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Abstract

The design of lightweight structures is a fundamental task in structural engineering, which involves

stress analysis and structural optimization. Stress tensor visualization provides advanced opportunities

for understanding the stress field, however, its role in structural optimization is less clear and less

explored. This thesis is dedicated to trajectory-based stress tensor visualization and its application in

structural design and optimization. In specific, we contribute to three major aspects: 1) new methods

for trajectory-based stress tensor visualization; 2) analysis and solution of the convergence issue of the

popular porous infill optimization using stress tensor visualization techniques; 3) novel methods for

structural design and topology optimization by means of principal stress lines (PSLs).

Firstly, we consider the two special issues existing in trajectory-based stress tensor visualization, its

limitation in conveying the local stress state of the 2D stress field, and the lack of a dedicated method

and the corresponding standard tool in visualizing the major, medium, and minor PSLs of the 3D stress

field simultaneously. For the former, we present a globally conforming lattice structure composed

of a set of beams. The beams are partitioned into conforming lattices, whose edges follow the PSLs

and shapes convey the local stress anisotropy. The conformity at the beam intersections is ensured by

solving a specifically-designed constrained optimization problem. For the latter, we develop the visual

analysis tool called the 3D trajectory-based Stress Visualizer (3D-TSV), which is publicly available

under the BSD license. In the design of 3D-TSV, in order to reduce visual clutter and occlusion in

the resulting visualization, we propose a novel seeding algorithm for generating a domain-filling and

evenly spaced set of PSLs by explicitly promoting the intersections among different types of PSLs.

Furthermore, we also enable the extraction of a level-of-detail representation with the adjustable

sparseness of PSLs along a certain stress direction.

Secondly, built upon the methods above and thus the obtained insights into the stress tensor, we

study the convergence issue of the recently established and widely spread porous infill optimization

from the perspective of stress topology analysis. The authors already show that the porous infill

optimization results in 2D have good agreement with the corresponding stress tensor fields that are

simulated on the solid design domain. We notice that this method cannot converge well in some
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ABSTRACT

design settings. Further, we find a correlation between the convergence issue and the topology of this

stress tensor field by means of the stress tensor visualization techniques. Specifically, low convergence

regions are observed surrounding the so-called trisector degenerate points. Based on this observation,

we propose an automatic initialization process that prescribes the topological skeleton of the stress

field into the density field as solid simulation elements. These elements guide the material deposition

around the degenerate points, but can also be remodeled or removed during the optimization. We

demonstrate significantly improved convergence rates in a number of use cases with complex stress

topology.

Lastly, we investigate the use of the domain-filling and evenly spaced PSLs in structural topology

optimization, covering the mainstream density-based topology optimization and homogenization-based

topology optimization. Specifically, we propose to use the PSLs to initialize the starting guess of the

density-based topology optimization. Compared to the commonly used homogeneous starting guess,

the convergence rate of density-based topology optimization under the local volume constraint can

be significantly improved using the proposed method. Consequently, the result of the density-based

topology optimization under the global volume constraint gives rise to more design details and shows

better robustness concerning local damage. We also present a highly efficient method to directly

generate the lightweight structure with PSLs. By employing a strain energy-based metric to adapt the

thicknesses of PSL trajectories, the resulting structure shows comparable mechanical performance

with the one by density-based topology optimization using the local volume constraint. We then

shed light on using streamlines, which are also essentially PSLs in the context of this thesis, to de-

homogenize the homogenization-based topology optimization results. Compared to the majority of

prior de-homogenization approaches that represent the final structure as a binary field, our approach

obtains an explicit representation in the format of a quad-dominant mesh, whose edges are assigned

specific widths. This feature is beneficial for downstream operations such as user editing and fabrication

process planning.
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Zusammenfassung

Die Bemessung von Leichtbaustrukturen ist eine grundlegende Aufgabe der Bauchtechnik, die Span-

nungsanalyse und Strukturoptimierung beinhaltet. Die Spannungstensorvisualisierung bietet erweit-

erte Möglichkeiten zum Verständnis von Spannungsfeldern. Ihre Rolle bei der strukturellen Opti-

mierung ist jedoch weniger klar und erforscht. Diese Dissertation widmet sich der trajektorienbasierten

Spannungstensorvisualisierung und ihrer Anwendung in der Baukonstruktion und -optimierung.

Insbesondere tragen wir zu drei Hauptaspekten bei: 1) neue Methoden zur trajektorienbasierten Visu-

alisierung von Spannungstensoren; 2) Analyse und Lösung des Konvergenzproblems der populären

Optimierung poröser Füllungen unter Verwendung von Spannungstensor-visualisierungstechniken; 3)

neue Methoden für Strukturdesign und Topologieoptimierung mittels Hauptspannungslinien (PSLs).

Erstens betrachten wir die beiden speziellen Probleme, die bei der trajektorienbasierten Spannung-

stensorvisualisierung bestehen, ihre Limitationen bei der Vermittlung des lokalen Spannungszustands

der 2D-Spannungsfelder und das Fehlen einer dedizierten Methode und korrespondierender Hil-

fsprogramme zur gleichzeitigen Visualisierung der PSLs der drei Hauptspannungsrichtungen des

3D-Spannungsfeldes. Für Ersteres stellen wir eine global konforme Gitterstruktur vor, die aus einer

Menge von Balken besteht. Die Balken werden in konforme Gitter unterteilt, deren Kanten den

PSLs folgen und deren Formen die lokale Spannungsanisotropie vermitteln. Die Konformität an den

Balkenkreuzungen wird durch Lösen eines speziell entworfenen eingeschränkten Optimierungsprob-

lems sichergestellt. Für letzteres entwickeln wir das visuelle Analysetool namens 3D Trajectory-based

Stress Visualizer (3D-TSV), das unter der BSD-Lizenz öffentlich verfügbar ist. Um visuelle Unordnung

und Verdeckungen in der resultierenden Visualisierung zu reduzieren, schlagen wir beim Design von

3D-TSV einen neuartigen Seeding-Algorithmus zum Generieren einer bereichsfüllenden und gleich-

mäßig verteilten Menge an PSLs vor, indem explizit Schnittpunkte zwischen verschiedenen Arten

von PSLs begünstigt werden. Überdies ermöglichen wir auch die Extraktion einer Level-of-Detail

Darstellung mit einstellbarer Besetzungsdichte von PSLs entlang einer bestimmten Spannungsrichtung.

Zweitens untersuchen wir, aufbauend auf den oben genannten Methoden und den daraus
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gewonnenen Erkenntnissen über den Spannungstensor, die Konvergenzfrage der kürzlich neuerdings

etablierten und weit verbreiteten Optimierung poröser Füllungen aus der Perspektive der Span-

nungstopologieanalyse. Die Autoren zeigen bereits, dass die Optimierungsergebnisse für poröse

Füllungen in 2D eine gute Übereinstimmung mit den entsprechenden Spannungstensorfeldern

haben, die auf der Solid-Design-Domäne simuliert werden. Wir stellen fest, dass diese Methode in

einigen Designeinstellungen nicht gut konvergieren kann. Darüber hinaus finden wir eine Korrelation

zwischen dem Konvergenzproblem und der Topologie dieses Spannungstensorfeldes mit Hilfe der

Spannungstensorvisualisierungstechniken. Insbesondere werden Bereiche niedriger Konvergenz

in der Umgebung sogenannter degenerierter Trisektorpunkte beobachtet. Basierend auf dieser

Beobachtung schlagen wir einen automatischen Initialisierungsprozess vor, der das topologische

Skelett des Spannungsfeldes als solide Simulationselemente in das Dichtefeld einschreibt. Diese

Elemente führen den Materialauftrag um die degenerierten Punkte herum, können aber bei der

Optimierung auch umgeformt oder entfernt werden. Wir zeigen deutlich verbesserte Konvergenzraten

in einer Reihe von Anwendungsfällen mit komplexer Spannungstopologie.

Schließlich untersuchen wir die Verwendung der bereichsfüllenden und in regelmäßigen Ab-

ständen platzierten PSLs in der strukturellen Topologieoptimierung, wobei wir die vorherrschende

dichtebasierte Topologieoptimierung und die homogenisierungsbasierte Topologieoptimierung ab-

decken. Insbesondere schlagen wir vor, die PSLs zu verwenden, um die Anfangsschätzung der

dichtebasierten Topologieoptimierung zu initialisieren. Gegenüber der allgemein verwendeten ho-

mogenen Startschätzung kann mit dem vorgeschlagenen Verfahren die Konvergenzrate der dichte-

basierten Topologieoptimierung unter der lokalen Volumenbeschränkung deutlich verbessert werden.

In der Folge führt das Ergebnis der dichtebasierten Topologieoptimierung unter der globalen Vol-

umenbeschränkung zu mehr Designdetails und zeigt eine bessere Robustheit gegenüber lokalen

Beschädigungen. Wir präsentieren außerdem eine hocheffiziente Methode, um die Leichtbaustruktur

direkt mit PSLs zu erzeugen. Durch die Verwendung einer auf Dehnungsenergie basierenden Metrik

zur Anpassung der Dicken von PSL-Trajektorien zeigt die resultierende Struktur vergleichbare mech-

anische Eigenschaften wie eine durch dichtebasierte Topologieoptimierung unter Verwendung der

lokalen Volumenbeschränkung erzeugte Struktur. Anschließend beleuchten wir die Verwendung von

Stromlinien, die im Kontext dieser Arbeit ebenfalls im Wesentlichen PSLs sind, um die Ergebnisse

der homogenisierungsbasierten Topologieoptimierung zu dehomogenisieren. Im Vergleich zu den

meisten früheren Dehomogenisierungsansätzen, die die endgültige Struktur als binäres Feld darstellen,

erhält unser Ansatz eine explizite Darstellung im Format eines vierecksdominanten Netzes, dessen

Kanten bestimmte Breiten zugewiesen werden. Diese Funktion ist für nachgelagerte Vorgänge wie

Benutzerbearbeitung und Fertigungsprozessplanung von Vorteil.
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1
Introduction

Stress analysis is one of the fundamental approaches in structural engineering and widely exists in

mechanical, civil, and biomechanical structural design, etc. The general purpose of performing stress

analysis is to test the strength of the structural design under some specific boundary conditions, thus,

evaluating the rationality of the design, and further, guiding the improvement and optimization of it.

With the help of some properly designed stress visualization techniques, the obtained stress features

can even be directly used in the design and optimization of lightweight structures, e.g., one can place

material along the stress trajectories to obtain the lightweight structure [KSZ∗14, TM15, KLC16].

Compared to conventional methods like mainstream topology optimization [PP19, WSG21], one can

obtain multiple unique advantages in lightweight structure design and optimization by leveraging stress

tensor features, for instance, significantly lower computational burden, and more degrees of freedom

on shape control of the design. However, such a realm has not yet been explored systematically for

various methodological and practical reasons.

This thesis first presents novel methods to tackle the two concrete issues in stress tensor visualization,

encoding local stress states into the grids generated by the intersected major and minor principal

stress lines (PSLs) inherently, and a dedicated seeding approach for evenly spaced PSLs. Then by

means of the obtained visualization techniques and insights into the stress tensor field, we shift to

structural design and optimization, therein, we specifically investigate the convergence behavior of

the density-based topology optimization and the de-homogenization process of homogenization-based

topology optimization. Apart from the concrete contributions to methodology, this thesis is also

devoted to conceptually boosting the interaction of developments between stress tensor visualization

and structural design and optimization.

The stress state at each point in a solid object under load is fully described by the three normal stress

components and three shear stress components, which , in general, are arranged into a symmetric

second-order tensor, i.e., stress tensor. Accordingly, the stress field across the domain can be represented

1



1 INTRODUCTION

Figure 1.1: The demonstration of stress visualization in practical engineering application. (a) The distribution
of a single shear stress component. (b) Von Mises stress. (c) The stress tensor is shown by arrowheads at a set
of sampling points. (d) A single principal stress component. The used mesh is courtesy of [GSP19].

by a symmetric second-order tensor field.

Stress visualization can provide intuitive visual clues for investigating the stress distribution. Yet, it’s

still a challenging task to visualize the entire stress tensor field due to the potential visual clutter and

occlusion, especially in 3D. Thus, in practical engineering applications, one usually treats the stress

tensor field as a set of scalar fields, then visualizes them independently, e.g., the six Cartesian stress

components, amplitudes of principal stresses, and the von Mises stress derived from the maximum

distortion criterion. This can be achieved by color mapping (Figure 1.1a, b).

Taking the stress tensor field as a set of the scalar fields and visualizing them separately can already

provide the basic information about the stress field, e.g., the spatial distribution of the maximum

stress, thus, helping the engineer spot the potential weakness of the structural design. However,

some tensor features are missing from such stress visualization. For instance, the correlation among

different stress tensor attributes, the stress tensor orientations, and the topology of the stress tensor

field. This inevitably restricts the understanding of the stress field. A rather straightforward way

to present the stress tensors is to show a set of arrowheads at the picked sampling points in the

domain, where the orientations and lengths of the arrowheads indicate the principal stress directions

2



and the corresponding principal stress amplitudes. The principal stress directions are defined as

the directions where the shear stress components vanish, and the corresponding normal stresses are

termed principal stress amplitudes. As can be seen from Figure 1.1c, however, such visualization incurs

severe visual clutter and occlusion, meanwhile, violates the continuity of the stress field. In order to

improve the visual quality, one can also investigate each single principal stress direction independently

(see Figure 1.1d), but still the perceptual issues cannot be avoided essentially. To this end, one needs

to resort to some dedicated stress tensor visualization techniques.

One can obtain a deeper insight into the stress field via the stress tensor features, thus, evaluating

the structural strength more comprehensively. More importantly, several works in recent years have

shown that stress tensor features themselves can play a significant role in the design and optimization

of lightweight structures.

The optimality of structure is measured by the compliance minimization in this thesis, i.e., with the

same material consumption and under the same boundary condition, the optimal design shall give rise

to minimal strain energy. Compared to the mainstream techniques like topology optimization, for now,

the related methods of using stress tensor features for structural optimization have only appeared

sporadically. There are multiple reasons for this, e.g., lack of well-established stress tensor visualization

tools, and insufficient interaction of the research between stress tensor visualization and structural

optimization. Despite this, such methods have already shown the unique power of using stress tensor

features in structural design and optimization. For instance, it can provide a more computationally

economical way to perform structural optimization and produce novel and functional patterns of the

material layouts. Refer to [KAH14, TM15, KLC16, DFLW17, WWG21].

Having the mentioned above in mind, this thesis is built upon the study of these two topics below:

• How to visualize the stress tensor field?

• How does stress visualization benefit structural design and optimization?

In general, the existing stress tensor visualization techniques can be categorized into topology-,

glyph- and trajectory-based methods [KASH13, HBK∗21].

Topology-based approaches for stress tensor visualization abstract from the depiction of stress

directions and focus on revealing specific topological characteristics of the tensor field, for instance,

the degeneracy and separatrices [DH94, HLL97], which can reveal some essential features of the stress

tensor field, see Figure 1.2a. However, the robust extraction of these topological characteristics and

the interpretation of their physical significance are still under exploration, especially for the 3D stress

field simulated on the arbitrary hexahedral or even hybrid meshes [ZP04, RKZZ18].

In the glyph-based method, the stress tensor field is depicted by a set of well-designed geometric

primitives placed at the selected positions, here, the geometric primitive is termed the tensor glyph,

3
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Figure 1.2: Demonstration of different stress tensor visualization techniques. (a) The topology-based approach
shows the degenerate points (black circle) and separatrices (red and blue trajectories). (b) The glyph-based
approach shows the tensor glyphs at the selected positions, the axes of each ellipse point to the directions of
major and minor principal stresses, and the signs of principal stresses are distinguished by different colors
(orange for positive, turquoise for negative). (c) Trajectory-based approach shows the major (orange) and minor
(turquoise) PSLs.

see Figure 1.2b. It’s efficient to convey the local stress state via the tensor glyph. Yet, it violates the

continuity of stress field visually, and causes severe visual occlusion when used in 3D. To evade such

situation, a series of works on the glyph placement strategy have been proposed [KAH14].

Trajectory-based methods choose the PSLs as visual abstractions of the stress field, which are

generated by performing numerical integral along the principal stress directions (Figure 1.2c). PSLs

can approximately but intuitively indicate the transfer path of load within the solid and show the

mutual relationships between the different principal stress directions [DH93, DGBW09]. However,

due to the mutual orthogonality among different types of PSLs, the trajectory-based visualization

is accompanied by the visual clutter when showing different types of PSLs simultaneously. One of

the critical challenges of trajectory-based stress tensor visualization is how to generate a set of PSLs,

which can convey the directions of the entire stress tensor field completely while incurring less visual

clutter. This obstacle prevents the wide adoption of such visualization, and drags the development of

a standard tool for such an analysis, though it’s promising to obtain an informative visualization of the

stress directions in a 3D solid.

The correlation between the optimal structure and the stress tensor field was firstly expounded by

Michell in the seminal work on structural optimization [Mic04], i.e., the sub-structs of the optimal

structure should only bear either the pure tension or compression stress. In other words, the sub-

structs follow the principal stress directions such that the shear stresses vanish, also known as Michell’s

theorem. Michell’s theorem lays the foundation of lightweight structure design and optimization, yet,

4



Figure 1.3: Demonstration of different topology optimization techniques. (a) Homogenization-based topology
optimization (c = 6.892, v = 0.500). (b) Density-based topology optimization under global volume constraint
(c = 7.427, v = 0.500). (c) Density-based topology optimization under local volume constraint (c = 8.891, v =
0.539). Here c is the compliance value of the structural design, and v is the volume fraction of the material
consumption.

it’s very difficult to obtain its exact analytic solution. One usually uses some numerical methods to get

the near-optimal solution of Michell’s theorem. This is often formulated as an optimization problem,

e.g., topology optimization, in which the material distribution is optimized. The homogenization-based

topology optimization and density-based topology optimization are two major branches in structural

topology optimization for compliance minimization.

In the seminal work of homogenization-based topology optimization by Bendsøe and Kikuchi [BK88],

they employed a material model, i.e., the square unit cell with a rectangular hole, to characterize the

material with infinitely fast variation in solid and void regions. The material properties of such cells

can be constructed using homogenization [AA14]. The cell orientations and hole sizes are adjusted

to minimize the compliance of the structure during the course of optimization, see Figure 1.3a. It’s

worth pointing out that the optimal cell orientation is aligned with the corresponding principal stress

direction subject to the single loading case [Ped89]. The homogenization-based approach results in a

mathematical specification of theoretically optimal structure. Yet how to translate the specification

of spatially varying cells into a globally consistent geometry has remained a challenge. The lack of

a consistent geometry means that the optimal structure is not manufacturable. Recent years have

seen a revival of homogenization-based topology optimization since Pantz and Trabelsi pioneered

the way for the projection-based post-process [PT08]. This post-process is now generally referred

to as de-homogenization, focusing on interpreting the multi-scale result of homogenization-based

topology optimization into a single-scale description. It’s appealing to combine the homogenization-
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based topology optimization and de-homogenization since it enables to obtain the high-resolution

design from the solution simulated on the coarse scale in a highly efficient way, as demonstrated

in [GS18, GSA∗20].

Density-based topology optimization can be an alternative solution concerning the manufacturing

challenge of the homogenization-based one. It optimizes the distribution of a homogeneous isotropic

material, e.g. using a material model known as Solid Isotropic Material with Penalization (SIMP) [Ben89,

ZR91, Mle92]. Density-based topology optimization commonly starts from a homogeneous starting

guess, then iteratively adjusts the relative density value of each simulation element to optimize

for structural performance under the available material budget, i.e., the global volume constraint

(Figure 1.3b). It produces the binary material layout (1 for the fully deposited region and 0 for

the void region) as the final design, which significantly benefits the downstream fabrication process.

Being a full-scale method, the resolution of the density-based topology optimization result depends

on the simulation resolution. As known that the theoretically optimal structures are multi-scale,

and in principle, the density-based topology optimization can approach such design as long as a

sufficiently fine simulation mesh and well-designed continuation scheme are utilized. This, however,

is computationally expensive. Wu et al. subtly mitigated this limitation by replacing the global volume

constraint with a local one [WAWS18]. This constraint explicitly controls the deposition ratio around

each simulation element, thereby, a domain-filling structural design is obtained by density-based

topology optimization simulated on a relatively low resolution. The resulting structure under such a

constraint spans multiple length scales, see Figure 1.3c. As a side-effect, the convergence behavior of

density-based topology optimization is negatively affected to some extent because of such a constraint.

Comparing the compliance values of the different structural designs shown in Figure 1.3, we see

that the homogenization-based topology optimization gives rise to minimal compliance, and the

density-based topology optimization under local volume constraint with the largest compliance.

Altogether, we first study the stress tensor visualization in this thesis, including 1) how to combine

the advantages of both the trajectory- and glyph-based methods in a single visualization, and 2) how

to effectively visualize the three mutually orthogonal principal stress directions in 3D solids. Built

upon the proposed stress tensor visualization techniques and thus the insights into the stress tensor

field, we comprehensively investigate the application of the stress tensor in topology optimization.

We consider constructing the de-homogenization strategy for the homogenization-based topology

optimization by using streamlines of the direction field extracted from the cell orientations, here the

streamlines are essentially also PSLs since the cell orientation is given by principal stress direction.

Specifically, we convert the optimized cells into a consistent and editable parametrization space that is

depicted by a lattice structure composed of quadrilateral and triangular cells whose edges follow the

principal stress directions. With the proposed method, the singularity issue, which needs additional

efforts in existing de-homogenization approaches, can be solved using the stress tensor topology
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analysis inherently.

For the density-based topology optimization, we aim to promote the material deposition to converge

to a structure composed of sub-structures spanning multiple length scales in place of a mono-scale one,

meanwhile, avoiding the use of the extremely fine mesh resolution. To this end, we consider employing

the domain-filling and evenly spaced PSLs as starting guess to guide the material distribution, given

that topology optimization in practice is a non-convex problem. As a secondary goal, the convergence

rate should also be improved by the proposed starting guess, given that such a starting guess is closer

to the optimal design than the homogeneous starting guess.

In addition, inspired by the good agreement between the optimized porous infill achieved by the

density-based topology optimization and the corresponding principal stress directions [WAWS18], we

also consider generating the near-optimal structure directly from the PSL layout instead of an iterative

optimization process. We aim to reduce the computational complexity of structural optimization

significantly, meanwhile, releasing more degrees of freedom to the user for shape control of the final

design.

1.1 Contributions

In close collaboration with other researchers, several contributions are made in this thesis to handle

the research questions mentioned above. We present the globally conforming lattice structure for

stress visualization, which simultaneously conveys divergence/convergence and stress anisotropy by

intersected PSLs. We also develop the 3D-TSV to visualize the three mutually orthogonal principal stress

directions simultaneously. For structural design and optimization, we solve the convergence issue of

porous infill optimization by means of stress topology analysis. With using the domain-filling and evenly

spaced PSLs to initialize the starting guess of density-based topology optimization, the results spanning

multiple length scales are obtained from the topology optimization under global volume constraint.

And the convergence process of topology optimization under local volume constraint is accelerated

significantly, accompanied by improved regularity of the resulting design. Such initialization strategy

also inspires another work of designing near-optimal lightweight structures directly using PSLs in a

highly efficient way. Motivated by the use of PSLs in structural design and optimization, we propose an

essentially PSLs-guided de-homogenization for homogenization-based topology optimization. Besides

the improved computational efficiency, more importantly, the proposed method represents the final

design with an explicit geometrical description, the quad-dominant mesh, which is beneficial to user

editing and fabrication.

Besides the concrete contributions to methodology, all these works also make a step to get the

research of stress tensor visualization and structural design and optimization better interact mutually.

In other words, taking some specific requirements for structural design and optimization into the

7
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construction of stress tensor visualization may lead to novel visualization methods, in return, properly

designed stress tensor visualization techniques can also empower structural design and optimization.

The detailed contributions of this thesis are divided into five aspects corresponding to the five associated

publications below:

• Considering the limitation of trajectory-based stress tensor visualization in conveying local stress

state and the deficiency of glyph-based method in presenting the continuity of stress field, we

propose the globally conforming lattice for stress tensor visualization in 2D (Paper A [WWW20]).

We introduce the use of beams instead of single lines to create a stress-following grid structure

in multiple dimensions, and to encode the ratio of principal stresses into the geometry of the

beam elements. Thus, only line segments coinciding with stress lines are shown, along all

principal directions. Conformity of beams at intersections is achieved via the solution of a

constrained optimization problem. The optimization computes for all intersection points the

size and aspect ratio of corresponding beam elements, so that the ratio of principal stresses is

maintained and the edges of connected elements meet when continued along the respective

PSL. To circumvent the sudden divergence of PSLs near the singularity of the stress field, the

stress topology analysis is also utilized to guide the placement of beams. To a certain extent, the

proposed method combines the advantages of both the trajectory- and glyph-based methods by

solving a specifically-designed constrained optimization problem

• We present the 3D Trajectory-based Stress Visualizer (3D-TSV) in Paper B [WNW∗22], a dedicated

system and methodology for the visual analysis of the PSLs in 3D stress fields. 3D-TSV builds

upon existing techniques for line seeding in vector fields [JL97, MTHG03], but extends them

towards the specific use for stress tensor visualization by considering the three principal stress

directions in the seeding process simultaneously. 3D-TSV produces a set of domain-filling and

evenly spaced PSLs, meanwhile, different types of PSLs are promoted to intersect with each

other for improved regularity of the visualization. This is achieved by enforcing the new PSL

to "grow out" from the existing PSLs that belong to other principal stress directions during the

sequential seeding process. In addition, the seeding process is parameterized using different

distance thresholds for each type of PSL, which allows controlling separately the sparseness of

the PSLs of each type. We use this possibility to enable a level-of-detail (LoD) visualization that

combines a dense seeding of a selected PSL type with a seeding at a user-selected sparseness

level of the respective other PSLs. 3D-TSV is made publicly available under a BSD license.

• We study the convergence issue of the popular porous infill optimization [WAWS18] and solve it

by introducing a stress topology-guided initialization strategy (Paper C [WWW22b]). Porous

infill optimization has become a popular branch in density-based topology optimization, which

produces a structural layout that has good agreement with the principal stress directions of the
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corresponding stress field. In some design settings, however, the iterative optimization process

converges only slowly, or not at all even after hundreds or thousands of iterations. Specifically,

we find that the low convergence region appears around the so-called trisector degenerate point

of the corresponding stress field. According to our analysis, this is due to the high isotropy

of the stress tensor close to a tri-sector degenerate point, consequently, a locally consistent

binary material layout cannot be efficiently decided by the optimizer. Based on this discovery,

and considering the topology optimization is a non-convex problem, i.e., depending on the

initialization a different local optimum can be reached, we propose an automatic initialization

strategy to guide the material deposition around the trisector degenerate point. This initialization

strategy is based on the computation of the topological skeleton of trisector degenerate point

and achieved by giving the simulation elements visited by the topological skeleton a higher

density value than others in the starting guess. We also observe that the optimization keeps

the initialized elements more or less unchanged, this further demonstrates the good agreement

between the 2D optimized porous infill and the principal stress directions.

• Built upon the methods in Paper C and Paper C, we in Paper D [WWW22c] present a novel method

of using PSLs for density-based topology optimization. In particular, we use domain-filling and

evenly spaced PSLs to initialize the starting guess of porous infill optimization [WAWS18], which

not only significantly improves the convergence rate but also leads to a more regular design

that follows the PSLs on the whole. We also extend this initialization strategy to the classic

density-based topology optimization, i.e., under the global volume constraint, which usually

produces a predominantly mono-scale structure. We find that some PSL trajectories used for

initialization are also maintained in such optimization settings, thereby, the final design exhibits

more sub-structures that span different length scales. We demonstrate that such design is more

robust with respect to the local damage compared to the original one. Further, we present a

PSLs-guided material layout approach for quick structural design and optimization. A strain

energy-based importance metric is proposed to adjust the thickness of different PSL trajectories

for improving mechanical performance. Through our test, this result shows a similar appearance

and comparable mechanical performance with porous infill optimization but obtained in a highly

computationally economical way.

• Inspired by Paper D using PSLs for structural design, we present a novel de-homogenization

approach for the homogenization-based topology optimization result to achieve the efficient

design of high-resolution load-bearing structures (Paper E [WWW22a]). The proposed approach

is built upon the parametrization of using streamlines, here the streamlines are essentially

PSLs in the context of this thesis. This approach avoids the projection step to optimize for a

consistent fine-grid scalar field (e.g., in [GS18]), and thus is computationally efficient. We first

parameterize the design domain using a set of domain-filling and evenly spaced streamlines that
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are aligned with the edges of optimized cells. The streamlines are then converted into a graph,

from which we construct a quad-dominant mesh whose edges follow the optimized direction

fields. In contrast to the majority of prior de-homogenization approaches that represent the final

structure as a binary field, our approach generates an explicit representation in the form of a

quad-dominant mesh, each edge of which is assigned a unique width according to the average

direction and volume fraction of the optimized cells covered by an element. This compact

representation is beneficial for downstream operations such as user editing and fabrication

process planning.

1.2 Outline

The reminder of this thesis is organized as follows: In Chapter 2, we review the related works in

detail regarding the research scopes of this thesis. The fundamental theorem and methods involved

are introduced in Chapter 3 to make this thesis self-contained. From Chapter 4 to Chapter 8, we list

the abstracts and the individual author contributions of each published paper that are part of the

thesis, sequentially. Chapter 9 concludes this thesis, and the associated publications with this thesis

are appended at the end of the document.

1.3 List of Publications

The methods described in this thesis have been originally proposed and published in the following

peer-reviewed journal and conference proceedings. To facilitate readers to navigate it, we also use

an additional diagram (Figure 1.4) to show the relation of each publication to the main scope of this

thesis and the correlation among different publications:

Paper A: Junpeng Wang, Jun Wu, and Rüdiger Westermann.

“A Globally Conforming Lattice Structure for 2D Stress Tensor Visualization”.

In: Computer Graphics Forum, Volume 39, Number 3, pp. 417-427, June 2020.

doi: 10.1111/cgf.13991

Paper B: Junpeng Wang, Christoph Neuhauser, Jun Wu, Xifeng Gao, and Rüdiger Westermann.

“3D-TSV: The 3D Trajectory-based Stress Visualizer”.

In: Advances in Engineering Software, Volume 170, August 2022.

doi: 10.1016/j.advengsoft.2022.103144

Paper C: Junpeng Wang, Jun Wu, and Rüdiger Westermann.

“Stress Topology Analysis for Porous Infill Optimization”.

In: Structural and Multidisciplinary Optimization, Volume 65, Number 3, pp. 1-13, February
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2022.

doi: 10.1007/s00158-022-03186-0

Paper D: Junpeng Wang, Jun Wu, and Rüdiger Westermann.

“Stress trajectory guided structural design and topology optimization”.

In: ASME IDETC-CIE: 42nd Computers and Information in Engineering Conference (CIE), November

2022.

doi: 10.1115/DETC2022-89030

Paper E: Junpeng Wang, Rüdiger Westermann, and Jun Wu.

“Streamline guided De-Homogenization for High-Resolution Structural Design”.

In: ASME Journal of Mechanical Design, December 2022.

doi: 10.1115/1.4056148

Figure 1.4: Navigation map of the thesis. The orange arrowheads indicate the dependence between the different
modules.
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2
Related Work

In this chapter, we systematically review the prior work that lies in the scope of this thesis, covering

stress tensor visualization, structural topology optimization, and stress in structural design and opti-

mization. Specifically, stress tensor visualization is expounded from the perspectives of trajectory-,

glyph- and topology-based methods in Section 2.1. Then coming to the structural topology optimization

in Section 2.2, at which the density-based approach and homogenization-based approach are visited,

the latter is accompanied by a so-called de-homogenization process to obtain the manufacturable

design. In Section 2.3, we recall the concrete work about using stress tensor features in structural

design and optimization, herein, it also serves as a bridge between the stress tensor visualization and

structural topology optimization.

2.1 Stress Tensor Visualization

The stress tensor is a representative symmetric second-order tensor, thus, its visualization also applies

to the established classification of second-order tensor visualization. In the review work [KASH13], the

tensor visualization techniques are categorized into tensor field segmentation, local tensor visualization

methods, and continuous tensor visualization methods. The tensor field segmentation is devoted to

dividing the entire data into regions that exhibit similar features, thereby, facilitating the analysis and

interpretation of the data. Such methods are typically about obtaining the degeneracy and separatrices

of the tensor data by means of the topology analysis. The local tensor visualization methods focus on

the design and placement of tensor glyphs. The continuous tensor visualization methods are further

subdivided into the scalar visualization methods, the vector visualization methods, and the texture-

based methods. The latest review work [HBK∗21] shares a similar view with [KASH13] in terms of

the classification of the tensor field visualization, except splitting the continuous tensor visualization
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methods into the geometry-based methods and texture-based methods, meanwhile, omitting the scalar

visualization methods.

After comprehensively considering these two classification criteria and the latest advances on this

topic, this thesis methodologically classifies the stress tensor visualization into the trajectory-, glyph-

and topology-based methods.

2.1.1 Trajectory-based Methods

Trajectory-based stress tensor visualization focuses on conveying the continuity and directionality of

the stress field, this can be achieved either by the principal stress lines (PSLs) or the stress texture

depicting the principal stress directions.

The concept of tensor lines can be dated back to the original work [Dic89], where they defined that

the tensor lines follow the eigenvector directions of the given tensor field, and each eigenvector field

corresponds to one family of tensor lines. Here the tensor lines can be taken as the generalization of

streamlines of second-order tensor fields, and the PSLs are subject to the concept of tensor lines. Build-

ing upon PSLs, Delmarcelle and Hesselink [DH92, DH93] introduced the concept of hyperstreamlines.

A hyperstreamline shows a cylinder-like geometric structure, which is formed by extruding ellipses

along a selected PSL. The directions and lengths of the major- and minor-axis of the ellipses correspond

to the directions and amplitudes of the other two principal stresses. Even though hyperstreamlines

were introduced for the visualization of 3D stress fields, they can be adapted straightforwardly to

2D scenarios. A direct extension of the hyperstreamlines is the so-called hyperstreamsurface, which

is formed by seeding a set of hyperstreamlines on a given region, then connecting the integration

points of these hyperstreamlines by polygons [JSF∗02, VBVP04]. In order to tackle the limitation of

hyperstreamlines in revealing the ratio among the three principal stresses, Kretzschmar et al. intro-

duced a variant of hyperstreamline, called tensor spines [KGSS20], where the PSL is depicted with

a circular tube and two perpendicular surfaces through the central axis of this tube. The radius of

the tube and widths of the two surfaces represent the absolute values of the three principal stresses,

respectively. In this way, an intuitive comparison of the ratio of the three principal stresses is provided.

This technique was later extended to visualize the stress on the surface when optimizing the interface

connection between different components [KRG∗22]. Stress-nets [WB05] are achieved by rendering

together major and minor PSLs, at the same time trying to place them evenly to reduce clustering,

which has been used to investigate the crack propagation and new features of the data are obtained,

but its utility is restricted in 2D. Dick et al. [DGBW09] presented a real-time application to aid implant

planning in orthopedics by means of the PSLs, where the major and minor PSLs are traced from the

loaded regions and colored with the selected scalar stress components. This application can give

high-quality rendering results and instant response to user interaction because of the use of advanced

techniques in computer graphics.
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The placement of PSLs has a strong influence on the quality of the visualization, i.e., revealing the data

effectively without losing critical information, meanwhile, incurring fewer perceptual problems like

visual clutter and occlusion [SBGC20]. Dick et al. [DGBW09] only considered the major and minor PSLs

traced from the seed points that are randomly distributed in the loaded regions, which clearly shows

the stress trajectories from the loaded area to the fixed area. However, such a method leaves large sub-

domains uncovered and not showing the mutual variations of the stress directions. A seemingly viable

way is to consider the tensor field as a set of independent vector fields, then borrow the well-established

idea of creating domain-filling and evenly spaced streamlines in vector fields. Turk and Banks [TB96]

and Jobard and Lefer [JL97] were one of the first to introduce seeding strategies for generating evenly

spaced streamlines in 2D vector field. Numerous extensions and improvements of these concepts

have been proposed since then. In particular, Mattausch et al. [MTHG03] constructed a level-of-

detail streamline visualization from the evenly spaced seeding. Vilanova et al. [VBVP04] proposed an

extension of the approach by Jobard and Lefer to diffusion tensor fields, which detects the distance

between the new streamline and the existing ones during the tracing process. They demonstrated the

generation of evenly spaced streamlines, however, the approach suffers from ‘unfinished’ streamlines

that are caused by an artificial stopping criterion and only considers a single eigenvector field at a

time.

For 3D flow visualization, dedicated approaches have been developed to reduce the visual clutter

and occlusion of densely distributed streamlines in 3D fields [YKP05, YWSC11, KFW16]. Though

these methods can ensure an evenly spaced PSL distribution in a single principal stress field, they

do not necessarily reduce the visual clutter and occlusion when showing the different types of PSLs

simultaneously because of the mutual orthogonality among different principal stress directions. The

visual clutter can be reduced by visualizing the single stress directions side-by-side, yet juxtaposition

makes it difficult to effectively relate the three mutual orthogonal stress directions to each other. As

such, a dedicated evenly spaced seeding approach for tensor fields is needed. In Paper B [WNW∗22],

we presented a dedicated seeding approach to visualize the three types of mutually orthogonal

PSLs simultaneously. This method is adapted from the classic evenly spaced streamline seeding for

vector field but improves the visual quality of the resulting visualization via explicitly promoting the

intersections among different types of PSLs during the course of seeding.

Besides PSLs, the texture-related method also plays an important role in trajectory-based stress tensor

visualization, which doesn’t give the stress trajectories explicitly but can clearly convey an overview of

the stress direction information. The texture-related methods are mainly based on the classic Line

Integral Convolution (LIC) that is originally used for vector field [CL93]. Zheng and Pang [ZP03]

presented the HyperLIC method, which generates a texture encoding the anisotropic properties of a 2D

or 3D tensor field. However, this method may lead to misinterpretations on the stress state since it

doesn’t distinguish the signs of the principal stress values. The fabric-like texture [HFH∗04, HFH∗06]
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overcame the limitation of the HyperLIC in distinguishing the signs of principal stress values. Instead

of visualizing the original stress field directly, they visualized a proxy tensor field, which shares the

same topology with the original stress field but is positive-definite. Finally, the regions with negative

principal stress values (under compression) are encoded in a dense texture, and regions with positive

principal stress values (under tension) are encoded in a sparse texture. Besides conveying the direction,

the resulting visualization even exhibits a grid-like structure, thereby, improving the visual quality.

The fabric-like texture visualization has been extended to visualize the tensor fields on arbitrary

surfaces [EHHS12], and even a further extension to guide the lightweight structure design [KSZ∗14].

2.1.2 Glyph-based Methods

Glyph-based methods depict the tensor field by a set of well-designed geometric primitives, i.e., the

so-called tensor glyphs. Each single tensor at the selected position can be visualized into a tensor

glyph, thereby, the primary advantage of this approach lies in revealing the local state of the tensor

field. In general, the glyph-based methods involve the glyph design and placement [KAH14].

The Mohr’s circle and Lamé’s stress ellipsoid are the two most fundamental stress tensor glyphs. The

former is widely used in studying the local stress state at single position being selected [CRBC04,

CRB∗05, KMH11], while the latter usually appears as a group of glyphs to convey a global+local view

of the stress field in works about structural engineering [WBWD12, WAWS18, AJL∗19, WWW22b]. In

the design of Mohr’s circle, all the potential combinations of the normal stresses and shear stresses

at the selected position are encoded into a triad of circles. The position and radius of the circles are

determined by the three principal stresses, and the abscissa and ordinate of each point on the circle

represent the magnitudes of the normal stress and shear stress components, respectively. The three

axes of Lamé’s stress ellipsoid orient to the major, medium, and minor principal stress directions, and

are scaled by the corresponding principal stress values. Lamé’s stress ellipsoid can clearly indicate

the local stress directions and the proportion of different principal stress values, however, it cannot

distinguish the sign of the principal stress without additional color coding. This is considered critical

in stress analysis since the sign tells whether the material at the selected position is under tension or

compression. For 2D situation, the ellipsoid degenerates to an ellipse. Besides these two fundamental

stress tensor glyphs, there are also some other stress tensor glyphs developed out of different analysis

requirements. In order to emphasizing the major principal stress, Haber [Hab90] adapted Lamé’s stress

ellipsoid into a combination of a disk and shaft whose dimensions are scaled by the corresponding

principal stress values, where the disk is expanded by the medium and minor principal stresses, the

shaft points to the major principal stress direction. Reynolds glyph [MSM95] was designed to highlight

the normal stress, and as a counterpart, the HWY glyph presented in [HYW03] focuses more on shear

stress. Besides designing the dedicated stress tensor glyphs, it’s also viable to use the general tensor

glyphs to visualize the stress field, for instance, the widely-spread Superquadric tensor glyphs based on
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superquadric surfaces. The superquadric tensor glyph was originally designed for glyph-based diffusion

tensor visualization [Kin04], and later adapted to visualize positive definite tensors [KWS∗08], general

symmetric tensors [SK10], as well as asymmetric tensors [SK16, GRT17]. Zobel et al. adapted the

superquadrics for visualizing fiber orientation tensors and presented a new type of glyph showing

the admissible fiber directions, which provided the engineers the additional visual clues to improve

their design [ZSS15]. The design of the glyphs for showing the gradients of stress tensor was also

preliminarily explored in [ZSS17].

Specific placement strategies can be used to reduce the number of glyphs and occlusions, thereby,

improving the visual quality of the glyph-based methods [War02]. Kindlmann et al. [KW06] arranged

the glyphs into a dense pattern by using a particle system with anisotropic potential energy profiles,

meanwhile, the full tensor information exhibited by each tensor glyph is still distinguishable. This

method was further improved by Hlawitschka et al. [HSH07], where they introduced a parameterless

acceleration structure that has low computational complexity and allows interactive tensor visualization

using glyph placement. Based on the anisotropic Voronoi cells, Feng et al. [FHHJ08] presented an

automatic packing algorithm to generate the uniformly distributed elliptical glyphs whose distribution

fulfills the blue noise properties. By deriving a local metric from the tensor field, Kratz et al. [KKH11]

proposed a particle-based method to generate the unstructured distributions of elliptical glyphs, which

dismissed the restrictions of methods in [HSH07, FHHJ08] in controlling the overlap of samples.

Patel and Laidlaw [PL20] proposed to guide the placement of glyphs by principal trajectories in the

underlying field, and thus to provide a better understanding of the global relationships in this field.

We in Paper A [WWW20] propose a globally conforming lattice structure for stress tensor visualization,

which is computed via a constrained optimization problem. It, on the one hand, belongs to the category

of trajectory-based methods since the lattice edges are formed by PSL, however, on the other hand,

the stress anisotropy is encoded into the lattice shape, thus, it also exhibits the characteristics of the

glyph-based methods. While this method is effective in 2D, it was shown that a direct extension to 3D

is not possible since the 3D PSLs do not intersect necessarily.

2.1.3 Topology-based Methods

Topology-based approaches for stress tensor visualization abstract from the depiction of stress directions

and focus on revealing specific topological characteristics of the tensor field. Delmarcelle and Hesselink

originally studied the topology of 2D symmetric second-order tensor fields in their seminal work [DH94],

and introduced the fundamental concepts of degenerate points and topological skeleton. At a degenerate

point, the two eigenvalues of the 2D tensor are equal to each other, and there are two types of stable

degenerate points, i.e., Trisector and Wedge, which are determined by the characteristic patterns of

the tensor lines in the vicinity of the degenerate point. The trajectories of the topological skeleton

start from the degenerate point and partition the tensor field into several sub-domains, within each of
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which the tensor directions behave similarly, thus, the topological skeleton is also called as separatrices.

