
©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

Preventing Control Plane Overload in SDN
Networks with Programmable Data Planes

Cristian Bermudez Serna
Chair of Communication Networks (LKN)

Technical University of Munich (TUM)
Munich, Germany

cristian.bermudez-serna@tum.de

Carmen Mas-Machuca
Chair of Communication Networks (LKN)

Technical University of Munich (TUM)
Munich, Germany

cmas@tum.de

Abstract—Software-Defined Networking (SDN) has redefined
the architectural blueprint for designing networks suitable for
future applications. Today, the idea of a centralized control
plane managing its underlying resources is common for ar-
chitectures in mobile and industrial networks. Guaranteeing
resources availability for optimal operation of the control plane
is of vital importance in SDN, since compromising the controller
may result in an unforeseen behaviour in the data plane. This
work focuses on the SDN reactive configuration mechanism, that
although originally designed for the efficient handling of changing
conditions in the data plane, it can be easily misused to overload
the control plane. Aiming at addressing this problem, the PDP
(Programmable Data Plane)-based Controller Protection Protocol
(PCPP) is presented. This protocol introduces a mechanism that
efficiently filters spoofed requests at the network edge. In PCPP,
end-stations require to solve a challenge before sending any
connection request to the controller. The challenge answer is
checked at the edge switches, which only forward valid requests
to the controller. PCPP is implemented using P4, a language for
programming PDP-capable devices, and its evaluation is carried
out using BMv2 software switches. The results demonstrate the
effectiveness of PCPP at protecting bandwidth and processing
resources in the control plane against spoofed requests. A com-
parison against an state-of-the-art alternative not only highlights
the higher efficiency of PCPP, but also its application flexibility.

Index Terms—SDN, PDP, P4

I. INTRODUCTION

Today, the influence of Software-Defined Networking
(SDN) [1] has expanded from its use cases in data center
or campus networks into new architectures used in other
domains. Examples are next generation industrial and mobile
networks, where their network architectures share SDN idea
of a centralized control plane. At first glance, these new net-
work architectures benefit of the advantages offered by SDN
such as global knowledge and programmability. Nevertheless,
attention must be paid to the intrinsic limitations that come
with SDN. For instance, a poorly designed control plane may
become a single point of failure, which under an overload
situation may disrupt normal operation in the data plane.

SDN defines the network architecture presented in Fig. 1,
where control and data planes are decoupled. The logically
centralized and highly programmable control plane stores the
application’s logic, has global knowledge about its underlying
resources and can be implemented in one or multiple con-

trollers. The control plane is conformed by forwarding devices
with no specific built-in functionality, referred as switches.
These devices have a set of tables, that are populated with
rules by the controller according to the functionality of the
desired application. The control channel enables information
exchange between control and data planes. Upon a change in
the network, the switches can reactively use this channel to
inform the control plane on events, that they can not handle.

S1

S3 S4

S2 PDP

Data
 Plan

e

C1 Contro
l P

lan
e

C
on

tr
ol

C

ha
nn

el

H3 H4 H1 H2

OF

Fig. 1. SDN architecture. OF-capable switch S1 forwards new requests, in
white, to the controller for verification. While PDP-capable switch S2 verifies
new requests, in gray, on the data plane and only forwards those valid for
further processing.

Reactive configuration is an efficient mechanism for han-
dling (re)configuration requests triggered in the data plane.
However, this mechanism can be easily misused by a ma-
licious/malfunctioning end-station aiming at overloading the
control plane. As depicted in Fig. 1 with H1, an end-station
can easily generate a large number of connection requests. If
these requests can not be handled by its neighboring switch S1,
it will forward them to the controller C1. Thereby, the switch
may not only saturate the control channel, but also exhaust
processing resources in the controller. The work by Wolf et
al. [2] implements the Controller Protection Protocol (CPP),
which prevents controller overload in SDN networks using the
OpenFlow (OF) protocol [3]. In their work, a challenge-based
mechanism is used to enforce end-stations to commit resources
in solving a challenge before issuing a new request, which is
only processed by the controller upon answer correctness.

Unfortunately, the solution proposed by Wolf et al. presents
several limitations: i) It is possible to overload the controller,

since it needs to verify every challenge answer. ii) CPP does
not prevent the overload of the control channel, since every re-
quest is transmitted over this interface. iii) The implementation
of CPP depends on TCP/IP headers, which hinders its com-
patibility with other networking protocols. And iv) challenge
parameters are managed by an external entity making CPP
configuration cumbersome. These limitations are derived from
the OF-based implementation of CPP. However, by leveraging
the capabilities of PDP these can be overcome.

The main contribution of this work is the definition, im-
plementation and evaluation of the PDP-based Controller
Protection Protocol (PCPP). The proposed protocol counts on
the following features: i) Challenge verification is offloaded
from the controller onto PDP-capable switches, hence filtering
spoofed request at the network edge. ii) A PCPP header
is designed to carry protocol information, which provides
for compatibility with other networking protocols. And iii)
challenge parameters are managed by the controller, which
eases PCPP configuration. PCPP features allow to overcome
the mentioned limitations in CPP. Thereby, introducing a
mechanism that effectively prevents control plane overload in
SDN networks by leveraging the capabilities of PDP.

This work is structured as follows. Section II covers the
problem statement and previous works. Section III describes
the design and implementation of PCPP. Section IV presents
the evaluation setup, experiments and results. Finally, Section
V concludes this work.

