, pp. 149–155.

[98] Ana Petrovska et al. “Run-time reasoning from uncertain observations with subjec-
tive logic in multi-agent self-adaptive cyber-physical systems”. In: 2021 Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). IEEE. 2021, pp. 130–141.

[99] Michiel Provoost and Danny Weyns. “DingNet: a self-adaptive internet-of-things
exemplar”. In: 2019 IEEE/ACM 14th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS). IEEE. 2019, pp. 195–201.
url: https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
hogna/.

[100] Harald Psaier and Schahram Dustdar. “A survey on self-healing systems: approaches
and systems”. In: Computing 91.1 (2011), pp. 43–73.

[101] Federico Quin, Danny Weyns, and Omid Gheibi. “Decentralized Self-Adaptive
Systems: A Mapping Study”. In: arXiv preprint arXiv:2103.09074 (2021).

[102] Federico Quin et al. “Efficient Analysis of Large Adaptation Spaces in Self-Adaptive
Systems using Machine Learning.” In: 2019 IEEE/ACM 14th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)
(2019), pp. 1–12.

[103] Nauman A Qureshi, Ivan J Jureta, and Anna Perini. “Requirements engineering
for self-adaptive systems: Core ontology and problem statement”. In: International
Conference on Advanced Information Systems Engineering. Springer. 2011, pp. 33–
47.

[104] Andres J Ramirez, Adam C Jensen, and Betty HC Cheng. “A taxonomy of uncer-
tainty for dynamically adaptive systems”. In: Proceedings of the 7th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems. IEEE
Press. 2012, pp. 99–108.

[105] Romain Rouvoy et al. “Music: Middleware support for self-adaptation in ubiqui-
tous and service-oriented environments”. In: Software engineering for self-adaptive
systems. Springer, 2009, pp. 164–182.

[106] Vineet Saini, Qiang Duan, and Vamsi Paruchuri. “Threat modeling using attack
trees”. In: Journal of Computing Sciences in Colleges 23.4 (2008), pp. 124–131.

[107] Mazeiar Salehie and Ladan Tahvildari. “Self-adaptive software: Landscape and
research challenges”. In: ACM transactions on autonomous and adaptive systems
(TAAS) 4.2 (2009), p. 14.

[108] Ronny Seiger et al. “Toward a framework for self-adaptive workflows in cyber-
physical systems”. In: Software & Systems Modeling 18.2 (2019), pp. 1117–1134.

[109] Glenn Shafer. A mathematical theory of evidence. Vol. 42. Princeton university press,
1976.

192

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/hogna/
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/hogna/

[110] Seung Yeob Shin et al. “Dynamic adaptation of software-defined networks for
IoT systems: A search-based approach”. In: Proceedings of the IEEE/ACM 15th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems. 2020, pp. 137–148.

[111] Howard Shrobe and Robert Laddaga. Self Adaptive Software.
[112] Ph. Smets. “Practical Uses of Belief Functions”. In: Uncertainty in Artificial Intelli-

gence 15. UAI99 (1999), pp. 612–621.
[113] Rens W. Van Der Heijden, Henning Kopp, and Frank Kargl. “Multi-Source Fusion

Operations in Subjective Logic”. In: 2018 21st International Conference on Infor-
mation Fusion, FUSION 2018 (2018), pp. 1990–1997. doi: 10.23919/ICIF.2018.
8455615. arXiv: arXiv:1805.01388v1.

[114] Norha M Villegas et al. “A framework for evaluating quality-driven self-adaptive
software systems”. In: Proceedings of the 6th international symposium on Software
engineering for adaptive and self-managing systems. 2011, pp. 80–89.

[115] Thomas Vogel, Andreas Seibel, and Holger Giese. “The role of models and meg-
amodels at runtime”. In: International Conference on Model Driven Engineering
Languages and Systems. Springer. 2010, pp. 224–238.

[116] Danny Weyns. An Introduction to Self-adaptive Systems: A Contemporary Software
Engineering Perspective. John Wiley & Sons, 2020.

[117] Danny Weyns. “Software engineering of self-adaptive systems”. In: Handbook of
Software Engineering. Springer, 2019, pp. 399–443.

[118] Danny Weyns. “Software engineering of self-adaptive systems: an organised tour
and future challenges”. In: Chapter in Handbook of Software Engineering (2017).

[119] Danny Weyns and Tanvir Ahmad. “Claims and evidence for architecture-based self-
adaptation: a systematic literature review”. In: European Conference on Software
Architecture. Springer. 2013, pp. 249–265.

[120] Danny Weyns, Sam Malek, and Jesper Andersson. “FORMS: Unifying reference
model for formal specification of distributed self-adaptive systems”. In: ACM Trans-
actions on Autonomous and Adaptive Systems (TAAS) 7.1 (2012), pp. 1–61.

[121] Danny Weyns et al. “A survey of formal methods in self-adaptive systems”. In:
Proceedings of the Fifth International C* Conference on Computer Science and
Software Engineering. 2012, pp. 67–79.

[122] Danny Weyns et al. “Claims and supporting evidence for self-adaptive systems: A
literature study”. In: 2012 7th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS). IEEE. 2012, pp. 89–98.