This theory was later extended to 3D symmetric second-order tensor fields by Hesselink et al. [HLL97].

Since the newly-added third dimension, the degeneracy is classified into double degeneracy and triple

degeneracy according to the number of the repeating eigenvalues appearing. Further, they depicted the

structure of tensor lines in the vicinity of the degenerate point corresponding to different degeneracy,

which forms the separating surfaces of the 3D domain. These two papers pioneered this area, however,

less progress was seen for the next about 10 years since then, until Zheng and Pang discussed the

robust extraction of the degeneracy in their work [ZP04, ZPP05b]. Zheng and Pang showed that the

degenerate features in the 3D symmetric second-order tensor field form stable topological lines rather

than points, named degenerate curves. In addition, they also pointed out that triple degeneracy is

extremely rare and not stable in real data, and they further demonstrated the theoretical basis of

computing the separating surfaces in their follow-up work [ZPP05a]. Afterward, a period of relative

calm was once again maintained in this field, during which Tricoche et al. [TKW08] showed that the

degenerate lines in tensor fields are crease (ridge and valley) lines of a particular tensor invariant called

mode. They leveraged the previous work on the extraction of crease manifolds in image processing

and computer vision, and presented a versatile framework for topology analysis. To a certain extent,

this method overcame the shortcomings of the existing methods in dealing with the practical noisy

data. Towards a similar goal, a different approach based on the Lagrangian coherent structures (LCS)

was also proposed by Tricoche et al. in their later work [THBG12].

With the introduction of new topological features and analysis methods, a revival of this field has

been appearing since 2015. Zhang et al. [ZTZ15] proved that the number of degenerate curves in a 3D

linear tensor field is in the range of one to four under the assumption of structurally stable conditions.

They also summarized the open challenges in 3D symmetric tensor fields from the perspectives of the

development of fundamental concepts, robust extraction of topological features, and the corresponding

physical interpretation [ZZ15]. Further, Zhang et al. [ZRSZ17] gave an estimate of the maximum

number of transition points on degenerate curves, at which the tensor behavior switches from linear to

planar. The notion of the feature surfaces of the symmetric tensor field represented by the degenerate

curves was enriched with the introduction of neutral surfaces and traceless surfaces by Palacios et

al. [PYW∗15]. Later Roy et al. [RKZZ18] discussed the robust and fast extraction of these feature

surfaces. Zobel and Scheuermann proposed the notion of extremal points to analyze the complete

invariant part of the tensor [ZS18]. Raith et al. presented a general approach for the generation of

separating surfaces in the invariant space [RBN∗18]. The concept of core line used in vector field

was also extended to the 3D second-order tensor fields by Oster et al. [ORT18]. Qu et al. [QRZZ20]

further generalized the concepts of degenerate curves and neutral surfaces to a unified framework called

mode surfaces. Taking the 2D stress field as an example, Zhang et al. [ZGZ17] explored the physical

significance of degenerate points. Jankowai et al. [JWH19] analyzed the robustness of tensor topology
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and presented a simplification strategy for tensor topology based on the robustness measurement to

the degenerate points.

2.2 Structural Topology Optimization

Achieving the highest stiffness while using the least amount of material is a fundamental task in

mechanical design. This is often formulated as an optimization problem, e.g., topology optimization,

in which the material layout is optimized to obtain minimal compliance that is measured by total

strain energy [BS04, SM13]. Here, the strain energy is usually computed by performing the finite

element analysis (FEA) on the discretized design domain corresponding to the specific material layout.

Depending on different assumptions of the material model, most of the existing topology optimization

approaches can be roughly categorized into the homogenization-based approaches [BK88] and the ones

optimizing the distribution of solid isotropic materials. The latter covers topology optimization methods

based on density [Ben89, ZR91, Mle92], level-sets [WWG03, AJT04], evolutionary procedures [XS93],

and explicit geometric descriptions [NHTB04, GZZ14], etc.

In homogenization-based topology optimization, the material is assumed to have an infinitely fast

variation in solid and void regions. At the microscopic scale, these micro-structures are assumed to be

uniform and can be represented by periodic unit cells, e.g., the cell based on the well-known rank-n

laminates [Ave87], and square cell with a rectangular hole [BK88]. The equivalent material proper-

ties of such cells can usually be evaluated with homogenization [AA14, BS04, Gro18]. In general,

homogenization-based approaches take each cell’s deposition specifications and orientation as design

variables to achieve anisotropy and generate theoretically optimal structures. Homogenization-based

topology optimization results are multi-scale, and thus, cannot be manufactured directly. How to ro-

bustly obtain the single-scale interpretation of the homogenization-based topology optimization results

has remained a challenge, until the appearance of the so-called de-homogenization strategy [PT08].

To circumvent the limitation of homogenization-based topology optimization, a simpler material

assumption called Solid Isotropic Material with Penalization (SIMP) was introduced, also known as the

power-law approach, from which the density-based topology optimization was proposed in [Ben89,

ZR91, Mle92]. Here, the material within each simulation element is assumed to be isotropic and

homogeneous, and the relative density value of each element is taken as the design variable. The

relative density value continuously varies between 0 and 1, where 0 refers to void and 1 for solid.

Young’s modulus is defined as the relative material density raised to some power then times Young’s

modulus of solid material. SIMP received several criticisms for not being explainable physically from

the beginning until Bendsøe and Sigmund confirmed its physical rationality [BS99]. Afterward, density-

based topology optimization grows into one of the pillar solutions for lightweight structure design

rapidly, and is widely adopted from lab works to engineering applications [SM13, ZZX16, WSG21].

19



2 RELATED WORK

In this thesis, we narrow down the discussion on topology optimization within the scopes of density-

and homogenization-based approaches towards compliance-minimization optimization.

2.2.1 Density-based Approaches

Built upon the pioneering works on density-based topology optimization developed since around

1990 [Ben89, ZR91, Mle92, DS95, BS99], Sigmund published the landmark paper “A 99 line topology

optimization code written in Matlab” in 2001, which lays the foundational paradigm for density-based

topology optimization and significantly improves its accessibility for beginners [Sig01]. As an improved

successor, the “88 lines of topology optimization code” contributes similarly [ACS∗11].

In practical topology optimization, the design domain is frequently seen being discretized into

the first-order quadrilateral (2D) or hexahedral (3D) meshes, which are built from the Cartesian

grid obtained by voxelizing the design domain. Compared to the boundary-aligned unstructured

mesh, the Cartesian mesh not only simplifies the modeling process but also significantly facilitates the

construction of the efficient linear system solver for high-resolution FEA simulations. A side impact

of using such mesh is incurring the so-called checkerboard pattern in the resulting material layout

because of the numerical instability [DS95], however, this can be overcome by a well-defined mesh-

independent density filtering [Bou01, WLS11]. The idea of mesh-independent density filtering is also

utilized to counteract the unpredictability of the optimized results with the increase of the simulation

resolution. I.e., instead of generating a better description of the design with using the high-resolution

model, it may converge to a totally different design with many tiny features being introduced, which

is not preferred in topology optimization, especially for the downstream manufacturing stage. Both

the checkerboard pattern and design unpredictability can be attributed to the mesh dependence

issue [GPB04, WLS11]. The core idea of building the mesh-independent density filter is to introduce

an auxiliary design variable as the physical density value in optimization, which is defined to be a

weighted average of the neighboring design variables. Different methods but for the similar goal are

also reported in [Sig07, LS11]. Given that the density filtering leads to the gray region and inevitably

drags the convergence process, the Heaviside projection operator is usually adopted to promote the

binary design [XCC10, WLS11].

Topology optimization is computationally intensive since it needs to iteratively update the design.

At each iteration, it needs to perform the FEA simulation to evaluate the objective function, then the

design variables are updated based on sensitivity analysis for the next iteration. The method of moving

asymptotes (MMA) presented by Svanberg [Sva87] and the optimality criteria reported in [Ben95]

are commonly used as updating schemes. Aage and Lazarov also published the parallel framework for

topology optimization using MMA [AL13]. The performance bottleneck of topology optimization is

majorly up to the FEA simulation, which consumes about 85% of the total processing time [WDW15].

Benefiting from using the Cartesian mesh in topology optimization, i.e., the nice accessibility for a
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matrix-free computing stencil, the geometric multigrid solvers have been demonstrated to be the

appropriate solution for FEA simulation in high-resolution topology optimization. Refer to [BHM00]

for details of multigrid methods. Amir et al. explored the specific characteristics of a multigrid

preconditioned conjugate gradients solver and presented a computational approach for efficient

topology optimization [AAL14], later Aage et al. published the fully parallel open-source framework,

PETSc, for topology optimization [AAL15]. Dick and Westermann [DGW11] presented an elasticity

simulation system, where the elastic object is discretized into the Cartesian mesh, the static equilibrium

FEA equation is solved by a geometric multigrid solver accelerated by CUDA parallel programming API

provided on NVIDIA GPU. Built upon this, Wu and Westermann [WDW15] developed a highly efficient

simulation system for high-resolution topology optimization, which can handle the model with 14

million elements on a desktop PC equipped with a single CPU, 8GB of RAM, and 6GB of GPU VRAM

within 20 minutes. Apart from the advanced solving techniques, using the self-adaptive mesh for

topology optimization is also a viable way to achieve a tradeoff between computational efficiency and

simulation fidelity [LC18, SdTT18]. Another efficient idea can also be found in optimizing the sparse

and thin structures using the narrow-band approach, where the real simulation only happens around

the high-density regions, thus, avoiding the wasted computational effort on large void regions. Liu et

al. presented such a method, which is able to accommodate computational domains with over one

billion simulation elements on a single shared-memory multiprocessor platform [LHZ∗18]. In recent

years, data-driven approaches have also started playing roles in solving topology optimization [ZZZ∗20,

WTTL20, NLJK21].

Since the theoretically optimal structures are multi-scale, the density-based approach in principle

shall be able to approach such a material layout. I.e., the final design is composed of sub-structures

with different length scales toward optimality, meanwhile, fulfilling the manufacturing condition. This,

however, is only possible by using sufficiently fine meshes for discretizing the material distribution,

and requires careful continuation techniques [AALS17, LHZ∗18, BSPA20]. Therefore, commonly seen

topology optimization results are predominantly mono-scale. In order to explore the optimal structure

patterns, it has become a popular branch to study shape control over topology optimization, especially

since Wu et al. proposed the porous infill optimization achieved by a local volume constraint [WAWS18].

As a comparison, the constraint of the classic density-based topology optimization mentioned above

can be named global volume constraint since it’s only up to the permitted material budget.

Inspired by [Gue09] where they introduced a projection filter to impose the maximum length control,

Wu et al. [WAWS18] introduced the local volume constraint, which is also formed into a projection

process yet in an approximate manner, thereby, facilitating a fast numerical solution. The local volume

constraint prevents the forming of large solid regions and, consequently, creates porous structures

distributed more evenly across the design domain. This approach has been extended, in conjunction

with a coating approach proposed by [CAS15], to design concurrently structures and porous sub-
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structures therein, referred to as shell-infill composites [WCS17]. It has also been applied to design

porous shell structures [TSA21]. Other notable extensions include the design of porous structures with

gradation in the porosity and pore size [SPG19, DS20], use of multiple materials [LGLT20, ZZ21], and

fiber-reinforced structures [LGL∗21]. Besides by density-based approaches, porous infill structures have

been designed using an evolutionary design approach [QJJ∗20] and machine learning [CYR19]. The

convergence behavior of the porous infill optimization was investigated in our work Paper C [WWW22b]

from the perspective of stress topology analysis. In Paper D [WWW22c], we presented an evenly

spaced PSLs-guided strategy for the starting guess of the density-based topology optimization. On

the one hand, the proposed approach promotes the generation of more detailed sub-structures in the

results of density-based topology optimization under global volume constraint, thus, improving the

robustness of the optimized result concerning the local damage. On the other hand, it also speeds up

the convergence of density-based topology optimization under local volume constraint, meanwhile,

the regularity of the optimized result is improved as well.

2.2.2 Homogenization-based Approaches

The homogenization-based topology optimization was originally proposed in [BK88] and can produce a

mathematical specification of theoretically optimal structures, which is multi-scale. Hassani and Hinton

systematically reviewed the homogenization and topology optimization from the theory, analytic and

numerical solution, and solving scheme in their series of works [HH98c, HH98a, HH98b]. Afterward,

however, the development of homogenization-based topology optimization has been rather silent,

especially in the first 10 years of the 21st century, while at the same time the density-based topology

optimization was booming prosperously. The major obstacle to preventing the homogenization-based

topology optimization a further spread is the lack of effective methods in interpreting its multi-scale

result into a single-scale geometry for the downstream fabrication.

The milestone work by Pantz and Trabelsi [PT08] reversed this trend, where they proposed one of the

first solutions to post-process the homogenization-based topology optimization result by means of the

projection operation, thereby, obtaining a manufacturable design. This method also keeps the optimal

mechanic performance to a certain extent. Since then, a revival of the homogenization-based topology

optimization has been seen, especially with a focus on the post-process of translating the results of

homogenization-based topology optimization into a manufacturable geometry, this post-process is now

often referred to as de-homogenization.

Given that the cells used in homogenization-based topology optimization can usually be described

by a Fourier series [RP12, RPDK15], the key advantage of such a combination of homogenization-

based topology optimization and de-homogenization is the low computational complexity. I.e., such

a combination enables the possibility of mapping the solution obtained on the coarse scale to a fine
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scale with minor loss in performance, thereby, improving the efficiency of performing high-resolution

topology optimization significantly. This feature has been confirmed in [GS18, GSA∗20].

In sense of implementation, the homogenization-based topology optimization shares the same

objective and constraint functions as the classic density-based topology optimization. Moreover, the

mesh-independent filter for getting rid of the numerical instability [WLS11] and the scheme for

updating the design variables [Sva87, Ben95] introduced for density-based topology optimization

can still work for the homogenization-based topology optimization. One just needs to treat the

multiple design variables of each element separately. The critical difference is the description of

the simulation cells based on different assumptions of material properties. It has been shown that

the optimal solution for minimum compliance problems is in the space of layered materials, i.e.,

the so-called rank-n laminates. The rank-2 laminates are optimal for plane problems subject to

a single load case, and rank-3 laminates are optimal for plane problems subject to multiple load

cases [Ave87, Gro18]. The rank-2 laminates can also be replaced with the unit cell with a rectangular

hole for simplicity [BK88], which is widely used in a number of subsequent works on homogenization-

based topology optimization [PT08, AGDP19, GS18]. Whether the simulation cell is based on the

assumption of rank-n or the unit cell with a rectangular hole, its material properties can always be

obtained via analytical or numerical homogenization [AA14, Gro18]. During the course of optimization,

the design variables describing the deposition situation of each cell, e.g., the size of the rectangular

hole of the unit cell, are usually updated via MMA ([Sva87]) or the optimality criteria ([Ben95]). The

cell orientation can be computed by the gradient descent methods [SGSB20], it’s worth emphasizing

that the optimal cell orientation can also be given by the local principal stress directions when the

structure is subject to a single load [Ped89].

The de-homogenization proposed in [PT08] was revisited and improved by Groen and Sig-

mund [GS18] and Allaire et al. [AGDP19]. These approaches have since been extended to

3D [GSA∗20, GDAP20], and to deal with singularities in the optimized orientation fields [SGSB20]. A

key component in these approaches is computing a fine-grid scalar field whose gradients are aligned

with optimized orientations from homogenization-based topology optimization. Wu et al. reformulated

this post-process as quad/hex-dominant meshing, i.e., constructing quad/hex-dominant meshes whose

edges are aligned with the optimized orientations [WWG21]. Stutz et al. [SOG∗22] reported a method

to generate high-resolution multi-laminar structures from frame fields by tracing the stream surface.

They further formulated the finding of such a set of well-spaced stream surfaces as an optimization

problem. Convolutional neural networks have also been found useful for de-homogenization [EABS22].

Alternative de-homogenization approaches include [LKY∗21, ZLD∗19]. Apart from the single loading

case considered in existing de-homogenization works, recently, Jensen et al. [JSG22] also made the

move to de-homogenize the optimal 2D topologies subject to multiple loading cases using the rank-3

laminate for homogenization-based topology optimization. In Paper E [WWW22a], we presented
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a novel de-homogenization strategy, which is based on a set of domain-filling and evenly spaced

streamlines generated from the cell orientations. Here the streamlines are essentially PSLs, and

the seeding approach proposed in Paper B [WNW∗22] can be used to generate the evenly spaced

streamlines. In contrast to the majority of prior de-homogenization approaches that represent the

final structure as a binary field, our approach generates an explicit representation in the form of a

quad-dominant mesh constructed from the streamlines. This compact representation is beneficial for

downstream operations such as user editing and fabrication process planning.

2.3 Stress in Structural Design and Optimization

For the optimal solution to compliance-minimization problems under a single loading case, Mechell’s

theory indicates that the optimal design forms a truss structure and the truss members follow the

principal stress directions [Mic04]. The basic theory of homogenization-based topology optimization

also shows that the optimal design can be described by a set of spatially varying orthotropic cells [BK88],

whose orientations can be given by the local principal stress directions [Ped89]. In recent works, Wu

et al. showed that there is a good agreement between the material layout produced by density-based

topology optimization under the local volume constraint and the principal stress directions of the stress

field that is simulated on the fully solid design domain with the same boundary conditions [WAWS18].

Stutz et al. obtained the optimal design by interpreting the 3D multi-scale homogenization-based

topology optimization results with the stream surface that is traced from the corresponding stress

field [SOG∗22].

All of these above point to the potential that stress can play more roles in structural design and

optimization, e.g., guiding the material layout using principal stress directions, instead of just being a

measure of structural strength. The significant advantage of doing so is the possibility of converting

the computationally intensive and operationally cumbersome mechanical optimization problem into

a relatively efficient and straightforward geometry modeling problem. Though the mechanical per-

formance of the obtained structural design might not be rigorously optimal, it releases more design

freedoms to users on the shape control over the final design, which is desired in some application

scenarios, e.g., architectural structure design.

Kratz et al. [KAH14] presented a method of using the texture of stress trajectories for structural design,

and introduced a concrete case study by considering the design of a reinforcement structure. Tam

and Mueller [TM15] investigated the stress line generation for structurally performative architectural

design. A novel PSLs-based growth strategy for topology optimization of the point-loaded situation

was reported in [KLC16]. Daynes et al. [DFLW17] presented an approach to generate optimized

functionally graded lattice core structure based on a set of isostatic lines, which are constructed

from the local principal stresses. Arora et al. used a parametrization-based approach to generate
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the volumetric Michell Trusses, whose orientations align with a frame field constructed from the

stress field [AJL∗19]. By combining topology optimization and frame-aligned parameterization, Wu

et al. [WWG21] presented an appealing method to design lattice structures that confirm both the

principal stress directions and the boundary of the optimized shape. In Paper D [WWW22c], we

proposed a highly efficient method of generating the near-optimal 2D structure directly from the

domain-filling and evenly spaced PSLs. The proposed method overcomes the limitations of the method

of [KLC16] in dealing with the distributed loading conditions, in addition, it leads to a design that

shows comparable mechanical performance with the result of porous infill optimization in [WAWS18].
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3
Fundamentals

In this chapter, we introduce the fundamental concepts and methods that form the theoretical and

technical basis of this thesis, from which the inspirations and the primary results of the associated

publications of this thesis are also expounded in the sectional summaries. We start with reviewing the

general description of stress, therein, the basic concept of this thesis, i.e., stress tensor, is introduced

in Section 3.1. Then followed by the introduction to the PSLs in Section 3.2, covering PSL tracing,

seeding to visualizing. Next, the method for stress topology analysis is explained in Section 3.3. Finally,

we shed light on the density-based topology optimization in Section 3.4 and the homogenization-based

topology optimization in Section 3.5, respectively.

3.1 General Description of Stress

Stress is a measurement of the internal force induced when a solid object is under load. Considering a

cross-section s inside the solid, and the internal force acted on s is f , which is continuously distributed

across s. Taking a differential area △s from s, and assuming the internal force acting on it is △ f .

Thereby, the average stress on △s can be given by △ f
△s . If we let △s shrinks infinitely and approaches

point P, △F
△A will reach a limit

lim
△s→0

△ f
△s
= p (3.1)

Here, the limit vector p is the stress at P, and the direction of p is the same as the limit direction of

△ f . The stress p at any cross-section can be decomposed into components px , py and pz along the

coordinate axes, or components along the normal (σ) and tangent (τ) of the cross-section, respectively.

To study the stress state at any position P in the solid, one usually sets a differentiable tetrahedron

PABC , where ABC is a plane near P, the edges PA, PB and PC are parallel to the three coordinate
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Figure 3.1: Description of stress state at position P. The normal stress is denoted by σ and shear stress by τ,
whose first subscript indicates which axis its acting plane is perpendicular to, the second subscript gives the
acting direction.

axes, respectively, see Figure 3.1. The stress on the plane ABC corresponds to the stress at P when

tetrahedron PABC approaches to the point P.

Let the external normal of plane ABC be n⃗, and its directional cosines are given by

cos(n⃗, x) = l, cos(n⃗, y) = m, cos(n⃗, z) = n. (3.2)

Assuming that the volume of tetrahedron PABC is △V , the area of plane ABC is △S, accordingly,

the areas of plane PBC , PAC and PAB are l△S, m△S and n△S, respectively. According to the static

equilibrium condition of the tetrahedral under force, i.e.,
∑

Fx = 0,
∑

Fy = 0 and
∑

Fz = 0, where

Fx , Fy and Fz are the the resultant forces of this tetrahedron along the three coordinate axes. Taking

Fx as example, we can obtain the static equilibrium equation below

px△S −σx x l△S −τy x m△S −τzx n△S + fx△V = 0 (3.3)

where, fx is the component of the volume force of this tetrahedron along the coordinate axes. let Equa-

tion 3.3 be divided by △S, and rearrange the items

px − fx
△V
△S
= lσx x +mτy x + nτzx (3.4)

Given that △V is a higher order trace than △S, i.e., the item △V
△S → 0 when tetrahedron PABC
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approaches to the point P, thereby, Equation 3.4 can be re-arranged into

px = lσx x +mτy x + nτzx (3.5)

Analogously,
∑

Fy = 0 and
∑

Fz = 0 lead to

py = mσy y + lτz y + lτx y (3.6)

and

pz = nσzz + nτxz +mτyz (3.7)

Assuming the normal stress on plane ABC is σ, then it can be depicted by

σ = l px +mpy + npz (3.8)

Substituting Equation 3.5, Equation 3.6 and Equation 3.7 into Equation 3.8, we can get

σ = l2σx x +m2σy y + n2σzz +mnτyz +mnτz y + nlτzx + nlτxz + lmτx y +mnτy x (3.9)

According to the torque equilibrium condition, we know that the shear stresses acting on the two

orthogonal planes and perpendicular to the intersection lines of these two planes are equal to each

other, i.e., τyz = τz y , τxz = τzx and τx y = τy x , thus, Equation 3.9 can be simplified to

σ = l2σx x +m2σy y + n2σzz + 2mnτyz + 2nlτzx + 2lmτx y (3.10)

If we let the shear stress on plane ABC be τ, and since

p2 = p2
x + p2

y + p2
z = σ

2 +τ2 (3.11)

the shear stress τ can be described by

τ2 = p2
x + p2

y + p2
z −σ

2 (3.12)

Through Equation 3.10 and Equation 3.12, we can see that the stress state at any position P in the

domain can be fully described by the six stress components: σx x , σy y , σzz , τx y , τyz and τxz .

The derivation process above shows that the stress at a specific point in a solid domain due to

internal stresses depends not just on the specific location in the domain but also on the orientation of
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the considered plane. Thus, in order to facilitate measuring the stress on it in various directions, these

six stress components are usually arranged into a tensor, i.e., stress tensor

T =







σx x τx y τxz

τx y σy y τyz

τxz τyz σzz






(3.13)

The stress tensor is a real symmetric second-order tensor. According to Cauchy’s stress theorem [Irg08],

stress state at any point P in a solid associated with an orientated plane can be found through the

coordinate transformation of the stress tensor at P.

Principal Stress. A critical concept in stress analysis is the so-called principal stress, which is

defined as the normal stress component on the plane where the shear stress component vanishes,

here the normal of the corresponding plane is called the principal stress direction. Combining with

the attribution of normal and shear stress components in the stress tensor (Equation 3.13), we can

clearly see that there are three real principal stresses at any position P in a 3D solid domain, which

correspond to the three eigenvalues of the stress tensor. Accordingly, the three eigenvectors of the

stress tensor are the corresponding principal stress directions, i.e.,

T =







σx x τx y τxz

τx y σy y τyz

τxz τyz σzz






=
�

v1 v2 v3

�







σ1

σ2

σ3







�

v1 v2 v3

�T
(3.14)

Here, the eigenvaluesσ1,σ2 andσ3 are the principal stresses. In descending order, callingσ1 the major

principal stress, σ2 the medium principal stress, and σ3 the minor principal stress, correspondingly,

eigenvectors v1, v2 and v3 the major, medium and minor principal stress directions, respectively. Since

T is a real symmetric matrix, different eigenvectors are orthogonal to each other when there are no

repeating eigenvalues. Note that the principal stress direction is bidirectional since it’s the eigenvector,

i.e., vi and −vi (i = 1, 2, 3) are equivalent in describing the principal stress directions.

The principal stress also indicates the maximum and minimum values of the normal stress and shear

stress at the position being considered. The maximum and minimum normal stresses are given by the

major principal stress σ1 and the minor one σ3. The maximum and minor shear stresses correspond

to ±1
2(σ1 −σ3), acting on the planes that pass through the medium principal stress direction and

equally divide the included angle between the major and minor principal stress directions.

Stress Simulation. The finite element analysis (FEA) is frequently used in practical stress analysis,

which, in general, gives σx x , σy y , σzz, τx y , τyz and τxz at the element vertices. To investigate the
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stress state inside the element, one can perform element interpolation according to the shape function

used in FEA.

3.2 Principal Stress Lines

The trajectory-based stress tensor visualization is achieved by principal stress lines (PSLs), involving

how to trace PSL, how to seed PSL set for better visual quality, and what kind of visual abstract is used

to convey the tensor information the PSL carries.

3.2.1 Tracing

The PSLs are traced by numerically integrating massless particles in each single principal stress field,

i.e., every single PSL only follows the major, medium, or minor principal stress directions. Here we

term the PSLs traced from the major, medium, and minor principal stress fields as the major, medium,

and minor PSLs, respectively. Different integration schemes can be used for PSL tracing, including the

1st-order Euler method, and the 2nd- and 4th-order Runge-Kutta methods, etc. In each integration

step, the involved stress tensor T is interpolated, then the principal stresses are computed from the

interpolated tensor.

Figure 3.2 shows a schematic diagram of tracing the PSL while the 1st-order Euler method is

employed. Here for sake of illustration, only the major PSL is considered and the constant integration

step size δ is used. Note that the bi-directional feature of the principal stress direction, i.e., every

time coming to a new integration point Pi , one needs to decide whether the direction vector v(Pi) or

−v(Pi) is the right direction to compute the next integration point Pi+1. This issue can be solved by

comparing the direction deviations of v(Pi) and −v(Pi) to the previous direction v(Pi−1) and selecting

the one incurring least deviation to v(Pi−1).

In general, PSL integration is stopped when the next integration point is outside of the solid domain.

However, some PSLs would not approach the domain boundary since the potential singularity of

the stress field, e.g., forming a closed orbit. In order to avoid such situation, one needs to set a

threshold for the permitted maximum integration steps. An extreme case of tracing PSL is due to the

so-called degenerate point where two or more eigenvalues are equal, thereby, the PSL direction cannot

be decided in the vicinity of these points. The principal stress values at a degenerate point fulfill

either σ1 = σ2 > σ3 or σ1 > σ2 = σ3. Therefore, when tracing along a principal stress direction, one

also needs to test whether the eigenvalue σi corresponding to this direction is too close to another

eigenvalue σ j, e.g., using deg = 1
2

�

�

�

σi−σ j
σi+σ j

�

�

� < 10−6 as a metric. If this is the case and the direction

deviation between the PSL tangents at the current and next integration point is large, the integration
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Figure 3.2: The schematic diagram for tracing PSL using the 1st-order Euler method is shown on the left, v1
showing in orange arrowhead is the major principal stress direction, the traced major PSL segment is shown
on the right. The blue and turquoise arrowheads indicate the medium and minor principal stress directions,
respectively, the corresponding marks v2 and v3 are omitted for clarity.

process should be stopped. The triple degenerate points with σ1 = σ2 = σ3 are not considered here,

since they rarely exist under structurally stable conditions [ZP04].

To obtain the principal stress directions during tracing PSL, the stress tensor at the integration point

needs to be determined, which is usually achieved by performing element interpolation if the stress

tensor field is defined at the grid vertices. To this end, one needs to identify the element where the

integration point is located. For the Cartesian mesh, the element in which the integration point is

located can be easily identified by the coordinate of the integration point. However, for the arbitrary

mesh, e.g., the unstructured hexahedral mesh (hex-mesh), the element mentioned can only be robustly

and efficiently identified from its adjacent and known elements. Toward this end, one usually needs to

establish a mesh tree including the element and vertex adjacency information. Below, the unstructured

hex-mesh is chosen as the example to depict the general idea of generating PSL, given its popularity in

FEA stress analysis and representative in constructing the tracing algorithm.

A widely accepted criterion in tracing PSL is that no element is skipped between two adjacent

integration points. This can be easily achieved for Cartesian mesh via an appropriately selected

integration step size δ, e.g., letting δ at least be half of the element diameter. However, it becomes

challenging to fulfill such criteria rigorously in unstructured hex-mesh. A theoretically ideal way of

handling this challenge is to let the integration points be located on the element faces. I.e., the next

integration point Pi+1 is always on the face of the element ei+1 that shares the same element face

with the element ei containing the current integration point Pi. This can be achieved by calculating

the intersection point of the principal stress direction vector and the corresponding element face.

The special cases, like the integration point exactly at the element vertex or edge, are considered

independently, in general. Apparently, one needs to precisely obtain the normals of the element faces

to perform such a scheme. Especially when the integration point Pi is close to the element face, edge

or vertex, otherwise, the next element ei+1 may get positioned incorrectly, thereby, the PSL is led in the

32



3.2 PRINCIPAL STRESS LINES

Figure 3.3: Evenly spaced streamline seeding in a vector field. The turquoise trajectories are the generated
streamlines from the given vector field, magenta circles indicate the positions of seeds, black dots are the
potential positions of the seeds.

wrong direction. The premise of obtaining the precise face normals of the hexahedral element is that

the four vertices of each element’s face are on a single plane. In practical use, however, this condition

is not always true. Some hexahedral elements with low quality usually show that the four vertices

of each element face are on two slightly different planes, in this case, the computed face normal can

only be an approximation, thereby, introducing numerical instability to the subsequent tracing process.

Consequently, this approach is always with a robustness problem.

3.2.2 Seeding

The trajectory-based stress tensor visualization involves a set of PSLs. How to appropriately place

these PSLs in the domain, thus, conveying the information being needed meanwhile incurring fewer

perceptual issues, is usually interpreted as PSL seeding. The positions being used for tracing PSLs are

termed seed points.

Though there are various seeding strategies for specific stress visualization purposes, e.g., distributing

seed points in the loaded or fixed area of the solid object to show the PSLs in the considered regions.

From the perspective of generality and providing a global view, however, it’s always the fundamental

task to have the PSL set be domain-filling and evenly spaced in the trajectory-based stress tensor

visualization.

The dedicated visualization tools that are able to show all principal stress directions simultaneously

are rare. One usually considers different types of principal stress fields as separate vector fields, then

resorts to the well-established evenly spaced streamline seeding approaches for vector visualization

to show PSLs in each principal stress direction field. The development of evenly spaced streamline
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Figure 3.4: Domain-filling and evenly spaced PSL seeding in each single principal stress field. (a) Major PSLs.
(b) Medium PSLs. (c) Minor PSLs.

seeding can date back to the seminal work by Jobard et al. [JL97], and later the extension focusing

on a level-of-detail streamline distribution by Mattausch et al. [MTHG03], the related variants of this

method have been systematically reviewed in the survey paper [SBGC20]. The core idea of such

methods is to control the density of streamlines locally. I.e., in principle, the new streamline doesn’t

appear in the vicinity of the existing ones, here the vicinity is measured by a user-defined distance

parameter ϵ.

The evenly spaced streamline seeding can be technically formulated into an iterative process, as

demonstrated by the schematic diagram in Figure 3.3. Here for the sake of clarity, we describe the

seeding strategy in the context of 2D vector fields: Starting from Step 1, the first streamline (the

turquoise trajectory) is generated, and the associated potential seed points surrounding the first

streamline are computed and shown in black dots, which are the points having a constant distance (i.e.,

the given minimum distance threshold ϵ) to this streamline. In Step 2, a new seed point is selected

from the potential seed points associated with the first streamline, and the second streamline is traced

from it. Accordingly, the new associated potential seed points of this streamline are computed, note

here that the potential seed points, which are associated with the first streamline but are within the

vicinity of the second streamline, are excluded from the potential seed points for the next streamline

generation. Continue to Step 3, a new seed point is selected from the potential seed points to trace the

third streamline. Here for the selection of seed point, the potential seed points that are associated with

the earlier traced streamline have a higher priority of being selected than the potential seed points

that are associated with the later traced streamline. Repeating the process in Step 3 until no potential

seed points are left, then the final result is obtained.

Extending the evenly spaced seeding above to 3D and performing it in the major, medium and minor

principal stress fields independently (Figure 3.4). It can be seen that the PSLs are placed in a rather

uniform way and the visual clutter is well controlled in the separate principal stress fields. However,

the juxtaposition makes it difficult to effectively relate the three mutual orthogonal stress directions to

each other. A straightforward way to counteract such an issue is to show the major, medium and minor

PSLs in a single image simultaneously, i.e., combining all the major, medium, and minor PSLs together,

see Figure 3.5a. In this case, however, the visual clutter and occlusions are increased drastically due to

the mutual orthogonality of different types of PSLs.
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Figure 3.5: The domain-filling and evenly spaced PSL distribution. (a) Combining the domain-filling and evenly
spaced major, medium, and minor PSLs shown in Figure 3.4 in one single image. (b) By our proposed method
in [WNW∗22].

3.2.3 Visual Abstract

The PSL not only visually indicates the principal stress direction it follows, but also includes the

other two principal stress directions at the integration points, as well as the corresponding principal

stress amplitudes. How to exhibit these features in the visual abstract of PSL is also important in

trajectory-based stress tensor visualization.

One of the most frequently used visual abstracts for PSL is the so-called hyperstreamline [DH93],

which expands every single PSL into a cross-section varying cylinder-like geometry, and color codes the

corresponding principal stresses along this PSL. The cross-sections of the hyperstreamline are a set of

ellipses whose semi-major and semi-minor axes convey the other two principal stresses along the PSL

being considered. Specifically, the semi-major and semi-minor axes point to the other two principal

stress directions, and their lengths reveal the corresponding principal stress amplitudes, respectively

(Figure 3.6a). In this way, the information of the major, medium, and minor principal stresses can be

integrated into a single geometry, see Figure 3.6b.

Sectional discussion and summary. Though the hyperstreamline is widely accepted, there are still

several limitations of it. Firstly, the silhouettes and ridges of a hyperstreamline do not necessarily

coincide with principal stress directions, possibly misleading the user in the interpretation of the

underlying stress field, e.g., the convergence and divergence of the field. Secondly, the spatial extent of

hyperstreamlines prohibits placing them close to each other, making it difficult to reveal the potential

correlation among different types of PSLs. Last but not least, it’s still difficult to distinguish the other

two principal stress directions along each hyperstreamline, especially when they have close stress

magnitudes, as shown in Figure 3.6b. Towards this end, we in Paper A [WWW20] presented the globally

conforming lattice structure. The lattice edges follow the PSLs and convey the divergent/convergent

behavior of principal stress directions, and the stress anisotropy is encoded into the lattice shapes. This

approach is global in that it allows following the paths along which stresses are transmitted through

the domain. The construction of a 2D conforming lattice is formulated as an optimization problem,
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Figure 3.6: (a) Cross section design of hyperstreamline expanded from the minor PSL. (b) Illustration of a set of
hyperstreamline.

which adjusts the lattice elements so that they conform to the local stress state. We have shown a

modification to visualize 3D stress fields, by progressively building a beam structure comprised of

hexahedral elements using a sequential growth process.

As shown in Figure 3.5a, we can see that such a visualization option of showing the three types of

PSLs simultaneously suffers from severe visual clutter and occlusions, despite that the major, medium,

and minor PSL sets are already seeded in a rather evenly spaced way, respectively. Due to their mutual

orthogonality, the visualizations appear irregular and unstructured, and perceptual coherence breaks

up even for sparse sets of trajectories. In order to improve the visual quality of such visualization,

we present the 3D Trajectory-based Stress Visualizer (3D-TSV) in Paper B [WNW∗22]. 3D-TSV is a

system and methodology for the visual analysis of the PSLs in 3D stress fields. 3D-TSV builds upon

existing techniques for line seeding in vector fields [JL97, MTHG03], and it extends them towards

the specific use case by considering simultaneously the three principal stress directions in the seeding

process. 3D-TSV is designed to achieve improved regularity of the extracted PSLs, i.e., it aims for

a grid-like structure where PSLs roughly intersect and uniformly cover the domain. To achieve this,

in the sequential seeding process every new seed point is located on an existing PSL belonging to a

different principal stress direction. For comparison, we show in Figure 3.5b the result produced by

3D-TSV, it can be clearly seen that the visual quality is improved.

3.3 Stress Topology Analysis in 2D

We study the convergence issue of the 2D porous infill optimization proposed in [WAWS18] from the

perspective of stress behavior. To this end, we shed light on the topology analysis of the 2D stress field.

In the 2D stress field, the stress components along the third direction (depicted by z-direction by

convention) become zeros, i.e., σzz = 0, τxz = 0, and τyz = 0, thereby, the 2D stress tensor is written

into
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T2D =

�

σx x τx y

τx y σy y

�

(3.15)

Apparently, there are two principal stresses in the 2D situation, we still use σ1 and σ2 to represent

the principal stresses. Letting σ1 ≥ σ2, then σ1 is the major principal stress, σ2 the minor principal

stress. Note there is a difference about the meaning of σ2 in 2D (minor) and 3D (medium).

Topology analysis of 2D symmetric second-order tensor fields (e.g., stress tensor fields) has been

introduced in the seminal work of [DH94]. The topology of a 2D stress tensor field is composed of its

degenerate points and the corresponding topological skeleton. At a degenerate point, the stress tensor

has repeating eigenvalues, i.e., σ1 = σ2, meaning that the major and minor stress directions cannot

be decided. The topological skeleton is given by principal stress lines—so-called separatrices—that

start from degenerate points.

In the following, the computation of the locations of degenerate points and the topological skeleton

are discussed. According to the definition, a degenerate point can be located by solving the following

system of equations:

σx x(x∗, y∗)−σy y(x∗, y∗) = 0,

τx y(x∗, y∗) = 0,
(3.16)

Here (x∗, y∗) denotes the coordinates of the point to be solved for. The general situation in 2D topology

optimization is considered in the context of this thesis, i.e., the finite element analysis is performed

using axis-aligned quadrilateral finite elements with bilinear shape functions. Thus, each element

has four nodes that coincide with the element’s vertices, and the values at the nodes are bilinearly

interpolated within the element. Then, Equation 3.16 becomes a non-linear system of equations, which

can be solved by the Newton-Raphson method.

Since degenerate points usually appear only in a few elements, an efficient way is required to test

whether a cell can contain such a point and needs to be further analyzed, or can be excluded right

away. Therefore, each element is first classified according to the following conditions:

σx x(x i , yi)−σy y(x i , yi)> 0, i = 1 : 4 or

σx x(x i , yi)−σy y(x i , yi)< 0, i = 1 : 4 or

τx y(x i , yi)> 0, i = 1 : 4 or

τx y(x i , yi)< 0, i = 1 : 4

(3.17)

where (x i , yi), i = 1 : 4 refers to the four nodal coordinates of a finite element. It can be easily shown

that an element cannot contain a degenerate point if any of the conditions in Equation 3.17 is true.

If none of the conditions holds, the element needs to be further analyzed to confirm the existence

of a degenerate point in its interior. Figure 3.7a shows a possible distribution of the eigenvalues
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Figure 3.7: (a) The eigenvalues corresponding to the major (σ1) and minor (σ2) principal stresses are shown
as height fields over the domain of a simulation element (grey square), at a degenerate point, both eigenvalues
have the same value. (b) and (c) show two demonstration stress fields, where the thick red and blue trajectories
indicate the topological skeleton following major and minor principal stress directions, and the black circle and
squares locate the trisector and wedge degenerate points, respectively. The major and minor PSLs shown in
thin orange and turquoise trajectories are provided as a reference for understanding the degenerate points and
topological skeleton.

corresponding to the major and minor principal stress directions in a quadrilateral simulation element

containing a degenerate point.

An isolated degenerate point can be classified by the winding number of one of the eigenvector

fields on a loop surrounding the degenerate point. Delmarcelle and Hesselink [DH94] proposed an

invariant to perform this classification stably. They further demonstrated that there are two types of

degenerate points existing: trisector and wedge, which are indicated by characteristic patterns of the

PSLs in their vicinity, and are determined from the so-called tensor gradients. To identify the type of a

degenerate point, first, the partial derivatives of the tensor are introduced as

a = 1
2
∂ (σx x−σy y )

∂ x b = 1
2
∂ (σx x−σy y )

∂ y

c =
∂ τx y

∂ x d =
∂ τx y

∂ y

(3.18)

These derivatives are then used to compute the invariant under rotation

δ = ad − bc. (3.19)

The sign of δ determines the type of the degenerate point. I.e., a trisector degenerate point is indicated

by δ < 0, and a wedge degenerate point is indicated by δ > 0. At a trisector degenerate point, there

are three major and three minor separatrices starting from this point. In contrast, two separatrices

start from a wedge, one coincides with the major PSL and the other one with the minor PSL. These

separatrices are termed the topological skeleton of a stress tensor field, i.e., the topological skeleton is

composed of the PSLs starting from the degenerate points. Compared to the PSLs not belonging to the

topological skeleton, the tangent of the topological skeleton at the degenerate point is not unique, since

there is an infinite set of principal stress directions at such points. To solve this problem, Delmarcelle
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and Hesselink [DH94] proposed that the tangents to the topological skeleton at the degenerate points

are the real root(s) of the cubic equation

d x3 + (c + 2b)x2 + (2a− d)x − c = 0. (3.20)

At the trisector degenerate point, Equation 3.20 has three different real roots, from which three

major and three minor PSLs can be traced as the topological skeleton, see Figure 3.7b. At the wedge

degenerate point, only one real root exists, thus, the topological skeleton is composed of only one

major PSL and one minor PSL, see Figure 3.7b,c.

The discussion about topology analysis for 3D stress field is omitted since it’s out of the scope of

this thesis. For the interested readers, we refer to the seminal work [HLL97], where the fundamental

concepts of the topology of symmetric second-order tensor fields in 3D are introduced. And the work

by Zheng and Pang [ZP04] on how to robustly extract the topological features of the 3D stress tensor

field. In the latest work [QRZZ20], a more generalized concept over the classic degenerate curves,

called mode surface, for topology analysis of the 3D symmetric second-order tensor fields is introduced.