II. PROBLEM STATEMENT & PREVIOUS WORKS

A. Problem Statement

Configurations in SDN usually follow a top-down approach.
That is, they are triggered by applications on the control plane
to be configured at the data plane. However, it is possible
to react to requests in a bottom-up approach, known as a
reactive configuration, which is depicted in the diagram of
Fig. 2a. In this case, the end-station H1 sends a packet stream
for the new connection to its directly attached switch S1.
Since this device does not know how to proceed, it forwards
the first packet through the control channel to the controller
C1. The controller processes the packet and decides whether
configuring the connection. In case the controller decides to
commit resources in the data plane, the control channel is
used to deploy the configurations in the involved switches.
After this, any other packets in the same flow are forwarded
using the assigned resources in the data plane and no further
interaction with the controller is needed.

Reactive configuration adds a mechanism for handling re-
quests originating in the data plane. However, as depicted in
Fig. 2b, this mechanism can be easily misused. For instance,
a malicious/malfunctioning end-station H1 can easily send a
continuous and large amount of new requests. As a result,
the following situations arise: i) Control channel congestion,
due to the large amount packets that the switch S1 submits to
the controller C1. ii) Control plane overload, due to a large
amount of incoming connection requests that the controller
has to process. And iii) data plane resources exhaustion, since

tables in switches are resources of constrained size, that can
be filled if the controller decides to install rules. This last in
turn contributes to introduce even more configuration traffic in
the already congested control channel. The above mentioned
situations can be worsened in case multiple end-stations si-
multaneously misuse the reactive configuration mechanism.

H1 S1 (OF) C1

...

Processing tim
e

SWs conf.

...

Pkts. flow 1

Forw
arding

C
trl. channel

...

(a) Reactive flow configuration.

H1 S1 (OF) C1

...

Processing tim
eC

trl
. c

ha
nn

el

...

SWs conf.

...
...

Spoofed reqs.

...

(b) Control plane overload.

Fig. 2. SDN reactive configuration handling a single and a large number of
requests. Dashed and solid arrows are data and control traffic, respectively.

B. Previous Works

SDN architecture presents a large surface that can be
targeted aiming at compromising normal network operation.
The work by Eliyan et al. [4] presents a comprehensive and
up-to-date survey on the topic and points out the relative
simpleness how an overload situation can be triggered. In
the data plane, it is possible to consume the bandwidth of
a particular end-station providing a service, e.g., an HTTP
server, by repeatedly sending a large amount of spoofed
requests. Nevertheless, compared to traditional networks, SDN
networks are better suited to cope with this situation as
demonstrated in ORACLE [5], where SDN, PDP and Machine
Learning (ML) are combined for the detection of Denial-of-
Service (DoS) attacks in the data plane.

More dangerous than attacks that target an specific end-
station are those that target the control plane by misusing
the reactive configuration mechanism. Works covering control
plane overload can be categorized in detection, mitigation,
and prevention. Detection includes those works that simply
identify whether an overload situation is taking place and
can be further divided into metrics [6] or ML-based [7].
Metric-based detectors employ statistical measurements, e.g.,
packet rate, or Instruction Detection Systems (IDS), while
ML-based methods train complex models using multiple data
plane metrics. Mitigation works go a step beyond after the
identification and try to correct the situation. These rely either
in blocking ports for end-stations with high packet rates [8]
or reflecting packets to a storage [9]. The prevention category
contain those works, that protect the controller by adding a
filtering layer between the data and control planes [10]. A
comprehensive study on the effects of control plane overload
for multiple commercial controllers is presented in [11].

The work presented by Wolf et al. [2] adds another di-
mension in the prevention category by offloading almost all
processing needed to prevent a control plane overload to the
end-stations. For that, the controller challenges end-stations

and only processes their requests upon answer correctness.
The authors leverage the capabilities of Proof-of-Work (PoW)
[12] for the implementation of CPP. As depicted in Fig. 3a,
when the end-station H1 wishes to establish a new connection,
it first retrieves the current challenge from the CPP Authority
(CPPA). Then, it solves the challenge and sends its answer
along with the first packet in the flow to its neighboring switch
S1. This device forwards the packet over the control channel
to the control plane. The controller C1 retrieves the challenge
from the CPPA and verifies the answer. Upon correctness,
the resources in the data plane are configured, otherwise the
request is dropped.

H1 S1 (OF) C1

...

R
eq. processing

Flow 1 req.
SWs conf.

Chall. solving

C
hall. verification

...

...

Pkts. flow 1

Spoofed reqs.

...

Forw
arding

Chall. retrieval

CPPA

...

C
trl. channel

(a) OF-based Controller Protection
Protocol (CPP).

H3 S2 (PDP) C1

...

R
eq. processing

Flow 1 req.

SWs conf.

Chall.
verification

...

Forw
arding

Chall. retrieval

...

Pkts. flow 1

Spoofed reqs.

Chall. updates

Chall. solving

...

C
trl. channel

...

(b) PDP-based Controller Protection
Protocol (PCPP).

Fig. 3. Operation of state-of-the-art CPP and proposed PCPP. Dashed and
solid arrows represent data and control traffic, respectively.

III. DESIGN & IMPLEMENTATION

A. PDP-based Controller Protection Protocol (PCPP)

SDN reactive configuration is an efficient mechanism for
handling (re)configurations triggered by changing conditions
in the data plane. However, it can be easily misused by
malicious/malfunctioning end-stations aiming at overloading
the control plane. This work proposes the PDP-based Con-
troller Protection Protocol (PCPP), a mechanism that allows
to leverage the benefits of SDN reactive configuration without
exposing the network to a potential control plane overload.