[123] Danny Weyns et al. “On patterns for decentralized control in self-adaptive systems”.
In: Software Engineering for Self-Adaptive Systems II. Springer, 2013, pp. 76–107.

[124] Jon Whittle et al. “Relax: Incorporating uncertainty into the specification of self-
adaptive systems”. In: 2009 17th IEEE International Requirements Engineering
Conference. IEEE. 2009, pp. 79–88.

193

https://doi.org/10.23919/ICIF.2018.8455615
https://doi.org/10.23919/ICIF.2018.8455615
https://arxiv.org/abs/arXiv:1805.01388v1

Bibliography

[125] Claes Wohlin. “Guidelines for snowballing in systematic literature studies and
a replication in software engineering”. In: Proceedings of the 18th international
conference on evaluation and assessment in software engineering. 2014, pp. 1–10.

[126] E. Woods. “Software Architecture in a Changing World”. In: IEEE Software 33.6
(Nov. 2016), pp. 94–97. issn: 0740-7459. doi: 10.1109/MS.2016.149.

[127] Lotfi A Zadeh. “On the definition of adaptivity”. In: Proceedings of the IEEE 51.3
(1963), pp. 469–470.

[128] Lotfi A. Zadeh and Anca Ralescut. “On the Combinability of Evidence in the
Dempster-Shafer Theory”. In: (2013). arXiv: 1304.3119v1.

[129] Ji Zhang and Betty H. C. Cheng. “Model-based development of dynamically adaptive
software”. In: Proceeding of the 28th international conference on Software engineering
- ICSE ’06. ACM Press, 2006. doi: 10.1145/1134285.1134337.

194

https://doi.org/10.1109/MS.2016.149
https://arxiv.org/abs/1304.3119v1
https://doi.org/10.1145/1134285.1134337

	Acknowledgments
	Zusammenfassung
	Abstract
	Contents
	I Introduction and Background
	1 Introduction
	1.1 Self-Adaptive Cyber-Physical Systems: Motivation, Challenges and Shortcomings
	1.1.1 Cyber-Physical Systems and Run-Time Uncertainties
	1.1.2 Self-Adaptation as an Emerging Property of Modern Systems
	1.1.3 Challenges while Engineering Self-Adaptive Systems

	1.2 The Goal of this Thesis
	1.3 Problems Statements and Research Gaps
	1.4 Solution
	1.5 Contribution
	1.6 Structure

	2 Background
	2.1 Uncertainty Classification and Run-Time Uncertainty Taxonomy
	2.2 Reasoning under Uncertainty
	2.2.1 Bayesian Probability
	2.2.2 Dempster-Shafer Theory

	2.3 Subjective Logic Theory
	2.3.1 Subjective Opinions
	2.3.2 Binomial Opinions Representation
	2.3.3 Belief Fusion

	II Theoretical, Architectural, Methodological and Technical Solutions
	3 Towards a Taxonomy of Autonomous Systems
	4 Defining Self-Adaptive Systems: A Systematic Literature Review
	4.1 Introduction
	4.2 Literature Review Methodology
	4.3 Results
	4.3.1 General overview of the results
	4.3.2 Identifying the different classes and dimensions for analysis
	4.3.3 Analysis of the primary studies

	4.4 Discussion
	4.4.1 Discussion on the results and future works
	4.4.2 Threats to validity

	4.5 Related Work
	4.6 Conclusion

	5 Defining adaptivity and logical architecture for engineering (smart) self-adaptive cyber-physical systems
	6 Knowledge Aggregation with Subjective Logic in Multi-Agent Self-Adaptive Cyber-Physical Systems
	7 Run-time Reasoning from Uncertain Observations with Subjective Logic in Multi-Agent Self-Adaptive Cyber-Physical Systems

	III Related Work and Conclusion
	8 Related Work
	8.1 Defining System Adaptation and Self-Adaptive Systems
	8.1.1 Informal Definitions of Self-Adaptive Systems
	8.1.2 Analysis of the Formal Definitions of System Adaptation and Self-Adaptive Systems
	8.1.3 Other notions related to system adaptation
	8.1.4 Overall summary

	8.2 Engineering Self-Adaptive Systems
	8.2.1 Models
	8.2.2 Patterns
	8.2.3 Frameworks
	8.2.4 Architectures
	8.2.5 Overall summary

	8.3 Mitigating Uncertainties in Self-Adaptive Systems
	8.3.1 Overall summary

	8.4 Summary of the Gaps

	9 Conclusion
	9.1 Thesis overview and summary of the contributions
	9.2 Lessons Learned
	9.3 Future Work

	A A Theoretical Framework for Self-Adaptive Systems
	A.1 Current state-of-the-art and its limitations
	A.1.1 Conceptual model of a self-adaptive system
	A.1.2 Evaluating self-adaptive systems

	A.2 Summary of our previous theoretical findings and contributions on defining system adaptation
	A.3 Exemplifying the SACTC framing using the robotics system
	A.4 Defining Self-Adaptive Systems
	A.4.1 Two premises in defining self-adaptive systems
	A.4.2 Classification of self-adaptive systems
	A.4.3 Defining (first and second level of) passive self-adaptive systems
	A.4.4 Defining active self-adaptive systems

	A.5 Exemplary Use Case
	A.6 Concluding remarks

	List of Figures
	List of Tables
	Bibliography