Sectional discussion and summary. The stress topology analysis does not serve as a methodological

contribution to this thesis, yet we in our work Paper C [WWW22b], make use of it to analyze and

solve the convergence issue of porous infill optimization. The porous infill optimization was origi-

nally proposed by Wu et al. [WAWS18], and has become a popular branch in density-based topology

optimization. We’ll re-visit the fundamental theory of the density-based topology optimization in Sec-

tion 3.4, afterward, we’ll give the corresponding discussions about using stress topology analysis to

solve the convergence issue of porous infill optimization.

3.4 Density-based Topology Optimization

Density-based topology optimization plays a critical role in structural design and optimization, ranging

from scientific research to industrial applications. The mechanism of density-based topology opti-

mization is to optimize the distribution of solid isotropic materials towards specific objectives and

constraints. In density-based topology optimization, the material properties in each simulation element

are assumed constant and the design variables are the relative densities of each element, also known

as the volume fraction. Here the simulation elements are usually obtained from voxelizing the design

domain, each voxel laying in the domain corresponds to a first-order quadrilateral (2D) or hexahedral

(3D) finite element, i.e., the deformation field within the element is approximated by bi-linear (2D) or

tri-linear (3D) shape function [Sig01, WDW15].
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The density-based topology optimization usually starts from a homogeneous density field (i.e.,

starting guess, see Figure 3.8a) and proceeds by iteratively adjusting the density value of each

simulation element till a binary material layout is obtained. In the end of optimization, each simulation

element shall only be solid or empty in the final result, thereby in principle, the optimized result can be

built directly. In the context of this thesis, the objective is the stiffness-optimal structure, i.e., achieving

the minimum compliance under the specific constraint. Two representative constraints are considered

separately, the well-known Global Volume Constraint, which is also, by default, treated as the classic

topology optimization in a number of articles and applications, and the recently established Local

Volume Constraint by Wu et al [WAWS18], also known as porous infill optimization.

3.4.1 Optimization Equation

In general, the optimization problem for structural compliance minimization is formulated into

min
φ

c (φ) =
1
2

UT KU , (3.21)

s.t. K(φ)U = F , (3.22)

g (φ)≤ 0, (3.23)

φe ∈ [0.0, 1.0], ∀e. (3.24)

Here, φ is the relative density value of each simulation element, serving as the design variable. The

objective function is the compliance measured by the strain energy c. K is the global stiffness matrix in

FEA, assembled from the element stiffness matrices K e =
∫

Ωe
BT DeBdV , B is the element strain matrix,

D is the linear material law described by Young’s modulus E and Poisson’s ratio µ of each element. U

is the displacement vector, obtained by solving the static elasticity equation (Eq. 3.22), where F is the

loading vector of the given external force. g (φ) is the constraint function whose expression depends

on the specific design specification, e.g., the global volume constraint, the local volume constraint.

Solving. The control equation of the optimization (Equation 3.21-Equation 3.24) can be iteratively

solved via several different approaches, and at each iteration step, three major stages are involved in

general:

• FEA. Solve the static elasticity equation (Equation 3.22) to evaluate the objective function c. For

high-resolution models, the scheme of solving the linear system based on the Geometric Multigrid

Solver has been proven highly efficient [AAL15, WDW15, LHZ∗18].
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• Sensitivity analysis. Compute the derivatives of the objective function and constraint function

with respect to the design variable φ, i.e., ∂ c
∂ φ and ∂ g

∂ φ .

• Design update. Based on the sensitivity analysis result, update the design variables by means of

the numerical optimizer, e.g., the Optimality Criteria (OC) methods [Sig01], Sequential Linear

Programing (SLP), the Method of Moving Asymptotes (MMA) [Sva87, AL13].

Filtering. It leads to the mesh-dependent solution if directly taking the design variable φ as the

physical density in topology optimization. I.e., the tiny sub-structures or void regions that are com-

parable with the element size might be introduced when refining the mesh for obtaining a better

description of the final design [WLS11]. On the one hand, the optimization process might converge

to a completely different topology with respect to different mesh resolutions, on the other hand,

these artificially-added tiny structural details might violate the restriction of the permitted minimum

thickness in the downstream manufacturing stage [WDW15], both of which are undesirable in topol-

ogy optimization. Furthermore, the design might also suffer from the well-known checkerboard

pattern, i.e., the alternately appearing empty and solid elements in the final material layout, when the

first-order quadrilateral or hexahedral finite elements are used for simulation [DS95]. To get rid of

such limitations, a popular way is to introduce a density filter that converts the density value of each

element to the weighted average of its neighboring values, where the neighborhood is defined by a

circle (2D) or sphere (3D) with a specific radius, see Equation 3.25

φ̃e =

∑

i∈Me
wi,eφi
∑

i∈Me
wi,e

, Me = {i| ∥ x i − xe ∥2≤ re}, ∀e (3.25)

Here φ̃e is the auxiliary design variable of φe. xe and x i are the center coordinates of the simulation

elements corresponding to design variables φe and φi, Me is the number of elements that lay in the

range centered at xe with radius re. wi,e is the weighting factor and can be defined by different radial

functions. Here, the method in [WLS11, WAWS18] is employed, which lets wi,e vary linearly with

respect to the distances of x i to xe

wi,e = re − |x i − xe| (3.26)

Projection. The density-based topology optimization is supposed to obtain a binary density layout,

i.e., the volume fraction of each simulation element should converge to either 1 (solid) or 0 (empty) in

the final design. However, by using the density filtering in Equation 3.26, the gray transition regions

with intermediate density values between 0 and 1 are encouraged inherently, thereby, dragging the

convergence speed of the optimization process inevitably. In order to promote the binary density layout,

various projection techniques that project the auxiliary design variable φ̃e into 0/1 space have been

41



3 FUNDAMENTALS

proposed [GPB04, Sig07, WLS11]. For instance, the popular Heaviside projection, which promotes a

0-1 solution by thresholding the auxiliary design variable φ̃e at the value of 1
2 , and is usually arranged

into a compact expression using the tanh function

ρe(φ̃e) =
tanh(β2 ) + tanh(β(φ̃e −

1
2))

2 tanh(β2 )
. (3.27)

Here, ρe is the proxy density value of the original design variable φe, bridged by the auxiliary

design variable φ̃e, and will be taken as the actual density value in FEA simulation. The smoothed

Heaviside function has a parameter, β , to control its sharpness. For improving convergence behavior,

a continuation scheme is applied to gradually increase its sharpness, e.g., starting with a smaller value

(e.g., β = 1) and double its value every 40 iterations until it reaches the permitted maximum value.

In [WAWS18, WWW22b], this maximum value is set to 128.

Material Interpolation. The modified Solid Isotropic Material with Penalization (SIMP) material

model is usually used to model the material properties of the isotropic material

Ee(ρe) = Emin +ρ
γ
e (E0 − Emin), (3.28)

where E0 is the Young’s Modulus of a fully solid element (ρe = 1). Emin is a minimum Young’s modulus

(e.g., Emin = 1.0e−6E0), introduced to avoid the singularity of the global stiffness matrix. γ is the

penalization factor, which is typically set to 3 [BS99]. Ee(ρe) is the interpolated Young’s Modulus of

the element with density ρe. It’s worth mentioning that the final design becomes more detailed and

exhibits lower compliance when letting γ start from a smaller value and gradually increase to 3 during

the course of optimization.

Practical Issues. In the practical use of density-based topology optimization, one may encounter the

situation where the geometry of some parts of the design domain needs to be kept during optimization,

e.g., the specifically-reserved holes in the domain, and the silhouette of the domain. It’s unavailable to

exclude these parts from the design domain since they’re also bearing loads. To this end, the so-called

Passive Elements are introduced, which are set fully solid during the optimization, i.e., contributing to

the global stiffness but not involving sensitivity analysis.

In order to facilitate the quantification of the convergence behavior of the optimization result, one

also introduces the concept of Sharpness measured by

s =
4
n

∑

e

ρe(1−ρe) (3.29)
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Here, n is the number of simulation elements, a small value of s indicates a sharper binary design of

the optimized density field.

In addition, due to the introduction of the auxiliary design variable φ̃e and the proxy density value

ρe, the chain rule needs to be used in computing ∂ c
∂ φ and ∂ g

∂ φ for sensitivity analysis.

3.4.2 Global Volume Constraint

In the classic topology optimization for compliance minimization, the total amount of permitted

material consumption is taken as the constraint (αglobal), i.e., the global volume constraint

1
n

∑

e

ρe ≤ αglobal. (3.30)

Thereby, the corresponding constraint in Equation 3.23 is given by

g (φ) =

∑

e ρe

nαglobal
− 1≤ 0 (3.31)

Substitute Equation 3.31 into Equation 3.23, then the control equation of the density-based topol-

ogy optimization under global volume constraint is established. Taking the problem description in

Figure 3.8h as an example, and solving the optimization problem, the corresponding optimized density

layout can be found in Figure 3.8b.

3.4.3 Local Volume Constraint

The topology optimization under local volume constraint, also known as porous infill optimization,

produces the bone-mimic infill pattern, and has become a popular branch in topology optimiza-

tion [WAWS18]. Unlike the global volume constraint that only considers the total material consump-

tion, the local volume constraint introduces an upper bound of the material consumption for each

simulation element and its vicinity locally. Thereby, a compliance-minimized design composed of

sub-structures spanning different length scales is generated.

The local volume fraction (ρ̄e) is measured on a circular (2D) or sphere (3D) region which is

centered at the centroid of the element (xe) with radius Re

ρ̄e =

∑

i∈Ne
ρi
∑

i∈Ne
1

, Ne = {i| ∥ x i − xe ∥2≤ Re}, ∀e, (3.32)

where ρi ∈ [0, 1] is the proxy density value of the simulation element ei (see Equation 3.27). x i is the

coordinate of centroid of element ei . Ne denotes the number of elements laying in the region centered
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Figure 3.8: Result demonstration of the density-based topology optimization. (a) The commonly-used homoge-
neous starting guess for density-based topology optimization, the corresponding topologically optimized density
layouts under global volume constraint and local volume constraint are given in (b) and (c), respectively. (d)
The proposed PSLs-guided starting guess [WWW22c]. (e) and (f) show the corresponding results under the
global and volume constraints, separately. (g) The directly generated structural design from the PSLs using the
proposed method in [WWW22c]. (h) The problem description used for topology optimization here, the design
domain is discretized by 1280×640 simulation elements. (i) The PSLs corresponding to the PSLs-guided starting
guess in (d) and PSLs-guided structural design in (g). Here, c0 is the compliance of the fully solid domain when
applying for the same boundary condition, c is the optimized compliance value, v is the volume fraction of the
design, s is the sharpness value, N is the number of iterations needed to approach the corresponding sharpness
value.
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at xe with radius Re, note here that Re is set by users according to the specific design preference but

should be larger than the radius of the density filter (re).

The local volume constraint is achieved by imposing an upper bound (αe, 0< αe < 1) on the local

volume fraction of each element in the design domain, i.e.,

ρ̄e ≤ αe. (3.33)

Apparently, the local volume constraint involves two parameters, αe and Re. αe effectively determines

the porosity, Re indirectly controls the spacing between sub-structures. Re and αe are prescribed as

constant values in the original approach. However, they can also be set spatially-varying scalar fields,

thus, to achieve the gradations of the pore size and porosity of the optimized porous structures [SPG19,

DS20, ZZ21].

Assigning a local volume constraint to each element leads to a large number of constraints that need

to be considered by the optimizer. A seemingly alternative way is to replace them with max
∀e
(ρ̄e), yet,

this constraint is not differentiable. In order to overcome this problem, max
∀e
(ρ̄e) are aggregated by the

p−mean function first, then divided by αe from both sides

�

1
n

∑

e

�

ρ̄e

αe

�p�
1
p

≤ 1, (3.34)

p = 16 is found to give a good approximation [WAWS18]. Finally, the local volume constraint in

Equation 3.23 can be given by

g (φ) =

�

1
n

∑

e

�

ρ̄e

αe

�p�
1
p

− 1≤ 0 (3.35)

Substitute Equation 3.35 into Equation 3.23 to complete the control equation of the density-based

topology optimization under local volume constraint. Figure 3.8c shows the corresponding optimized

density layout of the problem description in Figure 3.8g.

Sectional discussion and summary. Density-based topology optimization under the local volume

constraint has been widely accepted, however in our practice, we noticed that this method incurs the

convergence issue in some optimization scenarios. I.e., the sharp binary design cannot be achieved in

certain regions even after thousands of iterations, see Figure 3.9a-c. Given that it has been revealed in

the original work [WAWS18] that the optimized topology has good agreement with the stress field that

is simulated on the solid design domain, we resort to investigating this problem from the perspective

of stress behavior. In particular, we found that the trisector degenerate points of the corresponding

stress field are located in these low-convergence regions, see Figure 3.9d-f. We analyze the reason why
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3 FUNDAMENTALS

Figure 3.9: Demonstration of the convergence issue existing in the density-based topology optimization under
local volume constraint. (a)-(c) Optimized density layouts using homogeneous starting guesses. (d)-(f) The
trisector degenerate points (black circles) and associated topological skeleton corresponding to the stress fields
of (a)-(c), the red and blue trajectories distinguish the topological skeleton following the major or minor PSLs,
respectively. (g)-(i) Optimized density layouts corresponding to (a)-(c) but using the proposed starting guess in
Paper C [WWW22b]. All of the results in (a)-(c) and (g)-(i) experience 800 iterations. Here, c is the optimized
compliance value, v is the volume fraction of the design, and s is the sharpness value.
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3.4 DENSITY-BASED TOPOLOGY OPTIMIZATION

it cannot converge well is that the stress state there is of high isotropy, consequently, the optimizer

cannot effectively decide the direction of material growth. Built upon this observation, and given

the fact that density-based topology optimization is a non-convex problem, i.e., the final result is

dependent on the starting guess, we propose to replace the commonly-used homogeneous starting

guess of optimization with a new one, which is supposed to disturb this high isotropy there. Specifically,

we assign a higher density value to the regions passed by the topological skeleton at the beginning

of optimization, but note the optimizer can still decide whether to remove or keep these prescribed

regions during the course of optimization. This can be arranged into an automatic initialization strategy

and integrated into the original porous infill optimization. In this way, the convergence issue is solved

efficiently (Figure 3.9g-i). To better observe the convergence behavior, we also show in Figure 3.10

the comparison of the optimization history of these three examples involved in Figure 3.9. We refer to

our work Paper C [WWW22b] for details about the methodology.

Apart from the known characteristics of being non-convex of density-based topology optimization

and the good agreement between the optimized topology and the corresponding stress field, the results

in Paper C [WWW22b] further show that part of the prescribed starting guess is kept after optimization.

More importantly, the optimized mechanical performance is not violated. All these features bring us

to make a more aggressive step in initializing the starting guess for porous infill optimization, i.e.,

using the domain-filling and evenly spaced PSLs instead of only the topological skeleton for starting

guess, see Figure 3.8d. Towards this end, we propose a PSLs-guided initialization strategy for the

density-based topology optimization in our work Paper D [WWW22c]. The proposed method not only

significantly accelerates the convergence of the density-based topology optimization under local volume

constraint, but also promotes a more regular design since most of the mutually orthogonal trajectories

are kept in the final design (Figure 3.8f). One can compare Figure 3.8f to Figure 3.8c. Inspired by this,

we also propose a PSL-guided material layout strategy for structural design in [WWW22c]. With the

thickness of PSLs being adjusted according to a strain energy-based importance metric, the compliance

of the resulting design is en par with those generated by porous infill optimization, see Figure 3.8g.

This method is highly efficient since it avoids the iterative optimization process. The involved PSLs

in Figure 3.8g can be created by 3D-TSV presented in Paper B [WNW∗22].

As seen from Figure 3.8b the result of density-based topology optimization under global volume

constraint is predominantly mono-scale. However, it is known that stiffness optimal structures comprise

spatially varying geometric patterns that span multiple length scales. To approach such an optimal

design, one usually needs to perform the topology optimization on the sufficiently fine mesh, and

carefully design the continuation techniques [AALS17, LHZ∗18, BSPA20]. Given that part of the

material used as PSLs-guided starting guess is kept during the density-based topology optimization

under local volume constraint, it motivates a possible solution to promote the optimization under

global volume constraint to converge to a more detailed design efficiently. I.e., we extend the proposed
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Figure 3.10: The intermediate density layouts that correspond to the three examples in Figure 3.9. 1st
row: Figure 3.9a. 2nd: Figure 3.9g. 3rd row: Figure 3.9a. 4th row: Figure 3.9g. 5th row: Figure 3.9c. 6th
row: Figure 3.9i.
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3.5 HOMOGENIZATION-BASED TOPOLOGY OPTIMIZATION

PSLs-guided initialization strategy to the density-based topology optimization under global volume

constraint. In this way, we find the resulting design exhibits sub-structures that span multiple length

scales without losing the mechanical performance, see Figure 3.8e and compare it to Figure 3.8b. We

demonstrate in [WWW22c] that such a design is more robust than the predominantly mono-scale

design concerning the local damage.

3.5 Homogenization-based Topology Optimization

Though the various advantages, the density-based topology optimization only generates near-optimal

results since it cannot ensure a global optimality. In addition, as a full-scale method [WSG21], it

needs a high simulation resolution to obtain a better description of the final design, which incurs a

heavy computational burden. As an alternative, the homogenization-based topology optimization

can generate a mathematical specification of theoretically optimal structures. More importantly, by

combining with the well-designed post-process strategy, it enables the possibility of deriving a near-

optimal high-resolution design from the optimization result that is obtained from the coarse simulation

resolution, thus, significantly saving processing time [GS18, GSA∗20].

For structures under a single load, the theoretically optimal structural layout can be approximated by

optimizing the distribution of square cells with a rectangular hole [BK88]. As illustrated in Fig. 3.11,

the design domain is discretized into finite elements, each of which represents a repetition of an

adapted configuration of the unit cell. The square cell has a unit side length, within it, there is a

rectangular hole. The configuration of the unit cell is thus described by the hole sizes αx and αy and

rotation angle θ , which expand the the design space of homogenization-based topology optimization

over the density-based topology optimization where only one design variable φ is involved. The

material properties of the unit cell with a rectangular hole are constructed using homogenization. For

the detailed theory about homogenization, one is referred to [GK90, HH98c, AA14].

The paradigm of the compliance-minimization optimization equations for the density-based topology

optimization shown in Equation 3.21-Equation 3.24 also applies for the homogenization-based topology

optimization. Accordingly, the numerical optimizers and density filters introduced for density-based

topology optimization in Subsection 3.4.1 can also be reused here, but note the Projection stage is not

needed since the homogenization-based topology optimization is not supposed to produce a binary

design. In principle, the total material consumption is the only constraint in homogenization-based

topology optimization, thus, the control equation of the homogenization-based topology optimization

can be formulated into
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Figure 3.11: (a) The design domain is discretized into bilinear square grids. (b) Each square element is assumed
to be filled by the orthotropic material. (c) The size and orientation of the approximately equivalent orthotropic
cell, i.e., the square element with rectangular hole, are taken as design variables in homogenization-based
topology optimization.
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Seeing from Equation 3.36, the difference between the density-based topology optimization and

homogenization-based one is the assumption of material properties, consequently, the elasticity tensors

are different. In specific, the density-based topology optimization employs the isotropic material model,

in which the simulation cell is described by the sole design variableφ. While the homogenization-based

approach employs the orthotropic material model achieved by the unit cell with a rectangular hole,

where the hole size parameters αx and αy describe the different capacities for load-carrying in the

orthogonal directions of the simulation cell, and θ depicts the orientation of the simulation cells.

The mechanical property of the unit cell with a rectangular hole is orthotropic. The volume fraction

or deposition ratio (ρe) of each cell is measured by 1−αxαy . The elasticity tensor of the orthotropic

cell is computed by

C(αx ,αy ,θ ) = RT (θ )CH(αx ,αy)R(θ ), (3.37)

where R(θ ) is the well-known rotation matrix. CH(αx ,αy) represents the effective elasticity tensor for

an axis-aligned unit cell with αx ,αy , and can be evaluated by numerical homogenization proposed

in [AA14].

At each iteration step of the optimization, the numerical optimizers used in the density-based

topology optimization can also be utilized to update the design variables αx and αy here. The rotation
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3.5 HOMOGENIZATION-BASED TOPOLOGY OPTIMIZATION

angle (θ) of each orthotropic cell is determined according to the corresponding principal stress

direction, as presented in [Ped89, Ped90] that the optimal orientation of an orthotropic composite

coincides with the principal stress directions if the structure is under a single load. An alternative

solution for updating θ is by the gradient descent methods, which can work for both the single- and

multi-loads situations but are less efficient than using principal stress directions in the single-load

cases [AGDP19, SGSB20]. The educational code provided in [WSG21] can be used for the introduced

homogenization-based topology optimization above.

It’s worth emphasizing that the unit cell with a rectangular hole, i.e., the orthotropic cell, does not

appear physically in discretizing the design domain. Instead, the Cartesian grid is still used to obtain

the finite elements, and the cell orthotropy is only achieved by the design variables αx , αy , and θ .

Besides the square cell with a rectangular hole, the rank-2 laminates material model can also be used

to approximate such optimized design [Ave87, Gro18]. For the multiple loading cases, the orthotropic

cells are inferior to describe the optimal anisotropic microstructure models, at which one needs to

resort to the rank-3 laminates [JSG22].

Still take the problem description in Figure 3.8a as an example to perform the homogenization-

based topology optimization, but a lower simulation resolution (80× 40) is used, Figure 3.12 shows

the optimized distribution of the orthotropic cells. It can be seen that this result gives the optimal

stiffness with compliance value c = 1.760c0, which is lower than the compliance of the results by the

density-based topology optimization in Figure 3.8, despite the potential discretizing error between

different mesh resolutions 80× 40 and 1280× 640. However, the result shown in Figure 3.12 cannot

be directly used for manufacturing since the specification of these spatially-varying orthotropic cells is

not a globally consistent geometry.

To tackle the manufacturing limit, the focus of homogenization-based approaches has shifted to

the post-process of translating the results of homogenization-based topology optimization into a

manufacturable geometry. This post-process is now often referred to as de-homogenization, which is

supposed to efficiently generate high-resolution structural designs from the result of homogenization-

based topology optimization performed on a coarse grid.

De-homogenization. The theoretical foundation of performing de-homogenization on the coarse

homogenization-based topology optimization result to obtain the high-resolution design is that the

periodic cells used in homogenization-based topology optimization can usually be described by a

Fourier series [RP12, RPDK15], thereby, the new features can be interpreted from the coarse simulation

results.

From the distribution of the optimized orthotropic cells, one can derive an equivalent density field

and a direction field, which are described by 1−αxαy and θ of each cell, respectively, see Figure 3.13.

The principle of de-homogenization is to re-distribute the density field so that 1) a fine-grid binary
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Figure 3.12: The optimized orthotropic cells by the homogenization-based topology optimization (c =
1.760c0, v = 0.400).

density layout is generated, 2) a continuous transition among the local structures are obtained, and 3)

the orientations of orthotropic cells are reflected in the binary density layout. In this way, one can

expect to obtain a manufacturable result that shares the same volume fraction with the density field,

meanwhile, inherits the mechanical performance of the optimal structure in a relaxed but controlled

manner.

The key component in the existing de-homogenization strategies is to compute a fine-grid scalar

field whose gradients are aligned with the direction field, which is achieved mainly by means of the

so-called Projection. To do so, the design space is parametrized by using the two orthogonal periodic

layers, e.g., the cosine waves, to represent the orthotropic cells. The Heaviside projection introduced

in Equation 3.27 are usually used to promote the sharp binary design. Combining with some shape

control schemes, the high-resolution manufacturable structure can be obtained [WSG21]. It’s worth

emphasizing that the singularity of the direction field (Figure 3.13b) usually needs to be treated

carefully to avoid the nonintegrability [SGSB20].

Sectional discussion and summary. In terms of computational efficiency, the existing de-

homogenization methods are already appealing in generating the high-resolution optimal structure

compared to the density-based topology optimization. However, such methods still involve several

cumbersome processes to obtain the final design, e.g., determining the scalar field (Projection),

handling singularity of the direction field, controlling the design shape, and removing the un-related

structural members. In our work Paper E [WWW22a], we consider de-homogenization from a rather

intuitive perspective. In specific, the design space is parametrized with a quad-dominant mesh whose
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3.5 HOMOGENIZATION-BASED TOPOLOGY OPTIMIZATION

Figure 3.13: (a) Density distribution characterized by 1−αxαy of the optimized orthotropic cells. (b) Direction
field extracted from the orientation of the optimized orthotropic cells.

edges are the piecewise linear streamlines traced from the direction field, the thicknesses of the mesh

edges are adjusted inward according to the density and anisotropy of the optimized orthotropic cells,

see Figure 3.14a-c. One can also take the elements of the quad-dominant mesh as a set of macroscopic

near-orthotropic cells in an intuitive manner. Since the direction field is given by the principal stress

direction in the current context, i.e., the streamlines are PSLs essentially. Thereby, the evenly spaced

PSL seeding proposed in [WNW∗22] can be directly used, and the singularity of the direction field can

be tackled by means of the topology analysis to the corresponding stress field. This method avoids the

projection step and thus is computationally efficient. In addition, since the final design of our method

is described by an explicit representation in the form of a quad-dominant mesh with each edge being

assigned a unique width, it would be beneficial for downstream operations such as user editing and

fabrication process planning, see Figure 3.14d for the high-resolution result by our method.

Comparing the structural designs from de-homogenizing the homogenization-based topology opti-

mization result (Figure 3.14d) and density-based topology optimization under global volume constraint

(Figure 3.8b, e), we see that they have very close compliance values under the same material consump-

tion. Though both of the structural designs have the same resolution (1280× 640) in the end, the

homogenization-based approach only needs to perform optimization on a significantly coarse resolution

(e.g., 80× 40 here) and then interpret the result on a higher resolution mesh via de-homogenization.

In contrast, the density-based one needs to perform the optimization on the full-scale resolution

(1280× 640), thus, consuming much more processing time.
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Figure 3.14: Method overview of the proposed de-homogenization strategy in our work Paper E [WWW22a]. (a)
The streamlines generated from the direction field shown in Figure 3.13a. The constructed quad-dominant mesh
(c) whose edges follow the piecewise linear streamlines (b) converted from the domain-filling and evenly spaced
streamlines (a) that are generated from the direction field shown in Figure 3.13a. (d) The de-homogenized
structural design (1280× 640), c is the optimized compliance value, v is the volume fraction of the design.
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4
Paper A: A Globally Conforming Lattice Structure for 2D Stress

Tensor Visualization1

Abstract of paper We present a visualization technique for 2D stress tensor fields based on the

construction of a globally conforming lattice. Conformity ensures that the lattice edges follow the

principal stress directions and the aspect ratio of lattice elements represents the stress anisotropy. Since

such a lattice structure cannot be space-filling in general, it is constructed from multiple intersecting

lattice beams. Conformity at beam intersections is ensured via a constrained optimization problem,

by computing the aspect ratio of elements at intersections so that their edges meet when continued

along the principal stress lines. In combination with a coloring scheme that encodes relative stress

magnitudes, a global visualization is achieved. By introducing additional constraints on the positional

variation of the beam intersections, coherent visualizations are achieved when external loads or material

parameters are changed. In a number of experiments using non-trivial scenarios, we demonstrate the

capability of the proposed visualization technique to show the global and local structure of a given

stress field.

Author Contribution The first author was responsible for the implementation of the whole method,

including the construction of the constrained optimization equations. Prof. Dr. Dr. Jun Wu gave

the physical interpretation of the obtained visualization and suggested the solving scheme of the

constrained optimization problem. Prof. Dr. Rüdiger Westermann proposed the original idea for

the project, i.e., achieving such a visualization by optimization. The paper was finished under close

collaboration among the co-authors.

1©2020 Wiley. Reprinted, with permission, from the co-authors, Computer Graphics Forum, June 2020.
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Paper B: 3D-TSV: The 3D Trajectory-based Stress Visualizer1

Abstract of paper In this paper, we present novel algorithms for visualizing the three mutually

orthogonal principal stress directions in 3D solids under load and we discuss the efficient integration

of these algorithms into the 3D Trajectory-based Stress Visualizer (3D-TSV), a visual analysis tool for

the exploration of the principal stress directions of 3D stress field. In the design of 3D-TSV, several

perceptual problems have been solved. We present a novel algorithm for generating a space-filling

and evenly spaced set of stress lines. The algorithm obtains a more regular appearance by considering

the locations of lines, and enables the extraction of a level-of-detail representation with adjustable

sparseness of the trajectories along a certain stress direction. A new combined visualization of two

principal directions via oriented ribbons enables to convey ambiguities in the orientation of the principal

stress directions. Additional depth cues have been added to improve the perception of the spatial

relationships between trajectories. 3D-TSV provides a modular and generic implementation of key

algorithms required for a trajectory-based visual analysis of principal stress directions, including the

automatic seeding of space-filling stress lines, their extraction using numerical schemes, their mapping

to an effective renderable representation, and rendering options to convey structures with special

mechanical properties. 3D-TSV is accessible to end users via a C++- and OpenGL-based rendering

frontend that is seamlessly connected to a MatLab-based extraction backend. The code (BSD license)

of 3D-TSV as well as scripts to make ANSYS and ABAQUS simulation results accessible to the 3D-TSV

backend are publicly available.

Author Contribution The first author is responsible for the design of the seeding algorithm for

evenly-spaced and domain-filling PSL distribution and developed the backend of the tool 3D-TSV.

Christoph Neuhauser deeply participated in the discussion of the PSL rendering and developed the

1©2022 Elsevier. Reprinted, with permission (Open access under the terms of the Creative Commons CC BY license),
from the co-authors, Advances in Engineering Software, August 2022.
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frontend of the tool of 3D-TSV. Prof. Dr. Dr. Jun Wu and Dr. Xifeng Gao gave the practical and

conceptual inspiration and guidance for this project, respectively. Discussions with Prof. Dr. Rüdiger

Westermann led to the final paper.
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Paper C: Stress Topology Analysis for Porous Infill Optimization1

Abstract of paper The optimization of porous infill structures via local volume constraints has

become a popular approach in topology optimization. In some design settings, however, the iterative

optimization process converges only slowly, or not at all even after several hundreds or thousands of

iterations. This leads to regions in which a distinct binary design is difficult to achieve. Interpreting

intermediate density values by applying a threshold results in large solid or void regions, leading

to sub-optimal structures. We find that this convergence issue relates to the topology of the stress

tensor field that is simulated when applying the same external forces on the solid design domain. In

particular, low convergence is observed in regions around so-called trisector degenerate points. Based

on this observation, we propose an automatic initialization process that prescribes the topological

skeleton of the stress field into the material field as solid simulation elements. These elements guide

the material deposition around the degenerate points, but can also be remodelled or removed during

the optimization. We demonstrate significantly improved convergence rates in a number of use cases

with complex stress topologies. The improved convergence is demonstrated for infill optimization

under homogeneous as well as spatially varying local volume constraints.

Author Contribution The first author found the correlation between the convergence issue of the

porous-infill optimization and the stress topology and was responsible for the implementation of the

whole method. Prof. Dr. Dr. Jun Wu suggested the use of a topological skeleton as the initialization.

Prof. Dr. Rüdiger Westermann gave the analysis on the relation between the convergence issue and

the stress topology. The final paper was made under close collaboration among the co-authors.

1©2022 Springer. Reprinted, with permission (Open access under the terms of the Creative Commons CC BY license),
from the co-authors, Structural and Multidisciplinary Optimization, February 2022.
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Paper D: Stress trajectory guided structural design and topology

optimization1

Abstract of paper Density-based topology optimization using global and local volume constraints

is a key technique to automatically design lightweight structures. It is known that stiffness optimal

structures comprise spatially varying geometric patterns that span multiple length scales. However,

both variants of topology optimization have challenges to efficiently converge to such a structural

layout. In this paper, we investigate material layouts that are generated from stress trajectories, i.e., to

compile a globally consistent structure by tracing the stress trajectories from finite element simulation

of the solid design domain under external loads. This is particularly appealing from a computational

perspective, since it avoids iterative optimization that involves finite element analysis on fine meshes.

By regularizing the thickness of each trajectory using derived strain energy measures along them, stiff

structural layouts can be generated in a highly efficient way. We then shed light on the use of the

resulting structures as initial density fields in density-based topology optimization, i.e., to generate an

initial density field that is then further optimized via topology optimization. We demonstrate that by

using a stress trajectory guided density initialization in lieu of a uniform density field, convergence

issues in density-based topology optimization can be significantly relaxed at comparable stiffness of

the resulting structural layouts.

Author Contribution The first author was responsible for the whole method. Discussions with Prof.

Dr. Dr. Jun Wu and Prof. Dr. Rüdiger Westermann led to the final paper.

1©2022 ASME. Reprinted, with permission, from the co-authors, ASME IDETC-CIE: 42nd Computers and Information in
Engineering Conference (CIE), 2022.
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Paper E: Streamline guided De-Homogenization for

High-Resolution Structural Design1

Abstract of paper We present a novel de-homogenization approach to generate a high-resolution

and manufacturable structure from the continuous density layout produced by homogenization-based

topology optimization. The proposed approach builds upon a streamline-based parametrization of

the design domain, using a set of space-filling and evenly-spaced streamlines in the two mutually

orthogonal direction fields that are obtained by globally optimizing the orientation of orthotropic cells

via a homogenization-based approach. Streamlines in this field are converted into a graph structure,

which is then used to construct a lattice structure composed of quadrilateral and triangular cells

whose edges follow the direction fields. The manufacturable design, i.e., the binary density layout,

is achieved by extruding material from the edges of each lattice element inward, according to the

volume fraction of the continuous density field in each element. In this way, the volume fraction of

each de-homogenized lattice element remains equal to the corresponding homogeneous elements. In

addition, we propose a metric to evaluate the anisotropy of lattice elements, and use it to allocate

more material along the lattice edges bearing larger stresses. In a number of examples we demonstrate

high mechanical performance and regular appearance of the resulting binary designs, as well as high

computational efficiency of the proposed construction process.

Author Contribution The first author was responsible for the design and implementation of the

whole method. Prof. Dr. Dr. Jun Wu brought the preliminary idea for this project. Discussions with

Prof. Dr. Rüdiger Westermann led to the final paper.

1©2022 ASME. Reprinted, with permission, from the co-authors, ASME Journal of Mechanical Design, 2022.
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Final Discussion

9.1 Conclusion

This thesis presents a series of methods to answer the two questions proposed in Introduction: How

to visualize the stress tensor field? And how does stress visualization benefit structural design and

optimization?

Via the globally conforming lattice structure proposed in Paper A, we have demonstrated that the

grids generated by the inherently intersected major and minor PSLs in 2D stress fields can be leveraged

to encode the local stress anisotropy. This enables the construction of a hybrid visualization that

integrates the advantages of trajectory- and glyph-based stress visualization into a globally consistent

structure, such as stress direction, continuity, divergence/convergence, and anisotropic properties.

Herein, the conformity is achieved by a constrained optimization problem. We have also shown a

modification to visualize 3D stress fields, by progressively building a beam structure comprised of

hexahedral elements using a sequential growth process. The 3D-TSV is presented in Paper B, which is,

to the best of our knowledge, the first dedicated tool to visualize the major, medium, and minor PSLs

simultaneously. 3D-TSV builds upon a novel seeding strategy, which can generate a domain-filling and

evenly spaced set of PSLs. This seeding approach is derived from the classic evenly-spaced streamline

seeding methods for vector field visualization, and tailored for stress tensor visualization. Specifically,

during the course of seeding, all three types of PSLs are considered simultaneously, and different

types of PSLs are encouraged to intersect. We have demonstrated that, in this way, the visual quality

of the resulting PSL distribution can be improved. We’ve also formed a consistent multi-resolution

hierarchy of PSLs by incorporating different merging thresholds for each PSL type into the seeding

process. 3D-TSV works for both 2D and 3D situations and is made publicly available under the BSD

2-Clause License.

We have investigated the convergence behavior of density-based topology optimization by means of
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the stress tensor visualization techniques. In specific, we in Paper C have concluded that the existence

of trisector degenerate points in the stress field simulated on the design domain is the major cause

of low convergence when the local volume constraint is employed in topology optimization. To this

end, we have proposed a stress topology-based starting guess that quickly guides the optimization

towards a stable binary design. This starting guess generates an initial solid material layout along

the topological skeleton of the stress field, which is comprised of principal stress lines starting at the

trisector degenerate points. Built upon the insights of Paper C, we’ve made a more aggressive step in

initializing the starting guess for density-based topology optimization, i.e., using the domain-filling and

evenly spaced PSLs instead of only the topological skeleton (Paper D). In particular, we’ve found that

the convergence rate of topology optimization under local volume constraint can be further improved

without violating the optimal mechanical performance, meanwhile, the resulting structure exhibits a

more regular appearance. The topology optimization under global volume constraint converges to a

structure that spans multiple length scales, in lieu of a predominantly mono-structure. Thereby, the

robustness of the final design with respect to the local damage is improved. We’ve also proposed a

method to create the near-optimal lightweight structure by directly using the domain-filling and evenly

spaced PSLs. This method is highly efficient since it avoids the iterative optimization process, and the

resulting structure shows comparable mechanical performance with the one by topology optimization

under local volume constraint.

In the end, we in Paper E have proposed a novel streamline-based de-homogenization strategy for

the homogenization-based topology optimization results, which enables the quick design of the high-

resolution lightweight structure. Here, the streamlines are essentially PSLs in the scope of this thesis.

The compliance of the de-homogenized high-resolution structures is very close to that of the optimal

design from homogenization-based optimization, and it is consistently superior to the compliance

achieved via density-based topology optimization. The resulting structures exhibit a globally regular

appearance, uniformly covering the domain with quad-dominant mesh elements. More importantly,

the final design is described by an explicit representation in the form of a quad-dominant mesh, which

can benefit downstream operations such as user editing and fabrication process planning.

Apart from the concrete contributions to the methodology and techniques, our work combined

also leads to a conceptual conclusion. I.e., with properly-designed stress visualization methods, the

significance of the stress field in structural design and optimization is not only a metric for evaluating the

rationality of structural design but also can bring new solutions for structural design and optimization.

In return, the novel stress tensor visualization methods could be spawned by considering some concrete

requirements for structural design and optimization when constructing the stress tensor visualization

algorithms. Altogether, it’s promising to promote the interaction of research between stress tensor

visualization and structural design and optimization.
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9.2 FUTURE WORK

9.2 Future Work

Both in Paper D ([WWW22c]) and Paper E ([WWW22a]), the core idea of our work is essentially

to parametrize the design space of structural topology optimization by leveraging the structured

visualization of the stress tensor field. Thereby, in terms of methodology and results, we obtain several

appealing features over the conventional topology optimization, for instance, the high computational

efficiency, regular appearance of structural design, and the explicit geometrical representation of

the design. The limitation is that we only shed light on 2D situations in these works. Thus, in

future work, our primary goal is to extend these proposed methods to 3D. The preliminary outlook of

this extension would be 1) guiding the density-based topology optimization under the local volume

constraint converge to a truss-like design instead of a wall-like one. 2) promoting the density-based

topology optimization under the global volume constraint to generate a relatively multi-scale structure

instead of a mono-scale one, but without using the extremely high simulation resolution. 3) enabling

the quick design of the high-resolution infill structure using PSLs. In principle, such an extension is

straightforward. Yet, as we know that the 3D lines do not intersect necessarily though we’ve tried to

let more PSLs intersect via 3D-TSV ([WNW∗22]). Such a feature would bring a negative impact on

the structural design from the view of optimal stiffness. Thus, we need to study the PSL intersection

issue first during the extension. Towards a similar goal, the existing approaches typically resort to the

frame-aligned parametrization and the hex-mesh generation built upon it [AJL∗19, WWG21]. To get

rid of the effect of the degeneracy, such approaches first convert the original stress field into a smooth

frame field for subsequent parametrization. A different method is achieved by using the so-called

stream surfaces that strictly align with the input frame field, where they circumvent the singularity issue

based on their observation that the structures they seek are not affected by the singularities [SOG∗22].

Unlike the methods in [AJL∗19] and [WWG21] producing the truss-like designs, [SOG∗22] gives rise

to the wall-like design. Built upon the existing methods, our ambitious goal is still to construct the

parametrization from PSLs. In specific, we plan to explore the feasibility of introducing a controllable

relaxing scheme to make the PSL set well intersected, meanwhile, conveying the singularity of the

stress field distinctly. If necessary, we also plan to investigate the use of interactive editing for the

design. The ultimate result shall be a new structured grid-like visualization of the 3D stress tensor field

but can also serve as a parametrization to the design domain for structural design and optimization.

In Paper C ([WWW22b]), we study the convergence issue of the porous infill optimization

([WAWS18]) from a novel perspective. We make use of the stress topology analysis to predict the

potential low-convergence regions and solve this convergence issue effectively by employing a stress

topological skeleton-guided initialization strategy. However, the discussion in this work is restricted

only to 2D, we aim for extending it to 3D in future work. To this end, we need a visualizer to help spot

the low-convergence regions in the density field during the course of topology optimization, which,
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9 FINAL DISCUSSION

in principle, can be arranged into a direct volume rendering problem. In addition, we also need a

robust solution to obtain the topological features like degeneracy and topological skeleton of the

stress field in 3D. Through this way, we can study the potential correlation between the convergence

issue and the stress topology. The major challenge of such idea would be the robust identification

of degeneracy due to the well-known issue of numerical instability. Given that it’s not necessary to

compute the precise positions of degeneracy if we just want to compare the spatial distributions of

the low-convergence regions and the degeneracy, we plan to circumvent this challenge via a relaxed

scheme. Specifically, we’ll define a degeneracy metric over each element, which is supposed to quantify

the scale of degeneracy within each element that may contain the degeneracy, then we can convert

the rigorous stress topology analysis problem into a rendering problem. In this way, we can expect

to obtain an intuitive impression of the possible correlation between the low-convergence regions

and the stress topology. If this correlation holds, we’ll consider using PSLs around the degeneracy to

initialize the starting guess of the porous infill optimization in 3D.

This thesis only covers the single loading condition in structural topology optimization, while

the topology optimization subjected to multiple loading cases is also an important concern in some

application scenarios. It won’t bring too much difference to the density-based topology optimization

when the multiple loading cases are considered, one usually just needs to sum up the compliance

values corresponding to different loading conditions with the assigned weighting factors of each. When

coming to homogenization-based topology optimization, however, things get complex. It has been

proposed in [Ave87] and further confirmed in [JSG22] that rank-3 laminates are optimal for such

situations. In contrast, the orthotropic material models used for the single loading case, like rank-2

laminates and the square unit cell with a rectangular hole, cannot characterize the anisotropy here.

Consequently, one needs three direction vectors to describe the orientation of each cell. Technically,

the existing projection-based de-homogenization methods (e.g., [GS18]) for the single loading case

can also be adapted to handle such an issue, see [JSG22]. However, the resulting design is exhibited

in a less structured way since the rather random intersections among the sub-structures that follow the

three different direction fields. We aim for seeking a compact geometric description of such a design.

Specifically, we plan to generate a conforming triangular mesh to parameterize the design domain.

For each triangular element, the three edges follow the three optimized direction vectors, respectively.