Fig. 3b depicts the operation of PCPP. When the end-station
H3 wishes to establish a new connection, it first retrieves
the challenge information from its neighboring PDP-capable
switch S2. Then, it solves the challenge and sends the flow’s
first packet along with the answer. The switch S2 verifies the
answer and only upon its validity, forwards the packet over
the control channel to the controller C1. In the controller, the
connection request is processed and in case it can be attended,
the respective resources in the data plane are provisioned.
Once the resources are configured, all subsequent packets
in the flow are forwarded in the data plane without further
interaction with the control plane. In the event that an end-
station sends a large amount of spoofed requests, as depicted

in the lower part of Fig. 3b, these can be easily detected and
dropped at the network edge. Thus, preventing the overload
of the controller and the control channel.

B. End-stations

According to PCPP operation depicted in Fig. 3b, end-
stations are in charge of flow generation, challenge retrieval,
and challenge answering. Flow generation corresponds to
common traffic generation. Thus, focus will be only given to
the last two tasks, as these are the new steps required when
setting up a connection.

1) Challenge retrieval: In PCPP, end-stations retrieve chal-
lenges from their neighboring switch as depicted in the upper
part of Fig. 3b. For that, an end-station sends a packet with the
headers as shown in Tbl. I. Fields inside the PCPP header are
described in Tbl. II. During challenge retrieval, values inside
the PCPP header are irrelevant. Once the packet reaches the
neighboring switch, this device populates the current challenge
information in the PCPP header, clears out the answer field and
bounces the packet back towards the requesting end-station.

TABLE I
PCPP PACKET HEADER ORDERING WITH OPTIONAL HEADERS IN GRAY.

L2
Ethernet hdr. PCPP hdr. L3

IP hdr.
L4

TCP/UDP hdr. Payload

TABLE II
PCPP HEADER STRUCTURE WITH TOTAL LENGTH OF 128 BITS.

EtherType (16 bits) Solution (16 bits)
Challenge (32 bits)
Answer (64 bits)

2) Challenge answering: Challenges in PCPP are imple-
mented using the principles of PoW. This mechanism can be
used to verify whether an user committed resources before
issuing a request to a server. In this case, an user invests
computing resources in answering a challenge. The challenge
answer is sent along with the request to the server and will
only be processed upon answer correctness. In basic PoW, the
server selects a function f, and the time changing parameters:
challenge ct and solution st, as described by Eq. (1). An end-
station willing to do a request to this server, has to find the
answer at, such that after plugging ct and at into function f,
the results yields st. The function f is fundamental in PoW and
any candidate should ensure the following features: i) Finding
at, i.e., answering the challenge, must be a time consuming
operation. ii) Computing st, i.e., verifying the answer, must
be a quick operation. And iii) the time to find at depend on
the election of parameters ct and st.

st = f(ct, at) (1)

Hash functions are candidates for function f due to the
following properties: i) Fixed-length output, an input of any
arbitrary length is mapped into fixed-length output, known as

a digest. ii) Pre-image resistance, it is computationally expen-
sive to find the input producing a given digest. iii) Collision
resistance, it is hard to find two different inputs that produce
the same digest. And iv) Hash are unbiased functions, i.e., a
Hash should yield an unbiased digest even if the given inputs
are biased. When Hash functions are used in PoW, the solution
st is referred as challenge complexity and represents the count
of leftmost continuous zeros in the digest. The task for an
end-station willing to establish a new connection is to find the
answer at, that concatenated with the challenge ct produces a
digest with a least st heading zeros.

PoW implementation in CPP by Wolf et al., uses the SHA
Hash function. Unfortunately, PDP devices do not support
algorithms to compute such Hash function. However, Cyclic
Redundancy Check (CRC) functions represent an alternative
for Hash functions in PCPP implementation. CRC functions
are generally implemented in forwarding devices for error
detection in data transmission. These functions share most
of the properties of Hash functions. For instance, a CRC-n
maps an arbitrary length input to a fixed n-bit length output,
known as checksum. Despite the similarities between Hash and
CRC functions, they should not be used interchangeably, due
to the fact that CRC functions are not designed to be unbiased,
which limits its application in data integrity applications.
Nevertheless, CRC can be used for PoW realization in PCPP,
since data integrity does not play a role in the protocol and it
fulfills with the requirements for challenge function f.

st = NLZ CRC(ct, p, at) (2)

Eq. (2) describes PoW implementation in PCPP. Function
f is realized using the function NLZ CRC of Alg. 1, which
returns the count of continuous leftmost zeros in the checksum.
The operator || represents bit concatenation and the variable
p represents layer dependant connection parameters, as de-
scribed in Tbl. III. The parameter p is required to uniquely
identify a connection request that an end-station wishes to
establish. Without p, an end-station could solve the current
challenge ct and use its answer at to trigger multiple new
connection requests. However, by concatenating the challenge
ct with some connection parameters p, the end-station has
to solve a unique composed challenge ct||p per connection
request, although the challenge ct is the same.

TABLE III
CONNECTION PARAMETERS p ACCORDING TO THE LAYER.

Layer p Bit cnt.
2 Src. MAC || Dst. MAC 96
3 Src. IP || Dst. IP 64
4 Src. IP || Dst. IP || Proto. || Src. Port || Dst. Port 104

Alg. 1 also describes the function DO WORK, which is
used by end-stations to solve the composed challenge. Since
a CRC is hardly reversible, the algorithm relies in a brute-
force search to find the answer at, producing a checksum s′

starting with a least st zeros. The bit-width for the parameters

solution st, challenge ct and answer at correspond to the size
of their respective fields in the PCPP header definition of
Tbl. II. Connection parameters p are implicit in the connection
information contained in the layer 2-4 headers.

Algorithm 1 Proof-of-Work (PoW) implementation in PCPP.
1: function NLZ CRC(ct, p, at)
2: checksum← CRC(ct||p||at) ▷ || bit concatenation
3: return count num leftmost zeros(checksum)

4: function DO WORK(st, ct, p)
5: s′ ← 0, at ← 0
6: while s′ < st do ▷ At least st zeros
7: at ← random number()
8: s′ ← NLZ CRC(ct, p, at)

9: return at

C. Challenge Hardness Analysis

Due to a CRC is a hardly reversible function, the imple-
mentation of DO WORK in Alg. 1 reduces to a brute-force
search for the answer at. Assuming that any random answer
at can generate with equal probability any checksum, then
the probability of having at least st consecutive zeros can
be seen as a sequence of Bernoulli trials with a fair coin as
described in Eq. (3), where the random variable Y represents
the count of leftmost consecutive zeros in the checksum.
The probability of having at least st consecutive zeros is
equal to the probability of having exactly st consecutive
zeros, since these probabilities are not exclusive. For instance,
the probability of having a zero is a half, and it already
contains the probability for other sequences containing at least
a consecutive zero.

P (Y ≥ st) = P (Y = st) = 2−st (3)

The number of tries X an end-station needs to perform
before finding the desired checksum can be related to number
tosses required before getting st heads, or zeros in this case.
This is formulated in Eq. (4), where E[X] = x̄ is the expected
number of tries. The first term in the expression represents
that after the first try a one appeared, thus an additional try
is needed. The second term represents that a zero followed
by a one appeared, thus an additional try is needed. The last
term represents that the sequence has st consecutive zeros. For
example, if only a zero is required st = 1, then the expression
in Eq. (4) can be reduced to its first and last term. In this case,
on average two tries are required, i.e, E[X] = x̄ = 2, before
finding the desired checksum.

x̄ = 2−1(x̄+1)+2−2(x̄+2)+. . .+2−st(x̄+st)+2−stst (4)

After solving Eq. (4) with help of the geometric series, x̄ can
be expressed as the first equality in Eq. (5). If st >> 1, x̄ can
be approximated as an exponential function of st + 1. More-
over, if the decimal logarithm is applied to this approximation,
the result in Eq. (6) is reached. In this last approximation,

it is evident that the exponent of the expected number of
tries grows proportionally with the solution parameter st. For
instance, when a checksum with at least ten zeros is required
st = 10, on average the end-station has to perform about 103

tries. From the results in Eqs. (3) and (6), it is clear how the
parameter st can be used in PCPP to manage the challenge
complexity. As by increasing the number of desired zeros st,
the probability of finding an answer exponentially drops and
the number of expected tries exponentially grows.

x̄ = 2(2st − 1) ≈ 2st+1 (5)

log10(x̄) ≈ log10(2)(st + 1) (6)

D. Switches

The pipeline of PDP-capable switches in PCPP is described
in Fig. 4, where the following three tables, depicted as gray
blocks, are implemented:

R
ec

ei
ve

pk

t.
Fo

rw
ar

d
tb

l. Tbl.
match?

Forward
act.

PCPP
hdr.?

Drop act.

Challenge
tbl.

Ans.
right?

To ctrl. act.

Bounce
tbl.

Bounce
act.

Send pkt.

yes
yes

yes
no

no
no

Fig. 4. PCPP switch pipeline with actions (act.) and tables (tbl.) in grey.

1) Forwarding table: When a switch in PCPP receives a
packet, it is first matched against the Forwarding table. This
table performs layer 2-4 forwarding according to the rules
installed by the controller. Upon a match the Forward action
selects the proper output port, strips the PCPP header, if
present, and proceeds to send the packet.

2) Challenge table: In case there was not a match in
the Forwarding table, the switch checks the existence of the
PCPP header. If absent, the packet is dropped using the Drop
action. If present, the packet is sent to the Challenge table.
Here, the switch verifies if the answer provided in the PCPP
header produces the desired number of consecutive zeros st,
as described in the function NLZ CRC of Alg. 1. For that,
the current challenge ct is combined with the connection
parameters p extracted from the layer 2-4 headers and the
provided answer at. Then, the checksum is computed. If the
answer at is correct, the To controller action is invoked, which
strips the PCPP header and sends the packet to the controller.

3) Bounce table: If the provided answer at was incorrect,
the packet is sent to the Bounce table and the Bounce action
is invoked. This action clears out the the answer field in the
PCPP header and populates the fields for the challenge ct
and solution st with their current values. Then, source and
destination addresses are swapped and the packet is sent out
towards its originating end-station.

E. Controller

The main functions of the controller in PCPP include
challenge distribution and routing. These are next explained.

1) Challenge distribution: This function consists on the
periodical update of challenges ct and solutions st in the
switches. For each switch, the controller periodically defines
a random challenge ct and its associated solution complexity
st. Then, as depicted in Fig. 3b, over the control channel
the controller deploys the configurations in the switches by
replacing previous entries in the Challenge table with the
new values. Although end-stations attached to the same switch
share the same challenge information, it is still possible to
guarantee that they solve different challenges. Because each
end-station solves the composed challenge ct||p, where p
contains information proper of the being connection requested.