Compared to the existing method, the planned one incurs fewer vertices and is supposed to provide

better regularity and manufacturability. Further, we’ll also explore the feasibility of extending such

an idea to 3D, where the triangular mesh would be replaced with the tetrahedral mesh. The key

component of this work package is the meshing algorithm, i.e., how to generate a conforming triangular

mesh from a direction field where three different vector fields exist.
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[JSF∗02] JEREMIĆ B., SCHEUERMANN G., FREY J., YANG Z., HAMANN B., JOY K. I., HAGEN H.: Tensor

visualizations in computational geomechanics. International Journal for Numerical and Analytical
Methods in Geomechanics 26, 10 (2002), 925–944. doi:10.1002/nag.223.

[JSG22] JENSEN P. D. L., SIGMUND O., GROEN J. P.: De-homogenization of optimal 2d topologies for multiple

loading cases. Computer Methods in Applied Mechanics and Engineering 399 (2022), 115426.

doi:10.1016/j.cma.2022.115426.

[JWH19] JANKOWAI J., WANG B., HOTZ I.: Robust extraction and simplification of 2d symmetric tensor

field topology. In Computer Graphics Forum (2019), vol. 38, Wiley Online Library, pp. 337–349.

doi:10.1111/cgf.13693.

[KAH14] KRATZ A., AUER C., HOTZ I.: Tensor invariants and glyph design. In Visualization and Processing
of Tensors and Higher Order Descriptors for Multi-Valued Data. Springer, 2014, pp. 17–34. doi:
10.1007/978-3-642-54301-2_2.

73

https://www.sciencedirect.com/science/article/pii/S0045794998001321
http://dx.doi.org/https://doi.org/10.1016/S0045-7949(98)00132-1
https://www.sciencedirect.com/science/article/pii/S0045794998001333
http://dx.doi.org/https://doi.org/10.1016/S0045-7949(98)00133-3
http://dx.doi.org/https://doi.org/10.1016/S0045-7949(98)00133-3
https://www.sciencedirect.com/science/article/pii/S004579499800131X
http://dx.doi.org/https://doi.org/10.1016/S0045-7949(98)00131-X
http://dx.doi.org/https://doi.org/10.1016/S0045-7949(98)00131-X
http://dx.doi.org/10.1109/2945.582332
http://dx.doi.org/10.1109/2945.582332
http://dx.doi.org/10.1007/978-3-540-76858-6_33
http://dx.doi.org/10.1007/978-3-540-76858-6_33
http://dx.doi.org/10.1002/nag.288
http://dx.doi.org/10.1007/978-3-7091-6876-9_5
http://dx.doi.org/10.1002/nag.223
http://dx.doi.org/10.1016/j.cma.2022.115426
http://dx.doi.org/10.1111/cgf.13693
http://dx.doi.org/10.1007/978-3-642-54301-2_2
http://dx.doi.org/10.1007/978-3-642-54301-2_2


BIBLIOGRAPHY

[KASH13] KRATZ A., AUER C., STOMMEL M., HOTZ I.: Visualization and analysis of second-order tensors:

Moving beyond the symmetric positive-definite case. In Computer Graphics Forum (2013), vol. 32,

Wiley Online Library, pp. 49–74. doi:10.1111/j.1467-8659.2012.03231.x.

[KFW16] KANZLER M., FERSTL F., WESTERMANN R.: Line density control in screen-space via balanced line

hierarchies. Computers & Graphics 61 (2016), 29–39. doi:10.1016/j.cag.2016.08.001.

[KGSS20] KRETZSCHMAR V., GÜNTHER F., STOMMEL M., SCHEUERMANN G.: Tensor spines-a hyperstreamlines

variant suitable for indefinite symmetric second-order tensors. In 2020 IEEE Pacific Visualization
Symposium (PacificVis) (2020), IEEE, pp. 106–110. doi:10.1109/PacificVis48177.2020.1008.

[Kin04] KINDLMANN G.: Superquadric tensor glyphs. In Proceedings of the Sixth Joint Eurographics-IEEE
TCVG conference on Visualization (2004), pp. 147–154. doi:10.5555/2384225.2384248.

[KKH11] KRATZ A., KETTLITZ N., HOTZ I.: Particle-based anisotropic sampling for two-dimensional tensor

field visualization. In VMV (2011), pp. 145–152.

[KLC16] KWOK T.-H., LI Y., CHEN Y.: A structural topology design method based on principal stress line.

Computer-Aided Design 80 (2016), 19–31. doi:10.1016/j.cad.2016.07.005.

[KMH11] KRATZ A., MEYER B., HOTZ I.: A visual approach to analysis of stress tensor fields. In Dagstuhl
Follow-Ups (2011), vol. 2, Schloss Dagstuhl-Leibniz-Zentrum für Informatik. doi:10.4230/DFU.
Vol2.SciViz.2011.188.

[KRG∗22] KRETZSCHMAR V., ROCHA A., GÜNTHER F., STOMMEL M., SCHEUERMANN G.: Stress visualization for

interface optimization of a hybrid component using surface tensor spines. IEEE Computer Graphics
and Applications 42, 2 (2022), 45–55. doi:10.1109/MCG.2022.3149875.

[KSZ∗14] KRATZ A., SCHOENEICH M., ZOBEL V., BURGETH B., SCHEUERMANN G., HOTZ I., STOMMEL M.: Tensor

visualization driven mechanical component design. In 2014 IEEE Pacific Visualization Symposium
(2014), IEEE, pp. 145–152. doi:10.1109/PacificVis.2014.51.

[KW06] KINDLMANN G., WESTIN C.-F.: Diffusion tensor visualization with glyph packing. IEEE transactions
on visualization and computer graphics 12, 5 (2006), 1329–1336. doi:10.1109/TVCG.2006.134.

[KWS∗08] KINDLMANN G., WHALEN S., SUAREZ R., GOLBY A., WESTIN C.: Quantification of white matter fiber

orientation at tumor margins with diffusion tensor invariant gradients. In Proc. Intl. Soc. Mag.
Reson. Med (2008), vol. 16, p. 429.

[LC18] LAMBE A. B., CZEKANSKI A.: Topology optimization using a continuous density field and adaptive

mesh refinement. International Journal for Numerical Methods in Engineering 113, 3 (2018),

357–373. doi:10.1002/nme.5617.

[LGL∗21] LI H., GAO L., LI H., LI X., TONG H.: Full-scale topology optimization for fiber-reinforced structures

with continuous fiber paths. Computer Methods in Applied Mechanics and Engineering 377 (2021),

113668. doi:10.1016/j.cma.2021.113668.

[LGLT20] LI H., GAO L., LI H., TONG H.: Spatial-varying multi-phase infill design using density-based

topology optimization. Computer Methods in Applied Mechanics and Engineering 372 (2020),

113354. doi:10.1016/j.cma.2020.113354.

74

http://dx.doi.org/10.1111/j.1467-8659.2012.03231.x
http://dx.doi.org/10.1016/j.cag.2016.08.001
http://dx.doi.org/10.1109/PacificVis48177.2020.1008
http://dx.doi.org/10.5555/2384225.2384248
http://dx.doi.org/10.1016/j.cad.2016.07.005
http://dx.doi.org/10.4230/DFU.Vol2.SciViz.2011.188
http://dx.doi.org/10.4230/DFU.Vol2.SciViz.2011.188
http://dx.doi.org/10.1109/MCG.2022.3149875
http://dx.doi.org/10.1109/PacificVis.2014.51
http://dx.doi.org/10.1109/TVCG.2006.134
http://dx.doi.org/10.1002/nme.5617
http://dx.doi.org/10.1016/j.cma.2021.113668
http://dx.doi.org/10.1016/j.cma.2020.113354


BIBLIOGRAPHY

[LHZ∗18] LIU H., HU Y., ZHU B., MATUSIK W., SIFAKIS E.: Narrow-band topology optimization on a sparsely

populated grid. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1–14. doi:10.1145/3272127.
3275012.

[LKY∗21] LEE J., KWON C., YOO J., MIN S., NOMURA T., DEDE E. M.: Design of spatially-varying orthotropic

infill structures using multiscale topology optimization and explicit de-homogenization. Additive
Manufacturing 40 (2021), 101920. doi:10.1016/j.addma.2021.101920.

[LS11] LAZAROV B. S., SIGMUND O.: Filters in topology optimization based on helmholtz-type differential

equations. International Journal for Numerical Methods in Engineering 86, 6 (2011), 765–781.

doi:10.1002/nme.3072.

[Mic04] MICHELL A. G. M.: Lviii. the limits of economy of material in frame-structures. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 8, 47 (1904), 589–597.

[Mle92] MLEJNEK H.: Some aspects of the genesis of structures. Structural optimization 5, 1-2 (1992),

64–69. doi:10.1007/BF01744697.

[MSM95] MOORE J. G., SCHORN S. A., MOORE J.: Methods of classical mechanics applied to turbulence

stresses in a tip leakage vortex. In Turbo Expo: Power for Land, Sea, and Air (1995), vol. 78828,

American Society of Mechanical Engineers, p. V005T16A006. doi:10.1115/95-GT-220.

[MTHG03] MATTAUSCH O., THEUSSL T., HAUSER H., GRÖLLER E.: Strategies for interactive exploration of 3d

flow using evenly-spaced illuminated streamlines. In Proceedings of the 19th spring conference on
Computer graphics (2003), Association for Computing Machinery, pp. 213–222. doi:10.1145/
984952.984987.

[NHTB04] NORATO J., HABER R., TORTORELLI D., BENDSØE M. P.: A geometry projection method for shape

optimization. International Journal for Numerical Methods in Engineering 60, 14 (2004), 2289–2312.

doi:10.1002/nme.1044.

[NLJK21] NIE Z., LIN T., JIANG H., KARA L. B.: Topologygan: Topology optimization using generative

adversarial networks based on physical fields over the initial domain. Journal of Mechanical Design
143, 3 (2021). doi:10.1115/1.4049533.

[ORT18] OSTER T., RÖSSL C., THEISEL H.: Core lines in 3d second-order tensor fields. Computer Graphics
Forum 37, 3 (2018), 327–337. doi:10.1111/cgf.13423.

[Ped89] PEDERSEN P.: On optimal orientation of orthotropic materials. Structural optimization 1, 2 (1989),

101–106. doi:10.1007/BF01637666.

[Ped90] PEDERSEN P.: Bounds on elastic energy in solids of orthotropic materials. Structural optimization 2,

1 (1990), 55–63. doi:10.1007/BF01743521.

[PL20] PATEL M., LAIDLAW D. H.: Visualization of 3d stress tensor fields using superquadric glyphs on

displacement streamlines. IEEE Transactions on Visualization and Computer Graphics 27, 7 (2020),

3264–3276. doi:10.1109/TVCG.2020.2968911.

75

http://dx.doi.org/10.1145/3272127.3275012
http://dx.doi.org/10.1145/3272127.3275012
http://dx.doi.org/10.1016/j.addma.2021.101920
http://dx.doi.org/10.1002/nme.3072
http://dx.doi.org/10.1007/BF01744697
http://dx.doi.org/10.1115/95-GT-220
http://dx.doi.org/10.1145/984952.984987
http://dx.doi.org/10.1145/984952.984987
http://dx.doi.org/10.1002/nme.1044
http://dx.doi.org/10.1115/1.4049533
http://dx.doi.org/10.1111/cgf.13423
http://dx.doi.org/10.1007/BF01637666
http://dx.doi.org/10.1007/BF01743521
http://dx.doi.org/10.1109/TVCG.2020.2968911


BIBLIOGRAPHY

[PP19] PLOCHER J., PANESAR A.: Review on design and structural optimisation in additive manufacturing:

Towards next-generation lightweight structures. Materials & Design 183 (2019), 108164. doi:
10.1016/j.matdes.2019.108164.

[PT08] PANTZ O., TRABELSI K.: A post-treatment of the homogenization method for shape optimization.

SIAM Journal on Control and Optimization 47, 3 (2008), 1380–1398. doi:10.1137/070688900.

[PYW∗15] PALACIOS J., YEH H., WANG W., ZHANG Y., LARAMEE R. S., SHARMA R., SCHULTZ T., ZHANG E.: Feature

surfaces in symmetric tensor fields based on eigenvalue manifold. IEEE transactions on visualization
and computer graphics 22, 3 (2015), 1248–1260. doi:10.1109/TVCG.2015.2484343.

[QJJ∗20] QIU W., JIN P., JIN S., WANG C., XIA L., ZHU J., SHI T.: An evolutionary design approach to shell-infill

structures. Additive Manufacturing 34 (2020), 101382. doi:10.1016/j.addma.2020.101382.

[QRZZ20] QU B., ROY L., ZHANG Y., ZHANG E.: Mode surfaces of symmetric tensor fields: Topological analysis

and seamless extraction. IEEE Transactions on Visualization and Computer Graphics 27, 2 (2020),

583–592. doi:10.1109/TVCG.2020.3030431.

[RBN∗18] RAITH F., BLECHA C., NAGEL T., PARISIO F., KOLDITZ O., GÜNTHER F., STOMMEL M., SCHEUERMANN G.:

Tensor field visualization using fiber surfaces of invariant space. IEEE transactions on visualization
and computer graphics 25, 1 (2018), 1122–1131. doi:10.1109/TVCG.2018.2864846.

[RKZZ18] ROY L., KUMAR P., ZHANG Y., ZHANG E.: Robust and fast extraction of 3d symmetric tensor field

topology. IEEE transactions on visualization and computer graphics 25, 1 (2018), 1102–1111.

doi:10.1109/TVCG.2018.2864768.

[RP12] RUMPF R. C., PAZOS J.: Synthesis of spatially variant lattices. Optics express 20, 14 (2012),

15263–15274. doi:10.1364/OE.20.015263.

[RPDK15] RUMPF R. C., PAZOS J. J., DIGAUM J. L., KUEBLER S. M.: Spatially variant periodic structures in

electromagnetics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 373, 2049 (2015), 20140359. doi:10.1098/rsta.2014.0359.

[SBGC20] SANE S., BUJACK R., GARTH C., CHILDS H.: A survey of seed placement and streamline selection

techniques. In Computer Graphics Forum (2020), vol. 39, Wiley Online Library, pp. 785–809.

doi:10.1111/cgf.14036.

[SdTT18] SALAZAR DE TROYA M. A., TORTORELLI D. A.: Adaptive mesh refinement in stress-constrained

topology optimization. Structural and Multidisciplinary Optimization 58, 6 (2018), 2369–2386.

doi:10.1007/s00158-018-2084-2.

[SGSB20] STUTZ F. C., GROEN J. P., SIGMUND O., BÆRENTZEN J. A.: Singularity aware de-homogenization for

high-resolution topology optimized structures. Structural and Multidisciplinary Optimization (aug

2020). doi:10.1007/s00158-020-02681-6.

[Sig01] SIGMUND O.: A 99 line topology optimization code written in Matlab. Structural and multidisci-
plinary optimization 21, 2 (2001), 120–127. doi:10.1007/s001580050176.

76

http://dx.doi.org/10.1016/j.matdes.2019.108164
http://dx.doi.org/10.1016/j.matdes.2019.108164
http://dx.doi.org/10.1137/070688900
http://dx.doi.org/10.1109/TVCG.2015.2484343
http://dx.doi.org/10.1016/j.addma.2020.101382
http://dx.doi.org/10.1109/TVCG.2020.3030431
http://dx.doi.org/10.1109/TVCG.2018.2864846
http://dx.doi.org/10.1109/TVCG.2018.2864768
http://dx.doi.org/10.1364/OE.20.015263
http://dx.doi.org/10.1098/rsta.2014.0359
http://dx.doi.org/10.1111/cgf.14036
http://dx.doi.org/10.1007/s00158-018-2084-2
http://dx.doi.org/10.1007/s00158-020-02681-6
http://dx.doi.org/10.1007/s001580050176


BIBLIOGRAPHY

[Sig07] SIGMUND O.: Morphology-based black and white filters for topology optimization. Structural and
Multidisciplinary Optimization 33, 4 (2007), 401–424. doi:10.1007/s00158-006-0087-x.

[SK10] SCHULTZ T., KINDLMANN G. L.: Superquadric glyphs for symmetric second-order tensors. IEEE
transactions on visualization and computer graphics 16, 6 (2010), 1595–1604. doi:10.1109/TVCG.
2010.199.

[SK16] SELTZER N., KINDLMANN G.: Glyphs for asymmetric second-order 2d tensors. Computer Graphics
Forum 35, 3 (2016), 141–150. doi:10.1111/cgf.12890.

[SM13] SIGMUND O., MAUTE K.: Topology optimization approaches. Struct. Multidiscip. Optim. 48, 6

(2013), 1031–1055. doi:10.1007/s00158-013-0978-6.

[SOG∗22] STUTZ F. C., OLSEN T. F., GROEN J. P., AAGE N., SIGMUND O., SOLOMON J., BÆRENTZEN J. A.:

Synthesis of frame field-aligned multi-laminar structures. ACM Transactions on Graphics (2022).

doi:https://doi.org/10.1145/3516522.

[SPG19] SCHMIDT M.-P., PEDERSEN C. B., GOUT C.: On structural topology optimization using graded

porosity control. Structural and Multidisciplinary Optimization 60, 4 (2019), 1437–1453. doi:
10.1007/s00158-019-02275-x.

[Sva87] SVANBERG K.: The method of moving asymptotes—a new method for structural optimization.

International journal for numerical methods in engineering 24, 2 (1987), 359–373. doi:10.1002/
nme.1620240207.

[TB96] TURK G., BANKS D.: Image-guided streamline placement. In Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques (1996), Association for Computing

Machinery, pp. 453–460. doi:10.1145/237170.237285.

[THBG12] TRICOCHE X., HLAWITSCHKA M., BARAKAT S., GARTH C.: Beyond topology: a lagrangian metaphor

to visualize the structure of 3d tensor fields. In New Developments in the Visualization and Processing
of Tensor Fields. Springer, 2012, pp. 93–109. doi:10.1007/978-3-642-27343-8_5.

[TKW08] TRICOCHE X., KINDLMANN G., WESTIN C.-F.: Invariant crease lines for topological and structural

analysis of tensor fields. IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008),

1627–1634. doi:10.1109/TVCG.2008.148.

[TM15] TAM K.-M. M., MUELLER C. T.: Stress line generation for structurally performative architectural

design. In 35th Annual Conference of the Association for Computer Aided Design in Architecture
(Cincinnati, Ohio, USA, 2015), ACADIA. doi:1721.1/125063.

[TSA21] TRÄFF E. A., SIGMUND O., AAGE N.: Topology optimization of ultra high resolution shell structures.

Thin-Walled Structures 160 (2021), 107349. doi:10.1016/j.tws.2020.107349.

[VBVP04] VILANOVA A., BERENSCHOT G., VAN PUL C.: Dti visualization with streamsurfaces and evenly-spaced

volume seeding. In Proceedings of the Sixth Joint Eurographics-IEEE TCVG conference on Visualization
(2004), pp. 173–182. doi:10.5555/2384225.2384252.

77

http://dx.doi.org/10.1007/s00158-006-0087-x
http://dx.doi.org/10.1109/TVCG.2010.199
http://dx.doi.org/10.1109/TVCG.2010.199
http://dx.doi.org/10.1111/cgf.12890
http://dx.doi.org/10.1007/s00158-013-0978-6
http://dx.doi.org/https://doi.org/10.1145/3516522
http://dx.doi.org/10.1007/s00158-019-02275-x
http://dx.doi.org/10.1007/s00158-019-02275-x
http://dx.doi.org/10.1002/nme.1620240207
http://dx.doi.org/10.1002/nme.1620240207
http://dx.doi.org/10.1145/237170.237285
http://dx.doi.org/10.1007/978-3-642-27343-8_5
http://dx.doi.org/10.1109/TVCG.2008.148
http://dx.doi.org/1721.1/125063
http://dx.doi.org/10.1016/j.tws.2020.107349
http://dx.doi.org/10.5555/2384225.2384252


BIBLIOGRAPHY

[War02] WARD M. O.: A taxonomy of glyph placement strategies for multidimensional data visualization.

Information Visualization 1, 3-4 (2002), 194–210. doi:10.1057/PALGRAVE.IVS.9500025.

[WAWS18] WU J., AAGE N., WESTERMANN R., SIGMUND O.: Infill optimization for additive manufacturing –

approaching bone-like porous structures. IEEE Transactions on Visualization and Computer Graphics
24, 2 (2018), 1127–1140. doi:10.1109/TVCG.2017.2655523.

[WB05] WILSON A., BRANNON R.: Exploring 2d tensor fields using stress nets. In VIS 05. IEEE Visualization,
2005. (2005), IEEE, pp. 11–18. doi:10.1109/VISUAL.2005.1532771.

[WBWD12] WU J., BÜRGER K., WESTERMANN R., DICK C.: Interactive residual stress modeling for soft tissue

simulation. VCBM 12 (2012), 81–89.

[WCS17] WU J., CLAUSEN A., SIGMUND O.: Minimum compliance topology optimization of shell–infill

composites for additive manufacturing. Computer Methods in Applied Mechanics and Engineering
326 (2017), 358–375. doi:10.1016/j.cma.2017.08.018.

[WDW15] WU J., DICK C., WESTERMANN R.: A system for high-resolution topology optimization. IEEE
transactions on visualization and computer graphics 22, 3 (2015), 1195–1208. doi:10.1109/TVCG.
2015.2502588.

[WLS11] WANG F., LAZAROV B. S., SIGMUND O.: On projection methods, convergence and robust formulations

in topology optimization. Structural and Multidisciplinary Optimization 43, 6 (2011), 767–784.

doi:10.1007/s00158-010-0602-y.

[WNW∗22] WANG J., NEUHAUSER C., WU J., GAO X., WESTERMANN R.: 3d-tsv: The 3d trajectory-based stress

visualizer. Advances in Engineering Software 170 (2022), 103144. doi:10.1016/j.advengsoft.
2022.103144.

[WSG21] WU J., SIGMUND O., GROEN J. P.: Topology optimization of multi-scale structures: a review.

Structural and Multidisciplinary Optimization (2021), 1–26. doi:10.1007/s00158-021-02881-8.

[WTTL20] WANG C., TAN X., TOR S., LIM C.: Machine learning in additive manufacturing: State-of-the-art and

perspectives. Additive Manufacturing 36 (2020), 101538. doi:10.1016/j.addma.2020.101538.

[WWG03] WANG M. Y., WANG X., GUO D.: A level set method for structural topology optimization. Com-
puter Methods in Applied Mechanics and Engineering 192, 1 (2003), 227–246. doi:10.1016/
S0045-7825(02)00559-5.

[WWG21] WU J., WANG W., GAO X.: Design and optimization of conforming lattice structures. IEEE
Transactions on Visualization and Computer Graphics 27, 1 (2021), 43–56. doi:10.1109/TVCG.
2019.2938946.

[WWW20] WANG J., WU J., WESTERMANN R.: A globally conforming lattice structure for 2d stress tensor

visualization. Computer Graphics Forum 39, 3 (2020), 417–427. doi:10.1111/cgf.13991.

[WWW22a] WANG J., WU J., WESTERMANN R.: Streamline guided de-homogenization for high-resolution

structural design. arXiv preprint (2022). doi:10.48550/arXiv.2207.09172.

78

http://dx.doi.org/10.1057/PALGRAVE.IVS.9500025
http://dx.doi.org/10.1109/TVCG.2017.2655523
http://dx.doi.org/10.1109/VISUAL.2005.1532771
http://dx.doi.org/10.1016/j.cma.2017.08.018
http://dx.doi.org/10.1109/TVCG.2015.2502588
http://dx.doi.org/10.1109/TVCG.2015.2502588
http://dx.doi.org/10.1007/s00158-010-0602-y
http://dx.doi.org/10.1016/j.advengsoft.2022.103144
http://dx.doi.org/10.1016/j.advengsoft.2022.103144
http://dx.doi.org/10.1007/s00158-021-02881-8
http://dx.doi.org/10.1016/j.addma.2020.101538
http://dx.doi.org/10.1016/S0045-7825(02)00559-5
http://dx.doi.org/10.1016/S0045-7825(02)00559-5
http://dx.doi.org/10.1109/TVCG.2019.2938946
http://dx.doi.org/10.1109/TVCG.2019.2938946
http://dx.doi.org/10.1111/cgf.13991
http://dx.doi.org/10.48550/arXiv.2207.09172


BIBLIOGRAPHY

[WWW22b] WANG J., WU J., WESTERMANN R.: Stress topology analysis for porous infill optimization. Structural
and Multidisciplinary Optimization 65, 3 (2022), 1–13. doi:10.1007/s00158-022-03186-0.

[WWW22c] WANG J., WU J., WESTERMANN R.: Stress trajectory guided structural design and topology opti-

mization. In International Design Engineering Technical Conferences and Computers and Information
in Engineering Conference (2022), vol. 1, American Society of Mechanical Engineers, p. 1.

[XCC10] XU S., CAI Y., CHENG G.: Volume preserving nonlinear density filter based on heaviside func-

tions. Structural and Multidisciplinary Optimization 41, 4 (2010), 495–505. doi:10.1007/
s00158-009-0452-7.

[XS93] XIE Y., STEVEN G.: A simple evolutionary procedure for structural optimization. Computers &
Structures 49, 5 (1993), 885 – 896. doi:10.1016/0045-7949(93)90035-C.

[YKP05] YE X., KAO D., PANG A.: Strategy for seeding 3d streamlines. In VIS 05. IEEE Visualization, 2005.
(2005), IEEE, pp. 471–478. doi:10.1109/VISUAL.2005.1532831.

[YWSC11] YU H., WANG C., SHENE C.-K., CHEN J. H.: Hierarchical streamline bundles. IEEE Transactions on
Visualization and Computer Graphics 18, 8 (2011), 1353–1367. doi:10.1109/TVCG.2011.155.

[ZGZ17] ZHANG Y., GAO X., ZHANG E.: Applying 2d tensor field topology to solid mechanics simulations.

In Modeling, Analysis, and Visualization of Anisotropy. Springer, 2017, pp. 29–41. doi:10.1007/
978-3-319-61358-1_2.

[ZLD∗19] ZHU Y., LI S., DU Z., LIU C., GUO X., ZHANG W.: A novel asymptotic-analysis-based homogenisation

approach towards fast design of infill graded microstructures. Journal of the Mechanics and Physics
of Solids 124 (2019), 612 – 633. doi:10.1016/j.jmps.2018.11.008.

[ZP03] ZHENG X., PANG A.: Hyperlic. In IEEE Visualization, 2003. VIS 2003. (2003), IEEE, pp. 249–256.

doi:10.1109/VISUAL.2003.1250379.

[ZP04] ZHENG X., PANG A.: Topological lines in 3d tensor fields. In IEEE Visualization 2004 (2004), IEEE,

pp. 313–320. doi:10.1109/VISUAL.2004.105.

[ZPP05a] ZHENG X., PARLETT B., PANG A.: Topological structures of 3d tensor fields. In VIS 05. IEEE
Visualization, 2005. (2005), IEEE, pp. 551–558. doi:10.1109/VISUAL.2005.1532841.

[ZPP05b] ZHENG X., PARLETT B. N., PANG A.: Topological lines in 3d tensor fields and discriminant hessian

factorization. IEEE Transactions on Visualization and Computer Graphics 11, 4 (2005), 395–407.

doi:10.1109/TVCG.2005.67.

[ZR91] ZHOU M., ROZVANY G.: The COC algorithm, part ii: Topological, geometrical and generalized shape

optimization. Computer Methods in Applied Mechanics and Engineering 89, 1 (1991), 309–336.

doi:10.1016/0045-7825(91)90046-9.

[ZRSZ17] ZHANG Y., ROY L., SHARMA R., ZHANG E.: Maximum number of transition points in 3d linear

symmetric tensor fields. In Topological Methods in Data Analysis and Visualization (2017), Springer,

pp. 237–250. doi:10.1007/978-3-030-43036-8_15.

79

http://dx.doi.org/10.1007/s00158-022-03186-0
http://dx.doi.org/10.1007/s00158-009-0452-7
http://dx.doi.org/10.1007/s00158-009-0452-7
http://dx.doi.org/10.1016/0045-7949(93)90035-C
http://dx.doi.org/10.1109/VISUAL.2005.1532831
http://dx.doi.org/10.1109/TVCG.2011.155
http://dx.doi.org/10.1007/978-3-319-61358-1_2
http://dx.doi.org/10.1007/978-3-319-61358-1_2
http://dx.doi.org/10.1016/j.jmps.2018.11.008
http://dx.doi.org/10.1109/VISUAL.2003.1250379
http://dx.doi.org/10.1109/VISUAL.2004.105
http://dx.doi.org/10.1109/VISUAL.2005.1532841
http://dx.doi.org/10.1109/TVCG.2005.67
http://dx.doi.org/10.1016/0045-7825(91)90046-9
http://dx.doi.org/10.1007/978-3-030-43036-8_15


BIBLIOGRAPHY

[ZS18] ZOBEL V., SCHEUERMANN G.: Extremal curves and surfaces in symmetric tensor fields. The Visual
Computer 34, 10 (2018), 1427–1442. doi:10.1007/s00371-017-1450-1.

[ZSS15] ZOBEL V., STOMMEL M., SCHEUERMANN G.: Feature-based tensor field visualization for fiber

reinforced polymers. In 2015 IEEE Scientific Visualization Conference (SciVis) (2015), IEEE, pp. 49–

56. doi:10.1109/SciVis.2015.7429491.

[ZSS17] ZOBEL V., STOMMEL M., SCHEUERMANN G.: Visualizing gradients of stress tensor fields. In

Modeling, Analysis, and Visualization of Anisotropy. Springer, 2017, pp. 65–81. doi:10.1007/
978-3-319-61358-1_4.

[ZTZ15] ZHANG Y., TZENG Y.-J., ZHANG E.: Maximum number of degenerate curves in 3d linear tensor

fields. In Topological Methods in Data Analysis and Visualization (2015), Springer, pp. 221–234.

doi:10.1007/978-3-319-44684-4_13.

[ZZ15] ZHANG E., ZHANG Y.: 3d symmetric tensor fields: What we know and where to go next. In

Topological and Statistical Methods for Complex Data. Springer, 2015, pp. 111–124. doi:10.1007/
978-3-662-44900-4_7.

[ZZ21] ZHAO Z., ZHANG X. S.: Design of graded porous bone-like structures via a multi-material topology

optimization approach. Structural and Multidisciplinary Optimization 64, 8 (2021), 677––698.

doi:10.1007/s00158-021-02870-x.

[ZZX16] ZHU J.-H., ZHANG W.-H., XIA L.: Topology optimization in aircraft and aerospace structures

design. Archives of Computational Methods in Engineering 23, 4 (2016), 595–622. doi:10.1007/
s11831-015-9151-2.

[ZZZ∗20] ZHOU Y., ZHAN H., ZHANG W., ZHU J., BAI J., WANG Q., GU Y.: A new data-driven topology

optimization framework for structural optimization. Computers & Structures 239 (2020), 106310.

doi:10.1016/j.compstruc.2020.106310.

80

http://dx.doi.org/10.1007/s00371-017-1450-1
http://dx.doi.org/10.1109/SciVis.2015.7429491
http://dx.doi.org/10.1007/978-3-319-61358-1_4
http://dx.doi.org/10.1007/978-3-319-61358-1_4
http://dx.doi.org/10.1007/978-3-319-44684-4_13
http://dx.doi.org/10.1007/978-3-662-44900-4_7
http://dx.doi.org/10.1007/978-3-662-44900-4_7
http://dx.doi.org/10.1007/s00158-021-02870-x
http://dx.doi.org/10.1007/s11831-015-9151-2
http://dx.doi.org/10.1007/s11831-015-9151-2
http://dx.doi.org/10.1016/j.compstruc.2020.106310


Eurographics Conference on Visualization (EuroVis) 2020
M. Gleicher, T. Landesberger von Antburg, and I. Viola
(Guest Editors)

Volume 39 (2020), Number 3

A Globally Conforming Lattice Structure
for 2D Stress Tensor Visualization

Junpeng Wang1 , Jun Wu2 & Rüdiger Westermann1

1 Chair for Computer Graphics and Visualization, Technical University of Munich, Germany
2 Department of Design Engineering, Delft University of Technology, The Netherlands

-0.00

0.17

0.34

0.51

0.68

-0.04

-0.03

-0.02

-0.01

0.00

-1.60

1.51

4.63

7.74

10.86

-10.80

-7.62

-4.44

-1.26

1.92

Figure 1: Visualization of stress tensor fields in 2D solid objects under load using the conforming lattice. From left to right: Plate, perforated
plate, slice through a femur. Arrows indicate the applied loads and bold black lines the fixation regions. Stress direction, convergence and
divergence is shown by principal stress lines along the major (red) and minor (blue) principal directions. Stress ratio is shown by the
elements’ shape. Tension and compression is encoded into shades of red and blue.

Abstract
We present a visualization technique for 2D stress tensor fields based on the construction of a globally conforming lattice.
Conformity ensures that the lattice edges follow the principal stress directions and the aspect ratio of lattice elements represents
the stress anisotropy. Since such a lattice structure cannot be space-filling in general, it is constructed from multiple intersecting
lattice beams. Conformity at beam intersections is ensured via a constrained optimization problem, by computing the aspect
ratio of elements at intersections so that their edges meet when continued along the principal stress lines. In combination
with a coloring scheme that encodes relative stress magnitudes, a global visualization is achieved. By introducing additional
constraints on the positional variation of the beam intersections, coherent visualizations are achieved when external loads or
material parameters are changed. In a number of experiments using non-trivial scenarios, we demonstrate the capability of the
proposed visualization technique to show the global and local structure of a given stress field.

1. Introduction

Techniques for visualizing the stress distribution in solid objects
under load are important in a number of applications ranging from
lightweight structure design over implant planning to the design of
support structures. Such visualizations improve our understanding
of the material response to external load conditions, and give rise
to improved object designs regarding their mechanical properties.

At each point in a stress field, the state of stress is fully described
by the stress vectors for three mutually orthogonal orientations of
a differential area element at that point. From these orientations,
the so-called principal stresses can be computed, i.e., the normal
stresses into the directions where the shear stress components van-

ish. These normal stresses, which include the maximum and mini-
mum normal stress components acting at a point, are fundamental
to the visualization of stress tensor fields. Their visualization, how-
ever, is challenging due to several reasons:

• It requires to find visual abstractions of the stress tensor, to con-
vey the principal stress directions and magnitudes in a mean-
ingful way. This includes distinguishing between the different
types of normal stresses, i.e., tension and compression, as well
as the ratio of the principal stresses. This information should be
visualized simultaneously, to reveal the mutual variations of the
principal stresses across the solid body.
• The visualization should provide a global view of the stress field,
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(a) (b) (c)

Figure 2: (a, b) Minor Principal Stress Lines (PSLs) (blue) are
seeded at equally spaced seed points (•) along the initial PSL (bold
orange). Additional major PSLs (orange) are then seeded along
one of the minor PSLs (bold blue). (a) The resulting grid cells
do not represent the local stress ratio. (b) The domain is incom-
pletely covered. (c) PSLs concentrate despite uniform seeding den-
sity along the domain boundaries.

to convey a general impression of the major mechanical proper-
ties of the body under load, as well as their spatial dependencies
under varying load conditions and when shape or topology vari-
ations are applied.
• It is desired to show continuous stress trajectories, i.e., the prin-

cipal stress lines (PSLs), that reveal along which paths external
loads are transmitted. This supports finding paths along which
loads are predominantly transmitted from one boundary to an-
other, to analyse how load transmission is affected by variations
in the structure of the simulated material and external load con-
ditions, and to indicate where the reduction of distances between
the PSLs come along with a simultaneous increase of stresses.

In engineering, the most common visualization of 2D tensor
fields is by means of so-called trajectory images, which show se-
lected PSLs in the domain [Tim83, Fro48]. Such visualizations are
generated by selecting an initial seed point to start the PSLs and
placing new seed points automatically along the initial trajectory,
or by seeding uniformly along the object’s boundary. Even though
this kind of visualization can provide a global view on the stress
distribution, it has weaknesses if PSLs are not selected carefully. As
shown in Fig. 2, the resulting grid structure usually does not convey
the local stress state, since the size and aspect ratio of the generated
grid cells is dictated by the initial seeding strategy. Furthermore,
such visualizations can result in strongly varying trajectory density,
which can mislead the interpretation of stress concentration.

1.1. Contribution

We propose a visualization technique for 2D stress fields using
PSLs, which considers the aforementioned requirements and over-
comes some of the limitations of classical trajectory images. We in-
troduce the globally conforming lattice, a grid structure that aligns
with the principal stress directions. Yet it is not domain-filling but
comprised of quadrilateral (2D) elements aligned along the princi-
pal stress directions, so called beams. Beams are selected interac-
tively, and the geometry of the beam elements is constructed so that
they convey the anisotropy of the principal stresses. In 2D, where
beams intersect and share an element at the intersection, this el-
ement has to conform the geometry of both beams. By ensuring
conformity at all beam intersections, a globally conforming struc-
ture is generated. Our method builds upon the following specific
contributions:

• We introduce the use of beams instead of single lines to create
a stress-following grid structure in multiple dimensions, and to
encode the ratio of principal stresses into the geometry of the
beam elements. Thus, only line segments coinciding with stress
lines are shown, along all principal directions.
• Conformity of beams at intersections is achieved via the solution

of a constrained optimization problem. The optimization com-
putes for all intersection points the size and aspect ratio of cor-
responding beam elements, so that the ratio of principal stresses
is maintained and the edges of connected elements meet when
continued along the respective PSL.
• We provide different color mappings for points along the tra-

jectories to distinguish between tension and compression or the
relative stress magnitudes along the principal stress directions.

For different solids and load conditions, we demonstrate the ca-
pability of our method to provide a globally conforming visualiza-
tion of a 2D stress distribution. We further demonstrate the use of
this method for visualizing 3D tensor fields. In 3D, PSLs do not
intersect, in general, so that forming a beam structure with cycles
as in 2D becomes unfeasible. Thus, we let the user interactively se-
lect seed positions and progressively grow new beams composed of
hexahedral elements along the PSLs. The growth process considers
the design decisions underlying the construction of a conforming
lattice in 2D, and, thus, adheres to the identified requirements.

2. Related work

Besides the use of trajectory images, 2D stress tensor fields can be
visualized in a number of different ways, each coming with its own
strength and weakness. Let us refer here to the work by Kratz et
al. [KASH13], which provides a thorough discussion of the prop-
erties of many different stress visualization techniques.

For an overview of the stress state in a solid object, one often
resorts to the visualization of scalar stress measures like the von
Mises stress [DGBW09,KMH11] or the material’s index of refrac-
tion when loaded [BES15]. Such measures are derived from the
components of the stress tensor, and they can be visualized using
standard techniques like direct volume rendering or iso-contouring.
Yet since these techniques simplify the complex stress state to a sin-
gle scalar number, they cannot accurately convey the shape of load
transmission pathways. In particular, the mutual dependencies be-
tween major and minor stresses—which are important for a struc-
tural stress analysis of a solid under load—are lost.

Another alternative to visualize stress tensor fields is by means
of tensor glyphs, i.e., geometric primitives encoding tensor in-
variants by visual attributes like shape and color. Tensor glyphs
originate from early work on glyph-based diffusion tensor visu-
alization [Kin04], and a number of variants have been designed
for the visualization of positive definite tensors [KWS∗08], gen-
eral symmetric tensors [SK10], as well as non-symmetric tensors
[ZP05,SK16,GRT17]. Placement strategies for dense glyph visual-
izations help to reduce visual clutter [KW06, HSH07], and special
glyph designs have been proposed to support the comparative visu-
alization of diffusion tensors [ZYLL08].

While tensor glyphs can effectively convey the local stress state,
due to their discrete nature they make it difficult to accurately infer
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(d)(c)(b)(a)

Figure 3: Method overview: (a) Selected nodes (black circles) and computed intersections, skeleton trajectories, seed elements oriented
along PSLs. (b) Edges of connected nodes do not lay on the same PSL, (c) but do so due to anisotropic scaling during optimization. (d)
Conforming lattice, where beams of elements connect the seed elements. Coloring indicates stress magnitude, tension and compression.

the global shape and the divergent or convergent behavior of load
transmission pathways. In contrast, the technique we propose aims
at encoding the local stress state by the cells of a conforming grid,
and achieving a continuous impression—also revealing the global
relationships between induced loads and material response—by
growing these cells along PSLs.

To generate the conforming grid, we build upon the computa-
tion of continuous stress trajectories by using Lagrangian parti-
cle tracing in the principal stress direction fields. In the work by
Delmarcelle and Hesselink [DH93], stress trajectories are used
to generate so-called hyperstreamlines. A hyperstreamline shows
a cylinder-like geometric structure, which is formed by extruding
ellipses along a selected major PSL. The major- and minor-axis of
the ellipses correspond to the direction and length of the eigenvec-
tors and -values of the medium and minor stresses. Even though
hyperstreamlines were introduced for the visualization of 3D stress
fields, they can be adapted straightforwardly to 2D scenarios.

Silhouettes and ridges of a hyperstreamline, however, do not co-
incide with stress lines, possibly misleading the user in the inter-
pretation of the underlying stress field. The spatial extent of hyper-
streamlines prohibits placing them close to each other, making it
difficult to reveal contracting behaviour of the PSLs. In 3D, it is
also difficult to extract the orientation of a hyperstreamline when
the medium and minor stresses have similar magnitude. By using
a grid structure that is solely composed of (segments) of PSLs, we
overcome these limitations.

Visualizations building solely upon PSLs have also been pro-
posed in previous works. Stress-nets [WB05] are obtained by ren-
dering together major and minor PSLs, at the same time trying to
place them evenly to reduce clustering. Dick et al. [DGBW09] se-
lect random seed points in the 3D domain and trace PSLs along
all principal directions, simultaneously encoding tension and com-
pression by color. Both approaches, due to the random selection of
PSLs, face the same problems as classical trajectory images and
cannot adhere to our specified requirements in general. For sur-
face remeshing, Alliez et al. [ACSD∗03] build an initial control
mesh that follows the principal curvature directions, derived from
the curvature tensor. When applied to stress tensor fields, this ap-
proach produces visualizations similar to trajectory images, and
cannot effectively control the shape and local density of elements.
Hotz et al. [HFH∗06] smear out dye along along the PSLs using
line integral convolution, to generate a density field that resembles
a grid-like structure, This approach provides a global overview of
the stress distribution, yet it cannot accurately reveal the local stress
state and does not produce continuous load transmission pathways.

Besides visualizing the directional information in a stress field,
a number of works have studied the topology of symmetric 2D and
3D tensor fields [DH94, HLL97]. They characterize the topology
of a tensor field by degenerate structures where two or more eigen-
values are equal. The robust extraction of the topological skeleton
using numerical schemes has been addressed by Zheng and Pang
[ZP04] and Roy et al. [RKZZ18]. Topological approaches are dif-
ferent to our approach, since they focus on the extraction of specific
points or surfaces where the eigenvector fields behave in a specific
way. Let us refer to the works by Zobel and Scheuermann [ZS18]
and Raith et al. [RBN∗19] for thorough overviews of this field.

3. Mechanical foundations and method overview

In the following, we first describe the mechanical foundations un-
derlying the computation of stress trajectories, and then briefly
summarize how our proposed technique makes use of these trajec-
tories. Since the fundamental relationships required for the compu-
tation of stress trajectories in 2D solids can be derived as special
cases of the 3D case, we focus on the latter case in the following.

3.1. Trajectories in mechanics

In a material under load, the point-wise stress vector σ is defined as
σ = dF/dA, where dF is the force which the material on one side
of an infinitely small area element dA exerts on the material on the
other side. At each point, the state of stress is fully described by the
stress vectors for three mutually orthogonal orientations of the area
element. In particular, the second-order stress tensor S, represented
by a 3× 3 matrix, contains the stress vectors for the three orienta-
tions corresponding to the axes of a Cartesian coordinate system:

S =




σx τyx τzx
τyx σy τzy
τzx τzy σz


 (1)

Here, the mixed index components correspond to the shear stresses,
and they are equal on mutually orthogonal planes.