In PCPP, there are two situations when it is possible for
an end-station to stockpile correct challenge answers, that
could be later used to trigger an overload situation. i) When
the update interval T is too long, which generates large time
windows with the same challenge information in the switches.
PCPP uses a short update interval under a minute to avoid
this situation. Moreover, the update interval can be changed at
runtime to shorten this window even further according to the
network dynamics. And ii) when the challenge complexity is
too low. Hence, end-stations can find answers quickly. PCPP
offers the possibility to increase challenge complexity on the
fly with a switch granularity to deal with this situation. In
PCPP, the solution parameter st can have a complexity range
between 1 to N zeros, where N is given by the length of the
checksum. As it will be shown in the upcoming Section IV,
this allows to have answering times ranging from less than a
second, to minutes and even hours.

2) Routing: This function comprehends path computation
and its deployment in the data plane. Once a packet with a
valid answer at is verified by the edge switch, this device
strips the PCPP header and sends the connection request to the
controller over the control channel. Then, the controller checks
whether for the requested source and destination a path exists.
If so, the connection is provisioned by adding the necessary
rules in the Forwarding table of the switches involved in the
path. Otherwise, the controller ignores the connection request.

F. Protocol Applicability

The proposed PCPP is a mechanism that prevents control
plane overload in SDN networks and hence should not be
confused with a detection mechanism. PCPP is conceived to
be deployed in networks handling untrusted end-users, where
the controller re-actively processes user requests as in Internet
Service Provider (ISP) or campus networks. Current PDP-
capable switches and end-stations have all the functionalities
needed to realize PCPP. Besides, the modifications required at
end-stations are changes at the application level, which can be
done in software. PCPP could be used in a hybrid network, i.e.,
a network with some PDP-capable switches. In that case, only
the PDP-capable switches verify challenges and the non-PDP
switches could offload this operation on them. PCPP exhibits
low overhead and high scalability. Its overhead is attributed to
the verification at the switches and the protocol configuration.
This last is managed by the controller and its parameters can

L2 L3 L4 Ex. Mean An. Mean

4 8 12 16 20
Challenge solution complexity st

0
2

4
6

lo
g 1

0(
N

um
.o

ft
ri

es
)

(a) Analytical (An.) and experimental (Ex.) number of tries before finding the
challenge answer at, as solution complexity st increases and layer changes.

4 8 12 16 20
Challenge solution complexity st

-5
-4

-3

lo
g 1

0(
Si

ng
le

tr
y

tim
e

[S
ec

.])

(b) Experimental try time in seconds for computing a single candidate answer,
as solution complexity st increases and layer changes.

Fig. 5. Fig. 5a shows how as the solution complexity st increases, the number of tries needed to find an answer at exponentially grows, while within the
same complexity, the connection layer does not introduce any variation. Fig. 5b depicts the average time spend computing a single candidate answer. As the
solution complexity st increases, the average answering time drops, while within the same complexity, the connection layer does not introduce any variation.

be tuned according to the network dynamics. PCPP scalability
does not depend on the network size. In fact, the larger the
network, the greater the performance improvement, as the
processing resources and bandwidth saved when preventing
an overload, exceed by far PCPP overhead.

IV. EVALUATION & RESULTS

This section first introduces the setup used for evaluating
PCPP. Then, the experiments and their results are presented.

A. Evaluation Testbed

In PCPP, PDP is realized using Programming Protocol-
independent Packet Processors (P4) [13], a domain-specific
language for programming data plane functionality in for-
warding devices such as SmartNICs and software or hardware
switches. In the evaluation setup of PCPP, the Behavioral
Model version 2 (BMv2) software switch has been selected,
since with this switch is possible to easily define a test
environment for the validation of P4 applications. Using the
network emulator Mininet [14], the data plane shown in Fig. 1
was implemented. The combination of Mininet, BMv2 and
OF software switches allow to obtain results corresponding
to the ones expected in a real network, which would not
be possible with a simulation. Depending on the evaluation
scenario, switches S1-S4 can be either BMv2 software or
OF-capable switches. Virtual end-stations H1-H4 are executed
inside their own namespace. The control plane consists of the
controller C1, which is written as a Python application. Both
control and data planes run inside their own Virtual Machine
(VM). Each VM counts on 4 cores and 8192 MB of RAM.
Communication between the VMs hosting control and data
planes is possible over the control channel, which is realized
using the P4Runtime protocol [15].

The BMv2 switch counts on a limited selection on CRC
functions, which includes CRC-32 [16]. Due to its 32-bit
checksum, the CRC-32 was selected as the challenge function f
for the realization of function NLZ CRC in Alg. 1. This gives
the solution complexity st a range between 1 to 32 zeros.

TABLE IV
MEAN VALUES FOR: NUMBER OF TRIES, SINGLE TRY TIME, CONTROLLER
AND SWITCH VERIFICATION TIMES, DEPICTED IN FIGS. 5A, 5B, 6A AND

6B, RESPECTIVELY. MEAN VALUES FOR EACH VARIABLE AT EACH
COMPLEXITY WERE AVERAGED ACROSS THE CONNECTION LAYERS.

Complexity 4 8 12 16 20
Mean An.
num. tries 101.5 102.7 103.9 105.1 106.3

Mean ex.
num. tries 101 102.2 103.4 104.6 105.8

Mean single try
time [s] 10-4.4 10-4.7 10-4.9 10-5.3 10-5.4

Mean ctrl. verif.
time [s] 10-4.3 10-4.2 10-4.3 10-4.4 10-4.3

Mean sw. verif.
time [s] 10-2.8 10-2.8 10-3.1 10-3.3 10-3.3

B. Challenge Answering

In this first experiment, the performance of PCPP at the
end-station side is evaluated. For that, the end-station H1 in
Fig. 1, selects depending on the layer random destination
information to create the connection parameter p, solves the
current composed challenge ct||p, and sends out the new
connection request along the answer at to its neighboring P4-
capable switch S1. This experiment is performed for layer 2
to 4 and solution complexities st = (4, 8, 12, 16, 20). For each
layer and complexity a batch of 1000 samples is evaluated.

Figs. 5a and 5b present the results for this experiment. In
particular, Fig. 5a displays the experimental number of tries
end-station H1 has to perform before finding the challenge
answer at as a function of the challenge complexity and the
connection layer. As the solution complexity st increases,
the number of tries exponentially grows. According Tbl. IV,
the experimental mean number of tries increases from 101 at
st = 4, to approximately 106 tries at st = 20. Recalling the
approximation for the analytical mean number of tries given
in Eq. (6), the exponential increase of the number of tries
with respect to the complexity was expected. The result of
this approximation is depicted in Fig. 5a using yellow circles.

The difference between the analytical and experimental

L2 L3 L4 Mean

4 8 12 16 20
Challenge solution complexity st

-4
.5

-4
.0

-3
.5

-3
.0

-2
.5

lo
g 1

0(
C

tr
l.

ve
ri

fic
at

io
n.

tim
e

[S
ec

.])

(a) Experimental time the controller spends verifying the challenge answer at,
as the solution complexity st increases and the layer changes.

4 8 12 16 20
Challenge solution complexity st

-4
.5

-4
.0

-3
.5

-3
.0

-2
.5

lo
g 1

0(
Sw

.v
er

ifi
ca

tio
n

tim
e

[S
ec

.])

(b) Experimental time a software BMv2 switch spends verifying the challenge
answer at, as the solution complexity st increases and the layer changes.

Fig. 6. Figs. 6a and 6b describe the challenge answer at verification time for the controller and the BMv2 software switch, respectively. In the controller,
the verification time remains approximately constant across all solution complexities st, whereas in the BMv2 switch, it takes longer for lower solution
complexities st and drops at higher complexities. In general, the controller performs verification faster than the BMv2 switch and the change in connection
layer introduce only subtle variations.

means may be attributed to two factors. i) The mathematical
inaccuracy introduced by the approximation. And ii) the
assumption done to derive the analytical mean number of tries.
This states that any random answer at can generate with equal
probability any checksum, which may not be completely true
in the case of CRC functions. A difference of Hash functions,
a CRC is not designed to be an unbiased function. This implies
that a CRC may produce similar checksums for biased inputs,
which in turn may favor certain answers. Hence, reducing the
number of iterations before finding a right challenge answer.

Fig. 5b presents the time end-station H1 needs to perform
a single try for finding a candidate answer. As described
also in Tbl. IV, at lower solution complexities st, the mean
single try time takes longer and it decreases as the solution
complexity increases. For instance, at st = 4 a single try takes
on average 40µs, whereas at st = 20 it takes 4µs. At lower
solution complexities, the end-station H1 requires less time
to find the challenge answer at before creating and sending
packets. These operations require processing resources and can
interfere with the answer search for the subsequent challenges.
At higher complexities, this interference does not play a role,
since packet transmission is less frequent. This due to the
larger amount of tries needed before finding the challenge
answer, despite a single try takes less time. For instance, for
st = 4 a packet is on average ready for transmission each
0.4ms, whereas with st = 20 it is ready only after 40s.

From the previous results, it is clear how the solution
complexity st of PCPP can be used to control the number of
tries an end-station performs before finding a challenge answer
at, which indirectly allows to manage the time and end-station
spends solving a challenge. Eq. 6 can be used to extrapolate
the upper limit on average number of tries for scenarios with
higher solution complexities. For instance, when st = 28,
118.7 tries are expected and it would take, to an end-station
with the same resources of H1, 33 minutes on average.

C. Challenge Verification

The goal with this experiment is to evaluate and compare
challenge verification performance in the controller and the
BMv2 software switch. This provides a baseline comparison
between the state-of-the-art CPP by Wolf et al. [2], where
verification is carried out in the control plane, against PCPP,
where verification is performed at switches in the data plane.
For this, an experimental setup based on the topology of Fig. 1
is used. In this case, end-stations H1 and H3, send batches
of 1000 connection requests, gradually increasing the solution
complexity st = (4, 8, 12, 16, 20) and changing the connection
layer from 2 to 4. End-station H1 is attached to the OF-capable
switch S1, which forwards connection requests over the control
channel to the controller C1 for verification. In comparison,
end-station H3 is attached to the P4-capable switch S2, which
is able to verify challenge answers itself.

Fig. 6a depicts the results when challenge verification is
performed in the controller C1. From the figure and Tbl. IV,
it is clear that challenge verification takes approximately 50us
regardless of the increase in complexity st. Moreover, for a
particular challenge complexity connection layer 2 and 4 tend
to require slightly more time. The approximately constant time
for challenge verification can be attributed to the low load in
the controller. For example, in the scenario with the highest
possible packet inter-arrival rate, i.e., when st = 4, a packet
arrives at the controller each 0.4ms, which gives C1 a large
time window to verify the challenge before the next packet
arrives. The subtle variation caused by the connection layer is
derived from the length of connection parameter p. As shown
in Tbl. III, layers 2 and 4 involve longer headers fields, which
results in the challenge verification operation being carried out
over slightly more bits for those layers.

Fig. 6b depicts the results when challenge verification is
performed in the BMv2 software switch S2. As depicted,
the verification time drops as the solution complexity st

Verification at controller
4 8 12 16 20

Verification at switch
4 8 12 16 20

0 50 100 150 200
Time [Sec.]