For an arbitrary orientation of the area element specified by its
normal vector n, the stress vector is determined by Sn. This vector
can be decomposed into a normal stress and a shear stress com-
ponent, acting orthogonally and tangentially on the area element,
respectively. For each stress tensor, there are three mutually orthog-
onal orientations of the area element where the shear stress compo-
nents vanish. For these orientations, the normal stresses are called
the principal stresses of the stress tensor.

c© 2020 The Author(s)
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The solution of the eigenvalue problem for S results in the
three eigenvalues, which represent—sorted in descending order—
the principal stresses σ1,σ2, and σ3. If the eigenvalues are different,
the corresponding eigenvectors are linearly independent and even
mutually orthogonal due to the symmetry of S. The eigenvectors
have unique direction, yet their orientation cannot be decided in
general.

For an arbitrary start point, the PSLs are computed by a numer-
ical integration scheme over the selected eigenvector field. We use
a Runge-Kutta RK2(3) scheme with fixed integration step size δ.
Since there is no consistent orientation of the eigenvectors, rather
than interpolating eigenvectors, we interpolate the stress state in
2D in the form σx,σy and τxy. From the interpolated quantities, the
principal stress components are derived.

3.2. Method overview

Our method starts with a discrete grid structure on which stress
tensors are given. It needs to be equipped with an interpolation
scheme, so that continuous stress trajectories can be computed. In
addition, we provide the user information about the location of de-
generate points where multiple eigenvalues are equal and the PSLs
can cross. This guides the user towards regions where the generated
grid structure has high deformation.

Selection: The user interactively picks points in the domain. If
a selected location is close to an existing trajectory, the point is
snapped to that trajectory. For each point, the PSL passing through
that point (if not available from a previous selection) and the inter-
section points between the new and existing trajectories are com-
puted instantly (Fig. 3a). We subsequently call the computed tra-
jectories the skeleton trajectories, and the intersection points the
nodes.

Lattice initialization: For each new set of PSLs and nodes along
them, the globally conforming lattice is computed in turn. Firstly,
each node is used as center point for a quadrilateral element, the
so-called lattice seed element. The ratio of the edge lengths of seed
elements is according to the ratio of the principal stresses (Fig. 3a),
its edges are along PSLs. A global scale factor controls the size of
elements. The elements’ edges, per construction, lay on stress tra-
jectories, and we consider them in the upcoming stages to construct
a conforming lattice.

Constrained optimization: Given the lattice seed elements,
with their nodes being connected via the skeleton trajectories, we
aim at connecting the edges of connected elements via stress tra-
jectories. Edges along the major or minor stress direction, respec-
tively, should be connected via a major or minor stress trajectory.
However, the edges of connected elements lay on different stress
trajectories in general (as shown in Fig. 3b). Thus, we pose an op-
timization problem with the objective to scale the seed elements
individually so that corresponding edges of connected elements lay
(approximately) on the same PSL (Fig. 3c). We call the scaled seed
elements conforming.

Beam construction: From the conforming seed elements we
construct so-called beams, which connect the elements along the
skeleton trajectories. Beams are sequences of lattice elements,

starting and ending in a seed element, and having center points on
the connecting skeleton trajectory. The beam elements vary linearly
in size and edge ratio along the connecting trajectories (Fig. 3d).
The lengths of the beam elements along this trajectory are relaxed
to obtain a smooth transition between the seed elements. Notably,
due to this construction the shapes of the beam elements cannot
indicate any non-linear behavior of the stress ratio along a beam.

In the conforming lattice, the beams follow the principal stress
directions only approximately. In extreme cases, the optimization
might even suggest element shapes that do not accurately represent
the local stress state. By an additional coloring, such cases can be
emphasized, hinting towards regions where the lattice needs to be
refined. In the following, we describe the major components of the
construction process for generating a conforming lattice. We focus
on generating such a lattice for a given 2D stress field, and provide
details for the handling of 3D stress fields later on.

4. Element construction

Our approach aims at encoding the stress anisotropy into the shape
of lattice elements, i.e., the ratio of the edge lengths along the major
(l1) and minor (l2) principal directions should be equal to σ1/σ2.
Because of the intrinsic divergence/convergence of PSLs, however,
it’s not feasible, in general, to strictly ensure this ratio for all lattice
elements. Thus, we explicitly enforce this constraint only at the
lattice seed elements.

4.1. Lattice seed elements

The lengths of the edges of seed elements are determined as

l1 = lmax · p
√
|σ1|/max(|σ1|, |σ2|)

l2 = lmax · p
√
|σ2|/max(|σ1|, |σ2|),

(2)

where we prescribe the permitted maximum length lmax, as well as
a penalty term p that reduces the effect of local extreme values on
the construction process. We set p = 2 in our examples. Lengths
below a prescribed length lmin are clamped to this value.

To create the lattice seed element with the computed edge
lengths for a given node, we create two points on each the major
and the minor PSL going through that node (Fig. 4a). From the in-
tersection of the minor and major PSL, respectively, going through
these points, the element corners are determined.

(a) (b)

Figure 4: (a) Lattice seed element construction. (b) From top to
bottom, the two seed elements, the non-fitting beam elements, and
the fitting elements improved by Eqn. 3.
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4.2. Beam elements

Beams connecting the seed elements along the trajectory skeleton
are created by inserting new lattice elements along the skeleton via
a relaxation process. Therefore, let us assume that the seed ele-
ments have been scaled properly (via the optimization described
in Sec. 5, so that the edges of connected elements lay on the same
PSL. The construction process considers the length of the PSL from
one node to the other one, as well as the lengths of the edges of the
lattice seed elements corresponding to these nodes (Fig. 4b).

According to Fig. 4b, let us assume that L1 and L2, respec-
tively, refer to the length of the longer and shorter element, and
the construction proceeds from L1 to L2. L0 is the distance be-
tween the two nodes along the skeleton trajectory. Then, the num-
ber of new elements is the number of times an element with average
length l = 0.5 · (L1 +L2) can be placed between the two nodes, i.e.,
Nl = round(l0/l). If Nl −1 > 0, the size li of the i− th, i = 1 : Nl
element is given by

li = β1 +β2 · (Nl− i), (3)

where β1 = (L0− (L1−L2))/Nl and β2 = (L1−L2)/
Nl−1

∑
k=1

k.

Since it is not always possible to fill exactly the distance be-
tween two nodes with new elements, the remaining portion is dis-
tributed equally to all elements along the connection. The length
of the element edges along the respective other principal stress di-
rection is linearly interpolated between the corresponding values at
the nodes.

5. The conforming lattice structure

The seed elements have to be scaled properly so that the edges of
connected elements lay on the same PSL. We propose a constrained
optimization process and compute the optimized seed elements via
a gradient-based optimizer, so that the matching is achieved as good
as possible.

5.1. The constrained optimization problem

The optimization problem can be described as

min
x

f (x),

s.t. g(x)6 0, and lmin < x < λlmax

(4)

Here, x is the design variable, f (x) is the objective function that
measures the un-matching situation, and g(x) is the constraint func-
tion that keeps the changes of seed elements within a permitted
range. λ is a magnification factor to expand the design domain of
the design variables. It is set to 1.5 in our experiments.

Design variables As mentioned in Sec. 4.1, the seed elements
are constructed by placing 4 new points around each node, and us-
ing the major and minor PSLs through these points to determine
the element corners. We take the distances of the new points to the
node as the design variables (Fig. 5).

The 4 design variables at each node are the local design vari-
ables, and the 4 PSLs traced from each of these nodes are the local

2

6

Figure 5: Schematic illustrating of the optimization process for
nodes 2 (green) and 6 (yellow). Thin solid and dashed lines are
the support trajectories, crosses refer to the design variables. The
first concomitant design variable of x21 is x61.

support trajectories. Let us also introduce the concomitant design
variables and support trajectories. By this, we mean the local de-
sign variables and PSLs from the nodes that are connected to the
current node (Fig. 5).

Constraints The optimization constraints are used to ensure that
the seed elements still encode the stress ratio in their shape. Ac-
cording to Fig. 5, the ratio of the i-th seed element is given by

ri =
xi1 + xi2
xi3 + xi4

, (5)

Furthermore, Eqn. 6 is used to make the change of the seed ele-
ments not exceed a predefined range

(
ri− r∗i

r∗i
)2 6 ξ2. (6)

Here, r∗i refers to the initial shape of the element, and ξ is the per-
mitted change of the element’s shape. From this, we obtain the con-
straint function gi(x) as

gi(x) = (
1
r∗i

xi1 + xi2
xi3 + xi4

−1)2−ξ2 6 0, i = 1 : m, (7)

where m is the number of nodes. The value of ξ has a significant
effect on the convergence of the optimization process and the gen-
erated results. A small ξ ensures a limited change to the shape of
seed lattice elements. However, it necessitates more iterations in the
optimization process and may even lead to non-convergent results.

5.2. Objective function

The objective function is designed to measure how far the current
lattice structure is from conformity. To characterize the conformity,
we measure the deviation between the local support trajectory and
the corresponding concomitant support trajectories. Considering
xi j, the j-th design variable of the i-th node, and assuming it has
Ki j concomitant support trajectories, then the conformity fi j(x) for
xi j is defined as

fi j(x) =
Ki j

∑
k=1

(xi j− x̂i jk)
2, (8)
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Figure 6: Coherence of conforming lattices that are generated automatically from the leftmost lattice when different load conditions (indi-
cated by blue arrows) are applied to the 2D cantilever (Fig. 7a).

where x̂i jk is the distance between the i-th node and the intersection
of the k-th concomitant support trajectory with the PSL through xi j.
The global conformity f (x), considering m nodes with all 4 design
variables, is then given by

f (x) =
m

∑
i=1

4

∑
j=1

Ki j

∑
k=1

(xi j− x̂i jk)
2 (9)

By substituting Eqns. 7 and 9 into Eqn. 4, we obtain the optimiza-
tion problem.

Solving the optimization problem requires to trace PSLs and
compute their intersections in each iteration step. Therefore, we
relax x̂i jk to efficiently find an approximation without computing
PSLs. This relaxation builds upon our observation that the design
variables are mutually dependent via the concomitant design vari-
ables. Thus, the objective function becomes an explicit function
with respect to the design variables, if the approximation hi jk(x) of
x̂i jk is explicit with respect to x.

To construct hi jk(x), we use polynomial interpolation of samples
that are obtained by moving the concomitant design variable in a
limited range and computing the induced corrections. Then, the co-
efficients of the polynomial are computed by solving




XN−1
1 XN−2

1 · · · X0
1

XN−1
2 XN−2

2 · · · X0
2

...
...

. . .
...

XN−1
N XN−2

N · · · X0
N







p1
p2
...

pN


=




Y1
Y2
...

YN


 (10)

Here, ps, s = 1 : N are the coefficients of the polynomial, N is the
number of samples, and Xi and Yi, i = 1 : N are the sampled con-
comitant design variables and their corresponding corrections. The
variables x̂i jk can now be approximated via

x̂i jk ≈ hi jk(x) =
N

∑
s=1

ps · xN−s. (11)

N is set to 3 in our experiments. By substituting Eqn. 11 into Eqn.
9, the explicit expression of the objective function with respect to
the design variable is available, and the final optimization equation

becomes

min
x

f (x) =
m

∑
i=1

4

∑
j=1

Ki j

∑
k=1

(xi j−hi jk(x))
2,

s.t. gi(x) = ( 1
r∗i

xi1+xi2
xi3+xi4

−1)2−ξ2 6 0, i = 1 : m,

lmin < x < λlmax

(12)

This function, since its derivatives can be computed analytically,
gives rise to efficient gradient-based optimizers, like the method of
moving asymptotes (MMA) [Sva87] that is used in our work.

5.3. Coherent visualization of stress changes

In many practical applications, domain experts are interested in
analysing the variations in the internal stress state due to changes
in the external load conditions or when a different material is
simulated. To enable an effective comparison of different stress
states, their visualizations should not change significantly when
only marginal changes have occurred.

With our method this is difficult to achieve, because the user
specifies only few initial seed nodes, while the other nodes are
computed automatically from the intersections of the traced PSLs.
When the seed nodes are fixed and used for generating the con-
forming lattice for a new stress state, due to changes in the PSLs
the other nodes might be at vastly different locations than they oc-
curred in the previous lattice. On the other hand, if the initial nodes
were only slightly moved in the new field, the resulting lattice struc-
ture might be very similar to the initial one.

To preserve positional coherence of all nodes—and thus struc-
tural coherence of the lattice structures—for varying stress states,
we introduce a globally optimal placement scheme that attempts to
minimize the summed positional changes over all nodes when gen-
erating a conforming lattice for a new stress distribution. Therefore,
we establish the following equation for the placement optimization:

min−→
m

∑
i=1
|pi− p̂i|2,

s.t. p j ∈ Γ j, j = 1 : m̂

(13)

Here, p̂i and pi, i = 1 : m, respectively, are the node positions in
the previous and current lattice. p j, j = 1 : m̂ are the seed nodes,
which are the design variables in the optimization. Γ j, j = 1 : m̂ are
the corresponding design domains, which restrict the movements
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of the seed nodes. Thus, the locations of nodes that are created au-
tomatically are regularized by these nodes. Since it is not possible,
in general, to derive a differentiable formulation of the automat-
ically computed locations of new points with respect to the seed
points, a gradient-based optimizer cannot be used. Instead, we re-
sort to the derivative-free optimizer CMA-ES proposed in [Han16],
which only requires iterative evaluations of the free node positions
for varying seed positions. I.e., in every iteration the seed nodes
are slightly moved so that the positional changes of all nodes are
optimized.

As an example, consider the 2D cantilever in Fig. 7a, to which a
concentrated force is applied at the point P3. The initial load direc-
tion is downward, and it is then changed continually in 9 steps of
20 degrees clockwise, so that eventually the load direction turns to
180 degrees and the structure is under an upward force. We input
three seed nodes p1, p2 and p3, with initial positions (125,125),
(250,125) and (375,125), respectively. The corresponding design
domains Γi, i = 1 : 3 of pi are indicated by circles around each pi.

When comparing the lattice structures from different simulation
steps in Fig. 6, it can be seen that number of nodes and skele-
ton trajectories do not change, the lattice slightly rotates clockwise,
and the region where the structure is under compression becomes
increasingly larger from left to right (see the shape change of the
lattice elements). In particular, even though significant changes in
the stress field occur, the conforming lattices do not change their
topology and geometric changes are tried to be minimized. This
gives rise to an effective comparison of all fields.

6. Results and analysis

We use the solid structures in Fig. 7 to validate our method. Stress
fields are computed by finite hexahedral element analysis, with the
Young’s modulus and Poisson ratio of all solids set to 1 and 0.3,
respectively. The second solid in Fig. 7 is obtained from the first
one by inserting holes.

(a) (b) (c)

Figure 7: The 2D solid objects used in our experiments. Blue ar-
rows indicate the load conditions. (a) Cantilever with fixed left
edge, discretized into 250×500 finite elements. Points P1, ...,P5 in-
dicate the positions were different loads are applied. (b) Perforated
plate, adapted from the cantilever. (c) Slice through a 3D CT-scan
of a femur, fixed at the bottom and discretized into 182×140 finite
elements.

All experiments are carried out using the MATLAB R2019a -
academic use release, on a workstation running Windows 10 and
equipped with 8 cores (Intel Xeon W-2123, @3.60Ghz) and 64GB
RAM. The processing times range from roughly 5 seconds for the
2D examples up to almost 25 seconds for the 3D examples dis-
cussed below. Since the number of constraint functions in Eqn. 12

equals the number of nodes that are used to construct the skeleton
trajectories (i.e., Sec. 5), processing times strongly depend on this
number. For large numbers, also the probability to get stuck in local
optima increases.

To validate the capability of our method to represent complicated
stress scenarios, we simulate the stress distribution in the 2D can-
tilever (Fig. 7a) using three different load conditions: The 1st test
case is obtained by applying a rightward concentrated force and a
downward force on P3 and P1, respectively. The 2nd case is gen-
erated by applying two rightward concentrated forces on P3 and
P5 separately. The 3rd case is obtained by applying a downward
distributed force on the edge P2P4. The 1st and 2nd test cases are
used to demonstrate the construction of a conforming lattice when
a trisector and a wedge degenerate point, respectively, exist. Via
the 3rd case we shed light on a scenario where a large number of
nodes is initially specified. In all test cases, we set lmin = 2.5δ and
lmax = 4lmin. In Eqn. 12, ξ = 0.3 is used to restrict the change of
the seed lattice shape during the optimization, here setting it 0.3 is
a consideration from both the convergence and effectiveness after
observing a series numerical examples.

For all three test cases, the support trajectories before and af-
ter optimization are shown in Fig. 8, In a pre-process, degenerate
points are computed and shown together with the corresponding
topological skeleton. The topological skeleton divides the domain
into sub-domains where the corresponding PSLs have similar be-
havior [DH94]. In particular, this information is used to avoid plac-
ing seed nodes too close to critical points or topological skeletons,
so that the computed beam structures overlap multiple topological
regions.

Figure 8: Top to bottom: Support trajectories for the 2D cantilever
under different loads before (left) and after (right) optimization, in-
cluding degenerate points (small circles), and the topological skele-
ton with PSLs along the major (grey solid lines) and minor (dashed
lines) principal directions.

Notably, the optimization fails if the support trajectories fall
within different topological regions (Fig. 9). In this case, either the
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Figure 9: Failure case. Support trajectories (blue dashed lines) en-
closing a degenerate point (circle). Topological skeleton in grey.

size of the lattice seed elements needs to be scaled down or the
selected node needs to be relocated.

The conforming lattices for the three test cases are shown in
Fig. 10 and Fig. 1(left). The values of σ1 and σ2 along the ma-
jor and minor principal directions are encoded in shades of red and
blue. Visualization of stress anisotropy are shown in the Appendix.

0.0000

0.2351

0.4702

0.7052

0.9403

(a)
-3.8168

-1.9891

-0.1614

1.6663

3.4940

10-3

Figure 10: Visualization of stresses in the cantilever under differ-
ent loads using conforming lattices. Blue arrows indicate the loads
corresponding to our 2nd (top) and 3rd (bottom) test case.

The perforated plate (Fig. 7b) is used as an additional test case
to validate our method. The stress field is simulated by applying
a distributed force acting downward on the right boundary of the
plate. The optimized support trajectories are shown in the top of
Fig. 11, with color coding according to major and minor stress di-
rection (left) and according to the von Mises stress (right) to show
the potential stress concentration. In the bottom of Fig. 11, the same
visualizations are shown for the 2D femur slice. The loads mimic
compression due to body weight (downward acting loads) and ten-
sion due to muscle forces (upward acting loads). In Fig. 1(middle)
and Fig. 1(right), major and minor principal stresses along the PSLs
in both datasets are encoded into shades of red and blue.

Convergence A conforming lattice is constructed by a con-
strained optimization. The convergence behavior of both the ob-
jective function and the constraint function for all five test cases are
collectively shown in Fig. 12a and b. Here, the normalized objective

(a) (b)
0.17

2.89

5.60

8.31

11.02

(c) (d)

Figure 11: Perforated plate (top) and 2D femur slice (bottom). Op-
timized support trajectories (left), and conforming lattice with von
Mises stress encoded along principal directions (right). In the fe-
mur stress field, PSLs cannot reach the boundary in the right upper
region, because of the two degenerate points (black circles).

function f ∗(x) = f (x)/max( f (x)) is used. The convergence plots
indicate that the optimization always converges after less than 50
iterations. We further analyse the accuracy by which the edges of
beam elements follow the PSLs. Therefore, we measure the aver-
age directional deviation between the element edges at the element
corner points and the exact direction of the PSLs. This deviation
is always below 4 degrees, yet we also observed outliers of more
than 20 degrees in highly diverging situations. Fig. 12c, b shows
the seed elements before and after optimization, superimposed for
comparison, for the 2nd and 3rd test case, respectively. A numer-
ical analysis verifies that all changes in aspect ratio are within the
prescribed tolerance, ξ = 0.3, which confirms convergence of the
optimization process.

(a) (b)

(c) (d)

Figure 12: Top: Convergence analysis for all 2D experiments. (a)
Normalized objective function. (b) Constraint function. Bottom:
Comparisons of seed elements before and after optimization, for the
2nd (c) and 3rd (d) test case. Elements with colored edges depict
the initial seed elements, black edges indicate optimized elements.
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7. 3D lattice structure

In principle, the conforming lattice in a 3D stress tensor field can
be computed in much the same way as in 2D. However, since the
PSLs in a 3D tensor field do not intersect in general, our proposed
optimization process is not applicable. Thus, in 3D we waive this
process and only make use of the proposed beam construction pro-
cess. Conformity is ensured by progressively growing beams along
the PSLs, thereby adjusting the cells’ extents to convey the local
stress state.

7.1. Beam growth

The seed element in 3D is constructed so that its edges are aligned
with the three principal stress directions and the edge lengths are
according to the ratio of the principal stresses. Since the edges do
not necessarily coincide with PSLs, we place points at the edge
midpoints, compute the PSLs corresponding to the edge direction,
and relax the cell corner points towards these PSLs. This process is
repeated iteratively until the changes are below a given tolerance.

(a) (b) (c)

Figure 13: Illustration of the element construction process. (a)
Tracing along PSLs, (b) Fitting of element face. (c) The final beam
structure in 3D.

For every face of the seed element and starting from the face’s
corner points, we trace out 4 new points along the PSLs "orthog-
onal" to that face. The step size along the PSLs is the same as the
length of the seed element along that direction (Fig. 13a). When
connecting the new points (grey dots in Fig. 13b) to form a face of
the new element, however, the edges of that face do not coincide
with PSLs in general. Thus, we also trace out a 5th point along the
skeleton trajectory of the current beam, using the same step size as
before (black dot in Fig. 13a). We then center a planar quadrilateral
at that point, with its edges aligned along the respective other PSLs
at this point, and the edge lengths according to the stress ratio along
these PSLs (dark grey quadrilateral in Fig. 13b). The newly gener-
ated points are projected onto the plane of the quadrilateral (grey
dots in Fig. 13b). Since we know which corner point of the quadri-
lateral corresponds to which new point, we now scale the quadrilat-
eral isotropically so that the sum of the distances between it’s cor-
ner points and their corresponding new points is minimized (light
grey quadrilateral in Fig. 13b). The new points are then snapped to
their corresponding corner points to form the final face. Fig. 13c
shows an entire beam that is generated as described.

It is clear that the edges of the beam elements do not follow the
PSLs exactly, since they are aligned solely with the PSLs at the se-
lected center point. Apart from cases where trajectories are highly
diverging, however, the elements align fairly well with the PSLs in

all of our experiments. In particular, the average directional devi-
ation between the element edges at the element corner points and
the exact direction of the PSLs was always below 5 degrees. An ex-
traordinary case occurs when two trajectories have been snapped to
each other. Then, the elements at the start and end points are gen-
erated along different beams, and they do not consider the stress
variation along the connection. We handle this case by interpolat-
ing the beam elements linearly along the connection, in the same
principal way as described for the 2D setting.

7.2. Visual mapping

To visualize the generated 3D beam structure, all element edges
are rendered as tubes for improved visibility. In addition, the stress
magnitudes along the major, medium, and minor PSLs are mapped
to red, green, and blue, respectively, with the magnitudes from
lowest to highest encoded by increasing saturation. To reduce vi-
sual clutter, beam elements are rendered as opaque cubes, and
the strength of anisotropy of the stress magnitudes is encoded
into greyscales of the element faces. Here, the following coloring
scheme is used to compute the intensity γ3D:

γ3D = ln(
max(|σ1|, |σ3|)
min(|σ1|, |σ3|)

) (14)

7.3. Test cases

In our experiments we consider two solid objects (Fig. 14), a 3D
cantilever and a human femur. In the first two experiments using
the 3D cantilever, we apply a distributed force to face P1P2P3P4,
which is then exchanged by a distributed force exerting on edge
P1P2 to introduce a torque.

Figure 14: The 3D solid objects used in our experiments. Blue ar-
rows indicate the load conditions, regions where the objects are
fixed are shown in black. Left: 3D cantilever with fixed left face,
discretized into 50× 100× 50 finite elements. Different loads are
applied at points P1, ...,P4. Right: Femur fixed at the bottom, dis-
cretized into 140×92×182 finite elements.

In Fig. 15a, b, beam structures in the cantilever stress fields are
shown when only one single beam is traced along the PSLs at the
initial seed point. Most importantly, the 3D beam structures can
simultaneously visualize the principal stress directions, the diver-
gence and convergence of PSLs, as well as the anisotropy of the
stress magnitudes. Notably, the torque that is introduced by the
load in the second experiment is clearly conveyed by the torsion
of the beams along the major and minor stress directions. Visually,
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Figure 15: Beam structures showing the stresses in the 3D can-
tilever under different load conditions. Shades of grey characterize
the strength of anisotropy of the beam elements. Top: One single
seed element is selected. Bottom: Beam structures are extended by
growing beams from additional elements.

the single beams look similar to hyperstreamlines, yet there are es-
sential differences between them. The most important are that the
beams encode (relative) local and global information concerning all
three major stress directions, and can be stitched together in a con-
forming way to better represent the 3D stress distribution. The latter
is demonstrated in Fig. 15c, d, where additional beam elements are
selected and new branches are grown along them.

We perform one last experiment using the 3D femur
(Fig. 14right), where multiple seeds are input sequentially in or-
der to obtain a complete image of the stress distribution. As seen in
Fig. 16, faces colored in light greyscale also appear in some middle
parts of the beams, i.e., high anisotropy does not only occur in re-
gions close to where the loads are applied, but also in the interior.
Region of high compression due to body weight and high tension
due to muscle forces can be conveyed effectively in the upper right
and left part of the femur, respectively. In addition, the twisting
of beams indicate that the stress field is under severe torsion. It is
worth noting that these effects are difficult to convey via alternative
techniques like hyperstreamlines or by drawing single PSLs along
any of the major stress directions.

8. Conclusion and outlook

We have introduced a novel method to visualize 2D stress tensor
fields via a conforming lattice that follows the PSLs, conveys their
divergent/convergent behaviour, and encodes stress type and rela-
tive stress magnitude. The method is global in that it allows fol-
lowing the paths along which stresses are transmitted through the
domain. The construction of a 2D conforming lattice is formulated
as an optimization problem, which adjusts the lattice elements so
that they conform to the local stress state. We have shown a mod-
ification to visualize 3D stress fields, by progressively building a
beam structure comprised of hexahedral elements using a sequen-
tial growth process.

Figure 16: Visualization of stresses in the 3D femur using beams
that are grown progressively from user selected seed elements.

In the future, we aim to extend the method to generate a space-
filling stress-following grid in 2D and 3D. In 2D, we will further
investigate construction processes that consider sharing of support
trajectories between beams, in combination with seeding strategies
that can automatically distribute beams so that they densely cover
the domain. In 3D, since a globally conforming structure does not
exist in general, we will investigate relaxation schemes to compute
a pseudo-conforming yet dense grid structure. Therefore, it will be
interesting to look into hex-meshing approaches for arbitrary ge-
ometries, and to adapt them to the specific needs. Since occlusions
become paramount already in the case of rather sparse 3D spatial
grid structures, we will further investigate dedicated visualization
techniques for such structures, e.g., by considering focus+context
techniques including feature-based element highlighting.
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10. Appendix

We provide additional visualizations of the anisotropy of minor and
major stresses in the 2D cantilever under different loads (Fig. 10).
Fig. 17 shows the anisotropy measured by γ2D = ln( |σ1|

|σ2| ). By com-
paring the anisotropy with the aspect ratio of beam elements in
Fig. 10, good agreement of the aspect ratio of elements and the
anisotropy can be observed.

Figure 17: Anisotropy of local stresses in the cantilever under dif-
ferent loads (2nd (left) and 3rd (right) test case).
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A B S T R A C T   

In this paper, we present novel algorithms for visualizing the three mutually orthogonal principal stress di-
rections in 3D solids under load and we discuss the efficient integration of these algorithms into the 3D 
Trajectory-based Stress Visualizer (3D-TSV), a visual analysis tool for the exploration of the principal stress 
directions of 3D stress field. In the design of 3D-TSV, several perceptual problems have been solved. We present a 
novel algorithm for generating a space-filling and evenly spaced set of stress lines. The algorithm obtains a more 
regular appearance by considering the locations of lines, and enables the extraction of a level-of-detail repre-
sentation with adjustable sparseness of the trajectories along a certain stress direction. A new combined visu-
alization of two principal directions via oriented ribbons enables to convey ambiguities in the orientation of the 
principal stress directions. Additional depth cues have been added to improve the perception of the spatial re-
lationships between trajectories. 3D-TSV provides a modular and generic implementation of key algorithms 
required for a trajectory-based visual analysis of principal stress directions, including the automatic seeding of 
space-filling stress lines, their extraction using numerical schemes, their mapping to an effective renderable 
representation, and rendering options to convey structures with special mechanical properties. 3D-TSV is 
accessible to end users via a C++- and OpenGL-based rendering frontend that is seamlessly connected to a 
MatLab-based extraction backend. The code (BSD license) of 3D-TSV as well as scripts to make ANSYS and 
ABAQUS simulation results accessible to the 3D-TSV backend are publicly available.   

1. Introduction 

Techniques for visualizing the three mutually orthogonal principal 
stress directions in 3D solids under load are important in a number of use 
cases in computational mechanics. In civil engineering such visualiza-
tions are used to develop and assess strategies for steel reinforcement of 
concrete support structures [38]. In mechanical engineering, where 
often massive components like engines and pumps are considered, one is 
interested in how forces “find” their way through these components. The 
development of lightweight load bearing structures is investigated in e. 
g., aerospace engineering, here stress directions provide the first in-
dicators where structures can be hollowed [5,22,23]. In bio-mechanics, 
such techniques are used to show tension and compression pathways 
simultaneously, and compare different structural designs regarding their 
mechanical properties [8]. For an overview of stress tensor visualiza-
tion, we refer to the recent review article by Hergl et al. [12]. 

An informative visualization of the stress directions in a 3D solid can 

be achieved via principal stress lines (PSLs), i.e., integral curves in 3D 
space along the principal stress directions. PSLs are effective in 
communicating the pathways along which external loads are trans-
mitted, and they show the mutual relationships between the different 
principal stress directions [8,43]. In computational engineering, PSLs 
are used in particular to show where and how loads are internally 
redirected and deflected. Such visualizations are necessary for a first 
qualitative analysis, before a quantitative analysis of certain regions 
using derived scalar stress measures is commonly performed. 

However, in computational mechanics stress trajectory visualiza-
tions are used in a rather inconsistent way, and, to the best of our 
knowledge, no standard tool for such an analysis exists. In many 
research groups in computational mechanics, own software packages for 
showing one particular principal stress direction starting at randomly 
selected locations are used. Often, CFD tools for flow visualization are 
used to show streamlines in a single principal stress direction field. 
Visualization tools that are able to show all principal stress directions 
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simultaneously are rare, and also available post-processing tools do not 
offer this functionality. 

One reason preventing a wider adoption of such tools is visual clutter 
and occlusions that are produced when showing the different types of 
PSLs simultaneously. Due to their mutual orthogonality, the visualiza-
tions appear irregular and unstructured, and perceptual coherence 
breaks up even for sparse sets of trajectories. While this effect can be 
reduced by starting trajectories from narrow regions and following only 
a single type of PSLs, this leaves large sub-domains uncovered and does 
not show the mutual variations of the stress directions. In general, 
clutter can be reduced by visualizing the single stress directions side-by- 
side, yet juxtaposition makes it difficult to effectively relate the three 
mutual orthogonal stress directions to each other. 

2. Contribution 

This paper presents the 3D Trajectory-based Stress Visualizer (3D- 
TSV), a system and methodology for the visual analysis of the PSLs in 3D 
stress fields. Fig. 1 gives an overview of the visualization options pro-
vided by 3D-TSV. With 3D-TSV, we release a system that supports a 
comprehensive integral line-based analysis of 3D stress fields. To ach-
ieve this, 3D-TSV builds upon existing techniques for line seeding in 
vector fields [16,27], and it extends them towards the specific use case 
by considering simultaneously the three principal stress directions in the 
seeding process. 3D-TSV is designed to achieve improved regularity of 
the extracted PSLs, i.e., it aims for a grid-like structure where PSLs 
roughly intersect, uniformly cover the domain, and reveal symmetries in 
the underlying fields. To achieve this, in the sequential seeding process 
every new seed point is located on an existing PSL belonging to a 
different principal stress direction. As proposed for streamlines in [16, 
27], the seeding process is parameterized using different distance 
thresholds for each type of PSL, which allows controlling separately the 
sparseness of the PSLs of each type. We use this possibility to enable a 
level-of-detail (LoD) visualization that combines a dense seeding of a 
selected PSL type with a seeding at a user-selected sparseness level of the 
respective other PSLs. 

To ease integration into existing systems and accessibility to end 
users, 3D-TSV is implemented as a client-server tool connecting a Mat-
Lab PSL extraction backend with an OpenGL rendering frontend. The 
backend extracts trajectories from a given stress field using parameters 
that are either specified via the GUI that is built into the renderer, or a 
configuration file. We have chosen a MatLab backend due to the popu-
larity of MatLab in mechanical engineering, and, thus, to enable engi-
neers to easily integrate new model representations and algorithms. 

Currently, 3D-TSV works with hexahedral simulation grids, including 
MatLab code for trilinear and inverse distance-based interpolation of 
stress tensors in such grids. If other types of basis functions are used, the 
corresponding MatLab functions simply need to be exchanged. Due to 
the cell adjacency structure that is built internally to efficiently find the 
next cell during trajectory integration in deformed hexahedral grids, 
other cell types can be supported with only minor additional effort. 

The frontend renders whatever set of lines that is sent from the 
backend using advanced rendering options such as depth cues, outlines, 
as well as ambient occlusion effects to improve the perception of the 
spatial relationships between trajectories. Furthermore, the user can 
select to visualize one pair of stress directions via ribbons. Ribbons 
follow one of the selected directions and twist according to the other 
one, and they can effectively convey regions where the assignment of the 
eigenvector directions to the type of PSL (i.e., major, medium, or minor) 
changes. 

To summarize, the contributions of this work are  

• an advanced and publicly available tool for trajectory-based stress 
tensor visualization supporting stress fields on arbitrary hexahedral 
grids,  

• the adaptation of evenly spaced line seeding to create a space-filling 
set of PSLs with improved regularity,  

• an adaptive level-of-detail visualization using varying PSL density 
and visual mappings to lines and ribbons. 

The application of 3D-TSV is demonstrated in a number of experi-
ments using datasets with different shapes and stress states. The code of 
3D-TSV is made publicly available under a BSD license, and published 
on https://github.com/Junpeng-Wang-TUM/3D-TSV. In video11, the 
seeding of trajectories by 3D-TSV is compared to the seeding of trajec-
tories separately in each principal stress direction field via evenly spaced 
seeding [16]. 3D-TSV can be used as client-server system as described 
(see video22), or as standalone tool solely in MatLab providing rudi-
mentary visualization options (see video33). Also the frontend can be 
used standalone, reading the PSL specific information from ”psl.dat” 
files (see video44). Thus, any other backend can be used to generate PSLs 
and let the frontend visualize them. We also provide a script written in 

Fig. 1. (a) The 3D Trajectory-based Stress Visualizer generates a space-filling and evenly spaced set of principal stress lines (PSLs) in a 3D domain. (b) It supports a 
regular appearance by considering already selected lines when locating new seed points. (c,d) To reduce clutter, the density of PSLs can be adapted in a hierarchical 
manner. (d) Ambiguities in the assignment of stress types to directions are visualized by merging two principal stress directions into ribbons. Different scalar stress 
measures (d) can be mapped to color. 

1 https://youtu.be/lN9CxgvfgNY  
2 https://youtu.be/h7BzP7Jg_-o  
3 https://youtu.be/99Jn938ZoVk  
4 https://youtu.be/zafBOAt9Xvs 
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the ANSYS built-in language APDL, which automatically converts the 
result of an ANSYS finite element stress analysis into the format required 
by the 3D-TSV backend (see video55). To support the output from 
ABAQUS, the mesh information needs to be read from the ABAQUS 
input file (”.inp”), and the stress data can be acquired from the result file 
(”.rpt”). We provide datasets, description and configuration files, as well 
as scripts for all use cases of 3D-TSV on the publicly available GitHub 
repository. 

3. Related work 

3.1. Stress Tensor Field Visualization 

Stress tensor field visualization can be classified into trajectory-, 
glyph- and topology-based methods [12,21]. Trajectory-based methods 
choose the PSLs as visual abstractions of the stress field, focusing on the 
directional structure of the principal stresses. Delmarcelle and Hesselink 
[6] introduced the concept of hyperstreamlines, a visual mapping of the 
medium and minor principal stresses onto a tube surface with a single 
selected major PSL as centerline. Dick et al. [8] trace the major and 
minor PSLs from randomly distributed seed points in the loading area of 
the solid object, and different types of stress state like tension and 
compression are distinguished by color. In order to identify and visualize 
regions where stress trajectories are of rotational or hyperbolic 
behavior, Oster et al. [28] proposed the concept of tensor core lines in 
3D secondorder tensor fields. Hotz et al. [15] smear out dye along the 
PSLs using line integral convolution. In this way, a density field is 
generated that resembles a grid-like structure. This approach provides a 
global overview of a 2D stress distribution, yet an extension to 3D is 
problematic due to the generation of a dense volumetric field. 

It’s worth noting that even though stresses are frequently simulated 
and analysed in engineering applications, the use of trajectory-based 
visualizations that consider the whole stress field as a tensor field 
instead of several scalar fields are not commonplace. In particular, such 
functionality seems neither provided by any of the well-established 
software packages for stress simulation, like ABAQUS and ANSYS, nor 
by dedicated environments for visualizing finite-element simulation 
results [3,24,44]. 

Glyph-based methods, on the other hand, depict the stress field by a 
set of well-designed geometric primitives – so-called tensor glyphs. 
Tensor glyphs were originally designed for glyph-based diffusion tensor 
visualization [19], and later adapted to visualize positive definite ten-
sors [18], general symmetric tensors [34], as well as asymmetric tensors 
[11,35]. Glyph-based techniques are problematic when used to visualize 
3D stress fields, due to their inherent occlusion effects. Specific place-
ment strategies can be used to reduce the number of glyphs and occlu-
sions thereof [14,20]. Tensor glyphs are effective in showing the local 
stress states, but they cannot effectively communicate the global struc-
ture of stress lines. Patel and Laidlaw [30] proposed to guide the 
placement of glyphs by principal trajectories in the underlying field, and 
thus to provide a better understanding of the global relationships in this 
field. 

Topology-based approaches for stress tensor visualization abstract 
from the depiction of stress directions and focus on revealing specific 
topological characteristics of the tensor field. Delmarcelle and Hesselink 
[7,13] studied the topology of symmetric 2D and 3D tensor fields, and 
introduced the fundamental concepts of degenerate points and topo-
logical skeletons. Zheng and Pang  [49], and later Roy et al. [33], dis-
cussed the robust extraction of these topological features. Zobel and 
Scheuermann proposed the notion of extremal points to analyze the 
complete invariant part of the tensor [50]. Raith et al. presented a 
general approach for the generation of separating surfaces in the 
invariant space [32]. Palacios et al. introduced the eigenvalue manifold 

and visualized the 3D eigenvectors as curve surfaces [29]. Qu et al. [31] 
further generalized the concepts of degenerate curves and neutral sur-
faces to a unified framework called mode surfaces. 

3.2. Streamline Seeding 

Seeding strategies to control the density and placement of trajec-
tories in vector fields are widely used in flow visualization. Turk and 
Banks [39] and Jobard and Lefer [16] were the first to introduce seeding 
strategies for generating evenly spaced sets of streamlines in 2D vector 
field. Numerous extensions and improvements of these concepts have 
been proposed since then. In particular, Vilanova et al. [41] proposed an 
extension of the approach by Jobard and Lefer to diffusion tensor fields, 
which detects the distance between the new streamline and the existing 
ones during the tracing process. They demonstrate the generation of 
evenly distributed streamlines, however, the approach suffers from 
‘unfinished’ streamlines that are caused by an artificial stopping crite-
rion and only considers a single eigenvector field at a time. For 3D flow 
visualization, dedicated approaches and frameworks have been devel-
oped to reduce the visual clutter and occlusion of densely distributed 
streamlines in 3D fields [4,17,47,48]. However, these techniques do not 
fit our goal of visualizing PSLs and their mutual relationships, which 
requires considering three sets of orthogonal PSLs simultaneously. 

3.3. Streamline Visualization 

Illuminated streamlines are often used as a means of visualizing 
streamlines in a 3D environment. The streamlines are mapped to tubes 
and then shaded, e.g., using the Blinn-Phong shading model [2]. Early 
work on illuminated streamlines was done by Zöckler et al. [51] and 
Mattausch et al. [27]. Stoll et al. [37] extended this work by introducing 
stylized line primitives, rendered by a hybrid CPU-GPU renderer. Liu 
[26] presented the DOXIV, a prototype framework for high-performance 
visual analysis of large flow data. Volpe [42] first introduced the concept 
of streamribbons for flow field visualization. 

3.4. Hexahedral Meshing 

An alternative approach to PSL-based stress field visualization is to 
generate a frame field from the principal stress field first and employ 
field-aligned hexahedral meshing to produce orthogonal edges that 
follow PSLs. The edges of such hex-meshes can follow the directions of 
PSLs excellently in situations where degenerate points are not present 
and the stress lines show low degrees of convergence and divergence. 
However, when guided with frame fields corresponding to realistic load 
situations, yet still much more benign than those demonstrated in this 
work, it is an unsolved problem to reliably produce an all-hex mesh. 
Hexahedral-dominant meshing has been resorted as an intermediate 
solution. For instance, Wu et al. [46] propose a conforming stress-guided 
lattice structure by combining topology optimization with the 
field-guided polyhedral meshing algorithm from [9]. Arora et al. [1] 
generate similar structural designs via the guidance of the principal 
stress field, where they modify the stress field to get a smooth frame 
field. However, hexahedral-dominant meshes often contain either 
T-junctions or non-hexahedral elements with non-orthgonal edges, 
significantly deviating from the PSLs and are, thus, not applicable for 
stress field analysis either. 

4. Stress tensor directions 

At each point in a 3D solid under load, the stress state is fully 
described by the stress vectors for three mutually orthogonal orienta-
tions. The second-order stress tensor 5 https://youtu.be/Yri_B7m3AWU 

J. Wang et al.                                                                                                                                                                                                                                    



Advances in Engineering Software 170 (2022) 103144

4

T =

⎡

⎣
σxx τxy τxz
τxy σyy τyz
τxz τyz σzz

⎤

⎦ (1)  

contains these vectors for the axes of a Cartesian coordinate system. T is 
symmetric since the shear stresses given by the off-diagonal elements in 
T are equal on mutually orthogonal planes. The principal stress di-
rections of the stress tensor indicate the three mutually orthogonal di-
rections along which the shear stresses vanish. These directions are 
given by the eigenvectors of T, with magnitudes given by the corre-
sponding eigenvalues. The signs of the principal stress magnitudes 
classify the stresses into tension (positive sign) or compression (negative 
sign). However, since there are three principal stresses acting at each 
point, the classification is with respect to a specific direction. 