0
50

0
10

00
Pa

ck
et

ra
te

[P
kt

s.
/S

ec
.]

(a) Packet-in rate in control channel.

0 50 100 150 200
Time [Sec.]

0
20

0
40

0
60

0
80

0
Pa

ck
et

ra
te

[P
kt

s.
/S

ec
.]

(b) Packet-out rate in control channel.

0 50 100 150 200
Time [Sec.]

0
25

50
75

Pr
oc

es
so

rl
oa

d
[%

]

(c) Controller processor utilization.

Fig. 7. Performance comparison for normal and overload situations when challenge answers are verified at the controller or BMv2 software switches, depicted
with blue and orange lines, respectively. Dashed vertical lines in the figures at t = 90s and t = 180s denote the end of normal and overload situations.

increases, while for the same complexity the connection layer
does not add a significant variation. According to Tbl. IV, at
lower solution complexities i.e., st = 4 or 8, the verification
time takes on average 1.6ms, whereas at higher solution
complexities i.e., st = 16 or 20, the verification takes 0.5ms.
The higher verification time at lower complexities is due to the
frequent arrival of packets in S2. For instance, when st = 4
the packet inter-arrival time is 0.4ms. This results in packets
being queued, since S2 processes packets at a lower rate. Thus,
incoming packets interfere with the resources available for
challenge verification. On the contrary, at higher complexities,
packets arrivals are less frequent. For example when st = 20
the inter-arrival time is 40s, which gives S2 plenty of time to
verify challenges without any interference.

In the presented evaluation, challenge verification at the
controller was about 10 times faster than at the BMv2 software
switch. However, this neglects the fact, that controller C1 had
at its disposition all resources inside its VM, whereas switch
S2 shared the resources of its VM with all other components in
the data plane. Besides, the BMv2 software switch is a tool for
development of P4 applications, which is not meant to be used
as production-grade switch [17]. Hence, the results obtained
with the BMv2 software switch represent an upper limit on
the achievable challenge verification time with a P4-capable
device such as hardware switches or SmartNICs.

D. Control Channel Load and Controller Utilization

In this experiment, the performance of PCPP and the state-
of-the-art CPP presented by Wolf et al. [2] are evaluated under
normal and overload situations. For that, challenge verification
at the controller and the BMv2 software switches are compared
in terms of packet-in, packet-out rates and controller processor
utilization. The respective results are depicted in Figs. 7a, 7b
and 7c. Packet-in are packets that the controller receives from
the control channel, whereas packet-out are packets that the
controller sends into the control channel. Dashed vertical lines
delimit the end of normal and overload operation at t = 90s
and t = 180s. For verification at the controller shown with
blue lines, the data plane depicted in Fig. 1 consists only of

OF-capable switches. During normal operation, the end-station
H1 requests valid random layer 4 connections for 90s to end-
stations H2,H3 and H4. After this, the overload situation starts,
where the end-station H1 sends spoofed connection requests
as fast as possible. This process is repeated for solutions
complexities st = (4, 8, 12, 16, 20). For verification at the
switches shown with orange lines, the data plane consists only
of BMv2 software switches. In this case, the same procedure
is repeated, but H3 becomes the end-station generating the
connection requests with H1,H2 and H4 as destinations.

From Figs. 7a, 7b and 7c it is evident, that lower challenge
complexities, i.e., st = 4 or 8, add unpredictability in the
results. For instance, in Fig. 7a for verification at the controller
with challenge complexity st = 4, a burst of packet-in is
received, even after packet generation has ended at t = 180s.
This is caused by the short packet inter-arrival time of 0.4ms
at this complexity, which results in a large amount of valid
connection requests during normal operation. These requests
are queued in the data plane and when the overload situation
starts invalid requests are added at an even higher rate in the
queue. Figs. 7b and 7c show that during normal operation, the
controller commit resources in processing the valid requests
and deploying their configurations using packet-out messages.
During the overload situation, enqueued valid requests still
reach the controller and it continues processing and deploying
their configurations. Before t = 180s the controller finishes
processing the enqueued valid requests. This causes a drop in
the processor load and no more packet-out are sent. In turn,
this frees resources in the emulated control channel and trigger
the burst of invalid packet-in requests, for which the controller
commits resources in their verification until t = 210s. For
verification in the switches with lower challenge complexity,
i.e., st = 4, a similar situation happens. However, since
spoofed requests are filtered a the network edge, the controller
is able to conclude configuration deployment at t = 120s, i.e.,
60s earlier than when verification is done at the controller.

At higher challenge complexities, i.e., st = 12, 16 and
20, connection requests inter-arrival times are longer, which

filters out the effects of queuing in the results. As depicted
in Figs. 7a, 7b and 7c during normal operation, regardless of
where verification takes place and according to the complexity,
a similar amount of packet-in requests reaches the controller,
which triggers a similar demand in processing resources
and packet-out configuration messages. However, during the
overload situation, the benefits of PCPP over state-of-the-art
CPP are evident. In the latter, the controller receives spoofed
requests at the rate that the end-station can produce them. In
this case, it was about 520 packets per second. However, this
rate can become the sum of the individual generation rates,
if not one, but multiple end-stations generate simultaneously
spoofed requests. For challenge verification at the switches, the
controller receives zero packet-in requests during the overload
scenario, since spoofed requests are filtered at the edge by
the switches. As there are not incoming packet-in messages,
the controller in PCPP does not spend processing resources in
verifying challenge answers, as depicted in Fig. 7c. Whereas
for verification at the controller, around 45% of its processing
resources are spent in checking spoofed requests. As shown
in Fig. 7b, under overload none of the alternatives deploy
configurations for spoofed requests. The periodic bursts in the
packet-out rate and the processor load, for verification at the
switches, correspond to PCPP operations for challenge update
in the switches. The protocol overhead depends on the selected
update interval and the amount of switches in the data plane.
In the evaluation, this interval was fixed to T = 15s and on
average only 2 PCPP update packets were sent each second.

V. CONCLUSIONS

This work proposes the PDP (Programmable Data Plane)-
based Controller Protection Protocol (PCPP), which leverages
the benefits PDP to prevent control plane overload caused by
misusing Software-Defined Networking (SDN) reactive con-
figuration mechanism. In PCPP, end-stations solve a challenge
before issuing a connection request. The challenge is verified
at PDP-capable switches, which only forwards the request
to the controller upon validity. Hence, filtering out spoofed
requests at the network edge. PCPP challenge complexity
can be used to manage the number of tries required by end-
stations before answering a challenge, which gives an indirect
handle on the time needed at end-stations to perform requests,
ranging from less than a second to minutes and even hours.
The implementation of PCPP demonstrates how the protocol
is realized using P4 devices and the Cyclic Redundancy
Check (CRC) function. The evaluation presents a comparison
between PCPP and a state-of-the-art alternative in terms of
challenge verification time, control channel load and controller
utilization. Although verification required 10 times more time
at BMv2 software switches than at the controller, this repre-
sents rather an upper bound on the achievable verification time
with a P4 device. Moreover, the benefits of PCPP are notorious
in savings of bandwidth and processing resources, when an
overload situation is prevented, since neither bandwidth in the
control channel nor processing in the controller are invested.
This represents savings of 100% in these resources with PCPP,

when compared with the state-of-the-art alternative performing
verification at the control plane, where the controller receives
as many connection requests as the end-stations can generate
and thus invests a proportional amount of bandwidth and
processing resources. As future work, remains the evaluation
PCPP using P4 hardware switches and SmartNICs, where a
faster challenge verification is expected.

ACKNOWLEDGMENT

This work is partially funded by Federal Ministry of Educa-
tion and Research in Germany (BMBF) as part of the project
AI-NET-ANTILLAS (grant ID 16KIS1318).

REFERENCES

[1] ONF. Software-Defined Networking (SDN) Definition. Accessed: May
13, 2022. [Online]. Available: https://bit.ly/3KQO7Zp

[2] T. Wolf and J. Li, “Denial-of-service prevention for software-defined
network controllers,” in 2016 25th Int. Conf. on Computer Communica-
tion and Networks (ICCCN), 2016, pp. 1–10.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
p. 69–74, mar 2008.

[4] L. F. Eliyan and R. Di Pietro, “DoS and DDoS attacks in software de-
fined networks: A survey of existing solutions and research challenges,”
Future Generation Computer Systems, vol. 122, pp. 149–171, 2021.

[5] S. G. Macı́as, L. P. Gaspary, and J. F. Botero, “ORACLE: An Archi-
tecture for Collaboration of Data and Control Planes to Detect DDoS
Attacks,” in 2021 IFIP/IEEE Int. Symposium on Integrated Network
Management (IM), 2021, pp. 962–967.

[6] A. A. Y. R. Fares, F. L. de Caldas Filho, W. F. Giozza, E. D. Canedo,
F. L. Lopes de Mendonça, and G. D. Amvame Nze, “DoS Attack Pre-
vention on IPS SDN Networks,” in 2019 Workshop on Communication
Networks and Power Systems (WCNPS), 2019, pp. 1–7.

[7] T. Abhiroop, S. Babu, and B. S. Manoj, “A Machine Learning Approach
for Detecting DoS Attacks in SDN Switches,” in 2018 Twenty Fourth
National Conf. on Communications (NCC), 2018, pp. 1–6.

[8] N. T. Tran, T. L. Le, and M. A. T. Tran, “ODL-ANTIFLOOD: A
comprehensive solution for securing opendaylight controller,” in Int.
Conf. on Advanced Computing and Applications (ACOMP), 2018, pp.
14–21.

[9] J. S. Maddu, S. Tripathy, and S. K. Nayak, “Sdnguard: An extension in
software defined network to defend dos attack,” in 2019 IEEE Region
10 Symposium (TENSYMP), 2019, pp. 44–49.

[10] S. Y. Khamaiseh, A. Al-Alaj, and A. Warner, “FloodDetector: Detecting
Unknown DoS Flooding Attacks in SDN,” in 2020 Int. Conf. on Internet
of Things and Intelligent Applications (ITIA), 2020, pp. 1–5.

[11] A. A. Alashhab, M. Soperi Mohd Zahid, A. A. Barka, and A. M.
Albaboh, “Experimenting and evaluating the impact of DoS attacks on
different SDN controllers,” in 2021 IEEE 1st Int. Maghreb Meeting
of the Conf. on Sciences and Techniques of Automatic Control and
Computer Engineering MI-STA, 2021, pp. 722–727.

[12] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” in Advances in Cryptology — CRYPTO’ 92, E. F. Brickell, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 139–147.

[13] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[14] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX.
New York, NY, USA: Association for Computing Machinery, 2010.

[15] ONF. P4Runtime Specification. Accessed: May 13, 2022. [Online].
Available: https://bit.ly/3KRGPV4

[16] ONF. P4-16 declaration of the P4 v1.0 switch model. Accessed: May
13, 2022. [Online]. Available: https://bit.ly/3x4uIyh

[17] ONF. Performance of BMV2. Accessed: May 13, 2022. [Online].
Available: https://bit.ly/3RCKSGU