In descending order, the three eigenvalues of T represent the major 
σ1, medium σ2 and minor σ3 principal stresses, with the corresponding 
eigenvectors indicating the principal stress directions at each point in 
the 3D solid. The trajectories along these directions are called the 
principal stress lines (PSLs). They are computed by numerically inte-
grating massless particles in each single (normalized) eigenvector field. 

In general, σ1, σ2 and σ3 are mutually unequal, and the eigenvectors 
are linearly independent and even mutually orthogonal due to the 
symmetry of T. However, so-called degenerate points can exist where 
two or more eigenvalues are equal. In the vicinity of these points, which 
are classified by σ1 = σ2 > σ3 or σ1 > σ2 = σ3

6, the PSL direction cannot 
be decided. Therefore, when tracing along a principal stress direction, 
we test whether the eigenvalue σi corresponding to this direction is too 

close to another eigenvalue σj, i.e., deg = 1
2

⃒
⃒
⃒
σi − σj
σi+σj

⃒
⃒
⃒ < 10− 6. If this is the 

case and the angle between the PSL tangents at the current and next 
integration point is too large, the integration is stopped. Furthermore, 
we provide the option to map deg to the color of a PSL via a color table 
(see Section 4.3), so that the proximity to a degenerate point is indi-
cated. PSL integration is also stopped when the next integration point is 
located on a boundary face, the point is closer to a previous point on the 
same trajectory than a predefined distance threshold (i.e., to avoid 
running into closed orbits), or the number of integration steps reaches 
the pre-defined threshold. 

The integration of PSLs requires to select seed points from which they 
start until they arrive at a degenerate point or the boundary. While 
uniform seeding in the entire domain is used as the default option, the 
user can select seeding from the boundary vertices as well as the vertices 
where loads are applied. Furthermore, different integration schemes can 
be used for PSL tracing, including the 1st-order Euler method, and the 
2nd- and 4th-order Runge-Kutta methods, where the fixed integration 

step size δ is used for Cartesian meshes, and an adaptive δ for unstruc-
tured hexahedral meshes. In each integration step, the stress tensor T is 
interpolated, and the eigenvalues and eigenvectors are computed from 
the interpolated tensor. If none of the mentioned stopping criteria holds, 
the next step is performed in the direction with the least deviation from 
the previous direction. 

5. PSL Seeding and level of detail 

Finding a set of PSLs that effectively convey the principal stress di-
rections in 3D stress fields requires to consider perceptual issues related 
to the visualization of large sets of trajectories. While in principle the 
PSLs of a single type, i.e., major, medium, or minor, can be visualized 
separately using techniques from flow visualization, in a stress field the 
different types of PSLs need to be shown simultaneously to understand 
their mutual interplay. However, an effective and efficient visual anal-
ysis is hindered by the mutual orthogonality of the different types, which 
is perceived as a disordered state even when a low number of PSLs is 
shown. Our proposed seeding strategy cannot completely avoid this 
problem, but it has some built-in regularity due to enforced PSL 
intersections. 

5.1. Evenly spaced PSL seeding 

The proposed seeding strategy builds upon the evenly spaced 
streamline seeding approach by Jobard and Lefer [16], and extends this 
approach in several ways to account for the application to PSLs. For the 
sake of clarity, we describe the strategy in the context of 2D stress fields, 
yet it will become clear that the extension to 3D is straightforward. 
However, when applied in 3D, the resulting PSL structures show a 
fundamental difference. Unlike in 2D, where due to the intersections 
between major and minor PSLs a fairly regular grid-like structure is 
generated, such intersections are rare or do not exist at all when seeding 
PSLs in 3D. This counteracts the impression of a consistent grid-like 
structure and results in a rather disordered appearance. We propose a 
seeding strategy that weakens this effect, but it needs to be considered 
that due to the nature of PSLs in 3D stress fields a globally consistent 3D 
grid-like structure is impossible to achieve in general. 

Our method builds upon the selection of new seed points in the spirit 
of Jobard and Lefer, where the potential candidates are those points 
which are at least a prescribed distance away from any already extracted 
PSL. Of these candidates, the one with minimum distance is selected and 
a new trajectory is started at that point. In contrast, in our approach the 
distance is always wrt. the initial seed point, so that the PSLs grow 
around that point instead of being seeded at vastly different locations. 

To adapt the seeding strategy to the situation of different types of 
PSLs, we first introduce the concept of seed valence. In 2D, the seed 
valence ϑ is a 2 × 1 binary array, which is associated to each seed point 
to indicate whether and of which type PSLs have been traced from this 

Fig. 2. Starting from a set of seeds with empty valence [0 0], the sampling process is performed until all the seed valences have been turned to [1 1]. The ocher and 
blue lines are the major and minor PSLs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

6 We do not consider triple degenerate points with σ1 = σ2 = σ3, since they 
do not exist under structurally stable conditions  [49]. 
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point. ϑ can take on four different bit combinations, i.e., empty seed 
[0 0] (passed by no PSL), solid seed [1 1] (passed by both major and 
minor PSLs) and semi-empty seed [1 0] (only passed by major PSL) or 
[0 1] (only passed by minor PSL). The sampling process is repeated until 
all valences of all possible seed points become solid [1 1]. With this 
definition of seed valence, the sampling process is performed iteratively, 
by using the seed valence to characterize the state of each seed point at a 
specific iteration. To ensure that the generated PSLs are space-filling, the 
initial candidate seed points (with ϑ = [0 0]) are located at the vertices 
of a space-filling Cartesian grid (step 0 in Fig. 2). 

Seeding starts by selecting one of the candidate seed points and 
tracing the major and minor PSLs from it (Step 1 in Fig. 2), setting ϑ =
[1 1] at this point. Per default, the system starts with the seed point 
closest to the center of the bounding box of the domain, to preserve an 
existing plane symmetry of the stress field in the PSLs (see Fig. 10 and 
Fig. 11). Then, all candidate seed points with ϑ not equal to [1 1] are re- 
classified with respect to the currently existing PSLs. To exclude can-
didates too close to an existing major or minor PSL, ϑ of these candidates 
is set to [1 0] or [0 1], respectively. If a point is classified as [1 0] or [0 1]
and closer to a minor or major PSL, respectively, its valence is set to 
[1 1]. The distance between a point and a PSL is computed as the min-
imum distance between the point and any of the integration points on 
the PSL. Proximity is decided via a distance threshold ε, which also 
controls the density of the extracted PSLs. 

To obtain a more regular PSL structure, each re-classified candidate 
point is re-located (i.e., merged) to the position of the closest integration 
point on the PSL causing its classification. This creates an ”empty” band 
around the PSLs where no candidate seed point exists. The merging 
operation enforces that newly selected seed points lie on an existing PSL, 
so that the final PSL structure appears more regular and less cluttered 
(see Fig. 3 for a comparison to the seeding approach by Jobard and 
Lefer). By placing the initial seed point in a region deemed important, 

the user can specifically enforce regularity in this region. 
If the last computed PSL was a major or a minor PSL, then the next 

seed point is selected from the set of candidates with ϑ = [1 0] or [0 1], 
respectively. Thus, we alternate the order of major and minor PSL 
extraction to obtain a uniform distribution of both types. Of all these, the 
one closest to the initial seed point is selected as the new seed point, and 
the respectively transverse PSL is computed. The entire procedure is 
then restarted until no more candidate is available (see steps 2–5 in 
Fig. 2). 

We further consider the situation where some empty seed points may 
get too close (measured by ε) to the other type of existing PSLs after they 
are merged to the current PSL, e.g., the seed valence ϑ of some empty 
seed points become [1 0] after merging them to the newly traced major 
PSL. However, it can also happen that some of these merged seed points 
might be close to some of the existing minor PSLs, which would 
unavoidably cause inappropriate placement of minor PSLs in the final 
visualization. Given this, we identify those semi-empty seed points after 
merging, and compute the distances of them to the corresponding type 
of PSLs. If there are distances less than ε, the valences of these seed 
points are set to [1 1]. By simply making ϑ a binary array with three 
elements referring to the major, medium and minor PSL, the proposed 
seeding strategy can be lifted to 3D. 

5.2. PSL LoD Structure 

To change the density of the generated PSLs, the seeding process can 
simply be re-run with an appropriately set distance threshold ε. The 
larger this threshold is, the less PSLs are extracted. However, the 
different sets of PSLs that are generated for different thresholds are not 
nested, i.e., the PSLs at a coarser representation with lower PSL density 
are not a subset of the PSLs at a representation with higher density. 
Therefore, in an exploration session where the user interactively selects 

Fig. 3. PSLs in a bridge under load (see Figure 9 for the simulated load conditions). Major (ocher), medium (green) and minor (blue) PSLs generated by (left) 
separate seeding as proposed by [16] in each principal stress direction field, and (right) by our method. Note that since the stress field is not strictly symmetric, the 
PSL set shows some asymmetry. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. PSL LoD hierarchy. Top: The major and minor PSLs at different LoDs, computed separately for each level. Bottom: Simultaneous extraction of the PSL 
structure using level L2 (context) for the major and L3 (focus) for the minor PSLs. 
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different PSL LoDs, there are abrupt changes when transitioning from 
one level to another. To avoid this, we propose to generate a nested PSL 
hierarchy. 

The basic idea underlying the construction of a nested hierarchy is to 
let the PSLs at a level with higher PSL density ’grow out’ sequentially 
from the PSLs at a lower density level. As a side effect, this enables 
saving computations by progressively computing a new level from the 
previous coarser level. For a given set of PSLs that have been generated 
with distance threshold ε0, the refined set of PSLs according to a distance 
threshold ε1 < ε0 is computed as follows: Firstly, the candidate seed 
points are reset to their initial positions. Secondly, the candidate seed 
points are merged to the existing PSLs according to ε1, to create “empty” 
bands around the existing PSLs. The valences are updated accordingly to 
[1 0], [0 1] or [1 1] depending on the types of PSL they are merged to. 
After this, some non-solid seeds are left, because ε0 is larger than ε1. 
With these seeds the seeding is subsequently performed, including the 
iteration of seed point selection, PSL computation, and re-classification 
as described in subsection 4.1. 

To generate a full LoD PSL hierarchy, the user defines the minimum 
distance threshold ε and the number M of levels to construct. Then, the 
distance thresholds of each level are computed as 2(M− k)ε, k = 1 : M 
from coarse to fine, and the hierarchy is constructed progressively from 
the coarsest resolution level (see 1st and 2nd rows in Fig. 4). To compute 
a PSL structure with different types of PSLs at different LoDs, the dis-
tance thresholds for each PSL type are first selected by the user, and then 
the multi-type LoD is computed by alternatively considering the 
different PSL types with their respective distances. 

5.3. Ribbon-based stress visualization 

Instead of rendering lines, the user can select a PSL type (i.e., major, 
medium, minor) and visualize ribbon-shaped geometry [40] that is 
centered at the PSLs of the selected type and twists according to the 
direction of another stress type (see Fig. 5 a,b). At each integration point 
along a PSL of the selected type, two lines with adjustable length are 
traced forward and backward along the other direction. The lines’ 
endpoints at subsequent integration points are connected to form a 

ribbon. It is worth noting that the constructed ribbons don’t coincide 
with streamsurfaces that are integrated from a PSL along one other stress 
direction. As shown by Raith et al. [32], such surface might not even 
exist, i.e., when integrating from two points on the same PSL over a 
certain length along another stress direction, the two endpoints are not 
lying on a PSL in general. The mapping of two principal stress directions 
to a ribbon geometry is conceptually similar to the well-known hyper-
streamlines [6], i.e., a mapping of two principal stress directions to a 
tube centered at the PSL along the third direction. 

We let the user select a visualization using ribbons to convey changes 
in the assignment of the eigenvector directions to the type of PSL in the 
vicinity of degenerate points. When a ribbon is formed as described, flips 
often occur in the vicinity of a degenerate point (see Fig. 5 (c)). This is 
because the two directions can exchange their classification as major, 
medium, and minor, since this depends only on their position in the 
sorted sequence of eigenvalues. Thus, ribbons provide an additional 
visual cue to indicate topological changes of the PSLs in the vicinity of 
degenerate points. 

Fig. 6 compares the options to visualize principal stress directions via 
ribbons and lines, and combine them into a single visualization. As can 
be seen, twists in the ribbon geometry effectively hint to regions where 
degenerate points might exist. For lines, 3D-TSV can map the de-
generacy measure introduced in Section 3 to color. An interesting 
observation is that high degeneracy and flips thereof frequently occur 
close to the object boundaries when Cartesian simulation meshes are 
used. These flips occur due to the well-known inaccuracies at curved 
boundaries that are represented by hexahedral simulation elements in a 
Cartesian grid. 

6. System implementation 

To implement the communication between the C++ visualization 
frontend and the MatLab extraction backend, the messaging library 
ZeroMQ is utilized, which can be used for communication over a wide 
variety of protocols, like TCP/IP. 3D-TSV relies on the request-reply 
pattern implemented in ZeroMQ, where the frontend issues a new 
request to the backend when the user changes simulation settings in the 

Fig. 5. When a PSL goes through a degenerate point (a), the ribbon-shaped geometry shows a sudden twist (b). (c) Behaviour of the eigenvalues along the ribbon’s 
center PSL, from which the ribbon’s direction and orientation is determined. 

Fig. 6. Left: Ribbons are aligned along the minor PSLs and twist according to the medium principal stress direction. Middle: Minor PSLs with degeneracy measure 
mapped from blue (low) to red (high). Right: A visualization using lines for minor PSLs and ribbons for major PSLs. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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graphical user interface, and the backend sends back a reply as soon as 
the simulation is finished in order to notify the frontend of the avail-
ability of new data. 

The reason why we turned to MatLab instead of C++ for the 
implementation of the backend is, on the one hand, that the sampling 
method is an inherently sequential algorithm. Thus, it cannot benefit 
significantly from multi-threaded PSL tracing or GPU parallelization. On 
the other hand, MatLab is widely spread in engineering, where most of 
our collaborators regarding stress visualization come from, and the en-
gineers tend to use mainstream commercial software they are already 
familiar with to finish the design iteration quickly. In this case, they can 
run the MatLab backend independently without any complicated 
compilation and setup process. To this end, we also provide a slim 
MatLab visualization implementation, which can provide users a fast 
and easy way to explore the stress field, while discarding some more 
complex hardware-accelerated features from the C++ frontend, like 
depth cues or ambient occlusion effects. It is worth noting that also the 
rendering frontend can be used standalone, by reading trajectories from 
a file specifying the exchange format regarding PSL type and LoD 
representation. 

6.1. Numerical PSL integration 

3D-TSV is designed to support the visualization of PSLs in solids 
discretized by hexahedral grids, where the stress tensors are given at the 
grid vertices. When computing PSLs in Cartesian grids, component-wise 
trilinear interpolation of the tensors is used during numerical line 
integration. In deformed hexahedral cells, tensor interpolation is per-
formed via inverse distance weighting [36]. 

To integrate PSLs in Cartesian grids, the system provides fixed-step 
integration schemes with user adjustable stepsize of at least half the 
cell diameter. In deformed hexahedral grids, a different approach is 
taken since the size of the simulation elements can vary, and with a 
constant stepsize the risk increases that multiple cells smaller than this 
size are missed in one single integration step. To reduce this risk, the 
integration stepsize is automatically adapted to the size (i.e., the length 
of the shortest edge) of the cell at the current integration point Pi. These 
values are pre-computed and stored per cell. In each integration step, the 
size s of the current cell is read and multiplied by a user selected scaling 
factor δs. δs can be made smaller than 1 to obtain more accurate PSLs. 
With the stepsize s⋅δs, the PSL is integrated from the current point Pi in 
cell ei to the new point Pi+1. Then, the integration process is restarted 
with Pi+1 and the cell ei+1 containing Pi+1. 

To find ei+1, it is first tested whether Pi+1 is still contained in ei. The 
following in-out criterion is used to test whether a point is located in a 
hexahedral cell: Given a hexahedral element with the centers and out- 
facing normal of its 6 faces Ci and n→i, i ∈ {1, ⋯, 6}. Any point P0 in 
the interior or on the boundary of the element satisfies max(arccos(P0Ci

̅̅ →
,

n→i)) ≤
π
2, i ∈ {1,⋯,6}, see Fig. 7 a. In practice, the criterion is slightly 

relaxed to max(arccos(P0Ci
̅̅ →

,Vi)) ≤
91π
180, i ∈ {1,⋯,6}, to account for non- 

planar cell faces, i.e., a slight variation of the normal vectors across the 
faces. 

If ei does not contain Pi+1, the cell ei+1 needs to be determined. To 
this end, we further test whether Pi+1 lies in any of the adjacent cells eadj 

of ei. For each cell, the set of adjacent cells as well as the adjacency type, 
i.e., face-, edge-, and vertex-adjacency, is pre-computed and stored. In 
case Pi+1 is not within ei or eadj, we scale down the stepsize via a di-
chotomy strategy, i.e., Pi+1 = (Pi+1 + Pi)/2, until Pi+1 is located in ei or 
it’s adjacent cells eadj. 

In the case where ei and ei+1 are connected by a single edge or vertex, 
it may still happen that cells are skipped when going from Pi to Pi+1. In 
this situation, stepsize refinement is performed multiple times until the 
cell ei+1 shares a face with ei or is below a user-selected threshold. The 
latter situation is encountered when the PSL goes through a cell vertex or 
edge, so that face-adjacency cannot be determined. In Fig. 8, for the 
given mesh two PSLs that have been extracted without and with addi-
tional stepsize refinement are compared. As can be seen, cells that would 
be skipped when using only face-to-face adjacency are now determined 
and considered in the integration. 

6.2. Rendering 

The line and ribbon primitives are rendered in a stylized fashion 
similar to the techniques by Zöckler et al. [51], Stoll et al. [37] and 
Mattausch et al. [27], using default colors, halos and depth cues as 
shown in the first three images in Fig. 1. Focus PSLs and contextual 

Fig. 7. (a) Quantities required to test whether a 
point P0 (red ∗) is located in a hexahedral cell. 
Black ” + ” and orange arrows indicate centers 
Ci and out-facing normals n→i, i ∈ {1,⋯,6} of 
the six cell faces. Green arrows indicate the 
directional vectors P0Ci

̅̅ →
, i ∈ {1,⋯, 6} that are 

used. (b) Point re-location is subsequently per-
formed until the next integration point Pi+1 is 
within the same cell ei (grey cube) as the cur-
rent point Pi, or is within one of the cells eadj 

(cyan cubes) adjacent to ei. (For interpretation 
of the references to colour in this figure legend, 
the reader is referred to the web version of this 
article.)   

Fig. 8. (a) The deformed hexahedral simulation mesh. (b) A PSL (blue trajec-
tory) in the simulated stress field. It is ensured that every next integration point 
is in the previous cell or in a cell adjacent to the previous cell. (c) Same as (b), 
but now every next integration point is in a face-adjacent cell. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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ribbons are rendered in ocher and blue, respectively. The base color is 
modulated using Blinn-Phong shading [2,51], which assumes a point 
light source at the world space position of the viewer (i.e., a head light). 

The user can interactively change the color mapping—also sepa-
rately for each PSL type—and can in particular switch to a mapping of 
some scalar quantity to color, as indicated in the last image in Fig. 1 
using the scalar von Mises stress measure. The scalar values are issued 
via the backend as per-vertex attributes. The standard color scheme we 
use for the different principal stress directions (blue, green, ocher) is the 

‘3-class Set2’ transfer function from ColorBrewer7. It is colorblind safe 
and print friendly. 

For enhanced depth perception, depth cues are added, i.e., with 
increasing distance to the camera, fragments are increasingly desatu-
rated. A translucent simulation mesh outline hull can be rendered 
together with the stress field data in order to hint at the extents of the 
simulation domain. 

6.3. 3D-TSV settings 

3D-TSV provides a number of parameters that can be changed by the 
user to control the generation of PSLs. These parameters include the 
merging threshold ε and the number of levels M introduced in subsec-
tion 4.1 and subsection 4.2, respectively. Another set of parameters 
enables a user-guided interaction with the PSL distribution, including 
sliders for controlling the LoD resolution of major, medium and minor 
PSLs. In addition, the user can select the two PSL types that are used to 
generate ribbons. Via a drop-down menu, the user can select a scalar 
stress measures that are mapped to PSL color using a transfer function. 
The backend provides different stress components, such as the principal 
stress amplitudes, von Mises stress, and the six Cartesian stress 
components. 

7. Results 

In all of our experiments, PSL generation is performed on the CPU, i. 
e., a workstation running Ubuntu 20.04 with an AMD Ryzen 9 3900X 
@3.80GHz CPU and 32GB RAM. Rendering is done on an NVIDIA RTX 
2070 SUPER GPU with 8GB of on-chip memory. The rendering times are 
always below 10 milliseconds. The data sets we use in our experiments 
are shown in Fig. 9. The stress fields are simulated by a finite element 
method (FEM), using the solid objects under the shown load conditions. 
Table 1 lists the numbers of simulation elements of each of the data sets, 
the seed points that are used to generate the PSLs, the number of 
generated PSLs, and the time required for PSL generation. 

For the three models ’Bridge’, ’Cantilever’ and ’Rod’, we demon-
strate the improvements of the proposed seeding strategy over evenly 
spaced streamline seeding. 3D-TSV is used to visually analyze the stress 
fields in ’Femur’ and ’Bracket’. These two data sets that are frequently 
seen in structural design and optimization [45]. Finally, we consider the 
two mechanical parts ’Bearing’ and ’Parts1’ to demonstrate the appli-
cation of 3D-TSV to unstructured hexahedral simulation meshes. 

Figs. 10 and 11 emphasize the improvements by the proposed 
seeding strategy regarding the regularity of the extracted set of PSLs. 3D- 
TSV generates a fairly uniform space-filling PSL structure, which, in 
particular, maintains the symmetry of the stress field in ’Cantilever’. 
Evenly spaced streamline seeding, on the other hand, generates a far less 

Fig. 9. The solid objects used in this work and the applied external loads. Red and blue arrows indicate the loading positions and directions, black regions indicate 
fixed boundaries. A finite-element-based elasticity analysis has been used to compute the stress field for each model under the predicted loads. The unstructured 
hexahedral meshes ‘Parts’ and ’Bearing’ are courtesy of [25] and [10], respectively. All other meshes are Cartesian meshes. ‘Arched Bridge’ and ’Rod’ are courtesy of 
[1] and [10], respectively. All simulated stress fields are made publicly available. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 10. PSLs in the ‘Cantilever’ stress field. PSLs by the proposed seeding 
strategy (left) and evenly spaced streamline seeding (right). 

Fig. 11. Top: PSLs showing the principal stress directions in ‘Rod’. Bottom: 
PSLs in ‘Rod’ from a different view. Left: PSLs computed by 3D-TSV. Right: PSLs 
computed via evenly spaced seeding as proposed by [16]. 

7 https://colorbrewer2.org/#type=qualitative&scheme=Set2&n=3 
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regular design which introduces severe visual clutter. 
The visualization also highlights the importance of showing different 

PSL types simultaneously. In the analyzed tensor field, the signs of the 
eigenvalues along the major and minor PSLs are mostly positive and 
negative, respectively. This means that the major PSLs are mainly under 
tension and the minor PSLs mainly under compression. Thus, either of 
both effects could be shown by visualizing one PSL type, but not both. 

Fig. 12 (left) shows the space-filling PSLs in the stress field in the 
interior of ’Bracket’. From the boundary condition in Fig. 9, we see that 
the structure is mainly under tension. Thus, we choose to show the major 
PSLs at the higher level of detail (L2) and the minor PSLs at lower level 
L1 (see Fig. 12 (right)). The minor PSLs are shown via ribbons, with the 
medium principal stress direction indicating the twist. This enables a 
fine granular analysis of the major principal stress directions, and 
simultaneously provide a coarse representation of the other principal 
directions. A similar setting has been selected to visualize the stress 
directions in ’Femur’ (see Fig. 1). 

3D-TSV works with Cartesian meshes and deformed hexahedral 
meshes, which are both frequently used in mechanical engineering ap-
plications. Here we use the stress fields due to external loads in the 
interior of ‘Bearing’ and ‘Parts1’, to demonstrate the capability of 3D- 
TSV. As shown in Fig. 9, especially in ‘Bearing’ the element sizes 
change considerably over the 3D domain. The distribution of PSLs of 
‘Bearing’ is shown in Fig. 13 (left), and the right image shows the 
combination of major at the third level of detail (L3) and minor at L1, 
where the minor PSLs are shown via ribbons. The full distribution of 
PSLs of ‘Parts1’ can be seen in the Fig. 14 (left), on the right the minor 
PSLs at L3 and major PSLs at L2 are shown simultaneously, where the 
major PSLs are rendered via ribbons. 

8. Conclusion and future work 

In this paper, we have introduced 3D-TSV, a tool for visualizing the 
principal stress directions in 3D solids under load. 3D-TSV makes use of 
a novel seeding strategy, to generate a space-filling and evenly spaced 
set of PSLs. By considering all three types of PSLs simultaneously in the 
construction process, the regularity of the resulting PSL structure is 
improved. By incorporating different merging thresholds for each PSL 
type into the construction process, a consistent multi-resolution hier-
archy is formed, which can be utilized to show different PSL types with 
different resolutions simultaneously. Efficient rendering options for 
lines and ribbons on the GPU enable interactive analysis of large sets of 
PSLs. 

In the future, we intend to couple 3D-TSV with load simulation 
processes, so that dynamic changes of the stress field can be instantly 
monitored. Therefore, we will analyze whether the intrinsically iterative 
parts of the algorithm can be parallelized on modern multi-threading 
architectures. Furthermore, we are interested in using space-filling 
evenly spaced seeding to guide the material growth in topology opti-
mization. Topology optimization seeks to distribute material in a way 
that makes the object resistant to external loads. To automatically 
generate support structures that follow the major stress directions and 

Fig. 12. Stress field in ‘Bracket’. Left: PSLs at the finest level (according to Table 1). Right: major / minor PSLs at the third (L3) / first (L1) level of detail.  

Table 1 
Model and performance statistics. D0 is the length of the shortest dimension of 
the bounding box of the stress field.  

Data Set #Cells #Seeds ε/D0 M #PSLs Time (s) 

Cantilever 250K 2K 1/5 1 85 0.4 
Rod 536K 18K 1/5 1 174 2.1 
Femur 696K 10K 1/18 3 823 9.0 
Bracket 650K 9K 1/12 3 293 5.4 
Bearing 189K 55K 1/18 3 1364 33.4 
Parts1 253K 46K 1/20 3 1557 27.9  

Fig. 13. Stress field in ‘Bearing’. Left: PSLs at the finest level (according to Table 1). Right: major / minor PSLs at the third (L3) / first (L1) level of detail. Ribbons are 
along the minor PSLs and twist according to medium principal stress direction. 

Fig. 14. Stress fields in ‘Parts1’. Left: PSLs at the finest level. Right: major / 
minor PSLs at L2 / L3. Ribbons are along the major PSLs and twist according to 
medium principal stress direction. 
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eventually can form a 3D grid-like structure, we aim at combining our 
seeding strategy with the automatic growth process underlying topology 
optimization. 
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Abstract
The optimization of porous infill structures via local volume constraints has become a popular approach in topology optimiza-
tion. In some design settings, however, the iterative optimization process converges only slowly, or not at all even after several 
hundreds or thousands of iterations. This leads to regions in which a distinct binary design is difficult to achieve. Interpreting 
intermediate density values by applying a threshold results in large solid or void regions, leading to sub-optimal structures. 
We find that this convergence issue relates to the topology of the stress tensor field that is simulated when applying the same 
external forces on the solid design domain. In particular, low convergence is observed in regions around so-called trisector 
degenerate points. Based on this observation, we propose an automatic initialization process that prescribes the topological 
skeleton of the stress field into the density field as solid simulation elements. These elements guide the material deposition 
around the degenerate points, but can also be remodelled or removed during the optimization. We demonstrate significantly 
improved convergence rates in a number of use cases with complex stress topologies. The improved convergence is demon-
strated for infill optimization under homogeneous as well as spatially varying local volume constraints.

Keywords Topology optimization · Porous infill · Stress tensor

1 Introduction

Topology optimization aims at finding the optimal struc-
tural layout under relevant design specifications. Topology 
optimization of multi-scale structures, which dates back to 
the seminal paper by Bendsøe and Kikuchi (1988), has been 
a topic of great interest in recent years. The rapid develop-
ment in this field is partially stimulated by the possibility to 
fabricate complex structures using additive manufacturing. 
For an overview of topology optimization approaches for 
designing multi-scale structures, we refer readers to a recent 
review article by Wu et al. (2021a).

It has been shown that density-based topology optimi-
zation for compliance minimization, under local volume 
constraints, creates porous infill structures similar to those 

found in bone (Wu et al. 2018). These bone-mimicking 
porous structures are lightweight, robust regarding material 
damages and loading variations, and stable with respect to 
buckling. The local volume constraints work similarly to 
maximum length scale control (Guest 2009). They prevent 
the forming of large solid regions and, consequently, create 
porous structures distributed more evenly over the design 
domain. This approach has been extended, in conjunction 
with a coating approach proposed by Clausen et al. (2015), 
to design concurrently structures and porous sub-structures 
therein, referred to as shell-infill composites  (Wu et al. 
2017). It has also been applied to design porous shell struc-
tures (Träff et al. 2021). Other notable extensions include 
the design of porous structures with gradation in the poros-
ity and pore size (Schmidt et al. 2019; Das and Sutrad-
har 2020), use of multiple materials (Li et al. 2020; Zhao 
and Zhang 2021), and fiber-reinforced structures (Li et al. 
2021). Besides by density-based approaches, porous infill 
structures have been designed using an evolutionary design 
approach (Qiu et al. 2020) and machine learning (Cang et al. 
2019).

In this paper, we investigate the convergence behavior of 
density-based topology optimization with local volume con-
straints under a single load case. In density-based topology 

Responsible Editor: Axel Schumacher

 * Jun Wu 
 j.wu-1@tudelft.nl

1 Computer Graphics and Visualzation, Technical University 
of Munich, Munich, Germany

2 Department of Sustainable Design Engineering, Delft 
University of Technology, Delft, The Netherlands



 J. Wang et al.

1 3

92 Page 2 of 13

optimization, an important convergence criterion is that the 
optimized density field converges to a binary or so-called 
black-white design, i.e., the pseudo density is close to 1 or 
0. A few hundred iterations or even more are not uncommon 
to achieve black-white designs (Wu et al. 2017). To improve 
the convergence rate, a typical solution is to apply a continu-
ation scheme where parameters are updated after a certain 
number of iterations. However, in some optimization sce-
narios under local volume constraints, we have observed that 
certain regions fail to converge to a binary design even after 
thousands of iterations (see Fig. 1). Interpreting these inter-
mediate density values by applying a threshold results in 
large solid or void regions, leading to sub-optimal structures.

To analyze the regions where low convergence is 
observed, we investigate the stress distribution in these 
regions via trajectory-based visualization (Wang et al. 2020). 
In particular, we shed light on the relationship between the 
convergence behavior and the principal stress directions that 
occurs when simulating on the solid design domain. This 
approach is inspired by previous work on infill optimiza-
tion, where uniformly seeded tensor glyphs have confirmed 
good agreement between the optimized porous infill and 
the principal stress directions in the solid under load (Wu 
et al. 2018). In this paper, we exploit advanced mechanisms 
to perform a topology-based analysis of the stress field, 

including the use of degenerate points and topological skel-
etons. At a degenerate point, the principal stress directions 
cannot be decided, yet a set of hyperbolic and parabolic 
sectors exist in its surrounding, in which similar patterns 
of neighboring trajectories are observed (Delmarcelle and 
Hesselink 1994). The topological skeleton consists of the 
boundaries between adjacent sectors—so-called separa-
trices—and indicates pathways along which the forces are 
steered towards the degenerate points. In topology optimiza-
tion, degenerate points have been used to indicate locations 
where integrability conditions are violated and consistent 
domain parameterizations cannot be computed (Stutz et al. 
2020).

When applying topology analysis to the stress tensor 
field, it reveals that low convergence occurs around a spe-
cial type of degenerate points, known as trisectors. Notably, 
such degenerate points do not always appear, but if so, low 
convergence is often observed in their surrounding. Due to 
the isotropy of the stress tensor close to a trisector, the prin-
cipal stress directions and, thus, a locally consistent binary 
material layout cannot be decided by the optimizer. In our 
work, we propose an automatic pre-process that supports 
the optimizer in finding such a layout, resulting in signifi-
cantly improved convergence rates in settings where trisec-
tors are paramount. In particular, we build upon the efficient 

Fig. 1  a Illustration of the design domain (500x250 simulation ele-
ments) and boundary conditions. b, c The density distributions after 
250 and 1000 iterations, respectively, from topology optimization 
under local volume constraints. Design parameters are �e = 0.6 , 
Re = 18 and re = 4.5 . d, e, f The sensitivities at 1000 iterations, of the 
objective �c

��
 , the constraint �g

��
 , and − �c

��
∕
�g

��
 . g, h, i. The optimized den-

sity fields under different parameter settings: g Re = 12 . h re = 2.6 , Re 
varies linearly from 8 to 24, from the left to right side of the design 
domain. i �e varies linearly from 0.4 to 0.7, from the left to right side 
of the design domain. All other parameters are kept the same as in (b) 
and (c)
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computation of degenerate point locations and separatrices, 
and prescribe an initial density field where elements along 
the separatrices are solid and all other elements take an 
intermediate value (i.e., the local volume upper bound). 
The solid elements along the separatrices can be changed 
over the course of the optimization to improve the structural 
performance, yet we observe that the optimization keeps 
them more or less unchanged and changes element densities 
in other parts accordingly. In the vicinity of trisectors, the 
initialization guides the optimizer towards a stable binary 
design and enables the optimization process to quickly 
converge towards a sound global layout. Interestingly, even 
though one might expect that the imposed initialization 
biases the optimizer towards a less stiff local optimum, the 
resulting binary designs show the same or even improved 
compliance compared to the designs generated by the origi-
nal approach which exhibit unresolved intermediate density 
values in the presence of trisectors.

The remainder of this paper is organized as follows. In 
Sect. 2, we first review the problem formulation underly-
ing porous infill optimization. Then, in Sect. 3 we analyse 
the convergence of porous infill optimization, elaborate on 
the relationships between optimization convergence and 
the existence of degenerate points in the stress field, and 
propose topology-guided density initialization to counteract 
low optimization convergence. The implementation details 
of performing the topology analysis to the stress tensor field 
are discussed in Sect. 4. We demonstrate the effectiveness 
of our approach in a variety of experiments in Sect. 5. Sec-
tion 6 concludes the paper with a discussion of the proposed 
approach as well as future research directions.

2  Porous infill optimization

The low convergence in some design tasks is observed while 
using the infill optimization approach (Wu et al. 2018), on 
which and some of its extensions the effectiveness of our 
method will be demonstrated. For the sake of completeness, 
we briefly review the formulation of the density-based infill 
optimization with local volume constraints.

2.1  Local volume constraints

In a discretized design domain, the local volume ( �̄�e ) of a 
circular region centered at the centroid of an element, xe , is 
computed by

(1)�̄�e =

∑
i∈Ne

𝜌i
∑

i∈Ne
1
, Ne = {i� ∥ xi − xe ∥2≤ Re}, ∀e,

where �i ∈ [0, 1] is the pseudo density for the i-th element. 
Re denotes the radius of the region on which the local vol-
ume is measured.

An upper bound ( �e , 0 < 𝛼e < 1 ) is imposed on the local 
volume of each element in the design domain, i.e.,

Thus, the local volume constraint involves two parameters, 
Re and �e . Re indirectly controls the spacing between sub-
structures, and �e effectively controls the porosity  (Wu 
et al. 2018). In the original approach, both input fields are 
prescribed to be homogeneous. Recent developments have 
demonstrated the use of heterogeneous fields to generate 
gradations of the porosity and pore size of the optimized 
porous structures (Schmidt et al. 2019; Das and Sutradhar 
2020; Zhao and Zhang 2021).

Assigning a local volume constraint to each element 
results in a large number of constraints that need to be con-
sidered by the optimizer. Dividing both sides of Eq. 2 by �e , 
these constraints are aggregated by the p−mean function,

where n is the number of elements. p = 16 is found to give 
a good approximation, and is used in this paper.

2.2  Optimization problem

With the local volume constraint defined, the optimization 
problem is given by

Here the objective is to minimize the compliance, measured 
by the strain energy c. K is the stiffness matrix in finite ele-
ment analysis. U is the displacement vector, obtained by 
solving the static elasticity equation (Eq. 5), where F is the 
loading vector. g(�) represents the aggregated local volume 
constraint.

The formulation takes �e as the design variable. The 
pseudo density field ( � ) is computed from � by a density 
filter ( � → �̃ ), followed by a smoothed Heaviside projection 

(2)�̄�e ≤ 𝛼e.

(3)
(
1

n

∑

e

(
�̄�e

𝛼e

)p
) 1

p

≤ 1,

(4)min
�

c =
1

2
U

T
KU,

(5)s.t. KU = F,

(6)g(�) =

(
1

n

∑

e

(
�̄�e

𝛼e

)p
) 1

p

− 1 ≤ 0,

(7)�e ∈ [0.0, 1.0], ∀e.
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( ̃� → � ). The density filter, with a filter radius re smaller 
than Re (Eq. 1), avoids checkerboard patterns resulting 
from numerical instabilities. The associated equations of 
this standard operator are omitted here but can be found in 
e.g., (Wang et al. 2011; Wu et al. 2018). The purpose of the 
projection �̃ → � is to promote a 0-1 solution, by threshold-
ing at the value of 1

2
,

The smoothed Heaviside function has a parameter, � , to 
control its sharpness. For improving convergence behaviour, 
a continuation scheme is applied to gradually increase its 
sharpness, i.e., we start with � = 1 and double its value every 
40 iterations until it reaches 128.

To interpolate the Young’s modulus for intermediate den-
sities, we use the modified SIMP (Solid Isotropic Material 
with Penalization) model,

where E0 is the Young’s Modulus of a fully solid element. 
Emin is a minimum Young’s modulus ( Emin = 1.0e−6E0 in our 
test), introduced to avoid the singularity of the global stiff-
ness matrix. � is the penalization factor, which is typically 
set to 3. Ee(�e) is the interpolated Young’s Modulus of the 
element with density �e.

The commonly used global volume constraint is not 
included here, but can be added as an additional constraint. 
An example of incorporating both local and global volume 
constraints is shown in Fig. 9 in the results section. The aver-
age of local volume fractions, i.e., 

∑
e �e∑
e 1

 , gives an estimation 
of the global volume fraction of the resulting optimized 
structure. To precisely control the global volume without 
resorting to an explicit global volume constraint, one may 
apply a continuation scheme, i.e., adjusting the local volume 
bound towards the end of optimization. Suppose the intended 
global volume fraction is �global . The local volume bound can 
be scaled by �new

e
=

∑
e �global∑

e �e
�e.

The optimization problem is solved using the method of 
moving asymptotes (MMA) (Svanberg 1987). In all experi-
ments performed in this work, the move limit of design vari-
ables is set to 0.01 unless specified otherwise.

3  Convergence analysis and improvement

When applying topology optimization using local volume 
constraints, in some scenarios it is observed that the itera-
tive optimization process converges very slowly. When 
inspecting such scenarios in more detail, for instance, by 

(8)𝜌e(�̃�e) =
tanh(

𝛽

2
) + tanh(𝛽(�̃�e −

1

2
))

2 tanh(
𝛽

2
)

.

(9)Ee(�e) = Emin + ��
e
(E0 − Emin),

visualizing the density distribution of the intermediate 
designs, it turns out that in some regions even after several 
hundreds or thousands of iterations a distinct binary design 
cannot be achieved by the optimizer. One of such scenarios 
is shown in Fig. 1. The rectangular design domain is fixed 
on its left edge. A unit load is applied on the right, while 
another unit load on the bottom, both in the middle of the 
edges. In Fig. 1b, i.e., optimization after 250 iterations, two 
large grey regions can be observed. While the grey region 
on the left converges to a binary design after another 250 
iterations, the grey region on the right does not result in a 
binary design even after a few thousands iterations. Apply-
ing a threshold to the intermediate densities to set them to 
either 0 or 1 results in large void or solid regions with sub-
optimal mechanical properties or use of material.

To further analyze the cause of slow convergence, we 
examine the sensitivities at the 1000 iterations. In Fig. 1d, 
the plot of �c

��
 , the region where low convergence is observed 

has a high absolute sensitivity, meaning that an increase in 
density shall be favored for reducing the objective. However, 
an increase of density in this region will greatly violate the 
aggregated local volume constraint, as can be seen in Fig. 1e, 
the plot of �g

��
 . Shown in Fig. 1f is − �c

��
∕
�g

��
 , a metric similarly 

used for deriving a fix-point type update scheme with the 
optimality criteria (Sigmund 2001). It can be seen that in the 
low convergence region the ratio is rather homogeneous and 
does not indicate a clear density update strategy.

3.1  Relationship between convergence and stress

Prior work in infill optimization has shown that the opti-
mized porous structure is in many regions according to the 
principal stress directions that occur in the solid design 
domain under equal boundary conditions and external loads. 
At each point in a 2D solid under load, the stress state is 
fully described by the stress vectors for two mutually orthog-
onal orientations. The second-order stress tensor

contains these vectors for the axes of a Cartesian coordinate 
system. �xx and �yy are the normal stress components along 
the x and y directions, respectively, �xy is the shear stress 
component.

S is symmetric since the shear stresses given by the 
off-diagonal elements in S are equal on mutually orthogo-
nal lines. The principal stress directions of the stress ten-
sor indicate the two mutually orthogonal directions along 
which the shear stresses vanish. These directions are 
given by the eigenvectors of S, with magnitudes given by 
the corresponding eigenvalues �1 and �2 of S. For �1 ≥ �2 , 
�1 is called the major principal stress, and �2 the minor 

(10)S(x, y) =

[
�xx �xy
�xy �yy

]

(x,y)
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principal stress. Accordingly, the corresponding eigenvec-
tors v1 and v2 are called major and minor principal stress 
directions. The signs of the principal stress magnitudes 
classify the stresses into tension (positive sign) or com-
pression (negative sign). However, since there are two 
principal stresses acting at each point, the classification 
is with respect to a specific direction.

Figure 2a shows a tensor glyph-based visualization of 
the stress field, corresponding to the scenario in Fig. 1. 
Here, the stress tensors are represented by oriented ellip-
ses. The axes of the ellipses are oriented according to 
the eigenvectors of the stress tensor, and the lengths of 
their radii are determined by the eigenvalues. The colors 
of axes indicate the sign of the principal stresses, red 
for positive and green for negative values. Figure 1b, 
i.e., optimization after 250 iterations, has two large grey 
regions. Comparing it with Fig. 2a, it can be seen that 
the grey region on the left corresponds to �1 ≈ −�2 , and 
the one on the right corresponds to �1 ≈ �2 . While after a 
few hundred more iterations (see Fig. 1c) the grey region 
on the left converges to a binary design, the grey region 
on the right shrinks but remains visible. In these regions, 
the optimizer can favour material growths either along 
the major or the minor principal stress direction, and it 
seems that because no preferential direction is present the 
optimizer has problems to decide for any of them. In the 
regions where the optimizer doesn’t converge, however, 
another specific property can be perceived in addition 
to isotropic stress. As indicated by principal stress lines 
(PSLs), which are computed by performing numerical 
integration along the major and minor principal stress 
directions (see Fig. 2b), these regions seem to cover loca-
tions where the PSLs indicate directional discontinuities 
in the tensor field. This observation gives rise to a stress 
topology-based analysis of the optimization convergence, 
which we provide in the following.

3.2  Stress topology‑based analysis

Topology analysis of 2D symmetric second-order tensor 
fields (e.g., stress tensor fields) has been introduced in the 
seminal work of Delmarcelle and Hesselink (1994). The 
topology of a 2D stress tensor field is composed of its degen-
erate points and the corresponding topological skeleton. At a 
degenerate point, the stress tensor has repeating eigenvalues, 
i.e., �1 = �2 , meaning that the major and minor stress direc-
tions cannot be decided. The topological skeleton is given 
by principal stress lines—so-called separatrices—that start 
from degenerate points.

An isolated degenerate point can be classified by the 
winding number of one of the eigenvector fields on a loop 
surrounding the degenerate point. Delmarcelle and Hes-
selink (Delmarcelle and Hesselink 1994) proposed an invari-
ant to perform this classification in a stable way. In Sect. 4, 
we describe how the degenerate points are computed and 
classified for a stress tensor field given at the vertices of a 
Cartesian grid. A major/minor separatrix is a principal stress 
line starting at a degenerate point and following the major/
minor eigenvector field. Let us also refer to Sect. 4 for a 
discussion of how to determine these directions. Figure 2c 
illustrates the major and minor separatrices in the stress field 
corresponding to the used test scenario in Fig. 1.

At a trisector there are three separatrices in the major (and 
three in the minor) principal direction field that divide the 
neighborhood into three sectors sharing this point. Around 
a wedge there can be either one sector or three sectors. In 
a sector, similar stress trajectories in the major and minor 
principal stress direction fields are observed. Figure 2c, as 
well as all other experiments we have performed, indicate 
that the regions where convergence cannot be achieved are 
always centered around a trisector, while wedges seem to 
have no influence on the convergence rate. Furthermore, 
regions where the convergence rate is low but the optimizer 
can eventually arrive at a stable binary design do not con-
tain any degenerate point (Fig. 1b, left). These regions have 

Fig. 2  Stress tensor field visualizations. The stress tensor field is 
according to the scenario shown in Fig. 1a, when simulating on the 
solid design domain. a Tensor glyphs are drawn at sampled vertices 
of the Cartesian simulation grid. Colors indicate the sign of the prin-
cipal stresses, red for positive and green for negative values. b Trajec-

tory-based visualization. Orange and turquoise trajectories represent 
the major and minor principal stress directions, respectively. c Topol-
ogy-based visualization. The circle and quads indicate the trisector 
and wedge degenerate points, respectively, which are connected via 
the major (red) and minor (blue) topological skeletons
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major and minor principal stresses that are close in their 
magnitudes but differ in signs, i.e., �1 ≈ −�2 , yet in these 
regions there are no topological changes in the stress field. In 
Fig. 3, we give two more examples which verify our obser-
vations, and clearly indicate the relationships between low 
convergence and existence of trisectors.

The topological skeletons can be perceived as limits of 
the principal stress lines close to the boundary between 
different stress regions. We hypothesize that the porous 
structures in regions where convergence is not achieved, if 
a stable binary design should be enforced, follow these skel-
etons, just as porous structures in other regions follow the 
principal stress directions. To validate this hypothesis, our 
idea is to guide the material deposition along the topologi-
cal skeleton via a skeleton-based initialization of the density 
field. The initialization sets the optimizer to a state in which 
a stable binary design in the regions around trisectors is 
prescribed. The design can be changed during the course of 
the optimization, yet our experiments demonstrate that the 
optimizer maintains this design and builds additional sup-
port structures around it. These results empirically proof the 
validity of our hypothesis, and they indicate that the devia-
tion from the prescribed skeleton is not favorable for the 
objective function.

3.3  Stress topology‑guided initialization

Typically in density-based topology optimization, the 
density field is initialized with a constant value. For infill 
optimization, the constant is chosen as the local volume 
upper bound. In accordance to the observation that the 
material layout in porous infill optimization is guided by 

the principal stress directions, we propose to augment the 
initialization by setting the densities of elements close 
to the topological skeleton to a high value. This strategy 
is fully automatic, since the computation of neither the 
degenerate points nor the topological skeleton does involve 
any user intervention.

To generate the initial material layout, the elements which 
are near the topological skeleton are identified first. In the 
current implementation, all elements that are touched by any 
of the PSLs belonging to the skeleton are identified. Then, 
the initial volume fraction of these elements is set to solid 
at the beginning of the optimization process. In this way, 
the initial density field around a trisector degenerate point 
becomes inhomogeneous, giving rise to sensitivities favor-
ing a unique topology layout. It is worth noting that these 
pre-embedded solid elements are not passive elements but 
still belong to the design space, i.e., the density at these ele-
ments can be adjusted by the optimizer if a stiffer design can 
be achieved. Figure 4 shows the initial density fields that are 
used in the test cases ’Cantilever’, ’Bracket’ and ’Bearing’.

The proposed initialization process can be integrated into 
porous infill optimization in a fully automated way. Once the 
design domain, material parameters, fixations and external 
load conditions are given, the following steps are performed: 

(1) Finite element analysis to compute the stress field in 
the fully solid design domain.

(2) Topology analysis including the computation of all tri-
sector degenerate points and the topological skeleton 
containing these points.

(3) Initialization of the density field according to the topo-
logical skeleton.

Fig. 3  Design domains and 
boundary conditions of models 
’Bracket’ (a) and ’Bearing’ 
(d) using Cartesian simulation 
grids of resolutions 512 × 400 
and 512 × 512 , respectively. b e 
Trisector degenerate points and 
the corresponding topological 
skeletons. c, f Density distribu-
tions after 1000 optimization 
iterations with �e = 0.6 , Re = 18 
and re = 4.5



Stress topology analysis for porous infill optimization  

1 3

Page 7 of 13 92

(4) Topology optimization using local volume constraints 
for porous infill optimization.

4  Implementation details

In the following, we discuss the computation of the locations 
of degenerate points in a given Cartesian simulation grids, 
as well as the computation of the topological skeleton that 
is required to initialize the density field. Given the definition 
of degenerate points, a degenerate point can be located by 
solving the following system of equations:

where (x∗, y∗) denotes the coordinates of the point to be 
solved for. Here we consider the general situation in topol-
ogy optimization, i.e., the finite element analysis is per-
formed using axis-aligned quadrilateral finite elements with 
bilinear shape functions. Thus, each element has four nodes 
that coincide with the element’s vertices, and the values at 
the nodes are bilinearly interpolated within the element. 
Then, Eq. 11 becomes a non-linear system of equations, 
which can be solved by the Newton-Raphson method.

Since degenerate points usually appear only in a few ele-
ments, an efficient way is required to test whether a cell can 
contain such a point and needs to be further analysed, or 
can be excluded right away. Therefore, each element is first 
classified according to the following conditions:

where (xi, yi), i = 1 ∶ 4 refers to the four nodal coordinates 
of a finite element. It can be easily shown that an element 
cannot contain a degenerate point if any of the conditions in 
Eq. 12 is true. If none of the conditions is true, the element 
needs to be further analyzed to locate a degenerate point 
in its interior. Figure 5 shows a possible distribution of the 
eigenvalues corresponding to the major and minor principal 

(11)
�xx(x

∗, y∗) − �yy(x
∗, y∗) = 0,

�xy(x
∗, y∗) = 0,

(12)

𝜎xx(xi, yi) − 𝜎yy(xi, yi) > 0, i = 1 ∶ 4 or

𝜎xx(xi, yi) − 𝜎yy(xi, yi) < 0, i = 1 ∶ 4 or

𝜏xy(xi, yi) > 0, i = 1 ∶ 4 or

𝜏xy(xi, yi) < 0, i = 1 ∶ 4

stress directions in a quadrilateral simulation element con-
taining a degenerate point.

In a symmetric second tensor field, two types of stable 
degenerate points exist: trisectors and wedges. They are indi-
cated by characteristic patterns of the PSLs in their vicin-
ity, and are determined from the so-called tensor gradients 
(see Delmarcelle and Hesselink (1994) for a comprehensive 
derivation). First, the partial derivatives of the tensor are 
introduced as

These derivatives are then used to compute the invariant 
under rotation

The sign of � determines the type of the degenerate point. 
I.e., a trisector degenerate point is indicated by 𝛿 < 0 , and a 
wedge degenerate point is indicated by 𝛿 > 0 . At a trisector 
degenerate point, there are three major and three minor sepa-
ratrices starting from this point. In contrast, two separatrices 
start from a wedge, one coincides with the major PSL and 
the other one with the minor PSL (see Fig. 2c). These sepa-
ratrices are termed the topological skeleton of a stress tensor 
field, i.e., the topological skeleton is composed of the PSLs 
starting from the degenerate points. Compared to the PSLs 

(13)
a =

1

2

�(�xx−�yy)

�x
b =

1

2

�(�xx−�yy)

�y

c =
��xy

�x
d =

��xy

�y

(14)� = ad − bc.

Fig. 4  The initialized density 
fields of the ’cantilever’ in 
Fig. 1 and ’Bracket’ and ’Bear-
ing’ in Fig. 3

Fig. 5  The eigenvalues corresponding to the major ( �
1
 ) and minor 

( �
2
 ) principal stress direction are shown as height fields over the 

domain of a simulation element (grey square). At a degenerate point, 
both eigenvalues have the same value
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not belonging to the topological skeleton, the tangent of the 
topological skeleton at the degenerate point is not unique, 
since there is an infinite set of principal stress directions at 
such points. To solve this problem, Delmarcelle and Hes-
selink (1994), propose that the tangents to the topological 
skeleton at the degenerate points are the real root(s) of the 
cubic equation

5  Results and discussions

In this section, we use several examples to demonstrate 
the effectiveness of the proposed initialization for density-
based porous infill optimization. The initialization and opti-
mization are both implemented in Matlab. The initializa-
tion involves a finite element analysis, followed by a stress 
topology analysis and computation of the topological skel-
eton. Running on a desktop PC with an Intel Xeon CPU at 
3.60GHz, the initialization in our experiments took less than 
2 seconds. All design domains are discretized by Cartesian 
finite element grids with unit size simulation elements. The 
Young’s Modulus and Poisson’s ratio are set to 1.0 and 0.3, 
respectively. Convergence improvement is quantified by the 
sharpness measurement

(15)dx3 + (c + 2b)x2 + (2a − d)x − c = 0.

(16)s =
4

n

∑

e

�e(1 − �e)

A small value of s indicates a sharper binary design of the 
optimized topology.

Figure 6 shows the binary designs that are generated 
using an initialization by topological skeleton. The same 
parameter settings as in Fig. 1 are used here. As can be seen, 
in all cases a binary design is achieved regardless of the 
area of the region around the degenerate point where con-
vergence is not achieved by the original approach. Figure 7 
compares the intermediate density distributions during the 
optimization using a uniform density initialization and the 
proposed topology-guided density initialization. Table 1 
compares the mechanical properties of the designs gener-
ated by both approaches, as well as the used material and the 
sharpness (cf. Eq. 16) of the designs after 1000 optimization 
iterations. Notably, even after some thousands of iterations 
convergence cannot be reached via original porous infill 
optimization. As can be seen from the sharpness values, the 
proposed initialization strategy improves the convergence 
behavior of porous infill optimization considerably. In all 
test cases, a distinct binary design has been reached within 
the given number of iterations. The difference in compliance 
and material fraction is rather small.

Figure 8 shows the converged density distributions of the 
’Bracket’ and ’Bearing’, obtained using the topology-guided 
initialization strategy. Low convergence regions from the 
original approach (cf. Fig. 3) are removed. The convergence 
is again confirmed by a reduction in the sharpness value. In 
the ’Bearing’ result from the original approach (cf. Fig. 3f) 
the area of the low convergence regions is large. In this case, 
the sharpness value is reduced by an order of magnitude by 

Fig. 6  Binary designs by porous infill optimization with stress topology-guided density initialization. The same parameter settings as in Fig. 1c, 
g, h and i, respectively, are used. A quantitative comparison is given in Table  1

Fig. 7  Intermediate density distributions of the results in Fig. 1c (top, using a uniform density initialization) and Fig. 6a (bottom, using the pro-
posed topology-guided density initialization)
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the proposed initialization. It leads to a stiffer structure with 
less material consumption.

We further test the applicability of the proposed initiali-
zation on topology optimization with both local and global 
volume constraints. The global volume constraint is

The test is performed on a square where its four corners are 
loaded (Fig. 9a), an example taken from Stutz et al. (2020). 
This example has two trisectors, as shown in Fig. 9b. From 
Fig. 9c, it can be seen that the central region is largely grey 
after 1000 optimization iterations. The grey region disap-
pears in the optimized result from the proposed initialization 
(Fig. 9d). The significant improvement in convergence can 
be seen from the evolution of density distributions shown in 

(17)
1

n

∑

e

�e − �global ≤ 0.

Fig. 9 and the plot of the sharpness over iterations, shown 
in Fig. 10(right). As the large grey region is replaced by a 
binary design, the material consumption reduces from 0.400 
to 0.378 and the compliance value decreases marginally 
from 26.02 to 25.96.

In density-based topology optimization, distributed loads 
are known to be a source of potential low convergence. 
Fig. 11a sketches a disk with radially compression forces 
applied on its boundary. Eight vertices equally-spaced on 
the boundary are fixed in both x- and y-axis, indicated by 
small triangles. The topological skeleton of the stress field 
is visualized in Fig. 11b, while the stress field is visualized 
using tensor glyphs in Fig. 11c. From the visualizations it 
can be seen that the stress field has a complex topology, and 
that the stress tensors in the middle are isotropic and exhibit 
a tiny spatial gradient. This is a challenging case for infill 
optimization with a uniform density initialization (Fig. 11d). 
Figure 11e shows the optimized infill using the proposed 
topology-guided density initialization. The density distri-
butions during the optimization are shown at the bottom. 
This example demonstrates the effectiveness of the proposed 
initialization in the case of distributed loads.

Interestingly, under certain design specifications, the 
original approach is able to create binary designs at the 
presence of degenerate points. This happens if the speci-
fied local volume bound is small. Figure 12a shows the 
cantilever example optimized with a uniform density ini-
tialization under �e = 0.4 (reduced from �e = 0.6 in previous 
examples). It is not precisely known how the different local 
volume bounds triggered the different convergence behav-
ior. The proposed topology-guided density initialization is 
effective for small local volume bounds (Fig. 12b). In this 
case, the sharpness values of results from both initializa-
tion strategies are very close. The one with the proposed 
initialization leads to a slightly larger compliance ( 104.6% ), 
while consuming 5.6% less material. From the intermedi-
ate density distributions shown in the following two rows, a 
noticeable difference between the two initializations can be 
found around the degenerate point after 300 iterations. Our 
experiments also revealed that the local convergence may, 
to some extend, be alleviated by a more aggressive move 
limit in the MMA solver. Figure 12c shows the optimized 
result with a move limit of 0.1 (in contrast to a limit of 0.01 
in previous examples), under a homogeneous initialization. 
While a binary design is obtained, the design has irregular 
large void regions that do not agree with the intention of 
creating distributed porous infill structures. The introduc-
tion of the topology-guided initialization is able to fill the 
void (see Fig. 12d). The difference can be observed in the 
intermediate density distributions shown at the bottom, e.g., 
after 300 iterations, around the degenerate point. The lat-
ter design consumes 4.5% more material, and decreases the 
compliance by 4.2%.

Table 1  Quality and convergence comparison. Each pair of rows 
shows the compliance, the fraction of solid material, and the sharp-
ness of the resulting designs when using porous infill optimization 
without (top) and with (bottom) stress topology-guided density ini-
tialization

Cases Compliance Solid fraction Sharpness

Fig. 1c 27.99 0.479 1.8 × 10−2

Fig. 6a 28.26 0.473 5.4 × 10−3

Fig. 1g 27.37 0.501 1.1 × 10−2

Fig. 6b 27.63 0.497 1.1 × 10−3

Fig. 1h 35.49 0.377 1.0 × 10−2

Fig. 6c 35.76 0.379 5.4 × 10−3

Fig. 1i 27.98 0.482 1.2 × 10−2

Fig. 6d 28.47 0.480 1.3 × 10−3

Fig. 3c 19.15 0.490 1.7 × 10−2

Fig. 8a 19.32 0.482 5.8 × 10−3

Fig. 3f 45.67 0.515 6.6 × 10−2

Fig. 8b 45.49 0.504 4.8 × 10−3

Fig. 8  The binary designs that are generated by stress topology-
guided porous infill optimization for ’Bracket’ (a) and ’Bearing’ (b) 
from Fig. 3
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In this paper we focus on addressing the issue of low 
convergence associated with degenerate points. We note that 
there are other causes of low convergence in density-based 
topology optimization. As discussed in Sect. 3.2, the left 
hand side in Fig. 1b includes a region of �1 ≈ −�2 . It takes a 
few hundred iterations for this region to converge (c.f. Fig. 7 
bottom). Extending the initialization from the topological 
skeleton to the entire domain is expected to reduce the num-
ber of iterations.

6  Conclusions

In this work, we have analyzed the convergence of porous 
infill optimization towards a stable binary design. In a 
number of experiments we have shown that low conver-
gence regions may appear in this variant of topology opti-
mization, prohibiting an automatic generation of a distinct 
and mechanically sound binary design. By analyzing the 
topology of the stress field that arises in the solid object, 
the existence of trisector degenerate points in this field 

Fig. 9  Porous infill optimization with both local and global vol-
ume fraction constraints. The optimization settings are �e = 0.6 , 
�global = 0.4 , Re = 18 , re = 4.5 and 1000 iterations. a The design 
domain ( 200 × 200 ) and boundary conditions. b Trisector degener-
ate points and the corresponding topological skeletons. c The density 

distribution generated by porous infill optimization, and d using the 
proposed topology-guided density initialization. The two rows at the 
bottom show the intermediate density distributions during optimiza-
tion, under the two different initializations

Fig. 10  Convergence plots for 
the example shown in Fig. 9, 
comparing the effects of 
homogeneous initialization and 
topology-guided initialization 
regarding the objective (left) 
and sharpness (right)
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Fig. 11  Porous infill optimization under distributed loads. The opti-
mization settings are �e = 0.6 , Re = 36 , re = 4.5 and 1000 iterations. 
a The design domain ( 444 × 444 ) and boundary conditions. b Trisec-
tor degenerate points and the corresponding topological skeletons. c 

Stress visualization using tensor glyphs. d The optimized infills using 
a uniform density initialization e and the proposed topology-guided 
density initialization. The intermediate density distributions using dif-
ferent initializations are shown at the bottom

Fig. 12  Top row: Density distributions of special cases of ’Cantile-
ver’ after 1000 iterations. Control parameters are kept the same as in 
Fig. 1c if not stated otherwise. a Using a uniform initial density field 
and �e = 0.4 . b Using a stress topology-guided initial density field 
and �e = 0.4 . c Using a homogeneous initial density field and setting 

the moving limit of MMA to 0.1. d Using a stress topology-guided 
initial density field and setting the moving limit of MMA to 0.1. The 
intermediate density distributions using different initializations are 
shown at the bottom
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could be determined as the major cause of low conver-
gence. Based on this observation, we have proposed an 
initialization process for porous infill optimization that 
quickly guides the optimization towards a stable binary 
design. This process generates an initial solid material 
layout along the topological skeleton of the stress field, 
which is comprised of principal stress lines starting at the 
trisector degenerate points.

In the future, we intend to shed light on the following exten-
sions of the proposed approach: Firstly, we aim to consider the 
application of stress topology-guided density initialization to 
three-dimensional (3D) domains. Therefore, the convergence 
of 3D porous infill optimization first needs to be analyzed, 
using dedicated visualization techniques for 3D scalar fields. 
Then, since degenerate points become lines and surfaces in 3D 
(Hesselink et al. 1997; Zheng et al. 2005), the relationships 
between the 3D stress field topology and the local conver-
gence ratio needs to be investigated. Based on these investi-
gations, specific initialization strategies and material growth 
processes need to be developed. Secondly, we will consider 
stress topology analysis for homogenization-based infill opti-
mization. In particular, we will address the automatic genera-
tion of a 2D quad-dominant mesh where the mesh edges align 
with the principal stress directions. Porous infill optimization, 
under a single load case, tends to lay out the material along 
the mutually orthogonal principal stress lines, and—with our 
proposed initialization—automatically handles the material 
layout around degenerate points where quad meshing approach 
have difficulties to construct a consistent mesh structure (Wu 
et al. 2021b). We will build upon this observation and com-
bine stress topology-guided porous infill optimization with the 
enforcement of material deposition along the principal stress 
lines.
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ABSTRACT
Density-based topology optimization using global and lo-

cal volume constraints is a key technique to automatically design
lightweight structures. It is known that stiffness optimal struc-
tures comprise spatially varying geometric patterns that span
multiple length scales. However, both variants of topology opti-
mization have challenges to efficiently converge to such a struc-
tural layout. In this paper, we investigate material layouts that
are generated from stress trajectories, i.e., to compile a glob-
ally consistent structure by tracing the stress trajectories from fi-
nite element simulation of the solid design domain under external
loads. This is particularly appealing from a computational per-
spective, since it avoids iterative optimization that involves finite
element analysis on fine meshes. By regularizing the thickness of
each trajectory using derived strain energy measures along them,
stiff structural layouts can be generated in a highly efficient way.
We then shed light on the use of the resulting structures as ini-
tial density fields in density-based topology optimization, i.e., to
generate an initial density field that is then further optimized via
topology optimization. We demonstrate that by using a stress tra-
jectory guided density initialization in lieu of a uniform density
field, convergence issues in density-based topology optimization
can be significantly relaxed at comparable stiffness of the result-
ing structural layouts.

∗Address all correspondence to this author.

1 Introduction
The design of optimal lightweight structures is a fundamen-

tal research topic in design engineering. It is known that stiffness
optimal structures, i.e., with minimum compliance measured by
strain energy, comprise spatially varying geometric patterns that
span multiple length scales [1]. To approach theoretically opti-
mal structures, early works in topology optimization (e.g. [2]) ex-
plored a material model corresponding to infinitely small square
cells with rectangular holes. The resulting multi-scale struc-
tures were deemed challenging for manufacturing. This had pro-
moted the field of topology optimization to shift its focus from
homogenization-based approaches to “mono-scale” approaches
that optimize the distribution of a homogeneous isotropic mate-
rial [3,4,5], e.g., using a material model known as Solid Isotropic
Material with Penalization.

Due to the increasing flexibility of additive manufacturing
(AM), recent years saw a resurgent interest in optimal design
of multi-scale structures. AM is effective for fabricating com-
plex mono-scale structures as well as delicate multi-scale struc-
tures such as infill lattices. We refer to a recent review article
for the history and latest developments in topology optimiza-
tion of multi-scale structures [1]. Among these approaches, it
is of particular interest to adapt the lattice orientation according
to stress directions. Topology optimization approaches for de-
signing conforming lattice structures can be categorised into two
groups: full-scale density-based topology optimization using lo-
cal volume constraints [6], and de-homogenization of optimized,
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locally defined orientations [7, 8].
Density-based approaches. Density-based topology optimiza-
tion commonly starts from a homogeneous initial density field
and then iteratively performs finite element simulation of the cur-
rent material distribution to optimize for structural performance,
under a constraint on the total material volume. Since the the-
oretically optimal structures are multi-scale, the density-based
approach in principle shall be able to achieve these multi-scale
structures. This, however, is only possible by using sufficiently
fine meshes for discretizing the material distribution, and re-
quires careful continuation techniques. Therefore, commonly
seen topology optimization results are predominantly mono-
scale.

To promote the appearance of fine scale substructures, lo-
cal volume constraints have been proposed to replace the to-
tal volume constraint [6]. This results in distributed substruc-
tures spreading across the design domain, which largely follow
the principal stress directions. This approach has been extended
in various directions, for instance, to design concurrently struc-
tures and porous substructures therein [9], porous structures with
gradation in the porosity and pore size [10, 11], fiber-reinforced
structures [12], and to incorporate multiple materials [13] and
self-supporting constraints [14]. Lately, as demonstrated by
Wang et al. [15], convergence issues may arise in the regions
enclosing degenerate points in the stress field, i.e., points where
the eigenvalues indicating major and minor stress direction be-
come indistinguishable. To reduce the number of optimization
iterations in these cases, Wang et al. proposed using the topolog-
ical skeleton, i.e., principal stress trajectories connecting pairs of
degenerate points, of the stress field in the solid object under load
to initialize the density field.
De-homogenization. In the seminal work of Bendsøe and
Kikuchi, they proposed a material model for infinitely small
square cells with rectangular hole [2]. Using numerical homog-
enization to evaluate equivalent mechanical properties of these
cells, one can optimize the spatially varying size as well as
orientation of such cells. The challenge that is addressed by
de-homogenization is to compile a globally consistent structure
from these locally defined unit cell configurations. Pantz et al
proposed one of the first solutions towards this end [7], which
has been further developed [8,16,17]. A key component in these
approaches is to seek a scalar field, whose gradient is aligned
with the optimized orientation. An effective alternative is to use
hexahedral meshing to create meshes with edges aligned to the
optimized orientation [18].

In this work, we investigate material layouts that are gen-
erated from stress trajectories, i.e., to compile a globally con-
sistent structure by tracing the stress trajectories from finite ele-
ment simulation of the solid design domain under external loads.
This is particularly appealing from a computational perspective,
since it avoids iterative optimization involving finite element
analysis on fine meshes. On this aspect, it is in line with the

de-homogenization approaches. Similar ideas to tracing stress
lines have been explored in [19, 20, 21, 22], yet a challenge is
to get a (quasi-)uniform distribution of the stress lines. To gen-
erate such layouts, we exploit recent results in trajectory-based
stress visualization [23], which automatically generate a regular,
smoothly varying, and space-filling structure consisting of trajec-
tories along the major and minor principal stress directions. The
thickness of each trajectory can be further regularized by using
derived strain energy measures along them. By converting the re-
sulting trajectory ensemble to a corresponding density field, stiff
structural layouts can be generated in a highly efficient way.

We then shed light on the use of the resulting structures as
initial density fields in density-based topology optimization, i.e.,
to generate an initial density field that is then optimized via topol-
ogy optimization. In density-based approaches, as with other
topology optimization approaches, the results are heavily influ-
enced by the initialization, both in terms of convergence and op-
timality of the optimized structural layout. This is because topol-
ogy optimization is a non-convex problem, and depending on the
initialization a different local optimum is reached. We demon-
strate that by using a material initialization guided by stress tra-
jectories instead of a uniform density field, convergence issues in
density-based topology optimization can be significantly relaxed
at comparable stiffness of the resulting layouts. In an exhaustive
study we compare the layouts generated by all variants regarding
their mechanical properties and computational cost.

The rest of our paper is organized as follows. In Section 2
we present the method to generate space-filling stress trajecto-
ries. The use of these stress trajectories for structural design and
for topology optimization is presented in Sections 3 and 4, re-
spectively. We then discuss the computational and structural per-
formance of different variants in Section 5, before concluding the
paper in Section 6.

2 Principal stress trajectories
A consistent visual representation of a 2D stress tensor field

can be obtained via principal stress trajectories, which convey
the directions of the principal stresses and are used in particu-
lar to show where and how loads are internally redirected and
deflected. We will subsequently call such trajectories Principal
Stress Lines (PSLs).

At each point in a 2D solid under load, the stress state is
fully described by the stress vectors for two mutually orthogonal
orientations. The second-order stress tensor

S(x,y) =
[

σxx τxy
τxy σyy

]

(x,y)
(1)

contains these vectors for the axes of a Cartesian coordinate sys-
tem. σxx and σyy are the normal stress components along the x
and y direction, respectively, τxy is the shear stress component.

2 Copyright © 2022 by ASME



FIGURE 1. (a) Solid model discretized by 500×250 simulation elements. Gray and orange arrowheads, respectively, indicate fixation and loading
conditions. (b) Tensor glyphs show the principal stress directions. Red and green, respectively, indicate positive and negative principal stresses. (c)
Uniformly distributed PSLs. Orange and turquoise trajectories represent the major and minor principal stress directions, respectively. (d) Red dots
indicate PSL intersections, and curved PSLs are converted into piecewise linear segments.

S is symmetric since the shear stresses are equal on mutu-
ally orthogonal lines. The principal stress directions of the stress
tensor are given by the eigenvectors of S, indicating the two mu-
tually orthogonal directions along which the shear stresses van-
ish. The corresponding eigenvalues σ1 and σ2 of S represent the
magnitudes of the principal stresses. For σ1 ≥σ2, σ1 is called the
major principal stress, and σ2 the minor principal stress, and the
corresponding eigenvectors v1 and v2 are called major and minor
principal stress directions. The signs of the principal stress mag-
nitudes classify the stresses into tension (positive sign) or com-
pression (negative sign). Since there are two principal stresses
acting at each point, the classification is with respect to a specific
direction. Figs. 1a,b, respectively, show a 2D solid under exter-
nal loads and the principal stresses via elliptical tensor glyphs.
The semi-major and -minor axes of the ellipses correspond to the
major and minor principal stress directions.

PSLs are the trajectories that are everywhere tangent to ei-
ther the major or the minor principal stress direction. They are
computed by numerically integrating massless particles in each
single (normalized) eigenvector field (see Fig. 1c). PSLs are
started from an arbitrary seed points, and integrated until the do-
main boundary is reached, the PSL performs a loop, i.e. comes
closer to a previous point than a predefined distance threshold, or
the number of integration steps exceeds a user-defined bound. A
Runge-Kutta (RK2) scheme with fixed integration step size δ is
used for numerical integration. In each integration step, the stress
tensor T is interpolated and the eigenvalues and eigenvectors are
computed from the interpolated tensor. The next integration step
is performed in the direction with the least deviation from the
previous direction.

In addition to the regular PSLs, there are special PSLs com-
prising the so-called topological skeleton. These PSLs start from
a degenerate point of the stress tensor field and separate areas
of different stress behavior. Degenerate points are character-
ized by two equal eigenvalues, so that the principal directions
cannot be decided. In the vicinity of such points a set of hy-
perbolic and parabolic sectors exist, in which similar patterns
of neighboring trajectories are observed [24]. The topological

skeleton consists of the boundaries between adjacent sectors—
so-called separatrices—and indicate pathways along which the
forces are steered towards the degenerate points. To extract the
topological skeleton, first the locations of degenerate points are
computed by using the invariant formulation by Delmarcelle and
Hesselink [24], and then PSLs are started from these points (see
Figs. 5h,i for an example including the topological skeleton).

2.1 Uniformly distributed stress trajectories
To generate a uniformly distributed set of PSLs, we use the

publicly available visualization tool for 3D stress fields provided
by Wang et al. [23] 1. Designed for extracting and visualizing
the PSLs along the three mutually orthogonal principal stress di-
rections in 3D solids under load, with only minor modifications
the tool can be adapted to work with 2D objects.

Starting with a set of seed points that are uniformly dis-
tributed across the domain, PSL extraction starts by selecting
one of the candidate seed points and tracing the major and mi-
nor PSLs (the seed PSLs) passing through it. The point is then
classified as visited by major and minor PSLs. All remaining
seed points that have not yet been classified as major and minor,
and are closer to a new PSL than a threshold ϑ , are processed in
the following way: Firstly, the coordinate of such a point is set
(i.e., snapped) to the coordinate of the closest integration point
on the PSL (in the first step, the closest PSL of the seed PSLs).
Secondly, if the new PSL is a major PSL, the classification ma-
jor is added to the point, and minor if the new PSL is a minor
PSL. Then, the seed point that is closest to the initial seed point
and not yet classified as major and minor is selected, and a ma-
jor (minor) PSL is traced if the point is classified as minor (ma-
jor). Snapping, classification, and selection are then repeated
until all points are classified as major and minor. By this proce-
dure it is ensured that around each PSL a band is generated from
which no more PSL is seeded, and new PSLs are always seeded
from points on existing PSLs. This generates a fairly uniform
and space-filling distribution of PSLs (see Fig. 1c and Fig. 5).

1https://github.com/Junpeng-Wang-TUM/3D-TSV
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To include the topological skeleton, it is first extracted and all
separatrices are considered as seed PSLs as described before.

2.2 Piecewise linear PSLs
Each PSL is a curved trajectory in the 2D domain, com-

posed of a set of integration points that are connected via line
segments. Especially if the density of PSLs is low, PSLs tend to
curve strongly between two intersection points with other PSLs.
When using PSLs to generate an initial density field in which
the material is smeared out along them, curved segments require
more material than straight lines and are less stable than lines.
Therefore, after all PSLs are computed, we compute all intersec-
tion points between PSLs and convert each PSL into a polyline
comprised of intersection points and linear connections between
them. The result of this process is shown in Fig. 1d.

To efficiently compute piecewise linear PSLs, the following
extensions are introduced: Firstly, once a PSL is computed, the
integration points along this PSL are assigned an index relative
to one of the end points of that PSL, i.e., an index Iid

i says that
the point is the i-th point when counting from the selected end
point of the PSL with unique identifier id. Secondly, additional
information is stored at the cells of the simulation grid on which
stresses are simulated. At every cell a PSL is passing through,
the identifier of the PSL is stored. Thus, eventually each cell
contains the identifiers of all PSLs that might intersect in this
cell. Since only intersections between major and a minor PSLs
can occur, all cells with at least one identifier of a major PSL and
a minor PSL are considered, and the intersection points between
the major and minor PSLs are computed. This results in line-
line intersection test to obtain the locations of intersection points.
In addition, for each intersection point the indices of that point
along the PSLs it resides on are computed by linear interpolation
of the indices at the line end points. Each PSL stores a separate
list containing all intersection points that are found along it, so
that by sorting these lists with respect to increasing index a sorted
sequence of intersection points is obtained.

3 PSL-guided structural design
In the following, we describe how a density field is obtained

from the set of piecewise linear PSLs. This density field is then
used in a finite element stress simulation to compute the com-
pliance of the layout. In the following chapters, this layout is
then used as initial density field in topology optimization, and
the results are compared regarding their mechanical properties.

Given the current and next point along a piecewise linear
PSL, we use Bresenham line rasterization to compute all simu-
lation cells that are hit by the line connecting both points. These
cells are then set to solid, and the process moves on to the next
pair of points along the PSL. The result of the rasterization is
shown in Fig. 2a.

FIGURE 2. Material layout via PSL rasterization. From (b) to (c), the
thickness of the initial material structure in (a) is increased by morpho-
logical dilation.

The material layout can be flexibly and efficiently adjusted
by using a lower or higher density of the computed PSLs. Con-
crete timings for PSL extraction depending on the resolution of
the simulation grid and the PSL density are given in Sec. 5. When
smearing out the material along the PSLs as described, rather thin
structures are generated and the overall compliance of the layout
is only acceptable if many PSLs are used. To address this limi-
tation, the material structures can be thickened via a morpholog-
ical dilation using a 3× 3 structuring element, i.e., around each
solid cell also the 8 adjacent cells are made solid. This process
can be applied iteratively to increase the PSL thickness further
(see Figs. 2b,c). Next, we describe an approach to automatically
adapt the thickness of each PSL by considering a PSL’s impor-
tance regarding the overall compliance.

3.1 Strain energy guided thickness control
Automatic thickness control aims at using the prescribed

material budget in the most effective way so that a low compli-
ance is achieved. Therefore, the importance of each PSL for re-
ducing the compliance is used as an indicator of the PSL’s thick-
ness. The overall compliance of a material layout is computed
via the strain energies of the elements in the simulation grid, i.e.,
by adding the strain energies of all solid elements in the domain.
The overall compliance per PSL can be computed by adding the
strain energies of all elements covered by a PSL. In this way, the
contribution of each PSL to the overall compliance, i.e. to re-
sist the external loads, can be quantified. Specifically, the stored
strain energy of the i-th PSL is computed as

cTi =
Mk

∑
k=1

ce. (2)

Where Mk is the number of elements covered by the PSL. To
avoid that the importance of a PSL is dominated by its length,
cTi is finally divided by the number of elements directly inter-
sected by the PSL. The resulting values are then used to guide
the adjustment of each PSL’s thickness.

Material initialization starts by setting the initial PSL thick-
ness (t0) either to 2, i.e., at least there are three layers of cells
surrounding the PSL (see Fig. 2b), or to a larger value specified
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FIGURE 3. PSL-guided material layouts for two different PSL densities, with the used volume fractions (v) and resulting compliances (c). (a)
(v = 0.370, c = 2.657c0) and (c) (v = 0.250, c = 4.436c0): Layouts using PSLs with t0 = 2, decreasing brightness indicates increasing PSL strain
energy. (b) (v = 0.493, c = 1.839c0) and (d) (v = 0.499, c = 1.780c0): layouts corresponding to (a) and (c) where thickness is adapted according to
strain energy. c0 = 40.93 is the compliance of the fully solid domain.

by the user. This enables to consider manufacturing constraints,
for instance, to enforce a certain minimum thickness that is re-
quired by the printing process. Furthermore, a maximum thick-
ness tmax is set to reduce the chance that adjacent PSLs merge
and form thick strands. Now, in the case that the usable mate-
rial budget αglobal has not been reached by the initial material
layout, in descending order with respect to cTi the PSL’s thick-
ness is set to tmax until all material has been deposited. Thus, a
final layout comprising PSL-guided material structures with ei-
ther the minimum or maximum allowed thickness are generated.
We also performed tests using an assignment strategy that gen-
erates structures with thickness values within the whole range
from t0 to tmax, yet while this improved the overall compliance
only marginally it increased the computational overhead consid-
erably.

For two initial material layouts using different PSL densi-
ties, Figs. 3a,c show the importance values that are computed
per PSL by greyscales ranging from bright (low importance) to
dark (high importance). Figures 3b,d show the corresponding fi-
nal layouts after automatic thickness control. The finite element
simulation is then re-performed using the empty-solid material
design to evaluate the mechanical performance of the layout. It
can be seen that adaptive thickness control distributes the mate-
rial along regions that are important for achieving mechanically
sound layouts and improves the overall compliance.

4 PSL-guided structural topology optimization
In density-based topology optimization, the design variable

is the pseudo density of each element in the discretized design
space. A structural layout can be represented by a binary field,
i.e., density ρe equals 0 or 1, indicating an empty or solid el-
ement. The objective is to find the stiffest structure, i.e., min-
imum compliance, for a prescribed set of boundary conditions,
and under an upper bound on the global material fraction,

1
n ∑

e
ρe ≤ αglobal. (3)

Here n is the number of elements, and αglobal is the global mate-
rial fraction.

To solve the optimization problem by mathematical pro-
gramming, the binary variables are relaxed to take intermediate
values between 0 and 1. The Young’s modulus associated with
intermediate density values (Ee(ρe)) is interpolated from that of
a solid basis element E0 (i.e., ρ0 = 1).

Ee(ρe) = ρmin +ρ p
e E0. (4)

ρmin is a non-zero small value, to avoid the stiffness matrix
becoming singular, typically ρmin = 10−6. The power p is a
key parameter for the validity of the optimized layout. p = 1
results in a convex optimization problem, but it overestimates
the attainable Young’s modulus for intermediate densities (cf.
Hashin–Shtrikman bounds [25]). The resulting optimized layout
consists of many intermediate density values, i.e. large grey re-
gions when visualizing the layout as an image. p = 3 is a reason-
able approximation of the Hashin–Shtrikman bounds [26], ac-
cording to which, for instance, half density (ρe = 0.5) gets much
less than half Young’s modulus. This physically valid interpola-
tion thus promotes the optimization to converge to a physically
valid structural layout (i.e., a binary density field). p > 1, how-
ever, raises a challenge for mathematical programming as the
optimization problem becomes non-convex. Given the fact that
the number of design variables in topology optimization is large,
there exist an extremely large number of local minima.

Strictly speaking, to approach theoretically optimal struc-
tures, one shall start with p = 1, and gradually increase its value
after some iterations, until p eventually reaches 3. Practically,
to cut down the number of iterations, one commonly starts di-
rectly with p = 3 (e.g., in the 99-line or 88-line Matlab ver-
sions [27, 28]). Meanwhile since the discretization resolution
of the design space is limited, the optimized structural layout,
under a global material volume constraint, often consists of dis-
tinctively bulk substructures (cf Fig. 4a) rather than a multi-scale
structure.

To design bone-inspired porous structures, Wu et al. pro-
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FIGURE 4. (a), (c): Structural layouts generated via topology optimization with global and local volume constraint, respectively, starting with a
homogeneous density field. (b), (d): Corresponding results when the initial density field is guided by PSLs, i.e., higher initial density is distributed
along the PSLs in Fig. 3a, and lower initial density is prescribed in all other regions. c is the compliance and c0 is the compliance of a fully solid
domain, v is the deposition ratio. s is the sharpness value introduced in Sec. 5, where a smaller value indicates a sharper binary layout. N represents the
number of iterations until s is reached.

posed to replace the global volume constraint with local volume
constraints [6]. A local volume constraint is applied to each ele-
ment, i.e.,

ρ̄e ≤ αe, ∀e (5)

where αe is a prescribed upper bound on the local volume. ρ̄e is
the average of densities in a small region centered at the centroid
of element e, computed by

ρ̄e =
∑i∈Ne ρi

∑i∈Ne 1
, Ne = {i| ∥ xi − xe ∥2≤ Re}, ∀e, (6)

where Re denotes the radius of a circular region. xi and xe rep-
resent the centroid of elements, Ne represents the number of ele-
ments within this circular region.

Figure 4c shows an example of using the local volume con-
straint. The optimization problem is solved using the method
of moving asymptotes (MMA) [29]. We refer to Wu et al. [6]
for a detailed discussion of the computational steps for avoiding
checkerboard patterns and stimulating a 0-1 design. The local
volume constraints are more restrictive than the global volume
constraint. Consequently, the optimized structure with the same
amount of total material is somewhat less stiff than obtained with
the global constraint. The benefits of the porous structures in-
clude robustness regarding material damage, unmodelled varia-
tion in boundary conditions, and buckling.

Density-based topology optimization under either global or
local volume constraints is dependent on the initialization of the
density field. Commonly in density-based topology optimiza-
tion, one prescribes ρe = αglobal or αe, ∀e, for global or local vol-
ume constraints, respectively.

We propose to use a PSL-guided density field to initialize
ρρρ [0]. In particular, we use the PSL-guided layouts as shown
in Figs. 3a,c for initialization. Here the elements correspond-
ing to the thickened PSLs (P) are prescribed a higher initial

FIGURE 5. Models used in our experiments. Grey regions and orange
arrowheads indicate fixations and loads, respectively. c0 is the compli-
ance of the fully solid layout under the boundary conditions. Orange and
turquoise trajectories represent the major and minor PSLs, respectively.
In (h), the topological skeleton that is traced from the two degenerate
points (black circles) is shown. The number of simulation elements
is 153,133 (’femur’), 70,042 (’hook’), 449,918 (’wrench’) and 95,028
(’bracket’).

value (ρ [0]
e∈P = 1 in this paper). The rest elements have a lower

value, ρ [0]
e/∈P = αglobal or αe. Thus, the PSL trajectories are pre-

embedded into the ρρρ [0]. Figures 4a,b compare optimized layouts
using a homogeneous initialization and the proposed initializa-
tion, under the global volume constraint. Figures 4c,d compare
the effects of initialization for local volume constraints.

5 Results
We use several examples to compare the mechanical proper-

ties of PSL-guided material layouts to the layouts generated by
density-based topology optimization with and w/o PSL-guided
material initialization. All experiments have been carried out on
a desktop PC with an Intel Xeon CPU at 3.60GHz. The used op-
erations have been implemented in MatLab, to ease the combi-
nation of finite element stress analysis with PSL integration and
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FIGURE 6. Layouts for ’femur’. (a) Topology optimization with global volume constraint, homogeneous material initialization. (b) Same as (a) but
with PSL-guided material initialization. (c) Topology optimization with local volume constraint, homogeneous material initialization. (d) Same as (c)
but with PSL-guided material initialization. (e) PSL-guided material layout.

material layout. All design domains are discretized by Carte-
sian finite element grids with unit-size simulation elements. The
Young’s Modulus and Poisson’s ratio are set to 1.0 and 0.3, re-
spectively.

To analyze the convergence improvements when using PSL-
guided material initialization in topology optimization, we use
the sharpness measure

s =
4
n ∑

e
ρe(1−ρe). (7)

A small value of s indicates a sharper binary design of the opti-
mized layout. To facilitate the comparison of the convergence
behavior, according to [6, 15] we define that the optimization
process has converged once s is less than 0.01. Thus, the conver-
gence of different approaches can be compared easily by count-
ing the number of iterations (N) until the sharpness value is be-
low 0.01.

Generating the PSL-guided material layout involves a finite
element analysis to compute the stresses in the solid object under
load, followed by PSL extraction and material deposition along
PSLs. Strain-guided thickness control requires another finite ele-
ment analysis to compute the strain energy of the initial material
layout. A final simulation is used to evaluate the mechanical
properties of the layout. Even for the largest model ’wrench’
with 449,918 simulation elements (see Fig. 5e), the entire pro-
cess takes less than 30 seconds. When using the PSL-guided
layout as initialization for topology optimization, only the initial
finite element analysis to simulate the stress field is required. In
all our examples this is performed in less than 15 seconds.

In the following, the ’femur’ model shown in Fig. 5 is used
to compare the results of all proposed approaches and analyse
their specific properties. Figure 6 shows the generated material
layouts using the same external load conditions.

In Figs. 6b,a, the results of topology optimization with
global volume constraint with and w/o the proposed material ini-
tialization are compared. While the compliance and the number
of optimization iterations remain almost unchanged, very differ-
ent material layouts are generated. It is in particular apparent
that the final layout when the specific material initialization is
used contains far more fine-grained sub-structures which are dis-
tributed over the domain. In Figs. 6d,c, the comparison is with
respect to topology optimization under local volume constraint
with and w/o the proposed initialization strategy. In this case,
even at a significantly reduced number of optimization iterations
the compliance is still comparable. Furthermore, the resulting
layout appears more regular and is close to a 2D quad-mesh.

From Fig. 6e it can be observed that PSL-guided material
layout achieves similar compliance than topology optimization
with local volume constraint, yet the layout is generated at sig-
nificantly lower computational cost. While it requires only three
finite element simulations to generate the final layout, even with
the proposed material initialization topology optimization re-
quires over 300 iterations of finite element simulation and mate-
rial update. In addition, a very regular and uniformly distributed
layout is obtained.

Besides the compliance, we also evaluate the robustness of
the material layouts generated by the different approaches with
respect to local damage. Therefore, we remove a small piece of
material from the optimized structures, but the boundary condi-
tions are kept the same, see the region marked by a red box in
Fig. 7 left. By comparing the compliances before and after local
damage is applied (see Fig. 7 right), we see that the layout gen-
erated by topology optimization under global volume constraint
has the weakest robustness in the tested scenario. However, by
using the proposed material initialization, the robustness is im-
proved significantly. The result by the topology optimization un-
der local volume constraint is robust with respect to the local
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FIGURE 7. Robustness with respect to local damage. Left: Red box
indicates where material is removed. Right: Compliance comparison
before and after local damage. (a)-(e) correspond to the cases in Fig. 6.

FIGURE 8. (a) PSLs used to guide material deposition. (b) and (c):
PSL-guided material initialization of topology optimization with global
and local volume constraints, respectively. (d) PSL-guided material lay-
out with thickness control.

damage, which has also been demonstrated by the work [6], and
our initialization strategy doesn’t violate this feature. Further-
more, the result of using the PSL-guided structural design also
shows this characteristic of the result by topology optimization
under local volume constraint.

In addition to the experiments in Fig. 6 with a rather dense
set of PSLs, a second row of experiments has been conducted
with a more sparse set of PSLs for material initialization and
PSL-guided layout (see Fig. 8a). Again, the result in Fig. 8b
shows a more detailed and distributed material layout when these
PSLs are used for initialization in topology optimization with
global volume constraint. Figure 6c demonstrates improved con-
vergence rate of topology optimization with local volume con-
straint, and Fig. 8d supports our finding that PSL-guided material
layouts come at reasonably compliance yet significantly reduced
computational load. On the other hand, it becomes less signif-
icant compared to Fig. 6d since less PSLs are used. In order
to set an appropriate PSL distribution for the PSL-guided struc-
tural design or topology optimization, we recommend taking the
affecting radius Re in Eqn. 6 as a reference in selecting the snap-
ping threshold ϑ of 3D-TSV, where the former determines the
pore size of the porous infill, the latter controls the gaps among
different PSLs.

To further demonstrate the potential of PSL-guided material
initialization to improve the convergence of the optimization pro-

FIGURE 9. (a), (b) Only using the topological skeleton of the stress
tensor field as initial material field and the corresponding result [15].
(c), (d) The proposed approach.

cess, a comparison to the approach by Wang et al. [15] using only
the topological skeleton of the stress field in the initialization is
performed. We use the same ’bracket’ model (see Fig. 5g) as in
[15]. Figure 9 shows the generated material layouts and the per-
formance statistics for both variants. While the generated layouts
are similar in terms of compliance, our proposed initialization
can reduce the number of optimization iterations until conver-
gence by more than 30%.

By using the ’hook’ and ’wrench’ models, the basic features
of material initialization are further emphasized (see Fig. 10).
In particular, the results are in line with those obtained for ’fe-
mur’, with respect to compliance and number of optimization
iterations. Figure 11 shows rendering of 3D objects that were
created by extruding the 2D material layouts.

6 Conclusion and future work
In this work, we have analyzed the use of PSL-guided ma-

terial layouts for and as an alternative to density-based topol-
ogy optimization. We have demonstrated that the convergence of
topology optimization with local volume constraint can be sig-
nificantly improved when such layouts are used to initialize the
optimization process. When only a global volume constraint is
enforced, the robustness of the final layout with respect to local
damage is vastly improved. In both cases, the resulting layouts
show improved regularity and are more evenly distributed across
the domain.

When PSL-guided material layouts are used alone, with the
thickness of PSLs adjusted according to their mechanical proper-
ties, the resulting compliances are en par with those generated by
topology optimization with local volume constraint. In contrast,
however, the computational complexity of the generation pro-
cess is significantly reduced, and more regular and distributed
layouts are generated. While compared to topology optimiza-
tion with global volume constraint the overall resistance to the
considered loading conditions is reduced, the layouts show sig-
nificantly higher robustness to local damage. All of our exper-
iments have shown that highly regular, smoothly varying, and
distributed layouts are generated by PSL-guided material depo-
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FIGURE 10. From (a) to (e), and (f) to (j), respectively: Material layouts generated via topology optimization with global volume constraint (with
and w/o PSL-guided initialization), with local volume constraint (with and w/o PSL-guided initialization), and PSL-guided material layout.

FIGURE 11. The 3D objects created by extruding the 2D designs.
(a)-(f) correspond to Fig. 10b, d, e, g, i and j, respectively.

sition.
In the future, we intend to investigate the extension of PSL-

guided material deposition to 3D domains. In particular, we aim
at analyzing whether purely line-based structures can be obtained
in 3D. Furthermore, it will be interesting to apply PSLs to com-
pile global consistent structures from the local configuration of
optimized orthotropic rectangular cells in homogenization-based
topology optimization [18].
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We present a novel de-homogenization approach for ef-
ficient design of high-resolution load-bearing structures.
The proposed approach builds upon a streamline-based
parametrization of the design domain, using a set of
space-filling and evenly-spaced streamlines in the two mu-
tually orthogonal direction fields that are obtained from
homogenization-based topology optimization. Streamlines in
these fields are converted into a graph, which is then used to
construct a quad-dominant mesh whose edges follow the di-
rection fields. In addition, the edge width is adjusted accord-
ing to the density and anisotropy of the optimized orthotropic
cells. In a number of numerical examples, we demonstrate
the mechanical performance and regular appearance of the
resulting structural designs, and compare them with those
from classic and contemporary approaches.

1 Introduction
Achieving the highest stiffness while using the least

amount of material is a fundamental task in mechanical de-
sign. This is often formulated as an optimization problem,
e.g., topology optimization, in which the material distribu-
tion is optimized [1,2]. Early works in topology optimization
employ a material model corresponding to infinitely small
square cells with rectangular holes [3]. The orientation of
the cell and the size of the rectangular hole therein are opti-
mized to minimize the compliance of the structure. The ma-
terial properties of these orthotropic cells are constructed us-
ing homogenization. This homogenization-based approach
generates a mathematical specification of theoretically opti-
mal structures. Yet how to translate the specification of these

∗Address all correspondence to this author.

spatially-varying orthotropic cells into a globally consistent
geometry has remained a challenge. The lack of a consistent
geometry means that the optimal structure is not manufac-
turable. To circumvent this problem, the focus of research
in topology optimization has since the 1990s shifted to op-
timizing the distribution of solid isotropic materials. Popu-
lar approaches such as those based on density [4, 5], level-
sets [6, 7], evolutionary procedures [8], and explicit geomet-
ric descriptions [9, 10], all belong to this category.

Recent years have seen a revival of homogenization-
based approaches, with a focus on the post-process that trans-
lates the results of homogenization-based topology optimiza-
tion into a manufacturable geometry. This post-process is
now often referred to as de-homogenization. Special em-
phasis has been put on the efficient computation of a high-
resolution structural design from the result of topology op-
timization on a coarse grid. Pantz et al. proposed one
of the first solutions towards this end [11], which was re-
visited and improved by Groen and Sigmund [12] and Al-
laire et al. [13]. These approaches have since been ex-
tended to 3D [14, 15], and to deal with singularities in the
optimized orientation fields [16]. It was also applied to
simultaneously optimize the structural layout and the sub-
structures therein [17]. A key component in these approaches
is computing a fine-grid scalar field whose gradients are
aligned with optimized orientations from homogenization-
based topology optimization. Wu et al. reformulated this
post-process as quad/hex-dominant meshing, i.e., construct-
ing quad/hex-dominant meshes whose edges are aligned
with the optimized orientations [18]. Stutz et al. [19] re-
ported a method to generate high-resolution multi-laminar
structures from frame fields by tracing the stream surface.
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They further formulated the finding of such a set of well-
spaced stream surfaces as an optimization problem. Con-
volutional neural networks have also been found useful for
de-homogenization [20]. Alternative de-homogenization ap-
proaches include [21, 22].

In the same line with previous works, we propose a
de-homogenization approach which takes as input the width
and orientation of spatially-varying square cells that are op-
timized via homogenization-based topology optimization.
A significant difference of our approach is that it directly
generates an explicit representation in the form of a quad-
dominant mesh, instead of a binary material field that needs
further post-processing to translate it into a geometric repre-
sentation. The edges of the mesh represent beam-like sub-
structures of varying width, which are aligned with the opti-
mized cell orientations. This compact representation is ben-
eficial for downstream operations such as user editing and
fabrication process planning.

Our technical contribution is a novel method to con-
vert the result of the homogenization-based optimization
process, i.e., the optimized cell widths and orientations,
into a domain-filling mesh whose elements are then de-
homogenized consistently. This is achieved by first parame-
terizing the design domain using a set of domain-filling and
evenly-spaced streamlines that are aligned with the edges
of optimized cells. The streamlines are then converted into
a graph, from which a quad-dominant mesh whose edges
follow the optimized direction fields can be computed effi-
ciently. For de-homogenization, the edge widths are varied
per element and along different directions according to the
average direction and volume fraction of the optimized cells
covered by an element. Thus, it can avoid the projection
step to optimize for a consistent fine-grid scalar field (e.g.,
in [12]).

We draw inspiration from prior work on structural de-
sign using principal stress lines (PSLs) [23, 24, 25]. The
structures following principal stress directions are continu-
ous, and this regularity is often appreciated in industrial de-
sign and architecture [26]. These prior explorations, how-
ever, make use of the principal stress directions in the stress
field of a solid object with isotropic material. It deviates from
the stress tensor field of the final optimized structure which
is composed of orthotropic cells. Furthermore, the uniform
sampling of the stress lines has been a challenge, and the
beam width was typically assigned based on heuristics. For
example, Kwok et al. [24] proposed an iterative optimiza-
tion process in which lattice structures along PSLs appear
incrementally. This method works for concentrated loads
but it is challenging to cope with distributed loads on the
design domain. Wang et al. [25] used the space-filling and
evenly-spaced PSLs for structural design, where the beam
width was adjusted using a strain energy-based importance
metric. These approaches are attractive for their computa-
tional efficiency, yet the stiffness of the obtained structures
are sub-optimal. In contrast to these works, we use the result
of homogenization-based topology optimization for stream-
line tracing and to de-homogenize the single elements in the
resulting mesh structure. We show that this creates structures

with significantly improved stiffness.
The remainder of this paper is organized as follows.

We first give an overview of the proposed method in Sec-
tion 2. In Section 3, we review the problem formulation of
homogenization-based topology optimization. In Section 4
we describe the construction process of a space-filling mesh
from the direction fields that are optimized based on homog-
enization. Mesh-based de-homogenization is presented in
Section 5, and we demonstrate the effectiveness of our ap-
proach in a variety of examples in Section 6. Section 7 con-
cludes the paper with a discussion of the proposed approach
as well as future research directions.

2 Method Overview
Our approach comprises three major stages, which are

illustrated in Fig. 1. The input is a design domain includ-
ing boundary conditions, i.e., the fixations of the domain and
the external forces (Fig. 1a). Furthermore, the material prop-
erties and the volume fraction that can be consumed by the
optimized layout are set by the user.

Optimization. In the first stage, homogenization-based
topology optimization is used to optimize the orthotropic cell
distribution (Fig. 1b). From this distribution, the direction
fields (Fig. 1c) and the density distribution (Fig. 1d) are ex-
tracted. The direction fields locally coincide with the edges
of orthotropic square cells whose deposition ratio and orien-
tation are optimized. The size of the rectangular hole within
each cell determines the local material consumption, and the
ratio between the widths of the cell’s edges determine the
local material anisotropy.

Parametrization. In the second stage, first a domain-
filling and evenly-spaced set of streamlines is computed in
the direction fields (Fig. 1e). Then, a graph structure is con-
structed, in which adjacent streamline intersection points and
intersection points with the initial domain boundary are con-
nected via edges (Fig. 1f). The graph is finally converted
into a mesh that is composed of mostly quadrilateral and few
triangular cells bounded by the edges of the graph (Fig. 1g).

De-homogenization. In this last stage, the final structural
design (Fig. 1h) is computed by jointly using the quad-
dominant mesh, the optimized density distribution, and the
anisotropy of optimized square cells. The mesh structure di-
vides the design domain into a space-filling set of elements
whose interior is filled with material according to the opti-
mized density distribution and the anisotropy of each ele-
ment.

3 Homogenization-based Topology Optimization
For structures under a single load, the theoretically op-

timal structural layout can be approximated by optimizing
the distribution of square cells with a rectangular hole [3].
As illustrated in Fig. 2a, the design domain is discretized
into finite elements. Each element represents a repetition of
an adapted configuration of the unit cell. The square cell
has a unit side length. Within it, there is a rectangular hole
(Fig. 2c). The configuration of the unit cell is thus described
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Fig. 1. Method overview. (a) The design domain and boundary conditions. (b) The optimized distribution of orthotropic cells from
homogenization-based topology optimization. (c) The mutually orthogonal direction fields defined by the axes of the orthotropic cells. (d)
The equivalent density distribution of the orthotropic cells. (e) Streamlines traced along the two orthogonal direction fields. (f) The graph
structure extracted from the streamlines. (g) The quad-dominant mesh obtained from the graph structure. (h) The final structural design.

by the hole sizes αx and αy and rotation angle θ. The me-
chanical properties of the unit cell is orthotropic. In this pa-
per we refer to these adapted cells as orthotropic cells. The
density or deposition ratio (ρe) of each cell is measured by
1−αxαy. The elasticity tensor of the orthotropic cell is com-
puted by

C(αx,αy,θ) = RT (θ)CH(αx,αy)R(θ), (1)

where R(θ) is the rotation matrix, and CH(αx,αy) represents
the effective elasticity tensor for an axis-aligned unit cell
with αx,αy, evaluated by homogenization.

The structural design is formulated as compliance mini-
mization,

min
αααx,αααy,θθθ

1
2

FFFTUUU , (2)

subject to KKK(αααx, αααy, θθθ)UUU = FFF , (3)
1
n ∑

e
ρe −αglobal ≤ 0, (4)

0 ⩽ αx, αy ⩽ 1. (5)

Here the objective is to minimize the elastic energy. FFF is
the loading vector. UUU is the displacement vector, obtained
by solving the static equilibrium equation (Eq. 3). KKK is the
stiffness matrix in finite element analysis. n is the number of
finite elements. αglobal is the volume fraction prescribed by
the user.

We use the procedure reported by Groen and Sig-
mund [12] for solving the optimization problem. The edu-
cational code for this was provided in the review article [27].

Fig. 2. (a) The design domain is discretized into bilinear square
grids. (b) Each square element is assumed to be filled by the or-
thotropic material. (c) The size and orientation of the approximately
equivalent orthotropic cell, i.e., the square element with rectangular
hole, are taken as design variables in homogenization-based topol-
ogy optimization.

In this procedure, αx and αy are optimized by gradient-based
numerical optimization, while the rotation angle (θ) in each
iteration is determined by the corresponding principal stress
direction.

Figure 3 demonstrates the results of the
homogenization-based optimization for the “Cantilever”
model, showing the initial domain and external forces (a),
the extracted density layout (b) and the direction fields
of the optimized orthotropic cell distribution (c). Fig. 3d
provides a closeup view of the layout of the orthotropic
cells. This layout is not directly manufacturable, and needs
to be transformed into a consistent geometry.

4 Parametrization
The goal of our approach is to convert the locally spatial-

varying orthotropic cells into a globally consistent geometry.
While thick sub-structures or one single solid block should
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Fig. 3. (a) The design domain. (b), (c) The optimal density layout and the corresponding direction field produced by the homogenization-
based optimization. (d) Closeup of the optimized orthotropic cells sampled from the highlighted region in (c).

be placed in dense regions, in less dense regions only few
thin sub-structures are required. These sub-structures fol-
low the optimized direction fields. In contrast to previous
approaches that find a fine-grid scalar field with constraints
on its gradient, we trace streamlines along the optimized di-
rection fields. This ensures a global consistency of the sub-
structures, and their alignment with the optimized direction
fields.

We use the direction fields that are optimized via the
homogenization-based approach and generate a trajectory-
based parametrization of the design domain. Therefore, a
uniformly distributed set of streamlines in the direction fields
is computed by using the stress tensor visualization tool by
Wang et al. [28]. It enables to compute and visualize a space-
filling and evenly-spaced set of streamlines in three mutually
orthogonal direction fields. By setting the third vector field
to zero, it can be used right away to work with 2D fields
(i.e., the u- and v-field in our current application). We will
subsequently call the corresponding streamlines in the u- and
v-field the u-streamlines and v-streamlines, respectively. The
streamline seeding strategy ensures that around each stream-
line an empty band is generated from which no streamline is
seeded, and new streamlines are always seeded from points
on existing streamlines. In this way, a fairly uniform and
space-filling set of streamlines is computed (see Fig. 4a).

Each streamline can be converted into a polyline consist-
ing of a set of intersection points and linear connections be-
tween them [29]. From this representation, a graph structure
with the nodes and edges, respectively, being the intersection
points and piecewise linear connections between them can be
easily constructed. By connecting adjacent integration points
on the domain boundaries, the final graph —due to the mu-
tual orthogonality of the u- and v- streamlines—comprises
mostly regions that are bounded by exactly four edges. Only
at degenerate points and at points lying on a boundary, re-
gions that are bounded by three edges can occur. The result
of this process is shown in Fig. 4b.

Finally, the graph structure is used to discretize the de-
sign domain into a set of independent elements, i.e., the in-
terior regions of the graph structure, so that each element
can be de-homogenized independently. The orientation of
the elements is given by the streamline skeleton, and the
de-homogenization process proceeds by filling the elements
with material according to the optimized density field. This
is performed by extruding material from the edges of each
element inward, according to the volume fraction of the con-
tinuous density field in each element. To do so, the graph

structure first needs to be converted into an explicit cell-
based mesh structure.

Since the 2D graph structure represents the connectiv-
ity (i.e. the edges) between the coordinates of the stream-
line intersection points, a quad-dominant mesh can be con-
structed in a straight forward way from this structure. By
iteratively processing the local vertex and edges topology
along streamlines, a mesh comprising quadrilateral and trian-
gular elements can be computed, along with the cell topology
that represents the cell adjacency information. Note that the
local ordering of nodes of each quadrilateral and triangular
cell needs to be consistent, i.e., either clockwise or counter-
clockwise. Figure 4c shows the constructed mesh from the
graph structure in Fig. 4b.

Singularities. To obtain a consistent mesh structure from
the streamline skeleton, singularities in the direction fields
need to be determined and treated in a special way. In our
case, where the direction fields coincide with principal stress
directions, singularities occur at so-called degenerate points
of the corresponding stress field, i.e., points where the two
eigenvalues of the stress tensor in the underlying stress tensor
field become indistinguishable. In the seminal work by Del-
marcelle and Hesselink [30] both the classification of degen-
erate points and their numerical computation is discussed.
In the vicinity of degenerate points a set of hyperbolic and
parabolic sectors exist, in which similar patterns of neighbor-
ing trajectories are observed. The topological skeleton con-
sists of the boundaries between adjacent sectors—so-called
separatrices—and indicate pathways along which the forces
are steered towards the degenerate points. By first extracting
the degenerate points and computing the topological skele-
ton, the separatrices can then considered as seed streamlines
as described before, so that an evenly-spaced set of stream-
lines is computed in each sector. Let us refer to the work by
Wang et al. [29] for a more detailed description of the imple-
mented procedure. Figure 11b and 13f show the embedding
of singularities into the computed streamlines.

5 De-Homogenization
In order to de-homogenize the optimal density layout,

i.e., to convert the continuous density layout into a binary
one, we utilize the constructed quad-dominant mesh and de-
homogenize the region covered by each mesh element sep-
arately. As shown in Fig. 5, each element covers a certain
region in the domain. The material in each region, i.e., the
deposition ratio, should be re-distributed so that a) a binary
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Fig. 4. Parametrization by streamlines. (a) Space-filling and evenly-spaced streamlines. (b) Graph structure. (c) Quad-dominant mesh.

Fig. 5. Correspondence between continuous material field and
mesh elements, facilitating the assignment of a material budget v∗i
to each mesh element and de-homogenization of each element sep-
arately.

material layout is generated, b) a continuous transition at the
element boundaries is obtained, and c) the orthotropic cells’
orientations, which have been optimized with respect to the
object’s compliance, is reflected in the binary material lay-
out. The target deposition ratio v∗i of a mesh element (see
Fig. 5) is measured by D

M , where M is the number of or-
thotropic cells located in the region covered by the element,
and D is sum of the density values over all these cells. The
de-homogenized mesh element should keep this deposition
ratio after de-homogenization.

Our approach can generate the final design at different
granularity levels in a straight forward way, by varying the
width of the empty bands around each computed stream-
line. The width is controlled by the distance threshold in
the streamline seeding process (refer to [28] for details).
Since the resolution of the corresponding quad-dominant
mesh varies spatially and is not necessarily at a resolution
comparable to the finite element discretization used in topol-
ogy optimization, the density and directions need to be re-
sampled from the finite element grid to compute the target
deposition ratio of a mesh element. This is performed via bi-
linear interpolation at a set of sampling points in each mesh
element.

5.1 Anisotropic mesh element
To distribute the material in a mesh element according

to the mentioned requirements, we propose to extrude the
available material from the edges of each element inward.
By starting with a minimal edge thickness, the edges are it-
eratively thickened until all available material is used. In this
way, we enforce a layout that aligns with the element orienta-
tion, seamlessly connects adjacent elements, and can further-
more account for an anisotropic stress distribution by adapt-

Fig. 6. Schematics of computing the area subtended by edges of
a certain thickness. From intersection points between dashed lines
(extruded edges) and edges of the mesh element the areas can be
computed.

ing the edge thickness according to the mechanical properties
of each element.

The process starts by removing mesh elements which
have a very low target deposition ratio (e.g., v∗ < 0.05), in or-
der to avoid the generation of very thin mesh edges that can
cause difficulties in the manufacturing process. Similarly,
mesh elements with a large deposition ratio (e.g., D

M > 0.95)
are made fully solid. The edges of all remaining mesh ele-
ments are set to a minimum thickness t0.

Taking a single mesh element as shown in Fig. 6, its de-
position ratio v is computed as the sum of the areas Ai cov-
ered by each extruded edge, subtracting the sub-areas that are
counted twice, and then dividing by the total area of the ele-
ment. We start with two opposite edges and compute for each
edge the intersection points between the extruded edge and
the respective other mesh edges (P00,P01,P20,P21 in Fig. 6).
Including the endpoints of the mesh edges, this gives two
quadrilaterals A0, A2, whose areas can be computed via tri-
angulation. For the other two mesh edges, we use the newly
computed edge intersection points and the intersection points
between the four extruded edges, and compute two quadrilat-
erals representing the missing areas A1,A3. Now, the thick-
ness t of each edge can be increased iteratively from the ini-
tial value t0, until the actual deposition ratio v approaches the
target v∗, i.e., the available material budget is used.

In order to match the mechanical properties of the set
of orthotropic cells covered by a single mesh element, we
start with a minimal edge thickness, and then thicken the
edges according to the ratio of the edge thicknesses of the
orthotropic cells (Fig. 7). The edge thicknesses 1−αx and
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Fig. 7. Top: the edges are equally thickened (left) or thickened (us-
ing the same amount of material) according to the edge thicknesses
of the orthotropic cells they cover (bottom left). Bottom: For the set
of orthotropic cells covered by a mesh element, representative edge
thicknesses and orientation are computed via averaging. The arrow
length indicates the thickness of edges along the pointing direction.

1−αy as well as the orientation of an orthotropic cell have
been optimized to maximize stiffness of the resulting layout.
As such, if all cells covered by a mesh element have the same
thickness ratio, and are consistently orientated with the mesh
element, the material should be deposited along the element
edges so that the thickness ratio of the cells is maintained.
However, since the ratio and orientation vary across the cells,
in general, we first need to compute representative values for
both (see Figure 7 bottom for an illustration).

We do so by first computing the normalized thickness of
the cell edges ϕ1 and ϕ2 following the u- and v-field, respec-
tively, by adding up the values of the per-cell thicknesses and
dividing through the maximum of the resulting values, i.e.,

ϕ∗
1 = ∑(1−αi

x), ϕ∗
2 = ∑(1−αi

y),

ϕ1 = ϕ∗
1/max(ϕ∗

1, ϕ∗
2), ϕ2 = ϕ∗

2/max(ϕ∗
1, ϕ∗

2).
(6)

Then, to determine which edge of the mesh element cor-
responds to ϕ1 and which to ϕ2, we compute the average
direction vectors

−→
U and

−→
V of all the per-cell direction vec-

tors −→ui and −→vi , i.e.,
−→
U = norm(∑−→ui ) and

−→
V = norm(∑−→vi ).

We let the mesh edges correspond to
−→
U or

−→
V to which they

have the least directional deviation.

Now, we can introduce for each mesh edge e j a scaling
factor w j, which is calculated by e j = t0 +w jδ. Here δ is an
increment used for adjusting the edge thickness iteratively.
With the thicknesses and directions (ϕ1,

−→
U ) and (ϕ2,

−→
V ),

the corresponding weighting factor w j of the j-th element

edge is given by

w j =

{
ϕ1 θ j1 ⩽ θ j2

ϕ2 θ j1 > θ j2
. (7)

Here, θ j1 and θ j2 are the included angles between the j-
th element edge and the directions

−→
U and

−→
V , respectively,

and we consistently use the same thickness for opposite
edges in each quadrilateral element, and the triangular ele-
ments are treated as degenerate quadrilaterals where one of
the edges is collapsed, specifically, for each edge, the weight-
ing factor w j is determined by Eqn. 7.

It is worth mentioning that in rare cases the per-cell di-
rections may change considerably in a single mesh element,
and thus the per-element direction becomes less represen-
tative. To cope with this, the mesh element can be subdi-
vided into a set of smaller elements, for each of which the
de-homogenization is performed as described.

6 Results
We demonstrate our de-homogenization approach with

several examples, and compare the results to those of
density-based and de-homogenization approaches. In all
cases, the design domains are discretized by Cartesian grids
with unit-size. The Young’s modulus and Poisson’s ratio
are set to 1.0 and 0.3, respectively. Homogenization-based
topology optimization is performed with the Matlab code
provided in [27]. We terminate the optimization process
after 200 iterations. We have implemented the proposed
parametrization and de-homogenization operations in Mat-
lab as well. All experiments have been carried out on a desk-
top PC with an Intel Xeon CPU at 3.60GHz.

Comparison to density-based approaches. In our first
experiment, we use the cantilever model described in
Fig. 3a to demonstrate the properties of the proposed de-
homogenization approach and compare the results to those
of density-based topology optimization.

Figure 8 (top) shows the de-homogenization results for
different streamline densities, resulting in an increased or de-
creased number of ever smaller or larger mesh elements, re-
spectively. The compliances of the designs with different
granularity vary only slightly. With c0 being the compliance
of the fully solid domain, one can see that with the same
amount of material all resulting designs achieve almost the
same compliance of roughly 1.5c0. The compliance of the
de-homogenized binary layouts is slightly higher than that
from homogenization-based optimization (1.447c0).

In Fig. 8 (bottom), we compare our results to those gen-
erated by the stress trajectory-guided structural design by
Wang et al. [25], the porous infill approach using local vol-
ume constraints by Wu et al. [31], and density-based topol-
ogy optimization with a global volume constraint. In all ex-
amples, the same number of simulation element as for de-
homogenization in our approach is used.

Fig. 8d,e show the results of stress trajectory-guided
structural design. In (d), the material is distributed along
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Fig. 8. Top: Results with the proposed de-homogenization strategy. (a) to (c) demonstrate the changes due to different amounts of stream-
lines used in the parametrization stage. Bottom: Comparison to alternative approaches for generating a binary design via topology optimiza-
tion. (d) PSL-guided material layout [25]. (e) PSLs-initialized density-based topology optimization using a global volume constraint [25]. (f)
Porous-infill optimization with local volume constraints [31]. (g) Density-based topology optimization with a global volume constraint. c0 and
c, respectively, are the compliances of the fully solid domain and the shown results, v is the volume fraction.

principal stress trajectories of the solid object under load, and
the thickness of the material is adapted according to the ac-
cumulated strain energy along each trajectory. Fig. 8e shows
the optimized material layout when the material field in (d) is
used as initialization for topology optimization with a global
volume constraint. The generated layouts also show a very
regular structural design, but a considerably higher compli-
ance than the de-homogenization approach. The latter can
also be observed when comparing to porous infill optimiza-
tion (Fig. 8f) which applies a strict constraint on local vol-
ume. Here, besides having a smaller compliance, the de-
homogenized layout (Fig. 8a-c) also shows a more regular
structural layout. Notably, while porous infill optimization
generates many bifurcations, i.e., solid strands that merge
and split, the de-homogenization approach, per construction,
results in a grid-like structure mostly comprising quadrilat-
eral elements. Finally, compared to density-based topology
optimization with a global volume constraint (Fig. 8g), our
result still shows a slightly smaller compliance, yet the re-
sults are far more regular and, are expected to exhibit higher
stability when the load conditions are changed or certain
parts undergo damage, as demonstrated for evenly-spaced,
space-filling structures in [31, 29].

Comparison to de-homogenization approaches. A ma-
jor difference between our approach and previous de-
homogenization approaches (e.g., [12, 13]) is the represen-
tation of the optimized structure. Our design is encoded by a
graph, rather than a density distribution. The graph-encoded
representation is more convenient for downstream operations
such as user editing and fabrication tool-path generation,
though these advantages are not explored further here.

In Fig. 9, we compare the result that is obtained
with our approach to the result of projection-based de-
homogenization by Groen and Sigmund [12]. To match
their model configuration, the force applied to the cantilever

model has been changed accordingly, and homogenization-
based topology optimization is performed at a coarse grid
resolution of 100×50. Density based topology optimization
using a global volume constraint is also included here as a
reference. It is computed at a grid resolution of 1600×800.
It can be seen that the compliance of the layout generated by
our approach (d) is only slightly higher than that of the lay-
out produced by the method of Groen and Sigmund in (e),
yet using a little less material. The layout in (e) has some
concentrated clusters in the middle of the domain, while our
approach generates a more uniform grid-like material layout.
This difference is likely due to the parameter setting (e.g., the
filter size) in the homogenization-based topology optimiza-
tion. While Groen et al. perform an optimization to gener-
ate a consistent binary pattern at finer resolution (1600×800
in the example) from the coarse grid results, in our method
the resolution of the final layout is controlled by the density
of seeded streamlines. Since streamlines are always traced
in the initial domain, they always stay entirely within the
domain. The optimized quantities required to trace stream-
lines and de-homogenize the final mesh elements are recon-
structed via bilinear interpolation from the coarse grid.

Figure 10 shows the structural design that is generated
by our method when applied to the Michell’s structure ac-
cording to the specification in [12]. The coarse and fine grid
resolutions used for optimization and de-homogenization are
80× 60 and 1280× 960, respectively. As can be seen, per-
fect symmetry is not achieved, because the streamline seed-
ing process does not consider symmetry in the design do-
main or the underlying direction field. If symmetry is known
beforehand, however, the seeding process can be adapted
accordingly. The compliance of the streamline-guided de-
sign (Fig. 10d) is even lower than the design that is gen-
erated via projection-based de-homogenization (Fig. 10e).
Overall, our experiments indicate that streamline-based de-
homogenization generates designs with a compliance that is
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Fig. 9. Comparison of de-homogenization approaches on a cantilever beam. (a) The design domain and boundary conditions. (b) The
result of density-based topology optimization with a global volume constraint simulated (c = 62.56, v = 0.500). (c) Optimal density layout
(c= 57.21, v= 0.500), superimposed with streamlines. (d) The de-homogenized structural design by our method (c= 60.04, v= 0.500).
(e) The result of the projection-based de-homogenization (c = 58.57, v = 0.510). The image (e) is reprinted from [12] with permission from
John Wiley & Sons.

Fig. 10. Comparison of de-homogenization approaches on a Michell’s structure. (a) The design domain and boundary conditions. (b)
The result of density-based topology optimization with a global volume constraint (c = 64.452, v = 0.250). (c) Optimal density layout
(c = 55.64, v = 0.250), superimposed with streamlines. (d) The de-homogenization using our approach (c = 62.301, v = 0.250). (e)
The result of the projection-based de-homogenization (c = 67.830, v = 0.252). The image (e) is reprinted from [12] with permission from
John Wiley & Sons.

Fig. 11. Tests on a cantilever beam fixed by the endpoints of its left boundary. (a) Optimal density layout (c∗ = 1.138c0, v = 0.500) and
streamlines. (b) The generated streamline graph. The degenerate point (singularity) is marked by the red circle. (c) The de-homogenized
structural design (c = 1.170c0, v = 0.500).

comparable to what can be achieved with a projection-based
approach.

Performance analysis. Our proposed strategy can be
split into Parametrization and De-homogenization. In the
parametrization stage, it is first required to compute a set of
domain-filling and evenly-spaced streamlines. Under the as-
sumption that the streamline density is selected so that the
initial seed points are about a distance of one cell size from
each other, the computational complexity is O(N), where N
is the number of cells. In addition, whenever a new stream-
line is computed, all remaining seed points within a band of
a selected width around that streamline are discarded. Since
this band can be represented in the grid structure by flag-
ging cells entirely outside the band, this operation requires

to investigate only few of all possible seed points. Finally,
to generate a mesh structure, the intersections between the
streamlines along one optimized direction field with all other
streamlines of the respective other direction field need to be
computed. A straight forward realization is to first compute
all intersection points, including the indices of the intersect-
ing streamlines, to store them in a shared point representa-
tion, and then sort these points along each streamline indi-
vidually. Notably, intersection computations and sorting can
be parallelized effectively, so that we even expect interactive
update rates for the grid resolutions used in our work when
using an optimized GPU solution.

In the de-homogenization stage, it is first required to
determine the target deposition ratio v∗i of each mesh ele-
ment, and then to compute the widths of the element edges
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Fig. 12. (a) A cantilever under a distributed load along the right edge. (b) Result of density-based topology optimization with a global
volume constraint (c = 1.675c0, v = 0.500). (c) Optimal density layout (c∗ = 1.533c0, v = 0.500) and streamlines. (d) De-homogenized
structural design (c = 1.661c0, v = 0.500). (e) De-homogenized structural design with less streamlines (c = 1.680c0, v = 0.500).

to enforce the same deposition ratio before and after de-
homogenization. Notably, since the mesh elements can be
processed independently, also this process can be effectively
parallelized.

In contrast to our approach, previous de-homogenization
approaches (e.g., [12, 13]) require solving a linear system of
equations with as many degrees of freedom as cells on the
finest level. Even with optimized solvers, the number of it-
erations is of the order N and, thus, computationally more
demanding than our approach. As an indication of improved
computational complexity, our approach took 10 seconds or
less for most of the examples, while in [12] under the same
problem settings the computations took 100 seconds. The
computers used for testing were not precisely the same but
comparable.

Table 1 provides a performance and quality assessment
of all examples used in this work, including the compli-
ances of the de-homogenized designs (c), the deviations (ξ)
to the homogenization-based analysis (c∗), the number of
used streamlines, the number of elements of the generated
mesh, and the corresponding computation times. We further
split the computation times required by parametrization into
streamline generation (t1) and mesh construction (t2), and the
times required by de-homogenization into the target deposi-
tion ratio calculation (t3) and edge width identification (t4).
In all of our experiments, the time for parametrization and
de-homogenization combined is about 10 seconds or even
less. We also list the compliance (c+) of the results that
are generated by topology optimization with a global volume
constraint under the same design specifications.
Singularity treatment. As we described in Section 4,
our proposed approach can handle situations where singu-
larities exist in the direction fields that are obtained via
homogenization-based optimization. Such singularities usu-
ally incur discontinuities during streamline tracing, and they
furthermore result in low convergence for density-based
topology optimization under local volume constraints [29].
The singularity can be detected by topology analysis of the
orthogonal direction fields. As an example, we again use the
cantilever model (Fig. 3a), but now replace the distributed
fixation condition with point fixations applied on the end-
points of the left boundary. Fig. 11a highlights a singu-
larity in the left part of the domain, where 3 u-streamlines
and 3 v-streamlines converge to a single point. This type
of singularity is termed a trisector degenerate point in stress
topology analysis, and the 6 streamlines are the correspond-

ing topological skeleton. Figure 11b shows the generated
mesh, which demonstrates that a consistent structure can be
obtained around the singularity. The de-homogenized result
is shown in Fig. 11c.
Distributed loads. Our de-homogenization approach nat-
urally works well also for distributed loads. Fig. 12a shows
the structural design problem under distributed loads. Fig. 12
compares the results of density-based topology optimization
with a global volume constraint to those of our proposed de-
homogenization method using different streamline densities.
The compliance from density-based topology optimization is
between the tight range of compliances of de-homogenized
structures with two different streamline densities. The devi-
ation of the compliances of the de-homogenized structures
(d and e) from the compliance in homogenization (c) is less
than 10%.
L-shaped beam and MBB beam. We have also tested our
approach on an L-shaped beam and a double-clamped beam.
Figure 13 shows the optimized results. In both cases, the
compliance of the de-homogenized layout is about 5% higher
than the compliance after homogenization. It is worth noting
that also in the stress field of the double-clamped beam a
degenerate point occurs, which, according to the topological
skeleton, generates a grid composed of triangular and quadri-
lateral mesh elements around it. In these two examples, as in
previous examples, the compliance of the de-homogenized
structure is lower than that from the density-based approach
with a global volume constraint.

7 Conclusion and Future Work
In this paper, we have introduced a novel streamline-

based parametrization of a design domain to de-homogenize
the optimal continuous density layout produced by
homogenization-based topology optimization. The com-
pliance of the de-homogenized high-resolution struc-
tures is very close to that of the optimal design from
homogenization-based optimization, and it is consistently
superior to the compliance achieved via density-based topol-
ogy optimization. The resulting structures exhibit a glob-
ally regular appearance, uniformly covering the domain with
quad-dominant mesh elements.

In the current work we did not strive for an efficient im-
plementation of the method. However, streamline integration
and intersection computation can be effectively parallelized,
for instance, on a GPU. The intersection points are already
ordered along the streamlines, and graph as well as mesh
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Examples c (·c0) c∗ (·c0) c+ (·c0) ξ ( c−c∗
c∗ ×100%) #Streamlines #Elements t1 (s) t2 (s) t3 (s) t4 (s) T (s)

Square (Fig. 1h) 1.261 1.242 1.276 1.53% 57 647 0.85 2.46 3.74 2.17 9.22

Cantilever 1 (Fig. 8a) 1.510 1.447 1.545 4.35% 46 464 0.76 2.24 3.66 1.50 8.16

Cantilever 2 (Fig. 11c) 1.170 1.138 1.156 2.81% 66 574 1.34 3.31 4.83 1.83 11.31

Cantilever 3 (Fig. 12d) 1.661 1.533 1.675 8.35% 40 416 0.70 1.68 3.25 1.61 7.24

Cantilever 4 (Fig. 9d) 1.564 1.493 1.629 4.76% 40 376 0.63 1.40 3.13 1.55 6.71

Michell’s structure (Fig. 10d) 3.176 2.837 3.286 11.95% 32 198 0.41 0.79 1.24 1.23 3.67

L-shaped beam (Fig. 13c) 1.397 1.332 1.399 4.88% 58 504 0.75 2.04 1.65 1.58 6.02

MBB beam (Fig. 13g) 1.763 1.663 1.808 6.01% 55 396 1.61 1.37 2.14 1.65 6.77

Table 1. Quality and timing statistics for streamline-guided de-homogenization. c∗ and c, respectively, are the compliance of the optimal
layout resulting from homogenization-based topology optimization and after streamline-guided de-homogenization. ξ measures the deviation.
c+ is the compliance by conventional topology optimization with a global volume fraction constraint. #Streamlines and #Elements refer to the
number of the used streamlines, and the number of resulting mesh elements, respectively. t1 and t2 are the times for streamline generation
and mesh construction (incl. graph extraction) during parametrization, respectively. t3 and t4 are the times for computing the available material
budget for each mesh element and the edge thicknesses during de-homogenization, respectively. T is the overall time.

construction requires only local access operations to adja-
cent streamlines or intersection points. Thus, we believe that
the entire approach can be implemented on the GPU so that
even instant de-homogenization is possible once the contin-
uous density layout is available. We will consider such an
implementation in future work, and investigate the possibil-
ity for designers to probe different streamline densities and
seeding strategies. We will also investigate post-processing
techniques, either automatic or with user interaction, e.g., to
remove sparse thin layers that correspond to low stiffness re-
gions (see Fig. 11 left middle, top right and bottom right).
Finally, we are particularly interested in extending this ap-
proach to design 3D beam-like lattice structures. A challenge
here is that the intersection of independently traced stream-
lines in 3D happens only coincidentally. A possible solution
is to locally relax the streamline alignment, e.g., using field-
guided hex-dominant meshing [32, 18]. An alternative solu-
tion is to explore the optimization approach for constructing
stream surfaces [19].
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